WorldWideScience

Sample records for actin network growth

  1. Load fluctuations drive actin network growth

    CERN Document Server

    Shaevitz, Joshua W

    2007-01-01

    The growth of actin filament networks is a fundamental biological process that drives a variety of cellular and intracellular motions. During motility, eukaryotic cells and intracellular pathogens are propelled by actin networks organized by nucleation-promoting factors, which trigger the formation of nascent filaments off the side of existing filaments in the network. A Brownian ratchet (BR) mechanism has been proposed to couple actin polymerization to cellular movements, whereby thermal motions are rectified by the addition of actin monomers at the end of growing filaments. Here, by following actin--propelled microspheres using three--dimensional laser tracking, we find that beads adhered to the growing network move via an object--fluctuating BR. Velocity varies with the amplitude of thermal fluctuation and inversely with viscosity as predicted for a BR. In addition, motion is saltatory with a broad distribution of step sizes that is correlated in time. These data point to a model in which thermal fluctuati...

  2. The role of actin turnover in retrograde actin network flow in neuronal growth cones.

    Directory of Open Access Journals (Sweden)

    David Van Goor

    Full Text Available The balance of actin filament polymerization and depolymerization maintains a steady state network treadmill in neuronal growth cones essential for motility and guidance. Here we have investigated the connection between depolymerization and treadmilling dynamics. We show that polymerization-competent barbed ends are concentrated at the leading edge and depolymerization is distributed throughout the peripheral domain. We found a high-to-low G-actin gradient between peripheral and central domains. Inhibiting turnover with jasplakinolide collapsed this gradient and lowered leading edge barbed end density. Ultrastructural analysis showed dramatic reduction of leading edge actin filament density and filament accumulation in central regions. Live cell imaging revealed that the leading edge retracted even as retrograde actin flow rate decreased exponentially. Inhibition of myosin II activity before jasplakinolide treatment lowered baseline retrograde flow rates and prevented leading edge retraction. Myosin II activity preferentially affected filopodial bundle disassembly distinct from the global effects of jasplakinolide on network turnover. We propose that growth cone retraction following turnover inhibition resulted from the persistence of myosin II contractility even as leading edge assembly rates decreased. The buildup of actin filaments in central regions combined with monomer depletion and reduced polymerization from barbed ends suggests a mechanism for the observed exponential decay in actin retrograde flow. Our results show that growth cone motility is critically dependent on continuous disassembly of the peripheral actin network.

  3. A variational approach to the growth dynamics of pre-stressed actin filament networks

    Science.gov (United States)

    John, Karin; Stöter, Thomas; Misbah, Chaouqi

    2016-09-01

    In order to model the growth dynamics of elastic bodies with residual stresses a thermodynamically consistent approach is needed such that the cross-coupling between growth and mechanics can be correctly described. In the present work we apply a variational principle to the formulation of the interfacial growth dynamics of dendritic actin filament networks growing from biomimetic beads, an experimentally well studied system, where the buildup of residual stresses governs the network growth. We first introduce the material model for the network via a strain energy density for an isotropic weakly nonlinear elastic material and then derive consistently from this model the dynamic equations for the interfaces, i.e. for a polymerizing internal interface in contact with the bead and a depolymerizing external interface directed towards the solvent. We show that (i) this approach automatically preserves thermodynamic symmetry-properties, which is not the case for the often cited ‘rubber-band-model’ (Sekimoto et al 2004 Eur. Phys. J. E 13 247-59, Plastino et al 2004 Eur. Biophys. J. 33 310-20) and (ii) leads to a robust morphological instability of the treadmilling network interfaces. The nature of the instability depends on the interplay of the two dynamic interfaces. Depending on the biochemical conditions the network envelope evolves into a comet-like shape (i.e. the actin envelope thins out at one side and thickens on the opposite side of the bead) via a varicose instability or it breaks the symmetry via higher order zigzag modes. We conclude that morphological instabilities due to mechano-chemical coupling mechanisms and the presences of mechancial pre-stresses can play a major role in locally organizing the cytoskeleton of living cells.

  4. Multiple actin binding domains of Ena/VASP proteins determine actin network stiffening.

    Science.gov (United States)

    Gentry, Brian S; van der Meulen, Stef; Noguera, Philippe; Alonso-Latorre, Baldomero; Plastino, Julie; Koenderink, Gijsje H

    2012-11-01

    Vasodilator-stimulated phosphoprotein (Ena/VASP) is an actin binding protein, important for actin dynamics in motile cells and developing organisms. Though VASP's main activity is the promotion of barbed end growth, it has an F-actin binding site and can form tetramers, and so could additionally play a role in actin crosslinking and bundling in the cell. To test this activity, we performed rheology of reconstituted actin networks in the presence of wild-type VASP or mutants lacking the ability to tetramerize or to bind G-actin and/or F-actin. We show that increasing amounts of wild-type VASP increase network stiffness up to a certain point, beyond which stiffness actually decreases with increasing VASP concentration. The maximum stiffness is 10-fold higher than for pure actin networks. Confocal microscopy shows that VASP forms clustered actin filament bundles, explaining the reduction in network elasticity at high VASP concentration. Removal of the tetramerization site results in significantly reduced bundling and bundle clustering, indicating that VASP's flexible tetrameric structure causes clustering. Removing either the F-actin or the G-actin binding site diminishes VASP's effect on elasticity, but does not eliminate it. Mutating the F-actin and G-actin binding site together, or mutating the F-actin binding site and saturating the G-actin binding site with monomeric actin, eliminates VASP's ability to increase network stiffness. We propose that, in the cell, VASP crosslinking confers only moderate increases in linear network elasticity, and unlike other crosslinkers, VASP's network stiffening activity may be tuned by the local concentration of monomeric actin.

  5. GROWTH AND MORPHOLOGY OF POLYMER-ACTIN COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    Hyuck Joon Kwon; Kazuhiro Shikinaka; Akira Kakugo; Hidemitsu Furukawa; Yoshihito Osada; Jian Ping Gong

    2007-01-01

    F-actins are semi-flexible polyelectrolytes and can be assembled into large polymer-actin complex with polymorphism through electrostatic interaction with polycations. This study investigates the structural phase behavior and the growth of polymer-actin complexes in terms of its longitudinal and lateral sizes. Our results show that formation of polymer-actin complexes is cooperative, and morphology and growth of polymer-actin complexes depend on polycation species and concentrations of polycation and salt in a constant actin concentration. We found that the longitudinal growth and lateral growth of polymer-actin complexes are dominated by different factors. This induces the structural polymorphism of polymer-actin complexes. Major factors to influence the polymorphism of polymer-actin complexes in polyelectrolyte system have been discussed. Our results indicate that the semi-flexible polyelectrolyte nature of F-actins is important for controlling the morphology and growth of actin architectures in cell.

  6. Dynamin2 organizes lamellipodial actin networks to orchestrate lamellar actomyosin.

    Directory of Open Access Journals (Sweden)

    Manisha Menon

    Full Text Available Actin networks in migrating cells exist as several interdependent structures: sheet-like networks of branched actin filaments in lamellipodia; arrays of bundled actin filaments co-assembled with myosin II in lamellae; and actin filaments that engage focal adhesions. How these dynamic networks are integrated and coordinated to maintain a coherent actin cytoskeleton in migrating cells is not known. We show that the large GTPase dynamin2 is enriched in the distal lamellipod where it regulates lamellipodial actin networks as they form and flow in U2-OS cells. Within lamellipodia, dynamin2 regulated the spatiotemporal distributions of α-actinin and cortactin, two actin-binding proteins that specify actin network architecture. Dynamin2's action on lamellipodial F-actin influenced the formation and retrograde flow of lamellar actomyosin via direct and indirect interactions with actin filaments and a finely tuned GTP hydrolysis activity. Expression in dynamin2-depleted cells of a mutant dynamin2 protein that restores endocytic activity, but not activities that remodel actin filaments, demonstrated that actin filament remodeling by dynamin2 did not depend of its functions in endocytosis. Thus, dynamin2 acts within lamellipodia to organize actin filaments and regulate assembly and flow of lamellar actomyosin. We hypothesize that through its actions on lamellipodial F-actin, dynamin2 generates F-actin structures that give rise to lamellar actomyosin and for efficient coupling of F-actin at focal adhesions. In this way, dynamin2 orchestrates the global actin cytoskeleton.

  7. Actin dynamics and the elasticity of cytoskeletal networks

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available The structural integrity of a cell depends on its cytoskeleton, which includes an actin network. This network is transient and depends upon the continual polymerization and depolymerization of actin. The degradation of an actin network, and a corresponding reduction in cell stiffness, can indicate the presence of disease. Numerical simulations will be invaluable for understanding the physics of these systems and the correlation between actin dynamics and elasticity. Here we develop a model that is capable of generating actin network structures. In particular, we develop a model of actin dynamics which considers the polymerization, depolymerization, nucleation, severing, and capping of actin filaments. The structures obtained are then fed directly into a mechanical model. This allows us to qualitatively assess the effects of changing various parameters associated with actin dynamics on the elasticity of the material.

  8. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks

    Science.gov (United States)

    Janmey, Paul A.; Hvidt, Søren; Lamb, Jennifer; Stossel, Thomas P.

    1990-05-01

    THE maintainance of the shape of cells is often due to their surface elasticity, which arises mainly from an actin-rich cytoplasmic cortex1,2. On locomotion, phagocytosis or fission, however, these cells become partially fluid-like. The finding of proteins that can bind to actin and control the assembly of, or crosslink, actin filaments, and of intracellular messages that regulate the activities of some of these actin-binding proteins, indicates that such 'gel sol' transformations result from the rearrangement of cortical actin-rich networks3. Alternatively, on the basis of a study of the mechanical properties of mixtures of actin filaments and an Acanthamoeba actin-binding protein, α-actinin, it has been proposed that these transformations can be accounted for by rapid exchange of crosslinks between actin filaments4: the cortical network would be solid when the deformation rate is greater than the rate of crosslink exchange, but would deform or 'creep' when deformation is slow enough to permit crosslinker molecules to rearrange. Here we report, however, that mixtures of actin filaments and actin-binding protein (ABP), an actin crosslinking protein of many higher eukaryotes, form gels Theologically equivalent to covalently crosslinked networks. These gels do not creep in response to applied stress on a time scale compatible with most cell-surface movements. These findings support a more complex and controlled mechanism underlying the dynamic mechanical properties of cortical cytoplasm, and can explain why cells do not collapse under the constant shear forces that often exist in tissues.

  9. The actin-interacting protein AIP1 is essential for actin organization and plant development

    NARCIS (Netherlands)

    Ketelaar, T.; Anthony, R.G.; Voigt, B.; Menzel, D.; Hussey, P.J.

    2004-01-01

    Cell division, growth, and cytoplasmic organization require a dynamic actin cytoskeleton. The filamentous actin (F-actin) network is regulated by actin binding proteins that modulate actin dynamics. These actin binding proteins often have cooperative interactions [1 and 2]. In particular, actin inte

  10. Modulating F-actin organization induces organ growth by affecting the Hippo pathway

    OpenAIRE

    Sansores-Garcia, Leticia; Bossuyt, Wouter; Wada, Ken-Ichi; Yonemura, Shigenobu; Tao, Chunyao; Sasaki, Hiroshi; Halder, Georg

    2011-01-01

    This study identifies actin organization as an upstream regulator of the Hippo pathway: F-actin accumulation promotes Yorkie-dependent transcriptional activation. This modulation of Hippo signalling by actin regulators controls organ growth in Drosophila.

  11. The role of actin networks in cellular mechanosensing

    Science.gov (United States)

    Azatov, Mikheil

    Physical processes play an important role in many biological phenomena, such as wound healing, organ development, and tumor metastasis. During these processes, cells constantly interact with and adapt to their environment by exerting forces to mechanically probe the features of their surroundings and generating appropriate biochemical responses. The mechanisms underlying how cells sense the physical properties of their environment are not well understood. In this thesis, I present my studies to investigate cellular responses to the stiffness and topography of the environment. In order to sense the physical properties of their environment, cells dynamically reorganize the structure of their actin cytoskeleton, a dynamic network of biopolymers, altering the shape and spatial distribution of protein assemblies. Several observations suggest that proteins that crosslink actin filaments may play an important role in cellular mechanosensitivity. Palladin is an actin-crosslinking protein that is found in the lamellar actin network, stress fibers and focal adhesions, cellular structures that are critical for mechanosensing of the physical environment. By virtue of its close interactions with these structures in the cell, palladin may play an important role in cell mechanics. However, the role of actin crosslinkers in general, and palladin in particular, in cellular force generation and mechanosensing is not well known. I have investigated the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. I have shown that the expression levels of palladin modulate the forces exerted by cells and their ability to sense substrate stiffness. Perturbation experiments also suggest that palladin levels in cells altered myosin motor activity. These results suggest that the actin crosslinkers, such as palladin, and myosin motors coordinate for optimal cell function and to prevent aberrant

  12. The 5’cap of Tobacco Mosaic Virus (TMV) is required for virion attachment to the actin/ER network during early infection

    DEFF Research Database (Denmark)

    Christensen, Nynne Meyn; Tilsner, Jens; Bell, Karen;

    to the motile cortical actin/ER network within minutes of injection. Granule movement on actin/ER was arrested by actin inhibitors indicating actindependent RNA movement. The 5’ methylguanosine TMV cap was shown to be required for vRNA anchoring to the ER. TMV vRNA lacking the 5’cap failed to form granules...

  13. Control of the actin cytoskeleton in plant cell growth

    NARCIS (Netherlands)

    Hussey, P.J.; Ketelaar, M.J.; Deeks, M.J.

    2006-01-01

    Plant cells grow through increases in volume and cell wall surface area. The mature morphology of a plant cell is a product of the differential rates of expansion between neighboring zones of the cell wall during this process. Filamentous actin arrays are associated with plant cell growth, and the a

  14. Modelling phagosomal lipid networks that regulate actin assembly

    Directory of Open Access Journals (Sweden)

    Schwarz Roland

    2008-12-01

    Full Text Available Abstract Background When purified phagosomes are incubated in the presence of actin under appropriate conditions, microfilaments start growing from the membrane in a process that is affected by ATP and the lipid composition of the membrane. Isolated phagosomes are metabolically active organelles that contain enzymes and metabolites necessary for lipid interconversion. Hence, addition of ATP, lipids, and actin to the system alter the steady-state composition of the phagosomal membrane at the same time that the actin nucleation is initiated. Our aim was to model all these processes in parallel. Results We compiled detailed experimental data on the effects of different lipids and ATP on actin nucleation and we investigated experimentally lipid interconversion and ATP metabolism in phagosomes by using suitable radioactive compounds. In a first step, a complex lipid network interconnected by chemical reactions catalyzed by known enzymes was modelled in COPASI (Complex Pathway Simulator. However, several lines of experimental evidence indicated that only the phosphatidylinositol branch of the network was active, an observation that dramatically reduced the number of parameters in the model. The results also indicated that a lipid network-independent ATP-consuming activity should be included in the model. When this activity was introduced, the set of differential equations satisfactorily reproduced the experimental data. On the other hand, a molecular mechanism connecting membrane lipids, ATP, and the actin nucleation process is still missing. We therefore adopted a phenomenological (black-box approach to represent the empirical observations. We proposed that lipids and ATP influence the dynamic interconversion between active and inactive actin nucleation sites. With this simple model, all the experimental data were satisfactorily fitted with a single positive parameter per lipid and ATP. Conclusion By establishing an active 'dialogue' between an

  15. Initial stem cell adhesion on porous silicon surface: molecular architecture of actin cytoskeleton and filopodial growth

    Science.gov (United States)

    Collart-Dutilleul, Pierre-Yves; Panayotov, Ivan; Secret, Emilie; Cunin, Frédérique; Gergely, Csilla; Cuisinier, Frédéric; Martin, Marta

    2014-10-01

    The way cells explore their surrounding extracellular matrix (ECM) during development and migration is mediated by lamellipodia at their leading edge, acting as an actual motor pulling the cell forward. Lamellipodia are the primary area within the cell of actin microfilaments (filopodia) formation. In this work, we report on the use of porous silicon (pSi) scaffolds to mimic the ECM of mesenchymal stem cells from the dental pulp (DPSC) and breast cancer (MCF-7) cells. Our atomic force microscopy (AFM), fluorescence microscopy, and scanning electron microscopy (SEM) results show that pSi promoted the appearance of lateral filopodia protruding from the DPSC cell body and not only in the lamellipodia area. The formation of elongated lateral actin filaments suggests that pores provided the necessary anchorage points for protrusion growth. Although MCF-7 cells displayed a lower presence of organized actin network on both pSi and nonporous silicon, pSi stimulated the formation of extended cell protrusions.

  16. Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila.

    Science.gov (United States)

    Fernández, Beatriz García; Gaspar, Pedro; Brás-Pereira, Catarina; Jezowska, Barbara; Rebelo, Sofia Raquel; Janody, Florence

    2011-06-01

    The conserved Hippo tumor suppressor pathway is a key kinase cascade that controls tissue growth by regulating the nuclear import and activity of the transcription co-activator Yorkie. Here, we report that the actin-Capping Protein αβ heterodimer, which regulates actin polymerization, also functions to suppress inappropriate tissue growth by inhibiting Yorkie activity. Loss of Capping Protein activity results in abnormal accumulation of apical F-actin, reduced Hippo pathway activity and the ectopic expression of several Yorkie target genes that promote cell survival and proliferation. Reduction of two other actin-regulatory proteins, Cofilin and the cyclase-associated protein Capulet, cause abnormal F-actin accumulation, but only the loss of Capulet, like that of Capping Protein, induces ectopic Yorkie activity. Interestingly, F-actin also accumulates abnormally when Hippo pathway activity is reduced or abolished, independently of Yorkie activity, whereas overexpression of the Hippo pathway component expanded can partially reverse the abnormal accumulation of F-actin in cells depleted for Capping Protein. Taken together, these findings indicate a novel interplay between Hippo pathway activity and actin filament dynamics that is essential for normal growth control.

  17. Effects of latrunculin B on the actin cytoskeleton and hyphal growth in Phytophthora infestans.

    Science.gov (United States)

    Ketelaar, Tijs; Meijer, Harold J G; Spiekerman, Marjolein; Weide, Rob; Govers, Francine

    2012-12-01

    The actin cytoskeleton is conserved in all eukaryotes, but its functions vary among different organisms. In oomycetes, the function of the actin cytoskeleton has received relatively little attention. We have performed a bioinformatics study and show that oomycete actin genes fall within a distinct clade that is divergent from plant, fungal and vertebrate actin genes. To obtain a better understanding of the functions of the actin cytoskeleton in hyphal growth of oomycetes, we studied the actin organization in Phytophthora infestans hyphae and the consequences of treatment with the actin depolymerising drug latrunculin B (latB). This revealed that latB treatment causes a concentration dependent inhibition of colony expansion and aberrant hyphal growth. The most obvious aberrations observed upon treatment with 0.1 μM latB were increased hyphal branching and irregular tube diameters whereas at higher concentrations latB (0.5 and 1 μM) tips of expanding hyphae changed into balloon-like shapes. This aberrant growth correlated with changes in the organization of the actin cytoskeleton. In untreated hyphae, staining with fluorescently tagged phalloidin revealed two populations of actin filaments: long, axially oriented actin filament cables and cortical actin filament plaques. Two hyphal subtypes were recognized, one containing only plaques and the other containing both cables and plaques. In the latter, some hyphae had an apical zone without actin filament plaques. Upon latB treatment, the proportion of hyphae without actin filament cables increased and there were more hyphae with a short apical zone without actin filament plaques. In general, actin filament plaques were more resilient against actin depolymerisation than actin filament cables. Besides disturbing hyphal growth and actin organization, actin depolymerisation also affected the positioning of nuclei. In the presence of latB, the distance between nuclei and the hyphal tip decreased, suggesting that the actin

  18. Mesoscopic model for filament orientation in growing actin networks: the role of obstacle geometry

    CERN Document Server

    Weichsel, Julian; 10.1088/1367-2630/15/3/035006

    2013-01-01

    Propulsion by growing actin networks is a universal mechanism used in many different biological systems. Although the core molecular machinery for actin network growth is well preserved in most cases, the geometry of the propelled obstacle can vary considerably. In recent years, filament orientation distribution has emerged as an important observable characterizing the structure and dynamical state of the growing network. Here we derive several continuum equations for the orientation distribution of filaments growing behind stiff obstacles of various shapes and validate the predicted steady state orientation patterns by stochastic computer simulations based on discrete filaments. We use an ordinary differential equation approach to demonstrate that for flat obstacles of finite size, two fundamentally different orientation patterns peaked at either +35/-35 or +70/0/-70 degrees exhibit mutually exclusive stability, in agreement with earlier results for flat obstacles of very large lateral extension. We calculat...

  19. Myosin lever arm directs collective motion on cellular actin network.

    Science.gov (United States)

    Hariadi, Rizal F; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-03-18

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions.

  20. Criticalities in crosslinked actin networks due to myosin activity

    Science.gov (United States)

    Sheinman, Michael

    2013-03-01

    Many essential processes in cells and tissues, like motility and morphogenesis, are orchestrated by molecular motors applying internal, active stresses on crosslinked networks of actin filaments. Using scaling analysis, mean-field calculation, numerical modelling and in vitro experiments of such active networks we predict and observe different mechanical regimes exhibiting interesting critical behaviours with non-trivial power-law dependencies. Firstly, we find that the presence of active stresses can dramatically increase the stiffness of a floppy network, as was observed in reconstituted intracellular F-actin networks with myosin motors and extracellular gels with contractile cells. Uniform internal stress results in an anomalous, critical mechanical regime only in the vicinity of the rigidity percolation points of the network. However, taking into account heterogeneity of motors, we demonstrate that the motors, stiffening any floppy network, induce large non-affine fluctuations, giving rise to a critical mechanical regime. Secondly, upon increasing motor concentration, the resulting large internal stress is able to significantly enhance unbinding of the network's crosslinks and, therefore, disconnect the initially well-connected network to isolated clusters. However, during this process, when the network approaches marginal connectivity the internal stresses are expected to drop drastically such that the connectivity stabilizes. This general argument and detailed numerical simulations show that motors should drive a well connected network to a close vicinity of a critical point of marginal connectivity. Experiments clearly confirm this conclusion and demonstrate robust critical connectivity of initially well-connected networks, ruptured by the motor activity for a wide range of parameters. M. Sheinman, C.P. Broedersz and F.C. MacKintosh, Phys. Rev. Lett, in press. J. Alvarado, M. Sheinman, A. Sharma, F.C. MacKintosh and G. Koenderink, in preparation.

  1. Bacterial actin and tubulin homologs in cell growth and division.

    Science.gov (United States)

    Busiek, Kimberly K; Margolin, William

    2015-03-16

    In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review.

  2. Dynamics of Actin Filament Ends in a Network

    Science.gov (United States)

    Yang, Le; Sept, David; Carlsson, Anders

    2004-03-01

    The formation of filopodia-like bundles in vitro from a dendritic actin network has been observed(D. Vignjevic et al, J. Cell Biol. 160, 951 (2003)) to occur as a result of a nucleation process. We study the dynamics of the actin filament ends in such a network in order to evaluate the dynamics of the bundle nucleation process. Our model treats two semiflexible actin filaments fixed at one end and free at the other, moving according to Brownian dynamics. The initial filament positions are chosen according to a thermal distribution, and we evaluate the time for the filaments to come close enough to each other to interact and bind. The capture criterion is based either on the distance between filaments, or on a combination of distance and relative orientation. We evaluate the dependence of the capture time on the filament length and radius, and the distance between the filament bases. Since treating the movement of the individual monomers in filaments is computationally unwieldy, we treat the filament motion using a normal mode analysis which permits use of a much longer timestep. We find that this method yields rapid convergence even when only the few longest-wavelength modes are included.

  3. Branching influences force-velocity curves and length fluctuations in actin networks.

    Science.gov (United States)

    Hansda, Deepak Kumar; Sen, Shamik; Padinhateeri, Ranjith

    2014-12-01

    We investigate collective dynamics of branched actin networks growing against a rigid movable wall constrained by a resistive force. Computing the force velocity relations, we show that the stall force of such networks depends not only on the average number of filaments touching the wall, but also on the amount of fluctuation of the leading edge of the network. These differences arise due to differences in the network architecture, namely, distance between two adjacent branching points and the initial distance of the starting filament from the wall, with their relative magnitudes influencing the nature of the force velocity curves (convex versus concave). We also show that the introduction of branching results in nonmonotonic diffusion constant, a quantity that measures the growth in length fluctuation of the leading edge of the network, as a function of externally applied force. Together our results demonstrate how the collective dynamics of a branched network differs from that of a parallel filament network.

  4. Osmotic Force-Controlled Microrheometry of Entangled Actin Networks

    Science.gov (United States)

    Uhde, Jorg; Feneberg, Wolfgang; Ter-Oganessian, N.; Sackmann, Erich; Boulbitch, Alexei

    2005-05-01

    In studying a magnetic bead’s creep response to force pulses in an entangled actin network we have found a novel regime where the bead motion obeys a power law x(t)˜t1/2 over two decades in time. It is flanked by a short-time regime with x(t)˜t3/4 and a viscous with x(t)˜t. In the intermediate regime the creep compliance depends on the actin concentration c as c-β with β≈1.1±0.3. We explain this behavior in terms of osmotic restoring force generated by the piling up of filaments in front of the moving bead. A model based on this concept predicts intermediate x(t)˜t1/2 and long-time regimes x(t)˜t in which the compliance varies as c-4/3, in agreement with experiment.

  5. Internal Motility in Stiffening Actin-Myosin Networks

    CERN Document Server

    Uhde, J; Sackmann, E; Parmeggiani, A; Frey, E; Uhde, Joerg; Keller, Manfred; Sackmann, Erich; Parmeggiani, Andrea; Frey, Erwin

    2003-01-01

    We present a study on filamentous actin solutions containing heavy meromyosin subfragments of myosin II motor molecules. We focus on the viscoelastic phase behavior and internal dynamics of such networks during ATP depletion. Upon simultaneously using micro-rheology and fluorescence microscopy as complementary experimental tools, we find a sol-gel transition accompanied by a sudden onset of directed filament motion. We interpret the sol-gel transition in terms of myosin II enzymology, and suggest a "zipping" mechanism to explain the filament motion in the vicinity of the sol-gel transition.

  6. Regulation of the actin cytoskeleton in Helicobacter pylori-induced migration and invasive growth of gastric epithelial cells

    Directory of Open Access Journals (Sweden)

    Rieder Gabriele

    2011-11-01

    Full Text Available Abstract Dynamic rearrangement of the actin cytoskeleton is a significant hallmark of Helicobacter pylori (H. pylori infected gastric epithelial cells leading to cell migration and invasive growth. Considering the cellular mechanisms, the type IV secretion system (T4SS and the effector protein cytotoxin-associated gene A (CagA of H. pylori are well-studied initiators of distinct signal transduction pathways in host cells targeting kinases, adaptor proteins, GTPases, actin binding and other proteins involved in the regulation of the actin lattice. In this review, we summarize recent findings of how H. pylori functionally interacts with the complex signaling network that controls the actin cytoskeleton of motile and invasive gastric epithelial cells.

  7. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development.

    Science.gov (United States)

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-08-15

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated.

  8. Cytoskeletal actin networks in motile cells are critically self-organized systems synchronized by mechanical interactions.

    Science.gov (United States)

    Cardamone, Luca; Laio, Alessandro; Torre, Vincent; Shahapure, Rajesh; DeSimone, Antonio

    2011-08-23

    Growing networks of actin fibers are able to organize into compact, stiff two-dimensional structures inside lamellipodia of crawling cells. We put forward the hypothesis that the growing actin network is a critically self-organized system, in which long-range mechanical stresses arising from the interaction with the plasma membrane provide the selective pressure leading to organization. We show that a simple model based only on this principle reproduces the stochastic nature of lamellipodia protrusion (growth periods alternating with fast retractions) and several of the features observed in experiments: a growth velocity initially insensitive to the external force; the capability of the network to organize its orientation; a load-history-dependent growth velocity. Our model predicts that the spectrum of the time series of the height of a growing lamellipodium decays with the inverse of the frequency. This behavior is a well-known signature of self-organized criticality and is confirmed by unique optical tweezer measurements performed in vivo on neuronal growth cones.

  9. Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization.

    Science.gov (United States)

    Lomakin, Alexis J; Lee, Kun-Chun; Han, Sangyoon J; Bui, Duyen A; Davidson, Michael; Mogilner, Alex; Danuser, Gaudenz

    2015-11-01

    Symmetry-breaking polarization enables functional plasticity of cells and tissues and is yet not well understood. Here we show that epithelial cells, hard-wired to maintain a static morphology and to preserve tissue organization, can spontaneously switch to a migratory polarized phenotype after relaxation of the actomyosin cytoskeleton. We find that myosin II engages actin in the formation of cortical actomyosin bundles and thus makes it unavailable for deployment in the process of dendritic growth normally driving cell motility. Under low-contractility regimes, epithelial cells polarize in a front-back manner owing to the emergence of actin retrograde flows powered by dendritic polymerization of actin. Coupled to cell movement, the flows transport myosin II from the front to the back of the cell, where the motor locally 'locks' actin in contractile bundles. This polarization mechanism could be employed by embryonic and cancer epithelial cells in microenvironments where high-contractility-driven cell motion is inefficient.

  10. Dynamics of actin cables in polarized growth of the filamentous fungus Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Anna eBergs

    2016-05-01

    Full Text Available Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although specific marker proteins to visualize actin cables have been developed in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here we visualized actin cables using tropomyosin (TpmA and Lifeact fused to fluorescent proteins in Aspergillus nidulans and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules.

  11. Actin-myosin network is required for proper assembly of influenza virus particles

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, Michiko; Kawaguchi, Atsushi, E-mail: ats-kawaguchi@md.tsukuba.ac.jp; Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp

    2015-02-15

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.

  12. Cdc42 and actin control polarized expression of TI-VAMP vesicles to neuronal growth cones and their fusion with the plasma membrane.

    Science.gov (United States)

    Alberts, Philipp; Rudge, Rachel; Irinopoulou, Theano; Danglot, Lydia; Gauthier-Rouvière, Cécile; Galli, Thierry

    2006-03-01

    Tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP)-mediated fusion of intracellular vesicles with the plasma membrane is crucial for neurite outgrowth, a pathway not requiring synaptobrevin-dependent exocytosis. Yet, it is not known how the TI-VAMP membrane trafficking pathway is regulated or how it is coordinated with cytoskeletal dynamics within the growth cone that guide neurite outgrowth. Here, we demonstrate that TI-VAMP, but not synaptobrevin 2, concentrates in the peripheral, F-actin-rich region of the growth cones of hippocampal neurons in primary culture. Its accumulation correlates with and depends upon the presence of F-actin. Moreover, acute stimulation of actin remodeling by homophilic activation of the adhesion molecule L1 induces a site-directed, actin-dependent recruitment of the TI-VAMP compartment. Expression of a dominant-positive mutant of Cdc42, a key regulator of cell polarity, stimulates formation of F-actin- and TI-VAMP-rich filopodia outside the growth cone. Furthermore, we report that Cdc42 activates exocytosis of pHLuorin tagged TI-VAMP in an actin-dependent manner. Collectively, our data suggest that Cdc42 and regulated assembly of the F-actin network control the accumulation and exocytosis of TI-VAMP-containing membrane vesicles in growth cones to coordinate membrane trafficking and actin remodeling during neurite outgrowth.

  13. Cdc42 and Actin Control Polarized Expression of TI-VAMP Vesicles to Neuronal Growth Cones and Their Fusion with the Plasma MembraneV⃞

    Science.gov (United States)

    Alberts, Philipp; Rudge, Rachel; Irinopoulou, Theano; Danglot, Lydia; Gauthier-Rouvière, Cécile; Galli, Thierry

    2006-01-01

    Tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP)-mediated fusion of intracellular vesicles with the plasma membrane is crucial for neurite outgrowth, a pathway not requiring synaptobrevin-dependent exocytosis. Yet, it is not known how the TI-VAMP membrane trafficking pathway is regulated or how it is coordinated with cytoskeletal dynamics within the growth cone that guide neurite outgrowth. Here, we demonstrate that TI-VAMP, but not synaptobrevin 2, concentrates in the peripheral, F-actin-rich region of the growth cones of hippocampal neurons in primary culture. Its accumulation correlates with and depends upon the presence of F-actin. Moreover, acute stimulation of actin remodeling by homophilic activation of the adhesion molecule L1 induces a site-directed, actin-dependent recruitment of the TI-VAMP compartment. Expression of a dominant-positive mutant of Cdc42, a key regulator of cell polarity, stimulates formation of F-actin- and TI-VAMP-rich filopodia outside the growth cone. Furthermore, we report that Cdc42 activates exocytosis of pHLuorin tagged TI-VAMP in an actin-dependent manner. Collectively, our data suggest that Cdc42 and regulated assembly of the F-actin network control the accumulation and exocytosis of TI-VAMP-containing membrane vesicles in growth cones to coordinate membrane trafficking and actin remodeling during neurite outgrowth. PMID:16381811

  14. Epidermal growth factor induces changes of interaction between epidermal growth factor receptor and actin in intact cells

    Institute of Scientific and Technical Information of China (English)

    Wei Song; Haixing Xuan; Qishui Lin

    2008-01-01

    The epidermal growth factor receptor (EGFR) is a cyto-skeleton-binding protein. Although purified EGFR can interact with actins in vitro and normally at least 10% of EGFR exist in the insoluble cytoskeleton fraction of A431 cells, interaction of cytosolic EGFR with actin can only be visualized by fluorescence resonance energy transfer when epidermal growth factor presents in the cell medium. Results indicate that the correct orientation between EGFR and actin is important in the signal transduction process.

  15. In vitro reconstitution of dynamic microtubules interacting with actin filament networks

    NARCIS (Netherlands)

    Preciado Lopez, M.; Huber, F.; Grigoriev, Ilya; Steinmetz, M.O.; Akhmanova, Anna; Dogterom, M.; Koenderink, G.H.

    2014-01-01

    Interactions between microtubules and actin filaments (F-actin) are essential for eukaryotic cell migration, polarization, growth, and division. Although the importance of these interactions has been long recognized, the inherent complexity of the cell interior hampers a detailed mechanistic study o

  16. Real-time dynamics of emerging actin networks in cell-mimicking compartments.

    Directory of Open Access Journals (Sweden)

    Siddharth Deshpande

    Full Text Available Understanding the cytoskeletal functionality and its relation to other cellular components and properties is a prominent question in biophysics. The dynamics of actin cytoskeleton and its polymorphic nature are indispensable for the proper functioning of living cells. Actin bundles are involved in cell motility, environmental exploration, intracellular transport and mechanical stability. Though the viscoelastic properties of actin-based structures have been extensively probed, the underlying microstructure dynamics, especially their disassembly, is not fully understood. In this article, we explore the rich dynamics and emergent properties exhibited by actin bundles within flow-free confinements using a microfluidic set-up and epifluorescence microscopy. After forming entangled actin filaments within cell-sized quasi two-dimensional confinements, we induce their bundling using three different fundamental mechanisms: counterion condensation, depletion interactions and specific protein-protein interactions. Intriguingly, long actin filaments form emerging networks of actin bundles via percolation leading to remarkable properties such as stress generation and spindle-like intermediate structures. Simultaneous sharing of filaments in different links of the network is an important parameter, as short filaments do not form networks but segregated clusters of bundles instead. We encounter a hierarchical process of bundling and its subsequent disassembly. Additionally, our study suggests that such percolated networks are likely to exist within living cells in a dynamic fashion. These observations render a perspective about differential cytoskeletal responses towards numerous stimuli.

  17. Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells.

    Directory of Open Access Journals (Sweden)

    Yuji Henmi

    Full Text Available A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.

  18. Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array

    OpenAIRE

    Staiger, Christopher J.; Sheahan, Michael B.; Khurana, Parul; Wang,Xia; McCurdy, David W.; Blanchoin, Laurent

    2009-01-01

    Metazoan cells harness the power of actin dynamics to create cytoskeletal arrays that stimulate protrusions and drive intracellular organelle movements. In plant cells, the actin cytoskeleton is understood to participate in cell elongation; however, a detailed description and molecular mechanism(s) underpinning filament nucleation, growth, and turnover are lacking. Here, we use variable-angle epifluorescence microscopy (VAEM) to examine the organization and dynamics of the cortical cytoskelet...

  19. The Role of Actin-Capping Protein and Src signalling in tissue growth and apoptosis during Drosophila wing development

    OpenAIRE

    Jezowska, Barbara Zofia

    2012-01-01

    Dissertation presented to obtain the Ph.D degree in Developmental Biology The actin cytoskeleton controls numerous cellular processes, including cell morphology and polarity, endocytosis, intracellular trafficking, contractility and cell division. Actin filament growth, stability and disassembly are controlled by a plethora of actin-binding proteins. Among them Capping Protein is a highly conserved αβ heterodimer, which binds the barbed ends of actin filaments, inhibiting addit...

  20. Kv3.3 Channels Bind Hax-1 and Arp2/3 to Assemble a Stable Local Actin Network that Regulates Channel Gating.

    Science.gov (United States)

    Zhang, Yalan; Zhang, Xiao-Feng; Fleming, Matthew R; Amiri, Anahita; El-Hassar, Lynda; Surguchev, Alexei A; Hyland, Callen; Jenkins, David P; Desai, Rooma; Brown, Maile R; Gazula, Valeswara-Rao; Waters, Michael F; Large, Charles H; Horvath, Tamas L; Navaratnam, Dhasakumar; Vaccarino, Flora M; Forscher, Paul; Kaczmarek, Leonard K

    2016-04-07

    Mutations in the Kv3.3 potassium channel (KCNC3) cause cerebellar neurodegeneration and impair auditory processing. The cytoplasmic C terminus of Kv3.3 contains a proline-rich domain conserved in proteins that activate actin nucleation through Arp2/3. We found that Kv3.3 recruits Arp2/3 to the plasma membrane, resulting in formation of a relatively stable cortical actin filament network resistant to cytochalasin D that inhibits fast barbed end actin assembly. These Kv3.3-associated actin structures are required to prevent very rapid N-type channel inactivation during short depolarizations of the plasma membrane. The effects of Kv3.3 on the actin cytoskeleton are mediated by the binding of the cytoplasmic C terminus of Kv3.3 to Hax-1, an anti-apoptotic protein that regulates actin nucleation through Arp2/3. A human Kv3.3 mutation within a conserved proline-rich domain produces channels that bind Hax-1 but are impaired in recruiting Arp2/3 to the plasma membrane, resulting in growth cones with deficient actin veils in stem cell-derived neurons.

  1. Molecular characterization of Toxoplasma gondii formin 3, an actin nucleator dispensable for tachyzoite growth and motility.

    Science.gov (United States)

    Daher, Wassim; Klages, Natacha; Carlier, Marie-France; Soldati-Favre, Dominique

    2012-03-01

    Toxoplasma gondii belongs to the phylum Apicomplexa, a group of obligate intracellular parasites that rely on gliding motility to enter host cells. Drugs interfering with the actin cytoskeleton block parasite motility, host cell invasion, and egress from infected cells. Myosin A, profilin, formin 1, formin 2, and actin-depolymerizing factor have all been implicated in parasite motility, yet little is known regarding the importance of actin polymerization and other myosins for the remaining steps of the parasite lytic cycle. Here we establish that T. gondii formin 3 (TgFRM3), a newly described formin homology 2 domain (FH2)-containing protein, binds to Toxoplasma actin and nucleates rabbit actin assembly in vitro. TgFRM3 expressed as a transgene exhibits a patchy localization at several distinct structures within the parasite. Disruption of the TgFRM3 gene by double homologous recombination in a ku80-ko strain reveals no vital function for tachyzoite propagation in vitro, which is consistent with its weak level of expression in this life stage. Conditional stabilization of truncated forms of TgFRM3 suggests that different regions of the molecule contribute to distinct localizations. Moreover, expression of TgFRM3 lacking the C-terminal domain severely affects parasite growth and replication. This work provides a first insight into how this specialized formin, restricted to the group of coccidia, completes its actin-nucleating activity.

  2. Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells.

    Directory of Open Access Journals (Sweden)

    Luis Vidali

    Full Text Available BACKGROUND: Actin is essential for tip growth in plants. However, imaging actin in live plant cells has heretofore presented challenges. In previous studies, fluorescent probes derived from actin-binding proteins often alter growth, cause actin bundling and fail to resolve actin microfilaments. METHODOLOGY/PRINCIPAL FINDINGS: In this report we use Lifeact-mEGFP, an actin probe that does not affect the dynamics of actin, to visualize actin in the moss Physcomitrella patens and pollen tubes from Lilium formosanum and Nicotiana tobaccum. Lifeact-mEGFP robustly labels actin microfilaments, particularly in the apex, in both moss protonemata and pollen tubes. Lifeact-mEGFP also labels filamentous actin structures in other moss cell types, including cells of the gametophore. CONCLUSIONS/SIGNIFICANCE: Lifeact-mEGFP, when expressed at optimal levels does not alter moss protonemal or pollen tube growth. We suggest that Lifeact-mEGFP represents an exciting new versatile probe for further studies of actin's role in tip growing plant cells.

  3. Action of the mechanical disruption of the actin network on the gravisensitivity of the root statocyte

    Science.gov (United States)

    Lefranc, A.; Jeune, B.; Driss-Ecole, D.; Perbal, G.

    The effects of the mechanical disruption of the thin actin network of statocytes on gravisensitivity have been studied on lentil roots. Seedling roots were first inverted for 7 min (root tip upward) and then placed in the downward (normal) position for 7 min before gravitropic stimulation in the horizontal position. The period of inversion allowed the amyloplasts to move from the distal part to the proximal part of the statocyte, but did not fully sediment. When the roots were returned to the tip down position, the amyloplasts moved toward the distal part, but also did not completely sediment by the time the roots were placed horizontally. Thus, in these roots the amyloplasts could be still moving toward the distal wall after they had been replaced in the normal position and the actin network should not be fully restored. Gravisensitivity was estimated by the analysis of the dose-response curves of vertical and treated (inverted and returned to downward position) roots. The only effect, which has been observed on treated roots, was a delay of graviresponse for about 1 min. Our interpretation of this result is that in vertical roots the amyloplasts can exert tensions in the actin network that are directly transmitted to mechanoreceptors located in the plasma membrane. In roots with a partially disrupted actin network, a delay of 1 min is necessary for the amyloplasts to activate mechanoreceptors.

  4. β-Spectrin regulates the hippo signaling pathway and modulates the basal actin network.

    Science.gov (United States)

    Wong, Kenneth Kin Lam; Li, Wenyang; An, Yanru; Duan, Yangyang; Li, Zhuoheng; Kang, Yibin; Yan, Yan

    2015-03-01

    Emerging evidence suggests functional regulation of the Hippo pathway by the actin cytoskeleton, although the detailed molecular mechanism remains incomplete. In a genetic screen, we identified a requirement for β-Spectrin in the posterior follicle cells for the oocyte repolarization process during Drosophila mid-oogenesis. β-spectrin mutations lead to loss of Hippo signaling activity in the follicle cells. A similar reduction of Hippo signaling activity was observed after β-Spectrin knockdown in mammalian cells. We further demonstrated that β-spectrin mutations disrupt the basal actin network in follicle cells. The abnormal stress fiber-like actin structure on the basal side of follicle cells provides a likely link between the β-spectrin mutations and the loss of the Hippo signaling activity phenotype.

  5. Ena/VASP Enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin.

    Science.gov (United States)

    Winkelman, Jonathan D; Bilancia, Colleen G; Peifer, Mark; Kovar, David R

    2014-03-18

    Filopodia are exploratory finger-like projections composed of multiple long, straight, parallel-bundled actin filaments that protrude from the leading edge of migrating cells. Drosophila melanogaster Enabled (Ena) is a member of the Ena/vasodilator-stimulated phosphoprotein protein family, which facilitates the assembly of filopodial actin filaments that are bundled by Fascin. However, the mechanism by which Ena and Fascin promote the assembly of uniformly thick F-actin bundles that are capable of producing coordinated protrusive forces without buckling is not well understood. We used multicolor evanescent wave fluorescence microscopy imaging to follow individual Ena molecules on both single and Fascin-bundled F-actin in vitro. Individual Ena tetramers increase the elongation rate approximately two- to threefold and inhibit capping protein by remaining processively associated with the barbed end for an average of ∼10 s in solution, for ∼60 s when immobilized on a surface, and for ∼110 s when multiple Ena tetramers are clustered on a surface. Ena also can gather and simultaneously elongate multiple barbed ends. Collectively, these properties could facilitate the recruitment of Fascin and initiate filopodia formation. Remarkably, we found that Ena's actin-assembly properties are tunable on Fascin-bundled filaments, facilitating the formation of filopodia-like F-actin networks without tapered barbed ends. Ena-associated trailing barbed ends in Fascin-bundled actin filaments have approximately twofold more frequent and approximately fivefold longer processive runs, allowing them to catch up with leading barbed ends efficiently. Therefore, Fascin and Ena cooperate to extend and maintain robust filopodia of uniform thickness with aligned barbed ends by a unique mechanistic cycle.

  6. The spatial response of nonlinear strain propagation in response to actively driven microspheres through entangled actin networks

    Science.gov (United States)

    Falzone, Tobias; Blair, Savanna; Robertson-Anderson, Rae

    2015-03-01

    The semiflexible biopolymer actin, a ubiquitous component of nearly all biological organisms, plays an important role in many mechanically-driven processes such as muscle contraction, cancer invasion and cell motility. As such, entangled actin networks, which possess unique and complex viscoelastic properties, have been the subject of much theoretical and experimental work. However, due to this viscoelastic complexity, much is still unknown regarding the correlation of the applied stress on actin networks to the induced filament strain at the molecular and micro scale. Here, we use simultaneous optical trapping and fluorescence microscopy to characterize the link between applied microscopic forces and strain propagation as a function of strain rate and concentration. Specifically, we track fiduciary markers on entangled actin filaments before, during and after actively driving embedded microspheres through the network. These measurements provide much needed insight into the molecular-level dynamics connecting stress and strain in semiflexible polymer networks.

  7. AKAP220 manages apical actin networks that coordinate aquaporin-2 location and renal water reabsorption.

    Science.gov (United States)

    Whiting, Jennifer L; Ogier, Leah; Forbush, Katherine A; Bucko, Paula; Gopalan, Janani; Seternes, Ole-Morten; Langeberg, Lorene K; Scott, John D

    2016-07-26

    Filtration through the kidney eliminates toxins, manages electrolyte balance, and controls water homeostasis. Reabsorption of water from the luminal fluid of the nephron occurs through aquaporin-2 (AQP2) water pores in principal cells that line the kidney-collecting duct. This vital process is impeded by formation of an "actin barrier" that obstructs the passive transit of AQP2 to the plasma membrane. Bidirectional control of AQP2 trafficking is managed by hormones and signaling enzymes. We have discovered that vasopressin-independent facets of this homeostatic mechanism are under the control of A-Kinase Anchoring Protein 220 (AKAP220; product of the Akap11 gene). CRISPR/Cas9 gene editing and imaging approaches show that loss of AKAP220 disrupts apical actin networks in organoid cultures. Similar defects are evident in tissue sections from AKAP220-KO mice. Biochemical analysis of AKAP220-null kidney extracts detected reduced levels of active RhoA GTPase, a well-known modulator of the actin cytoskeleton. Fluorescent imaging of kidney sections from these genetically modified mice revealed that RhoA and AQP2 accumulate at the apical surface of the collecting duct. Consequently, these animals are unable to appropriately dilute urine in response to overhydration. We propose that membrane-proximal signaling complexes constrained by AKAP220 impact the actin barrier dynamics and AQP2 trafficking to ensure water homeostasis.

  8. Emergence of large-scale cell morphology and movement from local actin filament growth dynamics.

    Directory of Open Access Journals (Sweden)

    Catherine I Lacayo

    2007-09-01

    behavior phenotypes as large-scale consequences of kinetic contributions of VASP to actin filament growth and protection from capping at the leading edge. This work shows that the local effects of actin-remodeling proteins on cytoskeletal dynamics and organization can manifest as global modifications of the shape and behavior of migrating cells and that mathematical modeling can elucidate these large-scale cell behaviors from knowledge of detailed multiscale protein interactions.

  9. Mechanical output of myosin II motors is regulated by myosin filament size and actin network mechanics

    Science.gov (United States)

    Stam, Samantha; Alberts, Jonathan; Gardel, Margaret; Munro, Edwin

    2013-03-01

    The interactions of bipolar myosin II filaments with actin arrays are a predominate means of generating forces in numerous physiological processes including muscle contraction and cell migration. However, how the spatiotemporal regulation of these forces depends on motor mechanochemistry, bipolar filament size, and local actin mechanics is unknown. Here, we simulate myosin II motors with an agent-based model in which the motors have been benchmarked against experimental measurements. Force generation occurs in two distinct regimes characterized either by stable tension maintenance or by stochastic buildup and release; transitions between these regimes occur by changes to duty ratio and myosin filament size. The time required for building force to stall scales inversely with the stiffness of a network and the actin gliding speed of a motor. Finally, myosin motors are predicted to contract a network toward stiffer regions, which is consistent with experimental observations. Our representation of myosin motors can be used to understand how their mechanical and biochemical properties influence their observed behavior in a variety of in vitro and in vivo contexts.

  10. Self-organized gels in DNA/F-actin mixtures without crosslinkers: networks of induced nematic domains with tunable density.

    Science.gov (United States)

    Lai, Ghee Hwee; Butler, John C; Zribi, Olena V; Smalyukh, Ivan I; Angelini, Thomas E; Purdy, Kirstin R; Golestanian, Ramin; Wong, Gerard C L

    2008-11-21

    We examine mixtures of DNA and filamentous actin (F-actin) as a model system of like-charged rigid rods and flexible chains. Confocal microscopy reveals the formation of elongated nematic F-actin domains reticulated via defect-free vertices into a network embedded in a mesh of random DNA. Synchrotron x-ray scattering results indicate that the DNA mesh squeezes the F-actin domains into a nematic state with an interactin spacing that decreases with increasing DNA concentration as d(actin) proportional, variantrho(DNA)(-1/2). Interestingly, the system changes from a counterion-controlled regime to a depletion-controlled regime with added salt, with drastic consequences for the osmotic pressure induced phase behavior.

  11. Microstructural model for cyclic hardening in F-actin networks crosslinked by α-actinin

    Science.gov (United States)

    López-Menéndez, Horacio; Rodríguez, José Félix

    2016-06-01

    The rheology of F-actin networks has attracted a great attention during the last years. In order to gain a complete understanding of the rheological properties of these novel materials, it is necessary the study in a large deformations regime to alter their internal structure. In this sense, Schmoller et al. (2010) showed that the reconstituted networks of F-actin crosslinked with α-actinin unexpectedly harden when they are subjected to a cyclical shear. This observation contradicts the expected Mullins effect observed in most soft materials, such as rubber and living tissues, where a pronounced softening is observed when they are cyclically deformed. We think that the key to understand this stunning effect is the gelation process. To define it, the most relevant constituents are the chemical crosslinks - α-actinin -, the physical crosslinks - introduced by the entanglement of the semiflexible network - and the interaction between them. As a consequence of this interaction, a pre-stressed network emerges and introduces a feedback effect, where the pre-stress also regulates the adhesion energy of the α-actinin, setting the structure in a metastable reference configuration. Therefore, the external loads and the evolvement of the trapped stress drive the microstructural changes during the cyclic loading protocol. In this work, we propose a micromechanical model into the framework of nonlinear continuum mechanics. The mechanics of the F-actin filaments is modelled using the wormlike chain model for semiflexible filaments and the gelation process is modelled as mesoscale dynamics for the α-actinin and physical crosslink. The model has been validated with reported experimental results.

  12. STAR syndrome-associated CDK10/Cyclin M regulates actin network architecture and ciliogenesis.

    Science.gov (United States)

    Guen, Vincent J; Gamble, Carly; Perez, Dahlia E; Bourassa, Sylvie; Zappel, Hildegard; Gärtner, Jutta; Lees, Jacqueline A; Colas, Pierre

    2016-01-01

    CDK10/CycM is a protein kinase deficient in STAR (toe Syndactyly, Telecanthus and Anogenital and Renal malformations) syndrome, which results from mutations in the X-linked FAM58A gene encoding Cyclin M. The biological functions of CDK10/CycM and etiology of STAR syndrome are poorly understood. Here, we report that deficiency of CDK10/Cyclin M promotes assembly and elongation of primary cilia. We establish that this reflects a key role for CDK10/Cyclin M in regulation of actin network organization, which is known to govern ciliogenesis. In an unbiased screen, we identified the RhoA-associated kinase PKN2 as a CDK10/CycM phosphorylation substrate. We establish that PKN2 is a bone fide regulator of ciliogenesis, acting in a similar manner to CDK10/CycM. We discovered that CDK10/Cyclin M binds and phosphorylates PKN2 on threonines 121 and 124, within PKN2's core RhoA-binding domain. Furthermore, we demonstrate that deficiencies in CDK10/CycM or PKN2, or expression of a non-phosphorylatable version of PKN2, destabilize both the RhoA protein and the actin network architecture. Importantly, we established that ectopic expression of RhoA is sufficient to override the induction of ciliogenesis resulting from CDK10/CycM knockdown, indicating that RhoA regulation is critical for CDK10/CycM's negative effect on ciliogenesis. Finally, we show that kidney sections from a STAR patient display dilated renal tubules and abnormal, elongated cilia. Altogether, these results reveal CDK10/CycM as a key regulator of actin dynamics and a suppressor of ciliogenesis through phosphorylation of PKN2 and promotion of RhoA signaling. Moreover, they suggest that STAR syndrome is a ciliopathy.

  13. Numerical Modeling of Force-Stiffness Response of Cross-Linked Actin Networks Using Tensegrity Systems

    Directory of Open Access Journals (Sweden)

    Xian Xu

    2015-01-01

    Full Text Available A three-dimensional tensegrity structure is used as a computational model for cross-linked actin networks. The postbuckling behavior of the members under compression is considered and the constitutive relation of the postbuckling members is modeled as a second-order polynomial. A numerical scheme incorporating the equivalent constitution of the postbuckling members is used to predict the structural response of the tensegrity model under compression loads. The numerical simulation shows that the stiffness of the tensegrity structure nonlinearly increases before member buckling and abruptly decreases to a lower level as soon as members buckle. This result qualitatively mimics the experimentally observed stiffness to compression stress response of cross-linked actin networks. In order to take member length variety into account, a large number of simulations with the length of buckling members varying in the given range are also carried out. It is found that the mean response of the simulations using different buckling member length exhibits more resemblance to the experimental observation.

  14. A family of ROP proteins that suppresses actin dynamics, and is essential for polarized growth and cell adhesion.

    Science.gov (United States)

    Burkart, Graham M; Baskin, Tobias I; Bezanilla, Magdalena

    2015-07-15

    In plants, the ROP family of small GTPases has been implicated in the polarized growth of tip-growing cells, such as root hairs and pollen tubes; however, most of the data derive from overexpressing ROP genes or constitutively active and dominant-negative isoforms, whereas confirmation by using loss-of-function studies has generally been lacking. Here, in the model moss Physcomitrella patens, we study ROP signaling during tip growth by using a loss-of-function approach based on RNA interference (RNAi) to silence the entire moss ROP family. We find that plants with reduced expression of ROP genes, in addition to failing to initiate tip growth, have perturbed cell wall staining, reduced cell adhesion and have increased actin-filament dynamics. Although plants subjected to RNAi against the ROP family also have reduced microtubule dynamics, this reduction is not specific to loss of ROP genes, as it occurs when actin function is compromised chemically or genetically. Our data suggest that ROP proteins polarize the actin cytoskeleton by suppressing actin-filament dynamics, leading to an increase in actin filaments at the site of polarized secretion.

  15. In vitro expression of the alpha-smooth muscle actin isoform by rat lung mesenchymal cells: regulation by culture condition and transforming growth factor-beta.

    Science.gov (United States)

    Mitchell, J J; Woodcock-Mitchell, J L; Perry, L; Zhao, J; Low, R B; Baldor, L; Absher, P M

    1993-07-01

    alpha-Smooth muscle actin (alpha SM actin)-containing cells recently have been demonstrated in intraalveolar lesions in both rat and human tissues following lung injury. In order to develop model systems for the study of such cells, we examined cultured lung cell lines for this phenotype. The adult rat lung fibroblast-like "RL" cell lines were found to express alpha SM actin mRNA and protein and to organize this actin into stress fiber-like structures. Immunocytochemical staining of subclones of the RL87 line demonstrated the presence in the cultures of at least four cell phenotypes, one that fails to express alpha SM actin and three distinct morphologic types that do express alpha SM actin. The proportion of cellular actin that is the alpha-isoform was modulated by the culture conditions. RL cells growing at low density expressed minimal alpha SM actin. On reaching confluent densities, however, alpha SM actin increased to at least 20% of the total actin content. This effect, combined with the observation that the most immunoreactive cells were those that displayed overlapping cell processes in culture, suggests that cell-cell contact may be involved in actin isoform regulation in these cells. Similar to the response of some smooth muscle cell lines, alpha SM actin expression in RL cells also was promoted by conditions, e.g., maintenance in low serum medium, which minimize cell division. alpha SM actin expression was modulated in RL cells by the growth factor transforming growth factor-beta. Addition of this cytokine to growing cells substantially elevated the proportion of alpha SM actin protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Ion Implantation Hampers Pollen Tube Growth and Disrupts Actin Cytoskeleton Organization in Pollen Tubes of Pinus thunbergii

    Institute of Scientific and Technical Information of China (English)

    LI Guoping; HUANG Qunce; YANG Lusheng; QIN Guangyong

    2008-01-01

    Pollen grains of Pinus thunbergii Parl. (Japanese black pine) were implanted with 30 keV nitrogen ion beams and the effects of nitrogen ion implantation on pollen tube growth in vitro and the organization of actin cytoskeleton in the pollen tube cell were investigated using a confocal laser scanning microscope after fluorescence labeling. Treatment with ion implanta-tion significantly blocked pollen tube growth. Confocal microscopy showed that ion implantation disrupted actin filament cytoskeleton organization in the pollen tube. It was found that there was a distinct correlation between the inhibition of pollen tube growth and the disruption of actin cytoskeleton organization, indicating that an intact actin cytoskeleton is essential for con-tinuous pollen tube elongation in Pinus thunbergii. Although the detailed mechanism for the ion-implantation-induced bioeffect still remains to be elucidated, the present study assumes that the cytoskeleton system in pollen grains may provide a key target in response to ion beam im-plantation and is involved in mediating certain subsequent cytological changes.

  17. Genome-wide RNAi screen for nuclear actin reveals a network of cofilin regulators.

    Science.gov (United States)

    Dopie, Joseph; Rajakylä, Eeva K; Joensuu, Merja S; Huet, Guillaume; Ferrantelli, Evelina; Xie, Tiao; Jäälinoja, Harri; Jokitalo, Eija; Vartiainen, Maria K

    2015-07-01

    Nuclear actin plays an important role in many processes that regulate gene expression. Cytoplasmic actin dynamics are tightly controlled by numerous actin-binding proteins, but regulation of nuclear actin has remained unclear. Here, we performed a genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins that influence either nuclear polymerization or import of actin. We validate 19 factors as specific hits, and show that Chinmo (known as Bach2 in mammals), SNF4Aγ (Prkag1 in mammals) and Rab18 play a role in nuclear localization of actin in both fly and mammalian cells. We identify several new regulators of cofilin activity, and characterize modulators of both cofilin kinases and phosphatase. For example, Chinmo/Bach2, which regulates nuclear actin levels also in vivo, maintains active cofilin by repressing the expression of the kinase Cdi (Tesk in mammals). Finally, we show that Nup98 and lamin are candidates for regulating nuclear actin polymerization. Our screen therefore reveals new aspects of actin regulation and links nuclear actin to many cellular processes.

  18. Directed actin assembly and motility.

    Science.gov (United States)

    Boujemaa-Paterski, Rajaa; Galland, Rémi; Suarez, Cristian; Guérin, Christophe; Théry, Manuel; Blanchoin, Laurent

    2014-01-01

    The actin cytoskeleton is a key component of the cellular architecture. However, understanding actin organization and dynamics in vivo is a complex challenge. Reconstitution of actin structures in vitro, in simplified media, allows one to pinpoint the cellular biochemical components and their molecular interactions underlying the architecture and dynamics of the actin network. Previously, little was known about the extent to which geometrical constraints influence the dynamic ultrastructure of these networks. Therefore, in order to study the balance between biochemical and geometrical control of complex actin organization, we used the innovative methodologies of UV and laser patterning to design a wide repertoire of nucleation geometries from which we assembled branched actin networks. Using these methods, we were able to reconstitute complex actin network organizations, closely related to cellular architecture, to precisely direct and control their 3D connections. This methodology mimics the actin networks encountered in cells and can serve in the fabrication of innovative bioinspired systems.

  19. IDENTIFICATION OF NOVEL FIBROBLAST GROWTH FACTOR RECEPTOR 3 GENE MUTATIONS IN ACTINIC CHEILITIS

    Science.gov (United States)

    Chou, Annie; Dekker, Nusi; Jordan, Richard C.K.

    2009-01-01

    Objective Activating mutations in the fibroblast growth factor receptor 3 (FGFR3) gene are responsible for several craniosynostosis and chondrodysplasia syndromes as well as some human cancers including bladder and cervical carcinoma. Despite a high frequency in some benign skin disorders, FGFR3 mutations have not been reported in cutaneous malignancies. Actinic cheilitis (AC) is a sun-induced premalignancy affecting the lower lip that frequently progresses to squamous cell carcinoma (SCC). The objective of this study was to determine if FGFR3 gene mutations are present in AC and SCC of the lip. Study Design DNA was extracted and purified from micro-dissected, formalin-fixed, paraffin-embedded tissue sections of 20 cases of AC and SCC arising in AC. Exons 7, 15, and 17 were PCR amplified and direct sequenced. Results Four novel somatic mutations in the FGFR3 gene were identified: exon 7 mutation 742C→T (amino acid change R248C), exon 15 mutations 1850A→G (D617G) and 1888G→A (V630M), and exon 17 mutation 2056G→A (E686K). Grade of dysplasia did not correlate with presence of mutations. Conclusion The frequency of FGFR3 receptor mutations suggests a functional role for the FGFR3 receptor in the development of epithelial disorders and perhaps a change may contribute to the pathogenesis of some AC and SCC. PMID:19327639

  20. The Arabidopsis Wave Complex: Mechanisms Of Localized Actin Polymerization And Growth

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Szymanski

    2012-10-23

    The objective of this project was to discover the protein complexes and control mechanisms that determine the location of actin filament roadways in plant cells. Our work provided the first molecular description of protein complexes that are converted from inactive complexes to active actin filament nucleators in the cell. These discoveries provided a conceptual framework to control to roadways in plant cells that determine the location and delivery of plant metabolites and storage molecules that are relevant to the bioenergy economy.

  1. Src64 controls a novel actin network required for proper ring canal formation in the Drosophila male germline.

    Science.gov (United States)

    Eikenes, Åsmund Husabø; Malerød, Lene; Lie-Jensen, Anette; Sem Wegner, Catherine; Brech, Andreas; Liestøl, Knut; Stenmark, Harald; Haglund, Kaisa

    2015-12-01

    In many organisms, germ cells develop as cysts in which cells are interconnected via ring canals (RCs) as a result of incomplete cytokinesis. However, the molecular mechanisms of incomplete cytokinesis remain poorly understood. Here, we address the role of tyrosine phosphorylation of RCs in the Drosophila male germline. We uncover a hierarchy of tyrosine phosphorylation within germline cysts that positively correlates with RC age. The kinase Src64 is responsible for mediating RC tyrosine phosphorylation, and loss of Src64 causes a reduction in RC diameter within germline cysts. Mechanistically, we show that Src64 controls an actin network around the RCs that depends on Abl and the Rac/SCAR/Arp2/3 pathway. The actin network around RCs is required for correct RC diameter in cysts of developing germ cells. We also identify that Src64 is required for proper germ cell differentiation in the Drosophila male germline independent of its role in RC regulation. In summary, we report that Src64 controls actin dynamics to mediate proper RC formation during incomplete cytokinesis during germline cyst development in vivo.

  2. Capping protein regulatory cycle driven by CARMIL and V-1 may promote actin network assembly at protruding edges.

    Science.gov (United States)

    Fujiwara, Ikuko; Remmert, Kirsten; Piszczek, Grzegorz; Hammer, John A

    2014-05-13

    Although capping protein (CP) terminates actin filament elongation, it promotes Arp2/3-dependent actin network assembly and accelerates actin-based motility both in vitro and in vivo. In vitro, capping protein Arp2/3 myosin I linker (CARMIL) antagonizes CP by reducing its affinity for the barbed end and by uncapping CP-capped filaments, whereas the protein V-1/myotrophin sequesters CP in an inactive complex. Previous work showed that CARMIL can readily retrieve CP from the CP:V-1 complex, thereby converting inactive CP into a version with moderate affinity for the barbed end. Here we further clarify the mechanism of this exchange reaction, and we demonstrate that the CP:CARMIL complex created by complex exchange slows the rate of barbed-end elongation by rapidly associating with, and dissociating from, the barbed end. Importantly, the cellular concentrations of V-1 and CP determined here argue that most CP is sequestered by V-1 at steady state in vivo. Finally, we show that CARMIL is recruited to the plasma membrane and only at cell edges undergoing active protrusion. Assuming that CARMIL is active only at this location, our data argue that a large pool of freely diffusing, inactive CP (CP:V-1) feeds, via CARMIL-driven complex exchange, the formation of weak-capping complexes (CP:CARMIL) at the plasma membrane of protruding edges. In vivo, therefore, CARMIL should promote Arp2/3-dependent actin network assembly at the leading edge by promoting barbed-end capping there.

  3. Platelet derived growth factor (PDGF) contained in Platelet Rich Plasma (PRP) stimulates migration of osteoblasts by reorganizing actin cytoskeleton.

    Science.gov (United States)

    Casati, Lavinia; Celotti, Fabio; Negri-Cesi, Paola; Sacchi, Maria Cristina; Castano, Paolo; Colciago, Alessandra

    2014-01-01

    Platelet-rich plasma (PRP) is a platelet concentrate in a small volume of plasma. It is highly enriched in growth factors able to stimulate the migration and growth of bone-forming cells. PRP is often used in clinical applications, as dental surgery and fracture healing. Platelet derived growth factor (PDGF), is highly concentrated in PRP and it was shown in our previous studies to provide the chemotactic stimulus to SaOS-2 osteoblasts to move in a microchemotaxis assay. Aim of the present studies is to analyze the effects of a PRP pretreatment (short time course: 30-150 min) of SaOS-2 cells with PRP on the organization of actin cytoskeleton, the main effector of cell mobility. The results indicate that a pretreatment with PRP increases chemokinesis and chemotaxis and concomitantly induces the organization of actin microfilaments, visualized by immunocytochemistry, in a directionally elongated phenotype, which is characteristic of the cells able to move. PRP also produces a transient increase in the expression of PGDF α receptor. This reorganization is blocked by the immunoneutralization of PDGF demonstrating the responsibility of this growth factor in triggering the mechanisms responsible for cellular movements.

  4. Modulation of cargo release from dense core granules by size and actin network.

    Science.gov (United States)

    Felmy, Felix

    2007-08-01

    During regulated fusion of secretory granules with the plasma membrane, a fusion pore first opens and then dilates. The dilating pore allows cargo proteins from the dense core to be released into the extracellular space. Using real-time evanescent field fluorescence microscopy of live PC12 cells, it was determined how rapidly proteins of different sizes escape from single granules after fusion. Tissue plasminogen activator (tPA)-Venus is released 40-fold slower than the three times smaller neuropeptide Y [NPY-monomeric GFP (mGFP)]. An NPY bearing two mGFPs in tandem [NPY-(mGFP)(2)] as an intermediate-sized fusion probe is released most slowly. Although, the time-course of release varies substantially for a given probe. Coexpression of beta-actin, actin-related protein 3 or mAbp1 slowed the release of the two larger cargo molecules but did not affect release of NPY-mGFP or of the granule-membrane-bound probe Vamp-pHluorin. Additionally, high concentrations of cytochalasin D slowed release of the tPA-Venus. Together these results suggest that fusion pore dilation is not the only determinate of release time-course and that actin rearrangements similar to those mediating actin-mediated motility influences the time-course of release without directly interfering with the granule membrane to cell membrane connection.

  5. Predicting growth fluctuation in network economy

    CERN Document Server

    Maeno, Yoshiharu

    2011-01-01

    This study presents a method to predict the growth fluctuation of firms interdependent in a network economy. The risk of downward growth fluctuation of firms is calculated from the statistics on Japanese industry.

  6. The Interaction of Arp2/3 Complex with Actin: Nucleation, High Affinity Pointed End Capping, and Formation of Branching Networks of Filaments

    Science.gov (United States)

    Dyche Mullins, R.; Heuser, John A.; Pollard, Thomas D.

    1998-05-01

    The Arp2/3 complex is a stable assembly of seven protein subunits including two actin-related proteins (Arp2 and Arp3) and five novel proteins. Previous work showed that this complex binds to the sides of actin filaments and is concentrated at the leading edges of motile cells. Here, we show that Arp2/3 complex purified from Acanthamoeba caps the pointed ends of actin filaments with high affinity. Arp2/3 complex inhibits both monomer addition and dissociation at the pointed ends of actin filaments with apparent nanomolar affinity and increases the critical concentration for polymerization at the pointed end from 0.6 to 1.0 μ M. The high affinity of Arp2/3 complex for pointed ends and its abundance in amoebae suggest that in vivo all actin filament pointed ends are capped by Arp2/3 complex. Arp2/3 complex also nucleates formation of actin filaments that elongate only from their barbed ends. From kinetic analysis, the nucleation mechanism appears to involve stabilization of polymerization intermediates (probably actin dimers). In electron micrographs of quick-frozen, deep-etched samples, we see Arp2/3 bound to sides and pointed ends of actin filaments and examples of Arp2/3 complex attaching pointed ends of filaments to sides of other filaments. In these cases, the angle of attachment is a remarkably constant 70 ± 7 degrees. From these in vitro biochemical properties, we propose a model for how Arp2/3 complex controls the assembly of a branching network of actin filaments at the leading edge of motile cells.

  7. ARF6 promotes the formation of Rac1 and WAVE-dependent ventral F-actin rosettes in breast cancer cells in response to epidermal growth factor.

    Directory of Open Access Journals (Sweden)

    Valentina Marchesin

    Full Text Available Coordination between actin cytoskeleton assembly and localized polarization of intracellular trafficking routes is crucial for cancer cell migration. ARF6 has been implicated in the endocytic recycling of surface receptors and membrane components and in actin cytoskeleton remodeling. Here we show that overexpression of an ARF6 fast-cycling mutant in MDA-MB-231 breast cancer-derived cells to mimick ARF6 hyperactivation observed in invasive breast tumors induced a striking rearrangement of the actin cytoskeleton at the ventral cell surface. This phenotype consisted in the formation of dynamic actin-based podosome rosette-like structures expanding outward as wave positive for F-actin and actin cytoskeleton regulatory components including cortactin, Arp2/3 and SCAR/WAVE complexes and upstream Rac1 regulator. Ventral rosette-like structures were similarly induced in MDA-MB-231 cells in response to epidermal growth factor (EGF stimulation and to Rac1 hyperactivation. In addition, interference with ARF6 expression attenuated activation and plasma membrane targeting of Rac1 in response to EGF treatment. Our data suggest a role for ARF6 in linking EGF-receptor signaling to Rac1 recruitment and activation at the plasma membrane to promote breast cancer cell directed migration.

  8. The NAV2 homolog Sickie regulates F-actin-mediated axonal growth in Drosophila mushroom body neurons via the non-canonical Rac-Cofilin pathway.

    Science.gov (United States)

    Abe, Takashi; Yamazaki, Daisuke; Murakami, Satoshi; Hiroi, Makoto; Nitta, Yohei; Maeyama, Yuko; Tabata, Tetsuya

    2014-12-01

    The Rac-Cofilin pathway is essential for cytoskeletal remodeling to control axonal development. Rac signals through the canonical Rac-Pak-LIMK pathway to suppress Cofilin-dependent axonal growth and through a Pak-independent non-canonical pathway to promote outgrowth. Whether this non-canonical pathway converges to promote Cofilin-dependent F-actin reorganization in axonal growth remains elusive. We demonstrate that Sickie, a homolog of the human microtubule-associated protein neuron navigator 2, cell-autonomously regulates axonal growth of Drosophila mushroom body (MB) neurons via the non-canonical pathway. Sickie was prominently expressed in the newborn F-actin-rich axons of MB neurons. A sickie mutant exhibited axonal growth defects, and its phenotypes were rescued by exogenous expression of Sickie. We observed phenotypic similarities and genetic interactions among sickie and Rac-Cofilin signaling components. Using the MARCM technique, distinct F-actin and phospho-Cofilin patterns were detected in developing axons mutant for sickie and Rac-Cofilin signaling regulators. The upregulation of Cofilin function alleviated the axonal defect of the sickie mutant. Epistasis analyses revealed that Sickie suppresses the LIMK overexpression phenotype and is required for Pak-independent Rac1 and Slingshot phosphatase to counteract LIMK. We propose that Sickie regulates F-actin-mediated axonal growth via the non-canonical Rac-Cofilin pathway in a Slingshot-dependent manner.

  9. Planar growth generates scale free networks

    CERN Document Server

    Haslett, Garvin; Brede, Markus

    2016-01-01

    In this paper we introduce a model of spatial network growth in which nodes are placed at randomly selected locations on a unit square in $\\mathbb{R}^2$, forming new connections to old nodes subject to the constraint that edges do not cross. The resulting network has a power law degree distribution, high clustering and the small world property. We argue that these characteristics are a consequence of the two defining features of the network formation procedure; growth and planarity conservation. We demonstrate that the model can be understood as a variant of random Apollonian growth and further propose a one parameter family of models with the Random Apollonian Network and the Deterministic Apollonian Network as extreme cases and our model as a midpoint between them. We then relax the planarity constraint by allowing edge crossings with some probability and find a smooth crossover from power law to exponential degree distributions when this probability is increased.

  10. Salinomycin inhibits growth of pancreatic cancer and cancer cell migration by disruption of actin stress fiber integrity.

    Science.gov (United States)

    Schenk, Miriam; Aykut, Berk; Teske, Christian; Giese, Nathalia A; Weitz, Juergen; Welsch, Thilo

    2015-03-28

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by aggressive growth, early metastasis and high resistance to chemotherapy. Salinomycin is a promising compound eliminating cancer stem cells and retarding cancer cell migration. The present study investigated the effectiveness of salinomycin against PDAC in vivo and elucidated the mechanism of PDAC growth inhibition. Salinomycin treatment was well tolerated by the mice and significantly reduced tumor growth after 19 days compared to the control group (each n = 16). There was a trend that salinomycin also impeded metastatic spread to the liver and peritoneum. Whereas salinomycin moderately induced apoptosis and retarded proliferation at 5-10 µM, it strongly inhibited cancer cell migration that was accompanied by a marked loss of actin stress fibers after 6-9 h. Salinomycin silenced RhoA activity, and loss of stress fibers could be reversed by Rho activation. Moreover, salinomycin dislocated fascin from filopodia and stimulated Rac-associated circular dorsal ruffle formation. In conclusion, salinomycin is an effective and promising compound against PDAC. Besides its known stem cell-specific cytotoxic effects, salinomycin blocks cancer cell migration by disrupting stress fiber integrity and affecting the mutual Rho-GTPase balance.

  11. Modelling subtle growth of linguistic networks

    CERN Document Server

    Kulig, Andrzej; Kwapien, Jaroslaw; Oswiecimka, Pawel

    2014-01-01

    We investigate properties of evolving linguistic networks defined by the word-adjacency relation. Such networks belong to the category of networks with accelerated growth but their shortest path length appears to reveal the network size dependence of different functional form than the ones known so far. We thus compare the networks created from literary texts with their artificial substitutes based on different variants of the Dorogovtsev-Mendes model and observe that none of them is able to properly simulate the novel asymptotics of the shortest path length. Then, we identify grammar induced local chain-like linear growth as a missing element in this model and extend it by incorporating such effects. It is in this way that a satisfactory agreement with the empirical result is obtained.

  12. Bistability in the Rac1, PAK, and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches

    Science.gov (United States)

    Byrne, Kate M.; Monsefi, Naser; Dawson, John C.; Degasperi, Andrea; Bukowski-Wills, Jimi-Carlo; Volinsky, Natalia; Dobrzyński, Maciej; Birtwistle, Marc R.; Tsyganov, Mikhail A.; Kiyatkin, Anatoly; Kida, Katarzyna; Finch, Andrew J.; Carragher, Neil O.; Kolch, Walter; Nguyen, Lan K.; von Kriegsheim, Alex; Kholodenko, Boris N.

    2016-01-01

    Summary Dynamic interactions between RhoA and Rac1, members of the Rho small GTPase family, play a vital role in the control of cell migration. Using predictive mathematical modeling, mass spectrometry-based quantitation of network components, and experimental validation in MDA-MB-231 mesenchymal breast cancer cells, we show that a network containing Rac1, RhoA, and PAK family kinases can produce bistable, switch-like responses to a graded PAK inhibition. Using a small chemical inhibitor of PAK, we demonstrate that cellular RhoA and Rac1 activation levels respond in a history-dependent, bistable manner to PAK inhibition. Consequently, we show that downstream signaling, actin dynamics, and cell migration also behave in a bistable fashion, displaying switches and hysteresis in response to PAK inhibition. Our results demonstrate that PAK is a critical component in the Rac1-RhoA inhibitory crosstalk that governs bistable GTPase activity, cell morphology, and cell migration switches. PMID:27136688

  13. Innovation and growth in SME Networks

    DEFF Research Database (Denmark)

    Brink, Tove

    2015-01-01

    The aim of this paper is to reveal what organising can enable innovation and growth within entrepreneurial SME networks. The research is conducted in the Danish food industry with the participation of three food producing firm networks. The posed hypothesis are tested in a structural equation...... modeling (SEM) approach with data available from 55 SMEs. The findings show a significant positive impact from internal complementary preferences of behavior on innovation types. Furthermore, a significant positive impact is revealed from product-, process and systematic innovation types on growth....... Moreover, a significant positive impact is revealed from external connections on growth. A contribution to the enhanced understanding and self-organization of informal networks is thus made to literature, the entrepreneurial field and to policy bodies....

  14. Three-dimensional structure of actin filaments and of an actin gel made with actin-binding protein.

    Science.gov (United States)

    Niederman, R; Amrein, P C; Hartwig, J

    1983-05-01

    Purified muscle actin and mixtures of actin and actin-binding protein were examined in the transmission electron microscope after fixation, critical point drying, and rotary shadowing. The three-dimensional structure of the protein assemblies was analyzed by a computer-assisted graphic analysis applicable to generalized filament networks. This analysis yielded information concerning the frequency of filament intersections, the filament length between these intersections, the angle at which filaments branch at these intersections, and the concentration of filaments within a defined volume. Purified actin at a concentration of 1 mg/ml assembled into a uniform mass of long filaments which overlap at random angles between 0 degrees and 90 degrees. Actin in the presence of macrophage actin-binding protein assembled into short, straight filaments, organized in a perpendicular branching network. The distance between branch points was inversely related to the molar ratio of actin-binding protein to actin. This distance was what would be predicted if actin filaments grew at right angles off of nucleation sites on the two ends of actin-binding protein dimers, and then annealed. The results suggest that actin in combination with actin-binding protein self-assembles to form a three-dimensional network resembling the peripheral cytoskeleton of motile cells.

  15. Networks: Innovation, Growth and Sustainable Development

    Directory of Open Access Journals (Sweden)

    Peter Johnston

    2013-05-01

    Full Text Available The emergence of the Internet as a measureable manifestation of our social and economic relationships changed the domination of networks in our lives. From about 2000, the internet has allowed us to study and understand the type of networks in which we live, and to model their behaviour. The Internet has fundamentally changed the distribution of wealth. The rich became richer simply because of the larger scale of the trading network and stretched national wealth distributions. Network effects are therefore likely to be responsible for much of the perceived increases in inequalities in the last 20-30 years, and policies to tackle poverty must therefore address the extent to which the poor can engage with society's networks of wealth creation. The greatest challenge to continued growth and prosperity, and therefore to peace and justice, is climate change. The potential cost of inaction on climate change could be as high. Our self-organising social networks have structured our societies and economies, and are now reflected in our technology networks. We can now replicate their evolution in computer simulations and can therefore better assess how to deal with the greatest challenges facing us in the next few decades.

  16. Actinic reticuloid

    Energy Technology Data Exchange (ETDEWEB)

    Marx, J.L.; Vale, M.; Dermer, P.; Ragaz, A.; Michaelides, P.; Gladstein, A.H.

    1982-09-01

    A 58-year-old man has his condition diagnosed as actinic reticuloid on the basis of clinical and histologic findings and phototesting data. He had clinical features resembling mycosis fungoides in light-exposed areas. Histologic findings disclosed a bandlike infiltrate with atypical mononuclear cells in the dermis and scattered atypical cells in the epidermis. Electron microscopy disclosed mononuclear cells with bizarre, convoluted nuclei, resembling cerebriform cells of Lutzner. Phototesting disclosed a diminished minimal erythemal threshold to UV-B and UV-A. Microscopic changes resembling actinic reticuloid were reproduced in this patient 24 and 72 hours after exposure to 15 minimal erythemal doses of UV-B.

  17. The Dynamic Pollen Tube Cytoskeleton: Live Cell Studies Using Actin-Binding and Microtubule-Binding Reporter Proteins

    Institute of Scientific and Technical Information of China (English)

    Alice Y. Cheung; Qiao-hong Duan; Silvia Santos Costa; Barend H.J.de Graaf; Veronica S.Di Stilio; Jose Feijo; Hen-Ming Wu

    2008-01-01

    Pollen tubes elongate within the pistil to transport sperm cells to the embryo sac for fertilization.Growth occurs exclusively at the tube apex,rendering pollen tube elongation a most dramatic polar cell growth process.A hall-mark pollen tube feature is its cytoskeleton,which comprises elaborately organized and dynamic actin microfilaments and microtubules.Pollen tube growth is dependent on the actin cytoskeleton;its organization and regulation have been exalined extensively by various approaches.including fluorescent protein labeled actin-binding proteins in live cell studies.Using the previously described GFP-NtADF1 and GFP-LIADF1, and a new actin reporter protein NtPLIM2b-GFP,we re-affirm that the predominant actin structures in elongating tobacco and lily pollen tubes are long,streaming actin cables along the pollen tube shank,and a subapical structure comprising shorter actin cables.The subapical collection of actin microfilaments undergoes dynamic changes,giving rise to the appearance of structures that range from basket-or funnel-shaped,mesh-like to a subtle ring.NtPLIM2b-GFP is used in combination with a guanine nucleotide exchange factor for the Rho GTPases,AtROP-GEF1,to illustrate the use of these actin reporter proteins to explore the linkage between the polar cell growth process and its actin cytoskeleton.Contrary to the actin cytoskeleton,microtubules appear not to play a direct role in supporting the polar cell growth process in angiosperm pollen tubes.Using a microtubule reporter protein based on the microtubule end-binding protein from Arabidopsis AtEB1,GFP-AtEB1,we show that the extensive microtubule network in elongating pollen tubes displays varying degrees of dynamics.These reporter proteins provide versatile tools to explore the functional connection between major structural and signaling components of the polar pollen tube growth process.

  18. Mesoscopic model of actin-based propulsion.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.

  19. The actin-binding proteins eps8 and gelsolin have complementary roles in regulating the growth and stability of mechanosensory hair bundles of mammalian cochlear outer hair cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Olt

    Full Text Available Sound transduction depends upon mechanosensitive channels localized on the hair-like bundles that project from the apical surface of cochlear hair cells. Hair bundles show a stair-case structure composed of rows of stereocilia, and each stereocilium contains a core of tightly-packed and uniformly-polarized actin filaments. The growth and maintenance of the stereociliary actin core are dynamically regulated. Recently, it was shown that the actin-binding protein gelsolin is expressed in the stereocilia of outer hair cells (OHCs and in its absence they become long and straggly. Gelsolin is part of a whirlin scaffolding protein complex at the stereocilia tip, which has been shown to interact with other actin regulatory molecules such as Eps8. Here we investigated the physiological effects associated with the absence of gelsolin and its possible overlapping role with Eps8. We found that, in contrast to Eps8, gelsolin does not affect mechanoelectrical transduction during immature stages of development. Moreover, OHCs from gelsolin knockout mice were able to mature into fully functional sensory receptors as judged by the normal resting membrane potential and basolateral membrane currents. Mechanoelectrical transducer current in gelsolin-Eps8 double knockout mice showed a profile similar to that observed in the single mutants for Eps8. We propose that gelsolin has a non-overlapping role with Eps8. While Eps8 is mainly involved in the initial growth of stereocilia in both inner hair cells (IHCs and OHCs, gelsolin is required for the maintenance of mature hair bundles of low-frequency OHCs after the onset of hearing.

  20. Microbial growth modelling with artificial neural networks.

    Science.gov (United States)

    Jeyamkonda, S; Jaya, D S; Holle, R A

    2001-03-20

    There is a growing interest in modelling microbial growth as an alternative to time-consuming, traditional, microbiological enumeration techniques. Several statistical models have been reported to describe the growth of different microorganisms, but there are accuracy problems. An alternate technique 'artificial neural networks' (ANN) for modelling microbial growth is explained and evaluated. Published data were used to build separate general regression neural network (GRNN) structures for modelling growth of Aeromonas hydrophila, Shigella flexneri, and Brochothrix thermosphacta. Both GRNN and published statistical model predictions were compared against the experimental data using six statistical indices. For training data sets, the GRNN predictions were far superior than the statistical model predictions, whereas the GRNN predictions were similar or slightly worse than statistical model predictions for test data sets for all the three data sets. GRNN predictions can be considered good, considering its performance for unseen data. Graphical plots, mean relative percentage residual, mean absolute relative residual, and root mean squared residual were identified as suitable indices for comparing competing models. ANN can now become a vehicle whereby predictive microbiology can be applied in food product development and food safety risk assessment.

  1. IQGAP and mitotic exit network (MEN) proteins are required for cytokinesis and re-polarization of the actin cytoskeleton in the budding yeast, Saccharomyces cerevisiae.

    Science.gov (United States)

    Corbett, Mark; Xiong, Yulan; Boyne, James R; Wright, Daniel J; Munro, Ewen; Price, Clive

    2006-11-01

    In budding yeast the final stages of the cell division cycle, cytokinesis and cell separation, are distinct events that require to be coupled, both together and with mitotic exit. Here we demonstrate that mutations in genes of the mitotic exit network (MEN) prevent cell separation and are synthetically lethal in combination with both cytokinesis and septation defective mutations. Analysis of the synthetic lethal phenotypes reveals that Iqg1p functions in combination with the MEN components, Tem1p, Cdc15p Dbf20p and Dbf2p to govern the re-polarization of the actin cytoskeleton to either side of the bud neck. In addition phosphorylation of the conserved PCH protein, Hof1p, is dependent upon these activities and requires actin ring assembly. Recruitment of Dbf2p to the bud neck is dependent upon actin ring assembly and correlates with Hof1p phosphorylation. Failure to phosphorylate Hof1p results in the increased stability of the protein and its persistence at the bud neck. These data establish a mechanistic dependency of cell separation upon an intermediate step requiring actomyosin ring assembly.

  2. Employment Growth through Labor Flow Networks

    Science.gov (United States)

    Guerrero, Omar A.; Axtell, Robert L.

    2013-01-01

    It is conventional in labor economics to treat all workers who are seeking new jobs as belonging to a labor pool, and all firms that have job vacancies as an employer pool, and then match workers to jobs. Here we develop a new approach to study labor and firm dynamics. By combining the emerging science of networks with newly available employment micro-data, comprehensive at the level of whole countries, we are able to broadly characterize the process through which workers move between firms. Specifically, for each firm in an economy as a node in a graph, we draw edges between firms if a worker has migrated between them, possibly with a spell of unemployment in between. An economy's overall graph of firm-worker interactions is an object we call the labor flow network (LFN). This is the first study that characterizes a LFN for an entire economy. We explore the properties of this network, including its topology, its community structure, and its relationship to economic variables. It is shown that LFNs can be useful in identifying firms with high growth potential. We relate LFNs to other notions of high performance firms. Specifically, it is shown that fewer than 10% of firms account for nearly 90% of all employment growth. We conclude with a model in which empirically-salient LFNs emerge from the interaction of heterogeneous adaptive agents in a decentralized labor market. PMID:23658682

  3. Employment growth through labor flow networks.

    Directory of Open Access Journals (Sweden)

    Omar A Guerrero

    Full Text Available It is conventional in labor economics to treat all workers who are seeking new jobs as belonging to a labor pool, and all firms that have job vacancies as an employer pool, and then match workers to jobs. Here we develop a new approach to study labor and firm dynamics. By combining the emerging science of networks with newly available employment micro-data, comprehensive at the level of whole countries, we are able to broadly characterize the process through which workers move between firms. Specifically, for each firm in an economy as a node in a graph, we draw edges between firms if a worker has migrated between them, possibly with a spell of unemployment in between. An economy's overall graph of firm-worker interactions is an object we call the labor flow network (LFN. This is the first study that characterizes a LFN for an entire economy. We explore the properties of this network, including its topology, its community structure, and its relationship to economic variables. It is shown that LFNs can be useful in identifying firms with high growth potential. We relate LFNs to other notions of high performance firms. Specifically, it is shown that fewer than 10% of firms account for nearly 90% of all employment growth. We conclude with a model in which empirically-salient LFNs emerge from the interaction of heterogeneous adaptive agents in a decentralized labor market.

  4. Freely suspended actin cortex models on arrays of microfabricated pillars

    NARCIS (Netherlands)

    Roos, Wouter H.; Roth, Alexander; Konle, Johannes; Presting, Hartmut; Sackmann, Erich; Spatz, Joachim P.

    2003-01-01

    Actin networking across pillar-tops: Actin filaments have been self-assembled onto microscopic silicon pillars, forming quasi-two-dimensional networks (see graphic) and creating novel possibilities for mimicking functions of the cellular actin cortex on solid-state devices.

  5. Network structure impacts global commodity trade growth and resilience

    Science.gov (United States)

    Rovenskaya, Elena; Fath, Brian D.

    2017-01-01

    Global commodity trade networks are critical to our collective sustainable development. Their increasing interconnectedness pose two practical questions: (i) Do the current network configurations support their further growth? (ii) How resilient are these networks to economic shocks? We analyze the data of global commodity trade flows from 1996 to 2012 to evaluate the relationship between structural properties of the global commodity trade networks and (a) their dynamic growth, as well as (b) the resilience of their growth with respect to the 2009 global economic shock. Specifically, we explore the role of network efficiency and redundancy using the information theory-based network flow analysis. We find that, while network efficiency is positively correlated with growth, highly efficient systems appear to be less resilient, losing more and gaining less growth following an economic shock. While all examined networks are rather redundant, we find that network redundancy does not hinder their growth. Moreover, systems exhibiting higher levels of redundancy lose less and gain more growth following an economic shock. We suggest that a strategy to support making global trade networks more efficient via, e.g., preferential trade agreements and higher specialization, can promote their further growth; while a strategy to increase the global trade networks’ redundancy via e.g., more abundant free-trade agreements, can improve their resilience to global economic shocks. PMID:28207790

  6. Governance of innovation and growth in SME Networks

    DEFF Research Database (Denmark)

    Brink, Tove

    2016-01-01

    The aim of this article is to reveal what organizing of innovation and growth can be enabled in SME networks. This is especially interesting for the governance of loosely coupled networks. The research is conducted in the Danish food industry with three food-producing firm networks. The posed....... Governance of network connections is also found to have a significant positive impact on growth. The findings contribute to an understanding of how both governance of preferred SME behaviour and network connections enable innovation. This study provides SMEs, SME network organizations and policy bodies...

  7. SYP73 Anchors the ER to the Actin Cytoskeleton for Maintenance of ER Integrity and Streaming in Arabidopsis.

    Science.gov (United States)

    Cao, Pengfei; Renna, Luciana; Stefano, Giovanni; Brandizzi, Federica

    2016-12-05

    The endoplasmic reticulum (ER) is an essential organelle that spreads throughout the cytoplasm as one interconnected network of narrow tubules and dilated cisternae that enclose a single lumen. The ER network undergoes extensive remodeling, which critically depends on membrane-cytoskeleton interactions [1]. In plants, the ER is also highly mobile, and its streaming contributes significantly to the movement of other organelles [2, 3]. The remodeling and motility of the plant ER rely mainly on actin [4] and to a minor extent on microtubules [5]. Although a three-way interaction between the ER, cytosolic myosin-XI, and F-actin mediates the plant ER streaming [6], the mechanisms underlying stable interaction of the ER membrane with actin are unknown. Early electron microscopy studies suggested a direct attachment of the plant ER with actin filaments [7, 8], but it is plausible that yet-unknown proteins facilitate anchoring of the ER membrane with the cytoskeleton. We demonstrate here that SYP73, a member of the plant Syp7 subgroup of SNARE proteins [9] containing actin-binding domains, is a novel ER membrane-associated actin-binding protein. We show that overexpression of SYP73 causes a striking rearrangement of the ER over actin and that, similar to mutations of myosin-XI [4, 10, 11], loss of SYP73 reduces ER streaming and affects overall ER network morphology and plant growth. We propose a model for plant ER remodeling whereby the dynamic rearrangement and streaming of the ER network depend on the propelling action of myosin-XI over actin coupled with a SYP73-mediated bridging, which dynamically anchors the ER membrane with actin filaments.

  8. Conflicting attachment and the growth of bipartite networks

    CERN Document Server

    Yin, Chung; Weitz, Joshua S

    2015-01-01

    Simple growth mechanisms have been proposed to explain the emergence of seemingly universal network structures. The widely-studied model of preferential attachment assumes that new nodes are more likely to connect to highly connected nodes. Preferential attachment explains the emergence of scale-free degree distributions within complex networks. Yet, it is incompatible with many network systems, particularly bipartite systems in which two distinct types of agents interact. For example, the addition of new links in a host-parasite system corresponds to the infection of hosts by parasites. Increasing connectivity is beneficial to a parasite and detrimental to a host. Therefore, the overall network connectivity is subject to conflicting pressures. Here, we propose a stochastic network growth model of conflicting attachment, inspired by a particular kind of parasite-host interactions: that of viruses interacting with microbial hosts. The mechanism of network growth includes conflicting preferences to network dens...

  9. Model for the growth of the World Airline Network

    CERN Document Server

    Verma, T; Nagler, J; Andrade, J S; Herrmann, H J

    2016-01-01

    We propose a probabilistic growth model for transport networks which employs a balance between popularity of nodes and the physical distance between nodes. By comparing the degree of each node in the model network and the WAN, we observe that the difference between the two is minimized for $\\alpha\\approx 2$. Interestingly, this is the value obtained for the node-node correlation function in the WAN. This suggests that our model explains quite well the growth of airline networks.

  10. Plant Growth Models Using Artificial Neural Networks

    Science.gov (United States)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  11. Scale-free network models with accelerating growth

    Institute of Scientific and Technical Information of China (English)

    Huan LI

    2009-01-01

    Complex networks are everywhere. A typical ex-ample is software network. Basing on analyzing evolutive structure of the software networks, we consider accelerat-ing growth of network as power-law growth, which can be more easily generalized to real systems than linear growth. For accelerating growth via a power law and scale-free state with preferential linking, we focus on exploring the generic property of complex networks. Generally, two scenarios are possible. In one of them, the links are undirected. In the other scenario, the links are directed. We propose two mod-els that can predict the emergence of power-law growth and scale-free state in good agreement with these two scenar-ios and can simulate much more real systems than existing scale-free network models. Moreover, we use the obtained predictions to fit accelerating growth and the connectivity distribution of software networks describing scale-free struc-ture. The combined analytical and numerical results indicate the emergence of a novel set of models that considerably enhance our ability to understand and characterize complex networks, whose applicability reaches far beyond the quoted examples.

  12. Governance of innovation and growth in SME Networks

    DEFF Research Database (Denmark)

    Brink, Tove

    2016-01-01

    The aim of this article is to reveal what organizing of innovation and growth can be enabled in SME networks. This is especially interesting for the governance of loosely coupled networks. The research is conducted in the Danish food industry with three food-producing firm networks. The posed...... hypotheses are tested in a structural equation modelling (SEM) approach with the available data of 60 SMEs. The findings show that the governance of preferred behaviours of SMEs has a considerable significant positive impact on product and systematic innovation, which have a significant impact on growth....... Governance of network connections is also found to have a significant positive impact on growth. The findings contribute to an understanding of how both governance of preferred SME behaviour and network connections enable innovation. This study provides SMEs, SME network organizations and policy bodies...

  13. Dynamics and Regulation of Actin Cytoskeleton in Plant Cells

    Institute of Scientific and Technical Information of China (English)

    Ren Haiyun

    2007-01-01

    @@ The actin cytoskeleton constituted of globular actin (G-actin) is a ubiquitous component of eukaryotic cells and plays crucial roles in diverse physiological processes in plant cells, such as cytoplasmic streaming, organelle and nucleus positioning, cell morphogenesis, cell division, tip growth, etc.

  14. Boolean gates on actin filaments

    Science.gov (United States)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  15. Conflicting attachment and the growth of bipartite networks

    Science.gov (United States)

    Leung, Chung Yin Joey; Weitz, Joshua S.

    2016-03-01

    Simple growth mechanisms have been proposed to explain the emergence of seemingly universal network structures. The widely studied model of preferential attachment assumes that new nodes are more likely to connect to highly connected nodes. Preferential attachment explains the emergence of scale-free degree distributions within complex networks. Yet it is incompatible with many network systems, particularly bipartite systems in which two distinct types of agents interact. For example, the addition of new links in a host-parasite system corresponds to the infection of hosts by parasites. Increasing connectivity is beneficial to a parasite and detrimental to a host. Therefore, the overall network connectivity is subject to conflicting pressures. Here we propose a stochastic network growth model of conflicting attachment, inspired by a particular kind of parasite-host interaction: that of viruses interacting with microbial hosts. The mechanism of network growth includes conflicting preferences to network density as well as costs involved in modifying the network connectivity according to these preferences. We find that the resulting networks exhibit realistic patterns commonly observed in empirical data, including the emergence of nestedness, modularity, and nested-modular structures that exhibit both properties. We study the role of conflicting interests in shaping network structure and assess opportunities to incorporate greater realism in linking growth process to pattern in systems governed by antagonistic and mutualistic interactions.

  16. Model for the growth of the world airline network

    Science.gov (United States)

    Verma, T.; Araújo, N. A. M.; Nagler, J.; Andrade, J. S.; Herrmann, H. J.

    2016-06-01

    We propose a probabilistic growth model for transport networks which employs a balance between popularity of nodes and the physical distance between nodes. By comparing the degree of each node in the model network and the World Airline Network (WAN), we observe that the difference between the two is minimized for α≈2. Interestingly, this is the value obtained for the node-node correlation function in the WAN. This suggests that our model explains quite well the growth of airline networks.

  17. Dendritic Actin Filament Nucleation Causes Traveling Waves and Patches

    CERN Document Server

    Carlsson, Anders E

    2010-01-01

    The polymerization of actin via branching at a cell membrane containing nucleation-promoting factors is simulated using a stochastic-growth methodology. The polymerized-actin distribution displays three types of behavior: a) traveling waves, b) moving patches, and c) random fluctuations. Increasing actin concentration causes a transition from patches to waves. The waves and patches move by a treadmilling mechanism which does not require myosin II. The effects of downregulation of key proteins on actin wave behavior are evaluated.

  18. Centrality Fingerprints for Power Grid Network Growth Models

    CERN Document Server

    Gurfinkel, Aleks Jacob; Rikvold, Per Arne

    2015-01-01

    In our previous work, we have shown that many of the properties of the Florida power grid are reproduced by deterministic network growth models based on the minimization of energy dissipation $E_\\mathrm{diss}$. As there is no $a~ priori$ best $E_\\mathrm{diss}$ minimizing growth model, we here present a tool, called the "centrality fingerprint," for probing the behavior of different growth models. The centrality fingerprints are comparisons of the current flow into/out of the network with the values of various centrality measures calculated at every step of the growth process. Finally, we discuss applications to the Maryland power grid.

  19. Arabidopsis VILLIN2 and VILLIN3 are required for the generation of thick actin filament bundles and for directional organ growth.

    Science.gov (United States)

    van der Honing, Hannie S; Kieft, Henk; Emons, Anne Mie C; Ketelaar, Tijs

    2012-03-01

    In plant cells, actin filament bundles serve as tracks for myosin-dependent organelle movement and play a role in the organization of the cytoplasm. Although virtually all plant cells contain actin filament bundles, the role of the different actin-bundling proteins remains largely unknown. In this study, we investigated the role of the actin-bundling protein villin in Arabidopsis (Arabidopsis thaliana). We used Arabidopsis T-DNA insertion lines to generate a double mutant in which VILLIN2 (VLN2) and VLN3 transcripts are truncated. Leaves, stems, siliques, and roots of vln2 vln3 double mutant plants are twisted, which is caused by local differences in cell length. Microscopy analysis of the actin cytoskeleton showed that in these double mutant plants, thin actin filament bundles are more abundant while thick actin filament bundles are virtually absent. In contrast to full-length VLN3, truncated VLN3 lacking the headpiece region does not rescue the phenotype of the vln2 vln3 double mutant. Our results show that villin is involved in the generation of thick actin filament bundles in several cell types and suggest that these bundles are involved in the regulation of coordinated cell expansion.

  20. Growth of scale-free networks under heterogeneous control

    CERN Document Server

    Li, Linjun

    2013-01-01

    Real-life networks often encounter vertex dysfunctions, which are usually followed by recoveries after appropriate maintenances. In this paper we present our research on a model of scale-free networks whose vertices are regularly removed and put back. Both the frequency and length of time of the disappearance of each vertex depend on the degree of the vertex, creating a heterogeneous control over the network. Our simulation results show very interesting growth pattern of this kind of networks. We also find that the scale-free property of the degree distribution is maintained in the proposed heterogeneously controlled networks. However, the overall growth rate of the networks in our model can be remarkably reduced if the inactive periods of the vertices are kept long.

  1. Sorting of ligand-activated epidermal growth factor receptor to lysosomes requires its actin-binding domain

    NARCIS (Netherlands)

    Stoorvogel, W; Kerstens, S; Fritzsche, I; den Hartigh, JC; Oud, R; van der Heyden, MAG; Henegouwen, PMPVE

    2004-01-01

    Ligand-induced down-regulation of the epidermal growth factor receptor (EGFR) comprises activation of two sequential transport steps. The first involves endocytic uptake by clathrin-coated vesicles, the second transfer of endocytosed EGFR from endosomes to lysosomes. Here we demonstrate that the sec

  2. A computational model for cancer growth by using complex networks

    Science.gov (United States)

    Galvão, Viviane; Miranda, José G. V.

    2008-09-01

    In this work we propose a computational model to investigate the proliferation of cancerous cell by using complex networks. In our model the network represents the structure of available space in the cancer propagation. The computational scheme considers a cancerous cell randomly included in the complex network. When the system evolves the cells can assume three states: proliferative, non-proliferative, and necrotic. Our results were compared with experimental data obtained from three human lung carcinoma cell lines. The computational simulations show that the cancerous cells have a Gompertzian growth. Also, our model simulates the formation of necrosis, increase of density, and resources diffusion to regions of lower nutrient concentration. We obtain that the cancer growth is very similar in random and small-world networks. On the other hand, the topological structure of the small-world network is more affected. The scale-free network has the largest rates of cancer growth due to hub formation. Finally, our results indicate that for different average degrees the rate of cancer growth is related to the available space in the network.

  3. Modeling the Relationship Between Social Network Activity, Inactivity, and Growth

    CERN Document Server

    Ribeiro, Bruno

    2013-01-01

    Online Social Networks (OSNs) are multi-billion dollar enterprises. Surprisingly, little is known about the mechanisms that drive them to growth, stability, or death. This study sheds light on these mechanisms. We are particularly interested in OSNs where current subscribers can invite new users to join the network (e.g., Facebook, LinkedIn). Measuring the relationship between subscriber activity and network growth of a large OSN over five years, we formulate three hypotheses that together describe the observed OSN subscriber behavior. We then provide a model (and extensions) that simultaneously satisfies all three hypotheses. Our model provides deep insights into the dynamics of subscriber activity, inactivity, and network growth rates, even predicting four types of OSNs with respect to subscriber activity evolution. Finally, we present activity data of nearly thirty OSN websites, measured over five years, and show that the observed activity is well described by one of the four activity time series predicted...

  4. Complex Network Theory Applied to the Growth of Kuala Lumpur's Public Urban Rail Transit Network.

    Science.gov (United States)

    Ding, Rui; Ujang, Norsidah; Hamid, Hussain Bin; Wu, Jianjun

    2015-01-01

    Recently, the number of studies involving complex network applications in transportation has increased steadily as scholars from various fields analyze traffic networks. Nonetheless, research on rail network growth is relatively rare. This research examines the evolution of the Public Urban Rail Transit Networks of Kuala Lumpur (PURTNoKL) based on complex network theory and covers both the topological structure of the rail system and future trends in network growth. In addition, network performance when facing different attack strategies is also assessed. Three topological network characteristics are considered: connections, clustering and centrality. In PURTNoKL, we found that the total number of nodes and edges exhibit a linear relationship and that the average degree stays within the interval [2.0488, 2.6774] with heavy-tailed distributions. The evolutionary process shows that the cumulative probability distribution (CPD) of degree and the average shortest path length show good fit with exponential distribution and normal distribution, respectively. Moreover, PURTNoKL exhibits clear cluster characteristics; most of the nodes have a 2-core value, and the CPDs of the centrality's closeness and betweenness follow a normal distribution function and an exponential distribution, respectively. Finally, we discuss four different types of network growth styles and the line extension process, which reveal that the rail network's growth is likely based on the nodes with the biggest lengths of the shortest path and that network protection should emphasize those nodes with the largest degrees and the highest betweenness values. This research may enhance the networkability of the rail system and better shape the future growth of public rail networks.

  5. Complex Network Theory Applied to the Growth of Kuala Lumpur's Public Urban Rail Transit Network.

    Directory of Open Access Journals (Sweden)

    Rui Ding

    Full Text Available Recently, the number of studies involving complex network applications in transportation has increased steadily as scholars from various fields analyze traffic networks. Nonetheless, research on rail network growth is relatively rare. This research examines the evolution of the Public Urban Rail Transit Networks of Kuala Lumpur (PURTNoKL based on complex network theory and covers both the topological structure of the rail system and future trends in network growth. In addition, network performance when facing different attack strategies is also assessed. Three topological network characteristics are considered: connections, clustering and centrality. In PURTNoKL, we found that the total number of nodes and edges exhibit a linear relationship and that the average degree stays within the interval [2.0488, 2.6774] with heavy-tailed distributions. The evolutionary process shows that the cumulative probability distribution (CPD of degree and the average shortest path length show good fit with exponential distribution and normal distribution, respectively. Moreover, PURTNoKL exhibits clear cluster characteristics; most of the nodes have a 2-core value, and the CPDs of the centrality's closeness and betweenness follow a normal distribution function and an exponential distribution, respectively. Finally, we discuss four different types of network growth styles and the line extension process, which reveal that the rail network's growth is likely based on the nodes with the biggest lengths of the shortest path and that network protection should emphasize those nodes with the largest degrees and the highest betweenness values. This research may enhance the networkability of the rail system and better shape the future growth of public rail networks.

  6. Distributed actin turnover in the lamellipodium and FRAP kinetics.

    Science.gov (United States)

    Smith, Matthew B; Kiuchi, Tai; Watanabe, Naoki; Vavylonis, Dimitrios

    2013-01-08

    Studies of actin dynamics at the leading edge of motile cells with single-molecule speckle (SiMS) microscopy have shown a broad distribution of EGFP-actin speckle lifetimes and indicated actin polymerization and depolymerization over an extended region. Other experiments using FRAP with the same EGFP-actin as a probe have suggested, by contrast, that polymerization occurs exclusively at the leading edge. We performed FRAP experiments on XTC cells to compare SiMS to FRAP on the same cell type. We used speckle statistics obtained by SiMS to model the steady-state distribution and kinetics of actin in the lamellipodium. We demonstrate that a model with a single diffuse actin species is in good agreement with FRAP experiments. A model including two species of diffuse actin provides an even better agreement. The second species consists of slowly diffusing oligomers that associate to the F-actin network throughout the lamellipodium or break up into monomers after a characteristic time. Our work motivates studies to test the presence and composition of slowly diffusing actin species that may contribute to local remodeling of the actin network and increase the amount of soluble actin.

  7. Network meta-analysis of the outcome 'participant complete clearance' in nonimmunosuppressed participants of eight interventions for actinic keratosis: a follow-up on a Cochrane review.

    Science.gov (United States)

    Gupta, A K; Paquet, M

    2013-08-01

    The conclusions of pairwise meta-analyses of interventions for actinic keratosis (AK) are limited due to the lack of direct comparison between some interventions. Consequently, we performed a network meta-analysis for eight treatments [5-aminolaevulinic acid (ALA)-photodynamic therapy (PDT), cryotherapy, diclofenac 3% in 2·5% hyaluronic acid (DCF/HA), 5-fluorouracil (5-FU) 0·5% or 5·0%, imiquimod (IMI) 5%, ingenol mebutate (IMB) 0·015-0·05%, methyl aminolaevulinate (MAL)-PDT and placebo/vehicle (including placebo-PDT)] to determine their relative efficacies. As part of a prior Cochrane systematic review, different databases and grey literature were searched for randomized controlled trials up to April 2012. The inclusion criteria were parallel-group studies with nonimmunosuppressed participants: (i) reporting 'participant complete clearance' and (ii) comparing at least two of the interventions. Thirty-two publications met the criteria and they included the following number of individual or pooled studies (n) and total number of participants (N) for the different interventions: 5-FU 0·5% (n = 4, N = 169), 5-FU 5·0% (n = 2, N = 44), ALA-PDT (n = 6, N = 739), cryotherapy (n = 2, N = 174), DCF/HA (n = 5, N = 299), IMI (n = 14, N = 1411), IMB (n = 3, N = 560), MAL-PDT (n = 7, N = 557) and placebo (n = 32, N = 2520). Network analyses using a random-effects Bayesian model were carried out with the software ADDIS v1.16.1. The interventions were ranked as follows based on calculated probabilities and odd ratios: 5-FU > ALA-PDT ≈ IMI ≈ IMB ≈ MAL-PDT > cryotherapy > DCF/HA > placebo. This efficacy ranking was obtained based on the current available data on 'participant complete clearance' from randomized controlled trials and the analysis model used. However, several other factors should also be considered when prescribing a treatment for AK.

  8. Emergence of hierarchy in cost driven growth of spatial networks

    CERN Document Server

    Louf, Rémi; Barthelemy, Marc

    2013-01-01

    One of the most important features of spatial networks such as transportation networks, power grids, Internet, neural networks, is the existence of a cost associated with the length of links. Such a cost has a profound influence on the global structure of these networks which usually display a hierarchical spatial organization. The link between local constraints and large-scale structure is however not elucidated and we introduce here a generic model for the growth of spatial networks based on the general concept of cost benefit analysis. This model depends essentially on one single scale and produces a family of networks which range from the star-graph to the minimum spanning tree and which are characterised by a continuously varying exponent. We show that spatial hierarchy emerges naturally, with structures composed of various hubs controlling geographically separated service areas, and appears as a large-scale consequence of local cost-benefit considerations. Our model thus provides the first building bloc...

  9. Live Cell Imaging Reveals Structural Associations between the Actin and Microtubule Cytoskeleton in Arabidopsis [W] [OA

    Science.gov (United States)

    Sampathkumar, Arun; Lindeboom, Jelmer J.; Debolt, Seth; Gutierrez, Ryan; Ehrhardt, David W.; Ketelaar, Tijs; Persson, Staffan

    2011-01-01

    In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic interactions between these two essential components in live cells have not been explored. Here, we use spinning-disc confocal microscopy to dissect interaction and cooperation between cortical AFs and MTs in Arabidopsis thaliana, utilizing fluorescent reporter constructs for both components. Quantitative analyses revealed altered AF dynamics associated with the positions and orientations of cortical MTs. Reorganization and reassembly of the AF array was dependent on the MTs following drug-induced depolymerization, whereby short AFs initially appeared colocalized with MTs, and displayed motility along MTs. We also observed that light-induced reorganization of MTs occurred in concert with changes in AF behavior. Our results indicate dynamic interaction between the cortical actin and MT cytoskeletons in interphase plant cells. PMID:21693695

  10. A statistically inferred microRNA network identifies breast cancer target miR-940 as an actin cytoskeleton regulator

    Science.gov (United States)

    Bhajun, Ricky; Guyon, Laurent; Pitaval, Amandine; Sulpice, Eric; Combe, Stéphanie; Obeid, Patricia; Haguet, Vincent; Ghorbel, Itebeddine; Lajaunie, Christian; Gidrol, Xavier

    2015-02-01

    MiRNAs are key regulators of gene expression. By binding to many genes, they create a complex network of gene co-regulation. Here, using a network-based approach, we identified miRNA hub groups by their close connections and common targets. In one cluster containing three miRNAs, miR-612, miR-661 and miR-940, the annotated functions of the co-regulated genes suggested a role in small GTPase signalling. Although the three members of this cluster targeted the same subset of predicted genes, we showed that their overexpression impacted cell fates differently. miR-661 demonstrated enhanced phosphorylation of myosin II and an increase in cell invasion, indicating a possible oncogenic miRNA. On the contrary, miR-612 and miR-940 inhibit phosphorylation of myosin II and cell invasion. Finally, expression profiling in human breast tissues showed that miR-940 was consistently downregulated in breast cancer tissues

  11. The impact of capacity growth in national telecommunications networks.

    Science.gov (United States)

    Lord, Andrew; Soppera, Andrea; Jacquet, Arnaud

    2016-03-06

    This paper discusses both UK-based and global Internet data bandwidth growth, beginning with historical data for the BT network. We examine the time variations in consumer behaviour and how this is statistically aggregated into larger traffic loads on national core fibre communications networks. The random nature of consumer Internet behaviour, where very few consumers require maximum bandwidth simultaneously, provides the opportunity for a significant statistical gain. The paper looks at predictions for how this growth might continue over the next 10-20 years, giving estimates for the amount of bandwidth that networks should support in the future. The paper then explains how national networks are designed to accommodate these traffic levels, and the various network roles, including access, metro and core, are described. The physical layer network is put into the context of how the packet and service layers are designed and the applications and location of content are also included in an overall network overview. The specific role of content servers in alleviating core network traffic loads is highlighted. The status of the relevant transmission technologies in the access, metro and core is given, showing that these technologies, with adequate research, should be sufficient to provide bandwidth for consumers in the next 10-20 years.

  12. Growth, collapse, and self-organized criticality in complex networks

    Science.gov (United States)

    Wang, Yafeng; Fan, Huawei; Lin, Weijie; Lai, Ying-Cheng; Wang, Xingang

    2016-04-01

    Network growth is ubiquitous in nature (e.g., biological networks) and technological systems (e.g., modern infrastructures). To understand how certain dynamical behaviors can or cannot persist as the underlying network grows is a problem of increasing importance in complex dynamical systems as well as sustainability science and engineering. We address the question of whether a complex network of nonlinear oscillators can maintain its synchronization stability as it expands. We find that a large scale avalanche over the entire network can be triggered in the sense that the individual nodal dynamics diverges from the synchronous state in a cascading manner within a relatively short time period. In particular, after an initial stage of linear growth, the network typically evolves into a critical state where the addition of a single new node can cause a group of nodes to lose synchronization, leading to synchronization collapse for the entire network. A statistical analysis reveals that the collapse size is approximately algebraically distributed, indicating the emergence of self-organized criticality. We demonstrate the generality of the phenomenon of synchronization collapse using a variety of complex network models, and uncover the underlying dynamical mechanism through an eigenvector analysis.

  13. Growth, collapse, and self-organized criticality in complex networks

    Science.gov (United States)

    Wang, Yafeng; Fan, Huawei; Lin, Weijie; Lai, Ying-Cheng; Wang, Xingang

    2016-01-01

    Network growth is ubiquitous in nature (e.g., biological networks) and technological systems (e.g., modern infrastructures). To understand how certain dynamical behaviors can or cannot persist as the underlying network grows is a problem of increasing importance in complex dynamical systems as well as sustainability science and engineering. We address the question of whether a complex network of nonlinear oscillators can maintain its synchronization stability as it expands. We find that a large scale avalanche over the entire network can be triggered in the sense that the individual nodal dynamics diverges from the synchronous state in a cascading manner within a relatively short time period. In particular, after an initial stage of linear growth, the network typically evolves into a critical state where the addition of a single new node can cause a group of nodes to lose synchronization, leading to synchronization collapse for the entire network. A statistical analysis reveals that the collapse size is approximately algebraically distributed, indicating the emergence of self-organized criticality. We demonstrate the generality of the phenomenon of synchronization collapse using a variety of complex network models, and uncover the underlying dynamical mechanism through an eigenvector analysis. PMID:27079515

  14. Network effects in a human capital based economic growth model

    Science.gov (United States)

    Vaz Martins, Teresa; Araújo, Tanya; Augusta Santos, Maria; St Aubyn, Miguel

    2009-06-01

    We revisit a recently introduced agent model [ACS, 11, 99 (2008)], where economic growth is a consequence of education (human capital formation) and innovation, and investigate the influence of the agents’ social network, both on an agent’s decision to pursue education and on the output of new ideas. Regular and random networks are considered. The results are compared with the predictions of a mean field (representative agent) model.

  15. Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments.

    Science.gov (United States)

    Hansen, Scott D; Mullins, R Dyche

    2015-01-01

    Enabled/Vasodilator (Ena/VASP) proteins promote actin filament assembly at multiple locations, including: leading edge membranes, focal adhesions, and the surface of intracellular pathogens. One important Ena/VASP regulator is the mig-10/Lamellipodin/RIAM family of adaptors that promote lamellipod formation in fibroblasts and drive neurite outgrowth and axon guidance in neurons. To better understand how MRL proteins promote actin network formation we studied the interactions between Lamellipodin (Lpd), actin, and VASP, both in vivo and in vitro. We find that Lpd binds directly to actin filaments and that this interaction regulates its subcellular localization and enhances its effect on VASP polymerase activity. We propose that Lpd delivers Ena/VASP proteins to growing barbed ends and increases their polymerase activity by tethering them to filaments. This interaction represents one more pathway by which growing actin filaments produce positive feedback to control localization and activity of proteins that regulate their assembly.

  16. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles.

    Science.gov (United States)

    Mavrakis, Manos; Azou-Gros, Yannick; Tsai, Feng-Ching; Alvarado, José; Bertin, Aurélie; Iv, Francois; Kress, Alla; Brasselet, Sophie; Koenderink, Gijsje H; Lecuit, Thomas

    2014-04-01

    Animal cell cytokinesis requires a contractile ring of crosslinked actin filaments and myosin motors. How contractile rings form and are stabilized in dividing cells remains unclear. We address this problem by focusing on septins, highly conserved proteins in eukaryotes whose precise contribution to cytokinesis remains elusive. We use the cleavage of the Drosophila melanogaster embryo as a model system, where contractile actin rings drive constriction of invaginating membranes to produce an epithelium in a manner akin to cell division. In vivo functional studies show that septins are required for generating curved and tightly packed actin filament networks. In vitro reconstitution assays show that septins alone bundle actin filaments into rings, accounting for the defects in actin ring formation in septin mutants. The bundling and bending activities are conserved for human septins, and highlight unique functions of septins in the organization of contractile actomyosin rings.

  17. Actin-Based Feedback Circuits in Cell Migration and Endocytosis

    Science.gov (United States)

    Wang, Xinxin

    In this thesis, we study the switch and pulse functions of actin during two important cellular processes, cell migration and endocytosis. Actin is an abundant protein that can polymerize to form a dendritic network. The actin network can exert force to push or bend the cell membrane. During cell migration, the actin network behaves like a switch, assembling mostly at one end or at the other end. The end with the majority of the actin network is the leading edge, following which the cell can persistently move in the same direction. The other end, with the minority of the actin network, is the trailing edge, which is dragged by the cell as it moves forward. When subjected to large fluctuations or external stimuli, the leading edge and the trailing edge can interchange and change the direction of motion, like a motion switch. Our model of the actin network in a cell reveals that mechanical force is crucial for forming the motion switch. We find a transition from single state symmetric behavior to switch behavior, when tuning parameters such as the force. The model is studied by both stochastic simulations, and a set of rate equations that are consistent with the simulations. Endocytosis is a process by which cells engulf extracellular substances and recycle the cell membrane. In yeast cells, the actin network is transiently needed to overcome the pressure difference across the cell membrane caused by turgor pressure. The actin network behaves like a pulse, which assembles and then disassembles within about 30 seconds. Using a stochastic model, we reproduce the pulse behaviors of the actin network and one of its regulatory proteins, Las17. The model matches green fluorescence protein (GFP) experiments for wild-type cells. The model also predicts some phenotypes that modify or diminish the pulse behavior. The phenotypes are verified with both experiments performed at Washington University and with other groups' experiments. We find that several feedback mechanisms are

  18. Gibberellins and DELLAs: central nodes in growth regulatory networks.

    Science.gov (United States)

    Claeys, Hannes; De Bodt, Stefanie; Inzé, Dirk

    2014-04-01

    Gibberellins (GAs) are growth-promoting phytohormones that were crucial in breeding improved semi-dwarf varieties during the green revolution. However, the molecular basis for GA-induced growth stimulation is poorly understood. In this review, we use light-regulated hypocotyl elongation as a case study, combined with a meta-analysis of available transcriptome data, to discuss the role of GAs as central nodes in networks connecting environmental inputs to growth. These networks are highly tissue-specific, with dynamic and rapid regulation that mostly occurs at the protein level, directly affecting the activity and transcription of effectors. New systems biology approaches addressing the role of GAs in growth should take these properties into account, combining tissue-specific interactomics, transcriptomics and modeling, to provide essential knowledge to fuel a second green revolution.

  19. Actin Rings of Power.

    Science.gov (United States)

    Schwayer, Cornelia; Sikora, Mateusz; Slováková, Jana; Kardos, Roland; Heisenberg, Carl-Philipp

    2016-06-20

    Circular or ring-like actin structures play important roles in various developmental and physiological processes. Commonly, these rings are composed of actin filaments and myosin motors (actomyosin) that, upon activation, trigger ring constriction. Actomyosin ring constriction, in turn, has been implicated in key cellular processes ranging from cytokinesis to wound closure. Non-constricting actin ring-like structures also form at cell-cell contacts, where they exert a stabilizing function. Here, we review recent studies on the formation and function of actin ring-like structures in various morphogenetic processes, shedding light on how those different rings have been adapted to fulfill their specific roles.

  20. Network effect of knowledge spillover: Scale-free networks stimulate R&D activities and accelerate economic growth

    Science.gov (United States)

    Konno, Tomohiko

    2016-09-01

    We study how knowledge spillover networks affect research and development (R&D) activities and economic growth. For this purpose, we extend a Schumpeterian growth model to the one on networks that depict the knowledge spillover relationships of R&D. We show that scale-free networks stimulate R&D activities and accelerate economic growth.

  1. Deterministic multidimensional growth model for small-world networks

    CERN Document Server

    Peng, Aoyuan

    2011-01-01

    We proposed a deterministic multidimensional growth model for small-world networks. The model can characterize the distinguishing properties of many real-life networks with geometric space structure. Our results show the model possesses small-world effect: larger clustering coefficient and smaller characteristic path length. We also obtain some accurate results for its properties including degree distribution, clustering coefficient and network diameter and discuss them. It is also worth noting that we get an accurate analytical expression for calculating the characteristic path length. We verify numerically and experimentally these main features.

  2. Comparison of Gompertz and neural network models of broiler growth.

    Science.gov (United States)

    Roush, W B; Dozier, W A; Branton, S L

    2006-04-01

    Neural networks offer an alternative to regression analysis for biological growth modeling. Very little research has been conducted to model animal growth using artificial neural networks. Twenty-five male chicks (Ross x Ross 308) were raised in an environmental chamber. Body weights were determined daily and feed and water were provided ad libitum. The birds were fed a starter diet (23% CP and 3,200 kcal of ME/kg) from 0 to 21 d, and a grower diet (20% CP and 3,200 kcal of ME/ kg) from 22 to 70 d. Dead and female birds were not included in the study. Average BW of 18 birds were used as the data points for the growth curve to be modeled. Training data consisted of alternate-day weights starting with the first day. Validation data consisted of BW at all other age periods. Comparison was made between the modeling by the Gompertz nonlinear regression equation and neural network modeling. Neural network models were developed with the Neuroshell Predictor. Accuracy of the models was determined by mean square error (MSE), mean absolute deviation (MAD), mean absolute percentage error (MAPE), and bias. The Gompertz equation was fit for the data. Forecasting error measurements were based on the difference between the model and the observed values. For the training data, the lowest MSE, MAD, MAPE, and bias were noted for the neural-developed neural network. For the validation data, the lowest MSE and MAD were noted with the genetic algorithm-developed neural network. Lowest bias was for the neural-developed network. As measured by bias, the Gompertz equation underestimated the values whereas the neural- and genetic-developed neural networks produced little or no overestimation of the observed BW responses. Past studies have attempted to interpret the biological significance of the estimates of the parameters of an equation. However, it may be more practical to ignore the relevance of parameter estimates and focus on the ability to predict responses.

  3. Cyclase-associated protein (CAP) acts directly on F-actin to accelerate cofilin-mediated actin severing across the range of physiological pH.

    Science.gov (United States)

    Normoyle, Kieran P M; Brieher, William M

    2012-10-12

    Fast actin depolymerization is necessary for cells to rapidly reorganize actin filament networks. Utilizing a Listeria fluorescent actin comet tail assay to monitor actin disassembly rates, we observed that although a mixture of actin disassembly factors (cofilin, coronin, and actin-interacting protein 1 is sufficient to disassemble actin comet tails in the presence of physiological G-actin concentrations this mixture was insufficient to disassemble actin comet tails in the presence of physiological F-actin concentrations. Using biochemical complementation, we purified cyclase-associated protein (CAP) from thymus extracts as a factor that protects against the inhibition of excess F-actin. CAP has been shown to participate in actin dynamics but has been thought to act by liberating cofilin from ADP·G-actin monomers to restore cofilin activity. However, we found that CAP augments cofilin-mediated disassembly by accelerating the rate of cofilin-mediated severing. We also demonstrated that CAP acts directly on F-actin and severs actin filaments at acidic, but not neutral, pH. At the neutral pH characteristic of cytosol in most mammalian cells, we demonstrated that neither CAP nor cofilin are capable of severing actin filaments. However, the combination of CAP and cofilin rapidly severed actin at all pH values across the physiological range. Therefore, our results reveal a new function for CAP in accelerating cofilin-mediated actin filament severing and provide a mechanism through which cells can maintain high actin turnover rates without having to alkalinize cytosol, which would affect many biochemical reactions beyond actin depolymerization.

  4. Energy Saving: Scaling Network Energy Efficiency Faster than Traffic Growth

    NARCIS (Netherlands)

    Chen, Y.; Blume, O.; Gati, A.; Capone, A.; Wu, C.-E.; Barth, U.; Marzetta, T.; Zhang, H.; Xu, S.

    2013-01-01

    As the mobile traffic is expected to continue its exponential growth in the near future, energy efficiency has gradually become a must criterion for wireless network design. Three fundamental questions need to be answered before the detailed design could be carried out, namely what energy efficiency

  5. PI(3,5)P2 controls endosomal branched actin dynamics by regulating cortactin-actin interactions.

    Science.gov (United States)

    Hong, Nan Hyung; Qi, Aidong; Weaver, Alissa M

    2015-08-31

    Branched actin critically contributes to membrane trafficking by regulating membrane curvature, dynamics, fission, and transport. However, how actin dynamics are controlled at membranes is poorly understood. Here, we identify the branched actin regulator cortactin as a direct binding partner of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and demonstrate that their interaction promotes turnover of late endosomal actin. In vitro biochemical studies indicated that cortactin binds PI(3,5)P2 via its actin filament-binding region. Furthermore, PI(3,5)P2 competed with actin filaments for binding to cortactin, thereby antagonizing cortactin activity. These findings suggest that PI(3,5)P2 formation on endosomes may remove cortactin from endosome-associated branched actin. Indeed, inhibition of PI(3,5)P2 production led to cortactin accumulation and actin stabilization on Rab7(+) endosomes. Conversely, inhibition of Arp2/3 complex activity greatly reduced cortactin localization to late endosomes. Knockdown of cortactin reversed PI(3,5)P2-inhibitor-induced actin accumulation and stabilization on endosomes. These data suggest a model in which PI(3,5)P2 binding removes cortactin from late endosomal branched actin networks and thereby promotes net actin turnover.

  6. A Generalized Bass Model for Product Growth in Networks

    CERN Document Server

    Manshadi, Vahideh H

    2016-01-01

    Many products and innovations become well-known and widely adopted through the social interactions of individuals in a population. The Bass diffusion model has been widely used to model the temporal evolution of adoption in such social systems. In the model, the likelihood of a new adoption is proportional to the number of previous adopters, implicitly assuming a global (or homogeneous) interaction among all individuals in the network. Such global interactions do not exist in many large social networks, however. Instead, individuals typically interact with a small part of the larger population. To quantify the growth rate (or equivalently the adoption timing) in networks with limited interactions, we study a stochastic adoption process where the likelihood that each individual adopts is proportional to the number of adopters among the small group of persons he/she interacts with (and not the entire population of adopters). When the underlying network of interactions is a random $k$-regular graph, we compute t...

  7. Fragmented Romanian sociology: growth and structure of the collaboration network.

    Science.gov (United States)

    Hâncean, Marian-Gabriel; Perc, Matjaž; Vlăsceanu, Lazăr

    2014-01-01

    Structural patterns in collaboration networks are essential for understanding how new ideas, research practices, innovation or cooperation circulate and develop within academic communities and between and within university departments. In our research, we explore and investigate the structure of the collaboration network formed by the academics working full-time within all the 17 sociology departments across Romania. We show that the collaboration network is sparse and fragmented, and that it constitutes an environment that does not promote the circulation of new ideas and innovation within the field. Although recent years have witnessed an increase in the productivity of Romanian sociologists, there is still ample room for improvement in terms of the interaction infrastructure that ought to link individuals together so that they could maximize their potentials. We also fail to discern evidence in favor of the Matthew effect governing the growth of the network, which suggests scientific success and productivity are not rewarded. Instead, the structural properties of the collaboration network are partly those of a core-periphery network, where the spread of innovation and change can be explained by structural equivalence rather than by interpersonal influence models. We also provide support for the idea that, within the observed network, collaboration is the product of homophily rather than prestige effects. Further research on the subject based on data from other countries in the region is needed to place our results in a comparative framework, in particular to discern whether the behavior of the Romanian sociologist community is unique or rather common.

  8. Glutamyl phosphate is an activated intermediate in actin crosslinking by actin crosslinking domain (ACD toxin.

    Directory of Open Access Journals (Sweden)

    Elena Kudryashova

    Full Text Available Actin Crosslinking Domain (ACD is produced by several life-threatening Gram-negative pathogenic bacteria as part of larger toxins and delivered into the cytoplasm of eukaryotic host cells via Type I or Type VI secretion systems. Upon delivery, ACD disrupts the actin cytoskeleton by catalyzing intermolecular amide bond formation between E270 and K50 residues of actin, leading to the formation of polymerization-deficient actin oligomers. Ultimately, accumulation of the crosslinked oligomers results in structural and functional failure of the actin cytoskeleton in affected cells. In the present work, we advanced in our understanding of the ACD catalytic mechanism by discovering that the enzyme transfers the gamma-phosphoryl group of ATP to the E270 actin residue, resulting in the formation of an activated acyl phosphate intermediate. This intermediate is further hydrolyzed and the energy of hydrolysis is utilized for the formation of the amide bond between actin subunits. We also determined the pH optimum for the reaction and the kinetic parameters of ACD catalysis for its substrates, ATP and actin. ACD showed sigmoidal, non-Michaelis-Menten kinetics for actin (K(0.5 = 30 µM reflecting involvement of two actin molecules in a single crosslinking event. We established that ACD can also utilize Mg(2+-GTP to support crosslinking, but the kinetic parameters (K(M = 8 µM and 50 µM for ATP and GTP, respectively suggest that ATP is the primary substrate of ACD in vivo. The optimal pH for ACD activity was in the range of 7.0-9.0. The elucidated kinetic mechanism of ACD toxicity adds to understanding of complex network of host-pathogen interactions.

  9. Requirements for F-BAR proteins TOCA-1 and TOCA-2 in actin dynamics and membrane trafficking during Caenorhabditis elegans oocyte growth and embryonic epidermal morphogenesis.

    Directory of Open Access Journals (Sweden)

    Chiara Giuliani

    2009-10-01

    Full Text Available The TOCA family of F-BAR-containing proteins bind to and remodel lipid bilayers via their conserved F-BAR domains, and regulate actin dynamics via their N-Wasp binding SH3 domains. Thus, these proteins are predicted to play a pivotal role in coordinating membrane traffic with actin dynamics during cell migration and tissue morphogenesis. By combining genetic analysis in Caenorhabditis elegans with cellular biochemical experiments in mammalian cells, we showed that: i loss of CeTOCA proteins reduced the efficiency of Clathrin-mediated endocytosis (CME in oocytes. Genetic interference with CeTOCAs interacting proteins WSP-1 and WVE-1, and other components of the WVE-1 complex, produced a similar effect. Oocyte endocytosis defects correlated well with reduced egg production in these mutants. ii CeTOCA proteins localize to cell-cell junctions and are required for proper embryonic morphogenesis, to position hypodermal cells and to organize junctional actin and the junction-associated protein AJM-1. iii Double mutant analysis indicated that the toca genes act in the same pathway as the nematode homologue of N-WASP/WASP, wsp-1. Furthermore, mammalian TOCA-1 and C. elegans CeTOCAs physically associated with N-WASP and WSP-1 directly, or WAVE2 indirectly via ABI-1. Thus, we propose that TOCA proteins control tissues morphogenesis by coordinating Clathrin-dependent membrane trafficking with WAVE and N-WASP-dependent actin-dynamics.

  10. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  11. Entrepreneurs’ growth-expectations: Enhanced by their networking and by national growth-policy

    DEFF Research Database (Denmark)

    Schøtt, Thomas; Ashourizadeh, Shayegheh

    Our study aims at accounting for entrepreneurial outcomes as shaped by individual behaviors and societal conditions. Expectation for growth or change of a business is the outcome in focus in this study. Expectation for growth is formed and modified in the mind of the entrepreneur starting...... or running the business. The entrepreneur’s expectation is shaped partly by individual behavior, including networking with others who give advice on the business. The entrepreneur’s expectation is also shaped by the societal context, including policies. Policy for growth-entrepreneurship is the societal...... condition in focus in this study. Our contribution is to account for entrepreneurs’ expectations by their networking and by national policy for growth-entrepreneurship. More broadly, our contribution is to show how an entrepreneurial outcome is shaped by individual behavior in the context of societal...

  12. Non-linear growth and condensation in multiplex networks

    CERN Document Server

    Nicosia, Vincenzo; Latora, Vito; Barthelemy, Marc

    2013-01-01

    Different types of interactions coexist and coevolve to shape the structure and function of a multiplex network. We propose here a general class of growth models in which the various layers of a multiplex network coevolve through a set of non-linear preferential attachment rules. We show, both numerically and analytically, that by tuning the level of non-linearity these models allow to reproduce either homogeneous or heterogeneous degree distributions, together with positive or negative degree correlations across layers. In particular, we derive the condition for the appearance of a condensed state in which a single node connects to nearly all other nodes of a layer.

  13. Gibberellins - a multifaceted hormone in plant growth regulatory network.

    Science.gov (United States)

    Gantait, Saikat; Sinniah, Uma Rani; Ali, Md Nasim; Sahu, Narayan Chandra

    2015-01-01

    Plants tend to acclimatize to unfavourable environs by integrating growth and development to environmentally activated signals. Phytohormones strongly regulate convergent developmental and stress adaptive procedures and synchronize cellular reaction to the exogenous and endogenous conditions within the adaptive signaling networks. Gibberellins (GA), a group of tetracyclic diterpenoids, being vital regulators of plant growth, are accountable for regulating several aspects of growth and development of higher plants. If the element of reproduction is considered as an absolute requisite then for a majority of the higher plants GA signaling is simply indispensable. Latest reports have revealed unique conflicting roles of GA and other phytohormones in amalgamating growth and development in plants through environmental signaling. Numerous physiological researches have detailed substantial crosstalk between GA and other hormones like abscisic acid, auxin, cytokinin, and jasmonic acid. In this review, a number of explanations and clarifications for this discrepancy are explored based on the crosstalk among GA and other phytohormones.

  14. Actin is required for IFT regulation in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Avasthi, Prachee; Onishi, Masayuki; Karpiak, Joel; Yamamoto, Ryosuke; Mackinder, Luke; Jonikas, Martin C; Sale, Winfield S; Shoichet, Brian; Pringle, John R; Marshall, Wallace F

    2014-09-01

    Assembly of cilia and flagella requires intraflagellar transport (IFT), a highly regulated kinesin-based transport system that moves cargo from the basal body to the tip of flagella [1]. The recruitment of IFT components to basal bodies is a function of flagellar length, with increased recruitment in rapidly growing short flagella [2]. The molecular pathways regulating IFT are largely a mystery. Because actin network disruption leads to changes in ciliary length and number, actin has been proposed to have a role in ciliary assembly. However, the mechanisms involved are unknown. In Chlamydomonas reinhardtii, conventional actin is found in both the cell body and the inner dynein arm complexes within flagella [3, 4]. Previous work showed that treating Chlamydomonas cells with the actin-depolymerizing compound cytochalasin D resulted in reversible flagellar shortening [5], but how actin is related to flagellar length or assembly remains unknown. Here we utilize small-molecule inhibitors and genetic mutants to analyze the role of actin dynamics in flagellar assembly in Chlamydomonas reinhardtii. We demonstrate that actin plays a role in IFT recruitment to basal bodies during flagellar elongation and that when actin is perturbed, the normal dependence of IFT recruitment on flagellar length is lost. We also find that actin is required for sufficient entry of IFT material into flagella during assembly. These same effects are recapitulated with a myosin inhibitor, suggesting that actin may act via myosin in a pathway by which flagellar assembly is regulated by flagellar length.

  15. A network meta-analysis of the relative efficacy of treatments for actinic keratosis of the face or scalp in Europe.

    Directory of Open Access Journals (Sweden)

    Stefan Vegter

    Full Text Available BACKGROUND: Several treatments are available for actinic keratosis (AK on the face and scalp. Most treatment modalities were compared to placebo and therefore little is known on their relative efficacy. OBJECTIVES: To compare the different treatments for mild to moderate AK on the face and scalp available in clinical practice in Europe. METHODS: A network meta-analysis (NMA was performed on the outcome "complete patient clearance". Ten treatment modalities were included: two 5-aminolaevulinic acid photodynamic therapies (ALA-PDT, applied as gel (BF-200 ALA or patch; methyl-aminolevulinate photodynamic therapy (MAL-PDT; three modalities with imiquimod (IMI, applied as a 4-week or 16-week course with 5% imiquimod, or a 2-3 week course with 3.75% imiquimod; cryotherapy; diclofenac 3% in 2.5% hyaluronic acid; 0.5% 5-fluorouracil (5-FU; and ingenol mebutate (IMB. The only data available for 5% 5-FU was from one small study and was determined to be too limited to be reliably included in the analysis. For BF-200 ALA and MAL-PDT, data from illumination with narrow-band lights were selected as these are typically used in clinical practice. The NMA was performed with a random-effects Bayesian model. RESULTS: 25 trials on 5,562 patients were included in the NMA. All active treatments were significantly better than placebo. BF-200 ALA showed the highest efficacy compared to placebo to achieve total patient clearance. BF-200 ALA had the highest probability to be the best treatment and the highest SUCRA score (64.8% and 92.1%, followed by IMI 5% 4 weeks (10.1% and 74.2% and 5-FU 0.5% (7.2% and 66.8%. CONCLUSIONS: This NMA showed that BF-200 ALA, using narrow-band lights, was the most efficacious treatment for mild to moderate AK on the face and scalp. This analysis is relevant for clinical decision making and health technology assessment, assisting the improved management of AK.

  16. Actinic lichen nitidus

    Directory of Open Access Journals (Sweden)

    Loretta Davis

    2010-01-01

    Full Text Available We present the case of a 29-year-old black female with an initial clinical and histopathologic diagnosis of actinic lichen nitidus. Three years later, she presented with scattered hyperpigmented macules with oval pink/viol­aceous plaques bilaterally on her forearms and on her neck, clinically consistent with actinic lichen planus. She was treated with topical steroids at each visit, with subsequent resolution of her lesions. In this report, we discuss the spectrum of actinic lichenoid dermatoses and of disease that presents even in the same patient.

  17. Weighted Scaling in Non-growth Random Networks

    Institute of Scientific and Technical Information of China (English)

    陈光; 杨旭华; 徐新黎

    2012-01-01

    We propose a weighted model to explain the self-organizing formation of scale-free phenomenon in nongrowth random networks. In this model, we use multiple-edges to represent the connections between vertices and define the weight of a multiple-edge as the total weights of all single-edges within it and the strength of a vertex as the sum of weights for those multiple-edges attached to it. The network evolves according to a vertex strength preferential selection mechanism. During the evolution process, the network always holds its totM number of vertices and its total number of single-edges constantly. We show analytically and numerically that a network will form steady scale-free distributions with our model. The results show that a weighted non-growth random network can evolve into scMe-free state. It is interesting that the network also obtains the character of an exponential edge weight distribution. Namely, coexistence of scale-free distribution and exponential distribution emerges.

  18. Growth-arrest-specific 7C protein inhibits tumor metastasis via the N-WASP/FAK/F-actin and hnRNP U/β-TrCP/β-catenin pathways in lung cancer

    OpenAIRE

    Tseng, Ruo-Chia; Chang, Jer-Wei; Mao, Jiou-Shan; Tsai, Charng-Dar; Wu, Pei-Chen; Lin, Cuei-Jyuan; Lu, Yi-Lin; Liao, Sheng-You; Cheng, Hung-Chi; Hsu, Han-Shui; Wang, Yi-Ching

    2015-01-01

    Growth-arrest-specific 7 (GAS7) belongs to a group of adaptor proteins that coordinate the actin cytoskeleton. Among human GAS7 isoforms, only GAS7C possesses a Src homology 3 domain. We report here that GAS7C acts as a migration suppressor and can serve as a prognostic biomarker in lung cancer. GAS7C overexpression reduces lung cancer migration, whereas GAS7C knockdown enhances cancer cell migration. Importantly, ectopically overexpressed GAS7C binds tightly with N-WASP thus inactivates the ...

  19. Adhesive F-actin waves: a novel integrin-mediated adhesion complex coupled to ventral actin polymerization.

    Directory of Open Access Journals (Sweden)

    Lindsay B Case

    Full Text Available At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in "ventral F-actin waves" that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the extracellular matrix downstream of ventral F-actin waves in several mammalian cell lines as well as in primary mouse embryonic fibroblasts. These "adhesive F-actin waves" require a cycle of integrin engagement and disengagement to the extracellular matrix for their formation and propagation, and exhibit morphometry and a hierarchical assembly and disassembly mechanism distinct from other integrin-containing structures. After Arp2/3-mediated actin polymerization, zyxin and VASP are co-recruited to adhesive F-actin waves, followed by paxillin and vinculin, and finally talin and integrin. Adhesive F-actin waves thus represent a previously uncharacterized integrin-based adhesion complex associated with Arp2/3-mediated actin polymerization.

  20. Concentration profiles of actin-binding molecules in lamellipodia

    Science.gov (United States)

    Falcke, Martin

    2016-04-01

    Motile cells form lamellipodia in the direction of motion, which are flat membrane protrusions containing an actin filament network. The network flows rearward relative to the leading edge of the lamellipodium due to actin polymerization at the front. Thus, actin binding molecules are subject to transport towards the rear of the cell in the bound state and diffuse freely in the unbound state. We analyze this reaction-diffusion-advection process with respect to the concentration profiles of these species and provide an analytic approximation for them. Network flow may cause a depletion zone of actin binding molecules close to the leading edge. The existence of such zone depends on the free molecule concentration in the cell body, on the ratio of the diffusion length to the distance bound molecules travel rearward with the flow before dissociating, and the ratio of the diffusion length to the width of the region with network flow and actin binding. Our calculations suggest the existence of depletion zones for the F-actin cross-linkers filamin and α-actinin in fish keratocytes (and other cell types), which is in line with the small elastic moduli of the F-actin network close to the leading edge found in measurements of the force motile cells are able to exert.

  1. The neuronal and actin commitment: Why do neurons need rings?

    Science.gov (United States)

    Leite, Sérgio Carvalho; Sousa, Mónica Mendes

    2016-09-01

    The role of the actin cytoskeleton in neurons has been extensively studied in actin-enriched compartments such as the growth cone and dendritic spines. The recent discovery of actin rings in the axon shaft and in dendrites, together with the identification of axon actin trails, has advanced our understanding on actin organization and dynamics in neurons. However, specifically in the case of actin rings, the mechanisms regulating their nucleation and assembly, and the functions that they may exert in axons and dendrites remain largely unexplored. Here we discuss the possible structural, mechanistic and functional properties of the subcortical neuronal cytoskeleton putting the current knowledge in perspective with the information available on actin rings formed in other biological contexts, and with the organization of actin-spectrin lattices in other cell types. The detailed analysis of these novel neuronal actin ring structures, together with the elucidation of the function of actin-binding proteins in neuron biology, has a large potential to uncover new mechanisms of neuronal function under normal conditions that may have impact in our understanding of axon degeneration and regeneration. © 2016 Wiley Periodicals, Inc.

  2. Fractional Dynamics of Network Growth Constrained by Aging Node Interactions

    Science.gov (United States)

    Safdari, Hadiseh; Zare Kamali, Milad; Shirazi, Amirhossein; Khalighi, Moein; Jafari, Gholamreza; Ausloos, Marcel

    2016-01-01

    In many social complex systems, in which agents are linked by non-linear interactions, the history of events strongly influences the whole network dynamics. However, a class of “commonly accepted beliefs” seems rarely studied. In this paper, we examine how the growth process of a (social) network is influenced by past circumstances. In order to tackle this cause, we simply modify the well known preferential attachment mechanism by imposing a time dependent kernel function in the network evolution equation. This approach leads to a fractional order Barabási-Albert (BA) differential equation, generalizing the BA model. Our results show that, with passing time, an aging process is observed for the network dynamics. The aging process leads to a decay for the node degree values, thereby creating an opposing process to the preferential attachment mechanism. On one hand, based on the preferential attachment mechanism, nodes with a high degree are more likely to absorb links; but, on the other hand, a node’s age has a reduced chance for new connections. This competitive scenario allows an increased chance for younger members to become a hub. Simulations of such a network growth with aging constraint confirm the results found from solving the fractional BA equation. We also report, as an exemplary application, an investigation of the collaboration network between Hollywood movie actors. It is undubiously shown that a decay in the dynamics of their collaboration rate is found, even including a sex difference. Such findings suggest a widely universal application of the so generalized BA model. PMID:27171424

  3. Fractional Dynamics of Network Growth Constrained by Aging Node Interactions.

    Directory of Open Access Journals (Sweden)

    Hadiseh Safdari

    Full Text Available In many social complex systems, in which agents are linked by non-linear interactions, the history of events strongly influences the whole network dynamics. However, a class of "commonly accepted beliefs" seems rarely studied. In this paper, we examine how the growth process of a (social network is influenced by past circumstances. In order to tackle this cause, we simply modify the well known preferential attachment mechanism by imposing a time dependent kernel function in the network evolution equation. This approach leads to a fractional order Barabási-Albert (BA differential equation, generalizing the BA model. Our results show that, with passing time, an aging process is observed for the network dynamics. The aging process leads to a decay for the node degree values, thereby creating an opposing process to the preferential attachment mechanism. On one hand, based on the preferential attachment mechanism, nodes with a high degree are more likely to absorb links; but, on the other hand, a node's age has a reduced chance for new connections. This competitive scenario allows an increased chance for younger members to become a hub. Simulations of such a network growth with aging constraint confirm the results found from solving the fractional BA equation. We also report, as an exemplary application, an investigation of the collaboration network between Hollywood movie actors. It is undubiously shown that a decay in the dynamics of their collaboration rate is found, even including a sex difference. Such findings suggest a widely universal application of the so generalized BA model.

  4. Actin-filament disassembly: it takes two to shrink them fast.

    Science.gov (United States)

    Winterhoff, Moritz; Faix, Jan

    2015-06-01

    Actin-filament disassembly is indispensable for replenishing the pool of polymerizable actin and allows continuous dynamic remodelling of the actin cytoskeleton. A new study now reveals that ADF/cofilin preferentially dismantles branched networks and provides new insights into the collaborative work of ADF/cofilin and Aip1 on filament disassembly at the molecular level.

  5. Horizontal and vertical growth of S. cerevisiae metabolic network

    Directory of Open Access Journals (Sweden)

    Tramontano Anna

    2011-10-01

    Full Text Available Abstract Background The growth and development of a biological organism is reflected by its metabolic network, the evolution of which relies on the essential gene duplication mechanism. There are two current views about the evolution of metabolic networks. The retrograde model hypothesizes that a pathway evolves by recruiting novel enzymes in a direction opposite to the metabolic flow. The patchwork model is instead based on the assumption that the evolution is based on the exploitation of broad-specificity enzymes capable of catalysing a variety of metabolic reactions. Results We analysed a well-studied unicellular eukaryotic organism, S. cerevisiae, and studied the effect of the removal of paralogous gene products on its metabolic network. Our results, obtained using different paralog and network definitions, show that, after an initial period when gene duplication was indeed instrumental in expanding the metabolic space, the latter reached an equilibrium and subsequent gene duplications were used as a source of more specialized enzymes rather than as a source of novel reactions. We also show that the switch between the two evolutionary strategies in S. cerevisiae can be dated to about 350 million years ago. Conclusions Our data, obtained through a novel analysis methodology, strongly supports the hypothesis that the patchwork model better explains the more recent evolution of the S. cerevisiae metabolic network. Interestingly, the effects of a patchwork strategy acting before the Euascomycete-Hemiascomycete divergence are still detectable today.

  6. Horizontal and vertical growth of S. cerevisiae metabolic network.

    KAUST Repository

    Grassi, Luigi

    2011-10-14

    BACKGROUND: The growth and development of a biological organism is reflected by its metabolic network, the evolution of which relies on the essential gene duplication mechanism. There are two current views about the evolution of metabolic networks. The retrograde model hypothesizes that a pathway evolves by recruiting novel enzymes in a direction opposite to the metabolic flow. The patchwork model is instead based on the assumption that the evolution is based on the exploitation of broad-specificity enzymes capable of catalysing a variety of metabolic reactions. RESULTS: We analysed a well-studied unicellular eukaryotic organism, S. cerevisiae, and studied the effect of the removal of paralogous gene products on its metabolic network. Our results, obtained using different paralog and network definitions, show that, after an initial period when gene duplication was indeed instrumental in expanding the metabolic space, the latter reached an equilibrium and subsequent gene duplications were used as a source of more specialized enzymes rather than as a source of novel reactions. We also show that the switch between the two evolutionary strategies in S. cerevisiae can be dated to about 350 million years ago. CONCLUSIONS: Our data, obtained through a novel analysis methodology, strongly supports the hypothesis that the patchwork model better explains the more recent evolution of the S. cerevisiae metabolic network. Interestingly, the effects of a patchwork strategy acting before the Euascomycete-Hemiascomycete divergence are still detectable today.

  7. Actin-binding proteins implicated in the formation of the punctate actin foci stimulated by the self-incompatibility response in Papaver.

    Science.gov (United States)

    Poulter, Natalie S; Staiger, Christopher J; Rappoport, Joshua Z; Franklin-Tong, Vernonica E

    2010-03-01

    The actin cytoskeleton is a key target for signaling networks and plays a central role in translating signals into cellular responses in eukaryotic cells. Self-incompatibility (SI) is an important mechanism responsible for preventing self-fertilization. The SI system of Papaver rhoeas pollen involves a Ca(2+)-dependent signaling network, including massive actin depolymerization as one of the earliest cellular responses, followed by the formation of large actin foci. However, no analysis of these structures, which appear to be aggregates of filamentous (F-)actin based on phalloidin staining, has been carried out to date. Here, we characterize and quantify the formation of F-actin foci in incompatible Papaver pollen tubes over time. The F-actin foci increase in size over time, and we provide evidence that their formation requires actin polymerization. Once formed, these SI-induced structures are unusually stable, being resistant to treatments with latrunculin B. Furthermore, their formation is associated with changes in the intracellular localization of two actin-binding proteins, cyclase-associated protein and actin-depolymerizing factor. Two other regulators of actin dynamics, profilin and fimbrin, do not associate with the F-actin foci. This study provides, to our knowledge, the first insights into the actin-binding proteins and mechanisms involved in the formation of these intriguing structures, which appear to be actively formed during the SI response.

  8. Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane - a minimally invasive investigation by STED-FCS

    Science.gov (United States)

    Andrade, Débora M.; Clausen, Mathias P.; Keller, Jan; Mueller, Veronika; Wu, Congying; Bear, James E.; Hell, Stefan W.; Lagerholm, B. Christoffer; Eggeling, Christian

    2015-06-01

    Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes.

  9. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks

    Science.gov (United States)

    Huang, S.; Ingber, D. E.

    2000-01-01

    Development of characteristic tissue patterns requires that individual cells be switched locally between different phenotypes or "fates;" while one cell may proliferate, its neighbors may differentiate or die. Recent studies have revealed that local switching between these different gene programs is controlled through interplay between soluble growth factors, insoluble extracellular matrix molecules, and mechanical forces which produce cell shape distortion. Although the precise molecular basis remains unknown, shape-dependent control of cell growth and function appears to be mediated by tension-dependent changes in the actin cytoskeleton. However, the question remains: how can a generalized physical stimulus, such as cell distortion, activate the same set of genes and signaling proteins that are triggered by molecules which bind to specific cell surface receptors. In this article, we use computer simulations based on dynamic Boolean networks to show that the different cell fates that a particular cell can exhibit may represent a preprogrammed set of common end programs or "attractors" which self-organize within the cell's regulatory networks. In this type of dynamic network model of information processing, generalized stimuli (e.g., mechanical forces) and specific molecular cues elicit signals which follow different trajectories, but eventually converge onto one of a small set of common end programs (growth, quiescence, differentiation, apoptosis, etc.). In other words, if cells use this type of information processing system, then control of cell function would involve selection of preexisting (latent) behavioral modes of the cell, rather than instruction by specific binding molecules. Importantly, the results of the computer simulation closely mimic experimental data obtained with living endothelial cells. The major implication of this finding is that current methods used for analysis of cell function that rely on characterization of linear signaling pathways or

  10. Growth Strategies of Mobile Virtual Network Operators in Oman

    Directory of Open Access Journals (Sweden)

    Dr N.P. Singh

    2010-12-01

    Full Text Available The Oman telecom market consists of five Mobile Virtual Network Operators (MVNOs and two Mobile Network Operators (MNOs. MVNOs have also sealed their deals with MNOs, technology providers, advertising and marketing agencies, SIM and re-charge coupon distribution channels. All the five MVNOs in Oman have already launched their operations and are providing services. The article is an attempt to understand many facets of MVNO business in Oman. The article discusses the present status of operations of MVNOs, their growth in Oman and w orld, their tariff plans, SIM card distribution channels and marketing strategies to survive in a highly competitive Omani telecom market. A set of propositions are also identified related to success of MVNOs which are proved either true or false using secondary data collected from various sources. The article concluded in the form of synthesis of data and possible new future strategies for MVNOs in Oman.

  11. Arabidopsis AtADF1 is Functionally Affected by Mutations on Actin Binding Sites

    Institute of Scientific and Technical Information of China (English)

    Chun-Hai Dong; Wei-Ping Tang; Jia-Yao Liu

    2013-01-01

    The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin,and is directly involved in the depolymerization of actin filaments.To better understand the actin binding sites of the Arabidopsis thaliana L.AtADF1,we generated mutants of AtADF1 and investigated their functions in vitro and in vivo.Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α-helix 3 and forming an actin binding site together with the N-terminus are essential for both G-and F-actin binding.The basic residues on the β-strand 5 (K82/A) and the α-helix 4 (R135/A,R137/A) form another actin binding site that is important for F-actin binding.Using transient expression of CFP-tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L.plants overexpressing these mutants,we analyzed how these mutant proteins regulate actin organization and affect seedling growth.Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional,unless the affinity foractin monomers is also affected.The G-actin binding activity of the ADF plays an essential role in actin binding,depolymerization of actin polymers,and therefore in the control of actin organization.

  12. A synthetic mechano-growth factor E peptide promotes rat tenocyte migration by lessening cell stiffness and increasing F-actin formation via the FAK-ERK1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bingyu [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Luo, Qing, E-mail: qing.luo@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Mao, Xinjian [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Xu, Baiyao [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Yang, Li [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Ju, Yang [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Song, Guanbin, E-mail: song@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2014-03-10

    Tendon injuries are common in sports and are frequent reasons for orthopedic consultations. The management of damaged tendons is one of the most challenging problems in orthopedics. Mechano-growth factor (MGF), a recently discovered growth repair factor, plays positive roles in tissue repair through the improvement of cell proliferation and migration and the protection of cells against injury-induced apoptosis. However, it remains unclear whether MGF has the potential to accelerate tendon repair. We used a scratch wound assay in this study to demonstrate that MGF-C25E (a synthetic mechano-growth factor E peptide) promotes the migration of rat tenocytes and that this promotion is accompanied by an elevation in the expression of the following signaling molecules: focal adhesion kinase (FAK) and extracellular signal regulated kinase1/2 (ERK1/2). Inhibitors of the FAK and ERK1/2 pathways inhibited the MGF-C25E-induced tenocyte migration, indicating that MGF-C25E promotes tenocyte migration through the FAK-ERK1/2 signaling pathway. The analysis of the mechanical properties showed that the Young's modulus of tenocytes was decreased through treatment of MGF-C25E, and an obvious formation of pseudopodia and F-actin was observed in MGF-C25E-treated tenocytes. The inhibition of the FAK or ERK1/2 signals restored the decrease in Young's modulus and inhibited the formation of pseudopodia and F-actin. Overall, our study demonstrated that MGF-C25E promotes rat tenocyte migration by lessening cell stiffness and increasing pseudopodia formation via the FAK-ERK1/2 signaling pathway. - Highlights: • Mechano-growth factor E peptide (MGF-C25E) promotes migration of rat tenocytes. • MGF-C25E activates the FAK-ERK1/2 pathway in rat tenocytes. • MGF-C25E induces the actin remodeling and the formation of pseudopodia, and decreases the stiffness in rat tenocytes. • MGF-C25E promotes tenocyte migration via altering stiffness and forming pseudopodia by the activation of the

  13. Arabidopsis CAP regulates the actin cytoskeleton necessary for plant cell elongation and division.

    Science.gov (United States)

    Barrero, Roberto A; Umeda, Masaaki; Yamamura, Saburo; Uchimiya, Hirofumi

    2002-01-01

    An Arabidopsis cDNA (AtCAP1) that encodes a predicted protein of 476 amino acids highly homologous with the yeast cyclase-associated protein (CAP) was isolated. Expression of AtCAP1 in the budding yeast CAP mutant was able to rescue defects such as abnormal cell morphology and random budding pattern. The C-terminal domain, 158 amino acids of AtCAP1 possessing in vitro actin binding activity, was needed for the regulation of cytoskeleton-related defects of yeast. Transgenic plants overexpressing AtCAP1 under the regulation of a glucocorticoid-inducible promoter showed different levels of AtCAP1 accumulation related to the extent of growth abnormalities, in particular size reduction of leaves as well as petioles. Morphological alterations in leaves were attributable to decreased cell size and cell number in both epidermal and mesophyll cells. Tobacco suspension-cultured cells (Bright Yellow 2) overexpressing AtCAP1 exhibited defects in actin filaments and were unable to undergo mitosis. Furthermore, an immunoprecipitation experiment suggested that AtCAP1 interacted with actin in vivo. Therefore, AtCAP1 may play a functional role in actin cytoskeleton networking that is essential for proper cell elongation and division.

  14. Viscoelastic properties of actin-coated membranes

    Science.gov (United States)

    Helfer, E.; Harlepp, S.; Bourdieu, L.; Robert, J.; Mackintosh, F. C.; Chatenay, D.

    2001-02-01

    In living cells, cytoskeletal filaments interact with the plasma membrane to form structures that play a key role in cell shape and mechanical properties. To study the interaction between these basic components, we designed an in vitro self-assembled network of actin filaments attached to the outer surface of giant unilamellar vesicles. Optical tweezers and single-particle tracking experiments are used to study the rich dynamics of these actin-coated membranes (ACM). We show that microrheology studies can be carried out on such an individual microscopic object. The principle of the experiment consists in measuring the thermally excited position fluctuations of a probe bead attached biochemically to the membrane. We propose a model that relates the power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of the actin network modifies strongly the membrane dynamics with respect to a fluid, lipid bilayer one. It induces first a finite (ω=0) two-dimensional (2D) shear modulus G02D~0.5 to 5 μN/m in the membrane plane. Moreover, the frequency dependence at high frequency of the shear modulus [G'2D(f )~f0.85+/-0.07] and of the bending modulus (κACM(f)~f0.55+/-0.21) demonstrate the viscoelastic behavior of the composite membrane. These results are consistent with a common exponent of 0.75 for both moduli as expected from our model and from prior measurements on actin solutions.

  15. Integrated healthcare networks' performance: a growth curve modeling approach.

    Science.gov (United States)

    Wan, Thomas T H; Wang, Bill B L

    2003-05-01

    This study examines the effects of integration on the performance ratings of the top 100 integrated healthcare networks (IHNs) in the United States. A strategic-contingency theory is used to identify the relationship of IHNs' performance to their structural and operational characteristics and integration strategies. To create a database for the panel study, the top 100 IHNs selected by the SMG Marketing Group in 1998 were followed up in 1999 and 2000. The data were merged with the Dorenfest data on information system integration. A growth curve model was developed and validated by the Mplus statistical program. Factors influencing the top 100 IHNs' performance in 1998 and their subsequent rankings in the consecutive years were analyzed. IHNs' initial performance scores were positively influenced by network size, number of affiliated physicians and profit margin, and were negatively associated with average length of stay and technical efficiency. The continuing high performance, judged by maintaining higher performance scores, tended to be enhanced by the use of more managerial or executive decision-support systems. Future studies should include time-varying operational indicators to serve as predictors of network performance.

  16. Viruses that ride on the coat-tails of actin nucleation.

    Science.gov (United States)

    Newsome, Timothy P; Marzook, N Bishara

    2015-10-01

    Actin nucleation drives a diversity of critical cellular processes and the motility of a select group of viral pathogens. Vaccinia virus and baculovirus, Autographa californica multiple nucleopolyhedrovirus, recruit and activate the cellular actin nucleator, the Arp2/3 complex, at the surface of virus particles thereby instigating highly localized actin nucleation. The extension of these filaments provides a mechanical force that bestows the ability to navigate the intracellular environment and promote their infectious cycles. This review outlines the viral and cellular proteins that initiate and regulate the signalling networks leading to viral modification of the actin cytoskeleton and summarizes recent insights into the role of actin-based virus transport.

  17. Dissecting regulatory networks of filopodia formation in a Drosophila growth cone model.

    Directory of Open Access Journals (Sweden)

    Catarina Gonçalves-Pimentel

    Full Text Available F-actin networks are important structural determinants of cell shape and morphogenesis. They are regulated through a number of actin-binding proteins. The function of many of these proteins is well understood, but very little is known about how they cooperate and integrate their activities in cellular contexts. Here, we have focussed on the cellular roles of actin regulators in controlling filopodial dynamics. Filopodia are needle-shaped, actin-driven cell protrusions with characteristic features that are well conserved amongst vertebrates and invertebrates. However, existing models of filopodia formation are still incomplete and controversial, pieced together from a wide range of different organisms and cell types. Therefore, we used embryonic Drosophila primary neurons as one consistent cellular model to study filopodia regulation. Our data for loss-of-function of capping proteins, enabled, different Arp2/3 complex components, the formin DAAM and profilin reveal characteristic changes in filopodia number and length, providing a promising starting point to study their functional relationships in the cellular context. Furthermore, the results are consistent with effects reported for the respective vertebrate homologues, demonstrating the conserved nature of our Drosophila model system. Using combinatorial genetics, we demonstrate that different classes of nucleators cooperate in filopodia formation. In the absence of Arp2/3 or DAAM filopodia numbers are reduced, in their combined absence filopodia are eliminated, and in genetic assays they display strong functional interactions with regard to filopodia formation. The two nucleators also genetically interact with enabled, but not with profilin. In contrast, enabled shows strong genetic interaction with profilin, although loss of profilin alone does not affect filopodia numbers. Our genetic data support a model in which Arp2/3 and DAAM cooperate in a common mechanism of filopodia formation that

  18. A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin

    Science.gov (United States)

    Liu, Yao; Zhu, Wenhan; Tan, Yunhao; Nakayasu, Ernesto S.; Staiger, Christopher J.

    2017-01-01

    Legionella pneumophila, the etiological agent of Legionnaires’ disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H95EXXH99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cell rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Thus, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen. PMID:28129393

  19. Actinic cheilitis: A review

    Directory of Open Access Journals (Sweden)

    Elangovan Somasundaram

    2015-01-01

    Full Text Available Actinic cheilitis (AC is a chronic inflammatory disorder of the lips that is caused by prolonged exposure to sunlight in susceptible individuals. It affects the vermilion region of the lower lip almost exclusively. UV-B rays with a wavelength of 290-320 nm are held responsible for the sunlight-induced damage. The exact mechanism of the development of AC is unclear. It is considered to be potentially malignant.

  20. Tetraspanin CD82 inhibits protrusion and retraction in cell movement by attenuating the plasma membrane-dependent actin organization.

    Directory of Open Access Journals (Sweden)

    Wei M Liu

    Full Text Available To determine how tetraspanin KAI1/CD82, a tumor metastasis suppressor, inhibits cell migration, we assessed which cellular events critical for motility are altered by KAI1/CD82 and how KAI1/CD82 regulates these events. We found that KAI1/CD82-expressing cells typically exhibited elongated cellular tails and diminished lamellipodia. Live imaging demonstrated that the polarized protrusion and retraction of the plasma membrane became deficient upon KAI1/CD82 expression. The deficiency in developing these motility-related cellular events was caused by poor formations of actin cortical network and stress fiber and by aberrant dynamics in actin organization. Rac1 activity was reduced by KAI1/CD82, consistent with the diminution of lamellipodia and actin cortical network; while the growth factor-stimulated RhoA activity was blocked by KAI1/CD82, consistent with the loss of stress fiber and attenuation in cellular retraction. Upon KAI1/CD82 expression, Rac effector cofilin was not enriched at the cell periphery to facilitate lamellipodia formation while Rho kinase exhibited a significantly lower activity leading to less retraction. Phosphatidylinositol 4, 5-biphosphate, which initiates actin polymerization from the plasma membrane, became less detectable at the cell periphery in KAI1/CD82-expressing cells. Moreover, KAI1/CD82-induced phenotypes likely resulted from the suppression of multiple signaling pathways such as integrin and growth factor signaling. In summary, at the cellular level KAI1/CD82 inhibited polarized protrusion and retraction events by disrupting actin reorganization; at the molecular level, KAI1/CD82 deregulated Rac1, RhoA, and their effectors cofilin and Rho kinase by perturbing the plasma membrane lipids.

  1. Dynamic organization of actin cytoskeleton during the polarity formation and germination of pollen protoplasts

    Institute of Scientific and Technical Information of China (English)

    XU Xia; Zl Huijun; SUN Yina; REN Haiyun

    2004-01-01

    The formation of the polarity of pollen protoplast and the dynamics of actin cytoskeleton were observed by non-fixation, Alexa-Phalloidin probing and confocal laser scanning microscopy. Our results showed that the protoplast obtained from stored pollen contained numerous crystalline fusiform bodies to constitute a storage form of actin. When dormant pollen was hydrated, the actin cytoskeleton forms a fine network spreading uniformly in the protoplast. In the process of polarity formation and germination of pollen protoplast, actin filaments marshaled slowly to the brim, and then formed multilayer continuous actin filament bundles surrounding the cortical of the protoplast. When the protoplast was exposed to actin filament-disrupting drugs, such as Latrunculin A and Cytochalasin D, continuously arranged actin bundles were disturbed and in this condition, the protoplast could not germinate. But when exposed to actin filament stabiling drug-phalliodin, the dynamics of actin filaments in the protoplasts behaved normally and the protoplasts could germinate normally. These results were also confirmed by the pharmacology experiments on pollen grains. And when Latrunculin A or Cytochalasin D was washed off, the ratio of pollen germination was resumed partly. All the results above show that the dynamic organization of the actin cytoskeleton are critical in the cell polarity formation and germination of pollen protoplast, and that the reorganization of actin cytoskeleton is mainly due to the rearrangement of actin filament arrays.

  2. Nuclear actin and protein 4.1: Essential interactions during nuclear assembly in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Sharon Wald; Chen, Cynthia; Penman, Sheldon; Heald, Rebecca

    2003-06-11

    Structural protein 4.1, which has crucial interactions within the spectin-actin lattice of the human red cell membrane skeleton, also is widely distributed at diverse intracellular sites in nucleated cells. We previously showed that 4.1 is essential for assembly of functional nuclei in vitro and that the capacity of 4.1 to bind actin is required. Here we report that 4.1 and actin colocalize in mammalian cell nuclei using fluorescence microscopy and, by higher resolution cell whole mount electron microscopy, are associated on nuclear filaments. We also devised a cell-free assay using Xenopus egg extract containing fluorescent actin to follow actin during nuclear assembly. By directly imaging actin under non-perturbing conditions, the total nuclear actin population is retained and is visualized in situ relative to intact chromatin. We detected actin initially when chromatin and nuclear pores began assembling. As the nuclear lamina assembled, but preceding DNA synthesis, a discrete actin network formed throughout the nucleus. Protein 4.1 epitopes also were detected when actin began to accumulate in nuclei, producing a diffuse coincident pattern. As nuclei matured, actin was detected both coincident with and also independent of 4.1 epitopes. To test whether acquisition of nuclear actin is required for nuclear assembly, the actin inhibitor latrunculin A was added to Xenopus egg extracts during nuclear assembly. Latrunculin A strongly perturbed nuclear assembly and produced distorted nuclear structures containing neither actin nor protein 4.1. Our results suggest that actin as well as 4.1 is necessary for nuclear assembly and that 4.1-actin interactions may be critical.

  3. Pore-network modeling of solute transport and biofilm growth in porous media

    NARCIS (Netherlands)

    Qin, Chao Zhong; Hassanizadeh, S. Majid

    2015-01-01

    In this work, a pore-network (PN) model for solute transport and biofilm growth in porous media was developed. Compared to previous studies of biofilm growth, it has two new features. First, the constructed pore network gives a better representation of a porous medium. Second, instead of using a con

  4. Role of actin in auxin transport and transduction of gravity

    Science.gov (United States)

    Hu, S.; Basu, S.; Brady, S.; Muday, G.

    Transport of the plant hormone auxin is polar and the direction of the hormone movement appears to be controlled by asymmetric distribution of auxin transport protein complexes. Changes in the direction of auxin transport are believed to drive asymmetric growth in response to changes in the gravity vector. To test the possibility that asymmetric distribution of the auxin transport protein complex is mediated by attachment to the actin cytoskeleton, a variety of experimental approaches have been used. The most direct demonstration of the role of the actin cytoskeleton in localization of the protein complex is the ability of one protein in this complex to bind to affinity columns containing actin filaments. Additionally, treatments of plant tissues with drugs that fragment the actin c toskeleton reducey polar transport. In order to explore this actin interaction and the affect of gravity on auxin transport and developmental polarity, embryos of the brown alga, Fucus have been examined. Fucus zygotes are initially symmetrical, but develop asymmetry in response to environmental gradients, with light gradients being the best- characterized signal. Gravity will polarize these embryos and gravity-induced polarity is randomized by clinorotation. Auxin transport also appears necessary for environmental controls of polarity, since auxin efflux inhibitors perturb both photo- and gravity-polarization at a very discrete temporal window within six hours after fertilization. The actin cytoskeleton has previously been shown to reorganize after fertilization of Fucus embryos leading to formation of an actin patch at the site of polar outgrowth. These actin patches still form in Fucus embryos treated with auxin efflux inhibitors, yet the position of these patches is randomized. Together, these results suggest that there are connections between the actin cytoskeleton, auxin transport, and gravity oriented growth and development. (Supported by NASA Grant: NAG2-1203)

  5. A Gly65Val substitution in an actin, GhACT_LI1, disrupts cell polarity and membrane anchoring of F-actin resulting in dwarf, lintless Li1 cotton plants

    Science.gov (United States)

    Actin polymerizes to form the cytoskeleton and organize polar growth in all eukaryotic cells. Species with numerous actin genes are especially useful for the dissection of actin molecular function due to redundancy and neofunctionalization. Here, we investigated the role of a cotton (Gossypium hi...

  6. Roles of Cortactin, an Actin Polymerization Mediator, in Cell Endocytosis

    Institute of Scientific and Technical Information of China (English)

    Li CHEN; Zhi-Wei WANG; Jian-wei ZHU; Xi ZHAN

    2006-01-01

    Cortactin, an actin-binding protein and a substrate of Src, is encoded by the EMS 1 oncogene.Cortactin is known to activate Arp2/3 complex-mediated actin polymerization and interact with dynamin, a large GTPase and proline rich domain-containing protein. Transferrin endocytosis was significantly reduced in cells by knock-down of cortactin expression as well as in vivo introduction of cortactin immunoreagents.Cortactin-dynamin interaction displayed morphologically dynamic co-distribution with a change in the endocytosis level in cells treated with an actin depolymerization reagent, cytochalasin D. In an in vitro beads assay, a branched actin network was recruited onto dynamin-coated beads in a cortactin Src homology domain 3 (SH3)-dependent manner. In addition, cortactin was found to function in the late stage of clathrin coated vesicle formation.Taken together, cortactin is required for optimal clathrin mediated endocytosis in a dynamin directed manner.

  7. Emergence of the small-world architecture in neural networks by activity dependent growth

    Science.gov (United States)

    Gafarov, F. M.

    2016-11-01

    In this paper, we propose a model describing the growth and development of neural networks based on the latest achievements of experimental neuroscience. The model is based on two evolutionary equations. The first equation is for the evolution of the neurons state and the second is for the growth of axon tips. By using the model, we demonstrated the neuronal growth process from disconnected neurons to fully connected three-dimensional networks. For the analysis of the network's connections structure, we used the random graphs theory methods. It is shown that the growth in neural networks results in the formation of a well-known "small-world" network model. The analysis of the connectivity distribution shows the presence of a strictly non-Gaussian but no scale-free degree distribution for the in-degree node distribution. In terms of the graphs theory, this study developed a new model of dynamic graph.

  8. Droplet formation and growth inside a polymer network: A molecular dynamics simulation study

    Science.gov (United States)

    Jung, Jiyun; Jang, Eunseon; Shoaib, Mahbubul Alam; Jo, Kyubong; Kim, Jun Soo

    2016-04-01

    We present a molecular dynamics simulation study that focuses on the formation and growth of nanoscale droplets inside polymer networks. Droplet formation and growth are investigated by the liquid-vapor phase separation of a dilute Lennard-Jones (LJ) fluid inside regularly crosslinked, polymer networks with varying mesh sizes. In a polymer network with small mesh sizes, droplet formation can be suppressed, the extent of which is dependent on the attraction strength between the LJ particles. When droplets form in a polymer network with intermediate mesh sizes, subsequent growth is significantly slower when compared with that in bulk without a polymer network. Interestingly, droplet growth beyond the initial nucleation stage occurs by different mechanisms depending on the mesh size: droplets grow mainly by diffusion and coalescence inside polymer networks with large mesh sizes (as observed in bulk), whereas Ostwald ripening becomes a more dominant mechanism for droplet growth for small mesh sizes. The analysis of droplet trajectories clearly reveals the obstruction effect of the polymer network on the movement of growing droplets, which leads to Ostwald ripening of droplets. This study suggests how polymer networks can be used to control the growth of nanoscale droplets.

  9. Ring closure in actin polymers

    Science.gov (United States)

    Sinha, Supurna; Chattopadhyay, Sebanti

    2017-03-01

    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers.

  10. The actin Cytoskeleton in Root Hairs: a cell elongation device

    NARCIS (Netherlands)

    Ketelaar, T.; Emons, A.M.C.

    2009-01-01

    The actin cytoskeleton plays an important role in root hair development. It is involved in both the delivery of growth materials to the expanding tip of root hairs and the regulation of the area of tip growth. This review starts with a discussion of the techniques that are available to visualize the

  11. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins

    Science.gov (United States)

    Loisel, Thomas P.; Boujemaa, Rajaa; Pantaloni, Dominique; Carlier, Marie-France

    1999-10-01

    Actin polymerization is essential for cell locomotion and is thought to generate the force responsible for cellular protrusions. The Arp2/3 complex is required to stimulate actin assembly at the leading edge in response to signalling. The bacteria Listeria and Shigella bypass the signalling pathway and harness the Arp2/3 complex to induce actin assembly and to propel themselves in living cells. However, the Arp2/3 complex alone is insufficient to promote movement. Here we have used pure components of the actin cytoskeleton to reconstitute sustained movement in Listeria and Shigella in vitro. Actin-based propulsion is driven by the free energy released by ATP hydrolysis linked to actin polymerization, and does not require myosin. In addition to actin and activated Arp2/3 complex, actin depolymerizing factor (ADF, or cofilin) and capping protein are also required for motility as they maintain a high steady-state level of G-actin, which controls the rate of unidirectional growth of actin filaments at the surface of the bacterium. The movement is more effective when profilin, α-actinin and VASP (for Listeria) are also included. These results have implications for our understanding of the mechanism of actin-based motility in cells.

  12. Global Stability Analysis for Periodic Solution in Discontinuous Neural Networks with Nonlinear Growth Activations

    Directory of Open Access Journals (Sweden)

    Wu Huaiqin

    2009-01-01

    Full Text Available This paper considers a new class of additive neural networks where the neuron activations are modelled by discontinuous functions with nonlinear growth. By Leray-Schauder alternative theorem in differential inclusion theory, matrix theory, and generalized Lyapunov approach, a general result is derived which ensures the existence and global asymptotical stability of a unique periodic solution for such neural networks. The obtained results can be applied to neural networks with a broad range of activation functions assuming neither boundedness nor monotonicity, and also show that Forti's conjecture for discontinuous neural networks with nonlinear growth activations is true.

  13. Mechanical properties of branched actin filaments

    CERN Document Server

    Razbin, Mohammadhosein; Benetatos, Panayotis; Zippelius, Annette

    2015-01-01

    Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measur...

  14. Mediated attachment as a mechanism for growth of complex networks

    CERN Document Server

    Shekatkar, Snehal M

    2014-01-01

    Connection topologies of many networked systems like human brain, biological cell, world wide web, power grids, human society and ecological food webs markedly deviate from that of completely random networks indicating the presence of organizing principles behind their evolution. The five important features that characterize such networks are scale-free topology, small average path length, high clustering, hierarchical community structure and assortative mixing. Till now the generic mechanisms underlying the existence of these properties are not well understood. Here we show that potentially a single mechanism, which we call "mediated attachment", where two nodes get connected through a mediator or common neighbor, could be responsible for the emergence of all important properties of real networks. The mediated attachment naturally unifies scale-free topology, high clustering, small world nature, hierarchical community structure and dissortative nature of networks. Further, with additional mixing by age, this...

  15. Actin cytoskeleton: putting a CAP on actin polymerization.

    Science.gov (United States)

    Stevenson, V A; Theurkauf, W E

    2000-10-05

    Two recent studies have identified a Drosophila homolog of cyclase-associated protein (CAP) as a developmentally important negative regulator of actin polymerization that may also directly mediate signal transduction.

  16. Capu and Spire assemble a cytoplasmic actin mesh that maintains microtubule organization in the Drosophila oocyte.

    Science.gov (United States)

    Dahlgaard, Katja; Raposo, Alexandre A S F; Niccoli, Teresa; St Johnston, Daniel

    2007-10-01

    Mutants in the actin nucleators Cappuccino and Spire disrupt the polarized microtubule network in the Drosophila oocyte that defines the anterior-posterior axis, suggesting that microtubule organization depends on actin. Here, we show that Cappuccino and Spire organize an isotropic mesh of actin filaments in the oocyte cytoplasm. capu and spire mutants lack this mesh, whereas overexpressed truncated Cappuccino stabilizes the mesh in the presence of Latrunculin A and partially rescues spire mutants. Spire overexpression cannot rescue capu mutants, but prevents actin mesh disassembly at stage 10B and blocks late cytoplasmic streaming. We also show that the actin mesh regulates microtubules indirectly, by inhibiting kinesin-dependent cytoplasmic flows. Thus, the Capu pathway controls alternative states of the oocyte cytoplasm: when active, it assembles an actin mesh that suppresses kinesin motility to maintain a polarized microtubule cytoskeleton. When inactive, unrestrained kinesin movement generates flows that wash microtubules to the cortex.

  17. Fertilization in Torenia fournieri: actin organization and nuclear behavior in the central cell and primary endosperm

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Studies of the living embryo sacs of Torenia fournieri reveal that the actin cytoskeleton undergoes dramatic changes that correlate with nuclear migration within the central cell and the primary endosperm. Before pollination, actin filaments appear as short bundles randomly distributed in the cortex of the central cell. Two days after anthesis, they become organized into a distinct actin network. At this stage the secondary nucleus, which is located in the central region of the central cell, possesses an associated array of short actin filaments. Soon after pollination, the actin filaments become fragmented in the micropylar end and the secondary nucleus is located next to the egg apparatus. After fertilization, the primary endosperm nucleus moves away from the egg cell and actin filaments reorganize into a prominent network in the cytoplasm of the primary endosperm. Disruption of the actin cytoskeleton with latrunculin A and cytochalasin B indicates that actin is involved in the migration of the nucleus in the central cell. Our data also suggest that the dynamics of actin cytoskeleton may be responsible for the reorganization of the central cell and primary endosperm cytoplasm during fertilization.

  18. Modeling transcriptional networks regulating secondary growth and wood formation in forest trees.

    Science.gov (United States)

    Liu, Lijun; Filkov, Vladimir; Groover, Andrew

    2014-06-01

    The complex interactions among the genes that underlie a biological process can be modeled and presented as a transcriptional network, in which genes (nodes) and their interactions (edges) are shown in a graphical form similar to a wiring diagram. A large number of genes have been identified that are expressed during the radial woody growth of tree stems (secondary growth), but a comprehensive understanding of how these genes interact to influence woody growth is currently lacking. Modeling transcriptional networks has recently been made tractable by next-generation sequencing-based technologies that can comprehensively catalog gene expression and transcription factor-binding genome-wide, but has not yet been extensively applied to undomesticated tree species or woody growth. Here we discuss basic features of transcriptional networks, approaches for modeling biological networks, and examples of biological network models developed for forest trees to date. We discuss how transcriptional network research is being developed in the model forest tree genus, Populus, and how this research area can be further developed and applied. Transcriptional network models for forest tree secondary growth and wood formation could ultimately provide new predictive models to accelerate hypothesis-driven research and develop new breeding applications.

  19. Evolving Model for the Complex Traffic and Transportation Network Considering Self-Growth Situation

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2012-01-01

    Full Text Available It has been approved that the scale-free feature exists in various complex networks, such as the internet, the cell or the biological networks. In order to analyze the influence of the self-growth phenomenon during the growth on the structure of traffic and transportation network, we formulated an evolving model. Based on the evolving model, we prove in mathematics that, even that the self-growth situation happened, the traffic and transportation network owns the scale-free feature due to that the node degree follows a power-law distribution. A real traffic and transportation network, China domestic airline network is tested to consolidate our conclusions. We find that the airline network has a node degree distribution equivalent to the power-law of which the estimated scaling parameter is about 3.0. Moreover the standard error of the estimated scaling parameter changes according to the self-growth probability. Our findings could provide useful information for determining the optimal structure or status of the traffic and transportation network.

  20. A Stochastic Evolutionary Growth Model for Social Networks

    CERN Document Server

    Fenner, T; Loizou, G; Roussos, G; Fenner, Trevor; Levene, Mark; Loizou, George; Roussos, George

    2006-01-01

    We present a stochastic model for a social network, where new actors may join the network, existing actors may become inactive and, at a later stage, reactivate themselves. Our model captures the evolution of the network, assuming that actors attain new relations or become active according to the preferential attachment rule. We derive the mean-field equations for this stochastic model and show that, asymptotically, the distribution of actors obeys a power-law distribution. In particular, the model applies to social networks such as wireless local area networks, where users connect to access-points, and peer-to-peer networks where users connect to each other. As a proof of concept, we demonstrate the validity of our model empirically by analysing a public log containing traces from a wireless network at Dartmouth College over a period of three years. Analysing the data processed according to our model, we demonstrate that the distribution of user accesses is asymptotically a power-law distribution.

  1. A complex network approach for the growth of aerogels

    Science.gov (United States)

    Morales, R. V.; da Cunha, C. R.; Rambo, C. R.

    2014-07-01

    The formation of the gel structure of a finite set of inorganic particles interacting via long range potentials is studied via Monte Carlo simulations for different conditions of temperature and concentration. We found that there are certain specific conditions wherein gelation can occur. Moreover, the integrated network of connected particles is investigated. A divergence of an order parameter was observed and indicates the transition from random Erdös-Rényi to scale-free networks. The effects of a reaction limited process are also investigated and indicate that the dissociation of particles favors the formation of random networks.

  2. Macroscopic Models of Clique Tree Growth for Bayesian Networks

    Data.gov (United States)

    National Aeronautics and Space Administration — In clique tree clustering, inference consists of propagation in a clique tree compiled from a Bayesian network. In this paper, we develop an analytical approach to...

  3. Growth of Railway Network in China (1988-2002

    Directory of Open Access Journals (Sweden)

    Serguei Tarkhov

    2003-05-01

    Full Text Available 20. 000 km of new railways were built in China in1988-2002. The railway network has increased its topologicalcomplexity from 75 to 112 circuits and the new 3nt topologicallayer appeared in 1993 and the 4'h will emerge in 2004 after the opening of the rail ferry Dalian - Yan-tai. The main features ofthe recent Chinese rail network are: 1 the predominance ofmeridional-ity, 2 the spatial disproportion between the easterncoastal area (with dense network and the empty western part,3 the low level of electrification (20% and the low share ofdouble-track sections (30%, 4 the land-lock orientation ofthe whole network and a small number of lines along the seacoasts. These disproportions are the main obstacles for a harmonicspatial devel-opment of the economic structure.

  4. [Photodynamic therapy for actinic cheilitis].

    Science.gov (United States)

    Castaño, E; Comunión, A; Arias, D; Miñano, R; Romero, A; Borbujo, J

    2009-12-01

    Actinic cheilitis is a subtype of actinic keratosis that mainly affects the lower lip and has a higher risk of malignant transformation. Its location on the labial mucosa influences the therapeutic approach. Vermilionectomy requires local or general anesthetic and is associated with a risk of an unsightly scar, and the treatment with 5-fluorouracil or imiquimod lasts for several weeks and the inflammatory reaction can be very intense. A number of authors have used photodynamic therapy as an alternative to the usual treatments. We present 3 patients with histologically confirmed actinic cheilitis treated using photodynamic therapy with methyl aminolevulinic acid as the photosensitizer and red light at 630 nm. The clinical response was good, with no recurrences after 3 to 6 months of follow-up. Our experience supports the use of photodynamic therapy as a good alternative for the treatment of actinic cheilitis.

  5. Regulation of actin catch-slip bonds with a RhoA-formin module

    Science.gov (United States)

    Lee, Cho-Yin; Lou, Jizhong; Wen, Kuo-Kuang; McKane, Melissa; Eskin, Suzanne G.; Rubenstein, Peter A.; Chien, Shu; Ono, Shoichiro; Zhu, Cheng; McIntire, Larry V.

    2016-10-01

    The dynamic turnover of the actin cytoskeleton is regulated cooperatively by force and biochemical signaling. We previously demonstrated that actin depolymerization under force is governed by catch-slip bonds mediated by force-induced K113:E195 salt-bridges. Yet, the biochemical regulation as well as the functional significance of actin catch bonds has not been elucidated. Using AFM force-clamp experiments, we show that formin controlled by RhoA switches the actin catch-slip bonds to slip-only bonds. SMD simulations reveal that the force does not induce the K113:E195 interaction when formin binds to actin K118 and E117 residues located at the helical segment extending to K113. Actin catch-slip bonds are suppressed by single residue replacements K113E and E195K that interrupt the force-induced K113:E195 interaction; and this suppression is rescued by a K113E/E195K double mutant (E/K) restoring the interaction in the opposite orientation. These results support the biological significance of actin catch bonds, as they corroborate reported observations that RhoA and formin switch force-induced actin cytoskeleton alignment and that either K113E or E195K induces yeast cell growth defects rescued by E/K. Our study demonstrates how the mechano-regulation of actin dynamics is modulated by biochemical signaling molecules, and suggests that actin catch bonds may be important in cell functions.

  6. Progresses in studies of nuclear actin

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiaojuan; ZENG Xianlu; SONG Zhaoxia; HAO Shui

    2004-01-01

    Actin is a protein abundant in cells. Recently, it has been proved to be universally existent in the nuclei of many cell types. Actin and actin-binding proteins, as well as actin-related proteins, are necessary for the mediation of the conformation and function of nuclear actin, including the transformation of actin between unpolymerized and polymerized, chroinatin remodeling, regulation of gene expression and RNA processing as well as RNA transportation. In this paper, we summarized the progresses in the research of nu clear actin.

  7. Fracture network growth for prediction of fracture characteristics and connectivity in tight reservoir rocks

    NARCIS (Netherlands)

    Barnhoorn, A.; Cox, S.F.

    2012-01-01

    Fracturing experiments on very low-porosity dolomite rocks shows a difference in growth of fracture networks by stress-driven fracturing and fluid-driven fracturing. Stress-driven fracture growth, in the absence of fluid pressure, initially forms fractures randomly throughout the rocks followed by g

  8. A Method for Upper Bounding Long Term Growth of Network Access Speed

    DEFF Research Database (Denmark)

    Knudsen, Thomas Phillip; Pedersen, Jens Myrup; Madsen, Ole Brun

    2004-01-01

    The development in home Internet access speed has shown an exponential development with growth rates averaging 25% per year. For resource management in network provisioning it becomes an urgent question how long such growth can continue. This paper presents a method for calculating an upper bound...... to visual content driven growth, proceeding from datarate requirements for a full virtual environment. Scenarios and approaches for reducing datarate requirements are considered and discussed. The presented figures for an upper bound on network access speed are discussed and perspectives on further research...

  9. Curation-Based Network Marketing: Strategies for Network Growth and Electronic Word-of-Mouth Diffusion

    Science.gov (United States)

    Church, Earnie Mitchell, Jr.

    2013-01-01

    In the last couple of years, a new aspect of online social networking has emerged, in which the strength of social network connections is based not on social ties but mutually shared interests. This dissertation studies these "curation-based" online social networks (CBN) and their suitability for the diffusion of electronic word-of-mouth…

  10. Modeling the average shortest-path length in growth of word-adjacency networks

    Science.gov (United States)

    Kulig, Andrzej; DroŻdŻ, Stanisław; Kwapień, Jarosław; OświÈ©cimka, Paweł

    2015-03-01

    We investigate properties of evolving linguistic networks defined by the word-adjacency relation. Such networks belong to the category of networks with accelerated growth but their shortest-path length appears to reveal the network size dependence of different functional form than the ones known so far. We thus compare the networks created from literary texts with their artificial substitutes based on different variants of the Dorogovtsev-Mendes model and observe that none of them is able to properly simulate the novel asymptotics of the shortest-path length. Then, we identify the local chainlike linear growth induced by grammar and style as a missing element in this model and extend it by incorporating such effects. It is in this way that a satisfactory agreement with the empirical result is obtained.

  11. Smooth muscle hyperplasia due to loss of smooth muscle α-actin is driven by activation of focal adhesion kinase, altered p53 localization and increased levels of platelet-derived growth factor receptor-β.

    Science.gov (United States)

    Papke, Christina L; Cao, Jiumei; Kwartler, Callie S; Villamizar, Carlos; Byanova, Katerina L; Lim, Soon-Mi; Sreenivasappa, Harini; Fischer, Grant; Pham, John; Rees, Meredith; Wang, Miranda; Chaponnier, Christine; Gabbiani, Giulio; Khakoo, Aarif Y; Chandra, Joya; Trache, Andreea; Zimmer, Warren; Milewicz, Dianna M

    2013-08-01

    Mutations in ACTA2, encoding the smooth muscle cell (SMC)-specific isoform of α-actin (α-SMA), cause thoracic aortic aneurysms and dissections and occlusive vascular diseases, including early onset coronary artery disease and stroke. We have shown that occlusive arterial lesions in patients with heterozygous ACTA2 missense mutations show increased numbers of medial or neointimal SMCs. The contribution of SMC hyperplasia to these vascular diseases and the pathways responsible for linking disruption of α-SMA filaments to hyperplasia are unknown. Here, we show that the loss of Acta2 in mice recapitulates the SMC hyperplasia observed in ACTA2 mutant SMCs and determine the cellular pathways responsible for SMC hyperplasia. Acta2(-/-) mice showed increased neointimal formation following vascular injury in vivo, and SMCs explanted from these mice demonstrated increased proliferation and migration. Loss of α-SMA induced hyperplasia through focal adhesion (FA) rearrangement, FA kinase activation, re-localization of p53 from the nucleus to the cytoplasm and increased expression and ligand-independent activation of platelet-derived growth factor receptor beta (Pdgfr-β). Disruption of α-SMA in wild-type SMCs also induced similar cellular changes. Imatinib mesylate inhibited Pdgfr-β activation and Acta2(-/-) SMC proliferation in vitro and neointimal formation with vascular injury in vivo. Loss of α-SMA leads to SMC hyperplasia in vivo and in vitro through a mechanism involving FAK, p53 and Pdgfr-β, supporting the hypothesis that SMC hyperplasia contributes to occlusive lesions in patients with ACTA2 missense mutations.

  12. Geometric Assortative Growth Model for Small-World Networks

    Directory of Open Access Journals (Sweden)

    Yilun Shang

    2014-01-01

    Full Text Available It has been shown that both humanly constructed and natural networks are often characterized by small-world phenomenon and assortative mixing. In this paper, we propose a geometrically growing model for small-world networks. The model displays both tunable small-world phenomenon and tunable assortativity. We obtain analytical solutions of relevant topological properties such as order, size, degree distribution, degree correlation, clustering, transitivity, and diameter. It is also worth noting that the model can be viewed as a generalization for an iterative construction of Farey graphs.

  13. Geometric assortative growth model for small-world networks.

    Science.gov (United States)

    Shang, Yilun

    2014-01-01

    It has been shown that both humanly constructed and natural networks are often characterized by small-world phenomenon and assortative mixing. In this paper, we propose a geometrically growing model for small-world networks. The model displays both tunable small-world phenomenon and tunable assortativity. We obtain analytical solutions of relevant topological properties such as order, size, degree distribution, degree correlation, clustering, transitivity, and diameter. It is also worth noting that the model can be viewed as a generalization for an iterative construction of Farey graphs.

  14. Differences in G-actin containing bound ATP or ADP: the Mg2+-induced conformational change requires ATP.

    Science.gov (United States)

    Frieden, C; Patane, K

    1985-07-16

    The role of adenosine 5'-triphosphate (ATP) in the Mg2+-induced conformational change of rabbit skeletal muscle G-actin has been investigated by comparing actin containing bound ADP with actin containing bound ATP. As previously described [Frieden, C. (1982) J. Biol. Chem. 257, 2882-2886], N-acetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine-labeled G-actin containing ATP undergoes a time-dependent Mg2+-induced fluorescence change that reflects a conformational change in the actin. Addition of Mg2+ to labeled G-actin containing ADP gives no fluorescence change, suggesting that the conformational change does not occur. The fluorescence change can be restored on the addition of ATP. Examination of the time courses of these experiments suggests that ATP must replace ADP prior to the Mg2+-induced change. The Mg2+-induced polymerization of actin containing ADP is extraordinarily slow compared to that of actin containing ATP. The lack of the Mg2+-induced conformational change, which is an essential step in the Mg2+-induced polymerization, is probably the cause for the very slow polymerization of actin containing ADP. On the other hand, at 20 degrees C, at pH 8, and in 2 mM Mg2+, the elongation rate from the slow growing end of an actin filament, measured by using the protein brevin to block growth at the fast growing end, is only 4 times slower for actin containing ADP than for actin containing ATP.

  15. The Growth of a European Network of Labor Historians

    NARCIS (Netherlands)

    van der Linden, M.

    2016-01-01

    The first conference of the European Labour History Network (ELHN) took place on December 14–16, 2015, in Turin, Italy. It was, for the time being, the culmination of a development that has been going on for a number of years. Increasingly European labor historians work together across borders. Sinc

  16. Effect of Flumorph on F-Actin Dynamics in the Potato Late Blight Pathogen Phytophthora infestans.

    Science.gov (United States)

    Hua, Chenlei; Kots, Kiki; Ketelaar, Tijs; Govers, Francine; Meijer, Harold J G

    2015-04-01

    Oomycetes are fungal-like pathogens that cause notorious diseases. Protecting crops against oomycetes requires regular spraying with chemicals, many with an unknown mode of action. In the 1990s, flumorph was identified as a novel crop protection agent. It was shown to inhibit the growth of oomycete pathogens including Phytophthora spp., presumably by targeting actin. We recently generated transgenic Phytophthora infestans strains that express Lifeact-enhanced green fluorescent protein (eGFP), which enabled us to monitor the actin cytoskeleton during hyphal growth. For analyzing effects of oomicides on the actin cytoskeleton in vivo, the P. infestans Lifeact-eGFP strain is an excellent tool. Here, we confirm that flumorph is an oomicide with growth inhibitory activity. Microscopic analyses showed that low flumorph concentrations provoked hyphal tip swellings accompanied by accumulation of actin plaques in the apex, a feature reminiscent of tips of nongrowing hyphae. At higher concentrations, swelling was more pronounced and accompanied by an increase in hyphal bursting events. However, in hyphae that remained intact, actin filaments were indistinguishable from those in nontreated, nongrowing hyphae. In contrast, in hyphae treated with the actin depolymerizing drug latrunculin B, no hyphal bursting was observed but the actin filaments were completely disrupted. This difference demonstrates that actin is not the primary target of flumorph.

  17. Actin-based propulsion of functionalized hard versus fluid spherical objects

    Science.gov (United States)

    Delatour, Vincent; Shekhar, Shashank; Reymann, Anne-Cécile; Didry, Dominique; Diêp Lê, Kim Hô; Romet-Lemonne, Guillaume; Helfer, Emmanuèle; Carlier, Marie-France

    2008-02-01

    The directed polymerization of a branched actin network against a functionalized surface drives cell protrusions and organelle propulsion in living cells. Solid microspheres or giant unilamellar vesicles, functionalized with neural Wiskott-Aldrich syndrome protein (N-WASP), initiate the formation of a branched actin array using actin-related protein 2/3 (Arp2/3) complex, when placed in a motility assay reconstituted with pure proteins. These systems are useful biomimetic models of actin-based propulsion that allow to address how the interplay between the physical properties of the functionalized surface and the dynamics of the actin cytoskeleton determines motile behavior. Both solid beads and deformable vesicles display either continuous or saltatory propulsive motions, which are analyzed comparatively; we show that the deformability of liposomes and the mobility of N-WASP at the lipid surface affect the dynamic and structural parameters of the actin meshwork. Our results indicate that beads and vesicles use different mechanisms to translate insertional polymerization of actin at their surface into directed movement: stress relaxation within the actin gel prevents the accumulation of filaments at the front of moving beads, while segregation of nucleators reduces actin polymerization at the front of moving vesicles.

  18. Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging.

    Directory of Open Access Journals (Sweden)

    Vedakumar Tatavarty

    Full Text Available Morphological changes in dendritic spines represent an important mechanism for synaptic plasticity which is postulated to underlie the vital cognitive phenomena of learning and memory. These morphological changes are driven by the dynamic actin cytoskeleton that is present in dendritic spines. The study of actin dynamics in these spines traditionally has been hindered by the small size of the spine. In this study, we utilize a photo-activation localization microscopy (PALM-based single-molecule tracking technique to analyze F-actin movements with approximately 30-nm resolution in cultured hippocampal neurons. We were able to observe the kinematic (physical motion of actin filaments, i.e., retrograde flow and kinetic (F-actin turn-over dynamics of F-actin at the single-filament level in dendritic spines. We found that F-actin in dendritic spines exhibits highly heterogeneous kinematic dynamics at the individual filament level, with simultaneous actin flows in both retrograde and anterograde directions. At the ensemble level, movements of filaments integrate into a net retrograde flow of approximately 138 nm/min. These results suggest a weakly polarized F-actin network that consists of mostly short filaments in dendritic spines.

  19. An Eden model for the growth of adaptive networks

    Science.gov (United States)

    Meakin, Paul

    1991-12-01

    An adaptive growth model based on the Eden model has been investigated using computer simulations. In this model a “score” associated with all the sites along the shortest path from the newly added site to the initial seed or growth site is incremented by an amount δ 1 ( δ1=1/( l+1) η where l is the path length) and the score associated with all the sites in the cluster is decreased by a fixed amount δ2 ( δ2=1/ Nm) after each growth event. If the score associated with a site falls below zero it is removed from the cluster. In the asymptotic limit ( t→∞ where t is the number of growth events) the cluster size fluctuates about a constant value proportional to N vm where the exponent v is given by the empirical relationship v=2/(2+ η), which is supported by simple theoretical considerations. The growth of the number of occupied sites, s( t), can be represented by the scaling form s( t) = N vm ƒ(t/N vm) .

  20. Nucleus-associated actin in Amoeba proteus.

    Science.gov (United States)

    Berdieva, Mariia; Bogolyubov, Dmitry; Podlipaeva, Yuliya; Goodkov, Andrew

    2016-10-01

    The presence, spatial distribution and forms of intranuclear and nucleus-associated cytoplasmic actin were studied in Amoeba proteus with immunocytochemical approaches. Labeling with different anti-actin antibodies and staining with TRITC-phalloidin and fluorescent deoxyribonuclease I were used. We showed that actin is abundant within the nucleus as well as in the cytoplasm of A. proteus cells. According to DNase I experiments, the predominant form of intranuclear actin is G-actin which is associated with chromatin strands. Besides, unpolymerized actin was shown to participate in organization of a prominent actin layer adjacent to the outer surface of nuclear envelope. No significant amount of F-actin was found in the nucleus. At the same time, the amoeba nucleus is enclosed in a basket-like structure formed by circumnuclear actin filaments and bundles connected with global cytoplasmic actin cytoskeleton. A supposed architectural function of actin filaments was studied by treatment with actin-depolymerizing agent latrunculin A. It disassembled the circumnuclear actin system, but did not affect the intranuclear chromatin structure. The results obtained for amoeba cells support the modern concept that actin is involved in fundamental nuclear processes that have evolved in the cells of multicellular organisms.

  1. Multiscale modeling and mechanics of filamentous actin cytoskeleton.

    Science.gov (United States)

    Yamaoka, Hidetaka; Matsushita, Shinji; Shimada, Yoshitaka; Adachi, Taiji

    2012-03-01

    The adaptive structure and functional changes of the actin cytoskeleton are induced by its mechanical behavior at various temporal and spatial scales. In particular, the mechanical behaviors at different scales play important roles in the mechanical functions of various cells, and these multiscale phenomena require clarification. To establish a milestone toward achieving multiscale modeling and simulation, this paper reviews mathematical analyses and simulation methods applied to the mechanics of the filamentous actin cytoskeleton. The actin cytoskeleton demonstrates characteristic behaviors at every temporal and spatial scale, and mathematical models and simulation methods can be applied to each level of actin cytoskeletal structure ranging from the molecular to the network level. This paper considers studies on mathematical models and simulation methods based on the molecular dynamics, coarse-graining, and continuum dynamics approaches. Every temporal and spatial scale of actin cytoskeletal structure is considered, and it is expected that discrete and continuum dynamics ranging from functional expression at the molecular level to macroscopic functional expression at the whole cell level will be developed and applied to multiscale modeling and simulation.

  2. G-actin regulates rapid induction of actin nucleation by mDia1 to restore cellular actin polymers.

    Science.gov (United States)

    Higashida, Chiharu; Suetsugu, Shiro; Tsuji, Takahiro; Monypenny, James; Narumiya, Shuh; Watanabe, Naoki

    2008-10-15

    mDia1 belongs to the formin family of proteins that share FH1 and FH2 domains. Although formins play a critical role in the formation of many actin-based cellular structures, the physiological regulation of formin-mediated actin assembly within the cell is still unknown. Here we show that cells possess an acute actin polymer restoration mechanism involving mDia1. By using single-molecule live-cell imaging, we found that several treatments including low-dose G-actin-sequestering drugs and unpolymerizable actin mutants activate mDia1 to initiate fast directional movement. The FH2 region, the core domain for actin nucleation, is sufficient to respond to latrunculin B (LatB) to increase its actin nucleation frequency. Simulation analysis revealed an unexpected paradoxical effect of LatB that leads to a several fold increase in free G-actin along with an increase in total G-actin. These results indicate that in cells, the actin nucleation frequency of mDia1 is enhanced not only by Rho, but also strongly through increased catalytic efficiency of the FH2 domain. Consistently, frequent actin nucleation by mDia1 was found around sites of vigorous actin disassembly. Another major actin nucleator, the Arp2/3 complex, was not affected by the G-actin increase induced by LatB. Taken together, we propose that transient accumulation of G-actin works as a cue to promote mDia1-catalyzed actin nucleation to execute rapid reassembly of actin filaments.

  3. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    Science.gov (United States)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  4. The impact on growth of outside-in and inside-out innovation in SME networks

    DEFF Research Database (Denmark)

    Brink, Tove

    2014-01-01

    The purpose of this paper is to reveal what impact the dual approaches of outside-in and inside-out innovation have on growth in turnover in small and medium sized enterprises (SMEs) working together in network context. This is illustrated through research in three informal, Danish food industry...... networks with 60 SMEs responding. The research employs structural equation modelling for statistical analyses. The findings reveal that both the outside-in and the inside-out approaches have a significant positive impact on innovation and growth. The findings shed light on the need for combined dual...... organising of both to enable innovation and growth. Moreover, the network context does not significantly utilise theoretical insights on loose coupled systems. A contribution is made to innovation theory on the duality of the outside-in and the insideout approaches for a combined understanding of the impact...

  5. Differential thymosin β10 expression levels and actin filament organization in tumor cell lines with different metastatic potential

    Institute of Scientific and Technical Information of China (English)

    刘从容; 马春树; 宁钧宇; 由江峰; 廖松林; 郑杰

    2004-01-01

    Background To investigate the differential expression levels of thymosin β10 (Tβ1O) and the corresponding changes of actin filament organization in human tumor cell lines with different metastatic potential.Methods Four groups of nine human tumor cell lines with different metastatic potential were analyzed for the amount of Tβ10 mRNAs by Northern blot and for their peptide expression levels by immunohistochemistry. The filamentous actin (F-actin)was observed by staining of TRITC-phalloidin to detect changes in actin organization. Results In comparison with non-/weakly metastatic counterparts, TβIO was upregulated in highly metastatic human lung cancer, malignant melanoma and breast cancer cell lines. Staining of TRITC-phalloidin revealed less actin bundles, a fuzzy network of shorter filaments and some F-actin aggregates in the highly metastatic tumor cells. Meanwhile, the actin filaments were robust and orderly arranged in the non-/weakly metastatic cancer cell lines.Conclusion Tβ10 levels correlate positively with the metastatic capacity in human tumors currently examined. The increasing metastatic potential of tumor cells is accompanied by a loss of F-actin,poorly arranged actin skeleton organizations and presence of F-actin aggregates. There is a consistent correlation between the elevated TβIO expression and the disrupted actin skeleton.

  6. F-actin distribution at nodes of Ranvier and Schmidt-Lanterman incisures in mammalian sciatic nerves.

    Science.gov (United States)

    Kun, Alejandra; Canclini, Lucía; Rosso, Gonzalo; Bresque, Mariana; Romeo, Carlos; Hanusz, Alicia; Cal, Karina; Calliari, Aldo; Sotelo Silveira, José; Sotelo, José R

    2012-07-01

    Very little is known about the function of the F-actin cytoskeleton in the regeneration and pathology of peripheral nerve fibers. The actin cytoskeleton has been associated with maintenance of tissue structure, transmission of traction and contraction forces, and an involvement in cell motility. Therefore, the state of the actin cytoskeleton strongly influences the mechanical properties of cells and intracellular transport therein. In this work, we analyze the distribution of F-actin at Schmidt-Lanterman Incisures (SLI) and nodes of Ranvier (NR) domains in normal, regenerating and pathologic Trembler J (TrJ/+) sciatic nerve fibers, of rats and mice. F-actin was quantified and it was found increased in TrJ/+, both in SLI and NR. However, SLI and NR of regenerating rat sciatic nerve did not show significant differences in F-actin, as compared with normal nerves. Cytochalasin-D and Latrunculin-A were used to disrupt the F-actin network in normal and regenerating rat sciatic nerve fibers. Both drugs disrupt F-actin, but in different ways. Cytochalasin-D did not disrupt Schwann cell (SC) F-actin at the NR. Latrunculin-A did not disrupt F-actin at the boundary region between SC and axon at the NR domain. We surmise that the rearrangement of F-actin in neurological disorders, as presented here, is an important feature of TrJ/+ pathology as a Charcot-Marie-Tooth (CMT) model.

  7. F-actin distribution and function during sexual development in Eimeria maxima.

    Science.gov (United States)

    Frölich, Sonja; Wallach, Michael

    2015-06-01

    To determine the involvement of the actin cytoskeleton in macrogametocyte growth and oocyst wall formation, freshly purified macrogametocytes and oocysts were stained with Oregon Green 514 conjugated phalloidin to visualize F-actin microfilaments, while Evans blue staining was used to detect type 1 wall forming bodies (WFB1s) and the outer oocyst wall. The double-labelled parasites were then analysed at various stages of sexual development using three-dimensional confocal microscopy. The results showed F-actin filaments were distributed throughout the entire cytoplasm of mature Eimeria maxima macrogametocytes forming a web-like meshwork of actin filaments linking the type 1 WFBs together into structures resembling 'beads on a string'. At the early stages of oocyst wall formation, F-actin localization changed in alignment with the egg-shaped morphology of the forming oocysts with F-actin microfilaments making direct contact with the WFB1s. In tissue oocysts, the labelled actin cytoskeleton was situated underneath the forming outer layer of the oocyst wall. Treatment of macrogametocytes in vitro with the actin depolymerizing agents, Cytochalasin D and Latrunculin, led to a reduction in the numbers of mature WFB1s in the cytoplasm of the developing macrogametocytes, indicating that the actin plays an important role in WFB1 transport and oocyst wall formation in E. maxima.

  8. Capu and Spire Assemble a Cytoplasmic Actin Mesh that Maintains Microtubule Organization in the Drosophila Oocyte

    OpenAIRE

    Dahlgaard, Katja; Alexandre A.S.F. Raposo; Niccoli, Teresa; St Johnston, Daniel

    2007-01-01

    Summary Mutants in the actin nucleators Cappuccino and Spire disrupt the polarized microtubule network in the Drosophila oocyte that defines the anterior-posterior axis, suggesting that microtubule organization depends on actin. Here, we show that Cappuccino and Spire organize an isotropic mesh of actin filaments in the oocyte cytoplasm. capu and spire mutants lack this mesh, whereas overexpressed truncated Cappuccino stabilizes the mesh in the presence of Latrunculin A and partially rescues ...

  9. A high-affinity interaction with ADP-actin monomers underlies the mechanism and in vivo function of Srv2/cyclase-associated protein.

    Science.gov (United States)

    Mattila, Pieta K; Quintero-Monzon, Omar; Kugler, Jamie; Moseley, James B; Almo, Steven C; Lappalainen, Pekka; Goode, Bruce L

    2004-11-01

    Cyclase-associated protein (CAP), also called Srv2 in Saccharomyces cerevisiae, is a conserved actin monomer-binding protein that promotes cofilin-dependent actin turnover in vitro and in vivo. However, little is known about the mechanism underlying this function. Here, we show that S. cerevisiae CAP binds with strong preference to ADP-G-actin (Kd 0.02 microM) compared with ATP-G-actin (Kd 1.9 microM) and competes directly with cofilin for binding ADP-G-actin. Further, CAP blocks actin monomer addition specifically to barbed ends of filaments, in contrast to profilin, which blocks monomer addition to pointed ends of filaments. The actin-binding domain of CAP is more extensive than previously suggested and includes a recently solved beta-sheet structure in the C-terminus of CAP and adjacent sequences. Using site-directed mutagenesis, we define evolutionarily conserved residues that mediate binding to ADP-G-actin and demonstrate that these activities are required for CAP function in vivo in directing actin organization and polarized cell growth. Together, our data suggest that in vivo CAP competes with cofilin for binding ADP-actin monomers, allows rapid nucleotide exchange to occur on actin, and then because of its 100-fold weaker binding affinity for ATP-actin compared with ADP-actin, allows other cellular factors such as profilin to take the handoff of ATP-actin and facilitate barbed end assembly.

  10. Understanding the Scalability of Bayesian Network Inference Using Clique Tree Growth Curves

    Science.gov (United States)

    Mengshoel, Ole J.

    2010-01-01

    One of the main approaches to performing computation in Bayesian networks (BNs) is clique tree clustering and propagation. The clique tree approach consists of propagation in a clique tree compiled from a Bayesian network, and while it was introduced in the 1980s, there is still a lack of understanding of how clique tree computation time depends on variations in BN size and structure. In this article, we improve this understanding by developing an approach to characterizing clique tree growth as a function of parameters that can be computed in polynomial time from BNs, specifically: (i) the ratio of the number of a BN s non-root nodes to the number of root nodes, and (ii) the expected number of moral edges in their moral graphs. Analytically, we partition the set of cliques in a clique tree into different sets, and introduce a growth curve for the total size of each set. For the special case of bipartite BNs, there are two sets and two growth curves, a mixed clique growth curve and a root clique growth curve. In experiments, where random bipartite BNs generated using the BPART algorithm are studied, we systematically increase the out-degree of the root nodes in bipartite Bayesian networks, by increasing the number of leaf nodes. Surprisingly, root clique growth is well-approximated by Gompertz growth curves, an S-shaped family of curves that has previously been used to describe growth processes in biology, medicine, and neuroscience. We believe that this research improves the understanding of the scaling behavior of clique tree clustering for a certain class of Bayesian networks; presents an aid for trade-off studies of clique tree clustering using growth curves; and ultimately provides a foundation for benchmarking and developing improved BN inference and machine learning algorithms.

  11. Horizontal and vertical growth of S. cerevisiae metabolic network

    OpenAIRE

    Tramontano Anna; Grassi Luigi

    2011-01-01

    Abstract Background The growth and development of a biological organism is reflected by its metabolic network, the evolution of which relies on the essential gene duplication mechanism. There are two current views about the evolution of metabolic networks. The retrograde model hypothesizes that a pathway evolves by recruiting novel enzymes in a direction opposite to the metabolic flow. The patchwork model is instead based on the assumption that the evolution is based on the exploitation of br...

  12. Fascin regulates nuclear actin during Drosophila oogenesis.

    Science.gov (United States)

    Kelpsch, Daniel J; Groen, Christopher M; Fagan, Tiffany N; Sudhir, Sweta; Tootle, Tina L

    2016-10-01

    Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5-9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved.

  13. A fractal growth model: Exploring the connection pattern of hubs in complex networks

    Science.gov (United States)

    Li, Dongyan; Wang, Xingyuan; Huang, Penghe

    2017-04-01

    Fractal is ubiquitous in many real-world networks. Previous researches showed that the strong disassortativity between the hub-nodes on all length scales was the key principle that gave rise to the fractal architecture of networks. Although fractal property emerged in some models, there were few researches about the fractal growth model and quantitative analyses about the strength of the disassortativity for fractal model. In this paper, we proposed a novel inverse renormalization method, named Box-based Preferential Attachment (BPA), to build the fractal growth models in which the Preferential Attachment was performed at box level. The proposed models provided a new framework that demonstrated small-world-fractal transition. Also, we firstly demonstrated the statistical characteristic of connection patterns of the hubs in fractal networks. The experimental results showed that, given proper growing scale and added edges, the proposed models could clearly show pure small-world or pure fractal or both of them. It also showed that the hub connection ratio showed normal distribution in many real-world networks. At last, the comparisons of connection pattern between the proposed models and the biological and technical networks were performed. The results gave useful reference for exploring the growth principle and for modeling the connection patterns for real-world networks.

  14. DESIGN METHODOLOGY OF NETWORKED SOFTWARE EVOLUTION GROWTH BASED ON SOFTWARE PATTERNS

    Institute of Scientific and Technical Information of China (English)

    Keqing HE; Rong PENG; Jing LIU; Fei HE; Peng LIANG; Bing LI

    2006-01-01

    Recently, some new characteristics of complex networks attract the attentions of scientists in different fields, and lead to many kinds of emerging research directions. So far, most of the research work has been limited in discovery of complex network characteristics by structure analysis in large-scale software systems. This paper presents the theoretical basis, design method, algorithms and experiment results of the research. It firstly emphasizes the significance of design method of evolution growth for network topology of Object Oriented (OO) software systems, and argues that the selection and modulation of network models with various topology characteristics will bring un-ignorable effect on the process of design and implementation of OO software systems. Then we analyze the similar discipline of "negation of negation and compromise" between the evolution of network models with different topology characteristics and the development of software modelling methods. According to the analysis of the growth features of software patterns, we propose an object-oriented software network evolution growth method and its algorithms in succession. In addition, we also propose the parameter systems for Oosoftware system metrics based on complex network theory. Based on these parameter systems, it can analyze the features of various nodes, links and local-world, modulate the network topology and guide the software metrics. All these can be helpful to the detailed design, implementation and performance analysis. Finally, we focus on the application of the evolution algorithms and demonstrate it by a case study.Comparing the results from our early experiments with methodologies in empirical software engineering, we believe that the proposed software engineering design method is a computational software engineering approach based on complex network theory. We argue that this method should be greatly beneficial for the design, implementation, modulation and metrics of

  15. Ecological network analysis for economic systems: growth and development and implications for sustainable development.

    Science.gov (United States)

    Huang, Jiali; Ulanowicz, Robert E

    2014-01-01

    The quantification of growth and development is an important issue in economics, because these phenomena are closely related to sustainability. We address growth and development from a network perspective in which economic systems are represented as flow networks and analyzed using ecological network analysis (ENA). The Beijing economic system is used as a case study and 11 input-output (I-O) tables for 1985-2010 are converted into currency networks. ENA is used to calculate system-level indices to quantify the growth and development of Beijing. The contributions of each direct flow toward growth and development in 2010 are calculated and their implications for sustainable development are discussed. The results show that during 1985-2010, growth was the main attribute of the Beijing economic system. Although the system grew exponentially, its development fluctuated within only a small range. The results suggest that system ascendency should be increased in order to favor more sustainable development. Ascendency can be augmented in two ways: (1) strengthen those pathways with positive contributions to increasing ascendency and (2) weaken those with negative effects.

  16. Global optimization, local adaptation and the role of growth in distribution networks

    CERN Document Server

    Ronellenfitsch, Henrik

    2016-01-01

    Highly-optimized complex transport networks serve crucial functions in many man-made and natural systems such as power grids and plant or animal vasculature. Often, the relevant optimization functional is non-convex and characterized by many local extrema. In general, finding the global, or nearly global optimum is difficult. In biological systems, it is believed that natural selection slowly guides the network towards an optimized state. However, general coarse grained models for flow networks with local positive feedback rules for the vessel conductivity typically get trapped in low efficiency, local minima. In this work we show how the growth of the underlying tissue, coupled to the dynamical equations for network development, can drive the system to a dramatically improved optimal state. This general model provides a surprisingly simple explanation for the appearance of highly optimized transport networks in biology such as leaf and animal vasculature.

  17. Transition from isotropic to digitated growth modulates network formation in Physarum polycephalum

    Science.gov (United States)

    Vogel, David; Gautrais, Jacques; Perna, Andrea; Sumpter, David J. T.; Deneubourg, Jean-Louis; Dussutour, Audrey

    2017-01-01

    Some organisms, including fungi, ants, and slime molds, explore their environment and forage by forming interconnected networks. The plasmodium of the slime mold Physarum polycephalum is a large unicellular amoeboid organism that grows a tubular spatial network through which nutrients, body mass, and chemical signals are transported. Individual plasmodia are capable of sophisticated behaviours such as optimizing their network connectivity and dynamics using only decentralized information processing. In this study, we used a population of plasmodia that interconnect through time to analyse the dynamical interactions between growth of individual plasmodia and global network formation. Our results showed how initial conditions, such as the distance between plasmodia, their size, or the presence and quality of food, affect the emerging network connectivity.

  18. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins.

    Science.gov (United States)

    Paredez, Alexander R; Assaf, Zoe June; Sept, David; Timofejeva, Ljudmilla; Dawson, Scott C; Wang, Chung-Ju Rachel; Cande, W Z

    2011-04-12

    Giardia intestinalis, a human intestinal parasite and member of what is perhaps the earliest-diverging eukaryotic lineage, contains the most divergent eukaryotic actin identified to date and is the first eukaryote known to lack all canonical actin-binding proteins (ABPs). We sought to investigate the properties and functions of the actin cytoskeleton in Giardia to determine whether Giardia actin (giActin) has reduced or conserved roles in core cellular processes. In vitro polymerization of giActin produced filaments, indicating that this divergent actin is a true filament-forming actin. We generated an anti-giActin antibody to localize giActin throughout the cell cycle. GiActin localized to the cortex, nuclei, internal axonemes, and formed C-shaped filaments along the anterior of the cell and a flagella-bundling helix. These structures were regulated with the cell cycle and in encysting cells giActin was recruited to the Golgi-like cyst wall processing vesicles. Knockdown of giActin demonstrated that giActin functions in cell morphogenesis, membrane trafficking, and cytokinesis. Additionally, Giardia contains a single G protein, giRac, which affects the Giardia actin cytoskeleton independently of known target ABPs. These results imply that there exist ancestral and perhaps conserved roles for actin in core cellular processes that are independent of canonical ABPs. Of medical significance, the divergent giActin cytoskeleton is essential and commonly used actin-disrupting drugs do not depolymerize giActin structures. Therefore, the giActin cytoskeleton is a promising drug target for treating giardiasis, as we predict drugs that interfere with the Giardia actin cytoskeleton will not affect the mammalian host.

  19. Actinic cheilitis in dental practice.

    Science.gov (United States)

    Savage, N W; McKay, C; Faulkner, C

    2010-06-01

    Actinic cheilitis is a potentially premalignant condition involving predominantly the vermilion of the lower lip. The aim of the current paper was to review the clinical presentation of actinic cheilitis and demonstrate the development of management plans using a series of cases. These are designed to provide immediate treatment where required but also to address the medium and long-term requirements of the patient. The authors suggest that the clinical examination of lips and the assessment of actinic cheilitis and other lip pathology become a regular part of the routine soft tissue examination undertaken as a part of the periodic examination of dental patients. Early recognition of actinic cheilitis can allow the development of strategies for individual patients that prevent progression. These are based on past sun exposure, future lifestyle changes and the daily use of emollient sunscreens, broad-brimmed hats and avoidance of sun exposure during the middle of the day. This is a service that is not undertaken as a matter of routine in general medical practice as patients are not seen with the regularity of dental patients and generally not under the ideal examination conditions available in the dental surgery.

  20. Self-assembly of Artificial Actin Filaments

    Science.gov (United States)

    Grosenick, Christopher; Cheng, Shengfeng

    Actin Filaments are long, double-helical biopolymers that make up the cytoskeleton along with microtubules and intermediate filaments. In order to further understand the self-assembly process of these biopolymers, a model to recreate actin filament geometry was developed. A monomer in the shape of a bent rod with vertical and lateral binding sites was designed to assemble into single or double helices. With Molecular Dynamics simulations, a variety of phases were observed to form by varying the strength of the binding sites. Ignoring lateral binding sites, we have found a narrow range of binding strengths that lead to long single helices via various growth pathways. When lateral binding strength is introduced, double helices begin to form. These double helices self-assemble into substantially more stable structures than their single helix counterparts. We have found double helices to form long filaments at about half the vertical binding strength of single helices. Surprisingly, we have found that triple helices occasionally form, indicating the importance of structural regulation in the self-assembly of biopolymers.

  1. Development of a multi-classification neural network model to determine the microbial growth/no growth interface.

    Science.gov (United States)

    Fernández-Navarro, Francisco; Valero, Antonio; Hervás-Martínez, César; Gutiérrez, Pedro A; García-Gimeno, Rosa M; Zurera-Cosano, Gonzalo

    2010-07-15

    Boundary models have been recognized as useful tools to predict the ability of microorganisms to grow at limiting conditions. However, at these conditions, microbial behaviour can vary, being difficult to distinguish between growth or no growth. In this paper, the data from the study of Valero et al. [Valero, A., Pérez-Rodríguez, F., Carrasco, E., Fuentes-Alventosa, J.M., García-Gimeno, R.M., Zurera, G., 2009. Modelling the growth boundaries of Staphylococcus aureus: Effect of temperature, pH and water activity. International Journal of Food Microbiology 133 (1-2), 186-194] belonging to growth/no growth conditions of Staphylococcus aureus against temperature, pH and a(w) were divided into three categorical classes: growth (G), growth transition (GT) and no growth (NG). Subsequently, they were modelled by using a Radial Basis Function Neural Network (RBFNN) in order to create a multi-classification model that was able to predict the probability of belonging at one of the three mentioned classes. The model was developed through an over sampling procedure using a memetic algorithm (MA) in order to balance in part the size of the classes and to improve the accuracy of the classifier. The multi-classification model, named Smote Memetic Radial Basis Function (SMRBF) provided a quite good adjustment to data observed, being able to correctly classify the 86.30% of training data and the 82.26% of generalization data for the three observed classes in the best model. Besides, the high number of replicates per condition tested (n=30) produced a smooth transition between growth and no growth. At the most stringent conditions, the probability of belonging to class GT was higher, thus justifying the inclusion of the class in the new model. The SMRBF model presented in this study can be used to better define microbial growth/no growth interface and the variability associated to these conditions so as to apply this knowledge to a food safety in a decision-making process.

  2. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization.

    Science.gov (United States)

    Lee, Wei Lin; Grimes, Jonathan M; Robinson, Robert C

    2015-03-01

    Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis.

  3. The statistical mechanics of complex signaling networks: nerve growth factor signaling.

    Science.gov (United States)

    Brown, K S; Hill, C C; Calero, G A; Myers, C R; Lee, K H; Sethna, J P; Cerione, R A

    2004-12-01

    The inherent complexity of cellular signaling networks and their importance to a wide range of cellular functions necessitates the development of modeling methods that can be applied toward making predictions and highlighting the appropriate experiments to test our understanding of how these systems are designed and function. We use methods of statistical mechanics to extract useful predictions for complex cellular signaling networks. A key difficulty with signaling models is that, while significant effort is being made to experimentally measure the rate constants for individual steps in these networks, many of the parameters required to describe their behavior remain unknown or at best represent estimates. To establish the usefulness of our approach, we have applied our methods toward modeling the nerve growth factor (NGF)-induced differentiation of neuronal cells. In particular, we study the actions of NGF and mitogenic epidermal growth factor (EGF) in rat pheochromocytoma (PC12) cells. Through a network of intermediate signaling proteins, each of these growth factors stimulates extracellular regulated kinase (Erk) phosphorylation with distinct dynamical profiles. Using our modeling approach, we are able to predict the influence of specific signaling modules in determining the integrated cellular response to the two growth factors. Our methods also raise some interesting insights into the design and possible evolution of cellular systems, highlighting an inherent property of these systems that we call 'sloppiness.'

  4. A geometric growth model interpolating between regular and small-world networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhongzhi [Department of Computer Science and Engineering, Fudan University, Shanghai 200433 (China); Zhou, Shuigeng [Department of Computer Science and Engineering, Fudan University, Shanghai 200433 (China); Wang, Zhiyong [Department of Computer Science and Engineering, Fudan University, Shanghai 200433 (China); Shen, Zhen [Department of Computer Science and Engineering, Fudan University, Shanghai 200433 (China)

    2007-09-28

    We propose a geometric growth model which interpolates between one-dimensional linear graphs and small-world networks. The model undergoes a transition from large to small worlds. We study the topological characteristics by both theoretical predictions and numerical simulations, which are in good accordance with each other. Our geometrically growing model is a complementarity for the static WS model.

  5. A Co-Association Network Analysis of the Genetic Determination of Pig Conformation, Growth and Fatness

    NARCIS (Netherlands)

    Puig-Oliveras, A.; Ballester, M.; Corominas, J.; Revilla, M.; Estelle, J.; Fernandez, A.I.; Ramayo-Caldas, Y.; Folch, J.M.

    2014-01-01

    BACKGROUND: Several QTLs have been identified for major economically relevant traits in livestock, such as growth and meat quality, revealing the complex genetic architecture of these traits. The use of network approaches considering the interactions of multiple molecules and traits provides useful

  6. Non-lytic, actin-based exit of intracellular parasites from C. elegans intestinal cells.

    Science.gov (United States)

    Estes, Kathleen A; Szumowski, Suzannah C; Troemel, Emily R

    2011-09-01

    The intestine is a common site for invasion by intracellular pathogens, but little is known about how pathogens restructure and exit intestinal cells in vivo. The natural microsporidian parasite N. parisii invades intestinal cells of the nematode C. elegans, progresses through its life cycle, and then exits cells in a transmissible spore form. Here we show that N. parisii causes rearrangements of host actin inside intestinal cells as part of a novel parasite exit strategy. First, we show that N. parisii infection causes ectopic localization of the normally apical-restricted actin to the basolateral side of intestinal cells, where it often forms network-like structures. Soon after this actin relocalization, we find that gaps appear in the terminal web, a conserved cytoskeletal structure that could present a barrier to exit. Reducing actin expression creates terminal web gaps in the absence of infection, suggesting that infection-induced actin relocalization triggers gap formation. We show that terminal web gaps form at a distinct stage of infection, precisely timed to precede spore exit, and that all contagious animals exhibit gaps. Interestingly, we find that while perturbations in actin can create these gaps, actin is not required for infection progression or spore formation, but actin is required for spore exit. Finally, we show that despite large numbers of spores exiting intestinal cells, this exit does not cause cell lysis. These results provide insight into parasite manipulation of the host cytoskeleton and non-lytic escape from intestinal cells in vivo.

  7. Application of GA in optimization of pore network models generated by multi-cellular growth algorithms

    Science.gov (United States)

    Jamshidi, Saeid; Boozarjomehry, Ramin Bozorgmehry; Pishvaie, Mahmoud Reza

    2009-10-01

    In pore network modeling, the void space of a rock sample is represented at the microscopic scale by a network of pores connected by throats. Construction of a reasonable representation of the geometry and topology of the pore space will lead to a reliable prediction of the properties of porous media. Recently, the theory of multi-cellular growth (or L-systems) has been used as a flexible tool for generation of pore network models which do not require any special information such as 2D SEM or 3D pore space images. In general, the networks generated by this method are irregular pore network models which are inherently closer to the complicated nature of the porous media rather than regular lattice networks. In this approach, the construction process is controlled only by the production rules that govern the development process of the network. In this study, genetic algorithm has been used to obtain the optimum values of the uncertain parameters of these production rules to build an appropriate irregular lattice network capable of the prediction of both static and hydraulic information of the target porous medium.

  8. Action selection in growing state spaces: control of network structure growth

    Science.gov (United States)

    Thalmeier, Dominik; Gómez, Vicenç; Kappen, Hilbert J.

    2017-01-01

    The dynamical processes taking place on a network depend on its topology. Influencing the growth process of a network therefore has important implications on such dynamical processes. We formulate the problem of influencing the growth of a network as a stochastic optimal control problem in which a structural cost function penalizes undesired topologies. We approximate this control problem with a restricted class of control problems that can be solved using probabilistic inference methods. To deal with the increasing problem dimensionality, we introduce an adaptive importance sampling method for approximating the optimal control. We illustrate this methodology in the context of formation of information cascades, considering the task of influencing the structure of a growing conversation thread, as in Internet forums. Using a realistic model of growing trees, we show that our approach can yield conversation threads with better structural properties than the ones observed without control.

  9. A Steric Antagonism of Actin Polymerization by a Salmonella Virulence Protein

    Energy Technology Data Exchange (ETDEWEB)

    Margarit,S.; Davidson, W.; Frego, L.; Stebbins, F.

    2006-01-01

    Salmonella spp. require the ADP-ribosyltransferase activity of the SpvB protein for intracellular growth and systemic virulence. SpvB covalently modifies actin, causing cytoskeletal disruption and apoptosis. We report here the crystal structure of the catalytic domain of SpvB, and we show by mass spectrometric analysis that SpvB modifies actin at Arg177, inhibiting its ATPase activity. We also describe two crystal structures of SpvB-modified, polymerization-deficient actin. These structures reveal that ADP-ribosylation does not lead to dramatic conformational changes in actin, suggesting a model in which this large family of toxins inhibits actin polymerization primarily through steric disruption of intrafilament contacts.

  10. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins

    OpenAIRE

    Paredez, Alexander R.; Assaf, Zoe June; Sept, David; Timofejeva, Ljudmilla; Dawson, Scott C.; Wang, Chung-Ju Rachel; Cande, W. Z.

    2011-01-01

    Giardia intestinalis, a human intestinal parasite and member of what is perhaps the earliest-diverging eukaryotic lineage, contains the most divergent eukaryotic actin identified to date and is the first eukaryote known to lack all canonical actin-binding proteins (ABPs). We sought to investigate the properties and functions of the actin cytoskeleton in Giardia to determine whether Giardia actin (giActin) has reduced or conserved roles in core cellular processes. In vitro polymerization of gi...

  11. Promotion of growth by elevated carbon dioxide is coordinated through a flexible transcriptional network in Arabidopsis.

    Science.gov (United States)

    Ribeiro, Dimas M; Mueller-Roeber, Bernd; Schippers, Jos H M

    2013-03-01

    Although gibberellins (GAs) promote many developmental responses in plants, little is known about how the hormone interacts with environmental signals at the molecular level for regulating plant growth. Recently, we have demonstrated that inhibition of growth by the GA biosynthesis inhibitor paclobutrazol (PAC) at ambient [CO₂] (350 µmol CO₂ mol(-1)) is reverted by elevated [CO₂] (750 μmol CO₂ mol(-1)). Our finding points to an important role of elevated [CO₂] as a signal allowing higher growth rates of low-GA plants. GA promotes plant growth via a complex transcriptional network that integrates multiple signaling pathways. Herein, we discuss how elevated [CO₂] stimulates biomass accumulation in a GA-independent manner by regulating the expression of growth-related genes.

  12. The nitrate reductase inhibitor, tungsten, disrupts actin microfilaments in Zea mays L.

    Science.gov (United States)

    Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Eleftheriou, Eleftherios P

    2014-05-01

    Tungsten is a widely used inhibitor of nitrate reductase, applied to diminish the nitric oxide levels in plants. It was recently shown that tungsten also has heavy metal attributes. Since information about the toxic effects of tungsten on actin is limited, and considering that actin microfilaments are involved in the entry of tungsten inside plant cells, the effects of tungsten on them were studied in Zea mays seedlings. Treatments with sodium tungstate for 3, 6, 12 or 24 h were performed on intact seedlings and seedlings with truncated roots. Afterwards, actin microfilaments in meristematic root and leaf tissues were stained with fluorescent phalloidin, and the specimens were examined by confocal laser scanning microscopy. While the actin microfilament network was well organized in untreated seedlings, in tungstate-treated ones it was disrupted in a time-dependent manner. In protodermal root cells, the effects of tungsten were stronger as cortical microfilaments were almost completely depolymerized and the intracellular ones appeared highly bundled. Fluorescence intensity measurements confirmed the above results. In the meristematic leaf tissue of intact seedlings, no depolymerization of actin microfilaments was noticed. However, when root tips were severed prior to tungstate application, both cortical and endoplasmic actin networks of leaf cells were disrupted and bundled after 24 h of treatment. The differential response of root and leaf tissues to tungsten toxicity may be due to differential penetration and absorption, while the effects on actin microfilaments could not be attributed to the nitric oxide depletion by tungsten.

  13. Regulation of the actin cytoskeleton by an interaction of IQGAP related protein GAPA with filamin and cortexillin I.

    Directory of Open Access Journals (Sweden)

    Subhanjan Mondal

    Full Text Available Filamin and Cortexillin are F-actin crosslinking proteins in Dictyostelium discoideum allowing actin filaments to form three-dimensional networks. GAPA, an IQGAP related protein, is required for cytokinesis and localizes to the cleavage furrow during cytokinesis. Here we describe a novel interaction with Filamin which is required for cytokinesis and regulation of the F-actin content. The interaction occurs through the actin binding domain of Filamin and the GRD domain of GAPA. A similar interaction takes place with Cortexillin I. We further report that Filamin associates with Rac1a implying that filamin might act as a scaffold for small GTPases. Filamin and activated Rac associate with GAPA to regulate actin remodelling. Overexpression of filamin and GAPA in the various strains suggests that GAPA regulates the actin cytoskeleton through interaction with Filamin and that it controls cytokinesis through association with Filamin and Cortexillin.

  14. Capu and Spire Assemble a Cytoplasmic Actin Mesh that Maintains Microtubule Organization in the Drosophila Oocyte

    Science.gov (United States)

    Dahlgaard, Katja; Raposo, Alexandre A.S.F.; Niccoli, Teresa; St Johnston, Daniel

    2007-01-01

    Summary Mutants in the actin nucleators Cappuccino and Spire disrupt the polarized microtubule network in the Drosophila oocyte that defines the anterior-posterior axis, suggesting that microtubule organization depends on actin. Here, we show that Cappuccino and Spire organize an isotropic mesh of actin filaments in the oocyte cytoplasm. capu and spire mutants lack this mesh, whereas overexpressed truncated Cappuccino stabilizes the mesh in the presence of Latrunculin A and partially rescues spire mutants. Spire overexpression cannot rescue capu mutants, but prevents actin mesh disassembly at stage 10B and blocks late cytoplasmic streaming. We also show that the actin mesh regulates microtubules indirectly, by inhibiting kinesin-dependent cytoplasmic flows. Thus, the Capu pathway controls alternative states of the oocyte cytoplasm: when active, it assembles an actin mesh that suppresses kinesin motility to maintain a polarized microtubule cytoskeleton. When inactive, unrestrained kinesin movement generates flows that wash microtubules to the cortex. PMID:17925229

  15. Global Optimization, Local Adaptation, and the Role of Growth in Distribution Networks

    Science.gov (United States)

    Ronellenfitsch, Henrik; Katifori, Eleni

    2016-09-01

    Highly optimized complex transport networks serve crucial functions in many man-made and natural systems such as power grids and plant or animal vasculature. Often, the relevant optimization functional is nonconvex and characterized by many local extrema. In general, finding the global, or nearly global optimum is difficult. In biological systems, it is believed that such an optimal state is slowly achieved through natural selection. However, general coarse grained models for flow networks with local positive feedback rules for the vessel conductivity typically get trapped in low efficiency, local minima. In this work we show how the growth of the underlying tissue, coupled to the dynamical equations for network development, can drive the system to a dramatically improved optimal state. This general model provides a surprisingly simple explanation for the appearance of highly optimized transport networks in biology such as leaf and animal vasculature.

  16. Visualizing and evaluating the growth of multi-institutional collaboration based on research network analysis.

    Science.gov (United States)

    Luo, Jake; Pelfrey, Clara; Zhang, Guo-Qiang

    2014-01-01

    Research collaboration plays an important role in scientific productivity and academic innovation. Multi-institutional collaboration has become a vital approach for integrating multidisciplinary resources and expertise to enhance biomedical research. There is an increasing need for analyzing the effect of multi-institutional research collaboration. In this paper, we present a collaboration analysis pipeline based on research networks constructed from publication co-authorship relationship. Such research networks can be effectively used to render and analyze large-scale institutional collaboration. The co-authorship networks of the Cleveland Clinical and Translational Science Collaborative (CTSC) were visualized and analyzed. SciVal Expert™ was used to extract publication data of the CTSC members. The network was presented in informative and aesthetically appealing diagrams using the open source visualization package Gephi. The analytic result demonstrates the effectiveness of our approach, and it also indicates the substantial growth of research collaboration among the CTSC members crossing its partner institutions.

  17. A Random Growth Model for Power Grids and Other Spatially Embedded Infrastructure Networks

    CERN Document Server

    Schultz, Paul; Kurths, Jürgen

    2016-01-01

    We propose a model to create synthetic networks that may also serve as a narrative of a certain kind of infrastructure network evolution. It consists of an initialization phase with the network extending tree-like for minimum cost and a growth phase with an attachment rule giving a trade-off between cost-optimization and redundancy. Furthermore, we implement the feature of some lines being split during the grid's evolution. We show that the resulting degree distribution has an exponential tail and may show a maximum at degree two, suitable to observations of real-world power grid networks. In particular, the mean degree and the slope of the exponential decay can be controlled in partial independence. To verify to which extent the degree distribution is described by our analytic form, we conduct statistical tests, showing that the hypothesis of an exponential tail is well-accepted for our model data.

  18. Network growth models: A behavioural basis for attachment proportional to fitness

    Science.gov (United States)

    Bell, Michael; Perera, Supun; Piraveenan, Mahendrarajah; Bliemer, Michiel; Latty, Tanya; Reid, Chris

    2017-01-01

    Several growth models have been proposed in the literature for scale-free complex networks, with a range of fitness-based attachment models gaining prominence recently. However, the processes by which such fitness-based attachment behaviour can arise are less well understood, making it difficult to compare the relative merits of such models. This paper analyses an evolutionary mechanism that would give rise to a fitness-based attachment process. In particular, it is proven by analytical and numerical methods that in homogeneous networks, the minimisation of maximum exposure to node unfitness leads to attachment probabilities that are proportional to node fitness. This result is then extended to heterogeneous networks, with supply chain networks being used as an example. PMID:28205599

  19. Nuclear Actin in Development and Transcriptional Reprogramming.

    Science.gov (United States)

    Misu, Shinji; Takebayashi, Marina; Miyamoto, Kei

    2017-01-01

    Actin is a highly abundant protein in eukaryotic cells and dynamically changes its polymerized states with the help of actin-binding proteins. Its critical function as a constituent of cytoskeleton has been well-documented. Growing evidence demonstrates that actin is also present in nuclei, referred to as nuclear actin, and is involved in a number of nuclear processes, including transcriptional regulation and chromatin remodeling. The contribution of nuclear actin to transcriptional regulation can be explained by its direct interaction with transcription machineries and chromatin remodeling factors and by controlling the activities of transcription factors. In both cases, polymerized states of nuclear actin affect the transcriptional outcome. Nuclear actin also plays an important role in activating strongly silenced genes in somatic cells for transcriptional reprogramming. When these nuclear functions of actin are considered, it is plausible to speculate that nuclear actin is also implicated in embryonic development, in which numerous genes need to be activated in a well-coordinated manner. In this review, we especially focus on nuclear actin's roles in transcriptional activation, reprogramming and development, including stem cell differentiation and we discuss how nuclear actin can be an important player in development and cell differentiation.

  20. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Bjørnar Sporsheim

    2015-12-01

    Full Text Available Volatile allyl isothiocyanate (AITC derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER, vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system.

  1. The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter

    Directory of Open Access Journals (Sweden)

    Sérgio Carvalho Leite

    2016-04-01

    Full Text Available The actin-binding protein adducin was recently identified as a component of the neuronal subcortical cytoskeleton. Here, we analyzed mice lacking adducin to uncover the function of this protein in actin rings. α-adducin knockout mice presented progressive axon enlargement in the spinal cord and optic and sciatic nerves, followed by axon degeneration and loss. Using stimulated emission depletion super-resolution microscopy, we show that a periodic subcortical actin cytoskeleton is assembled in every neuron type inspected including retinal ganglion cells and dorsal root ganglia neurons. In neurons devoid of adducin, the actin ring diameter increased, although the inter-ring periodicity was maintained. In vitro, the actin ring diameter adjusted as axons grew, suggesting the lattice is dynamic. Our data support a model in which adducin activity is not essential for actin ring assembly and periodicity but is necessary to control the diameter of both actin rings and axons and actin filament growth within rings.

  2. Percolation mechanism drives actin gels to the critically connected state

    Science.gov (United States)

    Lee, Chiu Fan; Pruessner, Gunnar

    2016-05-01

    Cell motility and tissue morphogenesis depend crucially on the dynamic remodeling of actomyosin networks. An actomyosin network consists of an actin polymer network connected by cross-linker proteins and motor protein myosins that generate internal stresses on the network. A recent discovery shows that for a range of experimental parameters, actomyosin networks contract to clusters with a power-law size distribution [J. Alvarado, Nat. Phys. 9, 591 (2013), 10.1038/nphys2715]. Here, we argue that actomyosin networks can exhibit a robust critical signature without fine-tuning because the dynamics of the system can be mapped onto a modified version of percolation with trapping (PT), which is known to show critical behavior belonging to the static percolation universality class without the need for fine-tuning of a control parameter. We further employ our PT model to generate experimentally testable predictions.

  3. Contribution to growth and increment analysis on the Italian CONECOFOR Level II Network

    Directory of Open Access Journals (Sweden)

    Emilio AMORINI

    2002-09-01

    Full Text Available The paper deals with the "Estimation of growth and yield" included in the National Programme on Intensive Monitoring of Forest Ecosystems CONECOFOR Aims of the paper are: i to outline the composition and design of Level II PMPs network, also examining the structural characteristics of forest stands; ii to describe the contents of mensurational surveys carried out in winter 1996/97 and 1999/00; iii to analyse the growth rates in progress at each PMP using selected descriptors. Stand origin (11 high forests and 13 stored coppices and transitory crops and the number of forest types tested are focused as the main discriminants of the PMPs network. This composition, together with irregular forestry practice, results in a number of consequences (prevailing age classes, tree densities and related stand structures, growth patterns which cause a high in-and-between variability of all growth parameters. For the purposes of this analysis, the network of the plots was divided into three main sets: broadleaved high forest (i.e. beech stands, 6 PMPs; coniferous forest (i.e. Norway spruce stands, 5 PMPs; coppice forest (i.e. deciduous and evergreen oaks, beech and hardbeam stands, 13 PMPs. The measurement of basic growth variables (dbh and tree height was used to describe the tree populations in each PMP; the calculation of basal area, mean and top dbh, mean and top height, provided the reference dataset at each inventory. The assessment of social class according to Kraft gave information on vertical stand structure and made it possible to analyse growth according to tree layers. Data comparison provided increments in the interval 1997-2000. The occurrence of natural mortality and ingrowth was also assessed to take into account their combined effect on tree population dynamics. No trend was found, due to limited data availability, but it was possible to have a detailed overview of the stand situation and growth rates in PMPs.

  4. TIRF microscopy analysis of human Cof1, Cof2, and ADF effects on actin filament severing and turnover.

    Science.gov (United States)

    Chin, Samantha M; Jansen, Silvia; Goode, Bruce L

    2016-04-24

    Dynamic remodeling and turnover of cellular actin networks requires actin filament severing by actin-depolymerizing factor (ADF)/Cofilin proteins. Mammals express three different ADF/Cofilins (Cof1, Cof2, and ADF), and genetic studies suggest that in vivo they perform both overlapping and unique functions. To gain mechanistic insights into their different roles, we directly compared their G-actin and F-actin binding affinities, and quantified the actin filament severing activities of human Cof1, Cof2, and ADF using in vitro total internal reflection fluorescence microscopy. All three ADF/Cofilins had similar affinities for G-actin and F-actin. However, Cof2 and ADF severed filaments much more efficiently than Cof1 at both lower and higher concentrations and using either muscle or platelet actin. Furthermore, Cof2 and ADF were more effective than Cof1 in promoting "enhanced disassembly" when combined with actin disassembly co-factors Coronin-1B and actin-interacting protein 1 (AIP1), and these differences were observed on both preformed and actively growing filaments. To probe the mechanism underlying these differences, we used multi-wavelength total internal reflection fluorescence microscopy to directly observe Cy3-Cof1 and Cy3-Cof2 interacting with actin filaments in real time during severing. Cof1 and Cof2 each bound to filaments with similar kinetics, yet Cof2 induced severing much more rapidly than Cof1, decreasing the time interval between initial binding on a filament and severing at the same location. These differences in ADF/Cofilin activities and mechanisms may be used in cells to tune filament turnover rates, which can vary widely for different actin structures.

  5. A novel weighted evolving network model based on clique overlapping growth

    Institute of Scientific and Technical Information of China (English)

    YANG Xu-hua; WANG Bo; SUN Bao

    2010-01-01

    A novel weighted evolving network model based on the clique overlapping growth was proposed.The model shows different network characteristics under two different selection mechanisms that are preferential selection and random selection.On the basis of mean-field theory,this model under the two different selection mechanisms was analyzed.The analytic equations of distributions of the number of cliques that a vertex joins and the vertex strength of the model were given.It is proved that both distributions follow the scale-free power-law distribution in preferential selection mechanism and the exponential distribution in random selection mechanism,respectively.The analytic expressions of exponents of corresponding distributions were obtained.The agreement between the simulations and analytical results indicates the validity of the theoretical analysis.Finally,three real transport bus networks(BTNs)of Beijing,Shanghai and Hangzhou in China were studied.By analyzing their network properties,it is discovered that these real BTNs belong to a kind of weighted evolving network model with clique overlapping growth and random selection mechanism that was proposed in this context.

  6. The Continuing Growth of Global Cooperation Networks in Research: A Conundrum for National Governments.

    Directory of Open Access Journals (Sweden)

    Caroline S Wagner

    Full Text Available Global collaboration continues to grow as a share of all scientific cooperation, measured as coauthorships of peer-reviewed, published papers. The percent of all scientific papers that are internationally coauthored has more than doubled in 20 years, and they account for all the growth in output among the scientifically advanced countries. Emerging countries, particularly China, have increased their participation in global science, in part by doubling their spending on R&D; they are increasingly likely to appear as partners on internationally coauthored scientific papers. Given the growth of connections at the international level, it is helpful to examine the phenomenon as a communications network and to consider the network as a new organization on the world stage that adds to and complements national systems. When examined as interconnections across the globe over two decades, a global network has grown denser but not more clustered, meaning there are many more connections but they are not grouping into exclusive 'cliques'. This suggests that power relationships are not reproducing those of the political system. The network has features an open system, attracting productive scientists to participate in international projects. National governments could gain efficiencies and influence by developing policies and strategies designed to maximize network benefits-a model different from those designed for national systems.

  7. Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis.

    Science.gov (United States)

    Korobova, Farida; Svitkina, Tatyana

    2010-01-01

    Excitatory synapses in the brain play key roles in learning and memory. The formation and functions of postsynaptic mushroom-shaped structures, dendritic spines, and possibly of presynaptic terminals, rely on actin cytoskeleton remodeling. However, the cytoskeletal architecture of synapses remains unknown hindering the understanding of synapse morphogenesis. Using platinum replica electron microscopy, we characterized the cytoskeletal organization and molecular composition of dendritic spines, their precursors, dendritic filopodia, and presynaptic boutons. A branched actin filament network containing Arp2/3 complex and capping protein was a dominant feature of spine heads and presynaptic boutons. Surprisingly, the spine necks and bases, as well as dendritic filopodia, also contained a network, rather than a bundle, of branched and linear actin filaments that was immunopositive for Arp2/3 complex, capping protein, and myosin II, but not fascin. Thus, a tight actin filament bundle is not necessary for structural support of elongated filopodia-like protrusions. Dynamically, dendritic filopodia emerged from densities in the dendritic shaft, which by electron microscopy contained branched actin network associated with dendritic microtubules. We propose that dendritic spine morphogenesis begins from an actin patch elongating into a dendritic filopodium, which tip subsequently expands via Arp2/3 complex-dependent nucleation and which length is modulated by myosin II-dependent contractility.

  8. A Co-Association Network Analysis of the Genetic Determination of Pig Conformation, Growth and Fatness

    Science.gov (United States)

    Puig-Oliveras, Anna; Ballester, Maria; Corominas, Jordi; Revilla, Manuel; Estellé, Jordi; Fernández, Ana I.; Ramayo-Caldas, Yuliaxis; Folch, Josep M.

    2014-01-01

    Background Several QTLs have been identified for major economically relevant traits in livestock, such as growth and meat quality, revealing the complex genetic architecture of these traits. The use of network approaches considering the interactions of multiple molecules and traits provides useful insights into the molecular underpinnings of complex traits. Here, a network based methodology, named Association Weight Matrix, was applied to study gene interactions and pathways affecting pig conformation, growth and fatness traits. Results The co-association network analysis underpinned three transcription factors, PPARγ, ELF1, and PRDM16 involved in mesoderm tissue differentiation. Fifty-four genes in the network belonged to growth-related ontologies and 46 of them were common with a similar study for growth in cattle supporting our results. The functional analysis uncovered the lipid metabolism and the corticotrophin and gonadotrophin release hormone pathways among the most important pathways influencing these traits. Our results suggest that the genes and pathways here identified are important determining either the total body weight of the animal and the fat content. For instance, a switch in the mesoderm tissue differentiation may determinate the age-related preferred pathways being in the puberty stage those related with the miogenic and osteogenic lineages; on the contrary, in the maturity stage cells may be more prone to the adipocyte fate. Hence, our results demonstrate that an integrative genomic co-association analysis is a powerful approach for identifying new connections and interactions among genes. Conclusions This work provides insights about pathways and key regulators which may be important determining the animal growth, conformation and body proportions and fatness traits. Molecular information concerning genes and pathways here described may be crucial for the improvement of genetic breeding programs applied to pork meat production. PMID:25503799

  9. A co-association network analysis of the genetic determination of pig conformation, growth and fatness.

    Directory of Open Access Journals (Sweden)

    Anna Puig-Oliveras

    Full Text Available Several QTLs have been identified for major economically relevant traits in livestock, such as growth and meat quality, revealing the complex genetic architecture of these traits. The use of network approaches considering the interactions of multiple molecules and traits provides useful insights into the molecular underpinnings of complex traits. Here, a network based methodology, named Association Weight Matrix, was applied to study gene interactions and pathways affecting pig conformation, growth and fatness traits.The co-association network analysis underpinned three transcription factors, PPARγ, ELF1, and PRDM16 involved in mesoderm tissue differentiation. Fifty-four genes in the network belonged to growth-related ontologies and 46 of them were common with a similar study for growth in cattle supporting our results. The functional analysis uncovered the lipid metabolism and the corticotrophin and gonadotrophin release hormone pathways among the most important pathways influencing these traits. Our results suggest that the genes and pathways here identified are important determining either the total body weight of the animal and the fat content. For instance, a switch in the mesoderm tissue differentiation may determinate the age-related preferred pathways being in the puberty stage those related with the miogenic and osteogenic lineages; on the contrary, in the maturity stage cells may be more prone to the adipocyte fate. Hence, our results demonstrate that an integrative genomic co-association analysis is a powerful approach for identifying new connections and interactions among genes.This work provides insights about pathways and key regulators which may be important determining the animal growth, conformation and body proportions and fatness traits. Molecular information concerning genes and pathways here described may be crucial for the improvement of genetic breeding programs applied to pork meat production.

  10. Logistic growth for the Nuzi cuneiform tablets: Analyzing family networks in ancient Mesopotamia

    Science.gov (United States)

    Ueda, Sumie; Makino, Kumi; Itoh, Yoshiaki; Tsuchiya, Takashi

    2015-03-01

    We reconstruct the published year of each cuneiform tablet of the Nuzi society in ancient Mesopotamia. The tablets are on land transaction, marriage, loan, slavery contracts, etc. The number of tablets seems to increase by logistic growth. It may show the dynamics of concentration of lands or other properties into few powerful families in a period of about sixty years and most of them are in about thirty years. We reconstruct family trees and social networks of Nuzi and estimate the published years of cuneiform tablets consistently with the trees and networks, formulating least squares problems with linear inequality constraints.

  11. Plant villin, lily P-135-ABP, possesses G-actin binding activity and accelerates the polymerization and depolymerization of actin in a Ca2+-sensitive manner.

    Science.gov (United States)

    Yokota, Etsuo; Tominaga, Motoki; Mabuchi, Issei; Tsuji, Yasunori; Staiger, Christopher J; Oiwa, Kazuhiro; Shimmen, Teruo

    2005-10-01

    From germinating pollen of lily, two types of villins, P-115-ABP and P-135-ABP, have been identified biochemically. Ca(2+)-CaM-dependent actin-filament binding and bundling activities have been demonstrated for both villins previously. Here, we examined the effects of lily villins on the polymerization and depolymerization of actin. P-115-ABP and P-135-ABP present in a crude protein extract prepared from germinating pollen bound to a DNase I affinity column in a Ca(2+)-dependent manner. Purified P-135-ABP reduced the lag period that precedes actin filament polymerization from monomers in the presence of either Ca(2+) or Ca(2+)-CaM. These results indicated that P-135-ABP can form a complex with G-actin in the presence of Ca(2+) and this complex acts as a nucleus for polymerization of actin filaments. However, the nucleation activity of P-135-ABP is probably not relevant in vivo because the assembly of G-actin saturated with profilin, a situation that mimics conditions found in pollen, was not accelerated in the presence of P-135-ABP. P-135-ABP also enhanced the depolymerization of actin filaments during dilution-mediated disassembly. Growth from filament barbed ends in the presence of Ca(2+)-CaM was also prevented, consistent with filament capping activity. These results suggested that lily villin is involved not only in the arrangement of actin filaments into bundles in the basal and shank region of the pollen tube, but also in regulating and modulating actin dynamics through its capping and depolymerization (or fragmentation) activities in the apical region of the pollen tube, where there is a relatively high concentration of Ca(2+).

  12. Expression patterns of ubiquitin, heat shock protein 70, alpha-actin and beta-actin over the molt cycle in the abdominal muscle of marine shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Cesar, Jose Renato O; Yang, Jinzeng

    2007-05-01

    Crustacean muscle growth is discontinuous due to molt cycle. To characterize molt-related gene expression patterns, we studied the mRNA levels of molecular chaperone-ubiquitin and heat shock protein 70 (Hsp 70) in comparison with muscle protein alpha-actin and beta-actin in marine shrimp Litopenaeus vannamei. Total RNA from abdominal muscle was isolated from 3-month-old animals in six different molt stages. The mRNA levels of target genes were detected by reverse-transcriptase-multiplex PCR and expressed as the ratio to elongation factor-1alpha. Ubiquitin mRNA levels were relatively steady over all stages of the molt cycle. Hsp70 levels were not detectable in early postmolt and late premolt stages, but showed a progressive increase from late postmolt to intermolt stages. Expression levels of alpha-actin gene were lower during postmolt, reached a plateau in intermolt and remained relatively high in premolt stage. Levels of beta-actin increased progressively from postmolt to intermolt, reaching a maximum value in premolt. Therefore, the mRNAs encoding for ubiquitin and Hsp 70 in abdominal muscle did not increase significantly in premolt stages, which is typically associated with claw muscle degradation. Muscle structural alpha-actin and cytoskeletal beta-actin were increased during intermolt and premolt stages, suggesting high muscle growth during these stages in the abdominal muscle of the L. vannamei.

  13. The actin multigene family of Paramecium tetraurelia

    Directory of Open Access Journals (Sweden)

    Wagner Erika

    2007-03-01

    Full Text Available Abstract Background A Paramecium tetraurelia pilot genome project, the subsequent sequencing of a Megabase chromosome as well as the Paramecium genome project aimed at gaining insight into the genome of Paramecium. These cells display a most elaborate membrane trafficking system, with distinct, predictable pathways in which actin could participate. Previously we had localized actin in Paramecium; however, none of the efforts so far could proof the occurrence of actin in the cleavage furrow of a dividing cell, despite the fact that actin is unequivocally involved in cell division. This gave a first hint that Paramecium may possess actin isoforms with unusual characteristics. The genome project gave us the chance to search the whole Paramecium genome, and, thus, to identify and characterize probably all actin isoforms in Paramecium. Results The ciliated protozoan, P. tetraurelia, contains an actin multigene family with at least 30 members encoding actin, actin-related and actin-like proteins. They group into twelve subfamilies; a large subfamily with 10 genes, seven pairs and one trio with > 82% amino acid identity, as well as three single genes. The different subfamilies are very distinct from each other. In comparison to actins in other organisms, P. tetraurelia actins are highly divergent, with identities topping 80% and falling to 30%. We analyzed their structure on nucleotide level regarding the number and position of introns. On amino acid level, we scanned the sequences for the presence of actin consensus regions, for amino acids of the intermonomer interface in filaments, for residues contributing to ATP binding, and for known binding sites for myosin and actin-specific drugs. Several of those characteristics are lacking in several subfamilies. The divergence of P. tetraurelia actins and actin-related proteins between different P. tetraurelia subfamilies as well as with sequences of other organisms is well represented in a phylogenetic

  14. Actin organization, bristle morphology, and viability are affected by actin capping protein mutations in Drosophila

    OpenAIRE

    1996-01-01

    Regulation of actin filament length and orientation is important in many actin-based cellular processes. This regulation is postulated to occur through the action of actin-binding proteins. Many actin-binding proteins that modify actin in vitro have been identified, but in many cases, it is not known if this activity is physiologically relevant. Capping protein (CP) is an actin-binding protein that has been demonstrated to control filament length in vitro by binding to the barbed ends and pre...

  15. The design of MACs (minimal actin cortices).

    Science.gov (United States)

    Vogel, Sven K; Heinemann, Fabian; Chwastek, Grzegorz; Schwille, Petra

    2013-11-01

    The actin cell cortex in eukaryotic cells is a key player in controlling and maintaining the shape of cells, and in driving major shape changes such as in cytokinesis. It is thereby constantly being remodeled. Cell shape changes require forces acting on membranes that are generated by the interplay of membrane coupled actin filaments and assemblies of myosin motors. Little is known about how their interaction regulates actin cell cortex remodeling and cell shape changes. Because of the vital importance of actin, myosin motors and the cell membrane, selective in vivo experiments and manipulations are often difficult to perform or not feasible. Thus, the intelligent design of minimal in vitro systems for actin-myosin-membrane interactions could pave a way for investigating actin cell cortex mechanics in a detailed and quantitative manner. Here, we present and discuss the design of several bottom-up in vitro systems accomplishing the coupling of actin filaments to artificial membranes, where key parameters such as actin densities and membrane properties can be varied in a controlled manner. Insights gained from these in vitro systems may help to uncover fundamental principles of how exactly actin-myosin-membrane interactions govern actin cortex remodeling and membrane properties for cell shape changes.

  16. From pollen actin to crop male sterility

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Actin plays an important role in the life activity of animal and plant cells. Pollen cells have plenty of actin whose structure and characteristics are very similar to the animal actin. The nucleotide sequence and amino acid sequence of plant actin gene are very similar to those of the animal gene. The content of pollen actin from male sterile plants is much more lower than that from its maintainer plants. The expression of actin gene is organ-specific during the plant development. The expression quantity of actin gene in pollen is much more higher than those from root, stem and leaf. The expression plasmid of the anti-sense actin gene was constructed, transferred to the protoplasts of wheat and tomato to inhibit the expression of actin gene in pollen and thus the male sterile plants of wheat and tomato were obtained. The actin in pollens from the transgenic plants was reduced significantly, whereas the pistil was not affected. This study might pave a new way to breeding male sterile lines for the application of hybrid vigor of wheat and tomato.

  17. Non-Contact Plant Growth Measurement Method and System Based on Ubiquitous Sensor Network Technologies

    Directory of Open Access Journals (Sweden)

    Intae Ryoo

    2011-04-01

    Full Text Available This paper proposes a non-contact plant growth measurement system using infrared sensors based on the ubiquitous sensor network (USN technology. The proposed system measures plant growth parameters such as the stem radius of plants using real-time non-contact methods, and generates diameter, cross-sectional area and thickening form of plant stems using this measured data. Non-contact sensors have been used not to cause any damage to plants during measurement of the growth parameters. Once the growth parameters are measured, they are transmitted to a remote server using the sensor network technology and analyzed in the application program server. The analyzed data are then provided for administrators and a group of interested users. The proposed plant growth measurement system has been designed and implemented using fixed-type and rotary-type infrared sensor based measurement methods and devices. Finally, the system performance is compared and verified with the measurement data that have been obtained by practical field experiments.

  18. Application of artificial neural network with extreme learning machine for economic growth estimation

    Science.gov (United States)

    Milačić, Ljubiša; Jović, Srđan; Vujović, Tanja; Miljković, Jovica

    2017-01-01

    The purpose of this research is to develop and apply the artificial neural network (ANN) with extreme learning machine (ELM) to forecast gross domestic product (GDP) growth rate. The economic growth forecasting was analyzed based on agriculture, manufacturing, industry and services value added in GDP. The results were compared with ANN with back propagation (BP) learning approach since BP could be considered as conventional learning methodology. The reliability of the computational models was accessed based on simulation results and using several statistical indicators. Based on results, it was shown that ANN with ELM learning methodology can be applied effectively in applications of GDP forecasting.

  19. Small worlds and semantic network growth in typical and late talkers.

    Science.gov (United States)

    Beckage, Nicole; Smith, Linda; Hills, Thomas

    2011-05-11

    Network analysis has demonstrated that systems ranging from social networks to electric power grids often involve a small world structure-with local clustering but global ac cess. Critically, small world structure has also been shown to characterize adult human semantic networks. Moreover, the connectivity pattern of these mature networks is consistent with lexical growth processes in which children add new words to their vocabulary based on the structure of the language-learning environment. However, thus far, there is no direct evidence that a child's individual semantic network structure is associated with their early language learning. Here we show that, while typically developing children's early networks show small world structure as early as 15 months and with as few as 55 words, children with language delay (late talkers) have this structure to a smaller degree. This implicates a maladaptive bias in word acquisition for late talkers, potentially indicating a preference for "oddball" words. The findings provide the first evidence of a link between small-world connectivity and lexical development in individual children.

  20. Small worlds and semantic network growth in typical and late talkers.

    Directory of Open Access Journals (Sweden)

    Nicole Beckage

    Full Text Available Network analysis has demonstrated that systems ranging from social networks to electric power grids often involve a small world structure-with local clustering but global ac cess. Critically, small world structure has also been shown to characterize adult human semantic networks. Moreover, the connectivity pattern of these mature networks is consistent with lexical growth processes in which children add new words to their vocabulary based on the structure of the language-learning environment. However, thus far, there is no direct evidence that a child's individual semantic network structure is associated with their early language learning. Here we show that, while typically developing children's early networks show small world structure as early as 15 months and with as few as 55 words, children with language delay (late talkers have this structure to a smaller degree. This implicates a maladaptive bias in word acquisition for late talkers, potentially indicating a preference for "oddball" words. The findings provide the first evidence of a link between small-world connectivity and lexical development in individual children.

  1. Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut.

    Science.gov (United States)

    Nuccio, Sean-Paul; Bäumler, Andreas J

    2014-03-18

    The Salmonella genus comprises a group of pathogens associated with illnesses ranging from gastroenteritis to typhoid fever. We performed an in silico analysis of comparatively reannotated Salmonella genomes to identify genomic signatures indicative of disease potential. By removing numerous annotation inconsistencies and inaccuracies, the process of reannotation identified a network of 469 genes involved in central anaerobic metabolism, which was intact in genomes of gastrointestinal pathogens but degrading in genomes of extraintestinal pathogens. This large network contained pathways that enable gastrointestinal pathogens to utilize inflammation-derived nutrients as well as many of the biochemical reactions used for the enrichment and biochemical discrimination of Salmonella serovars. Thus, comparative genome analysis identifies a metabolic network that provides clues about the strategies for nutrient acquisition and utilization that are characteristic of gastrointestinal pathogens. IMPORTANCE While some Salmonella serovars cause infections that remain localized to the gut, others disseminate throughout the body. Here, we compared Salmonella genomes to identify characteristics that distinguish gastrointestinal from extraintestinal pathogens. We identified a large metabolic network that is functional in gastrointestinal pathogens but decaying in extraintestinal pathogens. While taxonomists have used traits from this network empirically for many decades for the enrichment and biochemical discrimination of Salmonella serovars, our findings suggest that it is part of a "business plan" for growth in the inflamed gastrointestinal tract. By identifying a large metabolic network characteristic of Salmonella serovars associated with gastroenteritis, our in silico analysis provides a blueprint for potential strategies to utilize inflammation-derived nutrients and edge out competing gut microbes.

  2. Role of Strong versus Weak Networks in Small Business Growth in an Emerging Economy

    Directory of Open Access Journals (Sweden)

    M. Kamil Kozan

    2014-02-01

    Full Text Available The study tests whether strong rather than weak ties account for small business growth in Turkey. Data were collected by means of a questionnaire filled out by the owners of small firms operating in four cities. Growth is comprised of two main areas, production expansion and knowledge acquisition. Results show that strong ties are positively related to both types of growth. In contrast, loose ties have no effect on small business growth in either area. This finding is attributed to the influence of the collectivistic nature of the mainstream Turkish culture, where owners of small businesses are likely to rely on in-groups rather than out-groups for advice and for financial support. Implications of relative absence of weak ties for small business growth and innovation in emerging economies are discussed. The findings suggest that culture should be included as a contingency variable in future studies of network strength and growth relationship. The paper also discusses the possible moderating role of affective and cognition-based trust in the relation of strong and weak ties to small business growth.

  3. LL-37 induces polymerization and bundling of actin and affects actin structure.

    Directory of Open Access Journals (Sweden)

    Asaf Sol

    Full Text Available Actin exists as a monomer (G-actin which can be polymerized to filaments F-actin that under the influence of actin-binding proteins and polycations bundle and contribute to the formation of the cytoskeleton. Bundled actin from lysed cells increases the viscosity of sputum in lungs of cystic fibrosis patients. The human host defense peptide LL-37 was previously shown to induce actin bundling and was thus hypothesized to contribute to the pathogenicity of this disease. In this work, interactions between actin and the cationic LL-37 were studied by optical, proteolytic and surface plasmon resonance methods and compared to those obtained with scrambled LL-37 and with the cationic protein lysozyme. We show that LL-37 binds strongly to CaATP-G-actin while scrambled LL-37 does not. While LL-37, at superstoichiometric LL-37/actin concentrations polymerizes MgATP-G-actin, at lower non-polymerizing concentrations LL-37 inhibits actin polymerization by MgCl(2 or NaCl. LL-37 bundles Mg-F-actin filaments both at low and physiological ionic strength when in equimolar or higher concentrations than those of actin. The LL-37 induced bundles are significantly less sensitive to increase in ionic strength than those induced by scrambled LL-37 and lysozyme. LL-37 in concentrations lower than those needed for actin polymerization or bundling, accelerates cleavage of both monomer and polymer actin by subtilisin. Our results indicate that the LL-37-actin interaction is partially electrostatic and partially hydrophobic and that a specific actin binding sequence in the peptide is responsible for the hydrophobic interaction. LL-37-induced bundles, which may contribute to the accumulation of sputum in cystic fibrosis, are dissociated very efficiently by DNase-1 and also by cofilin.

  4. Regulation of Actin Dynamics in Pollen Tubes: Control of Actin Polymer Level

    Institute of Scientific and Technical Information of China (English)

    Naizhi Chen; Xiaolu Qu; Youjun Wu; Shanjin Huang

    2009-01-01

    Actin cytoskeleton undergoes rapid reorganization In response to internal and external cues. How the dynamics of actin cytoskeleton are regulated, and how its dynamics relate to its function are fundamental questions inplant cell biology. The pollen tube is a well characterized actin-based call morphogenesis in plants. One of the striking features of actin cytoskeleton characterized in the pollen tube is its surprisingly low level of actin polymer. This special phenomenon might relate to the function of actin cytoskeleton in pollen tubes. Understanding the molecular mechanism underlying this special phenomenon requires careful analysis of actin-binding proteins that modulate actin dynamics directly. Recent biochemical and biophysical analyses of several highly conserved plant actin-binding proteins reveal unusual and un-expected properties, which emphasizes the importance of carefully analyzing their action mechanism and cellular activity. In this review, we highlight an actin monomer sequestering protein, a barbed end capping protein and an F-actin severing and dynamizing protein in plant. We propose that these proteins function in harmony to regulate actin dynamics and maintain the low level of actin polymer in pollen tubes.

  5. An extensive weight-driven network with non-linear growth information

    Science.gov (United States)

    Wang, Lin; Qing Zhang, Gui; Lun Chen, Tian

    2008-12-01

    In many real-world networks such as the Internet, World Wide Web, etc., the number of edges grows in time in a nonlinear fashion. We consider growing weighted networks in which the number of outgoing edges is a nonlinear function of time and the evolution of the edges' weight is based on a mixed mechanism of weight-driven and inner selection dynamics. Moreover, two kinds of selection fashion of nodes (connected by newly established edges) have been investigated. In the common accelerating growth model, the network exhibits a wide-range power law distribution of node strengths. In the poverty alleviation model, node strength distribution can display transition from power law distribution to Poission-like distribution. The clustering coefficient, the weighted shortest path and the correlation property have been investigated simultaneously.

  6. WAVE binds Ena/VASP for enhanced Arp2/3 complex-based actin assembly.

    Science.gov (United States)

    Havrylenko, Svitlana; Noguera, Philippe; Abou-Ghali, Majdouline; Manzi, John; Faqir, Fahima; Lamora, Audrey; Guérin, Christophe; Blanchoin, Laurent; Plastino, Julie

    2015-01-01

    The WAVE complex is the main activator of the Arp2/3 complex for actin filament nucleation and assembly in the lamellipodia of moving cells. Other important players in lamellipodial protrusion are Ena/VASP proteins, which enhance actin filament elongation. Here we examine the molecular coordination between the nucleating activity of the Arp2/3 complex and the elongating activity of Ena/VASP proteins for the formation of actin networks. Using an in vitro bead motility assay, we show that WAVE directly binds VASP, resulting in an increase in Arp2/3 complex-based actin assembly. We show that this interaction is important in vivo as well, for the formation of lamellipodia during the ventral enclosure event of Caenorhabditis elegans embryogenesis. Ena/VASP's ability to bind F-actin and profilin-complexed G-actin are important for its effect, whereas Ena/VASP tetramerization is not necessary. Our data are consistent with the idea that binding of Ena/VASP to WAVE potentiates Arp2/3 complex activity and lamellipodial actin assembly.

  7. Modeling of frost crystal growth over a flat plate using artificial neural networks and fractal geometries

    Science.gov (United States)

    Tahavvor, Ali Reza

    2016-06-01

    In the present study artificial neural network and fractal geometry are used to predict frost thickness and density on a cold flat plate having constant surface temperature under forced convection for different ambient conditions. These methods are very applicable in this area because phase changes such as melting and solidification are simulated by conventional methods but frost formation is a most complicated phase change phenomenon consists of coupled heat and mass transfer. Therefore conventional mathematical techniques cannot capture the effects of all parameters on its growth and development because this process influenced by many factors and it is a time dependent process. Therefore, in this work soft computing method such as artificial neural network and fractal geometry are used to do this manner. The databases for modeling are generated from the experimental measurements. First, multilayer perceptron network is used and it is found that the back-propagation algorithm with Levenberg-Marquardt learning rule is the best choice to estimate frost growth properties due to accurate and faster training procedure. Second, fractal geometry based on the Von-Koch curve is used to model frost growth procedure especially in frost thickness and density. Comparison is performed between experimental measurements and soft computing methods. Results show that soft computing methods can be used more efficiently to determine frost properties over a flat plate. Based on the developed models, wide range of frost formation over flat plates can be determined for various conditions.

  8. Modeling of frost crystal growth over a flat plate using artificial neural networks and fractal geometries

    Science.gov (United States)

    Tahavvor, Ali Reza

    2017-03-01

    In the present study artificial neural network and fractal geometry are used to predict frost thickness and density on a cold flat plate having constant surface temperature under forced convection for different ambient conditions. These methods are very applicable in this area because phase changes such as melting and solidification are simulated by conventional methods but frost formation is a most complicated phase change phenomenon consists of coupled heat and mass transfer. Therefore conventional mathematical techniques cannot capture the effects of all parameters on its growth and development because this process influenced by many factors and it is a time dependent process. Therefore, in this work soft computing method such as artificial neural network and fractal geometry are used to do this manner. The databases for modeling are generated from the experimental measurements. First, multilayer perceptron network is used and it is found that the back-propagation algorithm with Levenberg-Marquardt learning rule is the best choice to estimate frost growth properties due to accurate and faster training procedure. Second, fractal geometry based on the Von-Koch curve is used to model frost growth procedure especially in frost thickness and density. Comparison is performed between experimental measurements and soft computing methods. Results show that soft computing methods can be used more efficiently to determine frost properties over a flat plate. Based on the developed models, wide range of frost formation over flat plates can be determined for various conditions.

  9. Actin gene family in Branchiostoma belched

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Actin is a highly conserved cytoskeletal protein that is found in essentially all eukaryotic cells,which plays a paramount role in several basic functions of the organism, such as the maintenance of cellshape, cell division, cell mobility and muscle contraction. However, little is known about actin gene family inChinese amphioxus (Branchiostoma belcheri). Here we systemically analyzed the actin genes family inBranchiostoma belched and found that amphioxus contains 33 actin genes. These genes have undergoneextensive expansion through tandem duplications by phylogenetic analysis. In addition, we also providedevidence indicating that actin genes have divergent functions by specializing their EST data in both Bran-chiostoma belched and Branchiostoma florida. Our results provided an alternative explanation for the evolu-tion of actin genes, and gave new insights into their functional roles.

  10. The Drosophila planar polarity gene multiple wing hairs directly regulates the actin cytoskeleton.

    Science.gov (United States)

    Lu, Qiuheng; Schafer, Dorothy A; Adler, Paul N

    2015-07-15

    The evolutionarily conserved frizzled/starry night (fz/stan) pathway regulates planar cell polarity (PCP) in vertebrates and invertebrates. This pathway has been extensively studied in the Drosophila wing, where it is manifested by an array of distally pointing cuticular hairs. Using in vivo imaging we found that, early in hair growth, cells have multiple actin bundles and hairs that subsequently fuse into a single growing hair. The downstream PCP gene multiple wing hairs (mwh) plays a key role in this process and acts to antagonize the actin cytoskeleton. In mwh mutants hair initiation is not limited to a small region at the distal edge of pupal wing cells as in wild type, resulting in multiple hairs with aberrant polarity. Extra actin bundles/hairs are formed and do not completely fuse, in contrast to wild type. As development proceeded additional hairs continued to form, further increasing hair number. We identified a fragment of Mwh with in vivo rescue activity and that bound and bundled F-actin filaments and inhibited actin polymerization in in vitro actin assays. The loss of these activities can explain the mwh mutant phenotype. Our data suggest a model whereby, prior to hair initiation, proximally localized Mwh inhibits actin polymerization resulting in polarized activation of the cytoskeleton and hair formation on the distal side of wing cells. During hair growth Mwh is found in growing hairs, where we suggest it functions to promote the fusion of actin bundles and inhibit the formation of additional actin bundles that could lead to extra hairs.

  11. Filopodia-like actin cables position nuclei in association with perinuclear actin in Drosophila nurse cells.

    Science.gov (United States)

    Huelsmann, Sven; Ylänne, Jari; Brown, Nicholas H

    2013-09-30

    Controlling the position of the nucleus is vital for a number of cellular processes from yeast to humans. In Drosophila nurse cells, nuclear positioning is crucial during dumping, when nurse cells contract and expel their contents into the oocyte. We provide evidence that in nurse cells, continuous filopodia-like actin cables, growing from the plasma membrane and extending to the nucleus, achieve nuclear positioning. These actin cables move nuclei away from ring canals. When nurse cells contract, actin cables associate laterally with the nuclei, in some cases inducing nuclear turning so that actin cables become partially wound around the nuclei. Our data suggest that a perinuclear actin meshwork connects actin cables to nuclei via actin-crosslinking proteins such as the filamin Cheerio. We provide a revised model for how actin structures position nuclei in nurse cells, employing evolutionary conserved machinery.

  12. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II.

    Science.gov (United States)

    Serebryannyy, Leonid A; Parilla, Megan; Annibale, Paolo; Cruz, Christina M; Laster, Kyle; Gratton, Enrico; Kudryashov, Dmitri; Kosak, Steven T; Gottardi, Cara J; de Lanerolle, Primal

    2016-09-15

    Actin is abundant in the nucleus and it is clear that nuclear actin has important functions. However, mystery surrounds the absence of classical actin filaments in the nucleus. To address this question, we investigated how polymerizing nuclear actin into persistent nuclear actin filaments affected transcription by RNA polymerase II. Nuclear filaments impaired nuclear actin dynamics by polymerizing and sequestering nuclear actin. Polymerizing actin into stable nuclear filaments disrupted the interaction of actin with RNA polymerase II and correlated with impaired RNA polymerase II localization, dynamics, gene recruitment, and reduced global transcription and cell proliferation. Polymerizing and crosslinking nuclear actin in vitro similarly disrupted the actin-RNA-polymerase-II interaction and inhibited transcription. These data rationalize the general absence of stable actin filaments in mammalian somatic nuclei. They also suggest a dynamic pool of nuclear actin is required for the proper localization and activity of RNA polymerase II.

  13. Packaging of actin into Ebola virus VLPs

    Directory of Open Access Journals (Sweden)

    Harty Ronald N

    2005-12-01

    Full Text Available Abstract The actin cytoskeleton has been implicated in playing an important role assembly and budding of several RNA virus families including retroviruses and paramyxoviruses. In this report, we sought to determine whether actin is incorporated into Ebola VLPs, and thus may play a role in assembly and/or budding of Ebola virus. Our results indicated that actin and Ebola virus VP40 strongly co-localized in transfected cells as determined by confocal microscopy. In addition, actin was packaged into budding VP40 VLPs as determined by a functional budding assay and protease protection assay. Co-expression of a membrane-anchored form of Ebola virus GP enhanced the release of both VP40 and actin in VLPs. Lastly, disruption of the actin cytoskeleton with latrunculin-A suggests that actin may play a functional role in budding of VP40/GP VLPs. These data suggest that VP40 may interact with cellular actin, and that actin may play a role in assembly and/or budding of Ebola VLPs.

  14. Dynamic Actin Gene Family Evolution in Primates

    Directory of Open Access Journals (Sweden)

    Liucun Zhu

    2013-01-01

    Full Text Available Actin is one of the most highly conserved proteins and plays crucial roles in many vital cellular functions. In most eukaryotes, it is encoded by a multigene family. Although the actin gene family has been studied a lot, few investigators focus on the comparison of actin gene family in relative species. Here, the purpose of our study is to systematically investigate characteristics and evolutionary pattern of actin gene family in primates. We identified 233 actin genes in human, chimpanzee, gorilla, orangutan, gibbon, rhesus monkey, and marmoset genomes. Phylogenetic analysis showed that actin genes in the seven species could be divided into two major types of clades: orthologous group versus complex group. Codon usages and gene expression patterns of actin gene copies were highly consistent among the groups because of basic functions needed by the organisms, but much diverged within species due to functional diversification. Besides, many great potential pseudogenes were found with incomplete open reading frames due to frameshifts or early stop codons. These results implied that actin gene family in primates went through “birth and death” model of evolution process. Under this model, actin genes experienced strong negative selection and increased the functional complexity by reproducing themselves.

  15. Enhanced growth of neural networks on conductive cellulose-derived nanofibrous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmenko, Volodymyr [Wallenberg Wood Science Center, Chalmers University of Technology, Kemivägen 4, SE-412 96 Gothenburg (Sweden); Department of Microtechnology and Nanoscience, Chalmers University of Technology, Kemivägen 9, SE-412 96 Gothenburg (Sweden); Kalogeropoulos, Theodoros [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 4, SE-412 96 Gothenburg (Sweden); Thunberg, Johannes [Wallenberg Wood Science Center, Chalmers University of Technology, Kemivägen 4, SE-412 96 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 4, SE-412 96 Gothenburg (Sweden); Johannesson, Sara; Hägg, Daniel [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 4, SE-412 96 Gothenburg (Sweden); Enoksson, Peter [Wallenberg Wood Science Center, Chalmers University of Technology, Kemivägen 4, SE-412 96 Gothenburg (Sweden); Department of Microtechnology and Nanoscience, Chalmers University of Technology, Kemivägen 9, SE-412 96 Gothenburg (Sweden); Gatenholm, Paul, E-mail: paul.gatenholm@chalmers.se [Wallenberg Wood Science Center, Chalmers University of Technology, Kemivägen 4, SE-412 96 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 4, SE-412 96 Gothenburg (Sweden)

    2016-01-01

    The problem of recovery from neurodegeneration needs new effective solutions. Tissue engineering is viewed as a prospective approach for solving this problem since it can help to develop healthy neural tissue using supportive scaffolds. This study presents effective and sustainable tissue engineering methods for creating biomaterials from cellulose that can be used either as scaffolds for the growth of neural tissue in vitro or as drug screening models. To reach this goal, nanofibrous electrospun cellulose mats were made conductive via two different procedures: carbonization and addition of multi-walled carbon nanotubes. The resulting scaffolds were much more conductive than untreated cellulose material and were used to support growth and differentiation of SH-SY5Y neuroblastoma cells. The cells were evaluated by scanning electron microscopy and confocal microscopy methods over a period of 15 days at different time points. The results showed that the cellulose-derived conductive scaffolds can provide support for good cell attachment, growth and differentiation. The formation of a neural network occurred within 10 days of differentiation, which is a promising length of time for SH-SY5Y neuroblastoma cells. - Highlights: • The conductive scaffolds for neural tissue engineering are derived from cellulose. • The scaffolds are used to support growth and differentiation of SH-SY5Y cells. • Distinctive cell differentiation occurs within 10 days on conductive scaffolds. • Electrical conductivity and nanotopography improve neural network formation.

  16. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis

    OpenAIRE

    Spracklen, Andrew J.; Fagan, Tiffany N.; Lovander, Kaylee E.; Tootle, Tina L.

    2014-01-01

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools – Utrophin, Lifeact, an...

  17. Actin Remodeling and Polymerization Forces Control Dendritic Spine Morphology

    CERN Document Server

    Miermans, Karsten; Storm, Cornelis; Hoogenraad, Casper

    2015-01-01

    Dendritic spines are small membranous structures that protrude from the neuronal dendrite. Each spine contains a synaptic contact site that may connect its parent dendrite to the axons of neighboring neurons. Dendritic spines are markedly distinct in shape and size, and certain types of stimulation prompt spines to evolve, in fairly predictable fashion, from thin nascent morphologies to the mushroom-like shapes associated with mature spines. This striking progression is coincident with the (re)configuration of the neuronal network during early development, learning and memory formation, and has been conjectured to be part of the machinery that encodes these processes at the scale of individual neuronal connections. It is well established that the structural plasticity of spines is strongly dependent upon the actin cytoskeleton inside the spine. A general framework that details the precise role of actin in directing the transitions between the various spine shapes is lacking. We address this issue, and present...

  18. Spontaneous symmetry breaking for geometrical trajectories of actin-based motility in three dimensions

    Science.gov (United States)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2016-07-01

    Actin-based motility is important for many cellular processes. In this article we extend our previous studies of an actin-propelled circular disk in two dimensions to an actin-propelled spherical bead in three dimensions. We find that for an achiral load the couplings between the motion of the load and the actin network induce a series of bifurcations, starting with a transition from rest to moving state, followed by a transition from straight to planar curves, and finally a further transition from motion in a plane to one with torsion. To address the intriguing, experimentally observed chiral motility of the bacterium Listeria monocytogenes, we also study the motility of a spherical load with a built-in chirality. For such a chiral load, stable circular trajectories are no longer found in numerical simulations. Instead, helical trajectories with handedness that depends on the chirality of the load are found. Our results reveal the relation between the symmetry of actin network and the trajectories of actin-propelled loads.

  19. Preferential attachment in the growth of social networks: the internet encyclopedia Wikipedia.

    Science.gov (United States)

    Capocci, A; Servedio, V D P; Colaiori, F; Buriol, L S; Donato, D; Leonardi, S; Caldarelli, G

    2006-09-01

    We present an analysis of the statistical properties and growth of the free on-line encyclopedia Wikipedia. By describing topics by vertices and hyperlinks between them as edges, we can represent this encyclopedia as a directed graph. The topological properties of this graph are in close analogy with those of the World Wide Web, despite the very different growth mechanism. In particular, we measure a scale-invariant distribution of the in and out degree and we are able to reproduce these features by means of a simple statistical model. As a major consequence, Wikipedia growth can be described by local rules such as the preferential attachment mechanism, though users, who are responsible of its evolution, can act globally on the network.

  20. Interaction of actin with plasminogen/plasmin system: mechanisms and physiological role

    Directory of Open Access Journals (Sweden)

    Tykhomyrov A. A.

    2012-12-01

    Full Text Available In the present review, we have summarized and analyzed the literature data concerning cooperation between multifunctional proteins, the components of plasminogen/plasmin system and actin. The mechanisms underlying intermolecular interactions and the role of plasminogen kringle domains in protein-protein recognition are reviewed. A particular attention is paid to extracellular actin that serves as a surface protein of plasma membrane in various cells. A putative role of surface actin as the universal «non-hemostatic» center of plasminogen activation is discussed. The exposition of cytoskeletal actin on the outer surface of cellular membrane is thought to be a phenomenon, which is involved in both normal cell functioning and development of pathologies. In particular, the mechanism of plasminogen fragmentation on the surface of cancer cells mediated by actin, which results in generation of endogenous suppressors of tumor growth and metastazing (angiostatins, is described. It has been acknowledged that the plasminogen/plasmin system in concert with surface actin regulates releasing biologically active substances, e. g. catecholamines. The comprehensive assessment of plasminogen/plasmin system and surface actin exposition is proposed to be a criterion of functional status of cells and can be used as a diagnostic parameter at various pathologies.

  1. Retinoids and glucocorticoids have opposite effects on actin cytoskeleton rearrangement in hippocampal HT22 cells.

    Science.gov (United States)

    Hélène, Roumes; Julie, Brossaud; Aloïs, Lemelletier; Marie-Pierre, Moisan; Véronique, Pallet; Anabelle, Redonnet; Jean-Benoît, Corcuff

    2016-02-01

    A chronic excess of glucocorticoids elicits deleterious effects in the hippocampus. Conversely, retinoic acid plays a major role in aging brain plasticity. As synaptic plasticity depends on mechanisms related to cell morphology, we investigated the involvement of retinoic acid and glucocorticoids in the remodelling of the HT22 neurons actin cytoskeleton. Cells exhibited a significantly more elongated shape with retinoic acid and a rounder shape with dexamethasone; retinoic acid reversed the effects of dexamethasone. Actin expression and abundance were unchanged by retinoic acid or dexamethasone but F-actin organization was dramatically modified. Indeed, retinoic acid and dexamethasone increased (70 ± 7% and 176 ± 5%) cortical actin while retinoic acid suppressed the effect of dexamethasone (90 ± 6%). Retinoic acid decreased (-22 ± 9%) and dexamethasone increased (134 ± 16%) actin stress fibres. Retinoic acid also suppressed the effect of dexamethasone (-21 ± 7%). Spectrin is a key protein in the actin network remodelling. Its abundance was decreased by retinoic acid and increased by dexamethasone (-21 ± 11% and 52 ± 10%). However, retinoic acid did not modify the effect of dexamethasone (48 ± 7%). Calpain activity on spectrin was increased by retinoic acid and decreased by dexamethasone (26 ± 14% and -57 ± 5%); retinoic acid mildly but significantly modified the effect of dexamethasone (-44 ± 7%). The calpain inhibitor calpeptin suppressed the effects of retinoic acid and dexamethasone on cell shape and actin stress fibres remodelling but did not modify the effects on cortical actin. Retinoic acid and dexamethasone have a dramatic but mainly opposite effect on actin cytoskeleton remodelling. These effects originate, at least partly, from calpain activity.

  2. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis.

    Science.gov (United States)

    Spracklen, Andrew J; Fagan, Tiffany N; Lovander, Kaylee E; Tootle, Tina L

    2014-09-15

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools--Utrophin, Lifeact, and F-tractin--for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling tool

  3. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia

    DEFF Research Database (Denmark)

    Rasmussen, Izabela; Pedersen, Line Hjortshøj; Byg, Luise;

    2010-01-01

    Most in vivo studies that have addressed the role of actin dynamics in NADPH oxidase function in phagocytes have used toxins to modulate the polymerization state of actin and mostly effects on actin has been evaluated by end point measurements of filamentous actin, which says little about actin d...

  4. Analytical solutions of actin-retrograde-flow in a circular stationary cell: a mechanical point of view.

    Science.gov (United States)

    Ghasemi, V A; Firoozabadi, B; Saidi, M S

    2014-03-01

    The network of actin filaments in the lamellipodium (LP) of stationary and migrating cells flows in a retrograde direction, from the membrane periphery toward the cell nucleus. We have theoretically studied this phenomenon in the circular stationary (fully spread) cells. Adopting a continuum view on the LP actin network, new closed-form solutions are provided for the actin-retrograde-flow (ARF) in a polar coordinate system. Due to discrepancy in the mechanical models of the actin network in the ARF regime, solutions are provided for both assumptions of solid and fluid behavior. Other involved phenomena, including polymerizing machine at the membrane periphery, cytosol drag, adhesion friction, and membrane tension, are also discussed to provide an overall quantitative view on this problem.

  5. URBAN GROWTH MODELING USING AN ARTIFICIAL NEURAL NETWORK A CASE STUDY OF SANANDAJ CITY, IRAN

    Directory of Open Access Journals (Sweden)

    S. Mohammady

    2014-10-01

    Full Text Available Land use activity is a major issue and challenge for town and country planners. Modelling and managing urban growth is a complex problem. Cities are now recognized as complex, non-linear and dynamic process systems. The design of a system that can handle these complexities is a challenging prospect. Local governments that implement urban growth models need to estimate the amount of urban land required in the future given anticipated growth of housing, business, recreation and other urban uses within the boundary. There are so many negative implications related with the type of inappropriate urban development such as increased traffic and demand for mobility, reduced landscape attractively, land use fragmentation, loss of biodiversity and alterations of the hydrological cycle. The aim of this study is to use the Artificial Neural Network (ANN to make a powerful tool for simulating urban growth patterns. Our study area is Sanandaj city located in the west of Iran. Landsat imageries acquired at 2000 and 2006 are used. Dataset were used include distance to principle roads, distance to residential areas, elevation, slope, distance to green spaces and distance to region centers. In this study an appropriate methodology for urban growth modelling using satellite remotely sensed data is presented and evaluated. Percent Correct Match (PCM and Figure of Merit were used to evaluate ANN results.

  6. Environmental Regulation, Economic Network and Sustainable Growth of Urban Agglomerations in China

    Directory of Open Access Journals (Sweden)

    Zhaohui Chong

    2016-05-01

    Full Text Available In this paper, we examine the influence of environmental regulation on sustainable economic growth from both theoretical and empirical perspectives. Our research is twofold. First, we apply a modified NEG (New Economic Geography model to analyze how environmental regulation influences firms’ location choices and cities’ sustainable economic growth. Second, we test a spatial econometric model employing panel data of the three largest urban agglomerations in China from 2003 to 2013 to study the relationship between environmental regulation and sustainable economic growth as well as the spillover channels of economic activities. The results reveal a remarkable negative effect of environmental regulation on economic growth. In addition, we find no sufficient evidence to prove the existence of long-term effects of environmental regulation on economic growth in the three urban agglomerations. Furthermore, using different weight matrices to illustrate the different economic networks of the urban agglomeration, we validate the difference in spillover mechanisms across these three urban agglomerations. Specifically, the disparity in environmental regulation acts as a spillover channel for the Yangtze River Delta and the Pearl River Delta, while it is not significant for Jing-Jin-Ji.

  7. Evolution of the Cp-Actin-based Motility System of Chloroplasts in Green Plants.

    Science.gov (United States)

    Suetsugu, Noriyuki; Wada, Masamitsu

    2016-01-01

    During the course of green plant evolution, numerous light responses have arisen that optimize their growth under fluctuating light conditions. The blue light receptor phototropin mediates several photomovement responses at the tissue, cellular and organelle levels. Chloroplast photorelocation movement is one such photomovement response, and is found not only in most green plants, but also in some red algae and photosynthetic stramenopiles. In general, chloroplasts move toward weak light to maximally capture photosynthetically active radiation (the chloroplast accumulation response), and they move away from strong light to avoid photodamage (the avoidance response). In land plants, chloroplast movement is dependent on specialized actin filaments, chloroplast-actin filaments (cp-actin filaments). Through molecular genetic analysis using Arabidopsis thaliana, many molecular factors that regulate chloroplast photorelocation were identified. In this Perspective, we discuss the evolutionary history of the molecular mechanism for chloroplast photorelocation movement in green plants in view of cp-actin filaments.

  8. F- and G-actin homeostasis regulates mechanosensitive actin nucleation by formins.

    Science.gov (United States)

    Higashida, Chiharu; Kiuchi, Tai; Akiba, Yushi; Mizuno, Hiroaki; Maruoka, Masahiro; Narumiya, Shuh; Mizuno, Kensaku; Watanabe, Naoki

    2013-04-01

    Physical force evokes rearrangement of the actin cytoskeleton. Signalling pathways such as tyrosine kinases, stretch-activated Ca(2+) channels and Rho GTPases are involved in force sensing. However, how signals are transduced to actin assembly remains obscure. Here we show mechanosensitive actin polymerization by formins (formin homology proteins). Cells overexpressing mDia1 increased the amount of F-actin on release of cell tension. Fluorescence single-molecule speckle microscopy revealed rapid induction of processive actin assembly by mDia1 on cell cortex deformation. mDia1 lacking the Rho-binding domain and other formins exhibited mechanosensitive actin nucleation, suggesting Rho-independent activation. Mechanosensitive actin nucleation by mDia1 required neither Ca(2+) nor kinase signalling. Overexpressing LIM kinase abrogated the induction of processive mDia1. Furthermore, s-FDAPplus (sequential fluorescence decay after photoactivation) analysis revealed a rapid actin monomer increase on cell cortex deformation. Our direct visualization of the molecular behaviour reveals a mechanosensitive actin filament regeneration mechanism in which G-actin released by actin remodelling plays a pivotal role.

  9. Scaling behaviours in the growth of networked systems and their geometric origins.

    Science.gov (United States)

    Zhang, Jiang; Li, Xintong; Wang, Xinran; Wang, Wen-Xu; Wu, Lingfei

    2015-04-29

    Two classes of scaling behaviours, namely the super-linear scaling of links or activities, and the sub-linear scaling of area, diversity, or time elapsed with respect to size have been found to prevail in the growth of complex networked systems. Despite some pioneering modelling approaches proposed for specific systems, whether there exists some general mechanisms that account for the origins of such scaling behaviours in different contexts, especially in socioeconomic systems, remains an open question. We address this problem by introducing a geometric network model without free parameter, finding that both super-linear and sub-linear scaling behaviours can be simultaneously reproduced and that the scaling exponents are exclusively determined by the dimension of the Euclidean space in which the network is embedded. We implement some realistic extensions to the basic model to offer more accurate predictions for cities of various scaling behaviours and the Zipf distribution reported in the literature and observed in our empirical studies. All of the empirical results can be precisely recovered by our model with analytical predictions of all major properties. By virtue of these general findings concerning scaling behaviour, our models with simple mechanisms gain new insights into the evolution and development of complex networked systems.

  10. A method for rapidly screening functionality of actin mutants and tagged actins

    Directory of Open Access Journals (Sweden)

    Rommelaere Heidi

    2004-01-01

    Full Text Available Recombinant production and biochemical analysis of actin mutants has been hampered by the fact that actin has an absolute requirement for the eukaryotic chaperone CCT to reach its native state. We therefore have developed a method to rapidly screen the folding capacity and functionality of actin variants, by combining in vitro expression of labelled actin with analysis on native gels, band shift assays or copolymerization tests. Additionally, we monitor, using immuno-fluorescence, incorporation of actin variants in cytoskeletal structures in transfected cells. We illustrate the method by two examples. In one we show that tagged versions of actin do not always behave native-like and in the other we study some of the molecular defects of three &bgr;-actin mutants that have been associated with diseases.

  11. In silico reconstitution of actin-based symmetry breaking and motility.

    Directory of Open Access Journals (Sweden)

    Mark J Dayel

    2009-09-01

    Full Text Available Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system.

  12. Xenopus egg cytoplasm with intact actin.

    Science.gov (United States)

    Field, Christine M; Nguyen, Phuong A; Ishihara, Keisuke; Groen, Aaron C; Mitchison, Timothy J

    2014-01-01

    We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts.

  13. Subunits of the Drosophila actin-capping protein heterodimer regulate each other at multiple levels.

    Directory of Open Access Journals (Sweden)

    Ana Rita Amândio

    Full Text Available The actin-Capping Protein heterodimer, composed of the α and β subunits, is a master F-actin regulator. In addition to its role in many cellular processes, Capping Protein acts as a main tumor suppressor module in Drosophila and in humans, in part, by restricting the activity of Yorkie/YAP/TAZ oncogenes. We aimed in this report to understand how both subunits regulate each other in vivo. We show that the levels and capping activities of both subunits must be tightly regulated to control F-actin levels and consequently growth of the Drosophila wing. Overexpressing capping protein α and β decreases both F-actin levels and tissue growth, while expressing forms of Capping Protein that have dominant negative effects on F-actin promote tissue growth. Both subunits regulate each other's protein levels. In addition, overexpressing one of the subunit in tissues knocked-down for the other increases the mRNA and protein levels of the subunit knocked-down and compensates for its loss. We propose that the ability of the α and β subunits to control each other's levels assures that a pool of functional heterodimer is produced in sufficient quantities to restrict the development of tumor but not in excess to sustain normal tissue growth.

  14. Subunits of the Drosophila actin-capping protein heterodimer regulate each other at multiple levels.

    Science.gov (United States)

    Amândio, Ana Rita; Gaspar, Pedro; Whited, Jessica L; Janody, Florence

    2014-01-01

    The actin-Capping Protein heterodimer, composed of the α and β subunits, is a master F-actin regulator. In addition to its role in many cellular processes, Capping Protein acts as a main tumor suppressor module in Drosophila and in humans, in part, by restricting the activity of Yorkie/YAP/TAZ oncogenes. We aimed in this report to understand how both subunits regulate each other in vivo. We show that the levels and capping activities of both subunits must be tightly regulated to control F-actin levels and consequently growth of the Drosophila wing. Overexpressing capping protein α and β decreases both F-actin levels and tissue growth, while expressing forms of Capping Protein that have dominant negative effects on F-actin promote tissue growth. Both subunits regulate each other's protein levels. In addition, overexpressing one of the subunit in tissues knocked-down for the other increases the mRNA and protein levels of the subunit knocked-down and compensates for its loss. We propose that the ability of the α and β subunits to control each other's levels assures that a pool of functional heterodimer is produced in sufficient quantities to restrict the development of tumor but not in excess to sustain normal tissue growth.

  15. Actin dynamics shape microglia effector functions.

    Science.gov (United States)

    Uhlemann, Ria; Gertz, Karen; Boehmerle, Wolfgang; Schwarz, Tobias; Nolte, Christiane; Freyer, Dorette; Kettenmann, Helmut; Endres, Matthias; Kronenberg, Golo

    2016-06-01

    Impaired actin filament dynamics have been associated with cellular senescence. Microglia, the resident immune cells of the brain, are emerging as a central pathophysiological player in neurodegeneration. Microglia activation, which ranges on a continuum between classical and alternative, may be of critical importance to brain disease. Using genetic and pharmacological manipulations, we studied the effects of alterations in actin dynamics on microglia effector functions. Disruption of actin dynamics did not affect transcription of genes involved in the LPS-triggered classical inflammatory response. By contrast, in consequence of impaired nuclear translocation of phospho-STAT6, genes involved in IL-4 induced alternative activation were strongly downregulated. Functionally, impaired actin dynamics resulted in reduced NO secretion and reduced release of TNFalpha and IL-6 from LPS-stimulated microglia and of IGF-1 from IL-4 stimulated microglia. However, pathological stabilization of the actin cytoskeleton increased LPS-induced release of IL-1beta and IL-18, which belong to an unconventional secretory pathway. Reduced NO release was associated with decreased cytoplasmic iNOS protein expression and decreased intracellular arginine uptake. Furthermore, disruption of actin dynamics resulted in reduced microglia migration, proliferation and phagocytosis. Finally, baseline and ATP-induced [Ca(2+)]int levels were significantly increased in microglia lacking gelsolin, a key actin-severing protein. Together, the dynamic state of the actin cytoskeleton profoundly and distinctly affects microglia behaviours. Disruption of actin dynamics attenuates M2 polarization by inhibiting transcription of alternative activation genes. In classical activation, the role of actin remodelling is complex, does not relate to gene transcription and shows a major divergence between cytokines following conventional and unconventional secretion.

  16. Crystal structure of an archaeal actin homolog.

    Science.gov (United States)

    Roeben, Annette; Kofler, Christine; Nagy, István; Nickell, Stephan; Hartl, F Ulrich; Bracher, Andreas

    2006-04-21

    Prokaryotic homologs of the eukaryotic structural protein actin, such as MreB and ParM, have been implicated in determination of bacterial cell shape, and in the segregation of genomic and plasmid DNA. In contrast to these bacterial actin homologs, little is known about the archaeal counterparts. As a first step, we expressed a predicted actin homolog of the thermophilic archaeon Thermoplasma acidophilum, Ta0583, and determined its crystal structure at 2.1A resolution. Ta0583 is expressed as a soluble protein in T.acidophilum and is an active ATPase at physiological temperature. In vitro, Ta0583 forms sheets with spacings resembling the crystal lattice, indicating an inherent propensity to form filamentous structures. The fold of Ta0583 contains the core structure of actin and clearly belongs to the actin/Hsp70 superfamily of ATPases. Ta0583 is approximately equidistant from actin and MreB on the structural level, and combines features from both eubacterial actin homologs, MreB and ParM. The structure of Ta0583 co-crystallized with ADP indicates that the nucleotide binds at the interface between the subdomains of Ta0583 in a manner similar to that of actin. However, the conformation of the nucleotide observed in complex with Ta0583 clearly differs from that in complex with actin, but closely resembles the conformation of ParM-bound nucleotide. On the basis of sequence and structural homology, we suggest that Ta0583 derives from a ParM-like actin homolog that was once encoded by a plasmid and was transferred into a common ancestor of Thermoplasma and Ferroplasma. Intriguingly, both genera are characterized by the lack of a cell wall, and therefore Ta0583 could have a function in cellular organization.

  17. Self-organized growth of nanoparticles on a surface patterned by a buried dislocation network.

    Science.gov (United States)

    Leroy, F; Renaud, G; Letoublon, A; Lazzari, R; Mottet, C; Goniakowski, J

    2005-10-28

    The self-organized growth of Co nanoparticles is achieved at room temperature on an inhomogenously strained Ag(001) surface arising from an underlying square misfit dislocation network of 10 nm periodicity buried at the interface between a 5 nm-thick Ag film and a MgO(001) substrate. This is revealed by in situ grazing-incidence small-angle x-ray scattering. Simulations of the data performed in the distorted wave Born approximation framework demonstrate that the Co clusters grow above the dislocation crossing lines. This is confirmed by molecular dynamic simulations indicating preferential Co adsorption on tensile sites.

  18. The Evolution of the Actin Binding NET Superfamily

    Directory of Open Access Journals (Sweden)

    Tim eHawkins

    2014-06-01

    Full Text Available The arabidopsis Networked protein superfamily are plant-specific actin binding proteins which specifically label different membrane compartments and identify specialized sites of interaction between actin and membranes unique to plants. There are 13 members of the superfamily in arabidopsis which group into 4 distinct clades or subfamilies. NET homologues are absent from the genomes of metazoa and fungi, furthermore in Plantae NET sequences are also absent from the genome of mosses and more ancient extant plant clades. A single subfamily of the NET proteins are found encoded in the club moss genome; an extant species of the earliest vascular plants. Gymnosperms have examples from subfamilies 4 and 3 with a hybrid form of NET1 and 2 which shows characteristics of both NET1 and NET2. In addition to NET3 and 4 subfamilies, the NET1 and pollen-expressed NET2 subfamilies are only found as independent sequences in angiosperms. This is consistent with the divergence of reproductive actin. The four subfamilies are conserved across monocots and eudicots with the numbers of members of each clade expanding at this point due in part to regions of genome duplication. Since the emergence of the NET superfamily at the dawn of vascular plants they have continued to develop and diversify in a manner which has mirrored the divergence and complexity of plant species through evolution in the ‘March of Progress’.

  19. Vascular network remodeling via vessel cooption, regression and growth in tumors

    CERN Document Server

    Bartha, K

    2016-01-01

    The transformation of the regular vasculature in normal tissue into a highly inhomogeneous tumor specific capillary network is described by a theoretical model incorporating tumor growth, vessel cooption, neo-vascularization, vessel collapse and cell death. Compartmentalization of the tumor into several regions differing in vessel density, diameter and in necrosis is observed for a wide range of parameters in agreement with the vessel morphology found in human melanoma. In accord with data for human melanoma the model predicts, that microvascular density (MVD, regarded as an important diagnostic tool in cancer treatment, does not necessarily determine the tempo of tumor progression. Instead it is suggested, that the MVD of the original tissue as well as the metabolic demand of the individual tumor cell plays the major role in the initial stages of tumor growth.

  20. Multiscale systems analysis of root growth and development: modeling beyond the network and cellular scales.

    Science.gov (United States)

    Band, Leah R; Fozard, John A; Godin, Christophe; Jensen, Oliver E; Pridmore, Tony; Bennett, Malcolm J; King, John R

    2012-10-01

    Over recent decades, we have gained detailed knowledge of many processes involved in root growth and development. However, with this knowledge come increasing complexity and an increasing need for mechanistic modeling to understand how those individual processes interact. One major challenge is in relating genotypes to phenotypes, requiring us to move beyond the network and cellular scales, to use multiscale modeling to predict emergent dynamics at the tissue and organ levels. In this review, we highlight recent developments in multiscale modeling, illustrating how these are generating new mechanistic insights into the regulation of root growth and development. We consider how these models are motivating new biological data analysis and explore directions for future research. This modeling progress will be crucial as we move from a qualitative to an increasingly quantitative understanding of root biology, generating predictive tools that accelerate the development of improved crop varieties.

  1. Export dynamics as an optimal growth problem in the network of global economy

    CERN Document Server

    Caraglio, Michele; Stella, Attilio L

    2016-01-01

    We analyze export data aggregated at world global level of 219 classes of products over a period of 39 years. Our main goal is to set up a dynamical model to identify and quantify plausible mechanisms by which the evolutions of the various exports affect each other. This is pursued through a stochastic differential description, partly inspired by approaches used in population dynamics or directed polymers in random media. We outline a complex network of transfer rates which describes how resources are shifted between different product classes, and determines how casual favorable conditions for one export can spread to the other ones. A calibration procedure allows to fit four free model-parameters such that the dynamical evolution becomes consistent with the average growth, the fluctuations, and the ranking of the export values observed in real data. Growth crucially depends on the balance between maintaining and shifting resources to different exports, like in an explore-exploit problem. Remarkably, the cali...

  2. Urban Growth Modelling with Artificial Neural Network and Logistic Regression. Case Study: Sanandaj City, Iran

    Directory of Open Access Journals (Sweden)

    SASSAN MOHAMMADY

    2013-01-01

    Full Text Available Cities have shown remarkable growth due to attraction, economic, social and facilities centralization in the past few decades. Population and urban expansion especially in developing countries, led to lack of resources, land use change from appropriate agricultural land to urban land use and marginalization. Under these circumstances, land use activity is a major issue and challenge for town and country planners. Different approaches have been attempted in urban expansion modelling. Artificial Neural network (ANN models are among knowledge-based models which have been used for urban growth modelling. ANNs are powerful tools that use a machine learning approach to quantify and model complex behaviour and patterns. In this research, ANN and logistic regression have been employed for interpreting urban growth modelling. Our case study is Sanandaj city and we used Landsat TM and ETM+ imageries acquired at 2000 and 2006. The dataset used includes distance to main roads, distance to the residence region, elevation, slope, and distance to green space. Percent Area Match (PAM obtained from modelling of these changes with ANN is equal to 90.47% and the accuracy achieved for urban growth modelling with Logistic Regression (LR is equal to 88.91%. Percent Correct Match (PCM and Figure of Merit for ANN method were 91.33% and 59.07% and then for LR were 90.84% and 57.07%, respectively.

  3. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.

    Science.gov (United States)

    Adadi, Roi; Volkmer, Benjamin; Milo, Ron; Heinemann, Matthias; Shlomi, Tomer

    2012-01-01

    Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict a variety of metabolic phenotypes, including maximal biomass yield, the prediction of actual growth rate is a long standing goal. This gap stems from strictly relying on data regarding reaction stoichiometry and directionality, without accounting for enzyme kinetic considerations. Here we present a novel metabolic network-based approach, MetabOlic Modeling with ENzyme kineTics (MOMENT), which predicts metabolic flux rate and growth rate by utilizing prior data on enzyme turnover rates and enzyme molecular weights, without requiring measurements of nutrient uptake rates. The method is based on an identified design principle of metabolism in which enzymes catalyzing high flux reactions across different media tend to be more efficient in terms of having higher turnover numbers. Extending upon previous attempts to utilize kinetic data in genome-scale metabolic modeling, our approach takes into account the requirement for specific enzyme concentrations for catalyzing predicted metabolic flux rates, considering isozymes, protein complexes, and multi-functional enzymes. MOMENT is shown to significantly improve the prediction accuracy of various metabolic phenotypes in E. coli, including intracellular flux rates and changes in gene expression levels under different growth rates. Most importantly, MOMENT is shown to predict growth rates of E. coli under a diverse set of media that are correlated with experimental measurements, markedly improving upon existing state-of-the art stoichiometric modeling approaches. These results support the view that a physiological bound on cellular enzyme concentrations is a key factor that determines microbial growth rate.

  4. High-speed depolymerization at actin filament ends jointly catalysed by Twinfilin and Srv2/CAP.

    Science.gov (United States)

    Johnston, Adam B; Collins, Agnieszka; Goode, Bruce L

    2015-11-01

    Purified actin filaments depolymerize slowly, and cytosolic conditions strongly favour actin assembly over disassembly, which has left our understanding of how actin filaments are rapidly turned over in vivo incomplete. One mechanism for driving filament disassembly is severing by factors such as Cofilin. However, even after severing, pointed-end depolymerization remains slow and unable to fully account for observed rates of actin filament turnover in vivo. Here we describe a mechanism by which Twinfilin and Cyclase-associated protein work in concert to accelerate depolymerization of actin filaments by 3-fold and 17-fold at their barbed and pointed ends, respectively. This mechanism occurs even under assembly conditions, allowing reconstitution and direct visualization of individual filaments undergoing tunable, accelerated treadmilling. Further, we use specific mutations to demonstrate that this activity is critical for Twinfilin function in vivo. These findings fill a major gap in our knowledge of cellular disassembly mechanisms, and suggest that depolymerization and severing may be deployed separately or together to control the dynamics and architecture of distinct actin networks.

  5. High Speed Depolymerization at Actin Filament Ends Jointly Catalyzed by Twinfilin and Srv2/CAP

    Science.gov (United States)

    Johnston, Adam B.; Collins, Agnieszka; Goode, Bruce L.

    2015-01-01

    Purified actin filaments depolymerize slowly, and cytosolic conditions strongly favor actin assembly over disassembly, which has left our understanding of how actin filaments are rapidly turned over in vivo incomplete 1,2. One mechanism for driving filament disassembly is severing by factors such as Cofilin. However, even after severing, pointed end depolymerization remains slow and unable to fully account for observed rates of actin filament turnover in vivo. Here we describe a mechanism by which Twinfilin and Cyclase-associated protein work in concert to accelerate depolymerization of actin filaments by 3-fold and 17-fold at their barbed and pointed ends, respectively. This mechanism occurs even under assembly conditions, allowing reconstitution and direct visualization of individual filaments undergoing tunable, accelerated treadmilling. Further, we use specific mutations to demonstrate that this activity is critical for Twinfilin function in vivo. These findings fill a major gap in our knowledge of mechanisms, and suggest that depolymerization and severing may be deployed separately or together to control the dynamics and architecture of distinct actin networks. PMID:26458246

  6. Microtubule anchoring by cortical actin bundles prevents streaming of the oocyte cytoplasm.

    Science.gov (United States)

    Wang, Ying; Riechmann, Veit

    2008-01-01

    The localisation of the determinants of the body axis during Drosophila oogenesis is dependent on the microtubule (MT) cytoskeleton. Mutations in the actin binding proteins Profilin, Cappuccino (Capu) and Spire result in premature streaming of the cytoplasm and a reorganisation of the oocyte MT network. As a consequence, the localisation of axis determinants is abolished in these mutants. It is unclear how actin regulates the organisation of the MTs, or what the spatial relationship between these two cytoskeletal elements is. Here, we report a careful analysis of the oocyte cytoskeleton. We identify thick actin bundles at the oocyte cortex, in which the minus ends of the MTs are embedded. Disruption of these bundles results in cortical release of the MT minus ends, and premature onset of cytoplasmic streaming. Thus, our data indicate that the actin bundles anchor the MTs minus ends at the oocyte cortex, and thereby prevent streaming of the cytoplasm. We further show that actin bundle formation requires Profilin but not Capu and Spire. Thus, our results support a model in which Profilin acts in actin bundle nucleation, while Capu and Spire link the bundles to MTs. Finally, our data indicate how cytoplasmic streaming contributes to the reorganisation of the MT cytoskeleton. We show that the release of the MT minus ends from the cortex occurs independently of streaming, while the formation of MT bundles is streaming dependent.

  7. Erbium laser resurfacing for actinic cheilitis.

    Science.gov (United States)

    Cohen, Joel L

    2013-11-01

    Actinic cheilitis is a precancerous condition characterized by grayish-whitish area(s) of discoloration on the mucosal lip, often blunting the demarcation between mucosa and cutaneous lip. Actinic cheilitis is considered to be an early part of the spectrum of squamous cell carcinoma. Squamous cell carcinoma specifically of the lip has a high rate of recurrence and metastasis through the oral cavity leading to a poor overall survival. Risk factors for the development of actinic cheilitis include chronic solar irradiation, increasing age, male gender, light skin complexion, immunosuppression, and possibly tobacco and alcohol consumption. Treatment options include topical pharmacotherapy (eg, fluorouracil, imiquimod) or procedural interventions (eg, cryotherapy, electrosurgery, surgical vermillionectomy, laser resurfacing), each with their known advantages and disadvantages. There is little consensus as to which treatment options offer the most clinical utility given the paucity of comparative clinical data. In my practice, laser resurfacing has become an important tool for the treatment of actinic cheilitis owing to its ease of use and overall safety, tolerability, and cosmetic acceptability. Herein the use of erbium laser resurfacing is described for three actinic cheilitis presentations for which I find it particularly useful: clinically prominent actinic cheilitis, biopsy-proven actinic cheilitis, and treatment of the entire lip following complete tumor excision of squamous cell carcinoma. All patients were treated with a 2940-nm erbium laser (Sciton Profile Contour Tunable Resurfacing Laser [TRL], Sciton, Inc., Palo Alto, CA).

  8. Importance of a Lys113-Glu195 intermonomer ionic bond in F-actin stabilization and regulation by yeast formins Bni1p and Bnr1p.

    Science.gov (United States)

    Wen, Kuo-Kuang; McKane, Melissa; Rubenstein, Peter A

    2013-06-28

    Proper actin cytoskeletal function requires actin's ability to generate a stable filament and requires that this reaction be regulated by actin-binding proteins via allosteric effects on the actin. A proposed ionic interaction in the actin filament interior between Lys(113) of one monomer and Glu(195) of a monomer in the apposing strand potentially fosters cross-strand stabilization and allosteric communication between the filament interior and exterior. We interrupted the potential interaction by creating either K113E or E195K actin. By combining the two, we also reversed the interaction with a K113E/E195K (E/K) mutant. In all cases, we isolated viable cells expressing only the mutant actin. Either single mutant cell displays significantly decreased growth in YPD medium. This deficit is rescued in the double mutant. All three mutants display abnormal phalloidin cytoskeletal staining. K113E actin exhibits a critical concentration of polymerization 4 times higher than WT actin, nucleates more poorly, and forms shorter filaments. Restoration of the ionic bond, E/K, eliminates most of these problems. E195K actin behaves much more like WT actin, indicating accommodation of the neighboring lysines. Both Bni1 and Bnr1 formin FH1-FH2 fragment accelerate polymerization of WT, E/K, and to a lesser extent E195K actin. Bni1p FH1-FH2 dramatically inhibits K113E actin polymerization, consistent with barbed end capping. However, Bnr1p FH1-FH2 restores K113E actin polymerization, forming single filaments. In summary, the proposed ionic interaction plays an important role in filament stabilization and in the propagation of allosteric changes affecting formin regulation in an isoform-specific fashion.

  9. Actin as a potential target for decavanadate.

    Science.gov (United States)

    Ramos, Susana; Moura, José J G; Aureliano, Manuel

    2010-12-01

    ATP prevents G-actin cysteine oxidation and vanadyl formation specifically induced by decavanadate, suggesting that the oxometalate-protein interaction is affected by the nucleotide. The ATP exchange rate is increased by 2-fold due to the presence of decavanadate when compared with control actin (3.1×10(-3) s(-1)), and an apparent dissociation constant (k(dapp)) of 227.4±25.7 μM and 112.3±8.7 μM was obtained in absence or presence of 20 μM V(10), respectively. Moreover, concentrations as low as 50 μM of decameric vanadate species (V(10)) increases the relative G-actin intrinsic fluorescence intensity by approximately 80% whereas for a 10-fold concentration of monomeric vanadate (V(1)) no effects were observed. Upon decavanadate titration, it was observed a linear increase in G-actin hydrophobic surface (2.6-fold), while no changes were detected for V(1) (0-200 μM). Taken together, three major ideas arise: i) ATP prevents decavanadate-induced G-actin cysteine oxidation and vanadate reduction; ii) decavanadate promotes actin conformational changes resulting on its inactivation, iii) decavanadate has an effect on actin ATP binding site. Once it is demonstrated that actin is a new potential target for decavanadate, being the ATP binding site a suitable site for decavanadate binding, it is proposed that some of the biological effects of vanadate can be, at least in part, explained by decavanadate interactions with actin.

  10. Dynamic actin controls polarity induction de novo in protoplasts.

    Science.gov (United States)

    Zaban, Beatrix; Maisch, Jan; Nick, Peter

    2013-02-01

    Cell polarity and axes are central for plant morphogenesis. To study how polarity and axes are induced de novo, we investigated protoplasts of tobacco Nicotiana tabacum cv. BY-2 expressing fluorescently-tagged cytoskeletal markers. We standardized the system to such a degree that we were able to generate quantitative data on the temporal patterns of regeneration stages. The synthesis of a new cell wall marks the transition to the first stage of regeneration, and proceeds after a long preparatory phase within a few minutes. During this preparatory phase, the nucleus migrates actively, and cytoplasmic strands remodel vigorously. We probed this system for the effect of anti-cytoskeletal compounds, inducible bundling of actin, RGD-peptides, and temperature. Suppression of actin dynamics at an early stage leads to aberrant tripolar cells, whereas suppression of microtubule dynamics produces aberrant sausage-like cells with asymmetric cell walls. We integrated these data into a model, where the microtubular cytoskeleton conveys positional information between the nucleus and the membrane controlling the release or activation of components required for cell wall synthesis. Cell wall formation is followed by the induction of a new cell pole requiring dynamic actin filaments, and the new cell axis is manifested as elongation growth perpendicular to the orientation of the aligned cortical microtubules.

  11. Dynamic Actin Controls Polarity Induction de novo in Protoplasts

    Institute of Scientific and Technical Information of China (English)

    Beatrix Zaban; Jan Maisch; Peter Nick

    2013-01-01

    Cell polarity and axes are central for plant morphogenesis.To study how polarity and axes are induced de novo,we investigated protoplasts of tobacco Nicotiana tabacum cv.BY-2 expressing fluorescentlytagged cytoskeletal markers.We standardized the system to such a degree that we were able to generate quantitative data on the temporal patterns of regeneration stages.The synthesis of a new cell wall marks the transition to the first stage of regeneration,and proceeds after a long preparatory phase within a few minutes.During this preparatory phase,the nucleus migrates actively,and cytoplasmic strands remodel vigorously.We probed this system for the effect of anti-cytoskeletal compounds,inducible bundling of actin,RGD-peptides,and temperature.Suppression of actin dynamics at an early stage leads to aberrant tripolar cells,whereas suppression of microtubule dynamics produces aberrant sausagelike cells with asymmetric cell walls.We integrated these data into a model,where the microtubular cytoskeleton conveys positional information between the nucleus and the membrane controlling the release or activation of components required for cell wall synthesis.Cell wall formation is followed by the induction of a new cell pole requiring dynamic actin filaments,and the new cell axis is manifested as elongation growth perpendicular to the orientation of the aligned cortical microtubules.

  12. Actinic Granuloma with Focal Segmental Glomerulosclerosis

    Directory of Open Access Journals (Sweden)

    Ruedee Phasukthaworn

    2016-02-01

    Full Text Available Actinic granuloma is an uncommon granulomatous disease, characterized by annular erythematous plaque with central clearing predominately located on sun-damaged skin. The pathogenesis is not well understood, ultraviolet radiation is recognized as precipitating factor. We report a case of a 52-year-old woman who presented with asymptomatic annular erythematous plaques on the forehead and both cheeks persisting for 2 years. The clinical presentation and histopathologic findings support the diagnosis of actinic granuloma. During that period of time, she also developed focal segmental glomerulosclerosis. The association between actinic granuloma and focal segmental glomerulosclerosis needs to be clarified by further studies.

  13. A social network study of the growth of community among distance learners

    Directory of Open Access Journals (Sweden)

    Caroline Haythornthwaite

    1998-01-01

    Full Text Available Describes preliminary results from a social network study of the growth of community and use of Internet resources among a class of 15 distance learners enrolled in the LEEP option of the Master of Science in Library and Information Science at the University of Illinois at Urbana-Champaign. The LEEP programme offers a distance option for students with instruction delivered through communication and computer technologies, and through short, intensive on-campus meetings. Class members reported on their interactions with others in the class at three times over the 15 week term (Fall 1997. They indicated how often they had (1 worked with each other member on class work, (2 received or (3 given information or advice about class work, (4 socialized, and (5 exchanged emotional support (either given or received during the preceeding month. For each question, class members reported their frequency of communication via each of the available means of communication (Web-board, chat lines, email, telephone, face-to-face. Final interviews, and course evaluation questionnaires provide further information about their class experience. These data allow examination of the role of different types of information exchange in the distance learners' intra-class interactions. By using a social network approach, the data allow examination of issues of centrality and isolation in this network that may correlate with performance or satisfaction measures. Results from this study will provide feedback to course instructors on the experience of class participants in the distance education programme.

  14. The yeast Sks1p kinase signaling network regulates pseudohyphal growth and glucose response.

    Directory of Open Access Journals (Sweden)

    Cole Johnson

    2014-03-01

    Full Text Available The yeast Saccharomyces cerevisiae undergoes a dramatic growth transition from its unicellular form to a filamentous state, marked by the formation of pseudohyphal filaments of elongated and connected cells. Yeast pseudohyphal growth is regulated by signaling pathways responsive to reductions in the availability of nitrogen and glucose, but the molecular link between pseudohyphal filamentation and glucose signaling is not fully understood. Here, we identify the glucose-responsive Sks1p kinase as a signaling protein required for pseudohyphal growth induced by nitrogen limitation and coupled nitrogen/glucose limitation. To identify the Sks1p signaling network, we applied mass spectrometry-based quantitative phosphoproteomics, profiling over 900 phosphosites for phosphorylation changes dependent upon Sks1p kinase activity. From this analysis, we report a set of novel phosphorylation sites and highlight Sks1p-dependent phosphorylation in Bud6p, Itr1p, Lrg1p, Npr3p, and Pda1p. In particular, we analyzed the Y309 and S313 phosphosites in the pyruvate dehydrogenase subunit Pda1p; these residues are required for pseudohyphal growth, and Y309A mutants exhibit phenotypes indicative of impaired aerobic respiration and decreased mitochondrial number. Epistasis studies place SKS1 downstream of the G-protein coupled receptor GPR1 and the G-protein RAS2 but upstream of or at the level of cAMP-dependent PKA. The pseudohyphal growth and glucose signaling transcription factors Flo8p, Mss11p, and Rgt1p are required to achieve wild-type SKS1 transcript levels. SKS1 is conserved, and deletion of the SKS1 ortholog SHA3 in the pathogenic fungus Candida albicans results in abnormal colony morphology. Collectively, these results identify Sks1p as an important regulator of filamentation and glucose signaling, with additional relevance towards understanding stress-responsive signaling in C. albicans.

  15. Arabidopsis CAP1 - a key regulator of actin organisation and development.

    Science.gov (United States)

    Deeks, Michael J; Rodrigues, Cecília; Dimmock, Simon; Ketelaar, Tijs; Maciver, Sutherland K; Malhó, Rui; Hussey, Patrick J

    2007-08-01

    Maintenance of F-actin turnover is essential for plant cell morphogenesis. Actin-binding protein mutants reveal that plants place emphasis on particular aspects of actin biochemistry distinct from animals and fungi. Here we show that mutants in CAP1, an A. thaliana member of the cyclase-associated protein family, display a phenotype that establishes CAP1 as a fundamental facilitator of actin dynamics over a wide range of plant tissues. Plants homozygous for cap1 alleles show a reduction in stature and morphogenetic disruption of multiple cell types. Pollen grains exhibit reduced germination efficiency, and cap1 pollen tubes and root hairs grow at a decreased rate and to a reduced length. Live cell imaging of growing root hairs reveals actin filament disruption and cytoplasmic disorganisation in the tip growth zone. Mutant cap1 alleles also show synthetic phenotypes when combined with mutants of the Arp2/3 complex pathway, which further suggests a contribution of CAP1 to in planta actin dynamics. In yeast, CAP interacts with adenylate cyclase in a Ras signalling cascade; but plants do not have Ras. Surprisingly, cap1 plants show disruption in plant signalling pathways required for co-ordinated organ expansion suggesting that plant CAP has evolved to attain plant-specific signalling functions.

  16. Actin cytoskeleton contributes to the elastic modulus of embryonic tendon during early development.

    Science.gov (United States)

    Schiele, Nathan R; von Flotow, Friedrich; Tochka, Zachary L; Hockaday, Laura A; Marturano, Joseph E; Thibodeau, Jeffrey J; Kuo, Catherine K

    2015-06-01

    Tendon injuries are common and heal poorly. Strategies to regenerate or replace injured tendons are challenged by an incomplete understanding of normal tendon development. Our previous study showed that embryonic tendon elastic modulus increases as a function of developmental stage. Inhibition of enzymatic collagen crosslink formation abrogated increases in tendon elastic modulus at late developmental stages, but did not affect increases in elastic modulus of early stage embryonic tendons. Here, we aimed to identify potential contributors to the mechanical properties of these early stage embryonic tendons. We characterized tendon progenitor cells in early stage embryonic tendons, and the influence of actin cytoskeleton disruption on tissue elastic modulus. Cells were closely packed in embryonic tendons, and did not change in density during early development. We observed an organized network of actin filaments that seemed contiguous between adjacent cells. The actin filaments exhibited a crimp pattern with a period and amplitude that matched the crimp of collagen fibers at each developmental stage. Chemical disruption of the actin cytoskeleton decreased tendon tissue elastic modulus, measured by atomic force microscopy. Our results demonstrate that early developmental stage embryonic tendons possess a well organized actin cytoskeleton network that contributes significantly to tendon tissue mechanical properties.

  17. Increased actin polymerization and stabilization interferes with neuronal function and survival in the AMPKγ mutant Loechrig.

    Directory of Open Access Journals (Sweden)

    Mandy Cook

    Full Text Available loechrig (loe mutant flies are characterized by progressive neuronal degeneration, behavioral deficits, and early death. The mutation is due to a P-element insertion in the gene for the γ-subunit of the trimeric AMP-activated protein kinase (AMPK complex, whereby the insertion affects only one of several alternative transcripts encoding a unique neuronal isoform. AMPK is a cellular energy sensor that regulates a plethora of signaling pathways, including cholesterol and isoprenoid synthesis via its downstream target hydroxy-methylglutaryl (HMG-CoA reductase. We recently showed that loe interferes with isoprenoid synthesis and increases the prenylation and thereby activation of RhoA. During development, RhoA plays an important role in neuronal outgrowth by activating a signaling cascade that regulates actin dynamics. Here we show that the effect of loe/AMPKγ on RhoA prenylation leads to a hyperactivation of this signaling pathway, causing increased phosphorylation of the actin depolymerizating factor cofilin and accumulation of filamentous actin. Furthermore, our results show that the resulting cytoskeletal changes in loe interfere with neuronal growth and disrupt axonal integrity. Surprisingly, these phenotypes were enhanced by expressing the Slingshot (SSH phosphatase, which during development promotes actin depolymerization by dephosphorylating cofilin. However, our studies suggest that in the adult SSH promotes actin polymerization, supporting in vitro studies using human SSH1 that suggested that SSH can also stabilize and bundle filamentous actin. Together with the observed increase in SSH levels in the loe mutant, our experiments suggest that in mature neurons SSH may function as a stabilization factor for filamentous actin instead of promoting actin depolymerization.

  18. Export dynamics as an optimal growth problem in the network of global economy

    Science.gov (United States)

    Caraglio, Michele; Baldovin, Fulvio; Stella, Attilio L.

    2016-08-01

    We analyze export data aggregated at world global level of 219 classes of products over a period of 39 years. Our main goal is to set up a dynamical model to identify and quantify plausible mechanisms by which the evolutions of the various exports affect each other. This is pursued through a stochastic differential description, partly inspired by approaches used in population dynamics or directed polymers in random media. We outline a complex network of transfer rates which describes how resources are shifted between different product classes, and determines how casual favorable conditions for one export can spread to the other ones. A calibration procedure allows to fit four free model-parameters such that the dynamical evolution becomes consistent with the average growth, the fluctuations, and the ranking of the export values observed in real data. Growth crucially depends on the balance between maintaining and shifting resources to different exports, like in an explore-exploit problem. Remarkably, the calibrated parameters warrant a close-to-maximum growth rate under the transient conditions realized in the period covered by data, implying an optimal self organization of the global export. According to the model, major structural changes in the global economy take tens of years.

  19. Export dynamics as an optimal growth problem in the network of global economy

    Science.gov (United States)

    Caraglio, Michele; Baldovin, Fulvio; Stella, Attilio L.

    2016-01-01

    We analyze export data aggregated at world global level of 219 classes of products over a period of 39 years. Our main goal is to set up a dynamical model to identify and quantify plausible mechanisms by which the evolutions of the various exports affect each other. This is pursued through a stochastic differential description, partly inspired by approaches used in population dynamics or directed polymers in random media. We outline a complex network of transfer rates which describes how resources are shifted between different product classes, and determines how casual favorable conditions for one export can spread to the other ones. A calibration procedure allows to fit four free model-parameters such that the dynamical evolution becomes consistent with the average growth, the fluctuations, and the ranking of the export values observed in real data. Growth crucially depends on the balance between maintaining and shifting resources to different exports, like in an explore-exploit problem. Remarkably, the calibrated parameters warrant a close-to-maximum growth rate under the transient conditions realized in the period covered by data, implying an optimal self organization of the global export. According to the model, major structural changes in the global economy take tens of years. PMID:27530505

  20. Growth surveillance in the context of the Primary Public Healthcare Service Network in Brazil: literature review

    Directory of Open Access Journals (Sweden)

    Dixis Figueroa Pedraza

    2016-03-01

    Full Text Available Abstract Objectives: to identify and analyze the scientific literature on child growth monitoring in the context of the primary public healthcare service network in Brazil, focusing on the main problems detected in studies. Methods: the review was based on searches ofSciELO, Lilacs and PubMed databases to identify articles published between 2006 and 2014. The articles were categorized according to the analytical categories of structure (items needed to carry out primary activities or work processes (set of activities and procedures used in the management of resources. Results: of the 16 articles included in this review, only six dealt with structure and, in these, thetraining of professionals and availability of protocols were the most frequently identified problems. Processes, addressed in 15 articles, highlighted the underutilization of Child Health Handbook to record growth measurements and the adoption of guidelines on the basis of notes taken. Conclusions: the difficulties found demonstrate the everyday circumstances of the public health service which have a detrimental effect on growth surveillance.

  1. Export dynamics as an optimal growth problem in the network of global economy.

    Science.gov (United States)

    Caraglio, Michele; Baldovin, Fulvio; Stella, Attilio L

    2016-08-17

    We analyze export data aggregated at world global level of 219 classes of products over a period of 39 years. Our main goal is to set up a dynamical model to identify and quantify plausible mechanisms by which the evolutions of the various exports affect each other. This is pursued through a stochastic differential description, partly inspired by approaches used in population dynamics or directed polymers in random media. We outline a complex network of transfer rates which describes how resources are shifted between different product classes, and determines how casual favorable conditions for one export can spread to the other ones. A calibration procedure allows to fit four free model-parameters such that the dynamical evolution becomes consistent with the average growth, the fluctuations, and the ranking of the export values observed in real data. Growth crucially depends on the balance between maintaining and shifting resources to different exports, like in an explore-exploit problem. Remarkably, the calibrated parameters warrant a close-to-maximum growth rate under the transient conditions realized in the period covered by data, implying an optimal self organization of the global export. According to the model, major structural changes in the global economy take tens of years.

  2. Mechanics model for actin-based motility.

    Science.gov (United States)

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  3. Cross-linking study on skeletal muscle actin: properties of suberimidate-treated actin.

    Science.gov (United States)

    Ohara, O; Takahashi, S; Ooi, T; Fujiyoshi, Y

    1982-06-01

    Cross-linking experiments were performed on muscle skeletal actin, using imidoesters of various chain lengths. Chemical analyses on all products except one (derived from succinimidate) show evidence of the presence of intramolecular cross-links in the molecule. The detailed properties of suberimidate-treated actin (SA) are as follows: SA contains nearly 1 mol of intramolecular cross-link per mol of actin and less than 15% of intermolecularly cross-linked products. Even at a low salt concentration, SA is polymeric, exchanges slowly its bound nucleotide with free nucleotides in solution, and shows an F-actin-type CD spectrum. Electron micrographs of SA reveal that SA exists actually as fibrous polymers in solutions of low ionic strength, although the fibers seem to be less rigid than those at high salt concentration. The F-form of SA at a high salt concentration is indistinguishable from intact F-actin. SA can bind heavy meromyosin and activate the ATPase of heavy meromyosin as observed for intact F-actin. Tropomyosin binds SA only at a high salt concentration. These results show that SA possesses the properties of F-actin even in media of low salt concentration, which are favorable for depolymerization of F-actin. Thus, we may infer that the conformation of SA is frozen in the F-state of actin by the introduction of intramolecular cross-links in the protein.

  4. Dynamic buckling of actin within filopodia

    DEFF Research Database (Denmark)

    Leijnse, Natascha; Oddershede, Lene B; Bendix, Pól Martin

    2015-01-01

    on external substrates.(1) These studies have revealed that internal actin flow can transduce a force across the cell surface through transmembrane linkers like integrins. In addition to the elongation-retraction behavior filopodia also exhibit a buckling and rotational behavior. Filopodial buckling...... a filopodium and holding it while measuring the cellular response, we also monitor and analyze the waiting times for the first buckle observed in the fluorescently labeled actin shaft....

  5. Actin: its cumbersome pilgrimage through cellular compartments.

    Science.gov (United States)

    Schleicher, Michael; Jockusch, Brigitte M

    2008-06-01

    In this article, we follow the history of one of the most abundant, most intensely studied proteins of the eukaryotic cells: actin. We report on hallmarks of its discovery, its structural and functional characterization and localization over time, and point to present days' knowledge on its position as a member of a large family. We focus on the rather puzzling number of diverse functions as proposed for actin as a dual compartment protein. Finally, we venture on some speculations as to its origin.

  6. [When and why treat actinic keratoses?].

    Science.gov (United States)

    Wulf, Hans Christian

    2014-02-03

    Actinic keratoses (AK) are small, inflamed, hyperkeratotic, sunprovoked lesions which may progress to squamous cell carcinoma (SCC). There are two main reasons for treating AK: one is as prophylaxis against SCC, the other is because of cosmetic discomfort, with clothes getting caught in the hyperkeratotic AK. Visible AK and neighbouring invisible AK should be treated. As AK are provoked by UV radiation, protection against UV is essential. This paper comments on a Cochrane review: "Interventions for actinic keratosis" and treatments avaliable in Denmark.

  7. Sarcomeric pattern formation by actin cluster coalescence.

    Directory of Open Access Journals (Sweden)

    Benjamin M Friedrich

    Full Text Available Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells.

  8. Sarcomeric Pattern Formation by Actin Cluster Coalescence

    Science.gov (United States)

    Friedrich, Benjamin M.; Fischer-Friedrich, Elisabeth; Gov, Nir S.; Safran, Samuel A.

    2012-01-01

    Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells. PMID:22685394

  9. Implications of oxidovanadium(IV) binding to actin.

    Science.gov (United States)

    Ramos, Susana; Almeida, Rui M; Moura, José J G; Aureliano, Manuel

    2011-06-01

    Oxidovanadium(IV), a cationic species (VO(2+)) of vanadium(IV), binds to several proteins, including actin. Upon titration with oxidovanadium(IV), approximately 100% quenching of the intrinsic fluorescence of monomeric actin purified from rabbit skeletal muscle (G-actin) was observed, with a V(50) of 131 μM, whereas for the polymerized form of actin (F-actin) 75% of quenching was obtained and a V(50) value of 320 μM. Stern-Volmer plots were used to estimate an oxidovanadium(IV)-actin dissociation constant, with K(d) of 8.2 μM and 64.1 μM VOSO(4), for G-actin and F-actin, respectively. These studies reveal the presence of a high affinity binding site for oxidovanadium(IV) in actin, producing local conformational changes near the tryptophans most accessible to water in the three-dimensional structure of actin. The actin conformational changes, also confirmed by (1)H NMR, are accompanied by changes in G-actin hydrophobic surface, but not in F-actin. The (1)H NMR spectra of G-actin treated with oxidovanadium(IV) clearly indicates changes in the resonances ascribed to methyl group and aliphatic regions as well as to aromatics and peptide-bond amide region. In parallel, it was verified that oxidovanadium(IV) prevents the G-actin polymerization into F-actin. In the 0-200 μM range, VOSO(4) inhibits 40% of the extent of polymerization with an IC(50) of 15.1 μM, whereas 500 μM VOSO(4) totally suppresses actin polymerization. The data strongly suggest that oxidovanadium(IV) binds to actin at specific binding sites preventing actin polymerization. By affecting actin structure and function, oxidovanadium(IV) might be responsible for many cellular effects described for vanadium.

  10. Prostaglandins temporally regulate cytoplasmic actin bundle formation during Drosophila oogenesis

    OpenAIRE

    Spracklen, Andrew J.; Kelpsch, Daniel J.; Chen, Xiang; Spracklen, Cassandra N.; Tootle, Tina L.

    2014-01-01

    Prostaglandins (PGs)—lipid signals produced downstream of cyclooxygenase (COX) enzymes—regulate actin dynamics in cell culture and platelets, but their roles during development are largely unknown. Here we define a new role for Pxt, the Drosophila COX-like enzyme, in regulating the actin cytoskeleton—temporal restriction of actin remodeling during oogenesis. PGs are required for actin filament bundle formation during stage 10B (S10B). In addition, loss of Pxt results in extensive early actin ...

  11. Rearrangement of actin cytoskeleton mediates invasion of Lotus japonicus roots by Mesorhizobium loti.

    Science.gov (United States)

    Yokota, Keisuke; Fukai, Eigo; Madsen, Lene H; Jurkiewicz, Anna; Rueda, Paloma; Radutoiu, Simona; Held, Mark; Hossain, Md Shakhawat; Szczyglowski, Krzysztof; Morieri, Giulia; Oldroyd, Giles E D; Downie, J Allan; Nielsen, Mette W; Rusek, Anna Maria; Sato, Shusei; Tabata, Satoshi; James, Euan K; Oyaizu, Hiroshi; Sandal, Niels; Stougaard, Jens

    2009-01-01

    Infection thread-dependent invasion of legume roots by rhizobia leads to internalization of bacteria into the plant cells, which is one of the salient features of root nodule symbiosis. We found that two genes, Nap1 (for Nck-associated protein 1) and Pir1 (for 121F-specific p53 inducible RNA), involved in actin rearrangements were essential for infection thread formation and colonization of Lotus japonicus roots by its natural microsymbiont, Mesorhizobium loti. nap1 and pir1 mutants developed an excess of uncolonized nodule primordia, indicating that these two genes were not essential for the initiation of nodule organogenesis per se. However, both the formation and subsequent progression of infection threads into the root cortex were significantly impaired in these mutants. We demonstrate that these infection defects were due to disturbed actin cytoskeleton organization. Short root hairs of the mutants had mostly transverse or web-like actin filaments, while bundles of actin filaments in wild-type root hairs were predominantly longitudinal. Corroborating these observations, temporal and spatial differences in actin filament organization between wild-type and mutant root hairs were also observed after Nod factor treatment, while calcium influx and spiking appeared unperturbed. Together with various effects on plant growth and seed formation, the nap1 and pir1 alleles also conferred a characteristic distorted trichome phenotype, suggesting a more general role for Nap1 and Pir1 in processes establishing cell polarity or polar growth in L. japonicus.

  12. A Tumor Growth Model with Unmolded Dynamics Based on an Online Feedback Neural Network Model

    Directory of Open Access Journals (Sweden)

    ArashPourhashemi

    2014-01-01

    Full Text Available In this study, we identify tumor growth system by an online feedback neural network model based on back-propagation method. The modeling and identification of nonlinear dynamic systems is the process of developing and improving a mathematical representation of a system using experimental data. So, it is a problem of considerable importance through the use of measured experimental data in biomedical modeling. As is obvious, in biomedical researches it is really difficult and in some cases impossible to implement research on real patient or such a system which is not possible to empirical tests. To deal with, we need sometime a model close to real system in order to forecast dynamic systems so as to perform researches on models and design controller for control of system.

  13. Forecasting Financial Extremes: A Network Degree Measure of Super-Exponential Growth.

    Directory of Open Access Journals (Sweden)

    Wanfeng Yan

    Full Text Available Investors in stock market are usually greedy during bull markets and scared during bear markets. The greed or fear spreads across investors quickly. This is known as the herding effect, and often leads to a fast movement of stock prices. During such market regimes, stock prices change at a super-exponential rate and are normally followed by a trend reversal that corrects the previous overreaction. In this paper, we construct an indicator to measure the magnitude of the super-exponential growth of stock prices, by measuring the degree of the price network, generated from the price time series. Twelve major international stock indices have been investigated. Error diagram tests show that this new indicator has strong predictive power for financial extremes, both peaks and troughs. By varying the parameters used to construct the error diagram, we show the predictive power is very robust. The new indicator has a better performance than the LPPL pattern recognition indicator.

  14. Forecasting Financial Extremes: A Network Degree Measure of Super-Exponential Growth.

    Science.gov (United States)

    Yan, Wanfeng; van Tuyll van Serooskerken, Edgar

    2015-01-01

    Investors in stock market are usually greedy during bull markets and scared during bear markets. The greed or fear spreads across investors quickly. This is known as the herding effect, and often leads to a fast movement of stock prices. During such market regimes, stock prices change at a super-exponential rate and are normally followed by a trend reversal that corrects the previous overreaction. In this paper, we construct an indicator to measure the magnitude of the super-exponential growth of stock prices, by measuring the degree of the price network, generated from the price time series. Twelve major international stock indices have been investigated. Error diagram tests show that this new indicator has strong predictive power for financial extremes, both peaks and troughs. By varying the parameters used to construct the error diagram, we show the predictive power is very robust. The new indicator has a better performance than the LPPL pattern recognition indicator.

  15. FMNL2 drives actin-based protrusion and migration downstream of Cdc42

    DEFF Research Database (Denmark)

    Block, Jennifer; Breitsprecher, Dennis; Kühn, Sonja;

    2012-01-01

    Cell migration entails protrusion of lamellipodia, densely packed networks of actin filaments at the cell front. Filaments are generated by nucleation, likely mediated by Arp2/3 complex and its activator Scar/WAVE. It is unclear whether formins contribute to lamellipodial actin filament nucleation...... ends generated by Arp2/3-mediated branching are captured and efficiently elongated by the formin. Consistent with these biochemical properties, RNAi-mediated silencing of FMNL2 expression decreases the rate of lamellipodia protrusion and, accordingly, the efficiency of cell migration. Our data...

  16. Structure of a Longitudinal Actin Dimer Assembled by Tandem W Domains: Implications for Actin Filament Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C.; Navaza, Jorge; Dominguez, Roberto (IBS); (BBRI); (UPENN-MED)

    2013-11-20

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin {beta}4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin {beta}4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  17. Structure of a longitudinal actin dimer assembled by tandem w domains: implications for actin filament nucleation.

    Science.gov (United States)

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C; Navaza, Jorge; Dominguez, Roberto

    2010-10-15

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin β4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin β4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  18. Distributions of positive correlations in sectoral value added growth in the global economic network*

    Science.gov (United States)

    Maluck, Julian; Donner, Reik V.

    2017-02-01

    International trade has grown considerably during the process of globalization. Complex supply chains for the production of goods have resulted in an increasingly connected International Trade Network (ITN). Traditionally, direct trade relations between industries have been regarded as mediators of supply and demand spillovers. With increasing network connectivity the question arises if higher-order relations become more important in explaining a national sector's susceptibility to supply and demand changes of its trading partner. In this study we address this question by investigating empirically to what extent the topological properties of the ITN provide information about positive correlations in the production of two industry sectors. We observe that although direct trade relations between industries serve as important indicators for correlations in the industries' value added growth, opportunities of substitution for required production inputs as well as second-order trade relations cannot be neglected. Our results contribute to a better understanding of the relation between trade and economic productivity and can serve as a basis for the improvement of crisis spreading models that evaluate contagion threats in the case of a node's failure in the ITN.

  19. Sub-critical crack growth in silicate glasses: Role of network topology

    Energy Technology Data Exchange (ETDEWEB)

    Smedskjaer, Morten M., E-mail: mos@bio.aau.dk [Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg (Denmark); Bauchy, Mathieu [Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095 (United States)

    2015-10-05

    The presence of water in the surrounding atmosphere can cause sub-critical crack growth (SCCG) in glasses, a phenomenon known as fatigue or stress corrosion. Here, to facilitate the compositional design of more fatigue-resistant glasses, we investigate the composition dependence of SCCG by studying fourteen silicate glasses. The fatigue curves (V-K{sub I}) have been obtained by indentation experiments through measurements of the crack length as a function of post-indentation fatigue duration. Interestingly, we find that the fatigue resistance parameter N is generally improved by increasing the alumina content and is thereby found to exhibit a fairly linear dependence on the measured Vickers hardness H{sub V} for a wide range of N and H{sub V} values. This finding highlights the important role of network topology in governing the SCCG in silicate glasses, since hardness has been shown to scale linearly with the number of atomic constraints. Our results therefore suggest that glasses showing under-constrained flexible networks, which feature floppy internal modes of deformation, are more readily attacked by water molecules, thus promoting stress corrosion and reducing the fatigue resistance.

  20. Separation of actin-dependent and actin-independent lipid rafts

    NARCIS (Netherlands)

    Klappe, Karin; Hummel, Ina; Kok, Jan Willem

    2013-01-01

    Lipid rafts have been isolated on the basis of their resistance to various detergents and more recently by using detergent-free procedures. The actin cytoskeleton is now recognized as a dynamic regulator of lipid raft stability. We carefully analyzed the effects of the cortical actin-disrupting agen

  1. A Wireless Sensor Network-Based Ubiquitous Paprika Growth Management System

    Directory of Open Access Journals (Sweden)

    Jeonghwan Hwang

    2010-12-01

    Full Text Available Wireless Sensor Network (WSN technology can facilitate advances in productivity, safety and human quality of life through its applications in various industries. In particular, the application of WSN technology to the agricultural area, which is labor-intensive compared to other industries, and in addition is typically lacking in IT technology applications, adds value and can increase the agricultural productivity. This study attempts to establish a ubiquitous agricultural environment and improve the productivity of farms that grow paprika by suggesting a ‘Ubiquitous Paprika Greenhouse Management System’ using WSN technology. The proposed system can collect and monitor information related to the growth environment of crops outside and inside paprika greenhouses by installing WSN sensors and monitoring images captured by CCTV cameras. In addition, the system provides a paprika greenhouse environment control facility for manual and automatic control from a distance, improves the convenience and productivity of users, and facilitates an optimized environment to grow paprika based on the growth environment data acquired by operating the system.

  2. Rapid determination of bacterial abundance, biovolume, morphology, and growth by neural network-based image analysis

    Science.gov (United States)

    Blackburn; Hagstrom; Wikner; Cuadros-Hansson; Bjornsen

    1998-09-01

    Annual bacterial plankton dynamics at several depths and locations in the Baltic Sea were studied by image analysis. Individual bacteria were classified by using an artificial neural network which also effectively identified nonbacterial objects. Cell counts and frequencies of dividing cells were determined, and the data obtained agreed well with visual observations and previously published values. Cell volumes were measured accurately by comparison with bead standards. The survey included 690 images from a total of 138 samples. Each image contained approximately 200 bacteria. The images were analyzed automatically at a rate of 100 images per h. Bacterial abundance exhibited coherent patterns with time and depth, and there were distinct subsurface peaks in the summer months. Four distinct morphological classes were resolved by the image analyzer, and the dynamics of each could be visualized. The bacterial growth rates estimated from frequencies of dividing cells were different from the bacterial growth rates estimated by the thymidine incorporation method. With minor modifications, the image analysis technique described here can be used to analyze other planktonic classes.

  3. Postsynaptic actin regulates active zone spacing and glutamate receptor apposition at the Drosophila neuromuscular junction.

    Science.gov (United States)

    Blunk, Aline D; Akbergenova, Yulia; Cho, Richard W; Lee, Jihye; Walldorf, Uwe; Xu, Ke; Zhong, Guisheng; Zhuang, Xiaowei; Littleton, J Troy

    2014-07-01

    Synaptic communication requires precise alignment of presynaptic active zones with postsynaptic receptors to enable rapid and efficient neurotransmitter release. How transsynaptic signaling between connected partners organizes this synaptic apparatus is poorly understood. To further define the mechanisms that mediate synapse assembly, we carried out a chemical mutagenesis screen in Drosophila to identify mutants defective in the alignment of active zones with postsynaptic glutamate receptor fields at the larval neuromuscular junction. From this screen we identified a mutation in Actin 57B that disrupted synaptic morphology and presynaptic active zone organization. Actin 57B, one of six actin genes in Drosophila, is expressed within the postsynaptic bodywall musculature. The isolated allele, act(E84K), harbors a point mutation in a highly conserved glutamate residue in subdomain 1 that binds members of the Calponin Homology protein family, including spectrin. Homozygous act(E84K) mutants show impaired alignment and spacing of presynaptic active zones, as well as defects in apposition of active zones to postsynaptic glutamate receptor fields. act(E84K) mutants have disrupted postsynaptic actin networks surrounding presynaptic boutons, with the formation of aberrant actin swirls previously observed following disruption of postsynaptic spectrin. Consistent with a disruption of the postsynaptic actin cytoskeleton, spectrin, adducin and the PSD-95 homolog Discs-Large are all mislocalized in act(E84K) mutants. Genetic interactions between act(E84K) and neurexin mutants suggest that the postsynaptic actin cytoskeleton may function together with the Neurexin-Neuroligin transsynaptic signaling complex to mediate normal synapse development and presynaptic active zone organization.

  4. Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction.

    Science.gov (United States)

    Mason, Frank M; Tworoger, Michael; Martin, Adam C

    2013-08-01

    Apical constriction promotes epithelia folding, which changes tissue architecture. During Drosophila gastrulation, mesoderm cells exhibit repeated contractile pulses that are stabilized such that cells apically constrict like a ratchet. The transcription factor Twist is required to stabilize cell shape. However, it is unknown how Twist spatially coordinates downstream signals to prevent cell relaxation. We find that during constriction, Rho-associated kinase (Rok) is polarized to the middle of the apical domain (medioapical cortex), separate from adherens junctions. Rok recruits or stabilizes medioapical myosin II (Myo-II), which contracts dynamic medioapical actin cables. The formin Diaphanous mediates apical actin assembly to suppress medioapical E-cadherin localization and form stable connections between the medioapical contractile network and adherens junctions. Twist is not required for apical Rok recruitment, but instead polarizes Rok medioapically. Therefore, Twist establishes radial cell polarity of Rok/Myo-II and E-cadherin and promotes medioapical actin assembly in mesoderm cells to stabilize cell shape fluctuations.

  5. The unusual dynamics of parasite actin result from isodesmic polymerization.

    Science.gov (United States)

    Skillman, Kristen M; Ma, Christopher I; Fremont, Daved H; Diraviyam, Karthikeyan; Cooper, John A; Sept, David; Sibley, L David

    2013-01-01

    Previous reports have indicated that parasite actins are short and inherently unstable, despite being required for motility. Here we re-examine the polymerization properties of actin in Toxoplasma gondii, unexpectedly finding that it exhibits isodesmic polymerization in contrast to the conventional nucleation-elongation process of all previously studied actins from both eukaryotes and bacteria. Polymerization kinetics of actin in T. gondii lacks both a lag phase and critical concentration, normally characteristic of actins. Unique among actins, the kinetics of assembly can be fit with a single set of rate constants for all subunit interactions, without need for separate nucleation and elongation rates. This isodesmic model accurately predicts the assembly, disassembly and the size distribution of actin filaments in T. gondii in vitro, providing a mechanistic explanation for actin dynamics in vivo. Our findings expand the repertoire of mechanisms by which actin polymerization is governed and offer clues about the evolution of self-assembling, stabilized protein polymers.

  6. Sensing actin dynamics: Structural basis for G-actin-sensitive nuclear import of MAL

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Hidemi; Matsuura, Yoshiyuki, E-mail: matsuura.yoshiyuki@d.mbox.nagoya-u.ac.jp

    2011-10-22

    Highlights: {yields} MAL has a bipartite NLS that binds to Imp{alpha} in an extended conformation. {yields} Mutational analyses verified the functional significance of MAL-Imp{alpha} interactions. {yields} Induced folding and NLS-masking by G-actins inhibit nuclear import of MAL. -- Abstract: The coordination of cytoskeletal actin dynamics with gene expression reprogramming is emerging as a crucial mechanism to control diverse cellular processes, including cell migration, differentiation and neuronal circuit assembly. The actin-binding transcriptional coactivator MAL (also known as MRTF-A/MKL1/BSAC) senses G-actin concentration and transduces Rho GTPase signals to serum response factor (SRF). MAL rapidly shuttles between the cytoplasm and the nucleus in unstimulated cells but Rho-induced depletion of G-actin leads to MAL nuclear accumulation and activation of transcription of SRF:MAL-target genes. Although the molecular and structural basis of actin-regulated nucleocytoplasmic shuttling of MAL is not understood fully, it is proposed that nuclear import of MAL is mediated by importin {alpha}/{beta} heterodimer, and that G-actin competes with importin {alpha}/{beta} for the binding to MAL. Here we present structural, biochemical and cell biological evidence that MAL has a classical bipartite nuclear localization signal (NLS) in the N-terminal 'RPEL' domain containing Arg-Pro-X-X-X-Glu-Leu (RPEL) motifs. The NLS residues of MAL adopt an extended conformation and bind along the surface groove of importin-{alpha}, interacting with the major- and minor-NLS binding sites. We also present a crystal structure of wild-type MAL RPEL domain in complex with five G-actins. Comparison of the importin-{alpha}- and actin-complexes revealed that the binding of G-actins to MAL is associated with folding of NLS residues into a helical conformation that is inappropriate for importin-{alpha} recognition.

  7. Actin-dependent mechanisms in AMPA receptor trafficking

    Directory of Open Access Journals (Sweden)

    Jonathan G Hanley

    2014-11-01

    Full Text Available The precise regulation of AMPA receptor (AMPAR number and subtype at the synapse is crucial for the regulation of excitatory neurotransmission, synaptic plasticity and the consequent formation of appropriate neural circuits during learning and memory. AMPAR trafficking involves the dynamic processes of exocytosis, endocytosis and endosomal recycling, all of which involve the actin cytoskeleton. The actin cytoskeleton is highly dynamic and highly regulated by an abundance of actin-binding proteins and upstream signalling pathways that modulate actin polymerization and depolymerisation. Actin dynamics generate forces that manipulate membranes in the process of vesicle biogenesis, and also for propelling vesicles through the cytoplasm to reach their destination. In addition, trafficking mechanisms exploit more stable aspects of the actin cytoskeleton by using actin-based motor proteins to traffic vesicular cargo along actin filaments. Numerous studies have shown that actin dynamics are critical for AMPAR localization and function. The identification of actin-binding proteins that physically interact with AMPAR subunits, and research into their mode of action is starting to shed light on the mechanisms involved. Such proteins either regulate actin dynamics to modulate mechanical forces exerted on AMPAR-containing membranes, or associate with actin filaments to target or transport AMPAR-containing vesicles to specific subcellular regions. In addition, actin-regulatory proteins that do not physically interact with AMPARs may influence AMPAR trafficking by regulating the local actin environment in the dendritic spine.

  8. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    Directory of Open Access Journals (Sweden)

    Paves Heiti

    2004-04-01

    Full Text Available Abstract Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area.

  9. The actinome of Dictyostelium discoideum in comparison to actins and actin-related proteins from other organisms.

    Directory of Open Access Journals (Sweden)

    Jayabalan M Joseph

    Full Text Available Actin belongs to the most abundant proteins in eukaryotic cells which harbor usually many conventional actin isoforms as well as actin-related proteins (Arps. To get an overview over the sometimes confusing multitude of actins and Arps, we analyzed the Dictyostelium discoideum actinome in detail and compared it with the genomes from other model organisms. The D. discoideum actinome comprises 41 actins and actin-related proteins. The genome contains 17 actin genes which most likely arose from consecutive gene duplications, are all active, in some cases developmentally regulated and coding for identical proteins (Act8-group. According to published data, the actin fraction in a D. discoideum cell consists of more than 95% of these Act8-type proteins. The other 16 actin isoforms contain a conventional actin motif profile as well but differ in their protein sequences. Seven actin genes are potential pseudogenes. A homology search of the human genome using the most typical D. discoideum actin (Act8 as query sequence finds the major actin isoforms such as cytoplasmic beta-actin as best hit. This suggests that the Act8-group represents a nearly perfect actin throughout evolution. Interestingly, limited data from D. fasciculatum, a more ancient member among the social amoebae, show different relationships between conventional actins. The Act8-type isoform is most conserved throughout evolution. Modeling of the putative structures suggests that the majority of the actin-related proteins is functionally unrelated to canonical actin. The data suggest that the other actin variants are not necessary for the cytoskeleton itself but rather regulators of its dynamical features or subunits in larger protein complexes.

  10. Wave Patterns in Cell Membrane and Actin Cortex Uncoupled from Chemotactic Signals.

    Science.gov (United States)

    Gerisch, Günther; Ecke, Mary

    2016-01-01

    When cells of Dictyostelium discoideum orientate in a gradient of chemoattractant, they are polarized into a protruding front pointing toward the source of attractant, and into a retracting tail. Under the control of chemotactic signal inputs, Ras is activated and PIP3 is synthesized at the front, while the PIP3-degrading phosphatase PTEN decorates the tail region. As a result of signal transduction, actin filaments assemble at the front into dendritic structures associated with the Arp2/3 complex, in contrast to the tail region where a loose actin meshwork is associated with myosin-II and cortexillin, an antiparallel actin-bundling protein. In axenically growing strains of D. discoideum, wave patterns built by the same components evolve in the absence of any external signal input. Since these autonomously generated patterns are constrained to the plane of the substrate-attached cell surface, they are optimally suited to the optical analysis of state transitions between front-like and tail-like states of the membrane and the actin cortex. Here, we describe imaging techniques using fluorescent proteins to probe for the state of the membrane, the reorganization of the actin network, and the dynamics of wave patterns.

  11. Liquid-like bundles of crosslinked actin filaments contract without motors

    Science.gov (United States)

    Weirich, Kimberly

    The actin cytoskeleton is a dynamic, structural material that drives cellular-scale deformations during processes such as cell migration and division. Motor proteins are responsible for actively driving many deformations by buckling and translocating actin filaments. However, there is evidence that deformations, such as the constriction of the actin bundle that drives the separation of cells during division, can occur without motors, mediated instead by crosslinker proteins. How might crosslinkers, independent of motors, drive contraction of a bundle? Using a model system of purified proteins, we show that crosslinkers, analogous to molecular cohesion, create an effective surface tension that induces bundle contraction. Crosslinked short actin filaments form micron-sized spindle-shaped bundles. Similar to tactoid granules found at the isotropic-nematic phase transition in liquid crystals, these bundles coarsen and coalesce like liquid droplets. In contrast, crosslinked long filaments coarsen into a steady state of bundles that are frozen in a solid-like network. Near the liquid-solid boundary, filaments of intermediate length initially form bundles that spontaneously contract into tactoid droplets. Our results, that crosslinked actin bundles are liquid-like with an effective surface tension, provide evidence for a mechanism of motor-independent contractility in biological materials.

  12. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy

    Science.gov (United States)

    Han, Jason J.; Kunde, Yuliya A.; Hong-Geller, Elizabeth; Werner, James H.

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  13. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy.

    Science.gov (United States)

    Han, Jason J; Kunde, Yuliya A; Hong-Geller, Elizabeth; Werner, James H

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  14. F-actin cytoskeleton and the fate of organelles in chromaffin cells.

    Science.gov (United States)

    Villanueva, José; Gimenez-Molina, Yolanda; Viniegra, Salvador; Gutiérrez, Luis M

    2016-06-01

    In addition to playing a fundamental structural role, the F-actin cytoskeleton in neuroendocrine chromaffin cells has a prominent influence on governing the molecular mechanism and regulating the secretory process. Performing such roles, the F-actin network might be essential to first transport, and later locate the cellular organelles participating in the secretory cycle. Chromaffin granules are transported from the internal cytosolic regions to the cell periphery along microtubular and F-actin structures. Once in the cortical region, they are embedded in the F-actin network where these vesicles experience restrictions in motility. Similarly, mitochondria transport is affected by both microtubule and F-actin inhibitors and suffers increasing motion restrictions when they are located in the cortical region. Therefore, the F-actin cortex is a key factor in defining the existence of two populations of cortical and perinuclear granules and mitochondria which could be distinguished by their different location and mobility. Interestingly, other important organelles for controlling intracellular calcium levels, such as the endoplasmic reticulum network, present clear differences in distribution and much lower mobility than chromaffin vesicles and mitochondria. Nevertheless, both mitochondria and the endoplasmic reticulum appear to distribute in the proximity of secretory sites to fulfill a pivotal role, forming triads with calcium channels ensuring the fine tuning of the secretory response. This review presents the contributions that provide the basis for our current view regarding the influence that F-actin has on the distribution of organelles participating in the release of catecholamines in chromaffin cells, and summarizes this knowledge in simple models. In chromaffin cells, organelles such as granules and mitochondria distribute forming cortical and perinuclear populations whereas others like the ER present homogenous distributions. In the present review we discuss

  15. Plant villins:Versatile actin regulatory proteins

    Institute of Scientific and Technical Information of China (English)

    Shanjin Huang; Xiaolu Qu; Ruihui Zhang

    2015-01-01

    Regulation of actin dynamics is a central theme in cel biology that is important for different aspects of cel physiology. Vil in, a member of the vil in/gelsolin/fragmin superfamily of proteins, is an important regulator of actin. Vil ins contain six gelsolin homology domains (G1–G6) and an extra headpiece domain. In contrast to their mammalian counterparts, plant vil ins are expressed widely, implying that plant vil ins play a more general role in regulating actin dynamics. Some plant vil ins have a defined role in modifying actin dynamics in the pol en tube;most of their in vivo activities remain to be ascertained. Recently, our understanding of the functions and mechanisms of action for plant vil ins has progressed rapidly, primarily due to the advent of Arabidopsis thaliana genetic approaches and imaging capabilities that can visualize actin dynamics at the single filament level in vitro and in living plant cel s. In this review, we focus on discussing the biochemical activities and modes of regulation of plant vil ins. Here, we present current understand-ing of the functions of plant vil ins. Final y, we highlight some of the key unanswered questions regarding the functions and regulation of plant vil ins for future research.

  16. Cucurbitacin B induces rapid depletion of the G-actin pool through reactive oxygen species-dependent actin aggregation in melanoma cells

    Institute of Scientific and Technical Information of China (English)

    Yanting Zhang; Dongyun Ouyang; Lihui Xu; Yuhua Ji; Qingbing Zha; Jiye Cai; Xianhui He

    2011-01-01

    Cucurbitacin B (CuB), a triterpenoid compound isolated from Cucurbitaceae plants, has been reported as a promising anti-cancer agent, yet its action mechanism is still controversial. In this study, we explored the potential mechanism of CuB in murine B16F10 melanoma cells.Anti-proliferation and anti-invasion effects were assessed in cultured cells, and in vivo anti-tumor activity was evaluated in a murine subcutaneous melanoma model. Flow cytometry was adopted to analyze cell cycle distribution and reactive oxygen species (ROS) levels. Actin levels were determined by western blot analysis, and the profiles of differential expressed proteins were identified by a quantitative proteomic approach. The results showed that CuB exerted inhibitory effects on cell proliferation, colony formation, as well as migration and invasion potential of the melanoma cells. The growth of subcutaneous melanoma was significantly inhibited in mice treated with CuB when compared with control group. Furthermore,CuB treatment caused rapid cell membrane blebbing and deformation, and induced G2/M-phase arrest and formation of multiploid cells. Notably, the G-actin pool was rapidly depleted and actin aggregates were formed quickly after CuB treatment. A number of cytoskeleton-regulatory proteins were differentially regulated. Blockage of ROS production significantly reduced the G-actin depletion ability and the anti-tumor activity of CuB. These findings indicate that CuB induces rapid depletion of the G-actin pool through ROS-dependent actin aggregation in melanoma cells, which may at least partly account for its anti-tumor activity.

  17. A potential yeast actin allosteric conduit dependent on hydrophobic core residues val-76 and trp-79.

    Science.gov (United States)

    Wen, Kuo-Kuang; McKane, Melissa; Stokasimov, Ema; Fields, Jonathon; Rubenstein, Peter A

    2010-07-02

    Intramolecular allosteric interactions responsible for actin conformational regulation are largely unknown. Previous work demonstrated that replacing yeast actin Val-76 with muscle actin Ile caused decreased nucleotide exchange. Residue 76 abuts Trp-79 in a six-residue linear array beginning with Lys-118 on the surface and ending with His-73 in the nucleotide cleft. To test if altering the degree of packing of these two residues would affect actin dynamics, we constructed V76I, W79F, and W79Y single mutants as well as the Ile-76/Phe-79 and Ile-76/Tyr-79 double mutants. Tyr or Phe should decrease crowding and increase protein flexibility. Subsequent introduction of Ile should restore packing and dampen changes. All mutants showed decreased growth in liquid medium. W79Y alone was severely osmosensitive and exhibited vacuole abnormalities. Both properties were rescued by Ile-76. Phe-79 or Tyr decreased the thermostability of actin and increased its nucleotide exchange rate. These effects, generally greater for Tyr than for Phe, were reversed by introduction of Ile-76. HD exchange showed that the mutations caused propagated conformational changes to all four subdomains. Based on results from phosphate release and light-scattering assays, single mutations affected polymerization in the order of Ile, Phe, and Tyr from least to most. Introduction of Ile-76 partially rescued the polymerization defects caused by either Tyr-79 or Phe-79. Thus, alterations in crowding of the 76-79 residue pair can strongly affect actin conformation and behavior, and these results support the theory that the amino acid array in which they are located may play a central role in actin regulation.

  18. Microrheology and micromechanics of actin-coated membranes

    Science.gov (United States)

    Bourdieu, Laurent

    2002-03-01

    To study the interaction between cytoskeletal filaments and the plasma membrane, we designed composite membranes obtained by self-assembly of actin filaments on the outer leaflet of giant unilamellar fluid vesicles. Their rich dynamics is studied by micromanipulation with optical tweezers and by single particle tracking experiments. We first show that microrheology study can be carried out on such an individual microscopic object by measuring the thermally excited position fluctuations of a probed bead bound biochemically to the membrane. We propose a model that relates the power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of the actin filaments network first induces a finite 2D shear modulus of the order of 1 microN/m. Moreover, these membranes exhibit a clear viscoelastic behavior at high frequency: above a few tens of Hz, both the shear and the bending moduli exhibit the same frequency dependence, a power law of exponent 0.75. These results are consistent in the framework of our model with previous measurements on actin solutions. We show moreover that these complexes exhibit typical mechanical features of a solid shell. For example, a buckling instability is observed when a localized force of the order of 0.5 picoNewton is applied perpendicular to the membrane plane. Although predicted for polymerized vesicles, this is the first evidence of such an instability. This instability is a striking example of the coupling between in-plane stretch and shear and out-of-plane bending, which takes place for curves shells when it becomes more favorable energetically to concentrate the in-plane stress due to the bending within a narrow ring, centered on the force application point.

  19. The binding of actin to p38 MAPK and inhibiting its kinase activity in vitro

    Institute of Scientific and Technical Information of China (English)

    YANG; Kun; (杨; 琨); JIANG; Yong; (姜; 勇); HAN; Jiahuai; (韩家淮); GU; Jun; (顾; 军)

    2003-01-01

    p38 MAP kinase mediates a signal pathway that is involved in many physiological and pathological processes such as inflammation, cellular stress, apoptosis, cell cycle and growth, ischemia/re-perfusion, and myocardium hypertrophy. To determine the molecular and regulative mechanism of p38 signal pathway, we used in vitro binding methods to screen the proteins that interact with p38. Here we report two proteins from mouse macrophage RAW264.7 strain treated with lipopolysaccharide (LPS) or ultraviolet radiation (UV), binding directly to p38. One of them isβ-actin identified by peptide mass spectrum and ProFound program. Actin can inhibit the autophosphorylation of p38 and the phosphorylation of ATF by p38. It suggests that the binding of actin to p38 in vitro may represent a negative feedback to the kinase activity of p38, which leads to the regulation of p38 pathway and cellular function.

  20. Drosophila cyfip regulates synaptic development and endocytosis by suppressing filamentous actin assembly.

    Science.gov (United States)

    Zhao, Lu; Wang, Dan; Wang, Qifu; Rodal, Avital A; Zhang, Yong Q

    2013-04-01

    The formation of synapses and the proper construction of neural circuits depend on signaling pathways that regulate cytoskeletal structure and dynamics. After the mutual recognition of a growing axon and its target, multiple signaling pathways are activated that regulate cytoskeletal dynamics to determine the morphology and strength of the connection. By analyzing Drosophila mutations in the cytoplasmic FMRP interacting protein Cyfip, we demonstrate that this component of the WAVE complex inhibits the assembly of filamentous actin (F-actin) and thereby regulates key aspects of synaptogenesis. Cyfip regulates the distribution of F-actin filaments in presynaptic neuromuscular junction (NMJ) terminals. At cyfip mutant NMJs, F-actin assembly was accelerated, resulting in shorter NMJs, more numerous satellite boutons, and reduced quantal content. Increased synaptic vesicle size and failure to maintain excitatory junctional potential amplitudes under high-frequency stimulation in cyfip mutants indicated an endocytic defect. cyfip mutants exhibited upregulated bone morphogenetic protein (BMP) signaling, a major growth-promoting pathway known to be attenuated by endocytosis at the Drosophila NMJ. We propose that Cyfip regulates synapse development and endocytosis by inhibiting actin assembly.

  1. Linking cellular actin status with cAMP signaling in Candida albicans.

    Science.gov (United States)

    Wang, Yue; Zou, Hao; Fang, Hao-Ming; Zhu, Yong

    2010-01-01

    The fungal pathogen Candida albicans has a remarkable ability to switch growth forms. Particularly, the yeast-to-hyphae switch is closely linked with its virulence. A range of chemicals and conditions can promote hyphal growth including serum, peptidoglycan, CO2, neutral pH, and elevated temperature. All these signals act essentially through the adenylyl cyclase Cyr1 that synthesizes cAMP. Cells lacking Cyr1 are completely defective in hyphal growth. Recently, cellular actin status is found to influence cAMP synthesis. However, how Cyr1 senses and processes multiple external and internal signals to produce a contextually proper level of cAMP remains unclear. We hypothesized that Cyr1 itself possesses multiple sensors for different signals and achieves signal integration through a combined allosteric effect on the catalytic center. To test this hypothesis, we affinity-purified a Cyr1-containing complex and found that it could enhance cAMP synthesis upon treatment with serum, peptidoglycan or CO2 in vitro. The data indicate that the complex is an essentially intact sensor/effector apparatus for cAMP synthesis. The complex contains two more subunits, the cyclase-associated protein Cap1 and G-actin. We discovered that G-actin plays a regulatory role, rendering cAMP synthesis responsive to actin dynamics. These findings shed new lights on the mechanisms that regulate cAMP-mediated responses in fungi.

  2. The polarity sub-network in the yeast network of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Luca Paris

    2011-12-01

    Full Text Available Rare, but highly connected, hub proteins subdivide hierarchically global networks of interacting proteins into modular clusters. Most biological research, however, focuses on functionally defined sub-networks. Thus, it is important to know whether the sub-networks retain the same topology of the global networks, from which they derive. To address this issue, we have analyzed the protein-protein interaction sub-network that participates in the polarized growth of the budding yeast Saccharomyces cerevisiae and that is derived from the global network of this model organism. We have observed that, in contrast to global networks, the distribution of connectivity k (i.e., the number of interactions per protein does not follow a power law, but decays exponentially, which reflects the local absence of hub proteins. Nonetheless, far from being randomly organized, the polarity sub-network can be subdivided into functional modules. In addition, most non-hub connector proteins, besides ensuring communications among modules, are linked mutually and contribute to the formation of the polarisome, a structure that coordinates actin assembly with polarized growth. These findings imply that identifying critical proteins within sub-networks (e.g., for the aim of targeted therapy requires searching not only for hubs but also for key non-hub connectors, which might remain otherwise unnoticed due to their relatively low connectivity.

  3. Decavanadate interactions with actin: inhibition of G-actin polymerization and stabilization of decameric vanadate.

    Science.gov (United States)

    Ramos, Susana; Manuel, Miguel; Tiago, Teresa; Duarte, Rui; Martins, Jorge; Gutiérrez-Merino, Carlos; Moura, José J G; Aureliano, Manuel

    2006-11-01

    Decameric vanadate species (V10) inhibit the rate and the extent of G-actin polymerization with an IC50 of 68+/-22 microM and 17+/-2 microM, respectively, whilst they induce F-actin depolymerization at a lower extent. On contrary, no effect on actin polymerization and depolymerization was detected for 2mM concentration of "metavanadate" solution that contains ortho and metavanadate species, as observed by combining kinetic with (51)V NMR spectroscopy studies. Although at 25 degrees C, decameric vanadate (10 microM) is unstable in the assay medium, and decomposes following a first-order kinetic, in the presence of G-actin (up to 8 microM), the half-life increases 5-fold (from 5 to 27 h). However, the addition of ATP (0.2mM) in the medium not only prevents the inhibition of G-actin polymerization by V10 but it also decreases the half-life of decomposition of decameric vanadate species from 27 to 10h. Decameric vanadate is also stabilized by the sarcoplasmic reticulum vesicles, which raise the half-life time from 5 to 18h whereas no effects were observed in the presence of phosphatidylcholine liposomes, myosin or G-actin alone. It is proposed that the "decavanadate" interaction with G-actin, favored by the G-actin polymerization, stabilizes decameric vanadate species and induces inhibition of G-actin polymerization. Decameric vanadate stabilization by cytoskeletal and transmembrane proteins can account, at least in part, for decavanadate toxicity reported in the evaluation of vanadium (V) effects in biological systems.

  4. Dynamics in steady state in vitro acto-myosin networks

    Science.gov (United States)

    Sonn-Segev, Adar; Bernheim-Groswasser, Anne; Roichman, Yael

    2017-04-01

    It is well known that many biochemical processes in the cell such as gene regulation, growth signals and activation of ion channels, rely on mechanical stimuli. However, the mechanism by which mechanical signals propagate through cells is not as well understood. In this review we focus on stress propagation in a minimal model for cell elasticity, actomyosin networks, which are comprised of a sub-family of cytoskeleton proteins. After giving an overview of th actomyosin network components, structure and evolution we review stress propagation in these materials as measured through the correlated motion of tracer beads. We also discuss the possibility to extract structural features of these networks from the same experiments. We show that stress transmission through these networks has two pathways, a quickly dissipative one through the bulk, and a long ranged weakly dissipative one through the pre-stressed actin network.

  5. beta-Dystroglycan modulates the interplay between actin and microtubules in human-adhered platelets.

    Science.gov (United States)

    Cerecedo, Doris; Cisneros, Bulmaro; Suárez-Sánchez, Rocío; Hernández-González, Enrique; Galván, Iván

    2008-05-01

    To maintain the continuity of an injured blood vessel, platelets change shape, secrete granule contents, adhere, aggregate, and retract in a haemostatic plug. Ordered arrays of microtubules, microfilaments, and associated proteins are responsible for these platelet responses. In full-spread platelets, microfilament bundles in association with other cytoskeleton proteins are anchored in focal contacts. Recent studies in migrating cells suggest that co-ordination and direct physical interaction of microtubules and actin network modulate adhesion development. In platelets, we have proposed a feasible association between these two cytoskeletal systems, as well as the participation of the dystrophin-associated protein complex, as part of the focal adhesion complex. The present study analysed the participation of microtubules and actin during the platelet adhesion process. Confocal microscopy, fluorescence resonance transfer energy and immunoprecipitation assays were used to provide evidence of a cross-talk between these two cytoskeletal systems. Interestingly, beta-dystroglycan was found to act as an interplay protein between actin and microtubules and an additional communication between these two cytoskeleton networks was maintained through proteins of focal adhesion complex. Altogether our data are indicative of a dynamic co-participation of actin filaments and microtubules in modulating focal contacts to achieve platelet function.

  6. Guidance of subcellular tubulogenesis by actin under the control of a synaptotagmin-like protein and Moesin.

    Science.gov (United States)

    JayaNandanan, N; Mathew, Renjith; Leptin, Maria

    2014-01-01

    Apical membranes in many polarized epithelial cells show specialized morphological adaptations that fulfil distinct physiological functions. The air-transporting tubules of Drosophila tracheal terminal cells represent an extreme case of membrane specialization. Here we show that Bitesize (Btsz), a synaptotagmin-like protein family member, is needed for luminal membrane morphogenesis. Unlike in multicellular tubes and other epithelia, where it influences apical integrity by affecting adherens junctions, Btsz here acts at a distance from junctions. Localized at the luminal membrane through its tandem C2 domain, it recruits activated Moesin. Both proteins are needed for the integrity of the actin cytoskeleton at the luminal membrane, but not for other pools of F-actin in the cell, nor do actin-dependent processes at the outer membrane, such as filopodial activity or membrane growth depend on Btsz. Btsz and Moesin guide luminal membrane morphogenesis through organizing actin and allowing the incorporation of membrane containing the apical determinant Crumbs.

  7. Dietary selenium disrupts hepatic triglyceride stores and transcriptional networks associated with growth and Notch signaling in juvenile rainbow trout.

    Science.gov (United States)

    Knight, Rosalinda; Marlatt, Vicki L; Baker, Josh A; Lo, Bonnie P; deBruyn, Adrian M H; Elphick, James R; Martyniuk, Christopher J

    2016-11-01

    Dietary Se has been shown to adversely affect adult fish by altering growth rates and metabolism. To determine the underlying mechanisms associated with these observations, we measured biochemical and transcriptomic endpoints in rainbow trout following dietary Se exposures. Treatment groups of juvenile rainbow trout were fed either control Lumbriculus variegatus worms or worms cultured on selenized yeast. Selenized yeast was cultured at four nominal doses of 5, 10, 20 or 40mg/kg Se dry weight (measured dose in the worms of 7.1, 10.7, 19.5, and 31.8mg/kgSedw respectively) and fish were fed for 60days. At 60 d, hepatic triglycerides, glycogen, total glutathione, 8-isoprostane and the transcriptome response in the liver (n=8/group) were measured. Fish fed the nominal dose of 20 and 40mg/kg Se dry weight had lower body weight and a shorter length, as well as lower triglyceride in the liver compared to controls. Evidence was lacking for an oxidative stress response and there was no change in total glutathione, 8-isoprostane levels, nor relative mRNA levels for glutathione peroxidase isoforms among groups. Microarray analysis revealed that molecular networks for long-chain fatty acid transport, lipid transport, and low density lipid oxidation were increased in the liver of fish fed 40mg/kg, and this is hypothesized to be associated with the lower triglyceride levels in these fish. In addition, up-regulated gene networks in the liver of 40mg/kg Se treated fish included epidermal growth factor receptor signaling, growth hormone receptor, and insulin growth factor receptor 1 signaling pathways. These molecular changes are hypothesized to be compensatory and related to impaired growth. A gene network related to Notch signaling, which is involved in cell-cell communication and gene transcription regulation, was also increased in the liver following dietary treatments with both 20 and 40mg/kg Se. Transcriptomic data support the hypothesis that dietary Se increases the

  8. CNS myelin wrapping is driven by actin disassembly.

    Science.gov (United States)

    Zuchero, J Bradley; Fu, Meng-Meng; Sloan, Steven A; Ibrahim, Adiljan; Olson, Andrew; Zaremba, Anita; Dugas, Jason C; Wienbar, Sophia; Caprariello, Andrew V; Kantor, Christopher; Leonoudakis, Dmitri; Leonoudakus, Dmitri; Lariosa-Willingham, Karen; Kronenberg, Golo; Gertz, Karen; Soderling, Scott H; Miller, Robert H; Barres, Ben A

    2015-07-27

    Myelin is essential in vertebrates for the rapid propagation of action potentials, but the molecular mechanisms driving its formation remain largely unknown. Here we show that the initial stage of process extension and axon ensheathment by oligodendrocytes requires dynamic actin filament assembly by the Arp2/3 complex. Unexpectedly, subsequent myelin wrapping coincides with the upregulation of actin disassembly proteins and rapid disassembly of the oligodendrocyte actin cytoskeleton and does not require Arp2/3. Inducing loss of actin filaments drives oligodendrocyte membrane spreading and myelin wrapping in vivo, and the actin disassembly factor gelsolin is required for normal wrapping. We show that myelin basic protein, a protein essential for CNS myelin wrapping whose role has been unclear, is required for actin disassembly, and its loss phenocopies loss of actin disassembly proteins. Together, these findings provide insight into the molecular mechanism of myelin wrapping and identify it as an actin-independent form of mammalian cell motility.

  9. Towards systematic discovery of signaling networks in budding yeast filamentous growth stress response using interventional phosphorylation data.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available Reversible phosphorylation is one of the major mechanisms of signal transduction, and signaling networks are critical regulators of cell growth and development. However, few of these networks have been delineated completely. Towards this end, quantitative phosphoproteomics is emerging as a useful tool enabling large-scale determination of relative phosphorylation levels. However, phosphoproteomics differs from classical proteomics by a more extensive sampling limitation due to the limited number of detectable sites per protein. Here, we propose a comprehensive quantitative analysis pipeline customized for phosphoproteome data from interventional experiments for identifying key proteins in specific pathways, discovering the protein-protein interactions and inferring the signaling network. We also made an effort to partially compensate for the missing value problem, a chronic issue for proteomics studies. The dataset used for this study was generated using SILAC (Stable Isotope Labeling with Amino acids in Cell culture technique with interventional experiments (kinase-dead mutations. The major components of the pipeline include phosphopeptide meta-analysis, correlation network analysis and causal relationship discovery. We have successfully applied our pipeline to interventional experiments identifying phosphorylation events underlying the transition to a filamentous growth form in Saccharomyces cerevisiae. We identified 5 high-confidence proteins from meta-analysis, and 19 hub proteins from correlation analysis (Pbi2p and Hsp42p were identified by both analyses. All these proteins are involved in stress responses. Nine of them have direct or indirect evidence of involvement in filamentous growth. In addition, we tested four of our predicted proteins, Nth1p, Pbi2p, Pdr12p and Rcn2p, by interventional phenotypic experiments and all of them present differential invasive growth, providing prospective validation of our approach. This comprehensive

  10. Increased fibroblast telomerase expression precedes myofibroblast α-smooth muscle actin expression in idiopathic pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Daniel Reis Waisberg

    2012-09-01

    Full Text Available OBJECTIVE: This study sought to identify the relationship between fibroblast telomerase expression, myofibroblasts, and telomerase-mediated regulatory signals in idiopathic pulmonary fibrosis. METHODS: Thirty-four surgical lung biopsies, which had been obtained from patients with idiopathic pulmonary fibrosis and histologically classified as usual interstitial pneumonia, were examined. Immunohistochemistry was used to evaluate fibroblast telomerase expression, myofibroblast α-smooth muscle actin expression and the tissue expression of inter leu kin-4, transforming growth factor-β, and basic fibroblast growth factor. The point-counting technique was used to quantify the expression of these markers in unaffected, collapsed, mural fibrosis, and honeycombing areas. The results were correlated to patient survival. RESULTS: Fibroblast telomerase expression and basic fibroblast growth factor tissue expression were higher in collapsed areas, whereas myofibroblast expression and interleukine-4 tissue expression were higher in areas of mural fibrosis. Transforming growth factor-β expression was higher in collapsed, mural fibrosis and honeycombing areas in comparison to unaffected areas. Positive correlations were found between basic fibroblast growth factor tissue expression and fibroblast telomerase expression and between interleukin-4 tissue expression and myofibroblast α-smooth muscle actin expression. Negative correlations were observed between interleukin-4 expression and basic fibroblast growth factor tissue expression in areas of mural fibrosis. Myofibroblast α-smooth muscle actin expression and interleukin-4 tissue expression in areas of mural fibrosis were negatively associated with patient survival. CONCLUSION: Fibroblast telomerase expression is higher in areas of early remodeling in lung tissues demonstrating typical interstitial pneumonia, whereas myofibroblast α-smooth muscle actin expression predominates in areas of late remodeling

  11. Actin-organising properties of the muscular dystrophy protein myotilin.

    Science.gov (United States)

    von Nandelstadh, Pernilla; Grönholm, Mikaela; Moza, Monica; Lamberg, Arja; Savilahti, Harri; Carpén, Olli

    2005-10-15

    Myotilin is a sarcomeric Z-disc protein that binds F-actin directly and bundles actin filaments, although it does not contain a conventional actin-binding domain. Expression of mutant myotilin leads to sarcomeric alterations in the dominantly inherited limb-girdle muscular dystrophy 1A and in myofibrillar myopathy/desmin-related myopathy. Together, with previous in vitro studies, this indicates that myotilin has an important function in the assembly and maintenance of Z-discs. This study characterises further the interaction between myotilin and actin. Functionally important regions in myotilin were identified by actin pull-down and yeast two-hybrid assays and with a novel strategy that combines in vitro DNA transposition-based peptide insertion mutagenesis with phenotype analysis in yeast cells. The shortest fragment to bind actin was the second Ig domain together with a short C-terminal sequence. Concerted action of the first and second Ig domain was, however, necessary for the functional activity of myotilin, as verified by analysis of transposon mutants, actin binding and phenotypic effect in mammalian cells. Furthermore, the Ig domains flanked with N- and C-terminal regions were needed for actin-bundling, indicating that the mere actin-binding sequence was insufficient for the actin-regulating activity. None of the four known disease-associated mutations altered the actin-organising ability. These results, together with previous studies in titin and kettin, identify the Ig domain as an actin-binding unit.

  12. Actin cytoskeleton demonstration in Trichomonas vaginalis and in other trichomonads.

    Science.gov (United States)

    Brugerolle, G; Bricheux, G; Coffe, G

    1996-01-01

    The flagellate form of Trichomonas vaginalis (T v) transforms to amoeboid cells upon adherence to converslips. They grow and their nuclei divide without undergoing cytokinesis, yielding giant cells and a monolayer of T v F-actin was demonstrated in Trichomonas vaginalis by fluorescence microscopy using phalloidin and an anti-actin mAb which labelled the cytoplasm of both the flagellate and amoeboid forms. Comparative electrophoresis and immunoblotting established that the actin band has the same 42 kDa as muscle actin, but 2-D electrophoresis resolved the actin band into four spots; the two major spots observed were superimposable with major muscle actin isoforms. Electron microscopy demonstrated an ectoplasmic microfibrillar layer along the adhesion zone of amoeboid T v adhering to coverslips. Immunogold staining, using anti-actin monoclonal antibodies demonstrated that this layer was mainly composed of actin microfilaments. A comparative immunoblotting study comprising seven trichomonad species showed that all trichomonads studied expressed actin. The mAb Sigma A-4700 specific for an epitope on the actin C-terminal sequence labelled only actin of Trichomonas vaginalis, Tetratrichomonas gallinarum. Trichomitus batrachorum and Hypotrichomonas acosta, but not the actin of Tritrichomonas foetus, Tritrichomonas augusta and Monocercomonas sp. This discrimination between a 'trichomonas branch' and a 'tritrichomonas branch' is congruent with inferred sequence phylogeny from SSu rRNA and with classical phylogeny of trichomonads.

  13. Prostaglandins temporally regulate cytoplasmic actin bundle formation during Drosophila oogenesis.

    Science.gov (United States)

    Spracklen, Andrew J; Kelpsch, Daniel J; Chen, Xiang; Spracklen, Cassandra N; Tootle, Tina L

    2014-02-01

    Prostaglandins (PGs)--lipid signals produced downstream of cyclooxygenase (COX) enzymes--regulate actin dynamics in cell culture and platelets, but their roles during development are largely unknown. Here we define a new role for Pxt, the Drosophila COX-like enzyme, in regulating the actin cytoskeleton--temporal restriction of actin remodeling during oogenesis. PGs are required for actin filament bundle formation during stage 10B (S10B). In addition, loss of Pxt results in extensive early actin remodeling, including actin filaments and aggregates, within the posterior nurse cells of S9 follicles; wild-type follicles exhibit similar structures at a low frequency. Hu li tai shao (Hts-RC) and Villin (Quail), an actin bundler, localize to all early actin structures, whereas Enabled (Ena), an actin elongation factor, preferentially localizes to those in pxt mutants. Reduced Ena levels strongly suppress early actin remodeling in pxt mutants. Furthermore, loss of Pxt results in reduced Ena localization to the sites of bundle formation during S10B. Together these data lead to a model in which PGs temporally regulate actin remodeling during Drosophila oogenesis by controlling Ena localization/activity, such that in S9, PG signaling inhibits, whereas at S10B, it promotes Ena-dependent actin remodeling.

  14. Cargo Transport by Two Coupled Myosin Va Motors on Actin Filaments and Bundles.

    Science.gov (United States)

    Ali, M Yusuf; Vilfan, Andrej; Trybus, Kathleen M; Warshaw, David M

    2016-11-15

    Myosin Va (myoVa) is a processive, actin-based molecular motor essential for intracellular cargo transport. When a cargo is transported by an ensemble of myoVa motors, each motor faces significant physical barriers and directional challenges created by the complex actin cytoskeleton, a network of actin filaments and actin bundles. The principles that govern the interaction of multiple motors attached to the same cargo are still poorly understood. To understand the mechanical interactions between multiple motors, we developed a simple in vitro model in which two individual myoVa motors labeled with different-colored Qdots are linked via a third Qdot that acts as a cargo. The velocity of this two-motor complex was reduced by 27% as compared to a single motor, whereas run length was increased by only 37%, much less than expected from multimotor transport models. Therefore, at low ATP, which allowed us to identify individual motor steps, we investigated the intermotor dynamics within the two-motor complex. The randomness of stepping leads to a buildup of tension in the linkage between motors-which in turn slows down the leading motor-and increases the frequency of backward steps and the detachment rate. We establish a direct relationship between the velocity reduction and the distribution of intermotor distances. The analysis of run lengths and dwell times for the two-motor complex, which has only one motor engaged with the actin track, reveals that half of the runs are terminated by almost simultaneous detachment of both motors. This finding challenges the assumptions of conventional multimotor models based on consecutive motor detachment. Similar, but even more drastic, results were observed with two-motor complexes on actin bundles, which showed a run length that was even shorter than that of a single motor.

  15. Impact of actin filament stabilization on adult hippocampal and olfactory bulb neurogenesis.

    Science.gov (United States)

    Kronenberg, Golo; Gertz, Karen; Baldinger, Tina; Kirste, Imke; Eckart, Sarah; Yildirim, Ferah; Ji, Shengbo; Heuser, Isabella; Schröck, Helmut; Hörtnagl, Heide; Sohr, Reinhard; Djoufack, Pierre Chryso; Jüttner, René; Glass, Rainer; Przesdzing, Ingo; Kumar, Jitender; Freyer, Dorette; Hellweg, Rainer; Kettenmann, Helmut; Fink, Klaus Benno; Endres, Matthias

    2010-03-03

    Rearrangement of the actin cytoskeleton is essential for dynamic cellular processes. Decreased actin turnover and rigidity of cytoskeletal structures have been associated with aging and cell death. Gelsolin is a Ca(2+)-activated actin-severing protein that is widely expressed throughout the adult mammalian brain. Here, we used gelsolin-deficient (Gsn(-/-)) mice as a model system for actin filament stabilization. In Gsn(-/-) mice, emigration of newly generated cells from the subventricular zone into the olfactory bulb was slowed. In vitro, gelsolin deficiency did not affect proliferation or neuronal differentiation of adult neural progenitors cells (NPCs) but resulted in retarded migration. Surprisingly, hippocampal neurogenesis was robustly induced by gelsolin deficiency. The ability of NPCs to intrinsically sense excitatory activity and thereby implement coupling between network activity and neurogenesis has recently been established. Depolarization-induced [Ca(2+)](i) increases and exocytotic neurotransmitter release were enhanced in Gsn(-/-) synaptosomes. Importantly, treatment of Gsn(-/-) synaptosomes with mycotoxin cytochalasin D, which, like gelsolin, produces actin disassembly, decreased enhanced Ca(2+) influx and subsequent exocytotic norepinephrine release to wild-type levels. Similarly, depolarization-induced glutamate release from Gsn(-/-) brain slices was increased. Furthermore, increased hippocampal neurogenesis in Gsn(-/-) mice was associated with a special microenvironment characterized by enhanced density of perfused vessels, increased regional cerebral blood flow, and increased endothelial nitric oxide synthase (NOS-III) expression in hippocampus. Together, reduced filamentous actin turnover in presynaptic terminals causes increased Ca(2+) influx and, subsequently, elevated exocytotic neurotransmitter release acting on neural progenitors. Increased neurogenesis in Gsn(-/-) hippocampus is associated with a special vascular niche for neurogenesis.

  16. Unconventional actins and actin-binding proteins in human protozoan parasites.

    Science.gov (United States)

    Gupta, C M; Thiyagarajan, S; Sahasrabuddhe, A A

    2015-06-01

    Actin and its regulatory proteins play a key role in several essential cellular processes such as cell movement, intracellular trafficking and cytokinesis in most eukaryotes. While these proteins are highly conserved in higher eukaryotes, a number of unicellular eukaryotic organisms contain divergent forms of these proteins which have highly unusual biochemical and structural properties. Here, we review the biochemical and structural properties of these unconventional actins and their core binding proteins which are present in commonly occurring human protozoan parasites.

  17. Filopodia-like actin cables position nuclei in association with perinuclear actin in Drosophila nurse cells

    OpenAIRE

    Huelsmann, Sven; Ylänne, Jari; Brown, Nicholas H

    2013-01-01

    Summary Controlling the position of the nucleus is vital for a number of cellular processes from yeast to humans. In Drosophila nurse cells, nuclear positioning is crucial during dumping, when nurse cells contract and expel their contents into the oocyte. We provide evidence that in nurse cells, continuous filopodia-like actin cables, growing from the plasma membrane and extending to the nucleus, achieve nuclear positioning. These actin cables move nuclei away from ring canals. When nurse cel...

  18. Noisy Oscillations in the Actin Cytoskeleton of Chemotactic Amoeba

    Science.gov (United States)

    Negrete, Jose; Pumir, Alain; Hsu, Hsin-Fang; Westendorf, Christian; Tarantola, Marco; Beta, Carsten; Bodenschatz, Eberhard

    2016-09-01

    Biological systems with their complex biochemical networks are known to be intrinsically noisy. Here we investigate the dynamics of actin polymerization of amoeboid cells, which are close to the onset of oscillations. We show that the large phenotypic variability in the polymerization dynamics can be accurately captured by a generic nonlinear oscillator model in the presence of noise. We determine the relative role of the noise with a single dimensionless, experimentally accessible parameter, thus providing a quantitative description of the variability in a population of cells. Our approach, which rests on a generic description of a system close to a Hopf bifurcation and includes the effect of noise, can characterize the dynamics of a large class of noisy systems close to an oscillatory instability.

  19. Nutrients interaction investigation to improve Monascus purpureus FTC5391 growth rate using Response Surface Methodology and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Mohamad, R.

    2013-01-01

    Full Text Available Aims: Two vital factors, certain environmental conditions and nutrients as a source of energy are entailed for successful growth and reproduction of microorganisms. Manipulation of nutritional requirement is the simplest and most effectual strategy to stimulate and enhance the activity of microorganisms. Methodology and Results: In this study, response surface methodology (RSM and artificial neural network (ANN were employed to optimize the carbon and nitrogen sources in order to improve growth rate of Monascus purpureus FTC5391,a new local isolate. The best models for optimization of growth rate were a multilayer full feed-forward incremental back propagation network, and a modified response surface model using backward elimination. The optimum condition for cell mass production was: sucrose 2.5%, yeast extract 0.045%, casamino acid 0.275%, sodium nitrate 0.48%, potato starch 0.045%, dextrose 1%, potassium nitrate 0.57%. The experimental cell mass production using this optimal condition was 21 mg/plate/12days, which was 2.2-fold higher than the standard condition (sucrose 5%, yeast extract 0.15%, casamino acid 0.25%, sodium nitrate 0.3%, potato starch 0.2%, dextrose 1%, potassium nitrate 0.3%. Conclusion, significance and impact of study: The results of RSM and ANN showed that all carbon and nitrogen sources tested had significant effect on growth rate (P-value < 0.05. In addition the use of RSM and ANN alongside each other provided a proper growth prediction model.

  20. The endocrine regulation network of growth hormone synthesis and secretion in fish: Emphasis on the signal integration in somatotropes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In teleosts, growth hormone (GH) production is governed by multiple neuroendocrine factors from the hypothalamus and other regulators from the pituitary and peripheral organs. Exploring the principles followed by pituitary somatotropes when differentiating and integrating the signals from these regulators at the cellular and intracellular level is essential for understanding the endocrine regulation network of growth hormone synthesis and secretion in fish. This paper discusses recent advances in the action mechanisms of GH regulation factors, including the neuroendocrine regulators, pituitary level factors and peripheral factors, primarily involved in their receptor systems as well as in post-receptor signal transduction pathways.

  1. Tailor-made ezrin actin binding domain to probe its interaction with actin in-vitro.

    Directory of Open Access Journals (Sweden)

    Rohini Shrivastava

    Full Text Available Ezrin, a member of the ERM (Ezrin/Radixin/Moesin protein family, is an Actin-plasma membrane linker protein mediating cellular integrity and function. In-vivo study of such interactions is a complex task due to the presence of a large number of endogenous binding partners for both Ezrin and Actin. Further, C-terminal actin binding capacity of the full length Ezrin is naturally shielded by its N-terminal, and only rendered active in the presence of Phosphatidylinositol bisphosphate (PIP2 or phosphorylation at the C-terminal threonine. Here, we demonstrate a strategy for the design, expression and purification of constructs, combining the Ezrin C-terminal actin binding domain, with functional elements such as fusion tags and fluorescence tags to facilitate purification and fluorescence microscopy based studies. For the first time, internal His tag was employed for purification of Ezrin actin binding domain based on in-silico modeling. The functionality (Ezrin-actin interaction of these constructs was successfully demonstrated by using Total Internal Reflection Fluorescence Microscopy. This design can be extended to other members of the ERM family as well.

  2. Quantification of Filamentous Actin (F-actin) Puncta in Rat Cortical Neurons.

    Science.gov (United States)

    Li, Hailong; Aksenova, Marina; Bertrand, Sarah J; Mactutus, Charles F; Booze, Rosemarie

    2016-02-10

    Filamentous actin protein (F-actin) plays a major role in spinogenesis, synaptic plasticity, and synaptic stability. Changes in dendritic F-actin rich structures suggest alterations in synaptic integrity and connectivity. Here we provide a detailed protocol for culturing primary rat cortical neurons, Phalloidin staining for F-actin puncta, and subsequent quantification techniques. First, the frontal cortex of E18 rat embryos are dissociated into low-density cell culture, then the neurons grown in vitro for at least 12-14 days. Following experimental treatment, the cortical neurons are stained with AlexaFluor 488 Phalloidin (to label the dendritic F-actin puncta) and microtubule-associated protein 2 (MAP2; to validate the neuronal cells and dendritic integrity). Finally, specialized software is used to analyze and quantify randomly selected neuronal dendrites. F-actin rich structures are identified on second order dendritic branches (length range 25-75 µm) with continuous MAP2 immunofluorescence. The protocol presented here will be a useful method for investigating changes in dendritic synapse structures subsequent to experimental treatments.

  3. From filaments to function:The role of the plant actin cytoskeleton in pathogen perception, signaling and immunity

    Institute of Scientific and Technical Information of China (English)

    Katie Porter; Brad Day

    2016-01-01

    The eukaryotic actin cytoskeleton is required for numerous cellular processes, including cell shape, develop-ment and movement, gene expression and signal transduc-tion, and response to biotic and abiotic stress. In recent years, research in both plants and animal systems have described a function for actin as the ideal surveillance platform, linking the function and activity of primary physiological processes to the immune system. In this review, we will highlight recent advances that have defined the regulation and breadth of function of the actin cytoskeleton as a network required for defense signaling following pathogen infection. Coupled with an overview of recent work demonstrating specific targeting of the plant actin cytoskeleton by a diversity of pathogens, including bacteria, fungi and viruses, we will highlight the importance of actin as a key signaling hub in plants, one that mediates surveillance of cellular homeostasis and the activa-tion of specific signaling responses following pathogen perception. B4ased on the studies highlighted herein, we propose a working model that posits changes in actin filament organization is in and of itself a highly specific signal, which induces, regulates and physically directs stimulus-specific signaling processes, most importantly, those associated with response to pathogens.

  4. Modelling of multi-nutrient interactions in growth of the dinoflagellate microalga Protoceratium reticulatum using artificial neural networks.

    Science.gov (United States)

    López-Rosales, L; Gallardo-Rodríguez, J J; Sánchez-Mirón, A; Contreras-Gómez, A; García-Camacho, F; Molina-Grima, E

    2013-10-01

    This study examines the use of artificial neural networks as predictive tools for the growth of the dinoflagellate microalga Protoceratium reticulatum. Feed-forward back-propagation neural networks (FBN), using Levenberg-Marquardt back-propagation or Bayesian regularization as training functions, offered the best results in terms of representing the nonlinear interactions among all nutrients in a culture medium containing 26 different components. A FBN configuration of 26-14-1 layers was selected. The FBN model was trained using more than 500 culture experiments on a shake flask scale. Garson's algorithm provided a valuable means of evaluating the relative importance of nutrients in terms of microalgal growth. Microelements and vitamins had a significant importance (approximately 70%) in relation to macronutrients (nearly 25%), despite their concentrations in the culture medium being various orders of magnitude smaller. The approach presented here may be useful for modelling multi-nutrient interactions in photobioreactors.

  5. Drosophila myosin-XX functions as an actin-binding protein to facilitate the interaction between Zyx102 and actin.

    Science.gov (United States)

    Cao, Yang; White, Howard D; Li, Xiang-Dong

    2014-01-21

    The class XX myosin is a member of the diverse myosin superfamily and exists in insects and several lower invertebrates. DmMyo20, the class XX myosin in Drosophila, is encoded by dachs, which functions as a crucial downstream component of the Fat signaling pathway, influencing growth, affinity, and gene expression during development. Sequence analysis shows that DmMyo20 contains a unique N-terminal extension, the motor domain, followed by one IQ motif, and a C-terminal tail. To investigate the biochemical properties of DmMyo20, we expressed several DmMyo20 truncated constructs containing the motor domain in the baculovirus/Sf9 system. We found that the motor domain of DmMyo20 had neither ATPase activity nor the ability to bind to ATP, suggesting that DmMyo20 does not function as a molecular motor. We found that the motor domain of DmMyo20 could specifically bind to actin filaments in an ATP-independent manner and enhance the interaction between actin filaments and Zyx102, a downstream component of DmMyo20 in the Fat signaling pathway. These results suggest that DmMyo20 functions as a scaffold protein, but not as a molecular motor, in a signaling pathway controlling cell differentiation.

  6. Stromal cell-derived factor 1 regulates the actin organization of chondrocytes and chondrocyte hypertrophy.

    Directory of Open Access Journals (Sweden)

    Koichi Murata

    Full Text Available Stromal cell-derived factor 1 (SDF-1/CXCL12/PBSF plays important roles in the biological and physiological functions of haematopoietic and mesenchymal stem cells. This chemokine regulates the formation of multiple organ systems during embryogenesis. However, its roles in skeletal development remain unclear. Here we investigated the roles of SDF-1 in chondrocyte differentiation. We demonstrated that SDF-1 protein was expressed at pre-hypertrophic and hypertrophic chondrocytes in the newly formed endochondral callus of rib fracture as well as in the growth plate of normal mouse tibia by immunohistochemical analysis. Using SDF-1(-/- mouse embryo, we histologically showed that the total length of the whole humeri of SDF-1(-/- mice was significantly shorter than that of wild-type mice, which was contributed mainly by shorter hypertrophic and calcified zones in SDF-1(-/- mice. Actin cytoskeleton of hypertrophic chondrocytes in SDF-1(-/- mouse humeri showed less F-actin and rounder shape than that of wild-type mice. Primary chondrocytes from SDF-1(-/- mice showed the enhanced formation of philopodia and loss of F-actin. The administration of SDF-1 to primary chondrocytes of wild-type mice and SDF-1(-/- mice promoted the formation of actin stress fibers. Organ culture of embryonic metatarsals from SDF-1(-/- mice showed the growth delay, which was recovered by an exogenous administration of SDF-1. mRNA expression of type X collagen in metatarsals and in primary chondrocytes of SDF-1(-/- mouse embryo was down-regulated while the administration of SDF-1 to metatarsals recovered. These data suggests that SDF-1 regulates the actin organization and stimulates bone growth by mediating chondrocyte hypertrophy.

  7. Self-organization of stress patterns drives state transitions in actin cortices

    CERN Document Server

    Tan, Tzer Han; Abu-Shah, Enas; Li, Junang; Sharma, Abhinav; MacKintosh, Fred C; Keren, Kinneret; Schmidt, Christoph F; Fakhri, Nikta

    2016-01-01

    Biological functions rely on ordered structures and intricately controlled collective dynamics. In contrast to systems in thermodynamic equilibrium, order is typically established and sustained in stationary states by continuous dissipation of energy. Non-equilibrium dynamics is a necessary condition to make the systems highly susceptible to signals that cause transitions between different states. How cellular processes self-organize under this general principle is not fully understood. Here, we find that model actomyosin cortices, in the presence of rapid turnover, display distinct steady states, each distinguished by characteristic order and dynamics as a function of network connectivity. The different states arise from a subtle interaction between mechanical percolation of the actin network and myosin-generated stresses. Remarkably, myosin motors generate actin architectures, which in turn, force the emergence of ordered stress patterns. Reminiscent of second order phase transitions, the emergence of order...

  8. Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers

    Directory of Open Access Journals (Sweden)

    Yaming Jiu

    2015-06-01

    Full Text Available The actin cytoskeleton and cytoplasmic intermediate filaments contribute to cell migration and morphogenesis, but the interplay between these two central cytoskeletal elements has remained elusive. Here, we find that specific actin stress fiber structures, transverse arcs, interact with vimentin intermediate filaments and promote their retrograde flow. Consequently, myosin-II-containing arcs are important for perinuclear localization of the vimentin network in cells. The vimentin network reciprocally restricts retrograde movement of arcs and hence controls the width of flat lamellum at the leading edge of the cell. Depletion of plectin recapitulates the vimentin organization phenotype of arc-deficient cells without affecting the integrity of vimentin filaments or stress fibers, demonstrating that this cytoskeletal cross-linker is required for productive interactions between vimentin and arcs. Collectively, our results reveal that plectin-mediated interplay between contractile actomyosin arcs and vimentin intermediate filaments controls the localization and dynamics of these two cytoskeletal systems and is consequently important for cell morphogenesis.

  9. Growth-expectations among women entrepreneurs: embedded in networks and culture in Algeria, Morocco, Tunisia and in Belgium and France

    DEFF Research Database (Denmark)

    Cheraghi, Maryam; Setti, Zakia; Schøtt, Thomas

    2014-01-01

    and secular-rational culture differ in roles for women, which influence women entrepreneurs' networking and expectations. The design compares cultures, with data from three traditional societies, Algeria, Morocco and Tunisia and two secular-rational societies, France and Belgium, surveyed in the Global...... Entrepreneurship Monitor, randomly sampling 39,336 women, including 2,306 entrepreneurs. Analyses show that women entrepreneurs have growth-expectations based on their background and increased by their competence and opportunity-motive, which also promote business networks around their firms. Formation......An entrepreneur usually has an expectation for the firm, expecting expansion, stability or contraction. Expectation is influenced by the entrepreneur's attributes, but expectation is also embedded in the micro-environment of networking and the macro-environment of culture. Traditional culture...

  10. Transient state model of actin-based motility

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    We developed a transient model for actin-based motility.Diffusion of actin monomers was included in the formulation and its influence on the speed of actin-driven cargos was examined in detail.Our results clearly demonstrated how actin polymerization accelerates cargos that are initially stationary,as well as how steady-state is eventually reached.We also found that,due to polymerization and diffusion,actin monomer concentration near the load surface can be significantly lower than that in the rest of th...

  11. Metabolic network reconstruction, growth characterization and 13C-metabolic flux analysis of the extremophile Thermus thermophilus HB8.

    Science.gov (United States)

    Swarup, Aditi; Lu, Jing; DeWoody, Kathleen C; Antoniewicz, Maciek R

    2014-07-01

    Thermus thermophilus is an extremely thermophilic bacterium with significant biotechnological potential. In this work, we have characterized aerobic growth characteristics of T. thermophilus HB8 at temperatures between 50 and 85°C, constructed a metabolic network model of its central carbon metabolism and validated the model using (13)C-metabolic flux analysis ((13)C-MFA). First, cells were grown in batch cultures in custom constructed mini-bioreactors at different temperatures to determine optimal growth conditions. The optimal temperature for T. thermophilus grown on defined medium with glucose was 81°C. The maximum growth rate was 0.25h(-1). Between 50 and 81°C the growth rate increased by 7-fold and the temperature dependence was described well by an Arrhenius model with an activation energy of 47kJ/mol. Next, we performed a (13)C-labeling experiment with [1,2-(13)C] glucose as the tracer and calculated intracellular metabolic fluxes using (13)C-MFA. The results provided support for the constructed network model and highlighted several interesting characteristics of T. thermophilus metabolism. We found that T. thermophilus largely uses glycolysis and TCA cycle to produce biosynthetic precursors, ATP and reducing equivalents needed for cells growth. Consistent with its proposed metabolic network model, we did not detect any oxidative pentose phosphate pathway flux or Entner-Doudoroff pathway activity. The biomass precursors erythrose-4-phosphate and ribose-5-phosphate were produced via the non-oxidative pentose phosphate pathway, and largely via transketolase, with little contribution from transaldolase. The high biomass yield on glucose that was measured experimentally was also confirmed independently by (13)C-MFA. The results presented here provide a solid foundation for future studies of T. thermophilus and its metabolic engineering applications.

  12. Concerted upregulation of CLP36 and smooth muscle actin protein expression in human endometrium during decidualization

    OpenAIRE

    Miehe, Ulrich; Neumaier-Wagner, Peruka; Kadyrov, Mamed; Goyal, Pankaj; Alfer, Joachim; Rath, Werner; Huppertz, Berthold

    2005-01-01

    The human endometrium prepares for implantation of the blastocyst by reorganization of its whole cellular network. Endometrial stroma cells change their phenotype starting around the 23rd day of the menstrual cycle. These predecidual stroma cells first appear next to spiral arteries, and after implantation these cells further differentiate into decidual stroma cells. The phenotypical changes in these cells during decidualization are characterized by distinct changes in the actin filaments and...

  13. Bundling Actin Filaments From Membranes: Some Novel Players

    Directory of Open Access Journals (Sweden)

    Clément eThomas

    2012-08-01

    Full Text Available Progress in live-cell imaging of the cytoskeleton has significantly extended our knowledge about the organization and dynamics of actin filaments near the plasma membrane of plant cells. Noticeably, two populations of filamentous structures can be distinguished. On the one hand, fine actin filaments which exhibit an extremely dynamic behavior basically characterized by fast polymerization and prolific severing events, a process referred to as actin stochastic dynamics. On the other hand, thick actin bundles which are composed of several filaments and which are comparatively more stable although they constantly remodel as well. There is evidence that the actin cytoskeleton plays critical roles in trafficking and signaling at both the cell cortex and organelle periphery but the exact contribution of actin bundles remains unclear. A common view is that actin bundles provide the long-distance tracks used by myosin motors to deliver their cargo to growing regions and accordingly play a particularly important role in cell polarization. However, several studies support that actin bundles are more than simple passive highways and display multiple and dynamic roles in the regulation of many processes, such as cell elongation, polar auxin transport, stomatal and chloroplast movement, and defense against pathogens. The list of identified plant actin-bundling proteins is ever expanding, supporting that plant cells shape structurally and functionally different actin bundles. Here I review the most recently characterized actin-bundling proteins, with a particular focus on those potentially relevant to membrane trafficking and/or signaling.

  14. Tropomyosin diffusion over actin subunits facilitates thin filament assembly

    Directory of Open Access Journals (Sweden)

    Stefan Fischer

    2016-01-01

    Full Text Available Coiled-coil tropomyosin binds to consecutive actin-subunits along actin-containing thin filaments. Tropomyosin molecules then polymerize head-to-tail to form cables that wrap helically around the filaments. Little is known about the assembly process that leads to continuous, gap-free tropomyosin cable formation. We propose that tropomyosin molecules diffuse over the actin-filament surface to connect head-to-tail to partners. This possibility is likely because (1 tropomyosin hovers loosely over the actin-filament, thus binding weakly to F-actin and (2 low energy-barriers provide tropomyosin freedom for 1D axial translation on F-actin. We consider that these unique features of the actin-tropomyosin interaction are the basis of tropomyosin cable formation.

  15. Tropomyosin diffusion over actin subunits facilitates thin filament assembly

    Science.gov (United States)

    Fischer, Stefan; Rynkiewicz, Michael J.; Moore, Jeffrey R.; Lehman, William

    2016-01-01

    Coiled-coil tropomyosin binds to consecutive actin-subunits along actin-containing thin filaments. Tropomyosin molecules then polymerize head-to-tail to form cables that wrap helically around the filaments. Little is known about the assembly process that leads to continuous, gap-free tropomyosin cable formation. We propose that tropomyosin molecules diffuse over the actin-filament surface to connect head-to-tail to partners. This possibility is likely because (1) tropomyosin hovers loosely over the actin-filament, thus binding weakly to F-actin and (2) low energy-barriers provide tropomyosin freedom for 1D axial translation on F-actin. We consider that these unique features of the actin-tropomyosin interaction are the basis of tropomyosin cable formation. PMID:26798831

  16. Transcriptional Regulatory Networks Activated by PI3K and ERK Transduced Growth Signals in Human Glioblastoma Cells

    Institute of Scientific and Technical Information of China (English)

    Peter M. Haverty; Zhi-Ping Weng; Ulla Hansen

    2005-01-01

    Determining how cells regulate their transcriptional response to extracellular signals is key to the understanding of complex eukaryotic systems. This study was initiated with the goals of furthering the study of mammalian transcriptional regulation and analyzing the relative benefits of related computational methodologies. One dataset available for such an analysis involved gene expression profiling of the early growth factor response to platelet derived growth factor (PDGF)in a human glioblastoma cell line; this study differentiated genes whose expression was regulated by signaling through the phosphoinositide-3-kinase (PI3K) versus the extracellular-signal regulated kinase (ERK) pathways. We have compared the inferred transcription factors from this previous study with additional predictions of regulatory transcription factors using two alternative promoter sequence analysis techniques. This comparative analysis, in which the algorithms predict overlapping,although not identical, sets of factors, argues for meticulous benchmarking of promoter sequence analysis methods to determine the positive and negative attributes that contribute to their varying results. Finally, we inferred transcriptional regulatory networks deriving from various signaling pathways using the CARRIE program suite. These networks not only included previously described transcriptional features of the response to growth signals, but also predicted new regulatory features for the propagation and modulation of the growth signal.

  17. JUVENILE COHO SALMON GROWTH AND SURVIVAL ACROSS STREAM NETWORK SEASONAL HABITATS

    Science.gov (United States)

    Understanding watershed-scale variation in juvenile salmonid survival and growth can provide insights into factors influencing demographics and can help target restoration and mitigation efforts for imperiled fish populations. We assessed growth, movement, and apparent overwinte...

  18. Distinct functional interactions between actin isoforms and nonsarcomeric myosins.

    Directory of Open Access Journals (Sweden)

    Mirco Müller

    Full Text Available Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.

  19. Artificial Neural Networks, and Evolutionary Algorithms as a systems biology approach to a data-base on fetal growth restriction.

    Science.gov (United States)

    Street, Maria E; Buscema, Massimo; Smerieri, Arianna; Montanini, Luisa; Grossi, Enzo

    2013-12-01

    One of the specific aims of systems biology is to model and discover properties of cells, tissues and organisms functioning. A systems biology approach was undertaken to investigate possibly the entire system of intra-uterine growth we had available, to assess the variables of interest, discriminate those which were effectively related with appropriate or restricted intrauterine growth, and achieve an understanding of the systems in these two conditions. The Artificial Adaptive Systems, which include Artificial Neural Networks and Evolutionary Algorithms lead us to the first analyses. These analyses identified the importance of the biochemical variables IL-6, IGF-II and IGFBP-2 protein concentrations in placental lysates, and offered a new insight into placental markers of fetal growth within the IGF and cytokine systems, confirmed they had relationships and offered a critical assessment of studies previously performed.

  20. Analysis of the fibroblast growth factor receptor (FGFR) signalling network with heparin as coreceptor: evidence for the expansion of the core FGFR signalling network.

    Science.gov (United States)

    Xu, Ruoyan; Rudd, Timothy R; Hughes, Ashley J; Siligardi, Giuliano; Fernig, David G; Yates, Edwin A

    2013-05-01

    The evolution of the fibroblast growth factor (FGF)-FGF receptor (FGFR) signalling system has closely followed that of multicellular organisms. The abilities of nine FGFs (FGF-1 to FGF-9; examples of FGF subfamilies 1, 4, 7, 8, and 9) and seven FGFRs or isoforms (FGFR1b, FGFR1c, FGFR2b, FGFR2c, FGFR3b, FGFR3c, and FGFR4) to support signalling in the presence of heparin, a proxy for the cellular heparan sulfate coreceptor, were assembled into a network. A connection between two FGFRs was defined as their mutual ability to signal with a particular FGF. The network contained a core of four receptors (FGFR1c, FGFR2c, FGFR3c, and FGFR4) with complete connectivity and high redundancy. Analysis of the wider network indicated that neither FGF-3 nor FGF-7 was well connected to this core of four receptors, and that divergence of a precursor of FGF subgroups 1, 4 and 9 from FGF subgroup 8 may have allowed expansion from a three-member FGFR core signalling system to the four-member core network. This increases by four-fold the number of possible signalling combinations. Synchrotron radiation CD spectra of the FGFs with heparin revealed no overall common structural change, suggesting the existence of distinct heparin-binding sites throughout the FGFs. The approach provides a potential method of identifying agents capable of influencing particular FGF-FGFR combinations, or areas of the signalling network, for experimental or therapeutic purposes.

  1. Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility

    Science.gov (United States)

    Benanti, Erin L.; Nguyen, Catherine M.; Welch, Matthew D.

    2015-01-01

    Summary Burkholderia pseudomallei and B. mallei are bacterial pathogens that cause melioidosis and glanders, while their close relative B. thailandensis is nonpathogenic. All use the trimeric autotransporter BimA to facilitate actin-based motility, host cell fusion and dissemination. Here, we show that BimA orthologs mimic different host actin-polymerizing proteins. B. thailandensis BimA activates the host Arp2/3 complex. In contrast, B. pseudomallei and B. mallei BimA mimic host Ena/VASP actin polymerases in their ability to nucleate, elongate and bundle filaments by associating with barbed ends, as well as in their use of WH2 motifs and oligomerization for activity. Mechanistic differences among BimA orthologs resulted in distinct actin filament organization and motility parameters, which affected the efficiency of cell fusion during infection. Our results identify bacterial Ena/VASP mimics and reveal that pathogens imitate the full spectrum of host actin-polymerizing pathways, suggesting that mimicry of different polymerization mechanisms influences key parameters of infection. PMID:25860613

  2. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Juan Du

    Full Text Available Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin or polymeric form (F-actin. Members of the actin-depolymerizing factor (ADF/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1 in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1-actin complex, we constructed a homology model of the AtADF1-actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson-Boltzmann Surface Area (MM-GB/PBSA methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin.

  3. Isolation of yellow catfish β-actin promoter and generation of transgenic yellow catfish expressing enhanced yellow fluorescent protein.

    Science.gov (United States)

    Ge, Jiachun; Dong, Zhangji; Li, Jingyun; Xu, Zhiqiang; Song, Wei; Bao, Jie; Liang, Dong; Li, Junbo; Li, Kui; Jia, Wenshuang; Zhao, Muzi; Cai, Yongxiang; Yang, Jiaxin; Pan, Jianlin; Zhao, Qingshun

    2012-10-01

    Yellow catfish (Pelteobagrus fulvidraco Richardson) is one of the most important freshwater farmed species in China. However, its small size and slow growth rate limit its commercial value. Because genetic engineering has been a powerful tool to develop and improve fish traits for aquaculture, we performed transgenic research on yellow catfish in order to increase its size and growth rate. Performing PCR with degenerate primers, we cloned a genomic fragment comprising 5'-flanking sequence upstream of the initiation codon of β-actin gene in yellow catfish. The sequence is 1,017 bp long, containing the core sequence of proximal promoter including CAAT box, CArG motif and TATA box. Microinjecting the transgene construct Tg(beta-actin:eYFP) of the proximal promoter fused to enhanced yellow fluorescent protein (eYFP) reporter gene into zebrafish and yellow catfish embryos, we found the promoter could drive the reporter to express transiently in both embryos at early development. Screening the offspring of five transgenic zebrafish founders developed from the embryos microinjected with Tg(ycbeta-actin:mCherry) or 19 yellow catfish founders developed from the embryos microinjected with Tg(beta-actin:eYFP), we obtained three lines of transgenic zebrafish and one transgenic yellow catfish, respectively. Analyzing the expression patterns of the reporter genes in transgenic zebrafish (Tg(ycbeta-actin:mCherry)nju8/+) and transgenic yellow catfish (Tg(beta-actin:eYFP)nju11/+), we found the reporters were broadly expressed in both animals. In summary, we have established a platform to make transgenic yellow catfish using the proximal promoter of its own β-actin gene. The results will help us to create transgenic yellow catfish using "all yellow catfish" transgene constructs.

  4. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    Science.gov (United States)

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition.

  5. The role of actin in capacitation-related signaling: an in silico and in vitro study

    Directory of Open Access Journals (Sweden)

    Lucidi Pia

    2011-03-01

    Full Text Available Abstract Background The signalling cascades involved in many biological processes require the coordination of different subcellular districts. It is the case of the pathways involved in spermatozoa acquisition of fertilizing ability (the so called "capacitation". In the present work the coordination of subcellular signalling, during the boar sperm capacitation, was studied by a computational and experimental approach. As first the biological network representing all the molecular interactions involved in capacitation was build and analyzed, then, an experimental set up was carried out to confirm the computational model-based prediction. Results The analysis of computational model pointed out that the "actin polymerization" node had some important and unique features: - it is one of the most connected nodes, - it links in a specific manner all the intracellular compartments, - its removal from the network did not affect the global network topology but caused the loss of five important nodes (and among them the "plasma membrane" and "outer acrosome membrane" fusion. Thus, it was suggested that actin polymerization could be involved in the signaling coordination of different subcellular districts, and that its functional ablation could compromise spermatozoa ability to complete the capacitation (while the main signaling pathway remained unaffected. The experiments, carried out inhibiting the actin polymerization in capacitating boar spermatozoa by the administration of cytocalasin D (CD, demonstrated that the CD treatment inhibited spermatozoa ability to reach the full fertilizing ability, while, the examined signaling pathways (membrane acquisition of chlortetracicline pattern C, protein tyrosine phosphorylation, phospholipase C-γ1 relocalization, intracellular calcium response to zonae pellucidae remained effective, thus, confirming the model-based hypothesis. Conclusions The model based-hypothesis was confirmed by the reported data obtained

  6. The AGC Ser/Thr kinase Aga1 is essential for appressorium formation and maintenance of the actin cytoskeleton in the smut fungus Ustilago maydis.

    Science.gov (United States)

    Berndt, Patrick; Lanver, Daniel; Kahmann, Regine

    2010-12-01

    On the plant surface the dimorphic fungus Ustilago maydis switches from budding to hyphal growth and differentiates appressoria. To get more insight into these highly regulated processes we report on the role of a conserved Ser/Thr kinase of the AGC kinase family, Aga1. U. maydis Aga1 could functionally replace Ypk1p in Saccharomyces cerevisiae. aga1 deletion mutants were affected in growth, cell wall integrity, mating as well as the ability to form appressoria and showed defects in actin organization and actin-dependent endocytosis. With respect to appressorium formation and endocytosis, the aga1 deletion phenotype could be mimicked by inhibiting the formation of actin filaments with Latrunculin A. These data suggest a critical role of Aga1 in F-actin organization during the morphological changes accompanying the development of appressoria.

  7. Smooth muscle actin and myosin expression in cultured airway smooth muscle cells.

    Science.gov (United States)

    Wong, J Z; Woodcock-Mitchell, J; Mitchell, J; Rippetoe, P; White, S; Absher, M; Baldor, L; Evans, J; McHugh, K M; Low, R B

    1998-05-01

    In this study, the expression of smooth muscle actin and myosin was examined in cultures of rat tracheal smooth muscle cells. Protein and mRNA analyses demonstrated that these cells express alpha- and gamma-smooth muscle actin and smooth muscle myosin and nonmuscle myosin-B heavy chains. The expression of the smooth muscle specific actin and myosin isoforms was regulated in the same direction when growth conditions were changed. Thus, at confluency in 1 or 10% serum-containing medium as well as for low-density cells (50-60% confluent) deprived of serum, the expression of the smooth muscle forms of actin and myosin was relatively high. Conversely, in rapidly proliferating cultures at low density in 10% serum, smooth muscle contractile protein expression was low. The expression of nonmuscle myosin-B mRNA and protein was more stable and was upregulated only to a small degree in growing cells. Our results provide new insight into the molecular basis of differentiation and contractile function in airway smooth muscle cells.

  8. The role of formin tails in actin nucleation, processive elongation, and filament bundling.

    Science.gov (United States)

    Vizcarra, Christina L; Bor, Batbileg; Quinlan, Margot E

    2014-10-31

    Formins are multidomain proteins that assemble actin in a wide variety of biological processes. They both nucleate and remain processively associated with growing filaments, in some cases accelerating filament growth. The well conserved formin homology 1 and 2 domains were originally thought to be solely responsible for these activities. Recently a role in nucleation was identified for the Diaphanous autoinhibitory domain (DAD), which is C-terminal to the formin homology 2 domain. The C-terminal tail of the Drosophila formin Cappuccino (Capu) is conserved among FMN formins but distinct from other formins. It does not have a DAD domain. Nevertheless, we find that Capu-tail plays a role in filament nucleation similar to that described for mDia1 and other formins. Building on this, replacement of Capu-tail with DADs from other formins tunes nucleation activity. Capu-tail has low-affinity interactions with both actin monomers and filaments. Removal of the tail reduces actin filament binding and bundling. Furthermore, when the tail is removed, we find that processivity is compromised. Despite decreased processivity, the elongation rate of filaments is unchanged. Again, replacement of Capu-tail with DADs from other formins tunes the processive association with the barbed end, indicating that this is a general role for formin tails. Our data show a role for the Capu-tail domain in assembling the actin cytoskeleton, largely mediated by electrostatic interactions. Because of its multifunctionality, the formin tail is a candidate for regulation by other proteins during cytoskeletal rearrangements.

  9. Reconstruction of cytoskeleton filament actin of human mature dendritic cells by transforming growth factor-β1 in a concentration-dependent manner%转化生长因子-β1以浓度依赖的方式重组人成熟树突状细胞的细胞骨架丝状肌动蛋白

    Institute of Scientific and Technical Information of China (English)

    郑勤妮; 许筱莉; 姚伟娟; 田克诚; 曾柱

    2014-01-01

    目的:探索转化生长因子β1(tansforming growth factor-β1,TGF-β1)对人成熟树突状细胞(mature dendritic cells,mDCs)骨架丝状肌动蛋白(filament actin,F-actin)及其部分骨架结合蛋白表达的影响,为深入理解树突状细胞(dendritic cells,DCs)的生物学行为和提高基于DCs的抗肿瘤免疫治疗的临床效率提供线索.方法:不同浓度的TGF-β1处理mDCs后,用激光共聚焦显微镜和免疫印迹实验分别研究细胞骨架F-actin的结构和部分细胞骨架结合蛋白表达水平的变化.结果:(1)与对照组相比,TGF-β1处理后的mDCs的F-actin出现了明显重排,F-actin的表达量在3 ng/ml组下调(P=0.000),在5 ng/ml组上调(P=0.000).(2)mDCs表面丝状突起长度和数量的变化,长度在3 ng/ml和5 ng/ml组较对照组细、短(P=0.001,0.000);数量在1、3 ng/ml和5 ng/ml组较对照组少而稀疏(P=0.000);在7 ng/ml组mDCs表面丝状突起长度和数量的变化均无统计学意义(P=0.114);通过回归分析细胞丝状突起长度和数量与F-actin表达量之间存在非线性相关性(R2分别为0.828和0.746,P=0.000).(3)细胞骨架蛋白结合蛋白的表达,fascin1在所有实验组中均出现了下调(P=0.001、0.000);p-cofilin1与总cofilin1的表达水平比在1 ng/ml和3 ng/ml组均下调(P=0.000);profilin的表达在1、3 ng/ml和5 ng/ml组均上调(P=0.001、0.001、0.013).结论:TGF-β1以浓度依赖的方式影响mDCs的细胞骨架F-actin结构及其部分结合蛋白的表达,提示在临床上施行基于DCs的抗肿瘤免疫治疗时,需以适当的方式阻断TGF-β1的信号转导通路,这对进一步深入理解DCs的生物学行为和肿瘤的免疫逃逸机制具有重要意义.

  10. TGF-β Controls miR-181/ERK Regulatory Network during Retinal Axon Specification and Growth.

    Directory of Open Access Journals (Sweden)

    Sabrina Carrella

    Full Text Available Retinal axon specification and growth are critically sensitive to the dosage of numerous signaling molecules and transcription factors. Subtle variations in the expression levels of key molecules may result in a variety of axonal growth anomalies. miR-181a and miR-181b are two eye-enriched microRNAs whose inactivation in medaka fish leads to alterations of the proper establishment of connectivity and function in the visual system. miR-181a/b are fundamental regulators of MAPK signaling and their role in retinal axon growth and specification is just beginning to be elucidated. Here we demonstrate that miR-181a/b are key nodes in the interplay between TGF-β and MAPK/ERK within the functional pathways that control retinal axon specification and growth. Using a variety of in vivo and in vitro approaches in medaka fish, we demonstrate that TGF-β signaling controls the miR-181/ERK regulatory network, which in turn strengthens the TGF-β-mediated regulation of RhoA degradation. Significantly, these data uncover the role of TGF-β signaling in vivo, for the first time, in defining the correct wiring and assembly of functional retina neural circuits and further highlight miR-181a/b as key factors in axon specification and growth.

  11. Master thesis: Growth and Self-Organization Processes in Directed Social Network

    CERN Document Server

    Gligorijevic, Vladimir

    2013-01-01

    Large dataset collected from Ubuntu chat channel is studied as a complex dynamical system with emergent collective behaviour of users. With the appropriate network mappings we examined wealthy topological structure of Ubuntu network. The structure of this network is determined by computing different topological measures. The directed, weighted network, which is a suitable representation of the dataset from Ubuntu chat channel is characterized with power law dependencies of various quantities, hierarchical organization and disassortative mixing patterns. Beyond the topological features, the emergent collective state is further quantified by analysis of time series of users activities driven by emotions. Analysis of time series reveals self-organized dynamics with long-range temporal correlations in user actions.

  12. Actin-Dynamics in Plant Cells: The Function of Actin Perturbing Substances Jasplakinolide, Chondramides, Phalloidin, Cytochalasins, and Latrunculins

    Science.gov (United States)

    Holzinger, Andreas; Blaas, Kathrin

    2016-01-01

    This chapter will give an overview of the most common F-actin perturbing substances, that are used to study actin dynamics in living plant cells in studies on morphogenesis, motility, organelle movement or when apoptosis has to be induced. These substances can be divided into two major subclasses – F-actin stabilizing and polymerizing substances like jasplakinolide, chondramides and F-actin severing compounds like chytochalasins and latrunculins. Jasplakinolide was originally isolated form a marine sponge, and can now be synthesized and has become commercially available, which is responsible for its wide distribution as membrane permeable F-actin stabilizing and polymerizing agent, which may even have anti-cancer activities. Cytochalasins, derived from fungi show an F-actin severing function and many derivatives are commercially available (A, B, C, D, E, H, J), also making it a widely used compound for F-actin disruption. The same can be stated for latrunculins (A, B), derived from red sea sponges, however the mode of action is different by binding to G-actin and inhibiting incorporation into the filament. In the case of swinholide a stable complex with actin dimers is formed resulting also in severing of F-actin. For influencing F-actin dynamics in plant cells only membrane permeable drugs are useful in a broad range. We however introduce also the phallotoxins and synthetic derivatives, as they are widely used to visualize F-actin in fixed cells. A particular uptake mechanism has been shown for hepatocytes, but has also been described in siphonal giant algae. In the present chapter the focus is set on F-actin dynamics in plant cells where alterations in cytoplasmic streaming can be particularly well studied; however methods by fluorescence applications including phalloidin- and antibody staining as well as immunofluorescence-localization of the inhibitor drugs are given. PMID:26498789

  13. Networks, communities and markets in sub-Saharan Africa: Implications for growth and investment

    OpenAIRE

    Fafchamps, M.

    2001-01-01

    Metadata only record This article explores the importance that relationships and networks have in market exchanges in Sub-Saharan Africa. The study concludes that in order to reduce transactions costs, Africans traders establish long term trading relationships, which are determinant for business and market outcomes. These relationships are based on trust, but often keeping family and relatives separate from business. Socialization is another important part of business for different network...

  14. Identification of sucrose synthase as an actin-binding protein

    Science.gov (United States)

    Winter, H.; Huber, J. L.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    Several lines of evidence indicate that sucrose synthase (SuSy) binds both G- and F-actin: (i) presence of SuSy in the Triton X-100-insoluble fraction of microsomal membranes (i.e. crude cytoskeleton fraction); (ii) co-immunoprecipitation of actin with anti-SuSy monoclonal antibodies; (iii) association of SuSy with in situ phalloidin-stabilized F-actin filaments; and (iv) direct binding to F-actin, polymerized in vitro. Aldolase, well known to interact with F-actin, interfered with binding of SuSy, suggesting that a common or overlapping binding site may be involved. We postulate that some of the soluble SuSy in the cytosol may be associated with the actin cytoskeleton in vivo.

  15. Steric effects induce geometric remodeling of actin bundles in filopodia

    CERN Document Server

    Dobramysl, Ulrich; Erban, Radek

    2016-01-01

    Filopodia are ubiquitous fingerlike protrusions, spawned by many eukaryotic cells, to probe and interact with their environments. Polymerization dynamics of actin filaments, comprising the structural core of filopodia, largely determine their instantaneous lengths and overall lifetimes. The polymerization reactions at the filopodial tip require transport of G-actin, which enter the filopodial tube from the filopodial base and diffuse toward the filament barbed ends near the tip. Actin filaments are mechanically coupled into a tight bundle by cross-linker proteins. Interestingly, many of these proteins are relatively short, restricting the free diffusion of cytosolic G-actin throughout the bundle and, in particular, its penetration into the bundle core. To investigate the effect of steric restrictions on G-actin diffusion by the porous structure of filopodial actin filament bundle, we used a particle-based stochastic simulation approach. We discovered that excluded volume interactions result in partial and the...

  16. Photodynamic therapy for the treatment of actinic cheilitis.

    Science.gov (United States)

    Kodama, Makiko; Watanabe, Daisuke; Akita, Yoichi; Tamada, Yasuhiko; Matsumoto, Yoshinari

    2007-10-01

    Although actinic cheilitis is a common disease, it should be treated carefully because it can undergo malignant transformation. We report a case of actinic cheilitis treated with photodynamic therapy (PDT) using 5-aminolevulinic acid (ALA), with satisfactory outcome in both clinical and pathological aspects. Actinic cheilitis is a pathologic condition affecting mainly the lower lip caused by long-term exposure of the lips to the UV radiation in sunlight. Analogous to actinic keratosis of the skin, actinic cheilitis is considered as a precancerous lesion and it may develop into squamous cell carcinoma. We report a case of actinic cheilitis treated with PDT using ALA, with satisfactory outcome in both clinical and pathological aspects.

  17. Inverse relationship between TCTP/RhoA and p53/ /cyclin A/actin expression in ovarian cancer cells Inverse relationship between TCTP/RhoA and p53/ /cyclin A/actin expression in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Malgorzata Kloc

    2012-10-01

    Full Text Available The translationally controlled tumor protein (TCTP plays a role in cell growth, cell cycle and cancer
    progression. TCTP controls negatively the stability of the p53 tumor suppressor protein and interacts with the
    cellular cytoskeleton. The deregulation of the actin and cytokeratin cytoskeleton is responsible for the increased
    migratory activity of tumor cells and is linked with poor patient outcome. Recent studies indicate that cyclin A,
    a key regulator of cell cycle, controls actin organization and negatively regulates cell motility via regulation of RhoA
    expression. We studied the organization of actin and cytokeratin cytoskeleton and the expression of TCTP, p53,
    cyclin A, RhoA and actin in HIO180 non-transformed ovarian epithelial cells, and OVCAR3 and SKOV3 (expressing
    low level of inducible p53 ovarian epithelial cancer cells with different metastatic potential. Immunostaining
    and ultrastructural analyses illustrated a dramatic difference in the organization of the cytokeratin and actin
    filaments in non-transformed versus cancer cell lines. We also determined that there is an inverse relationship between
    the level of TCTP/RhoA and actin/p53/cyclin A expression in ovarian cancer cell lines. This previously unidentified
    negative relationship between TCTP/RhoA and actin/p53/cyclin A may suggest that this interaction is linked
    with the high aggressiveness of ovarian cancers.The translationally controlled tumor protein (TCTP plays a role in cell growth, cell cycle and cancer
    progression. TCTP controls negatively the stability of the p53 tumor suppressor protein and interacts with the
    cellular cytoskeleton. The deregulation of the actin and cytokeratin cytoskeleton is responsible for the increased
    migratory activity of tumor cells and is linked with poor patient outcome. Recent studies indicate that cyclin A,
    a key regulator of cell cycle, controls actin organization

  18. Percolative behavior of an anisotropic two-dimensional network:Growth of tellurium onto an oriented polymer film

    Science.gov (United States)

    Hoffmann, T.; Martínez-Salazar, J.; Herrero, P.; Petermann, J.

    1997-01-01

    In situ transport measurements during the growth of a thin layer of thermally evaporated tellurium onto an oriented polymer film are presented. The system, which resembles the characteristics of a two-dimensional anisotropic network, is analyzed in terms of the current percolation theory. Parameters such as the percolation threshold and the critical exponents are calculated for the perpendicular and the parallel orientation. Within the limits of the experiments the values of t∥ and t⊥ are estimated to be 1.15 and 1.46, respectively.

  19. WH2 domain: a small, versatile adapter for actin monomers.

    Science.gov (United States)

    Paunola, Eija; Mattila, Pieta K; Lappalainen, Pekka

    2002-02-20

    The actin cytoskeleton plays a central role in many cell biological processes. The structure and dynamics of the actin cytoskeleton are regulated by numerous actin-binding proteins that usually contain one of the few known actin-binding motifs. WH2 domain (WASP homology domain-2) is a approximately 35 residue actin monomer-binding motif, that is found in many different regulators of the actin cytoskeleton, including the beta-thymosins, ciboulot, WASP (Wiskott Aldrich syndrome protein), verprolin/WIP (WASP-interacting protein), Srv2/CAP (adenylyl cyclase-associated protein) and several uncharacterized proteins. The most highly conserved residues in the WH2 domain are important in beta-thymosin's interactions with actin monomers, suggesting that all WH2 domains may interact with actin monomers through similar interfaces. Our sequence database searches did not reveal any WH2 domain-containing proteins in plants. However, we found three classes of these proteins: WASP, Srv2/CAP and verprolin/WIP in yeast and animals. This suggests that the WH2 domain is an ancient actin monomer-binding motif that existed before the divergence of fungal and animal lineages.

  20. Formins: Bringing new insights to the organization of actin cytoskeleton

    Institute of Scientific and Technical Information of China (English)

    GUO Chunqing; REN Haiyun

    2006-01-01

    The actin cytoskeleton is an important component of eukaryotic cell cytoskeleton and is temporally and spatially controlled by a series of actin binding proteins (ABPs). Among ABPs, formin family proteins have attracted much attention as they can nucleate unbranched actin filament from the profilin bound actin pool in vivo. In recent years, a number of formin family members from different organisms have been reported, and their characteristics are known more clearly, although some questions are still to be clarified. Here, we summarize the structures, functions and nucleation mechanisms of different formin family proteins, intending to compare them and give some new clues to the study of formins.

  1. Electrostatics control actin filament nucleation and elongation kinetics.

    Science.gov (United States)

    Crevenna, Alvaro H; Naredi-Rainer, Nikolaus; Schönichen, André; Dzubiella, Joachim; Barber, Diane L; Lamb, Don C; Wedlich-Söldner, Roland

    2013-04-26

    The actin cytoskeleton is a central mediator of cellular morphogenesis, and rapid actin reorganization drives essential processes such as cell migration and cell division. Whereas several actin-binding proteins are known to be regulated by changes in intracellular pH, detailed information regarding the effect of pH on the actin dynamics itself is still lacking. Here, we combine bulk assays, total internal reflection fluorescence microscopy, fluorescence fluctuation spectroscopy techniques, and theory to comprehensively characterize the effect of pH on actin polymerization. We show that both nucleation and elongation are strongly enhanced at acidic pH, with a maximum close to the pI of actin. Monomer association rates are similarly affected by pH at both ends, although dissociation rates are differentially affected. This indicates that electrostatics control the diffusional encounter but not the dissociation rate, which is critical for the establishment of actin filament asymmetry. A generic model of protein-protein interaction, including electrostatics, explains the observed pH sensitivity as a consequence of charge repulsion. The observed pH effect on actin in vitro agrees with measurements of Listeria propulsion in pH-controlled cells. pH regulation should therefore be considered as a modulator of actin dynamics in a cellular environment.

  2. Interaction of calponin with actin and its functional implications.

    Science.gov (United States)

    Kołakowski, J; Makuch, R; Stepkowski, D; Dabrowska, R

    1995-01-01

    Titration of F-actin with calponin causes the formation of two types of complexes. One, at saturation, contains a lower ratio of calponin to actin (0.5:1) and is insoluble at physiological ionic strength. The another is soluble, with a higher ratio of calponin to actin (1:1). Electron microscopy revealed that the former complex consists of paracrystalline bundles of actin filaments, whereas the latter consists of separate filaments. Ca(2+)-calmodulin causes dissociation of bundles with simultaneous increase in the number of separate calponin-containing filaments. Further increase in the calmodulin concentration results in full release of calponin from actin filaments. In motility assays, calponin, when added together with ATP to actin filaments complexed with immobilized myosin, evoked a decrease in both the number and velocity of moving actin filaments. Addition of calponin to actin filaments before their binding to myosin resulted in a formation of actin filament bundles which were dissociated by ATP. Images Figure 2 PMID:7864810

  3. Correlative nanoscale imaging of actin filaments and their complexes.

    Science.gov (United States)

    Sharma, Shivani; Zhu, Huanqi; Grintsevich, Elena E; Reisler, Emil; Gimzewski, James K

    2013-07-01

    Actin remodeling is an area of interest in biology in which correlative microscopy can bring a new way to analyze protein complexes at the nanoscale. Advances in EM, X-ray diffraction, fluorescence, and single molecule techniques have provided a wealth of information about the modulation of the F-actin structure and its regulation by actin binding proteins (ABPs). Yet, there are technological limitations of these approaches to achieving quantitative molecular level information on the structural and biophysical changes resulting from ABPs interaction with F-actin. Fundamental questions about the actin structure and dynamics and how these determine the function of ABPs remain unanswered. Specifically, how local and long-range structural and conformational changes result in ABPs induced remodeling of F-actin needs to be addressed at the single filament level. Advanced, sensitive and accurate experimental tools for detailed understanding of ABP-actin interactions are much needed. This article discusses the current understanding of nanoscale structural and mechanical modulation of F-actin by ABPs at the single filament level using several correlative microscopic techniques, focusing mainly on results obtained by Atomic Force Microscopy (AFM) analysis of ABP-actin complexes.

  4. Placental determinants of fetal growth: identification of key factors in the insulin-like growth factor and cytokine systems using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Faleschini Elena

    2008-06-01

    Full Text Available Abstract Background Changes and relationships of components of the cytokine and IGF systems have been shown in placenta and cord serum of fetal growth restricted (FGR compared with normal newborns (AGA. This study aimed to analyse a data set of clinical and biochemical data in FGR and AGA newborns to assess if a mathematical model existed and was capable of identifying these two different conditions in order to identify the variables which had a mathematically consistent biological relevance to fetal growth. Methods Whole villous tissue was collected at birth from FGR (N = 20 and AGA neonates (N = 28. Total RNA was extracted, reverse transcribed and then real-time quantitative (TaqMan RT-PCR was performed to quantify cDNA for IGF-I, IGF-II, IGFBP-1, IGFBP-2 and IL-6. The corresponding proteins with TNF-α in addition were assayed in placental lysates using specific kits. The data were analysed using Artificial Neural Networks (supervised networks, and principal component analysis and connectivity map. Results The IGF system and IL-6 allowed to predict FGR in approximately 92% of the cases and AGA in 85% of the cases with a low number of errors. IGF-II, IGFBP-2, and IL-6 content in the placental lysates were the most important factors connected with FGR. The condition of being FGR was connected mainly with the IGF-II placental content, and the latter with IL-6 and IGFBP-2 concentrations in placental lysates. Conclusion These results suggest that further research in humans should focus on these biochemical data. Furthermore, this study offered a critical revision of previous studies. The understanding of this system biology is relevant to the development of future therapeutical interventions possibly aiming at reducing IL-6 and IGFBP-2 concentrations preserving IGF bioactivity in both placenta and fetus.

  5. Actin related protein complex subunit 1b controls sperm release, barrier integrity and cell division during adult rat spermatogenesis.

    Science.gov (United States)

    Kumar, Anita; Dumasia, Kushaan; Deshpande, Sharvari; Gaonkar, Reshma; Balasinor, N H

    2016-08-01

    Actin remodeling is a vital process for signaling, movement and survival in all cells. In the testes, extensive actin reorganization occurs at spermatid-Sertoli cell junctions during sperm release (spermiation) and at inter Sertoli cell junctions during restructuring of the blood testis barrier (BTB). During spermiation, tubulobulbar complexes (TBCs), rich in branched actin networks, ensure recycling of spermatid-Sertoli cell junctional molecules. Similar recycling occurs during BTB restructuring around the same time as spermiation occurs. Actin related protein 2/3 complex is an essential actin nucleation and branching protein. One of its subunits, Arpc1b, was earlier found to be down-regulated in an estrogen-induced rat model of spermiation failure. Also, Arpc1b was found to be estrogen responsive through estrogen receptor beta in seminiferous tubule culture. Here, knockdown of Arpc1b by siRNA in adult rat testis led to defects in spermiation caused by failure in TBC formation. Knockdown also compromised BTB integrity and caused polarity defects of mature spermatids. Apart from these effects pertaining to Sertoli cells, Arpc1b reduction perturbed ability of germ cells to enter G2/M phase thus hindering cell division. In summary, Arpc1b, an estrogen responsive gene, is a regulator of spermiation, mature spermatid polarity, BTB integrity and cell division during adult spermatogenesis.

  6. Dynamic buckling of actin within filopodia

    DEFF Research Database (Denmark)

    Leijnse, Natascha; Oddershede, Lene B; Bendix, Pól Martin

    2015-01-01

    Filopodia are active tubular structures protruding from the cell surface which allow the cell to sense and interact with the surrounding environment through repetitive elongation-retraction cycles. The mechanical behavior of filopodia has been studied by measuring the traction forces exerted...... in conjunction with rotation enables the cell to explore a much larger 3-dimensional space and allows for more complex, and possibly stronger, interactions with the external environment.(2) Here we focus on how bending of the filopodial actin dynamically correlates with pulling on an optically trapped...

  7. Growth of GaN nanowall network on Si (111) substrate by molecular beam epitaxy.

    Science.gov (United States)

    Zhong, Aihua; Hane, Kazuhiro

    2012-12-27

    GaN nanowall network was epitaxially grown on Si (111) substrate by molecular beam epitaxy. GaN nanowalls overlap and interlace with one another, together with large numbers of holes, forming a continuous porous GaN nanowall network. The width of the GaN nanowall can be controlled, ranging from 30 to 200 nm by adjusting the N/Ga ratio. Characterization results of a transmission electron microscope and X-ray diffraction show that the GaN nanowall is well oriented along the C axis. Strong band edge emission centered at 363 nm is observed in the spectrum of room temperature photoluminescence, indicating that the GaN nanowall network is of high quality. The sheet resistance of the Si-doped GaN nanowall network along the lateral direction was 58 Ω/. The conductive porous nanowall network can be useful for integrated gas sensors due to the large surface area-to-volume ratio and electrical conductivity along the lateral direction by combining with Si micromachining.

  8. Visualization of Actin Cytoskeletal Dynamics in Fixed and Live Drosophila Egg Chambers.

    Science.gov (United States)

    Groen, Christopher M; Tootle, Tina L

    2015-01-01

    Visualization of actin cytoskeletal dynamics is critical for understanding the spatial and temporal regulation of actin remodeling. Drosophila oogenesis provides an excellent model system for visualizing the actin cytoskeleton. Here, we present methods for imaging the actin cytoskeleton in Drosophila egg chambers in both fixed samples by phalloidin staining and in live egg chambers using transgenic actin labeling tools.

  9. Importance of Interaction between Integrin and Actin Cytoskeleton in Suspension Adaptation of CHO cells.

    Science.gov (United States)

    Walther, Christa G; Whitfield, Robert; James, David C

    2016-04-01

    The biopharmaceutical production process relies upon mammalian cell technology where single cells proliferate in suspension in a chemically defined synthetic environment. This environment lacks exogenous growth factors, usually contributing to proliferation of fibroblastic cell types such as Chinese hamster ovary (CHO) cells. Use of CHO cells for production hence requires a lengthy 'adaptation' process to select clones capable of proliferation as single cells in suspension. The underlying molecular changes permitting proliferation in suspension are not known. Comparison of the non-suspension-adapted clone CHO-AD and a suspension-adapted propriety cell line CHO-SA by flow cytometric analysis revealed a highly variable bi-modal expression pattern for cell-to-cell contact proteins in contrast to the expression pattern seen for integrins. Those have a uni-modal expression on suspension and adherent cells. Integrins showed a conformation distinguished by regularly distributed clusters forming a sphere on the cell membrane of suspension-adapted cells. Actin cytoskeleton analysis revealed reorganisation from the typical fibrillar morphology found in adherent cells to an enforced spherical subcortical actin sheath in suspension cells. The uni-modal expression and specific clustering of integrins could be confirmed for CHO-S, another suspension cell line. Cytochalasin D treatment resulted in breakdown of the actin sheath and the sphere-like integrin conformation demonstrating the link between integrins and actin in suspension-adapted CHO cells. The data demonstrates the importance of signalling changes, leading to an integrin rearrangement on the cell surface, and the necessity of the reinforcement of the actin cytoskeleton for proliferation in suspension conditions.

  10. Integrated gene co-expression network analysis in the growth phase of Mycobacterium tuberculosis reveals new potential drug targets.

    Science.gov (United States)

    Puniya, Bhanwar Lal; Kulshreshtha, Deepika; Verma, Srikant Prasad; Kumar, Sanjiv; Ramachandran, Srinivasan

    2013-11-01

    We have carried out weighted gene co-expression network analysis of Mycobacterium tuberculosis to gain insights into gene expression architecture during log phase growth. The differentially expressed genes between at least one pair of 11 different M. tuberculosis strains as source of biological variability were used for co-expression network analysis. This data included genes with highest coefficient of variation in expression. Five distinct modules were identified using topological overlap based clustering. All the modules together showed significant enrichment in biological processes: fatty acid biosynthesis, cell membrane, intracellular membrane bound organelle, DNA replication, Quinone biosynthesis, cell shape and peptidoglycan biosynthesis, ribosome and structural constituents of ribosome and transposition. We then extracted the co-expressed connections which were supported either by transcriptional regulatory network or STRING database or high edge weight of topological overlap. The genes trpC, nadC, pitA, Rv3404c, atpA, pknA, Rv0996, purB, Rv2106 and Rv0796 emerged as top hub genes. After overlaying this network on the iNJ661 metabolic network, the reactions catalyzed by 15 highly connected metabolic genes were knocked down in silico and evaluated by Flux Balance Analysis. The results showed that in 12 out of 15 cases, in 11 more than 50% of reactions catalyzed by genes connected through co-expressed connections also had altered fluxes. The modules 'Turquoise', 'Blue' and 'Red' also showed enrichment in essential genes. We could map 152 of the previously known or proposed drug targets in these modules and identified 15 new potential drug targets based on their high degree of co-expressed connections and strong correlation with module eigengenes.

  11. Network growth with preferential attachment and without “rich get richer” mechanism

    Science.gov (United States)

    Lachgar, A.; Achahbar, A.

    2016-08-01

    We propose a simple preferential attachment model of growing network using the complementary probability of Barabási-Albert (BA) model, i.e. Π(ki)∝1-ki∑jkj. In this network, new nodes are preferentially attached to not well connected nodes. Numerical simulations, in perfect agreement with the master equation solution, give an exponential degree distribution. This suggests that the power law degree distribution is a consequence of preferential attachment probability together with “rich get richer” phenomena. We also calculate the average degree of a target node at time t() and its fluctuations, to have a better view of the microscopic evolution of the network, and we also compare the results with BA model.

  12. Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover.

    Science.gov (United States)

    Moriyama, Kenji; Yahara, Ichiro

    2002-04-15

    Cofilin-ADF (actin-depolymerizing factor) is an essential driver of actin-based motility. We discovered two proteins, p65 and p55, that are components of the actin-cofilin complex in a human HEK293 cell extract and identified p55 as CAP1/ASP56, a human homologue of yeast CAP/SRV2 (cyclase-associated protein). CAP is a bifunctional protein with an N-terminal domain that binds to Ras-responsive adenylyl cyclase and a C-terminal domain that inhibits actin polymerization. Surprisingly, we found that the N-terminal domain of CAP1, but not the C-terminal domain, is responsible for the interaction with the actin-cofilin complex. The N-terminal domain of CAP1 was also found to accelerate the depolymerization of F-actin at the pointed end, which was further enhanced in the presence of cofilin and/or the C-terminal domain of CAP1. Moreover, CAP1 and its C-terminal domain were observed to facilitate filament elongation at the barbed end and to stimulate ADP-ATP exchange on G-actin, a process that regenerates easily polymerizable G-actin. Although cofilin inhibited the nucleotide exchange on G-actin even in the presence of the C-terminal domain of CAP1, its N-terminal domain relieved this inhibition. Thus, CAP1 plays a key role in speeding up the turnover of actin filaments by effectively recycling cofilin and actin and through its effect on both ends of actin filament.

  13. On the growth of foreign affiliates: multinational plant networks, joint ventures, and flexibility

    OpenAIRE

    Belderbos, Rene; Zou, J.

    2007-01-01

    We take a flexibility perspective to analyse employment growth in a large sample of Japanese manufacturing affiliates in nine Asian countries during the years leading up to and into the Asian financial crisis (1995–1999). We find that joint ventures are less flexible than wholly owned affiliates in responding to changing environmental conditions in the focal country, and underperform in high-growth environments. Multinational enterprises (MNEs) use the flexibility created by their multination...

  14. Quantitative studies of subdiffusion in living cells and actin networks

    DEFF Research Database (Denmark)

    Munteanu, Emilia-Laura; Olsen, Anja Lea; Tolic-Nørrelykke, Iva Marija

    2006-01-01

    Optical tweezers are a versatile tool in biophysics and have matured from a tool of manipulation to a tool of precise measurements. We argue here that the data analysis with advantage can be developed to a level of sophistication that matches that of the instrument. We review methods of analysis ...

  15. Recent advances into vanadyl, vanadate and decavanadate interactions with actin.

    Science.gov (United States)

    Ramos, S; Moura, J J G; Aureliano, M

    2012-01-01

    Although the number of papers about "vanadium" has doubled in the last decade, the studies about "vanadium and actin" are scarce. In the present review, the effects of vanadyl, vanadate and decavanadate on actin structure and function are compared. Decavanadate (51)V NMR signals, at -516 ppm, broadened and decreased in intensity upon actin titration, whereas no effects were observed for vanadate monomers, at -560 ppm. Decavanadate is the only species inducing actin cysteine oxidation and vanadyl formation, both processes being prevented by the natural ligand of the protein, ATP. Vanadyl titration with monomeric actin (G-actin), analysed by EPR spectroscopy, reveals a 1:1 binding stoichiometry and a K(d) of 7.5 μM(-1). Both decavanadate and vanadyl inhibited G-actin polymerization into actin filaments (F-actin), with a IC(50) of 68 and 300 μM, respectively, as analysed by light scattering assays, whereas no effects were detected for vanadate up to 2 mM. However, only vanadyl (up to 200 μM) induces 100% of G-actin intrinsic fluorescence quenching, whereas decavanadate shows an opposite effect, which suggests the presence of vanadyl high affinity actin binding sites. Decavanadate increases (2.6-fold) the actin hydrophobic surface, evaluated using the ANSA probe, whereas vanadyl decreases it (15%). Both vanadium species increased the ε-ATP exchange rate (k = 6.5 × 10(-3) s(-1) and 4.47 × 10(-3) s(-1) for decavanadate and vanadyl, respectively). Finally, (1)H NMR spectra of G-actin treated with 0.1 mM decavanadate clearly indicate that major alterations occur in protein structure, which are much less visible in the presence of ATP, confirming the preventive effect of the nucleotide on the decavanadate interaction with the protein. Putting it all together, it is suggested that actin, which is involved in many cellular processes, might be a potential target not only for decavanadate but above all for vanadyl. By affecting actin structure and function, vanadium can

  16. Actin-based motility propelled by molecular motors

    Science.gov (United States)

    Upadyayula, Sai Pramod; Rangarajan, Murali

    2012-09-01

    Actin-based motility of Listeria monocytogenes propelled by filament end-tracking molecular motors has been simulated. Such systems may act as potential nanoscale actuators and shuttles useful in sorting and sensing biomolecules. Filaments are modeled as three-dimensional elastic springs distributed on one end of the capsule and persistently attached to the motile bacterial surface through an end-tracking motor complex. Filament distribution is random, and monomer concentration decreases linearly as a function of position on the bacterial surface. Filament growth rate increases with monomer concentration but decreases with the extent of compression. The growing filaments exert push-pull forces on the bacterial surface. In addition to forces, torques arise due to two factors—distribution of motors on the bacterial surface, and coupling of torsion upon growth due to the right-handed helicity of F-actin—causing the motile object to undergo simultaneous translation and rotation. The trajectory of the bacterium is simulated by performing a force and torque balance on the bacterium. All simulations use a fixed value of torsion. Simulations show strong alignment of the filaments and the long axis of the bacterium along the direction of motion. In the absence of torsion, the bacterial surface essentially moves along the direction of the long axis. When a small amount of the torsion is applied to the bacterial surface, the bacterium is seen to move in right-handed helical trajectories, consistent with experimental observations.

  17. OVER-WINTER JUVENILE COHO SALMON GROWTH AND SURVIVAL IN A COASTAL OREGON STREAM NETWORK

    Science.gov (United States)

    Winter habitat has the potential to be a limiting factor for the production and condition of coho salmon (Oncorhynchus kisutch) smolts, but little is known about how the variation of habitat throughout whole stream networks influences coho smolts. Over a four year period (2002 - ...

  18. Growth of in-doped ZnO hollow spheres composed of nanosheets networks and nanocones: structural and optical properties.

    Science.gov (United States)

    Kim, S H; Dar, G N; Umar, Ahmad

    2013-07-01

    This work reports the facile growth and characterizations of In-doped ZnO hollow spheres composed of nanosheets networks and nanocones. The In-doped ZnO hollow spheres composed of nanosheets networks and nanocones were grown on Si (100) substrate by simple and non-catalytic thermal evaporation process using metallic zinc and indium powders in the presence of oxygen. The prepared materials were examined in terms of their morphological, compositional, structural and optical properties. The detailed morphological studies revealed that the synthesized products are hollow spheres composed of nanosheet networks and nanocones and grown in high-density. The observed structural properties exhibited well-crystallinity and wurtzite hexagonal phase for the grown materials. The room-temperature photoluminescence (PL) spectrum showed a broad band in the visible region with a suppressed UV emission and hence due the enhancement in the green emission, the prepared materials exhibits a great interest in the area of ZnO phosphors, such as field emissive display technology, etc.

  19. Deafness and espin-actin self-organization in stereocilia

    Science.gov (United States)

    Wong, Gerard C. L.

    2009-03-01

    Espins are F-actin-bundling proteins associated with large parallel actin bundles found in hair cell stereocilia in the ear, as well as brush border microvilli and Sertoli cell junctions. We examine actin bundle structures formed by different wild-type espin isoforms, fragments, and naturally-occurring human espin mutants linked to deafness and/or vestibular dysfunction. The espin-actin bundle structure consisted of a hexagonal arrangement of parallel actin filaments in a non-native twist state. We delineate the structural consequences caused by mutations in espin's actin-bundling module. For espin mutation with a severely damaged actin-bundling module, which are implicated in deafness in mice and humans, oriented nematic-like actin filament structures, which strongly impinges on bundle mechanical stiffness. Finally, we examine what makes espin different, via a comparative study of bundles formed by espin and those formed by fascin, a prototypical bundling protein found in functionally different regions of the cell, such as filopodia.

  20. Filament assembly by Spire: key residues and concerted actin binding.

    Science.gov (United States)

    Rasson, Amy S; Bois, Justin S; Pham, Duy Stephen L; Yoo, Haneul; Quinlan, Margot E

    2015-02-27

    The most recently identified class of actin nucleators, WASp homology domain 2 (WH2) nucleators, use tandem repeats of monomeric actin-binding WH2 domains to facilitate actin nucleation. WH2 domains are involved in a wide variety of actin regulatory activities. Structurally, they are expected to clash with interprotomer contacts within the actin filament. Thus, the discovery of their role in nucleation was surprising. Here we use Drosophila Spire (Spir) as a model system to investigate both how tandem WH2 domains can nucleate actin and what differentiates nucleating WH2-containing proteins from their non-nucleating counterparts. We found that the third WH2 domain in Spir (Spir-C or SC) plays a unique role. In the context of a short nucleation construct (containing only two WH2 domains), placement of SC in the N-terminal position was required for the most potent nucleation. We found that the native organization of the WH2 domains with respect to each other is necessary for binding to actin with positive cooperativity. We identified two residues within SC that are critical for its activity. Using this information, we were able to convert a weak synthetic nucleator into one with activity equal to a native Spir construct. Lastly, we found evidence that SC binds actin filaments, in addition to monomers.

  1. Actin puts the squeeze on Drosophila glue secretion.

    Science.gov (United States)

    Merrifield, Christien J

    2016-02-01

    An actin filament coat promotes cargo expulsion from large exocytosing vesicles, but the mechanisms of coat formation and force generation have been poorly characterized. Elegant imaging studies of the Drosophila melanogaster salivary gland now reveal how actin and myosin are recruited, and show that myosin II forms a contractile 'cage' that facilitates exocytosis.

  2. Interaction of actin and the chloroplast protein import apparatus.

    Science.gov (United States)

    Jouhet, Juliette; Gray, John C

    2009-07-10

    Actin filaments are major components of the cytoskeleton and play numerous essential roles, including chloroplast positioning and plastid stromule movement, in plant cells. Actin is present in pea chloroplast envelope membrane preparations and is localized at the surface of the chloroplasts, as shown by agglutination of intact isolated chloroplasts by antibodies to actin. To identify chloroplast envelope proteins involved in actin binding, we have carried out actin co-immunoprecipitation and co-sedimentation experiments on detergent-solubilized pea chloroplast envelope membranes. Proteins co-immunoprecipitated with actin were identified by mass spectrometry and by Western blotting and included the Toc159, Toc75, Toc34, and Tic110 components of the TOC-TIC protein import apparatus. A direct interaction of actin with Escherichia coli-expressed Toc159, but not Toc33, was shown by co-sedimentation experiments, suggesting that Toc159 is the component of the TOC complex that interacts with actin on the cytosolic side of the outer envelope membrane. The physiological significance of this interaction is unknown, but it may play a role in the import of nuclear-encoded photosynthesis proteins.

  3. Yeast studies reveal moonlighting functions of the ancient actin cytoskeleton

    Science.gov (United States)

    Sattlegger, Evelyn; Chernova, Tatiana A.; Gogoi, Neeku M.; Pillai, Indu V.; Chernoff, Yury O.; Munn, Alan L.

    2014-01-01

    Classic functions of the actin cytoskeleton include control of cell size and shape and the internal organisation of cells. These functions are manifest in cellular processes of fundamental importance throughout biology such as the generation of cell polarity, cell migration, cell adhesion and cell division. However, studies in the unicellular model eukaryote Saccharomyces cerevisiae (Baker's yeast) are giving insights into other functions in which the actin cytoskeleton plays a critical role. These include endocytosis, control of protein translation and determination of protein 3-dimensional shape (especially conversion of normal cellular proteins into prions). Here we present a concise overview of these new "moonlighting" roles for the actin cytoskeleton and how some of these roles might lie at the heart of important molecular switches. This is an exciting time for researchers interested in the actin cytoskeleton. We show here how studies of actin are leading us into many new and exciting realms at the interface of genetics, biochemistry and cell biology. While many of the pioneering studies have been conducted using yeast, the conservation of the actin cytoskeleton and its component proteins throughout eukaryotes suggests that these new roles for the actin cytoskeleton may not be restricted to yeast cells but rather may reflect new roles for the actin cytoskeleton of all eukaryotes. PMID:25138357

  4. Japan's Economic Growth and Information Network Industries: Can IT Make It?

    OpenAIRE

    Shinozaki, Akihiko

    2009-01-01

    The major result of recent empirical studies related to the impact of infoormation technology on economic growth has been the sure knowledge that lnformation technology has contributed to the surge in productivity and its consequent economic growth witnessed in the U.S. since the mid-1990s. A driving force to that radical change in the U.S. has been the massive investment in information technology since the early 1990s. As a result, the popular belief in the “Solow paradox,” derived from Solo...

  5. Evolution of Transcriptional Regulatory Networks in Pseudomonas aeruginosa During Long Time Growth in Human Hosts

    DEFF Research Database (Denmark)

    Andresen, Eva Kammer

    ) as a natural model system, the work has focused on characterising a number of mutations in global regulators that are known to provide an adaptive advantage in this specific environment. The aim has been to provide a molecular explanation of the effects of the specific mutations in relation to regulatory...... network remodelling, and to provide insight into the extent of epistasis and evolutionary dynamics of these systems. The two studies presented in this thesis specifically deal with single amino acid substitutions or deletions in the sigma factors RpoD, AlgT, and RpoN. Through in vitro techniques, we...... characterised the direct molecular effects of the sigma factors’ abilities to interact with DNA and the core RNA polymerase (RNAP). By combining this approach with in vivo transcription profile data, Chromatin Immunoprecipitation-sequencing (ChIP-seq) data and artificial regulatory network modifications...

  6. Structural Modeling and Molecular Dynamics Simulation of the Actin Filament

    Energy Technology Data Exchange (ETDEWEB)

    Splettstoesser, Thomas [University of Heidelberg; Holmes, Kenneth [Max Planck Institute, Heidelberg, Germany; Noe, Frank [DFG Research Center Matheon, FU Berlin, Germany; Smith, Jeremy C [ORNL

    2011-01-01

    Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized.

  7. Photodynamic therapy: treatment of choice for actinic cheilitis?

    Science.gov (United States)

    Rossi, R; Assad, G Bani; Buggiani, G; Lotti, T

    2008-01-01

    The major therapeutic approaches (5-fluorouracil, imiquimod, vermilionectomy, and CO(2) Laser ablation) for actinic cheilitis are aimed at avoiding and preventing a malignant transformation into invasive squamous cell carcinoma via destruction/removal of the damaged epithelium. Recently, photodynamic therapy (PDT) has been introduced as a therapeutic modality for epithelial skin tumors, with good efficacy/safety profile and good cosmetic results. Regarding actinic cheilitis, PDT could be considered a new therapeutic option? The target of our study was to evaluate the efficacy and tolerability of PDT in actinic cheilitis, using a methyl-ester of aminolevulinic acid (MAL) as topical photosensitizing agent and controlled the effects of the therapy for a 30-month follow-up period. MAL-PDT seems to be the ideal treatment for actinic cheilitis and other actinic keratosis, especially on exposed parts such as the face, joining tolerability and clinical efficacy with an excellent cosmetic outcome.

  8. Dynamics of actin evolution in dinoflagellates.

    Science.gov (United States)

    Kim, Sunju; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F

    2011-04-01

    Dinoflagellates have unique nuclei and intriguing genome characteristics with very high DNA content making complete genome sequencing difficult. In dinoflagellates, many genes are found in multicopy gene families, but the processes involved in the establishment and maintenance of these gene families are poorly understood. Understanding the dynamics of gene family evolution in dinoflagellates requires comparisons at different evolutionary scales. Studies of closely related species provide fine-scale information relative to species divergence, whereas comparisons of more distantly related species provides broad context. We selected the actin gene family as a highly expressed conserved gene previously studied in dinoflagellates. Of the 142 sequences determined in this study, 103 were from the two closely related species, Dinophysis acuminata and D. caudata, including full length and partial cDNA sequences as well as partial genomic amplicons. For these two Dinophysis species, at least three types of sequences could be identified. Most copies (79%) were relatively similar and in nucleotide trees, the sequences formed two bushy clades corresponding to the two species. In comparisons within species, only eight to ten nucleotide differences were found between these copies. The two remaining types formed clades containing sequences from both species. One type included the most similar sequences in between-species comparisons with as few as 12 nucleotide differences between species. The second type included the most divergent sequences in comparisons between and within species with up to 93 nucleotide differences between sequences. In all the sequences, most variation occurred in synonymous sites or the 5' UnTranslated Region (UTR), although there was still limited amino acid variation between most sequences. Several potential pseudogenes were found (approximately 10% of all sequences depending on species) with incomplete open reading frames due to frameshifts or early stop

  9. Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters

    NARCIS (Netherlands)

    Adadi, Roi; Volkmer, Benjamin; Milo, Ron; Heinemann, Matthias; Shlomi, Tomer

    2012-01-01

    Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict a variety of metabolic phenotypes, including maximal bio

  10. Gene expression, signal transduction pathways and functional networks associated with growth of sporadic vestibular schwannomas

    DEFF Research Database (Denmark)

    Sass, Hjalte C R; Borup, Rehannah; Alanin, Mikkel;

    2016-01-01

    tumor growth rate. Following tissue sampling during surgery, mRNA was extracted from 16 sporadic VS. Double stranded cDNA was synthesized from the mRNA and used as template for in vitro transcription reaction to synthesize biotin-labeled antisense cRNA, which was hybridized to Affymetrix HG-U133A arrays...

  11. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line

    DEFF Research Database (Denmark)

    Suzuki, Harukazu; Forrest, Alistair R R; van Nimwegen, Erik

    2009-01-01

    Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression dynamics in terms of predicted cis-regulatory sites...

  12. The Transcriptional and Gene Regulatory Network of Lactococcus lactis MG1363 during Growth in Milk

    DEFF Research Database (Denmark)

    de Jong, Anne; Hansen, Morten Ejby; Kuipers, Oscar P.;

    2013-01-01

    analysis of gene expression over time showed that L. lactis adapted quickly to the environmental changes. Using upstream sequences of genes with correlated gene expression profiles, we uncovered a substantial number of putative DNA binding motifs that may be relevant for L. lactis fermentative growth...

  13. Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric).

    Science.gov (United States)

    Schrey, Silvia D; Salo, Vanamo; Raudaskoski, Marjatta; Hampp, Rüdiger; Nehls, Uwe; Tarkka, Mika T

    2007-08-01

    The actin cytoskeleton (AC) of fungal hyphae is a major determinant of hyphal shape and morphogenesis, implicated in controlling tip structure and secretory vesicle delivery. Hyphal growth of the ectomycorrhizal fungus Amanita muscaria and symbiosis formation with spruce are promoted by the mycorrhiza helper bacterium Streptomyces sp. AcH 505 (AcH 505). To investigate structural requirements of growth promotion, the effect of AcH 505 on A. muscaria hyphal morphology, AC and actin gene expression were studied. Hyphal diameter and mycelial density decreased during dual culture (DC), and indirect immunofluorescence microscopy revealed that the dense and polarised actin cap in hyphal tips of axenic A. muscaria changes to a loosened and dispersed structure in DC. Supplementation of growth medium with cell-free bacterial supernatant confirmed that reduction in hyphal diameter and AC changes occurred at the same stage of growth. Transcript levels of both actin genes isolated from A. muscaria remained unaltered, indicating that AC changes are regulated by reorganisation of the existing actin pool. In conclusion, the AC reorganisation appears to result in altered hyphal morphology and faster apical extension. The thus improved spreading of hyphae and increased probability to encounter plant roots highlights a mechanism behind the mycorrhiza helper effect.

  14. Holding back the microfilament--structural insights into actin and the actin-monomer-binding proteins of apicomplexan parasites.

    Science.gov (United States)

    Olshina, Maya A; Wong, Wilson; Baum, Jake

    2012-05-01

    Parasites from the phylum Apicomplexa are responsible for several major diseases of man, including malaria and toxoplasmosis. These highly motile protozoa use a conserved actomyosin-based mode of movement to power tissue traversal and host cell invasion. The mode termed as 'gliding motility' relies on the dynamic turnover of actin, whose polymerisation state is controlled by a markedly limited number of identifiable regulators when compared with other eukaryotic cells. Recent studies of apicomplexan actin regulator structure-in particular those of the core triad of monomer-binding proteins, actin-depolymerising factor/cofilin, cyclase-associated protein/Srv2, and profilin-have provided new insights into possible mechanisms of actin regulation in parasite cells, highlighting divergent structural features and functions to regulators from other cellular systems. Furthermore, the unusual nature of apicomplexan actin itself is increasingly coming into the spotlight. Here, we review recent advances in understanding of the structure and function of actin and its regulators in apicomplexan parasites. In particular we explore the paradox between there being an abundance of unpolymerised actin, its having a seemingly increased potential to form filaments relative to vertebrate actin, and the apparent lack of visible, stable filaments in parasite cells.

  15. Toxoplasma gondii profilin acts primarily to sequester G-actin while formins efficiently nucleate actin filament formation in vitro.

    Science.gov (United States)

    Skillman, Kristen M; Daher, Wassim; Ma, Christopher I; Soldati-Favre, Dominique; Sibley, L David

    2012-03-27

    Apicomplexan parasites employ gliding motility that depends on the polymerization of parasite actin filaments for host cell entry. Despite this requirement, parasite actin remains almost entirely unpolymerized at steady state; formation of filaments required for motility relies on a small repertoire of actin-binding proteins. Previous studies have shown that apicomplexan formins and profilin exhibit canonical functions on heterologous actins from higher eukaryotes; however, their biochemical properties on parasite actins are unknown. We therefore analyzed the impact of T. gondii profilin (TgPRF) and FH1-FH2 domains of two formin isoforms in T. gondii (TgFRM1 and TgFRM2) on the polymerization of T. gondii actin (TgACTI). Our findings based on in vitro assays demonstrate that TgFRM1-FH1-FH2 and TgFRM2-FH1-FH2 dramatically enhanced TgACTI polymerization in the absence of profilin, making them the sole protein factors known to initiate polymerization of this normally unstable actin. In addition, T. gondii formin domains were shown to both initiate polymerization and induce bundling of TgACTI filaments; however, they did not rely on TgPRF for these activities. In contrast, TgPRF sequestered TgACTI monomers, thus inhibiting polymerization even in the presence of formins. Collectively, these findings provide insight into the unusual control mechanisms of actin dynamics within the parasite.

  16. Actinic Keratosis Clinical Practice Guidelines: An Appraisal of Quality

    Directory of Open Access Journals (Sweden)

    Joslyn S. Kirby

    2015-01-01

    Full Text Available Actinic keratosis (AK is a common precancerous skin lesion and many AK management guidelines exist, but there has been limited investigation into the quality of these documents. The objective of this study was to assess the strengths and weaknesses of guidelines that address AK management. A systematic search for guidelines with recommendations for AK was performed. The Appraisal of Guidelines for Research and Evaluation (AGREE II was used to appraise the quality of guidelines. Multiple raters independently reviewed each of the guidelines and applied the AGREE II tool and scores were calculated. Overall, 2,307 citations were identified and 7 fulfilled the study criteria. The Cancer Council of Australia/Australian Cancer Network guideline had the highest mean scores and was the only guideline to include a systematic review, include an evidence rating for recommendations, and report conflicts of interest and funding sources. High-quality, effective guidelines are evidence-based with recommendations that are concise and organized, so practical application is facilitated. Features such as concise tables, pictorial diagrams, and explicit links to evidence are helpful. However, the rigor and validity of some guidelines were weak. So, it is important for providers to be aware of the features that contribute to a high-quality, practical document.

  17. Titin-Actin Interaction: PEVK-Actin-Based Viscosity in a Large Animal

    Directory of Open Access Journals (Sweden)

    Charles S. Chung

    2011-01-01

    Full Text Available Titin exhibits an interaction between its PEVK segment and the actin filament resulting in viscosity, a speed dependent resistive force, which significantly influences diastolic filling in mice. While diastolic disease is clinically pervasive, humans express a more compliant titin (N2BA:N2B ratio ~0.5–1.0 than mice (N2BA:N2B ratio ~0.2. To examine PEVK-actin based viscosity in compliant titin-tissues, we used pig cardiac tissue that expresses titin isoforms similar to that in humans. Stretch-hold experiments were performed at speeds from 0.1 to 10 lengths/s from slack sarcomere lengths (SL to SL of 2.15 μm. Viscosity was calculated from the slope of stress-relaxation vs stretch speed. Recombinant PEVK was added to compete off native interactions and this found to reduce the slope by 35%, suggesting that PEVK-actin interactions are a strong contributor of viscosity. Frequency sweeps were performed at frequencies of 0.1–400 Hz and recombinant protein reduced viscous moduli by 40% at 2.15 μm and by 50% at 2.25 μm, suggesting a SL-dependent nature of viscosity that might prevent SL ``overshoot’’ at long diastolic SLs. This study is the first to show that viscosity is present at physiologic speeds in the pig and supports the physiologic relevance of PEVK-actin interactions in humans in both health and disease.

  18. Self-organization of actin filament orientation in the dendritic-nucleation/array-treadmilling model.

    Science.gov (United States)

    Schaus, Thomas E; Taylor, Edwin W; Borisy, Gary G

    2007-04-24

    The dendritic-nucleation/array-treadmilling model provides a conceptual framework for the generation of the actin network driving motile cells. We have incorporated it into a 2D, stochastic computer model to study lamellipodia via the self-organization of filament orientation patterns. Essential dendritic-nucleation submodels were incorporated, including discretized actin monomer diffusion, Monte-Carlo filament kinetics, and flexible filament and plasma membrane mechanics. Model parameters were estimated from the literature and simulation, providing values for the extent of the leading edge-branching/capping-protective zone (5.4 nm) and the autocatalytic branch rate (0.43/sec). For a given set of parameters, the system evolved to a steady-state filament count and velocity, at which total branching and capping rates were equal only for specific orientations; net capping eliminated others. The standard parameter set evoked a sharp preference for the +/-35 degree filaments seen in lamellipodial electron micrographs, requiring approximately 12 generations of successive branching to adapt to a 15 degree change in protrusion direction. This pattern was robust with respect to membrane surface and bending energies and to actin concentrations but required protection from capping at the leading edge and branching angles >60 degrees. A +70/0/-70 degree pattern was formed with flexible filaments approximately 100 nm or longer and with velocities < approximately 20% of free polymerization rates.

  19. Zyxin regulates endothelial von Willebrand factor secretion by reorganizing actin filaments around exocytic granules

    Science.gov (United States)

    Han, Xiaofan; Li, Pin; Yang, Zhenghao; Huang, Xiaoshuai; Wei, Guoqin; Sun, Yujie; Kang, Xuya; Hu, Xueting; Deng, Qiuping; Chen, Liangyi; He, Aibin; Huo, Yingqing; Li, Dong; Betzig, Eric; Luo, Jincai

    2017-01-01

    Endothelial exocytosis of Weibel–Palade body (WPB) is one of the first lines of defence against vascular injury. However, the mechanisms that control WPB exocytosis in the final stages (including the docking, priming and fusion of granules) are poorly understood. Here we show that the focal adhesion protein zyxin is crucial in this process. Zyxin downregulation inhibits the secretion of von Willebrand factor (VWF), the most abundant cargo in WPBs, from human primary endothelial cells (ECs) induced by cAMP agonists. Zyxin-deficient mice exhibit impaired epinephrine-stimulated VWF release, prolonged bleeding time and thrombosis, largely due to defective endothelial secretion of VWF. Using live-cell super-resolution microscopy, we visualize previously unappreciated reorganization of pre-existing actin filaments around WPBs before fusion, dependent on zyxin and an interaction with the actin crosslinker α-actinin. Our findings identify zyxin as a physiological regulator of endothelial exocytosis through reorganizing local actin network in the final stage of exocytosis. PMID:28256511

  20. Global production networks and local suppliers: Sonora’s entrepreneurs facing automotive expansion growth

    Directory of Open Access Journals (Sweden)

    Álvaro Bracamonte Sierra

    2008-07-01

    Full Text Available Within the context of the severe crisis faced by the U.S. based automotive firms, one of their strategies has been the relocation of the assembly plants in Mexico. This article analyzes the case of the automotive cluster led by Ford in Hermosillo, in the Mexican state of Sonora, showing that this type of clusters led by transnational corporations create technological spillovers and stimulate the accumulation of local capabilities. Particular attention is given to the process of creation of local small and medium enterprises linked to global production networks.

  1. Proneurogenic Ligands Defined by Modeling Developing Cortex Growth Factor Communication Networks.

    Science.gov (United States)

    Yuzwa, Scott A; Yang, Guang; Borrett, Michael J; Clarke, Geoff; Cancino, Gonzalo I; Zahr, Siraj K; Zandstra, Peter W; Kaplan, David R; Miller, Freda D

    2016-09-01

    The neural stem cell decision to self-renew or differentiate is tightly regulated by its microenvironment. Here, we have asked about this microenvironment, focusing on growth factors in the embryonic cortex at a time when it is largely comprised of neural precursor cells (NPCs) and newborn neurons. We show that cortical NPCs secrete factors that promote their maintenance, while cortical neurons secrete factors that promote differentiation. To define factors important for these activities, we used transcriptome profiling to identify ligands produced by NPCs and neurons, cell-surface mass spectrometry to identify receptors on these cells, and computational modeling to integrate these data. The resultant model predicts a complex growth factor environment with multiple autocrine and paracrine interactions. We tested this communication model, focusing on neurogenesis, and identified IFNγ, Neurturin (Nrtn), and glial-derived neurotrophic factor (GDNF) as ligands with unexpected roles in promoting neurogenic differentiation of NPCs in vivo.

  2. Fibroblast growth factor 2 orchestrates angiogenic networking in non-GIST STS patients

    Directory of Open Access Journals (Sweden)

    Smeland Eivind

    2011-07-01

    Full Text Available Abstract Background Non-gastrointestinal stromal tumor soft-tissue sarcomas (non-GIST STSs constitute a heterogeneous group of tumors with poor prognosis. Fibroblast growth factor 2 (FGF2 and fibroblast growth factor receptor-1 (FGFR-1, in close interplay with platelet-derived growth factor-B (PDGF-B and vascular endothelial growth factor receptor-3 (VEGFR-3, are strongly involved in angiogenesis. This study investigates the prognostic impact of FGF2 and FGFR-1 and explores the impact of their co-expression with PDGF-B and VEGFR-3 in widely resected tumors from non-GIST STS patients. Methods Tumor samples from 108 non-GIST STS patients were obtained and tissue microarrays were constructed for each specimen. Immunohistochemistry was used to evaluate the expressions of FGF-2, FGFR-1, PDGF-B and VEGFR-3. Results In the multivariate analysis, high expression of FGF2 (P = 0.024, HR = 2.2, 95% CI 1.1-4.4 and the co-expressions of FGF2 & PDGF-B (overall; P = 0.007, intermediate; P = 0.013, HR = 3.6, 95% CI = 1.3-9.7, high; P = 0.002, HR = 6.0, 95% CI = 2.0-18.1 and FGF2 & VEGFR-3 (overall; P = 0.050, intermediate; P = 0.058, HR = 2.0, 95% CI = 0.98-4.1, high; P = 0.028, HR = 2.6, 95% CI = 1.1-6.0 were significant independent prognostic indicators of poor disease-specific survival. Conclusion FGF2, alone or in co-expression with PDGF-B and VEGFR-3, is a significant independent negative prognosticator in widely resected non-GIST STS patients.

  3. Carbon Nanotube Growth Rate Regression using Support Vector Machines and Artificial Neural Networks

    Science.gov (United States)

    2014-03-27

    rates are realized by this faster search. 1.3 Assumptions The machine learning approach used for extracting optimal growth parameters assumes the catalyst...and high strength polymers. [25] All carbon to carbon bonds are filled in a CNT so they are chemically inert and stable in acids, bases and solvents ...research in maximizing CNT length. SWNTs of 18.5 cm in length were obtained by using an ethanol precursor and an iron molybdenum catalyst [10]. Also, by

  4. Probabilistic neural networks using Bayesian decision strategies and a modified Gompertz model for growth phase classification in the batch culture of Bacillus subtilis.

    Science.gov (United States)

    Simon; Nazmul Karim M

    2001-01-01

    Probabilistic neural networks (PNNs) were used in conjunction with the Gompertz model for bacterial growth to classify the lag, logarithmic, and stationary phases in a batch process. Using the fermentation time and the optical density of diluted cell suspensions, sampled from a culture of Bacillus subtilis, PNNs enabled a reliable determination of the growth phases. Based on a Bayesian decision strategy, the Gompertz based PNN used newly proposed definition of the lag and logarithmic phases to estimate the latent, logarithmic and stationary phases. This network topology has the potential for use with on-line turbidimeter for the automation and control of cultivation processes.

  5. Elucidation of a four-site allosteric network in fibroblast growth factor receptor tyrosine kinases

    Science.gov (United States)

    Chen, Huaibin; Marsiglia, William M; Cho, Min-Kyu; Huang, Zhifeng; Deng, Jingjing; Blais, Steven P; Gai, Weiming; Bhattacharya, Shibani; Neubert, Thomas A; Traaseth, Nathaniel J; Mohammadi, Moosa

    2017-01-01

    Receptor tyrosine kinase (RTK) signaling is tightly regulated by protein allostery within the intracellular tyrosine kinase domains. Yet the molecular determinants of allosteric connectivity in tyrosine kinase domain are incompletely understood. By means of structural (X-ray and NMR) and functional characterization of pathogenic gain-of-function mutations affecting the FGF receptor (FGFR) tyrosine kinase domain, we elucidated a long-distance allosteric network composed of four interconnected sites termed the ‘molecular brake’, ‘DFG latch’, ‘A-loop plug’, and ‘αC tether’. The first three sites repress the kinase from adopting an active conformation, whereas the αC tether promotes the active conformation. The skewed design of this four-site allosteric network imposes tight autoinhibition and accounts for the incomplete mimicry of the activated conformation by pathogenic mutations targeting a single site. Based on the structural similarity shared among RTKs, we propose that this allosteric model for FGFR kinases is applicable to other RTKs. DOI: http://dx.doi.org/10.7554/eLife.21137.001 PMID:28166054

  6. Towards Kinetic Modeling of Global Metabolic Networks Methylobacterium extorquens AM1 Growth as Validation

    Institute of Scientific and Technical Information of China (English)

    Ping Ao; Lik Wee Lee; Mary E. Lidstrom; Lan Yin; Xiaomei Zhu

    2008-01-01

    Here we report a systematic method for constructing a large scale kinetic metabolic model and its initial application to the modeling of central metabolism of Methylobacterium extorquens AM1, a methylotrophic and environmental important bacterium. Its central metabolic network includes formaldehyde metabolism, serine cycle, citric acid cycle, pentose phosphate pathway, ghiconeogensis, PHB synthesis and acetyl-CoA conversion pathway, respiration and energy metabolism. Through a systematic and consistent procedure of finding a set of parameters in the physiological range we overcome an outstanding difficulty in large scale kinetic modeling: the requirement for a massive number of enzymatic reaction parameters. We are able to construct the kinetic model based on general biological considerations and incomplete experimental kinetic parameters. Our method consists of the following major steps: 1) using a generic enzymatic rate equation to reduce the number of enzymatic parameters to a minimum set while still preserving their characteristics; 2) using a set of steady state fluxes and metabolite concenwations in the physiological range as the expected output steady state fluxes and metabolite concentrations for the kinetic model to restrict the parametric space of enzymatic reactions; 3) choosing enzyme constants K's and K'eqs optimized for reactions under physiological concentrations, if their experimental values are unknown; 4) for models which do not cover the entire metabolic network of the organisms, designing a dynamical exchange for the coupling between the metabolism represented in the model and the rest not included.

  7. Two distinct mechanisms for actin capping protein regulation--steric and allosteric inhibition.

    Directory of Open Access Journals (Sweden)

    Shuichi Takeda

    Full Text Available The actin capping protein (CP tightly binds to the barbed end of actin filaments, thus playing a key role in actin-based lamellipodial dynamics. V-1 and CARMIL proteins directly bind to CP and inhibit the filament capping activity of CP. V-1 completely inhibits CP from interacting with the barbed end, whereas CARMIL proteins act on the barbed end-bound CP and facilitate its dissociation from the filament (called uncapping activity. Previous studies have revealed the striking functional differences between the two regulators. However, the molecular mechanisms describing how these proteins inhibit CP remains poorly understood. Here we present the crystal structures of CP complexed with V-1 and with peptides derived from the CP-binding motif of CARMIL proteins (CARMIL, CD2AP, and CKIP-1. V-1 directly interacts with the primary actin binding surface of CP, the C-terminal region of the alpha-subunit. Unexpectedly, the structures clearly revealed the conformational flexibility of CP, which can be attributed to a twisting movement between the two domains. CARMIL peptides in an extended conformation interact simultaneously with the two CP domains. In contrast to V-1, the peptides do not directly compete with the barbed end for the binding surface on CP. Biochemical assays revealed that the peptides suppress the interaction between CP and V-1, despite the two inhibitors not competing for the same binding site on CP. Furthermore, a computational analysis using the elastic network model indicates that the interaction of the peptides alters the intrinsic fluctuations of CP. Our results demonstrate that V-1 completely sequesters CP from the barbed end by simple steric hindrance. By contrast, CARMIL proteins allosterically inhibit CP, which appears to be a prerequisite for the uncapping activity. Our data suggest that CARMIL proteins down-regulate CP by affecting its conformational dynamics. This conceptually new mechanism of CP inhibition provides a

  8. The maternal-to-zygotic transition targets actin to promote robustness during morphogenesis.

    Science.gov (United States)

    Zheng, Liuliu; Sepúlveda, Leonardo A; Lua, Rhonald C; Lichtarge, Olivier; Golding, Ido; Sokac, Anna Marie

    2013-11-01

    Robustness is a property built into biological systems to ensure stereotypical outcomes despite fluctuating inputs from gene dosage, biochemical noise, and the environment. During development, robustness safeguards embryos against structural and functional defects. Yet, our understanding of how robustness is achieved in embryos is limited. While much attention has been paid to the role of gene and signaling networks in promoting robust cell fate determination, little has been done to rigorously assay how mechanical processes like morphogenesis are designed to buffer against variable conditions. Here we show that the cell shape changes that drive morphogenesis can be made robust by mechanisms targeting the actin cytoskeleton. We identified two novel members of the Vinculin/α-Catenin Superfamily that work together to promote robustness during Drosophila cellularization, the dramatic tissue-building event that generates the primary epithelium of the embryo. We find that zygotically-expressed Serendipity-α (Sry-α) and maternally-loaded Spitting Image (Spt) share a redundant, actin-regulating activity during cellularization. Spt alone is sufficient for cellularization at an optimal temperature, but both Spt plus Sry-α are required at high temperature and when actin assembly is compromised by genetic perturbation. Our results offer a clear example of how the maternal and zygotic genomes interact to promote the robustness of early developmental events. Specifically, the Spt and Sry-α collaboration is informative when it comes to genes that show both a maternal and zygotic requirement during a given morphogenetic process. For the cellularization of Drosophilids, Sry-α and its expression profile may represent a genetic adaptive trait with the sole purpose of making this extreme event more reliable. Since all morphogenesis depends on cytoskeletal remodeling, both in embryos and adults, we suggest that robustness-promoting mechanisms aimed at actin could be effective at

  9. The maternal-to-zygotic transition targets actin to promote robustness during morphogenesis.

    Directory of Open Access Journals (Sweden)

    Liuliu Zheng

    2013-11-01

    Full Text Available Robustness is a property built into biological systems to ensure stereotypical outcomes despite fluctuating inputs from gene dosage, biochemical noise, and the environment. During development, robustness safeguards embryos against structural and functional defects. Yet, our understanding of how robustness is achieved in embryos is limited. While much attention has been paid to the role of gene and signaling networks in promoting robust cell fate determination, little has been done to rigorously assay how mechanical processes like morphogenesis are designed to buffer against variable conditions. Here we show that the cell shape changes that drive morphogenesis can be made robust by mechanisms targeting the actin cytoskeleton. We identified two novel members of the Vinculin/α-Catenin Superfamily that work together to promote robustness during Drosophila cellularization, the dramatic tissue-building event that generates the primary epithelium of the embryo. We find that zygotically-expressed Serendipity-α (Sry-α and maternally-loaded Spitting Image (Spt share a redundant, actin-regulating activity during cellularization. Spt alone is sufficient for cellularization at an optimal temperature, but both Spt plus Sry-α are required at high temperature and when actin assembly is compromised by genetic perturbation. Our results offer a clear example of how the maternal and zygotic genomes interact to promote the robustness of early developmental events. Specifically, the Spt and Sry-α collaboration is informative when it comes to genes that show both a maternal and zygotic requirement during a given morphogenetic process. For the cellularization of Drosophilids, Sry-α and its expression profile may represent a genetic adaptive trait with the sole purpose of making this extreme event more reliable. Since all morphogenesis depends on cytoskeletal remodeling, both in embryos and adults, we suggest that robustness-promoting mechanisms aimed at actin

  10. The actin-related protein Sac1 is required for morphogenesis and cell wall integrity in Candida albicans.

    Science.gov (United States)

    Zhang, Bing; Yu, Qilin; Jia, Chang; Wang, Yuzhou; Xiao, Chenpeng; Dong, Yijie; Xu, Ning; Wang, Lei; Li, Mingchun

    2015-08-01

    Candida albicans is a common pathogenic fungus and has aroused widespread attention recently. Actin cytoskeleton, an important player in polarized growth, protein secretion and organization of cell shape, displays irreplaceable role in hyphal development and cell integrity. In this study, we demonstrated a homologue of Saccharomyces cerevisiae Sac1, in C. albicans. It is a potential PIP phosphatase with Sac domain which is related to actin organization, hyphal development, biofilm formation and cell wall integrity. Deletion of SAC1 did not lead to insitiol-auxotroph phenotype in C. albicans, but this gene rescued the growth defect of S. cerevisiae sac1Δ in the insitiol-free medium. Hyphal induction further revealed the deficiency of sac1Δ/Δ in hyphal development and biofilm formation. Fluorescence observation and real time PCR (RT-PCR) analysis suggested both actin and the hyphal cell wall protein Hwp1 were overexpressed and mislocated in this mutant. Furthermore, cell wall integrity (CWI) was largely affected by deletion of SAC1, due to the hypersensitivity to cell wall stress, changed content and distribution of chitin in the mutant. As a result, the virulence of sac1Δ/Δ was seriously attenuated. Taken together, this study provides evidence that Sac1, as a potential PIP phosphatase, is essential for actin organization, hyphal development, CWI and pathogenicity in C. albicans.

  11. Do mycorrhizal network benefits to survival and growth of interior Douglas-fir seedlings increase with soil moisture stress?

    Science.gov (United States)

    Bingham, Marcus A; Simard, Suzanne W

    2011-11-01

    Facilitation of tree establishment by ectomycorrhizal (EM) networks (MNs) may become increasingly important as drought stress increases with climate change in some forested regions of North America. The objective of this study was to determine (1) whether temperature, CO(2) concentration ([CO(2)]), soil moisture, and MNs interact to affect plant establishment success, such that MNs facilitate establishment when plants are the most water stressed, and (2) whether transfer of C and water between plants through MNs plays a role in this. We established interior Douglas-fir (Pseudotsuga menziesiivar.glauca) seedlings in root boxes with and without the potential to form MNs with nearby conspecific seedlings that had consistent access to water via their taproots. We varied temperature, [CO(2)], and soil moisture in growth chambers. Douglas-fir seedling survival increased when the potential existed to form an MN. Growth increased with MN potential under the driest soil conditions, but decreased with temperature at 800 ppm [CO(2)]. Transfer of (13)C to receiver seedlings was unaffected by potential to form an MN with donor seedlings, but deuterated water (D(2)O) transfer increased with MN potential under ambient [CO(2)]. Chlorophyll fluorescence was reduced when seedlings had the potential to form an MN under high [CO(2)] and cool temperatures. We conclude that Douglas-fir seedling establishment in laboratory conditions is facilitated by MN potential where Douglas-fir seedlings have consistent access to water. Moreover, this facilitation appears to increase as water stress potential increases and water transfer via networks may play a role in this. These results suggest that conservation of MN potential may be important to forest regeneration where drought stress increases with climate change.

  12. Visualization of endothelial actin cytoskeleton in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Alessia Fraccaroli

    Full Text Available Angiogenesis requires coordinated changes in cell shape of endothelial cells (ECs, orchestrated by the actin cytoskeleton. The mechanisms that regulate this rearrangement in vivo are poorly understood - largely because of the difficulty to visualize filamentous actin (F-actin structures with sufficient resolution. Here, we use transgenic mice expressing Lifeact-EGFP to visualize F-actin in ECs. We show that in the retina, Lifeact-EGFP expression is largely restricted to ECs allowing detailed visualization of F-actin in ECs in situ. Lifeact-EGFP labels actin associated with cell-cell junctions, apical and basal membranes and highlights actin-based structures such as filopodia and stress fiber-like cytoplasmic bundles. We also show that in the skin and the skeletal muscle, Lifeact-EGFP is highly expressed in vascular mural cells (vMCs, enabling vMC imaging. In summary, our results indicate that the Lifeact-EGFP transgenic mouse in combination with the postnatal retinal angiogenic model constitutes an excellent system for vascular cell biology research. Our approach is ideally suited to address structural and mechanistic details of angiogenic processes, such as endothelial tip cell migration and fusion, EC polarization or lumen formation.

  13. Interconnection between actin cytoskeleton and plant defense signaling.

    Science.gov (United States)

    Janda, Martin; Matoušková, Jindřiška; Burketová, Lenka; Valentová, Olga

    2014-01-01

    Actin cytoskeleton is the fundamental structural component of eukaryotic cells. It has a role in numerous elementary cellular processes such as reproduction, development and also in response to abiotic and biotic stimuli. Remarkably, the role of actin cytoskeleton in plant response to pathogens is getting to be under magnifying glass. Based on microscopic studies, most of the data showed, that actin plays an important role in formation of physiological barrier in the site of infection. Actin dynamics is involved in the transport of antimicrobial compounds and cell wall fortifying components (e.g. callose) to the site of infection. Also the role in PTI (pathogen triggered immunity) and ETI (effector triggered immunity) was recently indicated. On the other hand much less is known about the transcriptome reprogramming upon changes in actin dynamics. Our recently published results showed that drugs inhibiting actin polymerization (latrunculin B, cytochalasin E) cause the induction of genes which are involved in salicylic acid (SA) signaling pathway. In this addendum we would like to highlight in more details current state of knowledge concerning the involvement of actin dynamics in plant defense signaling.

  14. Drebrin attenuates the interaction between actin and myosin-V.

    Science.gov (United States)

    Ishikawa, Ryoki; Katoh, Kaoru; Takahashi, Ayumi; Xie, Ce; Oseki, Koushi; Watanabe, Michitoshi; Igarashi, Michihiro; Nakamura, Akio; Kohama, Kazuhiro

    2007-07-27

    Drebrin-A is an actin-binding protein localized in the dendritic spines of mature neurons, and has been suggested to affect spine morphology [K. Hayashi, T. Shirao, Change in the shape of dendritic spines caused by overexpression of drebrin in cultured cortical neurons, J. Neurosci. 19 (1999) 3918-3925]. However, no biochemical analysis of drebrin-A has yet been reported. In this study, we purified drebrin-A using a bacterial expression system, and characterized it in vitro. Drebrin-A bound to actin filaments with a stoichiometry of one drebrin molecule to 5-6 actin molecules. Furthermore, drebrin-A decreased the Mg-ATPase activity of myosin V. In vitro motility assay revealed that the attachment of F-actin to glass surface coated with myosin-V was decreased by drebrin-A, but once F-actin attached to the surface, the sliding speed of F-actin was unaffected by the presence of drebrin A. These findings suggest that drebrin-A may affect spine dynamics, vesicle transport, and other myosin-V-driven motility in neurons through attenuating the interaction between actin and myosin-V.

  15. The effect of membrane-regulated actin polymerization on a two-phase flow model for cell motility

    KAUST Repository

    Kimpton, L. S.

    2014-07-23

    Two-phase flow models have been widely used to model cell motility and we have previously demonstrated that even the simplest, stripped-down, 1D model displays many observed features of cell motility [Kimpton, L.S., Whiteley, J.P., Waters, S.L., King, J.R. & Oliver, J.M. (2013) Multiple travelling-wave solutions in a minimal model for cell motility. Math. Med. Biol. 30, 241 - 272]. In this paper, we address a limitation of the previous model.We show that the two-phase flow framework can exhibit travelling-wave solutions with biologically plausible actin network profiles in two simple models that enforce polymerization or depolymerization of the actin network at the ends of the travelling, 1D strip of cytoplasm. © 2014 The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  16. Analysis of actinic flux profiles measured from an ozonesonde balloon

    Science.gov (United States)

    Wang, P.; Allaart, M.; Knap, W. H.; Stammes, P.

    2015-04-01

    A green light sensor has been developed at KNMI to measure actinic flux profiles using an ozonesonde balloon. In total, 63 launches with ascending and descending profiles were performed between 2006 and 2010. The measured uncalibrated actinic flux profiles are analysed using the Doubling-Adding KNMI (DAK) radiative transfer model. Values of the cloud optical thickness (COT) along the flight track were taken from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) Cloud Physical Properties (CPP) product. The impact of clouds on the actinic flux profile is evaluated on the basis of the cloud modification factor (CMF) at the cloud top and cloud base, which is the ratio between the actinic fluxes for cloudy and clear-sky scenes. The impact of clouds on the actinic flux is clearly detected: the largest enhancement occurs at the cloud top due to multiple scattering. The actinic flux decreases almost linearly from cloud top to cloud base. Above the cloud top the actinic flux also increases compared to clear-sky scenes. We find that clouds can increase the actinic flux to 2.3 times the clear-sky value at cloud top and decrease it to about 0.05 at cloud base. The relationship between CMF and COT agrees well with DAK simulations, except for a few outliers. Good agreement is found between the DAK-simulated actinic flux profiles and the observations for single-layer clouds in fully overcast scenes. The instrument is suitable for operational balloon measurements because of its simplicity and low cost. It is worth further developing the instrument and launching it together with atmospheric chemistry composition sensors.

  17. Actin-based dynamics during spermatogenesis and its significance

    Institute of Scientific and Technical Information of China (English)

    XIAO Xiang; YANG Wan-xi

    2007-01-01

    Actin can be found in all kinds ofeukaryotic cells, maintaining their shapes and motilities, while its dynamics in sperm cells is understood less than their nonmuscle somatic cell counterparts. Spermatogenesis is a complicated process, resulting in the production of mature sperm from primordial germ cell. Significant structural and biochemical changes take place in the seminiferous epithelium of the adult testis during spermatogenesis. It was proved that all mammalian sperm contain actin, and that F-actin may play an important role during spermatogenesis, especially in nuclear shaping. Recently a new model for sperm head elongation based on the acrosome-acroplaxome-manchette complex has been proposed. In Drosophila, F-actin assembly is supposed to be very crucial during individualization. In this mini-review, we provide an overview of the structure, function, and regulation characteristics of actin cytoskeleton, and a summary of the current status of research of actin-based structure and movement is also provided, with emphasis on the role of actins in sperm head shaping during spermiogenesis and the cell junction dynamics in the testis. Research of the Sertoli ectoplasmic specialization is in the spotlight, which is a testis-specific actin-based junction very important for the movement of germ cells across the epithelium. Study of the molecular architecture and the regulating mechanism of the Sertoli ectoplasmic specialization has become an intriguing field. All this may lead to a new strategy for male infertility and,at the same time, a novel idea may result in devising much safer contraception with high efficiency. It is hoped that the advances listed in this review would give developmental and morphological researchers a favorable investigating outline and could help to enlarge the view of new strategies and models for actin dynamics during spermatogenesis.

  18. Liquid crystal domains and thixotropy of filamentous actin suspensions.

    Science.gov (United States)

    Kerst, A; Chmielewski, C; Livesay, C; Buxbaum, R E; Heidemann, S R

    1990-06-01

    The thixotropic properties of filamentous actin suspensions were examined by a step-function shearing protocol. Samples of purified filamentous actin were sheared at 0.2 sec-1 in a cone and plate rheometer. We noted a sharp stress overshoot upon the initiation of shear, indicative of a gel state, and a nearly instantaneous drop to zero stress upon cessation of shear. Stress-overshoot recovery was almost complete after 5 min of "rest" before samples were again sheared at 0.2 sec-1. Overshoot recovery increased linearly with the square root of rest time, suggesting that gel-state recovery is diffusion limited. Actin suspensions subjected to oscillatory shearing at frequencies from 0.003 to 30 radians/sec confirmed the existence of a 5-min time scale in the gel, similar to that for stress-overshoot recovery. Flow of filamentous actin was visualized by polarized light observations. Actin from 6 mg/ml to 20 mg/ml showed the "polycrystalline" texture of birefringence typical for liquid crystal structure. At shear rates less than 1 sec-1, flow occurred by the relative movement of irregular, roughly ellipsoidal actin domains 40-140 microns long; the appearance was similar to moving ice floes. At shear rates greater than 1 sec-1, domains decreased in size, possibly by frictional interactions among domains. Eventually domains flow in a "river" of actin aligned by the flow. Our observations confirm our previous domain-friction model for actin rheology. The similarities between the unusual flow properties of actin and cytoplasm argue that cytoplasm also may flow as domains.

  19. A network model of correlated growth of tissue stiffening in pulmonary fibrosis

    CERN Document Server

    Oliveira, Cláudio L N; Suki, Béla

    2013-01-01

    During the progression of pulmonary fibrosis, initially isolated regions of high stiffness form and grow in the lung tissue due to collagen deposition by fibroblast cells. We have previously shown that ongoing collagen deposition may not lead to significant increases in the bulk modulus of the lung until these local remodeled regions have become sufficiently numerous and extensive to percolate in a continuous path across the entire tissue [Bates {\\it et al.} 2007 {\\it Am. J. Respir. Crit. Care Med.} {\\bf 176} 617]. In the present study, we investigate whether spatial correlations influence the bulk modulus in a two-dimensional elastic network model of lung tissue. Random collagen deposition at a single site is modeled by increasing the elastic constant of the spring at that site by a factor of 100. By contrast, correlated collagen deposition is represented by stiffening the springs encountered along a random walk starting from some initial spring, the rationale being that excess collagen deposition is more li...

  20. Nuclear actin-related protein is required for chromosome segregation in Toxoplasma gondii.

    Science.gov (United States)

    Suvorova, Elena S; Lehmann, Margaret M; Kratzer, Stella; White, Michael W

    2012-01-01

    Apicomplexa parasites use complex cell cycles to replicate that are not well understood mechanistically. We have established a robust forward genetic strategy to identify the essential components of parasite cell division. Here we describe a novel temperature sensitive Toxoplasma strain, mutant 13-20C2, which growth arrests due to a defect in mitosis. The primary phenotype is the mis-segregation of duplicated chromosomes with chromosome loss during nuclear division. This defect is conditional-lethal with respect to temperature, although relatively mild in regard to the preservation of the major microtubule organizing centers. Despite severe DNA loss many of the physical structures associated with daughter budding and the assembly of invasion structures formed and operated normally at the non-permissive temperature before completely arresting. These results suggest there are coordinating mechanisms that govern the timing of these events in the parasite cell cycle. The defect in mutant 13-20C2 was mapped by genetic complementation to Toxoplasma chromosome III and to a specific mutation in the gene encoding an ortholog of nuclear actin-related protein 4. A change in a conserved isoleucine to threonine in the helical structure of this nuclear actin related protein leads to protein instability and cellular mis-localization at the higher temperature. Given the age of this protist family, the results indicate a key role for nuclear actin-related proteins in chromosome segregation was established very early in the evolution of eukaryotes.

  1. Growth Characteristics Modeling of Mixed Culture of Bifidobacterium bifidum and Lactobacillus acidophilus using Response Surface Methodology and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Ganga Sahay Meena

    2014-12-01

    Full Text Available Different culture conditions viz. additional carbon and nitrogen content, inoculum size and age, temperature and pH of the mixed culture of Bifidobacterium bifidum and Lactobacillus acidophilus were optimized using response surface methodology (RSM and artificial neural network (ANN. Kinetic growth models were fitted for the cultivations using a Fractional Factorial (FF design experiments for different variables. This novel concept of combining the optimization and modeling presented different optimal conditions for the mixture of B. bifidum and L. acidophilus growth from their one variable at-a-time (OVAT optimization study. Through these statistical tools, the product yield (cell mass of the mixture of B. bifidum and L. acidophilus was increased. Regression coefficients (R2 of both the statistical tools predicted that ANN was better than RSM and the regression equation was solved with the help of genetic algorithms (GA. The normalized percentage mean squared error obtained from the ANN and RSM models were 0.08 and 0.3%, respectively. The optimum conditions for the maximum biomass yield were at temperature 38°C, pH 6.5, inoculum volume 1.60 mL, inoculum age 30 h, carbon content 42.31% (w/v, and nitrogen content 14.20% (w/v. The results demonstrated a higher prediction accuracy of ANN compared to RSM.

  2. Disease causing mutations of troponin alter regulated actin state distributions.

    Science.gov (United States)

    Chalovich, Joseph M

    2012-12-01

    Striated muscle contraction is regulated primarily through the action of tropomyosin and troponin that are bound to actin. Activation requires Ca(2+) binding to troponin and/or binding of high affinity myosin complexes to actin. Mutations within components of the regulatory complex may lead to familial cardiomyopathies and myopathies. In several cases examined, either physiological or pathological changes in troponin alter the distribution among states of actin-tropomyosin-troponin that differ in their abilities to stimulate myosin ATPase activity. These observations open possibilities for managing disorders of the troponin complex. Furthermore, analyses of mutant forms of troponin give insights into the regulation of striated muscle contraction.

  3. Actin purification from a gel of rat brain extracts.

    Science.gov (United States)

    Levilliers, N; Peron-Renner, M; Coffe, G; Pudles, J

    1984-01-01

    Actin, 99% pure, has been recovered from rat brain with a high yield (greater than 15 mg/100 g brain). We have shown that: 1. a low ionic strength extract from rat brain tissue is capable of giving rise to a gel; 2. actin is the main gel component and its proportion is one order of magnitude higher than in the original extract; 3. actin can be isolated from this extract by a three-step procedure involving gelation, dissociation of the gel in 0.6 M KCl, followed by one or two depolymerization-polymerization cycles.

  4. New insights into dynamic actin-based chloroplast photorelocation movement.

    Science.gov (United States)

    Kong, Sam-Geun; Wada, Masamitsu

    2011-09-01

    Chloroplast movement is essential for plants to survive under various environmental light conditions. Phototropins-plant-specific blue-light-activated receptor kinases-mediate the response by perceiving light intensity and direction. Recently, novel chloroplast actin (cp-actin) filaments have been identified as playing a pivotal role in the directional chloroplast photorelocation movement. Encouraging progress has recently been made in this field of research through molecular genetics and cell biological analyses. This review describes factors that have been identified as being involved in chloroplast movement and their roles in the regulation of cp-actin filaments, thus providing a basis for reflection on their biochemical activities and functions.

  5. The Role of Formin Tails in Actin Nucleation, Processive Elongation, and Filament Bundling*

    Science.gov (United States)

    Vizcarra, Christina L.; Bor, Batbileg; Quinlan, Margot E.

    2014-01-01

    Formins are multidomain proteins that assemble actin in a wide variety of biological processes. They both nucleate and remain processively associated with growing filaments, in some cases accelerating filament growth. The well conserved formin homology 1 and 2 domains were originally thought to be solely responsible for these activities. Recently a role in nucleation was identified for the Diaphanous autoinhibitory domain (DAD), which is C-terminal to the formin homology 2 domain. The C-terminal tail of the Drosophila formin Cappuccino (Capu) is conserved among FMN formins but distinct from other formins. It does not have a DAD domain. Nevertheless, we find that Capu-tail plays a role in filament nucleation similar to that described for mDia1 and other formins. Building on this, replacement of Capu-tail with DADs from other formins tunes nucleation activity. Capu-tail has low-affinity interactions with both actin monomers and filaments. Removal of the tail reduces actin filament binding and bundling. Furthermore, when the tail is removed, we find that processivity is compromised. Despite decreased processivity, the elongation rate of filaments is unchanged. Again, replacement of Capu-tail with DADs from other formins tunes the processive association with the barbed end, indicating that this is a general role for formin tails. Our data show a role for the Capu-tail domain in assembling the actin cytoskeleton, largely mediated by electrostatic interactions. Because of its multifunctionality, the formin tail is a candidate for regulation by other proteins during cytoskeletal rearrangements. PMID:25246531

  6. Adenosine Diphosphate Ribosylation Factor-GTPaseActivating Protein Stimulates the Transport of AUX1Endosome, Which Relies on Actin Cytoskeletal Organization in Rice Root DevelopmentF

    Institute of Scientific and Technical Information of China (English)

    Cheng Du; Yunyuan XU; Yingdian Wang; Kang Chong

    2011-01-01

    Polar auxin transport,which depends on polarized subcellular distribution of AUXIN RESISTANT 1/LIKE AUX1 (AUX1/LAX) influx carriers and PIN-FORMED (PIN) efflux carriers,mediates various processes of plant growth and development.Endosomal recycling of PIN1 is mediated by an adenosine diphosphate (ADP)ribosylation factor (ARF)-GTPase exchange factor protein,GNOM.However,the media