WorldWideScience

Sample records for actin based filaments

  1. Filament attachment dynamics in actin-based propulsion

    CERN Document Server

    Katz, J I

    2005-01-01

    Theory and experiment have established that F-actin filaments are strongly attached to the intracellular parasites (such as Listeria) they propel with ``comet tails''. We consider the implications of these observations for propulsion. By calculating the motion produced in various models of attachment and comparing to experiment we demonstrate that the attachment must be sliding rather than hinged. By modeling experiments on ActA-coated spheres we draw conclusions regarding the interaction between F-actin and their surfaces that may also be applicable to living systems.

  2. Boolean gates on actin filaments

    Science.gov (United States)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  3. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    Science.gov (United States)

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition. PMID:26240174

  4. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    Science.gov (United States)

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition.

  5. A Robust Actin Filaments Image Analysis Framework.

    Science.gov (United States)

    Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem

    2016-08-01

    The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a 'cartoon' part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the 'cartoon' image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts grown in

  6. A Robust Actin Filaments Image Analysis Framework

    Science.gov (United States)

    Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem

    2016-01-01

    The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a ‘cartoon’ part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the ‘cartoon’ image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts

  7. Force Generation, Polymerization Dynamics and Nucleation of Actin Filaments

    Science.gov (United States)

    Wang, Ruizhe

    We study force generation and actin filament dynamics using stochastic and deterministic methods. First, we treat force generation of bundled actin filaments by polymerization via molecular-level stochastic simulations. In the widely-used Brownian Ratchet model, actin filaments grow freely whenever the tip-obstacle gap created by thermal fluctuation exceeds the monomer size. We name this model the Perfect Brownian Ratchet (PBR) model. In the PBR model, actin monomer diffusion is treated implicitly. We perform a series of simulations based on the PBR, in which obstacle motion is treated explicitly; in most previous studies, obstacle motion has been treated implicitly. We find that the cooperativity of filaments is generally weak in the PBR model, meaning that more filaments would grow more slowly given the same force per filament. Closed-form formulas are also developed, which match the simulation results. These portable and accurate formulas provide guidance for experiments and upper and lower bounds for theoretical analyses. We also studied a variation of the PBR, called the Diffusing Brownian Ratchet (DBR) model, in which both actin monomer and obstacle diffusion are treated explicitly. We find that the growth rate of multiple filaments is even lower, compared with that in PBR. This finding challenges the widely-accepted PBR assumption and suggests that pushing the study of actin dynamics down to the sub-nanometer level yields new insights. We subsequently used a rate equation approach to model the effect of local depletion of actin monomers on the nucleation of actin filaments on biomimetic beads, and how the effect is regulated by capping protein (CP). We find that near the bead surface, a higher CP concentration increases local actin concentration, which leads to an enhanced activities of actin filaments' nucleation. Our model analysis matches the experimental results and lends support to an important but undervalued hypothesis proposed by Carlier and

  8. Mechanical properties of branched actin filaments

    CERN Document Server

    Razbin, Mohammadhosein; Benetatos, Panayotis; Zippelius, Annette

    2015-01-01

    Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measur...

  9. Transportation of Nanoscale Cargoes by Myosin Propelled Actin Filaments

    NARCIS (Netherlands)

    Persson, Malin; Gullberg, Maria; Tolf, Conny; Lindberg, A. Michael; Mansson, Alf; Kocer, Armagan

    2013-01-01

    Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies.

  10. Structural Basis of Actin Filament Nucleation by Tandem W Domains

    Directory of Open Access Journals (Sweden)

    Xiaorui Chen

    2013-06-01

    Full Text Available Spontaneous nucleation of actin is very inefficient in cells. To overcome this barrier, cells have evolved a set of actin filament nucleators to promote rapid nucleation and polymerization in response to specific stimuli. However, the molecular mechanism of actin nucleation remains poorly understood. This is hindered largely by the fact that actin nucleus, once formed, rapidly polymerizes into filament, thus making it impossible to capture stable multisubunit actin nucleus. Here, we report an effective double-mutant strategy to stabilize actin nucleus by preventing further polymerization. Employing this strategy, we solved the crystal structure of AMPPNP-actin in complex with the first two tandem W domains of Cordon-bleu (Cobl, a potent actin filament nucleator. Further sequence comparison and functional studies suggest that the nucleation mechanism of Cobl is probably shared by the p53 cofactor JMY, but not Spire. Moreover, the double-mutant strategy opens the way for atomic mechanistic study of actin nucleation and polymerization.

  11. Transportation of nanoscale cargoes by myosin propelled actin filaments.

    Directory of Open Access Journals (Sweden)

    Malin Persson

    Full Text Available Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies. However, it is poorly understood how actomyosin function is affected by different number of nanoscale cargoes, by cargo size, and by the mode of cargo-attachment to the actin filament. This is studied here using biotin/fluorophores, streptavidin, streptavidin-coated quantum dots, and liposomes as model cargoes attached to monomers along the actin filaments ("side-attached" or to the trailing filament end via the plus end capping protein CapZ. Long-distance transportation (>100 µm could be seen for all cargoes independently of attachment mode but the fraction of motile filaments decreased with increasing number of side-attached cargoes, a reduction that occurred within a range of 10-50 streptavidin molecules, 1-10 quantum dots or with just 1 liposome. However, as observed by monitoring these motile filaments with the attached cargo, the velocity was little affected. This also applied for end-attached cargoes where the attachment was mediated by CapZ. The results with side-attached cargoes argue against certain models for chemomechanical energy transduction in actomyosin and give important insights of relevance for effective exploitation of actomyosin-based cargo-transportation in molecular diagnostics and other nanotechnological applications. The attachment of quantum dots via CapZ, without appreciable modulation of actomyosin function, is useful in fundamental studies as exemplified here by tracking with nanometer accuracy.

  12. Characterization of engineered actin binding proteins that control filament assembly and structure.

    Directory of Open Access Journals (Sweden)

    Crista M Brawley

    Full Text Available BACKGROUND: Eukaryotic cells strictly regulate the structure and assembly of their actin filament networks in response to various stimuli. The actin binding proteins that control filament assembly are therefore attractive targets for those who wish to reorganize actin filaments and reengineer the cytoskeleton. Unfortunately, the naturally occurring actin binding proteins include only a limited set of pointed-end cappers, or proteins that will block polymerization from the slow-growing end of actin filaments. Of the few that are known, most are part of large multimeric complexes that are challenging to manipulate. METHODOLOGY/PRINCIPAL FINDINGS: We describe here the use of phage display mutagenesis to generate of a new class of binding protein that can be targeted to the pointed-end of actin. These proteins, called synthetic antigen binders (sABs, are based on an antibody-like scaffold where sequence diversity is introduced into the binding loops using a novel "reduced genetic code" phage display library. We describe effective strategies to select and screen for sABs that ensure the generated sABs bind to the pointed-end surface of actin exclusively. CONCLUSIONS/SIGNIFICANCE: From our set of pointed-end binders, we identify three sABs with particularly useful properties to systematically probe actin dynamics: one protein that caps the pointed end, a second that crosslinks actin filaments, and a third that severs actin filaments and promotes disassembly.

  13. Actin filament attachments for sustained motility in vitro are maintained by filament bundling.

    Directory of Open Access Journals (Sweden)

    Xiaohua Hu

    Full Text Available We reconstructed cellular motility in vitro from individual proteins to investigate how actin filaments are organized at the leading edge. Using total internal reflection fluorescence microscopy of actin filaments, we tested how profilin, Arp2/3, and capping protein (CP function together to propel thin glass nanofibers or beads coated with N-WASP WCA domains. Thin nanofibers produced wide comet tails that showed more structural variation in actin filament organization than did bead substrates. During sustained motility, physiological concentrations of Mg(2+ generated actin filament bundles that processively attached to the nanofiber. Reduction of total Mg(2+ abolished particle motility and actin attachment to the particle surface without affecting actin polymerization, Arp2/3 nucleation, or filament capping. Analysis of similar motility of microspheres showed that loss of filament bundling did not affect actin shell formation or symmetry breaking but eliminated sustained attachments between the comet tail and the particle surface. Addition of Mg(2+, Lys-Lys(2+, or fascin restored both comet tail attachment and sustained particle motility in low Mg(2+ buffers. TIRF microscopic analysis of filaments captured by WCA-coated beads in the absence of Arp2/3, profilin, and CP showed that filament bundling by polycation or fascin addition increased barbed end capture by WCA domains. We propose a model in which CP directs barbed ends toward the leading edge and polycation-induced filament bundling sustains processive barbed end attachment to the leading edge.

  14. Control of actin-based motility through localized actin binding

    International Nuclear Information System (INIS)

    A wide variety of cell biological and biomimetic systems use actin polymerization to drive motility. It has been suggested that an object such as a bacterium can propel itself by self-assembling a high concentration of actin behind it, if it is repelled by actin. However, it is also known that it is essential for the moving object to bind actin. Therefore, a key question is how the actin tail can propel an object when it both binds and repels the object. We present a physically consistent Brownian dynamics model for actin-based motility that includes the minimal components of the dendritic nucleation model and allows for both attractive and repulsive interactions between actin and a moveable disc. We find that the concentration gradient of filamentous actin generated by polymerization is sufficient to propel the object, even with moderately strong binding interactions. Additionally, actin binding can act as a biophysical cap, and may directly control motility through modulation of network growth. Overall, this mechanism is robust in that it can drive motility against a load up to a stall pressure that depends on the Young’s modulus of the actin network and can explain several aspects of actin-based motility. (paper)

  15. Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments.

    Science.gov (United States)

    Hansen, Scott D; Mullins, R Dyche

    2015-01-01

    Enabled/Vasodilator (Ena/VASP) proteins promote actin filament assembly at multiple locations, including: leading edge membranes, focal adhesions, and the surface of intracellular pathogens. One important Ena/VASP regulator is the mig-10/Lamellipodin/RIAM family of adaptors that promote lamellipod formation in fibroblasts and drive neurite outgrowth and axon guidance in neurons. To better understand how MRL proteins promote actin network formation we studied the interactions between Lamellipodin (Lpd), actin, and VASP, both in vivo and in vitro. We find that Lpd binds directly to actin filaments and that this interaction regulates its subcellular localization and enhances its effect on VASP polymerase activity. We propose that Lpd delivers Ena/VASP proteins to growing barbed ends and increases their polymerase activity by tethering them to filaments. This interaction represents one more pathway by which growing actin filaments produce positive feedback to control localization and activity of proteins that regulate their assembly.

  16. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles.

    Science.gov (United States)

    Mavrakis, Manos; Azou-Gros, Yannick; Tsai, Feng-Ching; Alvarado, José; Bertin, Aurélie; Iv, Francois; Kress, Alla; Brasselet, Sophie; Koenderink, Gijsje H; Lecuit, Thomas

    2014-04-01

    Animal cell cytokinesis requires a contractile ring of crosslinked actin filaments and myosin motors. How contractile rings form and are stabilized in dividing cells remains unclear. We address this problem by focusing on septins, highly conserved proteins in eukaryotes whose precise contribution to cytokinesis remains elusive. We use the cleavage of the Drosophila melanogaster embryo as a model system, where contractile actin rings drive constriction of invaginating membranes to produce an epithelium in a manner akin to cell division. In vivo functional studies show that septins are required for generating curved and tightly packed actin filament networks. In vitro reconstitution assays show that septins alone bundle actin filaments into rings, accounting for the defects in actin ring formation in septin mutants. The bundling and bending activities are conserved for human septins, and highlight unique functions of septins in the organization of contractile actomyosin rings.

  17. Correlative nanoscale imaging of actin filaments and their complexes.

    Science.gov (United States)

    Sharma, Shivani; Zhu, Huanqi; Grintsevich, Elena E; Reisler, Emil; Gimzewski, James K

    2013-07-01

    Actin remodeling is an area of interest in biology in which correlative microscopy can bring a new way to analyze protein complexes at the nanoscale. Advances in EM, X-ray diffraction, fluorescence, and single molecule techniques have provided a wealth of information about the modulation of the F-actin structure and its regulation by actin binding proteins (ABPs). Yet, there are technological limitations of these approaches to achieving quantitative molecular level information on the structural and biophysical changes resulting from ABPs interaction with F-actin. Fundamental questions about the actin structure and dynamics and how these determine the function of ABPs remain unanswered. Specifically, how local and long-range structural and conformational changes result in ABPs induced remodeling of F-actin needs to be addressed at the single filament level. Advanced, sensitive and accurate experimental tools for detailed understanding of ABP-actin interactions are much needed. This article discusses the current understanding of nanoscale structural and mechanical modulation of F-actin by ABPs at the single filament level using several correlative microscopic techniques, focusing mainly on results obtained by Atomic Force Microscopy (AFM) analysis of ABP-actin complexes.

  18. Filament assembly by Spire: key residues and concerted actin binding.

    Science.gov (United States)

    Rasson, Amy S; Bois, Justin S; Pham, Duy Stephen L; Yoo, Haneul; Quinlan, Margot E

    2015-02-27

    The most recently identified class of actin nucleators, WASp homology domain 2 (WH2) nucleators, use tandem repeats of monomeric actin-binding WH2 domains to facilitate actin nucleation. WH2 domains are involved in a wide variety of actin regulatory activities. Structurally, they are expected to clash with interprotomer contacts within the actin filament. Thus, the discovery of their role in nucleation was surprising. Here we use Drosophila Spire (Spir) as a model system to investigate both how tandem WH2 domains can nucleate actin and what differentiates nucleating WH2-containing proteins from their non-nucleating counterparts. We found that the third WH2 domain in Spir (Spir-C or SC) plays a unique role. In the context of a short nucleation construct (containing only two WH2 domains), placement of SC in the N-terminal position was required for the most potent nucleation. We found that the native organization of the WH2 domains with respect to each other is necessary for binding to actin with positive cooperativity. We identified two residues within SC that are critical for its activity. Using this information, we were able to convert a weak synthetic nucleator into one with activity equal to a native Spir construct. Lastly, we found evidence that SC binds actin filaments, in addition to monomers.

  19. The structural basis for the intrinsic disorder of the actin filament: the "lateral slipping" model.

    Science.gov (United States)

    Bremer, A; Millonig, R C; Sütterlin, R; Engel, A; Pollard, T D; Aebi, U

    1991-11-01

    Three-dimensional (3-D) helical reconstructions computed from electron micrographs of negatively stained dispersed F-actin filaments invariably revealed two uninterrupted columns of mass forming the "backbone" of the double-helical filament. The contact between neighboring subunits along the thus defined two long-pitch helical strands was spatially conserved and of high mass density, while the intersubunit contact between them was of lower mass density and varied among reconstructions. In contrast, phalloidinstabilized F-actin filaments displayed higher and spatially more conserved mass density between the two long-pitch helical strands, suggesting that this bicyclic hepta-peptide toxin strengthens the intersubunit contact between the two strands. Consistent with this distinct intersubunit bonding pattern, the two long-pitch helical strands of unstabilized filaments were sometimes observed separated from each other over a distance of two to six subunits, suggesting that the intrastrand intersubunit contact is also physically stronger than the interstrand contact. The resolution of the filament reconstructions, extending to 2.5 nm axially and radially, enabled us to reproducibly "cut out" the F-actin subunit which measured 5.5 nm axially by 6.0 nm tangentially by 3.2 nm radially. The subunit is distinctly polar with a massive "base" pointing towards the "barbed" end of the filament, and a slender "tip" defining its "pointed" end (i.e., relative to the "arrowhead" pattern revealed after stoichiometric decoration of the filaments with myosin subfragment 1). Concavities running approximately parallel to the filament axis both on the inner and outer face of the subunit define a distinct cleft separating the subunit into two domains of similar size: an inner domain confined to radii less than or equal to 2.5-nm forms the uninterrupted backbone of the two long-pitch helical strands, and an outer domain placed at radii of 2-5-nm protrudes radially and thus predominantly

  20. Structural Modeling and Molecular Dynamics Simulation of the Actin Filament

    Energy Technology Data Exchange (ETDEWEB)

    Splettstoesser, Thomas [University of Heidelberg; Holmes, Kenneth [Max Planck Institute, Heidelberg, Germany; Noe, Frank [DFG Research Center Matheon, FU Berlin, Germany; Smith, Jeremy C [ORNL

    2011-01-01

    Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized.

  1. Mesoscopic model of actin-based propulsion.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.

  2. Actin filaments on myosin beds: The velocity distribution

    Science.gov (United States)

    Bourdieu, L.; Magnasco, M. O.; Winkelmann, D. A.; Libchaber, A.

    1995-12-01

    In vitro studies of actin filaments sliding on a myosin-coated surface are analyzed, filament by filament, at a sampling rate of 30 per second. For each filament, the mean arc length coordinate is computed and histograms of instantaneous velocities, along the arc length, are established. Two types of motion are observed, depending on the experimental conditions. The first one is characterized by a homogeneous flow, with well defined velocities. In this regime, specific defects are a constitutive part of the flow. It is observed at high temperature, at high myosin coverage, and with a particular mode of attachment of myosin to the surface. The second regime shows no clear velocity selection, but a broadband distribution. It is characterized by high friction and is observed at low temperature or low myosin density. (c) 1995 The American Physical Society

  3. The structural basis of actin filament branching by the Arp2/3 complex.

    Science.gov (United States)

    Rouiller, Isabelle; Xu, Xiao-Ping; Amann, Kurt J; Egile, Coumaran; Nickell, Stephan; Nicastro, Daniela; Li, Rong; Pollard, Thomas D; Volkmann, Niels; Hanein, Dorit

    2008-03-10

    The actin-related protein 2/3 (Arp2/3) complex mediates the formation of branched actin filaments at the leading edge of motile cells and in the comet tails moving certain intracellular pathogens. Crystal structures of the Arp2/3 complex are available, but the architecture of the junction formed by the Arp2/3 complex at the base of the branch was not known. In this study, we use electron tomography to reconstruct the branch junction with sufficient resolution to show how the Arp2/3 complex interacts with the mother filament. Our analysis reveals conformational changes in both the mother filament and Arp2/3 complex upon branch formation. The Arp2 and Arp3 subunits reorganize into a dimer, providing a short-pitch template for elongation of the daughter filament. Two subunits of the mother filament undergo conformational changes that increase stability of the branch. These data provide a rationale for why branch formation requires cooperative interactions among the Arp2/3 complex, nucleation-promoting factors, an actin monomer, and the mother filament.

  4. Force-Velocity Measurements of a Few Growing Actin Filaments

    Science.gov (United States)

    Brangbour, Coraline; du Roure, Olivia; Helfer, Emmanuèle; Démoulin, Damien; Mazurier, Alexis; Fermigier, Marc; Carlier, Marie-France; Bibette, Jérôme; Baudry, Jean

    2011-01-01

    The polymerization of actin in filaments generates forces that play a pivotal role in many cellular processes. We introduce a novel technique to determine the force-velocity relation when a few independent anchored filaments grow between magnetic colloidal particles. When a magnetic field is applied, the colloidal particles assemble into chains under controlled loading or spacing. As the filaments elongate, the beads separate, allowing the force-velocity curve to be precisely measured. In the widely accepted Brownian ratchet model, the transduced force is associated with the slowing down of the on-rate polymerization. Unexpectedly, in our experiments, filaments are shown to grow at the same rate as when they are free in solution. However, as they elongate, filaments are more confined in the interspace between beads. Higher repulsive forces result from this higher confinement, which is associated with a lower entropy. In this mechanism, the production of force is not controlled by the polymerization rate, but is a consequence of the restriction of filaments' orientational fluctuations at their attachment point. PMID:21541364

  5. Force-velocity measurements of a few growing actin filaments.

    Directory of Open Access Journals (Sweden)

    Coraline Brangbour

    2011-04-01

    Full Text Available The polymerization of actin in filaments generates forces that play a pivotal role in many cellular processes. We introduce a novel technique to determine the force-velocity relation when a few independent anchored filaments grow between magnetic colloidal particles. When a magnetic field is applied, the colloidal particles assemble into chains under controlled loading or spacing. As the filaments elongate, the beads separate, allowing the force-velocity curve to be precisely measured. In the widely accepted Brownian ratchet model, the transduced force is associated with the slowing down of the on-rate polymerization. Unexpectedly, in our experiments, filaments are shown to grow at the same rate as when they are free in solution. However, as they elongate, filaments are more confined in the interspace between beads. Higher repulsive forces result from this higher confinement, which is associated with a lower entropy. In this mechanism, the production of force is not controlled by the polymerization rate, but is a consequence of the restriction of filaments' orientational fluctuations at their attachment point.

  6. Actin filaments growing against a barrier with fluctuating shape

    CERN Document Server

    Sadhu, Raj Kumar

    2016-01-01

    We study force generation by a set of parallel actin filaments growing against a non-rigid obstacle, in presence of an external load. The filaments polymerize by either moving the whole obstacle, with a large energy cost, or by causing local distortion in its shape which costs much less energy. The non-rigid obstacle also has local thermal fluctuations due to which its shape can change with time and we describe this using fluctuations in the height profile of a one dimensional interface with Kardar-Parisi-Zhang dynamics. We find the shape fluctuations of the barrier strongly affects the force generation mechanism. The qualitative nature of the force-velocity curve is crucially determined by the relative time-scale of filament and barrier dynamics. The height profile of the barrier also shows interesting variation with the external load. Our analytical calculation within mean-field theory shows reasonable agreement with our simulation results.

  7. Actin filaments growing against a barrier with fluctuating shape

    Science.gov (United States)

    Sadhu, Raj Kumar; Chatterjee, Sakuntala

    2016-06-01

    We study force generation by a set of parallel actin filaments growing against a nonrigid obstacle, in the presence of an external load. The filaments polymerize by either moving the whole obstacle, with a large energy cost, or by causing local distortion in its shape which costs much less energy. The nonrigid obstacle also has local thermal fluctuations due to which its shape can change with time and we describe this using fluctuations in the height profile of a one-dimensional interface with Kardar-Parisi-Zhang dynamics. We find the shape fluctuations of the barrier strongly affect the force generation mechanism. The qualitative nature of the force-velocity curve is crucially determined by the relative time scale of filament and barrier dynamics. The height profile of the barrier also shows interesting variation with the external load. Our analytical calculations within mean-field theory show reasonable agreement with our simulation results.

  8. Shortening actin filaments cause force generation in actomyosin network to change from contractile to extensile

    Science.gov (United States)

    Kumar, Nitin; Gardel, Margaret

    Motor proteins in conjunction with filamentous proteins convert biochemical energy into mechanical energy which serves a number of cellular processes including cell motility, force generation and intracellular cargo transport. In-vitro experiments suggest that the forces generated by kinesin motors on microtubule bundles are extensile in nature whereas myosin motors on actin filaments are contractile. It is not clear how qualitatively similar systems can show completely different behaviors in terms of the nature of force generation. In order to answer this question, we carry out in vitro experiments where we form quasi 2D filamentous actomyosin networks and vary the length of actin filaments by adding capping protein. We show that when filaments are much shorter than their typical persistence length (approximately 10 microns), the forces generated are extensile and we see active nematic defect propagation, as seen in the microtubule-kinesin system. Based on this observation, we claim that the rigidity of rods plays an important role in dictating the nature of force generation in such systems. In order to understand this transition, we selectively label individual filaments and find that longer filaments show considerable bending and buckling, making them difficult to slide and extend along their length.

  9. Mesoscopic model for filament orientation in growing actin networks: the role of obstacle geometry

    CERN Document Server

    Weichsel, Julian; 10.1088/1367-2630/15/3/035006

    2013-01-01

    Propulsion by growing actin networks is a universal mechanism used in many different biological systems. Although the core molecular machinery for actin network growth is well preserved in most cases, the geometry of the propelled obstacle can vary considerably. In recent years, filament orientation distribution has emerged as an important observable characterizing the structure and dynamical state of the growing network. Here we derive several continuum equations for the orientation distribution of filaments growing behind stiff obstacles of various shapes and validate the predicted steady state orientation patterns by stochastic computer simulations based on discrete filaments. We use an ordinary differential equation approach to demonstrate that for flat obstacles of finite size, two fundamentally different orientation patterns peaked at either +35/-35 or +70/0/-70 degrees exhibit mutually exclusive stability, in agreement with earlier results for flat obstacles of very large lateral extension. We calculat...

  10. Prokaryotic DNA segregation by an actin-like filament

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Bugge Jensen, Rasmus; Löwe, Jan;

    2002-01-01

    The mechanisms responsible for prokaryotic DNA segregation are largely unknown. The partitioning locus (par) encoded by the Escherichia coli plasmid R1 actively segregates its replicon to daughter cells. We show here that the ParM ATPase encoded by par forms dynamic actin-like filaments...... was ATP dependent, and depolymerization of ParM filaments required nucleotide hydrolysis. Our in vivo and in vitro results indicate that ParM polymerization generates the force required for directional movement of plasmids to opposite cell poles and that the ParR-parC complex functions as a nucleation...... point for ParM polymerization. Hence, we provide evidence for a simple prokaryotic analogue of the eukaryotic mitotic spindle apparatus....

  11. Modeling of the motion of the actin filament on the myosin motility assays

    Science.gov (United States)

    Young, Yuan; Shelley, Mike

    2007-11-01

    In motility assays, cytoskeletal actin filaments (actin filaments) glide over a surface coated with motor proteins, and the different modes of motion provide a simple measure of the force exerted by the motor proteins (Bourdieu, 1995). Motivated by these experiments, we consider the actin filament as a slender, elastic filament immersed in Stokesian flow, driven by a tangential forcing that mimics the force by the motor proteins. We find qualitative agreement on several points between our analysis and simulations and experimental observations. Furthermore, we study the correlation between filament transport and the characteristics of motion with the spatial pattern of motor protein density.

  12. Preliminarily Investigating the Polymorphism of Self-organized Actin Filament in Vitro by Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    Jun ZHANG; Yuan-Liang WANG; Xin-Yong Chen; Chuang-Long HE; Chao CHENG; Yang CAO

    2004-01-01

    With the atomic force microscope (AFM), we preliminarily investigated the large-scale structure of actin filaments formed in low concentration protein solution (5 μg/ml) via self-organization without the presence of any F-actin dynamic interfering factors (such as phalloidin) in vitro. It was found that the G-actin could be polymerized into ordered filamentous structures with different diameter from the slimmest filament of single F-actin to giant filament in tree-like branched aggregates. The observed polymerized actin filaments, to which our most intense attention was attracted, was discretely distributed and showed obvious polymorphism distinctly different from those in the presence of phalloidin or actin binding proteins (fimbrin, gelsolin, etc.) in previous experiments. Latter structures were mainly composed of single F-actin and/or multifilaments clearly consisting of several single F-actin. The experimental results clearly demonstrated that non-interference with the F-actin intrinsic dynamics in self-organizing could lead to the polymorphism of actin filamentous structures, and further analysis implied that the disturbance of normal F-actin dynamics by many factors could prevent the emergence of structural polymorphism, more often than not, give rise to formation of specific structures instead and different interference would bring about various particular structures under certain conditions.

  13. Cysteine-rich protein 1 (CRP1 regulates actin filament bundling

    Directory of Open Access Journals (Sweden)

    Fraley Tamara S

    2005-12-01

    Full Text Available Abstract Background Cysteine-rich protein 1 (CRP1 is a LIM domain containing protein localized to the nucleus and the actin cytoskeleton. CRP1 has been demonstrated to bind the actin-bundling protein α-actinin and proposed to modulate the actin cytoskeleton; however, specific regulatory mechanisms have not been identified. Results CRP1 expression increased actin bundling in rat embryonic fibroblasts. Although CRP1 did not affect the bundling activity of α-actinin, CRP1 was found to stabilize the interaction of α-actinin with actin bundles and to directly bundle actin microfilaments. Using confocal and photobleaching fluorescence resonance energy transfer (FRET microscopy, we demonstrate that there are two populations of CRP1 localized along actin stress fibers, one associated through interaction with α-actinin and one that appears to bind the actin filaments directly. Consistent with a role in regulating actin filament cross-linking, CRP1 also localized to the membrane ruffles of spreading and PDGF treated fibroblasts. Conclusion CRP1 regulates actin filament bundling by directly cross-linking actin filaments and stabilizing the interaction of α-actinin with actin filament bundles.

  14. Actin Filament Bundles in Drosophila Wing Hairs: Hairs and Bristles Use Different Strategies for Assembly

    OpenAIRE

    Guild, Gregory M.; Connelly, Patricia S.; Ruggiero, Linda; Vranich, Kelly A.; Tilney, Lewis G.

    2005-01-01

    Actin filament bundles can shape cellular extensions into dramatically different forms. We examined cytoskeleton formation during wing hair morphogenesis using both confocal and electron microscopy. Hairs elongate with linear kinetics (∼1 μm/h) over the course of ∼18 h. The resulting structure is vividly asymmetric and shaped like a rose thorn—elongated in the distal direction, curved in two dimensions with an oval base and a round tip. High-resolution analysis shows that the cytoskeleton for...

  15. Temperature change does not affect force between single actin filaments and HMM from rabbit muscles.

    OpenAIRE

    Kawai, M.; Kawaguchi, K; M. Saito; Ishiwata, S

    2000-01-01

    The temperature dependence of sliding force, velocity, and unbinding force was studied on actin filaments when they were placed on heavy meromyosin (HMM) attached to a glass surface. A fluorescently labeled actin filament was attached to the gelsolin-coated surface of a 1-microm polystyrene bead. The bead was trapped by optical tweezers, and HMM-actin interaction was performed at 20-35 degrees C to examine whether force is altered by the temperature change. Our experiments demonstrate that sl...

  16. Networks of Polarized Actin Filaments in the Axon Initial Segment Provide a Mechanism for Sorting Axonal and Dendritic Proteins

    Directory of Open Access Journals (Sweden)

    Kaori Watanabe

    2012-12-01

    Full Text Available Trafficking of proteins specifically to the axonal or somatodendritic membrane allows neurons to establish and maintain polarized compartments with distinct morphology and function. Diverse evidence suggests that an actin-dependent vesicle filter within the axon initial segment (AIS plays a critical role in polarized trafficking; however, no distinctive actin-based structures capable of comprising such a filter have been found within the AIS. Here, using correlative light and scanning electron microscopy, we visualized networks of actin filaments several microns wide within the AIS of cortical neurons in culture. Individual filaments within these patches are predominantly oriented with their plus ends facing toward the cell body, consistent with models of filter selectivity. Vesicles carrying dendritic proteins are much more likely to stop in regions occupied by the actin patches than in other regions, indicating that the patches likely prevent movement of dendritic proteins to the axon and thereby act as a vesicle filter.

  17. Emergence of large-scale cell morphology and movement from local actin filament growth dynamics.

    Directory of Open Access Journals (Sweden)

    Catherine I Lacayo

    2007-09-01

    Full Text Available Variations in cell migration and morphology are consequences of changes in underlying cytoskeletal organization and dynamics. We investigated how these large-scale cellular events emerge as direct consequences of small-scale cytoskeletal molecular activities. Because the properties of the actin cytoskeleton can be modulated by actin-remodeling proteins, we quantitatively examined how one such family of proteins, enabled/vasodilator-stimulated phosphoprotein (Ena/VASP, affects the migration and morphology of epithelial fish keratocytes. Keratocytes generally migrate persistently while exhibiting a characteristic smooth-edged "canoe" shape, but may also exhibit less regular morphologies and less persistent movement. When we observed that the smooth-edged canoe keratocyte morphology correlated with enrichment of Ena/VASP at the leading edge, we mislocalized and overexpressed Ena/VASP proteins and found that this led to changes in the morphology and movement persistence of cells within a population. Thus, local changes in actin filament dynamics due to Ena/VASP activity directly caused changes in cell morphology, which is coupled to the motile behavior of keratocytes. We also characterized the range of natural cell-to-cell variation within a population by using measurable morphological and behavioral features--cell shape, leading-edge shape, filamentous actin (F-actin distribution, cell speed, and directional persistence--that we have found to correlate with each other to describe a spectrum of coordinated phenotypes based on Ena/VASP enrichment at the leading edge. This spectrum stretched from smooth-edged, canoe-shaped keratocytes--which had VASP highly enriched at their leading edges and migrated fast with straight trajectories--to more irregular, rounder cells migrating slower with less directional persistence and low levels of VASP at their leading edges. We developed a mathematical model that accounts for these coordinated cell-shape and

  18. Structural Transition of Actin Filament in a Cell-Sized Water Droplet with a Phospholipid Membrane

    CERN Document Server

    Hase, M

    2005-01-01

    Actin filament, F-actin, is a semiflexible polymer with a negative charge, and is one of the main constituents on cell membranes. To clarify the effect of cross-talk between a phospholipid membrane and actin filaments in cells, we conducted microscopic observations on the structural changes in actin filaments in a cell-sized (several tens of micrometers in diameter) water droplet coated with a phospholipid membrane such as phosphatidylserine (PS; negatively-charged head group) or phosphatidylethanolamine (PE; neutral head group) as a simple model of a living cell membrane. With PS, actin filaments are distributed uniformly in the water phase without adsorption onto the membrane surface between 2 and 6 mM Mg2+, while between 6 and 12 mM Mg2+, actin filaments are adsorbed onto the inner membrane surface. With PE, actin filaments are uniformly adsorbed onto the inner membrane surface between 2 and 12 mM Mg2+. With both PS and PE membranes, at Mg2+ concentrations higher than 12 mM, thick bundles are formed in the...

  19. Possible association of actin filaments with chloroplasts of spinach mesophyll cells in vivo and in vitro.

    Science.gov (United States)

    Kumatani, T; Sakurai-Ozato, N; Miyawaki, N; Yokota, E; Shimmen, T; Terashima, I; Takagi, S

    2006-11-01

    In palisade mesophyll cells of spinach (Spinacia oleracea L.) kept under low-intensity white light, chloroplasts were apparently immobile and seemed to be surrounded by fine bundles of actin filaments. High-intensity blue light induced actin-dependent chloroplast movement concomitant with the appearance of a couple of long, straight bundles of actin filaments in each cell, whereas high-intensity red light was essentially ineffective in inducing these responses. The actin organization observed under low-intensity white light has been postulated to function in anchoring chloroplasts at proper intracellular positions through direct interaction with the chloroplasts. Intact chloroplasts, which retained their outer envelopes, were isolated after homogenization of leaves and Percoll centrifugation. No endogenous actin was detected by immunoblotting in the final intact-chloroplast fraction prepared from the leaves kept under low-intensity white light or in darkness. In cosedimentation assays with exogenously added skeletal muscle filamentous actin, however, actin was detected in the intact-chloroplast fraction precipitated after low-speed centrifugation. The association of actin with chloroplasts was apparently dependent on incubation time and chloroplast density. After partial disruption of the outer envelope of isolated chloroplasts by treatment with trypsin, actin was no longer coprecipitated. The results suggest that chloroplasts in spinach leaves can directly interact with actin, and that this interaction may be involved in the regulation of intracellular positioning of chloroplasts.

  20. Twirling motion of actin filaments in gliding assays with non-processive myosin motors

    CERN Document Server

    Vilfan, Andrej

    2009-01-01

    We present a model study of gliding assays in which actin filaments are moved by non-processive myosin motors. We show that even if the power stroke of the motor protein has no lateral component, the filaments will rotate around their axis while moving over the surface. Notably, the handedness of this twirling motion is opposite from that of the actin filament structure. It stems from the fact that the gliding actin filament has "target zones" where its subunits point towards the surface and are therefore more accessible for myosin heads. Each myosin head has a higher binding probability before it reaches the center of the target zone than afterwards, which results in a left-handed twirling. We present a stochastic simulation and an approximative analytical solution. The calculated pitch of the twirling motion depends on the filament velocity (ATP concentration). It reaches about 400nm for low speeds and increases with higher speeds.

  1. Molecular mechanism of Ena/VASP-mediated actin-filament elongation.

    Science.gov (United States)

    Breitsprecher, Dennis; Kiesewetter, Antje K; Linkner, Joern; Vinzenz, Marlene; Stradal, Theresia E B; Small, John Victor; Curth, Ute; Dickinson, Richard B; Faix, Jan

    2011-02-01

    Ena/VASP proteins are implicated in a variety of fundamental cellular processes including axon guidance and cell migration. In vitro, they enhance elongation of actin filaments, but at rates differing in nearly an order of magnitude according to species, raising questions about the molecular determinants of rate control. Chimeras from fast and slow elongating VASP proteins were generated and their ability to promote actin polymerization and to bind G-actin was assessed. By in vitro TIRF microscopy as well as thermodynamic and kinetic analyses, we show that the velocity of VASP-mediated filament elongation depends on G-actin recruitment by the WASP homology 2 motif. Comparison of the experimentally observed elongation rates with a quantitative mathematical model moreover revealed that Ena/VASP-mediated filament elongation displays a saturation dependence on the actin monomer concentration, implying that Ena/VASP proteins, independent of species, are fully saturated with actin in vivo and generally act as potent filament elongators. Moreover, our data showed that spontaneous addition of monomers does not occur during processive VASP-mediated filament elongation on surfaces, suggesting that most filament formation in cells is actively controlled.

  2. Dendritic Actin Filament Nucleation Causes Traveling Waves and Patches

    CERN Document Server

    Carlsson, Anders E

    2010-01-01

    The polymerization of actin via branching at a cell membrane containing nucleation-promoting factors is simulated using a stochastic-growth methodology. The polymerized-actin distribution displays three types of behavior: a) traveling waves, b) moving patches, and c) random fluctuations. Increasing actin concentration causes a transition from patches to waves. The waves and patches move by a treadmilling mechanism which does not require myosin II. The effects of downregulation of key proteins on actin wave behavior are evaluated.

  3. Dendritic Actin Filament Nucleation Causes Traveling Waves and Patches

    Science.gov (United States)

    Carlsson, Anders E.

    2010-06-01

    The polymerization of actin via branching at a cell membrane containing nucleation-promoting factors is simulated using a stochastic-growth methodology. The polymerized-actin distribution displays three types of behavior: (a) traveling waves, (b) moving patches, and (c) random fluctuations. Increasing actin concentration causes a transition from patches to waves. The waves and patches move by a treadmilling mechanism not involving myosin II. The effects of downregulation of key proteins on actin wave behavior are evaluated.

  4. Fullerenol Nanoparticles with Structural Activity Induce Variable Intracellular Actin Filament Morphologies.

    Science.gov (United States)

    Jin, Junjiang; Dong, Ying; Wang, Ying; Xia, Lin; Gu, Weihong; Bai, Xue; Chang, Yanan; Zhang, Mingyi; Chen, Kui; Li, Juan; Zhao, Lina; Xing, Gengmei

    2016-06-01

    Fullerenol nanoparticles are promising for various biological applications; many studies have shown that they induce variable and diverse biological effects including side effects. Separation and purification of two fractions of fullerenols has demonstrated that they have varied chemical structures on the surfaces of their carbon cages. Actin is an important structural protein that is able to transform functional structures under varied physiological conditions. We assessed the abilities of the two fractions of fullerenols to attach to actin and induce variable morphological features in actin filament structures. Specifically the fullerenol fraction with a surface electric charge of -1.913 ± 0.008q (x10(-6) C) has percentages of C-OH and C=O on the carbon cage of 16.14 ± 0.60 and 17.55 ± 0.69. These features allow it to form intermolecular hydrogen bonds with actin at a stoichiometric ratio of four fullerenols per actin subunit. Molecular simulations revealed these specific binding sites and binding modes in atomic details in the interaction between the active fullerenol and actin filament. Conversely, these interactions were not possible for the other fraction of fullerenol with that percentages of C-OH and C=O on the carbon cage were 15.59 ± 0.01 and 1.94 ± 0.11. Neither sample induced appreciable cytotoxicity or acute cell death. After entering cells, active fullerenol binding to actin induces variable morphological features and may transform ATP-actin to ADP-actin. These changes facilitate the binding of ADF/cofilin, allowing cofilin to sever actin filaments to form cofilin/actin/fullerenol rods. Our findings suggest that fullerenol with structural activity binding disturbs actin filament structure, which may inhibit locomotion of cell or induce chronic side effects in to cells. PMID:27319217

  5. Cations Stiffen Actin Filaments by Adhering a Key Structural Element to Adjacent Subunits.

    Science.gov (United States)

    Hocky, Glen M; Baker, Joseph L; Bradley, Michael J; Sinitskiy, Anton V; De La Cruz, Enrique M; Voth, Gregory A

    2016-05-26

    Ions regulate the assembly and mechanical properties of actin filaments. Recent work using structural bioinformatics and site-specific mutagenesis favors the existence of two discrete and specific divalent cation binding sites on actin filaments, positioned in the long axis between actin subunits. Cation binding at one site drives polymerization, while the other modulates filament stiffness and plays a role in filament severing by the regulatory protein, cofilin. Existing structural methods have not been able to resolve filament-associated cations, and so in this work we turn to molecular dynamics simulations to suggest a candidate binding pocket geometry for each site and to elucidate the mechanism by which occupancy of the "stiffness site" affects filament mechanical properties. Incorporating a magnesium ion in the "polymerization site" does not seem to require any large-scale change to an actin subunit's conformation. Binding of a magnesium ion in the "stiffness site" adheres the actin DNase-binding loop (D-loop) to its long-axis neighbor, which increases the filament torsional stiffness and bending persistence length. Our analysis shows that bound D-loops occupy a smaller region of accessible conformational space. Cation occupancy buries key conserved residues of the D-loop, restricting accessibility to regulatory proteins and enzymes that target these amino acids. PMID:27146246

  6. Dynamics of actin cables in polarized growth of the filamentous fungus Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Anna eBergs

    2016-05-01

    Full Text Available Highly polarized growth of filamentous fungi requires a continuous supply of proteins and lipids to the hyphal tip. This transport is managed by vesicle trafficking via the actin and microtubule cytoskeletons and their associated motor proteins. Particularly, actin cables originating from the hyphal tip are essential for hyphal growth. Although specific marker proteins to visualize actin cables have been developed in filamentous fungi, the exact organization and dynamics of actin cables has remained elusive. Here we visualized actin cables using tropomyosin (TpmA and Lifeact fused to fluorescent proteins in Aspergillus nidulans and studied the dynamics and regulation. GFP tagged TpmA visualized dynamic actin cables formed from the hyphal tip with cycles of elongation and shrinkage. The elongation and shrinkage rates of actin cables were similar and approximately 0.6 μm/s. Comparison of actin markers revealed that high concentrations of Lifeact reduced actin dynamics. Simultaneous visualization of actin cables and microtubules suggests temporally and spatially coordinated polymerization and depolymerization between the two cytoskeletons. Our results provide new insights into the molecular mechanism of ordered polarized growth regulated by actin cables and microtubules.

  7. F-actin-like filaments formed by plasmid segregation protein ParM

    DEFF Research Database (Denmark)

    van den Ent, Fusinita; Møller-Jensen, Jakob; Amos, Linda A.;

    2002-01-01

    It was the general belief that DNA partitioning in prokaryotes is independent of a cytoskeletal structure, which in eukaryotic cells is indispensable for DNA segregation. Recently, however, immunofluorescence microscopy revealed highly dynamic, filamentous structures along the longitudinal axis...... of Escherichia coli formed by ParM, a plasmid-encoded protein required for accurate segregation of low-copy-number plasmid R1. We show here that ParM polymerizes into double helical protofilaments with a longitudinal repeat similar to filamentous actin (F-actin) and MreB filaments that maintain the cell shape...

  8. Actin filaments as the fast pathways for calcium ions involved in auditory processes

    Indian Academy of Sciences (India)

    Miljko V Sataric; Dalibor L Sekulic; Bogdan M Sataric

    2015-09-01

    We investigated the polyelectrolyte properties of actin filaments which are in interaction with myosin motors, basic participants in mechano-electrical transduction in the stereocilia of the inner ear. Here, we elaborated a model in which actin filaments play the role of guides or pathways for localized flow of calcium ions. It is well recognized that calcium ions are implicated in tuning of actin-myosin cross-bridge interaction, which controls the mechanical property of hair bundle. Actin filaments enable much more efficient delivery of calcium ions and faster mechanism for their distribution within the stereocilia. With this model we were able to semiquantitatively explain experimental evidences regarding the way of how calcium ions tune the mechanosensitivity of hair cells.

  9. The Actin Filament-Binding Protein Coronin Regulates Motility in Plasmodium Sporozoites

    Science.gov (United States)

    Bane, Kartik S.; Singer, Mirko; Reinig, Miriam; Klug, Dennis; Heiss, Kirsten; Baum, Jake; Mueller, Ann-Kristin; Frischknecht, Friedrich

    2016-01-01

    Parasites causing malaria need to migrate in order to penetrate tissue barriers and enter host cells. Here we show that the actin filament-binding protein coronin regulates gliding motility in Plasmodium berghei sporozoites, the highly motile forms of a rodent malaria-causing parasite transmitted by mosquitoes. Parasites lacking coronin show motility defects that impair colonization of the mosquito salivary glands but not migration in the skin, yet result in decreased transmission efficiency. In non-motile sporozoites low calcium concentrations mediate actin-independent coronin localization to the periphery. Engagement of extracellular ligands triggers an intracellular calcium release followed by the actin-dependent relocalization of coronin to the rear and initiation of motility. Mutational analysis and imaging suggest that coronin organizes actin filaments for productive motility. Using coronin-mCherry as a marker for the presence of actin filaments we found that protein kinase A contributes to actin filament disassembly. We finally speculate that calcium and cAMP-mediated signaling regulate a switch from rapid parasite motility to host cell invasion by differentially influencing actin dynamics. PMID:27409081

  10. The impact of tropomyosins on actin filament assembly is isoform specific.

    Science.gov (United States)

    Janco, Miro; Bonello, Teresa T; Byun, Alex; Coster, Adelle C F; Lebhar, Helene; Dedova, Irina; Gunning, Peter W; Böcking, Till

    2016-07-01

    Tropomyosin (Tpm) is an α helical coiled-coil dimer that forms a co-polymer along the actin filament. Tpm is involved in the regulation of actin's interaction with binding proteins as well as stabilization of the actin filament and its assembly kinetics. Recent studies show that multiple Tpm isoforms also define the functional properties of distinct actin filament populations within a cell. Subtle structural variations within well conserved Tpm isoforms are the key to their functional specificity. Therefore, we purified and characterized a comprehensive set of 8 Tpm isoforms (Tpm1.1, Tpm1.12, Tpm1.6, Tpm1.7, Tpm1.8, Tpm2.1, Tpm3.1, and Tpm4.2), using well-established actin co-sedimentation and pyrene fluorescence polymerization assays. We observed that the apparent affinity (Kd(app)) to filamentous actin varied in all Tpm isoforms between ∼0.1-5 μM with similar values for both, skeletal and cytoskeletal actin filaments. The data did not indicate any correlation between affinity and size of Tpm molecules, however high molecular weight (HMW) isoforms Tpm1.1, Tpm1.6, Tpm1.7 and Tpm2.1, showed ∼3-fold higher cooperativity compared to low molecular weight (LMW) isoforms Tpm1.12, Tpm1.8, Tpm3.1, and Tpm4.2. The rate of actin filament elongation in the presence of Tpm2.1 increased, while all other isoforms decreased the elongation rate by 27-85 %. Our study shows that the biochemical properties of Tpm isoforms are finely tuned and depend on sequence variations in alternatively spliced regions of Tpm molecules. PMID:27420374

  11. The impact of tropomyosins on actin filament assembly is isoform specific.

    Science.gov (United States)

    Janco, Miro; Bonello, Teresa T; Byun, Alex; Coster, Adelle C F; Lebhar, Helene; Dedova, Irina; Gunning, Peter W; Böcking, Till

    2016-07-01

    Tropomyosin (Tpm) is an α helical coiled-coil dimer that forms a co-polymer along the actin filament. Tpm is involved in the regulation of actin's interaction with binding proteins as well as stabilization of the actin filament and its assembly kinetics. Recent studies show that multiple Tpm isoforms also define the functional properties of distinct actin filament populations within a cell. Subtle structural variations within well conserved Tpm isoforms are the key to their functional specificity. Therefore, we purified and characterized a comprehensive set of 8 Tpm isoforms (Tpm1.1, Tpm1.12, Tpm1.6, Tpm1.7, Tpm1.8, Tpm2.1, Tpm3.1, and Tpm4.2), using well-established actin co-sedimentation and pyrene fluorescence polymerization assays. We observed that the apparent affinity (Kd(app)) to filamentous actin varied in all Tpm isoforms between ∼0.1-5 μM with similar values for both, skeletal and cytoskeletal actin filaments. The data did not indicate any correlation between affinity and size of Tpm molecules, however high molecular weight (HMW) isoforms Tpm1.1, Tpm1.6, Tpm1.7 and Tpm2.1, showed ∼3-fold higher cooperativity compared to low molecular weight (LMW) isoforms Tpm1.12, Tpm1.8, Tpm3.1, and Tpm4.2. The rate of actin filament elongation in the presence of Tpm2.1 increased, while all other isoforms decreased the elongation rate by 27-85 %. Our study shows that the biochemical properties of Tpm isoforms are finely tuned and depend on sequence variations in alternatively spliced regions of Tpm molecules.

  12. Gestalt-binding of tropomyosin on actin during thin filament activation.

    Science.gov (United States)

    Lehman, William; Orzechowski, Marek; Li, Xiaochuan Edward; Fischer, Stefan; Raunser, Stefan

    2013-08-01

    Our thesis is that thin filament function can only be fully understood and muscle regulation then elucidated if atomic structures of the thin filament are available to reveal the positions of tropomyosin on actin in all physiological states. After all, it is tropomyosin influenced by troponin that regulates myosin-crossbridge cycling on actin and therefore controls contraction in all muscles. In addition, we maintain that a complete appreciation of thin filament activation also requires that the mechanical properties of tropomyosin itself are recognized and then related to the effect of myosin-association on actin. Taking the Gestalt-binding of tropomyosin into account, coupled with our electron microscopy structures and computational chemistry, we propose a comprehensive mechanism for tropomyosin regulatory movement over the actin filament surface that explains the cooperative muscle activation process. In fact, well-known point mutations of critical amino acids on the actin-tropomyosin binding interface disrupt Gestalt-binding and are associated with a number of inherited myopathies. Moreover, dysregulation of tropomyosin may also be a factor that interferes with the gatekeeping operation of non-muscle tropomyosin in the controlling interactions of a wide variety of cellular actin-binding proteins. The clinical relevance of Gestalt-binding is discussed in articles by the Marston and the Gunning groups in this special journal issue devoted to the impact of tropomyosin on biological systems.

  13. The role of formin tails in actin nucleation, processive elongation, and filament bundling.

    Science.gov (United States)

    Vizcarra, Christina L; Bor, Batbileg; Quinlan, Margot E

    2014-10-31

    Formins are multidomain proteins that assemble actin in a wide variety of biological processes. They both nucleate and remain processively associated with growing filaments, in some cases accelerating filament growth. The well conserved formin homology 1 and 2 domains were originally thought to be solely responsible for these activities. Recently a role in nucleation was identified for the Diaphanous autoinhibitory domain (DAD), which is C-terminal to the formin homology 2 domain. The C-terminal tail of the Drosophila formin Cappuccino (Capu) is conserved among FMN formins but distinct from other formins. It does not have a DAD domain. Nevertheless, we find that Capu-tail plays a role in filament nucleation similar to that described for mDia1 and other formins. Building on this, replacement of Capu-tail with DADs from other formins tunes nucleation activity. Capu-tail has low-affinity interactions with both actin monomers and filaments. Removal of the tail reduces actin filament binding and bundling. Furthermore, when the tail is removed, we find that processivity is compromised. Despite decreased processivity, the elongation rate of filaments is unchanged. Again, replacement of Capu-tail with DADs from other formins tunes the processive association with the barbed end, indicating that this is a general role for formin tails. Our data show a role for the Capu-tail domain in assembling the actin cytoskeleton, largely mediated by electrostatic interactions. Because of its multifunctionality, the formin tail is a candidate for regulation by other proteins during cytoskeletal rearrangements.

  14. Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers

    Directory of Open Access Journals (Sweden)

    Yaming Jiu

    2015-06-01

    Full Text Available The actin cytoskeleton and cytoplasmic intermediate filaments contribute to cell migration and morphogenesis, but the interplay between these two central cytoskeletal elements has remained elusive. Here, we find that specific actin stress fiber structures, transverse arcs, interact with vimentin intermediate filaments and promote their retrograde flow. Consequently, myosin-II-containing arcs are important for perinuclear localization of the vimentin network in cells. The vimentin network reciprocally restricts retrograde movement of arcs and hence controls the width of flat lamellum at the leading edge of the cell. Depletion of plectin recapitulates the vimentin organization phenotype of arc-deficient cells without affecting the integrity of vimentin filaments or stress fibers, demonstrating that this cytoskeletal cross-linker is required for productive interactions between vimentin and arcs. Collectively, our results reveal that plectin-mediated interplay between contractile actomyosin arcs and vimentin intermediate filaments controls the localization and dynamics of these two cytoskeletal systems and is consequently important for cell morphogenesis.

  15. Novel actin filaments from Bacillus thuringiensis form nanotubules for plasmid DNA segregation.

    Science.gov (United States)

    Jiang, Shimin; Narita, Akihiro; Popp, David; Ghoshdastider, Umesh; Lee, Lin Jie; Srinivasan, Ramanujam; Balasubramanian, Mohan K; Oda, Toshiro; Koh, Fujiet; Larsson, Mårten; Robinson, Robert C

    2016-03-01

    Here we report the discovery of a bacterial DNA-segregating actin-like protein (BtParM) from Bacillus thuringiensis, which forms novel antiparallel, two-stranded, supercoiled, nonpolar helical filaments, as determined by electron microscopy. The BtParM filament features of supercoiling and forming antiparallel double-strands are unique within the actin fold superfamily, and entirely different to the straight, double-stranded, polar helical filaments of all other known ParMs and of eukaryotic F-actin. The BtParM polymers show dynamic assembly and subsequent disassembly in the presence of ATP. BtParR, the DNA-BtParM linking protein, stimulated ATP hydrolysis/phosphate release by BtParM and paired two supercoiled BtParM filaments to form a cylinder, comprised of four strands with inner and outer diameters of 57 Å and 145 Å, respectively. Thus, in this prokaryote, the actin fold has evolved to produce a filament system with comparable features to the eukaryotic chromosome-segregating microtubule.

  16. The structural basis for the intrinsic disorder of the actin filament: the "lateral slipping" model

    OpenAIRE

    1991-01-01

    Three-dimensional (3-D) helical reconstructions computed from electron micrographs of negatively stained dispersed F-actin filaments invariably revealed two uninterrupted columns of mass forming the "backbone" of the double-helical filament. The contact between neighboring subunits along the thus defined two long-pitch helical strands was spatially conserved and of high mass density, while the intersubunit contact between them was of lower mass density and varied among reconstructions. In con...

  17. TIRF microscopy analysis of human Cof1, Cof2, and ADF effects on actin filament severing and turnover.

    Science.gov (United States)

    Chin, Samantha M; Jansen, Silvia; Goode, Bruce L

    2016-04-24

    Dynamic remodeling and turnover of cellular actin networks requires actin filament severing by actin-depolymerizing factor (ADF)/Cofilin proteins. Mammals express three different ADF/Cofilins (Cof1, Cof2, and ADF), and genetic studies suggest that in vivo they perform both overlapping and unique functions. To gain mechanistic insights into their different roles, we directly compared their G-actin and F-actin binding affinities, and quantified the actin filament severing activities of human Cof1, Cof2, and ADF using in vitro total internal reflection fluorescence microscopy. All three ADF/Cofilins had similar affinities for G-actin and F-actin. However, Cof2 and ADF severed filaments much more efficiently than Cof1 at both lower and higher concentrations and using either muscle or platelet actin. Furthermore, Cof2 and ADF were more effective than Cof1 in promoting "enhanced disassembly" when combined with actin disassembly co-factors Coronin-1B and actin-interacting protein 1 (AIP1), and these differences were observed on both preformed and actively growing filaments. To probe the mechanism underlying these differences, we used multi-wavelength total internal reflection fluorescence microscopy to directly observe Cy3-Cof1 and Cy3-Cof2 interacting with actin filaments in real time during severing. Cof1 and Cof2 each bound to filaments with similar kinetics, yet Cof2 induced severing much more rapidly than Cof1, decreasing the time interval between initial binding on a filament and severing at the same location. These differences in ADF/Cofilin activities and mechanisms may be used in cells to tune filament turnover rates, which can vary widely for different actin structures.

  18. Echinococcus granulosus: Cloning and Functional in Vitro Characterization of an Actin Filament Fragmenting Protein.

    Science.gov (United States)

    Cortez-Herrera, E; Yamamoto, R R; Rodrigues, J J; Farias, S E; Ferreira, H B; Zaha, A

    2001-04-01

    We report the isolation and characterization of an Echinococcus granulosus gene that codes for a protein with actin filament fragmenting and nucleating activities (EgAFFP). The genomic region corresponding to the EgAFFP gene presents a coding sequence of 1110 bp that is interrupted by eight introns. The EgAFFP deduced amino acid sequence is about 40% homologous to those of several members of the gelsolin family, such as Physarum polycephalum fragmin, Dictyostelium discoideum severin, and Lumbricus terrestris actin modulator. As do other proteins of the same family, EgAFFP presents three repeated domains, each one characterized by internal conserved amino acid motifs. Assays with fluorescence-labeled actin showed that the full-length recombinant EgAFFP effectively binds actin monomers in both a calcium-dependent and calcium-independent manner and also presents actin nucleating and severing activities.

  19. Visualisation of microtubules and actin filaments in fixed BY-2 suspension cells using an optimised whole mount immunolabelling protocol

    OpenAIRE

    Szechynska-Hebda, M.; Wedzony, M.; Dubas, E.; Kieft, H; Lammeren, van, ACAP Andre

    2006-01-01

    Excellent visualisation of microtubules and actin filaments was obtained in fixed tobacco BY-2 suspension cells after optimising a protocol for whole mount immunolabelling. The procedure is based on modification of fixation, cell wall digestion, dimethyl sulfoxide (DMSO) treatment, post fixation, and blocking. The most critical aspects of successful preservation and visualization of cytoskeletal elements appeared to be: a two-step fixation with paraformaldehyde and glutaraldehyde before enzym...

  20. Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility

    Science.gov (United States)

    Benanti, Erin L.; Nguyen, Catherine M.; Welch, Matthew D.

    2015-01-01

    Summary Burkholderia pseudomallei and B. mallei are bacterial pathogens that cause melioidosis and glanders, while their close relative B. thailandensis is nonpathogenic. All use the trimeric autotransporter BimA to facilitate actin-based motility, host cell fusion and dissemination. Here, we show that BimA orthologs mimic different host actin-polymerizing proteins. B. thailandensis BimA activates the host Arp2/3 complex. In contrast, B. pseudomallei and B. mallei BimA mimic host Ena/VASP actin polymerases in their ability to nucleate, elongate and bundle filaments by associating with barbed ends, as well as in their use of WH2 motifs and oligomerization for activity. Mechanistic differences among BimA orthologs resulted in distinct actin filament organization and motility parameters, which affected the efficiency of cell fusion during infection. Our results identify bacterial Ena/VASP mimics and reveal that pathogens imitate the full spectrum of host actin-polymerizing pathways, suggesting that mimicry of different polymerization mechanisms influences key parameters of infection. PMID:25860613

  1. A novel multitarget tracking algorithm for Myosin VI protein molecules on actin filaments in TIRFM sequences.

    Science.gov (United States)

    Li, G; Sanchez, V; Nagaraj, P C S B; Khan, S; Rajpoot, N

    2015-12-01

    We propose a novel multitarget tracking framework for Myosin VI protein molecules in total internal reflection fluorescence microscopy sequences which integrates an extended Hungarian algorithm with an interacting multiple model filter. The extended Hungarian algorithm, which is a linear assignment problem based method, helps to solve measurement assignment and spot association problems commonly encountered when dealing with multiple targets, although a two-motion model interacting multiple model filter increases the tracking accuracy by modelling the nonlinear dynamics of Myosin VI protein molecules on actin filaments. The evaluation of our tracking framework is conducted on both real and synthetic total internal reflection fluorescence microscopy sequences. The results show that the framework achieves higher tracking accuracies compared to the state-of-the-art tracking methods, especially for sequences with high spot density. PMID:26259144

  2. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites.

    Science.gov (United States)

    Ji, Wei-ke; Hatch, Anna L; Merrill, Ronald A; Strack, Stefan; Higgs, Henry N

    2015-01-01

    While the dynamin GTPase Drp1 plays a critical role during mitochondrial fission, mechanisms controlling its recruitment to fission sites are unclear. A current assumption is that cytosolic Drp1 is recruited directly to fission sites immediately prior to fission. Using live-cell microscopy, we find evidence for a different model, progressive maturation of Drp1 oligomers on mitochondria through incorporation of smaller mitochondrially-bound Drp1 units. Maturation of a stable Drp1 oligomer does not forcibly lead to fission. Drp1 oligomers also translocate directionally along mitochondria. Ionomycin, a calcium ionophore, causes rapid mitochondrial accumulation of actin filaments followed by Drp1 accumulation at the fission site, and increases fission rate. Inhibiting actin polymerization, myosin IIA, or the formin INF2 reduces both un-stimulated and ionomycin-induced Drp1 accumulation and mitochondrial fission. Actin filaments bind purified Drp1 and increase GTPase activity in a manner that is synergistic with the mitochondrial protein Mff, suggesting a role for direct Drp1/actin interaction. We propose that Drp1 is in dynamic equilibrium on mitochondria in a fission-independent manner, and that fission factors such as actin filaments target productive oligomerization to fission sites. PMID:26609810

  3. On the properties of a bundle of flexible actin filaments in an optical trap

    Science.gov (United States)

    Perilli, Alessia; Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul

    2016-06-01

    We establish the statistical mechanics framework for a bundle of Nf living and uncrosslinked actin filaments in a supercritical solution of free monomers pressing against a mobile wall. The filaments are anchored normally to a fixed planar surface at one of their ends and, because of their limited flexibility, they grow almost parallel to each other. Their growing ends hit a moving obstacle, depicted as a second planar wall, parallel to the previous one and subjected to a harmonic compressive force. The force constant is denoted as the trap strength while the distance between the two walls as the trap length to make contact with the experimental optical trap apparatus. For an ideal solution of reactive filaments and free monomers at fixed free monomer chemical potential μ1, we obtain the general expression for the grand potential from which we derive averages and distributions of relevant physical quantities, namely, the obstacle position, the bundle polymerization force, and the number of filaments in direct contact with the wall. The grafted living filaments are modeled as discrete Wormlike chains, with F-actin persistence length ℓp, subject to discrete contour length variations ±d (the monomer size) to model single monomer (de)polymerization steps. Rigid filaments (ℓp = ∞), either isolated or in bundles, all provide average values of the stalling force in agreement with Hill's predictions Fs H = N f k B T ln ( ρ 1 / ρ 1 c) / d , independent of the average trap length. Here ρ1 is the density of free monomers in the solution and ρ1c its critical value at which the filament does not grow nor shrink in the absence of external forces. Flexible filaments (ℓp product of two strongly L-dependent contributions: the fraction of touching filaments ∝ (" separators=" O . T .) 2 and the single filament buckling force ∝ (" separators=" O . T .) - 2 .

  4. Differential thymosin β10 expression levels and actin filament organization in tumor cell lines with different metastatic potential

    Institute of Scientific and Technical Information of China (English)

    刘从容; 马春树; 宁钧宇; 由江峰; 廖松林; 郑杰

    2004-01-01

    Background To investigate the differential expression levels of thymosin β10 (Tβ1O) and the corresponding changes of actin filament organization in human tumor cell lines with different metastatic potential.Methods Four groups of nine human tumor cell lines with different metastatic potential were analyzed for the amount of Tβ10 mRNAs by Northern blot and for their peptide expression levels by immunohistochemistry. The filamentous actin (F-actin)was observed by staining of TRITC-phalloidin to detect changes in actin organization. Results In comparison with non-/weakly metastatic counterparts, TβIO was upregulated in highly metastatic human lung cancer, malignant melanoma and breast cancer cell lines. Staining of TRITC-phalloidin revealed less actin bundles, a fuzzy network of shorter filaments and some F-actin aggregates in the highly metastatic tumor cells. Meanwhile, the actin filaments were robust and orderly arranged in the non-/weakly metastatic cancer cell lines.Conclusion Tβ10 levels correlate positively with the metastatic capacity in human tumors currently examined. The increasing metastatic potential of tumor cells is accompanied by a loss of F-actin,poorly arranged actin skeleton organizations and presence of F-actin aggregates. There is a consistent correlation between the elevated TβIO expression and the disrupted actin skeleton.

  5. Drosophila cyfip regulates synaptic development and endocytosis by suppressing filamentous actin assembly.

    Science.gov (United States)

    Zhao, Lu; Wang, Dan; Wang, Qifu; Rodal, Avital A; Zhang, Yong Q

    2013-04-01

    The formation of synapses and the proper construction of neural circuits depend on signaling pathways that regulate cytoskeletal structure and dynamics. After the mutual recognition of a growing axon and its target, multiple signaling pathways are activated that regulate cytoskeletal dynamics to determine the morphology and strength of the connection. By analyzing Drosophila mutations in the cytoplasmic FMRP interacting protein Cyfip, we demonstrate that this component of the WAVE complex inhibits the assembly of filamentous actin (F-actin) and thereby regulates key aspects of synaptogenesis. Cyfip regulates the distribution of F-actin filaments in presynaptic neuromuscular junction (NMJ) terminals. At cyfip mutant NMJs, F-actin assembly was accelerated, resulting in shorter NMJs, more numerous satellite boutons, and reduced quantal content. Increased synaptic vesicle size and failure to maintain excitatory junctional potential amplitudes under high-frequency stimulation in cyfip mutants indicated an endocytic defect. cyfip mutants exhibited upregulated bone morphogenetic protein (BMP) signaling, a major growth-promoting pathway known to be attenuated by endocytosis at the Drosophila NMJ. We propose that Cyfip regulates synapse development and endocytosis by inhibiting actin assembly.

  6. On the Properties of a Bundle of Flexible Actin Filaments in an Optical Trap

    CERN Document Server

    Perilli, Alessia; Ciccotti, Giovanni; Ryckaert, Jean Paul

    2016-01-01

    We establish the Statistical Mechanics framework for a bundle of Nf living and uncrosslinked actin filaments in a supercritical solution of free monomers pressing against a mobile wall. The filaments are anchored normally to a fixed planar surface at one of their ends and, because of their limited flexibility, they grow almost parallel to each other. Their growing ends hit a moving obstacle, depicted as a second planar wall, parallel to the previous one and subjected to a harmonic compressive force. The force constant is denoted as trap strength while the distance between the two walls as trap length to make contact with the experimental optical trap apparatus. For an ideal solution of reactive filaments and free monomers at fixed free monomers chemical potential, we obtain the general expression for the grand potential from which we derive averages and distributions of relevant physical quantities, namely the obstacle position, the bundle polymerization force and the number of filaments in direct contact wit...

  7. Self-assembly of actin monomers into long filaments: Brownian Dynamics simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2009-01-01

    Brownian dynamics simulations are used to study the dynamical process of self-assembly of actin monomers into long filaments containing up to 1000 actin protomers. In order to overcome the large separation of time scales between the diffusive motion of the freemonomers and the relatively slow...... to unravel certain relations between thefilament's physical properties and the model parameters such as the attachment rate constant and the size of the capture zone, the detachment rate and the probability of the detached event, as well as the growth rate and waiting times between two successive attachment...

  8. Two-Photon Correlation Spectroscopy in Single Dendritic Spines Reveals Fast Actin Filament Reorganization during Activity-Dependent Growth.

    Directory of Open Access Journals (Sweden)

    Jian-Hua Chen

    Full Text Available Two-photon fluorescence correlation spectroscopy (2P-FCS within single dendritic spines of living hippocampal pyramidal neurons was used to resolve various subpopulations of mobile F-actin during activity-dependent structural changes such as potentiation induced spine head growth. Two major classes of mobile F-actin were discovered: very dynamic and about a hundred times less dynamic F-actin. Spine head enlargement upon application of Tetraethylammonium (TEA, a protocol previously used for the chemical induction of long-term potentiation (cLTP strictly correlated to changes in the dynamics and filament numbers in the different actin filament fractions. Our observations suggest that spine enlargement is governed by a mechanism in which longer filaments are first cut into smaller filaments that cooperate with the second, increasingly dynamic shorter actin filament population to quickly reorganize and expand the actin cytoskeleton within the spine head. This process would allow a fast and efficient spine head enlargement using a major fraction of the actin filament population that was already present before spine head growth.

  9. Kinetics of the Formation and Dissociation of Actin Filament Branches Mediated by Arp2/3 Complex

    OpenAIRE

    Mahaffy, Rachel E.; Pollard, Thomas D.

    2006-01-01

    The actin filament network at the leading edge of motile cells relies on localized branching by Arp2/3 complex from “mother” filaments growing near the plasma membrane. The nucleotide bound to the mother filaments (ATP, ADP and phosphate, or ADP) may influence the branch dynamics. To determine the effect of the nucleotide bound to the subunits of the mother filament on the formation and stability of branches, we compared the time courses of actin polymerization in bulk samples measured using ...

  10. Interactions between actin and myosin filaments in skeletal muscle visualized in frozen-hydrated thin sections.

    OpenAIRE

    Trus, B L; Steven, A C; McDowall, A W; M. Unser; Dubochet, J; Podolsky, R J

    1989-01-01

    For the purpose of determining net interactions between actin and myosin filaments in muscle cells, perhaps the single most informative view of the myofilament lattice is its averaged axial projection. We have studied frozen-hydrated transverse thin sections with the goal of obtaining axial projections that are not subject to the limitations of conventional thin sectioning (suspect preservation of native structure) or of equatorial x-ray diffraction analysis (lack of experimental phases). In ...

  11. Cytosolic Proteins From Tobacco Pollen Tubes That Crosslink Microtubules and Actin Filaments In Vitro Are Metabolic Enzymes

    NARCIS (Netherlands)

    Romagnoli, Silvia; Faleri, Claudia; Bini, Luca; Baskin, Tobias I.; Cresti, Mauro

    2010-01-01

    In plant cells, many processes require cooperative action of both microtubules and actin filaments, but proteins mediating interactions between these cytoskeletal members are mostly undiscovered. Here, we attempt to identify such proteins by affinity purification. Cytosol from Nicotiana tabacum (tob

  12. Critical forces for actin filament buckling and force transmission influence transport in actomyosin networks

    Science.gov (United States)

    Stam, Samantha; Gardel, Margaret

    Viscoelastic networks of biopolymers coordinate the motion of intracellular objects during transport. These networks have nonlinear mechanical properties due to events such as filament buckling or breaking of cross-links. The influence of such nonlinear properties on the time and length scales of transport is not understood. Here, we use in vitro networks of actin and the motor protein myosin II to clarify how intracellular forces regulate active diffusion. We observe two transitions in the mean-squared displacement of cross-linked actin with increasing motor concentration. The first is a sharp transition from initially subdiffusive to diffusive-like motion that requires filament buckling but does not cause net contraction of the network. Further increase of the motor density produces a second transition to network rupture and ballistic actin transport. This corresponds with an increase in the correlation of motion and thus may be caused when forces propagate far enough for global motion. We conclude that filament buckling and overall network contraction require different amounts of force and produce distinct transport properties. These nonlinear transitions may act as mechanical switches that can be turned on to produce observed motion within cells.

  13. Capping complex formation at the slow-growing end of the actin filament.

    Science.gov (United States)

    Kostyukova, A S

    2008-12-01

    Actin filaments are polar; their barbed (fast-growing) and pointed (slow-growing) ends differ in structure and dynamic properties. The slow-growing end is regulated by tropomodulins, a family of capping proteins that require tropomyosins for optimal function. There are four tropomodulin isoforms; their distributions vary depending on tissue type and change during development. The C-terminal half of tropomodulin contains one compact domain represented by alternating alpha-helices and beta-structures. The tropomyosin-independent actin-capping site is located at the C-terminus. The N-terminal half has no regular structure; however, it contains a tropomyosin-dependent actin-capping site and two tropomyosin-binding sites. One tropomodulin molecule can bind two tropomyosin molecules. Effectiveness of tropomodulin binding to tropomyosin depends on the tropomyosin isoform. Regulation of tropomodulin binding at the pointed end as well as capping effectiveness in the presence of specific tropomyosins may affect formation of local cytoskeleton and dynamics of actin filaments in cells. PMID:19216712

  14. Substrate, focal adhesions, and actin filaments: a mechanical unit with a weak spot for mechanosensitive proteins

    Science.gov (United States)

    Kirchenbüchler, David; Born, Simone; Kirchgeßner, Norbert; Houben, Sebastian; Hoffmann, Bernd; Merkel, Rudolf

    2010-05-01

    Mechanosensing is a vital prerequisite for dynamic remodeling of focal adhesions and cytoskeletal structures upon substrate deformation. For example, tissue formation, directed cell orientation or cell differentiation are regulated by such mechanosensing processes. Focal adhesions and the actin cytoskeleton are believed to be involved in these processes, but where mechanosensing molecules are located and how elastic substrate, focal adhesions and the cytoskeleton couple with each other upon substrate deformation still remains obscure. To approach these questions we have developed a sensitive method to apply defined spatially decaying deformation fields to cells cultivated on ultrasoft elastic substrates and to accurately quantify the resulting displacements of the actin cytoskeleton, focal adhesions, as well as the substrate. Displacement fields were recorded in live cell microscopy by tracking either signals from fluorescent proteins or marker particles in the substrate. As model cell type we used myofibroblasts. These cells are characterized by highly stable adhesion and force generating structures but are still able to detect mechanical signals with high sensitivity. We found a rigid connection between substrate and focal adhesions. Furthermore, stress fibers were found to be barely extendable almost over their whole lengths. Plastic deformation took place only at the very ends of actin filaments close to focal adhesions. As a result, this area became elongated without extension of existing actin filaments by polymerization. Both ends of the stress fibers were mechanically coupled with detectable plastic deformations on either site. Interestingly, traction force dependent substrate deformation fields remained mostly unaffected even when stress fiber elongations were released. These data argue for a location of mechanosensing proteins at the ends of actin stress fibers and describe, except for these domains, the whole system to be relatively rigid for tensile

  15. Origins and evolution of the formin multigene family that is involved in the formation of actin filaments.

    Science.gov (United States)

    Chalkia, Dimitra; Nikolaidis, Nikolas; Makalowski, Wojciech; Klein, Jan; Nei, Masatoshi

    2008-12-01

    In eukaryotes, the assembly and elongation of unbranched actin filaments is controlled by formins, which are long, multidomain proteins. These proteins are important for dynamic cellular processes such as determination of cell shape, cell division, and cellular interaction. Yet, no comprehensive study has been done about the origins and evolution of this gene family. We therefore performed extensive phylogenetic and motif analyses of the formin genes by examining 597 prokaryotic and 53 eukaryotic genomes. Additionally, we used three-dimensional protein structure data in an effort to uncover distantly related sequences. Our results suggest that the formin homology 2 (FH2) domain, which promotes the formation of actin filaments, is a eukaryotic innovation and apparently originated only once in eukaryotic evolution. Despite the high degree of FH2 domain sequence divergence, the FH2 domains of most eukaryotic formins are predicted to assume the same fold and thus have similar functions. The formin genes have experienced multiple taxon-specific duplications and followed the birth-and-death model of evolution. Additionally, the formin genes experienced taxon-specific genomic rearrangements that led to the acquisition of unrelated protein domains. The evolutionary diversification of formin genes apparently increased the number of formin's interacting molecules and consequently contributed to the development of a complex and precise actin assembly mechanism. The diversity of formin types is probably related to the range of actin-based cellular processes that different cells or organisms require. Our results indicate the importance of gene duplication and domain acquisition in the evolution of the eukaryotic cell and offer insights into how a complex system, such as the cytoskeleton, evolved. PMID:18840602

  16. Drebrin-like protein DBN-1 is a sarcomere component that stabilizes actin filaments during muscle contraction.

    Science.gov (United States)

    Butkevich, Eugenia; Bodensiek, Kai; Fakhri, Nikta; von Roden, Kerstin; Schaap, Iwan A T; Majoul, Irina; Schmidt, Christoph F; Klopfenstein, Dieter R

    2015-07-06

    Actin filament organization and stability in the sarcomeres of muscle cells are critical for force generation. Here we identify and functionally characterize a Caenorhabditis elegans drebrin-like protein DBN-1 as a novel constituent of the muscle contraction machinery. In vitro, DBN-1 exhibits actin filament binding and bundling activity. In vivo, DBN-1 is expressed in body wall muscles of C. elegans. During the muscle contraction cycle, DBN-1 alternates location between myosin- and actin-rich regions of the sarcomere. In contracted muscle, DBN-1 is accumulated at I-bands where it likely regulates proper spacing of α-actinin and tropomyosin and protects actin filaments from the interaction with ADF/cofilin. DBN-1 loss of function results in the partial depolymerization of F-actin during muscle contraction. Taken together, our data show that DBN-1 organizes the muscle contractile apparatus maintaining the spatial relationship between actin-binding proteins such as α-actinin, tropomyosin and ADF/cofilin and possibly strengthening actin filaments by bundling.

  17. Contraction of a Bundle of Actin Filaments 50 years after Szent-Gyorgyi

    CERN Document Server

    Sekimoto, K; Sekimoto, Ken; Nakazawa, Hatsumi

    2000-01-01

    Biological systems are among the most challenging subjects for theoretical physicists, as well as experimentalists or simulationists. Physical principles should have been both constraints and guide-lines for the evolution of living systems over billions of years. One generally aims at clarifying what physical principles, possibly new ones, are behind the phenomena of biological interest and at understanding how they work within the entire biological world. In the present talk we describe an example of such an effort. Since the discovery of `superprecipitation' by Szent-Gyorgyi's group in 1940's, it has been a long puzzle how an assemblage of actin filaments with random orientation can contract in the presence of the two-headed myosin molecules undergoing actin-activated ATP-hydrolysis reaction. It is widely accepted that during the contraction the two-headed myosin mediates the relative sliding of two actin filaments whose polarity directions are not parallel but rather anti-parallel. But this fact solely doe...

  18. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated that MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane. - Highlights: • Insulin induces colocalization of MyoIIA and F-actin at the cortex in adipocytes. • MyoIIA is necessary but not sufficient to localize F-actin at the cell cortex. • MyoIIA-F-actin colocalization is regulated by calcium and calmodulin

  19. Actin filaments are involved in the maintenance of Golgi cisternae morphology and intra-Golgi pH.

    Science.gov (United States)

    Lázaro-Diéguez, Francisco; Jiménez, Nuria; Barth, Holger; Koster, Abraham J; Renau-Piqueras, Jaime; Llopis, Juan L; Burger, Koert N J; Egea, Gustavo

    2006-12-01

    Here we examine the contribution of actin dynamics to the architecture and pH of the Golgi complex. To this end, we have used toxins that depolymerize (cytochalasin D, latrunculin B, mycalolide B, and Clostridium botulinum C2 toxin) or stabilize (jasplakinolide) filamentous actin. When various clonal cell lines were examined by epifluorescence microscopy, all of these actin toxins induced compaction of the Golgi complex. However, ultrastructural analysis by transmission electron microscopy and electron tomography/three-dimensional modelling of the Golgi complex showed that F-actin depolymerization first induces perforation/fragmentation and severe swelling of Golgi cisternae, which leads to a completely disorganized structure. In contrast, F-actin stabilization results only in cisternae perforation/fragmentation. Concomitantly to actin depolymerization-induced cisternae swelling and disorganization, the intra-Golgi pH significantly increased. Similar ultrastructural and Golgi pH alkalinization were observed in cells treated with the vacuolar H+ -ATPases inhibitors bafilomycin A1 and concanamycin A. Overall, these results suggest that actin filaments are implicated in the preservation of the flattened shape of Golgi cisternae. This maintenance seems to be mediated by the regulation of the state of F-actin assembly on the Golgi pH homeostasis.

  20. Actin Filament Cables in Drosophila Nurse Cells Are Composed of Modules That Slide Passively Past One Another during Dumping

    OpenAIRE

    Guild, Gregory M.; Connelly, Patricia S.; Shaw, Michael K.; Tilney, Lewis G.

    1997-01-01

    At a late stage in Drosophila oogenesis, nurse cells rapidly expel their cytoplasm into the oocyte via intracellular bridges by a process called nurse cell dumping. Before dumping, numerous cables composed of actin filaments appear in the cytoplasm and extend inward from the plasma membrane toward the nucleus. This actin cage prevents the nucleus, which becomes highly lobed, from physically blocking the intracellular bridges during dumping. Each cable is composed of a linear series of modules...

  1. Individual actin filaments in a microfluidic flow reveal the mechanism of ATP hydrolysis and give insight into the properties of profilin.

    Directory of Open Access Journals (Sweden)

    Antoine Jégou

    2011-09-01

    Full Text Available The hydrolysis of ATP associated with actin and profilin-actin polymerization is pivotal in cell motility. It is at the origin of treadmilling of actin filaments and controls their dynamics and mechanical properties, as well as their interactions with regulatory proteins. The slow release of inorganic phosphate (Pi that follows rapid cleavage of ATP gamma phosphate is linked to an increase in the rate of filament disassembly. The mechanism of Pi release in actin filaments has remained elusive for over 20 years. Here, we developed a microfluidic setup to accurately monitor the depolymerization of individual filaments and determine their local ADP-Pi content. We demonstrate that Pi release in the filament is not a vectorial but a random process with a half-time of 102 seconds, irrespective of whether the filament is assembled from actin or profilin-actin. Pi release from the depolymerizing barbed end is faster (half-time of 0.39 seconds and further accelerated by profilin. Profilin accelerates the depolymerization of both ADP- and ADP-Pi-F-actin. Altogether, our data show that during elongation from profilin-actin, the dissociation of profilin from the growing barbed end is not coupled to Pi release or to ATP cleavage on the terminal subunit. These results emphasize the potential of microfluidics in elucidating actin regulation at the scale of individual filaments.

  2. Titin-Actin Interaction: PEVK-Actin-Based Viscosity in a Large Animal

    Directory of Open Access Journals (Sweden)

    Charles S. Chung

    2011-01-01

    Full Text Available Titin exhibits an interaction between its PEVK segment and the actin filament resulting in viscosity, a speed dependent resistive force, which significantly influences diastolic filling in mice. While diastolic disease is clinically pervasive, humans express a more compliant titin (N2BA:N2B ratio ~0.5–1.0 than mice (N2BA:N2B ratio ~0.2. To examine PEVK-actin based viscosity in compliant titin-tissues, we used pig cardiac tissue that expresses titin isoforms similar to that in humans. Stretch-hold experiments were performed at speeds from 0.1 to 10 lengths/s from slack sarcomere lengths (SL to SL of 2.15 μm. Viscosity was calculated from the slope of stress-relaxation vs stretch speed. Recombinant PEVK was added to compete off native interactions and this found to reduce the slope by 35%, suggesting that PEVK-actin interactions are a strong contributor of viscosity. Frequency sweeps were performed at frequencies of 0.1–400 Hz and recombinant protein reduced viscous moduli by 40% at 2.15 μm and by 50% at 2.25 μm, suggesting a SL-dependent nature of viscosity that might prevent SL ``overshoot’’ at long diastolic SLs. This study is the first to show that viscosity is present at physiologic speeds in the pig and supports the physiologic relevance of PEVK-actin interactions in humans in both health and disease.

  3. Implementing cell contractility in filament-based cytoskeletal models.

    Science.gov (United States)

    Fallqvist, B

    2016-02-01

    Cells are known to respond over time to mechanical stimuli, even actively generating force at longer times. In this paper, a microstructural filament-based cytoskeletal network model is extended to incorporate this active response, and a computational study to assess the influence on relaxation behaviour was performed. The incorporation of an active response was achieved by including a strain energy function of contractile activity from the cross-linked actin filaments. A four-state chemical model and strain energy function was adopted, and generalisation to three dimensions and the macroscopic deformation field was performed by integration over the unit sphere. Computational results in MATLAB and ABAQUS/Explicit indicated an active cellular response over various time-scales, dependent on contractile parameters. Important features such as force generation and increasing cell stiffness due to prestress are qualitatively predicted. The work in this paper can easily be extended to encompass other filament-based cytoskeletal models as well. PMID:26899417

  4. The Interaction of Arp2/3 Complex with Actin: Nucleation, High Affinity Pointed End Capping, and Formation of Branching Networks of Filaments

    Science.gov (United States)

    Dyche Mullins, R.; Heuser, John A.; Pollard, Thomas D.

    1998-05-01

    The Arp2/3 complex is a stable assembly of seven protein subunits including two actin-related proteins (Arp2 and Arp3) and five novel proteins. Previous work showed that this complex binds to the sides of actin filaments and is concentrated at the leading edges of motile cells. Here, we show that Arp2/3 complex purified from Acanthamoeba caps the pointed ends of actin filaments with high affinity. Arp2/3 complex inhibits both monomer addition and dissociation at the pointed ends of actin filaments with apparent nanomolar affinity and increases the critical concentration for polymerization at the pointed end from 0.6 to 1.0 μ M. The high affinity of Arp2/3 complex for pointed ends and its abundance in amoebae suggest that in vivo all actin filament pointed ends are capped by Arp2/3 complex. Arp2/3 complex also nucleates formation of actin filaments that elongate only from their barbed ends. From kinetic analysis, the nucleation mechanism appears to involve stabilization of polymerization intermediates (probably actin dimers). In electron micrographs of quick-frozen, deep-etched samples, we see Arp2/3 bound to sides and pointed ends of actin filaments and examples of Arp2/3 complex attaching pointed ends of filaments to sides of other filaments. In these cases, the angle of attachment is a remarkably constant 70 ± 7 degrees. From these in vitro biochemical properties, we propose a model for how Arp2/3 complex controls the assembly of a branching network of actin filaments at the leading edge of motile cells.

  5. Model-based analysis of keratin intermediate filament assembly

    International Nuclear Information System (INIS)

    The cytoskeleton of epithelial cells consists of three types of filament systems: microtubules, actin filaments and intermediate filaments (IFs). Here, we took a closer look at type I and type II IF proteins, i.e. keratins. They are hallmark constituents of epithelial cells and are responsible for the generation of stiffness, the cellular response to mechanical stimuli and the integrity of entire cell layers. Thereby, keratin networks constitute an important instrument for cells to adapt to their environment. In particular, we applied models to characterize the assembly of keratin K8 and K18 into elongated filaments as a means for network formation. For this purpose, we measured the length of in vitro assembled keratin K8/K18 filaments by transmission electron microscopy at different time points. We evaluated the experimental data of the longitudinal annealing reaction using two models from polymer chemistry: the Schulz–Zimm model and the condensation polymerization model. In both scenarios one has to make assumptions about the reaction process. We compare how well the models fit the measured data and thus determine which assumptions fit best. Based on mathematical modelling of experimental filament assembly data we define basic mechanistic properties of the elongation reaction process. (paper)

  6. Effect of phosphorylation of phosphatidylinositol on myelin basic protein-mediated binding of actin filaments to lipid bilayers in vitro.

    Science.gov (United States)

    Boggs, Joan M; Rangaraj, Godha; Dicko, Awa

    2012-09-01

    Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocytes and is believed to be responsible for adhesion of these surfaces in the multilayered myelin sheath. It can also assemble actin filaments and tether them to lipid bilayers through electrostatic interactions. Here we investigate the effect of increased negative charge of the lipid bilayer due to phosphorylation of phosphatidylinositol (PI) on MBP-mediated binding of actin to the lipid bilayer, by substituting phosphatidylinositol 4-phosphate or phosphatidylinositol 4,5-bisphosphate for PI in phosphatidylcholine/phosphatidylglycerol lipid vesicles. Phosphorylation of PI caused dissociation of the MBP/actin complex from the lipid vesicles due to repulsion of the negatively charged complex from the negatively charged membrane surface. An effect of phosphorylation could be detected even if the inositol lipid was only 2mol% of the total lipid. Calcium-calmodulin dissociated actin from the MBP-lipid vesicles and phosphorylation of PI increased the amount dissociated. These results show that changes to the lipid composition of myelin, which could occur during signaling or other physiological events, could regulate the ability of MBP to act as a scaffolding protein and bind actin filaments to the lipid bilayer.

  7. WAVE binds Ena/VASP for enhanced Arp2/3 complex-based actin assembly.

    Science.gov (United States)

    Havrylenko, Svitlana; Noguera, Philippe; Abou-Ghali, Majdouline; Manzi, John; Faqir, Fahima; Lamora, Audrey; Guérin, Christophe; Blanchoin, Laurent; Plastino, Julie

    2015-01-01

    The WAVE complex is the main activator of the Arp2/3 complex for actin filament nucleation and assembly in the lamellipodia of moving cells. Other important players in lamellipodial protrusion are Ena/VASP proteins, which enhance actin filament elongation. Here we examine the molecular coordination between the nucleating activity of the Arp2/3 complex and the elongating activity of Ena/VASP proteins for the formation of actin networks. Using an in vitro bead motility assay, we show that WAVE directly binds VASP, resulting in an increase in Arp2/3 complex-based actin assembly. We show that this interaction is important in vivo as well, for the formation of lamellipodia during the ventral enclosure event of Caenorhabditis elegans embryogenesis. Ena/VASP's ability to bind F-actin and profilin-complexed G-actin are important for its effect, whereas Ena/VASP tetramerization is not necessary. Our data are consistent with the idea that binding of Ena/VASP to WAVE potentiates Arp2/3 complex activity and lamellipodial actin assembly.

  8. A variational approach to the growth dynamics of pre-stressed actin filament networks

    Science.gov (United States)

    John, Karin; Stöter, Thomas; Misbah, Chaouqi

    2016-09-01

    In order to model the growth dynamics of elastic bodies with residual stresses a thermodynamically consistent approach is needed such that the cross-coupling between growth and mechanics can be correctly described. In the present work we apply a variational principle to the formulation of the interfacial growth dynamics of dendritic actin filament networks growing from biomimetic beads, an experimentally well studied system, where the buildup of residual stresses governs the network growth. We first introduce the material model for the network via a strain energy density for an isotropic weakly nonlinear elastic material and then derive consistently from this model the dynamic equations for the interfaces, i.e. for a polymerizing internal interface in contact with the bead and a depolymerizing external interface directed towards the solvent. We show that (i) this approach automatically preserves thermodynamic symmetry-properties, which is not the case for the often cited ‘rubber-band-model’ (Sekimoto et al 2004 Eur. Phys. J. E 13 247-59, Plastino et al 2004 Eur. Biophys. J. 33 310-20) and (ii) leads to a robust morphological instability of the treadmilling network interfaces. The nature of the instability depends on the interplay of the two dynamic interfaces. Depending on the biochemical conditions the network envelope evolves into a comet-like shape (i.e. the actin envelope thins out at one side and thickens on the opposite side of the bead) via a varicose instability or it breaks the symmetry via higher order zigzag modes. We conclude that morphological instabilities due to mechano-chemical coupling mechanisms and the presences of mechancial pre-stresses can play a major role in locally organizing the cytoskeleton of living cells.

  9. Reorganized actin filaments anchor chloroplasts along the anticlinal walls of Vallisneria epidermal cells under high-intensity blue light.

    Science.gov (United States)

    Sakai, Yuuki; Takagi, Shingo

    2005-08-01

    In epidermal cells of the aquatic angiosperm Vallisneria gigantea Graebner, high-intensity blue light (BL) induces the avoidance response of chloroplasts. We examined simultaneous BL-induced changes in the configuration of actin filaments in the cytoplasmic layers that face the outer periclinal wall (P side) and the anticlinal wall (A side). The results clearly showed that dynamic reorganization of the actin cytoskeleton occurs on both sides. Upon BL irradiation, thick, long bundles of actin filaments appeared, concomitant with the directed migration of chloroplasts from the P side to the A side. After 15-20 min of BL irradiation, fine actin bundles on only the A side appeared to associate with chloroplasts that had migrated from the P side. To examine the role of the fine actin bundles, we evaluated the anchorage of chloroplasts by centrifuging living cells. Upon BL irradiation, the resistance of chloroplasts on both the P and A sides to the centrifugal force decreased remarkably. After 20 min of BL irradiation, the resistance of chloroplasts on the A side increased again, but chloroplasts on the P side could still be displaced. The BL-induced recovery of resistance of chloroplasts on the A side was sensitive to photosynthesis inhibitors but insensitive to an inhibitor of flavoproteins. The photosynthesis inhibitors also prevented the fine actin bundles from appearing on the A side under BL irradiation. These results strongly suggest that the BL-induced avoidance response of chloroplasts includes photosynthesis-dependent and actin-dependent anchorage of chloroplasts on the A side of epidermal cells. PMID:15809866

  10. Arabidopsis VILLIN2 and VILLIN3 Are Required for the Generation of Thick Actin Filament Bundles and for Directional Organ Growth[C][W

    Science.gov (United States)

    van der Honing, Hannie S.; Kieft, Henk; Emons, Anne Mie C.; Ketelaar, Tijs

    2012-01-01

    In plant cells, actin filament bundles serve as tracks for myosin-dependent organelle movement and play a role in the organization of the cytoplasm. Although virtually all plant cells contain actin filament bundles, the role of the different actin-bundling proteins remains largely unknown. In this study, we investigated the role of the actin-bundling protein villin in Arabidopsis (Arabidopsis thaliana). We used Arabidopsis T-DNA insertion lines to generate a double mutant in which VILLIN2 (VLN2) and VLN3 transcripts are truncated. Leaves, stems, siliques, and roots of vln2 vln3 double mutant plants are twisted, which is caused by local differences in cell length. Microscopy analysis of the actin cytoskeleton showed that in these double mutant plants, thin actin filament bundles are more abundant while thick actin filament bundles are virtually absent. In contrast to full-length VLN3, truncated VLN3 lacking the headpiece region does not rescue the phenotype of the vln2 vln3 double mutant. Our results show that villin is involved in the generation of thick actin filament bundles in several cell types and suggest that these bundles are involved in the regulation of coordinated cell expansion. PMID:22209875

  11. Arabidopsis VILLIN2 and VILLIN3 are required for the generation of thick actin filament bundles and for directional organ growth.

    Science.gov (United States)

    van der Honing, Hannie S; Kieft, Henk; Emons, Anne Mie C; Ketelaar, Tijs

    2012-03-01

    In plant cells, actin filament bundles serve as tracks for myosin-dependent organelle movement and play a role in the organization of the cytoplasm. Although virtually all plant cells contain actin filament bundles, the role of the different actin-bundling proteins remains largely unknown. In this study, we investigated the role of the actin-bundling protein villin in Arabidopsis (Arabidopsis thaliana). We used Arabidopsis T-DNA insertion lines to generate a double mutant in which VILLIN2 (VLN2) and VLN3 transcripts are truncated. Leaves, stems, siliques, and roots of vln2 vln3 double mutant plants are twisted, which is caused by local differences in cell length. Microscopy analysis of the actin cytoskeleton showed that in these double mutant plants, thin actin filament bundles are more abundant while thick actin filament bundles are virtually absent. In contrast to full-length VLN3, truncated VLN3 lacking the headpiece region does not rescue the phenotype of the vln2 vln3 double mutant. Our results show that villin is involved in the generation of thick actin filament bundles in several cell types and suggest that these bundles are involved in the regulation of coordinated cell expansion. PMID:22209875

  12. Arabidopsis VILLIN2 and VILLIN3 are required for the generation of thick actin filament bundles and for directional organ growth.

    Science.gov (United States)

    van der Honing, Hannie S; Kieft, Henk; Emons, Anne Mie C; Ketelaar, Tijs

    2012-03-01

    In plant cells, actin filament bundles serve as tracks for myosin-dependent organelle movement and play a role in the organization of the cytoplasm. Although virtually all plant cells contain actin filament bundles, the role of the different actin-bundling proteins remains largely unknown. In this study, we investigated the role of the actin-bundling protein villin in Arabidopsis (Arabidopsis thaliana). We used Arabidopsis T-DNA insertion lines to generate a double mutant in which VILLIN2 (VLN2) and VLN3 transcripts are truncated. Leaves, stems, siliques, and roots of vln2 vln3 double mutant plants are twisted, which is caused by local differences in cell length. Microscopy analysis of the actin cytoskeleton showed that in these double mutant plants, thin actin filament bundles are more abundant while thick actin filament bundles are virtually absent. In contrast to full-length VLN3, truncated VLN3 lacking the headpiece region does not rescue the phenotype of the vln2 vln3 double mutant. Our results show that villin is involved in the generation of thick actin filament bundles in several cell types and suggest that these bundles are involved in the regulation of coordinated cell expansion.

  13. From filaments to function:The role of the plant actin cytoskeleton in pathogen perception, signaling and immunity

    Institute of Scientific and Technical Information of China (English)

    Katie Porter; Brad Day

    2016-01-01

    The eukaryotic actin cytoskeleton is required for numerous cellular processes, including cell shape, develop-ment and movement, gene expression and signal transduc-tion, and response to biotic and abiotic stress. In recent years, research in both plants and animal systems have described a function for actin as the ideal surveillance platform, linking the function and activity of primary physiological processes to the immune system. In this review, we will highlight recent advances that have defined the regulation and breadth of function of the actin cytoskeleton as a network required for defense signaling following pathogen infection. Coupled with an overview of recent work demonstrating specific targeting of the plant actin cytoskeleton by a diversity of pathogens, including bacteria, fungi and viruses, we will highlight the importance of actin as a key signaling hub in plants, one that mediates surveillance of cellular homeostasis and the activa-tion of specific signaling responses following pathogen perception. B4ased on the studies highlighted herein, we propose a working model that posits changes in actin filament organization is in and of itself a highly specific signal, which induces, regulates and physically directs stimulus-specific signaling processes, most importantly, those associated with response to pathogens.

  14. Actin filaments and microtubule dual-granule transport in human adhered platelets: the role of alpha-dystrobrevins.

    Science.gov (United States)

    Cerecedo, Doris; Cisneros, Bulmaro; Mondragón, Ricardo; González, Sirenia; Galván, Iván J

    2010-04-01

    Upon activation with physiological stimuli, human platelets undergo morphological changes, centralizing their organelles and secreting effector molecules at the site of vascular injury. Previous studies have indicated that the actin filaments and microtubules of suspension-activated platelets play a critical role in granule movement and exocytosis; however, the participation of these cytoskeleton elements in adhered platelets remains unexplored. alpha- and beta-dystrobrevin members of the dystrophin-associated protein complex in muscle and non-muscle cells have been described as motor protein receptors that might participate in the transport of cellular components in neurons. Recently, we characterized the expression of dystrobrevins in platelets; however, their functional diversity within this cellular model had not been elucidated. The present study examined the contribution of actin filaments and microtubules in granule trafficking during the platelet adhesion process using cytoskeleton-disrupting drugs, quantification of soluble P-selectin, fluorescence resonance transfer energy analysis and immunoprecipitation assays. Likewise, we assessed the interaction of alpha-dystrobrevins with the ubiquitous kinesin heavy chain. Our results strongly suggest that microtubules and actin filaments participate in the transport of alpha and dense granules in the platelet adhesion process, during which alpha-dystrobrevins play the role of regulatory and adaptor proteins that govern trafficking events.

  15. A function for filamentous alpha-smooth muscle actin: Retardation of motility in human breast fibroblasts

    DEFF Research Database (Denmark)

    Rønnov-Jessen, Lone; Petersen, Ole William

    1996-01-01

    reactions. Here, we show that the presence of alpha-sm actin is a signal for retardation of migratory behavior in fibroblasts. Comparison in a migration assay of fibroblast cell strains with and without alpha-sm actin revealed migratory restraint in alpha-sm actin-positive fibroblasts. Electroporation...

  16. A tridimensional view of the organization of actin filaments in the central nervous system by use of fluorescent photooxidation.

    Science.gov (United States)

    Capani, Francisco; Saraceno, Ezequiel; Boti, Valeria Romina; Aon-Bertolino, Laura; Fernández, Juan Carlos; Gato, Fernándo; Kruse, Maria Sol; Krause, Maria Sol; Giraldez, Lisandro; Ellisman, Mark H; Coirini, Héctor

    2008-04-01

    Cellular and subcellular organization and distribution of actin filaments have been studied with various techniques. The use of fluorescence photo-oxidation combined with phalloidin conjugates with eosin has allowed the examination of the precise cellular and subcellular location of F-actin. Correlative fluorescence light microscopy and transmission electron microscopy studies of F-actin distribution are facilitated with this method for morphological and physiological studies. Because phalloidin-eosin is smaller than other markers, this method allows the analysis of the three-dimensional location of F-actin with high-resolution light microscopy, three-d serial sections reconstructions, and electron tomography. The combination of selective staining and three-dimensional reconstructions provide a valuable tool for revealing aspects of the synaptic morphology that are not available when conventional electron microscopy is used. By applying this selective staining technique and three-dimensional imaging, we uncovered the structural organization of actin in the postsynaptic densities in physiological and pathological conditions. PMID:18669318

  17. A peek into tropomyosin binding and unfolding on the actin filament.

    Directory of Open Access Journals (Sweden)

    Abhishek Singh

    Full Text Available BACKGROUND: Tropomyosin is a prototypical coiled coil along its length with subtle variations in structure that allow interactions with actin and other proteins. Actin binding globally stabilizes tropomyosin. Tropomyosin-actin interaction occurs periodically along the length of tropomyosin. However, it is not well understood how tropomyosin binds actin. PRINCIPAL FINDINGS: Tropomyosin's periodic binding sites make differential contributions to two components of actin binding, cooperativity and affinity, and can be classified as primary or secondary sites. We show through mutagenesis and analysis of recombinant striated muscle alpha-tropomyosins that primary actin binding sites have a destabilizing coiled-coil interface, typically alanine-rich, embedded within a non-interface recognition sequence. Introduction of an Ala cluster in place of the native, more stable interface in period 2 and/or period 3 sites (of seven increased the affinity or cooperativity of actin binding, analysed by cosedimentation and differential scanning calorimetry. Replacement of period 3 with period 5 sequence, an unstable region of known importance for cooperative actin binding, increased the cooperativity of binding. Introduction of the fluorescent probe, pyrene, near the mutation sites in periods 2 and 3 reported local instability, stabilization by actin binding, and local unfolding before or coincident with dissociation from actin (measured using light scattering, and chain dissociation (analyzed using circular dichroism. CONCLUSIONS: This, and previous work, suggests that regions of tropomyosin involved in binding actin have non-interface residues specific for interaction with actin and an unstable interface that is locally stabilized upon binding. The destabilized interface allows residues on the coiled-coil surface to obtain an optimal conformation for interaction with actin by increasing the number of local substates that the side chains can sample. We suggest

  18. New Insights into Dynamic Actin-Based Chloroplast Photorelocation Movement

    Institute of Scientific and Technical Information of China (English)

    Sam-Geun Kong; Masamitsu Wada

    2011-01-01

    Chloroplast movement is essential for plants to survive under various environmental light conditions.Phototropins-plant-specific blue-light-activated receptor kinases-mediate the response by perceiving light intensity and direction.Recently,novel chloroplast actin (cp-actin) filaments have been identified as playing a pivotal role in the directional chloroplast photorelocation movement.Encouraging progress has recently been made in this field of research through molecular genetics and cell biological analyses.This review describes factors that have been identified as being involved in chloroplast movement and their roles in the regulation of cp-actin filaments,thus providing a basis for reflection on their biochemical activities and functions.

  19. Actin organization, bristle morphology, and viability are affected by actin capping protein mutations in Drosophila

    OpenAIRE

    1996-01-01

    Regulation of actin filament length and orientation is important in many actin-based cellular processes. This regulation is postulated to occur through the action of actin-binding proteins. Many actin-binding proteins that modify actin in vitro have been identified, but in many cases, it is not known if this activity is physiologically relevant. Capping protein (CP) is an actin-binding protein that has been demonstrated to control filament length in vitro by binding to the barbed ends and pre...

  20. EhCoactosin stabilizes actin filaments in the protist parasite Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Nitesh Kumar

    2014-09-01

    Full Text Available Entamoeba histolytica is a protist parasite that is the causative agent of amoebiasis, and is a highly motile organism. The motility is essential for its survival and pathogenesis, and a dynamic actin cytoskeleton is required for this process. EhCoactosin, an actin-binding protein of the ADF/cofilin family, participates in actin dynamics, and here we report our studies of this protein using both structural and functional approaches. The X-ray crystal structure of EhCoactosin resembles that of human coactosin-like protein, with major differences in the distribution of surface charges and the orientation of terminal regions. According to in vitro binding assays, full-length EhCoactosin binds both F- and G-actin. Instead of acting to depolymerize or severe F-actin, EhCoactosin directly stabilizes the polymer. When EhCoactosin was visualized in E. histolytica cells using either confocal imaging or total internal reflectance microscopy, it was found to colocalize with F-actin at phagocytic cups. Over-expression of this protein stabilized F-actin and inhibited the phagocytic process. EhCoactosin appears to be an unusual type of coactosin involved in E. histolytica actin dynamics.

  1. Actin filaments at the leading edge of cancer cells are characterized by a high mobile fraction and turnover regulation by profilin I.

    Directory of Open Access Journals (Sweden)

    Gisela Lorente

    Full Text Available Cellular motility is the basis for cancer cell invasion and metastasis. In the case of breast cancer, the most common type of cancer among women, metastasis represents the most devastating stage of the disease. The central role of cellular motility in cancer development emphasizes the importance of understanding the specific mechanisms involved in this process. In this context, tumor development and metastasis would be the consequence of a loss or defect of the mechanisms that control cytoskeletal remodeling. Profilin I belongs to a family of small actin binding proteins that are thought to assist in actin filament elongation at the leading edge of migrating cells. Traditionally, Profilin I has been considered to be an essential control element for actin polymerization and cell migration. Expression of Profilin I is down-regulated in breast and various other cancer cells. In MDA-MB-231 cells, a breast cancer cell line, further inhibition of Profilin I expression promotes hypermotility and metastatic spread, a finding that contrasts with the proposed role of Profilin in enhancing polymerization. In this report, we have taken advantage of the fluorescence recovery after photobleaching (FRAP of GFP-actin to quantify and compare actin dynamics at the leading edge level in both cancer and non-cancer cell models. Our results suggest that (i a high level of actin dynamics (i.e., a large mobile fraction of actin filaments and a fast turnover is a common characteristic of some cancer cells; (ii actin polymerization shows a high degree of independence from the presence of extracellular growth factors; and (iii our results also corroborate the role of Profilin I in regulating actin polymerization, as raising the intracellular levels of Profilin I decreased the mobile fraction ratio of actin filaments and slowed their polymerization rate; furthermore, increased Profilin levels also led to reduced individual cell velocity and directionality.

  2. Redundant mechanisms for anaphase chromosome movements: crane-fly spermatocyte spindles normally use actin filaments but also can function without them.

    Science.gov (United States)

    Fabian, Lacramioara; Forer, Arthur

    2005-10-01

    Actin inhibitors block or slow anaphase chromosome movements in crane-fly spermatocytes, but stopping of movement is only temporary; we assumed that cells adapt to loss of actin by switching to mechanism(s) involving only microtubules. To test this, we produced actin-filament-free spindles: we added latrunculin B during prometaphase, 9-80 min before anaphase, after which chromosomes generally moved normally during anaphase. We confirmed the absence of actin filaments by staining with fluorescent phalloidin and by showing that cytochalasin D had no effect on chromosome movement. Thus, actin filaments are involved in normal anaphase movements, but in vivo, spindles nonetheless can function normally without them. We tested whether chromosome movements in actin-filament-free spindles arise via microtubules by challenging such spindles with anti-myosin drugs. Y-27632 and BDM (2,3-butanedione monoxime), inhibitors that affect myosin at different regulatory levels, blocked chromosome movement in normal spindles and in actin-filament-free spindles. We tested whether BDM has side effects on microtubule motors. BDM had no effect on ciliary and sperm motility or on ATPase activity of isolated ciliary axonemes, and thus it does not directly block dynein. Nor does it block kinesin, assayed by a microtubule sliding assay. BDM could conceivably indirectly affect these microtubule motors, though it is unlikely that it would have the same side effect on the motors as Y-27632. Since BDM and Y-27632 both affect chromosome movement in the same way, it would seem that both affect spindle myosin; this suggests that spindle myosin interacts with kinetochore microtubules, either directly or via an intermediate component. PMID:16228898

  3. Structure of kinetochore fibres in crane-fly spermatocytes after irradiation with an ultraviolet microbeam: neither microtubules nor actin filaments remain in the irradiated region.

    Science.gov (United States)

    Forer, Arthur; Spurck, Tim; Pickett-Heaps, Jeremy D; Wilson, Paula J

    2003-11-01

    We studied chromosome movement after kinetochore microtubules were severed. Severing a kinetochore fibre in living crane-fly spermatocytes with an ultraviolet microbeam creates a kinetochore stub, a birefringent remnant of the spindle fibre connected to the kinetochore and extending only to the edge of the irradiated region. After the irradiation, anaphase chromosomes either move poleward led by their stubs or temporarily stop moving. We examined actin and/or microtubules in irradiated cells by means of confocal fluorescence microscopy or serial-section reconstructions from electron microscopy. For each cell thus examined, chromosome movement had been recorded continuously until the moment of fixation. Kinetochore microtubules were completely severed by the ultraviolet microbeam in cells in which chromosomes continued to move poleward after the irradiation: none were seen in the irradiated regions. Similarly, actin filaments normally present in kinetochore fibres were severed by the ultraviolet microbeam irradiations: the irradiated regions contained no actin filaments and only local spots of non-filamentous actin. There was no difference in irradiated regions when the associated chromosomes continued to move versus when they stopped moving. Thus, one cannot explain motion with severed kinetochore microtubules in terms of either microtubules or actin-filaments bridging the irradiated region. The data seem to negate current models for anaphase chromosome movement and support a model in which poleward chromosome movement results from forces generated within the spindle matrix that propel kinetochore fibres or kinetochore stubs poleward. PMID:14569597

  4. Regulation of gelsolin to plant actin filaments and its distribution in pollen

    Institute of Scientific and Technical Information of China (English)

    TAO; Zhihua; (陶志华); REN; Haiyun; (任海云)

    2003-01-01

    The effect of plasma gelsolin on plant microfilaments and its localization in plant cells were investigated. The results by using ultracentrifugation and electron microscopy showed that plant microfilaments could be severed into shorter fragments by gelsolin in a Ca2+-dependent manner. By measuring the binding ability of plasma gelsolin to pollen actin using the method of immunoprecipitation, it was shown that pollen actin could bind gelsolin at a ratio of 2.0±0.21 in the presence of Ca2+. Addition of EGTA could disassociate the actin-gelsolin complexes, reducing the ratio to 1.2±0.23, and the addition of PIP2 could further reduce the ratio to 0.8±0.1. The results indicate that plant actin has similar binding properties with plasma gelsolin as that of animal actin. By Western blotting we identified the existence of gelsolin in lily pollen. The results of immunolo-calization of gelsolin in pollen and pollen tube showed that gelsolin was mainly localized at the germinal furrow in pollen grains and at the cytoplasm in pollen tube, especially in the tip region.

  5. PLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front.

    Science.gov (United States)

    Nguyen, Trang Thi Thu; Park, Wei Sun; Park, Byung Ouk; Kim, Cha Yeon; Oh, Yohan; Kim, Jin Man; Choi, Hana; Kyung, Taeyoon; Kim, Cheol-Hee; Lee, Gabsang; Hahn, Klaus M; Meyer, Tobias; Heo, Won Do

    2016-09-01

    Cells migrate by directing Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) activities and by polymerizing actin toward the leading edge of the cell. Previous studies have proposed that this polarization process requires a local positive feedback in the leading edge involving Rac small GTPase and actin polymerization with PI3K likely playing a coordinating role. Here, we show that the pleckstrin homology and RhoGEF domain containing G3 (PLEKHG3) is a PI3K-regulated Rho guanine nucleotide exchange factor (RhoGEF) for Rac1 and Cdc42 that selectively binds to newly polymerized actin at the leading edge of migrating fibroblasts. Optogenetic inactivation of PLEKHG3 showed that PLEKHG3 is indispensable both for inducing and for maintaining cell polarity. By selectively binding to newly polymerized actin, PLEKHG3 promotes local Rac1/Cdc42 activation to induce more local actin polymerization, which in turn promotes the recruitment of more PLEKHG3 to induce and maintain cell front. Thus, autocatalytic reinforcement of PLEKHG3 localization to the leading edge of the cell provides a molecular basis for the proposed positive feedback loop that is required for cell polarization and directed migration.

  6. Determination of the persistence length of actin filaments on microcontact printed myosin patterns

    Science.gov (United States)

    Hajne, Joanna; Hanson, Kristi L.; van Zalinge, Harm; Nicolau, Dan V.; Nicolau, Dan V.

    2015-03-01

    Protein molecular motors, which convert chemical energy into kinetic energy, are prime candidates for use in nanodevice in which active transport is required. To be able to design these devices it is essential that the properties of the cytoskeletal filaments propelled by the molecular motors are well established. Here we used micro-contact printed BSA to limit the amount of HMM that can adsorb creating a tightly confined pathway for the filaments to travel. Both the image and statistical analysis of the movement of the filaments through these structures have been used to new insights into the motility behaviour of actomyosin on topographically homogenous, but motor-heterogeneous planar systems. It will be shown that it is possible to determine the persistence length of the filaments and that it is related to the amount of locally adsorbed HMM. This provides a basis that can be used to optimize the design of future nanodevices incorporating the actomyosin system for the active transport.

  7. A36-dependent actin filament nucleation promotes release of vaccinia virus.

    Directory of Open Access Journals (Sweden)

    Jacquelyn Horsington

    2013-03-01

    Full Text Available Cell-to-cell transmission of vaccinia virus can be mediated by enveloped virions that remain attached to the outer surface of the cell or those released into the medium. During egress, the outer membrane of the double-enveloped virus fuses with the plasma membrane leaving extracellular virus attached to the cell surface via viral envelope proteins. Here we report that F-actin nucleation by the viral protein A36 promotes the disengagement of virus attachment and release of enveloped virus. Cells infected with the A36(YdF virus, which has mutations at two critical tyrosine residues abrogating localised actin nucleation, displayed a 10-fold reduction in virus release. We examined A36(YdF infected cells by transmission electron microscopy and observed that during release, virus appeared trapped in small invaginations at the plasma membrane. To further characterise the mechanism by which actin nucleation drives the dissociation of enveloped virus from the cell surface, we examined recombinant viruses by super-resolution microscopy. Fluorescently-tagged A36 was visualised at sub-viral resolution to image cell-virus attachment in mutant and parental backgrounds. We confirmed that A36(YdF extracellular virus remained closely associated to the plasma membrane in small membrane pits. Virus-induced actin nucleation reduced the extent of association, thereby promoting the untethering of virus from the cell surface. Virus release can be enhanced via a point mutation in the luminal region of B5 (P189S, another virus envelope protein. We found that the B5(P189S mutation led to reduced contact between extracellular virus and the host membrane during release, even in the absence of virus-induced actin nucleation. Our results posit that during release virus is tightly tethered to the host cell through interactions mediated by viral envelope proteins. Untethering of virus into the surrounding extracellular space requires these interactions be relieved, either

  8. A semi-flexible model prediction for the polymerization force exerted by a living F-actin filament on a fixed wall.

    Science.gov (United States)

    Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul

    2015-10-14

    We consider a single living semi-flexible filament with persistence length ℓp in chemical equilibrium with a solution of free monomers at fixed monomer chemical potential μ1 and fixed temperature T. While one end of the filament is chemically active with single monomer (de)polymerization steps, the other end is grafted normally to a rigid wall to mimic a rigid network from which the filament under consideration emerges. A second rigid wall, parallel to the grafting wall, is fixed at distance L singular limit in which an infinite force has zero weight. Finally, we derive the physically relevant threshold for filament escaping in the case of actin filaments. PMID:26472399

  9. Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, Greg P.; Rajapaksa, Ranjani; Liu, Raymond; Sharpe, Orr; Kuo, Chiung-Chi; Wald Krauss, Sharon; Sagi, Yael; Davis, R. Eric; Staudt, Louis M.; Sharman, Jeff P.; Robinson, William H.; Levy, Shoshana

    2009-06-09

    CD81 is a tetraspanin family member involved in diverse cellular interactions in the immune and nervous systems and in cell fusion events. However, the mechanism of action of CD81 and of other tetraspanins has not been defined. We reasoned that identifying signaling molecules downstream of CD81 would provide mechanistic clues. We engaged CD81 on the surface of Blymphocytes and identified the induced tyrosine-phosphorylated proteins by mass spectrometry. This analysis showed that the most prominent tyrosine phosphorylated protein was ezrin, an actin binding protein and a member of the ezrin-radixin-moesin family. We also found that CD81 engagement induces spleen tyrosine kinase (Syk) and that Syk was involved in tyrosine phosphorylation of ezrin. Ezrin colocalized with CD81 and F-actin upon stimulation and this association was disrupted when Syk activation was blocked. Taken together, these studies suggest a model in which CD81 interfaces between the plasma membrane and the cytoskeleton by activating Syk, mobilizing ezrin, and recruiting F-actin to facilitate cytoskeletal reorganization and cell signaling. This may be a mechanism explaining the pleiotropic effects induced in response to stimulating cells by anti-CD81 antibodies or by the hepatitis C virus, which uses this molecule as its key receptor.

  10. Actin-based dynamics during spermatogenesis and its significance

    Institute of Scientific and Technical Information of China (English)

    XIAO Xiang; YANG Wan-xi

    2007-01-01

    Actin can be found in all kinds ofeukaryotic cells, maintaining their shapes and motilities, while its dynamics in sperm cells is understood less than their nonmuscle somatic cell counterparts. Spermatogenesis is a complicated process, resulting in the production of mature sperm from primordial germ cell. Significant structural and biochemical changes take place in the seminiferous epithelium of the adult testis during spermatogenesis. It was proved that all mammalian sperm contain actin, and that F-actin may play an important role during spermatogenesis, especially in nuclear shaping. Recently a new model for sperm head elongation based on the acrosome-acroplaxome-manchette complex has been proposed. In Drosophila, F-actin assembly is supposed to be very crucial during individualization. In this mini-review, we provide an overview of the structure, function, and regulation characteristics of actin cytoskeleton, and a summary of the current status of research of actin-based structure and movement is also provided, with emphasis on the role of actins in sperm head shaping during spermiogenesis and the cell junction dynamics in the testis. Research of the Sertoli ectoplasmic specialization is in the spotlight, which is a testis-specific actin-based junction very important for the movement of germ cells across the epithelium. Study of the molecular architecture and the regulating mechanism of the Sertoli ectoplasmic specialization has become an intriguing field. All this may lead to a new strategy for male infertility and,at the same time, a novel idea may result in devising much safer contraception with high efficiency. It is hoped that the advances listed in this review would give developmental and morphological researchers a favorable investigating outline and could help to enlarge the view of new strategies and models for actin dynamics during spermatogenesis.

  11. Steric effects induce geometric remodeling of actin bundles in filopodia

    CERN Document Server

    Dobramysl, Ulrich; Erban, Radek

    2016-01-01

    Filopodia are ubiquitous fingerlike protrusions, spawned by many eukaryotic cells, to probe and interact with their environments. Polymerization dynamics of actin filaments, comprising the structural core of filopodia, largely determine their instantaneous lengths and overall lifetimes. The polymerization reactions at the filopodial tip require transport of G-actin, which enter the filopodial tube from the filopodial base and diffuse toward the filament barbed ends near the tip. Actin filaments are mechanically coupled into a tight bundle by cross-linker proteins. Interestingly, many of these proteins are relatively short, restricting the free diffusion of cytosolic G-actin throughout the bundle and, in particular, its penetration into the bundle core. To investigate the effect of steric restrictions on G-actin diffusion by the porous structure of filopodial actin filament bundle, we used a particle-based stochastic simulation approach. We discovered that excluded volume interactions result in partial and the...

  12. Actin-based motility of Listeria: Right-handed helical trajectories

    Science.gov (United States)

    Rangarajan, Murali

    2012-06-01

    Bacteria such as Listeria monocytogenes recruit cellular machinery to move in and between cells. Understanding the mechanism of motility, including force and torque generation and the resultant displacements, holds keys to numerous applications in medicine and biosensing. In this work, a simple back-of-the-envelope calculation is presented to illustrate that a biomechanical model of actin-based motility of a rigid surface through persistently attached filaments propelled by affinity-modulated molecular motors can produce a right-handed helical trajectory consistent with experimental observations. The implications of the mechanism to bacterial motility are discussed.

  13. FMNL2 drives actin-based protrusion and migration downstream of Cdc42

    DEFF Research Database (Denmark)

    Block, Jennifer; Breitsprecher, Dennis; Kühn, Sonja;

    2012-01-01

    Cell migration entails protrusion of lamellipodia, densely packed networks of actin filaments at the cell front. Filaments are generated by nucleation, likely mediated by Arp2/3 complex and its activator Scar/WAVE. It is unclear whether formins contribute to lamellipodial actin filament nucleation...... ends generated by Arp2/3-mediated branching are captured and efficiently elongated by the formin. Consistent with these biochemical properties, RNAi-mediated silencing of FMNL2 expression decreases the rate of lamellipodia protrusion and, accordingly, the efficiency of cell migration. Our data...

  14. In silico reconstitution of actin-based symmetry breaking and motility.

    Directory of Open Access Journals (Sweden)

    Mark J Dayel

    2009-09-01

    Full Text Available Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system.

  15. Regulation of water flow by actin-binding protein-induced actin gelatin.

    OpenAIRE

    Ito, T.; Suzuki, A.; Stossel, T. P.

    1992-01-01

    Actin filaments inhibit osmotically driven water flow (Ito, T., K.S. Zaner, and T.P. Stossel. 1987. Biophys. J. 51: 745-753). Here we show that the actin gelation protein, actin-binding protein (ABP), impedes both osmotic shrinkage and swelling of an actin filament solution and reduces markedly the concentration of actin filaments required for this inhibition. These effects depend on actin filament immobilization, because the ABP concentration that causes initial impairment of water flow by a...

  16. Filament wound data base development, revision 1

    Science.gov (United States)

    Sharp, R. Scott; Braddock, William F.

    1985-01-01

    The objective was to update the present Space Shuttle Solid Rocket Booster (SRB) baseline reentry aerodynamic data base and to develop a new reentry data base for the filament wound case SRB along with individual protuberance increments. Lockheed's procedures for performing these tasks are discussed. Free fall of the SRBs after separation from the Space Shuttle Launch Vehicle is completely uncontrolled. However, the SRBs must decelerate to a velocity and attitude that is suitable for parachute deployment. To determine the SRB reentry trajectory parameters, including the rate of deceleration and attitude history during free-fall, engineers at Marshall Space Flight Center are using a six-degree-of-freedom computer program to predict dynamic behavior. Static stability aerodynamic coefficients are part of the information required for input into this computer program. Lockheed analyzed the existing reentry aerodynamic data tape (Data Tape 5) for the current steel case SRB. This analysis resulted in the development of Data Tape 7.

  17. HAP1 helps to regulate actin-based transport of insulin-containing granules in pancreatic β cells.

    Science.gov (United States)

    Wang, Zhiyong; Peng, Ting; Wu, Hongnian; He, Jun; Li, He

    2015-07-01

    Huntingtin-associated protein 1 (HAP1) is enriched in neurons and binds to polyglutamine-expanded huntingtin. It consists of two alternatively spliced isoforms, HAP1A and HAP1B, which differ only in their short C-terminal sequences. Both HAP1A and HAP1B have been also detected in pancreatic β cells, where the loss of HAP1 impairs glucose-stimulated insulin secretion. Here, we use time-lapse laser scanning confocal microscopy to provide direct evidence that HAP1A, but not HAP1B, co-localizes and co-migrates with insulin-containing vesicles and actin-based myosin Va motor protein in the INS-1 pancreatic β cell line. Knocking down HAP1 expression using small interfering RNA significantly inhibited actin-based transport of insulin vesicles following glucose stimulation. Co-immunoprecipitation experiments demonstrated interaction between HAP1A, myosin Va, and phogrin, a transmembrane protein in insulin-containing vesicles. Stimulating INS-1 cells with glucose increased the association of HAP1A with myosin Va, while silencing HAP1 expression reduced the association of myosin Va with phogrin after glucose stimulation, without affecting levels of myosin Va or actin. Our results provide real-time evidence in living cells that HAP1 may help regulate transport of insulin-containing secretory granules along cortical actin filaments. This also raises the possibility that HAP1 may play an important role in actin-based secretory vesicle trafficking in neurons. PMID:25744490

  18. Course 6: Physics of Composite Cell Membrane and Actin Based Cytoskeleton

    Science.gov (United States)

    Sackmann, E.; Bausch, A. R.; Vonna, L.

    1 Architecture of composite cell membranes 1.1 The lipid/protein bilayer is a multicomponent smectic phase with mosaic like architecture 1.2 The spectrin/actin cytoskeleton as hyperelastic cell stabilizer 1.3 The actin cortex: Architecture and function 2 Physics of the actin based cytoskeleton 2.1 Actin is a living semiflexible polymer 2.2 Actin network as viscoelastic body 2.3 Correlation between macroscopic viscoelasticity and molecular 3 Heterogeneous actin gels in cells and biological function 3.1 Manipulation of actin gels 3.2 Control of organization and function of actin cortex by cell signalling 4 Micromechanics and microrheometry of cells 5 Activation of endothelial cells: On the possibility of formation of stress fibers as phase transition of actin-network triggered by cell signalling pathways 6 On cells as adaptive viscoplastic bodies 7 Controll of cellular protrusions controlled by actin/myosin cortex

  19. Actin and myosin regulate cytoplasm stiffness in plant cells: a study using optical tweezers.

    Science.gov (United States)

    van der Honing, Hannie S; de Ruijter, Norbert C A; Emons, Anne Mie C; Ketelaar, Tijs

    2010-01-01

    Here, we produced cytoplasmic protrusions with optical tweezers in mature BY-2 suspension cultured cells to study the parameters involved in the movement of actin filaments during changes in cytoplasmic organization and to determine whether stiffness is an actin-related property of plant cytoplasm. Optical tweezers were used to create cytoplasmic protrusions resembling cytoplasmic strands. Simultaneously, the behavior of the actin cytoskeleton was imaged. After actin filament depolymerization, less force was needed to create cytoplasmic protrusions. During treatment with the myosin ATPase inhibitor 2,3-butanedione monoxime, more trapping force was needed to create and maintain cytoplasmic protrusions. Thus, the presence of actin filaments and, even more so, the deactivation of a 2,3-butanedione monoxime-sensitive factor, probably myosin, stiffens the cytoplasm. During 2,3-butanedione monoxime treatment, none of the tweezer-formed protrusions contained filamentous actin, showing that a 2,3-butanedione monoxime-sensitive factor, probably myosin, is responsible for the movement of actin filaments, and implying that myosin serves as a static cross-linker of actin filaments when its motor function is inhibited. The presence of actin filaments does not delay the collapse of cytoplasmic protrusions after tweezer release. Myosin-based reorganization of the existing actin cytoskeleton could be the basis for new cytoplasmic strand formation, and thus the production of an organized cytoarchitecture.

  20. AQP2 is necessary for vasopressin- and forskolin-mediated filamentous actin depolymerization in renal epithelial cells

    Directory of Open Access Journals (Sweden)

    Naofumi Yui

    2012-02-01

    Remodeling of the actin cytoskeleton is required for vasopressin (VP-induced aquaporin 2 (AQP2 trafficking. Here, we asked whether VP and forskolin (FK-mediated F-actin depolymerization depends on AQP2 expression. Using various MDCK and LLC-PK1 cell lines with different AQP2 expression levels, we performed F-actin quantification and immunofluorescence staining after VP/FK treatment. In MDCK cells, in which AQP2 is delivered apically, VP/FK mediated F-actin depolymerization was significantly correlated with AQP2 expression levels. A decrease of apical membrane associated F-actin was observed upon VP/FK treatment in AQP2 transfected, but not in untransfected cells. There was no change in basolateral actin staining under these conditions. In LLC-PK1 cells, which deliver AQP2 basolaterally, a significant VP/FK mediated decrease in F-actin was also detected only in AQP2 transfected cells. This depolymerization response to VP/FK was significantly reduced by siRNA knockdown of AQP2. By immunofluorescence, an inverse relationship between plasma membrane AQP2 and membrane-associated F-actin was observed after VP/FK treatment again only in AQP2 transfected cells. This is the first report showing that VP/FK mediated F-actin depolymerization is dependent on AQP2 protein expression in renal epithelial cells, and that this is not dependent on the polarity of AQP2 membrane insertion.

  1. Actin-dependent mechanisms in AMPA receptor trafficking

    Directory of Open Access Journals (Sweden)

    Jonathan G Hanley

    2014-11-01

    Full Text Available The precise regulation of AMPA receptor (AMPAR number and subtype at the synapse is crucial for the regulation of excitatory neurotransmission, synaptic plasticity and the consequent formation of appropriate neural circuits during learning and memory. AMPAR trafficking involves the dynamic processes of exocytosis, endocytosis and endosomal recycling, all of which involve the actin cytoskeleton. The actin cytoskeleton is highly dynamic and highly regulated by an abundance of actin-binding proteins and upstream signalling pathways that modulate actin polymerization and depolymerisation. Actin dynamics generate forces that manipulate membranes in the process of vesicle biogenesis, and also for propelling vesicles through the cytoplasm to reach their destination. In addition, trafficking mechanisms exploit more stable aspects of the actin cytoskeleton by using actin-based motor proteins to traffic vesicular cargo along actin filaments. Numerous studies have shown that actin dynamics are critical for AMPAR localization and function. The identification of actin-binding proteins that physically interact with AMPAR subunits, and research into their mode of action is starting to shed light on the mechanisms involved. Such proteins either regulate actin dynamics to modulate mechanical forces exerted on AMPAR-containing membranes, or associate with actin filaments to target or transport AMPAR-containing vesicles to specific subcellular regions. In addition, actin-regulatory proteins that do not physically interact with AMPARs may influence AMPAR trafficking by regulating the local actin environment in the dendritic spine.

  2. Chondramides, novel cyclodepsipeptides from myxobacteria, influence cell development and induce actin filament polymerization in the green alga Micrasterias.

    Science.gov (United States)

    Holzinger, A; Lütz-Meindl, U

    2001-02-01

    The effects of chondramides A-D, new actin targeting cyclodepsipeptides from the myxobacterium Chondromyces crocatus, are probed on the unicellular green alga Micrasterias denticulata, a model organism for studies on cytomorphogenesis. All four chondramides readily enter the cells and cause severe shape malformations when applied during growth. However, the four derivatives have different lowest effective concentrations. Chondramide A: 20 microM, chondramide B: 15 microM, chondramide C: 5 microM chondramide D: 10 microM. At the ultrastructural level, chondramide C, the most effective drug, causes the appearance of abnormal, dense F-actin bundles, and a substantial increase in ER, which covers large parts of the developing semicell. Also the secondary cell wall is malformed by the drug. When chondramide C effects are investigated by means of indirect immunofluorescence, alterations of the F-actin system are also visible. Instead of the cortical F-actin network of untreated controls, distinct parts of the cell are covered by abundant F-actin aggregations. Phalloidin staining of chondramide C treated cells results in a decreased fluorescence in a time-dependent manner due to binding competitions between these drugs. F-actin polymerizing and bundling capacities of chondramides A-D are presented in Micrasterias for the first time, and may in future make this substances a useful tool for cell biological research. PMID:11169761

  3. Actin based processes that could determine the cytoplasmic architecture of plant cells

    OpenAIRE

    Honing; Emons, A.M.C.; Ketelaar, M.J.

    2007-01-01

    Actin polymerisation can generate forces that are necessary for cell movement, such as the propulsion of a class of bacteria, including Listeria, and the protrusion of migrating animal cells. Force generation by the actin cytoskeleton in plant cells has not been studied. One process in plant cells that is likely to depend on actin-based force generation is the organisation of the cytoplasm. We compare the function of actin binding proteins of three well-studied mammalian models that depend on...

  4. Purification of recombinant human and Drosophila septin hexamers for TIRF assays of actin-septin filament assembly.

    Science.gov (United States)

    Mavrakis, M; Tsai, F-C; Koenderink, G H

    2016-01-01

    Septins are guanine nucleotide-binding proteins that are conserved from fungi to humans. Septins assemble into heterooligomeric complexes and higher-order structures with key roles in various cellular functions including cell migration and division. The mechanisms by which septins assemble and interact with other cytoskeletal elements like actin remain elusive. A powerful approach to address this question is by cell-free reconstitution of purified cytoskeletal proteins combined with fluorescence microscopy. Here, we describe procedures for the purification of recombinant Drosophila and human septin hexamers from Escherichia coli and reconstitution of actin-septin coassembly. These procedures can be used to compare assembly of Drosophila and human septins and their coassembly with the actin cytoskeleton by total internal reflection fluorescence microscopy.

  5. The 46/50 kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts.

    Science.gov (United States)

    Reinhard, M; Halbrügge, M; Scheer, U; Wiegand, C; Jockusch, B M; Walter, U

    1992-01-01

    Vasoactive agents which elevate either cGMP or cAMP inhibit platelet activation by pathways sharing at least one component, the 46/50 kDa vasodilator-stimulated phosphoprotein (VASP). VASP is stoichiometrically phosphorylated by both cGMP-dependent and cAMP-dependent protein kinases in intact human platelets, and its phosphorylation correlates very well with platelet inhibition caused by cGMP- and cAMP-elevating agents. Here we report that in human platelets spread on glass, VASP is associated predominantly with the distal parts of radial microfilament bundles and with microfilaments outlining the periphery, whereas less VASP is associated with a central microfilamentous ring. VASP is also detectable in a variety of different cell types including fibroblasts and epithelial cells. In fibroblasts, VASP is concentrated at focal contact areas, along microfilament bundles (stress fibres) in a punctate pattern, in the periphery of protruding lamellae, and is phosphorylated by cGMP- and cAMP-dependent protein kinases in response to appropriate stimuli. Evidence for the direct binding of VASP to F-actin is also presented. The data demonstrate that VASP is a novel phosphoprotein associated with actin filaments and focal contact areas, i.e. transmembrane junctions between microfilaments and the extracellular matrix. Images PMID:1318192

  6. Structural Evidence for Actin-like Filaments in Toxoplasma gondii Using High-Resolution Low-Voltage Field Emission Scanning Electron Microscopy

    Science.gov (United States)

    Schatten, Heide; Sibley, L. David; Ris, Hans

    2003-08-01

    The protozoan parasite Toxoplasma gondii is representative of a large group of parasites within the phylum Apicomplexa, which share a highly unusual motility system that is crucial for locomotion and active host cell invasion. Despite the importance of motility in the pathology of these unicellular organisms, the motor mechanisms for locomotion remain uncertain, largely because only limited data exist about composition and organization of the cytoskeleton. By using cytoskeleton stabilizing protocols on membrane-extracted parasites and novel imaging with high-resolution low-voltage field emission scanning electron microscopy (LVFESEM), we were able to visualize for the first time a network of actin-sized filaments just below the cell membrane. A complex cytoskeletal network remained after removing the actin-sized fibers with cytochalasin D, revealing longitudinally arranged, subpellicular microtubules and intermediate-sized fibers of 10 nm, which, in stereo images, are seen both above and below the microtubules. These approaches open new possibilities to characterize more fully the largely unexplored and unconventional cytoskeletal motility complex in apicomplexan parasites.

  7. Intermediate filament proteins and actin isoforms as markers for soft tissue tumor differentiation and origin. I. Smooth muscle tumors.

    OpenAIRE

    Schürch, W.; Skalli, O.; Seemayer, T. A.; Gabbiani, G.

    1987-01-01

    A series of 3 benign and 10 malignant smooth muscle (SM) neoplasms and of 2 malignant fibrous histiocytomas was examined by light microscopy, transmission electron microscopy, two-dimensional gel electrophoresis (2D-GE) and indirect immunofluorescence, using polyclonal monospecific or monoclonal antibodies to desmin, vimentin, cytokeratin, alpha-SM and alpha-sarcomeric (alpha-SR) actins. Benign neoplasms displayed typical light-microscopic features of SM, whereas leiomyosarcomas demonstrated ...

  8. Filamentous fungal-specific septin AspE is phosphorylated in vivo and interacts with actin, tubulin and other septins in the human pathogen Aspergillus fumigatus

    Energy Technology Data Exchange (ETDEWEB)

    Juvvadi, Praveen Rao; Belina, Detti [Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC (United States); Soderblom, Erik J.; Moseley, M. Arthur [Duke Proteomics Core Facility, Institute for Genome Sciences and Policy, Duke University, Durham, NC (United States); Steinbach, William J., E-mail: bill.steinbach@duke.edu [Division of Pediatric Infectious Diseases, Department of Pediatrics, Duke University Medical Center, Durham, NC (United States); Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC (United States)

    2013-02-15

    Highlights: ► In vivo interactions of the novel septin AspE were identified by GFP-Trap® affinity purification. ► Septins AspA, AspB, AspC and AspD interacted with AspE in vivo. ► Actin and tubulin interacted with AspE in vivo. ► AspE is phosphorylated at six serine residues in vivo. -- Abstract: We previously analyzed the differential localization patterns of five septins (AspA–E), including a filamentous fungal-specific septin, AspE, in the human pathogen Aspergillus fumigatus. Here we utilized the A. fumigatus strain expressing an AspE–EGFP fusion protein and show that this novel septin with a tubular localization pattern in hyphae is phosphorylated in vivo and interacts with the other septins, AspA, AspB, AspC and AspD. The other major proteins interacting with AspE included the cytoskeletal proteins, actin and tubulin, which may be involved in the organization and transport of the septins. This is the first report analyzing the phosphorylation of AspE and localizing the sites of phosphorylation, and opens opportunities for further analysis on the role of post-translational modifications in the assembly and organization of A. fumigatus septins. This study also describes the previously unknown interaction of AspE with the actin-microtubule network. Furthermore, the novel GFP-Trap® affinity purification method used here complements widely-used GFP localization studies in fungal systems.

  9. Actin-binding proteins from Burkholderia mallei and Burkholderia thailandensis can functionally compensate for the actin-based motility defect of a Burkholderia pseudomallei bimA mutant

    OpenAIRE

    Stevens, J. M.; Ulrich, R L; Taylor, L A; Wood, M W; DeShazer, D; M.P. Stevens; Galyov, E. E.

    2005-01-01

    Recently we identified a bacterial factor (BimA) required for actin-based motility of Burkholderia pseudomallei. Here we report that Burkholderia mallei and Burkholderia thailandensis are capable of actin-based motility in J774.2 cells and that BimA homologs of these bacteria can restore the actin-based motility defect of a B. pseudomallei bimA mutant. While the BimA homologs differ in their amino-terminal sequence, they interact directly with actin in vitro and vary in their ability to bind ...

  10. Actin-Binding Proteins from Burkholderia mallei and Burkholderia thailandensis Can Functionally Compensate for the Actin-Based Motility Defect of a Burkholderia pseudomallei bimA Mutant

    OpenAIRE

    Stevens, Joanne M; Ulrich, Ricky L.; Taylor, Lowrie A.; Wood, Michael W.; DeShazer, David; Stevens, Mark P.; Galyov, Edouard E.

    2005-01-01

    Recently we identified a bacterial factor (BimA) required for actin-based motility of Burkholderia pseudomallei. Here we report that Burkholderia mallei and Burkholderia thailandensis are capable of actin-based motility in J774.2 cells and that BimA homologs of these bacteria can restore the actin-based motility defect of a B. pseudomallei bimA mutant. While the BimA homologs differ in their amino-terminal sequence, they interact directly with actin in vitro and vary in their ability to bind ...

  11. Actin based processes that could determine the cytoplasmic architecture of plant cells.

    Science.gov (United States)

    van der Honing, Hannie S; Emons, Anne Mie C; Ketelaar, Tijs

    2007-05-01

    Actin polymerisation can generate forces that are necessary for cell movement, such as the propulsion of a class of bacteria, including Listeria, and the protrusion of migrating animal cells. Force generation by the actin cytoskeleton in plant cells has not been studied. One process in plant cells that is likely to depend on actin-based force generation is the organisation of the cytoplasm. We compare the function of actin binding proteins of three well-studied mammalian models that depend on actin-based force generation with the function of their homologues in plants. We predict the possible role of these proteins, and thus the role of actin-based force generation, in the production of cytoplasmic organisation in plant cells.

  12. Role of active contraction and tropomodulins in regulating actin filament length and sarcomere structure in developing zebrafish skeletal muscle

    Directory of Open Access Journals (Sweden)

    Lise eMazelet

    2016-03-01

    Full Text Available Whilst it is recognised that contraction plays an important part in maintaining the structure and function of mature skeletal muscle, its role during development remains undefined. In this study the role of movement in skeletal muscle maturation was investigated in intact zebrafish embryos using a combination of genetic and pharmacological approaches. An immotile mutant line (cacnb1ts25 which lacks functional voltage-gated calcium channels (dihydropyridine receptors in the muscle and pharmacological immobilisation of embryos with a reversible anaesthetic (Tricaine, allowed the study of paralysis (in mutants and anaesthetised fish and recovery of movement (reversal of anaesthetic treatment. The effect of paralysis in early embryos (aged between 17-24 hours post fertilisation, hpf on skeletal muscle structure at both myofibrillar and myofilament level was determined using both immunostaining with confocal microscopy and small angle X-ray diffraction. The consequences of paralysis and subsequent recovery on the localisation of the actin capping proteins Tropomodulin 1 &4 (Tmod in fish aged from 17hpf until 42hpf was also assessed. The functional consequences of early paralysis were investigated by examining the mechanical properties of the larval muscle. The length-force relationship, active and passive tension, was measured in immotile, recovered and control skeletal muscle at 5 and 7 day post fertilisation (dpf. Recovery of muscle function was also assessed by examining swimming patterns in recovered and control fish. Inhibition of the initial embryonic movements (up to 24 hpf resulted in an increase in myofibril length and a decrease in width followed by almost complete recovery in both moving and paralysed fish by 42hpf. In conclusion, myofibril organisation is regulated by a dual mechanism involving movement-dependent and movement-independent processes. The initial contractile event itself drives the localisation of Tmod1 to its sarcomeric

  13. Actin-Based Feedback Circuits in Cell Migration and Endocytosis

    Science.gov (United States)

    Wang, Xinxin

    In this thesis, we study the switch and pulse functions of actin during two important cellular processes, cell migration and endocytosis. Actin is an abundant protein that can polymerize to form a dendritic network. The actin network can exert force to push or bend the cell membrane. During cell migration, the actin network behaves like a switch, assembling mostly at one end or at the other end. The end with the majority of the actin network is the leading edge, following which the cell can persistently move in the same direction. The other end, with the minority of the actin network, is the trailing edge, which is dragged by the cell as it moves forward. When subjected to large fluctuations or external stimuli, the leading edge and the trailing edge can interchange and change the direction of motion, like a motion switch. Our model of the actin network in a cell reveals that mechanical force is crucial for forming the motion switch. We find a transition from single state symmetric behavior to switch behavior, when tuning parameters such as the force. The model is studied by both stochastic simulations, and a set of rate equations that are consistent with the simulations. Endocytosis is a process by which cells engulf extracellular substances and recycle the cell membrane. In yeast cells, the actin network is transiently needed to overcome the pressure difference across the cell membrane caused by turgor pressure. The actin network behaves like a pulse, which assembles and then disassembles within about 30 seconds. Using a stochastic model, we reproduce the pulse behaviors of the actin network and one of its regulatory proteins, Las17. The model matches green fluorescence protein (GFP) experiments for wild-type cells. The model also predicts some phenotypes that modify or diminish the pulse behavior. The phenotypes are verified with both experiments performed at Washington University and with other groups' experiments. We find that several feedback mechanisms are

  14. The Actin Binding Protein Adseverin Regulates Osteoclastogenesis

    OpenAIRE

    Hassanpour, Siavash; Jiang, Hongwei; Wang, Yongqiang; Kuiper, Johannes W. P.; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesi...

  15. Distinct functional interactions between actin isoforms and nonsarcomeric myosins.

    Directory of Open Access Journals (Sweden)

    Mirco Müller

    Full Text Available Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.

  16. Actin-organising properties of the muscular dystrophy protein myotilin.

    Science.gov (United States)

    von Nandelstadh, Pernilla; Grönholm, Mikaela; Moza, Monica; Lamberg, Arja; Savilahti, Harri; Carpén, Olli

    2005-10-15

    Myotilin is a sarcomeric Z-disc protein that binds F-actin directly and bundles actin filaments, although it does not contain a conventional actin-binding domain. Expression of mutant myotilin leads to sarcomeric alterations in the dominantly inherited limb-girdle muscular dystrophy 1A and in myofibrillar myopathy/desmin-related myopathy. Together, with previous in vitro studies, this indicates that myotilin has an important function in the assembly and maintenance of Z-discs. This study characterises further the interaction between myotilin and actin. Functionally important regions in myotilin were identified by actin pull-down and yeast two-hybrid assays and with a novel strategy that combines in vitro DNA transposition-based peptide insertion mutagenesis with phenotype analysis in yeast cells. The shortest fragment to bind actin was the second Ig domain together with a short C-terminal sequence. Concerted action of the first and second Ig domain was, however, necessary for the functional activity of myotilin, as verified by analysis of transposon mutants, actin binding and phenotypic effect in mammalian cells. Furthermore, the Ig domains flanked with N- and C-terminal regions were needed for actin-bundling, indicating that the mere actin-binding sequence was insufficient for the actin-regulating activity. None of the four known disease-associated mutations altered the actin-organising ability. These results, together with previous studies in titin and kettin, identify the Ig domain as an actin-binding unit.

  17. WASH complex regulates Arp2/3 complex for actin-based polar body extrusion in mouse oocytes

    OpenAIRE

    Wang, Fei; Zhang, Liang; Zhang, Guang-Li; Wang, Zhen-Bo; CUI, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2014-01-01

    Prior to their fertilization, oocytes undergo asymmetric division, which is regulated by actin filaments. Recently, WASH complex were identified as actin nucleation promoting factors (NPF) that activated Arp2/3 complex. However, the roles of WASH complex remain uncertain, particularly for oocyte polarization and asymmetric division. Here, we examined the functions of two important subunits of a WASH complex, WASH1 and Strumpellin, during mouse oocyte meiosis. Depleting WASH1 or disrupting Str...

  18. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments.

    Science.gov (United States)

    Schevzov, Galina; Kee, Anthony J; Wang, Bin; Sequeira, Vanessa B; Hook, Jeff; Coombes, Jason D; Lucas, Christine A; Stehn, Justine R; Musgrove, Elizabeth A; Cretu, Alexandra; Assoian, Richard; Fath, Thomas; Hanoch, Tamar; Seger, Rony; Pleines, Irina; Kile, Benjamin T; Hardeman, Edna C; Gunning, Peter W

    2015-07-01

    ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor-stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells.

  19. Interaction between microtubules and the Drosophila formin Cappuccino and its effect on actin assembly.

    Science.gov (United States)

    Roth-Johnson, Elizabeth A; Vizcarra, Christina L; Bois, Justin S; Quinlan, Margot E

    2014-02-14

    Formin family actin nucleators are potential coordinators of the actin and microtubule cytoskeletons, as they can both nucleate actin filaments and bind microtubules in vitro. To gain a more detailed mechanistic understanding of formin-microtubule interactions and formin-mediated actin-microtubule cross-talk, we studied microtubule binding by Cappuccino (Capu), a formin involved in regulating actin and microtubule organization during Drosophila oogenesis. We found that two distinct domains within Capu, FH2 and tail, work together to promote high-affinity microtubule binding. The tail domain appears to bind microtubules through nonspecific charge-based interactions. In contrast, distinct residues within the FH2 domain are important for microtubule binding. We also report the first visualization of a formin polymerizing actin filaments in the presence of microtubules. Interestingly, microtubules are potent inhibitors of the actin nucleation activity of Capu but appear to have little effect on Capu once it is bound to the barbed end of an elongating filament. Because Capu does not simultaneously bind microtubules and assemble actin filaments in vitro, its actin assembly and microtubule binding activities likely require spatial and/or temporal regulation within the Drosophila oocyte.

  20. Pattern formation in polymerising actin flocks: spirals, spots and waves without nonlinear chemistry

    CERN Document Server

    Goff, Thomas Le; Marenduzzo, Davide

    2016-01-01

    We propose a model solely based on actin treadmilling and polymerisation which describes many characteristic states of actin wave formation: spots, spirals and travelling waves. In our model, as in experiments on cell recovering motility following actin depolymerisation, we choose an isotropic low density initial condition; polymerisation of actin filaments then raises the density towards the Onsager threshold where they align. We show that this alignment, in turn, destabilizes the isotropic phase and generically induces transient actin spots or spirals as part of the dynamical pathway towards a polarized phase which can either be uniform or consist of a series of actin-wave trains (flocks). Our results uncover a universal route to actin wave formation in the absence of any system specific nonlinear biochemistry, and it may help understand the mechanism underlying the observation of actin spots and waves in vivo. They also suggest a minimal setup to design similar patterns in vitro.

  1. Dynamin2 organizes lamellipodial actin networks to orchestrate lamellar actomyosin.

    Directory of Open Access Journals (Sweden)

    Manisha Menon

    Full Text Available Actin networks in migrating cells exist as several interdependent structures: sheet-like networks of branched actin filaments in lamellipodia; arrays of bundled actin filaments co-assembled with myosin II in lamellae; and actin filaments that engage focal adhesions. How these dynamic networks are integrated and coordinated to maintain a coherent actin cytoskeleton in migrating cells is not known. We show that the large GTPase dynamin2 is enriched in the distal lamellipod where it regulates lamellipodial actin networks as they form and flow in U2-OS cells. Within lamellipodia, dynamin2 regulated the spatiotemporal distributions of α-actinin and cortactin, two actin-binding proteins that specify actin network architecture. Dynamin2's action on lamellipodial F-actin influenced the formation and retrograde flow of lamellar actomyosin via direct and indirect interactions with actin filaments and a finely tuned GTP hydrolysis activity. Expression in dynamin2-depleted cells of a mutant dynamin2 protein that restores endocytic activity, but not activities that remodel actin filaments, demonstrated that actin filament remodeling by dynamin2 did not depend of its functions in endocytosis. Thus, dynamin2 acts within lamellipodia to organize actin filaments and regulate assembly and flow of lamellar actomyosin. We hypothesize that through its actions on lamellipodial F-actin, dynamin2 generates F-actin structures that give rise to lamellar actomyosin and for efficient coupling of F-actin at focal adhesions. In this way, dynamin2 orchestrates the global actin cytoskeleton.

  2. Development of Nylon Based FDM Filament for Rapid Tooling Application

    Science.gov (United States)

    Singh, R.; Singh, S.

    2014-04-01

    There has been critical need for development of cost effective nylon based wire to be used as feed stock filament for fused deposition modelling (FDM) machine. But hitherto, very less work has been reported for development of alternate solution of acrylonitrile butadiene styrene (ABS) based wire which is presently used in most of FDM machines. The present research work is focused on development of nylon based wire as an alternative of ABS wire (which is to be used as feedstock filament on FDM) without changing any hardware or software of machine. For the present study aluminium oxide (Al2O3) as additive in different proportion has been used with nylon fibre. Single screw extruder was used for wire preparation and wire thus produced was tested on FDM. Mechanical properties i.e. tensile strength and percentage elongation of finally developed wire have been optimized by Taguchi L9 technique. The work represented major development in reducing cost and time in rapid tooling applications.

  3. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana.

    Science.gov (United States)

    Du, Juan; Wang, Xue; Dong, Chun-Hai; Yang, Jian Ming; Yao, Xiao Jun

    2016-01-01

    Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin) or polymeric form (F-actin). Members of the actin-depolymerizing factor (ADF)/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1) in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1-actin complex, we constructed a homology model of the AtADF1-actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson-Boltzmann Surface Area (MM-GB/PBSA) methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin. PMID:27414648

  4. Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia

    DEFF Research Database (Denmark)

    Rasmussen, Izabela; Pedersen, Line Hjortshøj; Byg, Luise;

    2010-01-01

    Most in vivo studies that have addressed the role of actin dynamics in NADPH oxidase function in phagocytes have used toxins to modulate the polymerization state of actin and mostly effects on actin has been evaluated by end point measurements of filamentous actin, which says little about actin d...

  5. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    Directory of Open Access Journals (Sweden)

    Mohammad F. Islam

    2012-05-01

    Full Text Available With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics.

  6. A semi-flexible model prediction for the polymerization force exerted by a living F-actin filament on a fixed wall

    CERN Document Server

    Pierleoni, Carlo; Ryckaert, Jean-Paul

    2015-01-01

    We consider a single living semi-flexible filament with persistence length l_p in chemical equilibrium with an ideal solution of free monomers at fixed monomer chemical potential mu_1 and fixed temperature T. While one end of the filament is chemically active with single monomer (de)polymerization steps, the other end is grafted normally to a rigid wall to mimick a rigid network from which the filament under consideration emerges. A second rigid wall, parallel to the grafting wall, is fixed at distance L<filament seed. In supercritical conditions the filament tends to grow and impinges onto the second surface which, in suitable conditions (non-escaping filament regime) stops the filament growth. We first establish the grand-potential and derive some general properties, in particular the filament size distribution and the force exerted by the living filament on the obstacle wall. We apply this formalism to the semi-flexible, living, discrete Wormlike chain (d-WLC) model with step size d and...

  7. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development.

    Science.gov (United States)

    Wu, Jing; Wang, Heng; Guo, Xuan; Chen, Jiong

    2016-08-15

    The actin bundle is an array of linear actin filaments cross-linked by actin-bundling proteins, but its assembly and dynamics are not as well understood as those of the branched actin network. Here we used the Drosophila bristle as a model system to study actin bundle formation. We found that cofilin, a major actin disassembly factor of the branched actin network, promotes the formation and positioning of actin bundles in the developing bristles. Loss of function of cofilin or AIP1, a cofactor of cofilin, each resulted in increased F-actin levels and severe defects in actin bundle organization, with the defects from cofilin deficiency being more severe. Further analyses revealed that cofilin likely regulates actin bundle formation and positioning by the following means. First, cofilin promotes a large G-actin pool both locally and globally, likely ensuring rapid actin polymerization for bundle initiation and growth. Second, cofilin limits the size of a nonbundled actin-myosin network to regulate the positioning of actin bundles. Third, cofilin prevents incorrect assembly of branched and myosin-associated actin filament into bundles. Together these results demonstrate that the interaction between the dynamic dendritic actin network and the assembling actin bundles is critical for actin bundle formation and needs to be closely regulated.

  8. Actin turnover is required to prevent axon retraction driven by endogenous actomyosin contractility

    OpenAIRE

    Gallo, Gianluca; Yee, Hal F.; Letourneau, Paul C.

    2002-01-01

    Growth cone motility and guidance depend on the dynamic reorganization of filamentous actin (F-actin). In the growth cone, F-actin undergoes turnover, which is the exchange of actin subunits from existing filaments. However, the function of F-actin turnover is not clear. We used jasplakinolide (jasp), a cell-permeable macrocyclic peptide that inhibits F-actin turnover, to study the role of F-actin turnover in axon extension. Treatment with jasp caused axon retraction, demonstrating that axon ...

  9. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    Science.gov (United States)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  10. A new mechanism for nuclear import by actin-based propulsion used by a baculovirus nucleocapsid.

    Science.gov (United States)

    Au, Shelly; Wu, Wei; Zhou, Lixin; Theilmann, David A; Panté, Nelly

    2016-08-01

    The transport of macromolecules into the nucleus is mediated by soluble cellular receptors of the importin β superfamily and requires the Ran-GTPase cycle. Several studies have provided evidence that there are exceptions to this canonical nuclear import pathway. Here, we report a new unconventional nuclear import mechanism exploited by the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). We found that AcMNPV nucleocapsids entered the nucleus of digitonin-permeabilized cells in the absence of exogenous cytosol or under conditions that blocked the Ran-GTPase cycle. AcMNPV contains a protein that activates the Arp2/3 complex and induces actin polymerization at one end of the rod-shaped nucleocapsid. We show that inhibitors of Arp2/3 blocked nuclear import of nucleocapsids in semi-permeabilized cells. Nuclear import of nucleocapsids was also reconstituted in purified nuclei supplemented with G-actin and Arp2/3 under actin polymerization conditions. Thus, we propose that actin polymerization drives not only migration of baculovirus through the cytoplasm but also pushes the nucleocapsid through the nuclear pore complex to enter the cell nucleus. Our findings point to a very distinct role of actin-based motility during the baculovirus infection cycle. PMID:27284005

  11. Bulkiness or aromatic nature of tyrosine-143 of actin is important for the weak binding between F-actin and myosin-ADP-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Gomibuchi, Yuki [Graduate School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan); Uyeda, Taro Q.P. [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Wakabayashi, Takeyuki, E-mail: tw007@nasu.bio.teikyo-u.ac.jp [Graduate School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan); Department of Judo Therapy, Faculty of Medical Technology, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan)

    2013-11-29

    Highlights: •The effect of mutation of Tyr143 that becomes more exposed on assembly was examined. •Mutation of tyrosine-143 of Dictyostelium actin changed actin polymerizability. •The bulkiness or aromatic nature of Tyr143 is important for the weak binding. •The weak interaction between myosin and actin strengthened by Tyr143Trp mutation. -- Abstract: Actin filaments (F-actin) interact with myosin and activate its ATPase to support force generation. By comparing crystal structures of G-actin and the quasi-atomic model of F-actin based on high-resolution cryo-electron microscopy, the tyrosine-143 was found to be exposed more than 60 Å{sup 2} to the solvent in F-actin. Because tyrosine-143 flanks the hydrophobic cleft near the hydrophobic helix that binds to myosin, the mutant actins, of which the tyrosine-143 was replaced with tryptophan, phenylalanine, or isoleucine, were generated using the Dictyostelium expression system. It polymerized significantly poorly when induced by NaCl, but almost normally by KCl. In the presence of phalloidin and KCl, the extents of the polymerization of all the mutant actins were comparable to that of the wild-type actin so that the actin-activated myosin ATPase activity could be reliably compared. The affinity of skeletal heavy meromyosin to F-actin and the maximum ATPase activity (V{sub max}) were estimated by a double reciprocal plot. The Tyr143Trp-actin showed the higher affinity (smaller K{sub app}) than that of the wild-type actin, with the V{sub max} being almost unchanged. The K{sub app} and V{sub max} of the Tyr143Phe-actin were similar to those of the wild-type actin. However, the activation by Tyr143Ile-actin was much smaller than the wild-type actin and the accurate determination of K{sub app} was difficult. Comparison of the myosin ATPase activated by the various mutant actins at the same concentration of F-actin showed that the extent of activation correlates well with the solvent-accessible surface areas (ASA

  12. Failure assessment of aluminum liner based filament-wound hybrid riser subjected to internal hydrostatic pressure

    Science.gov (United States)

    Dikshit, Vishwesh; Seng, Ong Lin; Maheshwari, Muneesh; Asundi, A.

    2015-03-01

    The present study describes the burst behavior of aluminum liner based prototype filament-wound hybrid riser under internal hydrostatic pressure. The main objective of present study is to developed an internal pressure test rig set-up for filament-wound hybrid riser and investigate the failure modes of filament-wound hybrid riser under internal hydrostatic burst pressure loading. The prototype filament-wound hybrid riser used for burst test consists of an internal aluminum liner and outer composite layer. The carbon-epoxy composites as part of the filament-wound hybrid risers were manufactured with [±55o] lay-up pattern with total composite layer thickness of 1.6 mm using a CNC filament-winding machine. The burst test was monitored by video camera which helps to analyze the failure mechanism of the fractured filament-wound hybrid riser. The Fiber Bragg Grating (FBG) sensor was used to monitor and record the strain changes during burst test of prototype filament-wound hybrid riser. This study shows good improvements in burst strength of filament-wound hybrid riser compared to the monolithic metallic riser. Since, strain measurement using FBG sensors has been testified as a reliable method, we aim to further understand in detail using this technique.

  13. Load fluctuations drive actin network growth

    CERN Document Server

    Shaevitz, Joshua W

    2007-01-01

    The growth of actin filament networks is a fundamental biological process that drives a variety of cellular and intracellular motions. During motility, eukaryotic cells and intracellular pathogens are propelled by actin networks organized by nucleation-promoting factors, which trigger the formation of nascent filaments off the side of existing filaments in the network. A Brownian ratchet (BR) mechanism has been proposed to couple actin polymerization to cellular movements, whereby thermal motions are rectified by the addition of actin monomers at the end of growing filaments. Here, by following actin--propelled microspheres using three--dimensional laser tracking, we find that beads adhered to the growing network move via an object--fluctuating BR. Velocity varies with the amplitude of thermal fluctuation and inversely with viscosity as predicted for a BR. In addition, motion is saltatory with a broad distribution of step sizes that is correlated in time. These data point to a model in which thermal fluctuati...

  14. Prediction of Filamentous Sludge Bulking using a State-based Gaussian Processes Regression Model

    Science.gov (United States)

    Liu, Yiqi; Guo, Jianhua; Wang, Qilin; Huang, Daoping

    2016-01-01

    Activated sludge process has been widely adopted to remove pollutants in wastewater treatment plants (WWTPs). However, stable operation of activated sludge process is often compromised by the occurrence of filamentous bulking. The aim of this study is to build a proper model for timely diagnosis and prediction of filamentous sludge bulking in an activated sludge process. This study developed a state-based Gaussian Process Regression (GPR) model to monitor the filamentous sludge bulking related parameter, sludge volume index (SVI), in such a way that the evolution of SVI can be predicted over multi-step ahead. This methodology was validated with SVI data collected from one full-scale WWTP. Online diagnosis and prediction of filamentous bulking sludge with real-time SVI prediction was tested through a simulation study. The results showed that the proposed methodology was capable of predicting future SVIs with good accuracy, thus providing sufficient time for predicting and controlling filamentous sludge bulking. PMID:27498888

  15. Prediction of Filamentous Sludge Bulking using a State-based Gaussian Processes Regression Model.

    Science.gov (United States)

    Liu, Yiqi; Guo, Jianhua; Wang, Qilin; Huang, Daoping

    2016-01-01

    Activated sludge process has been widely adopted to remove pollutants in wastewater treatment plants (WWTPs). However, stable operation of activated sludge process is often compromised by the occurrence of filamentous bulking. The aim of this study is to build a proper model for timely diagnosis and prediction of filamentous sludge bulking in an activated sludge process. This study developed a state-based Gaussian Process Regression (GPR) model to monitor the filamentous sludge bulking related parameter, sludge volume index (SVI), in such a way that the evolution of SVI can be predicted over multi-step ahead. This methodology was validated with SVI data collected from one full-scale WWTP. Online diagnosis and prediction of filamentous bulking sludge with real-time SVI prediction was tested through a simulation study. The results showed that the proposed methodology was capable of predicting future SVIs with good accuracy, thus providing sufficient time for predicting and controlling filamentous sludge bulking. PMID:27498888

  16. Actin-Based Motility of Burkholderia thailandensis Requires a Central Acidic Domain of BimA That Recruits and Activates the Cellular Arp2/3 Complex▿

    OpenAIRE

    Sitthidet, Chayada; Stevens, Joanne M; Field, Terence R.; Layton, Abigail N.; Korbsrisate, Sunee; Stevens, Mark P.

    2010-01-01

    Burkholderia species use BimA for intracellular actin-based motility. Uniquely, Burkholderia thailandensis BimA harbors a central and acidic (CA) domain. The CA domain was required for actin-based motility, binding to the cellular Arp2/3 complex, and Arp2/3-dependent polymerization of actin monomers. Our data reveal distinct strategies for actin-based motility among Burkholderia species.

  17. Solid friction between soft filaments

    CERN Document Server

    Ward, Andrew; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-01-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes' drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the prop...

  18. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton.

    OpenAIRE

    Picart, C.; Dalhaimer, P.; Discher, D. E.

    2000-01-01

    The red cell's spectrin-actin network is known to sustain local states of shear, dilation, and condensation, and yet the short actin filaments are found to maintain membrane-tangent and near-random azimuthal orientations. When calibrated with polarization results for single actin filaments, imaging of micropipette-deformed red cell ghosts has allowed an assessment of actin orientations and possible reorientations in the network. At the hemispherical cap of the aspirated projection, where the ...

  19. Actin Cytoskeleton-Based Plant Synapse as Gravitransducer in the Transition Zone of the Root Apex

    Science.gov (United States)

    Baluska, Frantisek; Barlow, Peter; Volkmann, Dieter; Mancuso, Stefano

    The actin cytoskeleton was originally proposed to act as the signal transducer in the plant gravity sensory-motoric circuit. Surprisingly, however, several studies have documented that roots perfom gravisensing and gravitropism more effectively if exposed to diverse anti-F-actin drugs. Our study, using decapped maize root apices, has revealed that depolymerization of F-actin stimulates gravity perception in cells of the transition zone where root gravitropism is initiated (Mancuso et al. 2006). It has been proposed (Balǔka et al. 2005, 2009a) that s the non-growing adhesive end-poles, enriched with F-actin and myosin VIII, and active in endocytic recycling of both PIN transporters and cell wall pectins cross-linked with calcium and boron, act as the gravisensing domains, and that these impinge directly upon the root motoric responses via control of polar auxin transport. This model suggests that mechanical asymmetry at these plant synapses determines vectorial gravity-controlled auxin transport. Due to the gravity-imposed mechanical load upon the protoplast, a tensional stress is also imposed upon the plasma membrane of the physically lower synaptic cell pole. This stress is then relieved by shifting the endocytosis-exocytosis balance towards exocytosis (Balǔka et al. s 2005, 2009a,b). This `Synaptic Auxin Secretion' hypothesis does not conflict with the `Starch Statolith' hypothesis, which is based on amyloplast sedimentation. In fact, the `Synaptic Auxin Secretion' hypothesis has many elements which allow its unification with the Starch-Statolith model (Balǔka et al. 2005, 2009a,b). s References Balǔka F, Volkmann D, Menzel D (2005) Plant synapses: actin-based adhesion s domains for cell-to-cell communication. Trends Plant Sci 10: 106-111 Balǔka F, Schlicht M, s Wan Y-L, Burbach C, Volkmann D (2009a) Intracellular domains and polarity in root apices: from synaptic domains to plant neurobiology. Nova Acta Leopoldina 96: 103-122 Balǔka s F, Mancuso S

  20. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization.

    Science.gov (United States)

    Lee, Wei Lin; Grimes, Jonathan M; Robinson, Robert C

    2015-03-01

    Pathogenic Yersinia species evade host immune systems through the injection of Yersinia outer proteins (Yops) into phagocytic cells. One Yop, YopO, also known as YpkA, induces actin-filament disruption, impairing phagocytosis. Here we describe the X-ray structure of Yersinia enterocolitica YopO in complex with actin, which reveals that YopO binds to an actin monomer in a manner that blocks polymerization yet allows the bound actin to interact with host actin-regulating proteins. SILAC-MS and biochemical analyses confirm that actin-polymerization regulators such as VASP, EVL, WASP, gelsolin and the formin diaphanous 1 are directly sequestered and phosphorylated by YopO through formation of ternary complexes with actin. This leads to a model in which YopO at the membrane sequesters actin from polymerization while using the bound actin as bait to recruit, phosphorylate and misregulate host actin-regulating proteins to disrupt phagocytosis.

  1. RickA expression is not sufficient to promote actin-based motility of Rickettsia raoultii.

    Directory of Open Access Journals (Sweden)

    Premanand Balraj

    Full Text Available BACKGROUND: Rickettsia raoultii is a novel Rickettsia species recently isolated from Dermacentor ticks and classified within the spotted fever group (SFG. The inability of R. raoultii to spread within L929 cells suggests that this bacterium is unable to polymerize host cell actin, a property exhibited by all SFG rickettsiae except R. peacocki. This result led us to investigate if RickA, the protein thought to generate actin nucleation, was expressed within this rickettsia species. METHODOLOGY/PRINCIPAL FINDINGS: Amplification and sequencing of R. raoultii rickA showed that this gene encoded a putative 565 amino acid protein highly homologous to those found in other rickettsiae. Using immunofluorescence assays, we determined that the motility pattern (i.e. microcolonies or cell-to-cell spreading of R. raoultii was different depending on the host cell line in which the bacteria replicated. In contrast, under the same experimental conditions, R. conorii shares the same phenotype both in L929 and in Vero cells. Transmission electron microscopy analysis of infected cells showed that non-motile bacteria were free in the cytosol instead of enclosed in a vacuole. Moreover, western-blot analysis demonstrated that the defect of R. raoultii actin-based motility within L929 cells was not related to lower expression of RickA. CONCLUSION/SIGNIFICANCE: These results, together with previously published data about R. typhi, strongly suggest that another factor, apart from RickA, may be involved with be responsible for actin-based motility in bacteria from the Rickettsia genus.

  2. Kinetic factors determining conducting filament formation in solid polymer electrolyte based planar devices.

    Science.gov (United States)

    Krishnan, Karthik; Aono, Masakazu; Tsuruoka, Tohru

    2016-08-01

    Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength, and the reduction sites for precipitation. Different filament formations, resulting from unidirectional and dendritic growth behaviours, can be controlled by tuning specified parameters, which in turn improves the stability and performance of SPE-based devices.

  3. Visualization of endothelial actin cytoskeleton in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Alessia Fraccaroli

    Full Text Available Angiogenesis requires coordinated changes in cell shape of endothelial cells (ECs, orchestrated by the actin cytoskeleton. The mechanisms that regulate this rearrangement in vivo are poorly understood - largely because of the difficulty to visualize filamentous actin (F-actin structures with sufficient resolution. Here, we use transgenic mice expressing Lifeact-EGFP to visualize F-actin in ECs. We show that in the retina, Lifeact-EGFP expression is largely restricted to ECs allowing detailed visualization of F-actin in ECs in situ. Lifeact-EGFP labels actin associated with cell-cell junctions, apical and basal membranes and highlights actin-based structures such as filopodia and stress fiber-like cytoplasmic bundles. We also show that in the skin and the skeletal muscle, Lifeact-EGFP is highly expressed in vascular mural cells (vMCs, enabling vMC imaging. In summary, our results indicate that the Lifeact-EGFP transgenic mouse in combination with the postnatal retinal angiogenic model constitutes an excellent system for vascular cell biology research. Our approach is ideally suited to address structural and mechanistic details of angiogenic processes, such as endothelial tip cell migration and fusion, EC polarization or lumen formation.

  4. Actinic Cheilitis

    Science.gov (United States)

    ... actinic cheilitis. Overview Actinic cheilitis, sometimes known as "farmer's lip" or "sailor's lip," is a precancerous condition ... Last Updated: 22 Dec 2008 Information for other ages: Table of Contents: Overview Who's At Risk Signs ...

  5. Polymorphism of highly cross-linked F-actin networks: Probing multiple length scales

    Science.gov (United States)

    Nguyen, Lam T.; Hirst, Linda S.

    2011-03-01

    The assembly properties of F-actin filaments in the presence of different biological cross-linker concentrations and types have been investigated using a combined approach of fluorescence confocal microscopy and coarse-grained molecular dynamics simulation. In particular for highly cross-linked regimes, new network morphologies are observed. Complex network formation and the details of the resulting structure are strongly dependent on the ratio of cross-linkers to actin monomers and cross-linker shape but only weakly dependent on overall actin concentration and filament length. The work presented here may help to provide some fundamental understanding of how excessive cross-linkers interact with the actin filament solution, creating different structures in the cell under high cross-linker concentrations. F-actin is not only of biological importance but also, as an example of a semiflexible polymer, has attracted significant interest in its physical behavior. In combination with different cross-linkers semiflexible filaments may provide new routes to bio-materials development and act as the inspiration for new hierarchical network-based materials.

  6. Prostaglandins temporally regulate cytoplasmic actin bundle formation during Drosophila oogenesis

    OpenAIRE

    Spracklen, Andrew J.; Kelpsch, Daniel J.; Chen, Xiang; Spracklen, Cassandra N.; Tootle, Tina L.

    2014-01-01

    Prostaglandins (PGs)—lipid signals produced downstream of cyclooxygenase (COX) enzymes—regulate actin dynamics in cell culture and platelets, but their roles during development are largely unknown. Here we define a new role for Pxt, the Drosophila COX-like enzyme, in regulating the actin cytoskeleton—temporal restriction of actin remodeling during oogenesis. PGs are required for actin filament bundle formation during stage 10B (S10B). In addition, loss of Pxt results in extensive early actin ...

  7. Characterization of ring-like F-actin structure as a mechanical partner for spindle positioning in mitosis.

    Directory of Open Access Journals (Sweden)

    Huan Lu

    Full Text Available Proper spindle positioning and orientation are essential for accurate mitosis which requires dynamic interactions between microtubule and actin filament (F-actin. Although mounting evidence demonstrates the role of F-actin in cortical cytoskeleton dynamics, it remains elusive as to the structure and function of F-actin-based networks in spindle geometry. Here we showed a ring-like F-actin structure surrounding the mitotic spindle which forms since metaphase and maintains in MG132-arrested metaphase HeLa cells. This cytoplasmic F-actin structure is relatively isotropic and less dynamic. Our computational modeling of spindle position process suggests a possible mechanism by which the ring-like F-actin structure can regulate astral microtubule dynamics and thus mitotic spindle orientation. We further demonstrated that inhibiting Plk1, Mps1 or Myosin, and disruption of microtubules or F-actin polymerization perturbs the formation of the ring-like F-actin structure and alters spindle position and symmetric division. These findings reveal a previously unrecognized but important link between mitotic spindle and ring-like F-actin network in accurate mitosis and enables the development of a method to theoretically illustrate the relationship between mitotic spindle and cytoplasmic F-actin.

  8. Sarcomeric Pattern Formation by Actin Cluster Coalescence

    Science.gov (United States)

    Friedrich, Benjamin M.; Fischer-Friedrich, Elisabeth; Gov, Nir S.; Safran, Samuel A.

    2012-01-01

    Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells. PMID:22685394

  9. Sarcomeric pattern formation by actin cluster coalescence.

    Directory of Open Access Journals (Sweden)

    Benjamin M Friedrich

    Full Text Available Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells.

  10. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring

    OpenAIRE

    1990-01-01

    Actin-binding protein (ABP-280, nonmuscle filamin) is a ubiquitous dimeric actin cross-linking phosphoprotein of peripheral cytoplasm, where it promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. The complete nucleotide sequence of human endothelial cell ABP cDNA predicts a polypeptide subunit chain of 2,647 amino acids, corresponding to 280 kD, also the mass derived from physical measurements of the native protein. The actin-binding domain is...

  11. Gelsolin mediates calcium-dependent disassembly of Listeria actin tails

    Science.gov (United States)

    Larson, Laura; Arnaudeau, Serge; Gibson, Bruce; Li, Wei; Krause, Ryoko; Hao, Binghua; Bamburg, James R.; Lew, Daniel P.; Demaurex, Nicolas; Southwick, Frederick

    2005-01-01

    The role of intracellular Ca2+ in the regulation of actin filament assembly and disassembly has not been clearly defined. We show that reduction of intracellular free Ca2+ concentration ([Ca2+]i) to <40 nM in Listeria monocytogenes-infected, EGFP–actin-transfected Madin–Darby canine kidney cells results in a 3-fold lengthening of actin filament tails. This increase in tail length is the consequence of marked slowing of the actin filament disassembly rate, without a significant change in assembly rate. The Ca2+-sensitive actin-severing protein gelsolin concentrates in the Listeria rocket tails at normal resting [Ca2+]i and disassociates from the tails when [Ca2+]i is lowered. Reduction in [Ca2+]i also blocks the severing activity of gelsolin, but not actin-depolymerizing factor (ADF)/cofilin microinjected into Listeria-infected cells. In Xenopus extracts, Listeria tail lengths are also calcium-sensitive, markedly shortening on addition of calcium. Immunodepletion of gelsolin, but not Xenopus ADF/cofilin, eliminates calcium-sensitive actin-filament shortening. Listeria tail length is also calcium-insensitive in gelsolin-null mouse embryo fibroblasts. We conclude that gelsolin is the primary Ca2+-sensitive actin filament recycling protein in the cell and is capable of enhancing Listeria actin tail disassembly at normal resting [Ca2+]i (145 nM). These experiments illustrate the unique and complementary functions of gelsolin and ADF/cofilin in the recycling of actin filaments. PMID:15671163

  12. Dissecting principles governing actin assembly using yeast extracts.

    Science.gov (United States)

    Michelot, Alphée; Drubin, David G

    2014-01-01

    In this chapter, we describe recent protocols that we have developed to trigger actin assembly and actin-based motility in yeast cell extracts. Our method allows for the fast preparation of yeast extracts that are competent in dynamic assembly of distinct actin filament structures of biologically appropriate protein composition. Compared to previous extract-based systems using other eukaryotic cell types, yeast provides a unique advantage for combining reconstituted assays with the preparation of extracts from genetically modified yeast strains. We present a global strategy for dissecting the functions of individual proteins, where the activities of the proteins are analyzed in systems of variable complexity, ranging from simple mixtures of pure proteins to the full complexity of a cell's cytoplasm.

  13. Felix: A Topology based Framework for Visual Exploration of Cosmic Filaments

    CERN Document Server

    Shivshankar, Nithin; Natarajan, Vijay; van de Weygaert, Rien; Bos, E G Patrick; Rieder, Steven

    2015-01-01

    The large-scale structure of the universe is comprised of virialized blob-like clusters, linear filaments, sheet-like walls and huge near empty three-dimensional voids. Characterizing the large scale universe is essential to our understanding of the formation and evolution of galaxies. The density range of clusters, walls and voids are relatively well separated, when compared to filaments, which span a relatively larger range. The large scale filamentary network thus forms an intricate part of the cosmic web. In this paper, we describe Felix, a topology based framework for visual exploration of filaments in the cosmic web. The filamentary structure is represented by the ascending manifold geometry of the 2-saddles in the Morse-Smale complex of the density field. We generate a hierarchy of Morse-Smale complexes and query for filaments based on the density ranges at the end points of the filaments. The query is processed efficiently over the entire hierarchical Morse-Smale complex, allowing for interactive visu...

  14. Performance of GaN-on-Si-based vertical light-emitting diodes using silicon nitride electrodes with conducting filaments: correlation between filament density and device reliability.

    Science.gov (United States)

    Kim, Kyeong Heon; Kim, Su Jin; Lee, Tae Ho; Lee, Byeong Ryong; Kim, Tae Geun

    2016-08-01

    Transparent conductive electrodes with good conductivity and optical transmittance are an essential element for highly efficient light-emitting diodes. However, conventional indium tin oxide and its alternative transparent conductive electrodes have some trouble with a trade-off between electrical conductivity and optical transmittance, thus limiting their practical applications. Here, we present silicon nitride transparent conductive electrodes with conducting filaments embedded using the electrical breakdown process and investigate the dependence of the conducting filament density formed in the transparent conductive electrode on the device performance of gallium nitride-based vertical light-emitting diodes. Three gallium nitride-on-silicon-based vertical light-emitting diodes using silicon nitride transparent conductive electrodes with high, medium, and low conducting filament densities were prepared with a reference vertical light-emitting diode using metal electrodes. This was carried to determine the optimal density of the conducting filaments in the proposed silicon nitride transparent conductive electrodes. In comparison, the vertical light-emitting diodes with a medium conducting filament density exhibited the lowest optical loss, direct ohmic behavior, and the best current injection and distribution over the entire n-type gallium nitride surface, leading to highly reliable light-emitting diode performance.

  15. Performance of GaN-on-Si-based vertical light-emitting diodes using silicon nitride electrodes with conducting filaments: correlation between filament density and device reliability.

    Science.gov (United States)

    Kim, Kyeong Heon; Kim, Su Jin; Lee, Tae Ho; Lee, Byeong Ryong; Kim, Tae Geun

    2016-08-01

    Transparent conductive electrodes with good conductivity and optical transmittance are an essential element for highly efficient light-emitting diodes. However, conventional indium tin oxide and its alternative transparent conductive electrodes have some trouble with a trade-off between electrical conductivity and optical transmittance, thus limiting their practical applications. Here, we present silicon nitride transparent conductive electrodes with conducting filaments embedded using the electrical breakdown process and investigate the dependence of the conducting filament density formed in the transparent conductive electrode on the device performance of gallium nitride-based vertical light-emitting diodes. Three gallium nitride-on-silicon-based vertical light-emitting diodes using silicon nitride transparent conductive electrodes with high, medium, and low conducting filament densities were prepared with a reference vertical light-emitting diode using metal electrodes. This was carried to determine the optimal density of the conducting filaments in the proposed silicon nitride transparent conductive electrodes. In comparison, the vertical light-emitting diodes with a medium conducting filament density exhibited the lowest optical loss, direct ohmic behavior, and the best current injection and distribution over the entire n-type gallium nitride surface, leading to highly reliable light-emitting diode performance. PMID:27505739

  16. Actinic keratosis

    Science.gov (United States)

    Solar keratosis; Sun-induced skin changes - keratosis; Keratosis - actinic (solar) ... laser treatment called photodynamic therapy Chemical peels Skin creams such as 5-fluorouracil (5-FU) and imiquimod

  17. Actin cytoskeleton regulates Hippo signaling.

    Directory of Open Access Journals (Sweden)

    Pradeep Reddy

    Full Text Available Hippo pathway controls the organ size by modulating cell proliferation and apoptosis. However, the upstream regulation of hippo signaling by actin cytoskeleton is not clear. To elucidate the role of actin as an upstream regulator of Hippo signaling, the levels of F (filamentous-actin in cells were elevated using jasplakinolide, an actin-stabilizing drug. Induction of F-actin formation in HeLa cells resulted in decreased phosphorylation of YAP, a key effector molecule for Hippo signaling. The activated YAP is localized to the cell nucleus and YAP increase was associated with increased expression of downstream CCN growth factors CCN1/CYR61 and CCN2/CTGF. The effect of the actin-stabilizing drug was blocked when YAP levels were suppressed in YAP "knock-down" cells. In summary, using an actin-stabilizing drug we show that actin cytoskeleton is one of the upstream regulators of Hippo signaling capable of activating YAP and increasing its downstream CCN growth factors.

  18. Branching of keratin intermediate filaments.

    Science.gov (United States)

    Nafeey, Soufi; Martin, Ines; Felder, Tatiana; Walther, Paul; Felder, Edward

    2016-06-01

    Keratin intermediate filaments (IFs) are crucial to maintain mechanical stability in epithelial cells. Since little is known about the network architecture that provides this stiffness and especially about branching properties of filaments, we addressed this question with different electron microscopic (EM) methods. Using EM tomography of high pressure frozen keratinocytes, we investigated the course of several filaments in a branching of a filament bundle. Moreover we found several putative bifurcations in individual filaments. To verify our observation we also visualized the keratin network in detergent extracted keratinocytes with scanning EM. Here bifurcations of individual filaments could unambiguously be identified additionally to bundle branchings. Interestingly, identical filament bifurcations were also found in purified keratin 8/18 filaments expressed in Escherichia coli which were reassembled in vitro. This excludes that an accessory protein contributes to the branch formation. Measurements of the filament cross sectional areas showed various ratios between the three bifurcation arms. This demonstrates that intermediate filament furcation is very different from actin furcation where an entire new filament is attached to an existing filament. Instead, the architecture of intermediate filament bifurcations is less predetermined and hence consistent with the general concept of IF formation. PMID:27039023

  19. Interface-induced two-step RESET for filament-based multi-level resistive memory

    Science.gov (United States)

    Yuan, Fang; Shen, Shanshan; Zhang, Zhigang; Pan, Liyang; Xu, Jun

    2016-03-01

    In this paper, a two-step RESET switching behavior of Ag/Al2O3/HfO2/Pt bilayer resistive random access memory (RRAM) devices is investigated. The interface between the two oxide layers is responsible for the special two-step RESET switching. When the conducting filaments have ruptured in the lower layer, the interface can protect the Ag ions of the filaments from breaking in the upper layer due to the trapped charges or defects at the interface. Therefore, a stable middle resistance state (MRS) is realized and the device exhibits a terrace-like I-V curve during the RESET operations. A filament-based switching mechanism combined with the electron hopping theory is proposed to explain the physical nature of the two-step RESET behavior. Furthermore, a good multi-level resistive switching performance with excellent endurance and retention reliability is obtained.

  20. Kinetic factors determining conducting filament formation in solid polymer electrolyte based planar devices

    Science.gov (United States)

    Krishnan, Karthik; Aono, Masakazu; Tsuruoka, Tohru

    2016-07-01

    Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength, and the reduction sites for precipitation. Different filament formations, resulting from unidirectional and dendritic growth behaviours, can be controlled by tuning specified parameters, which in turn improves the stability and performance of SPE-based devices.Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength

  1. Simvastatin enhances Rho/actin/cell rigidity pathway contributing to mesenchymal stem cells' osteogenic differentiation.

    Science.gov (United States)

    Tai, I-Chun; Wang, Yao-Hsien; Chen, Chung-Hwan; Chuang, Shu-Chun; Chang, Je-Ken; Ho, Mei-Ling

    2015-01-01

    Recent studies have indicated that statins induce osteogenic differentiation both in vitro and in vivo. The molecular mechanism of statin-stimulated osteogenesis is unknown. Activation of RhoA signaling increases cytoskeletal tension, which plays a crucial role in the osteogenic differentiation of mesenchymal stem cells. We thus hypothesized that RhoA signaling is involved in simvastatin-induced osteogenesis in bone marrow mesenchymal stem cells. We found that although treatment with simvastatin shifts localization of RhoA protein from the membrane to the cytosol, the treatment still activates RhoA dose-dependently because it reduces the association with RhoGDIα. Simvastatin also increased the expression of osteogenic proteins, density of actin filament, the number of focal adhesions, and cellular tension. Furthermore, disrupting actin cytoskeleton or decreasing cell rigidity by using chemical agents reduced simvastatin-induced osteogenic differentiation. In vivo study also confirms that density of actin filament is increased in simvastatin-induced ectopic bone formation. Our study is the first to demonstrate that maintaining intact actin cytoskeletons and enhancing cell rigidity are crucial in simvastatin-induced osteogenesis. The results suggested that simvastatin, which is an osteoinductive factor and acts by increasing actin filament organization and cell rigidity combined with osteoconductive biomaterials, may benefit stem-cell-based bone regeneration. PMID:26451103

  2. Polymerization of fluorescent analogue of plant actin in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Maize pollen actin has been labeled with Oregon Green 488 iodoacetamide. A yield of 3 mg fluorescent actin analogue has been obtained from 10 mg of maize pollen actin, which is 99% in purity and the dye/protein ratio is 72%. In the presence of Mg2+ and K+, the fluorescent actin analogue polymerized into filaments in vitro. Green fluorescent filaments were observed when the fluorescent actin was introduced into living plant cells by microinjection, indicating that the fluorescent actin analogue functions similarly to the native actin.

  3. CNS myelin wrapping is driven by actin disassembly.

    Science.gov (United States)

    Zuchero, J Bradley; Fu, Meng-Meng; Sloan, Steven A; Ibrahim, Adiljan; Olson, Andrew; Zaremba, Anita; Dugas, Jason C; Wienbar, Sophia; Caprariello, Andrew V; Kantor, Christopher; Leonoudakis, Dmitri; Leonoudakus, Dmitri; Lariosa-Willingham, Karen; Kronenberg, Golo; Gertz, Karen; Soderling, Scott H; Miller, Robert H; Barres, Ben A

    2015-07-27

    Myelin is essential in vertebrates for the rapid propagation of action potentials, but the molecular mechanisms driving its formation remain largely unknown. Here we show that the initial stage of process extension and axon ensheathment by oligodendrocytes requires dynamic actin filament assembly by the Arp2/3 complex. Unexpectedly, subsequent myelin wrapping coincides with the upregulation of actin disassembly proteins and rapid disassembly of the oligodendrocyte actin cytoskeleton and does not require Arp2/3. Inducing loss of actin filaments drives oligodendrocyte membrane spreading and myelin wrapping in vivo, and the actin disassembly factor gelsolin is required for normal wrapping. We show that myelin basic protein, a protein essential for CNS myelin wrapping whose role has been unclear, is required for actin disassembly, and its loss phenocopies loss of actin disassembly proteins. Together, these findings provide insight into the molecular mechanism of myelin wrapping and identify it as an actin-independent form of mammalian cell motility.

  4. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis.

    Science.gov (United States)

    Spracklen, Andrew J; Fagan, Tiffany N; Lovander, Kaylee E; Tootle, Tina L

    2014-09-15

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools--Utrophin, Lifeact, and F-tractin--for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling tool

  5. Actin based processes that could determine the cytoplasmic architecture of plant cells

    NARCIS (Netherlands)

    Honing, van der H.S.; Emons, A.M.C.; Ketelaar, M.J.

    2007-01-01

    Actin polymerisation can generate forces that are necessary for cell movement, such as the propulsion of a class of bacteria, including Listeria, and the protrusion of migrating animal cells. Force generation by the actin cytoskeleton in plant cells has not been studied. One process in plant cells t

  6. Non-lytic, actin-based exit of intracellular parasites from C. elegans intestinal cells.

    Directory of Open Access Journals (Sweden)

    Kathleen A Estes

    2011-09-01

    Full Text Available The intestine is a common site for invasion by intracellular pathogens, but little is known about how pathogens restructure and exit intestinal cells in vivo. The natural microsporidian parasite N. parisii invades intestinal cells of the nematode C. elegans, progresses through its life cycle, and then exits cells in a transmissible spore form. Here we show that N. parisii causes rearrangements of host actin inside intestinal cells as part of a novel parasite exit strategy. First, we show that N. parisii infection causes ectopic localization of the normally apical-restricted actin to the basolateral side of intestinal cells, where it often forms network-like structures. Soon after this actin relocalization, we find that gaps appear in the terminal web, a conserved cytoskeletal structure that could present a barrier to exit. Reducing actin expression creates terminal web gaps in the absence of infection, suggesting that infection-induced actin relocalization triggers gap formation. We show that terminal web gaps form at a distinct stage of infection, precisely timed to precede spore exit, and that all contagious animals exhibit gaps. Interestingly, we find that while perturbations in actin can create these gaps, actin is not required for infection progression or spore formation, but actin is required for spore exit. Finally, we show that despite large numbers of spores exiting intestinal cells, this exit does not cause cell lysis. These results provide insight into parasite manipulation of the host cytoskeleton and non-lytic escape from intestinal cells in vivo.

  7. The interaction between actin and FA fragment of diphtheria toxin

    OpenAIRE

    Ünlü, A.; Bektaş, M.; Şener, S.; Nurten, R.

    2012-01-01

    Actin protein has many other cellular functions such as movement, chemotaxis, secretion and cytodiaresis. Besides, it have structural function. Actin is a motor protein that it has an important role in the movement process of toxin in the cell. It is known that F-actin gives carriage support during the endosomal process. Actin is found in globular (G) and filamentous (F) structure in the cell. The helix of actin occurs as a result of polymerisation of monomeric G-actin molecules through seque...

  8. Molecular mechanical differences between isoforms of contractile actin in the presence of isoforms of smooth muscle tropomyosin.

    OpenAIRE

    Lennart Hilbert; Genevieve Bates; Roman, Horia N.; Jenna L Blumenthal; Zitouni, Nedjma B.; Apolinary Sobieszek; Mackey, Michael C.; Anne-Marie Lauzon

    2013-01-01

    The proteins involved in smooth muscle's molecular contractile mechanism - the anti-parallel motion of actin and myosin filaments driven by myosin heads interacting with actin - are found as different isoforms. While their expression levels are altered in disease states, their relevance to the mechanical interaction of myosin with actin is not sufficiently understood. Here, we analyzed in vitro actin filament propulsion by smooth muscle myosin for [Formula: see text]-actin ([Formula: see text...

  9. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks

    Science.gov (United States)

    Janmey, Paul A.; Hvidt, Søren; Lamb, Jennifer; Stossel, Thomas P.

    1990-05-01

    THE maintainance of the shape of cells is often due to their surface elasticity, which arises mainly from an actin-rich cytoplasmic cortex1,2. On locomotion, phagocytosis or fission, however, these cells become partially fluid-like. The finding of proteins that can bind to actin and control the assembly of, or crosslink, actin filaments, and of intracellular messages that regulate the activities of some of these actin-binding proteins, indicates that such 'gel sol' transformations result from the rearrangement of cortical actin-rich networks3. Alternatively, on the basis of a study of the mechanical properties of mixtures of actin filaments and an Acanthamoeba actin-binding protein, α-actinin, it has been proposed that these transformations can be accounted for by rapid exchange of crosslinks between actin filaments4: the cortical network would be solid when the deformation rate is greater than the rate of crosslink exchange, but would deform or 'creep' when deformation is slow enough to permit crosslinker molecules to rearrange. Here we report, however, that mixtures of actin filaments and actin-binding protein (ABP), an actin crosslinking protein of many higher eukaryotes, form gels Theologically equivalent to covalently crosslinked networks. These gels do not creep in response to applied stress on a time scale compatible with most cell-surface movements. These findings support a more complex and controlled mechanism underlying the dynamic mechanical properties of cortical cytoplasm, and can explain why cells do not collapse under the constant shear forces that often exist in tissues.

  10. Dynamic organization of actin cytoskeleton during the polarity formation and germination of pollen protoplasts

    Institute of Scientific and Technical Information of China (English)

    XU Xia; Zl Huijun; SUN Yina; REN Haiyun

    2004-01-01

    The formation of the polarity of pollen protoplast and the dynamics of actin cytoskeleton were observed by non-fixation, Alexa-Phalloidin probing and confocal laser scanning microscopy. Our results showed that the protoplast obtained from stored pollen contained numerous crystalline fusiform bodies to constitute a storage form of actin. When dormant pollen was hydrated, the actin cytoskeleton forms a fine network spreading uniformly in the protoplast. In the process of polarity formation and germination of pollen protoplast, actin filaments marshaled slowly to the brim, and then formed multilayer continuous actin filament bundles surrounding the cortical of the protoplast. When the protoplast was exposed to actin filament-disrupting drugs, such as Latrunculin A and Cytochalasin D, continuously arranged actin bundles were disturbed and in this condition, the protoplast could not germinate. But when exposed to actin filament stabiling drug-phalliodin, the dynamics of actin filaments in the protoplasts behaved normally and the protoplasts could germinate normally. These results were also confirmed by the pharmacology experiments on pollen grains. And when Latrunculin A or Cytochalasin D was washed off, the ratio of pollen germination was resumed partly. All the results above show that the dynamic organization of the actin cytoskeleton are critical in the cell polarity formation and germination of pollen protoplast, and that the reorganization of actin cytoskeleton is mainly due to the rearrangement of actin filament arrays.

  11. Multiple actin binding domains of Ena/VASP proteins determine actin network stiffening.

    Science.gov (United States)

    Gentry, Brian S; van der Meulen, Stef; Noguera, Philippe; Alonso-Latorre, Baldomero; Plastino, Julie; Koenderink, Gijsje H

    2012-11-01

    Vasodilator-stimulated phosphoprotein (Ena/VASP) is an actin binding protein, important for actin dynamics in motile cells and developing organisms. Though VASP's main activity is the promotion of barbed end growth, it has an F-actin binding site and can form tetramers, and so could additionally play a role in actin crosslinking and bundling in the cell. To test this activity, we performed rheology of reconstituted actin networks in the presence of wild-type VASP or mutants lacking the ability to tetramerize or to bind G-actin and/or F-actin. We show that increasing amounts of wild-type VASP increase network stiffness up to a certain point, beyond which stiffness actually decreases with increasing VASP concentration. The maximum stiffness is 10-fold higher than for pure actin networks. Confocal microscopy shows that VASP forms clustered actin filament bundles, explaining the reduction in network elasticity at high VASP concentration. Removal of the tetramerization site results in significantly reduced bundling and bundle clustering, indicating that VASP's flexible tetrameric structure causes clustering. Removing either the F-actin or the G-actin binding site diminishes VASP's effect on elasticity, but does not eliminate it. Mutating the F-actin and G-actin binding site together, or mutating the F-actin binding site and saturating the G-actin binding site with monomeric actin, eliminates VASP's ability to increase network stiffness. We propose that, in the cell, VASP crosslinking confers only moderate increases in linear network elasticity, and unlike other crosslinkers, VASP's network stiffening activity may be tuned by the local concentration of monomeric actin.

  12. A Role for Nuclear F-Actin Induction in Human Cytomegalovirus Nuclear Egress

    Science.gov (United States)

    Wilkie, Adrian R.; Lawler, Jessica L.

    2016-01-01

    ABSTRACT Herpesviruses, which include important pathogens, remodel the host cell nucleus to facilitate infection. This remodeling includes the formation of structures called replication compartments (RCs) in which herpesviruses replicate their DNA. During infection with the betaherpesvirus, human cytomegalovirus (HCMV), viral DNA synthesis occurs at the periphery of RCs within the nuclear interior, after which assembled capsids must reach the inner nuclear membrane (INM) for translocation to the cytoplasm (nuclear egress). The processes that facilitate movement of HCMV capsids to the INM during nuclear egress are unknown. Although an actin-based mechanism of alphaherpesvirus capsid trafficking to the INM has been proposed, it is controversial. Here, using a fluorescently-tagged, nucleus-localized actin-binding peptide, we show that HCMV, but not herpes simplex virus 1, strongly induced nuclear actin filaments (F-actin) in human fibroblasts. Based on studies using UV inactivation and inhibitors, this induction depended on viral gene expression. Interestingly, by 24 h postinfection, nuclear F-actin formed thicker structures that appeared by super-resolution microscopy to be bundles of filaments. Later in infection, nuclear F-actin primarily localized along the RC periphery and between the RC periphery and the nuclear rim. Importantly, a drug that depolymerized nuclear F-actin caused defects in production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization near the nuclear rim, without decreasing capsid accumulation in the nucleus. Thus, our results suggest that for at least one herpesvirus, nuclear F-actin promotes capsid movement to the nuclear periphery and nuclear egress. We discuss our results in terms of competing models for these processes. PMID:27555312

  13. Arginine ADP-ribosylation mechanism based on structural snapshots of iota-toxin and actin complex

    OpenAIRE

    Tsurumura, Toshiharu; Tsumori, Yayoi; Qiu, Hao; Oda, Masataka; Sakurai, Jun; Nagahama, Masahiro; Tsuge, Hideaki

    2012-01-01

    Clostridium perfringens iota-toxin (Ia) mono-ADP ribosylates Arg177 of actin, leading to cytoskeletal disorganization and cell death. To fully understand the reaction mechanism of arginine-specific mono-ADP ribosyl transferase, the structure of the toxin-substrate protein complex must be characterized. Recently, we solved the crystal structure of Ia in complex with actin and the nonhydrolyzable NAD+ analog βTAD (thiazole-4-carboxamide adenine dinucleotide); however, the structures of the NAD+...

  14. The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns.

    Directory of Open Access Journals (Sweden)

    Jessica L Henty-Ridilla

    Full Text Available Plants are constantly exposed to a large and diverse array of microbes; however, most plants are immune to the majority of potential invaders and susceptible to only a small subset of pathogens. The cytoskeleton comprises a dynamic intracellular framework that responds rapidly to biotic stresses and supports numerous fundamental cellular processes including vesicle trafficking, endocytosis and the spatial distribution of organelles and protein complexes. For years, the actin cytoskeleton has been assumed to play a role in plant innate immunity against fungi and oomycetes, based largely on static images and pharmacological studies. To date, however, there is little evidence that the host-cell actin cytoskeleton participates in responses to phytopathogenic bacteria. Here, we quantified the spatiotemporal changes in host-cell cytoskeletal architecture during the immune response to pathogenic and non-pathogenic strains of Pseudomonas syringae pv. tomato DC3000. Two distinct changes to host cytoskeletal arrays were observed that correspond to distinct phases of plant-bacterial interactions i.e. the perception of microbe-associated molecular patterns (MAMPs during pattern-triggered immunity (PTI and perturbations by effector proteins during effector-triggered susceptibility (ETS. We demonstrate that an immediate increase in actin filament abundance is a conserved and novel component of PTI. Notably, treatment of leaves with a MAMP peptide mimic was sufficient to elicit a rapid change in actin organization in epidermal cells, and this actin response required the host-cell MAMP receptor kinase complex, including FLS2, BAK1 and BIK1. Finally, we found that actin polymerization is necessary for the increase in actin filament density and that blocking this increase with the actin-disrupting drug latrunculin B leads to enhanced susceptibility of host plants to pathogenic and non-pathogenic bacteria.

  15. Actinic reticuloid

    Energy Technology Data Exchange (ETDEWEB)

    Marx, J.L.; Vale, M.; Dermer, P.; Ragaz, A.; Michaelides, P.; Gladstein, A.H.

    1982-09-01

    A 58-year-old man has his condition diagnosed as actinic reticuloid on the basis of clinical and histologic findings and phototesting data. He had clinical features resembling mycosis fungoides in light-exposed areas. Histologic findings disclosed a bandlike infiltrate with atypical mononuclear cells in the dermis and scattered atypical cells in the epidermis. Electron microscopy disclosed mononuclear cells with bizarre, convoluted nuclei, resembling cerebriform cells of Lutzner. Phototesting disclosed a diminished minimal erythemal threshold to UV-B and UV-A. Microscopic changes resembling actinic reticuloid were reproduced in this patient 24 and 72 hours after exposure to 15 minimal erythemal doses of UV-B.

  16. Structure-based analysis of high pressure adaptation of alpha-actin.

    Science.gov (United States)

    Morita, Takami

    2003-07-25

    Deep-sea fishes occur to depths of several thousand meters, and at these abyssal depths encounter pressures that shallower living fishes cannot tolerate. Tolerance of abyssal pressures by deep-sea fish is likely to depend in part on adaptive modifications of proteins. However, the types of structural modifications to proteins that allow function at high pressure have not been discovered. To elucidate the mechanisms of protein adaptation to high pressure, we cloned the alpha-skeletal actin cDNAs from two abyssal Coryphaenoides species, C. armatus and C. yaquinae, and identified three amino acid substitutions, V54A or L67P, Q137K, and A155S, that distinguish these abyssal actins from orthologs of alpha-actin from non-abyssal Coryphaenoides. These substitutions, Q137K and A155S, prevent the dissociation reactions of ATP and Ca2+ from being influenced by high pressure. In particular, the lysine residue at position 137 results in a much smaller apparent volume change in the Ca2+ dissociation reaction. The V54A or L67P substitution reduces the volume change associated with actin polymerization and has a role in maintaining the DNase I activity of actin at high pressure. Together, these results indicate that a few amino acid substitutions in key functional positions can adaptively alter the pressure sensitivity of a protein. PMID:12740368

  17. Prostaglandins temporally regulate cytoplasmic actin bundle formation during Drosophila oogenesis.

    Science.gov (United States)

    Spracklen, Andrew J; Kelpsch, Daniel J; Chen, Xiang; Spracklen, Cassandra N; Tootle, Tina L

    2014-02-01

    Prostaglandins (PGs)--lipid signals produced downstream of cyclooxygenase (COX) enzymes--regulate actin dynamics in cell culture and platelets, but their roles during development are largely unknown. Here we define a new role for Pxt, the Drosophila COX-like enzyme, in regulating the actin cytoskeleton--temporal restriction of actin remodeling during oogenesis. PGs are required for actin filament bundle formation during stage 10B (S10B). In addition, loss of Pxt results in extensive early actin remodeling, including actin filaments and aggregates, within the posterior nurse cells of S9 follicles; wild-type follicles exhibit similar structures at a low frequency. Hu li tai shao (Hts-RC) and Villin (Quail), an actin bundler, localize to all early actin structures, whereas Enabled (Ena), an actin elongation factor, preferentially localizes to those in pxt mutants. Reduced Ena levels strongly suppress early actin remodeling in pxt mutants. Furthermore, loss of Pxt results in reduced Ena localization to the sites of bundle formation during S10B. Together these data lead to a model in which PGs temporally regulate actin remodeling during Drosophila oogenesis by controlling Ena localization/activity, such that in S9, PG signaling inhibits, whereas at S10B, it promotes Ena-dependent actin remodeling.

  18. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast.

    Science.gov (United States)

    Miao, Yansong; Han, Xuemei; Zheng, Liangzhen; Xie, Ying; Mu, Yuguang; Yates, John R; Drubin, David G

    2016-01-01

    Actin cables, composed of actin filament bundles nucleated by formins, mediate intracellular transport for cell polarity establishment and maintenance. We previously observed that metaphase cells preferentially promote actin cable assembly through cyclin-dependent kinase 1 (Cdk1) activity. However, the relevant metaphase Cdk1 targets were not known. Here we show that the highly conserved actin filament crosslinking protein fimbrin is a critical Cdk1 target for actin cable assembly regulation in budding yeast. Fimbrin is specifically phosphorylated on threonine 103 by the metaphase cyclin-Cdk1 complex, in vivo and in vitro. On the basis of conformational simulations, we suggest that this phosphorylation stabilizes fimbrin's N-terminal domain, and modulates actin filament binding to regulate actin cable assembly and stability in cells. Overall, this work identifies fimbrin as a key target for cell cycle regulation of actin cable assembly in budding yeast, and suggests an underlying mechanism.

  19. Actin dynamics and the elasticity of cytoskeletal networks

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available The structural integrity of a cell depends on its cytoskeleton, which includes an actin network. This network is transient and depends upon the continual polymerization and depolymerization of actin. The degradation of an actin network, and a corresponding reduction in cell stiffness, can indicate the presence of disease. Numerical simulations will be invaluable for understanding the physics of these systems and the correlation between actin dynamics and elasticity. Here we develop a model that is capable of generating actin network structures. In particular, we develop a model of actin dynamics which considers the polymerization, depolymerization, nucleation, severing, and capping of actin filaments. The structures obtained are then fed directly into a mechanical model. This allows us to qualitatively assess the effects of changing various parameters associated with actin dynamics on the elasticity of the material.

  20. 2',3'-Cyclic nucleotide 3'-phosphodiesterase binds to actin-based cytoskeletal elements in an isoprenylation-independent manner.

    Science.gov (United States)

    De Angelis, D A; Braun, P E

    1996-09-01

    2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP) is an isoprenylated protein enriched in myelin and oligodendrocytes but also present in several other tissues at low levels. CNP binds avidly to membranes and in addition possesses several characteristics of cytoskeletal proteins. The role of isoprenylation in the association of CNP with the cytoskeleton was analyzed by ectopic expression in L cells of epitope-tagged CNP1 and a non-isoprenylated mutant CNP1. Using nonionic detergent extraction, drug-mediated cytoskeletal disruption, and coimmunoprecipitation with an anti-actin antibody, we show that CNP1 is associated with actin-based cytoskeletal elements independently of its isoprenylation status. A control protein, p21c-H-ras, which is also modified by isoprenylation at its carboxyl-terminus, does not bind to cytoskeletal structures as judged by the same criteria. We present a model that accounts for the association of CNP1 with membranes and the cytoskeleton. PMID:8752099

  1. Computer Simulations of Mechano-Chemical Networks Choreographing Actin Dynamics in Cell Motility

    Science.gov (United States)

    Zhuravlev, Pavel I.; Hu, Longhua; Papoian, Garegin A.

    In eukaryotic cells, cell motility is largely driven by self-assembly and growth of filamentous networks comprised of actin. Numerous proteins regulate actin network dynamics either biochemically, or through mechanical interactions. This regulation is rather complex, intricately coordinated both spatially and temporally. Although experiments in vivo and in vitro have provided a trove of structural and biochemical information about actin-based cell motility processes, experimental data is not always easy to interpret unambiguously, sometimes various interpretations being in contradiction with each other. Hence, mathematical modeling approaches are necessary for providing a physical foundation for interpreting and guiding experiments. In particular, computer simulations based on physicochemical interactions provide a systems-level description of protrusion dynamics. In this contribution, we review recent progress in modeling actin-based cell motility using detailed computer simulations. We elaborate on the way actin network dynamics is determined by the interplay between chemical reactions, mechanical feedbacks, and transport bottlenecks. We also discuss the role of inherent randomness of elementary chemical reactions in determining the dynamical behavior of the mechano-chemical network controlling actin polymerization and growth.

  2. Ultraviolet actinic flux in clear and cloudy atmospheres: model calculations and aircraft-based measurements

    Directory of Open Access Journals (Sweden)

    G. G. Palancar

    2011-01-01

    Full Text Available Ultraviolet (UV actinic fluxes measured with two Scanning Actinic Flux Spectroradiometers (SAFS aboard the NASA DC-8 aircraft are compared with the Tropospheric Ultraviolet-Visible (TUV model. The observations from 17 days in July–August 2004 (INTEX-NA field campaign span a wide range of latitudes (27.5° N–53.0° N, longitudes (45.1° W–139.5° W, altitudes (0.1–11.9 km, ozone columns (285.4–352.7 DU, and solar zenith angles (1.7°–85°. Both cloudy and cloud-free conditions were encountered. For cloud-free conditions, the ratio of observed to clear-sky-model actinic flux (integrated from 298 to 422 nm is 1.01±0.04, i.e. in good agreement with observations. The agreement improves to 1.00±0.03 for the down-welling component under clear sky conditions. In the presence of clouds, both down-welling and up-welling components show reductions or enhancements from clear sky values, depending on the position of the airplane relative to clouds. The correlations between up-welling and down-welling deviations are well reproduced with sensitivity studies using the TUV model, and are understood qualitatively with a simple conceptual model. This analysis of actinic flux observations illustrates opportunities for future evaluations of photolysis rates in three-dimensional chemistry-transport models.

  3. Actin puts the squeeze on Drosophila glue secretion.

    Science.gov (United States)

    Merrifield, Christien J

    2016-02-01

    An actin filament coat promotes cargo expulsion from large exocytosing vesicles, but the mechanisms of coat formation and force generation have been poorly characterized. Elegant imaging studies of the Drosophila melanogaster salivary gland now reveal how actin and myosin are recruited, and show that myosin II forms a contractile 'cage' that facilitates exocytosis.

  4. The Role of Actin-Capping Protein and Src signalling in tissue growth and apoptosis during Drosophila wing development

    OpenAIRE

    Jezowska, Barbara Zofia

    2012-01-01

    Dissertation presented to obtain the Ph.D degree in Developmental Biology The actin cytoskeleton controls numerous cellular processes, including cell morphology and polarity, endocytosis, intracellular trafficking, contractility and cell division. Actin filament growth, stability and disassembly are controlled by a plethora of actin-binding proteins. Among them Capping Protein is a highly conserved αβ heterodimer, which binds the barbed ends of actin filaments, inhibiting addit...

  5. The Drosophila formin Fhos is a primary mediator of sarcomeric thin-filament array assembly

    Science.gov (United States)

    Shwartz, Arkadi; Dhanyasi, Nagaraju; Schejter, Eyal D; Shilo, Ben-Zion

    2016-01-01

    Actin-based thin filament arrays constitute a fundamental core component of muscle sarcomeres. We have used formation of the Drosophila indirect flight musculature for studying the assembly and maturation of thin-filament arrays in a skeletal muscle model system. Employing GFP-tagged actin monomer incorporation, we identify several distinct phases in the dynamic construction of thin-filament arrays. This sequence includes assembly of nascent arrays after an initial period of intensive microfilament synthesis, followed by array elongation, primarily from filament pointed-ends, radial growth of the arrays via recruitment of peripheral filaments and continuous barbed-end turnover. Using genetic approaches we have identified Fhos, the single Drosophila homolog of the FHOD sub-family of formins, as a primary and versatile mediator of IFM thin-filament organization. Localization of Fhos to the barbed-ends of the arrays, achieved via a novel N-terminal domain, appears to be a critical aspect of its sarcomeric roles. DOI: http://dx.doi.org/10.7554/eLife.16540.001 PMID:27731794

  6. High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics

    Science.gov (United States)

    Beneyton, Thomas; Wijaya, I. Putu Mahendra; Postros, Prexilia; Najah, Majdi; Leblond, Pascal; Couvent, Angélique; Mayot, Estelle; Griffiths, Andrew D.; Drevelle, Antoine

    2016-06-01

    Filamentous fungi are an extremely important source of industrial enzymes because of their capacity to secrete large quantities of proteins. Currently, functional screening of fungi is associated with low throughput and high costs, which severely limits the discovery of novel enzymatic activities and better production strains. Here, we describe a nanoliter-range droplet-based microfluidic system specially adapted for the high-throughput sceening (HTS) of large filamentous fungi libraries for secreted enzyme activities. The platform allowed (i) compartmentalization of single spores in ~10 nl droplets, (ii) germination and mycelium growth and (iii) high-throughput sorting of fungi based on enzymatic activity. A 104 clone UV-mutated library of Aspergillus niger was screened based on α-amylase activity in just 90 minutes. Active clones were enriched 196-fold after a single round of microfluidic HTS. The platform is a powerful tool for the development of new production strains with low cost, space and time footprint and should bring enormous benefit for improving the viability of biotechnological processes.

  7. Arabidopsis AtADF1 is Functionally Affected by Mutations on Actin Binding Sites

    Institute of Scientific and Technical Information of China (English)

    Chun-Hai Dong; Wei-Ping Tang; Jia-Yao Liu

    2013-01-01

    The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin,and is directly involved in the depolymerization of actin filaments.To better understand the actin binding sites of the Arabidopsis thaliana L.AtADF1,we generated mutants of AtADF1 and investigated their functions in vitro and in vivo.Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α-helix 3 and forming an actin binding site together with the N-terminus are essential for both G-and F-actin binding.The basic residues on the β-strand 5 (K82/A) and the α-helix 4 (R135/A,R137/A) form another actin binding site that is important for F-actin binding.Using transient expression of CFP-tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L.plants overexpressing these mutants,we analyzed how these mutant proteins regulate actin organization and affect seedling growth.Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional,unless the affinity foractin monomers is also affected.The G-actin binding activity of the ADF plays an essential role in actin binding,depolymerization of actin polymers,and therefore in the control of actin organization.

  8. Uncorrelated multiple conductive filament nucleation and rupture in ultra-thin high-κ dielectric based resistive random access memory

    KAUST Repository

    Wu, Xing

    2011-08-29

    Resistive switching in transition metal oxides could form the basis for next-generation non-volatile memory (NVM). It has been reported that the current in the high-conductivity state of several technologically relevant oxide materials flows through localized filaments, but these filaments have been characterized only individually, limiting our understanding of the possibility of multiple conductive filaments nucleation and rupture and the correlation kinetics of their evolution. In this study, direct visualization of uncorrelated multiple conductive filaments in ultra-thin HfO2-based high-κ dielectricresistive random access memory (RRAM) device has been achieved by high-resolution transmission electron microscopy (HRTEM), along with electron energy loss spectroscopy(EELS), for nanoscale chemical analysis. The locations of these multiple filaments are found to be spatially uncorrelated. The evolution of these microstructural changes and chemical properties of these filaments will provide a fundamental understanding of the switching mechanism for RRAM in thin oxide films and pave way for the investigation into improving the stability and scalability of switching memory devices.

  9. Genetic Identification of Trichomonas vaginalis by Using the Actin Gene and Molecular Based Methods

    OpenAIRE

    Mohammad Matini; Sassan Rezaie; Mahdi Mohebali; Amir-Hossein Maghsood; Soghra Rabiee; Mohammad Fallah; Mostafa Rezaeian

    2014-01-01

    Background Trichomonas vaginalis is the agent of urogenital tract infection that causes human trichomoniasis with some serious health complications. More understanding about genetic features of the parasite can be helpful in the study of the pathogenesis, drug susceptibility and epidemiology of the infection. For this end, we conducted analysis of the actin gene of T. vaginalis by applying the PCR-SSCP (PCR-Single Stranded Conformational Polymorphism) and nucleotide sequencing method. Methods...

  10. Genetic Identification of Trichomonas vaginalis by Using the Actin Gene and Molecular Based Methods.

    Directory of Open Access Journals (Sweden)

    Mohammad Matini

    2014-09-01

    Full Text Available Trichomonas vaginalis is the agent of urogenital tract infection that causes human trichomoniasis with some serious health complications. More understanding about genetic features of the parasite can be helpful in the study of the pathogenesis, drug susceptibility and epidemiology of the infection. For this end, we conducted analysis of the actin gene of T. vaginalis by applying the PCR-SSCP (PCR-Single Stranded Conformational Polymorphism and nucleotide sequencing method.Fifty T. vaginalis samples were collected from 950 women attending gynecology clinics in two cities of Iran, Hamadan and Tehran, from November 2010 to July 2011. After axenisation of isolates, all samples subjected to PCR-SSCP and nucleotide sequencing.According to the SSCP banding patterns and nucleotide sequencing, seven sequence types were detected among the isolates. Alignment of the nucleotide sequences showed five polymorphic sites in the different strain types. Amino acid substitution was not observed in the nucleotide sequence translation of the all sequences.The actin gene analysis represents genetic diversity of T. vaginalis and it suggests that various strains can be responsible for clinically different trichomoniasis in infected individuals. It is expected that further studies will be conducted to increase our knowledge about relationship between the actin gene polymorphism and different biological behavior of the parasite.

  11. Spontaneous actin dynamics in contractile rings

    Science.gov (United States)

    Kruse, Karsten; Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Riveline, Daniel

    Networks of polymerizing actin filaments are known to be capable to self-organize into a variety of structures. For example, spontaneous actin polymerization waves have been observed in living cells in a number of circumstances, notably, in crawling neutrophils and slime molds. During later stages of cell division, they can also spontaneously form a contractile ring that will eventually cleave the cell into two daughter cells. We present a framework for describing networks of polymerizing actin filaments, where assembly is regulated by various proteins. It can also include the effects of molecular motors. We show that the molecular processes driven by these proteins can generate various structures that have been observed in contractile rings of fission yeast and mammalian cells. We discuss a possible functional role of each of these patterns. The work was supported by Agence Nationale de la Recherche, France, (ANR-10-LABX-0030-INRT) and by Deutsche Forschungsgemeinschaft through SFB1027.

  12. Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression

    Science.gov (United States)

    Scheuring, David; Löfke, Christian; Krüger, Falco; Kittelmann, Maike; Eisa, Ahmed; Hughes, Louise; Smith, Richard S.; Hawes, Chris; Schumacher, Karin; Kleine-Vehn, Jürgen

    2016-01-01

    The cytoskeleton is an early attribute of cellular life, and its main components are composed of conserved proteins. The actin cytoskeleton has a direct impact on the control of cell size in animal cells, but its mechanistic contribution to cellular growth in plants remains largely elusive. Here, we reveal a role of actin in regulating cell size in plants. The actin cytoskeleton shows proximity to vacuoles, and the phytohormone auxin not only controls the organization of actin filaments but also impacts vacuolar morphogenesis in an actin-dependent manner. Pharmacological and genetic interference with the actin–myosin system abolishes the effect of auxin on vacuoles and thus disrupts its negative influence on cellular growth. SEM-based 3D nanometer-resolution imaging of the vacuoles revealed that auxin controls the constriction and luminal size of the vacuole. We show that this actin-dependent mechanism controls the relative vacuolar occupancy of the cell, thus suggesting an unanticipated mechanism for cytosol homeostasis during cellular growth. PMID:26715743

  13. Thin Filament Structure and the Steric Blocking Model.

    Science.gov (United States)

    Lehman, William

    2016-04-01

    By interacting with the troponin-tropomyosin complex on myofibrillar thin filaments, Ca2+ and myosin govern the regulatory switching processes influencing contractile activity of mammalian cardiac and skeletal muscles. A possible explanation of the roles played by Ca2+ and myosin emerged in the early 1970s when a compelling "steric model" began to gain traction as a likely mechanism accounting for muscle regulation. In its most simple form, the model holds that, under the control of Ca2+ binding to troponin and myosin binding to actin, tropomyosin strands running along thin filaments either block myosin-binding sites on actin when muscles are relaxed or move away from them when muscles are activated. Evidence for the steric model was initially based on interpretation of subtle changes observed in X-ray fiber diffraction patterns of intact skeletal muscle preparations. Over the past 25 years, electron microscopy coupled with three-dimensional reconstruction directly resolved thin filament organization under many experimental conditions and at increasingly higher resolution. At low-Ca2+, tropomyosin was shown to occupy a "blocked-state" position on the filament, and switched-on in a two-step process, involving first a movement of tropomyosin away from the majority of the myosin-binding site as Ca2+ binds to troponin and then a further movement to fully expose the site when small numbers of myosin heads bind to actin. In this contribution, basic information on Ca2+-regulation of muscle contraction is provided. A description is then given relating the voyage of discovery taken to arrive at the present understanding of the steric regulatory model. PMID:27065174

  14. The Structural Basis of Actin Organization by Vinculin and Metavinculin.

    Science.gov (United States)

    Kim, Laura Y; Thompson, Peter M; Lee, Hyunna T; Pershad, Mihir; Campbell, Sharon L; Alushin, Gregory M

    2016-01-16

    Vinculin is an essential adhesion protein that links membrane-bound integrin and cadherin receptors through their intracellular binding partners to filamentous actin, facilitating mechanotransduction. Here we present an 8.5-Å-resolution cryo-electron microscopy reconstruction and pseudo-atomic model of the vinculin tail (Vt) domain bound to F-actin. Upon actin engagement, the N-terminal "strap" and helix 1 are displaced from the Vt helical bundle to mediate actin bundling. We find that an analogous conformational change also occurs in the H1' helix of the tail domain of metavinculin (MVt) upon actin binding, a muscle-specific splice isoform that suppresses actin bundling by Vt. These data support a model in which metavinculin tunes the actin bundling activity of vinculin in a tissue-specific manner, providing a mechanistic framework for understanding metavinculin mutations associated with hereditary cardiomyopathies. PMID:26493222

  15. Design, synthesis, and biological evaluation of simplified side chain hybrids of the potent actin binding polyketides rhizopodin and bistramide.

    Science.gov (United States)

    Herkommer, Daniel; Dreisigacker, Sandra; Sergeev, Galina; Sasse, Florenz; Gohlke, Holger; Menche, Dirk

    2015-03-01

    The natural products rhizopodin and bistramide belong to an elite class of highly potent actin binding agents. They show powerful antiproliferative activities against a range of tumor cell lines, with IC50 values in the low-nanomolar range. At the molecular level they disrupt the actin cytoskeleton by binding specifically to a few critical sites of G-actin, resulting in actin filament stabilization. The important biological properties of rhizopodin and bistramide, coupled with their unique and intriguing molecular architectures, render them attractive compounds for further development. However, this is severely hampered by the structural complexity of these metabolites. We initiated an interdisciplinary approach at the interface between molecular modeling, organic synthesis, and chemical biology to support further biological applications. We also wanted to expand structure-activity relationship studies with the goal of accessing simplified analogues with potent biological properties. We report computational analyses of actin-inhibitor interactions involving molecular docking, validated on known actin binding ligands, that show a close match between the crystal and modeled structures. Based on these results, the ligand shape was simplified, and more readily accessible rhizopodin-bistramide mimetics were designed. A flexible and modular strategy was applied for the synthesis of these compounds, enabling diverse access to dramatically simplified rhizopodin-bistramide hybrids. This novel analogue class was analyzed for its antiproliferative and actin binding properties. PMID:25641798

  16. Networks Models of Actin Dynamics during Spermatozoa Postejaculatory Life: A Comparison among Human-Made and Text Mining-Based Models.

    Science.gov (United States)

    Bernabò, Nicola; Ordinelli, Alessandra; Ramal Sanchez, Marina; Mattioli, Mauro; Barboni, Barbara

    2016-01-01

    Here we realized a networks-based model representing the process of actin remodelling that occurs during the acquisition of fertilizing ability of human spermatozoa (HumanMade_ActinSpermNetwork, HM_ASN). Then, we compared it with the networks provided by two different text mining tools: Agilent Literature Search (ALS) and PESCADOR. As a reference, we used the data from the online repository Kyoto Encyclopaedia of Genes and Genomes (KEGG), referred to the actin dynamics in a more general biological context. We found that HM_ALS and the networks from KEGG data shared the same scale-free topology following the Barabasi-Albert model, thus suggesting that the information is spread within the network quickly and efficiently. On the contrary, the networks obtained by ALS and PESCADOR have a scale-free hierarchical architecture, which implies a different pattern of information transmission. Also, the hubs identified within the networks are different: HM_ALS and KEGG networks contain as hubs several molecules known to be involved in actin signalling; ALS was unable to find other hubs than "actin," whereas PESCADOR gave some nonspecific result. This seems to suggest that the human-made information retrieval in the case of a specific event, such as actin dynamics in human spermatozoa, could be a reliable strategy. PMID:27642606

  17. Part I---Evaluating Effects of Oligomer Formation on Cytochrome P450 2C9 Electron Transfer and Drug Metabolism, Part II---Utilizing Molecular Modeling Techniques to Study the Src-Interacting Proteins Actin Filament Associated Protein of 110 kDa (AFAP-110) and Cortactin

    Science.gov (United States)

    Jett, John Edward, Jr.

    The dissertation has been divided into two parts to accurately reflect the two distinct areas of interest pursued during my matriculation in the School of Pharmacy at West Virginia University. In Part I, I discuss research probing the nature of electron transfer in the Cytochrome P450 family of proteins, a group of proteins well-known for their role in drug metabolism. In Part II, I focus on in silico and in vitro work developed in concert to probe protein structure and protein-protein interactions involved in actin filament reorganization and cellular motility. Part I. Cytochrome P450s (P450s) are an important class of enzymes known to metabolize a variety of endogenous and xenobiotic compounds. P450s are most commonly found in liver and intestinal endothelial cells and are responsible for the metabolism of approximately 75% of pharmaceutical drugs on the market. CYP2C9---one of the six major P450 isoforms---is responsible for ˜20% of drug metabolism. Elucidation of the factors that affect in vitro drug metabolism is crucial to the accurate prediction of in vivo drug metabolism kinetics. Currently, the two major techniques for studying in vitro drug metabolism are solution-based. However, it is known that the results of solution-based studies can vary from in vivo drug metabolism. One reason suggested to account for this variation is the state of P450 oligomer formation in solution compared to the in vivo environment, where P450s are membrane-bound. To understand the details of how oligomer formation affects in vitro drug metabolism, it is imperative that techniques be developed which will allow for the unequivocal control of oligomer formation without altering other experimental parameters. Our long term goal of this research is to develop methods to more accurately predict in vivo drug metabolism from in vitro data. This section of the dissertation will discuss the development of a platform consisting of a doped silicon surface containing a large array of gold

  18. Automatic optimal filament segmentation with sub-pixel accuracy using generalized linear models and B-spline level-sets.

    Science.gov (United States)

    Xiao, Xun; Geyer, Veikko F; Bowne-Anderson, Hugo; Howard, Jonathon; Sbalzarini, Ivo F

    2016-08-01

    Biological filaments, such as actin filaments, microtubules, and cilia, are often imaged using different light-microscopy techniques. Reconstructing the filament curve from the acquired images constitutes the filament segmentation problem. Since filaments have lower dimensionality than the image itself, there is an inherent trade-off between tracing the filament with sub-pixel accuracy and avoiding noise artifacts. Here, we present a globally optimal filament segmentation method based on B-spline vector level-sets and a generalized linear model for the pixel intensity statistics. We show that the resulting optimization problem is convex and can hence be solved with global optimality. We introduce a simple and efficient algorithm to compute such optimal filament segmentations, and provide an open-source implementation as an ImageJ/Fiji plugin. We further derive an information-theoretic lower bound on the filament segmentation error, quantifying how well an algorithm could possibly do given the information in the image. We show that our algorithm asymptotically reaches this bound in the spline coefficients. We validate our method in comprehensive benchmarks, compare with other methods, and show applications from fluorescence, phase-contrast, and dark-field microscopy. PMID:27104582

  19. Formins: Bringing new insights to the organization of actin cytoskeleton

    Institute of Scientific and Technical Information of China (English)

    GUO Chunqing; REN Haiyun

    2006-01-01

    The actin cytoskeleton is an important component of eukaryotic cell cytoskeleton and is temporally and spatially controlled by a series of actin binding proteins (ABPs). Among ABPs, formin family proteins have attracted much attention as they can nucleate unbranched actin filament from the profilin bound actin pool in vivo. In recent years, a number of formin family members from different organisms have been reported, and their characteristics are known more clearly, although some questions are still to be clarified. Here, we summarize the structures, functions and nucleation mechanisms of different formin family proteins, intending to compare them and give some new clues to the study of formins.

  20. Mechanical force-induced polymerization and depolymerization of F-actin at water/solid interfaces

    Science.gov (United States)

    Zhang, Xueqiang; Hu, Xiuyuan; Lei, Haozhi; Hu, Jun; Zhang, Yi

    2016-03-01

    Actin molecules are among the three main cytoskeleton proteins of cells and undergo rapid cycling to regulate critical processes such as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. Although extensive studies have been carried out on the dynamics as well as biological functions of actin polymerization and depolymerization both in vivo and in vitro, the molecular mechanisms by which cells sense and respond to mechanical signals are not fully understood. In particular, little attention has been paid to the effect of a physical force that is exerted directly on the actin cytoskeleton. In this paper, we have explored how the mechanical force affects the actin polymerization and depolymerization behaviors at water/solid interfaces using an atomic force microscope (AFM) operated in liquid. By raster scanning an AFM probe on a substrate surface with a certain load, it was found that actin monomers could polymerize into filaments without the help of actin related proteins (ARPs). Further study indicated that actin monomers were inclined to form filaments only under a small scanning load. The polymerized actin filaments would be depolymerized when the mechanical force was stronger. A possible mechanism has been suggested to explain the mechanical force induced actin polymerization.Actin molecules are among the three main cytoskeleton proteins of cells and undergo rapid cycling to regulate critical processes such as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. Although extensive studies have been carried out on the dynamics as well as biological functions of actin polymerization and depolymerization both in vivo and in vitro, the molecular mechanisms by which cells sense and respond to mechanical signals are not fully understood. In particular, little attention has been paid to the effect of a physical force that is exerted directly on the actin cytoskeleton. In this paper, we have explored how the mechanical force affects the actin

  1. Drosophila Fascin is a novel downstream target of prostaglandin signaling during actin remodeling

    OpenAIRE

    Groen, Christopher M.; Spracklen, Andrew J.; Fagan, Tiffany N.; Tootle, Tina L.

    2012-01-01

    Although prostaglandins (PGs)—lipid signals produced downstream of cyclooxygenase (COX) enzymes—regulate actin cytoskeletal dynamics, their mechanisms of action are unknown. We previously established Drosophila oogenesis, in particular nurse cell dumping, as a new model to determine how PGs regulate actin remodeling. PGs, and thus the Drosophila COX-like enzyme Pxt, are required for both the parallel actin filament bundle formation and the cortical actin strengthening required for dumping. He...

  2. Threshold energies for filamentation and spectral characteristics of supercontinuum generation in THEOS-based nanocomposite organosilicon media

    Energy Technology Data Exchange (ETDEWEB)

    Kul' chin, Yu N; Mayor, A Yu; Proschenko, D Yu; Chekhlenok, A A; Golik, S S [Institute for Automation and Control Processes, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok (Russian Federation); Postnova, I V; Shchipunov, Yu A [Institute of Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok (Russian Federation); Bukin, O A [G.I. Nevelskoi Maritime State University, Vladivostok (Russian Federation)

    2014-08-31

    We have experimentally determined the threshold energy for filamentation in THEOS-based hybrid silicate nanocomposite materials containing polysaccharides and hyperbranched polyglycidols and the conversion efficiency from the 800-nm femtosecond Ti : sapphire laser output to a supercontinuum in the range 420 – 700 nm. The addition of sodium hyaluronate (polysaccharide) and low concentrations of Au nanoparticles or CdS quantum dots with an average diameter of 3 – 5 nm has been shown to considerably reduce the threshold energy for filamentation and improve the laser output to supercontinuum conversion efficiency. (extreme light fields and their applications)

  3. Crystal structure of an archaeal actin homolog.

    Science.gov (United States)

    Roeben, Annette; Kofler, Christine; Nagy, István; Nickell, Stephan; Hartl, F Ulrich; Bracher, Andreas

    2006-04-21

    Prokaryotic homologs of the eukaryotic structural protein actin, such as MreB and ParM, have been implicated in determination of bacterial cell shape, and in the segregation of genomic and plasmid DNA. In contrast to these bacterial actin homologs, little is known about the archaeal counterparts. As a first step, we expressed a predicted actin homolog of the thermophilic archaeon Thermoplasma acidophilum, Ta0583, and determined its crystal structure at 2.1A resolution. Ta0583 is expressed as a soluble protein in T.acidophilum and is an active ATPase at physiological temperature. In vitro, Ta0583 forms sheets with spacings resembling the crystal lattice, indicating an inherent propensity to form filamentous structures. The fold of Ta0583 contains the core structure of actin and clearly belongs to the actin/Hsp70 superfamily of ATPases. Ta0583 is approximately equidistant from actin and MreB on the structural level, and combines features from both eubacterial actin homologs, MreB and ParM. The structure of Ta0583 co-crystallized with ADP indicates that the nucleotide binds at the interface between the subdomains of Ta0583 in a manner similar to that of actin. However, the conformation of the nucleotide observed in complex with Ta0583 clearly differs from that in complex with actin, but closely resembles the conformation of ParM-bound nucleotide. On the basis of sequence and structural homology, we suggest that Ta0583 derives from a ParM-like actin homolog that was once encoded by a plasmid and was transferred into a common ancestor of Thermoplasma and Ferroplasma. Intriguingly, both genera are characterized by the lack of a cell wall, and therefore Ta0583 could have a function in cellular organization.

  4. Crossing Filaments

    CERN Document Server

    Filippov, Boris

    2011-01-01

    Solar filaments show the position of large scale polarity inversion lines and are used for the reconstruction of large-scale solar magnetic field structure on the basis of H{\\alpha} synoptic charts for the periods when magnetographic measurements were not available. Sometimes crossing filaments are seen in H{\\alpha} filtergrams. We analyze daily H{\\alpha} filtergrams from the archive of Big Bear Solar Observatory for the period of 1999-2003 to find crossing and interacting filaments. A number of examples are presented and filament patterns are compared with photospheric magnetic field distributions. We have found that all crossing filaments reveal quadrupolar magnetic configurations of the photospheric field and presume the presence of null points in the corona.

  5. Dimeric WH2 repeats of VopF sequester actin monomers into non-nucleating linear string conformations: An X-ray scattering study.

    Science.gov (United States)

    Avvaru, Balendu Sankara; Pernier, Julien; Carlier, Marie-France

    2015-05-01

    VopF and VopL are highly similar virulence-factors of Vibrio cholerae and Vibrio parahaemolyticus respectively that disrupt the host's actin cytoskeleton, using a unique organization in dimerized WH2 repeats. Association of dimerized WH2 domains with the barbed face of actin confers multifunctional activities to VopF in vitro, including G-actin sequestration and filament nucleation, barbed end tracking and uncapping. Here, small angle X-ray scattering (SAXS) measurements of complexes of VopF with actin and structural modeling reveal that VopF stabilizes linear actin-strings that differ from canonical actin filament architectures but represent non-polymerizable sequestered forms of actin. The results exclude that VopL binds the pointed end of actin filaments in the template filament nucleation mechanism derived from crystallographic studies. PMID:25818509

  6. Drosophila Dachsous and Fat polarize actin-based protrusions over a restricted domain of the embryonic denticle field.

    Science.gov (United States)

    Lawlor, Kynan T; Ly, Daniel C; DiNardo, Stephen

    2013-11-15

    Atypical cadherins Dachsous (Ds) and Fat coordinate the establishment of planar polarity, essential for the patterning of complex tissues and organs. The precise mechanisms by which this system acts, particularly in cases where Ds and Fat act independently of the 'core' frizzled system, are still the subject of investigation. Examining the deployment of the Ds-Fat system in different tissues of the model organism Drosophila, has provided insights into the general mechanisms by which polarity is established and propagated to coordinate outcomes across a field of cells. The Drosophila embryonic epidermis provides a simple model epithelia where the establishment of polarity can be observed from start to finish, and in the absence of proliferation, over a fixed number of cells. Using the asymmetric placement of f-actin during denticle assembly as a read-out of polarity, we examine the requirement for Ds and Fat in establishing polarity across the denticle field. Comparing detailed phenotypic analysis with steady state protein enrichment revealed a spatially restricted requirement for the Ds-Fat system within the posterior denticle field. Ectopic Ds signaling provides evidence for a model whereby Ds acts to asymmetrically enrich Fat in a neighboring cell, in turn polarizing the cell to specify the position of the actin-based protrusions at the cell cortex.

  7. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  8. Regulation of Actin Dynamics in Pollen Tubes: Control of Actin Polymer Level

    Institute of Scientific and Technical Information of China (English)

    Naizhi Chen; Xiaolu Qu; Youjun Wu; Shanjin Huang

    2009-01-01

    Actin cytoskeleton undergoes rapid reorganization In response to internal and external cues. How the dynamics of actin cytoskeleton are regulated, and how its dynamics relate to its function are fundamental questions inplant cell biology. The pollen tube is a well characterized actin-based call morphogenesis in plants. One of the striking features of actin cytoskeleton characterized in the pollen tube is its surprisingly low level of actin polymer. This special phenomenon might relate to the function of actin cytoskeleton in pollen tubes. Understanding the molecular mechanism underlying this special phenomenon requires careful analysis of actin-binding proteins that modulate actin dynamics directly. Recent biochemical and biophysical analyses of several highly conserved plant actin-binding proteins reveal unusual and un-expected properties, which emphasizes the importance of carefully analyzing their action mechanism and cellular activity. In this review, we highlight an actin monomer sequestering protein, a barbed end capping protein and an F-actin severing and dynamizing protein in plant. We propose that these proteins function in harmony to regulate actin dynamics and maintain the low level of actin polymer in pollen tubes.

  9. A two-segment model for thin filament architecture in skeletal muscle.

    Science.gov (United States)

    Gokhin, David S; Fowler, Velia M

    2013-02-01

    Correct specification of myofilament length is essential for efficient skeletal muscle contraction. The length of thin actin filaments can be explained by a novel 'two-segment' model, wherein the thin filaments consist of two concatenated segments, which are of either constant or variable length. This is in contrast to the classic 'nebulin ruler' model, which postulates that thin filaments are uniform structures, the lengths of which are dictated by nebulin. The two-segment model implicates position-specific microregulation of actin dynamics as a general principle underlying actin filament length and stability.

  10. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling.

    Science.gov (United States)

    Melocchi, Alice; Parietti, Federico; Maroni, Alessandra; Foppoli, Anastasia; Gazzaniga, Andrea; Zema, Lucia

    2016-07-25

    Fused deposition modeling (FDM) is a 3D printing technique based on the deposition of successive layers of thermoplastic materials following their softening/melting. Such a technique holds huge potential for the manufacturing of pharmaceutical products and is currently under extensive investigation. Challenges in this field are mainly related to the paucity of adequate filaments composed of pharmaceutical grade materials, which are needed for feeding the FDM equipment. Accordingly, a number of polymers of common use in pharmaceutical formulation were evaluated as starting materials for fabrication via hot melt extrusion of filaments suitable for FDM processes. By using a twin-screw extruder, filaments based on insoluble (ethylcellulose, Eudragit(®) RL), promptly soluble (polyethylene oxide, Kollicoat(®) IR), enteric soluble (Eudragit(®) L, hydroxypropyl methylcellulose acetate succinate) and swellable/erodible (hydrophilic cellulose derivatives, polyvinyl alcohol, Soluplus(®)) polymers were successfully produced, and the possibility of employing them for printing 600μm thick disks was demonstrated. The behavior of disks as barriers when in contact with aqueous fluids was shown consistent with the functional application of the relevant polymeric components. The produced filaments were thus considered potentially suitable for printing capsules and coating layers for immediate or modified release, and, when loaded with active ingredients, any type of dosage forms. PMID:27215535

  11. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling.

    Science.gov (United States)

    Melocchi, Alice; Parietti, Federico; Maroni, Alessandra; Foppoli, Anastasia; Gazzaniga, Andrea; Zema, Lucia

    2016-07-25

    Fused deposition modeling (FDM) is a 3D printing technique based on the deposition of successive layers of thermoplastic materials following their softening/melting. Such a technique holds huge potential for the manufacturing of pharmaceutical products and is currently under extensive investigation. Challenges in this field are mainly related to the paucity of adequate filaments composed of pharmaceutical grade materials, which are needed for feeding the FDM equipment. Accordingly, a number of polymers of common use in pharmaceutical formulation were evaluated as starting materials for fabrication via hot melt extrusion of filaments suitable for FDM processes. By using a twin-screw extruder, filaments based on insoluble (ethylcellulose, Eudragit(®) RL), promptly soluble (polyethylene oxide, Kollicoat(®) IR), enteric soluble (Eudragit(®) L, hydroxypropyl methylcellulose acetate succinate) and swellable/erodible (hydrophilic cellulose derivatives, polyvinyl alcohol, Soluplus(®)) polymers were successfully produced, and the possibility of employing them for printing 600μm thick disks was demonstrated. The behavior of disks as barriers when in contact with aqueous fluids was shown consistent with the functional application of the relevant polymeric components. The produced filaments were thus considered potentially suitable for printing capsules and coating layers for immediate or modified release, and, when loaded with active ingredients, any type of dosage forms.

  12. Identification of sucrose synthase as an actin-binding protein

    Science.gov (United States)

    Winter, H.; Huber, J. L.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    Several lines of evidence indicate that sucrose synthase (SuSy) binds both G- and F-actin: (i) presence of SuSy in the Triton X-100-insoluble fraction of microsomal membranes (i.e. crude cytoskeleton fraction); (ii) co-immunoprecipitation of actin with anti-SuSy monoclonal antibodies; (iii) association of SuSy with in situ phalloidin-stabilized F-actin filaments; and (iv) direct binding to F-actin, polymerized in vitro. Aldolase, well known to interact with F-actin, interfered with binding of SuSy, suggesting that a common or overlapping binding site may be involved. We postulate that some of the soluble SuSy in the cytosol may be associated with the actin cytoskeleton in vivo.

  13. Transition to superdiffusive behavior in intracellular actin-based transport mediated by molecular motors

    CERN Document Server

    Bruno, L; Brunstein, M; Despósito, M A

    2009-01-01

    Intracellular transport of large cargoes, such as organelles, vesicles or large proteins, is a complex dynamical process that involves the interplay of ATP-consuming molecular motors, cytoskeleton filaments and the viscoelastic cytoplasm. The displacements of particles or probes in the cell cytoplasm as a function of time are characterized by different (anomalous) diffusion regimes. We investigate here the motion of pigment organelles (melanosomes) driven by myosin-V motors in \\emph{Xenopus laevis} melanocytes using a high spatio-temporal resolution tracking technique. By analyzing the mean square displacement (MSD) of the obtained trajectories as a function of the time lag, we show that the melanosomes display a transition between subdiffusive to superdiffusive behavior. A stochastic theoretical model is introduced to generalize the interpretation of our data. Starting from a generalized Langevin equation that explicitly considers the collective action of the molecular motors we derive an analytical expressi...

  14. A molecular model of phosphorylation-based activation and potentiation of tarantula muscle thick filaments

    OpenAIRE

    Brito, Reicy; Alamo, Lorenzo; Lundberg, Ulf; Guerrero, José R.; Pinto, Antonio; Sulbarán, Guidenn; Gawinowicz, Mary Ann; Craig, Roger; Padrón, Raúl

    2011-01-01

    Myosin filaments from many muscles are activated by phosphorylation of their regulatory light chains (RLCs). To elucidate the structural mechanism of activation, we have studied RLC phosphorylation in tarantula thick filaments, whose high resolution structure is known. In the relaxed state, tarantula RLCs are ~50% non- and 50% mono-phosphorylated, while on activation mono-phosphorylation increases and some RLCs become bi-phosphorylated. Mass spectrometry shows that relaxed-state mono-phosphor...

  15. A numerical study of multi filament formation in metal-ion based CBRAM

    Directory of Open Access Journals (Sweden)

    Dan Berco

    2016-02-01

    Full Text Available This study investigates the underlying mechanisms of multiple conductive filaments (CF creation in metal-ion based conductive bridge RRAM (CBRAM by using the Metropolis Monte Carlo algorithm and suggests a possible explanation for this phenomenon. The simulation method is demonstrated over a Cu/HfO2 structure, starting from a random initial distribution of oxygen vacancies (OV defects in the resistive switching layer, to a formed CF and ending in a ruptured state. the results indicate that “Hot Spots” (HS, where agglomeration of OV trap like states for electron hopping based conduction induce local heating, create favorable energy conditions to attract diffused metal species originating from the top electrode. While HS may be created and annihilated by random OV generation and recombination processes, the precipitated metal forms a stem out of which a CF could evolve. The CF stem’s final growth stage is mainly driven by drift and diffusion. This process may lead to the formation of one or more CFs as a function of the forming bias voltage. This bias dependence is demonstrated over a large range, where the creation of a single, double and multiple CFs are shown. In addition, the reset process of the multi CF device is presented, and the experimentally observed, step like, gradual CBRAM reset is verified. The simulated results are in good agreement with experimental data and promote the idea that OV defect engineering may be used to improve CBRAM performance.

  16. Helical filaments

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Nicholas; Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin [Townes Laser Institute, CREOL—The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Hosseinimakarem, Zahra; Johnson, Eric [Micro-Photonics Laboratory – Center for Optical Material Science, Clemson, Anderson, South Carolina 29634 (United States)

    2014-06-30

    The shaping of laser-induced filamenting plasma channels into helical structures by guiding the process with a non-diffracting beam is demonstrated. This was achieved using a Bessel beam superposition to control the phase of an ultrafast laser beam possessing intensities sufficient to induce Kerr effect driven non-linear self-focusing. Several experimental methods were used to characterize the resulting beams and confirm the observed structures are laser air filaments.

  17. Mechanical Properties of Re-constituted Actin Networks at an Oil/Water Interface Determined by Microrheology

    NARCIS (Netherlands)

    Ershov, D.S.; Cohen Stuart, M.A.; Gucht, van der J.

    2012-01-01

    There have been various attempts to investigate the mechanical properties of the actin cortex in cells, but the factors that control them remain poorly understood. To make progress, we develop a reconstituted model of the actin cortex that mimics its structure. We attach actin filaments to lipids li

  18. Fabry-P\\'erot based Narrow Band Imager for Solar Filament Observations

    CERN Document Server

    Dhara, Sajal Kumar; Banyal, Ravinder Kumar

    2015-01-01

    We have recently developed a narrow band imager (NBI) using an air gap based Fabry-P\\'erot (FP) interferometer at the Indian Institute of Astrophysics, Bangalore. Narrow band imaging is achieved by using an FP interferometer working in combination with an order sorting pre-filter. The NBI can be tuned to a different wavelength position on the line profile by changing the plate separation of the FP. The interferometer has a 50 mm clear aperture with a bandpass of $\\sim$247.8 m\\AA and a free spectral range of $\\sim$5.3\\AA at $\\lambda$ = 656.3 nm. The developed NBI is used to observe the solar filament in the H$\\alpha$ wavelength. The instrument is being used to image the Sun at chromospheric height and it is also able to scan the H$\\alpha$ spectral line profile at different wavelength positions. We have also made Doppler velocity maps at chromospheric height by taking the blue and red wing images at $\\pm$176 m\\AA wavelength positions separately away from the line center of the spectral line. In this paper, we p...

  19. A Neural Network Gravitational Arc Finder Based on the Mediatrix Filamentation Method

    CERN Document Server

    Bom, C R; Albuquerque, M P; Brandt, C H

    2016-01-01

    Automated arc detection methods are needed to scan the ongoing and next-generation wide-field imaging surveys, which are expected to contain thousands of strong lensing systems. Arc finders are also required for a quantitative comparison between predictions and observations of arc abundance. Several algorithms have been proposed to this end, but machine learning methods have remained as a relatively unexplored step in the arc finding process. In this work we introduce a new arc finder based on pattern-recognition, which uses a set of morphological measurements derived from the Mediatrix Filamentation Method (Bom et al. 2016) as entries to an Artificial Neural Network (ANN). We show a full example of the application of the arc finder, first training and validating the ANN on simulated arcs and then applying the code on 4 Hubble Space Telescope (HST) images of strong lensing systems.The simulated arcs use simple prescriptions for the lens and the source, while mimicking HST observational conditions. We also con...

  20. Deafness and espin-actin self-organization in stereocilia

    Science.gov (United States)

    Wong, Gerard C. L.

    2009-03-01

    Espins are F-actin-bundling proteins associated with large parallel actin bundles found in hair cell stereocilia in the ear, as well as brush border microvilli and Sertoli cell junctions. We examine actin bundle structures formed by different wild-type espin isoforms, fragments, and naturally-occurring human espin mutants linked to deafness and/or vestibular dysfunction. The espin-actin bundle structure consisted of a hexagonal arrangement of parallel actin filaments in a non-native twist state. We delineate the structural consequences caused by mutations in espin's actin-bundling module. For espin mutation with a severely damaged actin-bundling module, which are implicated in deafness in mice and humans, oriented nematic-like actin filament structures, which strongly impinges on bundle mechanical stiffness. Finally, we examine what makes espin different, via a comparative study of bundles formed by espin and those formed by fascin, a prototypical bundling protein found in functionally different regions of the cell, such as filopodia.

  1. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Bjørnar Sporsheim

    2015-12-01

    Full Text Available Volatile allyl isothiocyanate (AITC derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER, vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system.

  2. Quantifying protein diffusion and capture on filaments

    CERN Document Server

    Reithmann, Emanuel; Frey, Erwin

    2015-01-01

    The functional relevance of regulating proteins is often limited to specific binding sites such as the ends of microtubules or actin-filaments. A localization of proteins on these functional sites is of great importance. We present a quantitative theory for a diffusion and capture process, where proteins diffuse on a filament and stop diffusing when reaching the filament's end. It is found that end-association after one-dimensional diffusion is the main source for tip-localization of such proteins. As a consequence, diffusion and capture is highly efficient in enhancing the reaction velocity of enzymatic reactions, where proteins and filament ends are to each other as enzyme and substrate. We show that the reaction velocity can effectively be described within a Michaelis-Menten framework. Together one-dimensional diffusion and capture beats the (three-dimensional) Smoluchowski diffusion limit for the rate of protein association to filament ends.

  3. Fertilization in Torenia fournieri: actin organization and nuclear behavior in the central cell and primary endosperm

    Institute of Scientific and Technical Information of China (English)

    YUAN; Ming(袁明); FU; Ying(傅缨); WANG; Feng(王凤); HUANG; Bingquan(黄炳权); Sze-Yong; Zee(徐是雄); Peter; K.Hepler

    2002-01-01

    Studies of the living embryo sacs of Torenia fournieri reveal that the actin cytoskeleton undergoes dramatic changes that correlate with nuclear migration within the central cell and the primary endosperm. Before pollination, actin filaments appear as short bundles randomly distributed in the cortex of the central cell. Two days after anthesis, they become organized into a distinct actin network. At this stage the secondary nucleus, which is located in the central region of the central cell, possesses an associated array of short actin filaments. Soon after pollination, the actin filaments become fragmented in the micropylar end and the secondary nucleus is located next to the egg apparatus. After fertilization, the primary endosperm nucleus moves away from the egg cell and actin filaments reorganize into a prominent network in the cytoplasm of the primary endosperm. Disruption of the actin cytoskeleton with latrunculin A and cytochalasin B indicates that actin is involved in the migration of the nucleus in the central cell. Our data also suggest that the dynamics of actin cytoskeleton may be responsible for the reorganization of the central cell and primary endosperm cytoplasm during fertilization.

  4. Cell elasticity is regulated by the tropomyosin isoform composition of the actin cytoskeleton.

    Science.gov (United States)

    Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Stehn, Justine R; Bryce, Nicole S; Whan, Renee M; Hardeman, Edna C; Fath, Thomas; Schevzov, Galina; Gunning, Peter W

    2015-01-01

    The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments.

  5. Regimes of wave type patterning driven by refractory actin feedback: transition from static polarization to dynamic wave behaviour

    International Nuclear Information System (INIS)

    Patterns of waves, patches, and peaks of actin are observed experimentally in many living cells. Models of this phenomenon have been based on the interplay between filamentous actin (F-actin) and its nucleation promoting factors (NPFs) that activate the Arp2/3 complex. Here we present an alternative biologically-motivated model for F-actin-NPF interaction based on properties of GTPases acting as NPFs. GTPases (such as Cdc42, Rac) are known to promote actin nucleation, and to have active membrane-bound and inactive cytosolic forms. The model is a natural extension of a previous mathematical mini-model of small GTPases that generates static cell polarization. Like other modellers, we assume that F-actin negative feedback shapes the observed patterns by suppressing the trailing edge of NPF-generated wave-fronts, hence localizing the activity spatially. We find that our NPF-actin model generates a rich set of behaviours, spanning a transition from static polarization to single pulses, reflecting waves, wave trains, and oscillations localized at the cell edge. The model is developed with simplicity in mind to investigate the interaction between nucleation promoting factor kinetics and negative feedback. It explains distinct types of pattern initiation mechanisms, and identifies parameter regimes corresponding to distinct behaviours. We show that weak actin feedback yields static patterning, moderate feedback yields dynamical behaviour such as travelling waves, and strong feedback can lead to wave trains or total suppression of patterning. We use a recently introduced nonlinear bifurcation analysis to explore the parameter space of this model and predict its behaviour with simulations validating those results. (paper)

  6. Modeling of an Optical Sensor Based on Whispering Gallery Modes (WGMs) on the Surface Guiding Layer of Glass Filaments

    OpenAIRE

    Xianfeng Chen; Lei Shi; Wei Tan

    2008-01-01

    A ring-resonator-based refractive index sensor is proposed in this paper. Glass filaments with surface guiding layers created by ion exchange are crossed with a fiber taper to act as a ring resonator sensor. Theoretical simulation of the sensor response is proposed, and optimization of structural parameters including thickness and refractive index of the surface guiding layer and the diameter of the ring resonator for higher sensitivity is investigated. Results show that a detection limit of ...

  7. Enhanced filament ablation of metals based on plasma grating in air

    Directory of Open Access Journals (Sweden)

    Di Wang

    2015-09-01

    Full Text Available We demonstrate efficient ablation of metals with filamentary plasma grating generated by two intense blue femtosecond filaments and a third focused infrared pulse. This scheme leads to significant promotion of ablation efficiency on metal targets in air in comparison with single infrared or blue filament with equal pulse energy. The reason is that the blue plasma grating firstly provides stronger intensity and a higher density of background electrons, then the delayed infrared pulse accelerates local electrons inside the plasma grating. These two processes finally results in robustly increased electron density and highly ionized metallic atoms.

  8. Viscoelastic properties of actin-coated membranes

    Science.gov (United States)

    Helfer, E.; Harlepp, S.; Bourdieu, L.; Robert, J.; Mackintosh, F. C.; Chatenay, D.

    2001-02-01

    In living cells, cytoskeletal filaments interact with the plasma membrane to form structures that play a key role in cell shape and mechanical properties. To study the interaction between these basic components, we designed an in vitro self-assembled network of actin filaments attached to the outer surface of giant unilamellar vesicles. Optical tweezers and single-particle tracking experiments are used to study the rich dynamics of these actin-coated membranes (ACM). We show that microrheology studies can be carried out on such an individual microscopic object. The principle of the experiment consists in measuring the thermally excited position fluctuations of a probe bead attached biochemically to the membrane. We propose a model that relates the power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of the actin network modifies strongly the membrane dynamics with respect to a fluid, lipid bilayer one. It induces first a finite (ω=0) two-dimensional (2D) shear modulus G02D~0.5 to 5 μN/m in the membrane plane. Moreover, the frequency dependence at high frequency of the shear modulus [G'2D(f )~f0.85+/-0.07] and of the bending modulus (κACM(f)~f0.55+/-0.21) demonstrate the viscoelastic behavior of the composite membrane. These results are consistent with a common exponent of 0.75 for both moduli as expected from our model and from prior measurements on actin solutions.

  9. Regulation of actin cytoskeleton architecture by Eps8 and Abi1

    Directory of Open Access Journals (Sweden)

    Miller Jeffrey R

    2005-10-01

    Full Text Available Abstract Background The actin cytoskeleton participates in many fundamental processes including the regulation of cell shape, motility, and adhesion. The remodeling of the actin cytoskeleton is dependent on actin binding proteins, which organize actin filaments into specific structures that allow them to perform various specialized functions. The Eps8 family of proteins is implicated in the regulation of actin cytoskeleton remodeling during cell migration, yet the precise mechanism by which Eps8 regulates actin organization and remodeling remains elusive. Results Here, we show that Eps8 promotes the assembly of actin rich filopodia-like structures and actin cables in cultured mammalian cells and Xenopus embryos, respectively. The morphology of actin structures induced by Eps8 was modulated by interactions with Abi1, which stimulated formation of actin cables in cultured cells and star-like structures in Xenopus. The actin stars observed in Xenopus animal cap cells assembled at the apical surface of epithelial cells in a Rac-independent manner and their formation was accompanied by recruitment of N-WASP, suggesting that the Eps8/Abi1 complex is capable of regulating the localization and/or activity of actin nucleators. We also found that Eps8 recruits Dishevelled to the plasma membrane and actin filaments suggesting that Eps8 might participate in non-canonical Wnt/Polarity signaling. Consistent with this idea, mis-expression of Eps8 in dorsal regions of Xenopus embryos resulted in gastrulation defects. Conclusion Together, these results suggest that Eps8 plays multiple roles in modulating actin filament organization, possibly through its interaction with distinct sets of actin regulatory complexes. Furthermore, the finding that Eps8 interacts with Dsh and induced gastrulation defects provides evidence that Eps8 might participate in non-canonical Wnt signaling to control cell movements during vertebrate development.

  10. The actin binding protein adseverin regulates osteoclastogenesis.

    Science.gov (United States)

    Hassanpour, Siavash; Jiang, Hongwei; Wang, Yongqiang; Kuiper, Johannes W P; Glogauer, Michael

    2014-01-01

    Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG). Ads is induced during OCG downstream of RANK-ligand (RANKL) stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW) macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion. PMID:25275604

  11. The actin binding protein adseverin regulates osteoclastogenesis.

    Directory of Open Access Journals (Sweden)

    Siavash Hassanpour

    Full Text Available Adseverin (Ads, a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG. Ads is induced during OCG downstream of RANK-ligand (RANKL stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion.

  12. A coarse-grained model to study calcium activation of the cardiac thin filament

    Science.gov (United States)

    Zhang, Jing; Schwartz, Steven

    2015-03-01

    Familial hypertrophic cardiomyopathy (FHC) is one of the most common heart disease caused by genetic mutations. Cardiac muscle contraction and relaxation involve regulation of crossbridge binding to the cardiac thin filament, which regulates actomyosin interactions through calcium-dependent alterations in the dynamics of cardiac troponin (cTn) and tropomyosin (Tm). An atomistic model of cTn complex interacting with Tm has been studied by our group. A more realistic model requires the inclusion of the dynamics of actin filament, which is almost 6 times larger than cTn and Tm in terms of atom numbers, and extensive sampling of the model becomes very resource-demanding. By using physics-based protein united-residue force field, we introduce a coarse-grained model to study the calcium activation of the thin filament resulting from cTn's allosteric regulation of Tm dynamics on actin. The time scale is much longer than that of all-atom molecular dynamics simulation because of the reduction of the degrees of freedom. The coarse-grained model is a good template for studying cardiac thin filament mutations that cause FHC, and reduces the cost of computational resources.

  13. Internal Motility in Stiffening Actin-Myosin Networks

    OpenAIRE

    Uhde, Joerg; Keller, Manfred; Sackmann, Erich; Parmeggiani, Andrea; Frey, Erwin

    2003-01-01

    We present a study on filamentous actin solutions containing heavy meromyosin subfragments of myosin II motor molecules. We focus on the viscoelastic phase behavior and internal dynamics of such networks during ATP depletion. Upon simultaneously using micro-rheology and fluorescence microscopy as complementary experimental tools, we find a sol-gel transition accompanied by a sudden onset of directed filament motion. We interpret the sol-gel transition in terms of myosin II enzymology, and sug...

  14. Simultaneous recordings of force and sliding movement between a myosin-coated glass microneedle and actin cables in vitro.

    OpenAIRE

    Chaen, S; Oiwa, K; Shimmen, T; Iwamoto, H; Sugi, H

    1989-01-01

    To elucidate the molecular mechanism of muscle contraction resulting from the ATP-dependent actin-myosin interaction, we constructed an assay system with which both the force and the movement produced by the actin-myosin interaction in vitro can be simultaneously recorded and analyzed. The assay system consisted of the giant internodal cells of an alga, Nitellopsis obtusa, which contain well-organized arrays of actin filaments (actin cables) running along the cell long axis, and a glass micro...

  15. Vital role for the Plasmodium actin capping protein (CP) beta-subunit in motility of malaria sporozoites

    OpenAIRE

    Ganter, Markus; Schüler, Herwig; Matuschewski, Kai

    2009-01-01

    Successful malaria transmission from the mosquito vector to the mammalian host depends crucially on active sporozoite motility. Sporozoite locomotion and host cell invasion are driven by the parasite's own actin/myosin motor. A unique feature of this motor machinery is the presence of very short subpellicular actin filaments. Therefore, F-actin stabilizing proteins likely play a central role in parasite locomotion. Here, we investigated the role of the Plasmodium berghei actin capping protein...

  16. The Arabidopsis Wave Complex: Mechanisms Of Localized Actin Polymerization And Growth

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Szymanski

    2012-10-23

    The objective of this project was to discover the protein complexes and control mechanisms that determine the location of actin filament roadways in plant cells. Our work provided the first molecular description of protein complexes that are converted from inactive complexes to active actin filament nucleators in the cell. These discoveries provided a conceptual framework to control to roadways in plant cells that determine the location and delivery of plant metabolites and storage molecules that are relevant to the bioenergy economy.

  17. Actin-Dynamics in Plant Cells: The Function of Actin Perturbing Substances Jasplakinolide, Chondramides, Phalloidin, Cytochalasins, and Latrunculins

    Science.gov (United States)

    Holzinger, Andreas; Blaas, Kathrin

    2016-01-01

    This chapter will give an overview of the most common F-actin perturbing substances, that are used to study actin dynamics in living plant cells in studies on morphogenesis, motility, organelle movement or when apoptosis has to be induced. These substances can be divided into two major subclasses – F-actin stabilizing and polymerizing substances like jasplakinolide, chondramides and F-actin severing compounds like chytochalasins and latrunculins. Jasplakinolide was originally isolated form a marine sponge, and can now be synthesized and has become commercially available, which is responsible for its wide distribution as membrane permeable F-actin stabilizing and polymerizing agent, which may even have anti-cancer activities. Cytochalasins, derived from fungi show an F-actin severing function and many derivatives are commercially available (A, B, C, D, E, H, J), also making it a widely used compound for F-actin disruption. The same can be stated for latrunculins (A, B), derived from red sea sponges, however the mode of action is different by binding to G-actin and inhibiting incorporation into the filament. In the case of swinholide a stable complex with actin dimers is formed resulting also in severing of F-actin. For influencing F-actin dynamics in plant cells only membrane permeable drugs are useful in a broad range. We however introduce also the phallotoxins and synthetic derivatives, as they are widely used to visualize F-actin in fixed cells. A particular uptake mechanism has been shown for hepatocytes, but has also been described in siphonal giant algae. In the present chapter the focus is set on F-actin dynamics in plant cells where alterations in cytoplasmic streaming can be particularly well studied; however methods by fluorescence applications including phalloidin- and antibody staining as well as immunofluorescence-localization of the inhibitor drugs are given. PMID:26498789

  18. Modelling the Peak Elongation of Nylon6 and Fe Powder Based Composite Wire for FDM Feedstock Filament

    Science.gov (United States)

    Garg, Harish Kumar; Singh, Rupinder

    2016-06-01

    In the present work, to increase the application domain of fused deposition modelling (FDM) process, Nylon6-Fe powder based composite wire has been prepared as feed stock filament. Further for smooth functioning of feed stock filament without any change in the hardware and software of the commercial FDM setup, the mechanical properties of the newly prepared composite wire must be comparable/at par to the existing material i.e. ABS, P-430. So, keeping this in consideration; an effort has been made to model the peak elongation of in house developed feedstock filament comprising of Nylon6 and Fe powder (prepared on single screw extrusion process) for commercial FDM setup. The input parameters of single screw extruder (namely: barrel temperature, temperature of the die, speed of the screw, speed of the winding machine) and rheological property of material (melt flow index) has been modelled with peak elongation as the output by using response surface methodology. For validation of model the result of peak elongation obtained from the model equation the comparison was made with the results of actual experimentation which shows the variation of ±1 % only.

  19. An unconventional form of actin in protozoan hemoflagellate, Leishmania.

    Science.gov (United States)

    Kapoor, Prabodh; Sahasrabuddhe, Amogh A; Kumar, Ashutosh; Mitra, Kalyan; Siddiqi, Mohammad Imran; Gupta, Chhitar M

    2008-08-15

    Leishmania actin was cloned, overexpressed in baculovirus-insect cell system, and purified to homogeneity. The purified protein polymerized optimally in the presence of Mg2+ and ATP, but differed from conventional actins in its following properties: (i) it did not polymerize in the presence of Mg2+ alone, (ii) it polymerized in a restricted range of pH 7.0-8.5, (iii) its critical concentration for polymerization was found to be 3-4-fold lower than of muscle actin, (iv) it predominantly formed bundles rather than single filaments at pH 8.0, (v) it displayed considerably higher ATPase activity during polymerization, (vi) it did not inhibit DNase-I activity, and (vii) it did not bind the F-actin-binding toxin phalloidin or the actin polymerization disrupting agent Latrunculin B. Computational and molecular modeling studies revealed that the observed unconventional behavior of Leishmania actin is related to the diverged amino acid stretches in its sequence, which may lead to changes in the overall charge distribution on its solvent-exposed surface, ATP binding cleft, Mg2+ binding sites, and the hydrophobic loop that is involved in monomer-monomer interactions. Phylogenetically, it is related to ciliate actins, but to the best of our knowledge, no other actin with such unconventional properties has been reported to date. It is therefore suggested that actin in Leishmania may serve as a novel target for design of new antileishmanial drugs. PMID:18539603

  20. Plant pathogenic bacteria target the actin microfilament network involved in the trafficking of disease defense components.

    Science.gov (United States)

    Jelenska, Joanna; Kang, Yongsung; Greenberg, Jean T

    2014-01-01

    Cells of infected organisms transport disease defense-related molecules along actin filaments to deliver them to their sites of action to combat the pathogen. To accommodate higher demand for intracellular traffic, plant F-actin density increases transiently during infection or treatment of Arabidopsis with pathogen-associated molecules. Many animal and plant pathogens interfere with actin polymerization and depolymerization to avoid immune responses. Pseudomonas syringae, a plant extracellular pathogen, injects HopW1 effector into host cells to disrupt the actin cytoskeleton and reduce vesicle movement in order to elude defense responses. In some Arabidopsis accessions, however, HopW1 is recognized and causes resistance via an actin-independent mechanism. HopW1 targets isoform 7 of vegetative actin (ACT7) that is regulated by phytohormones and environmental factors. We hypothesize that dynamic changes of ACT7 filaments are involved in plant immunity. PMID:25551177

  1. Inhibiting actin depolymerization enhances osteoblast differentiation and bone formation in human stromal stem cells

    DEFF Research Database (Denmark)

    Chen, Li; Shi, Kaikai; Frary, Charles Edward;

    2015-01-01

    Remodeling of the actin cytoskeleton through actin dynamics is involved in a number of biological processes, but its role in human stromal (skeletal) stem cells (hMSCs) differentiation is poorly understood. In the present study, we demonstrated that stabilizing actin filaments by inhibiting gene...... expression of the two main actin depolymerizing factors (ADFs): Cofilin 1 (CFL1) and Destrin (DSTN) in hMSCs, enhanced cell viability and differentiation into osteoblastic cells (OB) in vitro, as well as heterotopic bone formation in vivo. Similarly, treating hMSC with Phalloidin, which is known to stabilize...... polymerized actin filaments, increased hMSCs viability and OB differentiation. Conversely, Cytocholasin D, an inhibitor of actin polymerization, reduced cell viability and inhibited OB differentiation of hMSC. At a molecular level, preventing Cofilin phosphorylation through inhibition of LIM domain kinase 1...

  2. Feedback Interactions of Polymerized Actin with the Cell Membrane: Waves, Pulses, and Oscillations

    Science.gov (United States)

    Carlsson, Anders

    Polymerized filaments of the protein actin have crucial functions in cell migration, and in bending the cell membrane to drive endocytosis or the formation of protrusions. The nucleation and polymerization of actin filaments are controlled by upstream agents in the cell membrane, including nucleation-promoting factors (NPFs) that activate the Arp2/3 complex to form new branches on pre-existing filaments. But polymerized actin (F-actin) also feeds back on the assembly of NPFs. We explore the effects of the resulting feedback loop of F-actin and NPFs on two phenomena: actin pulses that drive endocytosis in yeast, and actin waves traveling along the membrane of several cell types. In our model of endocytosis in yeast, the actin network is grown explicitly in three dimensions, exerts a negative feedback interaction on localized patch of NPFs in the membrane, and bends the membrane by exerting a distribution of forces. This model explains observed actin and NPF pulse dynamics, and the effects of several interventions including i) NPF mutations, ii) inhibition of actin polymerization, and iii) deletion of a protein that allows F-actin to bend the cell membrane. The model predicts that mutation of the active region of an NPF will enhance the accumulation of that NPF, and we confirm this prediction by quantitative fluorescence microscopy. For actin waves, we treat a similar model, with NPFs distributed over a larger region of the cell membrane. This model naturally generates actin waves, and predicts a transition from wave behavior to spatially localized oscillations when NPFs are confined to a small region. We also predict a transition from waves to static polarization as the negative-feedback coupling between F-actin and the NPFs is reduced. Supported by NIGMS Grant R01 GM107667.

  3. Aspects of plant cell growth and the actin cytoskeleton: lessons from root hairs

    NARCIS (Netherlands)

    Ruijter, de N.C.A.

    1999-01-01

    The main topic the thesis addresses is the role of the actin cytoskeleton in the growth process of plant cells. Plant growth implies a combination of cell division and cell expansion. The cytoskeleton, which exists of microtubules and actin filaments, plays a major role in both processes. Before cel

  4. Changes in actin dynamics are involved in salicylic acid signaling pathway.

    Science.gov (United States)

    Matoušková, Jindřiška; Janda, Martin; Fišer, Radovan; Sašek, Vladimír; Kocourková, Daniela; Burketová, Lenka; Dušková, Jiřina; Martinec, Jan; Valentová, Olga

    2014-06-01

    Changes in actin cytoskeleton dynamics are one of the crucial players in many physiological as well as non-physiological processes in plant cells. Positioning of actin filament arrays is necessary for successful establishment of primary lines of defense toward pathogen attack, depolymerization leads very often to the enhanced susceptibility to the invading pathogen. On the other hand it was also shown that the disruption of actin cytoskeleton leads to the induction of defense response leading to the expression of PATHOGENESIS RELATED proteins (PR). In this study we show that pharmacological actin depolymerization leads to the specific induction of genes in salicylic acid pathway but not that involved in jasmonic acid signaling. Life imaging of leafs of Arabidopsis thaliana with GFP-tagged fimbrin (GFP-fABD2) treated with 1 mM salicylic acid revealed rapid disruption of actin filaments resembling the pattern viewed after treatment with 200 nM latrunculin B. The effect of salicylic acid on actin filament fragmentation was prevented by exogenous addition of phosphatidic acid, which binds to the capping protein and thus promotes actin polymerization. The quantitative evaluation of actin filament dynamics is also presented.

  5. Internal Motility in Stiffening Actin-Myosin Networks

    CERN Document Server

    Uhde, J; Sackmann, E; Parmeggiani, A; Frey, E; Uhde, Joerg; Keller, Manfred; Sackmann, Erich; Parmeggiani, Andrea; Frey, Erwin

    2003-01-01

    We present a study on filamentous actin solutions containing heavy meromyosin subfragments of myosin II motor molecules. We focus on the viscoelastic phase behavior and internal dynamics of such networks during ATP depletion. Upon simultaneously using micro-rheology and fluorescence microscopy as complementary experimental tools, we find a sol-gel transition accompanied by a sudden onset of directed filament motion. We interpret the sol-gel transition in terms of myosin II enzymology, and suggest a "zipping" mechanism to explain the filament motion in the vicinity of the sol-gel transition.

  6. Intermediate filaments in small configuration spaces.

    Science.gov (United States)

    Nöding, Bernd; Köster, Sarah

    2012-02-24

    Intermediate filaments play a key role in cell mechanics. Apart from their great importance from a biomedical point of view, they also act as a very suitable micrometer-sized model system for semiflexible polymers. We perform a statistical analysis of the thermal fluctuations of individual filaments confined in microchannels. The small channel width and the resulting deflections at the walls give rise to a reduction of the configuration space by about 2 orders of magnitude. This circumstance enables us to precisely measure the intrinsic persistence length of vimentin intermediate filaments and to show that they behave as ideal wormlike chains; we observe that small fluctuations in perpendicular planes decouple. Furthermore, the inclusion of results for confined actin filaments demonstrates that the Odijk confinement regime is valid over at least 1 order of magnitude in persistence length. PMID:22463576

  7. TWISTED DWARF1 Mediates the Action of Auxin Transport Inhibitors on Actin Cytoskeleton Dynamics.

    Science.gov (United States)

    Zhu, Jinsheng; Bailly, Aurelien; Zwiewka, Marta; Sovero, Valpuri; Di Donato, Martin; Ge, Pei; Oehri, Jacqueline; Aryal, Bibek; Hao, Pengchao; Linnert, Miriam; Burgardt, Noelia Inés; Lücke, Christian; Weiwad, Matthias; Michel, Max; Weiergräber, Oliver H; Pollmann, Stephan; Azzarello, Elisa; Mancuso, Stefano; Ferro, Noel; Fukao, Yoichiro; Hoffmann, Céline; Wedlich-Söldner, Roland; Friml, Jiří; Thomas, Clément; Geisler, Markus

    2016-04-01

    Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity. PMID:27053424

  8. Filament theory based WORM memory devices using aluminum/poly(9-vinylcarbazole)/aluminum structures.

    Science.gov (United States)

    Suresh, Aswin; Krishnakumar, Govind; Namboothiry, Manoj A G

    2014-07-14

    Spin coated poly(N-vinylcarbazole) (PVK) sandwiched between thermally evaporated aluminum (Al) electrodes on a glass substrate showed unipolar Write Once Read Many times (WORM) characteristics. The pristine devices were in the low resistance ON state exhibiting ohmic behavior and at a voltage near -2 V, they switched abruptly to the high resistance OFF state showing space charge limited current (SCLC). We suggest that the rupturing of metallic filaments due to Joule heating may explain the effect. The WORM devices exhibited an ON/OFF ratio of 10(8), a retention of 1000 s and an endurance of ∼10(6) cycles in both ON and OFF states. PMID:24888392

  9. Reversibility and Viscoelastic Properties of Micropillar Supported and Oriented Magnesium Bundled F-Actin.

    Directory of Open Access Journals (Sweden)

    Timo Maier

    Full Text Available Filamentous actin is one of the most important cytoskeletal elements. Not only is it responsible for the elastic properties of many cell types, but it also plays a vital role in cellular adhesion and motility. Understanding the bundling kinetics of actin filaments is important in the formation of various cytoskeletal structures, such as filopodia and stress fibers. Utilizing a unique pillar-structured microfluidic device, we investigated the time dependence of bundling kinetics of pillar supported free-standing actin filaments. Microparticles attached to the filaments allowed the measurement of thermal motion, and we found that bundling takes place at lower concentrations than previously found in 3-dimensional actin gels, i.e. actin filaments formed bundles in the presence of 5-12 mM of magnesium chloride in a time-dependent manner. The filaments also displayed long term stability for up to hours after removing the magnesium ions from the buffer, which suggests that there is an extensive hysteresis between cation induced crosslinking and decrosslinking.

  10. Myosin filament sliding through the Z-disc relates striated muscle fibre structure to function.

    Science.gov (United States)

    Rode, Christian; Siebert, Tobias; Tomalka, Andre; Blickhan, Reinhard

    2016-03-16

    Striated muscle contraction requires intricate interactions of microstructures. The classic textbook assumption that myosin filaments are compressed at the meshed Z-disc during striated muscle fibre contraction conflicts with experimental evidence. For example, myosin filaments are too stiff to be compressed sufficiently by the muscular force, and, unlike compressed springs, the muscle fibres do not restore their resting length after contractions to short lengths. Further, the dependence of a fibre's maximum contraction velocity on sarcomere length is unexplained to date. In this paper, we present a structurally consistent model of sarcomere contraction that reconciles these findings with the well-accepted sliding filament and crossbridge theories. The few required model parameters are taken from the literature or obtained from reasoning based on structural arguments. In our model, the transition from hexagonal to tetragonal actin filament arrangement near the Z-disc together with a thoughtful titin arrangement enables myosin filament sliding through the Z-disc. This sliding leads to swivelled crossbridges in the adjacent half-sarcomere that dampen contraction. With no fitting of parameters required, the model predicts straightforwardly the fibre's entire force-length behaviour and the dependence of the maximum contraction velocity on sarcomere length. Our model enables a structurally and functionally consistent view of the contractile machinery of the striated fibre with possible implications for muscle diseases and evolution.

  11. Regular cellular distribution of plasmids by oscillating and filament-forming ParA ATPase of plasmid pB171

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Ringgaard, Simon; Møller-Jensen, Jakob;

    2006-01-01

    with each other in a bacterial two-hybrid assay but do not interact with FtsZ, eight other essential cell division proteins or MreB actin. Based on these observations, we propose a simple model for how oscillating ParA filaments can mediate regular cellular distribution of plasmids. The model functions...... without the involvement of partition-specific host cell receptors and is thus consistent with the striking observation that partition loci can function in heterologous host organisms....

  12. Regular Cellular Distribution of Plasmids by Oscillating and Filament-forming ParA ATPase of Plasmid pB171

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Ringgaard, Simon; Møller-Jensen, Jakob;

    2006-01-01

    with each other in a bacterial two-hybrid assay but do not interact with FtsZ, eight other essential cell division proteins or MreB actin. Based on these observations, we propose a simple model for how oscillating ParA filaments can mediate regular cellular distribution of plasmids. The model functions...... without the involvement of partition-specific host cell receptors and is thus consistent with the striking observation that partition loci can function in heterologous host organisms....

  13. A dynamin-actin interaction is required for vesicle scission during endocytosis in yeast.

    Science.gov (United States)

    Palmer, Sarah E; Smaczynska-de Rooij, Iwona I; Marklew, Christopher J; Allwood, Ellen G; Mishra, Ritu; Johnson, Simeon; Goldberg, Martin W; Ayscough, Kathryn R

    2015-03-30

    Actin is critical for endocytosis in yeast cells, and also in mammalian cells under tension. However, questions remain as to how force generated through actin polymerization is transmitted to the plasma membrane to drive invagination and scission. Here, we reveal that the yeast dynamin Vps1 binds and bundles filamentous actin. Mutational analysis of Vps1 in a helix of the stalk domain identifies a mutant RR457-458EE that binds actin more weakly. In vivo analysis of Vps1 function demonstrates that the mutation disrupts endocytosis but not other functions of Vps1 such as vacuolar trafficking or peroxisome fission. The mutant Vps1 is stably expressed in cells and co-localizes with the endocytic reporters Abp1 and the amphiphysin Rvs167. Detailed analysis of individual endocytic patch behavior indicates that the mutation causes aberrant movements in later stages of endocytosis, consistent with a scission defect. Ultrastructural analysis of yeast cells using electron microscopy reveals a significant increase in invagination depth, further supporting a role for the Vps1-actin interaction during scission. In vitro analysis of the mutant protein demonstrates that--like wild-type Vps1--it is able to form oligomeric rings, but, critically, it has lost its ability to bundle actin filaments into higher-order structures. A model is proposed in which actin filaments bind Vps1 during invagination, and this interaction is important to transduce the force of actin polymerization to the membrane to drive successful scission.

  14. Towards the theoretical bases of the folding of the 100-A nucleosome filament

    International Nuclear Information System (INIS)

    We attempt to model DNA packaging at the various stages of ever increasing DNA folding from the 100-A nucleosome filament to various further stages leading up to the metaphase chromosome. We have assumed that a phase transition has induced chromatin into a condensed mode. The mean-field model allows the simultaneous discussion of chromatin with packaging ration η and DNA replication at various stages of folding. We derive a formula correlating (during the S phase of the cell cycle) the DNA polymerase velocity rf (measured in nucleotides per minute) in a relation of inverse proportionality with the degree of DNA packaging: rf = λη-1/2, where the dimensional constant λ has been determined. This model suggests that in the heterochromatic regions of chromatin there is reduced activity of DNA polymerases. We discuss the possible relevance of our model to late replicating telomeres in yeast and several higher eukaryotes. (author). 28 refs, 3 tabs

  15. Nanosecond electric pulses trigger actin responses in plant cells

    International Nuclear Information System (INIS)

    We have analyzed the cellular effects of nanosecond pulsed electrical fields on plant cells using fluorescently tagged marker lines in the tobacco cell line BY-2 and confocal laser scanning microscopy. We observe a disintegration of the cytoskeleton in the cell cortex, followed by contraction of actin filaments towards the nucleus, and disintegration of the nuclear envelope. These responses are accompanied by irreversible permeabilization of the plasma membrane manifest as uptake of Trypan Blue. By pretreatment with the actin-stabilizing drug phalloidin, the detachment of transvacuolar actin from the cell periphery can be suppressed, and this treatment can also suppress the irreversible perforation of the plasma membrane. We discuss these findings in terms of a model, where nanosecond pulsed electric fields trigger actin responses that are key events in the plant-specific form of programmed cell death.

  16. Triggering filamentation using turbulence

    CERN Document Server

    Eeltink, D; Marchiando, N; Hermelin, S; Gateau, J; Brunetti, M; Wolf, J P; Kasparian, J

    2016-01-01

    We study the triggering of single filaments due to turbulence in the beam path for a laser of power below the filamenting threshold. Turbulence can act as a switch between the beam not filamenting and producing single filaments. This 'positive' effect of turbulence on the filament probability, combined with our observation of off-axis filaments suggests the underlying mechanism is modulation instability caused by transverse perturbations. We hereby experimentally explore the interaction of modulation instability and turbulence, commonly associated with multiple-filaments, in the single-filament regime.

  17. Concentration profiles of actin-binding molecules in lamellipodia

    Science.gov (United States)

    Falcke, Martin

    2016-04-01

    Motile cells form lamellipodia in the direction of motion, which are flat membrane protrusions containing an actin filament network. The network flows rearward relative to the leading edge of the lamellipodium due to actin polymerization at the front. Thus, actin binding molecules are subject to transport towards the rear of the cell in the bound state and diffuse freely in the unbound state. We analyze this reaction-diffusion-advection process with respect to the concentration profiles of these species and provide an analytic approximation for them. Network flow may cause a depletion zone of actin binding molecules close to the leading edge. The existence of such zone depends on the free molecule concentration in the cell body, on the ratio of the diffusion length to the distance bound molecules travel rearward with the flow before dissociating, and the ratio of the diffusion length to the width of the region with network flow and actin binding. Our calculations suggest the existence of depletion zones for the F-actin cross-linkers filamin and α-actinin in fish keratocytes (and other cell types), which is in line with the small elastic moduli of the F-actin network close to the leading edge found in measurements of the force motile cells are able to exert.

  18. Drebrin attenuates the interaction between actin and myosin-V.

    Science.gov (United States)

    Ishikawa, Ryoki; Katoh, Kaoru; Takahashi, Ayumi; Xie, Ce; Oseki, Koushi; Watanabe, Michitoshi; Igarashi, Michihiro; Nakamura, Akio; Kohama, Kazuhiro

    2007-07-27

    Drebrin-A is an actin-binding protein localized in the dendritic spines of mature neurons, and has been suggested to affect spine morphology [K. Hayashi, T. Shirao, Change in the shape of dendritic spines caused by overexpression of drebrin in cultured cortical neurons, J. Neurosci. 19 (1999) 3918-3925]. However, no biochemical analysis of drebrin-A has yet been reported. In this study, we purified drebrin-A using a bacterial expression system, and characterized it in vitro. Drebrin-A bound to actin filaments with a stoichiometry of one drebrin molecule to 5-6 actin molecules. Furthermore, drebrin-A decreased the Mg-ATPase activity of myosin V. In vitro motility assay revealed that the attachment of F-actin to glass surface coated with myosin-V was decreased by drebrin-A, but once F-actin attached to the surface, the sliding speed of F-actin was unaffected by the presence of drebrin A. These findings suggest that drebrin-A may affect spine dynamics, vesicle transport, and other myosin-V-driven motility in neurons through attenuating the interaction between actin and myosin-V.

  19. Nuclear actin and protein 4.1: Essential interactions during nuclear assembly in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Sharon Wald; Chen, Cynthia; Penman, Sheldon; Heald, Rebecca

    2003-06-11

    Structural protein 4.1, which has crucial interactions within the spectin-actin lattice of the human red cell membrane skeleton, also is widely distributed at diverse intracellular sites in nucleated cells. We previously showed that 4.1 is essential for assembly of functional nuclei in vitro and that the capacity of 4.1 to bind actin is required. Here we report that 4.1 and actin colocalize in mammalian cell nuclei using fluorescence microscopy and, by higher resolution cell whole mount electron microscopy, are associated on nuclear filaments. We also devised a cell-free assay using Xenopus egg extract containing fluorescent actin to follow actin during nuclear assembly. By directly imaging actin under non-perturbing conditions, the total nuclear actin population is retained and is visualized in situ relative to intact chromatin. We detected actin initially when chromatin and nuclear pores began assembling. As the nuclear lamina assembled, but preceding DNA synthesis, a discrete actin network formed throughout the nucleus. Protein 4.1 epitopes also were detected when actin began to accumulate in nuclei, producing a diffuse coincident pattern. As nuclei matured, actin was detected both coincident with and also independent of 4.1 epitopes. To test whether acquisition of nuclear actin is required for nuclear assembly, the actin inhibitor latrunculin A was added to Xenopus egg extracts during nuclear assembly. Latrunculin A strongly perturbed nuclear assembly and produced distorted nuclear structures containing neither actin nor protein 4.1. Our results suggest that actin as well as 4.1 is necessary for nuclear assembly and that 4.1-actin interactions may be critical.

  20. Cytoplasmic actin is an extracellular insect immune factor which is secreted upon immune challenge and mediates phagocytosis and direct killing of bacteria, and is a Plasmodium Antagonist.

    Directory of Open Access Journals (Sweden)

    Simone L Sandiford

    2015-02-01

    Full Text Available Actin is a highly versatile, abundant, and conserved protein, with functions in a variety of intracellular processes. Here, we describe a novel role for insect cytoplasmic actin as an extracellular pathogen recognition factor that mediates antibacterial defense. Insect actins are secreted from cells upon immune challenge through an exosome-independent pathway. Anopheles gambiae actin interacts with the extracellular MD2-like immune factor AgMDL1, and binds to the surfaces of bacteria, mediating their phagocytosis and direct killing. Globular and filamentous actins display distinct functions as extracellular immune factors, and mosquito actin is a Plasmodium infection antagonist.

  1. Actin-myosin network is required for proper assembly of influenza virus particles

    International Nuclear Information System (INIS)

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network

  2. Rapid non-equilibrium turnover fluidizes entangled F-actin solutions

    Science.gov (United States)

    McCall, Patrick M.; Kovar, David R.; Gardel, Margaret L.

    The actin cytoskeleton of living cells is a semiflexible polymer network which regulates cell division, motility, and morphogenesis by controlling cell shape. These complex shape-changing processes require both mechanical deformation and remodeling of the actin cytoskeleton. Molecular motors generate internal forces to drive deformation, while cytoskeletal remodeling is regulated by non-equilibrium polymer turnover. Although the mechanical properties of equilibrium actin filament (F-actin) networks are well-described by theories of semiflexible polymers, these theories do not incorporate the effects of non-equilibrium turnover. To address this experimentally, we developed a model system in which both the turnover rate and the length distribution of purified F-actin can be tuned independently at steady-state through the combined action of actin regulatory proteins. Specifically we tune the concentrations of cofilin, profilin, and formin to regulate F-actin severing, recycling, and nucleation, respectively. We find that the actin turnover rate can be tuned by cofilin up to 25-fold (31 +/- 2 subunits/sec/filament). Surprisingly, changes in turnover rate have no effect on the steady-state F-actin length distribution, which is instead set by formin concentration. Passive microrheology measurements show that increased turnover leads to striking fluidization in both entangled and crosslinked networks. Non-equilibrium turnover thus enables modulation of network mechanics, which impacts force transmission and material deformation.

  3. Cell-cycle regulation of formin-mediated actin cable assembly.

    Science.gov (United States)

    Miao, Yansong; Wong, Catherine C L; Mennella, Vito; Michelot, Alphée; Agard, David A; Holt, Liam J; Yates, John R; Drubin, David G

    2013-11-19

    Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation.

  4. Actin-myosin network is required for proper assembly of influenza virus particles

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, Michiko; Kawaguchi, Atsushi, E-mail: ats-kawaguchi@md.tsukuba.ac.jp; Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp

    2015-02-15

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.

  5. Statistical Analysis of Filament Features Based on the Hα Solar Images from 1988 to 2013 by Computer Automated Detection Method

    Science.gov (United States)

    Hao, Q.; Fang, C.; Cao, W.; Chen, P. F.

    2015-12-01

    We improve our filament automated detection method which was proposed in our previous works. It is then applied to process the full disk Hα data mainly obtained by the Big Bear Solar Observatory from 1988 to 2013, spanning nearly three solar cycles. The butterfly diagrams of the filaments, showing the information of the filament area, spine length, tilt angle, and the barb number, are obtained. The variations of these features with the calendar year and the latitude band are analyzed. The drift velocities of the filaments in different latitude bands are calculated and studied. We also investigate the north-south (N-S) asymmetries of the filament numbers in total and in each subclass classified according to the filament area, spine length, and tilt angle. The latitudinal distribution of the filament number is found to be bimodal. About 80% of all the filaments have tilt angles within [0°, 60°]. For the filaments within latitudes lower (higher) than 50°, the northeast (northwest) direction is dominant in the northern hemisphere and the southeast (southwest) direction is dominant in the southern hemisphere. The latitudinal migrations of the filaments experience three stages with declining drift velocities in each of solar cycles 22 and 23, and it seems that the drift velocity is faster in shorter solar cycles. Most filaments in latitudes lower (higher) than 50° migrate toward the equator (polar region). The N-S asymmetry indices indicate that the southern hemisphere is the dominant hemisphere in solar cycle 22 and the northern hemisphere is the dominant one in solar cycle 23.

  6. Modeling of an Optical Sensor Based on Whispering Gallery Modes (WGMs on the Surface Guiding Layer of Glass Filaments

    Directory of Open Access Journals (Sweden)

    Xianfeng Chen

    2008-10-01

    Full Text Available A ring-resonator-based refractive index sensor is proposed in this paper. Glass filaments with surface guiding layers created by ion exchange are crossed with a fiber taper to act as a ring resonator sensor. Theoretical simulation of the sensor response is proposed, and optimization of structural parameters including thickness and refractive index of the surface guiding layer and the diameter of the ring resonator for higher sensitivity is investigated. Results show that a detection limit of a variation of ~10-5RIU can be reached. Due to its simple fabrication and easy manipulation as well as good sensing performance, we believe such a micro-cavity sensor will find potential applications in high sensitivity optical sensing.

  7. Cortactin Adopts a Globular Conformation and Bundles Actin into Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Cowieson, Nathan P.; King, Gordon; Cookson, David; Ross, Ian; Huber, Thomas; Hume, David A.; Kobe, Bostjan; Martin, Jennifer L. (Queensland); (Aust. Synch.)

    2008-08-21

    Cortactin is a filamentous actin-binding protein that plays a pivotal role in translating environmental signals into coordinated rearrangement of the cytoskeleton. The dynamic reorganization of actin in the cytoskeleton drives processes including changes in cell morphology, cell migration, and phagocytosis. In general, structural proteins of the cytoskeleton bind in the N-terminal region of cortactin and regulatory proteins in the C-terminal region. Previous structural studies have reported an extended conformation for cortactin. It is therefore unclear how cortactin facilitates cross-talk between structural proteins and their regulators. In the study presented here, circular dichroism, chemical cross-linking, and small angle x-ray scattering are used to demonstrate that cortactin adopts a globular conformation, thereby bringing distant parts of the molecule into close proximity. In addition, the actin bundling activity of cortactin is characterized, showing that fully polymerized actin filaments are bundled into sheet-like structures. We present a low resolution structure that suggests how the various domains of cortactin interact to coordinate its array of binding partners at sites of actin branching.

  8. Ca2+ improves organization of single-stranded DNA bases in human Rad51 filament, explaining stimulatory effect on gene recombination.

    KAUST Repository

    Fornander, Louise H

    2012-02-22

    Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca(2+) than of Mg(2+), we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DNA, the reaction intermediates. Flow linear dichroism spectroscopy shows that the two ionic conditions induce significantly different structures in the HsRad51/single-stranded DNA complex, while the HsRad51/double-stranded DNA complex does not demonstrate this ionic dependence. In the HsRad51/single-stranded DNA filament, the primary intermediate of the strand exchange reaction, ATP/Ca(2+) induces an ordered conformation of DNA, with preferentially perpendicular orientation of nucleobases relative to the filament axis, while the presence of ATP/Mg(2+), ADP/Mg(2+) or ADP/Ca(2+) does not. A high strand exchange activity is observed for the filament formed with ATP/Ca(2+), whereas the other filaments exhibit lower activity. Molecular modelling suggests that the structural variation is caused by the divalent cation interfering with the L2 loop close to the DNA-binding site. It is proposed that the larger Ca(2+) stabilizes the loop conformation and thereby the protein-DNA interaction. A tight binding of DNA, with bases perpendicularly oriented, could facilitate strand exchange.

  9. Filamentous Fungi.

    Science.gov (United States)

    Powers-Fletcher, Margaret V; Kendall, Brian A; Griffin, Allen T; Hanson, Kimberly E

    2016-06-01

    Filamentous mycoses are often associated with significant morbidity and mortality. Prompt diagnosis and aggressive treatment are essential for good clinical outcomes in immunocompromised patients. The host immune response plays an essential role in determining the course of exposure to potential fungal pathogens. Depending on the effectiveness of immune response and the burden of organism exposure, fungi can either be cleared or infection can occur and progress to a potentially fatal invasive disease. Nonspecific cellular immunity (i.e., neutrophils, natural killer [NK] cells, and macrophages) combined with T-cell responses are the main immunologic mechanisms of protection. The most common potential mold pathogens include certain hyaline hyphomycetes, endemic fungi, the Mucorales, and some dematiaceous fungi. Laboratory diagnostics aimed at detecting and differentiating these organisms are crucial to helping clinicians make informed decisions about treatment. The purpose of this chapter is to provide an overview of the medically important fungal pathogens, as well as to discuss the patient characteristics, antifungal-therapy considerations, and laboratory tests used in current clinical practice for the immunocompromised host. PMID:27337469

  10. Polyelectrolyte properties of filamentous biopolymers and their consequences in biological fluids.

    Science.gov (United States)

    Janmey, Paul A; Slochower, David R; Wang, Yu-Hsiu; Wen, Qi; Cēbers, Andrejs

    2014-03-14

    Anionic polyelectrolyte filaments are common in biological cells. DNA, RNA, the cytoskeletal filaments F-actin, microtubules, and intermediate filaments, and polysaccharides such as hyaluronan that form the pericellular matrix all have large net negative charge densities distributed over their surfaces. Several filamentous viruses with diameters and stiffnesses similar to those of cytoskeletal polymers also have similar negative charge densities. Extracellular protein filaments such collagen, fibrin and elastin, in contrast, have notably smaller charge densities and do not behave as highly charged polyelectrolytes in solution. This review summarizes data that demonstrate generic counterion-mediated effects on four structurally unrelated biopolymers of similar charge density: F-actin, vimentin, Pf1 virus, and DNA, and explores the possible biological and pathophysiological consequences of the polyelectrolyte properties of biological filaments.

  11. 3D Filament Network Segmentation with Multiple Active Contours

    Science.gov (United States)

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-03-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and microtubules. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we developed a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D TIRF Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy.

  12. Three-dimensional Reconstruction of Tarantula Myosin Filaments Suggests How Phosphorylation May Regulate Myosin Activity

    OpenAIRE

    Alamo, Lorenzo; Wriggers, Willy; Pinto, Antonio; Bártoli, Fulvia; Salazar, Leiría; Zhao, Fa-Qing; Craig, Roger; Padrón, Raúl

    2008-01-01

    Muscle contraction involves the interaction of the myosin heads of the thick filaments with actin subunits of the thin filaments. Relaxation occurs when this interaction is blocked by molecular switches on these filaments. In many muscles, myosin-linked regulation involves phosphorylation of the myosin regulatory light chains (RLC). Electron microscopy of vertebrate smooth muscle myosin molecules (regulated by phosphorylation) has provided insight into the relaxed structure, revealing that my...

  13. Endocytosis in filamentous fungi

    OpenAIRE

    Kalkman, Edward R I C

    2007-01-01

    Endocytosis is little understood in filamentous fungi. For some time it has been controversial as to whether endocytosis occurs in filamentous fungi. A comparative genomics analysis between Saccharomyces cerevisiae and 10 genomes of filamentous fungal species showed that filamentous fungi possess complex endocytic machineries. The use of the endocytic marker dye FM4-64, and various vesicle trafficking inhibitors revealed many similarities between endocytosis in the filamentous ...

  14. Loss of cofilin 1 disturbs actin dynamics, adhesion between enveloping and deep cell layers and cell movements during gastrulation in zebrafish.

    Directory of Open Access Journals (Sweden)

    Chun-Wei Lin

    Full Text Available During gastrulation, cohesive migration drives associated cell layers to the completion of epiboly in zebrafish. The association of different layers relies on E-cadherin based cellular junctions, whose stability can be affected by actin turnover. Here, we examined the effect of malfunctioning actin turnover on the epibolic movement by knocking down an actin depolymerizing factor, cofilin 1, using antisense morpholino oligos (MO. Knockdown of cfl1 interfered with epibolic movement of deep cell layer (DEL but not in the enveloping layer (EVL and the defect could be specifically rescued by overexpression of cfl1. It appeared that the uncoordinated movements of DEL and EVL were regulated by the differential expression of cfl1 in the DEL, but not EVL as shown by in situ hybridization. The dissociation of DEL and EVL was further evident by the loss of adhesion between layers by using transmission electronic and confocal microscopy analyses. cfl1 morphants also exhibited abnormal convergent extension, cellular migration and actin filaments, but not involution of hypoblast. The cfl1 MO-induced cell migration defect was found to be cell-autonomous in cell transplantation assays. These results suggest that proper actin turnover mediated by Cfl1 is essential for adhesion between DEL and EVL and cell movements during gastrulation in zebrafish.

  15. Role of actin in auxin transport and transduction of gravity

    Science.gov (United States)

    Hu, S.; Basu, S.; Brady, S.; Muday, G.

    Transport of the plant hormone auxin is polar and the direction of the hormone movement appears to be controlled by asymmetric distribution of auxin transport protein complexes. Changes in the direction of auxin transport are believed to drive asymmetric growth in response to changes in the gravity vector. To test the possibility that asymmetric distribution of the auxin transport protein complex is mediated by attachment to the actin cytoskeleton, a variety of experimental approaches have been used. The most direct demonstration of the role of the actin cytoskeleton in localization of the protein complex is the ability of one protein in this complex to bind to affinity columns containing actin filaments. Additionally, treatments of plant tissues with drugs that fragment the actin c toskeleton reducey polar transport. In order to explore this actin interaction and the affect of gravity on auxin transport and developmental polarity, embryos of the brown alga, Fucus have been examined. Fucus zygotes are initially symmetrical, but develop asymmetry in response to environmental gradients, with light gradients being the best- characterized signal. Gravity will polarize these embryos and gravity-induced polarity is randomized by clinorotation. Auxin transport also appears necessary for environmental controls of polarity, since auxin efflux inhibitors perturb both photo- and gravity-polarization at a very discrete temporal window within six hours after fertilization. The actin cytoskeleton has previously been shown to reorganize after fertilization of Fucus embryos leading to formation of an actin patch at the site of polar outgrowth. These actin patches still form in Fucus embryos treated with auxin efflux inhibitors, yet the position of these patches is randomized. Together, these results suggest that there are connections between the actin cytoskeleton, auxin transport, and gravity oriented growth and development. (Supported by NASA Grant: NAG2-1203)

  16. Double localization of F-actin in chemoattractant-stimulated polymorphonuclear leucocytes.

    Science.gov (United States)

    Lepidi, H; Benoliel, A M; Mege, J L; Bongrand, P; Capo, C

    1992-09-01

    Uniform concentrations of chemoattractants such as formylpeptides induced a morphological polarization of human polymorphonuclear leucocytes (PMNs) and a concentration of F-actin at the cell front. They also induced a transient increase in filamentous actin (F-actin) which preceded the cell shape change. We combined fluorescence microscopy and image analysis to study the localization of F-actin, as revealed by a specific probe (bodipyTM phallacidin) in suspended PMNs stimulated by chemoattractants. F-actin exhibited remarkable concentration in focal points after a 30 s exposure to 10(-8) M formylmethionyl-leucyl-phenylalanine (fMet-Leu-Phe), although no shape change of PMNs was detectable. A 10-min incubation with formylpeptide (10(-6) to 10(-9) M) induced the morphological polarization of PMNs and the appearance of a principal focus of F-actin in the cell head region and a secondary focus in the cell posterior end. The distribution of F-actin-associated fluorescence in 2D images of polarized PMNs might be due to an actual concentration of F-actin in privileged areas, to a local concentration of plasma membrane drawing filamentous actin or to variations in the cell volume. Then, we studied the distribution of a cytoplasmic marker, fluorescein diacetate and a membrane probe, TMA-DPH, in unstimulated rounded PMNs and in spherical and morphologically polarized PMNs stimulated by formylpeptide. The distribution of neither of these probes was correlated with F-actin distribution, especially in rounded PMNs stimulated 30 s with 10(-8) M fMet-Leu-Phe, suggesting that F-actin was concentrated in two foci located in the cell head region and in the cell posterior end. In addition, zymosan-activated serum induced the morphological polarization of PMNs and the appearance of two foci of filamentous actin, demonstrating that binding of formylpeptide to its specific receptor was not required for F-actin reorganization. We conclude that the accumulation of F-actin probably

  17. Study of self-compliance behaviors and internal filament characteristics in intrinsic SiO{sub x}-based resistive switching memory

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yao-Feng, E-mail: yfchang@utexas.edu; Zhou, Fei; Chen, Ying-Chen; Lee, Jack C. [Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758 (United States); Fowler, Burt [PrivaTran, LLC, 1250 Capital of Texas Highway South, Bldg 3, Ste 400, Austin, Texas 78746 (United States)

    2016-01-18

    Self-compliance characteristics and reliability optimization are investigated in intrinsic unipolar silicon oxide (SiO{sub x})-based resistive switching (RS) memory using TiW/SiO{sub x}/TiW device structures. The program window (difference between SET voltage and RESET voltage) is dependent on external series resistance, demonstrating that the SET process is due to a voltage-triggered mechanism. The program window has been optimized for program/erase disturbance immunity and reliability for circuit-level applications. The SET and RESET transitions have also been characterized using a dynamic conductivity method, which distinguishes the self-compliance behavior due to an internal series resistance effect (filament) in SiO{sub x}-based RS memory. By using a conceptual “filament/resistive gap (GAP)” model of the conductive filament and a proton exchange model with appropriate assumptions, the internal filament resistance and GAP resistance can be estimated for high- and low-resistance states (HRS and LRS), and are found to be independent of external series resistance. Our experimental results not only provide insights into potential reliability issues but also help to clarify the switching mechanisms and device operating characteristics of SiO{sub x}-based RS memory.

  18. Treadmilling of actin filaments via Brownian dynamics simulations

    DEFF Research Database (Denmark)

    Guo, Kunkun; Shillcock, Julian C.; Lipowsky, Reinhard

    2010-01-01

    . For concentrations close to the critical concentration CT = CT,cr, the filaments undergo treadmilling, i.e., they grow at the barbed and shrink at the pointed end, which leads to directed translational motion of the whole filament. The corresponding nonequilibrium states are characterized by several global fluxes...... and by spatial density and flux profiles along the filaments. We focus on a certain set of transition rates as deduced from in vitro experiments and find that the associated treadmilling ﰎor turnoverﰏ rate is about 0.08 monomers per second....

  19. Filamentous Growth in Eremothecium Fungi

    DEFF Research Database (Denmark)

    Oskarsson, Therese

    , this thesis deals with some of the aspects of hyphal growth, which is an important virulence factor for pathogenic fungi infecting both humans and plants. Hyphal establishment through continuous polar growth is a complex process, requiring the careful coordination of a large subset of proteins involved......-regulatory activity of AgGts1, the protein could have additional actin organizing properties. In the second and third part, this thesis addresses the use of A. gossypii and its relative E. cymbalariae as model organisms for filamentous growth. A series of assays analyzed the capability of Eremothecium genus fungi...... of molecular tools for E. cymbalariae to enable a faster and more efficient approach for genetic comparisons between Eremothecium genus fungi....

  20. Effects of polymerization and nucleotide identity on the conformational dynamics of the bacterial actin homolog MreB

    OpenAIRE

    Colavin, Alexandre; Hsin, Jen; Huang, Kerwyn Casey

    2014-01-01

    Cytoskeletal filaments drive many dynamic cellular processes, such as the regulation of shape by actin networks in eukaryotes and by the actin homolog MreB in rod-shaped bacteria. Here, we use all-atom molecular dynamics simulations to demonstrate close parallels between the conformational dynamics of actin and MreB, in which polymerization induces flattening of MreB subunits that restructures the ATP binding pocket to promote hydrolysis. We also find that ATP-bound MreB filaments are substan...

  1. Affinity-based in situ product removal coupled with co-immobilization of oily substrate and filamentous fungus.

    Science.gov (United States)

    Dukler, A; Freeman, A

    1998-01-01

    In situ product removal (ISPR) involves actions taken for the fast removal of a product from the producing cell. ISPR is implemented to improve yield and productivity via minimization of product inhibition, minimization of product losses due to degradation or evaporation, and reduction of the number of subsequent downstream processing steps. Here we describe the implementation of affinity-based, specific ISPR as a crucial component of an integrative approach to problems associated with the biocatalytic production of a product exhibiting poor water solubility from an oily, water-insoluble precursor. Our integrative ISPR-based approach consists of co-immobilization of the oily substrate emulsion and the biocatalyst within bilayered alginate beads. A particulate-specific adsorbent, exhibiting high binding capacity of the product, is suspended in the reaction medium with periodical replacements. According to this approach, ISPR implementation is expected to shift the equilibration of product distribution between the co-immobilized oily substrate and the outer medium via specific product immobilization onto the added adsorbent. The product may subsequently be readily recovered via single-step final purification. This integrative approach was successfully demonstrated by the affinity-based ISPR of gamma-decalactone (4-decanolide). gamma-Decalactone was produced from castor oil via its beta-oxidation by the filamentous fungus Tyromyces sambuceus, co-immobilized with emulsified substrate within bilayered alginate beads. Product immobilization onto medium-suspended epichlorohydrin-crosslinked beta-cyclodextrin resulted in higher yield and easy pure product recovery. PMID:10076845

  2. Adhesive F-actin waves: a novel integrin-mediated adhesion complex coupled to ventral actin polymerization.

    Directory of Open Access Journals (Sweden)

    Lindsay B Case

    Full Text Available At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in "ventral F-actin waves" that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the extracellular matrix downstream of ventral F-actin waves in several mammalian cell lines as well as in primary mouse embryonic fibroblasts. These "adhesive F-actin waves" require a cycle of integrin engagement and disengagement to the extracellular matrix for their formation and propagation, and exhibit morphometry and a hierarchical assembly and disassembly mechanism distinct from other integrin-containing structures. After Arp2/3-mediated actin polymerization, zyxin and VASP are co-recruited to adhesive F-actin waves, followed by paxillin and vinculin, and finally talin and integrin. Adhesive F-actin waves thus represent a previously uncharacterized integrin-based adhesion complex associated with Arp2/3-mediated actin polymerization.

  3. Intensification of the 5.9-nm actin layer line in contracting muscle.

    Science.gov (United States)

    Matsubara, I; Yagi, N; Miura, H; Ozeki, M; Izumi, T

    According to the cross-bridge model of muscle contraction, an interaction of myosin heads with interdigitating actin filaments produces tension. Although X-ray equatorial diffraction patterns of active (contracting) muscle show that the heads are in the vicinity of the actin filaments, structural proof of actual attachment of heads to actin during contraction has been elusive. We show here that during contraction of frog skeletal muscle, the 5.9-nm layer line arising from the genetic helix of actin is intensified by as much as 56% of the change which occurs when muscle enters rigor, using a two-dimensional X-ray detector. This provides strong structural evidence that myosin heads do in fact attach during contraction. PMID:6334236

  4. Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels.

    Science.gov (United States)

    Schreiber, Joerg; Végh, Marlene J; Dawitz, Julia; Kroon, Tim; Loos, Maarten; Labonté, Dorthe; Li, Ka Wan; Van Nierop, Pim; Van Diepen, Michiel T; De Zeeuw, Chris I; Kneussel, Matthias; Meredith, Rhiannon M; Smit, August B; Van Kesteren, Ronald E

    2015-11-01

    Synaptic plasticity requires remodeling of the actin cytoskeleton. Although two actin isoforms, β- and γ-actin, are expressed in dendritic spines, the specific contribution of γ-actin in the expression of synaptic plasticity is unknown. We show that synaptic γ-actin levels are regulated by the E3 ubiquitin ligase TRIM3. TRIM3 protein and Actg1 transcript are colocalized in messenger ribonucleoprotein granules responsible for the dendritic targeting of messenger RNAs. TRIM3 polyubiquitylates γ-actin, most likely cotranslationally at synaptic sites. Trim3(-/-) mice consequently have increased levels of γ-actin at hippocampal synapses, resulting in higher spine densities, increased long-term potentiation, and enhanced short-term contextual fear memory consolidation. Interestingly, hippocampal deletion of Actg1 caused an increase in long-term fear memory. Collectively, our findings suggest that temporal control of γ-actin levels by TRIM3 is required to regulate the timing of hippocampal plasticity. We propose a model in which TRIM3 regulates synaptic γ-actin turnover and actin filament stability and thus forms a transient inhibitory constraint on the expression of hippocampal synaptic plasticity. PMID:26527743

  5. Actin is required for IFT regulation in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Avasthi, Prachee; Onishi, Masayuki; Karpiak, Joel; Yamamoto, Ryosuke; Mackinder, Luke; Jonikas, Martin C; Sale, Winfield S; Shoichet, Brian; Pringle, John R; Marshall, Wallace F

    2014-09-01

    Assembly of cilia and flagella requires intraflagellar transport (IFT), a highly regulated kinesin-based transport system that moves cargo from the basal body to the tip of flagella [1]. The recruitment of IFT components to basal bodies is a function of flagellar length, with increased recruitment in rapidly growing short flagella [2]. The molecular pathways regulating IFT are largely a mystery. Because actin network disruption leads to changes in ciliary length and number, actin has been proposed to have a role in ciliary assembly. However, the mechanisms involved are unknown. In Chlamydomonas reinhardtii, conventional actin is found in both the cell body and the inner dynein arm complexes within flagella [3, 4]. Previous work showed that treating Chlamydomonas cells with the actin-depolymerizing compound cytochalasin D resulted in reversible flagellar shortening [5], but how actin is related to flagellar length or assembly remains unknown. Here we utilize small-molecule inhibitors and genetic mutants to analyze the role of actin dynamics in flagellar assembly in Chlamydomonas reinhardtii. We demonstrate that actin plays a role in IFT recruitment to basal bodies during flagellar elongation and that when actin is perturbed, the normal dependence of IFT recruitment on flagellar length is lost. We also find that actin is required for sufficient entry of IFT material into flagella during assembly. These same effects are recapitulated with a myosin inhibitor, suggesting that actin may act via myosin in a pathway by which flagellar assembly is regulated by flagellar length.

  6. Ena/VASP Enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin.

    Science.gov (United States)

    Winkelman, Jonathan D; Bilancia, Colleen G; Peifer, Mark; Kovar, David R

    2014-03-18

    Filopodia are exploratory finger-like projections composed of multiple long, straight, parallel-bundled actin filaments that protrude from the leading edge of migrating cells. Drosophila melanogaster Enabled (Ena) is a member of the Ena/vasodilator-stimulated phosphoprotein protein family, which facilitates the assembly of filopodial actin filaments that are bundled by Fascin. However, the mechanism by which Ena and Fascin promote the assembly of uniformly thick F-actin bundles that are capable of producing coordinated protrusive forces without buckling is not well understood. We used multicolor evanescent wave fluorescence microscopy imaging to follow individual Ena molecules on both single and Fascin-bundled F-actin in vitro. Individual Ena tetramers increase the elongation rate approximately two- to threefold and inhibit capping protein by remaining processively associated with the barbed end for an average of ∼10 s in solution, for ∼60 s when immobilized on a surface, and for ∼110 s when multiple Ena tetramers are clustered on a surface. Ena also can gather and simultaneously elongate multiple barbed ends. Collectively, these properties could facilitate the recruitment of Fascin and initiate filopodia formation. Remarkably, we found that Ena's actin-assembly properties are tunable on Fascin-bundled filaments, facilitating the formation of filopodia-like F-actin networks without tapered barbed ends. Ena-associated trailing barbed ends in Fascin-bundled actin filaments have approximately twofold more frequent and approximately fivefold longer processive runs, allowing them to catch up with leading barbed ends efficiently. Therefore, Fascin and Ena cooperate to extend and maintain robust filopodia of uniform thickness with aligned barbed ends by a unique mechanistic cycle.

  7. Simvastatin enhances Rho/actin/cell rigidity pathway contributing to mesenchymal stem cells’ osteogenic differentiation

    Directory of Open Access Journals (Sweden)

    Tai IC

    2015-09-01

    osteoinductive factor and acts by increasing actin filament organization and cell rigidity combined with osteoconductive biomaterials, may benefit stem-cell-based bone regeneration. Keywords: statins, RhoA, cytoskeleton, osteogenic differentiation, BMSCs

  8. Rat alveolar myofibroblasts acquire alpha-smooth muscle actin expression during bleomycin-induced pulmonary fibrosis.

    OpenAIRE

    Vyalov, S. L.; Gabbiani, G.; Kapanci, Y.

    1993-01-01

    The majority of fibroblasts in alveolar septa are characterized by the presence of cytoplasmic bundles of microfilaments that contain cytoplasmic actin isoforms; these cells have been named contractile interstitial cells or V-type myofibroblasts. In the rat, they express desmin as intermediate filament protein. In this study, we explored the possibility that modulation and replication of such septal fibroblasts result in the appearance of alpha-smooth muscle (alpha-SM) actin-positive myofibro...

  9. Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions.

    Directory of Open Access Journals (Sweden)

    Shenping Wu

    Full Text Available Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ.We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the "target zone", situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening.We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very

  10. Drosophila Kelch functions with Cullin-3 to organize the ring canal actin cytoskeleton

    OpenAIRE

    Hudson, Andrew M.; Cooley, Lynn

    2010-01-01

    Drosophila melanogaster Kelch (KEL) is the founding member of a diverse protein family defined by a repeated sequence motif known as the KEL repeat (KREP). Several KREP proteins, including Drosophila KEL, bind filamentous actin (F-actin) and contribute to its organization. Recently, a subset of KREP proteins has been shown to function as substrate adaptor proteins for cullin-RING (really interesting new gene) ubiquitin E3 ligases. In this study, we demonstrate that association of Drosophila K...

  11. A LIM Domain Protein from Tobacco Involved in Actin-Bundling and Histone Gene Transcription

    Institute of Scientific and Technical Information of China (English)

    Danièle Moes; Sabrina Gatti; Céline Hoffmann; Monika Dieterle; Flora Moreau; Katrin Neumann; Marc Schumacher

    2013-01-01

    The two LIM domain-containing proteins from plants (LIMs) typically exhibit a dual cytoplasmic-nuclear distribution,suggesting that,in addition to their previously described roles in actin cytoskeleton organization,they participate in nuclear processes.Using a south-western blot-based screen aimed at identifying factors that bind to plant histone gene promoters,we isolated a positive clone containing the tobacco LIM protein WLIM2 (NtWLIM2) cDNA.Using both green fluorescent protein (GFP) fusion-and immunology-based strategies,we provide clear evidence that NtWLIM2 localizes to the actin cytoskeleton,the nucleus,and the nucleolus.Interestingly,the disruption of the actin cytoskeleton by latrunculin B significantly increases NtWLIM2 nuclear fraction,pinpointing a possible novel cytoskeletal-nuclear crosstalk.Biochemical and electron microscopy experiments reveal the ability of NtWLIM2 to directly bind to actin filaments and to crosslink the latter into thick actin bundles.Electrophoretic mobility shift assays show that NtWLIM2 specifically binds to the conserved octameric cis-elements (Oct) of the Arabidopsis histone H4A748 gene promoter and that this binding largely relies on both LIM domains.Importantly,reporter-based experiments conducted in Arabidopsis and tobacco protoplasts confirm the ability of NtWLIM2 to bind to and activate the H4A748 gene promoter in live cells.Expression studies indicate the constitutive presence of NtWLIM2 mRNA and NtWLIM2 protein during tobacco BY-2 cell proliferation and cell cycle progression,suggesting a role of NtWLIM2 in the activation of basal histone gene expression.Interestingly,both live cell and in vitro data support NtWLIM2 di/oligomerization.We propose that NtWLIM2 functions as an actin-stabilizing protein,which,upon cytoskeleton remodeling,shuttles to the nucleus in order to modify gene expression.

  12. DNA segregation by the bacterial actin AlfA during Bacillus subtilis growth and development

    OpenAIRE

    Becker, Eric; Herrera, Nick C; Gunderson, Felizza Q.; Derman, Alan I.; Dance, Amber L; Sims, Jennifer; Larsen, Rachel A.; Pogliano, Joe

    2006-01-01

    We here identify a protein (AlfA; actin like filament) that defines a new family of actins that are only distantly related to MreB and ParM. AlfA is required for segregation of Bacillus subtilis plasmid pBET131 (a mini pLS32-derivative) during growth and sporulation. A 3-kb DNA fragment encoding alfA and a downstream gene (alfB) is necessary and sufficient for plasmid stability. AlfA-GFP assembles dynamic cytoskeletal filaments that rapidly turn over (t1/2

  13. Filamentous Fungi Fermentation

    DEFF Research Database (Denmark)

    Nørregaard, Anders; Stocks, Stuart; Woodley, John;

    2014-01-01

    Filamentous fungi (including microorganisms such as Aspergillus niger and Rhizopus oryzae) represent an enormously important platform for industrial fermentation. Two particularly valuable features are the high yield coefficients and the ability to secrete products. However, the filamentous...

  14. Jasplakinolide, an actin stabilizing agent, alters anaphase chromosome movements in crane-fly spermatocytes.

    Science.gov (United States)

    Xie, Lele; Forer, Arthur

    2008-11-01

    We added jasplakinolide to anaphase crane-fly spermatocytes and determined its effects on chromosome movement. Previous work showed that the actin depolymerizing agents cytochalasin D or latrunculin B blocked or slowed chromosome movements. We studied the effects of jasplakinolide, a compound that stabilizes actin filaments. Jasplakinolide had the same effect on movements of each half- bivalent in a separating pair of half-bivalents, but different half-bivalent pairs in the same cell often responded differently, even when the concentrations of jasplakinolide varied by a factor of two. Jasplakinolide had no effect on about 20% of the pairs, but otherwise caused movements to slow, or to stop, or, rarely, to accelerate. When cells were kept in jasplakinolide, stopped pairs eventually resumed movement; slowed pairs did not change their speeds. Confocal microscopy indicated that neither the distributions of spindle actin filaments nor the distributions of spindle microtubules were altered by the jasplakinolide. It is possible that jasplakinolide binds to spindle actin and blocks critical binding sites, but we suggest that jasplakinolide affects anaphase chromosome movement by preventing actin-filament depolymerization that is necessary for anaphase to proceed. Overall, our data indicate that actin is involved in one of the redundant mechanisms cells use to move chromosomes. PMID:18688844

  15. The F-actin capping protein is required for hyphal growth and full virulence but is dispensable for septum formation in Botrytis cinerea.

    Science.gov (United States)

    González-Rodríguez, Victoria E; Garrido, Carlos; Cantoral, Jesús M; Schumacher, Julia

    2016-10-01

    Filamentous (F-) actin is an integral part of the cytoskeleton allowing for cell growth, intracellular motility, and cytokinesis of eukaryotic cells. Its assembly from G-actin monomers and its disassembly are tightly regulated processes involving a number of actin-binding proteins (ABPs) such as F-actin nucleators and cross-linking proteins. F-actin capping protein (CP) is an alpha/beta heterodimer known from yeast and higher eukaryotes to bind to the fast growing ends of the actin filaments stabilizing them. In this study, we identified the orthologs of the two CP subunits, named BcCPA1 and BcCPB1, in the plant pathogenic fungus Botrytis cinerea and showed that the two proteins physically interact in a yeast two-hybrid approach. GFP-BcCPA1 fusion proteins were functional and localized to the assumed sites of F-actin accumulation, i.e. to the hyphal tips and the sites of actin ring formation. Deletion of bccpa1 had a profound effect on hyphal growth, morphogenesis, and virulence indicating the importance of F-actin capping for an intact actin cytoskeleton. As polarized growth - unlike septum formation - is impaired in the mutants, it can be concluded that the organization and/or localization of actin patches and cables are disturbed rather than the functionality of the actin rings. PMID:27647239

  16. Tuning microtubule-based transport via filamentous MAPs: the problem of dynein

    Science.gov (United States)

    Vershinin, Michael; Xu, Jing; Razafsky, David S.; King, Stephen J.; Gross, Steven P.

    2010-01-01

    We recently proposed that regulating the single-to-multiple motor transition was a likely strategy for regulating kinesin-based transport in vivo. Here, we use an in vitro bead assay coupled with an optical trap to investigate how this proposed regulatory mechanism affects dynein-based transport. We show that tau’s regulation of kinesin function can proceed without interfering with dynein-based transport. Surprisingly, at extremely high tau levels—where kinesin cannot bind microtubules—dynein can still contact microtubules. The difference between tau’s effects on kinesin- and dynein-based motility suggests that tau can be used to tune relative amounts of plus-end and minus-end directed transport. As in the case of kinesin, we find that the 3RS isoform of tau is a more potent inhibitor of dynein binding to microtubules. We show that this isoform-specific effect is not due to steric interference of tau’s projection domains, but rather due to tau’s interactions with the motor at the microtubule surface. Nonetheless, we do observe a modest steric interference effect of tau away from the microtubule and discuss the potential implications of this for molecular motor structure. PMID:18373727

  17. The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation.

    Science.gov (United States)

    Deng, Su; Bothe, Ingo; Baylies, Mary K

    2015-08-01

    The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia), which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease.

  18. The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation.

    Directory of Open Access Journals (Sweden)

    Su Deng

    2015-08-01

    Full Text Available The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia, which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease.

  19. Probing the Physical Structures of Dense Filaments

    Science.gov (United States)

    Li, Di

    2015-08-01

    Filament is a common feature in cosmological structures of various scales, ranging from dark matter cosmic web, galaxy clusters, inter-galactic gas flows, to Galactic ISM clouds. Even within cold dense molecular cores, filaments have been detected. Theories and simulations with (or without) different combination of physical principles, including gravity, thermal balance, turbulence, and magnetic field, can reproduce intriguing images of filaments. The ubiquity of filaments and the similarity in simulated ones make physical parameters, beyond dust column density, a necessity for understanding filament evolution. I report three projects attempting to measure physical parameters of filaments. We derive the volume density of a dense Taurus filament based on several cyanoacetylene transitions observed by GBT and ART. We measure the gas temperature of the OMC 2-3 filament based on combined GBT+VLA ammonia images. We also measured the sub-millimeter polarization vectors along OMC3. These filaments were found to be likely a cylinder-type structure, without dynamic heating, and likely accreting mass along the magnetic field lines.

  20. Hierarchical Cross-linked F-actin Networks: Understanding Structure and Assembly

    Science.gov (United States)

    Hirst, Linda; Nguyen, Lam

    2009-11-01

    The protein, F-actin provides us with an interesting system in which to investigate the assembly properties of semi-flexible filaments in the presence of cross-linkers. Recently it was observed that F-actin, in the presence of the cross-linker alpha-actinin at high molar ratios will generate a novel hierarchical network of filament bundles. We investigate this system using coarse-grained molecular dynamics (MD) simulation, confocal microscopy and x-ray scattering. We have studied the F-actin/alpha-actinin system in detail with different actin conc. (C) and alpha-actinin/actin molar ratios (gamma). Confocal microscopy and analysis shows that the assembled systems fall into one of 3 phases depending on C and gamma: (1) loosely connected network of F-actin and bundles, (2) loosely connected network of dense domains and (3) uniform network of bundles. This can be explained and replicated using MD simulation. We have also examined different types of cross-linkers to represent the proteins, fascin and filamin. Results show that phase formation is related to the flexibility in binding between F-actin and cross-linkers. This degree of freedom, possible with longer cross-linkers allows the formation of branch points and thus bundle networks.

  1. A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria.

    Science.gov (United States)

    Donovan, Catriona; Heyer, Antonia; Pfeifer, Eugen; Polen, Tino; Wittmann, Anja; Krämer, Reinhard; Frunzke, Julia; Bramkamp, Marc

    2015-05-26

    In host cells, viral replication is localized at specific subcellular sites. Viruses that infect eukaryotic and prokaryotic cells often use host-derived cytoskeletal structures, such as the actin skeleton, for intracellular positioning. Here, we describe that a prophage, CGP3, integrated into the genome of Corynebacterium glutamicum encodes an actin-like protein, AlpC. Biochemical characterization confirms that AlpC is a bona fide actin-like protein and cell biological analysis shows that AlpC forms filamentous structures upon prophage induction. The co-transcribed adaptor protein, AlpA, binds to a consensus sequence in the upstream promoter region of the alpAC operon and also interacts with AlpC, thus connecting circular phage DNA to the actin-like filaments. Transcriptome analysis revealed that alpA and alpC are among the early induced genes upon excision of the CGP3 prophage. Furthermore, qPCR analysis of mutant strains revealed that both AlpA and AlpC are required for efficient phage replication. Altogether, these data emphasize that AlpAC are crucial for the spatio-temporal organization of efficient viral replication. This is remarkably similar to actin-assisted membrane localization of eukaryotic viruses that use the actin cytoskeleton to concentrate virus particles at the egress sites and provides a link of evolutionary conserved interactions between intracellular virus transport and actin. PMID:25916847

  2. Interplay between passive tension and strong and weak binding cross- bridges in insect indirect flight muscle. A functional dissection by gelsolin-mediated thin filament removal

    OpenAIRE

    1993-01-01

    The interplay between passive and active mechanical properties of indirect flight muscle of the waterbug (Lethocerus) was investigated. A functional dissection of the relative contribution of cross-bridges, actin filaments, and C filaments to tension and stiffness of passive, activated, and rigor fibers was carried out by comparing mechanical properties at different ionic strengths of sarcomeres with and without thin filaments. Selective thin filament removal was accomplished by treatment wit...

  3. DAAM is required for thin filament formation and Sarcomerogenesis during muscle development in Drosophila.

    Science.gov (United States)

    Molnár, Imre; Migh, Ede; Szikora, Szilárd; Kalmár, Tibor; Végh, Attila G; Deák, Ferenc; Barkó, Szilvia; Bugyi, Beáta; Orfanos, Zacharias; Kovács, János; Juhász, Gábor; Váró, György; Nyitrai, Miklós; Sparrow, John; Mihály, József

    2014-02-01

    During muscle development, myosin and actin containing filaments assemble into the highly organized sarcomeric structure critical for muscle function. Although sarcomerogenesis clearly involves the de novo formation of actin filaments, this process remained poorly understood. Here we show that mouse and Drosophila members of the DAAM formin family are sarcomere-associated actin assembly factors enriched at the Z-disc and M-band. Analysis of dDAAM mutants revealed a pivotal role in myofibrillogenesis of larval somatic muscles, indirect flight muscles and the heart. We found that loss of dDAAM function results in multiple defects in sarcomere development including thin and thick filament disorganization, Z-disc and M-band formation, and a near complete absence of the myofibrillar lattice. Collectively, our data suggest that dDAAM is required for the initial assembly of thin filaments, and subsequently it promotes filament elongation by assembling short actin polymers that anneal to the pointed end of the growing filaments, and by antagonizing the capping protein Tropomodulin.

  4. DAAM is required for thin filament formation and Sarcomerogenesis during muscle development in Drosophila.

    Directory of Open Access Journals (Sweden)

    Imre Molnár

    2014-02-01

    Full Text Available During muscle development, myosin and actin containing filaments assemble into the highly organized sarcomeric structure critical for muscle function. Although sarcomerogenesis clearly involves the de novo formation of actin filaments, this process remained poorly understood. Here we show that mouse and Drosophila members of the DAAM formin family are sarcomere-associated actin assembly factors enriched at the Z-disc and M-band. Analysis of dDAAM mutants revealed a pivotal role in myofibrillogenesis of larval somatic muscles, indirect flight muscles and the heart. We found that loss of dDAAM function results in multiple defects in sarcomere development including thin and thick filament disorganization, Z-disc and M-band formation, and a near complete absence of the myofibrillar lattice. Collectively, our data suggest that dDAAM is required for the initial assembly of thin filaments, and subsequently it promotes filament elongation by assembling short actin polymers that anneal to the pointed end of the growing filaments, and by antagonizing the capping protein Tropomodulin.

  5. Antibody-based analysis reveals “filamentous vs. non-filamentous” and “cytoplasmic vs. nuclear” crosstalk of cytoskeletal proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kumeta, Masahiro, E-mail: kumeta@lif.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Kyoto 606-8501 (Japan); Hirai, Yuya; Yoshimura, Shige H. [Graduate School of Biostudies, Kyoto University, Kyoto 606-8501 (Japan); Horigome, Tsuneyoshi [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Takeyasu, Kunio [Graduate School of Biostudies, Kyoto University, Kyoto 606-8501 (Japan)

    2013-12-10

    To uncover the molecular composition and dynamics of the functional scaffold for the nucleus, three fractions of biochemically-stable nuclear protein complexes were extracted and used as immunogens to produce a variety of monoclonal antibodies. Many helix-based cytoskeletal proteins were identified as antigens, suggesting their dynamic contribution to nuclear architecture and function. Interestingly, sets of antibodies distinguished distinct subcellular localization of a single isoform of certain cytoskeletal proteins; distinct molecular forms of keratin and actinin were found in the nucleus. Their nuclear shuttling properties were verified by the apparent nuclear accumulations under inhibition of CRM1-dependent nuclear export. Nuclear keratins do not take an obvious filamentous structure, as was revealed by non-filamentous cytoplasmic keratin-specific monoclonal antibody. These results suggest the distinct roles of the helix-based cytoskeletal proteins in the nucleus. - Highlights: • A set of monoclonal antibodies were raised against nuclear scaffold proteins. • Helix-based cytoskeletal proteins were involved in nuclear scaffold. • Many cytoskeletal components shuttle into the nucleus in a CRM1-dependent manner. • Sets of antibodies distinguished distinct subcellular localization of a single isoform. • Nuclear keratin is soluble and does not form an obvious filamentous structure.

  6. Tailor-made ezrin actin binding domain to probe its interaction with actin in-vitro.

    Directory of Open Access Journals (Sweden)

    Rohini Shrivastava

    Full Text Available Ezrin, a member of the ERM (Ezrin/Radixin/Moesin protein family, is an Actin-plasma membrane linker protein mediating cellular integrity and function. In-vivo study of such interactions is a complex task due to the presence of a large number of endogenous binding partners for both Ezrin and Actin. Further, C-terminal actin binding capacity of the full length Ezrin is naturally shielded by its N-terminal, and only rendered active in the presence of Phosphatidylinositol bisphosphate (PIP2 or phosphorylation at the C-terminal threonine. Here, we demonstrate a strategy for the design, expression and purification of constructs, combining the Ezrin C-terminal actin binding domain, with functional elements such as fusion tags and fluorescence tags to facilitate purification and fluorescence microscopy based studies. For the first time, internal His tag was employed for purification of Ezrin actin binding domain based on in-silico modeling. The functionality (Ezrin-actin interaction of these constructs was successfully demonstrated by using Total Internal Reflection Fluorescence Microscopy. This design can be extended to other members of the ERM family as well.

  7. Human congenital myopathy actin mutants cause myopathy and alter Z-disc structure in Drosophila flight muscle.

    Science.gov (United States)

    Sevdali, Maria; Kumar, Vikash; Peckham, Michelle; Sparrow, John

    2013-03-01

    Over 190 mutations in the human skeletal muscle α-actin gene, ACTA1 cause congenital actin myopathies. We transgenically expressed six different mutant actins, G15R, I136M, D154N, V163L, V163M and D292V in Drosophila indirect flight muscles and investigated their effects in flies that express one wild type and one mutant actin copy. All the flies were flightless, and the IFMs showed incomplete Z-discs, disorganised actin filaments and 'zebra bodies'. No differences in levels of sarcomeric protein expression were observed, but tropomodulin staining was somewhat disrupted in D164N, V163L, G15R and V163M heterozygotes. A single copy of D292V mutant actin rescued the hypercontractile phenotypes caused by TnI and TnT mutants, suggesting that the D292V mutation interferes with thin filament regulation. Our results show that expression of actin mutations homologous to those in humans in the indirect flight muscles of Drosophila disrupt sarcomere organisation, with somewhat similar phenotypes to those observed in humans. Using Drosophila to study actin mutations may help aid our understanding of congential myopathies caused by actin mutations.

  8. Cortactin promotes exosome secretion by controlling branched actin dynamics.

    Science.gov (United States)

    Sinha, Seema; Hoshino, Daisuke; Hong, Nan Hyung; Kirkbride, Kellye C; Grega-Larson, Nathan E; Seiki, Motoharu; Tyska, Matthew J; Weaver, Alissa M

    2016-07-18

    Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites. PMID:27402952

  9. Broken Detailed Balance of Filament Dynamics in Active Networks

    Science.gov (United States)

    Gladrow, J.; Fakhri, N.; MacKintosh, F. C.; Schmidt, C. F.; Broedersz, C. P.

    2016-06-01

    Myosin motor proteins drive vigorous steady-state fluctuations in the actin cytoskeleton of cells. Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single-walled carbon nanotubes are used as novel tools to noninvasively track equilibrium and nonequilibrium fluctuations in such biopolymer networks. Here, we analytically calculate shape fluctuations of semiflexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under nonequilibrium driving. This effective mode coupling results in nonzero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks.

  10. Solar Features - Prominences and Filaments - Filaments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Filaments are formed in magnetic loops that hold relatively cool, dense gas suspended above the surface of the Sun (David Hathaway/NASA)

  11. F-actin-based extensions of the head cyst cell adhere to the maturing spermatids to maintain them in a tight bundle and prevent their premature release in Drosophila testis

    Directory of Open Access Journals (Sweden)

    Ray Krishanu

    2009-05-01

    Full Text Available Abstract Background In Drosophila, all the 64 clonally derived spermatocytes differentiate in syncytium inside two somatic-origin cyst cells. They elongate to form slender spermatids, which are individualized and then released into the seminal vesicle. During individualization, differentiating spermatids are organized in a tight bundle inside the cyst, which is expected to play an important role in sperm selection. However, actual significance of this process and its underlying mechanism are unclear. Results We show that dynamic F-actin-based processes extend from the head cyst cell at the start of individualization, filling the interstitial space at the rostral ends of the maturing spermatid bundle. In addition to actin, these structures contained lamin, beta-catenin, dynamin, myosin VI and several other filopodial components. Further, pharmacological and genetic analyses showed that cytoskeletal stability and dynamin function are essential for their maintenance. Disruption of these F-actin based processes was associated with spermatid bundle disassembly and premature sperm release inside the testis. Conclusion Altogether, our data suggests that the head cyst cell adheres to the maturing spermatid heads through F-actin-based extensions, thus maintaining them in a tight bundle. This is likely to regulate mature sperm release into the seminal vesicle. Overall, this process bears resemblance to mammalian spermiation.

  12. Swi5-Sfr1 protein stimulates Rad51-mediated DNA strand exchange reaction through organization of DNA bases in the presynaptic filament.

    KAUST Repository

    Fornander, Louise H

    2013-12-03

    The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction.

  13. Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells.

    Directory of Open Access Journals (Sweden)

    Luis Vidali

    Full Text Available BACKGROUND: Actin is essential for tip growth in plants. However, imaging actin in live plant cells has heretofore presented challenges. In previous studies, fluorescent probes derived from actin-binding proteins often alter growth, cause actin bundling and fail to resolve actin microfilaments. METHODOLOGY/PRINCIPAL FINDINGS: In this report we use Lifeact-mEGFP, an actin probe that does not affect the dynamics of actin, to visualize actin in the moss Physcomitrella patens and pollen tubes from Lilium formosanum and Nicotiana tobaccum. Lifeact-mEGFP robustly labels actin microfilaments, particularly in the apex, in both moss protonemata and pollen tubes. Lifeact-mEGFP also labels filamentous actin structures in other moss cell types, including cells of the gametophore. CONCLUSIONS/SIGNIFICANCE: Lifeact-mEGFP, when expressed at optimal levels does not alter moss protonemal or pollen tube growth. We suggest that Lifeact-mEGFP represents an exciting new versatile probe for further studies of actin's role in tip growing plant cells.

  14. Ship-of-opportunity based phycocyanin fluorescence monitoring of the filamentous cyanobacteria bloom dynamics in the Baltic Sea

    Science.gov (United States)

    Seppälä, J.; Ylöstalo, P.; Kaitala, S.; Hällfors, S.; Raateoja, M.; Maunula, P.

    2007-07-01

    Distribution of cyanobacteria cannot be evaluated using chlorophyll a (Chl a) in vivo fluorescence, as most of their Chl a is located in non-fluorescing photosystem I. Phycobilin fluorescence, in turn, is noted as a useful tool in the detection of cyanobacterial blooms. We applied phycocyanin (PC) fluorometer in the monitoring of the filamentous cyanobacterial bloom in the Baltic Sea. For the bloom forming filamentous cyanobacteria Aphanizomenon flos-aquae and Nodularia spumigena, PC fluorescence maximum was identified using the excitation-emission fluorescence matrix. Consequently, the optical setup of our instrument was noted to be appropriate for the detection of PC, and with minor or no interference from Chl a and phycoerythrin fluorescence, respectively. During summer 2005, the instrument was installed on a ferryboat commuting between Helsinki (Finland) and Travemünde (Germany), and data were collected during 32 transects providing altogether 200 000 fluorescence records. PC in vivo fluorescence was compared with Chl ain vivo fluorescence and turbidity measured simultaneously, and with Chl a concentration and biomass of the bloom forming filamentous cyanobacteria determined from discrete water samples. PC fluorescence showed a linear relation to the biomass of the bloom forming filamentous cyanobacteria, and the other sources of PC fluorescence are considered minor in the open Baltic Sea. Estimated by PC fluorescence, cyanobacterial bloom initiated late June at the Northern Baltic Proper, rapidly extended to the central Baltic Proper and the Gulf of Finland, and peaked in the mid-July with values up to 10 mg l -1 (fresh weight). In late July, bloom vanished in most areas. During single transects, or for the whole summer, the variability in Chl a concentrations was explained more by PC fluorescence than by Chl a fluorescence. Thus, filamentous cyanobacteria dominated the overall variability in phytoplankton biomass. Consequently, we show that during the

  15. G-actin guides p53 nuclear transport: potential contribution of monomeric actin in altered localization of mutant p53

    Science.gov (United States)

    Saha, Taniya; Guha, Deblina; Manna, Argha; Panda, Abir Kumar; Bhat, Jyotsna; Chatterjee, Subhrangsu; Sa, Gaurisankar

    2016-01-01

    p53 preserves genomic integrity by restricting anomaly at the gene level. Till date, limited information is available for cytosol to nuclear shuttling of p53; except microtubule-based trafficking route, which utilizes minus-end directed motor dynein. The present study suggests that monomeric actin (G-actin) guides p53 traffic towards the nucleus. Histidine-tag pull-down assay using purified p53(1–393)-His and G-actin confirms direct physical association between p53 and monomeric G-actin. Co-immunoprecipitation data supports the same. Confocal imaging explores intense perinuclear colocalization between p53 and G-actin. To address atomistic details of the complex, constraint-based docked model of p53:G-actin complex was generated based on crystal structures. MD simulation reveals that p53 DNA-binding domain arrests very well the G-actin protein. Docking benchmark studies have been carried out for a known crystal structure, 1YCS (complex between p53DBD and BP2), which validates the docking protocol we adopted. Co-immunoprecipitation study using “hot-spot” p53 mutants suggested reduced G-actin association with cancer-associated p53 conformational mutants (R175H and R249S). Considering these findings, we hypothesized that point mutation in p53 structure, which diminishes p53:G-actin complexation results in mutant p53 altered subcellular localization. Our model suggests p53Arg249 form polar-contact with Arg357 of G-actin, which upon mutation, destabilizes p53:G-actin interaction and results in cytoplasmic retention of p53R249S. PMID:27601274

  16. G-actin guides p53 nuclear transport: potential contribution of monomeric actin in altered localization of mutant p53.

    Science.gov (United States)

    Saha, Taniya; Guha, Deblina; Manna, Argha; Panda, Abir Kumar; Bhat, Jyotsna; Chatterjee, Subhrangsu; Sa, Gaurisankar

    2016-01-01

    p53 preserves genomic integrity by restricting anomaly at the gene level. Till date, limited information is available for cytosol to nuclear shuttling of p53; except microtubule-based trafficking route, which utilizes minus-end directed motor dynein. The present study suggests that monomeric actin (G-actin) guides p53 traffic towards the nucleus. Histidine-tag pull-down assay using purified p53(1-393)-His and G-actin confirms direct physical association between p53 and monomeric G-actin. Co-immunoprecipitation data supports the same. Confocal imaging explores intense perinuclear colocalization between p53 and G-actin. To address atomistic details of the complex, constraint-based docked model of p53:G-actin complex was generated based on crystal structures. MD simulation reveals that p53 DNA-binding domain arrests very well the G-actin protein. Docking benchmark studies have been carried out for a known crystal structure, 1YCS (complex between p53DBD and BP2), which validates the docking protocol we adopted. Co-immunoprecipitation study using "hot-spot" p53 mutants suggested reduced G-actin association with cancer-associated p53 conformational mutants (R175H and R249S). Considering these findings, we hypothesized that point mutation in p53 structure, which diminishes p53:G-actin complexation results in mutant p53 altered subcellular localization. Our model suggests p53Arg249 form polar-contact with Arg357 of G-actin, which upon mutation, destabilizes p53:G-actin interaction and results in cytoplasmic retention of p53R249S. PMID:27601274

  17. The N-terminal tropomyosin- and actin-binding sites are important for leiomodin 2's function.

    Science.gov (United States)

    Ly, Thu; Moroz, Natalia; Pappas, Christopher T; Novak, Stefanie M; Tolkatchev, Dmitri; Wooldridge, Dayton; Mayfield, Rachel M; Helms, Gregory; Gregorio, Carol C; Kostyukova, Alla S

    2016-08-15

    Leiomodin is a potent actin nucleator related to tropomodulin, a capping protein localized at the pointed end of the thin filaments. Mutations in leiomodin-3 are associated with lethal nemaline myopathy in humans, and leiomodin-2-knockout mice present with dilated cardiomyopathy. The arrangement of the N-terminal actin- and tropomyosin-binding sites in leiomodin is contradictory and functionally not well understood. Using one-dimensional nuclear magnetic resonance and the pointed-end actin polymerization assay, we find that leiomodin-2, a major cardiac isoform, has an N-terminal actin-binding site located within residues 43-90. Moreover, for the first time, we obtain evidence that there are additional interactions with actin within residues 124-201. Here we establish that leiomodin interacts with only one tropomyosin molecule, and this is the only site of interaction between leiomodin and tropomyosin. Introduction of mutations in both actin- and tropomyosin-binding sites of leiomodin affected its localization at the pointed ends of the thin filaments in cardiomyocytes. On the basis of our new findings, we propose a model in which leiomodin regulates actin poly-merization dynamics in myocytes by acting as a leaky cap at thin filament pointed ends.

  18. Cell stress promotes the association of phosphorylated HspB1 with F-actin.

    Directory of Open Access Journals (Sweden)

    Joseph P Clarke

    Full Text Available Previous studies have suggested that the small heat shock protein, HspB1, has a direct influence on the dynamics of cytoskeletal elements, in particular, filamentous actin (F-actin polymerization. In this study we have assessed the influence of HspB1 phosphorylation on its interaction(s with F-actin. We first determined the distribution of endogenous non-phosphorylated HspB1, phosphorylated HspB1 and F-actin in neuroendocrine PC12 cells by immunocytochemistry and confocal microscopy. We then investigated a potential direct interaction between HspB1 with F-actin by precipitating F-actin directly with biotinylated phalloidin followed by Western analyses; the reverse immunoprecipitation of HspB1 was also carried out. The phosphorylation influence of HspB1 in this interaction was investigated by using pharmacologic inhibition of p38 MAPK. In control cells, HspB1 interacts with F-actin as a predominantly non-phosphorylated protein, but subsequent to stress there is a redistribution of HspB1 to the cytoskeletal fraction and a significantly increased association of pHspB1 with F-actin. Our data demonstrate HspB1 is found in a complex with F-actin both in phosphorylated and non-phosphorylated forms, with an increased association of pHspB1 with F-actin after heat stress. Overall, our study combines both cellular and biochemical approaches to show cellular localization and direct demonstration of an interaction between endogenous HspB1 and F-actin using methodolgy that specifically isolates F-actin.

  19. Regulation of the actin cytoskeleton by an interaction of IQGAP related protein GAPA with filamin and cortexillin I.

    Directory of Open Access Journals (Sweden)

    Subhanjan Mondal

    Full Text Available Filamin and Cortexillin are F-actin crosslinking proteins in Dictyostelium discoideum allowing actin filaments to form three-dimensional networks. GAPA, an IQGAP related protein, is required for cytokinesis and localizes to the cleavage furrow during cytokinesis. Here we describe a novel interaction with Filamin which is required for cytokinesis and regulation of the F-actin content. The interaction occurs through the actin binding domain of Filamin and the GRD domain of GAPA. A similar interaction takes place with Cortexillin I. We further report that Filamin associates with Rac1a implying that filamin might act as a scaffold for small GTPases. Filamin and activated Rac associate with GAPA to regulate actin remodelling. Overexpression of filamin and GAPA in the various strains suggests that GAPA regulates the actin cytoskeleton through interaction with Filamin and that it controls cytokinesis through association with Filamin and Cortexillin.

  20. The Nf-actin gene is an important factor for food-cup formation and cytotoxicity of pathogenic Naegleria fowleri.

    Science.gov (United States)

    Sohn, Hae-Jin; Kim, Jong-Hyun; Shin, Myeong-Heon; Song, Kyoung-Ju; Shin, Ho-Joon

    2010-03-01

    Naegleria fowleri destroys target cells by trogocytosis, a phagocytosis mechanism, and a process of piecemeal ingestion of target cells by food-cups. Phagocytosis is an actin-dependent process that involves polymerization of monomeric G-actin into filamentous F-actin. However, despite the numerous studies concerning phagocytosis, its role in the N. fowleri food-cup formation related with trogocytosis has been poorly reported. In this study, we cloned and characterized an Nf-actin gene to elucidate the role of Nf-actin gene in N. fowleri pathogenesis. The Nf-actin gene is composed of 1,128-bp and produced a 54.1-kDa recombinant protein (Nf-actin). The sequence identity was 82% with nonpathogenic Naegleria gruberi but has no sequence identity with other mammals or human actin gene. Anti-Nf-actin polyclonal antibody was produced in BALB/c mice immunized with recombinant Nf-actin. The Nf-actin was localized on the cytoplasm, pseudopodia, and especially, food-cup structure (amoebastome) in N. fowleri trophozoites using immunofluorescence assay. When N. fowleri co-cultured with Chinese hamster ovary cells, Nf-actin was observed to localize around on phagocytic food-cups. We also observed that N. fowleri treated with cytochalasin D as actin polymerization inhibitor or transfected with antisense oligomer of Nf-actin gene had shown the reduced ability of food-cup formation and in vitro cytotoxicity. Finally, it suggests that Nf-actin plays an important role in phagocytic activity of pathogenic N. fowleri.

  1. Filamentous Biopolymers on Surfaces: Atomic Force Microscopy Images Compared with Brownian Dynamics Simulation of Filament Deposition

    Science.gov (United States)

    Mücke, Norbert; Klenin, Konstantin; Kirmse, Robert; Bussiek, Malte; Herrmann, Harald; Hafner, Mathias; Langowski, Jörg

    2009-01-01

    Nanomechanical properties of filamentous biopolymers, such as the persistence length, may be determined from two-dimensional images of molecules immobilized on surfaces. For a single filament in solution, two principal adsorption scenarios are possible. Both scenarios depend primarly on the interaction strength between the filament and the support: i) For interactions in the range of the thermal energy, the filament can freely equilibrate on the surface during adsorption; ii) For interactions much stronger than the thermal energy, the filament will be captured by the surface without having equilibrated. Such a ‘trapping’ mechanism leads to more condensed filament images and hence to a smaller value for the apparent persistence length. To understand the capture mechanism in more detail we have performed Brownian dynamics simulations of relatively short filaments by taking the two extreme scenarios into account. We then compared these ‘ideal’ adsorption scenarios with observed images of immobilized vimentin intermediate filaments on different surfaces. We found a good agreement between the contours of the deposited vimentin filaments on mica (‘ideal’ trapping) and on glass (‘ideal’ equilibrated) with our simulations. Based on these data, we have developed a strategy to reliably extract the persistence length of short worm-like chain fragments or network forming filaments with unknown polymer-surface interactions. PMID:19888472

  2. Filamentous biopolymers on surfaces: atomic force microscopy images compared with Brownian dynamics simulation of filament deposition.

    Directory of Open Access Journals (Sweden)

    Norbert Mücke

    Full Text Available Nanomechanical properties of filamentous biopolymers, such as the persistence length, may be determined from two-dimensional images of molecules immobilized on surfaces. For a single filament in solution, two principal adsorption scenarios are possible. Both scenarios depend primarily on the interaction strength between the filament and the support: i For interactions in the range of the thermal energy, the filament can freely equilibrate on the surface during adsorption; ii For interactions much stronger than the thermal energy, the filament will be captured by the surface without having equilibrated. Such a 'trapping' mechanism leads to more condensed filament images and hence to a smaller value for the apparent persistence length. To understand the capture mechanism in more detail we have performed Brownian dynamics simulations of relatively short filaments by taking the two extreme scenarios into account. We then compared these 'ideal' adsorption scenarios with observed images of immobilized vimentin intermediate filaments on different surfaces. We found a good agreement between the contours of the deposited vimentin filaments on mica ('ideal' trapping and on glass ('ideal' equilibrated with our simulations. Based on these data, we have developed a strategy to reliably extract the persistence length of short worm-like chain fragments or network forming filaments with unknown polymer-surface interactions.

  3. Rearrangement of actin cytoskeleton mediates invasion of Lotus japonicus roots by Mesorhizobium loti.

    Science.gov (United States)

    Yokota, Keisuke; Fukai, Eigo; Madsen, Lene H; Jurkiewicz, Anna; Rueda, Paloma; Radutoiu, Simona; Held, Mark; Hossain, Md Shakhawat; Szczyglowski, Krzysztof; Morieri, Giulia; Oldroyd, Giles E D; Downie, J Allan; Nielsen, Mette W; Rusek, Anna Maria; Sato, Shusei; Tabata, Satoshi; James, Euan K; Oyaizu, Hiroshi; Sandal, Niels; Stougaard, Jens

    2009-01-01

    Infection thread-dependent invasion of legume roots by rhizobia leads to internalization of bacteria into the plant cells, which is one of the salient features of root nodule symbiosis. We found that two genes, Nap1 (for Nck-associated protein 1) and Pir1 (for 121F-specific p53 inducible RNA), involved in actin rearrangements were essential for infection thread formation and colonization of Lotus japonicus roots by its natural microsymbiont, Mesorhizobium loti. nap1 and pir1 mutants developed an excess of uncolonized nodule primordia, indicating that these two genes were not essential for the initiation of nodule organogenesis per se. However, both the formation and subsequent progression of infection threads into the root cortex were significantly impaired in these mutants. We demonstrate that these infection defects were due to disturbed actin cytoskeleton organization. Short root hairs of the mutants had mostly transverse or web-like actin filaments, while bundles of actin filaments in wild-type root hairs were predominantly longitudinal. Corroborating these observations, temporal and spatial differences in actin filament organization between wild-type and mutant root hairs were also observed after Nod factor treatment, while calcium influx and spiking appeared unperturbed. Together with various effects on plant growth and seed formation, the nap1 and pir1 alleles also conferred a characteristic distorted trichome phenotype, suggesting a more general role for Nap1 and Pir1 in processes establishing cell polarity or polar growth in L. japonicus.

  4. Filamentous influenza viruses

    OpenAIRE

    Dadonaite, Bernadeta; Vijyakrishnan, Swetha; Fodor, Ervin; Bhella, David; Hutchinson, Edward C.

    2016-01-01

    Clinical isolates of influenza virus produce pleomorphic virus particles, including extremely long filamentous virions. In contrast, strains of influenza that have adapted to laboratory growth typically produce only spherical virions. As a result, the filamentous phenotype has been overlooked in most influenza virus research. Recent advances in imaging and improved animal models have highlighted the distinct structure and functional relevance of filamentous virions. In this review we summaris...

  5. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring.

    Science.gov (United States)

    Gorlin, J B; Yamin, R; Egan, S; Stewart, M; Stossel, T P; Kwiatkowski, D J; Hartwig, J H

    1990-09-01

    Actin-binding protein (ABP-280, nonmuscle filamin) is a ubiquitous dimeric actin cross-linking phosphoprotein of peripheral cytoplasm, where it promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. The complete nucleotide sequence of human endothelial cell ABP cDNA predicts a polypeptide subunit chain of 2,647 amino acids, corresponding to 280 kD, also the mass derived from physical measurements of the native protein. The actin-binding domain is near the amino-terminus of the subunit where the amino acid sequence is similar to other actin filament binding proteins, including alpha-actinin, beta-spectrin, dystrophin, and Dictyostelium abp-120. The remaining 90% of the sequence comprises 24 repeats, each approximately 96 residues long, predicted to have stretches of beta-sheet secondary structure interspersed with turns. The first 15 repeats may have substantial intrachain hydrophobic interactions and overlap in a staggered fashion to yield a backbone with mechanical resilience. Sequence insertions immediately before repeats 16 and 24 predict two hinges in the molecule near points where rotary-shadowed molecules appear to swivel in electron micrographs. Both putative hinge regions are susceptible to cleavage by proteases and the second also contains the site that binds the platelet glycoprotein Ib/IX complex. Phosphorylation consensus sequences are also located in the hinges or near them. Degeneracy within every even-numbered repeat between 16 and 24 and the insertion before repeat 24 may convert interactions within chains to interactions between chains to account for dimer formation within a domain of 7 kD at the carboxy-terminus. The structure of ABP dimers resembles a leaf spring. Interchain interactions hold the leaves firmly together at one end, whereas intrachain hydrophobic bonds reinforce the arms of the spring where the leaves diverge, making it sufficiently stiff to promote high-angle branching of actin

  6. Actin and Arp2/3 localize at the centrosome of interphase cells

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Thomas; Vandekerckhove, Joel; Gettemans, Jan, E-mail: jan.gettemans@vib-ugent.be

    2011-01-07

    Research highlights: {yields} Actin was detected at the centrosome with the anti-actin antibody 1C7 that recognizes antiparallel ('lower dimer') actin dimers. {yields} Centrosomal actin was found in interphase but not mitotic MDA-MB-231 cells. {yields} Neither the anti-actin antibody C4 that binds to globular, monomer actin, nor the anti-actin antibody 2G2 that recognizes the nuclear conformation of actin detect actin at the centrosome. {yields} The Arp2/3 complex transiently localizes at the pericentriolar matrix but not at the centrioles of interphase HEK 293T cells. -- Abstract: Although many actin binding proteins such as cortactin and the Arp2/3 activator WASH localize at the centrosome, the presence and conformation of actin at the centrosome has remained elusive. Here, we report the localization of actin at the centrosome in interphase but not in mitotic MDA-MB-231 cells. Centrosomal actin was detected with the anti-actin antibody 1C7 that recognizes antiparallel ('lower dimer') actin dimers. In addition, we report the transient presence of the Arp2/3 complex at the pericentriolar matrix but not at the centrioles of interphase HEK 293T cells. Overexpression of an Arp2/3 component resulted in expansion of the pericentriolar matrix and selective accumulation of the Arp2/3 component in the pericentriolar matrix. Altogether, we hypothesize that the centrosome transiently recruits Arp2/3 to perform processes such as centrosome separation prior to mitotic entry, whereas the observed constitutive centrosomal actin staining in interphase cells reinforces the current model of actin-based centrosome reorientation toward the leading edge in migrating cells.

  7. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections.

    Science.gov (United States)

    Guo, Dong-Chuan; Pannu, Hariyadarshi; Tran-Fadulu, Van; Papke, Christina L; Yu, Robert K; Avidan, Nili; Bourgeois, Scott; Estrera, Anthony L; Safi, Hazim J; Sparks, Elizabeth; Amor, David; Ades, Lesley; McConnell, Vivienne; Willoughby, Colin E; Abuelo, Dianne; Willing, Marcia; Lewis, Richard A; Kim, Dong H; Scherer, Steve; Tung, Poyee P; Ahn, Chul; Buja, L Maximilian; Raman, C S; Shete, Sanjay S; Milewicz, Dianna M

    2007-12-01

    The major function of vascular smooth muscle cells (SMCs) is contraction to regulate blood pressure and flow. SMC contractile force requires cyclic interactions between SMC alpha-actin (encoded by ACTA2) and the beta-myosin heavy chain (encoded by MYH11). Here we show that missense mutations in ACTA2 are responsible for 14% of inherited ascending thoracic aortic aneurysms and dissections (TAAD). Structural analyses and immunofluorescence of actin filaments in SMCs derived from individuals heterozygous for ACTA2 mutations illustrate that these mutations interfere with actin filament assembly and are predicted to decrease SMC contraction. Aortic tissues from affected individuals showed aortic medial degeneration, focal areas of medial SMC hyperplasia and disarray, and stenotic arteries in the vasa vasorum due to medial SMC proliferation. These data, along with the previously reported MYH11 mutations causing familial TAAD, indicate the importance of SMC contraction in maintaining the structural integrity of the ascending aorta.

  8. WIP modulates dendritic spine actin cytoskeleton by transcriptional control of lipid metabolic enzymes.

    Science.gov (United States)

    Franco-Villanueva, Ana; Fernández-López, Estefanía; Gabandé-Rodríguez, Enrique; Bañón-Rodríguez, Inmaculada; Esteban, Jose Antonio; Antón, Inés M; Ledesma, María Dolores

    2014-08-15

    We identify Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) as a novel component of neuronal synapses whose absence increases dendritic spine size and filamentous actin levels in an N-WASP/Arp2/3-independent, RhoA/ROCK/profilinIIa-dependent manner. These effects depend on the reduction of membrane sphingomyelin (SM) due to transcriptional upregulation of neutral sphingomyelinase (NSM) through active RhoA; this enhances RhoA binding to the membrane, raft partitioning and activation in steady state but prevents RhoA changes in response to stimulus. Inhibition of NSM or SM addition reverses RhoA, filamentous actin and functional anomalies in synapses lacking WIP. Our findings characterize WIP as a link between membrane lipid composition and actin cytoskeleton at dendritic spines. They also contribute to explain cognitive deficits shared by individuals bearing mutations in the region assigned to the gene encoding for WIP.

  9. The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter

    Directory of Open Access Journals (Sweden)

    Sérgio Carvalho Leite

    2016-04-01

    Full Text Available The actin-binding protein adducin was recently identified as a component of the neuronal subcortical cytoskeleton. Here, we analyzed mice lacking adducin to uncover the function of this protein in actin rings. α-adducin knockout mice presented progressive axon enlargement in the spinal cord and optic and sciatic nerves, followed by axon degeneration and loss. Using stimulated emission depletion super-resolution microscopy, we show that a periodic subcortical actin cytoskeleton is assembled in every neuron type inspected including retinal ganglion cells and dorsal root ganglia neurons. In neurons devoid of adducin, the actin ring diameter increased, although the inter-ring periodicity was maintained. In vitro, the actin ring diameter adjusted as axons grew, suggesting the lattice is dynamic. Our data support a model in which adducin activity is not essential for actin ring assembly and periodicity but is necessary to control the diameter of both actin rings and axons and actin filament growth within rings.

  10. Drosophila Fascin is a novel downstream target of prostaglandin signaling during actin remodeling.

    Science.gov (United States)

    Groen, Christopher M; Spracklen, Andrew J; Fagan, Tiffany N; Tootle, Tina L

    2012-12-01

    Although prostaglandins (PGs)-lipid signals produced downstream of cyclooxygenase (COX) enzymes-regulate actin cytoskeletal dynamics, their mechanisms of action are unknown. We previously established Drosophila oogenesis, in particular nurse cell dumping, as a new model to determine how PGs regulate actin remodeling. PGs, and thus the Drosophila COX-like enzyme Pxt, are required for both the parallel actin filament bundle formation and the cortical actin strengthening required for dumping. Here we provide the first link between Fascin (Drosophila Singed, Sn), an actin-bundling protein, and PGs. Loss of either pxt or fascin results in similar actin defects. Fascin interacts, both pharmacologically and genetically, with PGs, as reduced Fascin levels enhance the effects of COX inhibition and synergize with reduced Pxt levels to cause both parallel bundle and cortical actin defects. Conversely, overexpression of Fascin in the germline suppresses the effects of COX inhibition and genetic loss of Pxt. These data lead to the conclusion that PGs regulate Fascin to control actin remodeling. This novel interaction has implications beyond Drosophila, as both PGs and Fascin-1, in mammalian systems, contribute to cancer cell migration and invasion.

  11. Rheological characterization of the bundling transition in F-actin solutions induced by methylcellulose.

    Directory of Open Access Journals (Sweden)

    Simone Köhler

    Full Text Available In many in vitro experiments Brownian motion hampers quantitative data analysis. Therefore, additives are widely used to increase the solvent viscosity. For this purpose, methylcellulose (MC has been proven highly effective as already small concentrations can significantly slow down diffusive processes. Beside this advantage, it has already been reported that high MC concentrations can alter the microstructure of polymer solutions such as filamentous actin. However, it remains to be shown to what extent the mechanical properties of a composite actin/MC gel depend on the MC concentration. In particular, significant alterations might occur even if the microstructure seems unaffected. Indeed, we find that the viscoelastic response of entangled F-actin solutions depends sensitively on the amount of MC added. At concentrations higher than 0.2% (w/v MC, actin filaments are reorganized into bundles which drastically changes the viscoelastic response. At small MC concentrations the impact of MC is more subtle: the two constituents, actin and MC, contribute in an additive way to the mechanical response of the composite material. As a consequence, the effect of methylcellulose on actin solutions has to be considered very carefully when MC is used in biochemical experiments.

  12. Redundant mechanisms recruit actin into the contractile ring in silkworm spermatocytes.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2008-09-01

    Full Text Available Cytokinesis is powered by the contraction of actomyosin filaments within the newly assembled contractile ring. Microtubules are a spindle component that is essential for the induction of cytokinesis. This induction could use central spindle and/or astral microtubules to stimulate cortical contraction around the spindle equator (equatorial stimulation. Alternatively, or in addition, induction could rely on astral microtubules to relax the polar cortex (polar relaxation. To investigate the relationship between microtubules, cortical stiffness, and contractile ring assembly, we used different configurations of microtubules to manipulate the distribution of actin in living silkworm spermatocytes. Mechanically repositioned, noninterdigitating microtubules can induce redistribution of actin at any region of the cortex by locally excluding cortical actin filaments. This cortical flow of actin promotes regional relaxation while increasing tension elsewhere (normally at the equatorial cortex. In contrast, repositioned interdigitating microtubule bundles use a novel mechanism to induce local stimulation of contractility anywhere within the cortex; at the antiparallel plus ends of central spindle microtubules, actin aggregates are rapidly assembled de novo and transported laterally to the equatorial cortex. Relaxation depends on microtubule dynamics but not on RhoA activity, whereas stimulation depends on RhoA activity but is largely independent of microtubule dynamics. We conclude that polar relaxation and equatorial stimulation mechanisms redundantly supply actin for contractile ring assembly, thus increasing the fidelity of cleavage.

  13. Unconventional myosins, actin dynamics and endocytosis: a ménage à trois?

    Science.gov (United States)

    Soldati, Thierry

    2003-06-01

    Ever since the discovery of class I myosins, the first nonmuscle myosins, about 30 years ago, the history of unconventional myosins has been linked to the organization and working of actin filaments. It slowly emerged from studies of class I myosins in lower eukaryotes that they are involved in mechanisms of endocytosis. Most interestingly, a flurry of recent findings assign a more active role to class I myosins in regulating the spatial and temporal organization of actin filament nucleation and elongation. The results highlight the multiple links between class I myosins and the major actin nucleator, the Arp2/3 complex, and its newly described activators. Two additional types of unconventional myosins, myosinIX, and Dictyostelium discoideum MyoM, have recently been tied to the signaling pathways controlling actin cytoskeleton remodeling. The present review surveys the links between these three classes of molecular motors and the complex cellular processes of endocytosis and actin dynamics, and concentrates on a working model accounting for the function of class I myosins via recruitment of the machinery responsible for actin nucleation and elongation. PMID:12753645

  14. Direct interaction between two actin nucleators is required in Drosophila oogenesis.

    Science.gov (United States)

    Quinlan, Margot E

    2013-11-01

    Controlled actin assembly is crucial to a wide variety of cellular processes, including polarity establishment during early development. The recently discovered actin mesh, a structure that traverses the Drosophila oocyte during mid-oogenesis, is essential for proper establishment of the major body axes. Genetic experiments indicate that at least two proteins, Spire (Spir) and Cappuccino (Capu), are required to build this mesh. The spire and cappuccino genetic loci were first identified as maternal effect genes in Drosophila. Mutation in either locus results in the same phenotypes, including absence of the mesh, linking them functionally. Both proteins nucleate actin filaments. Spir and Capu also interact directly with each other in vitro, suggesting a novel synergistic mode of regulating actin. In order to understand how and why proteins with similar biochemical activity would be required in the same biological pathway, genetic experiments were designed to test whether a direct interaction between Spir and Capu is required during oogenesis. Indeed, data in this study indicate that Spir and Capu must interact directly with one another and then separate to function properly. Furthermore, these actin regulators are controlled by a combination of mechanisms, including interaction with one another, functional inhibition and regulation of their protein levels. Finally, this work demonstrates for the first time in a multicellular organism that the ability of a formin to assemble actin filaments is required for a specific structure.

  15. Effects of nitrogen ion implantation on lily pollen germination and the distribution of the actin cytoskeleton during pollen germination

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of low energy nitrogen ion implantation on lily (Lilium davidii Duch.) pollen germination and the distribution of the actin cytoskeleton during pollen germination have been studied. Preliminary results showed that the ratio of pollen germination increased from (16.0±1.6)% to (27.0±2.1)% when implanted with nitrogen ions by 100 keV and a dose of 1013 ions/cm2. Further experiments were performed by staining the actin filaments in pollen with rhodamine-phalloidin and detected by using laser confocol microscopy. After hydration for 10 h, the actin filaments in ion implanted pollen grains tended to form thick bundles oriented in parallel or ring shape at the germinal furrow, indicating that the effect of nitrogen ion implantation on the germination of pollen might be mediated by reorganization of the actin cytoskeleton.

  16. The spatial response of nonlinear strain propagation in response to actively driven microspheres through entangled actin networks

    Science.gov (United States)

    Falzone, Tobias; Blair, Savanna; Robertson-Anderson, Rae

    2015-03-01

    The semiflexible biopolymer actin, a ubiquitous component of nearly all biological organisms, plays an important role in many mechanically-driven processes such as muscle contraction, cancer invasion and cell motility. As such, entangled actin networks, which possess unique and complex viscoelastic properties, have been the subject of much theoretical and experimental work. However, due to this viscoelastic complexity, much is still unknown regarding the correlation of the applied stress on actin networks to the induced filament strain at the molecular and micro scale. Here, we use simultaneous optical trapping and fluorescence microscopy to characterize the link between applied microscopic forces and strain propagation as a function of strain rate and concentration. Specifically, we track fiduciary markers on entangled actin filaments before, during and after actively driving embedded microspheres through the network. These measurements provide much needed insight into the molecular-level dynamics connecting stress and strain in semiflexible polymer networks.

  17. Proteomics of Filamentous Fungi

    NARCIS (Netherlands)

    Passel, van M.W.J.; Schaap, P.J.; Graaff, de L.H.

    2013-01-01

    Filamentous fungi, such as Aspergillus niger and Aspergillus oryzae traditionally have had an important role in providing enzymes and enzyme cocktails that are used in food industry. In recent years the genome sequences of many filamentous fungi have become available. This combined with technologica

  18. Semiflexible filamentous composites

    NARCIS (Netherlands)

    Huisman, E.M.; Heussinger, C.; Storm, C.; Barkema, G.T.

    2010-01-01

    Inspired by the ubiquity of composite filamentous networks in nature, we investigate models of biopolymer networks that consist of interconnected floppy and stiff filaments. Numerical simulations carried out in three dimensions allow us to explore the microscopic partitioning of stresses and strains

  19. Tungsten filament fire

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2016-05-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent light bulb is being replaced by compact fluorescent and LED lamps.

  20. Covert connection of filaments

    CERN Document Server

    Filippov, Boris

    2015-01-01

    We analyse the relationship between two near filaments, which do not show any connection in H-alpha images but reveal close magnetic connectivity during filament activations in Extreme Ultraviolet (EUV) observations. A twisted flux rope, which connects a half of one filament with another filament, becomes visible during several activations but seems to exist all the time of the filaments presence on the disc. Solar Dynamic Observatory} (SDO) and Solar Terrestrial Relations Observatory (STEREO) observed the region with the filaments from two points of view separated by the angle of about 120 deg. On 2012 July 27, SDO observed the filament activation on disc, while for the STEREO B position the filaments were visible at the limb. Nearly identical interaction episode was observed on 2012 August 04 by STEREO A on disc and by SDO at the limb. This good opportunity allows us to disentangle the 3-D shape of the connecting flux rope and in particular to determine with high reliability the helicity sign of the flux ro...

  1. The Nebivolol action on vascular tone is dependent on actin cytoskeleton polymerization and Rho-A activity into ECs and SMCs.

    Science.gov (United States)

    Kadi, A; de Isla, N; Moby, V; Lacolley, P; Labrude, P; Stoltz, J F; Menu, P

    2014-01-01

    Nitric oxide is implicated in the target action of Nebivolol, a selective β1 adrenoceptor blocker used in hypertension treatment. As the Nitric Oxide (NO) production and the actin cytoskeleton are linked, the aim of this work was to study the involvement of actin cytoskeleton on mechanism of action of Nebivolol in cultured endothelial cells. We studied the effect of Nebivolol (200 μM) on actin filaments remodeling and its impact on NO production and eNOS activation. Results showed that Nebivolol perturbs actin filaments polymerization, increases NO production and eNOS activity between 30 minutes and 1 h. Stabilization of actin filaments with phalloïdine (50 μM) abolishes Nebivolol effects on eNOS activation and NO production. Furthermore, Rho-kinase activity decreased during the first hour of Nebivolol treatment, then increased after 3 h, while actin filaments repolymerized, eNOS activation and NO production decreased. In SMCs, Nebivolol induced a decrease in the Rho-kinase activity from 1 h until 24 h of incubation. In conclusion, we suggest that Nebivolol induced NO production in Endothelial Cells (ECs) via complementary actions between actin cytoskeleton remodeling inducing eNOS activation and Rho-kinase implication. The effect of Nebivolol on ECs occurs during the first hour, this effect on SMCs seems to be maintained until 24 h, explaining persisted action of Nebivolol observed in vivo.

  2. The Pseudomonas syringae Type III Effector HopG1 Induces Actin Remodeling to Promote Symptom Development and Susceptibility during Infection.

    Science.gov (United States)

    Shimono, Masaki; Lu, Yi-Ju; Porter, Katie; Kvitko, Brian H; Henty-Ridilla, Jessica; Creason, Allison; He, Sheng Yang; Chang, Jeff H; Staiger, Christopher J; Day, Brad

    2016-07-01

    The plant cytoskeleton underpins the function of a multitude of cellular mechanisms, including those associated with developmental- and stress-associated signaling processes. In recent years, the actin cytoskeleton has been demonstrated to play a key role in plant immune signaling, including a recent demonstration that pathogens target actin filaments to block plant defense and immunity. Herein, we quantified spatial changes in host actin filament organization after infection with Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), demonstrating that the type-III effector HopG1 is required for pathogen-induced changes to actin filament architecture and host disease symptom development during infection. Using a suite of pathogen effector deletion constructs, coupled with high-resolution microscopy, we found that deletion of hopG1 from Pst DC3000 resulted in a reduction in actin bundling and a concomitant increase in the density of filament arrays in Arabidopsis, both of which correlate with host disease symptom development. As a mechanism underpinning this activity, we further show that the HopG1 effector interacts with an Arabidopsis mitochondrial-localized kinesin motor protein. Kinesin mutant plants show reduced disease symptoms after pathogen infection, which can be complemented by actin-modifying agents. In total, our results support a model in which HopG1 induces changes in the organization of the actin cytoskeleton as part of its virulence function in promoting disease symptom development. PMID:27217495

  3. Identification of Actin-Binding Proteins from Maize Pollen

    Energy Technology Data Exchange (ETDEWEB)

    Staiger, C.J.

    2004-01-13

    Specific Aims--The goal of this project was to gain an understanding of how actin filament organization and dynamics are controlled in flowering plants. Specifically, we proposed to identify unique proteins with novel functions by investigating biochemical strategies for the isolation and characterization of actin-binding proteins (ABPs). In particular, our hunt was designed to identify capping proteins and nucleation factors. The specific aims included: (1) to use F-actin affinity chromatography (FAAC) as a general strategy to isolate pollen ABPs (2) to produce polyclonal antisera and perform subcellular localization in pollen tubes (3) to isolate cDNA clones for the most promising ABPs (4) to further purify and characterize ABP interactions with actin in vitro. Summary of Progress By employing affinity chromatography on F-actin or DNase I columns, we have identified at least two novel ABPs from pollen, PrABP80 (gelsolin-like) and ZmABP30, We have also cloned and expressed recombinant protein, as well as generated polyclonal antisera, for 6 interesting ABPs from Arabidopsis (fimbrin AtFIM1, capping protein a/b (AtCP), adenylyl cyclase-associated protein (AtCAP), AtCapG & AtVLN1). We performed quantitative analyses of the biochemical properties for two of these previously uncharacterized ABPs (fimbrin and capping protein). Our studies provide the first evidence for fimbrin activity in plants, demonstrate the existence of barbed-end capping factors and a gelsolin-like severing activity, and provide the quantitative data necessary to establish and test models of F-actin organization and dynamics in plant cells.

  4. A kinematic description of the trajectories of Listeria monocytogenes propelled by actin comet tails

    Science.gov (United States)

    Tambe, Dhananjay; Shenoy, Vivek

    2007-03-01

    The bacterial pathogen Listeria monocytogenes propels itself in the cytoplasm of the infected cells by forming a filamentous comet tail assembled by the polymerization of the cytoskeletal protein, actin. While a great deal is known about the molecular processes that lead to actin based movement, most macroscale aspects of motion, including the nature of the trajectories traced out by the motile bacteria are not well understood. Listeria moving between a glass-slide and cover slip in a Xenopus frog egg extract motility assay is observed to display a number of geometrically fascinating trajectories including sine curves, serpentine shapes, circles, and a variety of spirals. We have developed a dynamic model that provides a unified description of these seemingly unrelated trajectories. A key ingredient of the model is a torque (not included in any microscopic models to date) that arises from the rotation of the propulsive force about the body-axis of the bacterium. The trajectories of bacteria executing both steady and saltatory motion are found to be in excellent agreement with the predictions of our dynamic model. When the constraints that lead to planar motion are removed, our model predicts motion along regular helical trajectories, observed in recent experiments. We discover from the analysis of the trajectories of spherical beads that the comet tail revolves around the bead.

  5. Confirmation of filament dissolution behavior by analyzing electrical field effect during reset process in oxide-based RRAM

    Science.gov (United States)

    Pan, Chih-Hung; Chang, Ting-Chang; Tsai, Tsung-Ming; Chang, Kuan-Chang; Chu, Tian-Jian; Lin, Wen-Yan; Chen, Min-Chen; Sze, Simon M.

    2016-09-01

    In this letter, we demonstrate completely different characteristics with different operating modes and analyze the electrical field effect to confirm the filament dissolution behavior. The device exhibited a larger memory window when using a single voltage sweep method during reset process rather than the traditional double sweep method. The phenomenon was verified by using fast I-V measurement to simulate the two operating methods. A better high resistance state (HRS) will be obtained with a very short rising time pulse, but quite notably, lower power consumption was needed. We proposed the electrical field effect to explain the phenomenon and demonstrate distribution by COMSOL simulation.

  6. Mapping of the Mouse Actin Capping Protein Beta Subunit Gene

    Directory of Open Access Journals (Sweden)

    Cooper John A

    2000-07-01

    Full Text Available Abstract Background Capping protein (CP, a heterodimer of α and β subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three isoforms of CPβ produced by alternatively splicing from one gene; lower organisms have one gene and one isoform. Results We isolated genomic clones corresponding to the β subunit of mouse CP and identified its chromosomal location by interspecies backcross mapping. Conclusions The CPβ gene (Cappb1 mapped to Chromosome 4 between Cdc42 and D4Mit312. Three mouse mutations, snubnose, curly tail, and cribriform degeneration, map in the vicinity of the β gene.

  7. Cost Effectiveness of Imiquimod 5% Cream Compared with Methyl Aminolevulinate-Based Photodynamic Therapy in the Treatment of Non-Hyperkeratotic, Non-Hypertrophic Actinic (Solar) Keratoses: A Decision Tree Model

    OpenAIRE

    Wilson, Edward C F

    2010-01-01

    Background: Actinic keratosis (AK) is caused by chronic exposure to UV radiation (sunlight). First-line treatments are cryosurgery, topical 5-fluorouracil (5-FU) and topical diclofenac. Where these are contraindicated or less appropriate, alternatives are imiquimod and photodynamic therapy (PDT). Objective: To compare the cost effectiveness of imiquimod and methyl aminolevulinate-based PDT (MAL-PDT) from the perspective of the UK NHS. Methods: A decision tree model was populated with data fro...

  8. Microrheology and micromechanics of actin-coated membranes

    Science.gov (United States)

    Bourdieu, Laurent

    2002-03-01

    To study the interaction between cytoskeletal filaments and the plasma membrane, we designed composite membranes obtained by self-assembly of actin filaments on the outer leaflet of giant unilamellar fluid vesicles. Their rich dynamics is studied by micromanipulation with optical tweezers and by single particle tracking experiments. We first show that microrheology study can be carried out on such an individual microscopic object by measuring the thermally excited position fluctuations of a probed bead bound biochemically to the membrane. We propose a model that relates the power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of the actin filaments network first induces a finite 2D shear modulus of the order of 1 microN/m. Moreover, these membranes exhibit a clear viscoelastic behavior at high frequency: above a few tens of Hz, both the shear and the bending moduli exhibit the same frequency dependence, a power law of exponent 0.75. These results are consistent in the framework of our model with previous measurements on actin solutions. We show moreover that these complexes exhibit typical mechanical features of a solid shell. For example, a buckling instability is observed when a localized force of the order of 0.5 picoNewton is applied perpendicular to the membrane plane. Although predicted for polymerized vesicles, this is the first evidence of such an instability. This instability is a striking example of the coupling between in-plane stretch and shear and out-of-plane bending, which takes place for curves shells when it becomes more favorable energetically to concentrate the in-plane stress due to the bending within a narrow ring, centered on the force application point.

  9. Emerging roles of actin cytoskeleton regulating enzymes in drug addiction: Actin or reactin’?

    Science.gov (United States)

    Rothenfluh, Adrian; Cowan, Christopher W.

    2013-01-01

    Neurons rely on their cytoskeleton to give them shape and stability, and on cytoskeletal dynamics for growth and synaptic plasticity. Because drug addiction is increasingly seen as the inappropriate learning of strongly reinforcing stimuli, the role of the cytoskeleton in shaping drug memories has been of increasing interest in recent years. Does the cytoskeleton have an active role in shaping these memories, and to what extent do alterations in the cytoskeleton reflect the acute actions of drug exposure, or homeostatic reactions to the chronic exposure to drugs of abuse? Here we will review recent advances in understanding the role of the cytoskeleton in the development of drug addiction, with a focus on actin filaments, as they have been studied in greater detail. PMID:23428655

  10. Analysis of actinic flux profiles measured from an ozonesonde balloon

    Science.gov (United States)

    Wang, P.; Allaart, M.; Knap, W. H.; Stammes, P.

    2015-04-01

    A green light sensor has been developed at KNMI to measure actinic flux profiles using an ozonesonde balloon. In total, 63 launches with ascending and descending profiles were performed between 2006 and 2010. The measured uncalibrated actinic flux profiles are analysed using the Doubling-Adding KNMI (DAK) radiative transfer model. Values of the cloud optical thickness (COT) along the flight track were taken from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) Cloud Physical Properties (CPP) product. The impact of clouds on the actinic flux profile is evaluated on the basis of the cloud modification factor (CMF) at the cloud top and cloud base, which is the ratio between the actinic fluxes for cloudy and clear-sky scenes. The impact of clouds on the actinic flux is clearly detected: the largest enhancement occurs at the cloud top due to multiple scattering. The actinic flux decreases almost linearly from cloud top to cloud base. Above the cloud top the actinic flux also increases compared to clear-sky scenes. We find that clouds can increase the actinic flux to 2.3 times the clear-sky value at cloud top and decrease it to about 0.05 at cloud base. The relationship between CMF and COT agrees well with DAK simulations, except for a few outliers. Good agreement is found between the DAK-simulated actinic flux profiles and the observations for single-layer clouds in fully overcast scenes. The instrument is suitable for operational balloon measurements because of its simplicity and low cost. It is worth further developing the instrument and launching it together with atmospheric chemistry composition sensors.

  11. Colocalization of synapsin and actin during synaptic vesicle recycling

    DEFF Research Database (Denmark)

    Bloom, Ona; Evergren, Emma; Tomilin, Nikolay;

    2003-01-01

    activity, however, synapsin was detected in the pool of vesicles proximal to the active zone. In addition, actin and synapsin were found colocalized in a dynamic filamentous cytomatrix at the sites of synaptic vesicle recycling, endocytic zones. Synapsin immunolabeling was not associated with clathrin......-coated intermediates but was found on vesicles that appeared to be recycling back to the cluster. Disruption of synapsin function by microinjection of antisynapsin antibodies resulted in a prominent reduction of the cytomatrix at endocytic zones of active synapses. Our data suggest that in addition to its known...

  12. Withaferin a alters intermediate filament organization, cell shape and behavior.

    Directory of Open Access Journals (Sweden)

    Boris Grin

    Full Text Available Withaferin A (WFA is a steroidal lactone present in Withania somnifera which has been shown in vitro to bind to the intermediate filament protein, vimentin. Based upon its affinity for vimentin, it has been proposed that WFA can be used as an anti-tumor agent to target metastatic cells which up-regulate vimentin expression. We show that WFA treatment of human fibroblasts rapidly reorganizes vimentin intermediate filaments (VIF into a perinuclear aggregate. This reorganization is dose dependent and is accompanied by a change in cell shape, decreased motility and an increase in vimentin phosphorylation at serine-38. Furthermore, vimentin lacking cysteine-328, the proposed WFA binding site, remains sensitive to WFA demonstrating that this site is not required for its cellular effects. Using analytical ultracentrifugation, viscometry, electron microscopy and sedimentation assays we show that WFA has no effect on VIF assembly in vitro. Furthermore, WFA is not specific for vimentin as it disrupts the cellular organization and induces perinuclear aggregates of several other IF networks comprised of peripherin, neurofilament-triplet protein, and keratin. In cells co-expressing keratin IF and VIF, the former are significantly less sensitive to WFA with respect to inducing perinuclear aggregates. The organization of microtubules and actin/microfilaments is also affected by WFA. Microtubules become wavier and sparser and the number of stress fibers appears to increase. Following 24 hrs of exposure to doses of WFA that alter VIF organization and motility, cells undergo apoptosis. Lower doses of the drug do not kill cells but cause them to senesce. In light of our findings that WFA affects multiple IF systems, which are expressed in many tissues of the body, caution is warranted in its use as an anti-cancer agent, since it may have debilitating organism-wide effects.

  13. Surface adsorption and hopping cause probe-size-dependent microrheology of actin networks

    Science.gov (United States)

    He, Jun; Tang, Jay X.

    2011-04-01

    A network of filaments formed primarily by the abundant cytoskeletal protein actin gives animal cells their shape and elasticity. The rheological properties of reconstituted actin networks have been studied by tracking micron-sized probe beads embedded within the networks. We investigate how microrheology depends on surface properties of probe particles by varying the stickiness of their surface. For this purpose, we chose carboxylate polystyrene (PS) beads, silica beads, bovine serum albumin (BSA) -coated PS beads, and polyethylene glycol (PEG) -grafted PS beads, which show descending stickiness to actin filaments, characterized by confocal imaging and microrheology. Probe size dependence of microrheology is observed for all four types of beads. For the slippery PEG beads, particle-tracking microrheology detects weaker networks using smaller beads, which tend to diffuse through the network by hopping from one confinement “cage” to another. This trend is reversed for the other three types of beads, for which microrheology measures stiffer networks for smaller beads due to physisorption of nearby filaments to the bead surface. We explain the probe size dependence with two simple models. We also evaluate depletion effect near nonadsorption bead surface using quantitative image analysis and discuss the possible impact of depletion on microrheology. Analysis of these effects is necessary in order to accurately define the actin network rheology both in vitro and in vivo.

  14. Blistering of viscoelastic filaments

    CERN Document Server

    Sattler, R; Wagner, C

    2007-01-01

    When a dilute polymer solution experiences capillary thinning, it forms an almost uniformly cylindrical thread, which we study experimentally. In the last stages of thinning, when polymers have become fully stretched, the filament becomes prone to instabilities, of which we describe two: A novel "breathing" instability, originating from the edge of the filament, and a sinusoidal instability in the interior, which ultimately gives rise to a "blistering" pattern of beads on the filament. We describe the linear instability with a spatial resolution of 80 nm in the disturbance amplitude. For sufficiently high polymer concentrations, the filament eventually separates out into a "solid" phase of entangled polymers, connected by fluid beads. A solid polymer fiber of about 100 nanometer thickness remains, which is essentially permanent.

  15. Femtosecond Laser Filamentation

    CERN Document Server

    Chin, See Leang

    2010-01-01

    Femtosecond Laser Filamentation gives a comprehensive review of the physics of propagation of intense femtosecond laser pulses in optical media (principally air) and the applications and challenges of this new technique. This book presents the modern understanding of the physics of femtosecond laser pulse propagation, including unusual new effects such as the self-transformation of the pulse into a white light laser pulse, intensity clamping, the physics of multiple filamentation and competition, and how filaments’ ability to melt glass leads to wave guide writing. The potential applications of laser filamentation in atmospheric sensing and the generation of other electromagnetic pulses from the UV to the radio frequency are treated, together with possible future challenges in the excitation of super-excited states of molecules. Exciting new phenomena such as filament induced ultrafast birefringence and the excitation of molecular rotational wave packets and their multiple revivals in air (gases) will also ...

  16. LeftyA decreases Actin Polymerization and Stiffness in Human Endometrial Cancer Cells

    Science.gov (United States)

    Salker, Madhuri S.; Schierbaum, Nicolas; Alowayed, Nour; Singh, Yogesh; Mack, Andreas F.; Stournaras, Christos; Schäffer, Tilman E.; Lang, Florian

    2016-01-01

    LeftyA, a cytokine regulating stemness and embryonic differentiation, down-regulates cell proliferation and migration. Cell proliferation and motility require actin reorganization, which is under control of ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1). The present study explored whether LeftyA modifies actin cytoskeleton, shape and stiffness of Ishikawa cells, a well differentiated endometrial carcinoma cell line. The effect of LeftyA on globular over filamentous actin ratio was determined utilizing Western blotting and flow cytometry. Rac1 and PAK1 transcript levels were measured by qRT-PCR as well as active Rac1 and PAK1 by immunoblotting. Cell stiffness (quantified by the elastic modulus), cell surface area and cell volume were studied by atomic force microscopy (AFM). As a result, 2 hours treatment with LeftyA (25 ng/ml) significantly decreased Rac1 and PAK1 transcript levels and activity, depolymerized actin, and decreased cell stiffness, surface area and volume. The effect of LeftyA on actin polymerization was mimicked by pharmacological inhibition of Rac1 and PAK1. In the presence of the Rac1 or PAK1 inhibitor LeftyA did not lead to significant further actin depolymerization. In conclusion, LeftyA leads to disruption of Rac1 and Pak1 activity with subsequent actin depolymerization, cell softening and cell shrinkage. PMID:27404958

  17. Interconnection between actin cytoskeleton and plant defense signaling.

    Science.gov (United States)

    Janda, Martin; Matoušková, Jindřiška; Burketová, Lenka; Valentová, Olga

    2014-01-01

    Actin cytoskeleton is the fundamental structural component of eukaryotic cells. It has a role in numerous elementary cellular processes such as reproduction, development and also in response to abiotic and biotic stimuli. Remarkably, the role of actin cytoskeleton in plant response to pathogens is getting to be under magnifying glass. Based on microscopic studies, most of the data showed, that actin plays an important role in formation of physiological barrier in the site of infection. Actin dynamics is involved in the transport of antimicrobial compounds and cell wall fortifying components (e.g. callose) to the site of infection. Also the role in PTI (pathogen triggered immunity) and ETI (effector triggered immunity) was recently indicated. On the other hand much less is known about the transcriptome reprogramming upon changes in actin dynamics. Our recently published results showed that drugs inhibiting actin polymerization (latrunculin B, cytochalasin E) cause the induction of genes which are involved in salicylic acid (SA) signaling pathway. In this addendum we would like to highlight in more details current state of knowledge concerning the involvement of actin dynamics in plant defense signaling.

  18. Quadrantids filaments modeling

    OpenAIRE

    Rosaev, Alex

    2012-01-01

    Numeric integration of orbits of particles along mean orbit of Quadrantid meteor stream is done at time span 20000 years. Orbits are subdivided on several classes by their evolution type. A very complex dynamical behavior is detected. About 20% of modeled particles escape stream: this fact point on that stream cannot be long-live and have a source within 5000 years. After that, Quadrantid filaments dynamics are studied. By comparison of different authors data, 7 independent filaments are sele...

  19. Picosecond laser filamentation in air

    Science.gov (United States)

    Schmitt-Sody, Andreas; Kurz, Heiko G.; Bergé, Luc; Skupin, Stefan; Polynkin, Pavel

    2016-09-01

    The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled to the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which has been paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions in the picosecond regime are limited and the pulse fluence is also clamped. In focused propagation geometry, a unique feature of picosecond filamentation is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for many applications including laser-guided electrical breakdown of air, channeling microwave beams and air lasing.

  20. Picosecond laser filamentation in air

    CERN Document Server

    Schmitt-Sody, Andreas; Bergé, L; Skupin, S; Polynkin, Pavel

    2016-01-01

    The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled with the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which is paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions are limited and the pulse fluence is also clamped. The resulting unique feature of the picosecond filamentation regime is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for numerous applications.

  1. The parafibromin tumor suppressor protein interacts with actin-binding proteins actinin-2 and actinin-3

    Directory of Open Access Journals (Sweden)

    Marx Stephen J

    2008-08-01

    Full Text Available Abstract Background Germline and somatic inactivating mutations in the HRPT2 gene occur in the inherited hyperparathyroidism-jaw tumor syndrome, in some cases of parathyroid cancer and in some cases of familial hyperparathyroidism. HRPT2 encodes parafibromin. To identify parafibromin interacting proteins we used the yeast two-hybrid system for screening a heart cDNA library with parafibromin as the bait. Results Fourteen parafibromin interaction positive preys representing 10 independent clones encoding actinin-2 were isolated. Parafibromin interacted with muscle alpha-actinins (actinin-2 and actinin-3, but not with non-muscle alpha-actinins (actinin-1 and actinin-4. The parafibromin-actinin interaction was verified by yeast two-hybrid, GST pull-down, and co-immunoprecipitation. Yeast two-hybrid analysis revealed that the N-terminal region of parafibromin interacted with actinins. In actin sedimentation assays parafibromin did not dissociate skeletal muscle actinins from actin filaments, but interestingly, parafibromin could also bundle/cross-link actin filaments. Parafibromin was predominantly nuclear in undifferentiated proliferating myoblasts (C2C12 cells, but in differentiated C2C12 myotubes parafibromin co-localized with actinins in the cytoplasmic compartment. Conclusion These data support a possible contribution of parafibromin outside the nucleus through its interaction with actinins and actin bundling/cross-linking. These data also suggest that actinins (and actin participate in sequestering parafibromin in the cytoplasmic compartment.

  2. Reverse actin sliding triggers strong myosin binding that moves tropomyosin

    Energy Technology Data Exchange (ETDEWEB)

    Bekyarova, T.I.; Reedy, M.C.; Baumann, B.A.J.; Tregear, R.T.; Ward, A.; Krzic, U.; Prince, K.M.; Perz-Edwards, R.J.; Reconditi, M.; Gore, D.; Irving, T.C.; Reedy, M.K. (IIT); (EMBL); (Scripps); (Duke); (Prince); (FSU); (MRC); (U. Florence)

    2008-09-03

    Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the 'steric blocking' mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca{sup 2+} with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence that TM in insect flight muscle (IFM) moves in a manner consistent with the steric blocking mechanism. We find that both isometric contraction, at high [Ca{sup 2+}], and stretch activation, at lower [Ca{sup 2+}], develop similarly high x-ray intensities on the IFM fourth actin layer line because of TM movement, coinciding with x-ray signals of strong-binding cross-bridge attachment to helically favored 'actin target zones.' Vanadate (Vi), a phosphate analog that inhibits active cross-bridge cycling, abolishes all active force in IFM, allowing high [Ca{sup 2+}] to elicit initial TM movement without cross-bridge attachment or other changes from relaxed structure. However, when stretched in high [Ca{sup 2+}], Vi-'paralyzed' fibers produce force substantially above passive response at pCa {approx} 9, concurrent with full conversion from resting to active x-ray pattern, including x-ray signals of cross-bridge strong-binding and TM movement. This argues that myosin heads can be recruited as strong-binding 'brakes' by backward-sliding, calcium-activated thin filaments, and are as effective in moving TM as actively force-producing cross-bridges. Such recruitment of myosin as brakes may be the major mechanism resisting extension during lengthening contractions.

  3. Progresses in studies of nuclear actin

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiaojuan; ZENG Xianlu; SONG Zhaoxia; HAO Shui

    2004-01-01

    Actin is a protein abundant in cells. Recently, it has been proved to be universally existent in the nuclei of many cell types. Actin and actin-binding proteins, as well as actin-related proteins, are necessary for the mediation of the conformation and function of nuclear actin, including the transformation of actin between unpolymerized and polymerized, chroinatin remodeling, regulation of gene expression and RNA processing as well as RNA transportation. In this paper, we summarized the progresses in the research of nu clear actin.

  4. The proline-rich domain of tau plays a role in interactions with actin

    Directory of Open Access Journals (Sweden)

    Wang Dong

    2009-11-01

    Full Text Available Abstract Background The microtubule-associated protein tau is able to interact with actin and serves as a cross-linker between the microtubule and actin networks. The microtubule-binding domain of tau is known to be involved in its interaction with actin. Here, we address the question of whether the other domains of tau also interact with actin. Results Several tau truncation and deletion mutants were constructed, namely N-terminal region (tauN, proline-rich domain (tauPRD, microtubule binding domain (tauMTBD and C-terminal region (tauC truncation mutants, and microtubule binding domain (tauΔMTBD and proline-rich domain/microtubule binding domain (tauΔPRD&MTBD deletion mutants. The proline-rich domain truncation mutant (tauPRD and the microtubule binding domain deletion mutant (tauΔMTBD promoted the formation of actin filaments. However, actin assembly was not observed in the presence of the N-terminal and C-terminal truncation mutants. These results indicate that the proline-rich domain is involved in the association of tau with G-actin. Furthermore, results from co-sedimentation, solid phase assays and electron microscopy showed that the proline-rich domain is also capable of binding to F-actin and inducing F-actin bundles. Using solid phase assays to analyze apparent dissociation constants for the binding of tau and its mutants to F-actin resulted in a sequence of affinity for F-actin: tau >> microtubule binding domain > proline-rich domain. Moreover, we observed that the proline-rich domain was able to associate with and bundle F-actin at physiological ionic strength. Conclusion The proline-rich domain is a functional structure playing a role in the association of tau with actin. This suggests that the proline-rich domain and the microtubule-binding domain of tau are both involved in binding to and bundling F-actin.

  5. Nuclear F-actin enhances the transcriptional activity of β-catenin by increasing its nuclear localization and binding to chromatin.

    Science.gov (United States)

    Yamazaki, Shota; Yamamoto, Koji; de Lanerolle, Primal; Harata, Masahiko

    2016-04-01

    Actin plays multiple roles both in the cytoplasm and in the nucleus. Cytoplasmic actin, in addition to its structural role in the cytoskeleton, also contributes to the subcellular localization of transcription factors by interacting with them or their partners. The transcriptional cofactor β-catenin, which acts as an intracellular transducer of canonical Wnt signaling, indirectly associates with the cytoplasmic filamentous actin (F-actin). Recently, it has been observed that F-actin is transiently formed within the nucleus in response to serum stimulation and integrin signaling, and also during gene reprogramming. Despite these earlier observations, information about the function of nuclear F-actin is poorly defined. Here, by facilitating the accumulation of nuclear actin artificially, we demonstrate that polymerizing nuclear actin enhanced the nuclear accumulation and transcriptional function of β-catenin. Our results also show that the nuclear F-actin colocalizes with β-catenin and enhances the binding of β-catenin to the downstream target genes of the Wnt/β-catenin signaling pathway, including the genes for the cell cycle regulators c-myc and cyclin D, and the OCT4 gene. Nuclear F-actin itself also associated with these genes. Since Wnt/β-catenin signaling has important roles in cell differentiation and pluripotency, our observations suggest that nuclear F-actin formed during these biological processes is involved in regulating Wnt/β-catenin signaling. PMID:26900020

  6. A Bipolar Spindle of Antiparallel ParM Filaments Drives Bacterial Plasmid Segregation

    DEFF Research Database (Denmark)

    Gayathri, P; Fujii, T; Møller-Jensen, Jakob;

    2012-01-01

    To ensure their stable inheritance by daughter cells during cell division, bacterial low copy-number plasmids make simple DNA segregating machines that use an elongating protein filament between sister plasmids. In the ParMRC system of Escherichia coli R1 plasmid, ParM, an actin-like protein, forms...... the spindle between ParRC complexes on sister plasmids. Using a combination of structural work and total internal reflection fluorescence microscopy, we show that ParRC bound and could accelerate growth at only one end of polar ParM filaments, mechanistically resembling eukaryotic formins. The architecture...... of ParM filaments enabled two ParRC-bound filaments to associate in an antiparallel orientation, forming a bipolar spindle. The spindle elongated as a bundle of at least two antiparallel filaments, thereby pushing two plasmid clusters toward the poles....

  7. Statistical Analysis of Filament Features Based on the H{\\alpha} Solar Images from 1988 to 2013 by Computer Automated Detection Method

    CERN Document Server

    Hao, Q; Cao, W; Chen, P F

    2015-01-01

    We improve our filament automated detection method which was proposed in our previous works. It is then applied to process the full disk H$\\alpha$ data mainly obtained by Big Bear Solar Observatory (BBSO) from 1988 to 2013, spanning nearly 3 solar cycles. The butterfly diagrams of the filaments, showing the information of the filament area, spine length, tilt angle, and the barb number, are obtained. The variations of these features with the calendar year and the latitude band are analyzed. The drift velocities of the filaments in different latitude bands are calculated and studied. We also investigate the north-south (N-S) asymmetries of the filament numbers in total and in each subclass classified according to the filament area, spine length, and tilt angle. The latitudinal distribution of the filament number is found to be bimodal. About 80% of all the filaments have tilt angles within [0{\\deg}, 60{\\deg}]. For the filaments within latitudes lower (higher) than 50{\\deg} the northeast (northwest) direction i...

  8. Antenna mechanism of length control of actin cables

    CERN Document Server

    Mohapatra, Lishibanya; Kondev, Jane

    2014-01-01

    Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This antenna mechanism involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentra...

  9. Subhalo Accretion through Filaments

    Science.gov (United States)

    González, Roberto E.; Padilla, Nelson D.

    2016-09-01

    We track subhalo orbits of galaxy- and group-sized halos in cosmological simulations. We identify filamentary structures around halos and use these to define a sample of subhalos accreted from filaments, as well as a control sample of subhalos accreted from other directions. We use these samples to study differences in satellite orbits produced by filamentary accretion. Our results depend on host halo mass. We find that for low masses, subhalos accreted from filaments show ∼10% shorter lifetimes compared to the control sample, show a tendency toward more radial orbits, reach halo central regions earlier, and are more likely to merge with the host. For higher-mass halos this lifetime difference dissipates and even reverses for cluster-sized halos. This behavior appears to be connected to the fact that more massive hosts are connected to stronger filaments with higher velocity coherence and density, with slightly more radial subhalo orbits. Because subhalos tend to follow the coherent flow of the filament, it is possible that such thick filaments are enough to shield the subhalo from the effect of dynamical friction at least during their first infall. We also identify subhalo pairs/clumps that merge with one another after accretion. They survive as a clump for only a very short time, which is even shorter for higher subhalo masses, suggesting that the Magellanic Clouds and other Local group satellite associations may have entered the Milky Way virial radius very recently and probably are in their first infall.

  10. Prokaryotic expression and characterization of a pea actin isoform (PEAcl) fused to GFP

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shaobin; REN Dongtao; XU Xiaojing; LIU Guoqin

    2004-01-01

    Actins widely exist in eukaryotic cells and play important roles in many living activities. As there are many kinds of actin isoforms in plant cells, it is difficult to purify each actin isoform in sufficient quantities for analyzing its physicochemical properties. In the present study, a pea(Pisum Sativum L.) actin isoform (PEAc1) fused to His-tag at its amino terminus and GFP (green fluorescent protein) at its Carboxyl terminus were expressed in E. Coli in inclusion bodies. The fusion protein (PEAc1-GFP) was highly purified with the yield of above 2 mg/L culture by dissolving inclusions in 8 mol/L urea, renaturing by dialysis in a gradient of urea, and affinity binding to Ni-resin. The purified mono meric PEAc1-GFP could efficiently bind on Dnase Ⅰ and inhibit the latter's enzyme activity. PEAc1-GFP could polymerize into green fluorescent filamentous structures (F-PEAc1-GFP), which could be labeled by TRITC-phalloidin, a specific agent for observing microfilaments. The PEAc1-GFP polymerization curve was identical with that of chicken skeletal muscle actin. The critical concentration for PEAc1-GFP to polymerize into filaments is 0.24 μmol/L. The F-PEAc1-GFP could stimulate myosin Mg-ATPase activity in a protein concentration dependant manner (about 4 folds at1 mg/mL F-PEAc1-GFP). The results above show that the PEAcl fused to GFP retained the assembly characteristic of actin, indicating that gene fusion, prokaryotic expression,denaturation and renaturation, and affinity chromatography is a useful strategy for obtaining plant actin isoform proteins in a large amount.

  11. Drosophila actin-Capping Protein limits JNK activation by the Src proto-oncogene.

    Science.gov (United States)

    Fernández, B G; Jezowska, B; Janody, F

    2014-04-17

    The Src family kinases c-Src, and its downstream effectors, the Rho family of small GTPases RhoA and Jun N-terminal kinase (JNK) have a significant role in tumorigenesis. In this report, using the Drosophila wing disc epithelium as a model system, we demonstrate that the actin-Capping Protein (CP) αβ heterodimer, which regulates actin filament (F-actin) polymerization, limits Src-induced apoptosis or tissue overgrowth by restricting JNK activation. We show that overexpressing Src64B drives JNK-independent loss of epithelial integrity and JNK-dependent apoptosis via Btk29A, p120ctn and Rho1. However, when cells are kept alive with the Caspase inhibitor P35, JNK acts as a potent inducer of proliferation via activation of the Yorkie oncogene. Reducing CP levels direct apoptosis of overgrowing Src64B-overexpressing tissues. Conversely, overexpressing capping protein inhibits Src64B and Rho1, but not Rac1-induced JNK signaling. CP requires the actin-binding domain of the α-subunit to limit Src64B-induced apoptosis, arguing that the control of F-actin mediates this effect. In turn, JNK directs F-actin accumulation. Moreover, overexpressing capping protein also prevents apoptosis induced by ectopic JNK expression. Our data are consistent with a model in which the control of F-actin by CP limits Src-induced apoptosis or tissue overgrowth by acting downstream of Btk29A, p120ctn and Rho1, but upstream of JNK. In turn, JNK may counteract the effect of CP on F-actin, providing a positive feedback, which amplifies JNK activation. We propose that cytoskeletal changes triggered by misregulation of F-actin modulators may have a significant role in Src-mediated malignant phenotypes during the early stages of cellular transformation.

  12. The Drosophila planar polarity gene multiple wing hairs directly regulates the actin cytoskeleton.

    Science.gov (United States)

    Lu, Qiuheng; Schafer, Dorothy A; Adler, Paul N

    2015-07-15

    The evolutionarily conserved frizzled/starry night (fz/stan) pathway regulates planar cell polarity (PCP) in vertebrates and invertebrates. This pathway has been extensively studied in the Drosophila wing, where it is manifested by an array of distally pointing cuticular hairs. Using in vivo imaging we found that, early in hair growth, cells have multiple actin bundles and hairs that subsequently fuse into a single growing hair. The downstream PCP gene multiple wing hairs (mwh) plays a key role in this process and acts to antagonize the actin cytoskeleton. In mwh mutants hair initiation is not limited to a small region at the distal edge of pupal wing cells as in wild type, resulting in multiple hairs with aberrant polarity. Extra actin bundles/hairs are formed and do not completely fuse, in contrast to wild type. As development proceeded additional hairs continued to form, further increasing hair number. We identified a fragment of Mwh with in vivo rescue activity and that bound and bundled F-actin filaments and inhibited actin polymerization in in vitro actin assays. The loss of these activities can explain the mwh mutant phenotype. Our data suggest a model whereby, prior to hair initiation, proximally localized Mwh inhibits actin polymerization resulting in polarized activation of the cytoskeleton and hair formation on the distal side of wing cells. During hair growth Mwh is found in growing hairs, where we suggest it functions to promote the fusion of actin bundles and inhibit the formation of additional actin bundles that could lead to extra hairs.

  13. The kinesin-like proteins, KAC1/2, regulate actin dynamics underlying chloroplast light-avoidance in Physcomitrella patens

    Institute of Scientific and Technical Information of China (English)

    Zhiyuan Shen; Yen-Chen Liu; Jeffrey P Bibeau; Kyle P Lemoi; Erkan Tzel; Luis Vidali

    2015-01-01

    In plants, light determines chloroplast position;these organelles show avoidance and accumulation re-sponses in high and low fluence-rate light, respectively. Chloroplast motility in response to light is driven by cytoskeletal elements. The actin cytoskeleton mediates chloroplast photorelocation responses in Arabidopsis thali-ana. In contrast, in the moss Physcomitrella patens, both, actin filaments and microtubules can transport chloroplasts. Because of the surprising evidence that two kinesin-like proteins (called KACs) are important for actin-dependent chloroplast photorelocation in vascular plants, we wanted to determine the cytoskeletal system responsible for the function of these proteins in moss. We performed gene-specific silencing using RNA interference in P. patens. We confirmed existing reports using gene knockouts, that PpKAC1 and PpKAC2 are required for chloroplast dispersion under uniform white light conditions, and that the two proteins are functionally equivalent. To address the specific cytoskeletal elements responsible for motility, this loss-of-function approach was combined with cytoskeleton-targeted drug studies. We found that, in P. patens, these KACs mediate the chloroplast light-avoidance response in an actin filament-dependent, rather than a microtubule-dependent manner. Using correlation-decay analysis of cytoskeletal dynamics, we found that PpKAC stabilizes cortical actin filaments, but has no effect on microtubule dynamics.

  14. Drosophila myosin-XX functions as an actin-binding protein to facilitate the interaction between Zyx102 and actin.

    Science.gov (United States)

    Cao, Yang; White, Howard D; Li, Xiang-Dong

    2014-01-21

    The class XX myosin is a member of the diverse myosin superfamily and exists in insects and several lower invertebrates. DmMyo20, the class XX myosin in Drosophila, is encoded by dachs, which functions as a crucial downstream component of the Fat signaling pathway, influencing growth, affinity, and gene expression during development. Sequence analysis shows that DmMyo20 contains a unique N-terminal extension, the motor domain, followed by one IQ motif, and a C-terminal tail. To investigate the biochemical properties of DmMyo20, we expressed several DmMyo20 truncated constructs containing the motor domain in the baculovirus/Sf9 system. We found that the motor domain of DmMyo20 had neither ATPase activity nor the ability to bind to ATP, suggesting that DmMyo20 does not function as a molecular motor. We found that the motor domain of DmMyo20 could specifically bind to actin filaments in an ATP-independent manner and enhance the interaction between actin filaments and Zyx102, a downstream component of DmMyo20 in the Fat signaling pathway. These results suggest that DmMyo20 functions as a scaffold protein, but not as a molecular motor, in a signaling pathway controlling cell differentiation.

  15. Cloning and Characterization of an Abalone (Haliotis discus hannai) Actin Gene

    Institute of Scientific and Technical Information of China (English)

    MA Hongming; XU Wei; MAI Kangsen; LIUFU Zhiguo; CHEN Hong

    2004-01-01

    An actin encoding gene was cloned by using RT-PCR, 3' RACE and 5' RACE from abalone Haliotis discus hannai. The full length of the gene is 1532 base pairs, which contains a long 3' untranslated region of 307 base pairs and 79 base pairs of 5' untranslated sequence. The open reading frame encodes 376 amino acid residues. Sequence comparison with those of human and other mollusks showed high conservation among species at amino acid level. The identities was 96%, 97% and 96% respectively compared with Aplysia californica, Biomphalaria glabrata and Homo sapience β-actin. It is also indicated that this actin is more similar to the human cytoplasmic actin(β-actin)than to human muscle actin.

  16. Aerogel-supported filament

    Science.gov (United States)

    Wuest, Craig R.; Tillotson, Thomas M.; Johnson, III, Coleman V.

    1995-01-01

    The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces.

  17. Semiflexible filamentous composites.

    Science.gov (United States)

    Huisman, E M; Heussinger, C; Storm, C; Barkema, G T

    2010-09-10

    Inspired by the ubiquity of composite filamentous networks in nature, we investigate models of biopolymer networks that consist of interconnected floppy and stiff filaments. Numerical simulations carried out in three dimensions allow us to explore the microscopic partitioning of stresses and strains between the stiff and floppy fractions cs and cf and reveal a nontrivial relationship between the mechanical behavior and the relative fraction of stiff polymer: when there are few stiff polymers, nonpercolated stiff "inclusions" are protected from large deformations by an encompassing floppy matrix, while at higher fractions of stiff material the stiff network is independently percolated and dominates the mechanical response. PMID:20867610

  18. Position detection and observation of a conducting filament hidden under a top electrode in a Ta2O5-based atomic switch

    International Nuclear Information System (INIS)

    Resistive random access memories (ReRAMs) are promising next-generation memory devices. Observation of the conductive filaments formed in ReRAMs is essential in understanding their operating mechanisms and their expected ultimate performance. Finding the position of the conductive filament is the key process in the preparation of samples for cross-sectional transmission electron microscopy (TEM) imaging. Here, we propose a method for locating the position of conductive filaments hidden under top electrodes. Atomic force microscopy imaging with a conductive tip detects the current flowing through a conductive filament from the bottom electrode, which reaches its maximum at a position that is above the conductive filament. This is achieved by properly biasing a top electrode, a bottom electrode and the conductive tip. This technique was applied to Cu/Ta2O5/Pt atomic switches, revealing the formation of a single Cu filament in a device, although the device had a large area of 5 × 5 μm2. Change in filament size was clearly observed depending on the compliance current used in the set process. It was also found from the TEM observation that the cross-sectional shape of the formed filament varies considerably, which is attributable to different Cu nuclei growth mechanisms. (paper)

  19. Dynamic Actin Controls Polarity Induction de novo in Protoplasts

    Institute of Scientific and Technical Information of China (English)

    Beatrix Zaban; Jan Maisch; Peter Nick

    2013-01-01

    Cell polarity and axes are central for plant morphogenesis.To study how polarity and axes are induced de novo,we investigated protoplasts of tobacco Nicotiana tabacum cv.BY-2 expressing fluorescentlytagged cytoskeletal markers.We standardized the system to such a degree that we were able to generate quantitative data on the temporal patterns of regeneration stages.The synthesis of a new cell wall marks the transition to the first stage of regeneration,and proceeds after a long preparatory phase within a few minutes.During this preparatory phase,the nucleus migrates actively,and cytoplasmic strands remodel vigorously.We probed this system for the effect of anti-cytoskeletal compounds,inducible bundling of actin,RGD-peptides,and temperature.Suppression of actin dynamics at an early stage leads to aberrant tripolar cells,whereas suppression of microtubule dynamics produces aberrant sausagelike cells with asymmetric cell walls.We integrated these data into a model,where the microtubular cytoskeleton conveys positional information between the nucleus and the membrane controlling the release or activation of components required for cell wall synthesis.Cell wall formation is followed by the induction of a new cell pole requiring dynamic actin filaments,and the new cell axis is manifested as elongation growth perpendicular to the orientation of the aligned cortical microtubules.

  20. Dynamic actin controls polarity induction de novo in protoplasts.

    Science.gov (United States)

    Zaban, Beatrix; Maisch, Jan; Nick, Peter

    2013-02-01

    Cell polarity and axes are central for plant morphogenesis. To study how polarity and axes are induced de novo, we investigated protoplasts of tobacco Nicotiana tabacum cv. BY-2 expressing fluorescently-tagged cytoskeletal markers. We standardized the system to such a degree that we were able to generate quantitative data on the temporal patterns of regeneration stages. The synthesis of a new cell wall marks the transition to the first stage of regeneration, and proceeds after a long preparatory phase within a few minutes. During this preparatory phase, the nucleus migrates actively, and cytoplasmic strands remodel vigorously. We probed this system for the effect of anti-cytoskeletal compounds, inducible bundling of actin, RGD-peptides, and temperature. Suppression of actin dynamics at an early stage leads to aberrant tripolar cells, whereas suppression of microtubule dynamics produces aberrant sausage-like cells with asymmetric cell walls. We integrated these data into a model, where the microtubular cytoskeleton conveys positional information between the nucleus and the membrane controlling the release or activation of components required for cell wall synthesis. Cell wall formation is followed by the induction of a new cell pole requiring dynamic actin filaments, and the new cell axis is manifested as elongation growth perpendicular to the orientation of the aligned cortical microtubules.

  1. Myosin lever arm directs collective motion on cellular actin network.

    Science.gov (United States)

    Hariadi, Rizal F; Cale, Mario; Sivaramakrishnan, Sivaraj

    2014-03-18

    The molecular motor myosin teams up to drive muscle contraction, membrane traffic, and cell division in biological cells. Myosin function in cells emerges from the interaction of multiple motors tethered to a scaffold, with surrounding actin filaments organized into 3D networks. Despite the importance of myosin function, the influence of intermotor interactions on collective motion remains poorly understood. In this study, we used precisely engineered myosin assemblies to examine emergence in collective myosin movement. We report that tethering multiple myosin VI motors, but not myosin V motors, modifies their movement trajectories on keratocyte actin networks. Single myosin V and VI dimers display similar skewed trajectories, albeit in opposite directions, when traversing the keratocyte actin network. In contrast, tethering myosin VI motors, but not myosin V motors, progressively straightens the trajectories with increasing myosin number. Trajectory shape of multimotor scaffolds positively correlates with the stiffness of the myosin lever arm. Swapping the flexible myosin VI lever arm for the relatively rigid myosin V lever increases trajectory skewness, and vice versa. A simplified model of coupled motor movement demonstrates that the differences in flexural rigidity of the two myosin lever arms is sufficient to account for the differences in observed behavior of groups of myosin V and VI motors. In accordance with this model trajectory, shapes for scaffolds containing both myosin V and VI are dominated by the myosin with a stiffer lever arm. Our findings suggest that structural features unique to each myosin type may confer selective advantages in cellular functions.

  2. Blue-light-induced reorganization of the actin cytoskeleton and the avoidance response of chloroplasts in epidermal cells of Vallisneria gigantea.

    Science.gov (United States)

    Sakurai, Nami; Domoto, Kikuko; Takagi, Shingo

    2005-04-01

    In leaf epidermal cells of the aquatic angiosperm Vallisneria gigantea Graebner, high-intensity blue light induces the actin-dependent avoidance response of chloroplasts. By semi-quantitative motion analysis and phalloidin staining, time courses of the blue-light-induced changes in the mode of movement of individual chloroplasts and in the configuration of actin filaments were examined in the presence and absence of a flavoprotein inhibitor, diphenylene iodonium. In dark-adapted cells, short, thick actin bundles seemed to surround each chloroplast, which was kept motionless in the outer periclinal cytoplasm of the cells. After 10 min of irradiation with high-intensity blue light, a rapid, unidirectional movement of chloroplasts was induced, concomitant with the appearance of aggregated, straight actin bundles stretched over the outer periclinal cytoplasm. Diphenylene iodonium inhibited the avoidance response of chloroplasts, apparently by delaying a change in the mode of chloroplast movement from random sway to unidirectional migration, by suppressing the appearance of aggregated, straight actin bundles. In partially irradiated individual cells, redistribution of chloroplasts and reorganization of actin filaments occurred only in the areas exposed to blue light. From the results, we propose that the short, thick actin bundles in the vicinity of chloroplasts function to anchor the chloroplasts in dark-adapted cells, and that the aggregated, straight actin bundles organized under blue-light irradiation provide tracks for unidirectional movement of chloroplasts. PMID:15843965

  3. Capping protein beta is required for actin cytoskeleton organisation and cell migration during Drosophila oogenesis.

    Science.gov (United States)

    Ogienko, Anna A; Karagodin, Dmitry A; Lashina, Valentina V; Baiborodin, Sergey I; Omelina, Eugeniya S; Baricheva, Elina M

    2013-02-01

    Capping protein (CP) is a well-characterised actin-binding protein important for regulation of actin filament (AF) assembly. CP caps the barbed end of AFs, inhibiting the addition and loss of actin monomers. In Drosophila melanogaster, the gene encoding CP β-subunit is named capping protein beta (cpb; see Hopmann et al. [1996] J Cell Biol 133: 1293-305). The cpb level is reduced in the Drosophila bristle actin cytoskeleton and becomes disorganised with abnormal morphology. A reduced level of the CP protein in ovary results in disruption of oocyte determination, and disturbance of nurse cell (NC) cortical integrity and dumping. We describe novel defects appearing in cpb mutants during oogenesis, in which cpb plays an important role in border and centripetal follicle cell migration, ring canal development and cytoplasmic AF formation. The number of long cytoplasmic AFs was dramatically reduced in cpb hypomorphs and abnormal actin aggregates was seen on the inner side of NC membranes. A hypothesis to explain the formation of abnormal short-cut cytoplasmic AFs and actin aggregates in the cpb mutant NCs was proffered, along with a discussion of the reasons for 'dumpless' phenotype formation in the mutants.

  4. A magnetically actuated cellular strain assessment tool for quantitative analysis of strain induced cellular reorientation and actin alignment

    Science.gov (United States)

    Khademolhosseini, F.; Liu, C.-C.; Lim, C. J.; Chiao, M.

    2016-08-01

    Commercially available cell strain tools, such as pneumatically actuated elastomer substrates, require special culture plates, pumps, and incubator setups. In this work, we present a magnetically actuated cellular strain assessment tool (MACSAT) that can be implemented using off-the-shelf components and conventional incubators. We determine the strain field on the MACSAT elastomer substrate using numerical models and experimental measurements and show that a specific region of the elastomer substrate undergoes a quasi-uniaxial 2D stretch, and that cells confined to this region of the MACSAT elastomer substrate undergo tensile, compressive, or zero axial strain depending on their angle of orientation. Using the MACSAT to apply cyclic strain on endothelial cells, we demonstrate that actin filaments within the cells reorient away from the stretching direction, towards the directions of minimum axial strain. We show that the final actin orientation angles in strained cells are spread over a region of compressive axial strain, confirming previous findings on the existence of a varied pre-tension in the actin filaments of the cytoskeleton. We also demonstrate that strained cells exhibit distinctly different values of actin alignment coherency compared to unstrained cells and therefore propose that this parameter, i.e., the coherency of actin alignment, can be used as a new readout to determine the occurrence/extent of actin alignment in cell strain experiments. The tools and methods demonstrated in this study are simple and accessible and can be easily replicated by other researchers to study the strain response of other adherent cells.

  5. Positrusion Filament Recycling System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TUI proposes a novel process to produce 3d printer feedstock filament out of scrap ABS on the ISS. Currently the plastic filament materials that most 3d printers...

  6. Solar Features - Prominences and Filaments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Prominences and filaments are two manifestations of the same phenomenon. Both prominences and filaments are features formed above the chromosphere by cool dense...

  7. Detection of adenosine triphosphate through polymerization-induced aggregation of actin-conjugated gold/silver nanorods

    Science.gov (United States)

    Liao, Yu-Ju; Shiang, Yen-Chun; Chen, Li-Yi; Hsu, Chia-Lun; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-11-01

    We have developed a simple and selective nanosensor for the optical detection of adenosine triphosphate (ATP) using globular actin-conjugated gold/silver nanorods (G-actin-Au/Ag NRs). By simply mixing G-actin and Au/Ag NRs (length ˜56 nm and diameter ˜12 nm), G-actin-Au/Ag NRs were prepared which were stable in physiological solutions (25 mM Tris-HCl, 150 mM NaCl, 5.0 mM KCl, 3.0 mM MgCl2 and 1.0 mM CaCl2; pH 7.4). Introduction of ATP into the G-actin-Au/Ag NR solutions in the presence of excess G-actin induced the formation of filamentous actin-conjugated Au/Ag NR aggregates through ATP-induced polymerization of G-actin. When compared to G-actin-modified spherical Au nanoparticles having a size of 13 nm or 56 nm, G-actin-Au/Ag NRs provided better sensitivity for ATP, mainly because the longitudinal surface plasmon absorbance of the Au/Ag NR has a more sensitive response to aggregation. This G-actin-Au/Ag NR probe provided high sensitivity (limit of detection 25 nM) for ATP with remarkable selectivity (>10-fold) over other adenine nucleotides (adenosine, adenosine monophosphate and adenosine diphosphate) and nucleoside triphosphates (guanosine triphosphate, cytidine triphosphate and uridine triphosphate). It also allowed the determination of ATP concentrations in plasma samples without conducting tedious sample pretreatments; the only necessary step was simple dilution. Our experimental results are in good agreement with those obtained from a commercial luciferin-luciferase bioluminescence assay. Our simple, sensitive and selective approach appears to have a practical potential for the clinical diagnosis of diseases (e.g. cystic fibrosis) associated with changes in ATP concentrations.

  8. Live imaging provides new insights on dynamic F-actin filopodia and differential endocytosis during myoblast fusion in Drosophila.

    Science.gov (United States)

    Haralalka, Shruti; Shelton, Claude; Cartwright, Heather N; Guo, Fengli; Trimble, Rhonda; Kumar, Ram P; Abmayr, Susan M

    2014-01-01

    The process of myogenesis includes the recognition, adhesion, and fusion of committed myoblasts into multinucleate syncytia. In the larval body wall muscles of Drosophila, this elaborate process is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs), and cell adhesion molecules Kin-of-IrreC (Kirre) and Sticks-and-stones (Sns) on their respective surfaces. The FCMs appear to provide the driving force for fusion, via the assembly of protrusions associated with branched F-actin and the WASp, SCAR and Arp2/3 pathways. In the present study, we utilize the dorsal pharyngeal musculature that forms in the Drosophila embryo as a model to explore myoblast fusion and visualize the fusion process in live embryos. These muscles rely on the same cell types and genes as the body wall muscles, but are amenable to live imaging since they do not undergo extensive morphogenetic movement during formation. Time-lapse imaging with F-actin and membrane markers revealed dynamic FCM-associated actin-enriched protrusions that rapidly extend and retract into the myotube from different sites within the actin focus. Ultrastructural analysis of this actin-enriched area showed that they have two morphologically distinct structures: wider invasions and/or narrow filopodia that contain long linear filaments. Consistent with this, formin Diaphanous (Dia) and branched actin nucleator, Arp3, are found decorating the filopodia or enriched at the actin focus, respectively, indicating that linear actin is present along with branched actin at sites of fusion in the FCM. Gain-of-function Dia and loss-of-function Arp3 both lead to fusion defects, a decrease of F-actin foci and prominent filopodia from the FCMs. We also observed differential endocytosis of cell surface components at sites of fusion, with actin reorganizing factors, WASp and SCAR, and Kirre remaining on the myotube surface and Sns preferentially taken up with other membrane proteins into early endosomes and lysosomes in the

  9. Live imaging provides new insights on dynamic F-actin filopodia and differential endocytosis during myoblast fusion in Drosophila.

    Directory of Open Access Journals (Sweden)

    Shruti Haralalka

    Full Text Available The process of myogenesis includes the recognition, adhesion, and fusion of committed myoblasts into multinucleate syncytia. In the larval body wall muscles of Drosophila, this elaborate process is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs, and cell adhesion molecules Kin-of-IrreC (Kirre and Sticks-and-stones (Sns on their respective surfaces. The FCMs appear to provide the driving force for fusion, via the assembly of protrusions associated with branched F-actin and the WASp, SCAR and Arp2/3 pathways. In the present study, we utilize the dorsal pharyngeal musculature that forms in the Drosophila embryo as a model to explore myoblast fusion and visualize the fusion process in live embryos. These muscles rely on the same cell types and genes as the body wall muscles, but are amenable to live imaging since they do not undergo extensive morphogenetic movement during formation. Time-lapse imaging with F-actin and membrane markers revealed dynamic FCM-associated actin-enriched protrusions that rapidly extend and retract into the myotube from different sites within the actin focus. Ultrastructural analysis of this actin-enriched area showed that they have two morphologically distinct structures: wider invasions and/or narrow filopodia that contain long linear filaments. Consistent with this, formin Diaphanous (Dia and branched actin nucleator, Arp3, are found decorating the filopodia or enriched at the actin focus, respectively, indicating that linear actin is present along with branched actin at sites of fusion in the FCM. Gain-of-function Dia and loss-of-function Arp3 both lead to fusion defects, a decrease of F-actin foci and prominent filopodia from the FCMs. We also observed differential endocytosis of cell surface components at sites of fusion, with actin reorganizing factors, WASp and SCAR, and Kirre remaining on the myotube surface and Sns preferentially taken up with other membrane proteins into early endosomes and

  10. Properties of twisted ferromagnetic filaments

    Energy Technology Data Exchange (ETDEWEB)

    Belovs, Mihails; Cebers, Andrejs [University of Latvia, Zellu 8, LV-1002 (Latvia)], E-mail: aceb@tesla.sal.lv

    2009-02-01

    The full set of equations for twisted ferromagnetic filaments is derived. The linear stability analysis of twisted ferromagnetic filament is carried out. Two different types of the buckling instability are found - monotonous and oscillatory. The first in the limit of large twist leads to the shape of filament reminding pearls on the string, the second to spontaneous rotation of the filament, which may constitute the working of chiral microengine.

  11. Fascin regulates nuclear actin during Drosophila oogenesis.

    Science.gov (United States)

    Kelpsch, Daniel J; Groen, Christopher M; Fagan, Tiffany N; Sudhir, Sweta; Tootle, Tina L

    2016-10-01

    Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5-9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved.

  12. Progressive hearing loss and gradual deterioration of sensory hair bundles in the ears of mice lacking the actin-binding protein Eps8L2

    OpenAIRE

    Furness, David N.; Johnson, Stuart L.; Manor, Uri; Rüttiger, Lukas; Tocchetti, Arianna; Offenhauser, Nina; Olt, Jennifer; Goodyear, Richard J.; Vijayakumar, Sarath; Dai, Yuhai; Hackney, Carole M.; Franz, Christoph; Di Fiore, Pier Paolo; Masetto, Sergio; Jones, Sherri M.

    2013-01-01

    Mechanotransduction in the mammalian auditory system depends on mechanosensitive channels in the hair bundles that project from the apical surface of the sensory hair cells. Individual stereocilia within each bundle contain a core of tightly packed actin filaments, whose length is dynamically regulated during development and in the adult. We show that the actin-binding protein epidermal growth factor receptor pathway substrate 8 (Eps8)L2, a member of the Eps8-like protein family, is a newly i...

  13. Initial stem cell adhesion on porous silicon surface: molecular architecture of actin cytoskeleton and filopodial growth

    Science.gov (United States)

    Collart-Dutilleul, Pierre-Yves; Panayotov, Ivan; Secret, Emilie; Cunin, Frédérique; Gergely, Csilla; Cuisinier, Frédéric; Martin, Marta

    2014-10-01

    The way cells explore their surrounding extracellular matrix (ECM) during development and migration is mediated by lamellipodia at their leading edge, acting as an actual motor pulling the cell forward. Lamellipodia are the primary area within the cell of actin microfilaments (filopodia) formation. In this work, we report on the use of porous silicon (pSi) scaffolds to mimic the ECM of mesenchymal stem cells from the dental pulp (DPSC) and breast cancer (MCF-7) cells. Our atomic force microscopy (AFM), fluorescence microscopy, and scanning electron microscopy (SEM) results show that pSi promoted the appearance of lateral filopodia protruding from the DPSC cell body and not only in the lamellipodia area. The formation of elongated lateral actin filaments suggests that pores provided the necessary anchorage points for protrusion growth. Although MCF-7 cells displayed a lower presence of organized actin network on both pSi and nonporous silicon, pSi stimulated the formation of extended cell protrusions.

  14. Detection of Stacked Filament Lensing Between SDSS Luminous Red Galaxies

    CERN Document Server

    Clampitt, Joseph; Takada, Masahiro

    2014-01-01

    We search for the lensing signal of massive filaments between 220,000 pairs of Luminous Red Galaxies (LRGs) from the Sloan Digital Sky Survey. We use a nulling technique to remove the contribution of the LRG halos, resulting in a $10 \\sigma$ detection of the filament lensing signal. We compare the measurements with halo model predictions based on a calculation of 3-point halo-halo-mass correlations. Comparing the "thick" halo model filament to a "thin" string of halos, thick filaments larger than a Mpc in width are clearly preferred by the data.

  15. Soluble expression and characterization of a GFP-fused pea actin isoform(PEAc1)

    Institute of Scientific and Technical Information of China (English)

    Ai Xiao LIU; Shao Bin ZHANG; Xiao Jing XU; Dong Tao REN; Guo Qin LIU

    2004-01-01

    A pea actin isoform PEAc1 with green fluorescent protein (GFP) fusion to its C-terminus and His-tag to its Nterminus, was expressed in prokaryotic cells in soluble form, and highly purified with Ni-Chelating SepharoseTM Fast Flow column. The purified fusion protein (PEAc1-GFP) efficiently inhibited DNase I activities before polymerization,and activated the myosin Mg-ATPase activities after polymerization. The PEAc 1-GFP also polymerized into green fluorescent filamentous structures with a critical concentration of 0.75 μM. These filamentous structures were labeled by TRITC-phalloidin, a specific agent for staining actin microfilaments, and identified as having 9 nm diameters by negative staining. These results indicated that PEAc1 preserved the essential characteristics of actin even with His-tag and GFP fusion, suggesting a promising potential to use GFP fusion protein in obtainning soluble plant actin isoform to analyze its physical and biochemical properties in vitro. The PEAc 1-GFP was also expressed in tobacco BY2 cells,which offers a new pathway for further studying its distribution and function in vivo.

  16. Early events of fertilization in sea urchin eggs are sensitive to actin-binding organic molecules.

    Science.gov (United States)

    Chun, Jong T; Limatola, Nunzia; Vasilev, Filip; Santella, Luigia

    2014-08-01

    We previously demonstrated that many aspects of the intracellular Ca(2+) increase in fertilized eggs of starfish are significantly influenced by the state of the actin cytoskeleton. In addition, the actin cytoskeleton appeared to play comprehensive roles in modulating cortical granules exocytosis and sperm entry during the early phase of fertilization. In the present communication, we have extended our work to sea urchin which is believed to have bifurcated from the common ancestor in the phylogenetic tree some 500 million years ago. To corroborate our earlier findings in starfish, we have tested how the early events of fertilization in sea urchin eggs are influenced by four different actin-binding drugs that promote either depolymerization or stabilization of actin filaments. We found that all the actin drugs commonly blocked sperm entry in high doses and significantly reduced the speed of the Ca(2+) wave. At low doses, however, cytochalasin B and phalloidin increased the rate of polyspermy. Overall, certain aspects of Ca(2+) signaling in these eggs were in line with the morphological changes induced by the actin drugs. That is, the time interval between the cortical flash and the first Ca(2+) spot at the sperm interaction site (the latent period) was significantly prolonged in the eggs pretreated with cytochalasin B or latrunculin A, whereas the Ca(2+) decay kinetics after the peak was specifically attenuated in the eggs pretreated with jasplakinolide or phalloidin. In addition, the sperm interacting with the eggs pretreated with actin drugs often generated multiple Ca(2+) waves, but tended to fail to enter the egg. Thus, our results indicated that generation of massive Ca(2+) waves is neither indicative of sperm entry nor sufficient for cortical granules exocytosis in the inseminated sea urchin eggs, whereas the structure and functionality of the actin cytoskeleton are the major determining factors in the two processes.

  17. Chorein Sensitivity of Actin Polymerization, Cell Shape and Mechanical Stiffness of Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ioana Alesutan

    2013-09-01

    Full Text Available Background/Aims: Endothelial cell stiffness plays a key role in endothelium-dependent control of vascular tone and arterial blood pressure. Actin polymerization and distribution of microfilaments is essential for mechanical cell stiffness. Chorein, a protein encoded by the VPS13A gene, defective in chorea-acanthocytosis (ChAc, is involved in neuronal cell survival as well as cortical actin polymerization of erythrocytes and blood platelets. Chorein is expressed in a wide variety of further cells, yet nothing is known about the impact of chorein on cells other than neurons, erythrocytes and platelets. The present study explored whether chorein is expressed in human umbilical vein endothelial cells (HUVECs and addressed the putative role of chorein in the regulation of cytoskeletal architecture, stiffness and survival of those cells. Methods: In HUVECs with or without silencing of the VPS13A gene, VPS13A mRNA expression was determined utilizing quantitative RT-PCR, cytoskeletal organization visualized by confocal microscopy, G/F actin ratio and phosphorylation status of focal adhesion kinase quantified by western blotting, cell death determined by flow cytometry, mechanical properties studied by atomic force microscopy (AFM and cell morphology analysed by scanning ion conductance microscopy (SICM. Results: VPS13A mRNA expression was detectable in HUVECs. Silencing of the VPS13A gene attenuated the filamentous actin network, decreased the ratio of soluble G-actin over filamentous F-actin, reduced cell stiffness and changed cell morphology as compared to HUVECs silenced with negative control siRNA. These effects were paralleled by a significant decrease in FAK phosphorylation following VPS13A silencing. Moreover, silencing of the VPS13A gene increased caspase 3 activity and induced necrosis in HUVECs. Conclusions: Chorein is a novel regulator of cytoskeletal architecture, cell shape, mechanical stiffness and survival of vascular endothelial cells.

  18. Soluble axoplasm enriched from injured CNS axons reveals the early modulation of the actin cytoskeleton.

    Directory of Open Access Journals (Sweden)

    Patrick Garland

    Full Text Available Axon injury and degeneration is a common consequence of diverse neurological conditions including multiple sclerosis, traumatic brain injury and spinal cord injury. The molecular events underlying axon degeneration are poorly understood. We have developed a novel method to enrich for axoplasm from rodent optic nerve and characterised the early events in Wallerian degeneration using an unbiased proteomics screen. Our detergent-free method draws axoplasm into a dehydrated hydrogel of the polymer poly(2-hydroxyethyl methacrylate, which is then recovered using centrifugation. This technique is able to recover axonal proteins and significantly deplete glial contamination as confirmed by immunoblotting. We have used iTRAQ to compare axoplasm-enriched samples from naïve vs injured optic nerves, which has revealed a pronounced modulation of proteins associated with the actin cytoskeleton. To confirm the modulation of the actin cytoskeleton in injured axons we focused on the RhoA pathway. Western blotting revealed an augmentation of RhoA and phosphorylated cofilin in axoplasm-enriched samples from injured optic nerve. To investigate the localisation of these components of the RhoA pathway in injured axons we transected axons of primary hippocampal neurons in vitro. We observed an early modulation of filamentous actin with a concomitant redistribution of phosphorylated cofilin in injured axons. At later time-points, RhoA is found to accumulate in axonal swellings and also colocalises with filamentous actin. The actin cytoskeleton is a known sensor of cell viability across multiple eukaryotes, and our results suggest a similar role for the actin cytoskeleton following axon injury. In agreement with other reports, our data also highlights the role of the RhoA pathway in axon degeneration. These findings highlight a previously unexplored area of axon biology, which may open novel avenues to prevent axon degeneration. Our method for isolating CNS axoplasm

  19. Arabidopsis Actin-Depolymerizing Factor-4 links pathogen perception, defense activation and transcription to cytoskeletal dynamics.

    Directory of Open Access Journals (Sweden)

    Katie Porter

    Full Text Available The primary role of Actin-Depolymerizing Factors (ADFs is to sever filamentous actin, generating pointed ends, which in turn are incorporated into newly formed filaments, thus supporting stochastic actin dynamics. Arabidopsis ADF4 was recently shown to be required for the activation of resistance in Arabidopsis following infection with the phytopathogenic bacterium Pseudomonas syringae pv. tomato DC3000 (Pst expressing the effector protein AvrPphB. Herein, we demonstrate that the expression of RPS5, the cognate resistance protein of AvrPphB, was dramatically reduced in the adf4 mutant, suggesting a link between actin cytoskeletal dynamics and the transcriptional regulation of R-protein activation. By examining the PTI (PAMP Triggered Immunity response in the adf4 mutant when challenged with Pst expressing AvrPphB, we observed a significant reduction in the expression of the PTI-specific target gene FRK1 (Flg22-Induced Receptor Kinase 1. These data are in agreement with recent observations demonstrating a requirement for RPS5 in PTI-signaling in the presence of AvrPphB. Furthermore, MAPK (Mitogen-Activated Protein Kinase-signaling was significantly reduced in the adf4 mutant, while no such reduction was observed in the rps5-1 point mutation under similar conditions. Isoelectric focusing confirmed phosphorylation of ADF4 at serine-6, and additional in planta analyses of ADF4's role in immune signaling demonstrates that nuclear localization is phosphorylation independent, while localization to the actin cytoskeleton is linked to ADF4 phosphorylation. Taken together, these data suggest a novel role for ADF4 in controlling gene-for-gene resistance activation, as well as MAPK-signaling, via the coordinated regulation of actin cytoskeletal dynamics and R-gene transcription.

  20. Analytical solutions of actin-retrograde-flow in a circular stationary cell: a mechanical point of view.

    Science.gov (United States)

    Ghasemi, V A; Firoozabadi, B; Saidi, M S

    2014-03-01

    The network of actin filaments in the lamellipodium (LP) of stationary and migrating cells flows in a retrograde direction, from the membrane periphery toward the cell nucleus. We have theoretically studied this phenomenon in the circular stationary (fully spread) cells. Adopting a continuum view on the LP actin network, new closed-form solutions are provided for the actin-retrograde-flow (ARF) in a polar coordinate system. Due to discrepancy in the mechanical models of the actin network in the ARF regime, solutions are provided for both assumptions of solid and fluid behavior. Other involved phenomena, including polymerizing machine at the membrane periphery, cytosol drag, adhesion friction, and membrane tension, are also discussed to provide an overall quantitative view on this problem.

  1. Bending Dynamics of Fluctuating Biopolymers Probed by Automated High-Resolution Filament Tracking

    Science.gov (United States)

    Brangwynne, Clifford P.; Koenderink, Gijsje H.; Barry, Ed; Dogic, Zvonimir; MacKintosh, Frederick C.; Weitz, David A.

    2007-01-01

    Microscope images of fluctuating biopolymers contain a wealth of information about their underlying mechanics and dynamics. However, successful extraction of this information requires precise localization of filament position and shape from thousands of noisy images. Here, we present careful measurements of the bending dynamics of filamentous (F-)actin and microtubules at thermal equilibrium with high spatial and temporal resolution using a new, simple but robust, automated image analysis algorithm with subpixel accuracy. We find that slender actin filaments have a persistence length of ∼17 μm, and display a q−4-dependent relaxation spectrum, as expected from viscous drag. Microtubules have a persistence length of several millimeters; interestingly, there is a small correlation between total microtubule length and rigidity, with shorter filaments appearing softer. However, we show that this correlation can arise, in principle, from intrinsic measurement noise that must be carefully considered. The dynamic behavior of the bending of microtubules also appears more complex than that of F-actin, reflecting their higher-order structure. These results emphasize both the power and limitations of light microscopy techniques for studying the mechanics and dynamics of biopolymers. PMID:17416612

  2. Actin phosphorylation correlates with actin sequestration in ATP-depleted abbit renal proximal tubules

    Institute of Scientific and Technical Information of China (English)

    Yingchun Li; Yingbin Ge; Jun Du; Rong Zhou; Jin Chen; Luo Gu

    2005-01-01

    Objective: To demonstrate the relationship between actin phosphorylation and actin sequestration in ATP-depleted rabbit renal proximal tubules. Methods: Using two-dimensional electrophoreses and Western blotting to analyze the phosphorylation state of the sequestered actin in rabbit renal proximal tubules. Results: The analytical result of the sequestered actin indicated that nearly half of the actin was phosphorylated on serine residue(s). Conclusion: Result suggested a close correlation between actin sequestration and actin phosphorylation in ATP-depleted rabbit renal proximal tubules.

  3. Broken detailed balance in active fluctuations of semiflexible filaments

    Science.gov (United States)

    Gladrow, Jannes; Fakhri, Nikta; Mackintosh, Fred C.; Schmidt, Christoph F.; Broedersz, Chase P.

    2015-03-01

    Non-equilibrium microscopic force generation in cells often results in stochastic steady-state fluctuations. In the cell cytoskeleton, for example, cytoplasmic myosins can drive vigorous conformational fluctuations of actin filaments and microtubules. We here present an analytical and numerical analysis of randomly driven shape fluctuations of semiflexible filaments in a viscoelastic environment. To detect and quantify non-equilibrium dynamics, we focus on the breaking of detailed balance in a conformational phase space subtended by eigenmodes of the beam equation. Molecular dynamics simulations reveal a non-zero circulatory flux in phase space induced by motor activity. Furthermore, we derived an analytical expression of nonequilibrium mode correlations that allows us to predict temporal effects of active molecular motors.

  4. Mathematical model to study the nonlinear influence of Dyrk1A in actin polymerization

    Directory of Open Access Journals (Sweden)

    German Agustin Patterson

    2015-04-01

    Full Text Available Dyrk1A is a member of the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK family. It is believed that Dyrk1A plays a significant role in signaling pathways regulating cell proliferation and may be involved in neuron development. On the one hand, it has been reported that overexpression of Dyrk1A is sufficient to produce the dendritic alterations, in particular, it was shown that changes in Dyrk1A gene dosage strongly alter the dendritic arborization processes characterized by a reduction of neurite outgrowth [Martinez de Legran et al., 2012]. On the other hand, it was found that cells in Dyrk1A+/- mouse, a model lacking one copy of Dyrk1A, were less branched and less spinous than WT. This results suggest that Dyrk1A is affecting cellular pathways involved in neural development in a way that dosage changes lead to similar alteration regardless the direction of this change [Benavides-Piccione et al., 2005]. Here, we present a simple mathematical model that may explain both alterations observed in Dyrk1A+/- and Ts65Dn. It is based on a model proposed by Park et al., which describes a regulatory mechanism for Neural Wiskott–Aldrich syndrome protein (N-WASP activity through Dyrk1A phosphorylation and how it regulates the actin filament assembly [Park et al., 2011]. In this work, we present a full characterization of the behavior of the system as a function of different set of parameters. We study how Dyrk1A may affect the dynamics of the system and how Dyrk1A dosage may regulate the actin polymerization. We believe that these findings may shed same light on how Dyrk1A affects cellular processes such as morphogenesis and neuronal differentiation.

  5. Theory of a filament initiated nitrogen laser

    Science.gov (United States)

    Kartashov, Daniil; Ališauskas, Skirmantas; Pugžlys, Audrius; Shneider, Mikhail N.; Baltuška, Andrius

    2015-05-01

    We present the theoretical model for a single-pass, discharge-type standoff nitrogen laser initiated by a femtosecond filament in nitrogen gas. The model is based on the numerical solution of the kinetic equation for the electron energy distribution function self-consistently with balance equations for nitrogen species and laser equations. We identify the kinetic mechanisms responsible for a buildup of population inversion in the filament afterglow plasma and determine the dependence of population inversion density and the parameters of nitrogen lasing at a 337 nm wavelength corresponding to the transition between the C3Πu (v = 0) excited and the X1Σg (v = 0) ground electronic states in a nitrogen molecule on the polarization and wavelength of the driver laser pulse used to produce the filament. We show that population inversion is achieved on an ultrafast time scale of ≈10 ps and decays within the time: <100 ps. We derive the low-signal gain 2.2 cm-1 for lasing from a circularly polarized 0.8 μm near-IR filament and 0.16 cm-1 for a linearly polarized 4 μm mid-IR filament. The results of the numerical simulations demonstrate good quantitative agreement with the experimental measurements.

  6. The effect of Cytochalasin D on F-Actin behavior of single-cell electroendocytosis using multi-chamber micro cell chip

    KAUST Repository

    Lin, Ran

    2012-03-01

    Electroendocytosis (EED) is a pulsed-electric-field (PEF) induced endocytosis, facilitating cells uptake molecules through nanometer-sized EED vesicles. We herein investigate the effect of a chemical inhibitor, Cytochalasin D (CD) on the actin-filaments (F-Actin) behavior of single-cell EED. The CD concentration (C CD) can control the depolymerization of F-actin. A multi-chamber micro cell chip was fabricated to study the EED under different conditions. Large-scale single-cell data demonstrated EED highly depends on both electric field and C CD. © 2012 IEEE.

  7. Actin-cytoskeleton rearrangement modulates proton-induced uptake

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dov, Nadav [Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv (Israel); Korenstein, Rafi, E-mail: korens@post.tau.ac.il [Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv (Israel)

    2013-04-15

    Recently it has been shown that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesicles accompanied by an enhanced uptake of macromolecules. While the initial induction of inward membrane curvature was rationalized in terms of proton-based increase of charge asymmetry across the membrane, the mechanisms underlying vesicle formation and its scission are still unknown. In light of the critical role of actin in vesicle formation during endocytosis, the present study addresses the involvement of cytoskeletal actin in proton-induced uptake (PIU). The uptake of dextran-FITC is used as a measure for the factual fraction of inward invaginations that undergo scission from the cell's plasma membrane. Our findings show that the rate of PIU in suspended cells is constant, whereas the rate of PIU in adherent cells is gradually increased in time, saturating at the level possessed by suspended cells. This is consistent with pH induced gradual degradation of stress-fibers in adherent cells. Wortmannin and calyculin-A are able to elevate PIU by 25% in adherent cells but not in suspended cells, while cytochalasin-D, rapamycin and latrunculin-A elevate PIU both in adherent and suspended cells. However, extensive actin depolymerization by high concentrations of latrunculin-A is able to inhibit PIU. We conclude that proton-induced membrane vesiculation is restricted by the actin structural resistance to the plasma membrane bending. Nevertheless, a certain degree of cortical actin restructuring is required for the completion of the scission process. - Highlights: ► Acidification of cells' exterior enhances uptake of macromolecules by the cells. ► Disruption of actin stress fibers leads to enhancement of proton induced uptake. ► Extensive depolymerization of cellular actin attenuates proton-induced uptake.

  8. Branching influences force-velocity curves and length fluctuations in actin networks

    Science.gov (United States)

    Hansda, Deepak Kumar; Sen, Shamik; Padinhateeri, Ranjith

    2014-12-01

    We investigate collective dynamics of branched actin networks growing against a rigid movable wall constrained by a resistive force. Computing the force velocity relations, we show that the stall force of such networks depends not only on the average number of filaments touching the wall, but also on the amount of fluctuation of the leading edge of the network. These differences arise due to differences in the network architecture, namely, distance between two adjacent branching points and the initial distance of the starting filament from the wall, with their relative magnitudes influencing the nature of the force velocity curves (convex versus concave). We also show that the introduction of branching results in nonmonotonic diffusion constant, a quantity that measures the growth in length fluctuation of the leading edge of the network, as a function of externally applied force. Together our results demonstrate how the collective dynamics of a branched network differs from that of a parallel filament network.

  9. Branching influences force-velocity curves and length fluctuations in actin networks.

    Science.gov (United States)

    Hansda, Deepak Kumar; Sen, Shamik; Padinhateeri, Ranjith

    2014-12-01

    We investigate collective dynamics of branched actin networks growing against a rigid movable wall constrained by a resistive force. Computing the force velocity relations, we show that the stall force of such networks depends not only on the average number of filaments touching the wall, but also on the amount of fluctuation of the leading edge of the network. These differences arise due to differences in the network architecture, namely, distance between two adjacent branching points and the initial distance of the starting filament from the wall, with their relative magnitudes influencing the nature of the force velocity curves (convex versus concave). We also show that the introduction of branching results in nonmonotonic diffusion constant, a quantity that measures the growth in length fluctuation of the leading edge of the network, as a function of externally applied force. Together our results demonstrate how the collective dynamics of a branched network differs from that of a parallel filament network.

  10. Heterologous expression of cellobiohydrolases in filamentous fungi

    DEFF Research Database (Denmark)

    Zoglowek, Marta; Lübeck, Peter S.; Ahring, Birgitte K.;

    2015-01-01

    Cellobiohydrolases are among the most important enzymes functioning in the hydrolysis of crystalline cellulose, significantly contributing to the efficient biorefining of recalcitrant lignocellulosic biomass into biofuels and bio-based products. Filamentous fungi are recognized as both well...... into valuable products. However, due to low cellobiohydrolase activities, certain fungi might be deficient with regard to enzymes of value for cellulose conversion, and improving cellobiohydrolase expression in filamentous fungi has proven to be challenging. In this review, we examine the effects of altering...... promoters, signal peptides, culture conditions and host post-translational modifications. For heterologous cellobiohydrolase production in filamentous fungi to become an industrially feasible process, the construction of site-integrating plasmids, development of protease-deficient strains and glycosylation...

  11. Oscillating Filaments: I - Oscillation and Geometrical Fragmentation

    CERN Document Server

    Gritschneder, Matthias; Burkert, Andreas

    2016-01-01

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid based AMR-code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, e.g. with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process `geometrical fragmentation'. In our realization the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristical scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. ...

  12. Collision of almost parallel vortex filaments

    OpenAIRE

    Banica, Valeria; Faou, Erwan; Miot, Evelyne

    2015-01-01

    We investigate the occurrence of collisions in the evolution of vortex filaments through a system introduced by Klein, Majda and Damodaran [KMD95] and Zakharov [Z88, Z99]. We first establish rigorously the existence of a pair of almost parallel vortex filaments, with opposite circulation, colliding at some point in finite time. The collision mechanism is based on the one of the self-similar solutions of the model, described in [BFM14]. In the second part of this paper we extend this construct...

  13. Activation of the cAMP Pathway Induces RACK1-Dependent Binding of β-Actin to BDNF Promoter

    Science.gov (United States)

    Neasta, Jeremie; Fiorenza, Anna; He, Dao-Yao; Phamluong, Khanhky; Kiely, Patrick A.; Ron, Dorit

    2016-01-01

    RACK1 is a scaffolding protein that contributes to the specificity and propagation of several signaling cascades including the cAMP pathway. As such, RACK1 participates in numerous cellular functions ranging from cell migration and morphology to gene transcription. To obtain further insights on the mechanisms whereby RACK1 regulates cAMP-dependent processes, we set out to identify new binding partners of RACK1 during activation of the cAMP signaling using a proteomics strategy. We identified β-actin as a direct RACK1 binding partner and found that the association between β-actin and RACK1 is increased in response to the activation of the cAMP pathway. Furthermore, we show that cAMP-dependent increase in BDNF expression requires filamentous actin. We further report that β-actin associates with the BDNF promoter IV upon the activation of the cAMP pathway and present data to suggest that the association of β-actin with BDNF promoter IV is RACK1-dependent. Taken together, our data suggest that β-actin is a new RACK1 binding partner and that the RACK1 and β-actin association participate in the cAMP-dependent regulation of BDNF transcription. PMID:27505161

  14. Competitive effects of oxygen vacancy formation and interfacial oxidation on an ultra-thin HfO2-based resistive switching memory: beyond filament and charge hopping models.

    Science.gov (United States)

    Nakamura, Hisao; Asai, Yoshihiro

    2016-04-01

    We studied the quantum transport mechanism of an ultra-thin HfO2-based resistive random access memory (ReRAM) cell with TiN electrodes and proposed the design of a sub-10 nm scale device. It is believed that formation and rupture of the conduction path in the local filament causes the switching between high and low resistive states. However, the validity of this simple filament model is not obvious in the sub-10 nm scale device because the redox processes occur mainly in a few nm range at the interface. Furthermore, the intrinsic transport mechanism of the device, in particular, quantum coherence, depends on device materials and length-scale. The relationship between the redox states and the transport mechanism like ballistic or hopping is still under debate when the device length scale is less than 10 nm. In the present study, we performed first-principles calculations of the non-equilibrium Green's function including electron-phonon interactions. We examined several characteristic structures of the HfO(x) wire (nano-scale conduction path) and the interfaces between the resistive switching layer and electrodes. We found that the metal buffer layer induced a change in the oxygen-reduction site from the interface of HfO(x)/TiN to the buffer layer. Even when the inserted buffer layer is a few atomic layers, this effect plays an important role in the enhancement of the performance of ON/OFF resistive switching and in the reduction of the inelastic electric current by electron-phonon scattering. The latter suppresses the hopping mechanism, which makes the ballistic conduction the dominant mechanism. We evaluated the activation energy in the high temperature limit by using the first-principles results of inelastic current. Our theoretical model explains the observed crossover of the temperature dependence of ReRAM cells and gives a new insight into the principle of operation on a sub-10 nm scale ReRAM device. PMID:26975565

  15. Development of a Novel Green Fluorescent Protein-Based Binding Assay to Study the Association of Plakins with Intermediate Filament Proteins.

    Science.gov (United States)

    Favre, Bertrand; Begré, Nadja; Bouameur, Jamal-Eddine; Borradori, Luca

    2016-01-01

    Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies.

  16. Myosin VI deafness mutation prevents the initiation of processive runs on actin.

    Science.gov (United States)

    Pylypenko, Olena; Song, Lin; Shima, Ai; Yang, Zhaohui; Houdusse, Anne M; Sweeney, H Lee

    2015-03-17

    Mutations in the reverse-direction myosin, myosin VI, are associated with deafness in humans and mice. A myosin VI deafness mutation, D179Y, which is in the transducer of the motor, uncoupled the release of the ATP hydrolysis product, inorganic phosphate (Pi), from dependency on actin binding and destroyed the ability of single dimeric molecules to move processively on actin filaments. We observed that processive movement is rescued if ATP is added to the mutant dimer following binding of both heads to actin in the absence of ATP, demonstrating that the mutation selectively destroys the initiation of processive runs at physiological ATP levels. A drug (omecamtiv) that accelerates the actin-activated activity of cardiac myosin was able to rescue processivity of the D179Y mutant dimers at physiological ATP concentrations by slowing the actin-independent release of Pi. Thus, it may be possible to create myosin VI-specific drugs that rescue the function of deafness-causing mutations.

  17. Cryptococcus neoformans is internalized by receptor-mediated or 'triggered' phagocytosis, dependent on actin recruitment.

    Directory of Open Access Journals (Sweden)

    Caroline Rezende Guerra

    Full Text Available Cryptococcosis by the encapsulated yeast Cryptococcus neoformans affects mostly immunocompromised individuals and is a frequent neurological complication in AIDS patients. Recent studies support the idea that intracellular survival of Cryptococcus yeast cells is important for the pathogenesis of cryptococcosis. However, the initial steps of Cryptococcus internalization by host cells remain poorly understood. Here, we investigate the mechanism of Cryptococcus neoformans phagocytosis by peritoneal macrophages using confocal and electron microscopy techniques, as well as flow cytometry quantification, evaluating the importance of fungal capsule production and of host cell cytoskeletal elements for fungal phagocytosis. Electron microscopy analyses revealed that capsular and acapsular strains of C. neoformans are internalized by macrophages via both 'zipper' (receptor-mediated and 'trigger' (membrane ruffle-dependent phagocytosis mechanisms. Actin filaments surrounded phagosomes of capsular and acapsular yeasts, and the actin depolymerizing drugs cytochalasin D and latrunculin B inhibited yeast internalization and actin recruitment to the phagosome area. In contrast, nocodazole and paclitaxel, inhibitors of microtubule dynamics decreased internalization but did not prevent actin recruitment to the site of phagocytosis. Our results show that different uptake mechanisms, dependent on both actin and tubulin dynamics occur during yeast internalization by macrophages, and that capsule production does not affect the mode of Cryptococcus uptake by host cells.

  18. Wave Patterns in Cell Membrane and Actin Cortex Uncoupled from Chemotactic Signals.

    Science.gov (United States)

    Gerisch, Günther; Ecke, Mary

    2016-01-01

    When cells of Dictyostelium discoideum orientate in a gradient of chemoattractant, they are polarized into a protruding front pointing toward the source of attractant, and into a retracting tail. Under the control of chemotactic signal inputs, Ras is activated and PIP3 is synthesized at the front, while the PIP3-degrading phosphatase PTEN decorates the tail region. As a result of signal transduction, actin filaments assemble at the front into dendritic structures associated with the Arp2/3 complex, in contrast to the tail region where a loose actin meshwork is associated with myosin-II and cortexillin, an antiparallel actin-bundling protein. In axenically growing strains of D. discoideum, wave patterns built by the same components evolve in the absence of any external signal input. Since these autonomously generated patterns are constrained to the plane of the substrate-attached cell surface, they are optimally suited to the optical analysis of state transitions between front-like and tail-like states of the membrane and the actin cortex. Here, we describe imaging techniques using fluorescent proteins to probe for the state of the membrane, the reorganization of the actin network, and the dynamics of wave patterns.

  19. Antenna Mechanism of Length Control of Actin Cables.

    Directory of Open Access Journals (Sweden)

    Lishibanya Mohapatra

    2015-06-01

    Full Text Available Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This "antenna mechanism" involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentration of myosin motors delivering Smy1. These results provide testable predictions of the antenna mechanism of actin-cable length control.

  20. Reactive oxygen species (ROS)-induced actin glutathionylation controls actin dynamics in neutrophils

    Science.gov (United States)

    Sakai, Jiro; Li, Jingyu; Subramanian, Kulandayan K.; Mondal, Subhanjan; Bajrami, Besnik; Hattori, Hidenori; Jia, Yonghui; Dickinson, Bryan C.; Zhong, Jia; Ye, Keqiang; Chang, Christopher J; Ho, Ye-Shih; Zhou, Jun; Luo, Hongbo R.

    2012-01-01

    Summary The regulation of actin dynamics is pivotal for cellular processes such as cell adhesion, migration, and phagocytosis, and thus is crucial for neutrophils to fulfill their roles in innate immunity. Many factors have been implicated in signal-induced actin polymerization, however the essential nature of the potential negative modulators are still poorly understood. Here we report that NADPH oxidase-dependent physiologically generated reactive oxygen species (ROS) negatively regulate actin polymerization in stimulated neutrophils via driving reversible actin glutathionylation. Disruption of glutaredoxin 1 (Grx1), an enzyme that catalyzes actin deglutathionylation, increased actin glutathionylation, attenuated actin polymerization, and consequently impaired neutrophil polarization, chemotaxis, adhesion, and phagocytosis. Consistently, Grx1-deficient murine neutrophils showed impaired in vivo recruitment to sites of inflammation and reduced bactericidal capability. Together, these results present a physiological role for glutaredoxin and ROS- induced reversible actin glutathionylation in regulation of actin dynamics in neutrophils. PMID:23159440

  1. Actinic Keratoses: A Comprehensive Update

    OpenAIRE

    Ibrahim, Sherrif F.; Brown, Marc D.

    2009-01-01

    Actinic keratoses are common intra-epidermal neoplasms that lie on a continuum with squamous cell carcinoma. Tightly linked to ultraviolet irradiation, they occur in areas of chronic sun exposure, and early treatment of these lesions may prevent their progression to invasive disease. A large variety of effective treatment modalities exist, and the optimal therapeutic choice is dependent on a variety of patient- and physician-associated variables. Many established and more recent approaches ar...

  2. CVD-produced boron filaments

    Science.gov (United States)

    Wawner, F. E.; Debolt, H. E.; Suplinskas, R. D.

    1980-01-01

    A technique for producing boron filaments with an average tensile strength of 6.89 GPa has been developed which involves longitudinal splitting of the filament and core (substrate) removal by etching. Splitting is accomplished by a pinch wheel device which continuously splits filaments in lengths of 3.0 m by applying a force to the side of the filament to create a crack which is then propagated along the axis by a gentle sliding action. To facilitate the splitting, a single 10 mil tungsten substrate is used instead of the usual 0.5 mil substrate. A solution of hot 30% hydrogen peroxide is used to remove the core without attacking the boron. An alternative technique is to alter the residual stress by heavily etching the filament. Average strengths in the 4.83-5.52 GPa range have been obtained by etching an 8 mil filament to 4 mil.

  3. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia.

    Science.gov (United States)

    Windoffer, Reinhard; Beil, Michael; Magin, Thomas M; Leube, Rudolf E

    2011-09-01

    Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type-specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis-independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function.

  4. Haemostatic role of intermediate filaments in adhered platelets: importance of the membranous system stability.

    Science.gov (United States)

    Cerecedo, Doris; Martínez-Vieyra, Ivette; Mondragón, Ricardo; Mondragón, Mónica; González, Sirenia; Galván, Iván J

    2013-09-01

    The role of platelets in coagulation and the haemostatic process was initially suggested two centuries ago, and under appropriate physiological stimuli, these undergo abrupt morphological changes, attaching and spreading on damaged endothelium, preventing bleeding. During the adhesion process, platelet cytoskeleton reorganizes generating compartments in which actin filaments, microtubules, and associated proteins are arranged in characteristic patterns mediating crucial events, such as centralization of their organelles, secretion of granule contents, aggregation with one another to form a haemostatic plug, and retraction of these aggregates. However, the role of Intermediate filaments during the platelet adhesion process has not been explored. J. Cell. Biochem. 114: 2050-2060, 2013. © 2013 Wiley Periodicals, Inc.

  5. THE APPARATUS FOR ALIGNMENT OF THE PHOTOMETRIC LAMP FILAMENT

    Directory of Open Access Journals (Sweden)

    V. A. Dlugunovich

    2015-01-01

    Full Text Available During photometric measurements involving the use of photometric lamps it is necessary that the filament of lamp takes a strictly predetermined position with respect to the photodetector and the optical axis of the photometric setup. The errors in positioning of alignment filament with respect to the optical axis of the measuring system lead to increase the uncertainty of measurement of the photometric characteristics of the light sources. A typical method for alignment of filament of photometric lamps is based on the use a diopter tubes (telescopes. Using this method, the mounting of filament to the required position is carried out by successive approximations, which requires special concentration and a lot of time. The aim of this work is to develop an apparatus for alignment which allows simultaneous alignment of the filament of lamps in two mutually perpendicular planes. The method and apparatus for alignment of the photometric lamp filament during measurements of the photometric characteristics of light sources based on two digital video cameras is described in this paper. The apparatus allows to simultaneously displaying the image of lamps filament on the computer screen in two mutually perpendicular planes. The apparatus eliminates a large number of functional units requiring elementwise alignment and reduces the time required to carry out the alignment. The apparatus also provides the imaging of lamps filament with opaque coated on the bulb. The apparatus is used at the National standard of light intensity and illuminance units of the Republic of Belarus. 

  6. Desmosome dynamics in migrating epithelial cells requires the actin cytoskeleton

    Science.gov (United States)

    Roberts, Brett J.; Pashaj, Anjeza; Johnson, Keith R.; Wahl, James K.

    2011-01-01

    Re-modeling of epithelial tissues requires that the cells in the tissue rearrange their adhesive contacts in order to allow cells to migrate relative to neighboring cells. Desmosomes are prominent adhesive structures found in a variety of epithelial tissues that are believed to inhibit cell migration and invasion. Mechanisms regulating desmosome assembly and stability in migrating cells are largely unknown. In this study we established a cell culture model to examine the fate of desmosomal components during scratch wound migration. Desmosomes are rapidly assembled between epithelial cells at the lateral edges of migrating cells and structures are transported in a retrograde fashion while the structures become larger and mature. Desmosome assembly and dynamics in this system are dependent on the actin cytoskeleton prior to being associated with the keratin intermediate filament cytoskeleton. These studies extend our understanding of desmosome assembly and provide a system to examine desmosome assembly and dynamics during epithelial cell migration. PMID:21945137

  7. Formation of actin networks in microfluidic concentration gradients

    Science.gov (United States)

    Strelnikova, Natalja; Herren, Florian; Schoenenberger, Cora-Ann; Pfohl, Thomas

    2016-05-01

    The physical properties of cytoskeletal networks are contributors in a number of mechanical responses of cells including cellular deformation and locomotion, and are crucial for the proper action of living cells. Local chemical gradients modulate cytoskeletal functionality including the interactions of the cytoskeleton with other cellular components. Actin is a major constituent of the cytoskeleton. Introducing a microfluidic-based platform, we explored the impact of concentration gradients on the formation and structural properties of actin networks. Microfluidics-controlled flow-free steady state experimental conditions allow for the generation of chemical gradients of different profiles, such as linear or step-like. We discovered specific features of actin networks emerging in defined gradients. In particular, we analyzed the effects of spatial conditions on network properties, bending rigidities of network links, and the network elasticity.

  8. Solar Filament Extraction and Characterizing

    Science.gov (United States)

    Yuan, Yuan; Shih, F. Y.; Jing, J.; Wang, H.

    2010-05-01

    This paper presents a new method to extract and characterize solar filaments from H-alpha full-disk images produced by Big Bear Solar Observatory. A cascading Hough Transform method is designed to identify solar disk center location and radius. Solar disks are segmented from the background, and unbalanced illumination on the surface of solar disks is removed using polynomial surface fitting. And then a localized adaptive thresholding is employed to extract solar filament candidates. After the removal of small solar filament candidates, the remaining larger candidates are used as the seeds of region growing. The procedure of region growing not only connects broken filaments but also generate complete shape for each filament. Mathematical morphology thinning is adopted to produce the skeleton of each filament, and graph theory is used to prune branches and barbs to get the main skeleton. The length and the location of the main skeleton is characterized. The proposed method can help scientists and researches study the evolution of solar filament, for instance, to detect solar filament eruption. The presented method has already been used by Space Weather Research Lab of New Jersey Institute of Technology (http://swrl.njit.edu) to generate the solar filament online catalog using H-alpha full-disk images of Global H-alpha Network (http://swrl.njit.edu/ghn_web/).

  9. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter

    1999-01-01

    The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then......, the bottom plate is lowered under gravity to produce a specified strain. The sample is thereby stretched into a filament. Provided the filament is sufficiently long, surface tension will induce a thinning of the filament until breakup in finite time. The numerical simulations are performed with a Lagrangian...

  10. Chaperonin filaments: The archael cytoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Trent, J.D.; Kagawa, H.K.; Yaoi, Takuro; Olle, E.; Zaluzec, N.J.

    1997-08-01

    Chaperonins are multi-subunit double-ring complexed composed of 60-kDa proteins that are believed to mediate protein folding in vivo. The chaperonins in the hyperthermophilic archaeon Sulfolobus shibatae are composed of the organism`s two most abundant proteins, which represent 4% of its total protein and have an intracellular concentration of {ge} 3.0 mg/ml. At concentrations of 1.0 mg/ml, purified chaperonin proteins aggregate to form ordered filaments. Filament formation, which requires Mg{sup ++} and nucleotide binding (not hydrolysis), occurs at physiological temperatures under conditions suggesting filaments may exist in vivo. If the estimated 4,600 chaperonins per cell, formed filaments in vivo, they could create a matrix of filaments that would span the diameter of an average S. shibatae cell 100 times. Direct observations of unfixed, minimally treated cells by intermediate voltage electron microscopy (300 kV) revealed an intracellular network of filaments that resembles chaperonin filaments produced in vitro. The hypothesis that the intracellular network contains chaperonins is supported by immunogold analyses. The authors propose that chaperonin activity may be regulated in vivo by filament formation and that chaperonin filaments may serve a cytoskeleton-like function in archaea and perhaps in other prokaryotes.

  11. From pollen actin to crop male sterility

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Actin plays an important role in the life activity of animal and plant cells. Pollen cells have plenty of actin whose structure and characteristics are very similar to the animal actin. The nucleotide sequence and amino acid sequence of plant actin gene are very similar to those of the animal gene. The content of pollen actin from male sterile plants is much more lower than that from its maintainer plants. The expression of actin gene is organ-specific during the plant development. The expression quantity of actin gene in pollen is much more higher than those from root, stem and leaf. The expression plasmid of the anti-sense actin gene was constructed, transferred to the protoplasts of wheat and tomato to inhibit the expression of actin gene in pollen and thus the male sterile plants of wheat and tomato were obtained. The actin in pollens from the transgenic plants was reduced significantly, whereas the pistil was not affected. This study might pave a new way to breeding male sterile lines for the application of hybrid vigor of wheat and tomato.

  12. Modeling of the bending strain dependence of the critical current in Bi2223/Ag composite tapes based on the damage stress of the superconducting filament

    Science.gov (United States)

    Gou, Xiaofan; Shen, Qiang

    2012-05-01

    An analysis model of the bending strain dependence of the critical current in multifilamentary Bi2223/Ag composite tapes is presented. To investigate the effect of the mechanical properties of the Bi2223 superconducting filament, the actual part for carrying current, its damage stress and elastic modulus are introduced. The calculated result of the variation of the critical current with the bending strain is well agreed with the experimental one. The further studies find that the mechanical properties of the filament have a remarkable effect on the bending strain dependence of the critical current. Specifically, the larger the damage stress and elastic modulus of the filament are, the higher the critical current is, when the bending strain increases to a larger value beyond the critical one.

  13. Modeling of the bending strain dependence of the critical current in Bi2223/Ag composite tapes based on the damage stress of the superconducting filament

    Energy Technology Data Exchange (ETDEWEB)

    Gou Xiaofan, E-mail: xfgou@hhu.edu.cn [Department of Engineering Mechanics, Hohai University, Nanjing, Jiangsu 210098 (China); Shen Qiang [Department of Engineering Mechanics, Hohai University, Nanjing, Jiangsu 210098 (China)

    2012-05-15

    An analysis model of the bending strain dependence of the critical current in multifilamentary Bi2223/Ag composite tapes is presented. To investigate the effect of the mechanical properties of the Bi2223 superconducting filament, the actual part for carrying current, its damage stress and elastic modulus are introduced. The calculated result of the variation of the critical current with the bending strain is well agreed with the experimental one. The further studies find that the mechanical properties of the filament have a remarkable effect on the bending strain dependence of the critical current. Specifically, the larger the damage stress and elastic modulus of the filament are, the higher the critical current is, when the bending strain increases to a larger value beyond the critical one.

  14. CADM1 controls actin cytoskeleton assembly and regulates extracellular matrix adhesion in human mast cells.

    Directory of Open Access Journals (Sweden)

    Elena P Moiseeva

    Full Text Available CADM1 is a major receptor for the adhesion of mast cells (MCs to fibroblasts, human airway smooth muscle cells (HASMCs and neurons. It also regulates E-cadherin and alpha6beta4 integrin in other cell types. Here we investigated a role for CADM1 in MC adhesion to both cells and extracellular matrix (ECM. Downregulation of CADM1 in the human MC line HMC-1 resulted not only in reduced adhesion to HASMCs, but also reduced adhesion to their ECM. Time-course studies in the presence of EDTA to inhibit integrins demonstrated that CADM1 provided fast initial adhesion to HASMCs and assisted with slower adhesion to ECM. CADM1 downregulation, but not antibody-dependent CADM1 inhibition, reduced MC adhesion to ECM, suggesting indirect regulation of ECM adhesion. To investigate potential mechanisms, phosphotyrosine signalling and polymerisation of actin filaments, essential for integrin-mediated adhesion, were examined. Modulation of CADM1 expression positively correlated with surface KIT levels and polymerisation of cortical F-actin in HMC-1 cells. It also influenced phosphotyrosine signalling and KIT tyrosine autophosphorylation. CADM1 accounted for 46% of surface KIT levels and 31% of F-actin in HMC-1 cells. CADM1 downregulation resulted in elongation of cortical actin filaments in both HMC-1 cells and human lung MCs and increased cell rigidity of HMC-1 cells. Collectively these data suggest that CADM1 is a key adhesion receptor, which regulates MC net adhesion, both directly through CADM1-dependent adhesion, and indirectly through the regulation of other adhesion receptors. The latter is likely to occur via docking of KIT and polymerisation of cortical F-actin. Here we propose a stepwise model of adhesion with CADM1 as a driving force for net MC adhesion.

  15. A Multimodular Tensegrity Model of an Actin Stress Fiber

    Science.gov (United States)

    Luo, Yaozhi; Xu, Xian; Lele, Tanmay; Kumar, Sanjay; Ingber, Donald E.

    2008-01-01

    Stress fibers are contractile bundles in the cytoskeleton that stabilize cell structure by exerting traction forces on extracellular matrix. Individual stress fibers are molecular bundles composed of parallel actin and myosin filaments linked by various actin-binding proteins, which are organized end-on-end in a sarcomere-like pattern within an elongated three-dimensional network. While measurements of single stress fibers in living cells show that they behave like tensed viscoelastic fibers, precisely how this mechanical behavior arises from this complex supramolecular arrangement of protein components remains unclear. Here we show that computationally modeling a stress fiber as a multi-modular tensegrity network can predict several key behaviors of stress fibers measured in living cells, including viscoelastic retraction, fiber splaying after severing, non-uniform contraction, and elliptical strain of a puncture wound within the fiber. The tensegrity model also can explain how they simultaneously experience passive tension and generate active contraction forces; in contrast, a tensed cable net model predicts some, but not all, of these properties. Thus, tensegrity models may provide a useful link between molecular and cellular scale mechanical behaviors, and represent a new handle on multi-scale modeling of living materials. PMID:18632107

  16. Filament Shape Versus Coronal Potential Magnetic Field Structure

    CERN Document Server

    Filippov, Boris

    2015-01-01

    Solar filament shape in projection on disc depends on the structure of the coronal magnetic field. We calculate the position of polarity inversion lines (PILs) of coronal potential magnetic field at different heights above the photosphere, which compose the magnetic neutral surface, and compare with them the distribution of the filament material in H$\\alpha$ chromospheric images. We found that the most of the filament material is enclosed between two polarity inversion lines (PILs), one at a lower height close to the chromosphere and one at a higher level, which can be considered as a height of the filament spine. Observations of the same filament on the limb by the {\\it STEREO} spacecraft confirm that the height of the spine is really very close to the value obtained from the PIL and filament border matching. Such matching can be used for filament height estimations in on-disk observations. Filament barbs are housed within protruding sections of the low-level PIL. On the base of simple model, we show that th...

  17. Observations and Implications of Large-Amplitude Longitudinal Oscillations in a Solar Filament

    CERN Document Server

    Luna, M; Muglach, K; Karpen, J; Gilbert, H; Kucera, T A; Uritsky, V

    2014-01-01

    On 20 August 2010 an energetic disturbance triggered large-amplitude longitudinal oscillations in a nearby filament. The triggering mechanism appears to be episodic jets connecting the energetic event with the filament threads. In the present work we analyze this periodic motion in a large fraction of the filament to characterize the underlying physics of the oscillation as well as the filament properties. The results support our previous theoretical conclusions that the restoring force of large-amplitude longitudinal oscillations is solar gravity, and the damping mechanism is the ongoing accumulation of mass onto the oscillating threads. Based on our previous work, we used the fitted parameters to determine the magnitude and radius of curvature of the dipped magnetic field along the filament, as well as the mass accretion rate onto the filament threads. These derived properties are nearly uniform along the filament, indicating a remarkable degree of cohesiveness throughout the filament channel. Moreover, the...

  18. Cluster Abell 520: a perspective based on member galaxies. A cluster forming at the crossing of three filaments?

    CERN Document Server

    Girardi, M; Boschin, W; Ellingson, E

    2008-01-01

    The connection of cluster mergers with the presence of extended, diffuse radio sources in galaxy clusters is still debated. An interesting case is the rich, merging cluster Abell 520, containing a radio halo. A recent gravitational analysis has shown in this cluster the presence of a massive dark core suggested to be a possible problem for the current cold dark matter paradigm. We aim to obtain new insights into the internal dynamics of Abell 520 analyzing velocities and positions of member galaxies. Our analysis is based on redshift data for 293 galaxies in the cluster field obtained combining new redshift data for 86 galaxies acquired at the TNG with data obtained by CNOC team and other few data from the literature. We also use new photometric data obtained at the INT telescope. We combine galaxy velocities and positions to select 167 cluster members around z~0.201. We analyze the cluster structure using the weighted gap analysis, the KMM method, the Dressler-Shectman statistics and the analysis of the velo...

  19. Actin gene family in Branchiostoma belched

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Actin is a highly conserved cytoskeletal protein that is found in essentially all eukaryotic cells,which plays a paramount role in several basic functions of the organism, such as the maintenance of cellshape, cell division, cell mobility and muscle contraction. However, little is known about actin gene family inChinese amphioxus (Branchiostoma belcheri). Here we systemically analyzed the actin genes family inBranchiostoma belched and found that amphioxus contains 33 actin genes. These genes have undergoneextensive expansion through tandem duplications by phylogenetic analysis. In addition, we also providedevidence indicating that actin genes have divergent functions by specializing their EST data in both Bran-chiostoma belched and Branchiostoma florida. Our results provided an alternative explanation for the evolu-tion of actin genes, and gave new insights into their functional roles.

  20. Filopodia-like actin cables position nuclei in association with perinuclear actin in Drosophila nurse cells.

    Science.gov (United States)

    Huelsmann, Sven; Ylänne, Jari; Brown, Nicholas H

    2013-09-30

    Controlling the position of the nucleus is vital for a number of cellular processes from yeast to humans. In Drosophila nurse cells, nuclear positioning is crucial during dumping, when nurse cells contract and expel their contents into the oocyte. We provide evidence that in nurse cells, continuous filopodia-like actin cables, growing from the plasma membrane and extending to the nucleus, achieve nuclear positioning. These actin cables move nuclei away from ring canals. When nurse cells contract, actin cables associate laterally with the nuclei, in some cases inducing nuclear turning so that actin cables become partially wound around the nuclei. Our data suggest that a perinuclear actin meshwork connects actin cables to nuclei via actin-crosslinking proteins such as the filamin Cheerio. We provide a revised model for how actin structures position nuclei in nurse cells, employing evolutionary conserved machinery.

  1. Motor-free actin bundle contractility driven by molecular crowding

    CERN Document Server

    Schnauß, Jörg; Schuldt, Carsten; Schmidt, B U Sebastian; Glaser, Martin; Strehle, Dan; Heussinger, Claus; Käs, Josef A

    2015-01-01

    Modeling approaches of suspended, rod-like particles and recent experimental data have shown that depletion forces display different signatures depending on the orientation of these particles. It has been shown that axial attraction of two rods yields contractile forces of 0.1pN that are independent of the relative axial shift of the two rods. Here, we measured depletion-caused interactions of actin bundles extending the phase space of single pairs of rods to a multi-particle system. In contrast to a filament pair, we found forces up to 3pN . Upon bundle relaxation forces decayed exponentially with a mean decay time of 3.4s . These different dynamics are explained within the frame of a mathematical model by taking pairwise interactions to a multi-filament scale. The macromolecular content employed for our experiments is well below the crowding of cells. Thus, we propose that arising forces can contribute to biological force generation without the need to convert chemical energy into mechanical work.

  2. Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut

    Institute of Scientific and Technical Information of China (English)

    Ingrid Rupp; Gabriele Pradel; Ludmilla Sologub; Kim C Williamson; Matthias Scheuermayer; Luc Reininger; Christian Doerig; Saliha Eksi; Davy U Kombilaa; Matthias Frank

    2011-01-01

    Physical contact is important for the interaction between animal cells, but it can represent a major challenge for protists like malaria parasites. Recently, novel filamentous cell-cell contacts have been identified in different types of eukaryotic cells and termed nanotubes due to their morphological appearance. Nanotubes represent small dynamic membranous extensions that consist of F-actin and are considered an ancient feature evolved by eukaryotic cells to establish contact for communication. We here describe similar tubular structures in the malaria pathogen Plasmodium falciparum, which emerge from the surfaces of the forming gametes upon gametocyte activation in the mosquito midgut. The filaments can exhibit a length of>100 μm and contain the F-actin isoform actin 2. They actively form within a few minutes after gametocyte activation and persist until the zygote transforms into the ookinete. The filaments originate from the parasite plasma membrane, are close ended and express adhesion proteins on their surfaces that are typically found in gametes, like Pfs230, Pfs48/45 or Pfs25, but not the zygote surface protein Pfs28. We show that these tubular structures represent long-distance cell-to-cell connections between sexual stage parasites and demonstrate that they meet the characteristics of nanotubes. We propose that malaria parasites utilize these adhesive "nanotubes" in order to facilitate intercellular contact between gametes during reproduction in the mosquito midgut.

  3. Packaging of actin into Ebola virus VLPs

    Directory of Open Access Journals (Sweden)

    Harty Ronald N

    2005-12-01

    Full Text Available Abstract The actin cytoskeleton has been implicated in playing an important role assembly and budding of several RNA virus families including retroviruses and paramyxoviruses. In this report, we sought to determine whether actin is incorporated into Ebola VLPs, and thus may play a role in assembly and/or budding of Ebola virus. Our results indicated that actin and Ebola virus VP40 strongly co-localized in transfected cells as determined by confocal microscopy. In addition, actin was packaged into budding VP40 VLPs as determined by a functional budding assay and protease protection assay. Co-expression of a membrane-anchored form of Ebola virus GP enhanced the release of both VP40 and actin in VLPs. Lastly, disruption of the actin cytoskeleton with latrunculin-A suggests that actin may play a functional role in budding of VP40/GP VLPs. These data suggest that VP40 may interact with cellular actin, and that actin may play a role in assembly and/or budding of Ebola VLPs.

  4. Perturbation growth in accreting filaments

    CERN Document Server

    Clarke, Seamus D; Hubber, David A

    2016-01-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long, initially sub-critical but accreting filaments. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length scale which is roughly 4 times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multi-wavelength density power spectrum there exists a clear preferred core separation equal to the largest peak in the dispe...

  5. Resonantly enhanced filamentation in gases

    CERN Document Server

    Doussot, J; Billard, F; Béjot, P; Faucher, O

    2016-01-01

    In this Letter, a low-loss Kerr-driven optical filament in Krypton gas is experimentally reported in the ultraviolet. The experimental findings are supported by ab initio quantum calculations describing the atomic optical response. Higher-order Kerr effect induced by three-photon resonant transitions is identified as the underlying physical mechanism responsible for the intensity stabilization during the filamentation process, while ionization plays only a minor role. This result goes beyond the commonly-admitted paradigm of filamentation, in which ionization is a necessary condition of the filament intensity clamping. At resonance, it is also experimentally demonstrated that the filament length is greatly extended because of a strong decrease of the optical losses.

  6. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis

    OpenAIRE

    Spracklen, Andrew J.; Fagan, Tiffany N.; Lovander, Kaylee E.; Tootle, Tina L.

    2014-01-01

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools – Utrophin, Lifeact, an...

  7. Conductive Anodic Filament (CAF) Formation

    Science.gov (United States)

    Caputo, Antonio

    Conductive anodic filament (CAF) is a failure mode in printed wiring boards (PWBs) which occurs under high humidity and high voltage gradient conditions. The filament, a copper salt, grows from anode to cathode along the epoxy-glass interface. Ready and Turbini (2000) identified this copper salt as the Cu 2(OH)3Cl, atacamite compound. This work has investigated the influence of polyethylene glycol (PEG) and polyethylene propylene glycol (PEPG) fluxing agents on the chemical nature of CAF. For coupons processed with PEPG flux, with and without chloride, a copper-chloride containing compound was formed in the polymer matrix. This compound was characterized using x-ray photoelectron spectroscopy (XPS) as CuCl and an electrochemical mechanism for the formation of the chloride-containing CAF has been proposed. For PEG flux, with and without chloride, it has been shown that CAF only formed, but no copper containing compound formed in the matrix. It appears for PEG fluxed coupons, a PEG-Cu-Cl complex forms, binds the available Cu and acts as a barrier to the formation of CuCl in the polymer matrix. Meeker and Lu Valle (1995) have previously proposed that CAF failure is best represented by two competing reactions -- the formation of a copper chloride corrosion compound (now identified as Cu2(OH)3Cl) and the formation of innocuous trapped chlorine compounds. Since no evidence of any trapped chloride compounds has been found, we propose that the formation of CAF is best represented by a single non-reversible reaction. For coupons processed with a high bromide-containing flux, bromide containing CAF was created and characterized using transmission electron microscopy (TEM) to be Cu2(OH)3Br. In addition, a copper-containing compound was formed in the polymer matrix and characterized using XPS as CuBr. An electrochemical mechanism for the formation of bromide-containing CAF has been proposed based on the XPS data.

  8. Bacillus subtilis MreB orthologs self-organize into filamentous structures underneath the cell membrane in a heterologous cell system.

    Directory of Open Access Journals (Sweden)

    Felix Dempwolff

    Full Text Available Actin-like bacterial cytoskeletal element MreB has been shown to be essential for the maintenance of rod cell shape in many bacteria. MreB forms rapidly remodelling helical filaments underneath the cell membrane in Bacillus subtilis and in other bacterial cells, and co-localizes with its two paralogs, Mbl and MreBH. We show that MreB localizes as dynamic bundles of filaments underneath the cell membrane in Drosophila S2 Schneider cells, which become highly stable when the ATPase motif in MreB is modified. In agreement with ATP-dependent filament formation, the depletion of ATP in the cells lead to rapid dissociation of MreB filaments. Extended induction of MreB resulted in the formation of membrane protrusions, showing that like actin, MreB can exert force against the cell membrane. Mbl also formed membrane associated filaments, while MreBH formed filaments within the cytosol. When co-expressed, MreB, Mbl and MreBH built up mixed filaments underneath the cell membrane. Membrane protein RodZ localized to endosomes in S2 cells, but localized to the cell membrane when co-expressed with Mbl, showing that bacterial MreB/Mbl structures can recruit a protein to the cell membrane. Thus, MreB paralogs form a self-organizing and dynamic filamentous scaffold underneath the membrane that is able to recruit other proteins to the cell surface.

  9. Involvement of Lipid Rafts and Cellular Actin in AcMNPV GP64 Distribution and Virus Budding

    Institute of Scientific and Technical Information of China (English)

    F. J. Haines; C. M. Griffiths; R. D. Possee; C. R. Hawes; L. A. King

    2009-01-01

    GP64 is the major envelope glycoprotein associated with the budded virus (BV) of Autographa californica nucleopolyhedrovirus (AcMNPV) and is essential for attachment and budding of BV particles.Confocal microscopy and flotation assays established the presence of lipid raft domains within the plasma membranes of AcMNPV-infected Sf9 cells and suggested the association of GP64 with lipid rafts during infection. GP64 and filamentous actin (F-actin) were found to co-localise at the cell cortex at 24 and 48 hpi and an additional restructuring of F-actin during infection was visualised, resulting in a strongly polarised distribution of both F-actin and GP64 at the cell cortex. Depletion of F-actin, achieved by treatment of St9 cells with latrunculin B (LB), resulted in the redistribution of GP64 with significant cytoplasmic aggregation and reduced presence at the plasma membrane. Treatment with LB also resulted in reduced production of BV in Sf9 cells. Analysis of virus gene transcription confirmed this reduction was not due to decreased trafficking of nucleocapsids to the nucleus or to decreased production of infectious progeny nucleoeapsids. Reduced BV production due to a lack of GP64 at the plasma membrane of AcMNPV-infected Sf9 cells treated with LB, suggests a key role for F-actin in the egress of BV.

  10. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species.

    Science.gov (United States)

    He, Jiang; Zhou, Ruobo; Wu, Zhuhao; Carrasco, Monica A; Kurshan, Peri T; Farley, Jonathan E; Simon, David J; Wang, Guiping; Han, Boran; Hao, Junjie; Heller, Evan; Freeman, Marc R; Shen, Kang; Maniatis, Tom; Tessier-Lavigne, Marc; Zhuang, Xiaowei

    2016-05-24

    Actin, spectrin, and associated molecules form a periodic, submembrane cytoskeleton in the axons of neurons. For a better understanding of this membrane-associated periodic skeleton (MPS), it is important to address how prevalent this structure is in different neuronal types, different subcellular compartments, and across different animal species. Here, we investigated the organization of spectrin in a variety of neuronal- and glial-cell types. We observed the presence of MPS in all of the tested neuronal types cultured from mouse central and peripheral nervous systems, including excitatory and inhibitory neurons from several brain regions, as well as sensory and motor neurons. Quantitative analyses show that MPS is preferentially formed in axons in all neuronal types tested here: Spectrin shows a long-range, periodic distribution throughout all axons but appears periodic only in a small fraction of dendrites, typically in the form of isolated patches in subregions of these dendrites. As in dendrites, we also observed patches of periodic spectrin structures in a small fraction of glial-cell processes in four types of glial cells cultured from rodent tissues. Interestingly, despite its strong presence in the axonal shaft, MPS is disrupted in most presynaptic boutons but is present in an appreciable fraction of dendritic spine necks, including some projecting from dendrites where such a periodic structure is not observed in the shaft. Finally, we found that spectrin is capable of adopting a similar periodic organization in neurons of a variety of animal species, including Caenorhabditis elegans, Drosophila, Gallus gallus, Mus musculus, and Homo sapiens.

  11. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species.

    Science.gov (United States)

    He, Jiang; Zhou, Ruobo; Wu, Zhuhao; Carrasco, Monica A; Kurshan, Peri T; Farley, Jonathan E; Simon, David J; Wang, Guiping; Han, Boran; Hao, Junjie; Heller, Evan; Freeman, Marc R; Shen, Kang; Maniatis, Tom; Tessier-Lavigne, Marc; Zhuang, Xiaowei

    2016-05-24

    Actin, spectrin, and associated molecules form a periodic, submembrane cytoskeleton in the axons of neurons. For a better understanding of this membrane-associated periodic skeleton (MPS), it is important to address how prevalent this structure is in different neuronal types, different subcellular compartments, and across different animal species. Here, we investigated the organization of spectrin in a variety of neuronal- and glial-cell types. We observed the presence of MPS in all of the tested neuronal types cultured from mouse central and peripheral nervous systems, including excitatory and inhibitory neurons from several brain regions, as well as sensory and motor neurons. Quantitative analyses show that MPS is preferentially formed in axons in all neuronal types tested here: Spectrin shows a long-range, periodic distribution throughout all axons but appears periodic only in a small fraction of dendrites, typically in the form of isolated patches in subregions of these dendrites. As in dendrites, we also observed patches of periodic spectrin structures in a small fraction of glial-cell processes in four types of glial cells cultured from rodent tissues. Interestingly, despite its strong presence in the axonal shaft, MPS is disrupted in most presynaptic boutons but is present in an appreciable fraction of dendritic spine necks, including some projecting from dendrites where such a periodic structure is not observed in the shaft. Finally, we found that spectrin is capable of adopting a similar periodic organization in neurons of a variety of animal species, including Caenorhabditis elegans, Drosophila, Gallus gallus, Mus musculus, and Homo sapiens. PMID:27162329

  12. Adenosine Diphosphate Ribosylation Factor-GTPaseActivating Protein Stimulates the Transport of AUX1Endosome, Which Relies on Actin Cytoskeletal Organization in Rice Root DevelopmentF

    Institute of Scientific and Technical Information of China (English)

    Cheng Du; Yunyuan XU; Yingdian Wang; Kang Chong

    2011-01-01

    Polar auxin transport,which depends on polarized subcellular distribution of AUXIN RESISTANT 1/LIKE AUX1 (AUX1/LAX) influx carriers and PIN-FORMED (PIN) efflux carriers,mediates various processes of plant growth and development.Endosomal recycling of PIN1 is mediated by an adenosine diphosphate (ADP)ribosylation factor (ARF)-GTPase exchange factor protein,GNOM.However,the mediation of auxin influx carrier recycling is poorly understood.Here,we report that overexpression of OsAGAP,an ARF-GTPase-activating protein in rice,stimulates vesicle transport from the plasma membrane to the Golgi apparatus in protoplasts and transgenic plants and induces the accumulation of early endosomes and AUX1.AUX1 endosomes could partially colocalize with FM4-64 labeled early endosome after actin disruption.Furthermore,OsAGAP is involved in actin cytoskeletal organization,and its overexpression tends to reduce the thickness and bundling of actin filaments.Fluorescence recovery after photobleaching analysis revealed exocytosis of the AUX1 recycling endosome was not affected in the OsAGAP overexpression cells,and was only slightly promoted when the actin filaments were completely disrupted by Lat B.Thus,we propose that AUX1 accumulation in the OsAGAP overexpression and actin disrupted cells may be due to the fact that endocytosis of the auxin influx carrier AUX1 early endosome was greatly promoted by actin cytoskeleton disruption.

  13. The link between CMEs, filaments and filament channels

    Directory of Open Access Journals (Sweden)

    S. F. Martin

    2008-10-01

    Full Text Available We present a broad concept for the build-up to eruptive solar events which needs to be tested in future observational and theoretical research. In this concept an eruptive solar event consists of a coronal mass ejection, a filament eruption, a cavity around the filament, and a flare. In our picture, the initial energy source must be external to this eruptive system but also feed into it. Among all eruptive events the common denominator is a filament channel with canceling magnetic fields along a primary polarity reversal boundary. We find that magnetic reconnection at or close to the photosphere is the only interpretation of canceling fields to date that is consistent with observations of filament channels. This reconnection serves to transfer magnetic flux from the photosphere into the chromosphere and corona along polarity reversal boundaries and concurrently initiates the building of a filament channel. Magnetic flux, in excess of that needed to sustain the filament channel, goes into building a filament magnetic field that is always aligned with the polarity reversal boundary and the channel magnetic field. The filament magnetic field remains separated from overarching coronal magnetic fields by the magnetic field of the cavity. The magnetic flux being transported upward from the photosphere/chromosphere carries streams of plasma into the corona along the filament magnetic field. However, the flowing and counterstreaming filament mass also slowly drains out of the field and thereby leaves behind new strands of cavity magnetic field with little or no associated mass. When the build-up of magnetic pressure in the filament and cavity magnetic fields exceeds that of the overlying coronal loops, the coronal loops, the filament and the cavity together begin an observable slow rise which can last a few hours to many days before rapid onset and ejection with a solar flare. We suggest that this process can be accelerated by any number of external

  14. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.

    Science.gov (United States)

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-05-24

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease. PMID:27162358

  15. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.

    Science.gov (United States)

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-05-24

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.

  16. Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in Listeria Infection and Reveals Different Actin Nucleation Mechanisms during Listeria Cell Invasion and Actin Comet Tail Formation.

    OpenAIRE

    Kühbacher, Andreas; Emmenlauer, Mario; Rämo, Pauli; Kafai, Natasha; Dehio, Christoph; Cossart, Pascale; Pizarro-Cerdá, Javier

    2015-01-01

    Listeria monocytogenes enters nonphagocytic cells by a receptor-mediated mechanism that is dependent on a clathrin-based molecular machinery and actin rearrangements. Bacterial intra- and intercellular movements are also actin dependent and rely on the actin nucleating Arp2/3 complex, which is activated by host-derived nucleation-promoting factors downstream of the cell receptor Met during entry and by the bacterial nucleation-promoting factor ActA during comet tail formation. By genome-wide ...

  17. Genome-wide siRNA Screen identifies complementary signaling pathways involved in listeria infection and reveals different actin nucleation mechanisms during listeria cell invasion and actin comet tail formation

    OpenAIRE

    Emmenlauer, Mario; Rämo, Pauli; Kafai, Natasha; Dehio, Christoph; Cossart, Pascale; Pizarro-Cerda, Javier

    2015-01-01

    Listeria monocytogenes enters nonphagocytic cells by a receptor-mediated mechanism that is dependent on a clathrin-based molecular machinery and actin rearrangements. Bacterial intra- and intercellular movements are also actin dependent and rely on the actin nucleating Arp2/3 complex, which is activated by host-derived nucleation-promoting factors downstream of the cell receptor Met during entry and by the bacterial nucleation-promoting factor ActA during comet tail formation. By genome-wide ...

  18. Insight into the assembly properties and functional organisation of the magnetotactic bacterial actin-like homolog, MamK.

    Directory of Open Access Journals (Sweden)

    Sanjiv Sonkaria

    Full Text Available Magnetotactic bacteria (MTB synthesize magnetosomes, which are intracellular vesicles comprising a magnetic particle. A series of magnetosomes arrange themselves in chains to form a magnetic dipole that enables the cell to orient itself along the Earth's magnetic field. MamK, an actin-like homolog of MreB has been identified as a central component in this organisation. Gene deletion, fluorescence microscopy and in vitro studies have yielded mechanistic differences in the filament assembly of MamK with other bacterial cytoskeletal proteins within the cell. With little or no information on the structural and behavioural characteristics of MamK outside the cell, the mamK gene from Magnetospirillium gryphiswaldense was cloned and expressed to better understand the differences in the cytoskeletal properties with its bacterial homologues MreB and acitin. Despite the low sequence identity shared between MamK and MreB (22% and actin (18%, the behaviour of MamK monitored by light scattering broadly mirrored that of its bacterial cousin MreB primarily in terms of its pH, salt, divalent metal-ion and temperature dependency. The broad size variability of MamK filaments revealed by light scattering studies was supported by transmission electron microscopy (TEM imaging. Filament morphology however, indicated that MamK conformed to linearly orientated filaments that appeared to be distinctly dissimilar compared to MreB suggesting functional differences between these homologues. The presence of a nucleotide binding domain common to actin-like proteins was demonstrated by its ability to function both as an ATPase and GTPase. Circular dichroism and structural homology modelling showed that MamK adopts a protein fold that is consistent with the 'classical' actin family architecture but with notable structural differences within the smaller domains, the active site region and the overall surface electrostatic potential.

  19. A second actin-like MamK protein in Magnetospirillum magneticum AMB-1 encoded outside the genomic magnetosome island.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Rioux

    Full Text Available Magnetotactic bacteria are able to swim navigating along geomagnetic field lines. They synthesize ferromagnetic nanocrystals that are embedded in cytoplasmic membrane invaginations forming magnetosomes. Regularly aligned in the cytoplasm along cytoskeleton filaments, the magnetosome chain effectively forms a compass needle bestowing on bacteria their magnetotactic behaviour. A large genomic island, conserved among magnetotactic bacteria, contains the genes potentially involved in magnetosome formation. One of the genes, mamK has been described as encoding a prokaryotic actin-like protein which when it polymerizes forms in the cytoplasm filamentous structures that provide the scaffold for magnetosome alignment. Here, we have identified a series of genes highly similar to the mam genes in the genome of Magnetospirillum magneticum AMB-1. The newly annotated genes are clustered in a genomic islet distinct and distant from the known magnetosome genomic island and most probably acquired by lateral gene transfer rather than duplication. We focused on a mamK-like gene whose product shares 54.5% identity with the actin-like MamK. Filament bundles of polymerized MamK-like protein were observed in vitro with electron microscopy and in vivo in E. coli cells expressing MamK-like-Venus fusions by fluorescence microscopy. In addition, we demonstrate that mamK-like is transcribed in AMB-1 wild-type and DeltamamK mutant cells and that the actin-like filamentous structures observed in the DeltamamK strain are probably MamK-like polymers. Thus MamK-like is a new member of the prokaryotic actin-like family. This is the first evidence of a functional mam gene encoded outside the magnetosome genomic island.

  20. Visualizing the actin cytoskeleton in living plant cells using a photo-convertible mEos::FABD-mTn fluorescent fusion protein

    Directory of Open Access Journals (Sweden)

    Bewley J Derek

    2008-09-01

    Full Text Available Abstract Background The actin cytoskeleton responds quickly to diverse stimuli and plays numerous roles in cellular signalling, organelle motility and subcellular compartmentation during plant growth and development. Molecular and cell biological tools that can facilitate visualization of actin organization and dynamics in a minimally invasive manner are essential for understanding this fundamental component of the living cell. Results A novel, monomeric (m Eos-fluorescent protein derived from the coral Lobophyllia hemprichii was assessed for its green to red photo-convertibility in plant cells by creating mEosFP-cytosolic. mEosFP was fused to the F-(filamentous-Actin Binding Domain of the mammalian Talin gene to create mEosFP::FABDmTalin. Photo-conversion, visualization and colour quantification protocols were developed for EosFP targeted to the F-actin cytoskeleton. Rapid photo-conversion in the entire cell or in a region of interest was easily achieved upon illumination with an approximately 400 nm wavelength light beam using an epi-fluorescent microscope. Dual color imaging after photo-conversion was carried out using a confocal laser-scanning microscope. Time-lapse imaging revealed that although photo-conversion of single mEosFP molecules can be rapid in terms of live-cell imaging it involves a progressive enrichment of red fluorescent molecules over green species. The fluorescence of photo-converted cells thus progresses through intermediate shades ranging from green to red. The time taken for complete conversion to red fluorescence depends on protein expression level within a cell and the quality of the focusing lens used to deliver the illuminating beam. Three easily applicable methods for obtaining information on fluorescent intensity and colour are provided as a means of ensuring experimental repeatability and data quantification, when using mEosFP and similar photo-convertible proteins. Conclusion The mEosFP::FABD-mTn probe retains

  1. The Intriguing Dual Lattices of the Myosin Filaments in Vertebrate Striated Muscles: Evolution and Advantage

    Directory of Open Access Journals (Sweden)

    Pradeep K. Luther

    2014-12-01

    Full Text Available Myosin filaments in vertebrate striated muscle have a long roughly cylindrical backbone with cross-bridge projections on the surfaces of both halves except for a short central bare zone. In the middle of this central region the filaments are cross-linked by the M-band which holds them in a well-defined hexagonal lattice in the muscle A-band. During muscular contraction the M-band-defined rotation of the myosin filaments around their long axes influences the interactions that the cross-bridges can make with the neighbouring actin filaments. We can visualise this filament rotation by electron microscopy of thin cross-sections in the bare-region immediately adjacent to the M-band where the filament profiles are distinctly triangular. In the muscles of teleost fishes, the thick filament triangular profiles have a single orientation giving what we call the simple lattice. In other vertebrates, for example all the tetrapods, the thick filaments have one of two orientations where the triangles point in opposite directions (they are rotated by 60° or 180° according to set rules. Such a distribution cannot be developed in an ordered fashion across a large 2D lattice, but there are small domains of superlattice such that the next-nearest neighbouring thick filaments often have the same orientation. We believe that this difference in the lattice forms can lead to different contractile behaviours. Here we provide a historical review, and when appropriate cite recent work related to the emergence of the simple and superlattice forms by examining the muscles of several species ranging back to primitive vertebrates and we discuss the functional differences that the two lattice forms may have.

  2. Perturbation growth in accreting filaments

    Science.gov (United States)

    Clarke, S. D.; Whitworth, A. P.; Hubber, D. A.

    2016-05-01

    We use smoothed particle hydrodynamic simulations to investigate the growth of perturbations in infinitely long filaments as they form and grow by accretion. The growth of these perturbations leads to filament fragmentation and the formation of cores. Most previous work on this subject has been confined to the growth and fragmentation of equilibrium filaments and has found that there exists a preferential fragmentation length-scale which is roughly four times the filament's diameter. Our results show a more complicated dispersion relation with a series of peaks linking perturbation wavelength and growth rate. These are due to gravo-acoustic oscillations along the longitudinal axis during the sub-critical phase of growth. The positions of the peaks in growth rate have a strong dependence on both the mass accretion rate onto the filament and the temperature of the gas. When seeded with a multiwavelength density power spectrum, there exists a clear preferred core separation equal to the largest peak in the dispersion relation. Our results allow one to estimate a minimum age for a filament which is breaking up into regularly spaced fragments, as well as an average accretion rate. We apply the model to observations of filaments in Taurus by Tafalla & Hacar and find accretion rates consistent with those estimated by Palmeirim et al.

  3. Activity Cycle of Solar Filaments

    Indian Academy of Sciences (India)

    K. J. Li; Q. X. Li; P. X. Gao; J. Mu; H. D. Chen; T. W. Su

    2007-06-01

    Long-term variation in the distribution of the solar filaments observed at the Observatorie de Paris, Section de Meudon from March 1919 to December 1989 is presented to compare with sunspot cycle and to study the periodicity in the filament activity, namely the periods of the coronal activity with the Morlet wavelet used. It is inferred that the activity cycle of solar filaments should have the same cycle length as sunspot cycle, but the cycle behavior of solar filaments is globally similar in profile with, but different in detail from, that of sunspot cycles. The amplitude of solar magnetic activity should not keep in phase with the complexity of solar magnetic activity. The possible periods in the filament activity are about 10.44 and 19.20 years. The wavelet local power spectrum of the period 10.44 years is statistically significant during the whole consideration time. The wavelet local power spectrum of the period 19.20 years is under the 95% confidence spectrum during the whole consideration time, but over the mean red-noise spectrum of = 0.72 before approximate Carrington rotation number 1500, and after that the filament activity does not statistically show the period. Wavelet reconstruction indicates that the early data of the filament archive (in and before cycle 16) are more noiseful than the later (in and after cycle 17).

  4. Computational and theoretical modeling of intermediate filament networks:Structure, mechanics and disease

    Institute of Scientific and Technical Information of China (English)

    Zhao Qin; Markus J. Buehler

    2012-01-01

    Intermediate filaments,in addition to microtubules and actin microfilaments,are one of the three major components of the cytoskeleton in eukaryotic cells.It was discovered during the recent decades that in most cells,intermediate filament proteins play key roles to reinforce cells subjected to large-deformation,and that they participate in signal transduction,and it was proposed that their nanomechanical properties are critical to perform those functions.However,it is still poorly understood how the nanoscopic structure,as well as the combination of chemical composition,molecular structure and interfacial properties of these protein molecules contribute to the biomechanical properties of filaments and filament networks. Here we review recent progress in computational and theoretical studies of the intermediate filaments network at various levels in the protein's structure. A multiple scale method is discussed,used to couple molecular modeling with atomistic detail to larger-scale material properties of the networked material. It is shown that a finer-trains-coarser methodology as discussed here provides a useful tool in understanding the biomechanical property and disease mechanism of intermediate filaments,coupling experiment and simulation. It further allows us to improve the understanding of associated disease mechanisms and lays the foundation for engineering the mechanical properties of biomaterials.

  5. Self-propelled worm-like filaments: spontaneous spiral formation, structure, and dynamics.

    Science.gov (United States)

    Isele-Holder, Rolf E; Elgeti, Jens; Gompper, Gerhard

    2015-09-28

    Worm-like filaments that are propelled homogeneously along their tangent vector are studied by Brownian dynamics simulations. Systems in two dimensions are investigated, corresponding to filaments adsorbed to interfaces or surfaces. A large parameter space covering weak and strong propulsion, as well as flexible and stiff filaments is explored. For strongly propelled and flexible filaments, the free-swimming filaments spontaneously form stable spirals. The propulsion force has a strong impact on dynamic properties, such as the rotational and translational mean square displacement and the rate of conformational sampling. In particular, when the active self-propulsion dominates thermal diffusion, but is too weak for spiral formation, the rotational diffusion coefficient has an activity-induced contribution given by v(c)/ξ(P), where v(c) is the contour velocity and ξ(P) the persistence length. In contrast, structural properties are hardly affected by the activity of the system, as long as no spirals form. The model mimics common features of biological systems, such as microtubules and actin filaments on motility assays or slender bacteria, and artificially designed microswimmers. PMID:26256415

  6. A method for rapidly screening functionality of actin mutants and tagged actins

    Directory of Open Access Journals (Sweden)

    Rommelaere Heidi

    2004-01-01

    Full Text Available Recombinant production and biochemical analysis of actin mutants has been hampered by the fact that actin has an absolute requirement for the eukaryotic chaperone CCT to reach its native state. We therefore have developed a method to rapidly screen the folding capacity and functionality of actin variants, by combining in vitro expression of labelled actin with analysis on native gels, band shift assays or copolymerization tests. Additionally, we monitor, using immuno-fluorescence, incorporation of actin variants in cytoskeletal structures in transfected cells. We illustrate the method by two examples. In one we show that tagged versions of actin do not always behave native-like and in the other we study some of the molecular defects of three &bgr;-actin mutants that have been associated with diseases.

  7. Xenopus egg cytoplasm with intact actin.

    Science.gov (United States)

    Field, Christine M; Nguyen, Phuong A; Ishihara, Keisuke; Groen, Aaron C; Mitchison, Timothy J

    2014-01-01

    We report optimized methods for preparing Xenopus egg extracts without cytochalasin D, that we term "actin-intact egg extract." These are undiluted egg cytoplasm that contains abundant organelles, and glycogen which supplies energy, and represents the least perturbed cell-free cytoplasm preparation we know of. We used this system to probe cell cycle regulation of actin and myosin-II dynamics (Field et al., 2011), and to reconstitute the large, interphase asters that organize early Xenopus embryos (Mitchison et al., 2012; Wühr, Tan, Parker, Detrich, & Mitchison, 2010). Actin-intact Xenopus egg extracts are useful for analysis of actin dynamics, and interaction of actin with other cytoplasmic systems, in a cell-free system that closely mimics egg physiology, and more generally for probing the biochemistry and biophysics of the egg, zygote, and early embryo. Detailed protocols are provided along with assays used to check cell cycle state and tips for handling and storing undiluted egg extracts.

  8. Continuous-Wave Stimulated Emission Depletion Microscope for Imaging Actin Cytoskeleton in Fixed and Live Cells

    Directory of Open Access Journals (Sweden)

    Bhanu Neupane

    2015-09-01

    Full Text Available Stimulated emission depletion (STED microscopy provides a new opportunity to study fine sub-cellular structures and highly dynamic cellular processes, which are challenging to observe using conventional optical microscopy. Using actin as an example, we explored the feasibility of using a continuous wave (CW-STED microscope to study the fine structure and dynamics in fixed and live cells. Actin plays an important role in cellular processes, whose functioning involves dynamic formation and reorganization of fine structures of actin filaments. Frequently used confocal fluorescence and STED microscopy dyes were employed to image fixed PC-12 cells (dyed with phalloidin- fluorescein isothiocyante and live rat chondrosarcoma cells (RCS transfected with actin-green fluorescent protein (GFP. Compared to conventional confocal fluorescence microscopy, CW-STED microscopy shows improved spatial resolution in both fixed and live cells. We were able to monitor cell morphology changes continuously; however, the number of repetitive analyses were limited primarily by the dyes used in these experiments and could be improved with the use of dyes less susceptible to photobleaching. In conclusion, CW-STED may disclose new information for biological systems with a proper characteristic length scale. The challenges of using CW-STED microscopy to study cell structures are discussed.

  9. Interaction of formin FH2 with skeletal muscle actin. EPR and DSC studies.

    Science.gov (United States)

    Kupi, Tünde; Gróf, Pál; Nyitrai, Miklós; Belágyi, József

    2013-10-01

    Formins are highly conserved proteins that are essential in the formation and regulation of the actin cytoskeleton. The formin homology 2 (FH2) domain is responsible for actin binding and acts as an important nucleating factor in eukaryotic cells. In this work EPR and DSC were used to investigate the properties of the mDia1-FH2 formin fragment and its interaction with actin. MDia1-FH2 was labeled with a maleimide spin probe (MSL). EPR results suggested that the MSL was attached to a single SH group in the FH2. In DSC and temperature-dependent EPR experiments we observed that mDia1-FH2 has a flexible structure and observed a major temperature-induced conformational change at 41 °C. The results also confirmed the previous observation obtained by fluorescence methods that formin binding can destabilize the structure of actin filaments. In the EPR experiments the intermolecular connection between the monomers of formin dimers proved to be flexible. Considering the complex molecular mechanisms underlying the cellular roles of formins this internal flexibility of the dimers is probably important for manifestation of their biological functions.

  10. beta-Dystroglycan modulates the interplay between actin and microtubules in human-adhered platelets.

    Science.gov (United States)

    Cerecedo, Doris; Cisneros, Bulmaro; Suárez-Sánchez, Rocío; Hernández-González, Enrique; Galván, Iván

    2008-05-01

    To maintain the continuity of an injured blood vessel, platelets change shape, secrete granule contents, adhere, aggregate, and retract in a haemostatic plug. Ordered arrays of microtubules, microfilaments, and associated proteins are responsible for these platelet responses. In full-spread platelets, microfilament bundles in association with other cytoskeleton proteins are anchored in focal contacts. Recent studies in migrating cells suggest that co-ordination and direct physical interaction of microtubules and actin network modulate adhesion development. In platelets, we have proposed a feasible association between these two cytoskeletal systems, as well as the participation of the dystrophin-associated protein complex, as part of the focal adhesion complex. The present study analysed the participation of microtubules and actin during the platelet adhesion process. Confocal microscopy, fluorescence resonance transfer energy and immunoprecipitation assays were used to provide evidence of a cross-talk between these two cytoskeletal systems. Interestingly, beta-dystroglycan was found to act as an interplay protein between actin and microtubules and an additional communication between these two cytoskeleton networks was maintained through proteins of focal adhesion complex. Altogether our data are indicative of a dynamic co-participation of actin filaments and microtubules in modulating focal contacts to achieve platelet function.

  11. Evaluation of actinic cheilitis using fluorescence lifetime spectroscopy

    Science.gov (United States)

    Saito Nogueira, Marcelo; Cosci, Alessandro; Pratavieira, Sebastião.; Takahama, Ademar; Souza Azevedo, Rebeca; Kurachi, Cristina

    2016-03-01

    Actinic cheilitis is a potentially malignant disorder that mostly affects the vermilion border of the lower lip and can lead to squamous cell carcinoma. Because of its heterogeneous clinical aspect, it is difficult to indicate representative biopsy area. Late diagnosis is a limiting factor of therapeutic possibilities available to treat oral cancer. The diagnosis of actinic cheilitis is mainly based on clinical and histopathological analysis and it is a time consuming procedure to get the results. Information about the organization and chemical composition of the tissues can be obtained using fluorescence lifetime spectroscopy techniques without the need for biopsy. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and allow a quick and non-invasive clinical investigation of injuries and to help clinicians with the early diagnosis of actinic cheilitis. This study aims to evaluate the fluorescence lifetime parameters at the discrimination of three degrees of epithelial dysplasia, the most important predictor of malignant development, described in up to 100% of actinic cheilitis cases.

  12. Automated detection, characterization, and tracking of filaments from SDO data

    Science.gov (United States)

    Buchlin, Eric; Vial, Jean-Claude; Mercier, Claude

    2016-07-01

    Thanks to the cadence and continuity of AIA and HMI observations, SDO offers unique data for detecting, characterizing, and tracking solar filaments, until their eruptions, which are often associated with coronal mass ejections. Because of the requirement of short latency when aiming at space weather applications, and because of the important data volume, only an automated detection can be worked out. We present the code "FILaments, Eruptions, and Activations detected from Space" (FILEAS) that we have developed for the automated detection and tracking of filaments. Detections are based on the analysis of AIA 30.4 nm He II images and on the magnetic polarity inversion lines derived from HMI. Following the tracking of filaments as they rotate with the Sun, filament characteristics are computed and a database of filaments parameters is built. We present the algorithms and performances of the code, and we compare its results with the filaments detected in Hα and already present in the Heliophysics Events Knowledgebase. We finally discuss the possibility of using such a code to detect eruptions in real time.

  13. ADAPTIVE ANTENNA REFLECTOR BASED ON FILAMENT WINDING TECHNOLOGY%基于纤维缠绕技术的自适应天线反射器

    Institute of Scientific and Technical Information of China (English)

    陶云刚; Tobias; Melz

    2001-01-01

    The modern information society continuously demands for larger communication capacities.These demands can be met by developing higher telecommunication frequencies.With this goal and modern communication technology basing on satellite systems with reflector antennas,a new structural design concept of a satellite antenna reflector as an adaptive structural system is being developed.In this article the manufacturing of such a parabolic central focus sandwich reflector of a diameter of 900mm with intermediate modulus carbon fibre/epoxy face sheets and aluminium honeycomb core with integrated actuators will be introduced.The fabrication of the actuator packages,the filament winding process and the assembly of the actuators will be presented.With this paper the authors intend to introduce this new design concept as a promising technique to realise lightweight,by means of active control thermally highly stable and economic reflector structures for future communicaiton applications.%现代信息社会越来越需要更大的通讯能力,这种需要可通过发展更高的远程通讯频率来满足,为实现此目的,使用发射天线的卫星通讯系统。德国宇航研究院结构力学研究所正在研制一种新的、用于卫星天线发射器的自适应结构体系。本文介绍了一种直径为900毫米的抛物面型叠层发射器的制造工艺。该卫星天线发射器叠层材料为中等弹性模量的碳纤维--环氧树脂面板和带有集成激励控制驱动器的铝蜂窝夹芯。并将给出驱动器封装的制造,纤维缠绕过程和驱动器的装配方法。本文介绍了这一新的设计思想和具有高效控制,高热稳定性及经济的、重量轻的自适应智能天线反射器结构。

  14. Transgenic overexpression of γ-cytoplasmic actin protects against eccentric contraction-induced force loss in mdx mice

    Directory of Open Access Journals (Sweden)

    Baltgalvis Kristen A

    2011-10-01

    Full Text Available Abstract Background γ-cytoplasmic (γ-cyto actin levels are elevated in dystrophin-deficient mdx mouse skeletal muscle. The purpose of this study was to determine whether further elevation of γ-cyto actin levels improve or exacerbate the dystrophic phenotype of mdx mice. Methods We transgenically overexpressed γ-cyto actin, specifically in skeletal muscle of mdx mice (mdx-TG, and compared skeletal muscle pathology and force-generating capacity between mdx and mdx-TG mice at different ages. We investigated the mechanism by which γ-cyto actin provides protection from force loss by studying the role of calcium channels and stretch-activated channels in isolated skeletal muscles and muscle fibers. Analysis of variance or independent t-tests were used to detect statistical differences between groups. Results Levels of γ-cyto actin in mdx-TG skeletal muscle were elevated 200-fold compared to mdx skeletal muscle and incorporated into thin filaments. Overexpression of γ-cyto actin had little effect on most parameters of mdx muscle pathology. However, γ-cyto actin provided statistically significant protection against force loss during eccentric contractions. Store-operated calcium entry across the sarcolemma did not differ between mdx fibers compared to wild-type fibers. Additionally, the omission of extracellular calcium or the addition of streptomycin to block stretch-activated channels did not improve the force-generating capacity of isolated extensor digitorum longus muscles from mdx mice during eccentric contractions. Conclusions The data presented in this study indicate that upregulation of γ-cyto actin in dystrophic skeletal muscle can attenuate force loss during eccentric contractions and that the mechanism is independent of activation of stretch-activated channels and the accumulation of extracellular calcium.

  15. The AGC Ser/Thr kinase Aga1 is essential for appressorium formation and maintenance of the actin cytoskeleton in the smut fungus Ustilago maydis.

    Science.gov (United States)

    Berndt, Patrick; Lanver, Daniel; Kahmann, Regine

    2010-12-01

    On the plant surface the dimorphic fungus Ustilago maydis switches from budding to hyphal growth and differentiates appressoria. To get more insight into these highly regulated processes we report on the role of a conserved Ser/Thr kinase of the AGC kinase family, Aga1. U. maydis Aga1 could functionally replace Ypk1p in Saccharomyces cerevisiae. aga1 deletion mutants were affected in growth, cell wall integrity, mating as well as the ability to form appressoria and showed defects in actin organization and actin-dependent endocytosis. With respect to appressorium formation and endocytosis, the aga1 deletion phenotype could be mimicked by inhibiting the formation of actin filaments with Latrunculin A. These data suggest a critical role of Aga1 in F-actin organization during the morphological changes accompanying the development of appressoria.

  16. Microtubule-Actin Cross-Linking Factor 1: Domains, Interaction Partners, and Tissue-Specific Functions.

    Science.gov (United States)

    Goryunov, Dmitry; Liem, Ronald K H

    2016-01-01

    The cytoskeleton of most eukaryotic cells is composed of three principal filamentous components: actin filaments, microtubules (MTs), and intermediate filaments. It is a highly dynamic system that plays crucial roles in a wide range of cellular processes, including migration, adhesion, cytokinesis, morphogenesis, intracellular traffic and signaling, and structural flexibility. Among the large number of cytoskeleton-associated proteins characterized to date, microtubule-actin cross-linking factor 1 (MACF1) is arguably the most versatile integrator and modulator of cytoskeleton-related processes. MACF1 belongs to the plakin family of proteins, and within it, to the spectraplakin subfamily. These proteins are characterized by the ability to bridge MT and actin cytoskeletal networks in a dynamic fashion, which underlies their involvement in the regulation of cell migration, axonal extension, and vesicular traffic. Studying MACF1 functions has provided insights not only into the regulation of the cytoskeleton but also into molecular mechanisms of both normal cellular physiology and cellular pathology. Multiple MACF1 isoforms exist, composed of a large variety of alternatively spliced domains. Each of these domains mediates a specific set of interactions and functions. These functions are manifested in tissue and cell-specific phenotypes observed in conditional MACF1 knockout mice. The conditional models described to date reveal critical roles of MACF1 in mammalian skin, nervous system, heart muscle, and intestinal epithelia. Complete elimination of MACF1 is early embryonic lethal, indicating an essential role for MACF1 in early development. Further studies of MACF1 domains and their interactions will likely reveal multiple new roles of this protein in various tissues.

  17. Laser Filament Induced Water Condensation

    OpenAIRE

    Kasparian J.; Webe K.; Vogel A; Petit Y.; Lüder J.; Hao Z.Q.; Rohwetter P.; Petrarca M.; Stelmaszczyk K.; Henin S.; Wöste L.; Wolf J.-P.

    2013-01-01

    At relative humidities above 70%, femtosecond laser filaments generate aerosol particles and water droplets in the atmosphere. The water vapour condensation and droplet stabilization are assured by soluble species produced in the laser plasma.

  18. Motility patterns of filamentous sulfur bacteria, Beggiatoa spp

    DEFF Research Database (Denmark)

    Dunker, Rita; Røy, Hans; Kamp, Anja;

    2011-01-01

    was constructed based on our observations. The model was applied to virtual filaments in the oxygen- and sulfide-free zone of the sediment, which is a main habitat of Beggiatoa in the natural environment. The model predicts a long residence time of the virtual filament in the suboxic zone and explains why...... Beggiatoa accumulate high nitrate concentrations in internal vacuoles as an alternative electron acceptor to oxygen....

  19. Scrape Off Layer profiles interpreted with filament dynamics

    CERN Document Server

    Militello, F

    2016-01-01

    A theoretical framework is developed to link the density profiles in the Scrape Off Layer (SOL) with the fluctuations (filaments) that generate them. The framework is based on the dynamics of independent filaments and their statistical behaviour and can be used to rigorously understand the mechanisms that lead to flattening and broadening of the SOL profiles as well as the radial increase of the relative fluctuation amplitude.

  20. Star formation efficiency in the outer filaments of Centaurus A

    Science.gov (United States)

    Salomé, Q.; Salomé, P.; Combes, F.; Hamer, S.; Heywood, I.

    2015-12-01

    We present a multi-wavelength study of the northern filaments of Centaurus A (at a distance of ˜ 20 kpc from the galaxy center) based on FUV (GALEX), FIR (Herschel) and CO (SEST and ALMA) emission. We also searched for HCN and HCO^+ (ATCA) and observed optical emission lines (VLT/MUSE) in different places of the filament. An upper limit of the dense gas of L'_{HCN}inhibits star formation.