WorldWideScience

Sample records for acquired v3 mutation

  1. Acquired EGFR L718V mutation mediates resistance to osimertinib in non-small cell lung cancer but retains sensitivity to afatinib.

    Science.gov (United States)

    Liu, Yutao; Li, Yan; Ou, Qiuxiang; Wu, Xue; Wang, Xiaonan; Shao, Yang W; Ying, Jianming

    2018-04-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are promising targeted therapies for EGFR-mutated non-small-cell lung cancer (NSCLC) patients. However, acquired resistance inevitably develops. Comprehensive and dynamic companion genomic diagnosis can gain insights into underlying resistance mechanisms, thereby help oncologists and patients to make informed decision on the potential benefit of the treatment. A 67-year-old male who was initially diagnosed of EGFR L858R-mediated NSCLC received multiple lines of chemotherapy and EGFR TKI therapies after surgery. The EGFR mutational status of individual metastatic lesion was determined by genetic testing of the tumor tissue biopsies using next generation sequencing (NGS) throughout the patient's clinical course. An acquired potentially drug-resistant EGFR mutation was functionally validated in vitro and its sensitivity to different EGFR TKIs was assessed simultaneously. We have identified distinct resistance mechanisms to EGFR blockade in different metastatic lung lesions. Acquired EGFR T790M was first detected that leads to the resistance to the gefitinib treatment. Consequently, osimertinib was administrated and the response lasted until disease progressed. We identified a newly acquired EGFR L718V mutation in one lesion in conjunction with L858R, but not T790M, which showed stable disease on the following erlotinib treatment, while EGFR C797S together with L858R/T790M was detected in the other lesion that continuously progressed. In vitro functional studies demonstrated that EGFR-L858R/L718V confers resistance to osimertinib, but retains sensitivity to the second generation TKI afatinib. We reported that distinct resistance mechanisms could arise in different metastases within the same patient in response to EGFR blockade. We also demonstrated in vitro that EGFR L718V mutation mediates resistance to osimertinib, but retains sensitivity to afatinib. We evidenced that dynamic companion genomic

  2. Mutation Analysis of JAK2V617F, FLT3-ITD, NPM1, and DNMT3A in Chinese Patients with Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Min Wang

    2014-01-01

    Full Text Available Since the discovery of JAK2V617F tyrosine kinase-activating mutation, several genes have been found mutated in myeloproliferative neoplasms (MPNs. FLT3-ITD, NPM1, and DNMT3A mutations frequently occurred in AML patients and have been found conferred with myeloproliferative neoplasms in mouse model. Therefore, we sought to search for mutations in JAK2V617F, FLT3-ITD, NPM1, and DNMT3A in 129 cases including 120 classic MPN cases and 9 MDS/MPN cases. JAK2V617F mutation was found in 60% of the 120 classic MPNs. However, none of the patients displayed FLT3-ITD and NPM1 mutations; only 2 patients harbored DNMT3A R882 mutation. Further studies including whole-genome sequence will be conducted to investigate the possible involvement of these genes in MPN.

  3. Characterization and Prognosis Significance of JAK2 (V617F), MPL, and CALR Mutations in Philadelphia-Negative Myeloproliferative Neoplasms

    Science.gov (United States)

    Singdong, Roongrudee; Siriboonpiputtana, Teerapong; Chareonsirisuthigul, Takol; Kongruang, Adcharee; Limsuwanachot, Nittaya; Sirirat, Tanasan; Chuncharunee, Suporn; Rerkamnuaychoke, Budsaba

    2016-10-01

    Background: The discovery of somatic acquired mutations of JAK2 (V617F) in Philadelphia-negative myeloproliferative neoplasms (Ph-negative MPNs) including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) has not only improved rational disease classification and prognostication but also brings new understanding insight into the pathogenesis of diseases. Dosage effects of the JAK2 (V617F) allelic burden in Ph-negative MPNs may partially influence clinical presentation, disease progression, and treatment outcome. Material and Methods: Pyrosequencing was performed to detect JAK2 (V617F) and MPL (W515K/L) and capillary electrophoresis to identify CALR exon 9.0 mutations in 100.0 samples of Ph-negative MPNs (38.0 PV, 55 ET, 4 PMF, and 3 MPN-U). Results: The results showed somatic mutations of JAK2 (V617F) in 94.7% of PV, 74.5% of ET, 25.0% of PMF, and all MPN-U. A high proportion of JAK2 (V617F) mutant allele burden (mutational load > 50.0%) was predominantly observed in PV when compared with ET. Although a high level of JAK2 (V617F) allele burden was strongly associated with high WBC counts in both PV and ET, several hematological parameters (hemoglobin, hematocrit, and platelet count) were independent of JAK2 (V617F) mutational load. MPL (W515K/L) mutations could not be detected whereas CALR exon 9.0 mutations were identified in 35.7% of patients with JAK2 negative ET and 33.3% with JAK2 negative PMF. Conclusions: The JAK2 (V617F) allele burden may be involved in progression of MPNs. Furthermore, a high level of JAK2 (V617F) mutant allele appears strongly associated with leukocytosis in both PV and ET. Creative Commons Attribution License

  4. Extending Jak2V617F and MplW515 mutation analysis to single hematopoietic colonies and B and T lymphocytes.

    Science.gov (United States)

    Pardanani, Animesh; Lasho, Terra L; Finke, Christy; Mesa, Ruben A; Hogan, William J; Ketterling, Rhett P; Gilliland, Dwight Gary; Tefferi, Ayalew

    2007-09-01

    JAK2V617F and MPLW515L/K are myeloproliferative disorder (MPD)-associated mutations. We genotyped 552 individual hematopoietic colonies obtained by CD34+ cell culture from 16 affected patients (13 JAK2V617F and 3 MPLW515L/K) to determine (a) the proportion of colonies harboring a particular mutation in the presence or absence of cytokines, (b) the lineage distribution of endogenous colonies for each mutation, and (c) the differences (if any) in the pattern of mutation among the various MPDs, as established by genotyping of individual colonies. Genotyping analysis revealed cohabitation of mutation-negative and mutation-positive endogenous colonies in polycythemia vera as well as other MPDs. Culture of progenitor cells harboring MPLW515L/K yielded virtually no endogenous erythroid colonies in contrast to JAK2V617F-harboring progenitor cells. The mutation pattern (i.e., relative distribution of homozygous, heterozygous, or wild-type colonies) was not a distinguishing feature among the MPDs, and MPLW515 mutations were detected in B and/or T lymphocytes in all three patients tested. These observations suggest that clonal myelopoiesis antedates acquisition of JAK2V617F or MPLW515L/K mutations and that the latter is acquired in a lympho-myeloid progenitor cell.

  5. JAK2 V617F, MPL W515L and JAK2 Exon 12 Mutations in Chinese Patients with Primary Myelofibrosis.

    Science.gov (United States)

    Xia, Jun; Lu, Mi-Ze; Jiang, Yuan-Qiang; Yang, Guo-Hua; Zhuang, Yun; Sun, Hong-Li; Shen, Yun-Feng

    2012-03-01

    JAK2 V617F, MPL W515L and JAK2 exon 12 mutations are novel acquired mutations that induce constitutive cytokine-independent activation of the JAK-STAT pathway in myeloproliferative disorders (MPD). The discovery of these mutations provides novel mechanism for activation of signal transduction in hematopoietic malignancies. This research was to investigate their prevalence in Chinese patients with primary myelofibrosis (PMF). We introduced allele-specific PCR (AS-PCR) combined with sequence analysis to simultaneously screen JAK2 V617F, MPL W515L and JAK2 exon 12 mutations in 30 patients with PMF. Fifteen PMF patients (50.0%) carried JAK2 V617F mutation, and only two JAK2 V617F-negative patients (6.7%) harbored MPL W515L mutation. None had JAK2 exon 12 mutations. Furthermore, these three mutations were not detected in 50 healthy controls. MPL W515L and JAK2 V617F mutations existed in PMF patients but JAK2 exon 12 mutations not. JAK2 V617F and MPL W515L and mutations might contribute to the primary molecular pathogenesis in patients with PMF.

  6. Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors.

    Science.gov (United States)

    Rothwell, Patrick E; Fuccillo, Marc V; Maxeiner, Stephan; Hayton, Scott J; Gokce, Ozgun; Lim, Byung Kook; Fowler, Stephen C; Malenka, Robert C; Südhof, Thomas C

    2014-07-03

    In humans, neuroligin-3 mutations are associated with autism, whereas in mice, the corresponding mutations produce robust synaptic and behavioral changes. However, different neuroligin-3 mutations cause largely distinct phenotypes in mice, and no causal relationship links a specific synaptic dysfunction to a behavioral change. Using rotarod motor learning as a proxy for acquired repetitive behaviors in mice, we found that different neuroligin-3 mutations uniformly enhanced formation of repetitive motor routines. Surprisingly, neuroligin-3 mutations caused this phenotype not via changes in the cerebellum or dorsal striatum but via a selective synaptic impairment in the nucleus accumbens/ventral striatum. Here, neuroligin-3 mutations increased rotarod learning by specifically impeding synaptic inhibition onto D1-dopamine receptor-expressing but not D2-dopamine receptor-expressing medium spiny neurons. Our data thus suggest that different autism-associated neuroligin-3 mutations cause a common increase in acquired repetitive behaviors by impairing a specific striatal synapse and thereby provide a plausible circuit substrate for autism pathophysiology. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy.

    Science.gov (United States)

    Goh, Gerald; Walradt, Trent; Markarov, Vladimir; Blom, Astrid; Riaz, Nadeem; Doumani, Ryan; Stafstrom, Krista; Moshiri, Ata; Yelistratova, Lola; Levinsohn, Jonathan; Chan, Timothy A; Nghiem, Paul; Lifton, Richard P; Choi, Jaehyuk

    2016-01-19

    Merkel cell carcinoma (MCC) is a rare but highly aggressive cutaneous neuroendocrine carcinoma, associated with the Merkel cell polyomavirus (MCPyV) in 80% of cases. To define the genetic basis of MCCs, we performed exome sequencing of 49 MCCs. We show that MCPyV-negative MCCs have a high mutation burden (median of 1121 somatic single nucleotide variants (SSNVs) per-exome with frequent mutations in RB1 and TP53 and additional damaging mutations in genes in the chromatin modification (ASXL1, MLL2, and MLL3), JNK (MAP3K1 and TRAF7), and DNA-damage pathways (ATM, MSH2, and BRCA1). In contrast, MCPyV-positive MCCs harbor few SSNVs (median of 12.5 SSNVs/tumor) with none in the genes listed above. In both subgroups, there are rare cancer-promoting mutations predicted to activate the PI3K pathway (HRAS, KRAS, PIK3CA, PTEN, and TSC1) and to inactivate the Notch pathway (Notch1 and Notch2). TP53 mutations appear to be clinically relevant in virus-negative MCCs as 37% of these tumors harbor potentially targetable gain-of-function mutations in TP53 at p.R248 and p.P278. Moreover, TP53 mutational status predicts death in early stage MCC (5-year survival in TP53 mutant vs wild-type stage I and II MCCs is 20% vs. 92%, respectively; P = 0.0036). Lastly, we identified the tumor neoantigens in MCPyV-negative and MCPyV-positive MCCs. We found that virus-negative MCCs harbor more tumor neoantigens than melanomas or non-small cell lung cancers (median of 173, 65, and 111 neoantigens/sample, respectively), two cancers for which immune checkpoint blockade can produce durable clinical responses. Collectively, these data support the use of immunotherapies for virus-negative MCCs.

  8. Impact of the factor V Leiden mutation on the outcome of pneumococcal pneumonia: a controlled laboratory study

    NARCIS (Netherlands)

    Schouten, Marcel; van 't Veer, Cornelis; Roelofs, Joris Jth; Levi, Marcel; van der Poll, Tom

    2010-01-01

    Introduction: Streptococcus (S.) pneumoniae is the most common cause of community-acquired pneumonia. The factor V Leiden (FVL) mutation results in resistance of activated FV to inactivation by activated protein C and thereby in a prothrombotic phenotype. Human heterozygous FVL carriers have been

  9. Acquired copy-neutral loss of heterozygosity of chromosome 1p as a molecular event associated with marrow fibrosis in MPL-mutated myeloproliferative neoplasms.

    Science.gov (United States)

    Rumi, Elisa; Pietra, Daniela; Guglielmelli, Paola; Bordoni, Roberta; Casetti, Ilaria; Milanesi, Chiara; Sant'Antonio, Emanuela; Ferretti, Virginia; Pancrazzi, Alessandro; Rotunno, Giada; Severgnini, Marco; Pietrelli, Alessandro; Astori, Cesare; Fugazza, Elena; Pascutto, Cristiana; Boveri, Emanuela; Passamonti, Francesco; De Bellis, Gianluca; Vannucchi, Alessandro; Cazzola, Mario

    2013-05-23

    We studied mutations of MPL exon 10 in patients with essential thrombocythemia (ET) or primary myelofibrosis (PMF), first investigating a cohort of 892 consecutive patients. MPL mutation scanning was performed on granulocyte genomic DNA by using a high-resolution melt assay, and the mutant allele burden was evaluated by using deep sequencing. Somatic mutations of MPL, all but one involving codon W515, were detected in 26/661 (4%) patients with ET, 10/187 (5%) with PMF, and 7/44 (16%) patients with post-ET myelofibrosis. Comparison of JAK2 (V617F)-mutated and MPL-mutated patients showed only minor phenotypic differences. In an extended group of 62 MPL-mutated patients, the granulocyte mutant allele burden ranged from 1% to 95% and was significantly higher in patients with PMF or post-ET myelofibrosis compared with those with ET. Patients with higher mutation burdens had evidence of acquired copy-neutral loss of heterozygosity (CN-LOH) of chromosome 1p in granulocytes, consistent with a transition from heterozygosity to homozygosity for the MPL mutation in clonal cells. A significant association was found between MPL-mutant allele burden greater than 50% and marrow fibrosis. These observations suggest that acquired CN-LOH of chromosome 1p involving the MPL location may represent a molecular mechanism of fibrotic transformation in MPL-mutated myeloproliferative neoplasms.

  10. Prevalence, Mutation Patterns, and Effects on Protease Inhibitor Susceptibility of the L76V Mutation in HIV-1 Protease▿ †

    Science.gov (United States)

    Young, Thomas P.; Parkin, Neil T.; Stawiski, Eric; Pilot-Matias, Tami; Trinh, Roger; Kempf, Dale J.; Norton, Michael

    2010-01-01

    Patterns of HIV-1 protease inhibitor (PI) resistance-associated mutations (RAMs) and effects on PI susceptibility associated with the L76V mutation were studied in a large database. Of 20,501 sequences with ≥1 PI RAM, 3.2% contained L76V; L76V was alone in 0.04%. Common partner mutations included M46I, I54V, V82A, I84V, and L90M. L76V was associated with a 2- to 6-fold decrease in susceptibility to lopinavir, darunavir, amprenavir, and indinavir and a 7- to 8-fold increase in susceptibility to atazanavir and saquinavir. PMID:20805393

  11. Detection of MPL exon10 mutations in 103 Chinese patients with JAK2V617F-negative myeloproliferative neoplasms.

    Science.gov (United States)

    Chen, Xiuhua; Qi, Xiling; Tan, Yanhong; Xu, Zhifang; Xu, Aining; Zhang, Linlin; Wang, Hongwei

    2011-06-15

    JAK2V617F mutation has been reported in 90% of patients with polycythemia vera (PV) and about 50% of patients with essential thromobocythemia (ET) and primary myelofibrosis (PMF). Recently, acquired mutations in the transmembrane-juxtamembrane region of MPL (MPLW515 mutations) have been reported in approximately 5% of JAK2V617F-negative PMF and about 1% of all cases of ET. MPL is the receptor for thrombopoietin that regulates the production of platelets by bone marrow. It is likely that some mutations more closely related to ET in MPL exon10 may have been missed by current assays. We inferred that there might be other mutations in MPL exon10 for MPN patients in addition to MPLW515 mutations. To investigate its mutation types and prevalence in Chinese patients with myeloproliferative neoplasms (MPN), we performed mutation detection on MPL exon10 in 103 JAK2V617F-negative MPN patients by single strand conformation polymorphism (SSCP) and allele-specific PCR (AS-PCR) combined with sequencing. As a result, one previously unrecognized MPL mutation (12-bp in-frame insertion) was identified in one patient with ET in addition to an MPLW515K mutation identified in one PMF patient. This confirms our hypothesis that BCR/ABL negative and JAK2V617F-negative MPN patients have other mutations besides W515 mutation in MPL exon10 and mutations other than single nucleotide exchange also exist. In addition, MPL mutation was associated with Chinese MPN patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Pyrosequencing-Based Assays for Rapid Detection of HER2 and HER3 Mutations in Clinical Samples Uncover an E332E Mutation Affecting HER3 in Retroperitoneal Leiomyosarcoma

    Directory of Open Access Journals (Sweden)

    Paula González-Alonso

    2015-08-01

    Full Text Available Mutations in Human Epidermal Growth Factor Receptors (HER are associated with poor prognosis of several types of solid tumors. Although HER-mutation detection methods are currently available, such as Next-Generation Sequencing (NGS, alternative pyrosequencing allow the rapid characterization of specific mutations. We developed specific PCR-based pyrosequencing assays for identification of most prevalent HER2 and HER3 mutations, including S310F/Y, R678Q, L755M/P/S/W, V777A/L/M, 774-776 insertion, and V842I mutations in HER2, as well as M91I, V104M/L, D297N/V/Y, and E332E/K mutations in HER3. We tested 85 Formalin Fixed and Paraffin Embbeded (FFPE samples and we detected three HER2-V842I mutations in colorectal carcinoma (CRC, ovarian carcinoma, and pancreatic carcinoma patients, respectively, and a HER2-L755M mutation in a CRC specimen. We also determined the presence of a HER3-E332K mutation in an urothelial carcinoma sample, and two HER3-D297Y mutations, in both gastric adenocarcinoma and CRC specimens. The D297Y mutation was previously detected in breast and gastric tumors, but not in CRC. Moreover, we found a not-previously-described HER3-E332E synonymous mutation in a retroperitoneal leiomyosarcoma patient. The pyrosequencing assays presented here allow the detection and characterization of specific HER2 and HER3 mutations. These pyrosequencing assays might be implemented in routine diagnosis for molecular characterization of HER2/HER3 receptors as an alternative to complex NGS approaches.

  13. The Association of Factor V Leiden Mutation with Recurrent Pregnancy Loss

    International Nuclear Information System (INIS)

    Kashif, M.; Saeed, A.

    2015-01-01

    Objective: To determine the association of factor V Leiden mutation with recurrent pregnancy loss. Methods: The case-control study was conducted at the Department of Haematology, Armed Forces Institute of Pathology, Rawalpindi, Pakistan, from January to June 2012, and comprised women of 18 to 45 years of age who had a history of recurrent pregnancy loss, and controls with no history of pregnancy loss. All the subjects belonged to Punjabi ethnic group. Three ml blood was taken from cases and controls and deoxyribonucleic acid was extracted. In order to identify Factor V Leiden mutation, polymerase chain reaction method was utilised combined with the amplification refractory mutation system. Data was analysed using SPSS 17. Results: Of the 112 subjects, 56(50 percent) were in each of the two groups. The presence of factor V Leiden mutation among the cases was 3(5.4 percent) while it was absent among the controls. The mutation was significantly associated with recurrent pregnancy loss (p=0.017).Recurrent pregnancy loss was higher in cases than controls (p=0.001). Conclusion: Factor V Leiden mutation was significantly associated with recurrent pregnancy loss. It should be considered one of the causes of recurrent pregnancy loss. (author)

  14. Factor V Leiden mutation in pregnancy.

    Science.gov (United States)

    Cohen, Susan Murphy

    2004-01-01

    Normal maternal adaptation to pregnancy significantly increases the risk for thrombus formation. Inherited thrombophilias further increase risk for deep venous thrombosis and adverse outcome in pregnancy. Factor V Leiden mutation is the most common inherited thrombophilia, occurring in approximately 5% of the White and 1% of the Black populations. Nurses should be knowledgeable about screening for and diagnosis of factor V Leiden mutation, risk reduction counseling, recommended care of the affected patient, and implications of anticoagulant therapy during the perinatal period.

  15. [Genetic mutation and clinical features of osteogenesis imperfecta type V].

    Science.gov (United States)

    Guan, Shizhen; Bai, Xue; Wang, Yi; Liu, Zhigang; Ren, Xiuzhi; Zhang, Tianke; Ju, Mingyan; Li, Keqiu; Li, Guang

    2017-12-10

    To explore genetic mutations and clinical features of osteogenesis imperfecta type V. Clinical record of five patients (including one familial case) with osteogenesis imperfecta type V were retrospectively analyzed. Peripheral blood samples of the patients, one family member, as well as healthy controls were collected. Mutation of IFITM5 gene was identified by PCR amplification and Sanger sequencing. A heterozygous mutation (c.-14C>T) in the 5-UTR of the IFITM5 gene was identified in all of the patients and one mother. The clinical findings included frequent fractures and spine and/or extremities deformities, absence of dentinogenesis imperfecta, absence of hearing impairment, and blue sclera in 1 case. Radiographic findings revealed calcification of the interosseous membrane between the radius-ulna in all cases. Hyperplastic callus formation was found in 3 cases. Four had radial-head dislocation. A single heterozygous mutation c.-14C>T was found in the 5-UTR of the IFITM5 gene in 5 patients with osteogensis imperfecta type V. The patients showed specific radiological features including calcification of interosseous membrane, hyperplastic callus formation, and radial-head dislocation.

  16. Driver mutations (JAK2V617F, MPLW515L/K or CALR), pentraxin-3 and C-reactive protein in essential thrombocythemia and polycythemia vera.

    Science.gov (United States)

    Lussana, Federico; Carobbio, Alessandra; Salmoiraghi, Silvia; Guglielmelli, Paola; Vannucchi, Alessandro Maria; Bottazzi, Barbara; Leone, Roberto; Mantovani, Alberto; Barbui, Tiziano; Rambaldi, Alessandro

    2017-02-22

    The driver mutations JAK2V617F, MPLW515L/K and CALR influence disease phenotype of myeloproliferative neoplasms (MPNs) and might sustain a condition of chronic inflammation. Pentraxin 3 (PTX3) and high-sensitivity C-reactive protein (hs-CRP) are inflammatory biomarkers potentially useful for refining prognostic classification of MPNs. We evaluated 305 with essential thrombocythemia (ET) and 172 polycythemia vera (PV) patients diagnosed according to the 2016 WHO criteria and with full molecular characterization for driver mutations. PTX3 levels were significantly increased in carriers of homozygous JAK2V617F mutation compared to all the other genotypes and triple negative ET patients, while hs-CRP levels were independent of the mutational profile. The risk of haematological evolution and death from any cause was about 2- and 1.5-fold increased in individuals with high PTX-3 levels, while the thrombosis rate tended to be lower. High hs-CRP levels were associated with risk of haematological evolution, death and also major thrombosis. After sequential adjustment for potential confounders (age, gender, diagnosis and treatments) and the presence of JAK2V617F homozygous status, high hs-CRP levels remained significant for all outcomes, while JAK2V617F homozygous status as well as treatments were the factors independently accounting for adverse outcomes among patients with high PTX3 levels. These results provide evidence that JAK2V617F mutation influences MPN-associated inflammation with a strong correlation between allele burden and PTX3 levels. Plasma levels of hs-CRP and PTX3 might be of prognostic value for patients with ET and PV, but their validation in future prospective studies is needed.

  17. Characterization and Prognosis Significance of JAK2 (V617F), MPL, and CALR Mutations in Philadelphia-Negative Myeloproliferative Neoplasms

    OpenAIRE

    Singdong, Roongrudee; Siriboonpiputtana, Teerapong; Chareonsirisuthigul, Takol; Kongruang, Adcharee; Limsuwanachot, Nittaya; Sirirat, Tanasan; Chuncharunee, Suporn; Rerkamnuaychoke, Budsaba

    2016-01-01

    Background: The discovery of somatic acquired mutations of JAK2 (V617F) in Philadelphia-negative myeloproliferative neoplasms (Ph-negative MPNs) including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) has not only improved rational disease classification and prognostication but also brings new understanding insight into the pathogenesis of diseases. Dosage effects of the JAK2 (V617F) allelic burden in Ph-negative MPNs may partially influence clinical ...

  18. Clinical significance of acquired somatic mutations in aplastic anaemia.

    Science.gov (United States)

    Marsh, J C W; Mufti, G J

    2016-08-01

    Aplastic anaemia (AA) is frequently associated with other disorders of clonal haemopoiesis such as paroxysmal nocturnal haemoglobinuria (PNH), myelodysplastic syndrome (MDS) and T-large granular lymphocytosis. Certain clones may escape the immune attack within the bone marrow environment and proliferate and attain a survival advantage over normal haemopoietic stem cells, such as trisomy 8, loss of heterozygosity of short arm of chromosome 6 and del13q clones. Recently acquired somatic mutations (SM), excluding PNH clones, have been reported in around 20-25 % of patients with AA, which predispose to a higher risk of later malignant transformation to MDS/acute myeloid leukaemia. Furthermore, certain SM, such as ASXL1 and DNMT3A are associated with poor survival following immunosuppressive therapy, whereas PIGA, BCOR/BCORL1 predict for good response and survival. Further detailed and serial analysis of the immune signature in AA is needed to understand the pathogenetic basis for the presence of clones with SM in a significant proportion of patients.

  19. The second activating glucokinase mutation (A456V)

    DEFF Research Database (Denmark)

    Christesen, Henrik B T; Jacobsen, Bendt B; Odili, Stella

    2002-01-01

    for mutations in candidate genes revealed a heterozygous glucokinase mutation in exon 10, substituting valine for alanine at codon 456 (A456V) in the proband and his mother. The purified recombinant glutathionyl S-transferase fusion protein of the A456V glucokinase revealed a decreased glucose S(0.5) (the...

  20. Frequency of factor V Leiden mutation

    International Nuclear Information System (INIS)

    Nasiruddin; Ali, W.; Rehman, Z.; Anwar, M.; Ayyub, M.; Ali, W.; Ahmed, S.

    2005-01-01

    Objective: To determine the frequency of factor V Leiden mutation. Design: Observational study. Patients and Methods: Two hundred subjects each of apparently healthy and unrelated Punjabi and Pathan origins were included in the study. Peripheral blood samples were collected in EDTA and DNA extracted by phenol- chloroform extraction method. DNA analysis was done by PCR for restriction fragment length polymorphism. The product was digested overnight with Mn/1 and electrophoresed on acrylamide gel to detect 67 and 153 base pair fragments of factor V Leiden against 37, 67 and 116 base pair fragments of normal factor V. Results: In the 400 subjects studied, only 5 cases of heterozygotes for factor V Leiden were detected. The overall carrier rate was 1.3% (95% CI 0.2-2.2%). The carrier rate in Punjabis and Pathans was 1 % and 1.5% respectively. Conclusion: This study confirms that the prevalence of factor V Leiden is low in Asians and Africans as compared to the European population. (author)

  1. Driver mutations (JAK2V617F, MPLW515L/K or CALR, pentraxin-3 and C-reactive protein in essential thrombocythemia and polycythemia vera

    Directory of Open Access Journals (Sweden)

    Federico Lussana

    2017-02-01

    Full Text Available Abstract Background The driver mutations JAK2V617F, MPLW515L/K and CALR influence disease phenotype of myeloproliferative neoplasms (MPNs and might sustain a condition of chronic inflammation. Pentraxin 3 (PTX3 and high-sensitivity C-reactive protein (hs-CRP are inflammatory biomarkers potentially useful for refining prognostic classification of MPNs. Methods We evaluated 305 with essential thrombocythemia (ET and 172 polycythemia vera (PV patients diagnosed according to the 2016 WHO criteria and with full molecular characterization for driver mutations. Results PTX3 levels were significantly increased in carriers of homozygous JAK2V617F mutation compared to all the other genotypes and triple negative ET patients, while hs-CRP levels were independent of the mutational profile. The risk of haematological evolution and death from any cause was about 2- and 1.5-fold increased in individuals with high PTX-3 levels, while the thrombosis rate tended to be lower. High hs-CRP levels were associated with risk of haematological evolution, death and also major thrombosis. After sequential adjustment for potential confounders (age, gender, diagnosis and treatments and the presence of JAK2V617F homozygous status, high hs-CRP levels remained significant for all outcomes, while JAK2V617F homozygous status as well as treatments were the factors independently accounting for adverse outcomes among patients with high PTX3 levels. Conclusions These results provide evidence that JAK2V617F mutation influences MPN-associated inflammation with a strong correlation between allele burden and PTX3 levels. Plasma levels of hs-CRP and PTX3 might be of prognostic value for patients with ET and PV, but their validation in future prospective studies is needed.

  2. Presence and mechanisms of acquired antimicrobial resistance in Belgian Brachyspira hyodysenteriae isolates belonging to different clonal complexes.

    Science.gov (United States)

    Mahu, M; Pasmans, F; Vranckx, K; De Pauw, N; Vande Maele, L; Vyt, Philip; Vandersmissen, Tamara; Martel, A; Haesebrouck, F; Boyen, F

    2017-08-01

    Swine dysentery (SD) is an economically important disease for which antimicrobial treatment still occupies an important place to control outbreaks. However, acquired antimicrobial resistance is increasingly observed in Brachyspira hyodysenteriae. In this study, the Minimal Inhibitory Concentrations (MIC) of six antimicrobial compounds for 30 recent Belgian B. hyodysenteriae isolates were determined using a broth microdilution method. In addition, relevant regions of the 16S rRNA, 23S rRNA and the L3 protein encoding genes were sequenced to reveal mutations associated with acquired resistance. Finally, a phylogeny was reconstructed using minimal spanning tree analysis of multi locus sequence typing of the isolates. For lincomycin, doxycycline, tylosin and tylvalosin, at least 70% of the isolates did not belong to the wild-type population and were considered to have acquired resistance. For valnemulin and tiamulin, this was over 50%. In all isolates with acquired resistance to doxycycline, the G1058C mutation was present in their 16S rRNA gene. All isolates showing acquired resistance to lincomycin and both macrolides displayed the A2058T mutation in their 23S rRNA gene. Other mutations in this gene and the N148S mutation in the L3 protein were present in both wild-type isolates and isolates considered to have acquired resistance. Multi locus sequence analysis revealed a previously undescribed clonal complex, with 4 novel sequence types in which the majority of isolates showed acquired resistance to all tested antimicrobial products. In conclusion, acquired antimicrobial resistance is widespread among Belgian B. hyodysenteriae isolates. The emergence of multi-resistant clonal complexes can pose a threat to swine industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The frequency of A91V in the perforin gene and the effect of tumor necrosis factor-α promoter polymorphism on acquired hemophagocytic lymphohistiocytosis

    Directory of Open Access Journals (Sweden)

    Hamza Okur

    2011-06-01

    Full Text Available Objective: Numerous acquired etiological factors, such as infections, malignancies, and collagen tissue disorders, are involved in the development of acquired hemophagocytic lymphohistiocytosis (AHLH. Not everyone with the same etiological factors developments AHLH, which suggests the role of additional genetic or environmental predisposing factors that remain to be identified. Materials and Methods: Perforin gene A91V missense transition (C>T change at position 272 in exon 2 of the perforin gene and TNF-α gene promoter-1031 T>C nucleotide substitution are 2 candidate genetic predisposing factors due to their potential to alter inflammatory responses. In the present study these changes were investigated in healthy controls and AHLH patients.Results: A91V transition was observed in 7 of the 159 (4.4% controls. Among the 44 AHLH patients, 5 (11.3% were heterozygous and the difference in the frequency of A91V transition, although striking (odds ratio: 2.8, was not statistically significant (p=0.09. All A91V-positive patients had infection. TNF-α-1031 T>C polymorphism was examined in 164 healthy controls and 40 AHLH patients, and the CC risk-elevating genotype was noted in 7 (4.3% of the controls and 1 (2.5% of the AHLH patients. The frequency of C and T alleles was 22.5% (n=18 and 77.5% (n=62 among the AHLH patients, and 22% (n=72 and 78% (n=259 among the controls, respectively. There wasn’t a statistically significant difference between the groups in terms of allele frequencies (p>0.05.Conclusion: The present results indicate that compared to controls, A91V mutation was 2.8-fold more prevalent (according to the odds ratio in the AHLH patients. A91V mutation is not uncommon in the general population and increases the risk of AHLH in patients with an underlying condition, especially those with an underlying infection.

  4. Naturally occurring dominant drug resistance mutations occur infrequently in the setting of recently acquired hepatitis C.

    Science.gov (United States)

    Applegate, Tanya L; Gaudieri, Silvana; Plauzolles, Anne; Chopra, Abha; Grebely, Jason; Lucas, Michaela; Hellard, Margaret; Luciani, Fabio; Dore, Gregory J; Matthews, Gail V

    2015-01-01

    Direct-acting antivirals (DAAs) are predicted to transform hepatitis C therapy, yet little is known about the prevalence of naturally occurring resistance mutations in recently acquired HCV. This study aimed to determine the prevalence and frequency of drug resistance mutations in the viral quasispecies among HIV-positive and -negative individuals with recent HCV. The NS3 protease, NS5A and NS5B polymerase genes were amplified from 50 genotype 1a participants of the Australian Trial in Acute Hepatitis C. Amino acid variations at sites known to be associated with possible drug resistance were analysed by ultra-deep pyrosequencing. A total of 12% of individuals harboured dominant resistance mutations, while 36% demonstrated non-dominant resistant variants below that detectable by bulk sequencing (that is, Resistance variants (resistance from all classes, with the exception of sofosbuvir. Dominant resistant mutations were uncommonly observed in the setting of recent HCV. However, low-level mutations to all DAA classes were observed by deep sequencing at the majority of sites and in most individuals. The significance of these variants and impact on future treatment options remains to be determined. Clinicaltrials.gov NCT00192569.

  5. 21 CFR 864.7280 - Factor V Leiden DNA mutation detection systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Factor V Leiden DNA mutation detection systems....7280 Factor V Leiden DNA mutation detection systems. (a) Identification. Factor V Leiden deoxyribonucleic acid (DNA) mutation detection systems are devices that consist of different reagents and...

  6. Sensitive KIT D816V mutation analysis of blood as a diagnostic test in mastocytosis

    DEFF Research Database (Denmark)

    Kielsgaard Kristensen, Thomas; Vestergaard, Hanne; Bindslev-Jensen, Carsten

    2014-01-01

    The recent progress in sensitive KIT D816V mutation analysis suggests that mutation analysis of peripheral blood (PB) represents a promising diagnostic test in mastocytosis. However, there is a need for systematic assessment of the analytical sensitivity and specificity of the approach in order...... to establish its value in clinical use. We therefore evaluated sensitive KIT D816V mutation analysis of PB as a diagnostic test in an entire case-series of adults with mastocytosis. We demonstrate for the first time that by using a sufficiently sensitive KIT D816V mutation analysis, it is possible to detect...... the mutation in PB in nearly all adult mastocytosis patients. The mutation was detected in PB in 78 of 83 systemic mastocytosis (94%) and 3 of 4 cutaneous mastocytosis patients (75%). The test was 100% specific as determined by analysis of clinically relevant control patients who all tested negative. Mutation...

  7. Identification of three subgroups of B cell chronic lymphocytic leukemia based upon mutations of BCL-6 and IgV genes.

    Science.gov (United States)

    Capello, D; Fais, F; Vivenza, D; Migliaretti, G; Chiorazzi, N; Gaidano, G; Ferrarini, M

    2000-05-01

    Although B cell chronic lymphocytic leukemia (B-CLL) has been traditionally viewed as a tumor of virgin B cells, this notion has been recently questioned by data suggesting that a fraction of B-CLL derives from antigen experienced B cells. In order to further clarify the histogenetic derivation of this lymphoproliferation, we have analyzed the DNA sequences of the 5' non-coding region of BCL-6 proto-oncogene in 28 cases of B-CLL. Mutations of BCL-6 proto-oncogene, a zinc finger transcription factor implicated in lymphoma development, represent a histogenetic marker of B cell transit through the germinal center (GC) and occur frequently in B cell malignancies derived from GC or post-GC B cells. For comparison, the same tumor panel was analyzed for somatic mutations of the rearranged immunoglobulin variable (IgV) genes, which are known to be acquired at the time of B cell transit through the GC. Sequence analyses of BCL-6 and IgV genes allowed the definition of three groups of B-CLL. Group I B-CLL displayed mutations of both BCL-6 and IgV genes (10/28; 36%). Group II B-CLL displayed mutated IgV genes, but a germline BCL-6 gene (5/28; 18%). Finally, group III B-CLL included the remaining cases (13/28; 46%) that were characterized by the absence of somatic mutations of both BCL-6 and IgV genes. Overall, the distribution of BCL-6 and IgV mutations in B-CLL reinforce the notion that this leukemia is histogenetically heterogeneous and that a substantial subgroup of these lymphoproliferations derives from post-germinal center B cells.

  8. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation--diversity, ductility, and destiny.

    Science.gov (United States)

    Suda, Kenichi; Mizuuchi, Hiroshi; Maehara, Yoshihiko; Mitsudomi, Tetsuya

    2012-12-01

    Lung cancers that harbor somatic activating mutations in the gene for the epidermal growth factor receptor (EGFR) depend on mutant EGFR for their proliferation and survival; therefore, lung cancer patients with EGFR mutations often dramatically respond to orally available EGFR tyrosine kinase inhibitors (TKIs). However, emergence of acquired resistance is virtually inevitable, thus limiting improvement in patient outcomes. To elucidate and overcome this acquired resistance, multidisciplinary basic and clinical investigational approaches have been applied, using in vitro cell line models or samples obtained from lung cancer patients treated with EGFR-TKIs. These efforts have revealed several acquired resistance mechanisms and candidates, including EGFR secondary mutations (T790M and other rare mutations), MET amplification, PTEN downregulation, CRKL amplification, high-level HGF expression, FAS-NFκB pathway activation, epithelial-mesenchymal transition, and conversion to small cell lung cancer. Interestingly, cancer cells harbor potential destiny and ductility together in acquiring resistance to EGFR-TKIs, as shown in in vitro acquired resistance models. Molecular mechanisms of "reversible EGFR-TKI tolerance" that occur in early phase EGFR-TKI exposure have been identified in cell line models. Furthermore, others have reported molecular markers that can predict response to EGFR-TKIs in clinical settings. Deeper understanding of acquired resistance mechanisms to EGFR-TKIs, followed by the development of molecular target drugs that can overcome the resistance, might turn this fatal disease into a chronic disorder.

  9. Mutation of the S and 3c genes in genomes of feline coronaviruses.

    Science.gov (United States)

    Oguma, Keisuke; Ohno, Megumi; Yoshida, Mayuko; Sentsui, Hiroshi

    2018-05-17

    Feline coronavirus (FCoV) is classified into two biotypes based on its pathogenicity in cats: a feline enteric coronavirus of low pathogenicity and a highly virulent feline infectious peritonitis virus. It has been suspected that FCoV alters its biotype via mutations in the viral genome. The S and 3c genes of FCoV have been considered the candidates for viral pathogenicity conversion. In the present study, FCoVs were analyzed for the frequency and location of mutations in the S and 3c genes from faecal samples of cats in an animal shelter and the faeces, effusions, and tissues of cats that were referred to veterinary hospitals. Our results indicated that approximately 95% FCoVs in faeces did not carry mutations in the two genes. However, 80% FCoVs in effusion samples exhibited mutations in the S and 3c genes with remainder displaying a mutation in the S or 3c gene. It was also suggested that mutational analysis of the 3c gene could be useful for studying the horizontal transmission of FCoVs in multi-cat environments.

  10. The association of JAK2V617F mutation and leukocytosis with thrombotic events in essential thrombocythemia.

    Science.gov (United States)

    Hsiao, Hui-Hua; Yang, Ming-Yu; Liu, Yi-Chang; Lee, Ching-Ping; Yang, Wen-Chi; Liu, Ta-Chih; Chang, Chao-Sung; Lin, Sheng-Fung

    2007-11-01

    The Janus kinase 2 mutation, JAK2 (V617F), and megakaryocytic mutations, MPL (W515L/K), have been identified and correlated with a subtype of essential thrombocythemia (ET) patients. We investigated the frequency of mutations in ET patients and analyzed the relationship with their clinical features. Fifty-three ET patients were enrolled in the study. The amplification refractory mutation system was applied for the mutation survey of the JAK2V617F, while the polymerase chain reaction with sequencing was used for the mutation survey of MPLW515L/K. Thirty-five (66%) patients harboring the JAK2 (V617F) mutation, including 3 homozygous and 32 heterozygous changes, but no MPLW515L/K mutation, were found. During follow-up, 17 (32.1%) patients suffered from documented thrombotic events, with 15 having JAK2V617F mutations. Statistical analysis showed that patients with the JAK2 mutation had significantly higher leukocytes, hemoglobin level, and thrombotic event (p = 0.043, p = 0.001, and p = 0.029, respectively). Thrombotic events were also significantly correlated with leukocytosis and older age. The JAK2V617F mutation was noted in a certain population of ET patients and correlated with leukocytosis, high hemoglobin level, and thrombosis. Therefore, detection of the JAK2V617F mutation can affect not only the diagnosis, but also the management of ET patients.

  11. Coexistance of JAK2V617F mutation and BCR/ABL translocation in one patient

    Directory of Open Access Journals (Sweden)

    Murat Albayrak

    2010-09-01

    Full Text Available Dear Editor,The myeloproliferative disorders (MPDs constitute a subcategory of chronic myeloid disorders and include chronic myeloid leukemia (CML, essential thrombocytemia (ET, polycythemia vera (PV and myelofibrosis (MF. In 1960, the discovery of the Philadelphia chromosome (Ph became a cornerstone in CML treatment and led to the development of moleculary targeted therapy. Recently, an acquired mutation in the Janus kinase 2 (JAK2 gene has been discovered in nearly all patents with PV and approximately half of the patients with primary MF and ET. Subsequently, the mutation has been demonstrated in atypical MPDs (chronic neutrophilic leukemia, unclassified, de novo myelodysplastic syndrome or acute myeloid leukemia.1 It has been hoped that targeted inhibition of JAK2V617F should achieve similar disease control as thyrosine kinases has produced in CML.

  12. FLT3 and JAK2 Mutations in Acute Myeloid Leukemia Promote Interchromosomal Homologous Recombination and the Potential for Copy Neutral Loss of Heterozygosity.

    Science.gov (United States)

    Gaymes, Terry J; Mohamedali, Azim; Eiliazadeh, Anthony L; Darling, David; Mufti, Ghulam J

    2017-04-01

    Acquired copy neutral LOH (CN-LOH) is a frequent occurrence in myeloid malignancies and is often associated with resistance to standard therapeutic modalities and poor survival. Here, we show that constitutive signaling driven by mutated FLT3 and JAK2 confers interchromosomal homologous recombination (iHR), a precedent for CN-LOH. Using a targeted recombination assay, we determined significant iHR activity in internal tandem duplication FLT3 (FLT3-ITD) and JAK2V617F-mutated cells. Sister chromatid exchanges, a surrogate measure of iHR, was significantly elevated in primary FLT3-ITD normal karyotype acute myeloid leukemia (NK-AML) compared with wild-type FLT3 NK-AML. HR was harmonized to S phase of the cell cycle to repair broken chromatids and prevent iHR. Increased HR activity in G 0 arrested primary FLT3-ITD NK-AML in contrast to wild-type FLT3 NK-AML. Cells expressing mutated FLT3-ITD demonstrated a relative increase in mutation frequency as detected by thymidine kinase (TK) gene mutation assay. Moreover, resistance was associated with CN-LOH at the TK locus. Treatment of FLT3-ITD- and JAK2V617F-mutant cells with the antioxidant N -acetylcysteine diminished reactive oxygen species (ROS), restoring iHR and HR levels. Our findings show that mutated FLT3-ITD and JAK2 augment ROS production and HR, shifting the cellular milieu toward illegitimate recombination events such as iHR and CN-LOH. Therapeutic reduction of ROS may thus prevent leukemic progression and relapse in myeloid malignancies. Cancer Res; 77(7); 1697-708. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. JAK2V617F mutation is associated with special alleles in essential thrombocythemia.

    Science.gov (United States)

    Hsiao, Hui-Hua; Liu, Yi-Chang; Tsai, Hui-Jen; Lee, Ching-Ping; Hsu, Jui-Feng; Lin, Sheng-Fung

    2011-03-01

    Janus kinase 2 mutation (JAK2V617F) has been identified in myeloproliferative neoplasms. Furthermore, special single nucleoside polymorphisms (SNPs) have been found to be associated with the JAK2V617F mutation. Therefore, the associations among JAK2V617F and special SNPs and the allelic location between them were investigated in patients with essential thrombocythemia (ET). A total of 61 patients with ET and 106 healthy individuals were enrolled. The PCR-RFLP method was applied to investigate the pattern of three SNPs, rs10974944, rs12343867, and rs12340895. Allele-specific PCR was used to examine the allelic location between rs10974944 and JAK2V617F. Among the patients with ET, 34 (55.7%, 34/61) were JAK2V617F positive (heterozygous) while the other 27 (44.3%, 27/61) were negative, and there were no MPLW515L/K mutations noted. The pattern of special SNPs in JAK2V617F(+) was significantly different from that in normal individuals (p <0.05), while there was no difference between JAK2V617F(-) patients and normal individuals. Allele-specific PCR showed high association of a cis-location between the special G-allele of rs10974944 and JAK2V617F(+). Based on this small numbered study, the results show the association between special SNPs and JAK2V617F mutation and a cis-location between the special G-allelic form of rs10974944 and the JAK2V617F mutation. These data highlight a close relationship between them in patients with ET.

  14. BRAF V600E mutational status in bile duct adenomas and hamartomas.

    Science.gov (United States)

    Pujals, Anaïs; Bioulac-Sage, Paulette; Castain, Claire; Charpy, Cécile; Zafrani, Elie Serge; Calderaro, Julien

    2015-10-01

    Bile duct adenomas (BDA) and bile duct hamartomas (BDH) are benign bile duct lesions considered neoplastic or secondary to ductal plate malformation, respectively. We have reported previously a high prevalence of BRAF V600E mutations detected by allele-specific polymerase chain reaction assay in BDA, and suggested that BDA may be precursors to a subset of intrahepatic cholangiocarcinomas harbouring V600E mutations. The aim of the present study was to assess the existence of BRAF V600E mutations, using immunohistochemical methods, in additional BDA as well as in BDH. Fifteen BDA and 35 BDH were retrieved from the archives of the pathology departments of two French university hospitals. All cases were reviewed by two pathologists specialized in liver diseases. BRAF V600E mutational status was investigated by immunohistochemistry. Mutated BRAF mutant protein was detected in 53% of the BDA and in none of the cases of BDH. Our findings suggest that BDA and BDH are different processes, and that BDA represent true benign neoplasms. They also support the hypothesis that mutated BDA might precede the development of the subset of intrahepatic cholangiocarcinomas harbouring BRAF V600E mutations. © 2015 John Wiley & Sons Ltd.

  15. An Acquired HER2T798I Gatekeeper Mutation Induces Resistance to Neratinib in a Patient with HER2 Mutant-Driven Breast Cancer.

    Science.gov (United States)

    Hanker, Ariella B; Brewer, Monica Red; Sheehan, Jonathan H; Koch, James P; Sliwoski, Gregory R; Nagy, Rebecca; Lanman, Richard; Berger, Michael F; Hyman, David M; Solit, David B; He, Jie; Miller, Vincent; Cutler, Richard E; Lalani, Alshad S; Cross, Darren; Lovly, Christine M; Meiler, Jens; Arteaga, Carlos L

    2017-06-01

    We report a HER2 T798I gatekeeper mutation in a patient with HER2 L869R -mutant breast cancer with acquired resistance to neratinib. Laboratory studies suggested that HER2 L869R is a neratinib-sensitive, gain-of-function mutation that upon dimerization with mutant HER3 E928G , also present in the breast cancer, amplifies HER2 signaling. The patient was treated with neratinib and exhibited a sustained partial response. Upon clinical progression, HER2 T798I was detected in plasma tumor cell-free DNA. Structural modeling of this acquired mutation suggested that the increased bulk of isoleucine in HER2 T798I reduces neratinib binding. Neratinib blocked HER2-mediated signaling and growth in cells expressing HER2 L869R but not HER2 L869R/T798I In contrast, afatinib and the osimertinib metabolite AZ5104 strongly suppressed HER2 L869R/T798I -induced signaling and cell growth. Acquisition of HER2 T798I upon development of resistance to neratinib in a breast cancer with an initial activating HER2 mutation suggests HER2 L869R is a driver mutation. HER2 T798I -mediated neratinib resistance may be overcome by other irreversible HER2 inhibitors like afatinib. Significance: We found an acquired HER2 gatekeeper mutation in a patient with HER2 -mutant breast cancer upon clinical progression on neratinib. We speculate that HER2 T798I may arise as a secondary mutation following response to effective HER2 tyrosine kinase inhibitors (TKI) in other cancers with HER2 -activating mutations. This resistance may be overcome by other irreversible HER2 TKIs, such as afatinib. Cancer Discov; 7(6); 575-85. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 539 . ©2017 American Association for Cancer Research.

  16. Genomic characterization of the porcine CRTC3 and the effects of a non-synonymous mutation p.V515F on lean meat production and belly fat.

    Science.gov (United States)

    Lee, S H; Hur, M H; Lee, E A; Hong, K C; Kim, J M

    2018-03-01

    cAMP-responsive element-binding protein (CREB)-regulated transcriptional coactivator 3 (CRTC3) is well known to be related to obesity in humans and mice. However, the effects of CRTC3 have not been studied in pigs. Here, we characterized the structure of the porcine CRTC3 gene and identified single nucleotide polymorphisms (SNPs) in its coding region. Moreover, mRNA expression profiles of CRTC3 in muscle and fat tissues were examined. Of the 40 identified SNPs, the p.V515F mutation, located on exon 16, was genotyped in 368 Yorkshire pigs. The p.V515F mutation was significantly associated with lean meat production ability, including reduced back fat thickness (P=0.0317) and loin eye area (P=0.0174). Moreover, the SNP was significantly associated with differences in intermuscular fat (P=0.0092), total muscle area in the belly (P=0.0108), and total fat percentage in the belly (P=0.0298). Taken together, our results suggest that the p.V515F mutation affects to lean meat production ability and amount of belly fat. Copyright © 2017. Published by Elsevier Ltd.

  17. [Cetuximab in combination with icotinib overcomes the acquired resistance caused by EGFR T790M mutation in non-small cell lung cancer].

    Science.gov (United States)

    Wang, Meng; Zhang, Lianmin; Zhao, Xiaoliang; Liu, Jun; Chen, Yulong; Wang, Changli

    2014-09-01

    The aim of this study was to investigate the effects of combination of icotinib and cetuximab on the acquired drug resistance caused by T790M mutation of EGFR in NSCLC, and provide experimental evidence for rational treatment of NSCLC. The effects of these two agents on cell proliferation, apoptosis, and EGFR-dependent signaling were evaluated using 3-(4, 5-dimethylthiazol-2-yl)- 5-diphenyltetrazolium bromide (MTT) assay, annexin V staining, and Western blotting. The expression of molecular markers of tumor proliferation PCNA and Ki-67 protein was further examined by immunohistochemistry, and the expression of EGFR-signaling-related proteins in tissue sections taken from H1975 tumor xenografts was assessed by Western blot assay. Sensitivity to EGFR inhibitors was detected in human H1975 tumor xenograft in nude mice. The in vitro experiment showed that the proliferative ability of H1975 cells was inhibited in a dose-dependent manner, along with the increasing doses of cetuximab and icotinib, and the combination of cetuximab with icotinib resulted in a more pronounced growth inhibition of the H1975 cells. The apoptosis rate of H1975 cells after treatment with 0.5 µmol/L icotinib and 1 µg/ml cetuximab was (22.03 ± 2.41)% and that after treatment with 5 µmol/L icotinib and 10 µg/ml cetuximab was (42.75 ± 2.49)%, both were significantly higher than that after treatment with the same dose of icotinib or cetuximab alone (P icotinib treatment, but (30.8 ± 2.0) mm(3) in the cetuximab treatment group and 0 mm(3) in the cetuximab combined with icotinib group. There was a significantly decreased expression of Ki-67 and PCNA proteins and down-regulation of phosphorylation of EGFR signaling-related proteins in the cetuximab combined with icotinib group. The combination of icotinib with cetuximab can exert synergistic inhibitory effect on the acquired drug resistance caused by T790M mutation of EGFR in NSCLC H1975 cells, interrupts the EGFR-downstream signaling pathway

  18. V2R mutations and nephrogenic diabetes insipidus.

    Science.gov (United States)

    Bichet, Daniel G

    2009-01-01

    Nephrogenic diabetes insipidus (NDI), which can be inherited or acquired, is characterized by an inability to concentrate urine despite normal or elevated plasma concentrations of the antidiuretic hormone, arginine vasopressin (AVP). Polyuria, with hyposthenuria, and polydipsia are the cardinal clinical manifestations of the disease. Nephrogenic failure to concentrate urine maximally may be due to a defect in vasopressin-induced water permeability of the distal tubules and collecting ducts, to insufficient buildup of the corticopapillary interstitial osmotic gradient, or to a combination of these two factors. Thus, the broadest definition of the term NDI embraces any antidiuretic hormone-resistant urinary-concentrating defect, including medullary disease with low interstitial osmolality, renal failure, and osmotic diuresis. About 90% of patients with congenital NDI are males with X-linked recessive NDI (OMIM 304800)(1) and have mutations in the AVP receptor 2 (AVPR2) gene that codes for the vasopressin V(2) receptor; the gene is located in chromosome region Xq28. In about 10% of the families studied, congenital NDI has an autosomal recessive or autosomal dominant mode of inheritance (OMIM 222000 and 125800)(1). Mutations have been identified in the aquaporin-2 gene (AQP2, OMIM 107777)(1), which is located in chromosome region 12q13 and codes for the vasopressin-sensitive water channel. NDI is clinically distinguishable from neurohypophyseal diabetes insipidus (OMIM 125700(1); also referred to as central or neurogenic diabetes insipidus) by a lack of response to exogenous AVP and by plasma levels of AVP that rise normally with increase in plasma osmolality. Hereditary neurohypophyseal diabetes insipidus is secondary to mutations in the gene encoding AVP (OMIM 192340)(1). Neurohypophyseal diabetes insipidus is also a component of autosomal recessive Wolfram syndrome 1 or DIDMOAD syndrome (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness) (OMIM

  19. FLT3 mutation incidence and timing of origin in a population case series of pediatric leukemia

    Directory of Open Access Journals (Sweden)

    Chang Jeffrey

    2010-09-01

    Full Text Available Abstract Background Mutations in FLT3 result in activated tyrosine kinase activity, cell growth stimulation, and a poor prognosis among various subtypes of leukemia. The causes and timing of the mutations are not currently known. We evaluated the prevalence and timing of origin of FLT3 mutations in a population series of childhood leukemia patients from Northern California. Methods We screened and sequenced FLT3 mutations (point mutations and internal tandem duplications, ITDs among 517 childhood leukemia patients, and assessed whether these mutations occurred before or after birth using sensitive "backtracking" methods. Results We determined a mutation prevalence of 9 of 73 acute myeloid leukemias (AMLs, 12% and 9 of 441 acute lymphocytic leukemias (ALLs, 2%. Among AMLs, FLT3 mutations were more common in older patients, and among ALLs, FLT3 mutations were more common in patients with high hyperdiploidy (3.7% than those without this cytogenetic feature (1.4%. Five FLT3 ITDs, one deletion mutation, and 3 point mutations were assessed for their presence in neonatal Guthrie spots using sensitive real-time PCR techniques, and no patients were found to harbor FLT3 mutations at birth. Conclusions FLT3 mutations were not common in our population-based patient series in California, and patients who harbor FLT3 mutations most likely acquire them after they are born.

  20. Cerebral Vein Thrombosis:Screening of Acquired and Hereditary Thrombophilic Risk Factors

    Directory of Open Access Journals (Sweden)

    Sarraf Payam

    2009-10-01

    Full Text Available Cerebral vein thrombosis (CVT is an infrequent condition with a large variety of causes that can lead to serious disabilities. However, in 20% to 35% of cases, no cause is found. In this study we evaluated the hereditary (P & C Proteins, antithrombin, mutation of prothrombin G20210A and factor V Leiden, other risk factors (hyperhomocycteinemia, factor VIII, ACL-ab, APL-ab, and OCP and clinical manifestations among a population of Iranian patients with CVT. 18 women and 10 men aged 16 to 50 years with CVT were screened for inherited and acquired coagulation risk factors. No one had an abnormal ACL-ab, APL-ab or antithrombin III deficiency. One had prothrombin G20210A mutation (heterozygot (3.6%. Hyperhomocycteinemia was observed in 5 patients (17.9%. APC-R was decreased in 3 (10.7%. 2 had positive factor V Leiden mutation (heterozygot (7.1%. 17 had an increased of factor VIII (60.7. PS and PC deficiencies were each detected in two cases (7.1%. Conclusion: Our study suggests that screening for inherited thrombophilia may be an integral part in the diagnostic workup and duration of treatment in patients with CVT.

  1. MPL mutation profile in JAK2 mutation-negative patients with myeloproliferative disorders.

    Science.gov (United States)

    Ma, Wanlong; Zhang, Xi; Wang, Xiuqiang; Zhang, Zhong; Yeh, Chen-Hsiung; Uyeji, Jennifer; Albitar, Maher

    2011-03-01

    Mutations in the thrombopoietin receptor gene (myeloproliferative leukemia, MPL) have been reported in patients with JAK2 V617F-negative chronic myeloproliferative disorders (MPDs). We evaluated the prevalence of MPL mutations relative to JAK2 mutations in patients with suspected MPDs. A total of 2790 patient samples submitted for JAK2 mutation analysis were tested using real-time polymerase chain reaction and bidirectional sequencing of plasma RNA. JAK2 V617F-negative samples were tested for JAK2 exons 12 to 14 mutations, and those with negative results were then tested for mutations in MPL exons 10 and 11. Of the 2790 patients, 529 (18.96%) had V617F, 12 (0.43%) had small insertions or deletions in exon 12, and 7 (0.25%) had other JAK2 mutations in exons 12 to 14. Of the 2242 JAK2 mutation-negative patients, 68 (3.03%) had MPL mutations. W515L was the predominant MPL mutation (n=46; 68%), and 10 (15%) patients had other W515 variants. The remaining MPL mutations (n=12, 17%) were detected at other locations in exons 10 and 11 and included 3 insertion/deletion mutations. The S505N mutation, associated with familial MPD, was detected in 3 patients. Overall, for every 100 V617F mutations in patients with suspected MPDs, there were 12.9 MPL mutations, 2.3 JAK2 exon 12 mutations, and 1.3 JAK2 exons 13 to 14 mutations. These findings suggest that MPL mutation screening should be performed before JAK2 exons 12 to 14 testing in JAK2 V617F-negative patients with suspected MPDs.

  2. Meta-analysis of the impact of de novo and acquired EGFR T790M mutations on the prognosis of patients with non-small cell lung cancer receiving EGFR-TKIs

    Directory of Open Access Journals (Sweden)

    Liu Y

    2017-04-01

    Full Text Available Yang Liu, Li Sun, Zhi-Cheng Xiong, Xin Sun, Shu-Ling Zhang, Jie-Tao Ma, Cheng-Bo Han Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China Purpose: The purpose of this meta-analysis was to explore the influences of pretreatment de novo and posttreatment-acquired epidermal growth factor receptor (EGFR T790M mutations in patients with advanced non-small cell lung cancer (NSCLC who had received tyrosine kinase inhibitors (TKIs.Methods: We searched PubMed, Embase, and the China National Knowledge Infrastructure database for eligible literature. Data were extracted to assess the hazard ratios (HRs for progression-free survival (PFS, overall survival (OS, and post-progression survival (PPS and the relative ratios (RRs for objective response rate (ORR.Results: This meta-analysis included 22 studies comprising 1,462 patients with NSCLC who harbored activating EGFR mutations and were treated with EGFR-TKIs. Compared to pretreatment T790M mutation-negative NSCLC, pretreatment T790M mutation-positive NSCLC was associated with decreased PFS (HR 2.23, P<0.001 and OS (HR 1.55, P=0.003. A trend toward significance of worsening ORR (RR 0.86, P=0.051 was evident. The acquired T790M mutation was correlated with improved PFS (HR 0.75, P=0.006 and PPS (HR 0.57, P<0.001, compared to patients without the T790M mutation who progressed after EGFR-TKI treatment. There were no significant differences in OS or ORR between patients with acquired T790M mutation-positive and T790M mutation-negative NSCLC. However, in the tumor tissue rebiopsy subgroup, patients with acquired T790M mutation had improved OS (HR 0.60, P<0.001 compared to T790M mutation-negative patients. In the plasma ctDNA subgroup, acquired T790M mutation decreased the OS (HR 1.87, P<0.001.Conclusion: Pretreatment T790M mutation was associated with worse PFS and OS in patients with advanced NSCLC treated with EGFR-TKIs, while acquired T790M mutation was

  3. Utility of BRAF V600E mutation detection in cytologically indeterminate thyroid nodules

    Directory of Open Access Journals (Sweden)

    Rowe Leslie R

    2006-04-01

    Full Text Available Abstract Background Fine needle aspiration (FNA is widely utilized for evaluation of patients with thyroid nodules. However, approximately 30% are indeterminate for malignancy. Recently, a mutation in the BRAF gene has been reported to be the most common genetic event in papillary thyroid carcinoma (PTC. In this retrospective study, we assessed the utility of BRAF V600E mutation detection for refining indeterminate preoperative cytologic diagnoses in patients with PTC. Methods Archival indeterminate thyroid FNAs and corresponding formalin-fixed, paraffin-embedded (FFPE surgical samples with PTC were identified in our patient files. DNA extracted from slide scape lysates and 5 μm FFPE sections were evaluated for the BRAF V600E mutation using LightCycler PCR and fluorescent melting curve analysis (LCPCR. Amplification products that showed deviation from the wild-type genomic DNA melting peak, discordant FNA and FFPE matched pairs, and all benign control samples, underwent direct DNA sequencing. Results A total of 19 indeterminate thyroid FNAs demonstrating PTC on FFPE surgical samples were included in the study. Using BRAF mutation analysis, the preoperative diagnosis of PTC was confirmed in 3/19 (15.8% FNA samples that could not be conclusively diagnosed on cytology alone. However, 9/19 (47.4% FFPE tissue samples were positive for the V600E mutation. Of the discordant pairs, 5/6 FNAs contained less than 50% tumor cells. Conclusion When used with indeterminate FNA samples, BRAF mutation analysis may be a useful adjunct technique for confirming the diagnosis of malignancy in an otherwise equivocal case. However, overall tumor cell content of some archival FNA smear slides is a limiting factor for mutation detection.

  4. Evidence in Latin America of recurrence of V388M, a phenylketonuria mutation with high in vitro residual activity

    Energy Technology Data Exchange (ETDEWEB)

    Desviat, L.R.; Perez, B.; De Lucca, M. [Universidad Autonoma de Madrid, (Spain)] [and others

    1995-08-01

    Phenylketonuria mutation V388M is frequent in the Iberian Peninsula. In vitro, the V388M mutant enzyme has similar immunoreactive protein and phenylalanine hydroxylase mRNA and had 43% residual activity, which correlates well with the mild phenotype exhibited by the homozygous patients. In Spain it has been detected in 5.7% of the mutant alleles and is always associated with haplotype 1.7. This mutation is also present in high frequency in some Latin American countries (Brazil, 9% Chile, 13%). It is interesting that in Chile most of the alleles bearing this mutation carry haplotype 4.3, although in Brazil it is found only on the background of haplotype 1.7. The origin of V388M in Spain on haplotype 1.7 and in Chile on haplotype 4.3 is clearly different. Recurrence is the most plausible explanation, because the mutation involves a CpG dinucleotide, and a recombination event transferring the mutation from haplotype 1 to 4 is unlikely. 29 refs., 2 figs., 3 tabs.

  5. Somatic mutations of the histone H3K27 demethylase, UTX, in human cancer

    Science.gov (United States)

    van Haaften, Gijs; Dalgliesh, Gillian L; Davies, Helen; Chen, Lina; Bignell, Graham; Greenman, Chris; Edkins, Sarah; Hardy, Claire; O’Meara, Sarah; Teague, Jon; Butler, Adam; Hinton, Jonathan; Latimer, Calli; Andrews, Jenny; Barthorpe, Syd; Beare, Dave; Buck, Gemma; Campbell, Peter J; Cole, Jennifer; Dunmore, Rebecca; Forbes, Simon; Jia, Mingming; Jones, David; Kok, Chai Yin; Leroy, Catherine; Lin, Meng-Lay; McBride, David J; Maddison, Mark; Maquire, Simon; McLay, Kirsten; Menzies, Andrew; Mironenko, Tatiana; Lee, Mulderrig; Mudie, Laura; Pleasance, Erin; Shepherd, Rebecca; Smith, Raffaella; Stebbings, Lucy; Stephens, Philip; Tang, Gurpreet; Tarpey, Patrick S; Turner, Rachel; Turrell, Kelly; Varian, Jennifer; West, Sofie; Widaa, Sara; Wray, Paul; Collins, V Peter; Ichimura, Koichi; Law, Simon; Wong, John; Yuen, Siu Tsan; Leung, Suet Yi; Tonon, Giovanni; DePinho, Ronald A; Tai, Yu-Tzu; Anderson, Kenneth C; Kahnoski, Richard J.; Massie, Aaron; Khoo, Sok Kean; Teh, Bin Tean; Stratton, Michael R; Futreal, P Andrew

    2010-01-01

    Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase, UTX, pointing to histone H3 lysine methylation deregulation in multiple tumour types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene. PMID:19330029

  6. PIK3CA activating mutation in colorectal carcinoma: associations with molecular features and survival.

    Directory of Open Access Journals (Sweden)

    Christophe Rosty

    Full Text Available Mutations in PIK3CA are present in 10 to 15% of colorectal carcinomas. We aimed to examine how PIK3CA mutations relate to other molecular alterations in colorectal carcinoma, to pathologic phenotype and survival. PIK3CA mutation testing was carried out using direct sequencing on 757 incident tumors from the Melbourne Collaborative Cohort Study. The status of O-6-methylguanine-DNA methyltransferase (MGMT was assessed using both immunohistochemistry and methyLight techniques. Microsatellite instability, CpG island phenotype (CIMP, KRAS and BRAF V600E mutation status, and pathology review features were derived from previous reports. PIK3CA mutation was observed in 105 of 757 (14% of carcinomas, characterized by location in the proximal colon (54% vs. 34%; P<0.001 and an increased frequency of KRAS mutation (48% vs. 25%; P<0.001. High-levels of CIMP were more frequently found in PIK3CA-mutated tumors compared with PIK3CA wild-type tumors (22% vs. 11%; P = 0.004. There was no difference in the prevalence of BRAF V600E mutation between these two tumor groups. PIK3CA-mutated tumors were associated with loss of MGMT expression (35% vs. 20%; P = 0.001 and the presence of tumor mucinous differentiation (54% vs. 32%; P<0.001. In patients with wild-type BRAF tumors, PIK3CA mutation was associated with poor survival (HR 1.51 95% CI 1.04-2.19, P = 0.03. In summary, PIK3CA-mutated colorectal carcinomas are more likely to develop in the proximal colon, to demonstrate high levels of CIMP, KRAS mutation and loss of MGMT expression. PIK3CA mutation also contributes to significantly decreased survival for patients with wild-type BRAF tumors.

  7. A HRM assay for identification of low level BRAF V600E and V600K mutations using the CADMA principle in FFPE specimens.

    Science.gov (United States)

    Huebner, Claudia; Weber, Remeny; Lloydd, Richard

    2017-12-01

    Melanoma patients with BRAF V600E and V600K mutations show complete or partial response to vemurafenib. Detection assays often scan for the common V600E mutation rather than the rare V600K variant, although this mutation can be found in a high proportion of melanoma patients in the South Pacific. Herein, we describe a BRAF high resolution melting (HRM) assay that can differentiate low level of V600E and V600K mutations using formalin fixed, paraffin embedded (FFPE) reference standards for assay validation. The assay is based on the competitive amplification of differentially melting amplicons (CADMA principle) and has a limit of detection of 0.8% mutant allele for V600K and 1.4% mutant allele for V600E. A differentiation between the two mutations based on the melting profile is possible even at low mutation level. Sixty FFPE specimens were scanned and mutations could be scored correctly as confirmed by castPCR. In summary, the developed HRM assay is suitable for detection of V600K and V600E mutations and proved to be reliable and cost effective in a diagnostic environment. Copyright © 2017 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.

  8. Acquired resistance L747S mutation in an epidermal growth factor receptor-tyrosine kinase inhibitor-naïve patient: A report of three cases.

    Science.gov (United States)

    Yamaguchi, Fumihiro; Fukuchi, Kunihiko; Yamazaki, Yohei; Takayasu, Hiromi; Tazawa, Sakiko; Tateno, Hidetsugu; Kato, Eisuke; Wakabayashi, Aya; Fujimori, Mami; Iwasaki, Takuya; Hayashi, Makoto; Tsuchiya, Yutaka; Yamashita, Jun; Takeda, Norikazu; Kokubu, Fumio

    2014-02-01

    The purpose of the present study was to report cases of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-naïve patients carrying a mutation associated with acquired resistance to the drug. Gene alterations in 77 lung carcinoma patients were analyzed by collecting and studying curette lavage fluid at the time of diagnosis. PCRs were performed to amplify mutation hotspot regions in EGFR genes. The PCR products were direct-sequenced and the mutations confirmed by resequencing using different primers. Case 1 was a 78-year-old Japanese male diagnosed with stage IB lung adenocarcinoma who was found to have two EGFR mutations, G719S and L747S. Case 2 was a 73-year-old Japanese male diagnosed with stage IV squamous cell lung carcinoma and bone metastasis who had the EGFR mutation, L747S. Case 3 was an 82-year-old Japanese male diagnosed with hyponatremia due to inappropriate secretion of antidiuretic hormone and stage IIIB small cell lung carcinoma (SCLC) who had the EGFR mutation, L747S. Thus, the EGFR mutation L747S associated with acquired EGFR-TKI resistance was detected in two non-small cell lung carcinoma (NSCLC) patients and one SCLC patient, none of whom had ever received EGFR-TKI. The patients were current smokers with stages at diagnosis ranging from IB to IV, and their initial tumors contained resistant clones carrying L747S. L747S may be associated with primary resistance. To the best of our knowledge, this study is the first report of an EGFR mutation associated with resistance to EGFR-TKI in SCLC patients. The early detection of EGFR-TKI resistance mutations may be beneficial in making treatment decisions for lung carcinoma patients, including those with SCLC.

  9. Relationship of JAK2V617F gene mutation with cell proliferation and coagulation function in myeloproliferative neoplasms

    Directory of Open Access Journals (Sweden)

    Xiao-Nan Zhang

    2017-05-01

    Full Text Available Objective: To study the relationship of JAK2V617F gene mutation with cell proliferation and coagulation function in myeloproliferative neoplasms. Methods: Patients who were diagnosed with BCR-ABL-negative myeloproliferative neoplasms in Anyang District Hospital between June 2014 and August 2016 were selected, JAK2V617F gene mutation was detected, and according to the test results, the patients were divided into mutation-positive group and mutation-negative group. The expression of JAK2/STATs signaling pathway molecules and cell proliferation genes in bone marrow fluid as well as the coagulation function indexes in peripheral blood were detected. Results: p-JAK2, p-STAT3, p-STAT5, Survivin, C-myc, CyclinD1 and ASXL1 protein expression in myeloproliferative neoplasms of mutation-positive group were significantly higher than those of mutation-negative group, and peripheral blood PT and APTT levels were significantly lower than those of mutation-negative group while TT and FIB levels were not significantly different from those of mutation-negative group. Conclusion: JAK2V617F gene mutation in myeloproliferative neoplasms can promote the cell proliferation and cause the hypercoagulable state.

  10. Influence of the factor V Leiden mutation on infectious disease susceptibility and outcome

    DEFF Research Database (Denmark)

    Benfield, Thomas L; Dahl, Mortens; Nordestgaard, Borge G

    2005-01-01

    The effect of the coagulation factor V Leiden mutation on infectious disease susceptibility and outcome is controversial.......The effect of the coagulation factor V Leiden mutation on infectious disease susceptibility and outcome is controversial....

  11. Value of TIRADS, BSRTC and FNA-BRAF V600E mutation analysis in differentiating high-risk thyroid nodules.

    Science.gov (United States)

    Zhang, Yu-zhi; Xu, Ting; Cui, Dai; Li, Xiao; Yao, Qing; Gong, Hai-yan; Liu, Xiao-yun; Chen, Huan-huan; Jiang, Lin; Ye, Xin-hua; Zhang, Zhi-hong; Shen, Mei-ping; Duan, Yu; Yang, Tao; Wu, Xiao-hong

    2015-11-24

    The thyroid imaging reporting and data system (TIRADS) and Bethesda system for reporting thyroid cytopathology (BSRTC) have been used for interpretation of ultrasound and fine-needle aspiration cytology (FNAC) results of thyroid nodules. BRAF(V600E) mutation analysis is a molecular tool in diagnosing thyroid carcinoma. Our objective was to compare the diagnostic value of these methods in differentiating high-risk thyroid nodules. Total 220 patients with high-risk thyroid nodules were recruited in this prospective study. They all underwent ultrasound, FNAC and BRAF(V600E) mutation analysis. The sensitivity and specificity of TIRADS were 73.1% and 88.4%. BSRTC had higher specificity (97.7%) and similar sensitivity (77.6%) compared with TIRADS. The sensitivity and specificity of BRAF(V600E) mutation (85.1%, 100%) were the highest. The combination of BSRTC and BRAF(V600E) mutation analysis significantly increased the efficiency, with 97.8% sensitivity, 97.7% specificity. In patients with BSRTC I-III, the mutation rate of BRAF(V600E) was 64.5% in nodules with TIRADS 4B compared with 8.4% in nodules with TIRADS 3 or 4A (P value in differentiating high-risk thyroid nodules. The TIRADS is useful in selecting high-risk patients for FNAB and patients with BSRTC I-III for BRAF(V600E) mutation analysis.

  12. Differential effects of CSF-1R D802V and KIT D816V homologous mutations on receptor tertiary structure and allosteric communication.

    Directory of Open Access Journals (Sweden)

    Priscila Da Silva Figueiredo Celestino Gomes

    Full Text Available The colony stimulating factor-1 receptor (CSF-1R and the stem cell factor receptor KIT, type III receptor tyrosine kinases (RTKs, are important mediators of signal transduction. The normal functions of these receptors can be compromised by gain-of-function mutations associated with different physiopatological impacts. Whereas KIT D816V/H mutation is a well-characterized oncogenic event and principal cause of systemic mastocytosis, the homologous CSF-1R D802V has not been identified in human cancers. The KIT D816V oncogenic mutation triggers resistance to the RTK inhibitor Imatinib used as first line treatment against chronic myeloid leukemia and gastrointestinal tumors. CSF-1R is also sensitive to Imatinib and this sensitivity is altered by mutation D802V. Previous in silico characterization of the D816V mutation in KIT evidenced that the mutation caused a structure reorganization of the juxtamembrane region (JMR and facilitated its departure from the kinase domain (KD. In this study, we showed that the equivalent CSF-1R D802V mutation does not promote such structural effects on the JMR despite of a reduction on some key H-bonds interactions controlling the JMR binding to the KD. In addition, this mutation disrupts the allosteric communication between two essential regulatory fragments of the receptors, the JMR and the A-loop. Nevertheless, the mutation-induced shift towards an active conformation observed in KIT D816V is not observed in CSF-1R D802V. The distinct impact of equivalent mutation in two homologous RTKs could be associated with the sequence difference between both receptors in the native form, particularly in the JMR region. A local mutation-induced perturbation on the A-loop structure observed in both receptors indicates the stabilization of an inactive non-inhibited form, which Imatinib cannot bind.

  13. Differential Effects of CSF-1R D802V and KIT D816V Homologous Mutations on Receptor Tertiary Structure and Allosteric Communication

    Science.gov (United States)

    Da Silva Figueiredo Celestino Gomes, Priscila; Panel, Nicolas; Laine, Elodie; Pascutti, Pedro Geraldo; Solary, Eric; Tchertanov, Luba

    2014-01-01

    The colony stimulating factor-1 receptor (CSF-1R) and the stem cell factor receptor KIT, type III receptor tyrosine kinases (RTKs), are important mediators of signal transduction. The normal functions of these receptors can be compromised by gain-of-function mutations associated with different physiopatological impacts. Whereas KIT D816V/H mutation is a well-characterized oncogenic event and principal cause of systemic mastocytosis, the homologous CSF-1R D802V has not been identified in human cancers. The KIT D816V oncogenic mutation triggers resistance to the RTK inhibitor Imatinib used as first line treatment against chronic myeloid leukemia and gastrointestinal tumors. CSF-1R is also sensitive to Imatinib and this sensitivity is altered by mutation D802V. Previous in silico characterization of the D816V mutation in KIT evidenced that the mutation caused a structure reorganization of the juxtamembrane region (JMR) and facilitated its departure from the kinase domain (KD). In this study, we showed that the equivalent CSF-1R D802V mutation does not promote such structural effects on the JMR despite of a reduction on some key H-bonds interactions controlling the JMR binding to the KD. In addition, this mutation disrupts the allosteric communication between two essential regulatory fragments of the receptors, the JMR and the A-loop. Nevertheless, the mutation-induced shift towards an active conformation observed in KIT D816V is not observed in CSF-1R D802V. The distinct impact of equivalent mutation in two homologous RTKs could be associated with the sequence difference between both receptors in the native form, particularly in the JMR region. A local mutation-induced perturbation on the A-loop structure observed in both receptors indicates the stabilization of an inactive non-inhibited form, which Imatinib cannot bind. PMID:24828813

  14. Improving solubility and refolding efficiency of human V(H)s by a novel mutational approach.

    Science.gov (United States)

    Tanha, Jamshid; Nguyen, Thanh-Dung; Ng, Andy; Ryan, Shannon; Ni, Feng; Mackenzie, Roger

    2006-11-01

    The antibody V(H) domains of camelids tend to be soluble and to resist aggregation, in contrast to human V(H) domains. For immunotherapy, attempts have therefore been made to improve the properties of human V(H)s by camelization of a small set of framework residues. Here, we have identified through sequence comparison of well-folded llama V(H) domains an alternative set of residues (not typically camelid) for mutation. Thus, the solubility and thermal refolding efficiency of a typical human V(H), derived from the human antibody BT32/A6, were improved by introduction of two mutations in framework region (FR) 1 and 4 to generate BT32/A6.L1. Three more mutations in FR3 of BT32/A6.L1 further improved the thermal refolding efficiency while retaining solubility and cooperative melting profiles. To demonstrate practical utility, BT32/A6.L1 was used to construct a phage display library from which were isolated human V(H)s with good antigen binding activity and solubility. The engineered human V(H) domains described here may be useful for immunotherapy, due to their expected low immunogenicity, and in applications involving transient high temperatures, due to their efficient refolding after thermal denaturation.

  15. Frequencies, Laboratory Features, and Granulocyte Activation in Chinese Patients with CALR-Mutated Myeloproliferative Neoplasms.

    Directory of Open Access Journals (Sweden)

    Haixiu Guo

    Full Text Available Somatic mutations in the CALR gene have been recently identified as acquired alterations in myeloproliferative neoplasms (MPNs. In this study, we evaluated mutation frequencies, laboratory features, and granulocyte activation in Chinese patients with MPNs. A combination of qualitative allele-specific polymerase chain reaction and Sanger sequencing was used to detect three driver mutations (i.e., CALR, JAK2V617F, and MPL. CALR mutations were identified in 8.4% of cases with essential thrombocythemia (ET and 5.3% of cases with primary myelofibrosis (PMF. Moreover, 25% of polycythemia vera, 29.5% of ET, and 48.1% of PMF were negative for all three mutations (JAK2V617F, MPL, and CALR. Compared with those patients with JAK2V617F mutation, CALR-mutated ET patients displayed unique hematological phenotypes, including higher platelet counts, and lower leukocyte counts and hemoglobin levels. Significant differences were not found between Chinese PMF patients with mutants CALR and JAK2V617F in terms of laboratory features. Interestingly, patients with CALR mutations showed markedly decreased levels of leukocyte alkaline phosphatase (LAP expression, whereas those with JAK2V617F mutation presented with elevated levels. Overall, a lower mutant rate of CALR gene and a higher triple-negative rate were identified in the cohort of Chinese patients with MPNs. This result indicates that an undiscovered mutant gene may have a significant role in these patients. Moreover, these pathological features further imply that the disease biology varies considerably between mutants CALR and JAK2V617F.

  16. Identification of seven novel mutations including the first two genomic rearrangements in SLC26A3 mutated in congenital chloride diarrhea.

    Science.gov (United States)

    Höglund, P; Sormaala, M; Haila, S; Socha, J; Rajaram, U; Scheurlen, W; Sinaasappel, M; de Jonge, H; Holmberg, C; Yoshikawa, H; Kere, J

    2001-09-01

    Congenital chloride diarrhea (CLD) is an autosomal recessive disorder characterized by defective intestinal electrolyte absorption, resulting in voluminous osmotic diarrhea with high chloride content. A variety of mutations in the solute carrier family 26, member 3 gene (SLC26A3, previously known as CLD or DRA) are responsible for the disease. Since the identification of the SLC26A3 gene and the determination of its genomic structure, altogether three founder and 17 private mutations have been characterized within miscellaneous ethnic groups. We screened for mutations in seven unrelated families with CLD. The diagnoses were confirmed by fecal chloride measurements. The combined PCR-SSCP and sequencing analyses revealed altogether seven novel mutations including two missense mutations (S206P, D468V), two splicing defects (IVS12-1G>C, IVS13-2delA), one nonsense mutation (Q436X), one insertion/deletion mutation (2104-2105delGGins29-bp), and an intragenic deletion of SLC26A3 exons 7 and 8. Two previously identified mutations were also found. This is the first report of rearrangement mutations in SLC26A3. Molecular features predisposing SLC26A3 for the two rearrangements may include repetitive elements and palindromic-like sequences. The increasingly wide diversity of SLC26A3 mutations suggests that mutations in the SLC26A3 gene may not be rare events. Copyright 2001 Wiley-Liss, Inc.

  17. Herpesvirus telomerase RNA (vTR with a mutated template sequence abrogates herpesvirus-induced lymphomagenesis.

    Directory of Open Access Journals (Sweden)

    Benedikt B Kaufer

    2011-10-01

    Full Text Available Telomerase reverse transcriptase (TERT and telomerase RNA (TR represent the enzymatically active components of telomerase. In the complex, TR provides the template for the addition of telomeric repeats to telomeres, a protective structure at the end of linear chromosomes. Human TR with a mutation in the template region has been previously shown to inhibit proliferation of cancer cells in vitro. In this report, we examined the effects of a mutation in the template of a virus encoded TR (vTR on herpesvirus-induced tumorigenesis in vivo. For this purpose, we used the oncogenic avian herpesvirus Marek's disease virus (MDV as a natural virus-host model for lymphomagenesis. We generated recombinant MDV in which the vTR template sequence was mutated from AATCCCAATC to ATATATATAT (vAU5 by two-step Red-mediated mutagenesis. Recombinant viruses harboring the template mutation replicated with kinetics comparable to parental and revertant viruses in vitro. However, mutation of the vTR template sequence completely abrogated virus-induced tumor formation in vivo, although the virus was able to undergo low-level lytic replication. To confirm that the absence of tumors was dependent on the presence of mutant vTR in the telomerase complex, a second mutation was introduced in vAU5 that targeted the P6.1 stem loop, a conserved region essential for vTR-TERT interaction. Absence of vTR-AU5 from the telomerase complex restored virus-induced lymphoma formation. To test if the attenuated vAU5 could be used as an effective vaccine against MDV, we performed vaccination-challenge studies and determined that vaccination with vAU5 completely protected chickens from lethal challenge with highly virulent MDV. Taken together, our results demonstrate 1 that mutation of the vTR template sequence can completely abrogate virus-induced tumorigenesis, likely by the inhibition of cancer cell proliferation, and 2 that this strategy could be used to generate novel vaccine candidates

  18. High rate of mutation K103N causing resistance to nevirapine in Indian children with acquired immunodeficiency syndrome

    Directory of Open Access Journals (Sweden)

    Sehgal S

    2008-01-01

    Full Text Available In north India the number of paediatric cases with acquired immunodeficiency syndrome (AIDS is on the rise. Most drug combinations used for treatment of AIDS incorporate nevirapine, resistance to which develops very fast if given singly or because of unplanned interruptions. This paper investigates presence of mutations at codon 103 and codon 215 of the HIV pol gene causing resistance to nevirapine and zidovudine (AZT respectively in 25 children with AIDS. Mutations T215Y and K103N were detected by a nested cum amplification refractory mutation system polymerase chain reaction (ARMS PCR and the results were confirmed by direct sequencing in five randomly selected cases. Nineteen patients had received nevirapine containing regimen and six were drug naive. Mutation K103N was observed in 56% (14/25 of the children while mutation T215Y was found in none. Two of the six drug naοve children also showed K103N mutation. Thus, Indian children drug naοve or treated with nevirapine containing regimens show a high rate of mutation conferring resistance to nevirapine which calls for a judicious use of nevirapine both in antenatal and postnatal setting.

  19. Succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency: two pathogenic mutations, V133E and C456F, in Japanese siblings.

    Science.gov (United States)

    Song, X Q; Fukao, T; Watanabe, H; Shintaku, H; Hirayama, K; Kassovska-Bratinova, S; Kondo, N; Mitchell, G A

    1998-01-01

    Succinyl-CoA:3-ketoacid CoA transferase (SCOT; EC 2.8.3.5; locus symbol OXCT) is the key enzyme of ketone body utilization. Hereditary SCOT deficiency (MIM 245050) causes episodes of severe ketoacidosis. We developed a transient expression system for mutant SCOT cDNAs, using immortalized SCOT-deficient fibroblasts. This paper describes and characterizes three missense mutations in two SCOT-deficient siblings from Japan. They are genetic compounds who inherited the mutation C456F (c1367 G-->T) from their mother. Their paternal allele contains two mutations in cis, T58M (c173 C-->T) and V133E (c398T-->A). Expression of SCOT cDNAs containing either V133E or C456F produces no detectable SCOT activity, whereas T58M is functionally neutral. T58M is a rare sequence variant not detected in 100 control Japanese alleles. In fibroblasts from the proband (GS02), in whom immunoblot demonstrated no detectable SCOT peptide, we measured an apparent residual SCOT activity of 20-35%. We hypothesize that the high residual SCOT activity in homogenates may be an artifact caused by use of the substrate, acetoacetyl-CoA by other enzymes. Expression of mutant SCOT cDNAs more accurately reflects the residual activity of SCOT than do currently available assays in cell or tissue homogenates.

  20. Calreticulin Mutations in Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Noa Lavi

    2014-10-01

    Full Text Available With the discovery of the JAK2V617F mutation in patients with Philadelphia chromosome-negative (Ph− myeloproliferative neoplasms (MPNs in 2005, major advances have been made in the diagnosis of MPNs, in understanding of their pathogenesis involving the JAK/STAT pathway, and finally in the development of novel therapies targeting this pathway. Nevertheless, it remains unknown which mutations exist in approximately one-third of patients with non-mutated JAK2 or MPL essential thrombocythemia (ET and primary myelofibrosis (PMF. At the end of 2013, two studies identified recurrent mutations in the gene encoding calreticulin (CALR using whole-exome sequencing. These mutations were revealed in the majority of ET and PMF patients with non-mutated JAK2 or MPL but not in polycythemia vera patients. Somatic 52-bp deletions (type 1 mutations and recurrent 5-bp insertions (type 2 mutations in exon 9 of the CALR gene (the last exon encoding the C-terminal amino acids of the protein calreticulin were detected and found always to generate frameshift mutations. All detected mutant calreticulin proteins shared a novel amino acid sequence at the C-terminal. Mutations in CALR are acquired early in the clonal history of the disease, and they cause activation of JAK/STAT signaling. The CALR mutations are the second most frequent mutations in Ph− MPN patients after the JAK2V617F mutation, and their detection has significantly improved the diagnostic approach for ET and PMF. The characteristics of the CALR mutations as well as their diagnostic, clinical, and pathogenesis implications are discussed in this review.

  1. Impact of JAK2V617F Mutational Status on Phenotypic Features in Essential Thrombocythemia and Primary Myelofibrosis

    Directory of Open Access Journals (Sweden)

    İpek Yönal

    2016-05-01

    Full Text Available Objective: The JAK2V617F mutation is present in the majority of patients with essential thrombocythemia (ET and primary myelofibrosis (PMF. The impact of this mutation on disease phenotype in ET and PMF is still a matter of discussion. This study aims to determine whether there are differences in clinical presentation and disease outcome between ET and PMF patients with and without the JAK2V617F mutation. Materials and Methods: In this single-center study, a total of 184 consecutive Philadelphia-negative chronic myeloproliferative neoplasms, 107 cases of ET and 77 cases of PMF, were genotyped for JAK2V617F mutation using the JAK2 Ipsogen MutaScreen assay, which involves allele-specific polymerase chain reaction. Results: ET patients positive for JAK2V617F mutation had higher hemoglobin (Hb and hematocrit (Hct levels, lower platelet counts, and more prevalent splenomegaly at diagnosis compared to patients negative for the JAK2V617F mutation, but rates of major thrombotic events, arterial thrombosis, and venous thrombosis were comparable between the groups. At presentation, PMF patients with JAK2V617F mutation had significantly higher Hb and Hct levels and leukocyte counts than patients without the mutation. Similar to the findings of ET patients, thromboembolic rates were similar in PMF patients with and without theJAK2V617F mutation. For ET and PMF patients, no difference was observed in rates of death with respect to JAK2V617F mutational status. Moreover, leukemic transformation rate was not different in our PMF patients with and without JAK2V617F mutation. Conclusion: We conclude that JAK2V617F-mutated ET patients express a polycythemia vera-like phenotype and JAK2V617F mutation in PMF patients is associated with a more pronounced myeloproliferative phenotype.

  2. Detection of BRAF V600 mutations in melanoma: evaluation of concordance between the Cobas® 4800 BRAF V600 mutation test and the methods used in French National Cancer Institute (INCa) platforms in a real-life setting.

    Science.gov (United States)

    Mourah, Samia; Denis, Marc G; Narducci, Fabienne Escande; Solassol, Jérôme; Merlin, Jean-Louis; Sabourin, Jean-Christophe; Scoazec, Jean-Yves; Ouafik, L'Houcine; Emile, Jean-François; Heller, Remy; Souvignet, Claude; Bergougnoux, Loïc; Merlio, Jean-Philippe

    2015-01-01

    Vemurafenib is approved for the treatment of metastatic melanoma in patients with BRAF V600 mutation. In pivotal clinical trials, BRAF testing has always been done with the approved cobas 4800 BRAF test. In routine practice, several methods are available and are used according to the laboratories usual procedures. A national, multicenter, non-interventional study was conducted with prospective and consecutive collection of tumor samples. A parallel evaluation was performed in routine practice between the cobas 4800 BRAF V600 mutation test and home brew methods (HBMs) of 12 national laboratories, labelled and funded by the French National Cancer Institute (INCa). For 420 melanoma samples tested, the cobas method versus HBM showed a high concordance (93.3%; kappa = 0.86) in BRAF V600 genotyping with similar mutation rates (34.0% versus 35.7%, respectively). Overall, 97.4% and 98.6% of samples gave valid results using the cobas and HBM, respectively. Of the 185 samples strictly fulfilling the cobas guidelines, the concordance rate was even higher (95.7%; kappa = 0.91; 95%CI [0.85; 0.97]). Out of the 420 samples tested, 28 (6.7%) showed discordance between HBM and cobas. This prospective study shows a high concordance rate between the cobas 4800 BRAF V600 test and home brew methods in the routine detection of BRAF V600E mutations.

  3. Detection of BRAF V600 Mutations in Melanoma: Evaluation of Concordance between the Cobas® 4800 BRAF V600 Mutation Test and the Methods Used in French National Cancer Institute (INCa) Platforms in a Real-Life Setting

    Science.gov (United States)

    Mourah, Samia; Denis, Marc G.; Narducci, Fabienne Escande; Solassol, Jérôme; Merlin, Jean-Louis; Sabourin, Jean-Christophe; Scoazec, Jean-Yves; Ouafik, L’Houcine; Emile, Jean-François; Heller, Remy; Souvignet, Claude; Bergougnoux, Loïc; Merlio, Jean-Philippe

    2015-01-01

    Vemurafenib is approved for the treatment of metastatic melanoma in patients with BRAF V600 mutation. In pivotal clinical trials, BRAF testing has always been done with the approved cobas 4800 BRAF test. In routine practice, several methods are available and are used according to the laboratories usual procedures. A national, multicenter, non-interventional study was conducted with prospective and consecutive collection of tumor samples. A parallel evaluation was performed in routine practice between the cobas 4800 BRAF V600 mutation test and home brew methods (HBMs) of 12 national laboratories, labelled and funded by the French National Cancer Institute (INCa). For 420 melanoma samples tested, the cobas method versus HBM showed a high concordance (93.3%; kappa = 0.86) in BRAF V600 genotyping with similar mutation rates (34.0% versus 35.7%, respectively). Overall, 97.4% and 98.6% of samples gave valid results using the cobas and HBM, respectively. Of the 185 samples strictly fulfilling the cobas guidelines, the concordance rate was even higher (95.7%; kappa = 0.91; 95%CI [0.85; 0.97]). Out of the 420 samples tested, 28 (6.7%) showed discordance between HBM and cobas. This prospective study shows a high concordance rate between the cobas 4800 BRAF V600 test and home brew methods in the routine detection of BRAF V600E mutations. PMID:25789737

  4. Detection of BRAF V600 mutations in melanoma: evaluation of concordance between the Cobas® 4800 BRAF V600 mutation test and the methods used in French National Cancer Institute (INCa platforms in a real-life setting.

    Directory of Open Access Journals (Sweden)

    Samia Mourah

    Full Text Available Vemurafenib is approved for the treatment of metastatic melanoma in patients with BRAF V600 mutation. In pivotal clinical trials, BRAF testing has always been done with the approved cobas 4800 BRAF test. In routine practice, several methods are available and are used according to the laboratories usual procedures. A national, multicenter, non-interventional study was conducted with prospective and consecutive collection of tumor samples. A parallel evaluation was performed in routine practice between the cobas 4800 BRAF V600 mutation test and home brew methods (HBMs of 12 national laboratories, labelled and funded by the French National Cancer Institute (INCa. For 420 melanoma samples tested, the cobas method versus HBM showed a high concordance (93.3%; kappa = 0.86 in BRAF V600 genotyping with similar mutation rates (34.0% versus 35.7%, respectively. Overall, 97.4% and 98.6% of samples gave valid results using the cobas and HBM, respectively. Of the 185 samples strictly fulfilling the cobas guidelines, the concordance rate was even higher (95.7%; kappa = 0.91; 95%CI [0.85; 0.97]. Out of the 420 samples tested, 28 (6.7% showed discordance between HBM and cobas. This prospective study shows a high concordance rate between the cobas 4800 BRAF V600 test and home brew methods in the routine detection of BRAF V600E mutations.

  5. Combination therapy of apatinib with icotinib for primary acquired icotinib resistance in patients with advanced pulmonary adenocarcinoma with EGFR mutation.

    Science.gov (United States)

    Xia, Pinghui; Cao, Jinlin; Lv, Xiayi; Wang, Luming; Lv, Wang; Hu, Jian

    2018-05-01

    Multi-targeted agents represent the next generation of targeted therapies for solid tumors, and patients with acquired resistance to EGFR-tyrosine kinase inhibitors (TKIs) may also benefit from their combination with TKI therapy. Third-generation targeted drugs, such as osimertinib, are very expensive, thus a more economical solution is required. The aim of this study was to explore the use of apatinib combined with icotinib therapy for primary acquired resistance to icotinib in three patients with advanced pulmonary adenocarcinoma with EGFR mutations. We achieved favorable oncologic outcomes in all three patients, with progression-free survival of four to six months. Unfortunately, the patients ultimately had to cease combination therapy because of intolerable adverse effects of hand and foot syndrome and oral ulcers. Combination therapy of apatinib with icotinib for primary acquired resistance to icotinib may be an option for patients with advanced pulmonary adenocarcinoma with EGFR mutations, but physicians must also be aware of the side effects caused by such therapy. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  6. Acute myeloid leukemia-associated DNMT3A p.Arg882His mutation in a patient with Tatton-Brown-Rahman overgrowth syndrome as a constitutional mutation.

    Science.gov (United States)

    Kosaki, Rika; Terashima, Hiroshi; Kubota, Masaya; Kosaki, Kenjiro

    2017-01-01

    DNA methylation plays a critical role in both embryonic development and tumorigenesis and is mediated through various DNA methyltransferases. Constitutional mutations in the de novo DNA methyltransferase DNMT3A cause a recently identified Tatton-Brown-Rahman overgrowth syndrome (TBRS). Somatically acquired mutations in DNMT3A are causally associated with acute myeloid leukemia (AML), and p.Arg882His represents the most prevalent hotspot. So far, no patients with TBRS have been reported to have subsequently developed AML. Here, we report a live birth and the survival of a female with the TBRS phenotype who had a heterozygous constitutional DNMT3A mutation at the AML somatic mutation hotspot p.Arg882His in her DNA from peripheral blood and buccal tissue. Her characteristic features at birth included hypotonia, narrow palpebral fissures, ventricular septal defect, umbilical hernia, sacral cyst, Chiari type I anomaly. At the age of 6 years, she exhibited overgrowth (> 3 SD) and round face and intellectual disability. This report represents the first documentation of the same variant (DNMT3A p.Arg882His) as both the constitutional mutation associated with TBRS and the somatic mutation hotspot of AML. The observation neither confirms nor denies the notion that mutations responsible for TBRS and those for AML might share the same mode of action. Larger data sets are required to determine whether TBRS patients with constitutional DNMT3A mutations are at an increased risk for AML. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Normosmic congenital hypogonadotropic hypogonadism due to TAC3/TACR3 mutations: characterization of neuroendocrine phenotypes and novel mutations.

    Directory of Open Access Journals (Sweden)

    Bruno Francou

    Full Text Available CONTEXT: TAC3/TACR3 mutations have been reported in normosmic congenital hypogonadotropic hypogonadism (nCHH (OMIM #146110. In the absence of animal models, studies of human neuroendocrine phenotypes associated with neurokinin B and NK3R receptor dysfunction can help to decipher the pathophysiology of this signaling pathway. OBJECTIVE: To evaluate the prevalence of TAC3/TACR3 mutations, characterize novel TACR3 mutations and to analyze neuroendocrine profiles in nCHH caused by deleterious TAC3/TACR3 biallelic mutations. RESULTS: From a cohort of 352 CHH, we selected 173 nCHH patients and identified nine patients carrying TAC3 or TACR3 variants (5.2%. We describe here 7 of these TACR3 variants (1 frameshift and 2 nonsense deleterious mutations and 4 missense variants found in 5 subjects. Modeling and functional studies of the latter demonstrated the deleterious consequence of one missense mutation (Tyr267Asn probably caused by the misfolding of the mutated NK3R protein. We found a statistically significant (p<0.0001 higher mean FSH/LH ratio in 11 nCHH patients with TAC3/TACR3 biallelic mutations than in 47 nCHH patients with either biallelic mutations in KISS1R, GNRHR, or with no identified mutations and than in 50 Kallmann patients with mutations in KAL1, FGFR1 or PROK2/PROKR2. Three patients with TAC3/TACR3 biallelic mutations had an apulsatile LH profile but low-frequency alpha-subunit pulses. Pulsatile GnRH administration increased alpha-subunit pulsatile frequency and reduced the FSH/LH ratio. CONCLUSION: The gonadotropin axis dysfunction associated with nCHH due to TAC3/TACR3 mutations is related to a low GnRH pulsatile frequency leading to a low frequency of alpha-subunit pulses and to an elevated FSH/LH ratio. This ratio might be useful for pre-screening nCHH patients for TAC3/TACR3 mutations.

  8. Loss of function mutations in PTPN6 promote STAT3 deregulation via JAK3 kinase in diffuse large B-cell lymphoma

    Science.gov (United States)

    Demosthenous, Christos; Han, Jing Jing; Hu, Guangzhen; Stenson, Mary; Gupta, Mamta

    2015-01-01

    PTPN6 (SHP1) is a tyrosine phosphatase that negatively controls the activity of multiple signaling pathways including STAT signaling, however role of mutated PTPN6 is not much known. Here we investigated whether PTPN6 might also be a potential target for diffuse large B cell lymphoma (DLBCL) and performed Sanger sequencing of the PTPN6 gene. We have identified missense mutations within PTPN6 (N225K and A550V) in 5% (2/38) of DLBCL tumors. Site directed mutagenesis was performed to mutate wild type (WT) PTPN6 and stable cell lines were generated by lentiviral transduction of PTPN6WT, PTPN6N225K and PTPN6A550V constructs, and effects of WT or mutated PTPN6 on STAT3 signaling were analyzed. WT PTPN6 dephosphorylated STAT3, but had no effect on STAT1, STAT5 or STAT6 phosphorylation. Both PTPN6 mutants were unable to inhibit constitutive, as well as cytokines induced STAT3 activation. Both PTPN6 mutants also demonstrated reduced tyrosine phosphatase activity and exhibited enhanced STAT3 transactivation activity. Intriguingly, a lack of direct binding between STAT3 and WT or mutated PTPN6 was observed. However, compared to WT PTPN6, cells expressing PTPN6 mutants exhibited increased binding between JAK3 and PTPN6 suggesting a more dynamic interaction of PTPN6 with upstream regulators of STAT3. Consistent with this notion, both the mutants demonstrated increased resistance to JAK3 inhibitor, WHIP-154 relative to WT PTPN6. Overall, this is the first study, which demonstrates that N225K and A550V PTPN6 mutations cause loss-of-function leading to JAK3 mediated deregulation of STAT3 pathway and uncovers a mechanism that tumor cells can use to control PTPN6 substrate specificity. PMID:26565811

  9. Combined effect of Hashimoto's thyroiditis and BRAF(V600E) mutation status on aggressiveness in papillary thyroid cancer.

    Science.gov (United States)

    Kim, Su-jin; Myong, Jun Pyo; Jee, Hyeon-Gun; Chai, Young Jun; Choi, June Young; Min, Hye Sook; Lee, Kyu Eun; Youn, Yeo-Kyu

    2016-01-01

    The purpose of this study was to evaluate the association between Hashimoto's thyroiditis and BRAF(V600E) mutation status in patients with papillary thyroid cancer (PTC) and to determine their combined association with tumor aggressiveness in PTC. A total of 1780 patients with PTC who underwent surgery were enrolled in this study. Simple and multiple analyses were performed to determine the association between Hashimoto's thyroiditis and the BRAF(V600E) mutation in PTC. Hashimoto's thyroiditis was present in 11.5% of patients (204/1780) with PTC. Multiple logistic regressions showed that BRAF(V600E) (odds ratio [OR] = 0.493; 95% confidence interval [CI] = 0.360-0.678) and the female sex (OR = 7.146; 95% CI = 3.408-18.347) were independent factors associated with Hashimoto's thyroiditis in PTC. BRAF(V600E) mutation and the Hashimoto's thyroiditis-negative PTC group were associated with aggressive disease (OR = 3.069; 95% CI = 1.654-5.916). Hashimoto's thyroiditis was associated less frequently with BRAF(V600E) , and frequently with the female sex in patients with PTC. Hashimoto's thyroiditis and BRAF(V600E) status may help to predict clinical outcome of PTC. © 2015 Wiley Periodicals, Inc.

  10. BRAF, KRAS and PIK3CA mutations in colorectal serrated polyps and cancer: Primary or secondary genetic events in colorectal carcinogenesis?

    Directory of Open Access Journals (Sweden)

    Schmitt Fernando

    2008-09-01

    Full Text Available Abstract Background BRAF, KRAS and PIK3CA mutations are frequently found in sporadic colorectal cancer (CRC. In contrast to KRAS and PIK3CA mutations, BRAF mutations are associated with tumours harbouring CpG Island methylation phenotype (CIMP, MLH1 methylation and microsatellite instability (MSI. We aimed at determine the frequency of KRAS, BRAF and PIK3CA mutations in the process of colorectal tumourigenesis using a series of colorectal polyps and carcinomas. In the series of polyps CIMP, MLH1 methylation and MSI were also studied. Methods Mutation analyses were performed by PCR/sequencing. Bisulfite treated DNA was used to study CIMP and MLH1 methylation. MSI was detected by pentaplex PCR and Genescan analysis of quasimonomorphic mononucleotide repeats. Chi Square test and Fisher's Exact test were used to perform association studies. Results KRAS, PIK3CA or BRAF occur in 71% of polyps and were mutually exclusive. KRAS mutations occur in 35% of polyps. PIK3CA was found in one of the polyps. V600E BRAF mutations occur in 29% of cases, all of them classified as serrated adenoma. CIMP phenotype occurred in 25% of the polyps and all were mutated for BRAF. MLH1 methylation was not detected and all the polyps were microsatellite stable. The comparison between the frequency of oncogenic mutations in polyps and CRC (MSI and MSS lead us to demonstrate that KRAS and PIK3CA are likely to precede both types of CRC. BRAF mutations are likely to precede MSI carcinomas since the frequency found in serrated polyps is similar to what is found in MSI CRC (P = 0.9112, but statistically different from what is found in microsatellite stable (MSS tumours (P = 0.0191. Conclusion Our results show that BRAF, KRAS and PIK3CA mutations occur prior to malignant transformation demonstrating that these oncogenic alterations are primary genetic events in colorectal carcinogenesis. Further, we show that BRAF mutations occur in association with CIMP phenotype in colorectal

  11. BRAF, KRAS and PIK3CA mutations in colorectal serrated polyps and cancer: Primary or secondary genetic events in colorectal carcinogenesis?

    International Nuclear Information System (INIS)

    Velho, Sérgia; Moutinho, Cátia; Cirnes, Luís; Albuquerque, Cristina; Hamelin, Richard; Schmitt, Fernando; Carneiro, Fátima; Oliveira, Carla; Seruca, Raquel

    2008-01-01

    BRAF, KRAS and PIK3CA mutations are frequently found in sporadic colorectal cancer (CRC). In contrast to KRAS and PIK3CA mutations, BRAF mutations are associated with tumours harbouring CpG Island methylation phenotype (CIMP), MLH1 methylation and microsatellite instability (MSI). We aimed at determine the frequency of KRAS, BRAF and PIK3CA mutations in the process of colorectal tumourigenesis using a series of colorectal polyps and carcinomas. In the series of polyps CIMP, MLH1 methylation and MSI were also studied. Mutation analyses were performed by PCR/sequencing. Bisulfite treated DNA was used to study CIMP and MLH1 methylation. MSI was detected by pentaplex PCR and Genescan analysis of quasimonomorphic mononucleotide repeats. Chi Square test and Fisher's Exact test were used to perform association studies. KRAS, PIK3CA or BRAF occur in 71% of polyps and were mutually exclusive. KRAS mutations occur in 35% of polyps. PIK3CA was found in one of the polyps. V600E BRAF mutations occur in 29% of cases, all of them classified as serrated adenoma. CIMP phenotype occurred in 25% of the polyps and all were mutated for BRAF. MLH1 methylation was not detected and all the polyps were microsatellite stable. The comparison between the frequency of oncogenic mutations in polyps and CRC (MSI and MSS) lead us to demonstrate that KRAS and PIK3CA are likely to precede both types of CRC. BRAF mutations are likely to precede MSI carcinomas since the frequency found in serrated polyps is similar to what is found in MSI CRC (P = 0.9112), but statistically different from what is found in microsatellite stable (MSS) tumours (P = 0.0191). Our results show that BRAF, KRAS and PIK3CA mutations occur prior to malignant transformation demonstrating that these oncogenic alterations are primary genetic events in colorectal carcinogenesis. Further, we show that BRAF mutations occur in association with CIMP phenotype in colorectal serrated polyps and verified that colorectal serrated

  12. Trade-offs with stability modulate innate and mutationally acquired drug-resistance in bacterial dihydrofolate reductase enzymes.

    Science.gov (United States)

    Matange, Nishad; Bodkhe, Swapnil; Patel, Maitri; Shah, Pooja

    2018-06-05

    Structural stability is a major constraint on the evolution of protein sequences. However, under strong directional selection, mutations that confer novel phenotypes but compromise structural stability of proteins may be permissible. During the evolution of antibiotic resistance, mutations that confer drug resistance often have pleiotropic effects on the structure and function of antibiotic-target proteins, usually essential metabolic enzymes. In this study, we show that trimethoprim-resistant alleles of dihydrofolate reductase from Escherichia coli (EcDHFR) harbouring the Trp30Gly, Trp30Arg or Trp30Cys mutations are significantly less stable than the wild type making them prone to aggregation and proteolysis. This destabilization is associated with lower expression level resulting in a fitness cost and negative epistasis with other TMP-resistant mutations in EcDHFR. Using structure-based mutational analysis we show that perturbation of critical stabilizing hydrophobic interactions in wild type EcDHFR enzyme explains the phenotypes of Trp30 mutants. Surprisingly, though crucial for the stability of EcDHFR, significant sequence variation is found at this site among bacterial DHFRs. Mutational and computational analyses in EcDHFR as well as in DHFR enzymes from Staphylococcus aureus and Mycobacterium tuberculosis demonstrate that natural variation at this site and its interacting hydrophobic residues, modulates TMP-resistance in other bacterial DHFRs as well, and may explain the different susceptibilities of bacterial pathogens to trimethoprim. Our study demonstrates that trade-offs between structural stability and function can influence innate drug resistance as well as the potential for mutationally acquired drug resistance of an enzyme. ©2018 The Author(s).

  13. Prognostic significance of ASXL1, JAK2V617F mutations and JAK2V617F allele burden in Philadelphia-negative myeloproliferative neoplasms

    Directory of Open Access Journals (Sweden)

    Yonal-Hindilerden I

    2015-06-01

    Full Text Available Ipek Yonal-Hindilerden, Aynur Daglar-Aday, Basak Akadam-Teker, Ceylan Yilmaz, Meliha Nalcaci, Akif Selim Yavuz, Deniz SarginDivision of Hematology, Department of Internal Medicine, Istanbul Medical Faculty, Istanbul University, Fatih-Istanbul, Turkey Background: Despite insights into the genetic basis of Philadelphia-negative myeloproliferative neoplasms (Ph-negative MPNs, a significant proportion of essential thrombocythemia (ET and primary myelofibrosis (PMF patients present with no known MPN disease alleles. There were no previous studies investigating the impact of ASXL1 mutations in Ph-negative MPNs in Turkey. In the current study, we investigated the prognostic significance of ASXL1 mutations in Turkish MPN patients. We also aimed to determine the prognostic significance of JAK2V617F allele burden and the relationship of JAK2V617F mutation with ASXL1 mutations in Ph-negative MPNs. Methods: About 184 patients from a single center diagnosed with Ph-negative MPNs were screened for ASXL1, JAK2V617F mutations, and JAK2V617F allele burden: 107 ET and 77 PMF. Results: A total of 29 ASXL1 mutations were detected in 24.7% of PMF and 8.4% of ET patients. ASXL1-mutated ET patients showed a trend toward an increase in the incidence of cerebrovascular events and higher total leukocyte counts. ASXL1-mutation in PMF was associated with older age and a higher prevalence of bleeding complications. In univariate analysis, overall survival (OS was significantly reduced in ASXL1-mutated PMF patients. In multivariate analysis, Dynamic International Prognostic Scoring System-plus high-risk category and ASXL1 mutation status were independently associated with shorter survival in PMF. In PMF, mutational status and allele burden of JAK2V617F showed no difference in terms of OS and leukemia-free survival. Conclusion: We conclude that ASXL1 mutations are molecular predictors of short OS in PMF. Keywords: Philadelphia-negative myeloproliferative neoplasms (Ph

  14. Sequential acquisition of mutations in myelodysplastic syndromes.

    Science.gov (United States)

    Makishima, Hideki

    2017-01-01

    Recent progress in next-generation sequencing technologies allows us to discover frequent mutations throughout the coding regions of myelodysplastic syndromes (MDS), potentially providing us with virtually a complete spectrum of driver mutations in this disease. As shown by many study groups these days, such driver mutations are acquired in a gene-specific fashion. For instance, DDX41 mutations are observed in germline cells long before MDS presentation. In blood samples from healthy elderly individuals, somatic DNMT3A and TET2 mutations are detected as age-related clonal hematopoiesis and are believed to be a risk factor for hematological neoplasms. In MDS, mutations of genes such as NRAS and FLT3, designated as Type-1 genes, may be significantly associated with leukemic evolution. Another type (Type-2) of genes, including RUNX1 and GATA2, are related to progression from low-risk to high-risk MDS. Overall, various driver mutations are sequentially acquired in MDS, at a specific time, in either germline cells, normal hematopoietic cells, or clonal MDS cells.

  15. Potential relationship between Hashimoto's thyroiditis and BRAF(V600E) mutation status in papillary thyroid cancer.

    Science.gov (United States)

    Zeng, Rui-Chao; Jin, Lang-Ping; Chen, En-Dong; Dong, Si-Yang; Cai, Ye-Feng; Huang, Guan-Li; Li, Quan; Jin, Chun; Zhang, Xiao-Hua; Wang, Ou-Chen

    2016-04-01

    The purpose of this study was to evaluate the potential relationship between Hashimoto's thyroiditis and BRAF(V600E) mutation status in patients with papillary thyroid carcinoma (PTC). A total of 619 patients with PTC who underwent total thyroidectomy with lymph node dissection were enrolled in this study. Univariable and multivariate analyses were used. Hashimoto's thyroiditis was present in 35.9% (222 of 619) of PTCs. Multivariate logistic regressions showed that BRAF(V600E) mutation, sex, extrathyroidal extension, and lymph node metastasis were independent factors for Hashimoto's thyroiditis. Female sex, more frequent extrathyroidal extension, and a higher incidence of lymph node metastasis were significantly associated with PTCs accompanied by BRAF(V600E) mutation without Hashimoto's thyroiditis compared with PTCs accompanied by BRAF(V600E) mutation with Hashimoto's thyroiditis. Hashimoto's thyroiditis was negatively associated with BRAF(V600E) mutation, extrathyroidal extension, and lymph node metastasis. In addition, Hashimoto's thyroiditis was related to less lymph node metastasis and extrathyroidal extension in PTCs with BRAF(V600E) mutation. Therefore, Hashimoto's thyroiditis is a potentially protective factor in PTC. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1019-E1025, 2016. © 2015 Wiley Periodicals, Inc.

  16. Prevalence of Janus kinase 2 mutations in patients with unusual site venous thrombosis

    Directory of Open Access Journals (Sweden)

    Ana Lisa Basquiera

    2011-08-01

    Full Text Available We aimed to study patients with splanchnic vein thrombosis (SVT and cerebral vein thrombosis (CVT searching for JAK2 mutations. We evaluated 14 patients (median age: 41.5 years with portal vein thrombosis (PVT = 7; mesenteric vein thrombosis (MVT = 3; and CVT = 4. JAK2 V617F was assessed by allele specific PCR of peripheral blood DNA. In addition, DNA was sequenced for other JAK2 mutations. Other inherited and acquired thrombophilia risk factors were evaluated. JAK2 V617F was positive in four out of seven patients with PVT and in one CVT patient. These five patients had a diagnosis of myeloproliferative disorder (MPD at the moment of the occurrence of thrombosis (n = 2 or later (n = 2. Patients with MVT and CVT were negative for JAK2 V617F, except one patient with CVT and a diagnosis of essential thrombocythemia. No other JAK2 mutations were found in this cohort. Besides MPD, other thrombophilia risk factors were identified in five patients. One patient had MPD as well as thrombophilia risk factor. In this group, 4 out of 7 of the patients with PVT carried the JAK2 V617F mutation with or without overt MPD. However, the investigation of other JAK2 mutations may not be necessary in patients with thrombosis at unusual sites.

  17. SEMA3A, a gene involved in axonal pathfinding, is mutated in patients with Kallmann syndrome.

    Science.gov (United States)

    Hanchate, Naresh Kumar; Giacobini, Paolo; Lhuillier, Pierre; Parkash, Jyoti; Espy, Cécile; Fouveaut, Corinne; Leroy, Chrystel; Baron, Stéphanie; Campagne, Céline; Vanacker, Charlotte; Collier, Francis; Cruaud, Corinne; Meyer, Vincent; García-Piñero, Alfons; Dewailly, Didier; Cortet-Rudelli, Christine; Gersak, Ksenija; Metz, Chantal; Chabrier, Gérard; Pugeat, Michel; Young, Jacques; Hardelin, Jean-Pierre; Prevot, Vincent; Dodé, Catherine

    2012-08-01

    Kallmann syndrome (KS) associates congenital hypogonadism due to gonadotropin-releasing hormone (GnRH) deficiency and anosmia. The genetics of KS involves various modes of transmission, including oligogenic inheritance. Here, we report that Nrp1(sema/sema) mutant mice that lack a functional semaphorin-binding domain in neuropilin-1, an obligatory coreceptor of semaphorin-3A, have a KS-like phenotype. Pathohistological analysis of these mice indeed showed abnormal development of the peripheral olfactory system and defective embryonic migration of the neuroendocrine GnRH cells to the basal forebrain, which results in increased mortality of newborn mice and reduced fertility in adults. We thus screened 386 KS patients for the presence of mutations in SEMA3A (by Sanger sequencing of all 17 coding exons and flanking splice sites) and identified nonsynonymous mutations in 24 patients, specifically, a frameshifting small deletion (D538fsX31) and seven different missense mutations (R66W, N153S, I400V, V435I, T688A, R730Q, R733H). All the mutations were found in heterozygous state. Seven mutations resulted in impaired secretion of semaphorin-3A by transfected COS-7 cells (D538fsX31, R66W, V435I) or reduced signaling activity of the secreted protein in the GN11 cell line derived from embryonic GnRH cells (N153S, I400V, T688A, R733H), which strongly suggests that these mutations have a pathogenic effect. Notably, mutations in other KS genes had already been identified, in heterozygous state, in five of these patients. Our findings indicate that semaphorin-3A signaling insufficiency contributes to the pathogenesis of KS and further substantiate the oligogenic pattern of inheritance in this developmental disorder.

  18. SEMA3A, a gene involved in axonal pathfinding, is mutated in patients with Kallmann syndrome.

    Directory of Open Access Journals (Sweden)

    Naresh Kumar Hanchate

    2012-08-01

    Full Text Available Kallmann syndrome (KS associates congenital hypogonadism due to gonadotropin-releasing hormone (GnRH deficiency and anosmia. The genetics of KS involves various modes of transmission, including oligogenic inheritance. Here, we report that Nrp1(sema/sema mutant mice that lack a functional semaphorin-binding domain in neuropilin-1, an obligatory coreceptor of semaphorin-3A, have a KS-like phenotype. Pathohistological analysis of these mice indeed showed abnormal development of the peripheral olfactory system and defective embryonic migration of the neuroendocrine GnRH cells to the basal forebrain, which results in increased mortality of newborn mice and reduced fertility in adults. We thus screened 386 KS patients for the presence of mutations in SEMA3A (by Sanger sequencing of all 17 coding exons and flanking splice sites and identified nonsynonymous mutations in 24 patients, specifically, a frameshifting small deletion (D538fsX31 and seven different missense mutations (R66W, N153S, I400V, V435I, T688A, R730Q, R733H. All the mutations were found in heterozygous state. Seven mutations resulted in impaired secretion of semaphorin-3A by transfected COS-7 cells (D538fsX31, R66W, V435I or reduced signaling activity of the secreted protein in the GN11 cell line derived from embryonic GnRH cells (N153S, I400V, T688A, R733H, which strongly suggests that these mutations have a pathogenic effect. Notably, mutations in other KS genes had already been identified, in heterozygous state, in five of these patients. Our findings indicate that semaphorin-3A signaling insufficiency contributes to the pathogenesis of KS and further substantiate the oligogenic pattern of inheritance in this developmental disorder.

  19. Development and inter-laboratory validation of unlabeled probe melting curve analysis for detection of JAK2 V617F mutation in polycythemia vera.

    Science.gov (United States)

    Wu, Zhiyuan; Yuan, Hong; Zhang, Xinju; Liu, Weiwei; Xu, Jinhua; Zhang, Wei; Guan, Ming

    2011-01-01

    JAK2 V617F, a somatic point mutation that leads to constitutive JAK2 phosphorylation and kinase activation, has been incorporated into the WHO classification and diagnostic criteria of myeloid neoplasms. Although various approaches such as restriction fragment length polymorphism, amplification refractory mutation system and real-time PCR have been developed for its detection, a generic rapid closed-tube method, which can be utilized on routine genetic testing instruments with stability and cost-efficiency, has not been described. Asymmetric PCR for detection of JAK2 V617F with a 3'-blocked unlabeled probe, saturate dye and subsequent melting curve analysis was performed on a Rotor-Gene® Q real-time cycler to establish the methodology. We compared this method to the existing amplification refractory mutation systems and direct sequencing. Hereafter, the broad applicability of this unlabeled probe melting method was also validated on three diverse real-time systems (Roche LightCycler® 480, Applied Biosystems ABI® 7500 and Eppendorf Mastercycler® ep realplex) in two different laboratories. The unlabeled probe melting analysis could genotype JAK2 V617F mutation explicitly with a 3% mutation load detecting sensitivity. At level of 5% mutation load, the intra- and inter-assay CVs of probe-DNA heteroduplex (mutation/wild type) covered 3.14%/3.55% and 1.72%/1.29% respectively. The method could equally discriminate mutant from wild type samples on the other three real-time instruments. With a high detecting sensitivity, unlabeled probe melting curve analysis is more applicable to disclose JAK2 V617F mutation than conventional methodologies. Verified with the favorable inter- and intra-assay reproducibility, unlabeled probe melting analysis provided a generic mutation detecting alternative for real-time instruments.

  20. Development and inter-laboratory validation of unlabeled probe melting curve analysis for detection of JAK2 V617F mutation in polycythemia vera.

    Directory of Open Access Journals (Sweden)

    Zhiyuan Wu

    Full Text Available BACKGROUND: JAK2 V617F, a somatic point mutation that leads to constitutive JAK2 phosphorylation and kinase activation, has been incorporated into the WHO classification and diagnostic criteria of myeloid neoplasms. Although various approaches such as restriction fragment length polymorphism, amplification refractory mutation system and real-time PCR have been developed for its detection, a generic rapid closed-tube method, which can be utilized on routine genetic testing instruments with stability and cost-efficiency, has not been described. METHODOLOGY/PRINCIPAL FINDINGS: Asymmetric PCR for detection of JAK2 V617F with a 3'-blocked unlabeled probe, saturate dye and subsequent melting curve analysis was performed on a Rotor-Gene® Q real-time cycler to establish the methodology. We compared this method to the existing amplification refractory mutation systems and direct sequencing. Hereafter, the broad applicability of this unlabeled probe melting method was also validated on three diverse real-time systems (Roche LightCycler® 480, Applied Biosystems ABI® 7500 and Eppendorf Mastercycler® ep realplex in two different laboratories. The unlabeled probe melting analysis could genotype JAK2 V617F mutation explicitly with a 3% mutation load detecting sensitivity. At level of 5% mutation load, the intra- and inter-assay CVs of probe-DNA heteroduplex (mutation/wild type covered 3.14%/3.55% and 1.72%/1.29% respectively. The method could equally discriminate mutant from wild type samples on the other three real-time instruments. CONCLUSIONS: With a high detecting sensitivity, unlabeled probe melting curve analysis is more applicable to disclose JAK2 V617F mutation than conventional methodologies. Verified with the favorable inter- and intra-assay reproducibility, unlabeled probe melting analysis provided a generic mutation detecting alternative for real-time instruments.

  1. TOX3 mutations in breast cancer.

    Directory of Open Access Journals (Sweden)

    James Owain Jones

    Full Text Available TOX3 maps to 16q12, a region commonly lost in breast cancers and recently implicated in the risk of developing breast cancer. However, not much is known of the role of TOX3 itself in breast cancer biology. This is the first study to determine the importance of TOX3 mutations in breast cancers. We screened TOX3 for mutations in 133 breast tumours and identified four mutations (three missense, one in-frame deletion of 30 base pairs in six primary tumours, corresponding to an overall mutation frequency of 4.5%. One potentially deleterious missense mutation in exon 3 (Leu129Phe was identified in one tumour (genomic DNA and cDNA. Whilst copy number changes of 16q12 are common in breast cancer, our data show that mutations of TOX3 are present at low frequency in tumours. Our results support that TOX3 should be further investigated to elucidate its role in breast cancer biology.

  2. JAK2V617F mutation in chronic myeloid leukemia predicts early disease progression

    International Nuclear Information System (INIS)

    Pahore, Z.A.A.; Shamsi, T.S.; Taj, M.; Farzana, T.; Ansari, S.H.; Nadeem, M.; Ahmad, M.; Naz, A.

    2011-01-01

    Objective: To determine the association of JAK2V617F mutation along with BCR-ABL translocation or Philadelphia chromosome in chronic myeloid leukemia with early disease progression to advanced stages (accelerated phase or blast crisis) and poor outcome. Study Design: Case series. Place and Duration of Study: National Institute of Blood Diseases and Bone Marrow Transplantation, Karachi, from February 2008 to August 2009. Methodology: All the newly diagnosed cases of BCR-ABL or Philadelphia positive CML were tested for JAK2V617F mutation by Nested PCR. Demographic data, spleen size, hemoglobin levels, white blood cell and platelet counts were recorded. Independent sample t-test was used for age, haemoglobin level and spleen size. Fisher's exact test was applied to compare disease progression in JAK2V617F mutation positive and negative cases. Results: Out of 45 newly diagnosed cases of CML, 40 were in chronic phase, 01 in accelerated phase and 04 in blast crisis. JAK2V617F mutation was detected in 12 (26.7%) patients; 09 (22.5%) in chronic phase, none in accelerated phase and 03 (75%) in blast crisis. During a mean follow-up of 8 months, 03 patients in chronic phase transformed in blast crisis and 02 into accelerated phase. Overall 08 out of 11 (73%) JAK2V617F positive patients either had advanced disease or showed disease progression. Only 2 of 20 (10%) available patients, negative for the mutation, showed disease progression by transforming into blast crisis (p < 0.001). No statistically significant difference was seen in the age, spleen size, haemoglobin levels, white blood cells and platelets counts in JAK2V617F positive patients. Conclusion: JAK2V617F mutation was detected in 26.7% cases of chronic myeloid leukemia. A significant proportion of them showed early disease progression. (author)

  3. DNA sequence analysis of the mutational specificity of u.v. light in the SUP4-o gene of yeast

    International Nuclear Information System (INIS)

    Kunz, B.A.; Mis, J.R.A.; Pierce, M.K.; Giroux, C.N.

    1987-01-01

    Mutations induced in the SUP4-o gene of Saccharomyces cerevisiae by u.v. irradiation have been characterized. DNA sequence analysis of 120 mutants revealed that u.v. induced all types of base substitutions, although transitions, in particular G:C → A:T events predominated. In addition, a small number of single base pair deletions and double mutations, occurring in tandem or separated by a few base pairs, were recovered. The base pair substitutions were not distributed randomly in the SUP4-o gene and, with one exception, were all located at sites of adjacent pyrimidines, suggesting they were targeted by u.v. photolesions. A substantial fraction of the mutations were detected at hotspots for u.v. mutagenesis. The majority of changes occurred at the 3' base of dipyrimidine sequences where both cyclobutane dimers and [6-4]-photoproducts could form. Approximately one-third of the induced base substitutions were found at potential pyrimidine dimer sites where [6-4]-photoproducts would be expected to occur rarely. Possible origins of the induced mutations and the role of cyclobutane dimers as premutational u.v. lesions in yeast are considered. (author)

  4. Species A rotavirus NSP3 acquires its translation inhibitory function prior to stable dimer formation.

    Directory of Open Access Journals (Sweden)

    Hugo I Contreras-Treviño

    Full Text Available Species A rotavirus non-structural protein 3 (NSP3 is a translational regulator that inhibits or, under some conditions, enhances host cell translation. NSP3 binds to the translation initiation factor eIF4G1 and evicts poly-(A binding protein (PABP from eIF4G1, thus inhibiting translation of polyadenylated mRNAs, presumably by disrupting the effect of PABP bound to their 3'-ends. NSP3 has a long coiled-coil region involved in dimerization that includes a chaperone Hsp90-binding domain (HS90BD. We aimed to study the role in NSP3 dimerization of a segment of the coiled-coil region adjoining the HS90BD. We used a vaccinia virus system to express NSP3 with point mutations in conserved amino acids in the coiled-coil region and determined the effects of these mutations on translation by metabolic labeling of proteins as well as on accumulation of stable NSP3 dimers by non-dissociating Western blot, a method that separates stable NSP3 dimers from the monomer/dimerization intermediate forms of the protein. Four of five mutations reduced the total yield of NSP3 and the formation of stable dimers (W170A, K171E, R173E and R187E:K191E, whereas one mutation had the opposite effects (Y192A. Treatment with the proteasome inhibitor MG132 revealed that stable NSP3 dimers and monomers/dimerization intermediates are susceptible to proteasome degradation. Surprisingly, mutants severely impaired in the formation of stable dimers were still able to inhibit host cell translation, suggesting that NSP3 dimerization intermediates are functional. Our results demonstrate that rotavirus NSP3 acquires its function prior to stable dimer formation and remain as a proteasome target throughout dimerization.

  5. Development of ultra-short PCR assay to reveal BRAF V600 mutation status in Thai colorectal cancer tissues.

    Science.gov (United States)

    Chat-Uthai, Nunthawut; Vejvisithsakul, Pichpisith; Udommethaporn, Sutthirat; Meesiri, Puttarakun; Danthanawanit, Chetiya; Wongchai, Yannawan; Teerapakpinyo, Chinachote; Shuangshoti, Shanop; Poungvarin, Naravat

    2018-01-01

    The protein kinase BRAF is one of the key players in regulating cellular responses to extracellular signals. Somatic mutations of the BRAF gene, causing constitutive activation of BRAF, have been found in various types of human cancers such as malignant melanoma, and colorectal cancer. BRAF V600E and V600K, most commonly observed mutations in these cancers, may predict response to targeted therapies. Many techniques suffer from a lack of diagnostic sensitivity in mutation analysis in clinical samples with a low cancer cell percentage or poor-quality fragmented DNA. Here we present allele-specific real-time PCR assay for amplifying 35- to 45-base target sequences in BRAF gene. Forward primer designed for BRAF V600E detection is capable of recognizing both types of BRAF V600E mutation, i.e. V600E1 (c.1799T>A) and V600E2 (c.1799_1800delTGinsAA), as well as complex tandem mutation caused by nucleotide changes in codons 600 and 601. We utilized this assay to analyze Thai formalin-fixed paraffin-embedded tissues. Forty-eight percent of 178 Thai colorectal cancer tissues has KRAS mutation detected by highly sensitive commercial assays. Although these DNA samples contain low overall yield of amplifiable DNA, our newly-developed assay successfully revealed BRAF V600 mutations in 6 of 93 formalin-fixed paraffin-embedded colorectal cancer tissues which KRAS mutation was not detected. Ultra-short PCR assay with forward mutation-specific primers is potentially useful to detect BRAF V600 mutations in highly fragmented DNA specimens from cancer patients.

  6. KIT D816V mutation-positive cell fractions in lesional skin biopsies from adults with systemic mastocytosis

    DEFF Research Database (Denmark)

    Kielsgaard Kristensen, Thomas; Broesby-Olsen, Sigurd; Vestergaard, Hanne

    2013-01-01

    Most adults with systemic mastocytosis (SM) carry the somatic KIT D816V mutation, but the occurrence of the mutation in lesional skin remains to be characterized.......Most adults with systemic mastocytosis (SM) carry the somatic KIT D816V mutation, but the occurrence of the mutation in lesional skin remains to be characterized....

  7. Relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation in chronic lymphocytic leukemia.

    Science.gov (United States)

    Lin, Ke; Sherrington, Paul D; Dennis, Michael; Matrai, Zoltan; Cawley, John C; Pettitt, Andrew R

    2002-08-15

    Established adverse prognostic factors in chronic lymphocytic leukemia (CLL) include CD38 expression, relative lack of IgV(H) mutation, and defects of the TP53 gene. However, disruption of the p53 pathway can occur through mechanisms other than TP53 mutation, and we have recently developed a simple screening test that detects p53 dysfunction due to mutation of the genes encoding either p53 or ATM, a kinase that regulates p53. The present study was conducted to examine the predictive value of this test and to establish the relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation. CLL cells from 71 patients were examined for IgV(H) mutation, CD38 expression, and p53 dysfunction (detected as an impaired p53/p21 response to ionizing radiation). Survival data obtained from 69 patients were analyzed according to each of these parameters. Relative lack of IgV(H) mutation (less than 5%; n = 45), CD38 positivity (antigen expressed on more than 20% of malignant cells; n = 19), and p53 dysfunction (n = 19) were independently confirmed as adverse prognostic factors. Intriguingly, all p53-dysfunctional patients and all but one of the CD38(+) patients had less [corrected] than 5% IgV(H) mutation. Moreover, patients with p53 dysfunction and/or CD38 positivity (n = 31) accounted for the short survival of the less mutated group. These findings indicate that the poor outcome associated with having less than 5% IgV(H) mutation may be due to the overrepresentation of high-risk patients with p53 dysfunction and/or CD38 positivity within this group, and that CD38(-) patients with functionally intact p53 may have a prolonged survival regardless of the extent of IgV(H) mutation.

  8. Frequency of BRAF V600E Mutation in the Mexican Population of Patients With Metastatic Melanoma

    Directory of Open Access Journals (Sweden)

    Erika Ruiz-Garcia

    2017-06-01

    Full Text Available Purpose: The BRAF V600E mutation has been described in melanomas occurring in the Caucasian, European, and Asian populations. However, in the Mexican population, the status and clinical significance of BRAF mutation has not been researched on a large scale. Methods: Consecutive BRAF-tested Mexican patients with metastatic melanoma (n = 127 were analyzed for mutations in exon 15 of the BRAF gene in genomic DNA by real-time polymerase chain reaction technology for amplification and detection. The results were correlated with the clinical-pathologic features and the prognosis of the patients. Results: The frequency of somatic mutation V600E within the BRAF gene was 54.6% (43 of 127 patients. Nodular melanoma was the most prevalent subtype in our population, with BRAF mutations in 37.2% (16 of 55 patients. In contrast, superficial spread had a frequency of 18.6% BRAF mutation (eight of 24. Other clinicopathologic features were assessed to correlate with the mutation status. Conclusion: This study searched for the most prevalent BRAF V600E mutation type in melanoma in a heterogeneous population from Mexico. Nodular melanoma was found to be the most prevalent in metastatic presentation and the presence of BRAF V600E mutation, perhaps related to the mixed ancestry; in the north, ancestry is predominantly European and in the south, it is predominantly Asian. The outcomes of the mutation correlations were similar to those found in other populations.

  9. Prothrombin 20210 G: a mutation and Factor V Leiden mutation in women with a history of severe preeclampsia and (H)ELLP syndrome

    NARCIS (Netherlands)

    van Pampus, M. G.; Wolf, H.; Koopman, M. M.; van den Ende, A.; Buller, H. R.; Reitsma, P. H.

    2001-01-01

    The 20210 G-A prothrombin gene variant and the Factor V Leiden mutation are mutations associated with venous thrombotic risk. The aim of our study was to assess the prevalence of these specific mutations in women with a history of preeclampsia or hemolysis elevated liver enzymes, and low platelet

  10. Frequency of JAK2 V617F mutation in patients with Philadelphia positive Chronic Myeloid Leukemia in Pakistan.

    Science.gov (United States)

    Tabassum, Najia; Saboor, Mohammed; Ghani, Rubina; Moinuddin, Moinuddin

    2014-01-01

    Co-existence of myeloproliferative disorders (MPD) and Janus associated kinase 2 mutation (JAK2 V617F) is a well-established fact. Only few case reports are available showing presence of JAK2 V617F mutation in chronic myeloid leukemia (CML). Purpose of this study was to determine the frequency of JAK2 V617F mutation in Philadelphia Chromosome positive (Ph (+)) CML patients in Pakistan. The study was conducted from August 2009 to July 2010 at Civil Hospital and Baqai Institute of Hematology (BIH) Karachi. Blood samples from 25 patients with CML were collected. Multiplex reverse transcription polymerase chain reaction (RT-PCR) was performed for Breakpoint Cluster Region - Abelson (BCR-ABL) rearrangement. Conventional PCR was performed for JAK2 V617F mutation on BCR-ABL positive samples. All 25 samples showed BCR-ABL rearrangement. Out of these 11 samples (44%) had JAK2 V617F mutation; the remaining 14 (56%) cases showed JAK2 617V wild type. It is concluded that the co-existence of Ph (+)CML and JAK2 V617F mutation is possible.

  11. A New COL3A1 Mutation in Ehlers-Danlos Syndrome Vascular Type With Different Phenotypes in the Same Family.

    Science.gov (United States)

    Cortini, Francesca; Marinelli, Barbara; Romi, Silvia; Seresini, Agostino; Pesatori, Angela Cecilia; Seia, Manuela; Montano, Nicola; Bassotti, Alessandra

    2017-04-01

    Vascular Ehlers-Danlos syndrome (vEDS) is a rare and severe connective tissue disorder caused by mutations in the collagen type III alpha I chain ( COL3A1) gene. We describe a pathogenetic heterozygous COL3A1 mutation c.3140 G>A, p. Gly1047Asp, identified using next-generation sequencing, in a 40-year-old Italian female. The genetic test performed on her relatives, which present different clinical phenotypes, confirmed that they carry the same mutation in heterozygous state. This finding confirms that mutations causing vEDS have an incomplete penetrance.

  12. Frequency and clinical features of the JAK2 V617F mutation in pediatric patients with sporadic essential thrombocythemia.

    Science.gov (United States)

    Nakatani, Takuya; Imamura, Toshihiko; Ishida, Hiroyuki; Wakaizumi, Katsuji; Yamamoto, Tohru; Otabe, Osamu; Ishigami, Tsuyoshi; Adachi, Souichi; Morimoto, Akira

    2008-12-01

    Pediatric essential thrombocythemia (ET) is a rare and heterogenous disease entity. While several recent studies have focused on the role of the JAK2 V617F mutation in pediatric ET, the frequency of pediatric ET cases with this mutation and the associated clinical features remain unclear. We examined six childhood cases who had been diagnosed with ET according to WHO criteria (onset age: 0.2-14 years) for the presence of the JAK2 V617F mutation, MPLW515L mutation and JAK2 exon 12 mutations. Two sensitive PCR-based methods were used for the JAK2 V617F genotyping. We also examined the expression of polycythemia rubra vera-1 (PRV-1), which is a diagnostic marker for clonal ET. We found that three of the six cases had the JAK2 V617F mutation and that all six cases expressed PRV-1 in their peripheral granulocytes. Neither MPL W515L mutation nor JAK2 exon 12 mutations was detected in the patients without JAK2 V617F mutation. The two patients who developed thrombocythemia during infancy were JAK2 V617F-negative. These findings suggest that the JAK2 V617F mutation is not rare in childhood sporadic ET cases, and that these cases might be older and myeloproliferative features.

  13. Structure and dynamics of the gp120 V3 loop that confers noncompetitive resistance in R5 HIV-1(JR-FL to maraviroc.

    Directory of Open Access Journals (Sweden)

    Yuzhe Yuan

    Full Text Available Maraviroc, an (HIV-1 entry inhibitor, binds to CCR5 and efficiently prevents R5 human immunodeficiency virus type 1 (HIV-1 from using CCR5 as a coreceptor for entry into CD4(+ cells. However, HIV-1 can elude maraviroc by using the drug-bound form of CCR5 as a coreceptor. This property is known as noncompetitive resistance. HIV-1(V3-M5 derived from HIV-1(JR-FLan is a noncompetitive-resistant virus that contains five mutations (I304V/F312W/T314A/E317D/I318V in the gp120 V3 loop alone. To obtain genetic and structural insights into maraviroc resistance in HIV-1, we performed here mutagenesis and computer-assisted structural study. A series of site-directed mutagenesis experiments demonstrated that combinations of V3 mutations are required for HIV-1(JR-FLan to replicate in the presence of 1 µM maraviroc, and that a T199K mutation in the C2 region increases viral fitness in combination with V3 mutations. Molecular dynamic (MD simulations of the gp120 outer domain V3 loop with or without the five mutations showed that the V3 mutations induced (i changes in V3 configuration on the gp120 outer domain, (ii reduction of an anti-parallel β-sheet in the V3 stem region, (iii reduction in fluctuations of the V3 tip and stem regions, and (iv a shift of the fluctuation site at the V3 base region. These results suggest that the HIV-1 gp120 V3 mutations that confer maraviroc resistance alter structure and dynamics of the V3 loop on the gp120 outer domain, and enable interactions between gp120 and the drug-bound form of CCR5.

  14. JAK2 V617F, MPL, and CALR mutations in essential thrombocythaemia and major thrombotic complications: a single-institute retrospective analysis.

    Science.gov (United States)

    Pósfai, Éva; Marton, Imelda; Király, Péter Attila; Kotosz, Balázs; Kiss-László, Zsuzsanna; Széll, Márta; Borbényi, Zita

    2015-07-01

    Thrombo-haemorrhagic events are the main cause of morbidity and mortality in essential thrombocythemia. The aim of this study was to estimate the incidence of thrombotic events and the impact of the JAK2V617F, MPL (W515L, W515K, W515R, W515A and S505N) and CALR (type-1, type-2) mutations on 101 essential thrombocythaemia patients (72 females and 29 males with a mean age of 61 years) diagnosed in a Southern Hungarian regional academic centre. The incidence of major thrombosis was 13.86 %. Sixty percent of the patients carried the JAK2V617F mutation. The MPL mutations were analysed by sequencing and the W515L was the only one we could identify with an incidence of 3.96 %. Type-2 CALR mutation could be identified in 3 cases among the patients who had JAK2/MPL-unmutated ET. Statistical analyses revealed that the JAK2V617F mutation was associated with significantly increased levels of platelet (p = 0.042), haemoglobin (p = 0.000), red blood cell (p = 0.000) and haematocrit (p = 0.000) and hepatomegaly (p = 0.045) at diagnosis compared to JAK2V617F negative counterparts, however there was no significant association between the JAK2V617F mutation status (relative risk: 1.297, 95 % CI 0.395-4.258; p = 0.668) and subsequent thrombotic complications. The impact of JAK2V617F, MPL W515L and CALR mutations on the clinical findings at the diagnosis of ET was obvious, but their statistically significant role in the prediction of thrombotic events could not be proven in this study. Our results indirectly support the concept that, besides the quantitative and qualitative changes in the platelets, the mechanisms leading to thrombosis are more complex and multifactorial.

  15. Germinal mosaicism of PAX3 mutation caused Waardenburg syndrome type I.

    Science.gov (United States)

    Chen, Kaitian; Zhan, Yuan; Wu, Xuan; Zong, Ling; Jiang, Hongyan

    2018-01-01

    Waardenburg syndrome mutations are most often recurrent or de novo. The rate of familial recurrence is low and families with several affected children are extremely rare. In this study, we aimed to clarify the underlying hereditary cause of Waardenburg syndrome type I in two siblings in a Chinese family, with a mother affected by prelingual mild hearing loss and a father who was negative for clinical symptoms of Waardenburg syndrome and had a normal hearing threshold. Complete characteristic features of the family members were recorded and genetic sequencing and parent-child relationship analyses were performed. The two probands were found to share double mutations in the PAX3/GJB2 genes that caused concurrent hearing loss in Waardenburg syndrome type I. Their mother carried the GJB2 c.109G > A homozygous mutation; however, neither the novel PAX3 c.592delG mutation, nor the Waardenburg syndrome phenotype, was observed in either parent. These previously unreported digenic mutations in PAX3/GJB2 resulted in deafness associated with Waardenburg syndrome type I in this family. To our knowledge, this is the first report describing germinal mosaicism in Waardenburg syndrome. This concept is important because it complicates genetic counseling of this family regarding the risk of recurrence of the mutations in subsequent pregnancies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Description of the L76V resistance protease mutation in HIV-1 B and "non-B" subtypes.

    Directory of Open Access Journals (Sweden)

    Charlotte Charpentier

    Full Text Available OBJECTIVE: To describe the prevalence of the L76V protease inhibitors resistance-associated mutation (PI-RAM in relation with patients' characteristics and protease genotypic background in HIV-1 B- and "non-B"-infected patients. METHODS: Frequency of the L76V mutation between 1998 and 2010 was surveyed in the laboratory database of 3 clinical centers. Major PI-RAMs were identified according to the IAS-USA list. Fisher's and Wilcoxon tests were used to compare variables. RESULTS: Among the overall 29,643 sequences analyzed, the prevalence of L76V was 1.50%, while was 5.42% in PI-resistant viruses. Since 2008 the prevalence of L76V was higher in "non-B"-infected than in B-infected patients each year. Median time since diagnosis of HIV-1 infection and median time under antiretroviral-based regimen were both shorter in "non-B"- than in B-infected patients (8 vs 11 years, P<0.0001; and 7 vs 8 years, P = 0.004. In addition, "non-B"-infected patients had been pre-exposed to a lower number of PI (2 vs 3, P = 0.016. The L76V was also associated with a lower number of major PI-RAMs in "non-B" vs B samples (3 vs 4, P = 0.0001, and thus it was more frequent found as single major PI-RAM in "non-B" vs B subtype (10% vs 2%, P = 0.014. CONCLUSIONS: We showed an impact of viral subtype on the selection of the L76V major PI-RAM with a higher prevalence in "non-B" subtypes observed since 2008. In addition, in "non-B"-infected patients this mutation appeared more rapidly and was associated with less PI-RAM.

  17. Description of the L76V resistance protease mutation in HIV-1 B and "non-B" subtypes.

    Science.gov (United States)

    Charpentier, Charlotte; Lambert-Niclot, Sidonie; Alteri, Claudia; Storto, Alexandre; Flandre, Philippe; Svicher, Valentina; Perno, Carlo-Federico; Brun-Vézinet, Françoise; Calvez, Vincent; Marcelin, Anne-Geneviève; Ceccherini-Silberstein, Francesca; Descamps, Diane

    2013-01-01

    To describe the prevalence of the L76V protease inhibitors resistance-associated mutation (PI-RAM) in relation with patients' characteristics and protease genotypic background in HIV-1 B- and "non-B"-infected patients. Frequency of the L76V mutation between 1998 and 2010 was surveyed in the laboratory database of 3 clinical centers. Major PI-RAMs were identified according to the IAS-USA list. Fisher's and Wilcoxon tests were used to compare variables. Among the overall 29,643 sequences analyzed, the prevalence of L76V was 1.50%, while was 5.42% in PI-resistant viruses. Since 2008 the prevalence of L76V was higher in "non-B"-infected than in B-infected patients each year. Median time since diagnosis of HIV-1 infection and median time under antiretroviral-based regimen were both shorter in "non-B"- than in B-infected patients (8 vs 11 years, P<0.0001; and 7 vs 8 years, P = 0.004). In addition, "non-B"-infected patients had been pre-exposed to a lower number of PI (2 vs 3, P = 0.016). The L76V was also associated with a lower number of major PI-RAMs in "non-B" vs B samples (3 vs 4, P = 0.0001), and thus it was more frequent found as single major PI-RAM in "non-B" vs B subtype (10% vs 2%, P = 0.014). We showed an impact of viral subtype on the selection of the L76V major PI-RAM with a higher prevalence in "non-B" subtypes observed since 2008. In addition, in "non-B"-infected patients this mutation appeared more rapidly and was associated with less PI-RAM.

  18. A novel NaV1.5 voltage sensor mutation associated with severe atrial and ventricular arrhythmias.

    Science.gov (United States)

    Wang, Hong-Gang; Zhu, Wandi; Kanter, Ronald J; Silva, Jonathan R; Honeywell, Christina; Gow, Robert M; Pitt, Geoffrey S

    2016-03-01

    Inherited autosomal dominant mutations in cardiac sodium channels (NaV1.5) cause various arrhythmias, such as long QT syndrome and Brugada syndrome. Although dozens of mutations throughout the protein have been reported, there are few reported mutations within a voltage sensor S4 transmembrane segment and few that are homozygous. Here we report analysis of a novel lidocaine-sensitive recessive mutation, p.R1309H, in the NaV1.5 DIII/S4 voltage sensor in a patient with a complex arrhythmia syndrome. We expressed the wild type or mutant NaV1.5 heterologously for analysis with the patch-clamp and voltage clamp fluorometry (VCF) techniques. p.R1309H depolarized the voltage-dependence of activation, hyperpolarized the voltage-dependence of inactivation, and slowed recovery from inactivation, thereby reducing the channel availability at physiologic membrane potentials. Additionally, p.R1309H increased the "late" Na(+) current. The location of the mutation in DIIIS4 prompted testing for a gating pore current. We observed an inward current at hyperpolarizing voltages that likely exacerbates the loss-of-function defects at resting membrane potentials. Lidocaine reduced the gating pore current. The p.R1309H homozygous NaV1.5 mutation conferred both gain-of-function and loss-of-function effects on NaV1.5 channel activity. Reduction of a mutation-induced gating pore current by lidocaine suggested a therapeutic mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Phenotypic Variability of Osteogenesis Imperfecta Type V Caused by an IFITM5 Mutation

    Science.gov (United States)

    Shapiro, Jay R; Lietman, Caressa; Grover, Monica; Lu, James T; Nagamani, Sandesh CS; Dawson, Brian C; Baldridge, Dustin M; Bainbridge, Matthew N; Cohn, Dan H; Blazo, Maria; Roberts, Timothy T; Brennen, Feng-Shu; Wu, Yimei; Gibbs, Richard A; Melvin, Pamela; Campeau, Philippe M; Lee, Brendan H

    2013-01-01

    In a large cohort of osteogenesis imperfecta type V (OI type V) patients (17 individuals from 12 families), we identified the same mutation in the 5′ untranslated region (5′UTR) of the interferon-induced transmembrane protein 5 (IFITM5) gene by whole exome and Sanger sequencing (IFITM5 c.–14C > T) and provide a detailed description of their phenotype. This mutation leads to the creation of a novel start codon adding five residues to IFITM5 and was recently reported in several other OI type V families. The variability of the phenotype was quite large even within families. Whereas some patients presented with the typical calcification of the forearm interosseous membrane, radial head dislocation and hyperplastic callus (HPC) formation following fractures, others had only some of the typical OI type V findings. Thirteen had calcification of interosseous membranes, 14 had radial head dislocations, 10 had HPC, 9 had long bone bowing, 11 could ambulate without assistance, and 1 had mild unilateral mixed hearing loss. The bone mineral density varied greatly, even within families. Our study thus highlights the phenotypic variability of OI type V caused by the IFITM5 mutation. PMID:23408678

  20. Generation of human iPSCs from an essential thrombocythemia patient carrying a V501L mutation in the MPL gene.

    Science.gov (United States)

    Liu, Senquan; Ye, Zhaohui; Gao, Yongxing; He, Chaoxia; Williams, Donna W; Moliterno, Alison; Spivak, Jerry; Huang, He; Cheng, Linzhao

    2017-01-01

    Activating point mutations in the MPL gene encoding the thrombopoietin receptor are found in 3%-10% of essential thrombocythemia (ET) and myelofibrosis patients. Here, we report the derivation of induced pluripotent stem cells (iPSCs) from an ET patient with a heterozygous MPL V501L mutation. Peripheral blood CD34 + progenitor cells were reprogrammed by transient plasmid expression of OCT4, SOX2, KLF4, c-MYC plus BCL2L1 (BCL-xL) genes. The derived line M494 carries a MPL V501L mutation, displays typical iPSC morphology and characteristics, are pluripotent and karyotypically normal. Upon differentiation, the iPSCs are able to differentiate into cells derived from three germ layers. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Driver mutations (JAK2V617F, MPLW515L/K or CALR), pentraxin-3 and C-reactive protein in essential thrombocythemia and polycythemia vera

    OpenAIRE

    Lussana, Federico; Carobbio, Alessandra; Salmoiraghi, Silvia; Guglielmelli, Paola; Vannucchi, Alessandro Maria; Bottazzi, Barbara; Leone, Roberto; Mantovani, Alberto; Barbui, Tiziano; Rambaldi, Alessandro

    2017-01-01

    Abstract Background The driver mutations JAK2V617F, MPLW515L/K and CALR influence disease phenotype of myeloproliferative neoplasms (MPNs) and might sustain a condition of chronic inflammation. Pentraxin 3 (PTX3) and high-sensitivity C-reactive protein (hs-CRP) are inflammatory biomarkers potentially useful for refining prognostic classification of MPNs. Methods We evaluated 305 with essential thrombocythemia (ET) and 172 polycythemia vera (PV) patients diagnosed according to the 2016 WHO cri...

  2. A novel STXBP1 mutation causes typical Rett syndrome in a Japanese girl.

    Science.gov (United States)

    Yuge, Kotaro; Iwama, Kazuhiro; Yonee, Chihiro; Matsufuji, Mayumi; Sano, Nozomi; Saikusa, Tomoko; Yae, Yukako; Yamashita, Yushiro; Mizuguchi, Takeshi; Matsumoto, Naomichi; Matsuishi, Toyojiro

    2018-06-01

    Rett syndrome (RTT) is a neurodevelopmental disorder mostly caused by mutations in Methyl-CpG-binding protein 2 (MECP2); however, mutations in various other genes may lead to RTT-like phenotypes. Here, we report the first case of a Japanese girl with RTT caused by a novel syntaxin-binding protein 1 (STXBP1) frameshift mutation (c.60delG, p.Lys21Argfs*16). She showed epilepsy at one year of age, regression of acquired psychomotor abilities thereafter, and exhibited stereotypic hand and limb movements at 3 years of age. Her epilepsy onset was earlier than is typical for RTT patients. However, she fully met the 2010 diagnostic criteria of typical RTT. STXBP1 mutations cause early infantile epileptic encephalopathy (EIEE), various intractable epilepsies, and neurodevelopmental disorders. However, the case described here presented a unique clinical presentation of typical RTT without EIEE and a novel STXBP1 mutation. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  3. Potent antiviral agents fail to elicit genetically-stable resistance mutations in either enterovirus 71 or Coxsackievirus A16.

    Science.gov (United States)

    Kelly, James T; De Colibus, Luigi; Elliott, Lauren; Fry, Elizabeth E; Stuart, David I; Rowlands, David J; Stonehouse, Nicola J

    2015-12-01

    Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are the two major causative agents of hand, foot and mouth disease (HFMD), for which there are currently no licenced treatments. Here, the acquisition of resistance towards two novel capsid-binding compounds, NLD and ALD, was studied and compared to the analogous compound GPP3. During serial passage, EV71 rapidly became resistant to each compound and mutations at residues I113 and V123 in VP1 were identified. A mutation at residue 113 was also identified in CVA16 after passage with GPP3. The mutations were associated with reduced thermostability and were rapidly lost in the absence of inhibitors. In silico modelling suggested that the mutations prevented the compounds from binding the VP1 pocket in the capsid. Although both viruses developed resistance to these potent pocket-binding compounds, the acquired mutations were associated with large fitness costs and reverted to WT phenotype and sequence rapidly in the absence of inhibitors. The most effective inhibitor, NLD, had a very large selectivity index, showing interesting pharmacological properties as a novel anti-EV71 agent. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Temporal lobe pleomorphic xanthoastrocytoma and acquired BRAF mutation in an adolescent with the constitutional 22q11.2 deletion syndrome.

    Science.gov (United States)

    Murray, Jeffrey C; Donahue, David J; Malik, Saleem I; Dzurik, Yvette B; Braly, Emily Z; Dougherty, Margaret J; Eaton, Katherine W; Biegel, Jaclyn A

    2011-05-01

    DiGeorge syndrome, or velocardiofacial syndrome (DGS/VCFS), is a rare and usually sporadic congenital genetic disorder resulting from a constitutional microdeletion at chromosome 22q11.2. While rare cases of malignancy have been described, likely due to underlying immunodeficiency, central nervous system tumors have not yet been reported. We describe an adolescent boy with DGS/VCFS who developed a temporal lobe pleomorphic xanthoastrocytoma. High-resolution single nucleotide polymorphism array studies of the tumor confirmed a constitutional 22q11.21 deletion, and revealed acquired gains, losses and copy number neutral loss of heterozygosity of several chromosomal regions, including a homozygous deletion of the CDKN2A/B locus. The tumor also demonstrated a common V600E mutation in the BRAF oncogene. This is the first reported case of a patient with DiGeorge syndrome developing a CNS tumor of any histology and expands our knowledge about low-grade CNS tumor molecular genetics.

  5. Detection of CALR and MPL Mutations in Low Allelic Burden JAK2 V617F Essential Thrombocythemia.

    Science.gov (United States)

    Usseglio, Fabrice; Beaufils, Nathalie; Calleja, Anne; Raynaud, Sophie; Gabert, Jean

    2017-01-01

    Myeloproliferative neoplasms are clonal hematopoietic stem cell disorders characterized by aberrant proliferation and an increased tendency toward leukemic transformation. The genes JAK2, MPL, and CALR are frequently altered in these syndromes, and their mutations are often a strong argument for diagnosis. We analyzed the mutational profiles of these three genes in a cohort of 164 suspected myeloproliferative neoplasms. JAK2 V617F mutation was detected by real-time PCR, whereas high-resolution melting analysis followed by Sanger sequencing were used for searching for mutations in JAK2 exon 12, CALR, and MPL. JAK2 V617F mutation was associated with CALR (n = 4) and MPL (n = 4) mutations in 8 of 103 essential thrombocytosis patients. These cases were harboring a JAK2 V617F allelic burden of MPL genes in myeloproliferative neoplasms and suggest that CALR and MPL should be analyzed not only in JAK2-negative patients but also in low V617F mutation patients. Follow-up of these double-mutation cases will be important for determining whether this group of patients presents particular evolution or complications. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  6. X-ray-induced bystander response reduce spontaneous mutations in V79 cells

    International Nuclear Information System (INIS)

    Maeda, Munetoshi; Kobayashi, Katsumi; Matsumoto, Hideki; Usami, Noriko; Tomiya, Masanori

    2013-01-01

    The potential for carcinogenic risks is increased by radiation-induced bystander responses; these responses are the biological effects in unirradiated cells that receive signals from the neighboring irradiated cells. Bystander responses have attracted attention in modern radiobiology because they are characterized by non-linear responses to low-dose radiation. We used a synchrotron X-ray microbeam irradiation system developed at the Photon Factory, High Energy Accelerator Research Organization, KEK, and showed that nitric oxide (NO)-mediated bystander cell death increased biphasically in a dose-dependent manner. Here, we irradiated five cell nuclei using 10 × 10 µm 2 5.35 keV X-ray beams and then measured the mutation frequency at the hypoxanthine-guanosine phosphoribosyl transferase (HPRT) locus in bystander cells. The mutation frequency with the null radiation dose was 2.6 × 10 -5 (background level), and the frequency decreased to 5.3 × 10 -6 with a dose of approximately 1 Gy (absorbed dose in the nucleus of irradiated cells). At high doses, the mutation frequency returned to the background level. A similar biphasic dose-response effect was observed for bystander cell death. Furthermore, we found that incubation with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO), a specific scavenger of NO, suppressed not only the biphasic increase in bystander cell death but also the biphasic reduction in mutation frequency of bystander cells. These results indicate that the increase in bystander cell death involves mechanisms that suppress mutagenesis. This study has thus shown that radiation-induced bystander responses could affect processes that protect the cell against naturally occurring alterations such as mutations. (author)

  7. Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis.

    Science.gov (United States)

    Bank-Wolf, Barbara Regina; Stallkamp, Iris; Wiese, Svenja; Moritz, Andreas; Tekes, Gergely; Thiel, Heinz-Jürgen

    2014-10-10

    The genes encoding accessory proteins 3a, 3b, 3c, 7a and 7b, the S2 domain of the spike (S) protein gene and the membrane (M) protein gene of feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV) samples were amplified, cloned and sequenced. For this faeces and/or ascites samples from 19 cats suffering from feline infectious peritonitis (FIP) as well as from 20 FECV-infected healthy cats were used. Sequence comparisons revealed that 3c genes of animals with FIP were heavily affected by nucleotide deletions and point mutations compared to animals infected with FECV; these alterations resulted either in early termination or destruction of the translation initiation codon. Two ascites-derived samples of cats with FIP which displayed no alterations of ORF3c harboured mutations in the S2 domain of the S protein gene which resulted in amino acid exchanges or deletions. Moreover, changes in 3c were often accompanied by mutations in S2. In contrast, in samples obtained from faeces of healthy cats, the ORF3c was never affected by such mutations. Similarly ORF3c from faecal samples of the cats with FIP was mostly intact and showed only in a few cases the same mutations found in the respective ascites samples. The genes encoding 3a, 3b, 7a and 7b displayed no mutations linked to the feline coronavirus (FCoV) biotype. The M protein gene was found to be conserved between FECV and FIPV samples. Our findings suggest that mutations of 3c and spike protein genes correlate with the occurrence of FIP. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. FGFR3, PIK3CA and RAS mutations in benign lichenoid keratosis.

    Science.gov (United States)

    Groesser, L; Herschberger, E; Landthaler, M; Hafner, C

    2012-04-01

    Benign lichenoid keratoses (BLKs) are solitary skin lesions which have been proposed to represent a regressive form of pre-existent epidermal tumours such as solar lentigo or seborrhoeic keratosis. However, the genetic basis of BLK is unknown. FGFR3, PIK3CA and RAS mutations have been shown to be involved in the pathogenesis of seborrhoeic keratosis and solar lentigo. We thus investigated whether these mutations are also present in BLK. After manual microdissection and DNA isolation, 52 BLKs were screened for FGFR3, PIK3CA and RAS hotspot mutations using SNaPshot(®) multiplex assays. We identified 6/52 (12%) FGFR3 mutations, 10/52 (19%) PIK3CA mutations, 6/52 (12%) HRAS mutations and 2/52 (4%) KRAS mutations. FGFR3 and RAS mutations were mutually exclusive. One BLK showed a simultaneous PIK3CA and HRAS mutation. In nine BLKs with a mutation, nonlesional control tissue from the epidermal margin and the dermal lymphocytic infiltrate were wild-type, indicating that these mutations are somatic. To demonstrate that these findings are specific, 10 samples of lichen planus were analysed without evidence for FGFR3, PIK3CA or RAS mutations. Our results indicate that FGFR3, PIK3CA and RAS mutations are present in approximately 50% of BLKs. These findings support the concept on the molecular genetic level that at least a proportion of BLKs represents regressive variants resulting from former benign epidermal tumours such as seborrhoeic keratosis and solar lentigo. © 2011 The Authors. BJD © 2011 British Association of Dermatologists 2011.

  9. A novel GJA8 mutation (p.V44A causing autosomal dominant congenital cataract.

    Directory of Open Access Journals (Sweden)

    Yanan Zhu

    Full Text Available To examine the mechanism by which a novel connexin 50 (Cx50 mutation, Cx50 V44A, in a Chinese family causes suture-sparing autosomal dominant congenital nuclear cataracts.Family history and clinical data were recorded and direct gene sequencing was used to identify the disease-causing mutation. The Cx50 gene was cloned from a human lens cDNA library. Connexin protein distributions were assessed by fluorescence microscopy. Hemichannel functions were analyzed by dye uptake assay. Formation of functional channels was assessed by dye transfer experiments.Direct sequencing of the candidate GJA8 gene revealed a novel c.131T>C transition in exon 2, which cosegregated with the disease in the family and resulted in the substitution of a valine residue with alanine at codon 44 (p. V44A in the extracellular loop 1 of the Cx50 protein. Both Cx50 and Cx50V44A formed functional gap junctions, as shown by the neurobiotin transfer assay. However, unlike wild-type Cx50, Cx50V44A was unable to form open hemichannels in dye uptake experiments.This work identified a unique congenital cataract in the Chinese population, caused by the novel mutation Cx50V44A, and it showed that the V44A mutation specifically impairs the gating of the hemichannels but not the gap junction channels. The dysfunctional hemichannels resulted in the development of human congenital cataracts.

  10. The JAK2V617F and CALR exon 9 mutations are shared immunogenic neoantigens in hematological malignancy

    DEFF Research Database (Denmark)

    Holmstrom, Morten Orebo; Hasselbalch, Hans Carl; Andersen, Mads Hald

    2017-01-01

    Approximately 90% of patients with the hematological malignancies termed the chronic myeloproliferative neoplasms harbor either the JAK2V617F-mutation or CALR exon 9 mutation. Both of these are recognized by T-cells, which make the mutations ideal targets for cancer immune therapy as they are sha......Approximately 90% of patients with the hematological malignancies termed the chronic myeloproliferative neoplasms harbor either the JAK2V617F-mutation or CALR exon 9 mutation. Both of these are recognized by T-cells, which make the mutations ideal targets for cancer immune therapy...

  11. A novel D458V mutation in the SANS PDZ binding motif causes atypical Usher syndrome.

    Science.gov (United States)

    Kalay, E; de Brouwer, A P M; Caylan, R; Nabuurs, S B; Wollnik, B; Karaguzel, A; Heister, J G A M; Erdol, H; Cremers, F P M; Cremers, C W R J; Brunner, H G; Kremer, H

    2005-12-01

    Homozygosity mapping and linkage analysis in a Turkish family with autosomal recessive prelingual sensorineural hearing loss revealed a 15-cM critical region at 17q25.1-25.3 flanked by the polymorphic markers D17S1807 and D17S1806. The maximum two-point lod score was 4.07 at theta=0.0 for the marker D17S801. The linkage interval contains the Usher syndrome 1G gene (USH1G) that is mutated in patients with Usher syndrome (USH) type 1g and encodes the SANS protein. Mutation analysis of USH1G led to the identification of a homozygous missense mutation D458V at the -3 position of the PDZ binding motif of SANS. This mutation was also present homozygously in one out of 64 additional families from Turkey with autosomal recessive nonsyndromic hearing loss and heterozygously in one out of 498 control chromosomes. By molecular modeling, we provide evidence that this mutation impairs the interaction of SANS with harmonin. Ophthalmologic examination and vestibular evaluation of patients from both families revealed mild retinitis pigmentosa and normal vestibular function. These results suggest that these patients suffer from atypical USH.

  12. Update on HIV-1 acquired and transmitted drug resistance in Africa.

    Science.gov (United States)

    Ssemwanga, Deogratius; Lihana, Raphael W; Ugoji, Chinenye; Abimiku, Alash'le; Nkengasong, John; Dakum, Patrick; Ndembi, Nicaise

    2015-01-01

    The last ten years have witnessed a significant scale-up and access to antiretroviral therapy in Africa, which has improved patient quality of life and survival. One major challenge associated with increased access to antiretroviral therapy is the development of antiretroviral resistance due to inconsistent drug supply and/or poor patient adherence. We review the current state of both acquired and transmitted drug resistance in Africa over the past ten years (2001-2011) to identify drug resistance associated with the different drug regimens used on the continent and to help guide affordable strategies for drug resistance surveillance. A total of 161 references (153 articles, six reports and two conference abstracts) were reviewed. Antiretroviral resistance data was available for 40 of 53 African countries. A total of 5,541 adult patients from 99 studies in Africa were included in this analysis. The pooled prevalence of drug resistance mutations in Africa was 10.6%, and Central Africa had the highest prevalence of 54.9%. The highest prevalence of nucleoside reverse transcriptase inhibitor mutations was in the west (55.3%) and central (54.8%) areas; nonnucleoside reverse transcriptase inhibitor mutations were highest in East Africa (57.0%) and protease inhibitors mutations highest in Southern Africa (16.3%). The major nucleoside reverse transcriptase inhibitor mutation in all four African regions was M184V. Major nonnucleoside reverse transcriptase inhibitor as well as protease inhibitor mutations varied by region. The prevalence of drug resistance has remained low in several African countries although the emergence of drug resistance mutations varied across countries. Continued surveillance of antiretroviral therapy resistance remains crucial in gauging the effectiveness of country antiretroviral therapy programs and strategizing on effective and affordable strategies for successful treatment.

  13. Worldwide increased prevalence of human adenovirus type 3 (HAdV-3) respiratory infections is well correlated with heterogeneous hypervariable regions (HVRs) of hexon.

    Science.gov (United States)

    Haque, Ezazul; Banik, Urmila; Monwar, Tahmina; Anthony, Leela; Adhikary, Arun Kumar

    2018-01-01

    Human adenovirus type 3 (HAdV-3) respiratory infections occurs worldwide in both children and adults, leading to severe morbidity and mortality, particularly in the paediatric age group and especially in neonates. During HAdV infection, neutralizing antibodies are formed against the epitopes located in the hyper variable regions (HVRs) of the hexon protein. These neutralizing antibodies provide protection against reinfection by viruses of the same type. Therefore it is reasonable to speculate that variations of HAdV-3 in the HVRs could impair the immunity acquired by previous infection with a different strain with variation in its HVRs. HAdV-3 has recently become the major agent of acute respiratory infection worldwide, being responsible for 15% to 87% of all adenoviral respiratory infections. However, despite the increased prevalence of HAdV-3 as respiratory pathogen, the diversity of hexon proteins in circulating strains remains unexplored. This study was designed to explore the variation in HVRs of hexon among globally distributed strains of HAdV-3 as well as to discover possible relationship among them, thus possibly shedding light on the cause for the increased prevalence of HAdV-3. In this study, for the first time we analysed the hexon proteins of all 248 available strains of HAdV-3 from the NCBI database and compared them with those of the HAdV-3 prototype (GB stain). We found that the HVRs of HAdV-3 strains circulating worldwide were highly heterogeneous and have been mutating continuously since -their original isolation. Based on their immense heterogeneity, the strains can be categorized into 25 hexon variants (3Hv-1 to 3Hv-25), 4 of which (3Hv-1 to 3Hv-4) comprises 80% of the strains. This heterogeneity may explain why HAdV-3 has become the most prevalent HAdVs type worldwide. The heterogeneity of hexon proteins also shows that the development of a vaccine against HAdV-3 might be challenging. The data on hexon variants provided here may be useful for

  14. Variations in the detection of ZAP-70 in chronic lymphocytic leukemia: Comparison with IgV(H) mutation analysis.

    Science.gov (United States)

    Sheikholeslami, M R; Jilani, I; Keating, M; Uyeji, J; Chen, K; Kantarjian, H; O'Brien, S; Giles, F; Albitar, M

    2006-07-15

    Lack of immunoglobulin heavy chain genes (IgV(H)) mutation in patients with chronic lymphocytic leukemia (CLL) is associated with rapid disease progression and shorter survival. The zeta-chain (T-cell receptor) associated protein kinase 70 kDa (ZAP-70) has been reported to be a surrogate marker for IgV(H) mutation status, and its expression in leukemic cells correlates with unmutated IgV(H). However, ZAP-70 detection by flow cytometry varies significantly dependant on the antibodies used, the method of performing the assay, and the condition of the cells in the specimen. The clinical value of ZAP-70 testing when samples are shipped under poorly controlled conditions is not known. Furthermore, testing in a research environment may differ from testing in a routine clinical laboratory. We validated an assay for ZAP-70 by comparing results with clinical outcome and the mutation status of the IgV(H). Using stored samples, we show significant correlation between ZAP-70 expression and clinical outcome as well as IgV(H) mutation at a cut-off point of 15%. While positive samples (>15% positivity) remain positive when kept in the laboratory environment for 48 h after initial testing, results obtained from samples from CLL patients tested after shipping at room temperature for routine testing showed no correlation with IgV(H) mutation status when 15% cut-off was used. In these samples, cut-point of 10% correlated with the IgV(H) mutation (P = 0.0001). This data suggests that although ZAP-70 positivity correlates with IgV(H) mutation status and survival, variations in sample handling and preparation may influence results. We show that IgV(H) mutation results, unlike ZAP-70 remain correlated with CD38 expression and beta-2 microglobulin in shipped samples, and ZAP-70 testing should not be used as the sole criterion for stratifying patients for therapy. (c) 2006 International Society for Analytical Cytology.

  15. High-throughput genotyping in metastatic esophageal squamous cell carcinoma identifies phosphoinositide-3-kinase and BRAF mutations.

    Directory of Open Access Journals (Sweden)

    Chi Hoon Maeng

    Full Text Available Given the high incidence of metastatic esophageal squamous cell carcinoma, especially in Asia, we screened for the presence of somatic mutations using OncoMap platform with the aim of defining subsets of patients who may be potential candidate for targeted therapy.We analyzed 87 tissue specimens obtained from 80 patients who were pathologically confirmed with esophageal squamous cell carcinoma and received 5-fluoropyrimidine/platinum-based chemotherapy. OncoMap 4.0, a mass-spectrometry based assay, was used to interrogate 471 oncogenic mutations in 41 commonly mutated genes. Tumor specimens were prepared from primary cancer sites in 70 patients and from metastatic sites in 17 patients. In order to test the concordance between primary and metastatic sites from the patient for mutations, we analyzed 7 paired (primary-metastatic specimens. All specimens were formalin-fixed paraffin embedded tissues and tumor content was >70%.In total, we have detected 20 hotspot mutations out of 80 patients screened. The most frequent mutation was PIK3CA mutation (four E545K, five H1047R and one H1047L (N = 10, 11.5% followed by MLH1 V384D (N = 7, 8.0%, TP53 (R306, R175H and R273C (N = 3, 3.5%, BRAF V600E (N = 1, 1.2%, CTNNB1 D32N (N = 1, 1.2%, and EGFR P733L (N = 1, 1.2%. Distributions of somatic mutations were not different according to anatomic sites of esophageal cancer (cervical/upper, mid, lower. In addition, there was no difference in frequency of mutations between primary-metastasis paired samples.Our study led to the detection of potentially druggable mutations in esophageal SCC which may guide novel therapies in small subsets of esophageal cancer patients.

  16. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations.

    Science.gov (United States)

    Pardanani, A; Hood, J; Lasho, T; Levine, R L; Martin, M B; Noronha, G; Finke, C; Mak, C C; Mesa, R; Zhu, H; Soll, R; Gilliland, D G; Tefferi, A

    2007-08-01

    JAK2V617F and MPLW515L/K represent recently identified mutations in myeloproliferative disorders (MPD) that cause dysregulated JAK-STAT signaling, which is implicated in MPD pathogenesis. We developed TG101209, an orally bioavailable small molecule that potently inhibits JAK2 (IC(50)=6 nM), FLT3 (IC(50)=25 nM) and RET (IC(50)=17 nM) kinases, with significantly less activity against other tyrosine kinases including JAK3 (IC(50)=169 nM). TG101209 inhibited growth of Ba/F3 cells expressing JAK2V617F or MPLW515L mutations with an IC(50) of approximately 200 nM. In a human JAK2V617F-expressing acute myeloid leukemia cell line, TG101209-induced cell cycle arrest and apoptosis, and inhibited phosphorylation of JAK2V617F, STAT5 and STAT3. Therapeutic efficacy of TG101209 was demonstrated in a nude mouse model. Furthermore, TG101209 suppressed growth of hematopoietic colonies from primary progenitor cells harboring JAK2V617F or MPL515 mutations.

  17. CAV3 mutations causing exercise intolerance, myalgia and rhabdomyolysis: Expanding the phenotypic spectrum of caveolinopathies.

    Science.gov (United States)

    Scalco, Renata Siciliani; Gardiner, Alice R; Pitceathly, Robert D S; Hilton-Jones, David; Schapira, Anthony H; Turner, Chris; Parton, Matt; Desikan, Mahalekshmi; Barresi, Rita; Marsh, Julie; Manzur, Adnan Y; Childs, Anne-Marie; Feng, Lucy; Murphy, Elaine; Lamont, Phillipa J; Ravenscroft, Gianina; Wallefeld, William; Davis, Mark R; Laing, Nigel G; Holton, Janice L; Fialho, Doreen; Bushby, Kate; Hanna, Michael G; Phadke, Rahul; Jungbluth, Heinz; Houlden, Henry; Quinlivan, Ros

    2016-08-01

    Rhabdomyolysis is often due to a combination of environmental trigger(s) and genetic predisposition; however, the underlying genetic cause remains elusive in many cases. Mutations in CAV3 lead to various neuromuscular phenotypes with partial overlap, including limb girdle muscular dystrophy type 1C (LGMD1C), rippling muscle disease, distal myopathy and isolated hyperCKemia. Here we present a series of eight patients from seven families presenting with exercise intolerance and rhabdomyolysis caused by mutations in CAV3 diagnosed by next generation sequencing (NGS) (n = 6). Symptoms included myalgia (n = 7), exercise intolerance (n = 7) and episodes of rhabdomyolysis (n = 2). Percussion-induced rapid muscle contractions (PIRCs) were seen in five out of six patients examined. A previously reported heterozygous mutation in CAV3 (p.T78M) and three novel variants (p.V14I, p.F41S, p.F54V) were identified. Caveolin-3 immunolabeling in muscle was normal in 3/4 patients; however, immunoblotting showed more than 50% reduction of caveolin-3 in five patients compared with controls. This case series demonstrates that exercise intolerance, myalgia and rhabdomyolysis may be caused by CAV3 mutations and broadens the phenotypic spectrum of caveolinopathies. In our series, immunoblotting was a more sensitive method to detect reduced caveolin-3 levels than immunohistochemistry in skeletal muscle. Patients presenting with muscle pain, exercise intolerance and rhabdomyolysis should be routinely tested for PIRCs as this may be an important clinical clue for caveolinopathies, even in the absence of other "typical" features. The use of NGS may expand current knowledge concerning inherited diseases, and unexpected/atypical phenotypes may be attributed to well-known human disease genes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications.

    Directory of Open Access Journals (Sweden)

    Dora Dias-Santagata

    2011-03-01

    Full Text Available Pleomorphic xanthoastrocytoma (PXA is low-grade glial neoplasm principally affecting children and young adults. Approximately 40% of PXA are reported to recur within 10 years of primary resection. Upon recurrence, patients receive radiation therapy and conventional chemotherapeutics designed for high-grade gliomas. Genetic changes that can be targeted by selective therapeutics have not been extensively evaluated in PXA and ancillary diagnostic tests to help discriminate PXA from other pleomorphic and often more aggressive astrocytic malignancies are limited. In this study, we apply the SNaPshot multiplexed targeted sequencing platform in the analysis of brain tumors to interrogate 60 genetic loci that are frequently mutated in 15 cancer genes. In our analysis we detect BRAF V600E mutations in 12 of 20 (60% WHO grade II PXA, in 1 of 6 (17% PXA with anaplasia and in 1 glioblastoma arising in a PXA. Phospho-ERK was detected in all tumors independent of the BRAF mutation status. BRAF duplication was not detected in any of the PXA cases. BRAF V600E mutations were identified in only 2 of 71 (2.8% glioblastoma (GBM analyzed, including 1 of 9 (11.1% giant cell GBM (gcGBM. The finding that BRAF V600E mutations are common in the majority of PXA has important therapeutic implications and may help in differentiating less aggressive PXAs from lethal gcGBMs and GBMs.

  19. Loss-of-function CARD8 mutation causes NLRP3 inflammasome activation and Crohn's disease.

    Science.gov (United States)

    Mao, Liming; Kitani, Atsushi; Similuk, Morgan; Oler, Andrew J; Albenberg, Lindsey; Kelsen, Judith; Aktay, Atiye; Quezado, Martha; Yao, Michael; Montgomery-Recht, Kim; Fuss, Ivan J; Strober, Warren

    2018-05-01

    In these studies, we evaluated the contribution of the NLRP3 inflammasome to Crohn's disease (CD) in a kindred containing individuals having a missense mutation in CARD8, a protein known to inhibit this inflammasome. Whole exome sequencing and PCR studies identified the affected individuals as having a V44I mutation in a single allele of the T60 isoform of CARD8. The serum levels of IL-1β in the affected individuals were increased compared with those in healthy controls, and their peripheral monocytes produced increased amounts of IL-1β when stimulated by NLRP3 activators. Immunoblot studies probing the basis of these findings showed that mutated T60 CARD8 failed to downregulate the NLRP3 inflammasome because it did not bind to NLRP3 and inhibit its oligomerization. In addition, these studies showed that mutated T60 CARD8 exerted a dominant-negative effect by its capacity to bind to and form oligomers with unmutated T60 or T48 CARD8 that impeded their binding to NLRP3. Finally, inflammasome activation studies revealed that intact but not mutated CARD8 prevented NLRP3 deubiquitination and serine dephosphorylation. CD due to a CARD8 mutation was not effectively treated by anti-TNF-α, but did respond to IL-1β inhibitors. Thus, patients with anti-TNF-α-resistant CD may respond to this treatment option.

  20. Non-syndromic hearing loss caused by the dominant cis mutation R75Q with the recessive mutation V37I of the GJB2 (Connexin 26) gene.

    Science.gov (United States)

    Kim, Juwon; Jung, Jinsei; Lee, Min Goo; Choi, Jae Young; Lee, Kyung-A

    2015-06-19

    GJB2 alleles containing two cis mutations have been rarely found in non-syndromic hearing loss. Herein, we present a Korean patient with non-syndromic hearing loss caused by the R75Q cis mutation with V37I, which arose de novo in the father and was inherited by the patient. Biochemical coupling and hemichannel permeability assays were performed after molecular cloning and transfection of HEK293T cells. Student's t-tests or analysis of variance followed by Tukey's multiple comparison test was used as statistical analysis. Biochemical coupling was significantly reduced in connexin 26 (Cx26)-R75Q- and Cx26-V37I-transfected cells, with greater extent in Cx26-R75Q and Cx26-R75Q+V37I cells. Interestingly, our patient and his father with the mutations had more residual hearing compared with patients with the dominant mutation alone. Although the difference in hemichannel activity between R75Q alone and R75Q in combination with V37I failed to reach significance, it is of note that there is a possibility that V37I located upstream of R75Q might have the ability to ameliorate R75Q expression. Our study emphasizes the importance of cis mutations with R75Q, as the gene effect of R75Q can be modulated depending on the type of additional mutation.

  1. JAK2 and MPL gene mutations in V617F-negative myeloproliferative neoplasms.

    NARCIS (Netherlands)

    Siemiatkowska, A.M.; Bieniaszewska, M.; Hellmann, A.; Limon, J.

    2010-01-01

    We report three novel mutations in JAK2 exons 12, 19 and 25 in V617F-negative patients with polycythemia vera, essential thrombocythemia and idiopathic myelofibrosis. Scanning of JAK2 exons 12-25 and MPL exon 10 revealed the presence of JAK2 alterations in six and MPL W515L/K mutations in five of 34

  2. Consistent absence of BRAF mutations in salivary gland carcinomas

    Directory of Open Access Journals (Sweden)

    Nooshin Mohtasham

    2017-06-01

    Full Text Available Introduction: Malignant salivary gland tumors are rare entities. Despite advances in surgery, radiation therapy and chemotherapy, the rate of the mortality and five-year survival has not been improved markedly over the last few decades. The activation of EGFR- RAS-RAF signaling pathway contributes to the initiation and progression of many human cancers, promising a key pathway for therapeutic molecules. Thus, the objective of this study was to evaluate BRAF mutations in salivary gland carcinomas. Methods: We designed PCR- RFLP (Polymerase Chain Reaction -Restriction Fragment Length Polymorphism and screened 50 salivary gland carcinomas (SGCs including mucoepidermoid carcinoma (MEC, adenoid cystic carcinoma (AdCC and polymorphous low grade adenocarcinoma (PLGA for the BRAF V600E mutation. Results: PCR-RFLP analyses demonstrated no mutation in BRAF exon 15 for SGC samples at position V600, which is the most commonly mutated site for BRAF in human cancer. Conclusions: According to our results SGCs didn’t acquire BRAF mutations that result in a constitutive activation of the signaling cascade downstream of EGFR, hence SGCs can be a good candidate for anti EGFR therapies.

  3. Impact of JAK2V617F Mutation Burden on Disease Phenotype in Chinese Patients with JAK2V617F-positive Polycythemia Vera (PV) and Essential thrombocythemia (ET).

    Science.gov (United States)

    Zhao, Shixiang; Zhang, Xiang; Xu, Yang; Feng, Yufeng; Sheng, Wenhong; Cen, Jiannong; Wu, Depei; Han, Yue

    2016-01-01

    Most patients with polycythemia vera (PV) and half of essential thrombocythemia (ET) possess an activating JAK2V617F mutation. The objective of this study was to better define the effect of JAK2V617F mutant allele burden on clinical phenotypes in Chinese patients, especially thrombosis. By real-time polymerase chain reaction (RT-PCR), the JAK2V617F mutation burden was detected in 170 JAK2V617F-positive patients, including 54 PV and 116 ET. The results showed that JAK2V617F allele burden was higher in PV than in ET (PET (68.5% VS 26.7%) (PET patients showed increased JAK2V617F allele burden in the group with higher hemoglobin (HGB above 150 g/L) (PET. In PV patients, JAK2V617F mutation burden had influence on WBC counts. And the clinical characteristics of ET patients, such as WBC counts, hemoglobin level, splenomegaly and thrombosis, were influenced by JAK2V617F mutation burden. Male, high hemoglobin (HGB above 150 g/L), and increased JAK2V617F mutation burden (JAK2V617F allele burden ≥ 16.5%) were risks of thrombosis (PET patients by Logistic Regression.

  4. Mutation I136V alters electrophysiological properties of the NaV1.7 channel in a family with onset of erythromelalgia in the second decade

    Directory of Open Access Journals (Sweden)

    Dib-Hajj Sulayman D

    2008-01-01

    Full Text Available Abstract Background Primary erythromelalgia is an autosomal dominant pain disorder characterized by burning pain and skin redness in the extremities, with onset of symptoms during the first decade in the families whose mutations have been physiologically studied to date. Several mutations of voltage-gated Na+ channel NaV1.7 have been linked with primary erythromelalgia. Recently, a new substitution NaV1.7/I136V has been reported in a Taiwanese family, in which pain appeared at later ages (9–22 years, with onset at 17 years of age or later in 5 of 7 family members, with relatively slow progression (8–10 years to involvement of the hands. The proband reported onset of symptoms first in his feet at the age of 11, which then progressed to his hands at the age of 19. The new mutation is located in transmembrane segment 1 (S1 of domain I (DI in contrast to all NaV1.7 mutations reported to date, which have been localized in the voltage sensor S4, the linker joining segments S4 and S5 or pore-lining segments S5 and S6 in DI, II and III. Results In this study, we characterized the gating and kinetic properties of I136V mutant channels in HEK293 cells using whole-cell patch clamp. I136V shifts the voltage-dependence of activation by -5.7 mV, a smaller shift in activation than the other erythromelalgia mutations that have been characterized. I136V also decreases the deactivation rate, and generates larger ramp currents. Conclusion The I136V substitution in NaV1.7 alters channel gating and kinetic properties. Each of these changes may contribute to increased excitability of nociceptive dorsal root ganglion neurons, which underlies pain in erythromelalgia. The smaller shift in voltage-dependence of activation of NaV1.7, compared to the other reported cases of inherited erythromelalgia, may contribute to the later age of onset and slower progression of the symptoms reported in association with this mutation.

  5. Targeted ultradeep next-generation sequencing as a method for KIT D816V mutation analysis in mastocytosis

    DEFF Research Database (Denmark)

    Kielsgaard Kristensen, Thomas; Broesby-Olsen, Sigurd; Vestergaard, Hanne

    2016-01-01

    mutation levels. In this study, we established an NGS-based KIT mutation analysis and analyzed the sensitivity of D816V detection using the Ion Torrent platform. Eighty-two individual NGS analyses were included in the study. All samples were also analyzed using highly sensitive KIT D816V mutation...

  6. PIK3CA mutations frequently coexist with RAS and BRAF mutations in patients with advanced cancers.

    Directory of Open Access Journals (Sweden)

    Filip Janku

    Full Text Available Oncogenic mutations of PIK3CA, RAS (KRAS, NRAS, and BRAF have been identified in various malignancies, and activate the PI3K/AKT/mTOR and RAS/RAF/MEK pathways, respectively. Both pathways are critical drivers of tumorigenesis.Tumor tissues from 504 patients with diverse cancers referred to the Clinical Center for Targeted Therapy at MD Anderson Cancer Center starting in October 2008 were analyzed for PIK3CA, RAS (KRAS, NRAS, and BRAF mutations using polymerase chain reaction-based DNA sequencing.PIK3CA mutations were found in 54 (11% of 504 patients tested; KRAS in 69 (19% of 367; NRAS in 19 (8% of 225; and BRAF in 31 (9% of 361 patients. PIK3CA mutations were most frequent in squamous cervical (5/14, 36%, uterine (7/28, 25%, breast (6/29, 21%, and colorectal cancers (18/105, 17%; KRAS in pancreatic (5/9, 56%, colorectal (49/97, 51%, and uterine cancers (3/20, 15%; NRAS in melanoma (12/40, 30%, and uterine cancer (2/11, 18%; BRAF in melanoma (23/52, 44%, and colorectal cancer (5/88, 6%. Regardless of histology, KRAS mutations were found in 38% of patients with PIK3CA mutations compared to 16% of patients with wild-type (wtPIK3CA (p = 0.001. In total, RAS (KRAS, NRAS or BRAF mutations were found in 47% of patients with PIK3CA mutations vs. 24% of patients wtPIK3CA (p = 0.001. PIK3CA mutations were found in 28% of patients with KRAS mutations compared to 10% with wtKRAS (p = 0.001 and in 20% of patients with RAS (KRAS, NRAS or BRAF mutations compared to 8% with wtRAS (KRAS, NRAS or wtBRAF (p = 0.001.PIK3CA, RAS (KRAS, NRAS, and BRAF mutations are frequent in diverse tumors. In a wide variety of tumors, PIK3CA mutations coexist with RAS (KRAS, NRAS and BRAF mutations.

  7. Adrenal incidentaloma and the Janus Kinase 2 V617F mutation: A case-based review of the literature

    Directory of Open Access Journals (Sweden)

    Mustafa Unubol

    2013-01-01

    Full Text Available Adrenal incidentaloma was detected in an 81-year-old male patient and a 37-year-old female patient who had been diagnosed with essential thrombocytosis. Each patient′s Janus Kinase 2 (JAK2 V617F mutation was positive, and they were evaluated as having non-functional adrenal incidentaloma. The JAK2 activates the signal transducers and activators of transcription (STAT proteins which then activate the phosphoinositol-3 kinases, Ras, mitogen-activated protein (MAP kinases, and transcription. Constitutive activation causes cell proliferation and dysregulation of apoptosis. It is thought that STAT3 activation-mediated JAK family kinases have a central role in the solid tumor cell series. Permanent activation of STAT3 and STAT5 causes tumor cell proliferation, survival, metastasis, and an increase in tumor-mediated inflammation in solid and hematologic tumors. According to our literature screening, irregular JAK signaling, seen at the pathogenesis of many solid and hematologic tumors, has not been previously evaluated with regard to adrenal tumors. As a result, our cases are the first coexistence of JAK V617F mutation with adrenal incidentaloma in the literature. Because of this, we think that JAK2 mutation must be evaluated to clarify the etiology of adrenal incidentalomas.

  8. MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1L613V mutation

    Science.gov (United States)

    Wu, Xue; Simpson, Jeremy; Hong, Jenny H.; Kim, Kyoung-Han; Thavarajah, Nirusha K.; Backx, Peter H.; Neel, Benjamin G.; Araki, Toshiyuki

    2011-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden death in children and young adults. Abnormalities in several signaling pathways are implicated in the pathogenesis of HCM, but the role of the RAS-RAF-MEK-ERK MAPK pathway has been controversial. Noonan syndrome (NS) is one of several autosomal-dominant conditions known as RASopathies, which are caused by mutations in different components of this pathway. Germline mutations in RAF1 (which encodes the serine-threonine kinase RAF1) account for approximately 3%–5% of cases of NS. Unlike other NS alleles, RAF1 mutations that confer increased kinase activity are highly associated with HCM. To explore the pathogenesis of such mutations, we generated knockin mice expressing the NS-associated Raf1L613V mutation. Like NS patients, mice heterozygous for this mutation (referred to herein as L613V/+ mice) had short stature, craniofacial dysmorphia, and hematologic abnormalities. Valvuloseptal development was normal, but L613V/+ mice exhibited eccentric cardiac hypertrophy and aberrant cardiac fetal gene expression, and decompensated following pressure overload. Agonist-evoked MEK-ERK activation was enhanced in multiple cell types, and postnatal MEK inhibition normalized the growth, facial, and cardiac defects in L613V/+ mice. These data show that different NS genes have intrinsically distinct pathological effects, demonstrate that enhanced MEK-ERK activity is critical for causing HCM and other RAF1-mutant NS phenotypes, and suggest a mutation-specific approach to the treatment of RASopathies. PMID:21339642

  9. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    International Nuclear Information System (INIS)

    Flueck, Christa E.; Mullis, Primus E.; Pandey, Amit V.

    2010-01-01

    Research highlights: → Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). → Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. → We are reporting that mutations in POR may reduce CYP3A4 activity. → POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. → Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.

  10. JAK and MPL mutations in myeloid malignancies.

    Science.gov (United States)

    Tefferi, Ayalew

    2008-03-01

    The Janus family of non-receptor tyrosine kinases (JAK1, JAK2, JAK3 and tyrosine kinase 2) transduces signals downstream of type I and II cytokine receptors via signal transducers and activators of transcription (STATs). JAK3 is important in lymphoid and JAK2 in myeloid cell proliferation and differentiation. The thrombopoietin receptor MPL is one of several JAK2 cognate receptors and is essential for myelopoiesis in general and megakaryopoiesis in particular. Germline loss-of-function (LOF) JAK3 and MPL mutations cause severe combined immunodeficiency and congenital amegakaryocytic thrombocytopenia, respectively. Germline gain-of-function (GOF) MPL mutation (MPLS505N) causes familial thrombocytosis. Somatic JAK3 (e.g. JAK3A572V, JAK3V722I, JAK3P132T) and fusion JAK2 (e.g. ETV6-JAK2, PCM1-JAK2, BCR-JAK2) mutations have respectively been described in acute megakaryocytic leukemia and acute leukemia/chronic myeloid malignancies. However, current attention is focused on JAK2 (e.g. JAK2V617F, JAK2 exon 12 mutations) and MPL (e.g. MPLW515L/K/S, MPLS505N) mutations associated with myeloproliferative neoplasms (MPNs). A JAK2 mutation, primarily JAK2V617F, is invariably associated with polycythemia vera (PV). The latter mutation also occurs in the majority of patients with essential thrombocythemia (ET) or primary myelofibrosis (PMF). MPL mutational frequency in MPNs is substantially less (<10%). In general, despite a certain degree of genotype - phenotype correlations, the prognostic relevance of harbouring one of these mutations, or their allele burden when present, remains dubious. Regardless, based on the logical assumption that amplified JAK-STAT signalling is central to the pathogenesis of PV, ET and PMF, several anti-JAK2 tyrosine kinase inhibitors have been developed and are currently being tested in humans with these disorders.

  11. Acquired RhD mosaicism identifies fibrotic transformation of thrombopoietin receptor-mutated essential thrombocythemia.

    Science.gov (United States)

    Montemayor-Garcia, Celina; Coward, Rebecca; Albitar, Maher; Udani, Rupa; Jain, Prachi; Koklanaris, Eleftheria; Battiwalla, Minoo; Keel, Siobán; Klein, Harvey G; Barrett, A John; Ito, Sawa

    2017-09-01

    Acquired copy-neutral loss of heterozygosity has been described in myeloid malignant progression with an otherwise normal karyotype. A 65-year-old woman with MPL-mutated essential thrombocythemia and progression to myelofibrosis was noted upon routine pretransplant testing to have mixed field reactivity with anti-D and an historic discrepancy in RhD type. The patient had never received transfusions or transplantation. Gel immunoagglutination revealed group A red blood cells and a mixed-field reaction for the D phenotype, with a predominant D-negative population and a small subset of circulating red blood cells carrying the D antigen. Subsequent genomic microarray single nucleotide polymorphism profiling revealed copy-neutral loss of heterozygosity of chromosome 1 p36.33-p34.2, a known molecular mechanism underlying fibrotic progression of MPL-mutated essential thrombocythemia. The chromosomal region affected by this copy-neutral loss of heterozygosity encompassed the RHD, RHCE, and MPL genes. We propose a model of chronological molecular events that is supported by RHD zygosity assays in peripheral lymphoid and myeloid-derived cells. Copy-neutral loss of heterozygosity events that lead to clonal selection and myeloid malignant progression may also affect the expression of adjacent unrelated genes, including those encoding for blood group antigens. Detection of mixed-field reactions and investigation of discrepant blood typing results are important for proper transfusion support of these patients and can provide useful surrogate markers of myeloproliferative disease progression. © 2017 AABB.

  12. FLT3 mutations in canine acute lymphocytic leukemia

    International Nuclear Information System (INIS)

    Suter, Steven E; Small, George W; Seiser, Eric L; Thomas, Rachael; Breen, Matthew; Richards, Kristy L

    2011-01-01

    FMS-like tyrosine kinase 3 (FLT3) is a commonly mutated protein in a variety of human acute leukemias. Mutations leading to constitutively active FLT3, including internal tandem duplications of the juxtamembrane domain (ITD), result in continuous cellular proliferation, resistance to apoptotic cell death, and a poorer prognosis. A better understanding of the molecular consequences of FLT3 activation would allow improved therapeutic strategies in these patients. Canine lymphoproliferative diseases, including lymphoma and acute leukemias, share evolutionarily conserved chromosomal aberrations and exhibit conserved mutations within key oncogenes when compared to their human counterparts. A small percentage of canine acute lymphocytic leukemias (ALL) also exhibit FLT3 ITD mutations. We molecularly characterized FLT3 mutations in two dogs and one cell line, by DNA sequencing, gene expression analysis via quantitative real-time PCR, and sensitivity to the FLT3 inhibitor lestaurtinib via in vitro proliferation assays. FLT 3 and downstream mediators of FLT3 activation were assessed by Western blotting. The canine B-cell leukemia cell line, GL-1, and neoplastic cells from 2/7 dogs diagnosed cytologically with ALL were found to have FLT3 ITD mutations and FLT3 mRNA up-regulation. Lestaurtinib, a small molecule FLT3 inhibitor, significantly inhibited the growth of GL-1 cells, while not affecting the growth of two other canine lymphoid cell lines without the FLT3 mutation. Finally, western blots were used to confirm the conserved downstream mediators of FLT3 activating mutations. These results show that ALL and FLT3 biology is conserved between canine and human patients, supporting the notion that canine ALL, in conjunction with the GL-1 cell line, will be useful in the development of a relevant large animal model to aid in the study of human FLT3 mutant leukemias

  13. Nicotinamide starvation and inhibition of poly(ADP-Ribose) synthesis enhance the induced mutation in Chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Okada, Gensaku; Kaneko, Ichiro; Mitsui, Hideki.

    1987-01-01

    The effects of nicotinamide (NA) deficiency and added NA and 3-aminobenzamide (3AB) on the cytotoxicity and the induction of mutations in Chinese hamster V79-14 cells were investigated. In NA deficiency the addition of NA (up to 4 mM) and 3AB (up to 7.5 mM) was not cytotoxic. The presence of NA prior to exposure to mitomycin C (MMC) or γ-rays produced a dose-dependent increase in the relative cloning ability of DNA-damaged cells. The lethality of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was significantly potentiated by pre-treatment with 5 mM 3AB, but no potentiation by 3AB was observed for MMC, ultraviolet (UV)-B light, or γ-rays. Among cells pre-cultured in NA-free medium there were increased frequencies of mutations at both the hypoxanthineguanine phosphoribosyltransferase (HGPRT) and the adenine phosphoribosyltransferase (APRT) loci following DNA damage. The enhancing effect by NA deficiency was time-dependent. Incubation with NA prior to DNA damage produced a significant reduction in the frequency of mutations. The addition of 3AB to the nicotinamide adenine dinucleotide (NAD + )-depleted cell cultures before or after the DNA damage also strongly increased the frequency of induced mutations, with increasing concentrations of 3AB up to 5 mM, but the frequency was reduced at higher concentrations. The interaction between NA deficiency and the addition of 3AB appears to act synergistically on mutation induction. A correlation was observed between the potential of inhibiting poly (ADP-ribose) polymerase and the enhancement of mutation frequency. (author)

  14. [Determination of drug resistance mutations of NS3 inhibitors in chronic hepatitis C patients infected with genotype 1].

    Science.gov (United States)

    Şanlıdağ, Tamer; Sayan, Murat; Akçalı, Sinem; Kasap, Elmas; Buran, Tahir; Arıkan, Ayşe

    2017-04-01

    Direct-acting antiviral agents (DAA) such as NS3 protease inhibitors is the first class of drugs used for chronic hepatitis C (CHC) treatment. NS3 inhibitors (PI) with low genetic barrier have been approved to be used in the CHC genotype 1 infections, and in the treatment of compensated liver disease including cirrhosis together with pegile interferon and ribavirin. Consequently, the development of drug resistance during DAA treatment of CHC is a major problem. NS3 resistant variants can be detected before treatment as they can occurnaturally. The aim of this study was to investigate new and old generation NS3 inhibitors resistance mutations before DAA treatment in hepatitis C virus (HCV) that were isolated from CHC. The present study was conducted in 2015 and included 97 naive DAA patients infected with HCV genotype 1, who were diagnosed in Manisa and Kocaeli cities of Turkey. Magnetic particle based HCV RNA extraction and than RNA detection and quantification were performed using commercial real-time PCR assay QIASypmhony + Rotorgene Q/ArtusHCV QS-RGQ and COBAS Ampliprep/COBAS TaqMan HCV Tests. HCV NS3 viral protease genome region was amplified with PCR and mutation analysis was performed by Sanger dideoxy sequencing technique of NS3 protease codons (codon 32-185). HCV NS3 protease inhibitors; asunaprevir, boceprevir, faldaprevir, grazoprevir, pariteprevir, simeprevir and telaprevir were analysed for resistant mutations by Geno2pheno-HCV resistance tool. HCV was genotyped in all patients and 88 patients (n= 88/97, 91%) had genotype 1. Eight (n= 8/97, 8.2%) and 80 (n= 80/97, 82.4%) HCC patients were subgenotyped as 1a and 1b, respectively. Many aminoacid substitutions and resistance mutations were determined in 39/88 (44%) patients in the study group. Q80L, S122C/N, S138W were defined as potential substitutions (6/88 patients; 7%); R109K, R117C, S122G, I132V, I170V, N174S were described as potential resistance (34/88 patients; 39%); V36L, T54S, V55A, Q80H were

  15. Cancer gene profiling in non-small cell lung cancers reveals activating mutations in JAK2 and JAK3 with therapeutic implications

    Directory of Open Access Journals (Sweden)

    Shuyu D. Li

    2017-10-01

    Full Text Available Abstract Background Next-generation sequencing (NGS of cancer gene panels are widely applied to enable personalized cancer therapy and to identify novel oncogenic mutations. Methods We performed targeted NGS on 932 clinical cases of non-small-cell lung cancers (NSCLCs using the Ion AmpliSeq™ Cancer Hotspot panel v2 assay. Results Actionable mutations were identified in 65% of the cases with available targeted therapeutic options, including 26% of the patients with mutations in National Comprehensive Cancer Network (NCCN guideline genes. Most notably, we discovered JAK2 p.V617F somatic mutation, a hallmark of myeloproliferative neoplasms, in 1% (9/932 of the NSCLCs. Analysis of cancer cell line pharmacogenomic data showed that a high level of JAK2 expression in a panel of NSCLC cell lines is correlated with increased sensitivity to a selective JAK2 inhibitor. Further analysis of TCGA genomic data revealed JAK2 gain or loss due to genetic alterations in NSCLC clinical samples are associated with significantly elevated or reduced PD-L1 expression, suggesting that the activating JAK2 p.V617F mutation could confer sensitivity to both JAK inhibitors and anti-PD1 immunotherapy. We also detected JAK3 germline activating mutations in 6.7% (62/932 of the patients who may benefit from anti-PD1 treatment, in light of recent findings that JAK3 mutations upregulate PD-L1 expression. Conclusion Taken together, this study demonstrated the clinical utility of targeted NGS with a focused hotspot cancer gene panel in NSCLCs and identified activating mutations in JAK2 and JAK3 with clinical implications inferred through integrative analysis of cancer genetic, genomic, and pharmacogenomic data. The potential of JAK2 and JAK3 mutations as response markers for the targeted therapy against JAK kinases or anti-PD1 immunotherapy warrants further investigation.

  16. ERK mutations confer resistance to mitogen-activated protein kinase pathway inhibitors.

    Science.gov (United States)

    Goetz, Eva M; Ghandi, Mahmoud; Treacy, Daniel J; Wagle, Nikhil; Garraway, Levi A

    2014-12-01

    The use of targeted therapeutics directed against BRAF(V600)-mutant metastatic melanoma improves progression-free survival in many patients; however, acquired drug resistance remains a major medical challenge. By far, the most common clinical resistance mechanism involves reactivation of the MAPK (RAF/MEK/ERK) pathway by a variety of mechanisms. Thus, targeting ERK itself has emerged as an attractive therapeutic concept, and several ERK inhibitors have entered clinical trials. We sought to preemptively determine mutations in ERK1/2 that confer resistance to either ERK inhibitors or combined RAF/MEK inhibition in BRAF(V600)-mutant melanoma. Using a random mutagenesis screen, we identified multiple point mutations in ERK1 (MAPK3) and ERK2 (MAPK1) that could confer resistance to ERK or RAF/MEK inhibitors. ERK inhibitor-resistant alleles were sensitive to RAF/MEK inhibitors and vice versa, suggesting that the future development of alternating RAF/MEK and ERK inhibitor regimens might help circumvent resistance to these agents. ©2014 American Association for Cancer Research.

  17. Mutations in GABRB3

    DEFF Research Database (Denmark)

    Møller, Rikke S; Wuttke, Thomas V; Helbig, Ingo

    2017-01-01

    OBJECTIVE: To examine the role of mutations in GABRB3 encoding the β3 subunit of the GABAA receptor in individual patients with epilepsy with regard to causality, the spectrum of genetic variants, their pathophysiology, and associated phenotypes. METHODS: We performed massive parallel sequencing ...

  18. Mutated CaV2.1 channels dysregulate CASK/P2X3 signaling in mouse trigeminal sensory neurons of R192Q Cacna1a knock-in mice.

    Science.gov (United States)

    Gnanasekaran, Aswini; Bele, Tanja; Hullugundi, Swathi; Simonetti, Manuela; Ferrari, Michael D; van den Maagdenberg, Arn M J M; Nistri, Andrea; Fabbretti, Elsa

    2013-12-02

    ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of pain as they adapt their expression and function in response to acute and chronic nociceptive signals. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in controlling P2X3 receptor expression and function in trigeminal ganglia from Cacna1a R192Q-mutated knock-in (KI) mice, a genetic model for familial hemiplegic migraine type-1. KI ganglion neurons showed more abundant CASK/P2X3 receptor complex at membrane level, a result that likely originated from gain-of-function effects of R192Q-mutated CaV2.1 channels and downstream enhanced CaMKII activity. The selective CaV2.1 channel blocker ω-Agatoxin IVA and the CaMKII inhibitor KN-93 were sufficient to return CASK/P2X3 co-expression to WT levels. After CASK silencing, P2X3 receptor expression was decreased in both WT and KI ganglia, supporting the role of CASK in P2X3 receptor stabilization. This process was functionally observed as reduced P2X3 receptor currents. We propose that, in trigeminal sensory neurons, the CASK/P2X3 complex has a dynamic nature depending on intracellular calcium and related signaling, that are enhanced in a transgenic mouse model of genetic hemiplegic migraine.

  19. [Expression of JAK2V617F and MPLW515L/K mutation in 30 suspected cases of early myeloproliferative disorders].

    Science.gov (United States)

    Fan, Zheng; Zhang, Ri; Shen, Yi-Min; Fei, Hai-Rong; Zhu, Zi-Ling; Cen, Jian-Nong

    2008-09-01

    To investigate the prevalence of JAK2V617F and MPLW515L/K mutation in patients with slightly elevated platelets (BPC) or hemoglobin (Hb) not meeting the criteria of polycythemia vera (PV) or essential thrombocythemia (ET). Genomic DNA from bone marrow or blood mononuclear cells was screened with allele specific polymerase chain reaction (AS-PCR) for JAK2V617F and MPLW515L/K mutation. The history of thrombosis was assessed retrospectively by patients files. Of 30 patients, 14 (46.7%) were positive for the JAK2V617F mutation, none of them had the MPLW515L/ K. Five of these 14 patients had a history of thrombosis. Follow-up results were available in 22 patients. Among them, 12 patients with JAK2V617F mutation turned out to be MPD in 6-24 months; only 2 out of 10 patients without this mutation evolved to MPD. JAK2V617F mutation could be one of the diagnosis criteria of early MPD. No MPLW515L/K expression was found in early MPD.

  20. A V1143F mutation in the neuronal-enriched isoform 2 of the PMCA pump is linked with ataxia.

    Science.gov (United States)

    Vicario, Mattia; Zanni, Ginevra; Vallese, Francesca; Santorelli, Filippo; Grinzato, Alessandro; Cieri, Domenico; Berto, Paola; Frizzarin, Martina; Lopreiato, Raffaele; Zonta, Francesco; Ferro, Stefania; Sandre, Michele; Marin, Oriano; Ruzzene, Maria; Bertini, Enrico; Zanotti, Giuseppe; Brini, Marisa; Calì, Tito; Carafoli, Ernesto

    2018-04-12

    The fine regulation of intracellular calcium is fundamental for all eukaryotic cells. In neurons, Ca 2+ oscillations govern the synaptic development, the release of neurotransmitters and the expression of several genes. Alterations of Ca 2+ homeostasis were found to play a pivotal role in neurodegenerative progression. The maintenance of proper Ca 2+ signaling in neurons demands the continuous activity of Ca 2+ pumps and exchangers to guarantee physiological cytosolic concentration of the cation. The plasma membrane Ca 2+ ATPases (PMCA pumps) play a key role in the regulation of Ca 2+ handling in selected sub-plasma membrane microdomains. Among the four basic PMCA pump isoforms existing in mammals, isoforms 2 and 3 are particularly enriched in the nervous system. In humans, genetic mutations in the PMCA2 gene in association with cadherin 23 mutations have been linked to hearing loss phenotypes, while those occurring in the PMCA3 gene were associated with X-linked congenital cerebellar ataxias. Here we describe a novel missense mutation (V1143F) in the calmodulin binding domain (CaM-BD) of the PMCA2 protein. The mutant pump was present in a patient showing congenital cerebellar ataxia but no overt signs of deafness, in line with the absence of mutations in the cadherin 23 gene. Biochemical and molecular dynamics studies on the mutated PMCA2 have revealed that the V1143F substitution alters the binding of calmodulin to the CaM-BD leading to impaired Ca 2+ ejection. Copyright © 2018. Published by Elsevier Inc.

  1. The effect of defective DNA double-strand break repair on mutations and chromosome aberrations in the Chinese hamster cell mutant XR-V15B

    International Nuclear Information System (INIS)

    Helbig, R.; Speit, G.; Zdzienicka, M.Z.

    1995-01-01

    The radiosensitive Chinese hamster cell line XR-V15B was used to study the effect of decreased rejoining of DNA double-strand breaks (DSBs) on gene mutations and chromosome aberrations. XR-V15B cells are hypersensitive to the cytotoxic effects of neocarzinostatin (NCS) and methyl methanesulfonate (MMS). Both mutagens induced more chromosome aberrations in XR-V15B cells than in the parental cell strain. The clastogenic action of NCS was characterized by the induction of predominantly chromosome-type aberrations in cells of both strains, whereas MMS induced mainly chromatid aberrations. The frequency of induced gene mutations at the hprt locus was not increased compared to the parental V79 cells when considering the same survival level. Molecular analysis by multiplex polymerase chain reaction (PCR) of mutants induced by NCS revealed a high frequency of deletions in cells of both cell lines. Methyl methane-sulfonate induced mainly mutations without visible change in the PCR pattern, which probably represent point mutations. Our findings suggest a link between a defect in DNA DSB repair and increased cytotoxic and clastogenic effects. However, a decreased ability to rejoin DNA DSBs does not seem to influence the incidence and types of gene mutations at the hprt locus induced by NCS and MMS. 28 refs., 4 figs., 3 tabs

  2. Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia.

    Science.gov (United States)

    Yoshizato, Tetsuichi; Dumitriu, Bogdan; Hosokawa, Kohei; Makishima, Hideki; Yoshida, Kenichi; Townsley, Danielle; Sato-Otsubo, Aiko; Sato, Yusuke; Liu, Delong; Suzuki, Hiromichi; Wu, Colin O; Shiraishi, Yuichi; Clemente, Michael J; Kataoka, Keisuke; Shiozawa, Yusuke; Okuno, Yusuke; Chiba, Kenichi; Tanaka, Hiroko; Nagata, Yasunobu; Katagiri, Takamasa; Kon, Ayana; Sanada, Masashi; Scheinberg, Phillip; Miyano, Satoru; Maciejewski, Jaroslaw P; Nakao, Shinji; Young, Neal S; Ogawa, Seishi

    2015-07-02

    In patients with acquired aplastic anemia, destruction of hematopoietic cells by the immune system leads to pancytopenia. Patients have a response to immunosuppressive therapy, but myelodysplastic syndromes and acute myeloid leukemia develop in about 15% of the patients, usually many months to years after the diagnosis of aplastic anemia. We performed next-generation sequencing and array-based karyotyping using 668 blood samples obtained from 439 patients with aplastic anemia. We analyzed serial samples obtained from 82 patients. Somatic mutations in myeloid cancer candidate genes were present in one third of the patients, in a limited number of genes and at low initial variant allele frequency. Clonal hematopoiesis was detected in 47% of the patients, most frequently as acquired mutations. The prevalence of the mutations increased with age, and mutations had an age-related signature. DNMT3A-mutated and ASXL1-mutated clones tended to increase in size over time; the size of BCOR- and BCORL1-mutated and PIGA-mutated clones decreased or remained stable. Mutations in PIGA and BCOR and BCORL1 correlated with a better response to immunosuppressive therapy and longer and a higher rate of overall and progression-free survival; mutations in a subgroup of genes that included DNMT3A and ASXL1 were associated with worse outcomes. However, clonal dynamics were highly variable and might not necessarily have predicted the response to therapy and long-term survival among individual patients. Clonal hematopoiesis was prevalent in aplastic anemia. Some mutations were related to clinical outcomes. A highly biased set of mutations is evidence of Darwinian selection in the failed bone marrow environment. The pattern of somatic clones in individual patients over time was variable and frequently unpredictable. (Funded by Grant-in-Aid for Scientific Research and others.).

  3. Mutation breeding in ornamental plants

    International Nuclear Information System (INIS)

    Datta, S.K.

    1990-01-01

    Full text: Mutation induction produced a large number of new promising varieties in ornamental species. 37 new mutants of Chrysanthemum and 14 of rose have been developed by mutations and released for commercialisation. The mutations in flower colour/shape were detected as chimeras in M 1 V 1 , M 1 V 2 , M 1 V 3 generations. The mutation frequency varied with the cultivar and exposure to gamma rays. Comparative analysis of original cultivars and their respective induced mutants on cytomorphological, anatomical and biochemical characters are being carried out for better understanding of the mechanism involved in the origin and evolution of somatic flower colour/shape mutations. Cytological analysis with reference to chromosomal aberrations, chromosome number, ICV, INV and DNA content gave no differences between the original and mutant cultivars. Analysis of florets/petal pigments by TLC and spectrophotometric methods indicated both qualitative and quantitative changes. (author)

  4. Dabrafenib Treatment in a Patient with an Epithelioid Glioblastoma and BRAF V600E Mutation

    Directory of Open Access Journals (Sweden)

    Garry Ceccon

    2018-04-01

    Full Text Available Novel therapeutic targets in malignant glioma patients are urgently needed. Point mutations of the v-Raf murine sarcoma viral oncogene homolog B (BRAF gene occur predominantly in melanoma patients, but may also occur in gliomas. Thus, this is a target of great interest for this group of patients. In a nine-year-old male patient, an anaplastic astrocytoma in the left temporoparietal region was diagnosed histologically. After first- and second-line treatment, a malignant progression to a secondary glioblastoma was observed ten years after the initial diagnosis. Within the following seven years, all other conventional treatment options were exhausted. At this time point, recurrent tumor histology revealed an epithelioid glioblastoma, without a mutation in the isocitrate dehydrogenase gene (IDH wild-type. In order to identify a potential target for an experimental salvage therapy, mutational tumor analysis showed a BRAF V600E mutation. Consecutively, dabrafenib treatment was initiated. The patient remained clinically stable, and follow-up magnetic resonance images (MRI were consistent with “Stable Disease” according to the Response Assessment in Neuro-Oncology Working Group (RANO criteria for the following ten months until tumor progression was detected. The patient died 16 months after dabrafenib treatment initiation. Particularly in younger glioma patients as well as in patients with an epithelioid glioblastoma, screening for a V600E BRAF mutation is promising since, in these cases, targeted therapy with BRAF inhibitors seems to be a useful salvage treatment option.

  5. Prevalence of the B Type Raf Kinase V600E Mutation in Cytologically Indeterminate Thyroid Nodules: Correlation with Ultrasonographic and Pathologic Features

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chae Hyun; Choi, Yoon Jung; Choi, Seon Hyeong; Rho, Myong Ho Kook Shin Ho; Chung, Eun Chul [Dept. of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul (Korea, Republic of); Chae, Seoung Wan; Kim, Dong Hoon; Sohn, Jin Hee [Dept. of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul (Korea, Republic of); Yun, Ji Sup [Dept. of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul (Korea, Republic of)

    2012-01-15

    To study the prevalence of B type Raf kinase (BRAF) mutations, and to evaluate the ultrasonographic and clinicopathological features associated with thyroid cytology of indeterminate nodules. We assessed the presence or absence of BRAF mutation in 44 specimens from patients with cytologically indeterminate thyroid nodules according to two consecutive preoperative fine needle aspiration cytology procedures. In 9 specimens, the test for BRAF mutation was not possible due to scant cellularity. DNA was extracted from the atypical cells and then analyzed for the BRAF V600E mutation by pyrosequencing. The ultrasonographic and clinicopathological features of the patients were characterized according to their mutation status. The BRAF V600E mutation was present in 17 (48.6%) of 35 patients with indeterminate cytology results and in 17 (54.8%) of the 31 patients with papillary thyroid cancer (PTC). Twenty two of 35 cytologically indeterminate nodules had calcifications, and among them 14 cases were proven to be positive for BRAF V600E mutations. Extrathyroid extension was significantly more frequent in the presence of the BRAF V600E mutation (p = 0.027), while tumor size, lympho-vascular invasion, or lymph node metastasis were not associated with the mutation. Screening for BRAF V600E mutations in conjunction with cytology may increase the diagnostic accuracy for PTC with indeterminate cytology results.

  6. Prevalence of the B Type Raf Kinase V600E Mutation in Cytologically Indeterminate Thyroid Nodules: Correlation with Ultrasonographic and Pathologic Features

    International Nuclear Information System (INIS)

    Kim, Chae Hyun; Choi, Yoon Jung; Choi, Seon Hyeong; Rho, Myong Ho Kook Shin Ho; Chung, Eun Chul; Chae, Seoung Wan; Kim, Dong Hoon; Sohn, Jin Hee; Yun, Ji Sup

    2012-01-01

    To study the prevalence of B type Raf kinase (BRAF) mutations, and to evaluate the ultrasonographic and clinicopathological features associated with thyroid cytology of indeterminate nodules. We assessed the presence or absence of BRAF mutation in 44 specimens from patients with cytologically indeterminate thyroid nodules according to two consecutive preoperative fine needle aspiration cytology procedures. In 9 specimens, the test for BRAF mutation was not possible due to scant cellularity. DNA was extracted from the atypical cells and then analyzed for the BRAF V600E mutation by pyrosequencing. The ultrasonographic and clinicopathological features of the patients were characterized according to their mutation status. The BRAF V600E mutation was present in 17 (48.6%) of 35 patients with indeterminate cytology results and in 17 (54.8%) of the 31 patients with papillary thyroid cancer (PTC). Twenty two of 35 cytologically indeterminate nodules had calcifications, and among them 14 cases were proven to be positive for BRAF V600E mutations. Extrathyroid extension was significantly more frequent in the presence of the BRAF V600E mutation (p = 0.027), while tumor size, lympho-vascular invasion, or lymph node metastasis were not associated with the mutation. Screening for BRAF V600E mutations in conjunction with cytology may increase the diagnostic accuracy for PTC with indeterminate cytology results.

  7. Significance of combined detection of JAK2V617F, MPL and CALR gene mutations in patients with essential thrombocythemia.

    Science.gov (United States)

    Ji, Liying; Qian, Mengyao; Wu, Nana; Wu, Jianmin

    2017-03-01

    The aim of this study was to analyze the mutation rate of JAK2V617F, MPLW515L/K and CALR genes in adult patients with essential thrombocythemia (ET) and the accuracy of the combined detection by the receiver operating curve. Three hundred and forty-two cases with high-platelets (≥300×10 9 /l) were consecutively selected. The patients were analyzed for routine blood examination, bone marrow biopsy and genetic testing. One hundred and fifty-four cases (45.03%) were diagnosed with ET and 188 cases of secondary thrombocythemia according to the hematopoietic and lymphoid tissue tumor classification standards of 2008. It was found that the mutant type of three genes showed three bands, whereas only one band for wild-type. The JAK2V617F and MPL mutations did not cause a change in the open reading frame and the CALR mutation resulted in its change. The mutation rate of JAK2V617F and CALR in ET group was significantly higher than that in the secondary thrombocythemia group (p<0.05). The positive mutation rate of MPL was only 4.55%. JAK2V617F-positive mutation alone was used to diagnose with ET. The area under the curve (AUC) was 0.721. The sensitivity was 72.4%, the specificity was 79.5% and the cut-off value was 0.25. When CALR-positive mutation alone was used to diagnose ET, the AUC, sensitivity, specificity and cut-off value were 0.664, 68.4, 82.4 and 0.09%, respectively. JAK2V617F combined with CALR mutation were used for diagnosis of ET. The AUC was 0.862, the sensitivity was 85.9%, the specificity was 87.8%, and the cut-off values were 0.21 and 0.07. In conclusion, the positive mutation rate of JAK2V617F and CALR in ET was higher, and the sensitivity, specificity and accuracy of the diagnosis of ET were significantly improved using the detection of JAK2V617F and CALR.

  8. BRAF V600E mutations in papillary craniopharyngioma

    Science.gov (United States)

    Brastianos, Priscilla K.; Santagata, Sandro

    2016-01-01

    Papillary craniopharyngioma is an intracranial tumor that results in high levels of morbidity. We recently demonstrated that the vast majority of these tumors harbor the oncogenic BRAF V600E mutation. The pathologic diagnosis of papillary craniopharyngioma can now be confirmed using mutation specific immunohistochemistry and targeted genetic testing. Treatment with targeted agents is now also a possibility in select situations. We recently reported a patient with a multiply recurrent papillary craniopharyngioma in whom targeting both BRAF and MEK resulted in a dramatic therapeutic response with a marked anti-tumor immune response. This work shows that activation of the MAPK pathway is the likely principal oncogenic driver of these tumors. We will now investigate the efficacy of this approach in a multicenter phase II clinical trial. Post-treatment resection samples will be monitored for the emergence of resistance mechanisms. Further advances in the non-invasive diagnosis of papillary craniopharyngioma by radiologic criteria and by cell-free DNA testing could someday allow neo-adjuvant therapy for this disease in select patient populations. PMID:26563980

  9. Insights into the folding and unfolding processes of wild-type and mutated SH3 domain by molecular dynamics and replica exchange molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Wen-Ting Chu

    Full Text Available Src-homology regions 3 (SH3 domain is essential for the down-regulation of tyrosine kinase activity. Mutation A39V/N53P/V55L of SH3 is found to be relative to the urgent misfolding diseases. To gain insight, the human and gallus SH3 domains (PDB ID: 1NYG and 2LP5, including 58 amino acids in each protein, were selected for MD simulations (Amber11, ff99SB force field and cluster analysis to investigate the influence of mutations on the spatial structure of the SH3 domain. It is found that the large conformational change of mutations mainly exists in three areas in the vicinity of protein core: RT loop, N-src loop, distal β-hairpin to 310 helix. The C-terminus of the mutated gallus SH3 is disordered after simulation, which represents the intermediate state of aggregation. The disappeared strong Hbond net in the mutated human and gallus systems will make these mutated proteins looser than the wild-type proteins. Additionally, by performing the REMD simulations on the gallus SH3 domain, the mutated domain is found to have an obvious effect on the unfolding process. These studies will be helpful for further aggregation mechanisms investigations on SH3 family.

  10. Neurological disease mutations of α3 Na+,K+-ATPase: Structural and functional perspectives and rescue of compromised function.

    Science.gov (United States)

    Holm, Rikke; Toustrup-Jensen, Mads S; Einholm, Anja P; Schack, Vivien R; Andersen, Jens P; Vilsen, Bente

    2016-11-01

    Na + ,K + -ATPase creates transmembrane ion gradients crucial to the function of the central nervous system. The α-subunit of Na + ,K + -ATPase exists as four isoforms (α1-α4). Several neurological phenotypes derive from α3 mutations. The effects of some of these mutations on Na + ,K + -ATPase function have been studied in vitro. Here we discuss the α3 disease mutations as well as information derived from studies of corresponding mutations of α1 in the light of the high-resolution crystal structures of the Na + ,K + -ATPase. A high proportion of the α3 disease mutations occur in the transmembrane sector and nearby regions essential to Na + and K + binding. In several cases the compromised function can be traced to disturbance of the Na + specific binding site III. Recently, a secondary mutation was found to rescue the defective Na + binding caused by a disease mutation. A perspective is that it may be possible to develop an efficient pharmaceutical mimicking the rescuing effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Neuropathology of the recessive A673V APP mutation: Alzheimer disease with distinctive features.

    Science.gov (United States)

    Giaccone, Giorgio; Morbin, Michela; Moda, Fabio; Botta, Mario; Mazzoleni, Giulia; Uggetti, Andrea; Catania, Marcella; Moro, Maria Luisa; Redaelli, Veronica; Spagnoli, Alberto; Rossi, Roberta Simona; Salmona, Mario; Di Fede, Giuseppe; Tagliavini, Fabrizio

    2010-12-01

    Mutations of three different genes, encoding β-amyloid precursor protein (APP), presenilin 1 and presenilin 2 are associated with familial Alzheimer's disease (AD). Recently, the APP mutation A673V has been identified that stands out from all the genetic defects previously reported in these three genes, since it causes the disease only in the homozygous state (Di Fede et al. in Science 323:1473-1477, 2009). We here provide the detailed neuropathological picture of the proband of this family, who was homozygous for the APP A673V mutation and recently came to death. The brain has been studied by histological and immunohistochemical techniques, at the optical and ultrastructural levels. Cerebral Aβ accumulation and tau pathology were severe and extensive. Peculiar features were the configuration of the Aβ deposits that were of large size, mostly perivascular and exhibited a close correspondence between the pattern elicited by amyloid stainings and the labeling obtained with immunoreagents specific for Aβ40 or Aβ42. Moreover, Aβ deposition spared the neostriatum while deeply affecting the cerebellum, and therefore was not in compliance with the hierarchical topographical sequence of involvement documented in sporadic AD. Therefore, the neuropathological picture of familial AD caused by the APP recessive mutation A673V presents distinctive characteristics compared to sporadic AD or familial AD inherited as a dominant trait. Main peculiar features are the morphology, structural properties and composition of the Aβ deposits as well as their topographic distribution in the brain.

  12. Mechanisms of acquired resistance to EGFR-tyrosine kinase inhibitor in Korean patients with lung cancer

    International Nuclear Information System (INIS)

    Ji, Wonjun; Lee, Dae Ho; Lee, Jae Cheol; Choi, Chang-Min; Rho, Jin Kyung; Jang, Se Jin; Park, Young Soo; Chun, Sung-Min; Kim, Woo Sung; Lee, Jung-Shin; Kim, Sang-We

    2013-01-01

    Despite an initial good response to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI), resistance to treatment eventually develops. Although several resistance mechanisms have been discovered, little data exist regarding Asian patient populations. Among patients at a tertiary referral hospital in Korea who initially responded well to gefitinib and later acquired resistance to treatment, we selected those with enough tissues obtained before EGFR-TKI treatment and after the onset of resistance to examine mutations by mass spectrometric genotyping technology (Asan-Panel), MET amplification by fluorescence in situ hybridization (FISH), and analysis of AXL status, epithelial-to-mesenchymal transition (EMT) and neuroendocrine markers by immunohistochemistry. Twenty-six patients were enrolled, all of whom were diagnosed with adenocarcinoma with EGFR mutations (19del: 16, L858R: 10) except one (squamous cell carcinoma with 19del). Secondary T790M mutation was detected in 11 subjects (42.3%) and four of these patients had other co-existing resistance mechanisms; increased AXL expression was observed in 5/26 patients (19.2%), MET gene amplification was noted in 3/26 (11.5%), and one patient acquired a mutation in the phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA) gene. None of the patients exhibited EMT; however, increased CD56 expression suggesting neuroendocrine differentiation was observed in two patients. Interestingly, conversion from L858R-mutant to wild-type EGFR occurred in one patient. Seven patients (26.9%) did not exhibit any known resistance mechanisms. Patients with a T790M mutation showed a more favorable prognosis. The mechanisms and frequency of acquired EGFR-TKI resistance in Koreans are comparable to those observed in Western populations; however, more data regarding the mechanisms that drive EGFR-TKI resistance are necessary

  13. A novel de novo mutation in ATP1A3 and childhood-onset schizophrenia

    Science.gov (United States)

    Smedemark-Margulies, Niklas; Brownstein, Catherine A.; Vargas, Sigella; Tembulkar, Sahil K.; Towne, Meghan C.; Shi, Jiahai; Gonzalez-Cuevas, Elisa; Liu, Kevin X.; Bilguvar, Kaya; Kleiman, Robin J.; Han, Min-Joon; Torres, Alcy; Berry, Gerard T.; Yu, Timothy W.; Beggs, Alan H.; Agrawal, Pankaj B.; Gonzalez-Heydrich, Joseph

    2016-01-01

    We describe a child with onset of command auditory hallucinations and behavioral regression at 6 yr of age in the context of longer standing selective mutism, aggression, and mild motor delays. His genetic evaluation included chromosomal microarray analysis and whole-exome sequencing. Sequencing revealed a previously unreported heterozygous de novo mutation c.385G>A in ATP1A3, predicted to result in a p.V129M amino acid change. This gene codes for a neuron-specific isoform of the catalytic α-subunit of the ATP-dependent transmembrane sodium–potassium pump. Heterozygous mutations in this gene have been reported as causing both sporadic and inherited forms of alternating hemiplegia of childhood and rapid-onset dystonia parkinsonism. We discuss the literature on phenotypes associated with known variants in ATP1A3, examine past functional studies of the role of ATP1A3 in neuronal function, and describe a novel clinical presentation associated with mutation of this gene. PMID:27626066

  14. Yeasts acquire resistance secondary to antifungal drug treatment by adaptive mutagenesis.

    Directory of Open Access Journals (Sweden)

    David Quinto-Alemany

    Full Text Available Acquisition of resistance secondary to treatment both by microorganisms and by tumor cells is a major public health concern. Several species of bacteria acquire resistance to various antibiotics through stress-induced responses that have an adaptive mutagenesis effect. So far, adaptive mutagenesis in yeast has only been described when the stress is nutrient deprivation. Here, we hypothesized that adaptive mutagenesis in yeast (Saccharomyces cerevisiae and Candida albicans as model organisms would also take place in response to antifungal agents (5-fluorocytosine or flucytosine, 5-FC, and caspofungin, CSP, giving rise to resistance secondary to treatment with these agents. We have developed a clinically relevant model where both yeasts acquire resistance when exposed to these agents. Stressful lifestyle associated mutation (SLAM experiments show that the adaptive mutation frequencies are 20 (S. cerevisiae -5-FC, 600 (C. albicans -5-FC or 1000 (S. cerevisiae--CSP fold higher than the spontaneous mutation frequency, the experimental data for C. albicans -5-FC being in agreement with the clinical data of acquisition of resistance secondary to treatment. The spectrum of mutations in the S. cerevisiae -5-FC model differs between spontaneous and acquired, indicating that the molecular mechanisms that generate them are different. Remarkably, in the acquired mutations, an ectopic intrachromosomal recombination with an 87% homologous gene takes place with a high frequency. In conclusion, we present here a clinically relevant adaptive mutation model that fulfils the conditions reported previously.

  15. Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1{sup A903V} and CESA3{sup T942I} of cellulose synthase

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Darby; Corbin, Kendall; Wang, Tuo; Gutierrez, Ryan; Bertolo, Ana; Petti, Caroalberto; Smilgies, Detlef-M; Estevez, Jose Manuel; Bonetta, Dario; Urbanowicz, Breeanna; Ehrhardt, David; Somerville, Chris; Rose, Jocelyn; Hong, Mei; DeBolt, Seth

    2012-01-08

    The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1{sup A903V} and CESA3{sup T942I} in Arabidopsis thaliana. Using {sup 13}C solid-state nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1{sup A903V} and CESA3{sup T942I} displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1{sup A903V} and CESA3{sup T942I} have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization.

  16. Functional cooperation between HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR.

    Science.gov (United States)

    Meng, Shuyan; Wang, Guorui; Lu, Yang; Fan, Zhen

    2018-07-01

    Hypoxia-inducible factor 1 (HIF-1) and activator protein 1 (AP-1) are important transcription factors regulating expression of genes involved in cell survival. HIF-1α and c-Jun are key components of HIF-1 and AP-1, respectively, and are regulated by epidermal growth factor receptor (EGFR)-mediated cell signaling and tumor microenvironmental cues. The roles of HIF-1α and c-Jun in development of resistance to EGFR tyrosine kinase inhibitor (TKI) in non-small cell lung cancer (NSCLC) with activating mutation of EGFR have not been explored. In this study, we investigated the roles of HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR. Changes in HIF-1α protein and in total and phosphorylated c-Jun levels in relation to changes in total and phosphorylated EGFR levels before and after gefitinib treatment were measured using Western blot analysis in NSCLC cells sensitive or resistant to gefitinib. The impact of overexpression of a constitutively expressed HIF-1α (HIF-1α/ΔODD) or a constitutively active c-Jun upstream regulator (SEK1 S220E/T224D mutant) on cell response to gefitinib was also examined. The effect of pharmacological inhibition of SEK1-JNK-c-Jun pathway on cell response to gefitinib was evaluated. Downregulation of HIF-1α and total and phosphorylated c-Jun levels correlated with cell inhibitory response to gefitinib better than decrease in phosphorylated EGFR did in NSCLC cells with intrinsic or acquired resistance to gefitinib. Overexpression of HIF-1α/ΔODD or SEK1 S220E/T224D mutant conferred resistance to gefitinib. There exists a positive feed-forward regulation loop between HIF-1 and c-Jun. The JNK inhibitor SP600125 sensitized gefitinib-resistant NSCLC cells to gefitinib. HIF-1α and c-Jun functionally cooperate in development of resistance to gefitinib in NSCLC cells. The translational value of inhibiting HIF-1α/c-Jun cooperation in overcoming resistance to EGFR TKI

  17. The value of the repeated examination of BRAF V600E mutation status in diagnostics of papillary thyroid cancer.

    Science.gov (United States)

    Beiša, Augustas; Beiša, Virgilijus; Stoškus, Mindaugas; Ostanevičiūtė, Elvyra; Griškevičius, Laimonas; Strupas, Kęstutis

    2016-01-01

    Nodular thyroid disease is one of the most frequently diagnosed pathologies of the adult population in iodine-deficient regions. Approximately 30% of thyroid aspirates are classified as nondiagnostic/unsatisfactory or indeterminate. However, patients with indeterminate cytology still undergo surgery. The object of this study was to determine the diagnostic value of re-examining the BRAF V600E mutation in papillary thyroid carcinoma patients. All patients underwent ultrasound guided fine-needle aspiration of a thyroid nodule. They were assigned to one of the four groups (indeterminate or positive for malignant cells) of the Bethesda System for Reporting Thyroid Cytopathology. Genetic investigation of the BRAF V600E mutation was performed for all of the fine-needle aspiration cytology specimens. All of the patients underwent surgery. Subsequently, histological investigation of the removed tissues was performed. Additional analysis of the BRAF V600E mutation from the histology specimen was then performed for the initially BRAF-negative cases. Two hundred and fourteen patients were involved in the study. One hundred and six (49.53%) patients were diagnosed with thyroid cancer. Of these 106 patients, 95 (89.62%) patients were diagnosed with papillary thyroid cancer. The BRAF V600E mutation was positive in 62 (65.26%) and negative in 33 (34.74%) histologically confirmed papillary thyroid cancer cases. After the genetic investigation, a total of 74 (77.89%) papillary thyroid cancer cases were positive for the BRAF V600E mutation and 21 (22.11%) were negative. Repeated examination of the BRAF V600E mutation status in the fine-needle aspiration may potentially increase the sensitivity of papillary thyroid cancer diagnostics.

  18. Evaluation the frequency of factor V Leiden mutation in pregnant women with preeclampsia syndrome in an Iranian population

    Directory of Open Access Journals (Sweden)

    Azadeh Azinfar

    2012-01-01

    Full Text Available Background: Role of genetic factors in etiology of preeclampsia is not confirmed yet.Objective: Gene defect frequency varies in different geographic areas as well as ethnic groups. In this study, the role of factor V Leiden mutation in the pathogenesis of preeclampsia syndrome among the pregnant population of northern shore of Persian Gulf in Iran, were considered.Materials and Methods: Between Jan. 2008 and Dec. 2009, in a nested case control study, pregnant women with preeclampsia (N=198 as cases and healthy (N=201 as controls were enrolled in the study. DNA were extracted from 10 CC peripheral blood and analyzed for presence of factor V Leiden mutation in these subjects. The maternal and neonatal outcomes of pregnancy according to the distribution of factor V Leiden were also compared among cases.Results: In total, 17(8.6% of cases and 2(1% of controls showed the factor V Leiden mutation. The incidence of factor V Leiden was typically higher in preeclamptic women than control group (OR: 9.34 %95 CI: 2.12-41.01. There was no difference in incidence rate of preterm delivery< 37 weeks (OR: 1.23 %95 CI: 0.38-4.02, very early preterm delivery<32 weeks (OR: 1.00 %95 CI: 0.12-8.46, intra uterine fetal growth restriction (IUGR (OR: 1.32 %95 CI: 0.15-11.30 ,and the rate of cesarean section (OR: 0.88 %95 CI: 0.29-2.62 among cases based on the prevalence of factor V Leiden mutation.Conclusion: The pregnant women with factor V Leiden mutation are prone for preeclampsia syndrome during pregnancy, but this risk factor was not correlated to pregnancy complications in the studied women

  19. Study of hTERT and Histone 3 Mutations in Medulloblastoma.

    Science.gov (United States)

    Viana-Pereira, Marta; Almeida, Gisele Caravina; Stavale, João Norberto; Malheiro, Susana; Clara, Carlos; Lobo, Patrícia; Pimentel, José; Reis, Rui Manuel

    2017-01-01

    Hotspot activating mutations of the telomerase reverse transcriptase (hTERT) promoter region were recently described in several tumor types. These mutations lead to enhanced expression of telomerase, being responsible for telomere maintenance and allowing continuous cell division. Additionally, there are alternative telomere maintenance mechanisms, associated with histone H3 mutations, responsible for disrupting the histone code and affecting the regulation of transcription. Here, we investigated the clinical relevance of these mechanistically related molecules in medulloblastoma. Sixty-nine medulloblastomas, formalin fixed and paraffin embedded, from a cohort of patients aged 1.5-70 years, were used to investigate the hotspot mutations of the hTERT promoter region, i.e. H3F3A and HIST1H3B, using Sanger sequencing. We successfully sequenced hTERT in all 69 medulloblastoma samples and identified a total of 19 mutated cases (27.5%). c.-124:G>A and c.-146:G>A mutations were detected, respectively, in 16 and 3 samples. Similar to previous reports, hTERT mutations were more frequent in older patients (p < 0.0001), being found only in 5 patients <20 years of age. In addition, hTERT-mutated tumors were more frequently recurrent (p = 0.026) and hTERT mutations were significantly enriched in tumors located in the right cerebellar hemisphere (p = 0.039). No mutations were found on the H3F3A or HIST1H3B genes. hTERT promoter mutations are frequent in medulloblastoma and are associated with older patients, prone to recurrence and located in the right cerebellar hemisphere. On the other hand, histone 3 mutations do not seem to be present in medulloblastoma. © 2016 S. Karger AG, Basel.

  20. Immunodeficiency associated with FCN3 mutation and ficolin-3 deficiency

    DEFF Research Database (Denmark)

    Munthe-Fog, Lea; Hummelshøj, Tina; Honoré, Christian

    2009-01-01

    Ficolin-3, encoded by the FCN3 gene and expressed in the lung and liver, is a recognition molecule in the lectin pathway of the complement system. Heterozygosity for an FCN3 frameshift mutation (rs28357092), leading to a distortion of the C-terminal end of the molecule, occurs in people without...... disease (allele frequency among whites, 0.01). We describe a patient with recurrent infections who was homozygous for this mutation, who had undetectable serum levels of ficolin-3, and who had a deficiency in ficolin-3-dependent complement activation....

  1. The HIV-1 V3 domain on field isolates: participation in generation of escape virus in vivo and accessibility to neutralizing antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Akerblom, L; Heegaard, P M

    1995-01-01

    The V3 domain is highly variable and induces HIV neutralizing antibodies (NA). Here we addressed the issues of 1) the participation of mutations in V3 in generation of neutralization resistant escape virus in vivo and 2) the applicability of synthetic V3 peptides corresponding to field isolates...... patterns against V3 peptides corresponding to sequential primary and escape field isolates, with the strongest reactivity against late isolated escape virus. These observations suggest that the neutralization epitope was influenced by the appearance of mutations. When used as immunogen in rabbits, V3...... to induce neutralizing immune sera. Seven peptides corresponding to the V3 region of primary and escape virus from 3 HIV-1 infected patients were synthesized and used for antibody (Abs) studies and immunizations. The anti-V3 Abs titre in patient serum was generally low against peptides corresponding...

  2. High prevalence of arterial thrombosis in JAK2 mutated essential thrombocythaemia: independence of the V617F allele burden

    DEFF Research Database (Denmark)

    Larsen, Thomas Stauffer; Pallisgaard, Niels; Møller, Michael Boe

    2008-01-01

    Approximately half of the patients with essential thrombocythaemia (ET) harbor the JAK2 V617F mutation. Despite a phenotypic mimicry of JAK2 V617F positive ET and polycythaemia vera (PV), the data on thromboembolic risk and correlation to JAK2 mutation status are ambiguous. On a strictly WHO defi...

  3. Radiation-induced mutations in sweet cherry (Prunus avium L.)

    Energy Technology Data Exchange (ETDEWEB)

    Saamin, S [Cocoa and Coconut Research Division, Malaysian Agricultural Research and Development Institute (Malaysia); Thompson, M M [Department of Horticulture, Oregon State University, Corvallis, OR (United States)

    1989-01-01

    Full text: Dormant scions of 'Bing' were exposed to 1-2.5 kR gamma radiation. The main buds were excised and the scions grafted to allow the growth of accessory buds into primary shoots. The frequency and types of mutations were described in a population of 3307 M{sub 1}V{sub 2} shoot. The overall mutation frequency was 2.7% incl. 0.15% growth-reduced mutants. The experiment was repeated using 3kR and 4kR fractionated doses in water. Differences in mutation frequency at 3kR and 4kR were not significant. Of 2765 surviving M{sub 1}V{sub 2} shoots derived from irradiation of accessory buds of both standard and V{sub 1} shoots, the overall mutation frequency was 3.3% incl. 1.7% partial leaf mutants, 1.0% leaf mutants, and 0.54% growth-reduced mutants. For maximum mutation rate with adequate survival we suggest acute irradiation of accessory buds in air at dosages approximating LD50. Mutant sectors in M{sub 1}V{sub 1} shoots derived from accessory buds are larger than those from main buds, as revealed by the higher number of mutant repeats. (author)

  4. Effects of the Pathogenic Mutation A117V and the Protective Mutation H111S on the Folding and Aggregation of PrP106-126: Insights from Replica Exchange Molecular Dynamics Simulations.

    Directory of Open Access Journals (Sweden)

    Lulu Ning

    Full Text Available The fragment 106-126 of prion protein exhibits similar properties to full-length prion. Experiments have shown that the A117V mutation enhances the aggregation of PrP106-126, while the H111S mutation abolishes the assembly. However, the mechanism of the change in the aggregation behavior of PrP106-126 upon the two mutations is not fully understood. In this study, replica exchange molecular dynamics simulations were performed to investigate the conformational ensemble of the WT PrP106-126 and its two mutants A117V and H111S. The obtained results indicate that the three species are all intrinsically disordered but they have distinct morphological differences. The A117V mutant has a higher propensity to form β-hairpin structures than the WT, while the H111S mutant has a higher population of helical structures. Furthermore, the A117V mutation increases the hydrophobic solvent accessible surface areas of PrP106-126 and the H111S mutation reduces the exposure of hydrophobic residues. It can be concluded that the difference in populations of β-hairpin structures and the change of hydrophobic solvent accessible areas may induce the different aggregation behaviors of the A117V and the H111S mutated PrP106-126. Understanding why the two mutations have contrary effects on the aggregation of PrP106-126 is very meaningful for further elucidation of the mechanism underlying aggregation and design of inhibitor against aggregation process.

  5. Comparison of allelic discrimination by dHPLC, HRM, and TaqMan in the detection of BRAF mutation V600E.

    Science.gov (United States)

    Carbonell, Pablo; Turpin, María C; Torres-Moreno, Daniel; Molina-Martínez, Irene; García-Solano, José; Perez-Guillermo, Miguel; Conesa-Zamora, Pablo

    2011-09-01

    The V600E mutation in the BRAF oncogene is associated with colorectal carcinomas, with mismatch-repair deficiency and, recently, with nonresponse to epidermal growth factor receptor inhibitor therapy. The use of reliable techniques for its detection is important. The aim of our study was to compare the performance characteristics in V600E detection of denaturing high-performance liquid chromatography (dHPLC) and high-resolution melting (HRM) with TaqMan allelic discrimination as well as direct-sequencing methods in a series of 195 colorectal paraffin-embedded specimens up to the age of 15 years. The effectiveness for obtaining results on mutation status was best using TaqMan (96.9%), followed by dHPLC (93.3%), HRM (88.7%), and sequencing (88.2%). In general, TaqMan was best for analyzing older tissues, whereas sequencing was the least efficient. Heterozygotic V600E was detected in 11.6%, 9.9%, 11.6%, and 9.9% of tissues using TaqMan, dHPLC, HRM, and sequencing, respectively. Result concordances between dHPLC and TaqMan or sequencing were excellent (κ = 0.9411 and κ = 0.8988, respectively); for HRM, the concordances were good (κ = 0.7973 and κ = 0.7488, respectively). By using DNA dilutions from tumor tissue, a minimum of 10% of V600E harboring cancer content was required for the analysis by dHPLC and HRM. dHPLC could detect four non-V600E mutations, whereas HRM detected one. Our results indicate that dHPLC and HRM are techniques that can be reliably used for the detection of the BRAFV600E mutation in archival paraffin-embedded tissues. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  6. PI3Kδ inhibitor idelalisib in combination with BTK inhibitor ONO/GS-4059 in diffuse large B cell lymphoma with acquired resistance to PI3Kδ and BTK inhibitors.

    Directory of Open Access Journals (Sweden)

    Anella Yahiaoui

    Full Text Available Activated B-cell-like diffuse large B-cell lymphoma relies on B-cell receptor signaling to drive proliferation and survival. Downstream of the B-cell receptor, the key signaling kinases Bruton's tyrosine kinase and phosphoinositide 3-kinase δ offer opportunities for therapeutic intervention by agents such as ibrutinib, ONO/GS-4059, and idelalisib. Combination therapy with such targeted agents could provide enhanced efficacy due to complimentary mechanisms of action. In this study, we describe both the additive interaction of and resistance mechanisms to idelalisib and ONO/GS-4059 in a model of activated B-cell-like diffuse large B-cell lymphoma. Significant tumor regression was observed with a combination of PI3Kδ and Bruton's tyrosine kinase inhibitors in the mouse TMD8 xenograft. Acquired resistance to idelalisib in the TMD8 cell line occurred by loss of phosphatase and tensin homolog and phosphoinositide 3-kinase pathway upregulation, but not by mutation of PIK3CD. Sensitivity to idelalisib could be restored by combining idelalisib and ONO/GS-4059. Further evaluation of targeted inhibitors revealed that the combination of idelalisib and the phosphoinositide-dependent kinase-1 inhibitor GSK2334470 or the AKT inhibitor MK-2206 could partially overcome resistance. Characterization of acquired Bruton's tyrosine kinase inhibitor resistance revealed a novel tumor necrosis factor alpha induced protein 3 mutation (TNFAIP3 Q143*, which led to a loss of A20 protein, and increased p-IκBα. The combination of idelalisib and ONO/GS-4059 partially restored sensitivity in this resistant line. Additionally, a mutation in Bruton's tyrosine kinase at C481F was identified as a mechanism of resistance. The combination activity observed with idelalisib and ONO/GS-4059, taken together with the ability to overcome resistance, could lead to a new therapeutic option in activated B-cell-like diffuse large B-cell lymphoma. A clinical trial is currently underway to

  7. Increased frequency of co-existing JAK2 exon-12 or MPL exon-10 mutations in patients with low JAK2(V617F) allelic burden.

    Science.gov (United States)

    Nussenzveig, Roberto H; Pham, Ha T; Perkins, Sherrie L; Prchal, Josef T; Agarwal, Archana M; Salama, Mohamed E

    2016-01-01

    The frequency of co-existing JAK2(V617F)/MPL and JAK2(V617F)/JAK2 exon-12 mutations has not been previously investigated in MPNs. Poor survival was reported in primary myelofibrosis with low JAK2(V617F) allelic burden. However, mutational status of JAK2 exon-12 or MPL were not reported in these patients. This study developed a cost-effective multiplex high resolution melt assay that screens for mutations in JAK2 gene exons-12 and -14 ((V617F)) and MPL gene exon-10. Co-existing mutations with JAK2(V617F) were detected in 2.9% (6/208; two JAK2 exon-12 and four MPL exon-10) patient specimens with known JAK2(V617F) (allelic-burden range: 0.1-96.8%). Co-existing mutations were detected in specimens with MPL exon-10 mutation should be pursued.

  8. Elastatinal and leupeptin: effects on u.v.-induced mutation and sister-chromatid exchanges in Chinese hamster cells

    International Nuclear Information System (INIS)

    Paul, P.; Fujiwara, Y.

    1981-01-01

    Microbial protease inhibitors elastatinal and leupeptin were tested for cytotoxicity and for effects on spontaneous and u.v.-induced 6-thioguanine-resistant (6TGsup(r)) mutation and sister-chromatid exchange (SCE) in V79 Chinese hamster cells. Continuous treatment with elastatinal exhibited marked cytotoxicity, while leupeptin was almost non-cytotoxic. Elastatinal rapidly induced cytotoxic effects as a function of its concentration and time of exposure. Near maximum cytotoxicity was reached after exposures of 6-8 h and this was partially abolished by the presence of 2.5 μg cycloheximide per ml. Concentrations of either protease inhibitor which gave 60-80% survival had no appreciable effects on u.v. survival and frequencies of spontaneous and u.v.-induced 6TGsup(r) mutation and SCE. However, reconstruction experiments revealed that pretreatments of 6TGsup(r) and 6TGsup(s) (wild-type) cells with these inhibitors for 6 days tended to block metabolic co-operation in their co-cultures. Thus, elastatinal and leupeptin are neither clastogenic nor mutagenic by themselves, and do not alter mutation fixation and expression. (author)

  9. Elastatinal and leupeptin: effects on u.v.-induced mutation and sister-chromatid exchanges in Chinese hamster cells

    International Nuclear Information System (INIS)

    Paul, P.; Fujiwara, Y.

    1981-01-01

    Microbial protease inhibitors elastatinal and leupeptin were tested for cytotoxicity and for effects on spontaneous and u.v.-induced 6-thioguanine-resistant (6TGr) mutation and sister-chromatid exchange (SCE) in V79 Chinese hamster cells. Continuous treatment with elastatinal exhibited marked cytotoxicity, while leupeptin was almost non-cytotoxic. Elastatinal rapidly induced cytotoxic effects as a function of its concentration and time of exposure. Near maximum cytotoxicity was reached after exposure of 6-8 h and this was partially abolished by the presence of 2.5 micrograms cycloheximide per ml. Concentrations of either protease inhibitor which gave 60-80% survival had no appreciable effects on u.v. survival and frequencies of spontaneous and u.v.-induced 6TGr mutation and SCE. However, reconstruction experiments revealed that pretreatments of 6TGr and 6TGs (wild-type) cells with these inhibitors for 6 days tended to block metabolic co-operation in their co-cultures. Thus, elastatinal and leupeptin are neither clastogenic mutagenic by themselves, and do not alter mutation fixation and expression

  10. Determination of D816V mutation in the c-kIt gene in the Slovenian patients with acute myeloid leukemia and systemic mastocytosis

    Directory of Open Access Journals (Sweden)

    Martina Fink

    2012-12-01

    Full Text Available Background: D816V mutation in the C-KIT gene is present in more than 90 % of patients with systemic mastocytosis (SM and 2–7 % of patients with acute myeloid leukemia (AML. D816V mutation is caused by the substitution of adenine with thymine at 2447 nucleotide sequence in the C-KIT gene. This nucleotide substitution causes the replacment of aspartate acid by valine at codon 816 of the KIT protein. KIT protein with D816V mutation acts as constitutively active tyrosine kinase that promotes cell proliferation and inhibits apoptosis. The purpose of our study was to determine the incidence of D816V mutation in the C-KIT gene in Slovenian patients with AML and in patients with suspected systemic mastocytosis. Patients and methods: In the retrospective study, 71 patients with AML and 25 patients with suspected systemic mastocytosis were included. D816V mutation in the C-KIT gene was determined by polymerase chain reaction (PCR and the resulting PCR products were analyzed by agarose gel electrophoresis. Results: D816V mutation in KIT protein was determined in 7 % of patients with AML and in 32 % patients with suspected systemic mastocytosis. Conclusions: Identification of D816V mutation in the C-KIT gene must always be performed in patients with suspected systemic mastocytosis. The determination of this mutation contributes to the diagnosis and treatment selection. The finding of D816V mutation in the C-KIT gene in patients with AML and concomitant genetic modifications RUNX-RUNX1T1 (typical translocation t(8; 21 (q22, q22 or CBFB-MYH11, which is the result of inversion on chromosome 16–(inv (16 (p13, q22, however, indicates a faster, more aggressive course of the disease and predicts a worse outcome. The finding of the mutation in other patients with AML may indicate the presence of concomitant AML and SM, which was not found in our patients.

  11. Mutations in the VEGFR3 signaling pathway explain 36% of familial lymphedema

    DEFF Research Database (Denmark)

    Mendola, A; Schlögel, M J; Ghalamkarpour, A

    2013-01-01

    Lymphedema is caused by dysfunction of lymphatic vessels, leading to disabling swelling that occurs mostly on the extremities. Lymphedema can be either primary (congenital) or secondary (acquired). Familial primary lymphedema commonly segregates in an autosomal dominant or recessive manner. It can...... of these putative genes. We screened 78 index patients from families with inherited lymphedema for mutations in FLT4, GJC2, FOXC2, SOX18, GATA2, CCBE1, and PTPN14. Altogether, we discovered 28 mutations explaining 36% of the cases. Additionally, 149 patients with sporadic primary lymphedema were screened for FLT4......, FOXC2, SOX18, CCBE1, and PTPN14. Twelve mutations were found that explain 8% of the cases. Still unidentified is the genetic cause of primary lymphedema in 64% of patients with a family history and 92% of sporadic cases. Identification of those genes is important for understanding of etiopathogenesis...

  12. Survival According to BRAF-V600 Tumor Mutations – An Analysis of 437 Patients with Primary Melanoma

    Science.gov (United States)

    Meckbach, Diana; Bauer, Jürgen; Pflugfelder, Annette; Meier, Friedegund; Busch, Christian; Eigentler, Thomas K.; Capper, David; von Deimling, Andreas; Mittelbronn, Michel; Perner, Sven; Ikenberg, Kristian; Hantschke, Markus; Büttner, Petra; Garbe, Claus; Weide, Benjamin

    2014-01-01

    The prognostic impact of BRAF-V600 tumor mutations in stage I/II melanoma patients has not yet been analyzed in detail. We investigated primary tumors of 437 patients diagnosed between 1989 and 2006 by Sanger sequencing. Mutations were detected in 38.7% of patients and were associated with age, histological subtype as well as mitotic rate. The mutational rate was 36.7% in patients with disease-free course and 51.7% in those with subsequent distant metastasis (p = 0.031). No difference in overall survival (p = 0.119) but a trend for worse distant-metastasis-free survival (p = 0.061) was observed in BRAF mutant compared to BRAF wild-type patients. Independent prognostic factors for overall survival were tumor thickness, mitotic rate and ulceration. An interesting significant prognostic impact was observed in patients with tumor thickness of 1 mm or less, with the mutation present in 6 of 7 patients dying from melanoma. In conclusion, no significant survival differences were found according to BRAF-V600 tumor mutations in patients with primary melanoma but an increasing impact of the mutational status was observed in the subgroup of patients with tumor thickness of 1 mm or less. A potential role of the mutational status as a prognostic factor especially in this subgroup needs to be investigated in larger studies. PMID:24475086

  13. Mutation effect of MeV protons on bioflocculant bacteria Bacillus cereus

    International Nuclear Information System (INIS)

    Yang, Y.N.; Ren, N.; Xue, J.M.; Yang, J.; Rong, B.L.

    2007-01-01

    A 3.2 MeV proton beam was used to irradiate bioflocculant bacteria (Bacillus cereus) to achieve mutation. The ion fluence ranged from 10 11 to 10 14 /cm 2 . Most of the bacteria were killed when the ion fluence reached 10 12 ions/cm 2 . The survival ratio drops in an exponential way on further increasing the ion fluence. The flocculating activity of 7 samples out of 51 showed a positive change, and a perfect mutant C7-23 with a stable high capacity of bioflocculant production was found. RAPD measurements showed that a new lane appears in this sample. The flocculating activity of the C7-23 bacteria increased by factors of 22%, 54% and 217% under pH values of 4, 7 or 10, respectively

  14. Factor V Leiden mutation, prothrombin gene mutation, and deficiencies in coagulation inhibitors associated with Budd-Chiari syndrome and portal vein thrombosis: results of a case-control study

    NARCIS (Netherlands)

    Janssen, H. L.; Meinardi, J. R.; Vleggaar, F. P.; van Uum, S. H.; Haagsma, E. B.; van der Meer, F. J.; van Hattum, J.; Chamuleau, R. A.; Adang, R. P.; Vandenbroucke, J. P.; van Hoek, B.; Rosendaal, F. R.

    2000-01-01

    In a collaborative multicenter case-control study, we investigated the effect of factor V Leiden mutation, prothrombin gene mutation, and inherited deficiencies of protein C, protein S, and antithrombin on the risk of Budd-Chiari syndrome (BCS) and portal vein thrombosis (PVT). We compared 43 BCS

  15. Factor V Leiden mutation, prothrombin gene mutation, and deficiencies in coagulation inhibitors associated with Budd-Chiari syndrome and portal vein thrombosis : results of a case-control study

    NARCIS (Netherlands)

    Janssen, HLA; Meinardi, [No Value; Vleggaar, FP; van Uum, SHM; Haagsma, EB; van der Meer, FJM; van Hattum, J; Chamuleau, RAFM; Adang, RP; Vandenbroucke, JP; van Hoek, B; Rosendaal, FR

    2000-01-01

    In a collaborative multicenter case-control study, we investigated the effect of factor V Leiden mutation, prothrombin gene mutation, and inherited deficiencies of protein C, protein S, and antithrombin on the risk of Budd-Chiari syndrome (BCS) and portal vein thrombosis (PVT), We compared 43 BCS

  16. A Novel Founder Mutation in MYBPC3: Phenotypic Comparison With the Most Prevalent MYBPC3 Mutation in Spain.

    Science.gov (United States)

    Sabater-Molina, María; Saura, Daniel; García-Molina Sáez, Esperanza; González-Carrillo, Josefa; Polo, Luis; Pérez-Sánchez, Inmaculada; Olmo, María Del Carmen; Oliva-Sandoval, María José; Barriales-Villa, Roberto; Carbonell, Pablo; Pascual-Figal, Domigo; Gimeno, Juan R

    2017-02-01

    Mutations in MYBPC3 are the cause of hypertrophic cardiomyopathy (HCM). Although most lead to a truncating protein, the severity of the phenotype differs. We describe the clinical phenotype of a novel MYBPC3 mutation, p.Pro108Alafs*9, present in 13 families from southern Spain and compare it with the most prevalent MYBPC3 mutation in this region (c.2308+1 G>A). We studied 107 relatives of 13 index cases diagnosed as HCM carriers of the p.Pro108Alafs*9 mutation. Pedigree analysis, clinical evaluation, and genotyping were performed. A total of 54 carriers of p.Pro108Alafs*9 were identified, of whom 39 had HCM. There were 5 cases of sudden death in the 13 families. Disease penetrance was greater as age increased and HCM patients were more frequently male and developed disease earlier than female patients. The phenotype was similar in p.Pro108Alafs*9 and in c.2308+1 G>A, but differences were found in several risk factors and in survival. There was a trend toward a higher left ventricular mass in p.Pro108Alafs*9 vs c.2308+1G>A. Cardiac magnetic resonance revealed a similar extent and pattern of fibrosis. The p.Pro108Alafs*9 mutation is associated with HCM, high penetrance, and disease onset in middle age. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  17. A novel de novo activating mutation in STAT3 identified in a patient with common variable immunodeficiency (CVID).

    Science.gov (United States)

    Russell, Mark A; Pigors, Manuela; Houssen, Maha E; Manson, Ania; Kelsell, David; Longhurst, Hilary; Morgan, Noel G

    2018-02-01

    Common variable immunodeficiency (CVID) is characterised by repeated infection associated with primary acquired hypogammaglobulinemia. CVID frequently has a complex aetiology but, in certain cases, it has a monogenic cause. Recently, variants within the gene encoding the transcription factor STAT3 were implicated in monogenic CVID. Here, we describe a patient presenting with symptoms synonymous with CVID, who displayed reduced levels of IgG and IgA, repeated viral infections and multiple additional co-morbidities. Whole-exome sequencing revealed a de novo novel missense mutation in the coiled-coil domain of STAT3 (c.870A>T; p.K290N). Accordingly, the K290N variant of STAT3 was generated, and a STAT3 responsive dual-luciferase reporter assay revealed that the variant strongly enhances STAT3 transcriptional activity both under basal and stimulated (with IL-6) conditions. Overall, these data complement earlier studies in which CVID-associated STAT3 mutations are predicted to enhance transcriptional activity, suggesting that such patients may respond favourably to IL-6 receptor antagonists (e.g. tocilizumab). Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Presence of two alternative kdr-like mutations, L1014F and L1014S, and a novel mutation, V1010L, in the voltage gated Na+ channel of Anopheles culicifacies from Orissa, India

    Directory of Open Access Journals (Sweden)

    Bhatt Rajendra M

    2010-05-01

    Full Text Available Abstract Background Knockdown resistance in insects resulting from mutation(s in the voltage gated Na+ channel (VGSC is one of the mechanisms of resistance against DDT and pyrethroids. Recently a point mutation leading to Leu-to-Phe substitution in the VGSC at residue 1014, a most common kdr mutation in insects, was reported in Anopheles culicifacies-a major malaria vector in the Indian subcontinent. This study reports the presence of two additional amino acid substitutions in the VGSC of an An. culicifacies population from Malkangiri district of Orissa, India. Methods Anopheles culicifacies sensu lato (s.l. samples, collected from a population of Malkangiri district of Orissa (India, were sequenced for part of the second transmembrane segment of VGSC and analyzed for the presence of non-synonymous mutations. A new primer introduced restriction analysis-PCR (PIRA-PCR was developed for the detection of the new mutation L1014S. The An. culicifacies population was genotyped for the presence of L1014F substitution by an amplification refractory mutation system (ARMS and for L1014S substitutions by using a new PIRA-PCR developed in this study. The results were validated through DNA sequencing. Results DNA sequencing of An. culicifacies individuals collected from district Malkangiri revealed the presence of three amino acid substitutions in the IIS6 transmembrane segments of VGSC, each one resulting from a single point mutation. Two alternative point mutations, 3042A>T transversion or 3041T>C transition, were found at residue L1014 leading to Leu (TTA-to-Phe (TTT or -Ser (TCA changes, respectively. A third and novel substitution, Val (GTG-to-Leu (TTG or CTG, was identified at residue V1010 resulting from either of the two transversions–3028G>T or 3028G>C. The L1014S substitution co-existed with V1010L in all the samples analyzed irrespective of the type of point mutation associated with the latter. The PIRA-PCR strategy developed for the

  19. Clinical and biological characteristics of cervical neoplasias with FGFR3 mutation

    Directory of Open Access Journals (Sweden)

    Thiery Jean

    2005-05-01

    Full Text Available Abstract Background We have previously reported activating mutations of the gene coding for the fibroblast growth factor receptor 3 (FGFR3 in invasive cervical carcinoma. To further analyze the role of FGFR3 in cervical tumor progression, we extended our study to screen a total of 75 invasive tumors and 80 cervical intraepithelial neoplasias (40 low-grade and 40 high-grade lesions. Results Using single strand conformation polymorphism (SSCP followed by DNA sequencing, we found FGFR3 mutation (S249C in all cases in 5% of invasive cervical carcinomas and no mutation in intraepithelial lesions. These results suggest that, unlike in bladder carcinoma, FGFR3 mutation does not or rarely occur in non invasive lesions. Compared to patients with wildtype FGFR3 tumor, patients with S249C FGFR3 mutated tumors were older (mean age 64 vs. 49.4 years, P = 0.02, and were more likely to be associated with a non-16/18 HPV type in their tumor. Gene expression analysis demonstrated that FGFR3 mutated tumors were associated with higher FGFR3b mRNA expression levels compared to wildtype FGFR3 tumors. Supervised analysis of Affymetrix expression data identified a significant number of genes specifically differentially expressed in tumors with respect to FGFR3 mutation status. Conclusion This study suggest that tumors with FGFR3 mutation appear to have distinctive clinical and biological characteristics that may help in defining a population of patients for FGFR3 mutation screening.

  20. Novel CREB3L3 Nonsense Mutation in a Family With Dominant Hypertriglyceridemia.

    Science.gov (United States)

    Cefalù, Angelo B; Spina, Rossella; Noto, Davide; Valenti, Vincenza; Ingrassia, Valeria; Giammanco, Antonina; Panno, Maria D; Ganci, Antonina; Barbagallo, Carlo M; Averna, Maurizio R

    2015-12-01

    Cyclic AMP responsive element-binding protein 3-like 3 (CREB3L3) is a novel candidate gene for dominant hypertriglyceridemia. To date, only 4 kindred with dominant hypertriglyceridemia have been found to be carriers of 2 nonsense mutations in CREB3L3 gene (245fs and W46X). We investigated a family in which hypertriglyceridemia displayed an autosomal dominant pattern of inheritance. The proband was a 49-year-old woman with high plasma triglycerides (≤1300 mg/dL; 14.68 mmol/L). Her father had a history of moderate hypertriglyceridemia, and her 51-year-old brother had triglycerides levels as high as 1600 mg/dL (18.06 mmol/L). To identify the causal mutation in this family, we analyzed the candidate genes of recessive and dominant forms of primary hypertriglyceridemia by direct sequencing. The sequencing of CREB3L3 gene led to the discovery of a novel minute frame shift mutation in exon 3 of CREB3L3 gene, predicted to result in the formation of a truncated protein devoid of function (c.359delG-p.K120fsX20). Heterozygosity for the c.359delG mutation resulted in a severe phenotype occurring later in life in the proband and her brother and a good response to diet and a hypotriglyceridemic treatment. The same mutation was detected in a 13-year-old daughter who to date is normotriglyceridemic. We have identified a novel pathogenic mutation in CREB3L3 gene in a family with dominant hypertriglyceridemia with a variable pattern of penetrance. © 2015 American Heart Association, Inc.

  1. An inhibitor of potentially lethal damage (PLD) repair reduces the frequency of γ-ray mutations in cultured Chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Yokoiyama, A.; Kada, T.; Kuroda, Y.

    1992-01-01

    Cordycepin (3'-deoxyadenosine, 3 - dA) is an RNA antimetabolite and a radiosensitizer in cultured mammalian cells. In the present paper, the effects of 3'-dA on γ-ray-induced lethality and 6-thioguanine (6TG)-resistant mutations in cultured Chinese hamster V79 cells were examined. 3'-dA had the effect of sensitizing the lethality induced by γ-rays. The potentially lethal damage (PLD) repair produced by post-incubation cells in Hanks' solution after γ-irradiation was almost completely suppressed by 5x10 -5 M 3'-dA. When cells were irradiated with 10 Gy γ-rays and incubated with 3'-dA for 5 h, the frequency of 6TG-resistant mutations induced by γ-rays decreased to 1/6 of that of the irradiated cells incubated without 3'-dA. The decrease in the frequency of γ-ray-induced mutations was dependent on the length of incubation time with 3'-dA. It is suggested that the inhibition of PLD repair by 3'-dA may be that of error-prone repair. (author). 26 refs.; 5 figs

  2. Enthesitis in a 16-Year-Old Boy with M694V Mutation

    Directory of Open Access Journals (Sweden)

    Syert Luidolf Nienhuis

    2016-01-01

    Full Text Available Introduction. FMF (Familial Mediterranean Fever is characterized by recurrent attacks of fever and articular pain. Enthesitis is the hallmark of pain in spondyloarthropathy. Literature suggests association of M694V mutation and enthesitis. We report a case of a 16-year-old boy with enthesitis and FMF. Case Presentation. A 16-year-old boy of Turkish origin with a history of FMF presented with localized tenderness of the heel and severe disability. MRI showed an enthesitis of the plantar fascia. Standard treatment of FMF and enthesitis was not successful. After referral to a university hospital and expert opinion of a professor in rheumatology, this enthesitis should be treated as an enthesitis related arthritis. With this treatment, our patient fully recovered 8 months after the onset of the disease symptoms. Conclusion. M694V mutation related enthesitis should be considered in FMF patients with enthesitis. We would suggest treatment for enthesitis related arthritis in similar cases. This is of clinical importance because the treatment is different from treatment of enthesitis or articular pain caused by FMF.

  3. Neuromyelitis optica, atypical hemophagocytic lymphohistiocytosis and heterozygous perforin A91V mutation.

    Science.gov (United States)

    Palterer, Boaz; Brugnolo, Francesca; Sieni, Elena; Barilaro, Alessandro; Parronchi, Paola

    2017-10-15

    Neuromyelitis optica is an autoimmune demyelinating inflammatory disease characterized by optic neuritis and myelitis with anti-aquaporin 4 antibodies. Hemophagocytic lymphohistiocytosis is a severe systemic inflammatory syndrome that can present in a genetic primary form or secondarily to infective, neoplastic or autoimmune diseases. Our case discusses the first reported case of atypical late-onset hemophagocytic lymphohistiocytosis in a patient with neuromyelitis optica, with multiple triggering factors and carrying the common A91V hypomorphic perforin mutation, that blurs the distinction between primary and secondary forms. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effect of the achondroplasia mutation on FGFR3 dimerization and FGFR3 structural response to fgf1 and fgf2: A quantitative FRET study in osmotically derived plasma membrane vesicles.

    Science.gov (United States)

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-07-01

    The G380R mutation in the transmembrane domain of FGFR3 is a germline mutation responsible for most cases of Achondroplasia, a common form of human dwarfism. Here we use quantitative Fӧster Resonance Energy Transfer (FRET) and osmotically derived plasma membrane vesicles to study the effect of the achondroplasia mutation on the early stages of FGFR3 signaling in response to the ligands fgf1 and fgf2. Using a methodology that allows us to capture structural changes on the cytoplasmic side of the membrane in response to ligand binding to the extracellular domain of FGFR3, we observe no measurable effects of the G380R mutation on FGFR3 ligand-bound dimer configurations. Instead, the most notable effect of the achondroplasia mutation is increased propensity for FGFR3 dimerization in the absence of ligand. This work reveals new information about the molecular events that underlie the achondroplasia phenotype, and highlights differences in FGFR3 activation due to different single amino-acid pathogenic mutations. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. [Chronologic analysis of clonal evolution in acquired aplastic anemia and sMDS].

    Science.gov (United States)

    Yoshizato, Tetsuichi

    2016-04-01

    Acquired aplastic anemia (AA) is a prototype of idiopathic bone marrow failure, which is caused by immune-mediated destruction of hematopoietic progenitors but is also characterized by frequent evolution to clonal myeloid disorders, such as myelodysplastic syndromes or acute myeloid leukemia. However, the chronological behavior of the clonality and its link to myelodysplastic syndrome or acute myeloid leukemia has not been fully explored. To define the clonality and its chronological behavior in AA, we performed targeted sequencing (N=439) in cases with AA. Somatic mutations were detected in 1/3 of our cases. Mutations were most frequently found in DNMT3A, followed by BCOR, PIGA and ASXL1. The prevalence of mutations increased with age. The clone sizes in DNMT3A and ASXL1 were prone to increase, whereas those of BCOR and PIGA were more likely to decrease or remain stable. Mutations in PIGA, BCOR and BCORL1 correlated with a better response to immunosuppressive therapy and more favorable survival. On the other hand, other mutations were associated with worse outcomes. The chronological dynamics of clonality showed marked variability and were not necessarily associated with prognosis.

  6. Insight into resistance mechanisms of AZD4547 and E3810 to FGFR1 gatekeeper mutation via theoretical study

    Directory of Open Access Journals (Sweden)

    Liang D

    2017-02-01

    Full Text Available Donglou Liang,1,* Qiaowan Chen,2,* Yujin Guo,1 Ting Zhang,3 Wentao Guo4 1Pharmacy Department, Jining First People’s Hospital, 2Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 3Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, 4School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China *These authors contributed equally to this work Abstract: Inhibitors targeting the amplification of the fibroblast growth factor receptor 1 (FGFR1 have found success in the treatment of FGFR1-positive squamous cell lung and breast cancers. A secondary mutation of gatekeeper residue (V561M in the binding site has been linked to the acquired resistance. Recently, two well-known small molecule inhibitors of FGFR1, AZD4547 and E3810, reported that the V561M mutation confers significant resistance to E3810, while retaining affinity for AZD4547. FGFR1 is widely investigated as potential therapeutic target, while there are few computational studies made to understand the resistance mechanisms about FGFR1 V561M gatekeeper mutation. In this study, molecular docking, classical molecular dynamics simulations, molecular mechanics/generalized born surface area (MM/GBSA free energy calculations, and umbrella sampling (US simulations were carried out to make clear the principle of the binding preference of AZD4547 and E3810 toward FGFR1 V561M gatekeeper mutation. The results provided by MM/GBSA reveal that AZD4547 has similar binding affinity to both FGFR1WT and FGFR1V561M, whereas E3810 has much higher binding affinity to FGFR1WT than to FGFR1V561M. Comparison of individual energy terms indicates that the major variation of E3810 between FGFR1WT and FGFR1V561M are van der Waals interactions. In addition, US simulations prove that the potential of mean force (PMF profile of AZD4547 toward FGFR1WT and FGFR1V561M has similar PMF depth. However, the PMF profile

  7. Zidovudine (AZT monotherapy selects for the A360V mutation in the connection domain of HIV-1 reverse transcriptase.

    Directory of Open Access Journals (Sweden)

    Jessica H Brehm

    Full Text Available We previously demonstrated in vitro that zidovudine (AZT selects for A371V in the connection domain and Q509L in ribonuclease H (RNase H domain of HIV-1 reverse transcriptase (RT which, together with the thymidine analog mutations D67N, K70R and T215F, confer greater than 100-fold AZT resistance. The goal of the current study was to determine whether AZT monotherapy in HIV-1 infected patients also selects the A371V, Q509L or other mutations in the C-terminal domains of HIV-1 RT.Full-length RT sequences in plasma obtained pre- and post-therapy were compared in 23 participants who received AZT monotherapy from the AIDS Clinical Trials Group study 175. Five of the 23 participants reached a primary study endpoint. Mutations significantly associated with AZT monotherapy included K70R (p = 0.003 and T215Y (p = 0.013 in the polymerase domain of HIV-1 RT, and A360V (p = 0.041 in the connection domain of HIV-1 RT. HIV-1 drug susceptibility assays demonstrated that A360V, either alone or in combination with thymidine analog mutations, decreased AZT susceptibility in recombinant viruses containing participant-derived full-length RT sequences or site-directed mutant RT. Biochemical studies revealed that A360V enhances the AZT-monophosphate excision activity of purified RT by significantly decreasing the frequency of secondary RNase H cleavage events that reduce the RNA/DNA duplex length and promote template/primer dissociation.The A360V mutation in the connection domain of RT was selected in HIV-infected individuals that received AZT monotherapy and contributed to AZT resistance.

  8. New insights into genotype-phenotype correlation for GLI3 mutations.

    Science.gov (United States)

    Démurger, Florence; Ichkou, Amale; Mougou-Zerelli, Soumaya; Le Merrer, Martine; Goudefroye, Géraldine; Delezoide, Anne-Lise; Quélin, Chloé; Manouvrier, Sylvie; Baujat, Geneviève; Fradin, Mélanie; Pasquier, Laurent; Megarbané, André; Faivre, Laurence; Baumann, Clarisse; Nampoothiri, Sheela; Roume, Joëlle; Isidor, Bertrand; Lacombe, Didier; Delrue, Marie-Ange; Mercier, Sandra; Philip, Nicole; Schaefer, Elise; Holder, Muriel; Krause, Amanda; Laffargue, Fanny; Sinico, Martine; Amram, Daniel; André, Gwenaelle; Liquier, Alain; Rossi, Massimiliano; Amiel, Jeanne; Giuliano, Fabienne; Boute, Odile; Dieux-Coeslier, Anne; Jacquemont, Marie-Line; Afenjar, Alexandra; Van Maldergem, Lionel; Lackmy-Port-Lis, Marylin; Vincent-Delorme, Catherine; Chauvet, Marie-Liesse; Cormier-Daire, Valérie; Devisme, Louise; Geneviève, David; Munnich, Arnold; Viot, Géraldine; Raoul, Odile; Romana, Serge; Gonzales, Marie; Encha-Razavi, Ferechte; Odent, Sylvie; Vekemans, Michel; Attie-Bitach, Tania

    2015-01-01

    The phenotypic spectrum of GLI3 mutations includes autosomal dominant Greig cephalopolysyndactyly syndrome (GCPS) and Pallister-Hall syndrome (PHS). PHS was first described as a lethal condition associating hypothalamic hamartoma, postaxial or central polydactyly, anal atresia and bifid epiglottis. Typical GCPS combines polysyndactyly of hands and feet and craniofacial features. Genotype-phenotype correlations have been found both for the location and the nature of GLI3 mutations, highlighting the bifunctional nature of GLI3 during development. Here we report on the molecular and clinical study of 76 cases from 55 families with either a GLI3 mutation (49 GCPS and 21 PHS), or a large deletion encompassing the GLI3 gene (6 GCPS cases). Most of mutations are novel and consistent with the previously reported genotype-phenotype correlation. Our results also show a correlation between the location of the mutation and abnormal corpus callosum observed in some patients with GCPS. Fetal PHS observations emphasize on the possible lethality of GLI3 mutations and extend the phenotypic spectrum of malformations such as agnathia and reductional limbs defects. GLI3 expression studied by in situ hybridization during human development confirms its early expression in target tissues.

  9. New insights into genotype–phenotype correlation for GLI3 mutations

    Science.gov (United States)

    Démurger, Florence; Ichkou, Amale; Mougou-Zerelli, Soumaya; Le Merrer, Martine; Goudefroye, Géraldine; Delezoide, Anne-Lise; Quélin, Chloé; Manouvrier, Sylvie; Baujat, Geneviève; Fradin, Mélanie; Pasquier, Laurent; Megarbané, André; Faivre, Laurence; Baumann, Clarisse; Nampoothiri, Sheela; Roume, Joëlle; Isidor, Bertrand; Lacombe, Didier; Delrue, Marie-Ange; Mercier, Sandra; Philip, Nicole; Schaefer, Elise; Holder, Muriel; Krause, Amanda; Laffargue, Fanny; Sinico, Martine; Amram, Daniel; André, Gwenaelle; Liquier, Alain; Rossi, Massimiliano; Amiel, Jeanne; Giuliano, Fabienne; Boute, Odile; Dieux-Coeslier, Anne; Jacquemont, Marie-Line; Afenjar, Alexandra; Van Maldergem, Lionel; Lackmy-Port-Lis, Marylin; Vincent- Delorme, Catherine; Chauvet, Marie-Liesse; Cormier-Daire, Valérie; Devisme, Louise; Geneviève, David; Munnich, Arnold; Viot, Géraldine; Raoul, Odile; Romana, Serge; Gonzales, Marie; Encha-Razavi, Ferechte; Odent, Sylvie; Vekemans, Michel; Attie-Bitach, Tania

    2015-01-01

    The phenotypic spectrum of GLI3 mutations includes autosomal dominant Greig cephalopolysyndactyly syndrome (GCPS) and Pallister–Hall syndrome (PHS). PHS was first described as a lethal condition associating hypothalamic hamartoma, postaxial or central polydactyly, anal atresia and bifid epiglottis. Typical GCPS combines polysyndactyly of hands and feet and craniofacial features. Genotype–phenotype correlations have been found both for the location and the nature of GLI3 mutations, highlighting the bifunctional nature of GLI3 during development. Here we report on the molecular and clinical study of 76 cases from 55 families with either a GLI3 mutation (49 GCPS and 21 PHS), or a large deletion encompassing the GLI3 gene (6 GCPS cases). Most of mutations are novel and consistent with the previously reported genotype–phenotype correlation. Our results also show a correlation between the location of the mutation and abnormal corpus callosum observed in some patients with GCPS. Fetal PHS observations emphasize on the possible lethality of GLI3 mutations and extend the phenotypic spectrum of malformations such as agnathia and reductional limbs defects. GLI3 expression studied by in situ hybridization during human development confirms its early expression in target tissues. PMID:24736735

  10. A genetic study of Factor V Leiden (G1691A) mutation in young ischemic strokes with large vessel disease in a South Indian population.

    Science.gov (United States)

    Anadure, Ravi; Christopher, Rita; Nagaraja, Dindagur; Narayanan, Coimbatore

    2017-10-01

    Factor V Leiden (FVL) has been, by far, the most investigated gene mutation, with 26 studies to date, on its role in arterial strokes. Overall, a meta-analysis of all these studies taken together showed that carriers of the Factor V Leiden allele were 1.33times more likely to develop arterial strokes when compared to controls. We subjected a highly select subset of young strokes, with large vessel infarcts, to genetic analysis for FVL mutation and compared them with matched healthy controls to look for a statistically significant association. In this prospective study, 6/120 cases (5%) and 2/120 controls (1.6%) were positive for heterozygous FVL (G1691A) mutation. The higher prevalence of FVL mutation in cases (5%) compared to controls (1.6%) did not show statistical significance with a Pearson's Chi square P value of 0.15. The Odds Ratio (OR) for risk of large vessel disease in FVL positive cases was 3.10 (95% CI of 0.61-15.7). FVL mutation (G1691A) in young Indian subjects with ischemic strokes does not seem to be significantly associated with large vessel disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. JAK2 Exon 12 Mutations in Polycythemia Vera and Idiopathic Erythrocytosis

    Science.gov (United States)

    Scott, Linda M.; Tong, Wei; Levine, Ross L.; Scott, Mike A.; Beer, Philip A.; Stratton, Michael R.; Futreal, P. Andrew; Erber, Wendy N.; McMullin, Mary Frances; Harrison, Claire N.; Warren, Alan J.; Gilliland, D. Gary; Lodish, Harvey F.; Green, Anthony R.

    2010-01-01

    BACKGROUND The V617F mutation, which causes the substitution of phenylalanine for valine at position 617 of the Janus kinase (JAK) 2 gene (JAK2), is often present in patients with polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis. However, the molecular basis of these myeloproliferative disorders in patients without the V617F mutation is unclear. METHODS We searched for new mutations in members of the JAK and signal transducer and activator of transcription (STAT) gene families in patients with V617F-negative polycythemia vera or idiopathic erythrocytosis. The mutations were characterized biochemically and in a murine model of bone marrow transplantation. RESULTS We identified four somatic gain-of-function mutations affecting JAK2 exon 12 in 10 V617F-negative patients. Those with a JAK2 exon 12 mutation presented with an isolated erythrocytosis and distinctive bone marrow morphology, and several also had reduced serum erythropoietin levels. Erythroid colonies could be grown from their blood samples in the absence of exogenous erythropoietin. All such erythroid colonies were heterozygous for the mutation, whereas colonies homozygous for the mutation occur in most patients with V617F-positive polycythemia vera. BaF3 cells expressing the murine erythropoietin receptor and also carrying exon 12 mutations could proliferate without added interleukin-3. They also exhibited increased phosphorylation of JAK2 and extracellular regulated kinase 1 and 2, as compared with cells transduced by wild-type JAK2 or V617F JAK2. Three of the exon 12 mutations included a substitution of leucine for lysine at position 539 of JAK2. This mutation resulted in a myeloproliferative phenotype, including erythrocytosis, in a murine model of retroviral bone marrow transplantation. CONCLUSIONS JAK2 exon 12 mutations define a distinctive myeloproliferative syndrome that affects patients who currently receive a diagnosis of polycythemia vera or idiopathic erythrocytosis

  12. Identification of an N-linked glycan in the V1-loop of HIV-1 gp120 influencing neutralization by anti-V3 antibodies and soluble CD4

    DEFF Research Database (Denmark)

    Gram, G J; Hemming, A; Bolmstedt, A

    1994-01-01

    affecting viral infectivity in cell culture. We found that the mutated virus lacking an N-linked glycan in the V1-loop of gp120 was more resistant to neutralization by monoclonal antibodies to the V3-loop and neutralization by soluble recombinant CD4 (sCD4). Both viruses were equally well neutralized by Con...... in the V1-loop of HIV-1 gp120. Lack of an N-linked glycan was verified by a mobility enhancement of mutant gp120 in SDS-gel electrophoresis. The mutated virus showed no differences in either gp120 content per infectious unit or infectivity, indicating that the N-linked glycan was neither essential nor...

  13. Subacute Budd-Chiari syndrome associated with polycythemia vera and factor V Leiden mutation

    NARCIS (Netherlands)

    Simsek, S; Verheesen, RV; Haagsma, EB; Lourens, J

    We describe a 48-year-old caucasian woman with a subacute Budd-Chiari syndrome attributed to the presence of polycythaemia vera, heterozygosity for the factor V Leiden mutation and the use of an oral contraceptive pill. Two diagnostic pitfalls were encountered. First, on CT scanning of the abdomen

  14. Systemic mastocytosis uncommon in KIT D816V mutation positive core-binding factor acute myeloid leukemia

    DEFF Research Database (Denmark)

    Kristensen, Thomas; Preiss, Birgitte; Broesby-Olsen, Sigurd

    2012-01-01

    Abstract The KIT D816V mutation is detected in the vast majority of adult cases of systemic mastocytosis (SM). The mutation is also frequently detected in core-binding factor acute myeloid leukemia (CBF-AML) defined by the presence of t(8;21)(q22;q22); RUNX1-RUNX1T1 or inv(16)(p13.1;q22)/t(16;16)(p...

  15. FGFR3 mutation causes abnormal membranous ossification in achondroplasia.

    Science.gov (United States)

    Di Rocco, Federico; Biosse Duplan, Martin; Heuzé, Yann; Kaci, Nabil; Komla-Ebri, Davide; Munnich, Arnold; Mugniery, Emilie; Benoist-Lasselin, Catherine; Legeai-Mallet, Laurence

    2014-06-01

    FGFR3 gain-of-function mutations lead to both chondrodysplasias and craniosynostoses. Achondroplasia (ACH), the most frequent dwarfism, is due to an FGFR3-activating mutation which results in impaired endochondral ossification. The effects of the mutation on membranous ossification are unknown. Fgfr3(Y367C/+) mice mimicking ACH and craniofacial analysis of patients with ACH and FGFR3-related craniosynostoses provide an opportunity to address this issue. Studying the calvaria and skull base, we observed abnormal cartilage and premature fusion of the synchondroses leading to modifications of foramen magnum shape and size in Fgfr3(Y367C/+) mice, ACH and FGFR3-related craniosynostoses patients. Partial premature fusion of the coronal sutures and non-ossified gaps in frontal bones were also present in Fgfr3(Y367C/+) mice and ACH patients. Our data provide strong support that not only endochondral ossification but also membranous ossification is severely affected in ACH. Demonstration of the impact of FGFR3 mutations on craniofacial development should initiate novel pharmacological and surgical therapeutic approaches.

  16. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma

    NARCIS (Netherlands)

    Schindler, G.; Capper, D.; Meyer, J.; Janzarik, W.; Omran, H.; Herold-Mende, C.; Schmieder, K.; Wesseling, P.; Mawrin, C.; Hasselblatt, M.; Louis, D.N.; Korshunov, A.; Pfister, S.; Hartmann, C.; Paulus, W.; Reifenberger, G.; Deimling, A. Von

    2011-01-01

    Missense mutations of the V600E type constitute the vast majority of tumor-associated somatic alterations in the v-RAF murine sarcoma viral oncogene homolog B1 (BRAF) gene. Initially described in melanoma, colon and papillary thyroid carcinoma, these alterations have also been observed in primary

  17. Mutations in PIK3CA are infrequent in neuroblastoma

    International Nuclear Information System (INIS)

    Dam, Vincent; Morgan, Brian T; Mazanek, Pavel; Hogarty, Michael D

    2006-01-01

    Neuroblastoma is a frequently lethal pediatric cancer in which MYCN genomic amplification is highly correlated with aggressive disease. Deregulated MYC genes require co-operative lesions to foster tumourigenesis and both direct and indirect evidence support activated Ras signaling for this purpose in many cancers. Yet Ras genes and Braf, while often activated in cancer cells, are infrequent targets for activation in neuroblastoma. Recently, the Ras effector PIK3CA was shown to be activated in diverse human cancers. We therefore assessed PIK3CA for mutation in human neuroblastomas, as well as in neuroblastomas arising in transgenic mice with MYCN overexpressed in neural-crest tissues. In this murine model we additionally surveyed for Ras family and Braf mutations as these have not been previously reported. Sixty-nine human neuroblastomas (42 primary tumors and 27 cell lines) were sequenced for PIK3CA activating mutations within the C2, helical and kinase domain 'hot spots' where 80% of mutations cluster. Constitutional DNA was sequenced in cases with confirmed alterations to assess for germline or somatic acquisition. Additionally, Ras family members (Hras1, Kras2 and Nras) and the downstream effectors Pik3ca and Braf, were sequenced from twenty-five neuroblastomas arising in neuroblastoma-prone transgenic mice. We identified mutations in the PIK3CA gene in 2 of 69 human neuroblastomas (2.9%). Neither mutation (R524M and E982D) has been studied to date for effects on lipid kinase activity. Though both occurred in tumors with MYCN amplification the overall rate of PIK3CA mutations in MYCN amplified and single-copy tumors did not differ appreciably (2 of 31 versus 0 of 38, respectively). Further, no activating mutations were identified in a survey of Ras signal transduction genes (including Hras1, Kras2, Nras, Pik3ca, or Braf genes) in twenty-five neuroblastic tumors arising in the MYCN-initiated transgenic mouse model. These data suggest that activating

  18. Immunohistochemical detection of the BRAF V600E mutation in papillary thyroid carcinoma. Evaluation against real-time polymerase chain reaction.

    Science.gov (United States)

    Paja Fano, Miguel; Ugalde Olano, Aitziber; Fuertes Thomas, Elena; Oleaga Alday, Amelia

    2017-02-01

    The BRAF V600E mutation is the most common genetic change in papillary thyroid carcinoma and is associated with a poorer clinical course. Usual methods for its study (DNA sequencing or molecular test based on PCR) are expensive and time-consuming. Recently, immunohistochemistry (IHC) for BRAF mutation has been introduced. To compare the results of IHC and real time PCR (RT-PCR) in the detection of BRAF V600E mutation in papillary thyroid carcinoma. Analysis of clinical and pathological differences depending on RT-PCR results is included. A prospective study was performed in 82 consecutive samples, 54 of them taken through a core needle biopsy. IHC was performed on tissue fixed for 24hours with 10% neutral formalin using the anti-BRAF V600E (VE-1) mouse monoclonal primary antibody and was rated as positive or negative. DNA was extracted from formalin-fixed, paraffin-embedded tissues by manual microdissection, and BRAF mutation was detected by RT-PCR using the Cobas® 4800 BRAF V600 mutation test (Roche). Both techniques were concordant in 81 cases, and BRAF was positive in 49. Discordance appeared in a follicular variant showing positive IHC and negative RT-PCR, attributed to histological heterogeneity. Cost of materials for IHC was less than half of the cost for RT-PCR. IHC appears to be a reliable, economical and easily available alternative to molecular biology techniques for routine detection of the BRAF V600E mutation in papillary thyroid carcinoma patients, provided optimal fixation conditions are used. It may be a useful technique in hospitals with no access to molecular biology techniques. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. CNGA3 mutations in two United Arab Emirates families with achromatopsia.

    Science.gov (United States)

    Ahuja, Yachna; Kohl, Susanne; Traboulsi, Elias I

    2008-07-10

    ACHROMATOPSIA RESULTS FROM MUTATIONS IN ONE OF THREE GENES: cyclic nucleotide-gated channel, alpha-3 (CNGA3); cyclic nucleotide-gated channel, beta-3 (CNGB3); and guanine nucleotide-binding protein, alpha-transducing activity polypeptide 2 (GNAT2). We report the responsible mutations in two United Arab Emirates families who have this autosomal recessive disease. Clinical examinations were performed in seven patients from three nuclear families. Molecular genetic testing for common CNGA3 and CNGB3 mutations was undertaken using standard protocols. All patients were extremely light sensitive and had reduced visual acuity and no color perception. Fundus examinations did not show any visible abnormalities. After further pedigree analysis, two of the families were found to be linked through the paternal line. Two mutations in CNGA3 were identified: Arg283Trp and Gly397Val. Family A, the larger pedigree, had one branch in which two sisters and one brother were homozygous for the Gly397Val mutation and another branch in which a brother and sister were compound heterozygous for both aforenamed mutations. Family B, however, only had two brothers who were homozygous for the Arg283Trp mutation. Achromatopsia in these two United Arab Emirates families results from two different mutations in CNGA3. Two branches of the same pedigree had individuals with both homozygous and compound heterozygous disease, demonstrating a complex molecular pathology in this large family.

  20. Mutational profiling of non-small-cell lung cancer patients resistant to first-generation EGFR tyrosine kinase inhibitors using next generation sequencing

    Science.gov (United States)

    Jin, Ying; Shao, Yang; Shi, Xun; Lou, Guangyuan; Zhang, Yiping; Wu, Xue; Tong, Xiaoling; Yu, Xinmin

    2016-01-01

    Patients with advanced non-small-cell lung cancer (NSCLC) harboring sensitive epithelial growth factor receptor (EGFR) mutations invariably develop acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). Identification of actionable genetic alterations conferring drug-resistance can be helpful for guiding the subsequent treatment decision. One of the major resistant mechanisms is secondary EGFR-T790M mutation. Other mechanisms, such as HER2 and MET amplifications, and PIK3CA mutations, were also reported. However, the mechanisms in the remaining patients are still unknown. In this study, we performed mutational profiling in a cohort of 83 NSCLC patients with TKI-sensitizing EGFR mutations at diagnosis and acquired resistance to three different first-generation EGFR TKIs using targeted next generation sequencing (NGS) of 416 cancer-related genes. In total, we identified 322 genetic alterations with a median of 3 mutations per patient. 61% of patients still exhibit TKI-sensitizing EGFR mutations, and 36% of patients acquired EGFR-T790M. Besides other known resistance mechanisms, we identified TET2 mutations in 12% of patients. Interestingly, we also observed SOX2 amplification in EGFR-T790M negative patients, which are restricted to Icotinib treatment resistance, a drug widely used in Chinese NSCLC patients. Our study uncovered mutational profiles of NSCLC patients with first-generation EGFR TKIs resistance with potential therapeutic implications. PMID:27528220

  1. JAK2V617F Somatic Mutation In The General Population

    DEFF Research Database (Denmark)

    Nielsen, Camilla; Bojesen, Stig E; Nordestgaard, Børge G

    2014-01-01

    of myeloproliferative neoplasm from no disease (n=8 at re-examination) through essential thrombocythemia (n=20) and polycythemia vera (n=13) to primary myelofibrosis (n=7). Among those diagnosed with a myeloproliferative neoplasm only at re-examination in 2012, in the preceding years JAK2V617F mutation burden increased...

  2. Identification of coexistence of BRAF V600E mutation and EZH2 gain specifically in melanoma as a promising target for combination therapy.

    Science.gov (United States)

    Yu, Huan; Ma, Meng; Yan, Junya; Xu, Longwen; Yu, Jiayi; Dai, Jie; Xu, Tianxiao; Tang, Huan; Wu, Xiaowen; Li, Siming; Lian, Bin; Mao, Lili; Chi, Zhihong; Cui, Chuanliang; Guo, Jun; Kong, Yan

    2017-12-04

    Coexistence of enhancer of zeste homolog 2 (EZH2) and BRAF gene aberrations has been described in many cancer types. In this study, we aim to explore the coexistence status of BRAF V600E mutation and the copy number variation of EZH2 and explore the potential of this combination as a therapeutic target. A total of 138 cases of melanoma samples harboring BRAF V600E mutation were included, and EZH2 copy numbers were examined by QuantiGenePlex DNA Assays. Clinical pathological distinction between patient groups with or without EZH2 amplification (hereafter referred to as EZH2 gain) was statistically analyzed. The sensitivity of melanoma cell lines and patient-derived xenograft (PDX) models containing BRAF V600E mutation with or without EZH2 gain to vemurafenib (BRAF inhibitor), GSK2816126 (EZH2 inhibitor) and a combination of both agents was evaluated. In our cohort, the coexistence rate of BRAF V600E mutation and EZH2 gain was up to 29.0%, and significant differences in overall survival and disease-free survival were found between no EZH2 copy number gain and gain groups (P = 0.038, P = 0.030), gain and high EZH2 copy number gain groups (P = 0.006, P = 0.010). Combination with BRAF and EZH2 inhibition showed better inhibitory efficacy in melanoma prevention compared with vemurafenib monotherapy. More importantly, this improved therapeutic effect was observed especially in melanoma cell lines and PDX models containing concurrently BRAF V600E mutation and EZH2 gain. Coexistence of BRAF V600E mutation and EZH2 gain is rather prevalent in melanoma. Our findings provided evidence for the feasibility of combination therapy with EZH2 and BRAF inhibitors in melanoma with concurrent BRAF V600E mutation and EZH2 gain.

  3. IgV(H) and bcl6 somatic mutation analysis reveals the heterogeneity of cutaneous B-cell lymphoma, and indicates the presence of undisclosed local antigens.

    Science.gov (United States)

    Franco, Renato; Camacho, Francisca I; Fernández-Vázquez, Amalia; Algara, Patrocinio; Rodríguez-Peralto, José L; De Rosa, Gaetano; Piris, Miguel A

    2004-06-01

    Our understanding of the ontology of B-cell lymphomas (BCL) has been improved by the study of mutational status of IgV(H) and bcl6 genes, but only a few cases of cutaneous BCL have been examined for this status. We analyzed IgV(H) and bcl6 somatic mutations in 10 cutaneous BCL, classified as follicular (three primary and one secondary), primary marginal zone (two cases), and diffuse large BCL (three primary and one secondary). We observed a lower rate (IgV(H) mutation in all marginal zone lymphomas, and a preferential usage of V(H)2-70 (one primary follicular and two primary diffuse large BCL). Fewer than expected replacement mutations in framework regions (FR) were observed in three primary follicular lymphomas (FLs) and in all diffuse large BCL, indicating a negative antigen selection pressure. Ongoing mutations were observed in eight of 10 cases. Only two primary FLs and two diffuse large BCL showed bcl6 somatic mutation. These data support the heterogeneous nature of the different cutaneous BCL, and specifically the distinction between cutaneous follicular and marginal zone lymphomas. The biased usage of V(H)2-70, the low rate of replacement mutation in the FR, and the presence of ongoing mutation imply that local antigens could modulate the growth of primary cutaneous BCL.

  4. A new allelic discrimination assay using locked nucleic acid-modified nucleotides (LNA) probes for detection of JAK2 V617F mutation

    Czech Academy of Sciences Publication Activity Database

    Marková, J.; Průková, Dana; Volková, Z.; Schwarz, J.

    2007-01-01

    Roč. 48, č. 3 (2007), s. 638-641 ISSN 1042-8194 Institutional research plan: CEZ:AV0Z50520514 Keywords : Ph1-negative myeloproliferative disorders * JAK2V617F mutation * allelic discrimination Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.512, year: 2007

  5. Low incidence of minor BRAF V600 mutation-positive subclones in primary and metastatic melanoma determined by sensitive and quantitative real-time PCR

    DEFF Research Database (Denmark)

    Kielsgaard Kristensen, Thomas; Clemmensen, Ole; Hoejberg, Lise

    2013-01-01

    BRAF V600 mutation is an important biological marker for therapeutic guidance in melanoma, where mutation-positive cases are candidates for therapy targeting mutant B-Raf. Recent studies showing intratumor variation in BRAF mutation status have caused concern that sensitive mutation analysis can ...

  6. Loss-of-Function Mutations in APOC3, Triglycerides, and Coronary Disease

    Science.gov (United States)

    2014-01-01

    Background Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. Methods We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. Results An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G→A and IVS3+1G→T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (Ptriglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.) PMID:24941081

  7. CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease by haploinsufficiency.

    Science.gov (United States)

    Brockmann, Sarah J; Freischmidt, Axel; Oeckl, Patrick; Müller, Kathrin; Ponna, Srinivas K; Helferich, Anika M; Paone, Christoph; Reinders, Jörg; Kojer, Kerstin; Orth, Michael; Jokela, Manu; Auranen, Mari; Udd, Bjarne; Hermann, Andreas; Danzer, Karin M; Lichtner, Peter; Walther, Paul; Ludolph, Albert C; Andersen, Peter M; Otto, Markus; Kursula, Petri; Just, Steffen; Weishaupt, Jochen H

    2018-02-15

    Mutations in the mitochondrially located protein CHCHD10 cause motoneuron disease by an unknown mechanism. In this study, we investigate the mutations p.R15L and p.G66V in comparison to wild-type CHCHD10 and the non-pathogenic variant p.P34S in vitro, in patient cells as well as in the vertebrate in vivo model zebrafish. We demonstrate a reduction of CHCHD10 protein levels in p.R15L and p.G66V mutant patient cells to approximately 50%. Quantitative real-time PCR revealed that expression of CHCHD10 p.R15L, but not of CHCHD10 p.G66V, is already abrogated at the mRNA level. Altered secondary structure and rapid protein degradation are observed with regard to the CHCHD10 p.G66V mutant. In contrast, no significant differences in expression, degradation rate or secondary structure of non-pathogenic CHCHD10 p.P34S are detected when compared with wild-type protein. Knockdown of CHCHD10 expression in zebrafish to about 50% causes motoneuron pathology, abnormal myofibrillar structure and motility deficits in vivo. Thus, our data show that the CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease primarily based on haploinsufficiency of CHCHD10. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. The JAK2 V617F somatic mutation, mortality and cancer risk in the general population

    DEFF Research Database (Denmark)

    Nielsen, Camilla; Birgens, Henrik S; Nordestgaard, Børge G

    2011-01-01

    .1-1.1). Multifactorially adjusted hazard ratios for any cancer, hematologic cancer and myeloproliferative cancer were 3.7 (1.7-8.0), 58 (13-261) and 161 (12-2,197), respectively. Corresponding hazard ratios were 1.2 (0.8-2.0), 2.3 (0.2-25), 1.3 (0.3-5.4) for men versus women, and 1.0 (1.0-1.1), 1.1 (0.9-1.2), 0.9 (0......JAK2 V617F is present in the majority of patients with myeloproliferative cancer; however, its prevalence and clinical significance in the general population is unknown. We screened for presence of the mutation in 10,507 participants from the Copenhagen City Heart Study with up to 17.6 years...

  9. Gradual Loss of ACTH Due to a Novel Mutation in LHX4: Comprehensive Mutation Screening in Japanese Patients with Congenital Hypopituitarism

    Science.gov (United States)

    Takagi, Masaki; Ishii, Tomohiro; Inokuchi, Mikako; Amano, Naoko; Narumi, Satoshi; Asakura, Yumi; Muroya, Koji; Hasegawa, Yukihiro; Adachi, Masanori; Hasegawa, Tomonobu

    2012-01-01

    Mutations in transcription factors genes, which are well regulated spatially and temporally in the pituitary gland, result in congenital hypopituitarism (CH) in humans. The prevalence of CH attributable to transcription factor mutations appears to be rare and varies among populations. This study aimed to define the prevalence of CH in terms of nine CH-associated genes among Japanese patients. We enrolled 91 Japanese CH patients for DNA sequencing of POU1F1, PROP1, HESX1, LHX3, LHX4, SOX2, SOX3, OTX2, and GLI2. Additionally, gene copy numbers for POU1F1, PROP1, HESX1, LHX3, and LHX4 were examined by multiplex ligation-dependent probe amplification. The gene regulatory properties of mutant LHX4 proteins were characterized in vitro. We identified two novel heterozygous LHX4 mutations, namely c.249-1G>A, p.V75I, and one common POU1F1 mutation, p.R271W. The patient harboring the c.249-1G>A mutation exhibited isolated growth hormone deficiency at diagnosis and a gradual loss of ACTH, whereas the patient with the p.V75I mutation exhibited multiple pituitary hormone deficiency. In vitro experiments showed that both LHX4 mutations were associated with an impairment of the transactivation capacities of POU1F1 andαGSU, without any dominant-negative effects. The total mutation prevalence in Japanese CH patients was 3.3%. This study is the first to describe, a gradual loss of ACTH in a patient carrying an LHX4 mutation. Careful monitoring of hypothalamic–pituitary -adrenal function is recommended for CH patients with LHX4 mutations. PMID:23029363

  10. Pathogenetic Role of JAK2 V617F Mutation in Chronic Myeloproliferative Disorders

    Directory of Open Access Journals (Sweden)

    Hui-Chi Hsu

    2007-03-01

    Full Text Available The molecular pathogenesis of chronic myeloproliferative disorders (MPDs is poorly understood. The hematopoietic progenitor cells of patients with polycythemia vera (PV or essential thrombocythemia (ET are characterized by hypersensitiv-ity to hematopoietic growth factors and formation of endogenous erythroid colonies. Recently, 4 groups reported almost simultaneously Janus kinase 2 (JAK2 V617F mutation in more than 80% of PV patients, 30% of patients with ET and in about 50% of patients with idiopathic myelofibrosis. The identification of the JAK2 mutation represents a major advance in the understanding of the molecular pathogenesis of MPDs that will likely permit a new classification and the development of novel therapeutic strategies for these diseases.

  11. Factor V Leiden Mutation and PT 20210 Mutation Test

    Science.gov (United States)

    ... Disorders Fibromyalgia Food and Waterborne Illness Fungal Infections Gout Graves Disease Guillain-Barré Syndrome Hashimoto Thyroiditis Heart ... Tested? To determine whether you have an inherited gene mutation that increases your risk of developing a ...

  12. Mutations on M3 helix of Plutella xylostella glutamate-gated chloride channel confer unequal resistance to abamectin by two different mechanisms.

    Science.gov (United States)

    Wang, Xingliang; Puinean, Alin M; O Reilly, Andrias O; Williamson, Martin S; Smelt, Charles L C; Millar, Neil S; Wu, Yidong

    2017-07-01

    Abamectin is one of the most widely used avermectins for agricultural pests control, but the emergence of resistance around the world is proving a major threat to its sustained application. Abamectin acts by directly activating glutamate-gated chloride channels (GluCls) and modulating other Cys-loop ion channels. To date, three mutations occurring in the transmembrane domain of arthropod GluCls are associated with target-site resistance to abamectin: A309V in Plutella xylostella GluCl (PxGluCl), G323D in Tetranychus urticae GluCl1 (TuGluCl1) and G326E in TuGluCl3. To compare the effects of these mutations in a single system, A309V/I/G and G315E (corresponding to G323 in TuGluCl1 and G326 in TuGluCl3) substitutions were introduced individually into the PxGluCl channel. Functional analysis using Xenopus oocytes showed that the A309V and G315E mutations reduced the sensitivity to abamectin by 4.8- and 493-fold, respectively. In contrast, the substitutions A309I/G show no significant effects on the response to abamectin. Interestingly, the A309I substitution increased the channel sensitivity to glutamate by one order of magnitude (∼12-fold). Analysis of PxGluCl homology models indicates that the G315E mutation interferes with abamectin binding through a steric hindrance mechanism. In contrast, the structural consequences of the A309 mutations are not so clear and an allosteric modification of the binding site is the most likely mechanism. Overall the results show that both A309V and G315E mutations may contribute to target-site resistance to abamectin and may be important for the future prediction and monitoring of abamectin resistance in P. xylostella and other arthropod pests. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Resistance to linezolid in Staphylococcus spp. clinical isolates associated with ribosomal binding site modifications: novel mutation in domain V of 23S rRNA.

    Science.gov (United States)

    Musumeci, Rosario; Calaresu, Enrico; Gerosa, Jolanda; Oggioni, Davide; Bramati, Simone; Morelli, Patrizia; Mura, Ida; Piana, Andrea; Are, Bianca Maria; Cocuzza, Clementina Elvezia

    2016-10-01

    Linezolid is the main representative of the oxazolidinones, introduced in 2000 in clinical practice to treat severe Gram-positive infections. This compound inhibits protein synthesis by binding to the peptidyl transferase centre of the 50S bacterial ribosomal subunit. The aim of this study was to characterize 12 clinical strains of linezolid-resistant Staphylococcus spp. isolated in Northern Italy. All isolates of Staphylococcus spp. studied showed a multi-antibiotic resistance phenotype. In particular, all isolates showed the presence of the mecA gene associated with SSCmec types IVa, V or I. Mutations in domain V of 23S rRNA were shown to be the most prevalent mechanism of linezolid resistance: among these a new C2551T mutation was found in S. aureus, whilst the G2576T mutation was shown to be the most prevalent overall. Moreover, three S. epidermidis isolates were shown to have linezolid resistance associated only with alterations in both L3 and L4 ribosomal proteins. No strain was shown to harbor the previously described cfr gene. These results have shown how the clinical use of linezolid in Northern Italy has resulted in the selection of multiple antibiotic-resistant clinical isolates of Staphylococcus spp., with linezolid resistance in these strains being associated with mutations in 23S rRNA or ribosomal proteins L3 and L4.

  14. Detection of T790M, the acquired resistance EGFR mutation, by tumor biopsy versus noninvasive blood-based analyses

    Science.gov (United States)

    Sundaresan, Tilak K.; Sequist, Lecia V.; Heymach, John V.; Riely, Gregory J.; Jänne, Pasi A.; Koch, Walter H.; Sullivan, James P.; Fox, Douglas B.; Maher, Robert; Muzikansky, Alona; Webb, Andrew; Tran, Hai T.; Giri, Uma; Fleisher, Martin; Yu, Helena A.; Wei, Wen; Johnson, Bruce E.; Barber, Thomas A.; Walsh, John R.; Engelman, Jeffrey A.; Stott, Shannon L.; Kapur, Ravi; Maheswaran, Shyamala; Toner, Mehmet

    2015-01-01

    Purpose The T790M gatekeeper mutation in the Epidermal Growth Factor Receptor (EGFR) is acquired by some EGFR-mutant non-small cell lung cancers (NSCLC) as they become resistant to selective tyrosine kinase inhibitors (TKIs). As third generation EGFR TKIs that overcome T790M-associated resistance become available, noninvasive approaches to T790M detection will become critical to guide management. Experimental Design As part of a multi-institutional Stand-Up-To-Cancer collaboration, we performed an exploratory analysis of 40 patients with EGFR-mutant tumors progressing on EGFR TKI therapy. We compared the T790M genotype from tumor biopsies with analysis of simultaneously collected circulating tumor cells (CTC) and circulating tumor DNA (ctDNA). Results T790M genotypes were successfully obtained in 30 (75%) tumor biopsies, 28 (70%) CTC samples and 32 (80%) ctDNA samples. The resistance-associated mutation was detected in 47–50% of patients using each of the genotyping assays, with concordance among them ranging from 57–74%. While CTC- and ctDNA-based genotyping were each unsuccessful in 20–30% of cases, the two assays together enabled genotyping in all patients with an available blood sample, and they identified the T790M mutation in 14 (35%) patients in whom the concurrent biopsy was negative or indeterminate. Conclusion Discordant genotypes between tumor biopsy and blood-based analyses may result from technological differences, as well as sampling different tumor cell populations. The use of complementary approaches may provide the most complete assessment of each patient’s cancer, which should be validated in predicting response to T790M-targeted inhibitors. PMID:26446944

  15. Breast Cancer Heterogeneity Examined by High-Sensitivity Quantification of PIK3CA, KRAS, HRAS, and BRAF Mutations in Normal Breast and Ductal Carcinomas

    Directory of Open Access Journals (Sweden)

    Meagan B. Myers

    2016-04-01

    Full Text Available Mutant cancer subpopulations have the potential to derail durable patient responses to molecularly targeted cancer therapeutics, yet the prevalence and size of such subpopulations are largely unexplored. We employed the sensitive and quantitative Allele-specific Competitive Blocker PCR approach to characterize mutant cancer subpopulations in ductal carcinomas (DCs, examining five specific hotspot point mutations (PIK3CA H1047R, KRAS G12D, KRAS G12V, HRAS G12D, and BRAF V600E. As an approach to aid interpretation of the DC results, the mutations were also quantified in normal breast tissue. Overall, the mutations were prevalent in normal breast and DCs, with 9/9 DCs having measureable levels of at least three of the five mutations. HRAS G12D was significantly increased in DCs as compared to normal breast. The most frequent point mutation reported in DC by DNA sequencing, PIK3CA H1047R, was detected in all normal breast tissue and DC samples and was present at remarkably high levels (mutant fractions of 1.1 × 10−3 to 4.6 × 10−2 in 4/10 normal breast samples. In normal breast tissue samples, PIK3CA mutation levels were positively correlated with age. However, the PIK3CA H1047R mutant fraction distributions for normal breast tissues and DCs were similar. The results suggest PIK3CA H1047R mutant cells have a selective advantage in breast, contribute to breast cancer susceptibility, and drive tumor progression during breast carcinogenesis, even when present as only a subpopulation of tumor cells.

  16. TALEN-mediated genetic tailoring as a tool to analyze the function of acquired mutations in multiple myeloma cells

    International Nuclear Information System (INIS)

    Wu, X; Blackburn, P R; Tschumper, R C; Ekker, S C; Jelinek, D F

    2014-01-01

    Multiple myeloma (MM) is a clonal plasma cell malignancy that is initiated by a number of mutations and the process of disease progression is characterized by further acquisition of mutations. The identification and functional characterization of these myelomagenic mutations is necessary to better understand the underlying pathogenic mechanisms in this disease. Recent advancements in next-generation sequencing have made the identification of most of these mutations a reality. However, the functional characterization of these mutations has been hampered by the lack of proper and efficient tools to dissect these mutations. Here we explored the possible utility of transcription activator-like effector nuclease (TALEN) genome engineering technology to tailoring the genome of MM cells. To test this possibility, we targeted the HPRT1 gene and found that TALENs are a very robust and efficient genome-editing tool in MM cells. Using cotransfected green fluorescent protein as an enrichment marker, single-cell subclones with desirable TALEN modifications in the HPRT1 gene were obtained in as little as 3–4 weeks of time. We believe that TALENs will greatly facilitate the functional study of somatic mutations in MM as well as other cancers

  17. A Case of Resistance to Thyroid Hormone with Chronic Thyroiditis: Discovery of a Novel Mutation (I54V

    Directory of Open Access Journals (Sweden)

    I. Kammoun

    2011-01-01

    Full Text Available Resistance to thyroid hormone (RTH is a rare disorder characterized by variable tissue hyporesponsiveness to thyroid hormone, usually caused by mutations in the thyroid hormone receptor beta (TRβ. It has been reported that the serum of patients with RTH is free of auto-antibodies against thyroglobulin (Tg and thyroid peroxidase (TPO, except in rare cases where coincidental autoimmune thyroiditis is also present. We describe a 13-year-old girl with chronic thyroiditis and RTH. This patient had increased plasma free T3, free T4 at the upper limits with unsuppressed TSH. She had peripheral manifestations of thyroid hormone excess, hypertension and growth acceleration. Anti-TPO antibodies were positive. Sequence analysis of the TRβ gene was performed and revealed a novel mutation I54V in exon 4. The same mutation was also found in the mother and two asymptomatic sisters. The clinical presentation of our patient is not habitual in RTH because growth retardation is frequently reported in this syndrome. The association between RTH and thyroiditis complicate the management of the hypothyroidism.

  18. Mutation Spectrum and Phenotypic Features in Noonan Syndrome with PTPN11 Mutations: Definition of Two Novel Mutations.

    Science.gov (United States)

    Atik, Tahir; Aykut, Ayca; Hazan, Filiz; Onay, Huseyin; Goksen, Damla; Darcan, Sukran; Tukun, Ajlan; Ozkinay, Ferda

    2016-06-01

    To evaluate the spectrum of PTPN11 gene mutations in Noonan syndrome patients and to study the genotype-phenotype associations. In this study, twenty Noonan syndrome patients with PTPN11 mutations were included. The patients underwent a detailed clinical and physical evaluation. To identify inherited cases, parents of all mutation positive patients were analyzed. Thirteen different PTPN11 mutations, two of them being novel, were detected in the study group. These mutations included eleven missense mutations: p.G60A, p.D61N, p.Y62D, p.Y63C, p.E69Q, p.Q79R, p.Y279C,p.N308D, p.N308S, p.M504V, p.Q510R and two novel missense mutations: p.I56V and p.I282M. The frequency of cardiac abnormalities and short stature were found to be 80 % and 80 %, respectively. Mental retardation was not observed in patients having exon 8 mutations. No significant correlations were detected between other phenotypic features and genotypes. By identifying genotype-phenotype correlations, this study provides information on phenotypes observed in NS patients with different PTPN11 mutations.

  19. CSB-PGBD3 Mutations Cause Premature Ovarian Failure.

    Directory of Open Access Journals (Sweden)

    Yingying Qin

    2015-07-01

    Full Text Available Premature ovarian failure (POF is a rare, heterogeneous disorder characterized by cessation of menstruation occurring before the age of 40 years. Genetic etiology is responsible for perhaps 25% of cases, but most cases are sporadic and unexplained. In this study, through whole exome sequencing in a non-consanguineous family having four affected members with POF and Sanger sequencing in 432 sporadic cases, we identified three novel mutations in the fusion gene CSB-PGBD3. Subsequently functional studies suggest that mutated CSB-PGBD3 fusion protein was impaired in response to DNA damage, as indicated by delayed or absent recruitment to damaged sites. Our data provide the first evidence that mutations in the CSB-PGBD3 fusion protein can cause human disease, even in the presence of functional CSB, thus potentially explaining conservation of the fusion protein for 43 My since marmoset. The localization of the CSB-PGBD3 fusion protein to UVA-induced nuclear DNA repair foci further suggests that the CSB-PGBD3 fusion protein, like many other proteins that can cause POF, modulates or participates in DNA repair.

  20. STAT3 mutations correlated with hyper-IgE syndrome lead to ...

    Indian Academy of Sciences (India)

    Of all the causes identified for the disease hyper-immunoglobulinemia E syndrome (HIES), a homozygous mutation in tyrosine kinase2 (TYK2) and heterozygous mutations in STAT3 are implicated the defects in Jak/STAT signalling pathway in the pathogenesis of HIES. Mutations of STAT3 have been frequently clinically ...

  1. Exome sequencing identifies compound heterozygous mutations in CYP4V2 in a pedigree with retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available Retinitis pigmentosa (RP is a heterogeneous group of progressive retinal degenerations characterized by pigmentation and atrophy in the mid-periphery of the retina. Twenty two subjects from a four-generation Chinese family with RP and thin cornea, congenital cataract and high myopia is reported in this study. All family members underwent complete ophthalmologic examinations. Patients of the family presented with bone spicule-shaped pigment deposits in retina, retinal vascular attenuation, retinal and choroidal dystrophy, as well as punctate opacity of the lens, reduced cornea thickness and high myopia. Peripheral venous blood was obtained from all patients and their family members for genetic analysis. After mutation analysis in a few known RP candidate genes, exome sequencing was used to analyze the exomes of 3 patients III2, III4, III6 and the unaffected mother II2. A total of 34,693 variations shared by 3 patients were subjected to several filtering steps against existing variation databases. Identified variations were verified in the rest family members by PCR and Sanger sequencing. Compound heterozygous c.802-8_810del17insGC and c.1091-2A>G mutations of the CYP4V2 gene, known as genetic defects for Bietti crystalline corneoretinal dystrophy, were identified as causative mutations for RP of this family.

  2. GATA3 mutation in a family with hypoparathyroidism, deafness and renal dysplasia syndrome.

    Science.gov (United States)

    Zhu, Zi-Yang; Zhou, Qiao-Li; Ni, Shi-Ning; Gu, Wei

    2014-08-01

    The hypoparathyroidism, deafness and renal dysplasia (HDR) syndrome is an autosomal dominant disorder primarily caused by GATA3 gene mutation. We report here a case that both of a Chinese boy and his father had HDR syndrome which caused by a novel mutation of GATA3. Polymerase chain reaction and DNA sequencing was performed to detect the exons of the GATA3 gene for mutation analysis. Sequence analysis of GATA3 revealed a heterozygous nonsense mutation in this family: a mutation of GATA3 at exon 2 (c.515C >A) that resulted in a premature stop at codon 172 (p.S172X) with a loss of two zinc finger domains. We identified a novel nonsense mutation which will expand the spectrum of HDR-associated GATA3 mutations.

  3. [The quantitative testing of V617F mutation in gen JAK2 using pyrosequencing technique].

    Science.gov (United States)

    Dunaeva, E A; Mironov, K O; Dribnokhodova, T E; Subbotina, E E; Bashmakova; Ol'hovskiĭ, I A; Shipulin, G A

    2014-11-01

    The somatic mutation V617F in gen JAK2 is a frequent cause of chronic myeloprolific diseases not conditioned by BCR/ABL mutation. The quantitative testing of relative percentage of mutant allele can be used in establishing severity of disease and its prognosis and in prescription of remedy inhibiting activity of JAK2. To quantitatively test mutation the pyrosequencing technique was applied. The developed technique permits detecting and quantitatively, testing percentage of mutation fraction since 7%. The "gray zone" is presented by samples with percentage of mutant allele from 4% to 7%. The dependence of expected percentage of mutant fraction in analyzed sample from observed value of signal is described by equation of line with regression coefficients y = - 0.97, x = -1.32 and at that measurement uncertainty consists ± 0.7. The developed technique is approved officially on clinical material from 192 patients with main forms of myeloprolific diseases not conditioned by BCR/ABL mutation. It was detected 64 samples with mautant fraction percentage from 13% to 91%. The developed technique permits implementing monitoring of therapy of myeloprolific diseases and facilitates to optimize tactics of treatment.

  4. Genetic study of the BRAF gene reveals new variants and high frequency of the V600E mutation among Iranian ameloblastoma patients.

    Science.gov (United States)

    Soltani, Maryam; Tabatabaiefar, Mohammad Amin; Mohsenifar, Zhaleh; Pourreza, Mohammad Reza; Moridnia, Abbas; Shariati, Laleh; Razavi, Seyyed Mohammad

    2018-01-01

    Ameloblastoma is a benign, slow-growing and locally invasive tumor. It is one of the most prevalent odontogenic tumors, with an incidence rate of 1% of all oral tumors and approximately 18% of odontogenic tumors. A group of genes have been investigated in patients with ameloblastoma. The BRAF V600E mutation has been implicated as the most common mutation in ameloblastoma. The presence or absence of this mutation has been associated with several clinicopathological properties, including location, age at diagnosis, histology, and prognosis. Although some populations have been investigated so far, little data are available on the Iranian population. The current research was launched to study the BRAF V600E mutation among a cohort of Iranian patients with ameloblastoma. In this clinicopathological and molecular biology study, a total of 19 formalin-fixed, paraffin-embedded tissues were studied. DNA extraction was performed, followed by PCR-sequencing of exons 10 and 15 of the BRAF gene to identify mutations. In silico analysis was performed for the identified variants. Results were analyzed by T test, Chi-square, and Fisher's exact test. Totally, 12 of 19 samples (63%) harbored the p. V600E hotspot mutation. In addition, we identified several variants, two of which were novel. The c.1769T>G (p. V590G) and c.1751C>T (p.L584F) as the novel variants showed a possible damaging effect by in silico analysis. No variant was found within exon 10. Our study confirms the role of BRAF mutations in ameloblastoma in the Iranian patients studied. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. A novel and lethal de novo LQT-3 mutation in a newborn with distinct molecular pharmacology and therapeutic response.

    Directory of Open Access Journals (Sweden)

    John R Bankston

    2007-12-01

    Full Text Available SCN5A encodes the alpha-subunit (Na(v1.5 of the principle Na(+ channel in the human heart. Genetic lesions in SCN5A can cause congenital long QT syndrome (LQTS variant 3 (LQT-3 in adults by disrupting inactivation of the Na(v1.5 channel. Pharmacological targeting of mutation-altered Na(+ channels has proven promising in developing a gene-specific therapeutic strategy to manage specifically this LQTS variant. SCN5A mutations that cause similar channel dysfunction may also contribute to sudden infant death syndrome (SIDS and other arrhythmias in newborns, but the prevalence, impact, and therapeutic management of SCN5A mutations may be distinct in infants compared with adults.Here, in a multidisciplinary approach, we report a de novo SCN5A mutation (F1473C discovered in a newborn presenting with extreme QT prolongation and differential responses to the Na(+ channel blockers flecainide and mexiletine. Our goal was to determine the Na(+ channel phenotype caused by this severe mutation and to determine whether distinct effects of different Na(+ channel blockers on mutant channel activity provide a mechanistic understanding of the distinct therapeutic responsiveness of the mutation carrier. Sequence analysis of the proband revealed the novel missense SCN5A mutation (F1473C and a common variant in KCNH2 (K897T. Patch clamp analysis of HEK 293 cells transiently transfected with wild-type or mutant Na(+ channels revealed significant changes in channel biophysics, all contributing to the proband's phenotype as predicted by in silico modeling. Furthermore, subtle differences in drug action were detected in correcting mutant channel activity that, together with both the known genetic background and age of the patient, contribute to the distinct therapeutic responses observed clinically.The results of our study provide further evidence of the grave vulnerability of newborns to Na(+ channel defects and suggest that both genetic background and age are

  6. IgV H mutations in blastoid mantle cell lymphoma characterize a subgroup with a tendency to more favourable clinical outcome.

    Science.gov (United States)

    Cogliatti, Sergio B; Bertoni, Francesco; Zimmermann, Dieter R; Henz, Samuel; Diss, Tim C; Ghielmini, Michele; Schmid, Ulrico

    2005-07-01

    Mantle cell lymphoma (MCL) is associated with a very unfavourable clinical course. This is particularly true for mantle cell lymphoma of the blastoid subtype (MCL-b). In order to define prognostic factors, we analysed the impact of immunoglobulin heavy chain variable (IgV H) gene somatic hypermutations on clinical outcome in a series of 21 cases of morphologically, phenotypically, and genotypically well-characterized MCL-b. Testing and estimation were performed using log-rank statistics and displayed on Kaplan-Meier graphs. Thirteen of 21 cases of MCL-b revealed a homology rate of > or = 99% compared to IgV H germ-line sequences in the databases and were scored as non-mutated. Eight of 21 cases (38%) of MCL-b were mutated. In MCL-b the mutation frequency was usually low and the mutation pattern was only rarely antigen-selected, in contrast to a control group of 11 cases with morphologically almost identical, but phenotypically and genotypically clearly distinguishable, diffuse large B cell lymphoma, derived, most likely, from germinal centre B cells. In our series of 21 MCL-b, positive IgV H mutational status, irrespective of varying homology thresholds, had no statistically significant prognostic impact on event-free or overall survival. However, mutated MCL-b tended to present more frequently at an earlier stage and without bone marrow involvement and to show lower rates of relapse and death, resulting in a more favourable clinical outcome. Copyright 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  7. Cancer3D: understanding cancer mutations through protein structures.

    Science.gov (United States)

    Porta-Pardo, Eduard; Hrabe, Thomas; Godzik, Adam

    2015-01-01

    The new era of cancer genomics is providing us with extensive knowledge of mutations and other alterations in cancer. The Cancer3D database at http://www.cancer3d.org gives an open and user-friendly way to analyze cancer missense mutations in the context of structures of proteins in which they are found. The database also helps users analyze the distribution patterns of the mutations as well as their relationship to changes in drug activity through two algorithms: e-Driver and e-Drug. These algorithms use knowledge of modular structure of genes and proteins to separately study each region. This approach allows users to find novel candidate driver regions or drug biomarkers that cannot be found when similar analyses are done on the whole-gene level. The Cancer3D database provides access to the results of such analyses based on data from The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE). In addition, it displays mutations from over 14,700 proteins mapped to more than 24,300 structures from PDB. This helps users visualize the distribution of mutations and identify novel three-dimensional patterns in their distribution. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Frequency and Prognostic Relevance of FLT3 Mutations in Saudi Acute Myeloid Leukemia Patients

    Directory of Open Access Journals (Sweden)

    Ghaleb Elyamany

    2014-01-01

    Full Text Available The Fms-like tyrosine kinase-3 (FLT3 is a receptor tyrosine kinase that plays a key role in cell survival, proliferation, and differentiation of hematopoietic stem cells. Mutations of FLT3 were first described in 1997 and account for the most frequent molecular mutations in acute myeloid leukemia (AML. AML patients with FLT3 internal tandem duplication (ITD mutations have poor cure rates the prognostic significance of point mutations; tyrosine kinase domain (TKD is still unclear. We analyzed the frequency of FLT3 mutations (ITD and D835 in patients with AML at diagnosis; no sufficient data currently exist regarding FLT3 mutations in Saudi AML patients. This study was aimed at evaluating the frequency of FLT3 mutations in patients with AML and its significance for prognosis. The frequency of FLT3 mutations in our study (18.56% was lower than many of the reported studies, FLT3-ITD mutations were observed in 14.4%, and FLT3-TKD in 4.1%, of 97 newly diagnosed AML patients (82 adult and 15 pediatric. Our data show significant increase of FLT3 mutations in male more than female (13 male, 5 female. Our results support the view that FLT3-ITD mutation has strong prognostic factor in AML patients and is associated with high rate of relapse, and high leucocytes and blast count at diagnosis and relapse.

  9. De novo mutations in ATP1A3 cause alternating hemiplegia of childhood

    Science.gov (United States)

    Heinzen, Erin L.; Swoboda, Kathryn J.; Hitomi, Yuki; Gurrieri, Fiorella; Nicole, Sophie; de Vries, Boukje; Tiziano, F. Danilo; Fontaine, Bertrand; Walley, Nicole M.; Heavin, Sinéad; Panagiotakaki, Eleni; Fiori, Stefania; Abiusi, Emanuela; Di Pietro, Lorena; Sweney, Matthew T.; Newcomb, Tara M.; Viollet, Louis; Huff, Chad; Jorde, Lynn B.; Reyna, Sandra P.; Murphy, Kelley J.; Shianna, Kevin V.; Gumbs, Curtis E.; Little, Latasha; Silver, Kenneth; Ptác̆ek, Louis J.; Haan, Joost; Ferrari, Michel D.; Bye, Ann M.; Herkes, Geoffrey K.; Whitelaw, Charlotte M.; Webb, David; Lynch, Bryan J.; Uldall, Peter; King, Mary D.; Scheffer, Ingrid E.; Neri, Giovanni; Arzimanoglou, Alexis; van den Maagdenberg, Arn M.J.M.; Sisodiya, Sanjay M.; Mikati, Mohamad A.; Goldstein, David B.; Nicole, Sophie; Gurrieri, Fiorella; Neri, Giovanni; de Vries, Boukje; Koelewijn, Stephany; Kamphorst, Jessica; Geilenkirchen, Marije; Pelzer, Nadine; Laan, Laura; Haan, Joost; Ferrari, Michel; van den Maagdenberg, Arn; Zucca, Claudio; Bassi, Maria Teresa; Franchini, Filippo; Vavassori, Rosaria; Giannotta, Melania; Gobbi, Giuseppe; Granata, Tiziana; Nardocci, Nardo; De Grandis, Elisa; Veneselli, Edvige; Stagnaro, Michela; Gurrieri, Fiorella; Neri, Giovanni; Vigevano, Federico; Panagiotakaki, Eleni; Oechsler, Claudia; Arzimanoglou, Alexis; Nicole, Sophie; Giannotta, Melania; Gobbi, Giuseppe; Ninan, Miriam; Neville, Brian; Ebinger, Friedrich; Fons, Carmen; Campistol, Jaume; Kemlink, David; Nevsimalova, Sona; Laan, Laura; Peeters-Scholte, Cacha; van den Maagdenberg, Arn; Casaer, Paul; Casari, Giorgio; Sange, Guenter; Spiel, Georg; Boneschi, Filippo Martinelli; Zucca, Claudio; Bassi, Maria Teresa; Schyns, Tsveta; Crawley, Francis; Poncelin, Dominique; Vavassori, Rosaria

    2012-01-01

    Alternating hemiplegia of childhood (AHC) is a rare, severe neurodevelopmental syndrome characterized by recurrent hemiplegic episodes and distinct neurologic manifestations. AHC is usually a sporadic disorder with unknown etiology. Using exome sequencing of seven patients with AHC, and their unaffected parents, we identified de novo nonsynonymous mutations in ATP1A3 in all seven AHC patients. Subsequent sequence analysis of ATP1A3 in 98 additional patients revealed that 78% of AHC cases have a likely causal ATP1A3 mutation, including one inherited mutation in a familial case of AHC. Remarkably, six ATP1A3 mutations explain the majority of patients, including one observed in 36 patients. Unlike ATP1A3 mutations that cause rapid-onset-dystonia-parkinsonism, AHC-causing mutations revealed consistent reductions in ATPase activity without effects on protein expression. This work identifies de novo ATP1A3 mutations as the primary cause of AHC, and offers insight into disease pathophysiology by expanding the spectrum of phenotypes associated with mutations in this gene. PMID:22842232

  10. PIK3CA Mutation in Colorectal Cancer: Relationship with Genetic and Epigenetic Alterations

    Directory of Open Access Journals (Sweden)

    Katsuhiko Nosho

    2008-06-01

    Full Text Available Somatic PIK3CA mutations are often present in colorectal cancer. Mutant PIK3CA activates AKT signaling, which up-regulates fatty acid synthase (FASN. Microsatellite instability (MSI and CpG island methylator phenotype (CIMP are important molecular classifiers in colorectal cancer. However, the relationship between PIK3CA mutation, MSI and CIMP remains uncertain. Using Pyrosequencing technology, we detected PIK3CA mutations in 91 (15% of 590 population-based colorectal cancers. To determine CIMP status, we quantified DNA methylation in eight CIMP-specific promoters [CACNA1G, CDKN2A (p16, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1] by real-time polymerase chain reaction (MethyLight. PIK3CA mutation was significantly associated with mucinous tumors [P = .0002; odds ratio (OR = 2.44], KRAS mutation (P < .0001; OR = 2.68, CIMP-high (P = .03; OR = 2.08, phospho–ribosomal protein S6 expression (P = .002; OR = 2.19, and FASN expression (P = .02; OR = 1.85 and inversely with p53 expression (P = .01; OR = 0.54 and β-catenin (CTNNB1 alteration (P = .004; OR = 0.43. In addition, PIK3CA G-to-A mutations were associated with MGMT loss (P = .001; OR = 3.24 but not with MGMT promoter methylation. In conclusion, PIK3CA mutation is significantly associated with other key molecular events in colorectal cancer, and MGMT loss likely contributes to the development of PIK3CA G>A mutation. In addition, Pyrosequencing is useful in detecting PIK3CA mutation in archival paraffin tumor tissue. PIK3CA mutational data further emphasize heterogeneity of colorectal cancer at the molecular level.

  11. Molecular profiling of appendiceal epithelial tumors using massively parallel sequencing to identify somatic mutations.

    Science.gov (United States)

    Liu, Xiaoying; Mody, Kabir; de Abreu, Francine B; Pipas, J Marc; Peterson, Jason D; Gallagher, Torrey L; Suriawinata, Arief A; Ripple, Gregory H; Hourdequin, Kathryn C; Smith, Kerrington D; Barth, Richard J; Colacchio, Thomas A; Tsapakos, Michael J; Zaki, Bassem I; Gardner, Timothy B; Gordon, Stuart R; Amos, Christopher I; Wells, Wendy A; Tsongalis, Gregory J

    2014-07-01

    Some epithelial neoplasms of the appendix, including low-grade appendiceal mucinous neoplasm and adenocarcinoma, can result in pseudomyxoma peritonei (PMP). Little is known about the mutational spectra of these tumor types and whether mutations may be of clinical significance with respect to therapeutic selection. In this study, we identified somatic mutations using the Ion Torrent AmpliSeq Cancer Hotspot Panel v2. Specimens consisted of 3 nonneoplastic retention cysts/mucocele, 15 low-grade mucinous neoplasms (LAMNs), 8 low-grade/well-differentiated mucinous adenocarcinomas with pseudomyxoma peritonei, and 12 adenocarcinomas with/without goblet cell/signet ring cell features. Barcoded libraries were prepared from up to 10 ng of extracted DNA and multiplexed on single 318 chips for sequencing. Data analysis was performed using Golden Helix SVS. Variants that remained after the analysis pipeline were individually interrogated using the Integrative Genomics Viewer. A single Janus kinase 3 (JAK3) mutation was detected in the mucocele group. Eight mutations were identified in the V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and GNAS complex locus (GNAS) genes among LAMN samples. Additional gene mutations were identified in the AKT1 (v-akt murine thymoma viral oncogene homolog 1), APC (adenomatous polyposis coli), JAK3, MET (met proto-oncogene), phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA), RB1 (retinoblastoma 1), STK11 (serine/threonine kinase 11), and tumor protein p53 (TP53) genes. Among the PMPs, 6 mutations were detected in the KRAS gene and also in the GNAS, TP53, and RB1 genes. Appendiceal cancers showed mutations in the APC, ATM (ataxia telangiectasia mutated), KRAS, IDH1 [isocitrate dehydrogenase 1 (NADP+)], NRAS [neuroblastoma RAS viral (v-ras) oncogene homolog], PIK3CA, SMAD4 (SMAD family member 4), and TP53 genes. Our results suggest molecular heterogeneity among epithelial tumors of the appendix. Next generation sequencing efforts

  12. De novo mutations in ATP1A3 cause alternating hemiplegia of childhood

    DEFF Research Database (Denmark)

    Heinzen, Erin L; Swoboda, Kathryn J; Hitomi, Yuki

    2012-01-01

    and their unaffected parents to identify de novo nonsynonymous mutations in ATP1A3 in all seven individuals. In a subsequent sequence analysis of ATP1A3 in 98 other patients with AHC, we found that ATP1A3 mutations were likely to be responsible for at least 74% of the cases; we also identified one inherited mutation...... affecting the level of protein expression. This work identifies de novo ATP1A3 mutations as the primary cause of AHC and offers insight into disease pathophysiology by expanding the spectrum of phenotypes associated with mutations in ATP1A3....

  13. The genetic basis of Brugada syndrome: a mutation update

    DEFF Research Database (Denmark)

    Hedley, Paula L; Jørgensen, Poul; Schlamowitz, Sarah

    2009-01-01

    of inheritance with an average prevalence of 5:10,000 worldwide. Currently, more than 100 mutations in seven genes have been associated with BrS. Loss-of-function mutations in SCN5A, which encodes the alpha-subunit of the Na(v)1.5 sodium ion channel conducting the depolarizing I(Na) current, causes 15-20% of Br......S cases. A few mutations have been described in GPD1L, which encodes glycerol-3-phosphate dehydrogenase-1 like protein; CACNA1C, which encodes the alpha-subunit of the Ca(v)1.2 ion channel conducting the depolarizing I(L,Ca) current; CACNB2, which encodes the stimulating beta2-subunit of the Ca(v)1.2 ion...

  14. Oxidative Stress in Dilated Cardiomyopathy Caused by MYBPC3 Mutation

    Directory of Open Access Journals (Sweden)

    Thomas L. Lynch

    2015-01-01

    Full Text Available Cardiomyopathies can result from mutations in genes encoding sarcomere proteins including MYBPC3, which encodes cardiac myosin binding protein-C (cMyBP-C. However, whether oxidative stress is augmented due to contractile dysfunction and cardiomyocyte damage in MYBPC3-mutated cardiomyopathies has not been elucidated. To determine whether oxidative stress markers were elevated in MYBPC3-mutated cardiomyopathies, a previously characterized 3-month-old mouse model of dilated cardiomyopathy (DCM expressing a homozygous MYBPC3 mutation (cMyBP-C(t/t was used, compared to wild-type (WT mice. Echocardiography confirmed decreased percentage of fractional shortening in DCM versus WT hearts. Histopathological analysis indicated a significant increase in myocardial disarray and fibrosis while the second harmonic generation imaging revealed disorganized sarcomeric structure and myocyte damage in DCM hearts when compared to WT hearts. Intriguingly, DCM mouse heart homogenates had decreased glutathione (GSH/GSSG ratio and increased protein carbonyl and lipid malondialdehyde content compared to WT heart homogenates, consistent with elevated oxidative stress. Importantly, a similar result was observed in human cardiomyopathy heart homogenate samples. These results were further supported by reduced signals for mitochondrial semiquinone radicals and Fe-S clusters in DCM mouse hearts measured using electron paramagnetic resonance spectroscopy. In conclusion, we demonstrate elevated oxidative stress in MYPBC3-mutated DCM mice, which may exacerbate the development of heart failure.

  15. In vitro induction of mutation and separation of chimeras in Gerbera jamesonii

    International Nuclear Information System (INIS)

    Jerzy, M.; Zalewska, M.; Garczewska, A.

    1994-01-01

    Using ex vitro leaves as objects to be irradiated and to induce variation in sixteen Gerbera jamesonii cultivars, reproduced from adventitious buds, resulted in obtaining the mutants which inflorescence color was uniformly changed and which newly acquired traits recurred in the second generation of plants reproduced vegetatively from the isolated shoot tips. However, chimeras appeared among the vM 1 plants exposed to various doses of gamma rays (5-25 Gy and they constituted almost half of the mutated plants. A further propagation of chimeras from leaf explants forming adventitious shoots significantly increased the number of solid mutants with uniformly changed inflorescence color in the vM 1 generation. (author)

  16. Penetrance of eye defects in mice heterozygous for mutation of Gli3 is enhanced by heterozygous mutation of Pax6

    Directory of Open Access Journals (Sweden)

    Price David J

    2006-10-01

    Full Text Available Abstract Background Knowledge of the consequences of heterozygous mutations of developmentally important genes is important for understanding human genetic disorders. The Gli3 gene encodes a zinc finger transcription factor and homozygous loss-of-function mutations of Gli3 are lethal. Humans heterozygous for mutations in this gene suffer Greig cephalopolysyndactyly or Pallister-Hall syndromes, in which limb defects are prominent, and mice heterozygous for similar mutations have extra digits. Here we examined whether eye development, which is abnormal in mice lacking functional Gli3, is defective in Gli3+/- mice. Results We showed that Gli3 is expressed in the developing eye but that Gli3+/- mice have only very subtle eye defects. We then generated mice compound heterozygous for mutations in both Gli3 and Pax6, which encodes another developmentally important transcription factor known to be crucial for eye development. Pax6+/-; Gli3+/- eyes were compared to the eyes of wild-type, Pax6+/- or Gli3+/- siblings. They exhibited a range of abnormalities of the retina, iris, lens and cornea that was more extensive than in single Gli3+/- or Pax6+/- mutants or than would be predicted by addition of their phenotypes. Conclusion These findings indicate that heterozygous mutations of Gli3 can impact on eye development. The importance of a normal Gli3 gene dosage becomes greater in the absence of a normal Pax6 gene dosage, suggesting that the two genes co-operate during eye morphogenesis.

  17. Germline mutations in MAP3K6 are associated with familial gastric cancer.

    Directory of Open Access Journals (Sweden)

    Daniel Gaston

    2014-10-01

    Full Text Available Gastric cancer is among the leading causes of cancer-related deaths worldwide. While heritable forms of gastric cancer are relatively rare, identifying the genes responsible for such cases can inform diagnosis and treatment for both hereditary and sporadic cases of gastric cancer. Mutations in the E-cadherin gene, CDH1, account for 40% of the most common form of familial gastric cancer (FGC, hereditary diffuse gastric cancer (HDGC. The genes responsible for the remaining forms of FGC are currently unknown. Here we examined a large family from Maritime Canada with FGC without CDH1 mutations, and identified a germline coding variant (p.P946L in mitogen-activated protein kinase kinase kinase 6 (MAP3K6. Based on conservation, predicted pathogenicity and a known role of the gene in cancer predisposition, MAP3K6 was considered a strong candidate and was investigated further. Screening of an additional 115 unrelated individuals with non-CDH1 FGC identified the p.P946L MAP3K6 variant, as well as four additional coding variants in MAP3K6 (p.F849Sfs*142, p.P958T, p.D200Y and p.V207G. A somatic second-hit variant (p.H506Y was present in DNA obtained from one of the tumor specimens, and evidence of DNA hypermethylation within the MAP3K6 gene was observed in DNA from the tumor of another affected individual. These findings, together with previous evidence from mouse models that MAP3K6 acts as a tumor suppressor, and studies showing the presence of somatic mutations in MAP3K6 in non-hereditary gastric cancers and gastric cancer cell lines, point towards MAP3K6 variants as a predisposing factor for FGC.

  18. Plant mutation breeding for crop improvement. V.2

    International Nuclear Information System (INIS)

    1991-01-01

    This volume contains the proceedings of the final two sessions of the FAO/IAEA Symposium on Plant Mutation Breeding for Crop Improvement, focussing on mutation breeding with particular objectives and the methodology of mutation breeding. The individual contributions are indexed separately. Although a wide variety of topics is included, the emphasis is on the use of (mainly gamma) radiation to induce economically useful mutants in cereals and legumes. The results of many conventional plant breeding programs are also presented. Refs, figs and tabs

  19. Plant mutation breeding for crop improvement. V.1

    International Nuclear Information System (INIS)

    1991-01-01

    This volume contains the proceedings of the first two sessions of the FAO/IAEA Symposium on Plant Mutation Breeding for Crop Improvement, focussing on mutation breeding in particular countries and crop-specific mutation breeding. The individual contributions are indexed separately. Although a wide variety of topics is included, the emphasis is on the use of (mainly gamma) radiation to induce economically useful mutants in cereals and legumes. The results of many conventional plant breeding programs are also presented. Refs, figs and tabs

  20. Identification and functional analysis of a novel mutation in the PAX3 gene associated with Waardenburg syndrome type I.

    Science.gov (United States)

    Niu, Zhijie; Li, Jiada; Tang, Fen; Sun, Jie; Wang, Xueping; Jiang, Lu; Mei, Lingyun; Chen, Hongsheng; Liu, Yalan; Cai, Xinzhang; Feng, Yong; He, Chufeng

    2018-02-05

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant genetic disorder of neural crest cells (NCC) characterized by congenital sensorineural hearing loss, dystopia canthorum, and abnormal iris pigmentation. WS1 is due to loss-of-function mutations in paired box gene 3 (PAX3). Here, we identified a novel PAX3 mutation (c.808C>G, p.R270G) in a three-generation Chinese family with WS1, and then analyzed its in vitro activities. The R270G PAX3 retained nuclear distribution and normal DNA-binding ability; however, it failed to activate MITF promoter, suggesting that haploinsufficiency may be the underlying mechanism for the mild WS1 phenotype of the study family. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Analysis of IgV gene mutations in B cell chronic lymphocytic leukaemia according to antigen-driven selection identifies subgroups with different prognosis and usage of the canonical somatic hypermutation machinery.

    Science.gov (United States)

    Degan, Massimo; Bomben, Riccardo; Bo, Michele Dal; Zucchetto, Antonella; Nanni, Paola; Rupolo, Maurizio; Steffan, Agostino; Attadia, Vincenza; Ballerini, Pier Ferruccio; Damiani, Daniela; Pucillo, Carlo; Poeta, Giovanni Del; Colombatti, Alfonso; Gattei, Valter

    2004-07-01

    Cases of B-cell chronic lymphocytic leukaemia (B-CLL) with mutated (M) IgV(H) genes have a better prognosis than unmutated (UM) cases. We analysed the IgV(H) mutational status of B-CLL according to the features of a canonical somatic hypermutation (SHM) process, correlating this data with survival. In a series of 141 B-CLLs, 124 cases were examined for IgV(H) gene per cent mutations and skewing of replacement/silent mutations in the framework/complementarity-determining regions as evidence of antigen-driven selection; this identified three B-CLL subsets: significantly mutated (sM), with evidence of antigen-driven selection, not significantly mutated (nsM) and UM, without such evidence and IgV(H) gene per cent mutations above or below the 2% cut-off. sM B-CLL patients had longer survival within the good prognosis subgroup that had more than 2% mutations of IgV(H) genes. sM, nsM and UM B-CLL were also characterized for the biased usage of IgV(H) families, intraclonal IgV(H) gene diversification, preference of mutations to target-specific nucleotides or hotspots, and for the expression of enzymes involved in SHM (translesion DNA polymerase zeta and eta and activation-induced cytidine deaminase). These findings indicate the activation of a canonical SHM process in nsM and sM B-CLLs and underscore the role of the antigen in defining the specific clinical and biological features of B-CLL.

  2. Novel mutations of CYP3A4 in Chinese.

    Science.gov (United States)

    Hsieh, K P; Lin, Y Y; Cheng, C L; Lai, M L; Lin, M S; Siest, J P; Huang, J D

    2001-03-01

    Human cytochrome P450 3A4 is a major P450 enzyme in the liver and gastrointestinal tract. It plays important roles in the metabolism of a wide variety of drugs, some endogenous steroids, and harmful environmental contaminants. CYP3A4 exhibits a remarkable interindividual activity variation as high as 20-fold. To investigate whether the interindividual variation in CYP3A4 levels can be partly explained by genetic polymorphism, we analyzed DNA samples from 102 Chinese subjects by polymerase chain reaction (PCR)-single-strand conformation polymorphism analysis for novel point mutation in the CYP3A4 coding sequence and promoter region. Using PCR and directed sequencing method to establish the complete intron sequence of CYP3A4 from leukocytes, the complete genomic sequence from exon 1 through 13 of CYP3A4 was determined and published in the GenBank database (accession no. AF209389). CYP3A4-specific primers were designed accordingly. After PCR-single-strand conformation polymorphism and restriction fragment length polymorphism screening, we found three novel mutations; two are point mutations and one is insertion. The first variant allele (CYP3A4*4), an Ile118Val change, was found in 3 of 102 Chinese subjects. The next allele (CYP3A4*5), which causes a Pro218Arg amino acid change, was found in 2 of 102 subjects. We found an insertion in A(17776), designated as CYP3A4*6, which causes frame shift and an early stop codon in exon 9, in one heterozygous subject. We also investigated the CYP3A4 activity in these mutant subjects by measuring the morning spot urinary 6beta-hydroxycortisol to free cortisol ratio with the enzyme-linked immunosorbent assay method. When compared with healthy Chinese population data, the 6beta-hydroxycortisol to free cortisol ratio data suggested that these alleles (CYP3A4*4, CYP3A4*5, and CYP3A4*6) may decrease the CYP3A4 activity. Incidences of these mutations in Chinese subjects are rare. The prevalence of these point mutations in other ethnic

  3. Generation of induced pluripotent stem cells (iPSC) from an atrial fibrillation patient carrying a PITX2 p.M200V mutation

    DEFF Research Database (Denmark)

    Mora, Cristina; Serzanti, Marialaura; Giacomelli, Alessio

    2017-01-01

    the molecular mechanisms underlying AF, we reprogrammed to pluripotency polymorphonucleated leukocytes isolated from the blood of a patient carrying a PITX2 p.M200V mutation, using a commercially available non-integrating expression system. The generated iPSCs expressed pluripotency markers and differentiated...... toward cells belonging to the three embryonic germ layers. Moreover, the cells showed a normal karyotype and retained the PITX2 p.M200V mutation....

  4. p53 mutations promote proteasomal activity.

    Science.gov (United States)

    Oren, Moshe; Kotler, Eran

    2016-07-27

    p53 mutations occur very frequently in human cancer. Besides abrogating the tumour suppressive functions of wild-type p53, many of those mutations also acquire oncogenic gain-of-function activities. Augmentation of proteasome activity is now reported as a common gain-of-function mechanism shared by different p53 mutants, which promotes cancer resistance to proteasome inhibitors.

  5. Novel PAX3 mutations causing Waardenburg syndrome type 1 in Tunisian patients.

    Science.gov (United States)

    Trabelsi, Mediha; Nouira, Malek; Maazoul, Faouzi; Kraoua, Lilia; Meddeb, Rim; Ouertani, Ines; Chelly, Imen; Benoit, Valérie; Besbes, Ghazi; Mrad, Ridha

    2017-12-01

    Waardenburg syndrome (WS) is an auditory-pigmentary disease characterized by a clinical and genetic variability. WS is classified into four types depending on the presence or absence of additional symptoms: WS1, WS2, WS3 and WS4. Type 1 and 3 are mostly caused by PAX3 mutations, while type 2 and type 4 are genetically heterogeneous. The aims of this study are to confirm the diagnostic of WS1 by the sequencing of PAX3 gene and to evaluate the genotype phenotype correlation. A clinical classification was established for 14 patients WS, as proposed by the Waardenburg Consortium, and noted a predominance of type 1 and type 2 with 6 patients WS1, 7 patients WS2 and 1 patient WS3. A significant inter and intra-familial clinical heterogeneity was also observed. A sequencing of PAX3 gene in the 6 patients WS1 confirmed the diagnosis in 4 of them by revealing three novel mutations that modify two functional domains of the protein: the c.942delC; the c.933_936dupTTAC and the c.164delTCCGCCACA. These three variations are most likely responsible for the phenotype, however their pathogenic effects need to be confirmed by functional studies. The MLPA analysis of the 2 patients who were sequence negative for PAX3 gene revealed, in one of them, a heterozygous deletion of exons 5 to 9 confirming the WS1 diagnosis. Both clinical and molecular approaches led to the conclusion that there is a lack of genotype-phenotype correlation in WS1, an element that must be taken into account in genetic counseling. The absence of PAX3 mutation in one patient WS1 highlights the fact that the clinical classification is sometimes insufficient to distinguish WS1 from other types WS hence the interest of sequencing the other WS genes in this patient. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. ATP6V0A2 mutations present in two Mexican Mestizo children with an autosomal recessive cutis laxa syndrome type IIA

    Directory of Open Access Journals (Sweden)

    D. Bahena-Bahena

    2014-01-01

    Full Text Available Patients with ARCL-IIA harbor mutations in ATP6V0A2 that codes for an organelle proton pump. The ARCL-IIA syndrome characteristically presents a combined glycosylation defect affecting N-linked and O-linked glycosylations, differentiating it from other cutis laxa syndromes and classifying it as a Congenital Disorder of Glycosylation (ATP6V0A2-CDG. We studied two Mexican Mestizo patients with a clinical phenotype corresponding to an ARCL-IIA syndrome. Both patients presented abnormal transferrin (N-linked glycosylation but Patient 1 had a normal ApoCIII (O-linked glycosylation profile. Mutational screening of ATP6V0A2 using cDNA and genomic DNA revealed in Patient 1 a previously reported homozygous nonsense mutation c.187C>T (p.R63X associated with a novel clinical finding of a VSD. In Patient 2 we found a homozygous c.2293C>T (p.Q765X mutation that had been previously reported but found that it also altered RNA processing generating a novel transcript not previously identified (r.2176_2293del; p.F726Sfs*10. This is the first report to describe Mestizo patients with molecular diagnosis of ARCL-IIA/ATP6V0A2-CDG and to establish that their mutations are the first to be found in patients from different regions of the world and with different genetic backgrounds.

  7. Comparative study of different methodologies to detect the JAK2 V617F mutation in chronic BCR-ABL1 negative myeloproliferative neoplasms

    Directory of Open Access Journals (Sweden)

    Alline Didone

    2016-04-01

    Full Text Available Objectives: A mutation in the JAK2 gene, V617F, has been identified in several BCR-ABL1 negative myeloproliferative neoplasms (MPN: polycythemia vera (PV, essential thrombocythemia (ET, and primary myelofibrosis (PMF. Defining the presence or absence of this mutation is an essential part of clinical diagnostic algorithms and patient management. Here, we aimed to evaluate the performance of three PCR-based assays: Amplification Refractory Mutation System (ARMS, High-Resolution Melting analysis (HRM, and Sanger direct sequencing, and compare their results with those obtained by a PCR restriction fragment polymorphism assay (PCR-RFLP. Design and methods: We used blood samples from 136 patients (PV=20; PMF=20; ET=28, and other MPN suspected cases=68. Results: Comparable results were observed among the four assays in patients with PV, PMF, and MPN suspected cases. In patients with a diagnosis of ET, the JAK2 V617F mutation was detected in 67.8% of them by the PCR-ARMS and PCR-HRM assay and in 64% of them by the conventional Sanger sequence approach. The PCR-ARMS and PCR-HRM assays were 100% concordant. With these tests, only one of the 20 patients with ET and one of the three patients with clinically suspected MPN gave different results compared with those obtained by the PCR-RFLP. Conclusions: Our results have demonstrated that the PCR-ARMS and PCR-HRM assays could detect the JAK2 V617F mutation effectively in MPN patients, but PCR-HRM assays are rapid and the most cost-effective procedures. Keywords: Myeloproliferative, JAK2 V617F, Mutation, Wild type, Screening

  8. BRAF V600E mutation in papillary thyroid cancer and its effect on postoperative radioiodine (131I) therapy: Should we modify our therapeutic strategy?

    Science.gov (United States)

    Domínguez Ayala, Maite; Expósito Rodríguez, Amaia; Bilbao González, Amaia; Mínguez Gabiña, Pablo; Gutiérrez Rodríguez, Teresa; Rodeño Ortiz de Zarate, Emilia; García Carrillo, Maitane; Barrios Treviño, Borja

    2018-03-19

    The BRAF V600E mutation in papillary thyroid cancer (PTC) has been associated with resistance to 131 I. Our aim was to quantify the response to 131 I after surgery in patients who had the mutation (BRAF+) and those who did not have the mutated gene (BRAF-). A prospective cohort study was designed, from September 2015 to February 2016, which included patients with PTC receiving therapy after surgical treatment. Variables were described for age, gender, histology, tumor stage, thyroglobulin values before, 48h after and 6months after 131 I; absorbed dose and % activity on days 2 and 7 and elimination time. 41 patients giving in total 67 thyroid remnants were included. 61% were BRAF+. In stagesiii and iv, 80% were BRAF+. In lateral resection, 100% were BRAF+. The number of nodes was higher in BRAF+: 3.4 vs 1.2 (P=.01). The classic variant was predominant in BRAF+ (91.7% vs 8.3%, P=.03). 85.7% vs 14.3% of BRAF+ had desmoplastic reaction (P=.02). The BRAF+ had a lower absorbed dose than the administered activity (5.4Gy/MBq vs 20Gy/MBq, P=.02); lower% activity with respect to the unit of mass at 2 (0.046%/g vs 0.103%/g, P=.02) and at 7days (0.006%/gr vs 0.034%/gr, P=.04) CONCLUSIONS: The mutation of the BRAF V600E gene is related with greater resistance to postoperative treatment with 131 I since the onset of the disease. Copyright © 2018 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Identification and validation of biomarkers of IgV(H) mutation status in chronic lymphocytic leukemia using microfluidics quantitative real-time polymerase chain reaction technology.

    Science.gov (United States)

    Abruzzo, Lynne V; Barron, Lynn L; Anderson, Keith; Newman, Rachel J; Wierda, William G; O'brien, Susan; Ferrajoli, Alessandra; Luthra, Madan; Talwalkar, Sameer; Luthra, Rajyalakshmi; Jones, Dan; Keating, Michael J; Coombes, Kevin R

    2007-09-01

    To develop a model incorporating relevant prognostic biomarkers for untreated chronic lymphocytic leukemia patients, we re-analyzed the raw data from four published gene expression profiling studies. We selected 88 candidate biomarkers linked to immunoglobulin heavy-chain variable region gene (IgV(H)) mutation status and produced a reliable and reproducible microfluidics quantitative real-time polymerase chain reaction array. We applied this array to a training set of 29 purified samples from previously untreated patients. In an unsupervised analysis, the samples clustered into two groups. Using a cutoff point of 2% homology to the germline IgV(H) sequence, one group contained all 14 IgV(H)-unmutated samples; the other contained all 15 mutated samples. We confirmed the differential expression of 37 of the candidate biomarkers using two-sample t-tests. Next, we constructed 16 different models to predict IgV(H) mutation status and evaluated their performance on an independent test set of 20 new samples. Nine models correctly classified 11 of 11 IgV(H)-mutated cases and eight of nine IgV(H)-unmutated cases, with some models using three to seven genes. Thus, we can classify cases with 95% accuracy based on the expression of as few as three genes.

  10. Analysis of patients with atypical hemolytic uremic syndrome treated at the Mie University Hospital: concentration of C3 p.I1157T mutation.

    Science.gov (United States)

    Matsumoto, Takeshi; Fan, Xinping; Ishikawa, Eiji; Ito, Masaaki; Amano, Keishirou; Toyoda, Hidemi; Komada, Yoshihiro; Ohishi, Kohshi; Katayama, Naoyuki; Yoshida, Yoko; Matsumoto, Masanori; Fujimura, Yoshihiro; Ikejiri, Makoto; Wada, Hideo; Miyata, Toshiyuki

    2014-11-01

    Atypical hemolytic uremic syndrome (aHUS) is caused by abnormalities of the complement system and has a significantly poor prognosis. The clinical phenotypes of 12 patients in nine families with aHUS with familial or recurrent onset and ADAMTS13 activity of ≥20 % treated at the Mie University Hospital were examined. In seven of the patients, the first episode of aHUS occurred during childhood and ten patients experienced a relapse. All patients had renal dysfunction and three had been treated with hemodialysis. Seven patients experienced probable triggering events including common cold, influenza, bacterial infection and/or vaccination for influenza. All patients had entered remission, and renal function was improved in 11 patients. DNA sequencing of six candidate genes, identified a C3 p.I1157T missense mutation in all eight patients in six families examined and this mutation was causative for aHUS. A causative mutation THBD p.D486Y was also identified in an aHUS patient. Four missense mutations, CFH p.V837I, p.Y1058H, p.V1060L and THBD p.R403K may predispose to aHUS manifestation; the remaining seven missense mutations were likely neutral. In conclusion, the clinical phenotypes of aHUS are various, and there are often trigger factors. The C3 p.I1157T mutation was identified as the causative mutation for aHUS in all patients examined, and may be geographically concentrated in or around the Mie prefecture in central Japan.

  11. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations

    International Nuclear Information System (INIS)

    Flores-Rozas, H.; Kolodner, R.D.

    1998-01-01

    The Saccharomyces cerevisiae genome encodes four MutL homologs. Of these, MLH1 and PMS1 are known to act in the MSH2-dependent pathway that repairs DNA mismatches. We have investigated the role of NLH3 in mismatch repair. Mutations in MLH3 increased the rate of reversion of the hom3-10 allele by increasing the rate of deletion of a single T in a run of 7 Ts. Combination of mutations in MLH3 and MSH6 caused a synergistic increase in the hom3-10 reversion rate, whereas the hom3-10 reversion rate in an mlh3 msh3 double mutant was the same as in the respective single mutants. Similar results were observed when the accumulation of mutations at frameshift hot spots in the LYS2 gene was analyzed, although mutation of MLH3 did not cause the same extent of affect at every LYS2 frameshift hot spot. MLH3 interacted with MLH1 in a two-hybrid system. These data are consistent with the idea that a proportion of the repair of specific insertion/deletion mispairs by the MSH3-dependent mismatch repair pathway uses a heterodimeric MLH1-MLH3 complex in place of the MLH1-PMS1 complex

  12. In Situ Detection and Quantification of AR-V7, AR-FL, PSA, and KRAS Point Mutations in Circulating Tumor Cells.

    Science.gov (United States)

    El-Heliebi, Amin; Hille, Claudia; Laxman, Navya; Svedlund, Jessica; Haudum, Christoph; Ercan, Erkan; Kroneis, Thomas; Chen, Shukun; Smolle, Maria; Rossmann, Christopher; Krzywkowski, Tomasz; Ahlford, Annika; Darai, Evangelia; von Amsberg, Gunhild; Alsdorf, Winfried; König, Frank; Löhr, Matthias; de Kruijff, Inge; Riethdorf, Sabine; Gorges, Tobias M; Pantel, Klaus; Bauernhofer, Thomas; Nilsson, Mats; Sedlmayr, Peter

    2018-03-01

    Liquid biopsies can be used in castration-resistant prostate cancer (CRPC) to detect androgen receptor splice variant 7 (AR-V7), a splicing product of the androgen receptor. Patients with AR-V7-positive circulating tumor cells (CTCs) have greater benefit of taxane chemotherapy compared with novel hormonal therapies, indicating a treatment-selection biomarker. Likewise, in those with pancreatic cancer (PaCa), KRAS mutations act as prognostic biomarkers. Thus, there is an urgent need for technology investigating the expression and mutation status of CTCs. Here, we report an approach that adds AR-V7 or KRAS status to CTC enumeration, compatible with multiple CTC-isolation platforms. We studied 3 independent CTC-isolation devices (CellCollector, Parsortix, CellSearch) for the evaluation of AR-V7 or KRAS status of CTCs with in situ padlock probe technology. Padlock probes allow highly specific detection and visualization of transcripts on a cellular level. We applied padlock probes for detecting AR-V7, androgen receptor full length (AR-FL), and prostate-specific antigen (PSA) in CRPC and KRAS wild-type (wt) and mutant (mut) transcripts in PaCa in CTCs from 46 patients. In situ analysis showed that 71% (22 of 31) of CRPC patients had detectable AR-V7 expression ranging from low to high expression [1-76 rolling circle products (RCPs)/CTC]. In PaCa patients, 40% (6 of 15) had KRAS mut expressing CTCs with 1 to 8 RCPs/CTC. In situ padlock probe analysis revealed CTCs with no detectable cytokeratin expression but positivity for AR-V7 or KRAS mut transcripts. Padlock probe technology enables quantification of AR-V7, AR-FL, PSA, and KRAS mut/wt transcripts in CTCs. The technology is easily applicable in routine laboratories and compatible with multiple CTC-isolation devices. © 2017 American Association for Clinical Chemistry.

  13. HIV type-1 genotypic resistance profiles in vertically infected patients from Argentina reveal an association between K103N+L100I and L74V mutations.

    Science.gov (United States)

    Aulicino, Paula C; Rocco, Carlos A; Mecikovsky, Debora; Bologna, Rosa; Mangano, Andrea; Sen, Luisa

    2010-01-01

    Patterns and pathways of HIV type-1 (HIV-1) antiretroviral (ARV) drug resistance-associated mutations in clinical isolates are conditioned by ARV history and factors such as viral subtype and fitness. Our aim was to analyse the frequency and association of ARV drug resistance mutations in a group of long-term vertically infected patients from Argentina. Plasma samples from 71 patients (38 children and 33 adolescents) were collected for genotypic HIV-1 ARV resistance testing during the period between February 2006 and October 2008. Statistically significant pairwise associations between ARV resistance mutations in pol, as well as associations between mutations and drug exposure, were identified using Fisher's exact tests with Bonferroni and false discovery rate corrections. Phylogenetic analyses were performed for subtype assignment. In protease (PR), resistance-associated mutations M46I/L, I54M/L/V/A/S and V82A/F/T/S/M/I were associated with each other and with minor mutations at codons 10, 24 and 71. Mutations V82A/F/T/S/M/I were primarily selected by the administration of ritonavir (RTV) in an historical ARV regimen. In reverse transcriptase, thymidine analogue mutation (TAM)1 profile was more common than TAM2. The non-nucleoside K103N+L100I mutations were observed at high frequency (15.5%) and were significantly associated with the nucleoside mutation L74V in BF recombinants. Associations of mutations at PR sites reflect the frequent use of RTV at an early time in this group of patients and convergent resistance mechanisms driven by the high exposure to protease inhibitors, as well as local HIV-1 diversity. The results provide clinical evidence of a molecular interaction between K103N+L100I and L74V mutations at the reverse transcriptase gene in vivo, limiting the future use of second-generation non-nucleoside reverse transcriptase inhibitors such as etravirine.

  14. Gamma ray induced somatic mutations in rose

    International Nuclear Information System (INIS)

    Datta, S.K.

    1989-01-01

    Budwood of 32 rose cultivars (Rosa spp.) was exposed to 3-4 krad of gamma rays and eyes were grafted on Rosa indica var. odorata root stock. Radiosensitivity with respect to sprouting, survival and plant height, and mutation frequency varied with the cultivar and dose of gamma rays. Somatic mutations in flower colour/shape were detected as chimera in 21 cultivars. The size of the mutant sector varied from a narrow streak on a petal to a whole flower and from a portion of a branch to an entire branch. 14 mutants were detected in M 1 V 1 , four in M 1 V 2 and three in M 1 V 3 . Maximum number of mutations was detected following 3 krad treatment. Eyes from mutant branches were grafted again on root stock and non-chimeric mutants were aimed at by vegetative propagation. Mutants from 11 cultivars only could be isolated in pure form. Isolation of non-chimeric mutants sometimes is difficult due to weak growth of a mutant branch. In such a case, all normal looking branches are removed to force a better growth of the mutant branch. It is advisable to maintain irradiated plants at least for four years with drastic pruning in each year. Nine mutants viz. 'Sharada', 'Sukumari', 'Tangerine Contempo', 'Yellow Contempo', 'Pink Contempo', 'Striped Contempo', 'Twinkle', 'Curio' and 'Light Pink Prize' have already been released as new cultivars for commercialization [ref. MBNL No. 23 and 31] and others are being multiplied and assessed. The mutation spectrum appears to be wider for the cultivars 'Contempo' and 'Imperator'. Pigment composition of the original variety is relevant for the kind of flower colour mutations that can be induced

  15. SF3B1-initiating mutations in MDS-RSs target lymphomyeloid hematopoietic stem cells.

    Science.gov (United States)

    Mortera-Blanco, Teresa; Dimitriou, Marios; Woll, Petter S; Karimi, Mohsen; Elvarsdottir, Edda; Conte, Simona; Tobiasson, Magnus; Jansson, Monika; Douagi, Iyadh; Moarii, Matahi; Saft, Leonie; Papaemmanuil, Elli; Jacobsen, Sten Eirik W; Hellström-Lindberg, Eva

    2017-08-17

    Mutations in the RNA splicing gene SF3B1 are found in >80% of patients with myelodysplastic syndrome with ring sideroblasts (MDS-RS). We investigated the origin of SF3B1 mutations within the bone marrow hematopoietic stem and progenitor cell compartments in patients with MDS-RS. Screening for recurrently mutated genes in the mononuclear cell fraction revealed mutations in SF3B1 in 39 of 40 cases (97.5%), combined with TET2 and DNMT3A in 11 (28%) and 6 (15%) patients, respectively. All recurrent mutations identified in mononuclear cells could be tracked back to the phenotypically defined hematopoietic stem cell (HSC) compartment in all investigated patients and were also present in downstream myeloid and erythroid progenitor cells. While in agreement with previous studies, little or no evidence for clonal ( SF3B1 mutation) involvement could be found in mature B cells, consistent involvement at the pro-B-cell progenitor stage was established, providing definitive evidence for SF3B1 mutations targeting lymphomyeloid HSCs and compatible with mutated SF3B1 negatively affecting lymphoid development. Assessment of stem cell function in vitro as well as in vivo established that only HSCs and not investigated progenitor populations could propagate the SF3B1 mutated clone. Upon transplantation into immune-deficient mice, SF3B1 mutated MDS-RS HSCs differentiated into characteristic ring sideroblasts, the hallmark of MDS-RS. Our findings provide evidence of a multipotent lymphomyeloid HSC origin of SF3B1 mutations in MDS-RS patients and provide a novel in vivo platform for mechanistically and therapeutically exploring SF3B1 mutated MDS-RS. © 2017 by The American Society of Hematology.

  16. Plasminogen activator inhibitor-1 4G/5G polymorphism, factor V Leiden, prothrombin mutations and the risk of VTE recurrence.

    Science.gov (United States)

    Sundquist, Kristina; Wang, Xiao; Svensson, Peter J; Sundquist, Jan; Hedelius, Anna; Larsson Lönn, Sara; Zöller, Bengt; Memon, Ashfaque A

    2015-11-25

    Plasminogen-activator inhibitor (PAI)-1 is an important inhibitor of the plasminogen/plasmin system. PAI-1 levels are influenced by the 4G/5G polymorphism in the PAI-1 promoter. We investigated the relationship between the PAI-1 polymorphism and VTE recurrence, and its possible modification by factor V Leiden (FVL) and prothrombin (PTM) mutations. Patients (n=1,069) from the Malmö Thrombophilia Study were followed from discontinuation of anticoagulant treatment until diagnosis of VTE recurrence or the end of the study (maximum follow-up 9.8 years). One hundred twenty-seven patients (11.9 %) had VTE recurrence. PAI-1 was genotyped by TaqMan PCR. Cox regression analysis adjusted for age, sex and acquired risk factors of VTE showed no evidence of an association between PAI-1 genotype and risk of VTE recurrence in the study population as a whole. However, by including an interaction term in the analysis we showed that FVL but not PTM modified the effect of PAI-1 genotype: patients with the 4G allele plus FVL had a higher risk of VTE recurrence [hazard ratio (HR) =2.3, 95 % confidence interval (CI) =1.5-3.3] compared to patients with the 4G allele but no FVL (reference group) or FVL irrespective of PAI-1 genotype (HR=1.8, 95 % CI=1.3-2.5). Compared to reference group, 5G allele irrespective of FVL was associated with lower risk of VTE recurrence only when compared with 4G allele together with FVL. In conclusion, FVL has a modifying effect on PAI-1 polymorphism in relation to risk of VTE recurrence. The role of PAI-1 polymorphism as a risk factor of recurrent VTE may be FVL dependent.

  17. BRCA2, EGFR, and NTRK mutations in mismatch repair-deficient colorectal cancers with MSH2 or MLH1 mutations.

    Science.gov (United States)

    Deihimi, Safoora; Lev, Avital; Slifker, Michael; Shagisultanova, Elena; Xu, Qifang; Jung, Kyungsuk; Vijayvergia, Namrata; Ross, Eric A; Xiu, Joanne; Swensen, Jeffrey; Gatalica, Zoran; Andrake, Mark; Dunbrack, Roland L; El-Deiry, Wafik S

    2017-06-20

    Deficient mismatch repair (MMR) and microsatellite instability (MSI) contribute to ~15% of colorectal cancer (CRCs). We hypothesized MSI leads to mutations in DNA repair proteins including BRCA2 and cancer drivers including EGFR. We analyzed mutations among a discovery cohort of 26 MSI-High (MSI-H) and 558 non-MSI-H CRCs profiled at Caris Life Sciences. Caris-profiled MSI-H CRCs had high mutation rates (50% vs 14% in non-MSI-H, P MLH1-mutant CRCs showed higher mutation rates in BRCA2 compared to non-MSH2/MLH1-mutant tumors (38% vs 6%, P MLH1-mutant CRCs included 75 unique mutations not known to occur in breast or pancreatic cancer per COSMIC v73. Only 5 deleterious BRCA2 mutations in CRC were previously reported in the BIC database as germ-line mutations in breast cancer. Some BRCA2 mutations were predicted to disrupt interactions with partner proteins DSS1 and RAD51. Some CRCs harbored multiple BRCA2 mutations. EGFR was mutated in 45.5% of MSH2/MLH1-mutant and 6.5% of non-MSH2/MLH1-mutant tumors (P MLH1-mutant CRC including NTRK1 I699V, NTRK2 P716S, and NTRK3 R745L. Our findings have clinical relevance regarding therapeutic targeting of BRCA2 vulnerabilities, EGFR mutations or other identified oncogenic drivers such as NTRK in MSH2/MLH1-mutant CRCs or other tumors with mismatch repair deficiency.

  18. Homozygous mutation in the NPHP3 gene causing foetal nephronophthisis

    DEFF Research Database (Denmark)

    Abdullah, Uzma; Farooq, Muhammad; Fatima, Ambrin

    2017-01-01

    We present a case of a foetal sonographic finding of hyper-echogenic kidneys, which led to a strategic series of genetic tests and identified a homozygous mutation (c.424C > T, p. R142*) in the NPHP3 gene. Our study provides a rare presentation of NPHP3-related ciliopathy and adds to the mutation...

  19. A novel missense mutation of the paired box 3 gene in a Turkish family with Waardenburg syndrome type 1.

    Science.gov (United States)

    Hazan, Filiz; Ozturk, A Taylan; Adibelli, Hamit; Unal, Nurettin; Tukun, Ajlan

    2013-01-01

    Screening of mutations in the paired box 3 (PAX3) gene in three generations of a Turkish family with Waardenburg syndrome type 1 (WS1). WS1 was diagnosed in a 13-month-old girl according to the WS Consortium criteria. Detailed family history of the proband revealed eight affected members in three generations. Routine clinical and audiological examination and ophthalmologic evaluation were performed on eight affected and five healthy members of the study family. Dystopia canthorum was detected in all affected patients; however, a brilliant blue iris was present in five patients who also had mild retinal hypopigmentation. Genomic DNA was extracted from the peripheral blood of affected and unaffected individuals in the family as well as 50 unrelated healthy volunteers. All coding exons and adjacent intronic regions of PAX3 were sequenced directly. A novel missense heterozygous c.788T>G mutation was identified in eight patients. This nucleotide alteration was not found in unaffected members of the study family or in the 50 unrelated control subjects. The mutation causes V263G amino-acid substitution in the homeodomain of the PAX3 protein, which represents the 45(th) residue of helix 3. We identified a novel missense c.788T>G mutation in PAX3 in a family with Waardenburg syndrome with intrafamilial phenotypic heterogeneity.

  20. Adaptive evolution influences the infectious dose of MERS-CoV necessary to achieve severe respiratory disease.

    Science.gov (United States)

    Douglas, Madeline G; Kocher, Jacob F; Scobey, Trevor; Baric, Ralph S; Cockrell, Adam S

    2018-04-01

    We recently established a mouse model (288-330 +/+ ) that developed acute respiratory disease resembling human pathology following infection with a high dose (5 × 10 6 PFU) of mouse-adapted MERS-CoV (icMERSma1). Although this high dose conferred fatal respiratory disease in mice, achieving similar pathology at lower viral doses may more closely reflect naturally acquired infections. Through continued adaptive evolution of icMERSma1 we generated a novel mouse-adapted MERS-CoV (maM35c4) capable of achieving severe respiratory disease at doses between 10 3 and 10 5 PFU. Novel mutations were identified in the maM35c4 genome that may be responsible for eliciting etiologies of acute respiratory distress syndrome at 10-1000 fold lower viral doses. Importantly, comparative genetics of the two mouse-adapted MERS strains allowed us to identify specific mutations that remained fixed through an additional 20 cycles of adaptive evolution. Our data indicate that the extent of MERS-CoV adaptation determines the minimal infectious dose required to achieve severe respiratory disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Overlapping hotspots in CDRs are critical sites for V region diversification.

    Science.gov (United States)

    Wei, Lirong; Chahwan, Richard; Wang, Shanzhi; Wang, Xiaohua; Pham, Phuong T; Goodman, Myron F; Bergman, Aviv; Scharff, Matthew D; MacCarthy, Thomas

    2015-02-17

    Activation-induced deaminase (AID) mediates the somatic hypermutation (SHM) of Ig variable (V) regions that is required for the affinity maturation of the antibody response. An intensive analysis of a published database of somatic hypermutations that arose in the IGHV3-23*01 human V region expressed in vivo by human memory B cells revealed that the focus of mutations in complementary determining region (CDR)1 and CDR2 coincided with a combination of overlapping AGCT hotspots, the absence of AID cold spots, and an abundance of polymerase eta hotspots. If the overlapping hotspots in the CDR1 or CDR2 did not undergo mutation, the frequency of mutations throughout the V region was reduced. To model this result, we examined the mutation of the human IGHV3-23*01 biochemically and in the endogenous heavy chain locus of Ramos B cells. Deep sequencing revealed that IGHV3-23*01 in Ramos cells accumulates AID-induced mutations primarily in the AGCT in CDR2, which was also the most frequent site of mutation in vivo. Replacing the overlapping hotspots in CDR1 and CDR2 with neutral or cold motifs resulted in a reduction in mutations within the modified motifs and, to some degree, throughout the V region. In addition, some of the overlapping hotspots in the CDRs were at sites in which replacement mutations could change the structure of the CDR loops. Our analysis suggests that the local sequence environment of the V region, and especially of the CDR1 and CDR2, is highly evolved to recruit mutations to key residues in the CDRs of the IgV region.

  2. Clinical features of Japanese polycythemia vera and essential thrombocythemia patients harboring CALR, JAK2V617F, JAK2Ex12del, and MPLW515L/K mutations.

    Science.gov (United States)

    Okabe, Masahiro; Yamaguchi, Hiroki; Usuki, Kensuke; Kobayashi, Yutaka; Kawata, Eri; Kuroda, Junya; Kimura, Shinya; Tajika, Kenji; Gomi, Seiji; Arima, Nobuyoshi; Mori, Sinichiro; Ito, Shigeki; Koizumi, Masayuki; Ito, Yoshikazu; Wakita, Satoshi; Arai, Kunihito; Kitano, Tomoaki; Kosaka, Fumiko; Dan, Kazuo; Inokuchi, Koiti

    2016-01-01

    The risk of complication of polycythemia vera (PV) and essential thrombocythemia (ET) by thrombosis in Japanese patients is clearly lower than in western populations, suggesting that genetic background such as race may influence the clinical features. This study aimed to clarify the relationship between genetic mutations and haplotypes and clinical features in Japanese patients with PV and ET. Clinical features were assessed prospectively among 74 PV and 303 ET patients. There were no clinical differences, including JAK2V617F allele burden, between PV patients harboring the various genetic mutations. However, CALR mutation-positive ET patients had a significantly lower WBC count, Hb value, Ht value, and neutrophil alkaline phosphatase score (NAP), and significantly more platelets, relative to JAK2V617F-positive ET patients and ET patients with no mutations. Compared to normal controls, the frequency of the JAK246/1 haplotype was significantly higher among patients with JAK2V617F, JAK2Ex12del, or MPL mutations, whereas no significant difference was found among CALR mutation-positive patients. CALR mutation-positive patients had a lower incidence of thrombosis relative to JAK2V617F-positive patients. Our findings suggest that JAK2V617F-positive ET patients and CALR mutation-positive patients have different mechanisms of occurrence and clinical features of ET, suggesting the potential need for therapy stratification in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A case report on ATP6V0A4 gene mutation: Forecast of familial ...

    African Journals Online (AJOL)

    ... screening of recessive forms of dRTA independent of hearing status and offer suitable intervention to treat dRTA as well as diminish the influence of SNHL on the child's learning and communication in daily life. Keywords: Renal tubular acidosis, Homeostasis, Electrolytes, Hearing impairment, ATP6V0A4 gene, Mutation ...

  4. Improved detection of the KIT D816V mutation in patients with systemic mastocytosis using a quantitative and highly sensitive real-time qPCR assay

    DEFF Research Database (Denmark)

    Kielsgaard Kristensen, Thomas; Vestergaard, Hanne; Møller, Michael Boe

    2011-01-01

    The vast majority of patients with systemic mastocytosis (SM) carry the somatic D816V mutation in the KIT gene. The KIT D816V mutation is one of the minor criteria for a diagnosis of SM according to the 2008 World Health Organization classification of myeloproliferative neoplasms. In the present ...

  5. Detecting BRAF Mutations in Formalin-Fixed Melanoma: Experiences with TwoState-of-the-Art Techniques

    Directory of Open Access Journals (Sweden)

    Nicola L. Schoenewolf

    2012-06-01

    Full Text Available Background: Melanoma is characterized by a high frequency of BRAF mutations. It is unknown if the BRAF mutation status has any predictive value for therapeutic approaches such as angiogenesis inhibition. Patients and Methods: We used 2 methods to analyze the BRAF mutation status in 52 of 62 melanoma patients. Method 1 (mutation-specific real-time PCR specifically detects the most frequent BRAF mutations, V600E and V600K. Method 2 (denaturing gel gradient electrophoresis and direct sequencing identifies any mutations affecting exons 11 and 15. Results: Eighteen BRAF mutations and 15 wild-type mutations were identified with both methods. One tumor had a double mutation (GAA in codon 600. Results of 3 samples were discrepant. Additional mutations (V600M, K601E were detected using method 2. Sixteen DNA samples were analyzable with either method 1 or method 2. There was a significant association between BRAF V600E mutation and survival. Conclusion: Standardized tissue fixation protocols are needed to optimize BRAF mutation analysis in melanoma. For melanoma treatment decisions, the availability of a fast and reliable BRAF V600E screening method may be sufficient. If other BRAF mutations in exons 11 and 15 are found to be of predictive value, a combination of the 2 methods would be useful.

  6. Preleukemic and second-hit mutational events in an acute myeloid leukemia patient with a novel germline RUNX1 mutation.

    Science.gov (United States)

    Ng, Isaac Ks; Lee, Joanne; Ng, Christopher; Kosmo, Bustamin; Chiu, Lily; Seah, Elaine; Mok, Michelle Meng Huang; Tan, Karen; Osato, Motomi; Chng, Wee-Joo; Yan, Benedict; Tan, Lip Kun

    2018-01-01

    Germline mutations in the RUNX1 transcription factor give rise to a rare autosomal dominant genetic condition classified under the entity: Familial Platelet Disorders with predisposition to Acute Myeloid Leukaemia (FPD/AML). While several studies have identified a myriad of germline RUNX1 mutations implicated in this disorder, second-hit mutational events are necessary for patients with hereditary thrombocytopenia to develop full-blown AML. The molecular picture behind this process remains unclear. We describe a patient of Malay descent with an unreported 7-bp germline RUNX1 frameshift deletion, who developed second-hit mutations that could have brought about the leukaemic transformation from a pre-leukaemic state. These mutations were charted through the course of the treatment and stem cell transplant, showing a clear correlation between her clinical presentation and the mutations present. The patient was a 27-year-old Malay woman who presented with AML on the background of hereditary thrombocytopenia affecting her father and 3 brothers. Initial molecular testing revealed the same novel RUNX1 mutation in all 5 individuals. The patient received standard induction, consolidation chemotherapy, and a haploidentical stem cell transplant from her mother with normal RUNX1 profile. Comprehensive genomic analyses were performed at diagnosis, post-chemotherapy and post-transplant. A total of 8 mutations ( RUNX1 , GATA2 , DNMT3A , BCORL1 , BCOR , 2 PHF6 and CDKN2A ) were identified in the pre-induction sample, of which 5 remained ( RUNX1 , DNMT3A , BCORL1 , BCOR and 1 out of 2 PHF6 ) in the post-treatment sample and none were present post-transplant. In brief, the 3 mutations which were lost along with the leukemic cells at complete morphological remission were most likely acquired leukemic driver mutations that were responsible for the AML transformation from a pre-leukemic germline RUNX1 -mutated state. On the contrary, the 5 mutations that persisted post

  7. [Description of Mycobacterium tuberculosis mutations conferring resistance to rifampicin and isoniazid detected by GenoType® MTBDRplus V.2 in Colombia].

    Science.gov (United States)

    Llerena, Claudia; Medina, Raquel

    2017-01-24

    The GenoType®MTBDRplusV.2 assay is a molecular technique endorsed by the World Health Organization and the Pan American Health Organization that allows for the identification of the Mycobacterium tuberculosis complex and the detection of mutations in the rpoβ gene for rifampicin resistance, and katG and inhA genes for isoniazid resistance. Due to the genetic variability in the circulating strains around the world, the national tuberculosis control programs should assess the performance of these new diagnostic technologies and their use under program conditions as rapid tests. To describe the mutations identified by the GenoType®MTBDRplusV.2 assay in pulmonary samples and Mycobacterium tuberculosis isolates in the Laboratorio Nacional de Referencia of the Instituto Nacional de Salud in 2014. We conducted a retrospective, descriptive study to detect the expression of inhA, KatG and rpoβ genes, responsible for resistence against isoniazid and rifampicin using the GenoType® MTBDRplus V.2 assay in 837 samples and isolates from tuberculosis cases. Several mutations in the rpoβ gene were identified. Ser531Leu was the most frequent (36.6%) followed by Asp516Val (21.6%), while Ser315Thr1 was the most frequent mutation in the katG gene (91.9%). We were able to identify different mutations present in MDR-TB strains in the country, with frequencies similar to those reported in other countries in the South American region.

  8. Early maturing mutations as germplasm stocks for barley breeding

    International Nuclear Information System (INIS)

    Ukai, Yasuo

    1985-01-01

    A total of 102 early maturing mutations have been isolated after various treatments of seeds or plants with ionizing radiations or chemicals from a barley cultivar 'Chikurin Ibaraki 1' or its mutants. Fifty of them were evaluated as regards responses to internal physiological factors. The mutants were found to have a mutational alteration in vernalization and/or photoperiodic response. Earliness in a narrow sense was not noticeably changed. The original genotype is a winter and long-day type. By mutation four different degrees of change in vernalization requirement i.e. complete (V 1 ) and incomplete (V 2 ) spring habit and winter habit with reduced requirement to varying degrees (V 3 , V 4 ) have been produced. Photoperiodic response was also changed into at least three types i.e. complete (P 1 ) and incomplete (P 2 ) loss of sensitivity to short photoperiod and a slight reduction in critical daylength for heading. P 1 and P 2 type mutants were all characterized by marked earliness in heading time in field. Thirty seven mutants were located in seven separate loci. Allelism test of the mutated genes to spontaneous ones revealed that the genes carried by P 1 type mutants were all allelic to an earliness gene ea sub(k) on chromosome 5 and the gene involved in P 2 type mutants to ea 7 on chromosome 6. On the contrary, the gene commonly involved in all V 1 type mutants and one V 2 type mutant was not allelic to spring habit gene Sh 2 or Sh 3 . It seemed likely that the gene was not allelic to, either, but closely linked with sh on chromosome 4. The diversity in terms of genetic and physiological properties of the early maturing mutants arising from common ancestry emphasizes the importance of induced mutation in broadening of germplasm of barley breeding. (author)

  9. The JAK2V617 mutation induces constitutive activation and agonist hypersensitivity in basophils from patients with polycythemia vera

    Science.gov (United States)

    Pieri, Lisa; Bogani, Costanza; Guglielmelli, Paola; Zingariello, Maria; Rana, Rosa Alba; Bartalucci, Niccolò; Bosi, Alberto; Vannucchi, Alessandro M.

    2009-01-01

    Background The JAK2V617F mutation has been associated with constitutive and enhanced activation of neutrophils, while no information is available concerning other leukocyte subtypes. Design and Methods We evaluated correlations between JAK2V617F mutation and the count of circulating basophils, the number of activated CD63+ basophils, their response in vitro to agonists as well as the effects of a JAK2 inhibitor. Results We found that basophil count was increased in patients with JAK2V617F -positive myeloproliferative neoplasms, particularly in those with polycythemia vera, and was correlated with the V617F burden. The burden of V617F allele was similar in neutrophils and basophils from patients with polycythemia vera, while total JAK2 mRNA content was remarkably greater in the basophils; however, the content of JAK2 protein in basophils was not increased. The number of CD63+ basophils was higher in patients with polycythemia vera than in healthy subjects or patients with essential thrombocythemia or primary myelofibrosis and was correlated with the V617F burden. Ultrastructurally, basophils from patients with polycythemia vera contained an increased number of granules, most of which were empty suggesting cell degranulation in vivo. Ex vivo experiments revealed that basophils from patients with polycythemia vera were hypersensitive to the priming effect of interleukin-3 and to f-MLP-induced activation; pre-treatment with a JAK2 inhibitor reduced polycythemia vera basophil activation. Finally, we found that the number of circulating CD63+ basophils was significantly greater in patients suffering from aquagenic pruritus, who also showed a higher V617F allele burden. Conclusions These data indicate that the number of constitutively activated and hypersensitive circulating basophils is increased in polycythemia vera, underscoring a role of JAK2V617F in these cells’ abnormal function and, putatively, in the pathogenesis of pruritus. PMID:19608683

  10. Analysis of mutations in DNA gyrase and topoisomerase IV of Ureaplasma urealyticum and Ureaplasma parvum serovars resistant to fluoroquinolones.

    Science.gov (United States)

    Piccinelli, Giorgio; Gargiulo, Franco; Biscaro, Valeria; Caccuri, Francesca; Caruso, Arnaldo; De Francesco, Maria Antonia

    2017-01-01

    This study aims to determine the prevalence of fluoroquinolone resistance of Ureaplasma biovars and serovars isolated from urogenital clinical samples and determine the underlying molecular mechanism for quinolone resistance for all resistant isolates. Of 105 samples confirmed as positive for U. urealyticum/U. parvum, 85 were resistant to quinolones by the Mycoplasma-IST2 kit. However, only 43 out of 85 quinolone resistant isolates had amino acid substitutions in GyrA, GyrB, ParC and ParE proteins underlining that this assay have mis-identified as fluoroquinolone resistant 42 isolates. The known ParC E87K and ParC S83L mutations were found in 1 and 10 isolates, respectively. An original mutation of ureaplasmal ParC (E87Q, 1 isolate) was found. Furthermore, we found a ParE R448K mutation in one isolate, already described. Among the additional alterations detected, the most prevalent mutation found was L176F in GyrA protein in 18 isolates with single infection and in 3 isolates with mixed ureaplasma infections. Mutations in GyrB (E502Q, 4 isolates), ParE (Q412K, Q412P, Q412T, 3 independent isolates), whose role is unknown, were also found. Other sporadic mutations in the four genes were identified. This investigation is the result of monitoring the data for molecular fluoroquinone resistance in Ureaplasma spp. in Italy. Resulting that this acquired resistance is high and that continued local epidemiological studies are essential to monitor and document their antimicrobial resistance trends. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. First-in-Man Dose-Escalation Study of the Selective BRAF Inhibitor RG7256 in Patients with BRAF V600-Mutated Advanced Solid Tumors

    DEFF Research Database (Denmark)

    Dienstmann, Rodrigo; Lassen, Ulrik; Cebon, Jonathan

    2016-01-01

    V600-mutated advanced solid tumors. PATIENTS AND METHODS: Patients received RG7256 orally over 8 dose levels from 200 mg once a day (QD) to 2400 mg twice a day (BID) (50-, 100- and 150-mg tablets) using a classic 3 + 3 dose escalation design. RESULTS: In total, 45 patients were enrolled; most (87...... %) had advanced melanoma (94 % BRAF V600E). RG7256 was rapidly absorbed, with limited accumulation and dose-proportional increase in exposure up to 1950 mg BID. The maximal tolerated dose (MTD) was not reached. The most common drug-related adverse events (AEs) were dyspepsia (20 %), dry skin (18 %), rash...

  12. Mutations in the Bacterial Ribosomal Protein L3 and Their Association with Antibiotic Resistance

    Science.gov (United States)

    Klitgaard, Rasmus N.; Ntokou, Eleni; Nørgaard, Katrine; Biltoft, Daniel; Hansen, Lykke H.; Trædholm, Nicolai M.; Kongsted, Jacob

    2015-01-01

    Different groups of antibiotics bind to the peptidyl transferase center (PTC) in the large subunit of the bacterial ribosome. Resistance to these groups of antibiotics has often been linked with mutations or methylations of the 23S rRNA. In recent years, there has been a rise in the number of studies where mutations have been found in the ribosomal protein L3 in bacterial strains resistant to PTC-targeting antibiotics but there is often no evidence that these mutations actually confer antibiotic resistance. In this study, a plasmid exchange system was used to replace plasmid-carried wild-type genes with mutated L3 genes in a chromosomal L3 deletion strain. In this way, the essential L3 gene is available for the bacteria while allowing replacement of the wild type with mutated L3 genes. This enables investigation of the effect of single mutations in Escherichia coli without a wild-type L3 background. Ten plasmid-carried mutated L3 genes were constructed, and their effect on growth and antibiotic susceptibility was investigated. Additionally, computational modeling of the impact of L3 mutations in E. coli was used to assess changes in 50S structure and antibiotic binding. All mutations are placed in the loops of L3 near the PTC. Growth data show that 9 of the 10 mutations were well accepted in E. coli, although some of them came with a fitness cost. Only one of the mutants exhibited reduced susceptibility to linezolid, while five exhibited reduced susceptibility to tiamulin. PMID:25845869

  13. Mutations in the G6PC3 gene cause Dursun syndrome.

    Science.gov (United States)

    Banka, Siddharth; Newman, William G; Ozgül, R Koksal; Dursun, Ali

    2010-10-01

    Dursun syndrome is a triad of familial primary pulmonary hypertension, leucopenia, and atrial septal defect. Here we demonstrate that mutations in G6PC3 cause Dursun syndrome. Mutations in G6PC3 are known to also cause severe congenital neutropenia type 4. Identification of the genetic basis of Dursun syndrome expands the pre-existing knowledge about the phenotypic effects of mutations in G6PC3. We propose that Dursun syndrome should now be considered as a subset of severe congenital neutropenia type 4 with pulmonary hypertension as an important clinical feature. Copyright © 2010 Wiley-Liss, Inc.

  14. Canine CNGA3 Gene Mutations Provide Novel Insights into Human Achromatopsia-Associated Channelopathies and Treatment.

    Directory of Open Access Journals (Sweden)

    Naoto Tanaka

    Full Text Available Cyclic nucleotide-gated (CNG ion channels are key mediators underlying signal transduction in retinal and olfactory receptors. Genetic defects in CNGA3 and CNGB3, encoding two structurally related subunits of cone CNG channels, lead to achromatopsia (ACHM. ACHM is a congenital, autosomal recessive retinal disorder that manifests by cone photoreceptor dysfunction, severely reduced visual acuity, impaired or complete color blindness and photophobia. Here, we report the first canine models for CNGA3-associated channelopathy caused by R424W or V644del mutations in the canine CNGA3 ortholog that accurately mimic the clinical and molecular features of human CNGA3-associated ACHM. These two spontaneous mutations exposed CNGA3 residues essential for the preservation of channel function and biogenesis. The CNGA3-R424W results in complete loss of cone function in vivo and channel activity confirmed by in vitro electrophysiology. Structural modeling and molecular dynamics (MD simulations revealed R424-E306 salt bridge formation and its disruption with the R424W mutant. Reversal of charges in a CNGA3-R424E-E306R double mutant channel rescued cGMP-activated currents uncovering new insights into channel gating. The CNGA3-V644del affects the C-terminal leucine zipper (CLZ domain destabilizing intersubunit interactions of the coiled-coil complex in the MD simulations; the in vitro experiments showed incompetent trimeric CNGA3 subunit assembly consistent with abnormal biogenesis of in vivo channels. These newly characterized large animal models not only provide a valuable system for studying cone-specific CNG channel function in health and disease, but also represent prime candidates for proof-of-concept studies of CNGA3 gene replacement therapy for ACHM patients.

  15. Calreticulin mutation analysis in non-mutated Janus kinase 2 essential thrombocythemia patients in Chiang Mai University: analysis of three methods and clinical correlations.

    Science.gov (United States)

    Rattarittamrong, Ekarat; Tantiworawit, Adisak; Kumpunya, Noppamas; Wongtagan, Ornkamon; Tongphung, Ratchanoo; Phusua, Arunee; Chai-Adisaksopha, Chatree; Hantrakool, Sasinee; Rattanathammethee, Thanawat; Norasetthada, Lalita; Charoenkwan, Pimlak; Lekawanvijit, Suree

    2018-03-09

    The primary objective was to determine the prevalence of calreticulin (CALR) mutation in patients with non-JAK2V617F mutated essential thrombocythemia (ET). The secondary objectives were to evaluate the accuracy of CALR mutation analysis by high-resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) compared with DNA sequencing and to compare clinical characteristics of CALR mutated and JAK2V617F mutated ET. This was a prospective cohort study involving ET patients registered at Chiang Mai University in the period September 2015-September 2017 who were aged more than 2 years, and did not harbor JAK2V617F mutation. The presence of CALR mutation was established by DNA sequencing, HRM, and real-time PCR for type 1 and type 2 mutation. Clinical data were compared with that from ET patients with mutated JAK2V617F. Twenty-eight patients were enrolled onto the study. CALR mutations were found in 10 patients (35.7%). Three patients had type 1 mutation, 5 patients had type 2 mutation, 1 patient had type 18 mutation, and 1 patients had novel mutations (c.1093 C-G, c.1098_1131 del, c.1135 G-A). HRM could differentiate between the types of mutation in complete agreement with DNA sequencing. Patients with a CALR mutation showed a significantly greater male predominance and had a higher platelet count when compared with 42 JAK2V617F patients. The prevalence of CALR mutation in JAK2V617F-negative ET in this study is 35.7%. HRM is an effective method of detecting CALR mutation and is a more advantageous method of screening for CALR mutation.

  16. Identification of an N-linked glycan in the V1-loop of HIV-1 gp120 influencing neutralization by anti-V3 antibodies and soluble CD4

    DEFF Research Database (Denmark)

    Gram, G J; Hemming, A; Bolmstedt, A

    1994-01-01

    Glycosylation is necessary for HIV-1 gp120 to attain a functional conformation, and individual N-linked glycans of gp120 are important, but not essential, for replication of HIV-1 in cell culture. We have constructed a mutant HIV-1 infectious clone lacking a signal for N-linked glycosylation...... in the V1-loop of HIV-1 gp120. Lack of an N-linked glycan was verified by a mobility enhancement of mutant gp120 in SDS-gel electrophoresis. The mutated virus showed no differences in either gp120 content per infectious unit or infectivity, indicating that the N-linked glycan was neither essential nor...... affecting viral infectivity in cell culture. We found that the mutated virus lacking an N-linked glycan in the V1-loop of gp120 was more resistant to neutralization by monoclonal antibodies to the V3-loop and neutralization by soluble recombinant CD4 (sCD4). Both viruses were equally well neutralized by Con...

  17. EGFR and KRAS mutation coexistence in lung adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Vitor Manuel Leitão de Sousa

    2015-04-01

    Full Text Available Lung cancer is one of the most common causes of cancer deaths. The development of EGFR targeted therapies, including monoclonal antibodies and tyrosine kinase inhibitors have generated an interest in the molecular characterization of these tumours. KRAS mutations are associated with resistance to EGFR TKIs. EGFR and KRAS mutations have been considered as mutually exclusive. This paper presents three bronchial-pulmonary carcinomas, two adenocarcinomas and one pleomorphic sarcomatoid carcinoma, harboring EGFR and KRAS mutations. Case 1 corresponded to an adenocarcinoma with EGFR exon 21 mutation (L858R and KRAS codon 12 point mutation (G12V; case 2, a  mucinous adenocarcinoma expressed coexistence of EGFR exon 21 mutation (L858R and KRAS codon 12 point mutation (G12V; and case 3 a sarcomatoid carcinoma with EGFR exon 19 deletion – del 9bp and KRAS codon 12 point mutation (G12C - cysteine. Based on our experience and on the literature, we conclude that EGFR and KRAS mutations can indeed coexist in the same bronchial-pulmonary carcinoma, either in the same histological type or in different patterns. The biological implications of this coexistence are still poorly understood mainly because these cases are not frequent or currently searched. It is therefore necessary to study larger series of cases with the two mutations to better understand the biological, clinical and therapeutic implications.

  18. Molecular and clinical characterization of Waardenburg syndrome type I in an Iranian cohort with two novel PAX3 mutations.

    Science.gov (United States)

    Jalilian, Nazanin; Tabatabaiefar, Mohammad Amin; Farhadi, Mohammad; Bahrami, Tayeb; Emamdjomeh, Hesam; Noori-Daloii, Mohammad Reza

    2015-12-15

    Waardenburg syndrome (WS) is a disease of abnormal neural-crest derived melanocyte development characterized by hearing loss and pigmentary disturbances in hair, eyes and skin. WS is subdivided into four major types, WS1-WS4, where WS1 is recognized by the presence of dystopia canthorum, with PAX3 being the only known gene involved. This study aimed at investigating PAX3 mutations and clinical characteristics of WS1 in a group of Iranian patients. A total of 12 WS1 patients from four unrelated Iranian families were enrolled. Waardenburg consortium guidelines were used for WS1 diagnosis. A detailed family history was traced and a thorough clinical examination was performed for all participants. Furthermore, WS1 patients underwent screening for PAX3 mutations using PCR-sequencing. Dystopia canthorum, broad high nasal root and synophrys were observed in all patients. Early graying, hair discoloration, hypoplastic blue eyes (characteristic brilliant blue iris) and hearing loss were the most common features observed, while heterochromia iridis was the least frequently observed sign among the studied Iranian WS1 patients. Genetic analysis of PAX3 revealed four mutations including c.667C>T, c.784C>T, c.951delT and c.451+3A>C. Two of the four mutations reported here (c.951delT and c.451+3A>C) are being reported for the first time in this study. Our data provide insight into genotypic and phenotypic spectrum of WS1 in an Iranian series of patients. Our results expand the spectrum of PAX3 mutations and may have implications for the genetic counseling of WS in Iran. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Mutations of the phenylalanine hydroxylase gene in patients with phenylketonuria in Shanxi, China

    Directory of Open Access Journals (Sweden)

    Yong-An Zhou

    2012-01-01

    Full Text Available The variation in mutations in exons 3, 6, 7, 11 and 12 of the phenylalanine hydroxylase (PAH gene was investigated in 59 children with phenylketonuria (PKU and 100 normal children. Three single nucleotide polymorphisms were detected by sequence analysis. The mutational frequencies of cDNA 696, cDNA 735 and cDNA 1155 in patients were 96.2%, 76.1% and 7.6%, respectively, whereas in healthy children the corresponding frequencies were 97.0%, 77.3% and 8.3%. In addition, 81 mutations accounted for 61.0% of the mutant alleles. R111X, H64 > TfsX9 and S70 del accounted for 5.1%, 0.8% and 0.8% mutation of alleles in exon 3, whereas EX6-96A > G accounted for 10.2% mutation of alleles in exon 6. R243Q had the highest incidence in exon 7 (12.7%, followed by Ivs7 +2T>A (5.1% and T278I (2.5%. G247V, R252Q, L255S, R261Q and E280K accounted for 0.8% while Y356X and V399V accounted for 5.9% and 5.1%, respectively, in exon 11. R413P and A434D accounted for 5.9% and 2.5%, respectively, in exon 12. Seventy-two variant alleles accounted for the 16 mutations observed here. The mutation characteristics and distributions demonstrated that EX6-96A > G and R243Q were the hot regions for mutations in the PAH gene in Shanxi patients with PKU.

  20. Novel ENAM and LAMB3 mutations in Chinese families with hypoplastic amelogenesis imperfecta.

    Science.gov (United States)

    Wang, Xin; Zhao, Yuming; Yang, Yuan; Qin, Man

    2015-01-01

    Amelogenesis imperfecta is a group of inherited diseases affecting the quality and quantity of dental enamel. To date, mutations in more than ten genes have been associated with non-syndromic amelogenesis imperfecta (AI). Among these, ENAM and LAMB3 mutations are known to be parts of the etiology of hypoplastic AI in human cases. When both alleles of LAMB3 are defective, it could cause junctional epidermolysis bullosa (JEB), while with only one mutant allele in the C-terminus of LAMB3, it could result in severe hypoplastic AI without skin fragility. We enrolled three Chinese families with hypoplastic autosomal-dominant AI. Despite the diagnosis falling into the same type, the characteristics of their enamel hypoplasia were different. Screening of ENAM and LAMB3 genes was performed by direct sequencing of genomic DNA from blood samples. Disease-causing mutations were identified and perfectly segregated with the enamel defects in three families: a 19-bp insertion mutation in the exon 7 of ENAM (c.406_407insTCAAAAAAGCCGACCACAA, p.K136Ifs*16) in Family 1, a single-base deletion mutation in the exon 5 of ENAM (c. 139delA, p. M47Cfs*11) in Family 2, and a LAMB3 nonsense mutation in the last exon (c.3466C>T, p.Q1156X) in Family 3. Our results suggest that heterozygous mutations in ENAM and LAMB3 genes can cause hypoplastic AI with markedly different phenotypes in Chinese patients. And these findings extend the mutation spectrum of both genes and can be used for mutation screening of AI in the Chinese population.

  1. Novel ENAM and LAMB3 mutations in Chinese families with hypoplastic amelogenesis imperfecta.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available Amelogenesis imperfecta is a group of inherited diseases affecting the quality and quantity of dental enamel. To date, mutations in more than ten genes have been associated with non-syndromic amelogenesis imperfecta (AI. Among these, ENAM and LAMB3 mutations are known to be parts of the etiology of hypoplastic AI in human cases. When both alleles of LAMB3 are defective, it could cause junctional epidermolysis bullosa (JEB, while with only one mutant allele in the C-terminus of LAMB3, it could result in severe hypoplastic AI without skin fragility. We enrolled three Chinese families with hypoplastic autosomal-dominant AI. Despite the diagnosis falling into the same type, the characteristics of their enamel hypoplasia were different. Screening of ENAM and LAMB3 genes was performed by direct sequencing of genomic DNA from blood samples. Disease-causing mutations were identified and perfectly segregated with the enamel defects in three families: a 19-bp insertion mutation in the exon 7 of ENAM (c.406_407insTCAAAAAAGCCGACCACAA, p.K136Ifs*16 in Family 1, a single-base deletion mutation in the exon 5 of ENAM (c. 139delA, p. M47Cfs*11 in Family 2, and a LAMB3 nonsense mutation in the last exon (c.3466C>T, p.Q1156X in Family 3. Our results suggest that heterozygous mutations in ENAM and LAMB3 genes can cause hypoplastic AI with markedly different phenotypes in Chinese patients. And these findings extend the mutation spectrum of both genes and can be used for mutation screening of AI in the Chinese population.

  2. ATP1A3 Mutation in Adult Rapid-Onset Ataxia.

    Directory of Open Access Journals (Sweden)

    Kathleen J Sweadner

    Full Text Available A 21-year old male presented with ataxia and dysarthria that had appeared over a period of months. Exome sequencing identified a de novo missense variant in ATP1A3, the gene encoding the α3 subunit of Na,K-ATPase. Several lines of evidence suggest that the variant is causative. ATP1A3 mutations can cause rapid-onset dystonia-parkinsonism (RDP with a similar age and speed of onset, as well as severe diseases of infancy. The patient's ATP1A3 p.Gly316Ser mutation was validated in the laboratory by the impaired ability of the expressed protein to support the growth of cultured cells. In a crystal structure of Na,K-ATPase, the mutated amino acid was directly apposed to a different amino acid mutated in RDP. Clinical evaluation showed that the patient had many characteristics of RDP, however he had minimal fixed dystonia, a defining symptom of RDP. Successive magnetic resonance imaging (MRI revealed progressive cerebellar atrophy, explaining the ataxia. The absence of dystonia in the presence of other RDP symptoms corroborates other evidence that the cerebellum contributes importantly to dystonia pathophysiology. We discuss the possibility that a second de novo variant, in ubiquilin 4 (UBQLN4, a ubiquitin pathway component, contributed to the cerebellar neurodegenerative phenotype and differentiated the disease from other manifestations of ATP1A3 mutations. We also show that a homozygous variant in GPRIN1 (G protein-regulated inducer of neurite outgrowth 1 deletes a motif with multiple copies and is unlikely to be causative.

  3. An experimental study of BIGH3 gene mutations in the patients with corneal dystrophies

    International Nuclear Information System (INIS)

    Jin Tao; Zou Liuhe; Yang Ling

    2004-01-01

    Objective: To evaluate BIGH3 gene mutations in Chinese patents with corneal dystrophies. Methods: 2ml peripheral venous blood was collected from 15 patients with granular corneal dystrophies and 5 normal subjects. Leucocytes DNA was extracted with standard method. With two pairs of oligonucleotide primers, exon 4 and exon 12 of the BIGH3 gene were amplified using the polymerase chain reaction. Amplified DNA fragments were purified and sequenced directly. Results: Mutations in BIGH3 gene were detected in all the patients with corneal dystrophies. BIGH3 gene mutations were not found in normal subjects. 12 patients with Avellino corneal dystrophy had the missense mutation R124H in the BIGH3 gene. 3 patients with granular corneal dystrophy had the missense mutation R555W in the BIGH3 gene. Conclusion: R124H and R555W mutations in BIGH3 gene were also found in the Chinese patients with Avellino and granular corneal dystrophies. In China, Avellino corneal dystrophy associated with the R124H mutation is the most common form in the corneal dystrophies resulted by BIGH3 gene mutions. Condon 124 and 555 are also the hot spots for the mutations in the BIGH3 gene in the Chinese patients with corneal dystrophies. Molecular genetic analysis may be repuired for proper diagnosis and subclassification of corneal dystrophies. (authors)

  4. Mutation induction by ion beams in plants

    International Nuclear Information System (INIS)

    Tanaka, Atsushi

    2001-01-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  5. Mutation induction by ion beams in plants

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  6. Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations

    Directory of Open Access Journals (Sweden)

    Légaré Danielle

    2011-10-01

    Full Text Available Abstract Background Several mutations were present in the genome of Streptococcus pneumoniae linezolid-resistant strains but the role of several of these mutations had not been experimentally tested. To analyze the role of these mutations, we reconstituted resistance by serial whole genome transformation of a novel resistant isolate into two strains with sensitive background. We sequenced the parent mutant and two independent transformants exhibiting similar minimum inhibitory concentration to linezolid. Results Comparative genomic analyses revealed that transformants acquired G2576T transversions in every gene copy of 23S rRNA and that the number of altered copies correlated with the level of linezolid resistance and cross-resistance to florfenicol and chloramphenicol. One of the transformants also acquired a mutation present in the parent mutant leading to the overexpression of an ABC transporter (spr1021. The acquisition of these mutations conferred a fitness cost however, which was further enhanced by the acquisition of a mutation in a RNA methyltransferase implicated in resistance. Interestingly, the fitness of the transformants could be restored in part by the acquisition of altered copies of the L3 and L16 ribosomal proteins and by mutations leading to the overexpression of the spr1887 ABC transporter that were present in the original linezolid-resistant mutant. Conclusions Our results demonstrate the usefulness of whole genome approaches at detecting major determinants of resistance as well as compensatory mutations that alleviate the fitness cost associated with resistance.

  7. Consequences of a novel caveolin-3 mutation in a large German family.

    Science.gov (United States)

    Fischer, Dirk; Schroers, Anja; Blümcke, Ingmar; Urbach, Horst; Zerres, Klaus; Mortier, Wilhelm; Vorgerd, Matthias; Schröder, Rolf

    2003-02-01

    Mutations in the human caveolin-3 gene (cav-3) on chromosome 3p25 have been described in limb girdle muscular dystrophy, rippling muscle disease, hyperCKemia, and distal myopathy. Here, we describe the genetic, myopathological, and clinical findings in a large German family harboring a novel heterozygous mutation (GAC-->GAA) in codon 27 of the cav-3 gene. This missense mutation causes an amino acid change from asparagine to glutamate (Asp27Glu) in the N-terminal region of the Cav-3 protein, which leads to a drastic decrease of Cav-3 protein expression in skeletal muscle tissue. In keeping with an autosomal dominant mode of inheritance, this novel cav-3 mutation was found to cosegregate with neuromuscular involvement in the reported family. Ultrastructural analysis of Cav-3-deficient muscle showed an abnormal folding of the plasma membrane as well as multiple vesicular structures in the subsarcolemmal region. Neurological examination of all nine subjects from three generations harboring the novel cav-3 mutation showed clear evidence of rippling muscle disease. However, only two of these nine patients showed isolated signs of rippling muscle disease without muscle weakness or atrophy, whereas five had additional signs of a distal myopathy and two fulfilled the diagnostic criteria of a coexisting limb girdle muscular dystrophy. These findings indicate that mutations in the human cav-3 gene can lead to different and overlapping clinical phenotypes even within the same family. Different clinical phenotypes in caveolinopathies may be attributed to so far unidentified modifying factors/genes in the individual genetic background of affected patients.

  8. Generation of induced pluripotent stem cells (iPSCs) from an Alzheimer's disease patient carrying an A79V mutation in PSEN1

    DEFF Research Database (Denmark)

    Li, Tong; Pires, Carlota; Nielsen, Troels Tolstrup

    2016-01-01

    Skin fibroblasts were obtained from a 48-year-old presymptomatic woman carrying a A79V mutation in the presenilin 1 gene (PSEN1), causing Alzheimer's disease (AD). Induced pluripotent stem cell (iPSCs) were derived via transfection with episomal vectors carrying hOCT4, hSOX2, hKLF2, hL-MYC, hLIN28...... and shTP53 genes. A79V-iPSCs were free of genomically integrated reprogramming genes, had the specific mutation but no additional genomic aberrancies, expressed the expected pluripotency markers and displayed in vitro differentiation potential to the three germ layers. The reported A79V-iPSCs line may...

  9. A novel MKRN3 missense mutation causing familial precocious puberty.

    Science.gov (United States)

    de Vries, L; Gat-Yablonski, G; Dror, N; Singer, A; Phillip, M

    2014-12-01

    Central precocious puberty may be familial in about a quarter of the idiopathic cases. However, little is known about the genetic causes responsible for the disorder. In this report we describe a family with central precocious puberty associated with a mutation in the makorin RING-finger protein 3 (MKRN3) gene. A novel missense mutation (p.H420Q) in the imprinted MKRN3 gene was identified in the four affected siblings, in their unaffected father and in his affected mother. An in silico mutant MKRN3 model predicts that the mutation p.H420Q leads to reduced zinc binding and, subsequently, impaired RNA binding. These findings support the fundamental role of the MKRN3 protein in determining pubertal timing. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. NVP-BEZ235 overcomes gefitinib-acquired resistance by down-regulating PI3K/AKT/ mTOR phosphorylation

    Directory of Open Access Journals (Sweden)

    Sun ZH

    2015-01-01

    Full Text Available Zhihua Sun,2,* Qiuhui li,1,* Sheng Zhang,1 Jing Chen,1 Lili Huang,3 Jinghua Ren,1 Yu Chang,1 Yichen Liang,1 Gang Wu1 1Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China; 2Oncology department, Xiangyang central Hospital, Xiangyang, Hubei, People’s Republic of China; 3Radiation Oncology Department, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, People's Republic of China *These authors contributed equally to this work Background: Patients harboring activating mutations in epidermal growth factor receptors (EGFR are particularly sensitive to EGFR tyrosine kinase inhibitors (TKIs. However, most patients develop an acquired resistance after a period of about 10 months. This study focuses on the therapeutic effect of NVP-BEZ235, a dual inhibitor of phosphatidylinositol- 3-kinase/mammalian target of rapamycin (PI3K/mTOR, in gefitinib-resistant non-small cell lung cancer. Methods: H1975 cell line was validated as a gefitinib-resistant cell model by the nucleotide-sequence analysis. We used the 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay to detect the growth of H1975 cell line in vitro. H1975 cells' migration was detected by the migration assay. Xenograft models were used to investigate the growth of gefitinib-resistant non-small cell lung cancer in vivo. Western blot and immunohistochemical analysis were used to investigate the level of PI3K/protein kinase B(AKT/mTOR signaling pathway proteins. Results: We show that NVP-BEZ235 effectively inhibited the growth of H1975 cells in vivo as well as in vitro. Similarly, H1975 cell migration was reduced by NVP-BEZ235. Further experiments revealed that NVP-BEZ235 attenuated the phosphorylation of PI3K/AKT/mTOR signaling pathway proteins. Conclusion: Taken together, we suggest that NVP-BEZ235 inhibits gefitinib-resistant tumor growth by downregulating PI3K

  11. AT-101 enhances gefitinib sensitivity in non-small cell lung cancer with EGFR T790M mutations

    International Nuclear Information System (INIS)

    Zhao, Ren; Zhou, Shun; Xia, Bing; Zhang, Cui-ying; Hai, Ping; Zhe, Hong; Wang, Yan-yang

    2016-01-01

    Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) have become the standard care of patients with advanced EGFR-mutant non-small cell lung cancer (NSCLC), development of acquired resistance is inevitable. A secondary mutation of threonine 790 (T790M) is associated with approximately half of the cases of acquired resistance. Strategies or agents to overcome this type of resistance are still limited. In this study, enhanced antitumor effect of AT-101, a-pan-Bcl-2 inhibitor, on gefitinib was explored in NSCLC with T790M mutation. The effect of cotreatment with AT-101 and gefitinib on the viability of NSCLC cell lines harboring acquired T790M mutation was investigated using the MTT assay. The cellular apoptosis of NSCLC cells after cotreatment with AT-101 and gefitinib was assessed by FITC-annexin V/PI assay and Western blots analysis. The potential underlying mechanisms of the enhanced therapeutic effect for AT-101 was also studied using Western blots analysis. The in vivo anti-cancer efficacy of the combination with AT-101 and gefitinib was examined in a mouse xenograft model. In this study, we found that treatment with AT-101 in combination with gefitinib significantly inhibited cell proliferation, as well as promoted apoptosis of EGFR TKIs resistant lung cancer cells. The apoptotic effects of the use of AT-101 was related to the blocking of antiapoptotic protein: Bcl-2, Bcl-xl, and Mcl-1 and downregrulation of the molecules in EGFR pathway. The observed enhancements of tumor growth suppression in xenografts supported the reverse effect of AT-101 in NSCLC with T790M mutation, which has been found in in vitro studies before. AT-101 enhances gefitinib sensitivity in NSCLC with EGFR T790M mutations. The addition of AT-101 to gefitinib is a promising strategy to overcome EGFR TKIs resistance in NSCLC with EGFR T790M mutations

  12. Gene expression profiling and candidate gene resequencing identifies pathways and mutations important for malignant transformation caused by leukemogenic fusion genes.

    Science.gov (United States)

    Novak, Rachel L; Harper, David P; Caudell, David; Slape, Christopher; Beachy, Sarah H; Aplan, Peter D

    2012-12-01

    NUP98-HOXD13 (NHD13) and CALM-AF10 (CA10) are oncogenic fusion proteins produced by recurrent chromosomal translocations in patients with acute myeloid leukemia (AML). Transgenic mice that express these fusions develop AML with a long latency and incomplete penetrance, suggesting that collaborating genetic events are required for leukemic transformation. We employed genetic techniques to identify both preleukemic abnormalities in healthy transgenic mice as well as collaborating events leading to leukemic transformation. Candidate gene resequencing revealed that 6 of 27 (22%) CA10 AMLs spontaneously acquired a Ras pathway mutation and 8 of 27 (30%) acquired an Flt3 mutation. Two CA10 AMLs acquired an Flt3 internal-tandem duplication, demonstrating that these mutations can be acquired in murine as well as human AML. Gene expression profiles revealed a marked upregulation of Hox genes, particularly Hoxa5, Hoxa9, and Hoxa10 in both NHD13 and CA10 mice. Furthermore, mir196b, which is embedded within the Hoxa locus, was overexpressed in both CA10 and NHD13 samples. In contrast, the Hox cofactors Meis1 and Pbx3 were differentially expressed; Meis1 was increased in CA10 AMLs but not NHD13 AMLs, whereas Pbx3 was consistently increased in NHD13 but not CA10 AMLs. Silencing of Pbx3 in NHD13 cells led to decreased proliferation, increased apoptosis, and decreased colony formation in vitro, suggesting a previously unexpected role for Pbx3 in leukemic transformation. Published by Elsevier Inc.

  13. K-Ras and β-catenin mutations cooperate with Fgfr3 mutations in mice to promote tumorigenesis in the skin and lung, but not in the bladder

    Directory of Open Access Journals (Sweden)

    Imran Ahmad

    2011-07-01

    The human fibroblast growth factor receptor 3 (FGFR3 gene is frequently mutated in superficial urothelial cell carcinoma (UCC. To test the functional significance of FGFR3 activating mutations as a ‘driver’ of UCC, we targeted the expression of mutated Fgfr3 to the murine urothelium using Cre-loxP recombination driven by the uroplakin II promoter. The introduction of the Fgfr3 mutations resulted in no obvious effect on tumorigenesis up to 18 months of age. Furthermore, even when the Fgfr3 mutations were introduced together with K-Ras or β-catenin (Ctnnb1 activating mutations, no urothelial dysplasia or UCC was observed. Interestingly, however, owing to a sporadic ectopic Cre recombinase expression in the skin and lung of these mice, Fgfr3 mutation caused papilloma and promoted lung tumorigenesis in cooperation with K-Ras and β-catenin activation, respectively. These results indicate that activation of FGFR3 can cooperate with other mutations to drive tumorigenesis in a context-dependent manner, and support the hypothesis that activation of FGFR3 signaling contributes to human cancer.

  14. Mechanisms of a human skeletal myotonia produced by mutation in the C-terminus of NaV1.4: is Ca2+ regulation defective?

    Directory of Open Access Journals (Sweden)

    Subrata Biswas

    Full Text Available Mutations in the cytoplasmic tail (CT of voltage gated sodium channels cause a spectrum of inherited diseases of cellular excitability, yet to date only one mutation in the CT of the human skeletal muscle voltage gated sodium channel (hNaV1.4F1705I has been linked to cold aggravated myotonia. The functional effects of altered regulation of hNaV1.4F1705I are incompletely understood. The location of the hNaV1.4F1705I in the CT prompted us to examine the role of Ca(2+ and calmodulin (CaM regulation in the manifestations of myotonia. To study Na channel related mechanisms of myotonia we exploited the differences in rat and human NaV1.4 channel regulation by Ca(2+ and CaM. hNaV1.4F1705I inactivation gating is Ca(2+-sensitive compared to wild type hNaV1.4 which is Ca(2+ insensitive and the mutant channel exhibits a depolarizing shift of the V1/2 of inactivation with CaM over expression. In contrast the same mutation in the rNaV1.4 channel background (rNaV1.4F1698I eliminates Ca(2+ sensitivity of gating without affecting the CaM over expression induced hyperpolarizing shift in steady-state inactivation. The differences in the Ca(2+ sensitivity of gating between wild type and mutant human and rat NaV1.4 channels are in part mediated by a divergence in the amino acid sequence in the EF hand like (EFL region of the CT. Thus the composition of the EFL region contributes to the species differences in Ca(2+/CaM regulation of the mutant channels that produce myotonia. The myotonia mutation F1705I slows INa decay in a Ca(2+-sensitive fashion. The combination of the altered voltage dependence and kinetics of INa decay contribute to the myotonic phenotype and may involve the Ca(2+-sensing apparatus in the CT of NaV1.4.

  15. Insight on Mutation-Induced Resistance from Molecular Dynamics Simulations of the Native and Mutated CSF-1R and KIT.

    Directory of Open Access Journals (Sweden)

    Priscila Da Silva Figueiredo Celestino Gomes

    Full Text Available The receptors tyrosine kinases (RTKs for the colony stimulating factor-1, CSF-1R, and for the stem cell factor, SCFR or KIT, are important mediators of signal transduction. The abnormal function of these receptors, promoted by gain-of-function mutations, leads to their constitutive activation, associated with cancer or other proliferative diseases. A secondary effect of the mutations is the alteration of receptors' sensitivity to tyrosine kinase inhibitors, compromising effectiveness of these molecules in clinical treatment. In particular, the mutation V560G in KIT increases its sensitivity to Imatinib, while the D816V in KIT, and D802V in CSF-1R, triggers resistance to the drug. We analyzed the Imatinib binding affinity to the native and mutated KIT (mutations V560G, S628N and D816V and CSF-1R (mutation D802V by using molecular dynamics simulations and energy calculations of Imatinib•target complexes. Further, we evaluated the sensitivity of the studied KIT receptors to Imatinib by measuring the inhibition of KIT phosphorylation. Our study showed that (i the binding free energy of Imatinib to the targets is highly correlated with their experimentally measured sensitivity; (ii the electrostatic interactions are a decisive factor affecting the binding energy; (iii the most deleterious impact to the Imatinib sensitivity is promoted by D802V (CSF-1R and D816V (KIT mutations; (iv the role of the juxtamembrane region, JMR, in the imatinib binding is accessory. These findings contribute to a better description of the mutation-induced effects alternating the targets sensitivity to Imatinib.

  16. Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis.

    Science.gov (United States)

    Johnson, Janel O; Pioro, Erik P; Boehringer, Ashley; Chia, Ruth; Feit, Howard; Renton, Alan E; Pliner, Hannah A; Abramzon, Yevgeniya; Marangi, Giuseppe; Winborn, Brett J; Gibbs, J Raphael; Nalls, Michael A; Morgan, Sarah; Shoai, Maryam; Hardy, John; Pittman, Alan; Orrell, Richard W; Malaspina, Andrea; Sidle, Katie C; Fratta, Pietro; Harms, Matthew B; Baloh, Robert H; Pestronk, Alan; Weihl, Conrad C; Rogaeva, Ekaterina; Zinman, Lorne; Drory, Vivian E; Borghero, Giuseppe; Mora, Gabriele; Calvo, Andrea; Rothstein, Jeffrey D; Drepper, Carsten; Sendtner, Michael; Singleton, Andrew B; Taylor, J Paul; Cookson, Mark R; Restagno, Gabriella; Sabatelli, Mario; Bowser, Robert; Chiò, Adriano; Traynor, Bryan J

    2014-05-01

    MATR3 is an RNA- and DNA-binding protein that interacts with TDP-43, a disease protein linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Using exome sequencing, we identified mutations in MATR3 in ALS kindreds. We also observed MATR3 pathology in ALS-affected spinal cords with and without MATR3 mutations. Our data provide more evidence supporting the role of aberrant RNA processing in motor neuron degeneration.

  17. Mutations in the bacterial ribosomal protein l3 and their association with antibiotic resistance

    DEFF Research Database (Denmark)

    Klitgaard, Rasmus N; Ntokou, Eleni; Nørgaard, Katrine

    2015-01-01

    -type genes with mutated L3 genes in a chromosomal L3 deletion strain. In this way, the essential L3 gene is available for the bacteria while allowing replacement of the wild type with mutated L3 genes. This enables investigation of the effect of single mutations in Escherichia coli without a wild-type L3...

  18. New insights into genotype–phenotype correlation for GLI3 mutations

    OpenAIRE

    Démurger, Florence; Ichkou, Amale; Mougou-Zerelli, Soumaya; Le Merrer, Martine; Goudefroye, Géraldine; Delezoide, Anne-Lise; Quélin, Chloé; Manouvrier, Sylvie; Baujat, Geneviève; Fradin, Mélanie; Pasquier, Laurent; Megarbané, André; Faivre, Laurence; Baumann, Clarisse; Nampoothiri, Sheela

    2014-01-01

    The phenotypic spectrum of GLI3 mutations includes autosomal dominant Greig cephalopolysyndactyly syndrome (GCPS) and Pallister–Hall syndrome (PHS). PHS was first described as a lethal condition associating hypothalamic hamartoma, postaxial or central polydactyly, anal atresia and bifid epiglottis. Typical GCPS combines polysyndactyly of hands and feet and craniofacial features. Genotype–phenotype correlations have been found both for the location and the nature of GLI3 mutations, highlightin...

  19. Stepwise Exposure of Staphylococcus aureus to Pleuromutilins Is Associated with Stepwise Acquisition of Mutations in rplC and Minimally Affects Susceptibility to Retapamulin▿

    Science.gov (United States)

    Gentry, Daniel R.; Rittenhouse, Stephen F.; McCloskey, Lynn; Holmes, David J.

    2007-01-01

    To assess their effects on susceptibility to retapamulin in Staphylococcus aureus, first-, second-, and third-step mutants with elevated MICs to tiamulin and other investigational pleuromutilin compounds were isolated and characterized through exposure to high drug concentrations. All first- and second-step mutations were in rplC, encoding ribosomal protein L3. Most third-step mutants acquired a third mutation in rplC. While first- and second-step mutations did cause an elevation in tiamulin and retapamulin MICs, a significant decrease in activity was not seen until a third mutation was acquired. All third-step mutants exhibited severe growth defects, and faster-growing variants arose at a high frequency from most isolates. These faster-growing variants were found to be more susceptible to pleuromutilins. In the case of a mutant with three alterations in rplC, the fast-growing variants acquired an additional mutation in rplC. In the case of fast-growing variants of isolates with two mutations in rplC and at least one mutation at an unmapped locus, one of the two rplC mutations reverted to wild type. These data indicate that mutations in rplC that lead to pleuromutilin resistance have a direct, negative effect on fitness. While reduction in activity of retapamulin against S. aureus can be seen through mutations in rplC, it is likely that target-specific resistance to retapamulin will be slow to emerge due to the need for three mutations for a significant effect on activity and the fitness cost of each mutational step. PMID:17404009

  20. Gene mutation in ATM/PI3K region of nasopharyngeal carcinoma cell lines

    International Nuclear Information System (INIS)

    Wang Hongmei; Wu Xinyao; Xia Yunfei

    2002-01-01

    Objective: To define the correlation between nasopharyngeal carcinoma (NPC) cell radiosensitivity and gene mutation in the ATM/PI3K coding region. Methods: The gene mutation in the ATM/PI3K region of nasopharyngeal carcinoma cell lines which vary in radiosensitivity, was monitored by reverse transcription-polymerase chain reaction (RT-PCR) and fluorescence-marked ddNTP cycle sequencing technique. Results: No gene mutation was detected in the ATM/PI3K region of either CNE1 or CNE2. Conclusion: Disparity in intrinsic radiosensitivity between different NPC cell lines depends on some other factors and mechanism without being related to ATM/PI3K mutations

  1. Laser desorption mass spectrometry for point mutation detection

    Energy Technology Data Exchange (ETDEWEB)

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F. [Oak Ridge National Lab., TN (United States)] [and others

    1996-12-31

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  2. MPL mutations in myeloproliferative disorders

    DEFF Research Database (Denmark)

    Beer, Philip A.; Campbell, Peter J.; Scott, Linda M.

    2008-01-01

    Activating mutations of MPL exon 10 have been described in a minority of patients with idiopathic myelofibrosis (IMF) or essential thrombocythemia (ET), but their prevalence and clinical significance are unclear. Here we demonstrate that MPL mutations outside exon 10 are uncommon in platelet c......DNA and identify 4 different exon 10 mutations in granulocyte DNA from a retrospective cohort of 200 patients with ET or IMF. Allele-specific polymerase chain reaction was then used to genotype 776 samples from patients with ET entered into the PT-1 studies. MPL mutations were identified in 8.5% of JAK2 V617F......(-) patients and a single V617F(+) patient. Patients carrying the W515K allele had a significantly higher allele burden than did those with the W515L allele, suggesting a functional difference between the 2 variants. Compared with V617F(+) ET patients, those with MPL mutations displayed lower hemoglobin...

  3. Using the Medipix3 detector for direct electron imaging in the range 60 keV to 200 keV in electron microscopy

    Science.gov (United States)

    Mir, J. A.; Plackett, R.; Shipsey, I.; dos Santos, J. M. F.

    2017-11-01

    Hybrid pixel sensor technology such as the Medipix3 represents a unique tool for electron imaging. We have investigated its performance as a direct imaging detector using a Transmission Electron Microscope (TEM) which incorporated a Medipix3 detector with a 300 μm thick silicon layer compromising of 256×256 pixels at 55 μm pixel pitch. We present results taken with the Medipix3 in Single Pixel Mode (SPM) with electron beam energies in the range, 60-200 keV . Measurements of the Modulation Transfer Function (MTF) and the Detective Quantum Efficiency (DQE) were investigated. At a given beam energy, the MTF data was acquired by deploying the established knife edge technique. Similarly, the experimental data required to determine DQE was obtained by acquiring a stack of images of a focused beam and of free space (flatfield) to determine the Noise Power Spectrum (NPS).

  4. Osteogenesis imperfecta type 3 in South Africa: Causative mutations in FKBP10

    Directory of Open Access Journals (Sweden)

    Alvera Vorster

    2017-05-01

    Full Text Available Background. A relatively high frequency of autosomal recessively inherited osteogenesis imperfecta (OI type 3 (OI-3 is present in the indigenous black southern African population. Affected persons may be severely handicapped as a result of frequent fractures, progressive deformity of the tubular bones and spinal malalignment. Objective. To delineate the molecular basis for the condition. Methods. Molecular investigations were performed on 91 affected persons from seven diverse ethnolinguistic groups in this population. Results. Following polymerase chain reaction amplification and direct cycle sequencing, FKBP10 mutations were identified in 45.1% (41/91 OI-3-affected persons. The homozygous FKBP10 c.831dupC frameshift mutation was confirmed in 35 affected individuals in the study cohort. Haplotype analysis suggests that this mutation is identical among these OI-3-affected persons by descent, thereby confirming that they had a common ancestor. Compound heterozygosity of this founder mutation was observed, in combination with three different deleterious FKBP10 mutations, in six additional persons in the cohort. Four of these individuals had the c.831delC mutation. Conclusion. The burden of the disorder, both in frequency and severity, warrants the establishment of a dedicated service for molecular diagnostic confirmation and genetic management of persons and families with OI in southern Africa.

  5. Variable expressivity of FGF3 mutations associated with deafness and LAMM syndrome

    Directory of Open Access Journals (Sweden)

    Griffith Andrew J

    2011-02-01

    Full Text Available Abstract Background Recessive mutations of fibroblast growth factor 3 (FGF3 can cause LAMM syndrome (OMIM 610706, characterized by fully penetrant complete labyrinthine aplasia, microtia and microdontia. Methods We performed a prospective molecular genetic and clinical study of families segregating hearing loss linked to FGF3 mutations. Ten affected individuals from three large Pakistani families segregating FGF3 mutations were imaged with CT, MRI, or both to detect inner ear abnormalities. We also modeled the three dimensional structure of FGF3 to better understand the structural consequences of the three missense mutations. Results Two families segregated reported mutations (p.R104X and p.R95W and one family segregated a novel mutation (p.R132GfsX26 of FGF3. All individuals homozygous for p.R104X or p.R132GfsX26 had fully penetrant features of LAMM syndrome. However, recessive p.R95W mutations were associated with nearly normal looking auricles and variable inner ear structural phenotypes, similar to that reported for a Somali family also segregating p.R95W. This suggests that the mild phenotype is not entirely due to genetic background. Molecular modeling result suggests a less drastic effect of p.R95W on FGF3 function compared with known missense mutations detected in fully penetrant LAMM syndrome. Since we detected significant intrafamilial variability of the inner ear structural phenotype in the family segregating p.R95W, we also sequenced FGF10 as a likely candidate for a modifier. However, we did not find any sequence variation, pointing out that a larger sample size will be needed to map and identify a modifier. We also observed a mild to moderate bilateral conductive hearing loss in three carriers of p.R95W, suggesting either a semi-dominant effect of this mutant allele of FGF3, otitis media, or a consequence of genetic background in these three family members. Conclusions We noted a less prominent dental and external ear phenotype in

  6. Transcriptome analysis of skin fibroblasts with dominant negative COL3A1 mutations provides molecular insights into the etiopathology of vascular Ehlers-Danlos syndrome.

    Science.gov (United States)

    Chiarelli, Nicola; Carini, Giulia; Zoppi, Nicoletta; Ritelli, Marco; Colombi, Marina

    2018-01-01

    Vascular Ehlers-Danlos syndrome (vEDS) is a dominantly inherited connective tissue disorder caused by mutations in the COL3A1 gene that encodes type III collagen (COLLIII), which is the major expressed collagen in blood vessels and hollow organs. The majority of disease-causing variants in COL3A1 are glycine substitutions and in-frame splice mutations in the triple helix domain that through a dominant negative effect are associated with the severe clinical spectrum potentially lethal of vEDS, characterized by fragility of soft connective tissues with arterial and organ ruptures. To shed lights into molecular mechanisms underlying vEDS, we performed gene expression profiling in cultured skin fibroblasts from three patients with different structural COL3A1 mutations. Transcriptome analysis revealed significant changes in the expression levels of several genes involved in maintenance of cell redox and endoplasmic reticulum (ER) homeostasis, COLLs folding and extracellular matrix (ECM) organization, formation of the proteasome complex, and cell cycle regulation. Protein analyses showed that aberrant COLLIII expression is associated with the disassembly of many structural ECM constituents, such as fibrillins, EMILINs, and elastin, as well as with the reduction of the proteoglycans perlecan, decorin, and versican, all playing an important role in the vascular system. Furthermore, the altered distribution of the ER marker protein disulfide isomerase PDI and the strong reduction of the COLLs-modifying enzyme FKBP22 are consistent with the disturbance of ER-related homeostasis and COLLs biosynthesis and post-translational modifications, indicated by microarray analysis. Our findings add new insights into the pathophysiology of this severe vascular disorder, since they provide a picture of the gene expression changes in vEDS skin fibroblasts and highlight that dominant negative mutations in COL3A1 also affect post-translational modifications and deposition into the ECM of

  7. Transcriptome analysis of skin fibroblasts with dominant negative COL3A1 mutations provides molecular insights into the etiopathology of vascular Ehlers-Danlos syndrome.

    Directory of Open Access Journals (Sweden)

    Nicola Chiarelli

    Full Text Available Vascular Ehlers-Danlos syndrome (vEDS is a dominantly inherited connective tissue disorder caused by mutations in the COL3A1 gene that encodes type III collagen (COLLIII, which is the major expressed collagen in blood vessels and hollow organs. The majority of disease-causing variants in COL3A1 are glycine substitutions and in-frame splice mutations in the triple helix domain that through a dominant negative effect are associated with the severe clinical spectrum potentially lethal of vEDS, characterized by fragility of soft connective tissues with arterial and organ ruptures. To shed lights into molecular mechanisms underlying vEDS, we performed gene expression profiling in cultured skin fibroblasts from three patients with different structural COL3A1 mutations. Transcriptome analysis revealed significant changes in the expression levels of several genes involved in maintenance of cell redox and endoplasmic reticulum (ER homeostasis, COLLs folding and extracellular matrix (ECM organization, formation of the proteasome complex, and cell cycle regulation. Protein analyses showed that aberrant COLLIII expression is associated with the disassembly of many structural ECM constituents, such as fibrillins, EMILINs, and elastin, as well as with the reduction of the proteoglycans perlecan, decorin, and versican, all playing an important role in the vascular system. Furthermore, the altered distribution of the ER marker protein disulfide isomerase PDI and the strong reduction of the COLLs-modifying enzyme FKBP22 are consistent with the disturbance of ER-related homeostasis and COLLs biosynthesis and post-translational modifications, indicated by microarray analysis. Our findings add new insights into the pathophysiology of this severe vascular disorder, since they provide a picture of the gene expression changes in vEDS skin fibroblasts and highlight that dominant negative mutations in COL3A1 also affect post-translational modifications and deposition

  8. Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation.

    Science.gov (United States)

    Diaz, M; Velez, J; Singh, M; Cerny, J; Flajnik, M F

    1999-05-01

    The pattern of somatic mutations of shark and frog Ig is distinct from somatic hypermutation of Ig in mammals in that there is a bias to mutate GC base pairs and a low frequency of mutations. Previous analysis of the new antigen receptor gene in nurse sharks (NAR), however, revealed no bias to mutate GC base pairs and the frequency of mutation was comparable to that of mammalian IgG. Here, we analyzed 1023 mutations in NAR and found no targeting of the mechanism to any particular nucleotide but did obtain strong evidence for a transition bias and for strand polarity. As seen for all species studied to date, the serine codon AGC/T in NAR was a mutational hotspot. The NAR mutational pattern is most similar to that of mammalian IgG and furthermore both are strikingly akin to mutations acquired during the neutral evolution of nuclear pseudogenes, suggesting that a similar mechanism is at work for both processes. In yeast, most spontaneous mutations are introduced by the translesion synthesis DNA polymerase zeta (REV3) and in various DNA repair-deficient backgrounds transitions were more often REV3-dependent than were transversions. Therefore, we propose a model of somatic hypermutation where DNA polymerase zeta is recruited to the Ig locus. An excess of DNA glycosylases in germinal center reactions may further enhance the mutation frequency by a REV3-dependent mutagenic process known as imbalanced base excision repair.

  9. JAK2 V617F mutation negative erythrocytosis (or how to more simply perform diagnosis and treat a patient with increased hematocrit

    Directory of Open Access Journals (Sweden)

    Zito Luca

    2011-08-01

    Full Text Available Summary This case report focuses on a 71-year old patient affected by unknown dyspnea and erythrocytosis referred by his general practitioner to our center for specialist advice after a hematological examination had excluded polycythemia vera on grounds of negative test for JAK2 V617F/exon 12 mutation. An accurate clinical history and physical examination accompanied by respiratory function tests resulted in diagnosis of JAK2 V617F mutation negative erythrocytosis, and treatment could be started. The discussion examines decisional algorithms when a polyglobulic patient is referred for diagnosis.

  10. Acquired ectropion uveae and secondary glaucoma due to trauma: report of 3 cases.

    Science.gov (United States)

    Markovic, Vujica; Vukovic, Dragan; Radosavljevic, Aleksandra; Marjanovic, Ivan

    2017-01-19

    To investigate the possible association between acquired ectropion uveae and blunt trauma to the eye. We present 3 cases of acquired ectropion uveae that occurred after blunt trauma to the eye. There are no previously published data on possible association of these conditions. A retrospective review was conducted of patients with ectropion uveae and eye injury at University Eye Hospital over a 10-year period (2006-2016). We analyzed medical records and clinical findings. Three eyes of 3 male patients with ocular trauma and ectropion uveae, ages 71, 68, and 5 years, were reviewed. The period between the eye injury and the diagnosis of ectropion uveae ranged from 10 to 36 months. All 3 eyes developed clinical evidence of secondary glaucoma with moderately to severely elevated intraocular pressure (IOP) (ranging from 29 to 48 mm Hg). Surgical treatment (trabeculectomy) was needed in 2 cases in order to control secondary glaucoma and conservative treatment was sufficient in 1 case. Mean patient follow-up was 19.3 ± 4.6 months. Trauma can be considered as a cause of acquired ectropion uveae. Acquired ectropion uveae following eye trauma may be associated with significant increase in IOP. All patients in our series had secondary glaucoma and 2 of 3 required surgical treatment for IOP control.

  11. Temporal frequency of knockdown resistance mutations, F1534C and V1016G, in Aedes aegypti in Chiang Mai city, Thailand and the impact of the mutations on the efficiency of thermal fogging spray with pyrethroids.

    Science.gov (United States)

    Plernsub, Suriya; Saingamsook, Jassada; Yanola, Jintana; Lumjuan, Nongkran; Tippawangkosol, Pongsri; Walton, Catherine; Somboon, Pradya

    2016-10-01

    In Thailand, control of dengue outbreaks is currently attained by the use of space sprays, particularly thermal fogging using pyrethroids, with the aim of killing infected Aedes mosquito vectors in epidemic areas. However, the principal dengue vector, Aedes aegypti, is resistant to pyrethroids conferred mainly by mutations in the voltage-gated sodium channel gene, F1534C and V1016G, termed knockdown resistance (kdr). The objectives of this study were to determine the temporal frequencies of F1534C and V1016G in Ae. aegypti populations in relation to pyrethroid resistance in Chiang Mai city, and to evaluate the impact of the mutations on the efficacy of thermal fogging with the pyrethroid deltamethrin. Larvae and pupae were collected from several areas around Chiang Mai city during 2011-2015 and reared to adulthood for bioassays for deltamethrin susceptibility. These revealed no trend of increasing deltamethrin resistance during the study period (mortality 58.0-69.5%, average 62.8%). This corresponded to no overall change in the frequencies of the C1534 allele (0.55-0.66, average 0.62) and G1016 allele (0.34-0.45, average 0.38), determined using allele specific amplification. Only three genotypes of kdr mutations were detected: C1534 homozygous (VV/CC); G1016/C1534 double heterozygous (VG/FC); and G1016 homozygous (GG/FF) indicating that the F1534C and V1016G mutations occurred on separate haplotypic backgrounds and a lack of recombination between them to date. The F1 progeny females were used to evaluate the efficacy of thermal fogging spray with Damthrin-SP(®) (deltamethrin+S-bioallethrin+piperonyl butoxide) using a caged mosquito bioassay. The thermal fogging spray killed 100% and 61.3% of caged mosquito bioassay placed indoors and outdoors, respectively. The outdoor spray had greater killing effect on C1534 homozygous and had partially effect on double heterozygous mosquitoes, but did not kill any G1016 homozygous mutants living outdoors. As this selection

  12. Retention of robot-assisted surgical skills in urological surgeons acquired using Mimic dV-Trainer.

    Science.gov (United States)

    Teishima, Jun; Hattori, Minoru; Inoue, Shogo; Ikeda, Kenichiro; Hieda, Keisuke; Ohara, Shinya; Egi, Hiroyuki; Ohdan, Hideki; Matsubara, Akio

    2014-07-01

    We assess the retention of robot-assisted surgical skills among urologic surgeons. The robot-assisted surgery skills of 20 urologic surgeons were assessed using a Mimic dV-Trainer program (Mimic Technologies, Inc., Seattle, WA) consisting of 6 tasks. These 20 surgeons had no previous experience either using the Mimic dV-Trainer or acting as the main surgeon in robot-assisted surgery. The surgeons completed the program 4 times in a row; after 1 year, they completed it again for a fifth time. Performance scores were recorded using the Mimic dV-Trainer's built-in algorithm. For all 6 tasks, there were significant improvements to the scores in the fourth trials compared with those in the first trials. The scores in the fifth trials did not significantly decline compared with those in the fourth trials. There was no significant difference between the fifth trial scores of surgeons with laparoscopic surgery skills/experience and those without. Our results indicate that fundamental robot-assisted surgical skills can be retained in the long-term after they are acquired.

  13. Mild myopathy is associated with COMP but not MATN3 mutations in mouse models of genetic skeletal diseases.

    Directory of Open Access Journals (Sweden)

    Katarzyna A Piróg

    Full Text Available Pseudoachondroplasia (PSACH and multiple epiphyseal dysplasia (MED are skeletal disorders resulting from mutations in COMP, matrilin-3 or collagen IX and are characterised by short-limbed dwarfism and premature osteoarthritis. Interestingly, recent reports suggest patients can also manifest with muscle weakness. Here we present a detailed analysis of two mouse models of the PSACH/MED disease spectrum; ΔD469 T3-COMP (PSACH and V194D matrilin-3 (MED. In grip test experiments T3-COMP mice were weaker than wild-type littermates, whereas V194D mice behaved as controls, confirming that short-limbed dwarfism alone does not contribute to PSACH/MED-related muscle weakness. Muscles from T3-COMP mice showed an increase in centronuclear fibers at the myotendinous junction. T3-COMP tendons became more lax in cyclic testing and showed thicker collagen fibers when compared with wild-type tissue; matrilin-3 mutant tissues were indistinguishable from controls. This comprehensive study of the myopathy associated with PSACH/MED mutations enables a better understanding of the disease progression, confirms that it is genotype specific and that the limb weakness originates from muscle and tendon pathology rather than short-limbed dwarfism itself. Since some patients are primarily diagnosed with neuromuscular symptoms, this study will facilitate better awareness of the differential diagnoses that might be associated with the PSACH/MED spectrum and subsequent care of PSACH/MED patients.

  14. 3.0 V High Energy Density Symmetric Sodium-Ion Battery: Na4V2(PO4)3∥Na3V2(PO4)3.

    Science.gov (United States)

    Yao, Xuhui; Zhu, Zixuan; Li, Qi; Wang, Xuanpeng; Xu, Xiaoming; Meng, Jiashen; Ren, Wenhao; Zhang, Xinhe; Huang, Yunhui; Mai, Liqiang

    2018-03-28

    Symmetric sodium-ion batteries (SIBs) are considered as promising candidates for large-scale energy storage owing to the simplified manufacture and wide abundance of sodium resources. However, most symmetric SIBs suffer from suppressed energy density. Here, a superior congeneric Na 4 V 2 (PO 4 ) 3 anode is synthesized via electrochemical preintercalation, and a high energy density symmetric SIB (Na 3 V 2 (PO 4 ) 3 as a cathode and Na 4 V 2 (PO 4 ) 3 as an anode) based on the deepened redox couple of V 4+ /V 2+ is built for the first time. When measured in half cell, both electrodes show stabilized electrochemical performance (over 3000 cycles). The symmetric SIBs exhibit an output voltage of 3.0 V and a cell-level energy density of 138 W h kg -1 . Furthermore, the sodium storage mechanism under the expanded measurement range of 0.01-3.9 V is disclosed through an in situ X-ray diffraction technique.

  15. Neutron-induced mutation experiments. Comprehensive report, March 1, 1977-August 31, 1980

    International Nuclear Information System (INIS)

    Abrahamson, S.

    1981-02-01

    Neutron-induced X-linked lethal mutations were induced in Drosophila melanogaster oogonia at energies of .43, .66, 2, and 6 MeV. The 37 irradiations were carried out at the RARAF facility at Brookhaven National Laboratory. RBE's (relative to x-ray data similarly collected) were calculated to be .43 MeV to 4.8; .66 MeV to 4.0; 2 MeV to 3.2; and 6 MeV to 2.9. The dose/frequency response curves for all energies best fit a linear rather than a linear-quadratic model following regression analyses. Control data for specific locus mutations (420,000 tests) were gathered. This data, combined with other data (both X-linked lethal and specific locus) has been used to estimate the number of loci on the X-chromosome of Drosophila which can mutate to recessive lethals

  16. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Paolo Cossu-Rocca

    Full Text Available Triple Negative Breast Cancer (TNBC accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data.PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components.PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC.Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  17. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    Science.gov (United States)

    Cossu-Rocca, Paolo; Orrù, Sandra; Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Triple Negative Breast Cancer (TNBC) accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  18. Mutations in gp41 are correlated with coreceptor tropism but do not improve prediction methods substantially.

    Science.gov (United States)

    Thielen, Alexander; Lengauer, Thomas; Swenson, Luke C; Dong, Winnie W Y; McGovern, Rachel A; Lewis, Marilyn; James, Ian; Heera, Jayvant; Valdez, Hernan; Harrigan, P Richard

    2011-01-01

    The main determinants of HIV-1 coreceptor usage are located in the V3-loop of gp120, although mutations in V2 and gp41 are also known. Incorporation of V2 is known to improve prediction algorithms; however, this has not been confirmed for gp41 mutations. Samples with V3 and gp41 genotypes and Trofile assay (Monogram Biosciences, South San Francisco, CA, USA) results were taken from the HOMER cohort (n=444) and from patients screened for the MOTIVATE studies (n=1,916; 859 with maraviroc outcome data). Correlations of mutations with tropism were assessed using Fisher's exact test and prediction models trained using support vector machines. Models were validated by cross-validation, by testing models from one dataset on the other, and by analysing virological outcome. Several mutations within gp41 were highly significant for CXCR4 usage; most strikingly an insertion occurring in 7.7% of HOMER-R5 and 46.3% of HOMER-X4 samples (MOTIVATE 5.7% and 25.2%, respectively). Models trained on gp41 sequence alone achieved relatively high areas under the receiver-operating characteristic curve (AUCs; HOMER 0.713 and MOTIVATE 0.736) that were almost as good as V3 models (0.773 and 0.884, respectively). However, combining the two regions improved predictions only marginally (0.813 and 0.902, respectively). Similar results were found when models were trained on HOMER and validated on MOTIVATE or vice versa. The difference in median log viral load decrease at week 24 between patients with R5 and X4 virus was 1.65 (HOMER 2.45 and MOTIVATE 0.79) for V3 models, 1.59 for gp41-models (2.42 and 0.83, respectively) and 1.58 for the combined predictor (2.44 and 0.86, respectively). Several mutations within gp41 showed strong correlation with tropism in two independent datasets. However, incorporating gp41 mutations into prediction models is not mandatory because they do not improve substantially on models trained on V3 sequences alone.

  19. Tumor heterogeneity of fibroblast growth factor receptor 3 (FGFR3) mutations in invasive bladder cancer: implications for perioperative anti-FGFR3 treatment.

    Science.gov (United States)

    Pouessel, D; Neuzillet, Y; Mertens, L S; van der Heijden, M S; de Jong, J; Sanders, J; Peters, D; Leroy, K; Manceau, A; Maille, P; Soyeux, P; Moktefi, A; Semprez, F; Vordos, D; de la Taille, A; Hurst, C D; Tomlinson, D C; Harnden, P; Bostrom, P J; Mirtti, T; Horenblas, S; Loriot, Y; Houédé, N; Chevreau, C; Beuzeboc, P; Shariat, S F; Sagalowsky, A I; Ashfaq, R; Burger, M; Jewett, M A S; Zlotta, A R; Broeks, A; Bapat, B; Knowles, M A; Lotan, Y; van der Kwast, T H; Culine, S; Allory, Y; van Rhijn, B W G

    2016-07-01

    Fibroblast growth factor receptor 3 (FGFR3) is an actionable target in bladder cancer. Preclinical studies show that anti-FGFR3 treatment slows down tumor growth, suggesting that this tyrosine kinase receptor is a candidate for personalized bladder cancer treatment, particularly in patients with mutated FGFR3. We addressed tumor heterogeneity in a large multicenter, multi-laboratory study, as this may have significant impact on therapeutic response. We evaluated possible FGFR3 heterogeneity by the PCR-SNaPshot method in the superficial and deep compartments of tumors obtained by transurethral resection (TUR, n = 61) and in radical cystectomy (RC, n = 614) specimens and corresponding cancer-positive lymph nodes (LN+, n = 201). We found FGFR3 mutations in 13/34 (38%) T1 and 8/27 (30%) ≥T2-TUR samples, with 100% concordance between superficial and deeper parts in T1-TUR samples. Of eight FGFR3 mutant ≥T2-TUR samples, only 4 (50%) displayed the mutation in the deeper part. We found 67/614 (11%) FGFR3 mutations in RC specimens. FGFR3 mutation was associated with pN0 (P < 0.001) at RC. In 10/201 (5%) LN+, an FGFR3 mutation was found, all concordant with the corresponding RC specimen. In the remaining 191 cases, RC and LN+ were both wild type. FGFR3 mutation status seems promising to guide decision-making on adjuvant anti-FGFR3 therapy as it appeared homogeneous in RC and LN+. Based on the results of TUR, the deep part of the tumor needs to be assessed if neoadjuvant anti-FGFR3 treatment is considered. We conclude that studies on the heterogeneity of actionable molecular targets should precede clinical trials with these drugs in the perioperative setting. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Neutron-induced mutation experiments. Progress report, March 1, 1976--February 28, 1977

    International Nuclear Information System (INIS)

    Abrahamson, S.

    1976-11-01

    Results are from studies of experiments in Drosophila on the relative mutagenic effectiveness of neutrons of different energies employing X-linked recessive lethal and specific locus mutation tests. The energies and doses employed to data are .43 MeV (500, 1000, and 1500 R, in progress), .68 MeV (250, 500, 1000, and 1500 R), 2 and 6 MeV (250 and 500 R), and 15 MeV (250, 500, 1000, 1500 and 3000 R). .68 MeV neutrons appear to have an RBE between 3.3 to 4.5, 15 MeV neutrons an RBE between 1.9 to 2.2, and 2 and 6 MeV neutrons RBE's of intermediate values. The data for both .68 and 15 MeV neutrons do not yet differentiate between a linear and quadratic dose/frequency response curve for the doses studied. The specific locus mutation data also indicate the highest RBE for .68 MeV, followed by 2 and 6 MeV respectively

  1. Familial mild hyperglycemia associated with a novel ABCC8-V84I mutation within three generations

    DEFF Research Database (Denmark)

    Gonsorcikova, Lucie; Vaxillaire, Martine; Pruhova, Stepanka

    2011-01-01

    We present a unique case of a 19-year-old man with a positive family history of persistent mild hyperglycemia and a novel V84I mutation in ABCC8. The proband was initially detected to have fasting hyperglycemia (ranging 6.1-6.4 mmol/L) at the age of 12 years. Increased fasting blood glucose was a...

  2. Novel mutations in TARDBP (TDP-43 in patients with familial amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Nicola J Rutherford

    2008-09-01

    Full Text Available The TAR DNA-binding protein 43 (TDP-43 has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U, defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V were identified in the analysis of 92 familial ALS patients (3.3%, while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis.

  3. Generation of a gene-corrected isogenic control cell line from an Alzheimer's disease patient iPSC line carrying a A79V mutation in PSEN1

    DEFF Research Database (Denmark)

    Pires, Carlota; Schmid, Benjamin; Petræus, Carina

    2016-01-01

    mutation in PSEN1 as an in vitro disease model. Here we generated a gene-corrected version from this hiPSC line by substituting the point mutation with the wild-type sequence. The reported A79V-GC-iPSCs line is a very useful resource in combination with the A79V-iPSC line in order to study pathological...

  4. Prevalence of drug-resistant mutation among drug-treated HIV/AIDS inpatient in Airlangga University teaching hospital, Surabaya, Indonesia

    Science.gov (United States)

    Rachman, B. E.; Khairunisa, S. Q.; Witaningrum, A. M.; Yunifiar, M. Q.; Widiyanti, P.; Nasronudin

    2018-03-01

    Increased use of antiretroviral therapy did not completely reduce the incidence of HIV/AIDShospitalization. Various factors can be involved. The aim of this study is to examine HIV-1 drug resistance mutations profile in drug-treated HIV/AIDS patients who underwent hospitalization. HIV/AIDS patients who are admitted to hospital who had received ART are included in the study and then examined for the presence of drug resistance-associated mutations. A total of 17 samples were included in the study, but only 11 samples that could be sequence analyzed. On the mutation examination of drug resistance in reverse transcriptase gene, it werefound a major mutation in K103N (9%) and G190A (9%). Most minor mutations were found in A98S (18.1%), followed by M41L, M184V, L210W, T215Y, V108l, Y181C and H221Y at 9% each. Whereas, on examination of drug resistance mutations in protease genes, there is a major mutation in I84V of 9%. Most minor mutations on M36I (45.4%), followed by L10I (36.3%), H69K (36.3%), I93L (27.2%), G16E, L89M, K20R 18.1%, L64V and V771I 9% respectively.A large number of mutated samples pose a challenge in long-term antiretroviral treatment, so a breakthrough policy is needed to minimize the impact.

  5. Mutation Processes in 293-Based Clones Overexpressing the DNA Cytosine Deaminase APOBEC3B.

    Directory of Open Access Journals (Sweden)

    Monica K Akre

    Full Text Available Molecular, cellular, and clinical studies have combined to demonstrate a contribution from the DNA cytosine deaminase APOBEC3B (A3B to the overall mutation load in breast, head/neck, lung, bladder, cervical, ovarian, and other cancer types. However, the complete landscape of mutations attributable to this enzyme has yet to be determined in a controlled human cell system. We report a conditional and isogenic system for A3B induction, genomic DNA deamination, and mutagenesis. Human 293-derived cells were engineered to express doxycycline-inducible A3B-eGFP or eGFP constructs. Cells were subjected to 10 rounds of A3B-eGFP exposure that each caused 80-90% cell death. Control pools were subjected to parallel rounds of non-toxic eGFP exposure, and dilutions were done each round to mimic A3B-eGFP induced population fluctuations. Targeted sequencing of portions of TP53 and MYC demonstrated greater mutation accumulation in the A3B-eGFP exposed pools. Clones were generated and microarray analyses were used to identify those with the greatest number of SNP alterations for whole genome sequencing. A3B-eGFP exposed clones showed global increases in C-to-T transition mutations, enrichments for cytosine mutations within A3B-preferred trinucleotide motifs, and more copy number aberrations. Surprisingly, both control and A3B-eGFP clones also elicited strong mutator phenotypes characteristic of defective mismatch repair. Despite this additional mutational process, the 293-based system characterized here still yielded a genome-wide view of A3B-catalyzed mutagenesis in human cells and a system for additional studies on the compounded effects of simultaneous mutation mechanisms in cancer cells.

  6. Adverse events in families with hypertrophic or dilated cardiomyopathy and mutations in the MYBPC3 gene

    Directory of Open Access Journals (Sweden)

    Lehrke Stephanie

    2008-10-01

    Full Text Available Abstract Background Mutations in MYBPC3 encoding myosin binding protein C belong to the most frequent causes of hypertrophic cardiomyopathy (HCM and may also lead to dilated cardiomyopathy (DCM. MYBPC3 mutations initially were considered to cause a benign form of HCM. The aim of this study was to examine the clinical outcome of patients and their relatives with 18 different MYBPC3 mutations. Methods 87 patients with HCM and 71 patients with DCM were screened for MYBPC3 mutations by denaturing gradient gel electrophoresis and sequencing. Close relatives of mutation carriers were genotyped for the respective mutation. Relatives with mutation were then evaluated by echocardiography and magnetic resonance imaging. A detailed family history regarding adverse clinical events was recorded. Results In 16 HCM (18.4% and two DCM (2.8% index patients a mutation was detected. Seven mutations were novel. Mutation carriers exhibited no additional mutations in genes MYH7, TNNT2, TNNI3, ACTC and TPM1. Including relatives of twelve families, a total number of 42 mutation carriers was identified of which eleven (26.2% had at least one adverse event. Considering the twelve families and six single patients with mutations, 45 individuals with cardiomyopathy and nine with borderline phenotype were identified. Among the 45 patients, 23 (51.1% suffered from an adverse event. In eleven patients of seven families an unexplained sudden death was reported at the age between 13 and 67 years. Stroke or a transient ischemic attack occurred in six patients of five families. At least one adverse event occurred in eleven of twelve families. Conclusion MYBPC3 mutations can be associated with cardiac events such as progressive heart failure, stroke and sudden death even at younger age. Therefore, patients with MYBPC3 mutations require thorough clinical risk assessment.

  7. Deep sequencing reveals double mutations in cis of MPL exon 10 in myeloproliferative neoplasms.

    Science.gov (United States)

    Pietra, Daniela; Brisci, Angela; Rumi, Elisa; Boggi, Sabrina; Elena, Chiara; Pietrelli, Alessandro; Bordoni, Roberta; Ferrari, Maurizio; Passamonti, Francesco; De Bellis, Gianluca; Cremonesi, Laura; Cazzola, Mario

    2011-04-01

    Somatic mutations of MPL exon 10, mainly involving a W515 substitution, have been described in JAK2 (V617F)-negative patients with essential thrombocythemia and primary myelofibrosis. We used direct sequencing and high-resolution melt analysis to identify mutations of MPL exon 10 in 570 patients with myeloproliferative neoplasms, and allele specific PCR and deep sequencing to further characterize a subset of mutated patients. Somatic mutations were detected in 33 of 221 patients (15%) with JAK2 (V617F)-negative essential thrombocythemia or primary myelofibrosis. Only one patient with essential thrombocythemia carried both JAK2 (V617F) and MPL (W515L). High-resolution melt analysis identified abnormal patterns in all the MPL mutated cases, while direct sequencing did not detect the mutant MPL in one fifth of them. In 3 cases carrying double MPL mutations, deep sequencing analysis showed identical load and location in cis of the paired lesions, indicating their simultaneous occurrence on the same chromosome.

  8. Laser desorption mass spectrometry for point mutation detection

    Energy Technology Data Exchange (ETDEWEB)

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments generated by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  9. Mutation and genomic amplification of the PIK3CA proto-oncogene in pituitary adenomas

    International Nuclear Information System (INIS)

    Murat, C.B.; Braga, P.B.S.; Fortes, M.A.H.Z.; Bronstein, M.D.; Corrêa-Giannella, M.L.C.; Giorgi, R.R.

    2012-01-01

    The tumorigenesis of pituitary adenomas is poorly understood. Mutations of the PIK3CA proto-oncogene, which encodes the p110-α catalytic subunit of PI3K, have been reported in various types of human cancers regarding the role of the gene in cell proliferation and survival through activation of the PI3K/Akt signaling pathway. Only one Chinese study described somatic mutations and amplification of the PIK3CA gene in a large series of pituitary adenomas. The aim of the present study was to determine genetic alterations of PIK3CA in a second series that consisted of 33 pituitary adenomas of different subtypes diagnosed by immunohistochemistry: 6 adrenocorticotropic hormone-secreting microadenomas, 5 growth hormone-secreting macroadenomas, 7 prolactin-secreting macroadenomas, and 15 nonfunctioning macroadenomas. Direct sequencing of exons 9 and 20 assessed by qPCR was employed to investigate the presence of mutations and genomic amplification defined as a copy number ≥4. Previously identified PIK3CA mutations (exon 20) were detected in four cases (12.1%). Interestingly, the Chinese study reported mutations only in invasive tumors, while we found a PIK3CA mutation in one noninvasive corticotroph microadenoma. PIK3CA amplification was observed in 21.2% (7/33) of the cases. This study demonstrates the presence of somatic mutations and amplifications of the PIK3CA gene in a second series of pituitary adenomas, corroborating the previously described involvement of the PI3K/Akt signaling pathway in the tumorigenic process of this gland

  10. Mutation and genomic amplification of the PIK3CA proto-oncogene in pituitary adenomas

    Energy Technology Data Exchange (ETDEWEB)

    Murat, C.B.; Braga, P.B.S.; Fortes, M.A.H.Z. [Laboratório de Endocrinologia Celular e Molecular (LIM-25), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Bronstein, M.D. [Unidade de Neuroendocrinologia, Serviço de Endocrinologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Corrêa-Giannella, M.L.C.; Giorgi, R.R. [Laboratório de Endocrinologia Celular e Molecular (LIM-25), Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-07-13

    The tumorigenesis of pituitary adenomas is poorly understood. Mutations of the PIK3CA proto-oncogene, which encodes the p110-α catalytic subunit of PI3K, have been reported in various types of human cancers regarding the role of the gene in cell proliferation and survival through activation of the PI3K/Akt signaling pathway. Only one Chinese study described somatic mutations and amplification of the PIK3CA gene in a large series of pituitary adenomas. The aim of the present study was to determine genetic alterations of PIK3CA in a second series that consisted of 33 pituitary adenomas of different subtypes diagnosed by immunohistochemistry: 6 adrenocorticotropic hormone-secreting microadenomas, 5 growth hormone-secreting macroadenomas, 7 prolactin-secreting macroadenomas, and 15 nonfunctioning macroadenomas. Direct sequencing of exons 9 and 20 assessed by qPCR was employed to investigate the presence of mutations and genomic amplification defined as a copy number ≥4. Previously identified PIK3CA mutations (exon 20) were detected in four cases (12.1%). Interestingly, the Chinese study reported mutations only in invasive tumors, while we found a PIK3CA mutation in one noninvasive corticotroph microadenoma. PIK3CA amplification was observed in 21.2% (7/33) of the cases. This study demonstrates the presence of somatic mutations and amplifications of the PIK3CA gene in a second series of pituitary adenomas, corroborating the previously described involvement of the PI3K/Akt signaling pathway in the tumorigenic process of this gland.

  11. Two co-existing germline mutations P53 V157D and PMS2 R20Q promote tumorigenesis in a familial cancer syndrome.

    Science.gov (United States)

    Wang, Zuoyun; Sun, Yihua; Gao, Bin; Lu, Yi; Fang, Rong; Gao, Yijun; Xiao, Tian; Liu, Xin-Yuan; Pao, William; Zhao, Yun; Chen, Haiquan; Ji, Hongbin

    2014-01-01

    Germline mutations are responsible for familial cancer syndromes which account for approximately 5-10% of all types of cancers. These mutations mainly occur at tumor suppressor genes or genome stability genes, such as DNA repair genes. Here we have identified a cancer predisposition family, in which eight members were inflicted with a wide spectrum of cancer including one diagnosed with lung cancer at 22years old. Sequencing analysis of tumor samples as well as histologically normal specimens identified two germline mutations co-existing in the familial cancer syndrome, the mutation of tumor suppressor gene P53 V157D and mismatch repair gene PMS2 R20Q. We further demonstrate that P53 V157D and/or PMS2 R20Q mutant promotes lung cancer cell proliferation. These two mutants are capable of promoting colony formation in soft agar as well as tumor formation in transgenic drosophila system. Collectively, these data have uncovered the important role of co-existing germline P53 and PMS2 mutations in the familial cancer syndrome development. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Comparison of 6-thioguanine-resistant mutation and sister chromatid exchanges in Chinese hamster V79 cells with forty chemical and physical agents

    International Nuclear Information System (INIS)

    Nishi, Y.; Hasegawa, M.M.; Taketomi, M.; Ohkawa, Y.; Inui, N.

    1984-01-01

    The induction of sister chromatid exchanges (SCE) and mutation at the hypoxanthine-guanine phosphoribosyl transferase locus and toxicities of 40 different chemical and physical agents were examined on Chinese hamster V79 cells. These agents included mono-, di-, tri-, and polyfunctional alkylating agents, intercalators, gamma-rays, and UV light irradiation. Mutation was measured as resistance to 6-thioguanine and toxicity as loss of cell-plating efficiency. SCE were examined 29 hr after treatment. With the agents examined, a highly positive correlation existed between SCE-inducing and mutagenic potencies, when expressed as increase in the number per a unit dose over the control values. But the great difference of the ratios of mutagenic potencies versus SCE-inducing potencies among agents was observed, the maximal difference in the ratios being about 200-fold. The agents that showed the higher values of the ratio (agents producing more mutations than SCE) were bleomycin, cobalt-60 gamma-rays, all ethylating agents (N-ethyl-N-nitrosourea, N-ethyl-N'-nitro-N-nitrosoguanidine, ethyl methanesulfonate, and diethylsulfate), N-propyl-N-nitrosourea, N-butyl-N-nitrosourea, isopropyl methanesulfonate, intercalating acridine compounds (2-methoxy-6-chloro-9-[3-(ethyl-2-chloroethyl)aminopropylamino]-acridine X 2HCl and 2-methoxy-6-chloro-9-[3-(chloroethyl)-aminopropylamino]acridine 2HCl) and UV light at 254 nm

  13. Novel and recurrent mutations of WISP3 in two Chinese families with progressive pseudorheumatoid dysplasia.

    Directory of Open Access Journals (Sweden)

    Jing Sun

    Full Text Available BACKGROUND: The WNT1-inducible signaling pathway protein 3 (WISP3, which belongs to the CCN (cysteine-rich protein 61, connective tissue growth factor, nephroblastoma overexpressed family, is a secreted cysteine-rich matricellular protein that is involved in chondrogenesis, osteogenesis and tumorigenesis. WISP3 gene mutations are associated with progressive pseudorheumatoid dysplasia (PPD, OMIM208230, an autosomal recessive genetic disease that is characterized by the swelling of multiple joints and disproportionate dwarfism. METHODOLOGY/PRINCIPAL FINDINGS: Four PPD patients from two unrelated Chinese families were recruited for this study. The clinical diagnosis was confirmed by medical history, physical examinations, laboratory results and radiological abnormalities. WISP3 mutations were detected by direct DNA sequence analysis. In total, four different mutations were identified, which consisted of two missense mutations, one deletion and one insertion that spanned exons 3, 5 and 6 of the WISP3 gene. One of the missense mutations (c.342T>G/p.C114W and a seven-base pair frameshift deletion (c.716_722del/p.E239fs*16 were novel. The other missense mutation (c.1000T>C/p. S334P and the insertion mutation (c.866_867insA/p.Q289fs*31 had previously been identified in Chinese patients. All four cases had a compound heterozygous status, and their parents were heterozygous carriers of these mutations. CONCLUSIONS/SIGNIFICANCE: The results of our study expand the spectrum of WISP3 mutations that are associated with PPD and further elucidate the function of WISP3.

  14. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas

    Science.gov (United States)

    Fang, Dong; Gan, Haiyun; Lee, Jeong-Heon; Han, Jing; Wang, Zhiquan; Riester, Scott M.; Jin, Long; Chen, Jianji; Zhou, Hui; Wang, Jinglong; Zhang, Honglian; Yang, Na; Bradley, Elizabeth W.; Ho, Thai H.; Rubin, Brian P.; Bridge, Julia A.; Thibodeau, Stephen N; Ordog, Tamas; Chen, Yue; van Wijnen, Andre J.; Oliveira, Andre M.; Xu, Rui-Ming; Westendorf, Jennifer J.; Zhang, Zhiguo

    2016-01-01

    Over 90% of chondroblastomas contain a heterozygous mutation replacing lysine 36 with methionine (K36M) in the histone H3 variant H3.3. Here, we show that H3K36 methylation is reduced globally in chondroblastomas and in chondrocytes harboring the same genetic mutation due to inhibition of at least two H3K36 methyltransferases, MMSET and SETD2, by the H3.3K36M mutant proteins. Genes with altered expression as well as H3K36 di- and trimethylation in H3.3K36M cells are enriched in cancer pathways. In addition, H3.3K36M chondrocytes exhibit several hallmarks of cancer cells including increased ability to form colonies, resistance to apoptosis and defects in differentiation. Thus, H3.3K36M proteins reprogram H3K36 methylation landscape and contribute to tumorigenesis in part through altering the expression of cancer-associated genes. PMID:27229140

  15. [Mutation analysis of FGFR3 gene in a family featuring hereditary dwarfism].

    Science.gov (United States)

    Zhang, Qiong; Jiang, Hai-ou; Quan, Qing-li; Li, Jun; He, Ting; Huang, Xue-shuang

    2011-12-01

    To investigate the clinical symptoms and potential mutation in FGFR3 gene for a family featuring hereditary dwarfism in order to attain diagnosis and provide prenatal diagnosis. Five patients and two unaffected relatives from the family, in addition with 100 healthy controls, were recruited. Genome DNA was extracted. Exons 10 and 13 of the FGFR3 gene were amplified using polymerase chain reaction (PCR). PCR products were sequenced in both directions. All patients had similar features including short stature, short limbs, lumbar hyperlordosis but normal craniofacial features. A heterozygous mutation G1620T (N540K) was identified in the cDNA from all patients but not in the unaffected relatives and 100 control subjects. A heterozygous G380R mutation was excluded. The hereditary dwarfism featured by this family has been caused by hypochondroplasia (HCH) due to a N540K mutation in the FGFR3 gene.

  16. JAK2 mutations and clinical practice in myeloproliferative neoplasms.

    Science.gov (United States)

    Tefferi, Ayalew

    2007-01-01

    With the discovery in the last 3 years of novel Janus kinase 2 (JAK2) and thrombopoietin receptor (MPL) mutations, the pathogenetic understanding of and clinical practice for myeloproliferative neoplasms (MPNs) have entered a new era. Each one of these newly discovered mutations, including JAK2V617F, MPLW515L, and a JAK2 exon 12 mutation, has been shown to result in constitutive activation of JAK-STAT signaling and also induce a MPN phenotype in mice. Thus, JAK2 is now considered to be a legitimate target for drug development in MPNs, and small molecule JAK2 inhibitors have already gone through successful preclinical testing, and early-phase human trials in primary myelofibrosis have already begun. Furthermore, JAK2 mutation screening has now become a front-line diagnostic test in the evaluation of both "erythrocytosis" and thrombocytosis and the 2001 World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis have now been revised to incorporate JAK2V617F mutation screening.

  17. The HIV-1 V3 domain on field isolates: participation in generation of escape virus in vivo and accessibility to neutralizing antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Akerblom, L; Heegaard, P M

    1995-01-01

    The V3 domain is highly variable and induces HIV neutralizing antibodies (NA). Here we addressed the issues of 1) the participation of mutations in V3 in generation of neutralization resistant escape virus in vivo and 2) the applicability of synthetic V3 peptides corresponding to field isolates...... to induce neutralizing immune sera. Seven peptides corresponding to the V3 region of primary and escape virus from 3 HIV-1 infected patients were synthesized and used for antibody (Abs) studies and immunizations. The anti-V3 Abs titre in patient serum was generally low against peptides corresponding...... to autologous virus isolated later than the serum sample in contrast to the titre against peptides corresponding to virus isolated earlier than the serum sample. Furthermore, neutralizing anti-V3 monoclonal antibodies (MAbs) raised against V3 peptides from laboratory strains of HIV-1 showed distinct binding...

  18. PAX3 mutations and clinical characteristics in Chinese patients with Waardenburg syndrome type 1

    Science.gov (United States)

    Wang, Juan; Li, Shiqiang; Xiao, Xueshan; Wang, Panfeng; Guo, Xiangming

    2010-01-01

    Purpose To detect paired box gene 3 (PAX3) mutations and associated phenotypes in Chinese patients with Waardenburg syndrome type 1 (WS1). Methods Five unrelated families with suspected WS1 were selected from our Genomic DNA Repository for Hereditary Eye Diseases. The coding and adjacent intronic regions of PAX3 were amplified by polymerase chain reaction and the amplicons were then analyzed by cycle sequencing. Variations detected were further evaluated in available family members as well as one hundred controls with heteroduplex-single strand conformational polymorphism (heteroduplex-SSCP) analysis and/or clone sequencing. Results Three novel and two known mutations in PAX3 were detected in five patients, respectively: c.567_586+17del (p.Asp189_Gln505delinsGluGlyGlyAlaLeuAlaGly), c.456_459dupTTCC (p.Ile154PhefsX162), c.795_800delCTGGTT (p.Trp266_Phe267del), c.799T>A (p.Phe267Ile), and c.667C>T (p.Arg223X). Two novel mutations proved to be de novo as their parents did not carry the mutations. All five patients with PAX3 mutations had dystopia canthorum and different iris color and fundi between their two eyes. However, none had white forelock, skin hypopigmentation, and deafness. Conclusions Our findings expand the frequency and spectrum of PAX3 mutations and ethnic-related phenotypes in Chinese patients with WS1. De novo mutations in PAX3 have not been reported before. PMID:20664692

  19. PAX3 mutations and clinical characteristics in Chinese patients with Waardenburg syndrome type 1.

    Science.gov (United States)

    Wang, Juan; Li, Shiqiang; Xiao, Xueshan; Wang, Panfeng; Guo, Xiangming; Zhang, Qingjiong

    2010-06-22

    To detect paired box gene 3 (PAX3) mutations and associated phenotypes in Chinese patients with Waardenburg syndrome type 1 (WS1). Five unrelated families with suspected WS1 were selected from our Genomic DNA Repository for Hereditary Eye Diseases. The coding and adjacent intronic regions of PAX3 were amplified by polymerase chain reaction and the amplicons were then analyzed by cycle sequencing. Variations detected were further evaluated in available family members as well as one hundred controls with heteroduplex-single strand conformational polymorphism (heteroduplex-SSCP) analysis and/or clone sequencing. Three novel and two known mutations in PAX3 were detected in five patients, respectively: c.567_586+17del (p.Asp189_Gln505delinsGluGlyGlyAlaLeuAlaGly), c.456_459dupTTCC (p.Ile154PhefsX162), c.795_800delCTGGTT (p.Trp266_Phe267del), c.799T>A (p.Phe267Ile), and c.667C>T (p.Arg223X). Two novel mutations proved to be de novo as their parents did not carry the mutations. All five patients with PAX3 mutations had dystopia canthorum and different iris color and fundi between their two eyes. However, none had white forelock, skin hypopigmentation, and deafness. Our findings expand the frequency and spectrum of PAX3 mutations and ethnic-related phenotypes in Chinese patients with WS1. De novo mutations in PAX3 have not been reported before.

  20. Spectrum of mutations in RARS-T patients includes TET2 and ASXL1 mutations.

    Science.gov (United States)

    Szpurka, Hadrian; Jankowska, Anna M; Makishima, Hideki; Bodo, Juraj; Bejanyan, Nelli; Hsi, Eric D; Sekeres, Mikkael A; Maciejewski, Jaroslaw P

    2010-08-01

    While a majority of patients with refractory anemia with ring sideroblasts and thrombocytosis harbor JAK2V617F and rarely MPLW515L, JAK2/MPL-negative cases constitute a diagnostic problem. 23 RARS-T cases were investigated applying immunohistochemical phospho-STAT5, sequencing and SNP-A-based karyotyping. Based on the association of TET2/ASXL1 mutations with MDS/MPN we studied molecular pattern of these genes. Two patients harbored ASXL1 and another 2 TET2 mutations. Phospho-STAT5 activation was present in one mutated TET2 and ASXL1 case. JAK2V617F/MPLW515L mutations were absent in TET2/ASXL1 mutants, indicating that similar clinical phenotype can be produced by various MPN-associated mutations and that additional unifying lesions may be present in RARS-T. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. A meta-analysis of the relationship between FGFR3 and TP53 mutations in bladder cancer.

    Science.gov (United States)

    Neuzillet, Yann; Paoletti, Xavier; Ouerhani, Slah; Mongiat-Artus, Pierre; Soliman, Hany; de The, Hugues; Sibony, Mathilde; Denoux, Yves; Molinie, Vincent; Herault, Aurélie; Lepage, May-Linda; Maille, Pascale; Renou, Audrey; Vordos, Dimitri; Abbou, Claude-Clément; Bakkar, Ashraf; Asselain, Bernard; Kourda, Nadia; El Gaaied, Amel; Leroy, Karen; Laplanche, Agnès; Benhamou, Simone; Lebret, Thierry; Allory, Yves; Radvanyi, François

    2012-01-01

    TP53 and FGFR3 mutations are the most common mutations in bladder cancers. FGFR3 mutations are most frequent in low-grade low-stage tumours, whereas TP53 mutations are most frequent in high-grade high-stage tumours. Several studies have reported FGFR3 and TP53 mutations to be mutually exclusive events, whereas others have reported them to be independent. We carried out a meta-analysis of published findings for FGFR3 and TP53 mutations in bladder cancer (535 tumours, 6 publications) and additional unpublished data for 382 tumours. TP53 and FGFR3 mutations were not independent events for all tumours considered together (OR = 0.25 [0.18-0.37], p = 0.0001) or for pT1 tumours alone (OR = 0.47 [0.28-0.79], p = 0.0009). However, if the analysis was restricted to pTa tumours or to muscle-invasive tumours alone, FGFR3 and TP53 mutations were independent events (OR = 0.56 [0.23-1.36] (p = 0.12) and OR = 0.99 [0.37-2.7] (p = 0.35), respectively). After stratification of the tumours by stage and grade, no dependence was detected in the five tumour groups considered (pTaG1 and pTaG2 together, pTaG3, pT1G2, pT1G3, pT2-4). These differences in findings can be attributed to the putative existence of two different pathways of tumour progression in bladder cancer: the CIS pathway, in which FGFR3 mutations are rare, and the Ta pathway, in which FGFR3 mutations are frequent. TP53 mutations occur at the earliest stage of the CIS pathway, whereas they occur would much later in the Ta pathway, at the T1G3 or muscle-invasive stage.

  2. An integrative genomic and proteomic analysis of PIK3CA, PTEN and AKT mutations in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Stemke-Hale, Katherine; Gonzalez-Angulo, Ana Maria; Lluch, Ana; Neve, Richard M.; Kuo, Wen-Lin; Davies, Michael; Carey, Mark; Hu, Zhi; Guan, Yinghui; Sahin, Aysegul; Symmans, W. Fraser; Pusztai, Lajos; Nolden, Laura K.; Horlings, Hugo; Berns, Katrien; Hung, Mien-Chie; van de Vijver, Marc J.; Valero, Vicente; Gray, Joe W.; Bernards, Rene; Mills, Gordon B.; Hennessy, Bryan T.

    2008-05-06

    Phosphatidylinositol-3-kinase (PI3K)/AKT pathway aberrations are common in cancer. By applying mass spectroscopy-based sequencing and reverse phase protein arrays to 547 human breast cancers and 41 cell lines, we determined the subtype specificity and signaling effects of PIK3CA, AKT and PTEN mutations, and the effects of PIK3CA mutations on responsiveness to PI3K inhibition in-vitro and on outcome after adjuvant tamoxifen. PIK3CA mutations were more common in hormone receptor positive (33.8%) and HER2-positive (24.6%) than in basal-like tumors (8.3%). AKT1 (1.4%) and PTEN (2.3%) mutations were restricted to hormone receptor-positive cancers with PTEN protein levels also being significantly lower in hormone receptor-positive cancers. Unlike AKT1 mutations, PIK3CA (39%) and PTEN (20%) mutations were more common in cell lines than tumors, suggesting a selection for these but not AKT1 mutations during adaptation to culture. PIK3CA mutations did not have a significant impact on outcome in 166 hormone receptor-positive breast cancer patients after adjuvant tamoxifen. PIK3CA mutations, in comparison with PTEN loss and AKT1 mutations, were associated with significantly less and indeed inconsistent activation of AKT and of downstream PI3K/AKT signaling in tumors and cell lines, and PTEN loss and PIK3CA mutation were frequently concordant, suggesting different contributions to pathophysiology. PTEN loss but not PIK3CA mutations rendered cells sensitive to growth inhibition by the PI3K inhibitor LY294002. Thus, PI3K pathway aberrations likely play a distinct role in the pathogenesis of different breast cancer subtypes. The specific aberration may have implications for the selection of PI3K-targeted therapies in hormone receptor-positive breast cancer.

  3. Mutations in EXTL3 Cause Neuro-immuno-skeletal Dysplasia Syndrome.

    Science.gov (United States)

    Oud, Machteld M; Tuijnenburg, Paul; Hempel, Maja; van Vlies, Naomi; Ren, Zemin; Ferdinandusse, Sacha; Jansen, Machiel H; Santer, René; Johannsen, Jessika; Bacchelli, Chiara; Alders, Marielle; Li, Rui; Davies, Rosalind; Dupuis, Lucie; Cale, Catherine M; Wanders, Ronald J A; Pals, Steven T; Ocaka, Louise; James, Chela; Müller, Ingo; Lehmberg, Kai; Strom, Tim; Engels, Hartmut; Williams, Hywel J; Beales, Phil; Roepman, Ronald; Dias, Patricia; Brunner, Han G; Cobben, Jan-Maarten; Hall, Christine; Hartley, Taila; Le Quesne Stabej, Polona; Mendoza-Londono, Roberto; Davies, E Graham; de Sousa, Sérgio B; Lessel, Davor; Arts, Heleen H; Kuijpers, Taco W

    2017-02-02

    EXTL3 regulates the biosynthesis of heparan sulfate (HS), important for both skeletal development and hematopoiesis, through the formation of HS proteoglycans (HSPGs). By whole-exome sequencing, we identified homozygous missense mutations c.1382C>T, c.1537C>T, c.1970A>G, and c.2008T>G in EXTL3 in nine affected individuals from five unrelated families. Notably, we found the identical homozygous missense mutation c.1382C>T (p.Pro461Leu) in four affected individuals from two unrelated families. Affected individuals presented with variable skeletal abnormalities and neurodevelopmental defects. Severe combined immunodeficiency (SCID) with a complete absence of T cells was observed in three families. EXTL3 was most abundant in hematopoietic stem cells and early progenitor T cells, which is in line with a SCID phenotype at the level of early T cell development in the thymus. To provide further support for the hypothesis that mutations in EXTL3 cause a neuro-immuno-skeletal dysplasia syndrome, and to gain insight into the pathogenesis of the disorder, we analyzed the localization of EXTL3 in fibroblasts derived from affected individuals and determined glycosaminoglycan concentrations in these cells as well as in urine and blood. We observed abnormal glycosaminoglycan concentrations and increased concentrations of the non-sulfated chondroitin disaccharide D0a0 and the disaccharide D0a4 in serum and urine of all analyzed affected individuals. In summary, we show that biallelic mutations in EXTL3 disturb glycosaminoglycan synthesis and thus lead to a recognizable syndrome characterized by variable expression of skeletal, neurological, and immunological abnormalities. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. MPL W515L/K Mutations in Chronic Myeloproliferative Neoplasms.

    Science.gov (United States)

    Akpınar, Timur Selçuk; Hançer, Veysel Sabri; Nalçacı, Meliha; Diz-Küçükkaya, Reyhan

    2013-03-01

    The MPL gene encodes the thrombopoietin receptor. Recently MPL mutations (MPL W515L or MPL W515K) were described in patients with essential thrombocythemia (ET) and primary (idiopathic) myelofibrosis (PMF). The prevalence and the clinical importance of these mutations are not clear. In the present study, we aimed to investigate the frequency and clinical significance of MPL W515L/K mutations in our patients with ET and PMF. A total of 77 patients (66 were diagnosed with ET and 11 with PMF) and 42 healthy controls were included in the study. Using peripheral blood samples, the presence of MPL W515L/K mutations and JAK-2 V617F mutation were analyzed by real-time polymerase chain reaction. In our study, MPL W515L/K or JAK-2 V617F mutations were not observed in healthy controls. JAK-2 V617F mutation was present in 35 patients, of whom 29 had ET (43.9%, 29/66) and 6 had PMF (54.5%, 6/11). In the patient group, MPL W515L/K mutations were found in only 2 PMF cases, and these cases were negative for JAK-2 V617F mutation. The prevalence of MPL W515L/K mutations in the patient group was 2.6%, and the prevalence of MPL W515L/K mutations among the cases negative for the JAK-2 V617F mutation was found to be 4.8%. The 2 cases with MPL W515L/K mutations had long follow-up times (124 months and 71 months, respectively), had no thrombotic or hemorrhagic complications, and had no additional cytogenetic anomalies. MPL W515L/K mutations may be helpful for identifying clonal disease in MPN patients with no established Ph chromosome or JAK-2 V617F mutation. None declared.

  5. Wilms’ Tumor 1 Gene Mutations Independently Predict Poor Outcome in Adults With Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study

    Science.gov (United States)

    Paschka, Peter; Marcucci, Guido; Ruppert, Amy S.; Whitman, Susan P.; Mrózek, Krzysztof; Maharry, Kati; Langer, Christian; Baldus, Claudia D.; Zhao, Weiqiang; Powell, Bayard L.; Baer, Maria R.; Carroll, Andrew J.; Caligiuri, Michael A.; Kolitz, Jonathan E.; Larson, Richard A.; Bloomfield, Clara D.

    2008-01-01

    Purpose To analyze the prognostic impact of Wilms’ tumor 1 (WT1) gene mutations in cytogenetically normal acute myeloid leukemia (CN-AML). Patients and Methods We studied 196 adults younger than 60 years with newly diagnosed primary CN-AML, who were treated similarly on Cancer and Leukemia Group B (CALGB) protocols 9621 and 19808, for WT1 mutations in exons 7 and 9. The patients also were assessed for the presence of FLT3 internal tandem duplications (FLT3-ITD), FLT3 tyrosine kinase domain mutations (FLT3-TKD), MLL partial tandem duplications (MLL-PTD), NPM1 and CEBPA mutations, and for the expression levels of ERG and BAALC. Results Twenty-one patients (10.7%) harbored WT1 mutations. Complete remission rates were not significantly different between patients with WT1 mutations and those with unmutated WT1 (P = .36; 76% v 84%). Patients with WT1 mutations had worse disease-free survival (DFS; P < .001; 3-year rates, 13% v 50%) and overall survival (OS; P < .001; 3-year rates, 10% v 56%) than patients with unmutated WT1. In multivariable analyses, WT1 mutations independently predicted worse DFS (P = .009; hazard ratio [HR] = 2.7) when controlling for CEBPA mutational status, ERG expression level, and FLT3-ITD/NPM1 molecular-risk group (ie, FLT3-ITDnegative/NPM1mutated as low risk v FLT3-ITDpositive and/or NPM1wild-type as high risk). WT1 mutations also independently predicted worse OS (P < .001; HR = 3.2) when controlling for CEBPA mutational status, FLT3-ITD/NPM1 molecular-risk group, and white blood cell count. Conclusion We report the first evidence that WT1 mutations independently predict extremely poor outcome in intensively treated, younger patients with CN-AML. Future trials should include testing for WT1 mutations as part of molecularly based risk assessment and risk-adapted treatment stratification of patients with CN-AML. PMID:18559874

  6. Newly identified CHO ERCC3/XPB mutations and phenotype characterization

    Science.gov (United States)

    Rybanská, Ivana; Gurský, Ján; Fašková, Miriam; Salazar, Edmund P.; Kimlíčková-Polakovičová, Erika; Kleibl, Karol; Thompson, Larry H.; Piršel, Miroslav

    2010-01-01

    Nucleotide excision repair (NER) is a complex multistage process involving many interacting gene products to repair a wide range of DNA lesions. Genetic defects in NER cause human hereditary diseases including xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy and a combined XP/CS overlapping symptom. One key gene product associated with all these disorders is the excision repair cross-complementing 3/xeroderma pigmentosum B (ERCC3/XPB) DNA helicase, a subunit of the transcription factor IIH complex. ERCC3 is involved in initiation of basal transcription and global genome repair as well as in transcription-coupled repair (TCR). The hamster ERCC3 gene shows high degree of homology with the human ERCC3/XPB gene. We identified new mutations in the Chinese hamster ovary cell ERCC3 gene and characterized the role of hamster ERCC3 protein in DNA repair of ultraviolet (UV)-induced and oxidative DNA damage. All but one newly described mutations are located in the protein C-terminal region around the last intron–exon boundary. Due to protein truncations or frameshifts, they lack amino acid Ser751, phosphorylation of which prevents the 5′ incision of the UV-induced lesion during NER. Thus, despite the various locations of the mutations, their phenotypes are similar. All ercc3 mutants are extremely sensitive to UV-C light and lack recovery of RNA synthesis (RRS), confirming a defect in TCR of UV-induced damage. Their limited global genome NER capacity averages ∼8%. We detected modest sensitivity of ercc3 mutants to the photosensitizer Ro19-8022, which primarily introduces 8-oxoguanine lesions into DNA. Ro19-8022-induced damage interfered with RRS, and some of the ercc3 mutants had delayed kinetics. All ercc3 mutants showed efficient base excision repair (BER). Thus, the positions of the mutations have no effect on the sensitivity to, and repair of, Ro19-8022-induced DNA damage, suggesting that the ERCC3 protein is not involved in BER. PMID:19942596

  7. Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine; Bertran-Alamillo, Jordi; Molina, Miguel Angel

    2017-01-01

    Non-small-cell lung cancer patients with activating epidermal growth factor receptor (EGFR) mutations typically benefit from EGFR tyrosine kinase inhibitor treatment. However, virtually all patients succumb to acquired EGFR tyrosine kinase inhibitor resistance that occurs via diverse mechanisms....

  8. Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes.

    Science.gov (United States)

    Maher, Geoffrey J; McGowan, Simon J; Giannoulatou, Eleni; Verrill, Clare; Goriely, Anne; Wilkie, Andrew O M

    2016-03-01

    De novo point mutations arise predominantly in the male germline and increase in frequency with age, but it has not previously been possible to locate specific, identifiable mutations directly within the seminiferous tubules of human testes. Using microdissection of tubules exhibiting altered expression of the spermatogonial markers MAGEA4, FGFR3, and phospho-AKT, whole genome amplification, and DNA sequencing, we establish an in situ strategy for discovery and analysis of pathogenic de novo mutations. In 14 testes from men aged 39-90 y, we identified 11 distinct gain-of-function mutations in five genes (fibroblast growth factor receptors FGFR2 and FGFR3, tyrosine phosphatase PTPN11, and RAS oncogene homologs HRAS and KRAS) from 16 of 22 tubules analyzed; all mutations have known associations with severe diseases, ranging from congenital or perinatal lethal disorders to somatically acquired cancers. These results support proposed selfish selection of spermatogonial mutations affecting growth factor receptor-RAS signaling, highlight its prevalence in older men, and enable direct visualization of the microscopic anatomy of elongated mutant clones.

  9. HIV1 V3 loop hypermutability is enhanced by the guanine usage bias in the part of env gene coding for it.

    Science.gov (United States)

    Khrustalev, Vladislav Victorovich

    2009-01-01

    Guanine is the most mutable nucleotide in HIV genes because of frequently occurring G to A transitions, which are caused by cytosine deamination in viral DNA minus strands catalyzed by APOBEC enzymes. Distribution of guanine between three codon positions should influence the probability for G to A mutation to be nonsynonymous (to occur in first or second codon position). We discovered that nucleotide sequences of env genes coding for third variable regions (V3 loops) of gp120 from HIV1 and HIV2 have different kinds of guanine usage biases. In the HIV1 reference strain and 100 additionally analyzed HIV1 strains the guanine usage bias in V3 loop coding regions (2G>1G>3G) should lead to elevated nonsynonymous G to A transitions occurrence rates. In the HIV2 reference strain and 100 other HIV2 strains guanine usage bias in V3 loop coding regions (3G>2G>1G) should protect V3 loops from hypermutability. According to the HIV1 and HIV2 V3 alignment, insertion of the sequence enriched with 2G (21 codons in length) occurred during the evolution of HIV1 predecessor, while insertion of the different sequence enriched with 3G (19 codons in length) occurred during the evolution of HIV2 predecessor. The higher is the level of 3G in the V3 coding region, the lower should be the immune escaping mutation occurrence rates. This hypothesis was tested in this study by comparing the guanine usage in V3 loop coding regions from HIV1 fast and slow progressors. All calculations have been performed by our algorithms "VVK In length", "VVK Dinucleotides" and "VVK Consensus" (www.barkovsky.hotmail.ru).

  10. Characterization of an apparently synonymous F5 mutation causing aberrant splicing and factor V deficiency.

    Science.gov (United States)

    Nuzzo, F; Bulato, C; Nielsen, B I; Lee, K; Wielders, S J; Simioni, P; Key, N S; Castoldi, E

    2015-03-01

    Coagulation factor V (FV) deficiency is a rare autosomal recessive bleeding disorder. We investigated a patient with severe FV deficiency (FV:C mutation in exon 4 (c.578G>C, p.Cys193Ser), predicting the abolition of a conserved disulphide bridge, and an apparently synonymous variant in exon 8 (c.1281C>G). The observation that half of the patient's F5 mRNA lacked the last 18 nucleotides of exon 8 prompted us to re-evaluate the c.1281C>G variant for its possible effects on splicing. Bioinformatics sequence analysis predicted that this transversion would activate a cryptic donor splice site and abolish an exonic splicing enhancer. Characterization in a F5 minigene model confirmed that the c.1281C>G variant was responsible for the patient's splicing defect, which could be partially corrected by a mutation-specific morpholino antisense oligonucleotide. The aberrantly spliced F5 mRNA, whose stability was similar to that of the normal mRNA, encoded a putative FV mutant lacking amino acids 427-432. Expression in COS-1 cells indicated that the mutant protein is poorly secreted and not functional. In conclusion, the c.1281C>G mutation, which was predicted to be translationally silent and hence neutral, causes FV deficiency by impairing pre-mRNA splicing. This finding underscores the importance of cDNA analysis for the correct assessment of exonic mutations. © 2014 John Wiley & Sons Ltd.

  11. Four Novel p.N385K, p.V36A, c.1033–1034insT and c.1417–1418delCT Mutations in the Sphingomyelin Phosphodiesterase 1 (SMPD1 Gene in Patients with Types A and B Niemann-Pick Disease (NPD

    Directory of Open Access Journals (Sweden)

    Masoumeh Dehghan Manshadi

    2015-03-01

    Full Text Available Background: Types A and B Niemann-Pick disease (NPD are autosomal-recessive lysosomal storage disorders caused by the deficient activity of acid sphingomyelinase due to mutations in the sphingomyelin phosphodiesterase 1 (SMPD1 gene. Methods: In order to determine the prevalence and distribution of SMPD1 gene mutations, the genomic DNA of 15 unrelated Iranian patients with types A and B NPD was examined using PCR, DNA sequencing and bioinformatics analysis. Results: Of 8 patients with the p.G508R mutation, 5 patients were homozygous, while the other 3 were heterozygous. One patient was heterozygous for both the p.N385K and p.G508R mutations. Another patient was heterozygous for both the p.A487V and p.G508R mutations. Two patients (one homozygous and one heterozygous showed the p.V36A mutation. One patient was homozygous for the c.1033–1034insT mutation. One patient was homozygous for the c.573delT mutation, and 1 patient was homozygous for the c.1417–1418delCT mutation. Additionally, bioinformatics analysis indicated that two new p.V36A and p.N385K mutations decreased the acid sphingomyelinase (ASM protein stability, which might be evidence to suggest the pathogenicity of these mutations. Conclusion: with detection of these new mutations, the genotypic spectrum of types A and B NPD is extended, facilitating the definition of disease-related mutations. However, more research is essential to confirm the pathogenic effect of these mutations.

  12. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process.

    Science.gov (United States)

    Kishimoto, Toshihiko; Ying, Bei-Wen; Tsuru, Saburo; Iijima, Leo; Suzuki, Shingo; Hashimoto, Tomomi; Oyake, Ayana; Kobayashi, Hisaka; Someya, Yuki; Narisawa, Dai; Yomo, Tetsuya

    2015-07-01

    The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution.

  13. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process.

    Directory of Open Access Journals (Sweden)

    Toshihiko Kishimoto

    2015-07-01

    Full Text Available The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution.

  14. Mutation D816V alters the internal structure and dynamics of c-KIT receptor cytoplasmic region: implications for dimerization and activation mechanisms.

    Directory of Open Access Journals (Sweden)

    Elodie Laine

    2011-06-01

    Full Text Available The type III receptor tyrosine kinase (RTK KIT plays a crucial role in the transmission of cellular signals through phosphorylation events that are associated with a switching of the protein conformation between inactive and active states. D816V KIT mutation is associated with various pathologies including mastocytosis and cancers. D816V-mutated KIT is constitutively active, and resistant to treatment with the anti-cancer drug Imatinib. To elucidate the activating molecular mechanism of this mutation, we applied a multi-approach procedure combining molecular dynamics (MD simulations, normal modes analysis (NMA and binding site prediction. Multiple 50-ns MD simulations of wild-type KIT and its mutant D816V were recorded using the inactive auto-inhibited structure of the protein, characteristic of type III RTKs. Computed free energy differences enabled us to quantify the impact of D816V on protein stability in the inactive state. We evidenced a local structural alteration of the activation loop (A-loop upon mutation, and a long-range structural re-organization of the juxta-membrane region (JMR followed by a weakening of the interaction network with the kinase domain. A thorough normal mode analysis of several MD conformations led to a plausible molecular rationale to propose that JMR is able to depart its auto-inhibitory position more easily in the mutant than in wild-type KIT and is thus able to promote kinase mutant dimerization without the need for extra-cellular ligand binding. Pocket detection at the surface of NMA-displaced conformations finally revealed that detachment of JMR from the kinase domain in the mutant was sufficient to open an access to the catalytic and substrate binding sites.

  15. A new Gsdma3 mutation affecting anagen phase of first hair cycle

    International Nuclear Information System (INIS)

    Tanaka, Shigekazu; Tamura, Masaru; Aoki, Aya; Fujii, Tomoaki; Komiyama, Hiromitsu; Sagai, Tomoko; Shiroishi, Toshihiko

    2007-01-01

    Recombination-induced mutation 3 (Rim3) is a spontaneous mouse mutation that exhibits dominant phenotype of hyperkeratosis and hair loss. Fine linkage analysis of Rim3 and sequencing revealed a novel single point mutation, G1124A leading to Ala348Thr, in Gsdma3 in chromosome 11. Transgenesis with BAC DNA harboring the Rim3-type Gsdma3 recaptured the Rim3 phenotype, providing direct evidence that Gsdma3 is the causative gene of Rim3. We examined the spatial expression of Gsdma3 and characterized the Rim3 phenotype in detail. Gsdma3 is expressed in differentiated epidermal cells in the skin, but not in the proliferating epidermal cells. Histological analysis of Rim3 mutant showed hyperplasia of the epidermal cells in the upper hair follicles and abnormal anagen phase at the first hair cycle. Furthermore, immunohistochemical analysis revealed hyperproliferation and misdifferentiation of the upper follicular epidermis in Rim3 mutant. These results suggest that Gsdma3 is involved in the proliferation and differentiation of epidermal stem cells

  16. CaV 3.1 and CaV 3.3 account for T-type Ca2+ current in GH3 cells

    Directory of Open Access Journals (Sweden)

    M.A. Mudado

    2004-06-01

    Full Text Available T-type Ca2+ channels are important for cell signaling by a variety of cells. We report here the electrophysiological and molecular characteristics of the whole-cell Ca2+ current in GH3 clonal pituitary cells. The current inactivation at 0 mV was described by a single exponential function with a time constant of 18.32 ± 1.87 ms (N = 16. The I-V relationship measured with Ca2+ as a charge carrier was shifted to the left when we applied a conditioning pre-pulse of up to -120 mV, indicating that a low voltage-activated current may be present in GH3 cells. Transient currents were first activated at -50 mV and peaked around -20 mV. The half-maximal voltage activation and the slope factors for the two conditions are -35.02 ± 2.4 and 6.7 ± 0.3 mV (pre-pulse of -120 mV, N = 15, and -27.0 ± 0.97 and 7.5 ± 0.7 mV (pre-pulse of -40 mV, N = 9. The 8-mV shift in the activation mid-point was statistically significant (P < 0.05. The tail currents decayed bi-exponentially suggesting two different T-type Ca2+ channel populations. RT-PCR revealed the presence of a1G (CaV3.1 and a1I (CaV3.3 T-type Ca2+ channel mRNA transcripts.

  17. Severe hypertriglyceridemia due to two novel loss-of-function lipoprotein lipase gene mutations (C310R/E396V) in a Chinese family associated with recurrent acute pancreatitis.

    Science.gov (United States)

    Lun, Yu; Sun, Xiaofang; Wang, Ping; Chi, Jingwei; Hou, Xu; Wang, Yangang

    2017-07-18

    Lipoprotein lipase (LPL) is widely expressed in skeletal muscles, cardiac muscles as well as adipose tissue and involved in the catabolism of triglyceride. Herein we have systematically characterized two novel loss-of-function mutations in LPL from a Chinese family in which afflicted members were manifested by severe hypertriglyceridemia and recurrent pancreatitis. DNA sequencing revealed that the proband was a heterozygote carrying a novel c.T928C (p.C310R) mutation in exon 6 of the LPL gene. Another member of the family was detected to be a compound heterozygote who along with the c.T928C mutation also carried a novel missense mutation c.A1187T (p.E396V) in exon 8 of the LPL gene. Furthermore, COS-1 cells were transfected with lentiviruses containing the mutant LPL genes. While C310R markedly reduced the overall LPL protein level, COS-1 cells carrying E396V or double mutations contained similar overall LPL protein levels to the wild-type. The specific activity of the LPL mutants remained at comparable magnitude to the wild-type. However, few LPL were detected in the culture medium for the mutants, suggesting that both mutations caused aberrant triglyceride catabolism. More specifically, E396V and double mutations dampened the transport of LPL to the cell surface, while for the C310R mutation, reducing LPL protein level might be involved. By characterizing these two novel LPL mutations, this study has expanded our understanding on the pathogenesis of familial hypertriglyceridemia (FHTG).

  18. Common mutations in the fibroblast growth factor receptor 3 (FGFR 3) gene account for achondroplasia, hypochondroplasia, and thanatophoric dwarfism

    Energy Technology Data Exchange (ETDEWEB)

    Bonaventure, J.; Rousseau, F.; Legeai-Mallet, L.; LeMerrer, M.; Munnich, A.; Maroteaux, P. [INSERM, Paris (France)

    1996-05-03

    The mapping of the achondroplasia locus to the short arm of chromosome 4 and the subsequent identification of a recurrent missense mutation (G380R) in the fibroblast growth factor receptor 3 (FGFR-3) gene has been followed by the detection of common FGFR-3 mutations in two clinically related disorders: thanatophoric dwarfism (types I and II) and hypochondroplasia. The relative clinical homogeneity of achondroplasia was substantiated by demonstration of its genetic homogeneity as more than 98% of all patients hitherto reported exhibit mutations in the transmembrane receptor domain. Although most hypochondroplasia cases were accounted for by a recurrent missense substitution (N540K) in the first tyrosine kinase (TK 1) domain of the receptor, a significant proportion (40%) of our patients did not harbor the N540K mutation and three hypochondroplasia families were not linked to the FGFR-3 locus, thus supporting clinical heterogeneity of this condition. In thanatophoric dwarfism (TD), a recurrent FGFR-3 mutation located in the second tyrosine kinase (TK 2) domain of the receptor was originally detected in 100% of TD II cases; in our series, seven distinct mutations in three different protein domains were identified in 25 of 26 TD I patients, suggesting that TD, like achondroplasia, is a genetically homogenous skeletal disorder. 31 refs., 4 figs., 2 tabs.

  19. Frequent alteration of MLL3 frameshift mutations in microsatellite deficient colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Watanabe

    Full Text Available MLL3 is a histone 3-lysine 4 methyltransferase with tumor-suppressor properties that belongs to a family of chromatin regulator genes potentially altered in neoplasia. Mutations in MLL3 were found in a whole genome analysis of colorectal cancer but have not been confirmed by a separate study.We analyzed mutations of coding region and promoter methylation in MLL3 using 126 cases of colorectal cancer. We found two isoforms of MLL3 and DNA sequencing revealed frameshift and other mutations affecting both isoforms of MLL3 in colorectal cancer cells and 19 of 134 (14% primary colorectal samples analyzed. Moreover, frameshift mutations were more common in cases with microsatellite instability (31% both in CRC cell lines and primary tumors. The largest isoform of MLL3 is transcribed from a CpG island-associated promoter that has highly homology with a pseudo-gene on chromosome 22 (psiTPTE22. Using an assay which measured both loci simultaneously we found prominent age related methylation in normal colon (from 21% in individuals less than 25 years old to 56% in individuals older than 70, R = 0.88, p<0.001 and frequent hypermethylation (83% in both CRC cell lines and primary tumors. We next studied the two loci separately and found that age and cancer related methylation was solely a property of the pseudogene CpG island and that the MLL3 loci was unmethylated.We found that frameshift mutations of MLL3 in both CRC cells and primary tumor that were more common in cases with microsatellite instability. Moreover, we have shown CpG island-associated promoter of MLL3 gene has no DNA methylation in CRC cells but also primary tumor and normal colon, and this region has a highly homologous of pseudo gene (psiTPTE22 that was age relate DNA methylation.

  20. Identification of a novel CLRN1 gene mutation in Usher syndrome type 3: two case reports.

    Science.gov (United States)

    Yoshimura, Hidekane; Oshikawa, Chie; Nakayama, Jun; Moteki, Hideaki; Usami, Shin-Ichi

    2015-05-01

    This study examines the CLRN1 gene mutation analysis in Japanese patients who were diagnosed with Usher syndrome type 3 (USH3) on the basis of clinical findings. Genetic analysis using massively parallel DNA sequencing (MPS) was conducted to search for 9 causative USH genes in 2 USH3 patients. We identified the novel pathogenic mutation in the CLRN1 gene in 2 patients. The missense mutation was confirmed by functional prediction software and segregation analysis. Both patients were diagnosed as having USH3 caused by the CLRN1 gene mutation. This is the first report of USH3 with a CLRN1 gene mutation in Asian populations. Validating the presence of clinical findings is imperative for properly differentiating among USH subtypes. In addition, mutation screening using MPS enables the identification of causative mutations in USH. The clinical diagnosis of this phenotypically variable disease can then be confirmed. © The Author(s) 2015.

  1. [Characteristics of phenylalanine hydroxylase gene mutations among patients with phenylketonuria from Linyi region of Shandong Province].

    Science.gov (United States)

    Li, Huafeng; Li, Yongli; Zhang, Li

    2017-06-10

    To explore the characteristics of (PAH) gene mutations among patients with phenylketonuria (PKU) from Linyi area of Shandong Province. For 51 children affected with PKU and their parents, the 13 exons and their flanking intronic sequences of the PAH gene were directly sequenced with Sanger method. PAH gene mutations were detected in all of the 102 alleles of the patients, which included 31 types of mutations. Common mutations included R243Q (17/102, 16.67%), IVS4-1G to A (9/102, 8.82%), R241C (8/102, 7.84%), R111X (8/102, 7.84%), and V399V (8/102, 7.84%). In addition, two novel mutations, D101N, 345-347del, have been detected. The 31 types of mutations included missense, nonsense, deletion, and splicing mutations, which were mainly located in exons 7 (29, 28.43%), 11 (18, 17.65%), 3 (16, 15.69%) and 12 (13, 12.75%). Mutations of the PAH gene in Linyi region mainly distributed in exons 7, 11, and 3, and the most common mutation were R243Q. Two novel mutations, D101N and 345-347del, have been detected.

  2. Differences in microbiological profile between community-acquired, healthcare-associated and hospital-acquired infections.

    Science.gov (United States)

    Cardoso, Teresa; Ribeiro, Orquídea; Aragão, Irene; Costa-Pereira, Altamiro; Sarmento, António

    2013-01-01

    Microbiological profiles were analysed and compared for intra-abdominal, urinary, respiratory and bloodstream infections according to place of acquisition: community-acquired, with a separate analysis of healthcare-associated, and hospital-acquired. Prospective cohort study performed at a university tertiary care hospital over 1 year. Inclusion criteria were meeting the Centers for Disease Control definition of intra-abdominal, urinary, respiratory and bloodstream infections. A total of 1035 patients were included in the study. More than 25% of intra-abdominal infections were polymicrobial; multi-drug resistant gram-negatives were 38% in community-acquired, 50% in healthcare-associated and 57% in hospital-acquired. E. coli was the most prevalent among urinary infections: 69% in community-acquired, 56% in healthcare-associated and 26% in hospital-acquired; ESBL producers' pathogens were 10% in healthcare-associated and 3% in community-acquired and hospital-acquired. In respiratory infections Streptococcus pneumoniae was the most prevalent in community-acquired (54%) and MRSA in healthcare-associated (24%) and hospital-acquired (24%). A significant association was found between MRSA respiratory infection and hospitalization in the previous year (adjusted OR = 6.3), previous instrumentation (adjusted OR = 4.3) and previous antibiotic therapy (adjusted OR = 5.7); no cases were documented among patients without risk factors. Hospital mortality rate was 10% in community-acquired, 14% in healthcare-associated and 19% in hospital-acquired infection. This study shows that healthcare-associated has a different microbiologic profile than those from community or hospital acquired for the four main focus of infection. Knowledge of this fact is important because the existing guidelines for community-acquired are not entirely applicable for this group of patients.

  3. Disease evolution and outcomes in familial AML with germline CEBPA mutations

    DEFF Research Database (Denmark)

    Tawana, Kiran; Wang, Jun; Renneville, Aline

    2015-01-01

    collected from 10 CEBPA-mutated families, representing 24 members with acute myeloid leukemia (AML). Whole-exome (WES) and deep sequencing were performed to genetically profile tumors and define patterns of clonal evolution. Germline CEBPA mutations clustered within the N-terminal and were highly penetrant......, with AML presenting at a median age of 24.5 years (range, 1.75-46 years). In all diagnostic tumors tested (n = 18), double CEBPA mutations (CEBPAdm) were detected, with acquired (somatic) mutations preferentially targeting the C-terminal. Somatic CEBPA mutations were unstable throughout the disease course...

  4. A meta-analysis of the relationship between FGFR3 and TP53 mutations in bladder cancer.

    Directory of Open Access Journals (Sweden)

    Yann Neuzillet

    Full Text Available TP53 and FGFR3 mutations are the most common mutations in bladder cancers. FGFR3 mutations are most frequent in low-grade low-stage tumours, whereas TP53 mutations are most frequent in high-grade high-stage tumours. Several studies have reported FGFR3 and TP53 mutations to be mutually exclusive events, whereas others have reported them to be independent. We carried out a meta-analysis of published findings for FGFR3 and TP53 mutations in bladder cancer (535 tumours, 6 publications and additional unpublished data for 382 tumours. TP53 and FGFR3 mutations were not independent events for all tumours considered together (OR = 0.25 [0.18-0.37], p = 0.0001 or for pT1 tumours alone (OR = 0.47 [0.28-0.79], p = 0.0009. However, if the analysis was restricted to pTa tumours or to muscle-invasive tumours alone, FGFR3 and TP53 mutations were independent events (OR = 0.56 [0.23-1.36] (p = 0.12 and OR = 0.99 [0.37-2.7] (p = 0.35, respectively. After stratification of the tumours by stage and grade, no dependence was detected in the five tumour groups considered (pTaG1 and pTaG2 together, pTaG3, pT1G2, pT1G3, pT2-4. These differences in findings can be attributed to the putative existence of two different pathways of tumour progression in bladder cancer: the CIS pathway, in which FGFR3 mutations are rare, and the Ta pathway, in which FGFR3 mutations are frequent. TP53 mutations occur at the earliest stage of the CIS pathway, whereas they occur would much later in the Ta pathway, at the T1G3 or muscle-invasive stage.

  5. New Real-Time PCR Assays for Detection of Inducible and Acquired Clarithromycin Resistance in the Mycobacterium abscessus Group.

    Science.gov (United States)

    Shallom, Shamira J; Moura, Natalia S; Olivier, Kenneth N; Sampaio, Elizabeth P; Holland, Steven M; Zelazny, Adrian M

    2015-11-01

    Members of the Mycobacterium abscessus group (MAG) cause lung, soft tissue, and disseminated infections. The oral macrolides clarithromycin and azithromycin are commonly used for treatment. MAG can display clarithromycin resistance through the inducible erm(41) gene or via acquired mutations in the rrl (23S rRNA) gene. Strains harboring a truncation or a T28C substitution in erm(41) lose the inducible resistance trait. Phenotypic detection of clarithromycin resistance requires extended incubation (14 days), highlighting the need for faster methods to detect resistance. Two real-time PCR-based assays were developed to assess inducible and acquired clarithromycin resistance and tested on a total of 90 clinical and reference strains. A SYBR green assay was designed to distinguish between a full-length and truncated erm(41) gene by temperature shift in melting curve analysis. Single nucleotide polymorphism (SNP) allele discrimination assays were developed to distinguish T or C at position 28 of erm(41) and 23S rRNA rrl gene mutations at position 2058 and/or 2059. Truncated and full-size erm(41) genes were detected in 21/90 and 69/90 strains, respectively, with 64/69 displaying T at nucleotide position 28 and 5/69 containing C at that position. Fifteen isolates showed rrl mutations conferring clarithromycin resistance, including A2058G (11 isolates), A2058C (3 isolates), and A2059G (1 isolate). Targeted sequencing and phenotypic assessment of resistance concurred with molecular assay results. Interestingly, we also noted cooccurring strains harboring an active erm(41), inactive erm(41), and/or acquired mutational resistance, as well as slowly growing MAG strains and also strains displaying an inducible resistance phenotype within 5 days, long before the recommended 14-day extended incubation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Unexpected identification of a recurrent mutation in the DLX3 gene causing amelogenesis imperfecta.

    Science.gov (United States)

    Kim, Y-J; Seymen, F; Koruyucu, M; Kasimoglu, Y; Gencay, K; Shin, T J; Hyun, H-K; Lee, Z H; Kim, J-W

    2016-05-01

    To identify the molecular genetic aetiology of a family with autosomal dominant amelogenesis imperfecta (AI). DNA samples were collected from a six-generation family, and the candidate gene approach was used to screen for the enamelin (ENAM) gene. Whole-exome sequencing and linkage analysis with SNP array data identified linked regions, and candidate gene screening was performed. Mutational analysis revealed a mutation (c.561_562delCT and p.Tyr188Glnfs*13) in the DLX3 gene. After finding a recurrent DLX3 mutation, the clinical phenotype of the family members was re-examined. The proband's mother had pulp elongation in the third molars. The proband had not hair phenotype, but her cousin had curly hair at birth. In this study, we identified a recurrent 2-bp deletional DLX3 mutation in a new family. The clinical phenotype was the mildest one associated with the DLX3 mutations. These results will advance the understanding of the functional role of DLX3 in developmental processes. © 2016 The Authors. Oral Diseases Published by John Wiley & Sons Ltd.

  7. The spectrum of mutation produced by low dose radiation

    International Nuclear Information System (INIS)

    Morley, Alexander A.; Turner, David R.

    2004-01-01

    Inherited mutations are the basis of evolution and acquired mutations in humans are important in ageing, cancer and possibly various forms of tissue degeneration. Mutations are responsible for many of the long-term effects of radiation. However, sensitive direct detection of mutations in humans has been difficult. The aims of the project were to develop methods for the sensitive enumeration of mutations in DNA, to measure mutation frequencies in a wide variety of tissue types and to quantify the mutational effect of direct oxidative damage produced by radiation, at both high and low doses. The project was successful in developing a sensitive method which could detect mutations directly in the genetic material, DNA at a sensitivity of 1 mutated molecule in 1000000000 unmutated molecules. However a number of methodological problems had to be overcome and lack of ongoing funding made it impossible to fulfill all of the aims of the project

  8. Mutations in a novel gene with transmembrane domains underlie Usher syndrome type 3.

    Science.gov (United States)

    Joensuu, T; Hämäläinen, R; Yuan, B; Johnson, C; Tegelberg, S; Gasparini, P; Zelante, L; Pirvola, U; Pakarinen, L; Lehesjoki, A E; de la Chapelle, A; Sankila, E M

    2001-10-01

    Usher syndrome type 3 (USH3) is an autosomal recessive disorder characterized by progressive hearing loss, severe retinal degeneration, and variably present vestibular dysfunction, assigned to 3q21-q25. Here, we report on the positional cloning of the USH3 gene. By haplotype and linkage-disequilibrium analyses in Finnish carriers of a putative founder mutation, the critical region was narrowed to 250 kb, of which we sequenced, assembled, and annotated 207 kb. Two novel genes-NOPAR and UCRP-and one previously identified gene-H963-were excluded as USH3, on the basis of mutational analysis. USH3, the candidate gene that we identified, encodes a 120-amino-acid protein. Fifty-two Finnish patients were homozygous for a termination mutation, Y100X; patients in two Finnish families were compound heterozygous for Y100X and for a missense mutation, M44K, whereas patients in an Italian family were homozygous for a 3-bp deletion leading to an amino acid deletion and substitution. USH3 has two predicted transmembrane domains, and it shows no homology to known genes. As revealed by northern blotting and reverse-transcriptase PCR, it is expressed in many tissues, including the retina.

  9. Effect of the G375C and G346E achondroplasia mutations on FGFR3 activation.

    Directory of Open Access Journals (Sweden)

    Lijuan He

    Full Text Available Two mutations in FGFR3, G380R and G375C are known to cause achondroplasia, the most common form of human dwarfism. The G380R mutation accounts for 98% of the achondroplasia cases, and thus has been studied extensively. Here we study the effect of the G375C mutation on the phosphorylation and the cross-linking propensity of full-length FGFR3 in HEK 293 cells, and we compare the results to previously published results for the G380R mutant. We observe identical behavior of the two achondroplasia mutants in these experiments, a finding which supports a direct link between the severity of dwarfism phenotypes and the level and mechanism of FGFR3 over-activation. The mutations do not increase the cross-linking propensity of FGFR3, contrary to previous expectations that the achondroplasia mutations stabilize the FGFR3 dimers. Instead, the phosphorylation efficiency within un-liganded FGFR3 dimers is increased, and this increase is likely the underlying cause for pathogenesis in achondroplasia. We further investigate the G346E mutation, which has been reported to cause achondroplasia in one case. We find that this mutation does not increase FGFR3 phosphorylation and decreases FGFR3 cross-linking propensity, a finding which raises questions whether this mutation is indeed a genetic cause for human dwarfism.

  10. Effect of the G375C and G346E achondroplasia mutations on FGFR3 activation.

    Science.gov (United States)

    He, Lijuan; Serrano, Christopher; Niphadkar, Nitish; Shobnam, Nadia; Hristova, Kalina

    2012-01-01

    Two mutations in FGFR3, G380R and G375C are known to cause achondroplasia, the most common form of human dwarfism. The G380R mutation accounts for 98% of the achondroplasia cases, and thus has been studied extensively. Here we study the effect of the G375C mutation on the phosphorylation and the cross-linking propensity of full-length FGFR3 in HEK 293 cells, and we compare the results to previously published results for the G380R mutant. We observe identical behavior of the two achondroplasia mutants in these experiments, a finding which supports a direct link between the severity of dwarfism phenotypes and the level and mechanism of FGFR3 over-activation. The mutations do not increase the cross-linking propensity of FGFR3, contrary to previous expectations that the achondroplasia mutations stabilize the FGFR3 dimers. Instead, the phosphorylation efficiency within un-liganded FGFR3 dimers is increased, and this increase is likely the underlying cause for pathogenesis in achondroplasia. We further investigate the G346E mutation, which has been reported to cause achondroplasia in one case. We find that this mutation does not increase FGFR3 phosphorylation and decreases FGFR3 cross-linking propensity, a finding which raises questions whether this mutation is indeed a genetic cause for human dwarfism.

  11. A de novo mutation in KCNN3 associated with autosomal dominant idiopathic non-cirrhotic portal hypertension.

    Science.gov (United States)

    Koot, Bart G P; Alders, Marielle; Verheij, Joanne; Beuers, Ulrich; Cobben, Jan M

    2016-04-01

    Non-cirrhotic portal hypertension is characterized by histopathological abnormalities in the liver, mostly affecting small intrahepatic portal veins that cause portal hypertension in the absence of cirrhosis. It can be secondary to coagulation disorders or toxic agents. However, most cases are idiopathic non-cirrhotic portal hypertension (INCPH) and familial cases are rare. We report a family in which a father and three of his four children conceived with three different mothers are affected by INCPH. Whole exome and Sanger sequencing showed the father to have a de novo single nucleotide substitution c.1348G>C in the KCNN3 gene that was transmitted to all three of his affected offspring. The KCNN3 gene encodes small conductance calcium-activated potassium (SK) channel 3. SK channels are involved in the regulation of arterial and venous vascular tone by causing smooth muscle relaxation on activation. No data exist on the expression and function of SK channels in portal veins. The autosomal dominant inheritance in this unique pedigree and the single de novo mutation identified, strongly suggests that KCNN3 mutations have a pathogenetic role in INCPH. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  12. Mechanisms of mutations in myeloproliferative neoplasms.

    Science.gov (United States)

    Levine, Ross L

    2009-12-01

    In recent years, a series of studies have provided genetic insight into the pathogenesis of myeloproliferative neoplasms (MPNs). It is now known that JAK2V617F mutations are present in 90% of patients with polycythaemia vera (PV), 60% of patients with essential thrombocytosis (ET) and 50% of patients with myelofibrosis (MF). Despite the high prevalence of JAK2V617F mutations in these three myeloid malignancies, several questions remain. For example, how does one mutation contribute to the pathogenesis of three clinically distinct diseases, and how do some patients develop these diseases in the absence of a JAK2V617F mutation? Single nucleotide polymorphisms at various loci and somatic mutations, such as those in MPLW515L/K, TET2 and in exon 12 of JAK2, may also contribute to the pathogenesis of these MPNs. There are likely additional germline and somatic genetic factors important to the MPN phenotype. Additional studies of large MPN and control cohorts with new techniques will help identify these factors.

  13. Melting curve analysis after T allele enrichment (MelcaTle as a highly sensitive and reliable method for detecting the JAK2V617F mutation.

    Directory of Open Access Journals (Sweden)

    Soji Morishita

    Full Text Available Detection of the JAK2V617F mutation is essential for diagnosing patients with classical myeloproliferative neoplasms (MPNs. However, detection of the low-frequency JAK2V617F mutation is a challenging task due to the necessity of discriminating between true-positive and false-positive results. Here, we have developed a highly sensitive and accurate assay for the detection of JAK2V617F and named it melting curve analysis after T allele enrichment (MelcaTle. MelcaTle comprises three steps: 1 two cycles of JAK2V617F allele enrichment by PCR amplification followed by BsaXI digestion, 2 selective amplification of the JAK2V617F allele in the presence of a bridged nucleic acid (BNA probe, and 3 a melting curve assay using a BODIPY-FL-labeled oligonucleotide. Using this assay, we successfully detected nearly a single copy of the JAK2V617F allele, without false-positive signals, using 10 ng of genomic DNA standard. Furthermore, MelcaTle showed no positive signals in 90 assays screening healthy individuals for JAK2V617F. When applying MelcaTle to 27 patients who were initially classified as JAK2V617F-positive on the basis of allele-specific PCR analysis and were thus suspected as having MPNs, we found that two of the patients were actually JAK2V617F-negative. A more careful clinical data analysis revealed that these two patients had developed transient erythrocytosis of unknown etiology but not polycythemia vera, a subtype of MPNs. These findings indicate that the newly developed MelcaTle assay should markedly improve the diagnosis of JAK2V617F-positive MPNs.

  14. Acquired partial lipodystrophy and C3 glomerulopathy: Dysregulation of the complement system as a common mechanism

    Directory of Open Access Journals (Sweden)

    Fernando Corvillo

    2018-05-01

    Full Text Available The activation of the alternative pathway of the complement is involved in the development of several renal diseases, such as atypical haemolytic uraemic syndrome and C3 glomerulopathy. In C3 glomerulopathy, a high percentage of patients have circulating levels of the autoantibody called C3NeF, which causes systemic dysregulation of the complement system. In some cases, the presence of this antibody has been related with abnormalities of adipose tissue, causing acquired partial lipodystrophy (Barraquer–Simons syndrome. Acquired partial lipodystrophy is an extremely rare disorder affecting the distribution of subcutaneous adipose tissue and that mainly onsets during childhood. These patients, in addition to possibly presenting with all the metabolic disorders associated with the adipose tissue defect, present with C3 hypocomplementemia and C3NeF and 25% have developed C3 glomerulopathy. Although it has been known for some time how the dysregulation of the complement system affects the kidneys, it remains unknown how it exactly affects adipose tissue; nevertheless, the relationship is quite clear. In this paper, we describe the connection between the complement system with the biology of the adipose tissue and its pathogenesis reflected from acquired partial lipodystrophy. Resumen: La activación de la vía alternativa del complemento interviene en el desarrollo de varias enfermedades renales, como el síndrome hemolítico urémico atípico o la glomerulopatía C3. En esta última enfermedad un elevado porcentaje de los pacientes presentan niveles circulantes de un autoanticuerpo denominado C3NeF, causante de la desregulación del complemento a nivel sistémico. En ciertos casos, la presencia de este anticuerpo se asocia con alteraciones en el tejido adiposo, causando lipodistrofia parcial adquirida (síndrome de Barraquer-Simons, una enfermedad ultra-rara que afecta a la distribución del tejido adiposo subcutáneo y que comienza principalmente

  15. MPL W515L/K Mutations in Chronic Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Timur Selçuk Akpınar

    2013-03-01

    Full Text Available OBJECTIVE: The MPL gene encodes the thrombopoietin receptor. Recently MPL mutations (MPL W515L or MPL W515K were described in patients with essential thrombocythemia (ET and primary (idiopathic myelofibrosis (PMF. The prevalence and the clinical importance of these mutations are not clear. In the present study, we aimed to investigate the frequency and clinical significance of MPL W515L/K mutations in our patients with ET and PMF. METHODS: A total of 77 patients (66 were diagnosed with ET and 11 with PMF and 42 healthy controls were included in the study. Using peripheral blood samples, the presence of MPL W515L/K mutations and JAK-2 V617F mutation were analyzed by real-time polymerase chain reaction. RESULTS: In our study, MPL W515L/K or JAK-2 V617F mutations were not observed in healthy controls. JAK-2 V617F mutation was present in 35 patients, of whom 29 had ET (43.9%, 29/66 and 6 had PMF (54.5%, 6/11. In the patient group, MPL W515L/K mutations were found in only 2 PMF cases, and these cases were negative for JAK-2 V617F mutation. The prevalence of MPL W515L/K mutations in the patient group was 2.6%, and the prevalence of MPL W515L/K mutations among the cases negative for the JAK-2 V617F mutation was found to be 4.8%. The 2 cases with MPL W515L/K mutations had long follow-up times (124 months and 71 months, respectively, had no thrombotic or hemorrhagic complications, and had no additional cytogenetic anomalies. CONCLUSION: MPL W515L/K mutations may be helpful for identifying clonal disease in MPN patients with no established Ph chromosome or JAK-2 V617F mutation.

  16. Risk of venous thromboembolism and myocardial infarction associated with factor V Leiden and prothrombin mutations and blood type

    DEFF Research Database (Denmark)

    Sode, Birgitte F; Allin, Kristine H; Dahl, Morten

    2013-01-01

    ABO blood type locus has been reported to be an important genetic determinant of venous and arterial thrombosis in genome-wide association studies. We tested the hypothesis that ABO blood type alone and in combination with mutations in factor V Leiden R506Q and prothrombin G20210A is associated...

  17. Constitutional SAMD9L mutations cause familial myelodysplastic syndrome and transient monosomy 7.

    Science.gov (United States)

    Pastor, Victor B; Sahoo, Sushree S; Boklan, Jessica; Schwabe, Georg C; Saribeyoglu, Ebru; Strahm, Brigitte; Lebrecht, Dirk; Voss, Matthias; Bryceson, Yenan T; Erlacher, Miriam; Ehninger, Gerhard; Niewisch, Marena; Schlegelberger, Brigitte; Baumann, Irith; Achermann, John C; Shimamura, Akiko; Hochrein, Jochen; Tedgård, Ulf; Nilsson, Lars; Hasle, Henrik; Boerries, Melanie; Busch, Hauke; Niemeyer, Charlotte M; Wlodarski, Marcin W

    2018-03-01

    Familial myelodysplastic syndromes arise from haploinsufficiency of genes involved in hematopoiesis and are primarily associated with early-onset disease. Here we describe a familial syndrome in seven patients from four unrelated pedigrees presenting with myelodysplastic syndrome and loss of chromosome 7/7q. Their median age at diagnosis was 2.1 years (range, 1-42). All patients presented with thrombocytopenia with or without additional cytopenias and a hypocellular marrow without an increase of blasts. Genomic studies identified constitutional mutations (p.H880Q, p.R986H, p.R986C and p.V1512M) in the SAMD9L gene on 7q21, with decreased allele frequency in hematopoiesis. The non-random loss of mutated SAMD9L alleles was attained via monosomy 7, deletion 7q, UPD7q, or acquired truncating SAMD9L variants p.R1188X and p.S1317RfsX21. Incomplete penetrance was noted in 30% (3/10) of mutation carriers. Long-term observation revealed divergent outcomes with either progression to leukemia and/or accumulation of driver mutations (n=2), persistent monosomy 7 (n=4), and transient monosomy 7 followed by spontaneous recovery with SAMD9L -wildtype UPD7q (n=2). Dysmorphic features or neurological symptoms were absent in our patients, pointing to the notion that myelodysplasia with monosomy 7 can be a sole manifestation of SAMD9L disease. Collectively, our results define a new subtype of familial myelodysplastic syndrome and provide an explanation for the phenomenon of transient monosomy 7. Registered at: www.clinicaltrials.gov; #NCT00047268 . Copyright© 2018 Ferrata Storti Foundation.

  18. Benefit From Procarbazine, Lomustine, and Vincristine in Oligodendroglial Tumors Is Associated With Mutation of IDH

    Science.gov (United States)

    Cairncross, J. Gregory; Wang, Meihua; Jenkins, Robert B.; Shaw, Edward G.; Giannini, Caterina; Brachman, David G.; Buckner, Jan C.; Fink, Karen L.; Souhami, Luis; Laperriere, Normand J.; Huse, Jason T.; Mehta, Minesh P.; Curran, Walter J.

    2014-01-01

    Purpose Patients with 1p/19q codeleted anaplastic oligodendroglial tumors who participated in RTOG (Radiation Therapy Oncology Group) 9402 lived much longer after chemoradiotherapy (CRT) than radiation therapy (RT) alone. However, some patients with noncodeleted tumors also benefited from CRT; survival curves separated after the median had been reached, and significantly more patients lived ≥ 10 years after CRT than RT. Thus, 1p/19q status may not identify all responders to CRT. Patients and Methods Using trial data, we inquired whether an IDH mutation or germ-line polymorphism associated with IDH-mutant gliomas identified the patients in RTOG 9402 who benefited from CRT. Results IDH status was evaluable in 210 of 291 patients; 156 (74%) had mutations. rs55705857 was evaluable in 245 patients; 76 (31%) carried the G risk allele. Both were associated with longer progression-free survival after CRT, and mutant IDH was associated with longer overall survival (9.4 v 5.7 years; hazard ratio [HR], 0.59; 95% CI, 0.40 to 0.86; P = .006). For those with wild-type tumors, CRT did not prolong median survival (1.3 v 1.8 years; HR, 1.14; 95% CI, 0.63 to 2.04; P = .67) or 10-year survival rate (CRT, 6% v RT, 4%). Patients with codeleted mutated tumors (14.7 v 6.8 years; HR, 0.49; 95% CI, 0.28 to 0.85; P = .01) and noncodeleted mutated tumors (5.5 v 3.3 years; HR, 0.56; 95% CI, 0.32 to 0.99; P < .05) lived longer after CRT than RT. Conclusion IDH mutational status identified patients with oligodendroglial tumors who did (and did not) benefit from alkylating-agent chemotherapy with RT. Although patients with codeleted tumors lived longest, patients with noncodeleted IDH-mutated tumors also lived longer after CRT. PMID:24516018

  19. Ultraviolet-x-ray interaction: mutation and transformation

    International Nuclear Information System (INIS)

    Han, A.; Elkind, M.M.; Suzuki, F.; Dainko, J.L.; Buess, E.

    1981-01-01

    The overall long-range objectives of the proposed research are to: (1) determine whether ionizing and nonionizing radiations interact in the induction of mutation and neoplastic transformation; (2) identify the nature of the interaction; (3) establish the possible relationship between the repair processes and the expression of interactive damage related to mutation and neoplastic transformation. Principal methods were used to assess survival, mutation, and neoplastic transformation of mammalian cells in culture. Cells were exposed to the following radiations: 50-kV x-rays; light from a germicidal lamp, uv-C (254 nm); light from unfiltered sun lamps, uv-B (290 to 345 nm); and light from sun lamps filtered by polystyrene dish covers

  20. Clinical significance of BRAF non-V600E mutations on the therapeutic effects of anti-EGFR monoclonal antibody treatment in patients with pretreated metastatic colorectal cancer: the Biomarker Research for anti-EGFR monoclonal Antibodies by Comprehensive Cancer genomics (BREAC) study.

    Science.gov (United States)

    Shinozaki, Eiji; Yoshino, Takayuki; Yamazaki, Kentaro; Muro, Kei; Yamaguchi, Kensei; Nishina, Tomohiro; Yuki, Satoshi; Shitara, Kohei; Bando, Hideaki; Mimaki, Sachiyo; Nakai, Chikako; Matsushima, Koutatsu; Suzuki, Yutaka; Akagi, Kiwamu; Yamanaka, Takeharu; Nomura, Shogo; Fujii, Satoshi; Esumi, Hiroyasu; Sugiyama, Masaya; Nishida, Nao; Mizokami, Masashi; Koh, Yasuhiro; Abe, Yukiko; Ohtsu, Atsushi; Tsuchihara, Katsuya

    2017-11-07

    Patients with BRAF V600E -mutated metastatic colorectal cancer (mCRC) have a poorer prognosis as well as resistance to anti-EGFR antibodies. However, it is unclear whether BRAF mutations other than BRAF V600E (BRAF non-V600E mutations) contribute to anti-EGFR antibody resistance. This study was composed of exploratory and inference cohorts. Candidate biomarkers identified by whole exome sequencing from super-responders and nonresponders in the exploratory cohort were validated by targeted resequencing for patients who received anti-EGFR antibody in the inference cohort. In the exploratory cohort, 31 candidate biomarkers, including KRAS/NRAS/BRAF mutations, were identified. Targeted resequencing of 150 patients in the inference cohort revealed 40 patients with RAS (26.7%), 9 patients with BRAF V600E (6.0%), and 7 patients with BRAF non-V600E mutations (4.7%), respectively. The response rates in RAS, BRAF V600E , and BRAF non-V600E were lower than those in RAS/BRAF wild-type (2.5%, 0%, and 0% vs 31.9%). The median PFS in BRAF non-V600E mutations was 2.4 months, similar to that in RAS or BRAF V600E mutations (2.1 and 1.6 months) but significantly worse than that in wild-type RAS/BRAF (5.9 months). Although BRAF non-V600E mutations identified were a rare and unestablished molecular subtype, certain BRAF non-V600E mutations might contribute to a lesser benefit of anti-EGFR monoclonal antibody treatment.

  1. [Mutation analysis of seven patients with Waardenburg syndrome].

    Science.gov (United States)

    Hao, Ziqi; Zhou, Yongan; Li, Pengli; Zhang, Quanbin; Li, Jiao; Wang, Pengfei; Li, Xiangshao; Feng, Yong

    2016-06-01

    To perform genetic analysis for 7 patients with Waardenburg syndrome. Potential mutation of MITF, PAX3, SOX10 and SNAI2 genes was screened by polymerase chain reaction and direct sequencing. Functions of non-synonymous polymorphisms were predicted with PolyPhen2 software. Seven mutations, including c.649-651delAGA (p.R217del), c.72delG (p.G24fs), c.185T>C (p.M62T), c.118C>T (p.Q40X), c.422T>C (p.L141P), c.640C>T (p.R214X) and c.28G>T(p.G43V), were detected in the patients. Among these, four mutations of the PAX3 gene (c.72delG, c.185T>C, c.118C>T and c.128G>T) and one SOX10 gene mutation (c.422T>C) were not reported previously. Three non-synonymous SNPs (c.185T>C, c.128G>T and c.422T>C) were predicted as harmful. Genetic mutations have been detected in all patients with Waardenburg syndrome.

  2. Mutations in the HFE, TFR2, and SLC40A1 genes in patients with hemochromatosis.

    Science.gov (United States)

    Del-Castillo-Rueda, Alejandro; Moreno-Carralero, María-Isabel; Cuadrado-Grande, Nuria; Alvarez-Sala-Walther, Luis-Antonio; Enríquez-de-Salamanca, Rafael; Méndez, Manuel; Morán-Jiménez, María-Josefa

    2012-10-15

    Hereditary hemochromatosis causes iron overload and is associated with a variety of genetic and phenotypic conditions. Early diagnosis is important so that effective treatment can be administered and the risk of tissue damage avoided. Most patients are homozygous for the c.845G>A (p.C282Y) mutation in the HFE gene; however, rare forms of genetic iron overload must be diagnosed using a specific genetic analysis. We studied the genotype of 5 patients who had hyperferritinemia and an iron overload phenotype, but not classic mutations in the HFE gene. Two patients were undergoing phlebotomy and had no iron overload, 1 with metabolic syndrome and no phlebotomy had mild iron overload, and 2 patients had severe iron overload despite phlebotomy. The patients' first-degree relatives also underwent the analysis. We found 5 not previously published mutations: c.-408_-406delCAA in HFE, c.1118G>A (p.G373D), c.1473G>A (p.E491E) and c.2085G>C (p.S695S) in TFR2; and c.-428_-427GG>TT in SLC40A1. Moreover, we found 3 previously published mutations: c.221C>T (p.R71X) in HFE; c.1127C>A (p.A376D) in TFR2; and c.539T>C (p.I180T) in SLC40A1. Four patients were double heterozygous or compound heterozygous for the mutations mentioned above, and the patient with metabolic syndrome was heterozygous for a mutation in the TFR2 gene. Our findings show that hereditary hemochromatosis is clinically and genetically heterogeneous and that acquired factors may modify or determine the phenotype. Copyright © 2012. Published by Elsevier B.V.

  3. New Fks hot spot for acquired echinocandin resistance in Saccharomyces cerevisiae and its contribution to intrinsic resistance of Scedosporium species.

    Science.gov (United States)

    Johnson, Michael E; Katiyar, Santosh K; Edlind, Thomas D

    2011-08-01

    Echinocandins represent a new antifungal group with potent activity against Candida species. These lipopeptides inhibit the synthesis of β-1,3-glucan, the major cell wall polysaccharide. Acquired resistance or reduced echinocandin susceptibility (RES) is rare and associated with mutations in two "hot spot" regions of Fks1 or Fks2, the probable β-1,3-glucan synthases. In contrast, many fungi demonstrate intrinsic RES for reasons that remain unclear. We are using Saccharomyces cerevisiae to understand the basis for RES by modeling echinocandin-Fks interaction. Previously characterized mutations confer cross-RES; we screened for mutations conferring differential RES, implying direct interaction of that Fks residue with a variable echinocandin side chain. One mutant (in an fks1Δ background) exhibited ≥16-fold micafungin and anidulafungin versus caspofungin RES. Sequencing identified a novel Fks2 mutation, W714L/Y715N. Equivalent W695L/Y696N and related W695L/F/C mutations in Fks1 generated by site-directed mutagenesis and the isolation of a W695L-equivalent mutation in Candida glabrata confirmed the role of the new "hot spot 3" in RES. Further mutagenesis expanded hot spot 3 to Fks1 residues 690 to 700, yielding phenotypes ranging from cross-RES to differential hypersusceptibility. Fks1 sequences from intrinsically RES Scedosporium species revealed W695F-equivalent substitutions; Fks1 hybrids expressing Scedosporium prolificans hot spot 3 confirmed that this substitution imparts RES.

  4. New Fks Hot Spot for Acquired Echinocandin Resistance in Saccharomyces cerevisiae and Its Contribution to Intrinsic Resistance of Scedosporium Species▿

    Science.gov (United States)

    Johnson, Michael E.; Katiyar, Santosh K.; Edlind, Thomas D.

    2011-01-01

    Echinocandins represent a new antifungal group with potent activity against Candida species. These lipopeptides inhibit the synthesis of β-1,3-glucan, the major cell wall polysaccharide. Acquired resistance or reduced echinocandin susceptibility (RES) is rare and associated with mutations in two “hot spot” regions of Fks1 or Fks2, the probable β-1,3-glucan synthases. In contrast, many fungi demonstrate intrinsic RES for reasons that remain unclear. We are using Saccharomyces cerevisiae to understand the basis for RES by modeling echinocandin-Fks interaction. Previously characterized mutations confer cross-RES; we screened for mutations conferring differential RES, implying direct interaction of that Fks residue with a variable echinocandin side chain. One mutant (in an fks1Δ background) exhibited ≥16-fold micafungin and anidulafungin versus caspofungin RES. Sequencing identified a novel Fks2 mutation, W714L/Y715N. Equivalent W695L/Y696N and related W695L/F/C mutations in Fks1 generated by site-directed mutagenesis and the isolation of a W695L-equivalent mutation in Candida glabrata confirmed the role of the new “hot spot 3” in RES. Further mutagenesis expanded hot spot 3 to Fks1 residues 690 to 700, yielding phenotypes ranging from cross-RES to differential hypersusceptibility. Fks1 sequences from intrinsically RES Scedosporium species revealed W695F-equivalent substitutions; Fks1 hybrids expressing Scedosporium prolificans hot spot 3 confirmed that this substitution imparts RES. PMID:21576441

  5. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients.

    Science.gov (United States)

    Pardanani, Animesh D; Levine, Ross L; Lasho, Terra; Pikman, Yana; Mesa, Ruben A; Wadleigh, Martha; Steensma, David P; Elliott, Michelle A; Wolanskyj, Alexandra P; Hogan, William J; McClure, Rebecca F; Litzow, Mark R; Gilliland, D Gary; Tefferi, Ayalew

    2006-11-15

    Recently, a gain-of-function MPL mutation, MPLW515L, was described in patients with JAK2V617F-negative myelofibrosis with myeloid metaplasia (MMM). To gain more information on mutational frequency, disease specificity, and clinical correlates, genomic DNA from 1182 patients with myeloproliferative and other myeloid disorders and 64 healthy controls was screened for MPL515 mutations, regardless of JAK2V617F mutational status: 290 with MMM, 242 with polycythemia vera, 318 with essential thrombocythemia (ET), 88 with myelodysplastic syndrome, 118 with chronic myelomonocytic leukemia, and 126 with acute myeloid leukemia (AML). MPL515 mutations, either MPLW515L (n = 17) or a previously undescribed MPLW515K (n = 5), were detected in 20 patients. The diagnosis of patients with mutant MPL alleles at the time of molecular testing was de novo MMM in 12 patients, ET in 4, post-ET MMM in 1, and MMM in blast crisis in 3. Six patients carried the MPLW515L and JAK2V617F alleles concurrently. We conclude that MPLW515L or MPLW515K mutations are present in patients with MMM or ET at a frequency of approximately 5% and 1%, respectively, but are not observed in patients with polycythemia vera (PV) or other myeloid disorders. Furthermore, MPL mutations may occur concurrently with the JAK2V617F mutation, suggesting that these alleles may have functional complementation in myeloproliferative disease.

  6. ALDH1A3 mutations cause recessive anophthalmia and microphthalmia.

    Science.gov (United States)

    Fares-Taie, Lucas; Gerber, Sylvie; Chassaing, Nicolas; Clayton-Smith, Jill; Hanein, Sylvain; Silva, Eduardo; Serey, Margaux; Serre, Valérie; Gérard, Xavier; Baumann, Clarisse; Plessis, Ghislaine; Demeer, Bénédicte; Brétillon, Lionel; Bole, Christine; Nitschke, Patrick; Munnich, Arnold; Lyonnet, Stanislas; Calvas, Patrick; Kaplan, Josseline; Ragge, Nicola; Rozet, Jean-Michel

    2013-02-07

    Anophthalmia and microphthalmia (A/M) are early-eye-development anomalies resulting in absent or small ocular globes, respectively. A/M anomalies occur in syndromic or nonsyndromic forms. They are genetically heterogeneous, some mutations in some genes being responsible for both anophthalmia and microphthalmia. Using a combination of homozygosity mapping, exome sequencing, and Sanger sequencing, we identified homozygosity for one splice-site and two missense mutations in the gene encoding the A3 isoform of the aldehyde dehydrogenase 1 (ALDH1A3) in three consanguineous families segregating A/M with occasional orbital cystic, neurological, and cardiac anomalies. ALDH1A3 is a key enzyme in the formation of a retinoic acid gradient along the dorso-ventral axis during early eye development. Transitory expression of mutant ALDH1A3 open reading frames showed that both missense mutations reduce the accumulation of the enzyme, potentially leading to altered retinoic acid synthesis. Although the role of retinoic acid signaling in eye development is well established, our findings provide genetic evidence of a direct link between retinoic-acid-synthesis dysfunction and early-eye-development anomalies in humans. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. [Rapid detection of hot spot mutations of FGFR3 gene with PCR-high resolution melting assay].

    Science.gov (United States)

    Li, Shan; Wang, Han; Su, Hua; Gao, Jinsong; Zhao, Xiuli

    2017-08-10

    To identify the causative mutations in five individuals affected with dyschondroplasia and develop an efficient procedure for detecting hot spot mutations of the FGFR3 gene. Genomic DNA was extracted from peripheral blood samples with a standard phenol/chloroform method. PCR-Sanger sequencing was used to analyze the causative mutations in the five probands. PCR-high resolution melting (HRM) was developed to detect the identified mutations. A c.1138G>A mutation in exon 8 was found in 4 probands, while a c.1620C>G mutation was found in exon 11 of proband 5 whom had a mild phenotype. All patients were successfully distinguished from healthy controls with the PCR-HRM method. The results of HRM analysis were highly consistent with that of Sanger sequencing. The Gly380Arg and Asn540Lys are hot spot mutations of the FGFR3 gene among patients with ACH/HCH. PCR-HRM analysis is more efficient for detecting hot spot mutations of the FGFR3 gene.

  8. A common FGFR3 gene mutation is present in achondroplasia but not in hypochondroplasia

    Energy Technology Data Exchange (ETDEWEB)

    Stoilov, I.; Kilpatrick, M.W.; Tsipouras, P. [Univ. of Connecticut Health Center, Farmington, CT (United States)

    1995-01-02

    Achondroplasia is the most common type of genetic dwarfism. It is characterized by disproportionate short stature and other skeletal anomalies resulting from a defect in the maturation of the chondrocytes in the growth plate of the cartilage. Recent studies mapped the achondroplasia gene on chromosome region 4p16.3 and identified a common mutation in the gene encoding the fibroblast growth factor receptor 3 (FGFR3). In an analysis of 19 achondroplasia families from a variety of ethnic backgrounds we confirmed the presence of the G380R mutation in 21 of 23 achondroplasia chromosomes studied. In contrast, the G380R mutation was not found in any of the 8 hypochondroplasia chromosomes studied. Futhermore, linkage studies in a 3-generation family with hypochondroplasia show discordant segregation with markers in the 4p16.3 region suggesting that at least some cases of hypochondroplasia are caused by mutations in a gene other than FGFR3. 27 refs., 2 figs.

  9. Germ-line mutations at a mouse ESTR (Pc-3) locus and human microsatellite loci

    International Nuclear Information System (INIS)

    Ryo, Haruko; Nakajima, Hiroo; Nomura, Taisei

    2006-01-01

    We examined the use of the mouse Pc-3 ESTR (expanded simple tandem repeat) locus and 72 human microsatellite loci as potentially sensitive biomarkers for mutagenic exposures to germ cells in mice and humans respectively. In the mouse work, we treated male mice with TCDD (2, 3, 7, 8-tetrachlo-rodibenzo-p-dioxin; a chemical known to induce congenital anomalies in humans and mice) and, analysed the F 1 fetuses for Pc-3 mutations. Although the incidence of anomalies was higher in the TCDD group, there were no induced mutations. However, respiratory distress syndrome (RDS) was observed in 3 of 7 fetuses born to male mice which were treated with TCDD and which showed abnormal length of Pc-3 allele. In the human studies, the children of Chernobyl liquidators were examined for mutations at a total of 72 (31 autosomal, 1 X-linked and 40 Y-linked) microsatellite loci. This study was prompted by earlier findings of increases in microsatellite mutations in barn swallows and wheat in the highly contaminated areas after the Chernobyl accident. We examined 64 liquidator families (70 children) and 66 control families (70 children). However, no increases in mutation rates were found. The estimated mean dose to the liquidators was about 39 mSv and this might be one possible reason why no increases of mutations could be found. (author)

  10. Reassortment and mutations associated with emergence and spread of oseltamivir-resistant seasonal influenza A/H1N1 viruses in 2005-2009.

    Directory of Open Access Journals (Sweden)

    Ji-Rong Yang

    Full Text Available A dramatic increase in the frequency of the H275Y mutation in the neuraminidase (NA, conferring resistance to oseltamivir, has been detected in human seasonal influenza A/H1N1 viruses since the influenza season of 2007-2008. The resistant viruses emerged in the ratio of 14.3% and quickly reached 100% in Taiwan from September to December 2008. To explore the mechanisms responsible for emergence and spread of the resistant viruses, we analyzed the complete genome sequences of 25 viruses collected during 2005-2009 in Taiwan, which were chosen from various clade viruses, 1, 2A, 2B-1, 2B-2, 2C-1 and 2C-2 by the classification of hemagglutinin (HA sequences. Our data revealed that the dominant variant, clade 2B-1, in the 2007-2008 influenza emerged through an intra-subtype 4+4 reassortment between clade 1 and 2 viruses. The dominant variant acquired additional substitutions, including A206T in HA, H275Y and D354G in NA, L30R and H41P in PB1-F2, and V411I and P453S in basic polymerase 2 (PB2 proteins and subsequently caused the 2008-2009 influenza epidemic in Taiwan, accompanying the widespread oseltamivir-resistant viruses. We also characterized another 3+5 reassortant virus which became double resistant to oseltamivir and amantadine. Comparison of oseltamivir-resistant influenza A/H1N1 viruses belonging to various clades in our study highlighted that both reassortment and mutations were associated with emergence and spread of these viruses and the specific mutation, H275Y, conferring to antiviral resistance, was acquired in a hitch-hiking mechanism during the viral evolutionary processes.

  11. A novel mutation of the EYA4 gene associated with post-lingual hearing loss in a proband is co-segregating with a novel PAX3 mutation in two congenitally deaf family members.

    Science.gov (United States)

    Cesca, Federica; Bettella, Elisa; Polli, Roberta; Cama, Elona; Scimemi, Pietro; Santarelli, Rosamaria; Murgia, Alessandra

    2018-01-01

    This work was aimed at establishing the molecular etiology of hearing loss in a 9-year old girl with post-lingual non-syndromic mild sensorineural hearing loss with a complex family history of clinically heterogeneous deafness. The proband's DNA was subjected to NGS analysis of a 59-targeted gene panel, with the use of the Ion Torrent PGM platform. Conventional Sanger sequencing was used for segregation analysis in all the affected relatives. The proband and all the other hearing impaired members of the family underwent a thorough clinical and audiological evaluation. A new likely pathogenic mutation in the EYA4 gene (c.1154C > T; p.Ser385Leu) was identified in the proband and in her 42-year-old father with post-lingual non-syndromic profound sensorineural hearing loss. The EYA4 mutation was also found in the proband's grandfather and uncle, both showing clinical features of Waardenburg syndrome type 1. A novel pathogenic splice-site mutation (c.321+1G > A) of the PAX3 gene was found to co-segregate with the EYA4 mutation in these two subjects. The identified novel EYA4 mutation can be considered responsible of the hearing loss observed in the proband and her father, while a dual molecular diagnosis was reached in the relatives co-segregating the EYA4 and the PAX3 mutations. In these two subjects the DFNA10 phenotype was masked by Waardenburg syndrome. The use of NGS targeted gene-panel, in combination with an extensive clinical and audiological examination led us to identify the genetic cause of the hearing loss in members of a family in which different forms of autosomal dominant deafness segregate. These results provide precise and especially important prognostic and follow-up information for the future audiologic management in the youngest affected member. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Position-specific automated processing of V3 env ultra-deep pyrosequencing data for predicting HIV-1 tropism.

    Science.gov (United States)

    Jeanne, Nicolas; Saliou, Adrien; Carcenac, Romain; Lefebvre, Caroline; Dubois, Martine; Cazabat, Michelle; Nicot, Florence; Loiseau, Claire; Raymond, Stéphanie; Izopet, Jacques; Delobel, Pierre

    2015-11-20

    HIV-1 coreceptor usage must be accurately determined before starting CCR5 antagonist-based treatment as the presence of undetected minor CXCR4-using variants can cause subsequent virological failure. Ultra-deep pyrosequencing of HIV-1 V3 env allows to detect low levels of CXCR4-using variants that current genotypic approaches miss. However, the computation of the mass of sequence data and the need to identify true minor variants while excluding artifactual sequences generated during amplification and ultra-deep pyrosequencing is rate-limiting. Arbitrary fixed cut-offs below which minor variants are discarded are currently used but the errors generated during ultra-deep pyrosequencing are sequence-dependant rather than random. We have developed an automated processing of HIV-1 V3 env ultra-deep pyrosequencing data that uses biological filters to discard artifactual or non-functional V3 sequences followed by statistical filters to determine position-specific sensitivity thresholds, rather than arbitrary fixed cut-offs. It allows to retain authentic sequences with point mutations at V3 positions of interest and discard artifactual ones with accurate sensitivity thresholds.

  13. Homozygous Inactivating Mutation in NANOS3 in Two Sisters with Primary Ovarian Insufficiency

    Directory of Open Access Journals (Sweden)

    Mariza G. Santos

    2014-01-01

    Full Text Available Despite the increasing understanding of female reproduction, the molecular diagnosis of primary ovarian insufficiency (POI is seldom obtained. The RNA-binding protein NANOS3 poses as an interesting candidate gene for POI since members of the Nanos family have an evolutionarily conserved function in germ cell development and maintenance by repressing apoptosis. We performed mutational analysis of NANOS3 in a cohort of 85 Brazilian women with familial or isolated POI, presenting with primary or secondary amenorrhea, and in ethnically-matched control women. A homozygous p.Glu120Lys mutation in NANOS3 was identified in two sisters with primary amenorrhea. The substituted amino acid is located within the second C2HC motif in the conserved zinc finger domain of NANOS3 and in silico molecular modelling suggests destabilization of protein-RNA interaction. In vitro analyses of apoptosis through flow cytometry and confocal microscopy show that NANOS3 capacity to prevent apoptosis was impaired by this mutation. The identification of an inactivating missense mutation in NANOS3 suggests a mechanism for POI involving increased primordial germ cells (PGCs apoptosis during embryonic cell migration and highlights the importance of NANOS proteins in human ovarian biology.

  14. Nonsense mutations in the PAX3 gene cause Waardenburg syndrome type I in two Chinese patients.

    Science.gov (United States)

    Yang, Shu-Zhi; Cao, Ju-Yang; Zhang, Rui-Ning; Liu, Li-Xian; Liu, Xin; Zhang, Xin; Kang, Dong-Yang; Li, Mei; Han, Dong-Yi; Yuan, Hui-Jun; Yang, Wei-Yan

    2007-01-05

    Waardenburg syndrome type I (WS1) is an autosomal dominant disorder characterized by sensorineural hearing loss, pigmental abnormalities of the eye, hair and skin, and dystopia canthorum. The gene mainly responsible for WS1 is PAX3 which is involved in melanocytic development and survival. Mutations of PAX3 have been reported in familiar or sporadic patients with WS1 in several populations of the world except Chinese. In order to explore the genetic background of Chinese WS1 patients, a mutation screening of PAX3 gene was carried out in four WS1 pedigrees. A questionnaire survey and comprehensive clinical examination were conducted in four Chinese pedigrees of WS1. Genomic DNA from each patient and their family members was extracted and exons of PAX3 were amplified by PCR. PCR fragments were ethanol-purified and sequenced in both directions on an ABI_Prism 3100 DNA sequencer with the BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sequences were obtained and aligned to the wild type sequence of PAX3 with the GeneTool program. Two nonsense PAX3 mutations have been found in the study population. One is heterozygous for a novel nonsense mutation S209X. The other is heterozygous for a previously reported mutation in European population R223X. Both mutations create stop codons leading to truncation of the PAX3 protein. This is the first demonstration of PAX3 mutations in Chinese WS1 patients and one of the few examples of an identical mutation of PAX3 occurred in different populations.

  15. Detection of genetic mutations associated with macrolide resistance of Mycoplasma pneumoniae

    Directory of Open Access Journals (Sweden)

    Chi Eun Oh

    2010-02-01

    Full Text Available Purpose : The aim of this study was to identify mutations associated with macrolide resistance in Mycoplasma pneumoniae (MP and to establish a cultural method to determine antimicrobial susceptibility. Methods : Nasopharyngeal aspirates (NPAs were collected from 62 children diagnosed with MP pneumonia by a serologic method or polymerase chain reaction. The 23S rRNA and L4 ribosomal protein genes of MP were amplified and sequenced. To identify mutations in these 2 genes, their nucleotide sequences were compared to those of the reference strain M129. MP cultivation was carried out for 32 (28 frozen and 5 refrigerated NPAs and M129 strain using Chanock’s glucose broth and agar plate in a 5% CO2 incubator at 37?#608;and examined at 2-3 day intervals for 6 weeks. Results : Among the 62 specimens, 17 had M144V mutations in ribosomal protein L4. The A2064G mutation was observed in 1 specimen; its 23S rRNA gene was successfully sequenced. Culture for MP was successful from the M129 strain and 2 of the 5 NPAs that were refrigerated for no longer than 3 days. However, MP did not grow from the 28 NPAs that were kept frozen at -80?#608;since 2003. Conclusion : We found the M144V mutation of L4 protein to be common and that of domain V of 23S rRNA gene was relatively rare among MP. Studies on the prevalence of macrolide-resistant MP and the relationship between the mutations of 23S rRNA gene and ribosomal protein L4 will aid in understanding the mechanism of macrolide resistance in MP.

  16. IFITM5 mutations and osteogenesis imperfecta.

    Science.gov (United States)

    Hanagata, Nobutaka

    2016-03-01

    Interferon-induced transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein that has been shown to be a positive regulatory factor for mineralization in vitro. However, Ifitm5 knockout mice do not exhibit serious bone abnormalities, and thus the function of IFITM5 in vivo remains unclear. Recently, a single point mutation (c.-14C>T) in the 5' untranslated region of IFITM5 was identified in patients with osteogenesis imperfecta type V (OI-V). Furthermore, a single point mutation (c.119C>T) in the coding region of IFITM5 was identified in OI patients with more severe symptoms than patients with OI-V. Although IFITM5 is not directly involved in the formation of bone in vivo, the reason why IFITM5 mutations cause OI remains a major mystery. In this review, the current state of knowledge of OI pathological mechanisms due to IFITM5 mutations will be reviewed.

  17. HER2 activating mutations are targets for colorectal cancer treatment.

    Science.gov (United States)

    Kavuri, Shyam M; Jain, Naveen; Galimi, Francesco; Cottino, Francesca; Leto, Simonetta M; Migliardi, Giorgia; Searleman, Adam C; Shen, Wei; Monsey, John; Trusolino, Livio; Jacobs, Samuel A; Bertotti, Andrea; Bose, Ron

    2015-08-01

    The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of patients with colorectal cancer. Introduction of the HER2 mutations S310F, L755S, V777L, V842I, and L866M into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutants are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors neratinib and afatinib. HER2 gene sequencing of 48 cetuximab-resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) wild-type (WT) colorectal cancer patient-derived xenografts (PDX) identified 4 PDXs with HER2 mutations. HER2-targeted therapies were tested on two PDXs. Treatment with a single HER2-targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2-targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2-mutated PDXs. HER2 activating mutations cause EGFR antibody resistance in colorectal cell lines, and PDXs with HER2 mutations show durable tumor regression when treated with dual HER2-targeted therapy. These data provide a strong preclinical rationale for clinical trials targeting HER2 activating mutations in metastatic colorectal cancer. ©2015 American Association for Cancer Research.

  18. A novel mutation of PAX3 in a Chinese family with Waardenburg syndrome.

    Science.gov (United States)

    Qin, Wei; Shu, Anli; Qian, Xueqing; Gao, Jianjun; Xing, Qinghe; Zhang, Juan; Zheng, Yonglan; Li, Xingwang; Li, Sheng; Feng, Guoyin; He, Lin

    2006-08-28

    The molecular characterization of 34 members of a Chinese family, with 22 members in four generations, affected with Waardenburg syndrome (WS1). A detailed family history and clinical data were collected. A genome-wide scan by two-point linkage analysis using more than 400 microsatellite markers in combination with haplotype analysis was performed. Mutation screening was carried out in the candidate gene by sequencing of amplified products. A maximum two-point lod score of 6.53 at theta = 0.00 was obtained with marker D2S2248. Haplotype analysis placed the WS1 locus to a 45.74 cM region between D2S117 and D2S206, in close proximity to the PAX3 gene on chromosome 2q35. Mutation screening in PAX3 identified a 701T > C mutation which converted a highly conserved Leu to Pro. This nucleotide alteration was neither seen in unaffected members of the family nor found in 50 unrelated control subjects. The present study identified a novel 701T > C mutation in PAX3. The mutation observed in this family highlights the phenotypic heterogeneity of the disorder.

  19. Experiences from treatment-predictive KRAS testing; high mutation frequency in rectal cancers from females and concurrent mutations in the same tumor

    DEFF Research Database (Denmark)

    Jönsson, Mats; Ekstrand, Anna; Edekling, Thomas

    2009-01-01

    . METHODS: We used a real-time PCR based method to determine KRAS mutations in 136 colorectal cancers with mutations identified in 53 (39%) tumors. RESULTS: KRAS mutations were significantly more often found in rectal cancer (21/38, 55%) than in colon cancer (32/98, 33%) (P = 0.02). This finding...... was explained by marked differences mutation rates in female patients who showed mutations in 33% of the colon cancers and in 67% of the rectal cancers (P = 0.01). Concurrent KRAS mutations were identified in three tumors; two colorectal cancers harbored Gly12Asp/Gly13Asp and Gly12Cys/Gly13Asp and a third tumor...... carried Gly12Cys/Gly12Asp in an adenomatous component and additionally acquired Gly12Val in the invasive component. CONCLUSION: The demonstration of a particularly high KRAS mutation frequency among female rectal cancer patients suggests that this subset is the least likely to respond to anti...

  20. The spectrum of HNF1A gene mutations in Greek patients with MODY3: relative frequency and identification of seven novel germline mutations.

    Science.gov (United States)

    Tatsi, Christina; Kanaka-Gantenbein, Christina; Vazeou-Gerassimidi, Adriani; Chrysis, Dionysios; Delis, Dimitrios; Tentolouris, Nikolaos; Dacou-Voutetakis, Catherine; Chrousos, George P; Sertedaki, Amalia

    2013-11-01

    Maturity-Onset Diabetes of the Young (MODY) is the most common type of monogenic diabetes accounting for 1-2% of the population with diabetes. The relative incidence of HNF1A-MODY (MODY3) is high in European countries; however, data are not available for the Greek population. The aims of this study were to determine the relative frequency of MODY3 in Greece, the type of the mutations observed, and their relation to the phenotype of the patients. Three hundred ninety-five patients were referred to our center because of suspected MODY during a period of 15 yr. The use of Denaturing Gradient Gel Electrophoresis of polymerase chain reaction amplified DNA revealed 72 patients carrying Glucokinase gene mutations (MODY2) and 8 patients carrying HNF1A gene mutations (MODY3). After using strict criteria, 54 patients were selected to be further evaluated by direct sequencing or by multiplex ligation probe amplification (MLPA) for the presence of HNF1A gene mutations. In 16 unrelated patients and 13 of their relatives, 15 mutations were identified in the HNF1A gene. Eight of these mutations were previously reported, whereas seven were novel. Clinical features, such as age of diabetes at diagnosis or severity of hyperglycemia, were not related to the mutation type or location. In our cohort of patients fulfilling strict clinical criteria for MODY, 12% carried an HNF1A gene mutation, suggesting that defects of this gene are responsible for a significant proportion of monogenic diabetes in the Greek population. No clear phenotype-genotype correlations were identified. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. The Versatile Mutational Resistome of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Carla López-Causapé

    2018-04-01

    Full Text Available One of the most striking features of Pseudomonas aeruginosa is its outstanding capacity for developing antimicrobial resistance to nearly all available antipseudomonal agents through the selection of chromosomal mutations, leading to the failure of the treatment of severe hospital-acquired or chronic infections. Recent whole-genome sequencing (WGS data obtained from in vitro assays on the evolution of antibiotic resistance, in vivo monitoring of antimicrobial resistance development, analysis of sequential cystic fibrosis isolates, and characterization of widespread epidemic high-risk clones have provided new insights into the evolutionary dynamics and mechanisms of P. aeruginosa antibiotic resistance, thus motivating this review. Indeed, the analysis of the WGS mutational resistome has proven to be useful for understanding the evolutionary dynamics of classical resistance pathways and to describe new mechanisms for the majority of antipseudomonal classes, including β-lactams, aminoglycosides, fluoroquinolones, or polymixins. Beyond addressing a relevant scientific question, the analysis of the P. aeruginosa mutational resistome is expected to be useful, together with the analysis of the horizontally-acquired resistance determinants, for establishing the antibiotic resistance genotype, which should correlate with the antibiotic resistance phenotype and as such, it should be useful for the design of therapeutic strategies and for monitoring the efficacy of administered antibiotic treatments. However, further experimental research and new bioinformatics tools are still needed to overcome the interpretation limitations imposed by the complex interactions (including those leading to collateral resistance or susceptibility between the 100s of genes involved in the mutational resistome, as well as the frequent difficulties for differentiating relevant mutations from simple natural polymorphisms.

  2. The Versatile Mutational Resistome of Pseudomonas aeruginosa.

    Science.gov (United States)

    López-Causapé, Carla; Cabot, Gabriel; Del Barrio-Tofiño, Ester; Oliver, Antonio

    2018-01-01

    One of the most striking features of Pseudomonas aeruginosa is its outstanding capacity for developing antimicrobial resistance to nearly all available antipseudomonal agents through the selection of chromosomal mutations, leading to the failure of the treatment of severe hospital-acquired or chronic infections. Recent whole-genome sequencing (WGS) data obtained from in vitro assays on the evolution of antibiotic resistance, in vivo monitoring of antimicrobial resistance development, analysis of sequential cystic fibrosis isolates, and characterization of widespread epidemic high-risk clones have provided new insights into the evolutionary dynamics and mechanisms of P. aeruginosa antibiotic resistance, thus motivating this review. Indeed, the analysis of the WGS mutational resistome has proven to be useful for understanding the evolutionary dynamics of classical resistance pathways and to describe new mechanisms for the majority of antipseudomonal classes, including β-lactams, aminoglycosides, fluoroquinolones, or polymixins. Beyond addressing a relevant scientific question, the analysis of the P. aeruginosa mutational resistome is expected to be useful, together with the analysis of the horizontally-acquired resistance determinants, for establishing the antibiotic resistance genotype, which should correlate with the antibiotic resistance phenotype and as such, it should be useful for the design of therapeutic strategies and for monitoring the efficacy of administered antibiotic treatments. However, further experimental research and new bioinformatics tools are still needed to overcome the interpretation limitations imposed by the complex interactions (including those leading to collateral resistance or susceptibility) between the 100s of genes involved in the mutational resistome, as well as the frequent difficulties for differentiating relevant mutations from simple natural polymorphisms.

  3. R54C Mutation of NOTCH3 Gene in the First Rungus Family with CADASIL.

    Directory of Open Access Journals (Sweden)

    Kheng-Seang Lim

    Full Text Available Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL is a rare hereditary stroke caused by mutations in NOTCH3 gene. We report the first case of CADASIL in an indigenous Rungus (Kadazan-Dusun family in Kudat, Sabah, Malaysia confirmed by a R54C (c.160C>T, p.Arg54Cys mutation in the NOTCH3. This mutation was previously reported in a Caucasian and two Korean cases of CADASIL. We recruited two generations of the affected Rungus family (n = 9 and found a missense mutation (c.160C>T in exon 2 of NOTCH3 in three siblings. Two of the three siblings had severe white matter abnormalities in their brain MRI (Scheltens score 33 and 50 respectively, one of whom had a young stroke at the age of 38. The remaining sibling, however, did not show any clinical features of CADASIL and had only minimal changes in her brain MRI (Scheltens score 17. This further emphasized the phenotype variability among family members with the same mutation in CADASIL. This is the first reported family with CADASIL in Rungus subtribe of Kadazan-Dusun ethnicity with a known mutation at exon 2 of NOTCH3. The penetrance of this mutation was not complete during the course of this study.

  4. ALS Associated Mutations in Matrin 3 Alter Protein-Protein Interactions and Impede mRNA Nuclear Export.

    Science.gov (United States)

    Boehringer, Ashley; Garcia-Mansfield, Krystine; Singh, Gurkaran; Bakkar, Nadine; Pirrotte, Patrick; Bowser, Robert

    2017-11-06

    Mutations in Matrin 3 have recently been linked to ALS, though the mechanism that induces disease in these patients is unknown. To define the protein interactome of wild-type and ALS-linked MATR3 mutations, we performed immunoprecipitation followed by mass spectrometry using NSC-34 cells expressing human wild-type or mutant Matrin 3. Gene ontology analysis identified a novel role for Matrin 3 in mRNA transport centered on proteins in the TRanscription and EXport (TREX) complex, known to function in mRNA biogenesis and nuclear export. ALS-linked mutations in Matrin 3 led to its re-distribution within the nucleus, decreased co-localization with endogenous Matrin 3 and increased co-localization with specific TREX components. Expression of disease-causing Matrin 3 mutations led to nuclear mRNA export defects of both global mRNA and more specifically the mRNA of TDP-43 and FUS. Our findings identify a potential pathogenic mechanism attributable to MATR3 mutations and further link cellular transport defects to ALS.

  5. AR mutations in 28 patients with androgen insensitivity syndrome (Prader grade 0-3).

    Science.gov (United States)

    Wang, Yi; Gong, Chunxiu; Wang, Xiou; Qin, Miao

    2017-07-01

    We investigated the androgen receptor (AR) gene mutation profiles of Chinese patients exhibiting severe androgen insensitivity syndrome (AIS) phenotypes. The present study enrolled 28 patients with genetically diagnosed AIS, who presented with severe phenotypes (Prader grade 0-3). Patients and some family members were screened via amplification and sequencing of their AR exons 1-8, including the corresponding intronic flanking regions. Luteinizing (LH), follicle-stimulating (FSH), and testosterone (T) hormone levels were found to be slightly, but not significantly, higher in patients with complete androgen insensitivity syndrome (CAIS) than in patients with partial androgen insensitivity syndrome (PAIS) (P>0.05). We identified 24 different AR mutations, including 12 that were novel. Ten patients (cases 2, 3, 10, 28, 11, 12, 19, 20, 24, and 25) were found to carry five recurrent mutations (p.Y572S, p.P914S, p.S176R, p.Y782N, and p.R841H); of these, p.Y572S, p.S176R, and p.Y782N were novel. Among the mutations identified in patients with CAIS, six (66.7%) were characterized as single-nucleotide missense mutations, and six (66.7%) were found to be located in the AR ligand-binding domain (LBD). Among the mutations identified in patients with PAIS, 15 (93.8%) were found to be missense, and 11 (68.8%) were found to be located in the LBD. Patients 10 and 28 were determined to harbor the same missense mutation (p.P914S), but were diagnosed with CAIS and PAIS, respectively. Sex hormone levels were slightly, but not significantly, elevated in patients with CAIS compared to those with PAIS. Missense mutations spanning AR exons 1-8 were the predominant form of identified mutations, and these were mostly located in the AR LBD. Approximately 50% of the identified mutations were novel, and have enriched the AR gene-mutation database. Patients harboring identical mutations were in some instances found to exhibit divergent phenotypes.

  6. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms.

    Science.gov (United States)

    Milosevic Feenstra, Jelena D; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N; Cazzola, Mario; Kralovics, Robert

    2016-01-21

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed "triple negative." We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. © 2016 by The American Society of Hematology.

  7. Mutation breeding in rice in India

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, M S; Siddiq, E A; Singh, C B; Pai, R A [Indian Agricultural Research Institute, New Delhi (India)

    1970-03-01

    Mutation research was continued in rice with the following aims; (a) to enhance the frequency and spectrum of mutations in indica and japonica rice varieties; (b) to change the grain quality of the japonica variety, Tainan-3, into the indica type; (c) to improve the grain quality of the indica variety, IR-8; (d) to increase the recombination frequency in japonica-indica hybrids. Both nitrosoguanidine and 5-MeV fast neutrons gave a high mutation frequency. The japonica variety was more sensitive to all mutagens than the indica types. Chemical mutagens had no particular advantage over ionizing radiations with reference to either mutation frequency or spectrum. Mutants with indica type of grain occurred readily in Tainan-3 in all treatments. Such mutants had a larger grain length/width ratio and were more resistant to alkali digestion. Fine grain types with better cooking quality occurred in the M{sub 2} populations of IR-8. These mutants are likely to render this high-yielding variety more popular. A wide range of chlorophyll and viable mutations occurred in IR-8 and Tainan-3. Some of these, like those involving dwarfing and slow senescence, are of economic interest, besides those affecting grain quality. Recombination frequency can be influenced in japonica x indica hybrids through the irradiation of F{sub 1} sporocytes. The precise influence varies with the stage at which the plant is irradiated, the dose given and the loci involved. (author)

  8. Neutron-induced mutation experiments. Progress report, March 1, 1977--February 28, 1978

    International Nuclear Information System (INIS)

    Abrahamson, S.

    1977-11-01

    Experiments have been carried out to study the relative mutagenic effectiveness for Drosophila female germ cells of neutrons of different energies employing X-linked recessive lethal and specific locus mutation tests. The energies and doses employed to date to study X-linked lethals are 0.43 MeV (500, 1000, 1500, 1900 R (in progress)), 0.68 MeV (250, 500, 1000, 1500 R), 2 MeV (250, 500, 1000, 1500, 2000 R), 6 MeV (250, 500, 1500, 3000 R) and 15 MeV (250, 500, 1000, 1500, 3000 R). 0.43-MeV neutrons appear to have an RBE in the range 1.9 to 4.7, 0.68 MeV 2.8 to 4.3, 2 MeV (incomplete data), 6 MeV 1.7 to 3.2, and 15 MeV 1.7 to 2.2. The data for 0.43-MeV and 0.68-MeV neutrons do not yet differentiate between a linear and a quadratic dose/frequency response curve for the doses studied, but suggest a quadratic relationship. The data for 2, 6 and 15 MeV are inconclusive. The specific locus mutation data indicate the highest RBE for 0.68-MeV neutrons, followed by 2 and 6 MeV, respectively

  9. Mutated and Bacteriophage T4 Nanoparticle Arrayed F1-V Immunogens from Yersinia pestis as Next Generation Plague Vaccines

    Science.gov (United States)

    Tao, Pan; Mahalingam, Marthandan; Kirtley, Michelle L.; van Lier, Christina J.; Sha, Jian; Yeager, Linsey A.; Chopra, Ashok K.; Rao, Venigalla B.

    2013-01-01

    Pneumonic plague is a highly virulent infectious disease with 100% mortality rate, and its causative organism Yersinia pestis poses a serious threat for deliberate use as a bioterror agent. Currently, there is no FDA approved vaccine against plague. The polymeric bacterial capsular protein F1, a key component of the currently tested bivalent subunit vaccine consisting, in addition, of low calcium response V antigen, has high propensity to aggregate, thus affecting its purification and vaccine efficacy. We used two basic approaches, structure-based immunogen design and phage T4 nanoparticle delivery, to construct new plague vaccines that provided complete protection against pneumonic plague. The NH2-terminal β-strand of F1 was transplanted to the COOH-terminus and the sequence flanking the β-strand was duplicated to eliminate polymerization but to retain the T cell epitopes. The mutated F1 was fused to the V antigen, a key virulence factor that forms the tip of the type three secretion system (T3SS). The F1mut-V protein showed a dramatic switch in solubility, producing a completely soluble monomer. The F1mut-V was then arrayed on phage T4 nanoparticle via the small outer capsid protein, Soc. The F1mut-V monomer was robustly immunogenic and the T4-decorated F1mut-V without any adjuvant induced balanced TH1 and TH2 responses in mice. Inclusion of an oligomerization-deficient YscF, another component of the T3SS, showed a slight enhancement in the potency of F1-V vaccine, while deletion of the putative immunomodulatory sequence of the V antigen did not improve the vaccine efficacy. Both the soluble (purified F1mut-V mixed with alhydrogel) and T4 decorated F1mut-V (no adjuvant) provided 100% protection to mice and rats against pneumonic plague evoked by high doses of Y. pestis CO92. These novel platforms might lead to efficacious and easily manufacturable next generation plague vaccines. PMID:23853602

  10. Mutated and bacteriophage T4 nanoparticle arrayed F1-V immunogens from Yersinia pestis as next generation plague vaccines.

    Directory of Open Access Journals (Sweden)

    Pan Tao

    Full Text Available Pneumonic plague is a highly virulent infectious disease with 100% mortality rate, and its causative organism Yersinia pestis poses a serious threat for deliberate use as a bioterror agent. Currently, there is no FDA approved vaccine against plague. The polymeric bacterial capsular protein F1, a key component of the currently tested bivalent subunit vaccine consisting, in addition, of low calcium response V antigen, has high propensity to aggregate, thus affecting its purification and vaccine efficacy. We used two basic approaches, structure-based immunogen design and phage T4 nanoparticle delivery, to construct new plague vaccines that provided complete protection against pneumonic plague. The NH₂-terminal β-strand of F1 was transplanted to the COOH-terminus and the sequence flanking the β-strand was duplicated to eliminate polymerization but to retain the T cell epitopes. The mutated F1 was fused to the V antigen, a key virulence factor that forms the tip of the type three secretion system (T3SS. The F1mut-V protein showed a dramatic switch in solubility, producing a completely soluble monomer. The F1mut-V was then arrayed on phage T4 nanoparticle via the small outer capsid protein, Soc. The F1mut-V monomer was robustly immunogenic and the T4-decorated F1mut-V without any adjuvant induced balanced TH1 and TH2 responses in mice. Inclusion of an oligomerization-deficient YscF, another component of the T3SS, showed a slight enhancement in the potency of F1-V vaccine, while deletion of the putative immunomodulatory sequence of the V antigen did not improve the vaccine efficacy. Both the soluble (purified F1mut-V mixed with alhydrogel and T4 decorated F1mut-V (no adjuvant provided 100% protection to mice and rats against pneumonic plague evoked by high doses of Y. pestis CO92. These novel platforms might lead to efficacious and easily manufacturable next generation plague vaccines.

  11. Identification of a Non-Gatekeeper Hot Spot for Drug-Resistant Mutations in mTOR Kinase.

    Science.gov (United States)

    Wu, Tzung-Ju; Wang, Xiaowen; Zhang, Yanjie; Meng, Linghua; Kerrigan, John E; Burley, Stephen K; Zheng, X F Steven

    2015-04-21

    Protein kinases are therapeutic targets for human cancer. However, "gatekeeper" mutations in tyrosine kinases cause acquired clinical resistance, limiting long-term treatment benefits. mTOR is a key cancer driver and drug target. Numerous small-molecule mTOR kinase inhibitors have been developed, with some already in human clinical trials. Given our clinical experience with targeted therapeutics, acquired drug resistance in mTOR is thought likely, but not yet documented. Herein, we describe identification of a hot spot (L2185) for drug-resistant mutations, which is distinct from the gatekeeper site, and a chemical scaffold refractory to drug-resistant mutations. We also provide new insights into mTOR kinase structure and function. The hot spot mutations are potentially useful as surrogate biomarkers for acquired drug resistance in ongoing clinical trials and future treatments and for the design of the next generation of mTOR-targeted drugs. Our study provides a foundation for further research into mTOR kinase function and targeting. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Characteristics and clinical correlates of MPL 515W>L/K mutation in essential thrombocythemia.

    Science.gov (United States)

    Vannucchi, Alessandro M; Antonioli, Elisabetta; Guglielmelli, Paola; Pancrazzi, Alessandro; Guerini, Vittoria; Barosi, Giovanni; Ruggeri, Marco; Specchia, Giorgina; Lo-Coco, Francesco; Delaini, Federica; Villani, Laura; Finotto, Silvia; Ammatuna, Emanuele; Alterini, Renato; Carrai, Valentina; Capaccioli, Gloria; Di Lollo, Simonetta; Liso, Vincenzo; Rambaldi, Alessandro; Bosi, Alberto; Barbui, Tiziano

    2008-08-01

    Among 994 patients with essential thrombocythemia (ET) who were genotyped for the MPLW515L/K mutation, 30 patients carrying the mutation were identified (3.0%), 8 of whom also displayed the JAK2V671F mutation. MPLW515L/K patients presented lower hemoglobin levels and higher platelet counts than did wild type (wt) MPL; these differences were highly significant compared with MPLwt/JAK2V617F-positive patients. Reduced hemoglobin and increased platelet levels were preferentially associated with the W515L and W515K alleles, respectively. MPL mutation was a significant risk factor for microvessel disturbances, suggesting platelet hyperreactivity associated with constitutively active MPL; arterial thromboses were increased only in comparison to MPLwt/JAK2wt patients. MPLW515L/K patients presented reduced total and erythroid bone marrow cellularity, whereas the numbers of megakaryocytes, megakaryocytic clusters, and small-sized megakaryocytes were all significantly increased. These data indicate that MPLW515L/K mutations do not define a distinct phenotype in ET, although some differences depended on the JAK2V617F mutational status of the counterpart.

  13. MicroRNA genes and their target 3'-untranslated regions are infrequently somatically mutated in ovarian cancers.

    Directory of Open Access Journals (Sweden)

    Georgina L Ryland

    Full Text Available MicroRNAs are key regulators of gene expression and have been shown to have altered expression in a variety of cancer types, including epithelial ovarian cancer. MiRNA function is most often achieved through binding to the 3'-untranslated region of the target protein coding gene. Mutation screening using massively-parallel sequencing of 712 miRNA genes in 86 ovarian cancer cases identified only 5 mutated miRNA genes, each in a different case. One mutation was located in the mature miRNA, and three mutations were predicted to alter the secondary structure of the miRNA transcript. Screening of the 3'-untranslated region of 18 candidate cancer genes identified one mutation in each of AKT2, EGFR, ERRB2 and CTNNB1. The functional effect of these mutations is unclear, as expression data available for AKT2 and EGFR showed no increase in gene transcript. Mutations in miRNA genes and 3'-untranslated regions are thus uncommon in ovarian cancer.

  14. The spectrum of epilepsy and electroencephalographic abnormalities due to SHANK3 loss-of-function mutations.

    Science.gov (United States)

    Holder, J Lloyd; Quach, Michael M

    2016-10-01

    The coincidence of autism with epilepsy is 27% in those individuals with intellectual disability. 1 Individuals with loss-of-function mutations in SHANK3 have intellectual disability, autism, and variably, epilepsy. 2-5 The spectrum of seizure semiologies and electroencephalography (EEG) abnormalities has never been investigated in detail. With the recent report that SHANK3 mutations are present in approximately 2% of individuals with moderate to severe intellectual disabilities and 1% of individuals with autism, determining the spectrum of seizure semiologies and electrographic abnormalities will be critical for medical practitioners to appropriately counsel the families of patients with SHANK3 mutations. A retrospective chart review was performed of all individuals treated at the Blue Bird Circle Clinic for Child Neurology who have been identified as having either a chromosome 22q13 microdeletion encompassing SHANK3 or a loss-of-function mutation in SHANK3 identified through whole-exome sequencing. For each subject, the presence or absence of seizures, seizure semiology, frequency, age of onset, and efficacy of therapy were determined. Electroencephalography studies were reviewed by a board certified neurophysiologist. Neuroimaging was reviewed by both a board certified pediatric neuroradiologist and child neurologist. There is a wide spectrum of seizure semiologies, frequencies, and severity in individuals with SHANK3 mutations. There are no specific EEG abnormalities found in our cohort, and EEG abnormalities were present in individuals diagnosed with epilepsy and those without history of a clinical seizure. All individuals with a mutation in SHANK3 should be evaluated for epilepsy due to the high prevalence of seizures in this population. The most common semiology is atypical absence seizure, which can be challenging to identify due to comorbid intellectual disability in individuals with SHANK3 mutations; however, no consistent seizure semiology, neuroimaging

  15. Comparative genomics of community-acquired ST59 methicillin-resistant Staphylococcus aureus in Taiwan: novel mobile resistance structures with IS1216V.

    Directory of Open Access Journals (Sweden)

    Wei-Chun Hung

    Full Text Available Methicillin-resistant Staphylococcus aureus (MRSA with ST59/SCCmecV and Panton-Valentine leukocidin gene is a major community-acquired MRSA (CA-MRSA lineage in Taiwan and has been multidrug-resistant since its initial isolation. In this study, we studied the acquisition mechanism of multidrug resistance in an ST59 CA-MRSA strain (PM1 by comparative genomics. PM1's non-β-lactam resistance was encoded by two unique genetic traits. One was a 21,832-bp composite mobile element structure (MES(PM1, which was flanked by direct repeats of enterococcal IS1216V and was inserted into the chromosomal sasK gene; the target sequence (att was 8 bp long and was duplicated at both ends of MES(PM1. MES(PM1 consisted of two regions: the 5'-end side 12.4-kb region carrying Tn551 (with ermB and Tn5405-like (with aph[3']-IIIa and aadE, similar to an Enterococcus faecalis plasmid, and the 3'-end side 6,587-bp region (MES(cat that carries cat and is flanked by inverted repeats of IS1216V. MES(cat possessed att duplication at both ends and additional two copies of IS1216V inside. MES(PM1 represents the first enterococcal IS1216V-mediated composite transposon emerged in MRSA. IS1216V-mediated deletion likely occurred in IS1216V-rich MES(PM1, resulting in distinct resistance patterns in PM1-derivative strains. Another structure was a 6,025-bp tet-carrying element (MES(tet on a 25,961-bp novel mosaic penicillinase plasmid (pPM1; MES(tet was flanked by direct repeats of IS431, but with no target sequence repeats. Moreover, the PM1 genome was deficient in a copy of the restriction and modification genes (hsdM and hsdS, which might have contributed to the acquisition of enterococcal multidrug resistance.

  16. Mutations within Four Distinct Gag Proteins Are Required To Restore Replication of Human Immunodeficiency Virus Type 1 after Deletion Mutagenesis within the Dimerization Initiation Site

    Science.gov (United States)

    Liang, Chen; Rong, Liwei; Quan, Yudong; Laughrea, Michael; Kleiman, Lawrence; Wainberg, Mark A.

    1999-01-01

    Human immunodeficiency virus type 1 (HIV-1) genomic RNA segments at nucleotide (nt) positions +240 to +274 are thought to form a stem-loop secondary structure, termed SL1, that serves as a dimerization initiation site for viral genomic RNA. We have generated two distinct deletion mutations within this region, termed BH10-LD3 and BH10-LD4, involving nt positions +238 to +253 and +261 to +274, respectively, and have shown that each of these resulted in significant diminutions in levels of viral infectiousness. However, long-term culture of each of these viruses in MT-2 cells resulted in a restoration of infectiousness, due to a series of compensatory point mutations within four distinct proteins that are normally cleaved from the Gag precursor. In the case of BH10-LD3, these four mutations were MA1, CA1, MP2, and MNC, and they involved changes of amino acid Val-35 to Ile within the matrix protein (MA), Ile-91 to Thr within the capsid (CA), Thr-12 to Ile within p2, and Thr-24 to Ile within the nucleocapsid (NC). The order in which these mutations were acquired by the mutated BH10-LD3 was MNC > CA1 > MP2 > MA1. The results of site-directed mutagenesis studies confirmed that each of these four substitutions contributed to the increased viability of the mutated BH10-LD3 viruses and that the MNC substitution, which was acquired first, played the most important role in this regard. Three point mutations, MP2, MNC, and MA2, were also shown to be sequentially acquired by viruses that had emerged in culture from the BH10-LD4 deletion. The first two of these were identical to those described above, while the last involved a change of Val-35 to Leu. All three of these substitutions were necessary to restore the infectiousness of mutated BH10-LD4 viruses to wild-type levels, although the MP2 mutation alone, but neither of the other two substitutions, was able to confer some viability on BH10-LD4 viruses. Studies of viral RNA packaging showed that the BH10-LD4 deletion only

  17. Activating HER2 mutations in HER2 gene amplification negative breast cancer.

    Science.gov (United States)

    Bose, Ron; Kavuri, Shyam M; Searleman, Adam C; Shen, Wei; Shen, Dong; Koboldt, Daniel C; Monsey, John; Goel, Nicholas; Aronson, Adam B; Li, Shunqiang; Ma, Cynthia X; Ding, Li; Mardis, Elaine R; Ellis, Matthew J

    2013-02-01

    Data from 8 breast cancer genome-sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized 13 HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture, and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGF receptor (EGFR) exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings show that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. We show that the majority of HER2 somatic mutations in breast cancer patients are activating mutations that likely drive tumorigenesis. Several patients had mutations that are resistant to the reversible HER2 inhibitor lapatinib, but are sensitive to the irreversible HER2 inhibitor, neratinib. Our results suggest that patients with HER2 mutation–positive breast cancers could benefit from existing HER2-targeted drugs.

  18. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability.

    Science.gov (United States)

    Tatton-Brown, Katrina; Seal, Sheila; Ruark, Elise; Harmer, Jenny; Ramsay, Emma; Del Vecchio Duarte, Silvana; Zachariou, Anna; Hanks, Sandra; O'Brien, Eleanor; Aksglaede, Lise; Baralle, Diana; Dabir, Tabib; Gener, Blanca; Goudie, David; Homfray, Tessa; Kumar, Ajith; Pilz, Daniela T; Selicorni, Angelo; Temple, I Karen; Van Maldergem, Lionel; Yachelevich, Naomi; van Montfort, Robert; Rahman, Nazneen

    2014-04-01

    Overgrowth disorders are a heterogeneous group of conditions characterized by increased growth parameters and other variable clinical features such as intellectual disability and facial dysmorphism. To identify new causes of human overgrowth, we performed exome sequencing in ten proband-parent trios and detected two de novo DNMT3A mutations. We identified 11 additional de novo mutations by sequencing DNMT3A in a further 142 individuals with overgrowth. The mutations alter residues in functional DNMT3A domains, and protein modeling suggests that they interfere with domain-domain interactions and histone binding. Similar mutations were not present in 1,000 UK population controls (13/152 cases versus 0/1,000 controls; P < 0.0001). Mutation carriers had a distinctive facial appearance, intellectual disability and greater height. DNMT3A encodes a DNA methyltransferase essential for establishing methylation during embryogenesis and is commonly somatically mutated in acute myeloid leukemia. Thus, DNMT3A joins an emerging group of epigenetic DNA- and histone-modifying genes associated with both developmental growth disorders and hematological malignancies.

  19. Mutations in the DNA methyltransferase gene, DNMT3A, cause an overgrowth syndrome with intellectual disability

    Science.gov (United States)

    Tatton-Brown, Katrina; Seal, Sheila; Ruark, Elise; Harmer, Jenny; Ramsay, Emma; del Vecchio Duarte, Silvana; Zachariou, Anna; Hanks, Sandra; O’Brien, Eleanor; Aksglaede, Lise; Baralle, Diana; Dabir, Tabib; Gener, Blanca; Goudie, David; Homfray, Tessa; Kumar, Ajith; Pilz, Daniela T; Selicorni, Angelo; Temple, I Karen; Van Maldergem, Lionel; Yachelevich, Naomi; van Montfort, Robert; Rahman, Nazneen

    2014-01-01

    Overgrowth disorders are a heterogeneous group of conditions characterised by increased growth parameters and variable other clinical features, such as intellectual disability and facial dysmorphism1. To identify novel causes of human overgrowth we performed exome sequencing in 10 proband-parent trios and detected two de novo DNMT3A mutations. We identified 11 additional de novo mutations through DNMT3A sequencing of a further 142 individuals with overgrowth. The mutations were all located in functional DNMT3A domains and protein modelling suggests they interfere with domain-domain interactions and histone binding. No similar mutations were present in 1000 UK population controls (13/152 vs 0/1000; P<0.0001). Mutation carriers had a distinctive facial appearance, intellectual disability and increased height. DNMT3A encodes a key methyltransferase essential for establishing the methylation imprint in embryogenesis and is commonly somatically mutated in acute myeloid leukaemia2-4. Thus DNMT3A joins an emerging group of epigenetic DNA and histone modifying genes associated with both developmental growth disorders and haematological malignancies5. PMID:24614070

  20. Functional analysis of Waardenburg syndrome-associated PAX3 and SOX10 mutations: report of a dominant-negative SOX10 mutation in Waardenburg syndrome type II.

    Science.gov (United States)

    Zhang, Hua; Chen, Hongsheng; Luo, Hunjin; An, Jing; Sun, Lin; Mei, Lingyun; He, Chufeng; Jiang, Lu; Jiang, Wen; Xia, Kun; Li, Jia-Da; Feng, Yong

    2012-03-01

    Waardenburg syndrome (WS) is an auditory-pigmentary disorder resulting from melanocyte defects, with varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four subtypes (WS1-WS4) based on additional symptoms. PAX3 and SOX10 are two transcription factors that can activate the expression of microphthalmia-associated transcription factor (MITF), a critical transcription factor for melanocyte development. Mutations of PAX3 are associated with WS1 and WS3, while mutations of SOX10 cause WS2 and WS4. Recently, we identified some novel WS-associated mutations in PAX3 and SOX10 in a cohort of Chinese WS patients. Here, we further identified an E248fsX30 SOX10 mutation in a family of WS2. We analyzed the subcellular distribution, expression and in vitro activity of two PAX3 mutations (p.H80D, p.H186fsX5) and four SOX10 mutations (p.E248fsX30, p.G37fsX58, p.G38fsX69 and p.R43X). Except H80D PAX3, which retained partial activity, the other mutants were unable to activate MITF promoter. The H80D PAX3 and E248fsX30 SOX10 were localized in the nucleus as wild type (WT) proteins, whereas the other mutant proteins were distributed in both cytoplasm and nucleus. Furthermore, E248fsX30 SOX10 protein retained the DNA-binding activity and showed dominant-negative effect on WT SOX10. However, E248fsX30 SOX10 protein seems to decay faster than the WT one, which may underlie the mild WS2 phenotype caused by this mutation.

  1. Recurrent papillary craniopharyngioma with BRAF V600E mutation treated with dabrafenib: case report.

    Science.gov (United States)

    Himes, Benjamin T; Ruff, Michael W; Van Gompel, Jaimie J; Park, Sean S; Galanis, Evanthia; Kaufmann, Timothy J; Uhm, Joon H

    2018-04-27

    The authors present the case of a man with a papillary craniopharyngioma, first diagnosed at 47 years of age, who experienced multiple recurrences. Review of the pathologic specimen from his first resection demonstrated the BRAF V600E mutation. With his most recent recurrence following previous surgery and radiotherapy, at 52 years of age, the decision was made to initiate treatment with the BRAF V600E inhibitor dabrafenib. Imaging following initiation of dabrafenib demonstrated reduction in tumor size. He remained on dabrafenib therapy for approximately 1 year and continued to demonstrate a good clinical result. At that time the decision was made to discontinue dabrafenib therapy and follow up with serial imaging. After more than 1 year of follow-up since stopping dabrafenib, the patient has continued to do well with no radiographic evidence of tumor progression and continues to be monitored with frequent interval imaging.

  2. Prevalence and factors associated with darunavir resistance mutations in multi-experienced HIV-1-infected patients failing other protease inhibitors in a referral teaching center in Brazil

    Directory of Open Access Journals (Sweden)

    Jose E Vidal

    Full Text Available Information about resistance profile of darunavir (DRV is scarce in Brazil. Our objectives were to estimate the prevalence of DRV resistance mutations in patients failing protease inhibitors (PI and to identify factors associated with having more DRV resistance mutations. All HIV-infected patients failing PI-based regimens with genotyping performed between 2007 and 2008 in a referral teaching center in São Paulo, Brazil, were included. DRV-specific resistance mutations listed by December 2008 IAS-USA panel update were considered. Two Poisson regression models were constructed to assess factors related to the presence of more DRV resistance mutations. A total of 171 HIV-infected patients with available genotyping were included. The number of patients with lopinavir, saquinavir, and amprenavir used in previous regimen were 130 (76%, 83 (49%, and 35 (20%, respectively. The prevalence of major DRV resistance mutations was 50V: 5%; 54M: 1%; 76V: 4%; 84V: 15%. For minor mutations, the rates were 11I: 3%; 32I: 7%; 33F: 23%; 47V: 6%; 54L: 6%; 74P: 3%; 89V: 6%. Only 11 (6% of the genotypes had > 3 DRV resistance mutations. In the clinical model, time of HIV infection of > 10 years and use of amprenavir were independently associated with having more DRV resistance mutations. In the genotyping-based model, only total number of PI resistance mutations was associated with our outcome. In conclusion, the prevalence of DRV mutations was low. Time of HIV infection, use of amprenavir and total number of PI resistance mutations were associated with having more DRV mutations.

  3. Diagnosing CADASIL using MRI: evidence from families with known mutations of Notch 3 gene

    International Nuclear Information System (INIS)

    Chawda, S.J.; Lange, R.P.J. de; St-Clair, D.; Hourihan, M.D.; Halpin, S.F.S.

    2000-01-01

    Clinical data and MRI findings are presented on 18 subjects from two families with neuropathologically confirmed CADASIL. DNA analysis revealed mutations in exon 4 of Notch 3 gene in both families. All family members with mutations in Notch 3 gene had extensive abnormalities on MRI, principally lesions in the white matter of the frontal lobes and in the external capsules. Of several family members in whom a diagnosis of CADASIL was suspected on the basis of minor symptoms, one had MRI changes consistent with CADASIL; none of these cases carried a mutation in the Notch 3 gene. MRI and clinical features that may alert the radiologist to the diagnosis of CADASIL are reviewed. However, a wide differential diagnosis exists for the MRI appearances of CADASIL, including multiple sclerosis and small-vessel disease secondary to hypertension. The definitive diagnosis cannot be made on MRI alone and requires additional evidence, where available, from a positive family history and by screening DNA for mutations of Notch 3 gene. (orig.)

  4. Loss of activating EGFR mutant gene contributes to acquired resistance to EGFR tyrosine kinase inhibitors in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Keisuke Tabara

    Full Text Available Non-small-cell lung cancer harboring epidermal growth factor receptor (EGFR mutations attains a meaningful response to EGFR-tyrosine kinase inhibitors (TKIs. However, acquired resistance to EGFR-TKIs could affect long-term outcome in almost all patients. To identify the potential mechanisms of resistance, we established cell lines resistant to EGFR-TKIs from the human lung cancer cell lines PC9 and11-18, which harbored activating EGFR mutations. One erlotinib-resistant cell line from PC9 and two erlotinib-resistant cell lines and two gefitinib-resistant cell lines from 11-18 were independently established. Almost complete loss of mutant delE746-A750 EGFR gene was observed in the erlotinib-resistant cells isolated from PC9, and partial loss of the mutant L858R EGFR gene copy was specifically observed in the erlotinib- and gefitinib-resistant cells from 11-18. However, constitutive activation of EGFR downstream signaling, PI3K/Akt, was observed even after loss of the mutated EGFR gene in all resistant cell lines even in the presence of the drug. In the erlotinib-resistant cells from PC9, constitutive PI3K/Akt activation was effectively inhibited by lapatinib (a dual TKI of EGFR and HER2 or BIBW2992 (pan-TKI of EGFR family proteins. Furthermore, erlotinib with either HER2 or HER3 knockdown by their cognate siRNAs also inhibited PI3K/Akt activation. Transfection of activating mutant EGFR complementary DNA restored drug sensitivity in the erlotinib-resistant cell line. Our study indicates that loss of addiction to mutant EGFR resulted in gain of addiction to both HER2/HER3 and PI3K/Akt signaling to acquire EGFR-TKI resistance.

  5. Allele frequencies of hemojuvelin gene (HJV I222N and G320V missense mutations in white and African American subjects from the general Alabama population

    Directory of Open Access Journals (Sweden)

    Bohannon Sean B

    2004-12-01

    Full Text Available Abstract Background Homozygosity or compound heterozygosity for coding region mutations of the hemojuvelin gene (HJV in whites is a cause of early age-of-onset iron overload (juvenile hemochromatosis, and of hemochromatosis phenotypes in some young or middle-aged adults. HJV coding region mutations have also been identified recently in African American primary iron overload and control subjects. Primary iron overload unexplained by typical hemochromatosis-associated HFE genotypes is common in white and black adults in Alabama, and HJV I222N and G320V were detected in a white Alabama juvenile hemochromatosis index patient. Thus, we estimated the frequency of the HJV missense mutations I222N and G320V in adult whites and African Americans from Alabama general population convenience samples. Methods We evaluated the genomic DNA of 241 Alabama white and 124 African American adults who reported no history of hemochromatosis or iron overload to detect HJV missense mutations I222N and G320V using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP technique. Analysis for HJV I222N was performed in 240 whites and 124 African Americans. Analysis for HJV G320V was performed in 241 whites and 118 African Americans. Results One of 240 white control subjects was heterozygous for HJV I222N; she was also heterozygous for HFE C282Y, but had normal serum iron measures and bone marrow iron stores. HJV I222N was not detected in 124 African American subjects. HJV G320V was not detected in 241 white or 118 African American subjects. Conclusions HJV I222N and G320V are probably uncommon causes or modifiers of primary iron overload in adult whites and African Americans in Alabama. Double heterozygosity for HJV I222N and HFE C282Y may not promote increased iron absorption.

  6. Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene.

    Science.gov (United States)

    Chang, Hui-Wen; de Groot, Raoul J; Egberink, Herman F; Rottier, Peter J M

    2010-02-01

    Feline infectious peritonitis (FIP) is a lethal systemic disease caused by FIP virus (FIPV), a virulent mutant of apathogenic feline enteric coronavirus (FECV). We analysed the 3c gene--a proposed virulence marker--in 27 FECV- and 28 FIPV-infected cats. Our findings suggest that functional 3c protein expression is crucial for FECV replication in the gut, but dispensable for systemic FIPV replication. Whilst intact in all FECVs, the 3c gene was mutated in the majority (71.4 %) of FIPVs, but not in all, implying that mutation in 3c is not the (single) cause of FIP. Most cats with FIP had no detectable intestinal feline coronaviruses (FCoVs) and had seemingly cleared the primary FECV infection. In those with detectable intestinal FCoV, the virus always had an intact 3c and seemed to have been acquired by FECV superinfection. Apparently, 3c-inactivated viruses replicate not at all--or only poorly--in the gut, explaining the rare incidence of FIP outbreaks.

  7. A FGF3 mutation associated with differential inner ear malformation, microtia, and microdontia.

    Science.gov (United States)

    Ramsebner, Reinhard; Ludwig, Martin; Parzefall, Thomas; Lucas, Trevor; Baumgartner, Wolf-Dieter; Bodamer, Olaf; Cengiz, Filiz Basak; Schoefer, Christian; Tekin, Mustafa; Frei, Klemens

    2010-02-01

    Analysis of association between genotype and phenotype. Prospective genetic study in a family. Auditory investigations, computer tomography, and genetic sequencing of the fibroblast growth factor 3 (FGF3) gene were performed on a Somali family presenting with autosomal recessive, hearing impairment, microdontia, and outer ear morphologies ranging from normal auricle development to microtia assessed as type 1 Weerda dysplasia in affected individuals. Computed tomography imaging identified differential inter- and intraindividual malformations of the inner ear including labyrinth aplasia, development of a common cavity to the presence of a cochlear with 1.5 windings (Mondini malformation) in affected individuals, symptoms similar to those described as labyrinth aplasia, microtia, and microdontia (LAMM) syndrome, caused by mutations in FGF3. Genetic sequencing revealed the presence of a novel p.R95W missense mutation in FGF3 segregating with pathology. The p.R95W mutation substitutes a positively charged arginine for a polar tryptophan in the highly conserved RYLAM consensus of the beta 6 sheet of FGF3 that interacts with FGFR2. These findings describe, for the first time, variable inner ear malformations and outer ear dysplasia in the presence of constant microdontia, associated with homozygous inheritance of the p.R95W mutation in FGF3, mirroring phenotypes observed in mouse models ablating FGF3/FGFR2 signaling.

  8. Mutations in the TLR3 signaling pathway and beyond in adult patients with herpes simplex encephalitis.

    Science.gov (United States)

    Mørk, N; Kofod-Olsen, E; Sørensen, K B; Bach, E; Ørntoft, T F; Østergaard, L; Paludan, S R; Christiansen, M; Mogensen, T H

    2015-12-01

    Herpes simplex encephalitis (HSE) in children has previously been linked to defects in type I interferon production downstream of Toll-like receptor (TLR)3. In the present study, we used whole-exome sequencing to investigate the genetic profile of 16 adult patients with a history of HSE. We identified novel mutations in IRF3, TYK2 and MAVS, molecules involved in generating innate antiviral immune responses, which have not previously been associated with HSE. Moreover, data revealed mutations in TLR3, TRIF, TBK1 and STAT1 known to be associated with HSE in children but not previously described in adults. All discovered mutations were heterozygous missense mutations, the majority of which were associated with significantly decreased antiviral responses to HSV-1 infection and/or the TLR3 agonist poly(I:C) in patient peripheral blood mononuclear cells compared with controls. Altogether, this study demonstrates novel mutations in the TLR3 signaling pathway in molecules previously identified in children, suggesting that impaired innate immunity to HSV-1 may also increase susceptibility to HSE in adults. Importantly, the identification of mutations in innate signaling molecules not directly involved in TLR3 signaling suggests the existence of innate immunodeficiencies predisposing to HSE beyond the TLR3 pathway.

  9. Acquire: an open-source comprehensive cancer biobanking system.

    Science.gov (United States)

    Dowst, Heidi; Pew, Benjamin; Watkins, Chris; McOwiti, Apollo; Barney, Jonathan; Qu, Shijing; Becnel, Lauren B

    2015-05-15

    The probability of effective treatment of cancer with a targeted therapeutic can be improved for patients with defined genotypes containing actionable mutations. To this end, many human cancer biobanks are integrating more tightly with genomic sequencing facilities and with those creating and maintaining patient-derived xenografts (PDX) and cell lines to provide renewable resources for translational research. To support the complex data management needs and workflows of several such biobanks, we developed Acquire. It is a robust, secure, web-based, database-backed open-source system that supports all major needs of a modern cancer biobank. Its modules allow for i) up-to-the-minute 'scoreboard' and graphical reporting of collections; ii) end user roles and permissions; iii) specimen inventory through caTissue Suite; iv) shipping forms for distribution of specimens to pathology, genomic analysis and PDX/cell line creation facilities; v) robust ad hoc querying; vi) molecular and cellular quality control metrics to track specimens' progress and quality; vii) public researcher request; viii) resource allocation committee distribution request review and oversight and ix) linkage to available derivatives of specimen. © The Author 2015. Published by Oxford University Press.

  10. In silico analysis of a novel MKRN3 missense mutation in familial central precocious puberty.

    Science.gov (United States)

    Neocleous, Vassos; Shammas, Christos; Phelan, Marie M; Nicolaou, Stella; Phylactou, Leonidas A; Skordis, Nicos

    2016-01-01

    The onset of puberty is influenced by the interplay of stimulating and restraining factors, many of which have a genetic origin. Premature activation of the GnRH secretion in central precocious puberty (CPP) may arise either from gain-of-function mutations of the KISS1 and KISS1R genes or from loss-of-function manner mutations of the MKRN3 gene leading to MKRN3 deficiency. To explore the genetic causes responsible for CPP and the potential role of the RING finger protein 3 (MKRN3) gene. We investigated potential sequence variations in the intronless MKRN3 gene by Sanger sequencing of the entire 507 amino acid coding region of exon 1 in a family with two affected girls presented with CPP at the age of 6 and 5·7 years, respectively. A novel heterozygous g.Gly312Asp missense mutation in the MKRN3 gene was identified in these siblings. The imprinted MKRN3 missense mutation was also identified as expected in the unaffected father and followed as expected an imprinted mode of inheritance. In silico analysis of the altered missense variant using the computational algorithms Polyphen2, SIFT and Mutation Taster predicted a damage and pathogenic alteration causing CPP. The pathogenicity of the alteration at the protein level via an in silico structural model is also explored. A novel mutation in the MKRN3 gene in two sisters with CPP was identified, supporting the fundamental role of this gene in the suppression of the hypothalamic GnRH neurons. © 2015 John Wiley & Sons Ltd.

  11. Voltage-sensitive sodium channel mutations S989P + V1016G in Aedes aegypti confer variable resistance to pyrethroids, DDT and oxadiazines.

    Science.gov (United States)

    Smith, Letícia B; Kasai, Shinji; Scott, Jeffrey G

    2018-03-01

    Aedes aegypti is a vector of several important human pathogens. Control efforts rely primarily on pyrethroid insecticides for adult mosquito control, especially during disease outbreaks. A. aegypti has developed resistance nearly everywhere it occurs and insecticides are used. An important mechanism of resistance is due to mutations in the voltage-sensitive sodium channel (Vssc) gene. Two mutations, in particular, S989P + V1016G, commonly occur together in parts of Asia. We have created a strain (KDR:ROCK) that contains the Vssc mutations S989P + V1016G as the only mechanism of pyrethroid resistance within the genetic background of Rockefeller (ROCK), a susceptible lab strain. We created KDR:ROCK by crossing the pyrethroid-resistant strain Singapore with ROCK followed by four backcrosses with ROCK and Vssc S989P + V1016G genotype selections. We determined the levels of resistance conferred to 17 structurally diverse pyrethroids, the organochloride DDT, and oxadiazines (VSSC blockers) indoxacarb (proinsecticide) and DCJW (the active metabolite of indoxacarb). Levels of resistance to the pyrethroids were variable, ranging from 21- to 107-fold, but no clear pattern between resistance and chemical structure was observed. Resistance is inherited as an incompletely recessive trait. KDR:ROCK had a > 2000-fold resistance to DDT, 37.5-fold cross-resistance to indoxacarb and 13.4-fold cross-resistance to DCJW. Etofenprox (and DDT) should be avoided in areas where Vssc mutations S989P + V1016G exist at high frequencies. We found that pyrethroid structure cannot be used to predict the level of resistance conferred by kdr. These results provide useful information for resistance management and for better understanding pyrethroid interactions with VSSC. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of

  12. CALR, JAK2 and MPL mutation status in Argentinean patients with BCR-ABL1- negative myeloproliferative neoplasms.

    Science.gov (United States)

    Ojeda, Mara Jorgelina; Bragós, Irma Margarita; Calvo, Karina Lucrecia; Williams, Gladis Marcela; Carbonell, María Magdalena; Pratti, Arianna Flavia

    2018-05-01

    To establish the frequency of JAK2, MPL and CALR mutations in Argentinean patients with BCR-ABL1-negative  myeloproliferative neoplasms (MPN) and to compare their clinical and haematological features. Mutations of JAK2V617F, JAK2 exon 12, MPL W515L/K and CALR were analysed in 439 Argentinean patients with BCR-ABL1-negative MPN, including 176 polycythemia vera (PV), 214 essential thrombocythemia (ET) and 49 primary myelofibrosis (PMF). In 94.9% of PV, 85.5% ET and 85.2% PMF, we found mutations in JAK2, MPL or CALR. 74.9% carried JAK2V617F, 12.3% CALR mutations, 2.1% MPL mutations and 10.7% were triple negative. In ET, nine types of CALR mutations were identified, four of which were novel. PMF patients were limited to types 1 and 2, type 2 being more frequent. In ET, patients with CALR mutation were younger and had higher platelet counts than those with JAK2V617F and triple negative. In addition, JAK2V617F patients had high leucocyte and haemoglobin values compared with CALR-mutated and triple-negative patients. In PMF, patients with mutant CALR were associated with higher platelet counts. Our study underscores the importance of JAK2, MPL and CALR genotyping for accurate diagnosis of patients with BCR-ABL1-negative MPN.

  13. GENIE-V3 concepts document

    International Nuclear Information System (INIS)

    Moreton-Smith, C.M.

    1990-01-01

    The GENIE data analysis program is a program used for analysis of data from the ISIS neutron scattering instruments. The current version, GENIE-V2, is now being re-written to provide a much more powerful data analysis system for the next major version of the program, GENIE-V3. The purpose of this ''Concepts Document'' is to establish a frame of reference within which to discuss the development of GENIE-V3. It does not seek to define everything which will be implemented in the new version of the GENIE program. A substantial amount of design effort has been expended to produce a plausible design for the language and operation of GENIE-V3. Having said this, this is in no way a complete specification. Several features (although intended for any working version of GENIE-V3) have not been documented here, hopefully though, nothing material has been left out. To keep this document to a reasonable length, commands which can be written using GENIE-V3 are omitted. (author)

  14. 3D spectrum imaging of multi-wall carbon nanotube coupled π-surface modes utilising electron energy-loss spectra acquired using a STEM/Enfina system

    International Nuclear Information System (INIS)

    Seepujak, A.; Bangert, U.; Gutierrez-Sosa, A.; Harvey, A.J.; Blank, V.D.; Kulnitskiy, B.A.; Batov, D.V.

    2005-01-01

    Numerous studies have utilised electron energy-loss (EEL) spectra acquired in the plasmon (2-10 eV) regime in order to probe delocalised π-electronic states of multi-wall carbon nanotubes (MWCNTs). Interpretation of electron energy loss (EEL) spectra of MWCNTs in the 2-10 eV regime. Carbon (accepted for publication); Blank et al. J. Appl. Phys. 91 (2002) 1657). In the present contribution, EEL spectra were acquired from a 2D raster defined on a bottle-shaped MWCNT, using a Gatan UHV Enfina system attached to a dedicated scanning transmission electron microscope (STEM). The technique utilised to isolate and sequentially filter each of the volume and surface resonances is described in detail. Utilising a scale for the intensity of a filtered mode enables one to 'see' the distribution of each resonance in the raster. This enables striking 3D resonance-filtered spectrum images (SIs) of π-collective modes to be observed. Red-shift of the lower energy split π-surface resonance provides explicit evidence of π-surface mode coupling predicted for thin graphitic films (Lucas et al. Phys. Rev. B 49 (1994) 2888). Resonance-filtered SIs are also compared to non-filtered SIs with suppressed surface contributions, acquired utilising a displaced collector aperture. The present filtering technique is seen to isolate surface contributions more effectively, and without the significant loss of statistics, associated with the displaced collector aperture mode. Isolation of collective modes utilising 3D resonance-filtered spectrum imaging, demonstrates a valuable method for 'pinpointing' the location of discrete modes in irregularly shaped nanostructures

  15. Biallelic germline and somatic mutations in malignant mesothelioma: multiple mutations in transcription regulators including mSWI/SNF genes.

    Science.gov (United States)

    Yoshikawa, Yoshie; Sato, Ayuko; Tsujimura, Tohru; Otsuki, Taiichiro; Fukuoka, Kazuya; Hasegawa, Seiki; Nakano, Takashi; Hashimoto-Tamaoki, Tomoko

    2015-02-01

    We detected low levels of acetylation for histone H3 tail lysines in malignant mesothelioma (MM) cell lines resistant to histone deacetylase inhibitors. To identify the possible genetic causes related to the low histone acetylation levels, whole-exome sequencing was conducted with MM cell lines established from eight patients. A mono-allelic variant of BRD1 was common to two MM cell lines with very low acetylation levels. We identified 318 homozygous protein-damaging variants/mutations (18-78 variants/mutations per patient); annotation analysis showed enrichment of the molecules associated with mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complexes and co-activators that facilitate initiation of transcription. In seven of the patients, we detected a combination of variants in histone modifiers or transcription factors/co-factors, in addition to variants in mSWI/SNF. Direct sequencing showed that homozygous mutations in SMARCA4, PBRM1 and ARID2 were somatic. In one patient, homozygous germline variants were observed for SMARCC1 and SETD2 in chr3p22.1-3p14.2. These exhibited extended germline homozygosity and were in regions containing somatic mutations, leading to a loss of BAP1 and PBRM1 expression in MM cell line. Most protein-damaging variants were heterozygous in normal tissues. Heterozygous germline variants were often converted into hemizygous variants by mono-allelic deletion, and were rarely homozygous because of acquired uniparental disomy. Our findings imply that MM might develop through the somatic inactivation of mSWI/SNF complex subunits and/or histone modifiers, including BAP1, in subjects that have rare germline variants of these transcription regulators and/or transcription factors/co-factors, and in regions prone to mono-allelic deletion during oncogenesis. © 2014 UICC.

  16. Human lipodystrophies: genetic and acquired diseases of adipose tissue

    Science.gov (United States)

    Capeau, Jacqueline; Magré, Jocelyne; Caron-Debarle, Martine; Lagathu, Claire; Antoine, Bénédicte; Béréziat, Véronique; Lascols, Olivier; Bastard, Jean-Philippe; Vigouroux, Corinne

    2010-01-01

    Human lipodystrophies represent a heterogeneous group of diseases characterized by generalized or partial fat loss, with fat hypertrophy in other depots when partial. Insulin resistance, dyslipidemia and diabetes are generally associated, leading to early complications. Genetic forms are uncommon: recessive generalized congenital lipodystrophies result in most cases from mutations in the genes encoding seipin or the 1-acyl-glycerol-3-phosphate-acyltransferase 2 (AGPAT2). Dominant partial familial lipodystrophies result from mutations in genes encoding the nuclear protein lamin A/C or the adipose transcription factor PPARγ. Importantly, lamin A/C mutations are also responsible for metabolic laminopathies, resembling the metabolic syndrome and progeria, a syndrome of premature aging. A number of lipodystrophic patients remain undiagnosed at the genetic level. Acquired lipodystrophy can be generalized, resembling congenital forms, or partial, as the Barraquer-Simons syndrome, with loss of fat in the upper part of the body contrasting with accumulation in the lower part. Although their aetiology is generally unknown, they could be associated with signs of auto-immunity. The most common forms of lipodystrophies are iatrogenic. In human immunodeficiency virus-infected patients, some first generation antiretroviral drugs were strongly related with peripheral lipoatrophy and metabolic alterations. Partial lipodystrophy also characterize patients with endogenous or exogenous long-term corticoid excess. Treatment of fat redistribution can sometimes benefit from plastic surgery. Lipid and glucose alterations are difficult to control leading to early occurrence of diabetic, cardio-vascular and hepatic complications. PMID:20551664

  17. Identification of an alternative knockdown resistance (kdr)-like mutation, M918L, and a novel mutation, V1010A, in the Thrips tabaci voltage-gated sodium channel gene.

    Science.gov (United States)

    Wu, Meixiang; Gotoh, Hiroki; Waters, Timothy; Walsh, Douglas B; Lavine, Laura Corley

    2014-06-01

    Knockdown resistance (kdr) has been identified as a main mechanism against pyrethroid insecticides in many arthropod pests including in the onion thrips, Thrips tabaci. To characterize and identify pyrethroid-resistance in onion thrips in Washington state, we conducted insecticide bioassays and sequenced a region of the voltage gated sodium channel gene from several different T. tabaci populations. Field collected Thrips tabaci were found to have large variations in resistance to the pyrethroid insecticide lambda-cyhalothrin. We identified two single nucleotide substitutions in our analysis of a partial sequence of the T. tabaci voltage-gated sodium channel gene. One mutation resulted in the non-synonymous substitution of methionine with leucine (M918L), which is well known to be responsible for super knockdown resistance in some pest species. Another non-synonymous substitution, a valine (GTT) to alanine (GCT) replacement at amino acid 1010 (V1010A) was identified in our study and was associated with lambda-cyhalothrin resistance. We have characterized a known kdr mutation and identified a novel mutation in the voltage-gated sodium channel gene of Thrips tabaci associated with resistance to lambda-cyhalothrin. This gene region and these mutations are expected to be useful in the development of a diagnostic test to detect kdr resistance in many onion thrips populations. © 2013 Society of Chemical Industry.

  18. The Voltage-Sensing Domain of K(v)7.2 Channels as a Molecular Target for Epilepsy-Causing Mutations and Anticonvulsants.

    Science.gov (United States)

    Miceli, Francesco; Soldovieri, Maria Virginia; Iannotti, Fabio Arturo; Barrese, Vincenzo; Ambrosino, Paolo; Martire, Maria; Cilio, Maria Roberta; Taglialatela, Maurizio

    2011-01-01

    Understanding the molecular mechanisms underlying voltage-dependent gating in voltage-gated ion channels (VGICs) has been a major effort over the last decades. In recent years, changes in the gating process have emerged as common denominators for several genetically determined channelopathies affecting heart rhythm (arrhythmias), neuronal excitability (epilepsy, pain), or skeletal muscle contraction (periodic paralysis). Moreover, gating changes appear as the main molecular mechanism by which several natural toxins from a variety of species affect ion channel function. In this work, we describe the pathophysiological and pharmacological relevance of the gating process in voltage-gated K(+) channels encoded by the K(v)7 gene family. After reviewing the current knowledge on the molecular mechanisms and on the structural models of voltage-dependent gating in VGICs, we describe the physiological relevance of these channels, with particular emphasis on those formed by K(v)7.2-K(v)7.5 subunits having a well-established role in controlling neuronal excitability in humans. In fact, genetically determined alterations in K(v)7.2 and K(v)7.3 genes are responsible for benign familial neonatal convulsions, a rare seizure disorder affecting newborns, and the pharmacological activation of K(v)7.2/3 channels can exert antiepileptic activity in humans. Both mutation-triggered channel dysfunction and drug-induced channel activation can occur by impeding or facilitating, respectively, channel sensitivity to membrane voltage and can affect overlapping molecular sites within the voltage-sensing domain of these channels. Thus, understanding the molecular steps involved in voltage-sensing in K(v)7 channels will allow to better define the pathogenesis of rare human epilepsy, and to design innovative pharmacological strategies for the treatment of epilepsies and, possibly, other human diseases characterized by neuronal hyperexcitability.

  19. [MPLW515L point mutation in patients with myeloproliferative disease].

    Science.gov (United States)

    Xia, Jun; Xu, Wei; Zhang, Su-Jiang; Fan, Lei; Qiao, Chun; Li, Jian-Yong

    2008-12-01

    In order to investigate the frequency of MPLW515L and JAK2V617F point mutations of the patients with myeloproliferative disease (MPD) in Nanjing area, MPLW515L and JAK2V617F point mutations were simultaneously detected by alleles specific polymerase chain reaction (AS-PCR) and sequencing in 190 MPD patients. The results showed that MPLW515L point mutation was detected in 1 out of 102 essential thrombocythemia (ET) patients (1.0%) and was not detected in 32 polycythemia vera (PV) patients, 13 idiopathic myelofibrosis (IMF) patients, 43 chronic myelogenous leukemia (CML) patients. JAK2V617F point mutation was detected in 20 out of 32 PV patients (62.5%), 43 out of 102 ET patients (42.2%), 5 out of 13 IMF patients (38.5%), and was not detected in 43 CML patients. It is concluded that MPLW515L point mutation exists in ET patient, but is not found in PV, IMF and CML. JAK2V617F point mutation exists in PV, ET and IMF, but not in CML.

  20. UV mutagenesis in E. coli with excision repair initiated by uvrABC or denV gene products

    Energy Technology Data Exchange (ETDEWEB)

    Bockrath, R; Hodes, M Z; Mosbaugh, P; Valerie, K; de Riel, J K

    1988-03-01

    Mutation frequency responses produced by ultraviolet light are compared in 4 closely related strains of E.coli B/r having the same tyr(Oc) allele and different excision-repair capabilities. The production of Tyr/sup +/ prototrophic mutants is classified into back-mutations and de novo or converted glutamine tRNA suppressor mutations to indicate different mutation events. Cells transformed with the plasmid pdenV-7 require larger exposures than the parent strains to produce comparable mutation frequency responses, indicating that DenV activity can repair mutatagenic photoproducts. When damage reduction by UvrABC or DenV is compared for each of the specific categories of mutation, the results are consistent with the idea that pyrimidine dimers infrequently or never target back-mutations of this allele, frequently target the de novo suppressor mutations, and extensively or exclusively target the converted suppressor mutations. This analysis is based on the distinction that UvrABC-initiated excision repair recognizes dimer and non-dimer photoproducts but that DenV-initiated repair recognizes only pyrimidine dimers. 44 refs.; 3 figs.; 2 tabs.

  1. Stability enhancement of cytochrome c through heme deprotonation and mutations.

    Science.gov (United States)

    Sonoyama, Takafumi; Hasegawa, Jun; Uchiyama, Susumu; Nakamura, Shota; Kobayashi, Yuji; Sambongi, Yoshihiro

    2009-01-01

    The chemical denaturation of Pseudomonas aeruginosa cytochrome c(551) variants was examined at pH 5.0 and 3.6. All variants were stabilized at both pHs compared with the wild-type. Remarkably, the variants carrying the F34Y and/or E43Y mutations were more stabilized than those having the F7A/V13M or V78I ones at pH 5.0 compared with at pH 3.6 by ~3.0-4.6 kJ/mol. Structural analyses predicted that the side chains of introduced Tyr-34 and Tyr-43 become hydrogen donors for the hydrogen bond formation with heme 17-propionate at pH 5.0, but less efficiently at pH 3.6, because the propionate is deprotonated at the higher pH. Our results provide an insight into a stabilization strategy for heme proteins involving variation of the heme electronic state and introduction of appropriate mutations.

  2. [Clinical significance of JAK2、CALR and MPL gene mutations in 1 648 Philadelphia chromosome negative myeloproliferative neoplasms patients from a single center].

    Science.gov (United States)

    Li, M Y; Chao, H Y; Sun, A N; Qiu, H Y; Jin, Z M; Tang, X W; Han, Y; Fu, C C; Chen, S N; Wu, D P

    2017-04-14

    Objective: To explore the prevalences of JAK2, CALR and MPL gene mutations and the mutation types in patients with Philadelphia chromosome negative myeloproliferative neoplasms (MPNs) , and to compare their clinical characteristics of different mutation types with each other and mutation negative group. Methods: The mutations of JAK2 V617F, JAK2 gene at exon 12, CALR gene at exon 9 and MPL gene at exon 10 in 1 648 Ph negative MPNs patients were detected by direct sequencing. Results: ① The JAK2V617F mutation was found in 471 (92.7%) of 508 PV patients, 819 (78.1%) of 1 049 ET patients and 74 (81.3%) of 91 PMF patients respectively, with the total mutation rate as 82.8% (1 364/1 648) . The JAK2 exon12 mutation was found in 9 (1.7%) of 508 PV patients, none was found in ET or PMF patients, with the total mutation rate as 0.5% (9/1 648) . The CALR mutation was found in 132 (12.6%) of 1 049 ET patients and 11 (12.1%) of 91 PMF patients respectively, with the total mutation rate as 8.7% (143/1 648) ; the MPL mutation was found in 9 (0.9%) of 1 049 ET patients and 1 (1.1%) of 91 PMF patients respectively, with the total mutation rate as 0.6% (10/1 648) . The co-occurrence of any two types of driver gene mutations was not detected by direct sequencing. ②The median onset age of patients with JAK2V617F[61 (15-95) y] was significant higher than of with JAK2 exon12 mutation[49 (33-62) y] or without mutations[42 (3-78) y] ( P MPL mutation[59 (22-71) y] ( P >0.05) . Patients with JAK2V617F had higher white blood cell count and hemoglobin level ( P MPL mutation ( P =0.013) . The platelet count of patients with CALR mutation was significantly higher than of with JAK2V617F[966 (400-2 069) ×10(9)/L vs 800 (198-3 730) ×10(9)/L, P MPL gene mutation revealed normal karyotype. Conclusions: Driver gene mutations detection could ensure the diagnosis and prognosis judgment of MPN more reliable, different subtypes of MPNs had different profiles of driver gene mutations, the latter

  3. Mutation induction for improving of tangerine in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Majd, F.; Jahangirzadeh, E.; Vedadi, S.; Tafti, M. Naseri; Rastegari, J. [Nuclear Research Center for Agriculture and Medicine, Karaj (Iran, Islamic Republic of)

    2009-05-15

    Genetic variation is an essential component of crop breeding. Induced mutations are highly effective in enhancing natural variability of genetic resources, and have been instrumental in developing improved cultivars of crops including fruits crops. Recent advances in biotechnological techniques have shown a great potential as efficient methodologies for vegetative micropropagation, screening techniques and genetic characterization including mutation induction. On this basis, a local, well- adapted and widely-consumed Clementine cultivar was selected for introduction into a mutation induction programme in order to reduce the excessive seeds in the fruits. A physical mutagen (γ-ray) was applied at doses of 35, 40 and 45 Gy on selected seedling apical buds. Irradiated buds were grafted onto sour orange root stocks (M{sub 1}V{sub 1}) and chimeras disassociated by further vegetative propagation. Finally M{sub 1}V{sub 3} plants were transferred to the field and after the production of fruits, selection for the desired fruit types was undertaken. The results showed that the radiation treatment was able to produce mutant genotypes with seedless fruits, early and late ripening and cold tolerance. (author)

  4. A/α-specific effect of the mms3 mutation on ultraviolet mutagenesis in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Martin, P.; Prakash, L.; Prakash, S.

    1981-01-01

    A new gene involved in error-prone repair of ultraviolet (uv) damage has been identified in Saccharomyces cerevisiae by the mms3-1 mutation. Uv-induced reversion is reduced in diploids that are homozygous for mms3-1, only if they are also heterozygous (MATa/MATα) at the mating type locus. The mms3-1 mutation has no effect on uv-induced reversion either in haploids or MATa/MATα or MATα/MATα diploids. The mutation confers sensitivity to uv and methyl methane sulfonate in both haploids and diploids. Even though mutation induction by uv is restored to wild-type levels in MATa/MATa mms3-1/mms3-1 or MATα/MATα mms3-1/mms3-1 diploids, such strains still retain sensitivity to the lethal effects of uv. Survival after uv irradiation in mms3-1 rad double mutant combinations indicates that mms3-1 is epistatic to rad6-1 whereas non-epistatic interactions are observed with rad3 and rad52 mutants. When present in the homozygous state in MATa/MATα his1-1/his1-315 heteroallelic diploids, mms3-1 was found to lower uv-induced mitotic recombination

  5. The Analysis of A Frequent TMPRSS3 Allele Containing P.V116M and P.V291L in A Cis Configuration among Deaf Koreans

    Directory of Open Access Journals (Sweden)

    Ah Reum Kim

    2017-10-01

    Full Text Available We performed targeted re-sequencing to identify the genetic etiology of early-onset postlingual deafness and encountered a frequent TMPRSS3 allele harboring two variants in a cis configuration. We aimed to evaluate the pathogenicity of the allele. Among 88 cochlear implantees with autosomal recessive non-syndromic hearing loss, subjects with GJB2 and SLC26A4 mutations were excluded. Thirty-one probands manifesting early-onset postlingual deafness were sorted. Through targeted re-sequencing, we detected two families with a TMPRSS3 mutant allele containing p.V116M and p.V291L in a cis configuration, p.[p.V116M; p.V291L]. A minor allele frequency was calculated and proteolytic activity was measured. A p.[p.V116M; p.V291L] allele demonstrated a significantly higher frequency compared to normal controls and merited attention due to its high frequency (4.84%, 3/62. The first family showed a novel deleterious splice site variant—c.783-1G>A—in a trans allele, while the other showed homozygosity. The progression to deafness was noted within the first decade, suggesting DFNB10. The proteolytic activity was significantly reduced, confirming the severe pathogenicity. This frequent mutant allele significantly contributes to early-onset postlingual deafness in Koreans. For clinical implication and proper auditory rehabilitation, it is important to pay attention to this allele with a severe pathogenic potential.

  6. Mutational analysis of PVX TGBp3 links subcellular accumulation and protein turnover

    International Nuclear Information System (INIS)

    Ju, H.-J.; Ye, C.-M.; Verchot-Lubicz, Jeanmarie

    2008-01-01

    Potato virus X (PVX) TGBp3 is required for virus cell-to-cell transport, has an N-terminal transmembrane domain, and a C-terminal cytosolic domain. In the absence of virus infection TGBp3:GFP is seen in the cortical and perinuclear ER. In PVX infected cells the TGBp3:GFP fusion is also seen in the nucleoplasm indicating that events during PVX infection trigger entry into the nucleus. Mutational analysis failed to identify a nuclear targeting domain. Mutations inhibiting TGBp3 association with the ER and inhibiting virus movement did not block TGBp3:GFP in the nucleoplasm. A mutation disrupting the N-terminal transmembrane domain of TGBp3 caused the fusion to accumulate in the nucleus indicating that nuclear import is regulated by ER interactions. Tunicamycin, an ER-stress inducing chemical, caused lower levels of GFP and TGBp3:GFP to accumulate in virus infected protoplasts. MG115 and MG132 were used to demonstrate that wild-type and mutant TGBp3:GFP fusions were degraded by the 26S proteasome. These observations are consistent with an ER-associated protein degradation (ERAD) pathway suggesting that PVX TGBp3, similar to aberrant ER proteins, is translocate to the cytoplasm for degradation. Nuclear accumulation of mutant and wild-type TGBp3:GFP is independent of other PVX proteins and may be another feature of an ERAD pathway

  7. Loss-of-function mutations in co-chaperone BAG3 destabilize small HSPs and cause cardiomyopathy.

    Science.gov (United States)

    Fang, Xi; Bogomolovas, Julius; Wu, Tongbin; Zhang, Wei; Liu, Canzhao; Veevers, Jennifer; Stroud, Matthew J; Zhang, Zhiyuan; Ma, Xiaolong; Mu, Yongxin; Lao, Dieu-Hung; Dalton, Nancy D; Gu, Yusu; Wang, Celine; Wang, Michael; Liang, Yan; Lange, Stephan; Ouyang, Kunfu; Peterson, Kirk L; Evans, Sylvia M; Chen, Ju

    2017-08-01

    Defective protein quality control (PQC) systems are implicated in multiple diseases. Molecular chaperones and co-chaperones play a central role in functioning PQC. Constant mechanical and metabolic stress in cardiomyocytes places great demand on the PQC system. Mutation and downregulation of the co-chaperone protein BCL-2-associated athanogene 3 (BAG3) are associated with cardiac myopathy and heart failure, and a BAG3 E455K mutation leads to dilated cardiomyopathy (DCM). However, the role of BAG3 in the heart and the mechanisms by which the E455K mutation leads to DCM remain obscure. Here, we found that cardiac-specific Bag3-KO and E455K-knockin mice developed DCM. Comparable phenotypes in the 2 mutants demonstrated that the E455K mutation resulted in loss of function. Further experiments revealed that the E455K mutation disrupted the interaction between BAG3 and HSP70. In both mutants, decreased levels of small heat shock proteins (sHSPs) were observed, and a subset of proteins required for cardiomyocyte function was enriched in the insoluble fraction. Together, these observations suggest that interaction between BAG3 and HSP70 is essential for BAG3 to stabilize sHSPs and maintain cardiomyocyte protein homeostasis. Our results provide insight into heart failure caused by defects in BAG3 pathways and suggest that increasing BAG3 protein levels may be of therapeutic benefit in heart failure.

  8. Mutations in ALDH1A3 represent a frequent cause of microphthalmia/anophthalmia in consanguineous families.

    Science.gov (United States)

    Abouzeid, Hana; Favez, Tatiana; Schmid, Angélique; Agosti, Céline; Youssef, Mohammed; Marzouk, Iman; El Shakankiry, Nihal; Bayoumi, Nader; Munier, Francis L; Schorderet, Daniel F

    2014-08-01

    Anophthalmia or microphthalmia (A/M), characterized by absent or small eye, can be unilateral or bilateral and represent developmental anomalies due to the mutations in several genes. Recently, mutations in aldehyde dehydrogenase family 1, member A3 (ALDH1A3) also known as retinaldehyde dehydrogenase 3, have been reported to cause A/M. Here, we screened a cohort of 75 patients with A/M and showed that mutations in ALDH1A3 occurred in six families. Based on this series, we estimate that mutations in ALDH1A3 represent a major cause of A/M in consanguineous families, and may be responsible for approximately 10% of the cases. Screening of this gene should be performed in a first line of investigation, together with SOX2. © 2014 WILEY PERIODICALS, INC.

  9. Fibroblast Growth Factor Receptor 3 (FGFR3–Analyses of the S249C Mutation and Protein Expression in Primary Cervical Carcinomas

    Directory of Open Access Journals (Sweden)

    Haiyan Dai

    2001-01-01

    Full Text Available Fibroblast growth factor receptor 3 (FGFR3 seems to play an inhibitory role in bone development, as activating mutations in the gene underlie disorders such as achondroplasia and thanatophoric dysplasia. Findings from multiple myeloma (MM indicate that FGFR3 also can act as an oncogene, and mutation of codon 249 in the fibroblast growth factor receptor 3 (FGFR3 gene was recently detected in 3/12 primary cervical carcinomas. We have analysed 91 cervical carcinomas for this specific S249C mutation using amplification created restriction site methodology (ACRS, and detected no mutations. Immunohistochemistry was performed on 73 of the tumours. Reduced protein staining was seen in 43 (58.8% samples. Six of the tumours (8.2% revealed increased protein staining compared with normal cervical tissue. These patients had a better prognosis than those with reduced or normal levels, although not statistically significant. This report weakens the hypothesis of FGFR3 as an oncogene of importance in cervical carcinomas.

  10. Three mutations switch H7N9 influenza to human-type receptor specificity

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, Robert P.; Peng, Wenjie; Grant, Oliver C.; Thompson, Andrew J.; Zhu, Xueyong; Bouwman, Kim M.; de la Pena, Alba T. Torrents; van Breemen, Marielle J.; Ambepitiya Wickramasinghe, Iresha N.; de Haan, Cornelis A. M.; Yu, Wenli; McBride, Ryan; Sanders, Rogier W.; Woods, Robert J.; Verheije, Monique H.; Wilson, Ian A.; Paulson, James C.; Fernandez-Sesma, Ana

    2017-06-15

    The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.

  11. Three mutations switch H7N9 influenza to human-type receptor specificity.

    Directory of Open Access Journals (Sweden)

    Robert P de Vries

    2017-06-01

    Full Text Available The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA mutation (Q226L that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal to human-type (NeuAcα2-6Gal, as documented for the avian progenitors of the 1957 (H2N2 and 1968 (H3N2 human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.

  12. A novel MEFV gene mutation (A511V) in a Chilean FMF patient ...

    African Journals Online (AJOL)

    Familial Mediterranean fever (FMF) is an autosomal recessive disease which is characterized by recurrent fever and inflammation of serous membranes. A Chilean FMF patient was investigated for MEFV mutations. After DNA extraction, exons 3, 5, 10 and 30UTR region of MEFV gene were analyzed by DNA sequencing ...

  13. Loss-of-function mutations in ATP6V0A2 impair vesicular trafficking, tropoelastin secretion and cell survival.

    NARCIS (Netherlands)

    Hucthagowder, V.; Morava, E.; Kornak, U.; Lefeber, D.J.; Fischer, B.; Dimopoulou, A.; Aldinger, A.; Choi, J.; Davis, E.C.; Abuelo, D.N.; Adamowicz, M.; Al-Aama, J.Y.; Basel-Vanagaite, L.; Fernandez, B.; Greally, M.T.; Gillessen-Kaesbach, G.; Kayserili, H.; Lemyre, E.; Tekin, M.; Turkmen, S.; Tuysuz, B.; Yuksel-Konuk, B.; Mundlos, S.; Maldergem, L. van; Wevers, R.A.; Urban, Z.

    2009-01-01

    Autosomal recessive cutis laxa type 2 (ARCL2), a syndrome of growth and developmental delay and redundant, inelastic skin, is caused by mutations in the a2 subunit of the vesicular ATPase H+-pump (ATP6V0A2). The goal of this study was to define the disease mechanisms that lead to connective tissue

  14. Two truncating USH3A mutations, including one novel, in a German family with Usher syndrome.

    Science.gov (United States)

    Ebermann, Inga; Wilke, Robert; Lauhoff, Thomas; Lübben, Dirk; Zrenner, Eberhart; Bolz, Hanno Jörn

    2007-08-30

    To identify the genetic defect in a German family with Usher syndrome (USH) and linkage to the USH3A locus. DNA samples of five family members (both parents and the three patients) were genotyped with polymorphic microsatellite markers specific for eight USH genes. Three affected family members underwent detailed ocular and audiologic characterization. Symptoms in the patients were compatible with Usher syndrome and show intrafamilial variation, for both hearing loss (ranging from severe to profound with non-linear progression) and vision. Genotyping of microsatellite markers for the different USH loci was in line with a defect in the USH3A gene on chromosome 3q25. Sequence analysis of the USH3A gene revealed two truncating mutations; c.149_152delCAGGinsTGTCCAAT, which has been described previously, and a novel mutation, c.502_503insA, segregating with the phenotype. To date, only 11 USH3A mutations have been described. This is the first description of a German family with USH due to USH3A mutations, including one novel. Our findings indicate that also in the Central European population, USH3A mutations should be considered in cases of USH.

  15. Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: a literature review.

    Science.gov (United States)

    Metcalf, Alexander M; Spurdle, Amanda B

    2014-03-01

    Colorectal cancer (CRC) that displays high microsatellite instability (MSI-H) can be caused by either germline mutations in mismatch repair (MMR) genes, or non-inherited transcriptional silencing of the MLH1 promoter. A correlation between MLH1 promoter methylation, specifically the 'C' region, and BRAF V600E status has been reported in CRC studies. Germline MMR mutations also greatly increase risk of endometrial cancer (EC), but no systematic review has been undertaken to determine if these tumour markers may be useful predictors of MMR mutation status in EC patients. Endometrial cancer cohorts meeting review inclusion criteria encompassed 2675 tumours from 20 studies for BRAF V600E, and 447 tumours from 11 studies for MLH1 methylation testing. BRAF V600E mutations were reported in 4/2675 (0.1%) endometrial tumours of unknown MMR mutation status, and there were 7/823 (0.9%) total sequence variants in exon 11 and 27/1012 (2.7%) in exon 15. Promoter MLH1 methylation was not observed in tumours from 32 MLH1 mutation carriers, or for 13 MSH2 or MSH6 mutation carriers. MMR mutation-negative individuals with tumour MLH1 and PMS2 IHC loss displayed MLH1 methylation in 48/51 (94%) of tumours. We have also detailed specific examples that show the importance of MLH1 promoter region, assay design, and quantification of methylation. This review shows that BRAF mutations occurs so infrequently in endometrial tumours they can be discounted as a useful marker for predicting MMR-negative mutation status, and further studies of endometrial cohorts with known MMR mutation status are necessary to quantify the utility of tumour MLH1 promoter methylation as a marker of negative germline MMR mutation status in EC patients.

  16. Histological transformation after acquired resistance to epidermal growth factor tyrosine kinase inhibitors.

    Science.gov (United States)

    Shao, Yi; Zhong, Dian-Sheng

    2018-04-01

    Non-small-cell lung cancer patients with sensitive epidermal growth factor receptor mutations generally respond well to tyrosine kinase inhibitors (TKIs). However, acquired resistance will eventually develop place after 8-16 months. Several mechanisms contribute to the resistance including T790M mutation, c-Met amplification, epithelial mesenchymal transformation and PIK3CA mutation; however, histological transformation is a rare mechanism. The patterns and mechanisms underlying histological transformation need to be explored. We searched PubMed, EMBASE and search engines Google Scholar, Medical Matrix for literature related to histological transformation. Case reports, cases series, and clinical and basic medical research articles were reviewed. Sixty-one articles were included in this review. Cases of transformation to small-cell lung cancer, squamous cell carcinoma, large-cell neuroendocrine carcinoma and sarcoma after TKI resistance have all been reported. As the clinical course differed dramatically between cases, a new treatment scheme needs to be recruited. The mechanisms underlying histological transformation have not been fully elucidated and probably relate to cancer stem cells, driver genetic alterations under selective pressure or the heterogeneity of the tumor. When TKI resistance develops, we recommend that patients undergo a second biopsy to determine the reason, guide the next treatment and predict the prognosis.

  17. Impact of KRAS, BRAF and PI3KCA mutations in rectal carcinomas treated with neoadjuvant radiochemotherapy and surgery

    International Nuclear Information System (INIS)

    Derbel, Olfa; La Fouchardière, Christelle de; Wang, Qing; Desseigne, Françoise; Rivoire, Michel; Meeus, Pierre; Peyrat, Patrice; Stella, Mattia; Martel-Lafay, Isabelle; Lemaistre, Anne-Isabelle

    2013-01-01

    Conventional treatment for locally advanced rectal cancer usually combines neoadjuvant radiochemotherapy and surgery. Until recently, there have been limited predictive factors (clinical or biological) for rectal tumor response to conventional treatment. KRAS, BRAF and PIK3CA mutations are commonly found in colon cancers. In this study, we aimed to determine the mutation frequencies of KRAS, BRAF and PIK3CA and to establish whether such mutations may be used as prognostic and/or predictive factors in rectal cancer patients. We retrospectively reviewed the clinical and biological data of 98 consecutive operated patients between May 2006 and September 2009. We focused in patients who received surgery in our center after radiochemotherapy and in which tumor samples were available. In the 98 patients with a rectal cancer, the median follow-up time was 28.3 months (4–74). Eight out of ninety-eight patients experienced a local recurrence (8%) and 17/98 developed distant metastasis (17%). KRAS, BRAF and PIK3CA were identified respectively in 23 (23.5%), 2 (2%) and 4 (4%) patients. As described in previous studies, mutations in KRAS and BRAF were mutually exclusive. No patient with local recurrence exhibited KRAS or PIK3CA mutation and one harbored BRAF mutation (12.5%). Of the seventeen patients with distant metastasis (17%), 5 were presenting KRAS mutation (29%), one BRAF (5%) and one PIK3CA mutation (5%). No relationship was seen between PIK3CA, KRAS or BRAF mutation and local or distant recurrences. The frequencies of KRAS, BRAF and PIK3CA mutations in our study were lower than the average frequencies reported in colorectal cancers and no significant correlation was found between local/distant recurrences and KRAS, BRAF or PIK3CA mutations. Future studies with greater number of patients, longer follow-up time and greater power to predict associations are necessary to fully understand this relationship

  18. AIP mutations in Brazilian patients with sporadic pituitary adenomas: a single-center evaluation

    Science.gov (United States)

    Kasuki, Leandro; de Azeredo Lima, Carlos Henrique; Ogino, Liana; Camacho, Aline H S; Chimelli, Leila; Korbonits, Márta

    2017-01-01

    Aryl hydrocarbon receptor-interacting protein (AIP) gene mutations (AIPmut) are the most frequent germline mutations found in apparently sporadic pituitary adenomas (SPA). Our aim was to evaluate the frequency of AIPmut among young Brazilian patients with SPA. We performed an observational cohort study between 2013 and 2016 in a single referral center. AIPmut screening was carried out in 132 SPA patients with macroadenomas diagnosed up to 40 years or in adenomas of any size diagnosed until 18 years of age. Twelve tumor samples were also analyzed. Leukocyte DNA and tumor tissue DNA were sequenced for the entire AIP-coding region for evaluation of mutations. Eleven (8.3%) of the 132 patients had AIPmut, comprising 9/74 (12%) somatotropinomas, 1/38 (2.6%) prolactinoma, 1/10 (10%) corticotropinoma and no non-functioning adenomas. In pediatric patients (≤18 years), AIPmut frequency was 13.3% (2/15). Out of the 5 patients with gigantism, two had AIPmut, both truncating mutations. The Y268* mutation was described in Brazilian patients and the K273Rfs*30 mutation is a novel mutation in our patient. No somatic AIP mutations were found in the 12 tumor samples. A tumor sample from an acromegaly patient harboring the A299V AIPmut showed loss of heterozygosity. In conclusion, AIPmut frequency in SPA Brazilian patients is similar to other populations. Our study identified two mutations exclusively found in Brazilians and also shows, for the first time, loss of heterozygosity in tumor DNA from an acromegaly patient harboring the A299V AIPmut. Our findings corroborate previous observations that AIPmut screening should be performed in young patients with SPA. PMID:29074612

  19. Acquired radioresistance of cancer and the AKT/GSK3β/cyclin D1 overexpression cycle

    International Nuclear Information System (INIS)

    Shimura, Tsutomu

    2011-01-01

    Fractionated radiotherapy (RT) is widely used in cancer therapy for its advantages in the preservation of normal tissues. However, repopulation of surviving tumor cells during fractionated RT limits the efficacy of RT. In fact, repopulating tumors often acquire radioresistance and this is the major cause of failure of RT. We have recently demonstrated that human tumor cells acquire radioresistance when exposed to fractionated radiation (FR) of X-rays every 12 hours for 1 month. The acquired radioresistance was associated with overexpression of cyclin D1, a result of a series of molecular changes; constitutive activation of DNA-PK and AKT with concomitant down-regulation of glycogen synthase kinase-3β (GSK3β) which results in suppression of cyclin D1 proteolysis. Aberrant cyclin D1 overexpression in S-phase induced DNA double strand breaks which activated DNA-PK and established the vicious cycle of cycling D1 overexpression. This overexpression of cyclin D1 is responsible for the radioresistance phenotype of long-term FR cells, since this phenotype was completely abrogated by treatment of FR cells by the AKT/PKB signaling inhibitor (API-2), an AKT inhibitor or by a Cdk4 inhibitor. Thus, targeting the AKT/GSK3β/cyclin D1/Cdk4 pathway can be an efficient modality to suppress acquired radioresistance of tumor cells. In this article, I overview the newly discovered molecular mechanisms underlying acquired radioresistance of tumor cells induced by FR, and propose a strategy for eradication of tumors using fractionated RT by overcoming tumor radioresistance. (author)

  20. The BAG3 gene variants in Polish patients with dilated cardiomyopathy: four novel mutations and a genotype-phenotype correlation.

    Science.gov (United States)

    Franaszczyk, Maria; Bilinska, Zofia T; Sobieszczańska-Małek, Małgorzata; Michalak, Ewa; Sleszycka, Justyna; Sioma, Agnieszka; Małek, Łukasz A; Kaczmarska, Dorota; Walczak, Ewa; Włodarski, Paweł; Hutnik, Łukasz; Milanowska, Blanka; Dzielinska, Zofia; Religa, Grzegorz; Grzybowski, Jacek; Zieliński, Tomasz; Ploski, Rafal

    2014-07-09

    BAG3 gene mutations have been recently implicated as a novel cause of dilated cardiomyopathy (DCM). Our aim was to evaluate the prevalence of BAG3 mutations in Polish patients with DCM and to search for genotype-phenotype correlations. We studied 90 unrelated probands by direct sequencing of BAG3 exons and splice sites. Large deletions/insertions were screened for by quantitative real time polymerase chain reaction (qPCR). We found 5 different mutations in 6 probands and a total of 21 mutations among their relatives: the known p.Glu455Lys mutation (2 families), 4 novel mutations: p.Gln353ArgfsX10 (c.1055delC), p.Gly379AlafsX45 (c.1135delG), p.Tyr451X (c.1353C>A) and a large deletion of 17,990 bp removing BAG3 exons 3-4. Analysis of mutation positive relatives of the probands from this study pooled with those previously reported showed higher DCM prevalence among those with missense vs. truncating mutations (OR = 8.33, P = 0.0058) as well as a difference in age at disease onset between the former and the latter in Kaplan-Meier survival analysis (P = 0.006). Clinical data from our study suggested that in BAG3 mutation carriers acute onset DCM with hemodynamic compromise may be triggered by infection. BAG3 point mutations and large deletions are relatively frequent cause of DCM. Delayed DCM onset associated with truncating vs. non-truncating mutations may be important for genetic counseling.

  1. Real-time resolution of point mutations that cause phenovariance in mice

    Science.gov (United States)

    Wang, Tao; Zhan, Xiaowei; Bu, Chun-Hui; Lyon, Stephen; Pratt, David; Hildebrand, Sara; Choi, Jin Huk; Zhang, Zhao; Zeng, Ming; Wang, Kuan-wen; Turer, Emre; Chen, Zhe; Zhang, Duanwu; Yue, Tao; Wang, Ying; Shi, Hexin; Wang, Jianhui; Sun, Lei; SoRelle, Jeff; McAlpine, William; Hutchins, Noelle; Zhan, Xiaoming; Fina, Maggy; Gobert, Rochelle; Quan, Jiexia; Kreutzer, McKensie; Arnett, Stephanie; Hawkins, Kimberly; Leach, Ashley; Tate, Christopher; Daniel, Chad; Reyna, Carlos; Prince, Lauren; Davis, Sheila; Purrington, Joel; Bearden, Rick; Weatherly, Jennifer; White, Danielle; Russell, Jamie; Sun, Qihua; Tang, Miao; Li, Xiaohong; Scott, Lindsay; Moresco, Eva Marie Y.; McInerney, Gerald M.; Karlsson Hedestam, Gunilla B.; Xie, Yang; Beutler, Bruce

    2015-01-01

    With the wide availability of massively parallel sequencing technologies, genetic mapping has become the rate limiting step in mammalian forward genetics. Here we introduce a method for real-time identification of N-ethyl-N-nitrosourea-induced mutations that cause phenotypes in mice. All mutations are identified by whole exome G1 progenitor sequencing and their zygosity is established in G2/G3 mice before phenotypic assessment. Quantitative and qualitative traits, including lethal effects, in single or multiple combined pedigrees are then analyzed with Linkage Analyzer, a software program that detects significant linkage between individual mutations and aberrant phenotypic scores and presents processed data as Manhattan plots. As multiple alleles of genes are acquired through mutagenesis, pooled “superpedigrees” are created to analyze the effects. Our method is distinguished from conventional forward genetic methods because it permits (1) unbiased declaration of mappable phenotypes, including those that are incompletely penetrant (2), automated identification of causative mutations concurrent with phenotypic screening, without the need to outcross mutant mice to another strain and backcross them, and (3) exclusion of genes not involved in phenotypes of interest. We validated our approach and Linkage Analyzer for the identification of 47 mutations in 45 previously known genes causative for adaptive immune phenotypes; our analysis also implicated 474 genes not previously associated with immune function. The method described here permits forward genetic analysis in mice, limited only by the rates of mutant production and screening. PMID:25605905

  2. Prognostic signature and clonality pattern of recurrently mutated genes in inactive chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Hurtado, A M; Chen-Liang, T-H; Przychodzen, B; Hamedi, C; Muñoz-Ballester, J; Dienes, B; García-Malo, M D; Antón, A I; Arriba, F de; Teruel-Montoya, R; Ortuño, F J; Vicente, V; Maciejewski, J P; Jerez, A

    2015-01-01

    An increasing numbers of patients are being diagnosed with asymptomatic early-stage chronic lymphocytic leukemia (CLL), with no treatment indication at baseline. We applied a high-throughput deep-targeted analysis, especially designed for covering widely TP53 and ATM genes, in 180 patients with inactive disease at diagnosis, to test the independent prognostic value of CLL somatic recurrent mutations. We found that 40/180 patients harbored at least one acquired variant with ATM (n=17, 9.4%), NOTCH1 (n=14, 7.7%), TP53 (n=14, 7.7%) and SF3B1 (n=10, 5.5%) as most prevalent mutated genes. Harboring one ‘sub-Sanger' TP53 mutation granted an independent 3.5-fold increase of probability of needing treatment. Those patients with a double-hit ATM lesion (mutation+11q deletion) had the shorter median time to first treatment (17 months). We found that a genomic variable: TP53 mutations, most of them under the sensitivity of conventional techniques; a cell phenotypic factor: CD38-positive expression; and a classical marker as β2-microglobulin, remained as the unique independent predictors of outcome. The high-throughput determination of TP53 status, particularly in this set of patients frequently lacking high-risk chromosomal aberrations, emerges as a key step, not only for prediction modeling, but also for exploring mutation-specific therapeutic approaches and minimal residual disease monitoring

  3. BAP1 missense mutation c.2054 A>T (p.E685V completely disrupts normal splicing through creation of a novel 5' splice site in a human mesothelioma cell line.

    Directory of Open Access Journals (Sweden)

    Arianne Morrison

    Full Text Available BAP1 is a tumor suppressor gene that is lost or deleted in diverse cancers, including uveal mela¬noma, malignant pleural mesothelioma (MPM, clear cell renal carcinoma, and cholangiocarcinoma. Recently, BAP1 germline mutations have been reported in families with combinations of these same cancers. A particular challenge for mutation screening is the classification of non-truncating BAP1 sequence variants because it is not known whether these subtle changes can affect the protein function sufficiently to predispose to cancer development. Here we report mRNA splicing analysis on a homozygous substitution mutation, BAP1 c. 2054 A&T (p.Glu685Val, identified in an MPM cell line derived from a mesothelioma patient. The mutation occurred at the 3rd nucleotide from the 3' end of exon 16. RT-PCR, cloning and subsequent sequencing revealed several aberrant splicing products not observed in the controls: 1 a 4 bp deletion at the end of exon 16 in all clones derived from the major splicing product. The BAP1 c. 2054 A&T mutation introduced a new 5' splice site (GU, which resulted in the deletion of 4 base pairs and presumably protein truncation; 2 a variety of alternative splicing products that led to retention of different introns: introns 14-16; introns 15-16; intron 14 and intron 16; 3 partial intron 14 and 15 retentions caused by activation of alternative 3' splice acceptor sites (AG in the introns. Taken together, we were unable to detect any correctly spliced mRNA transcripts in this cell line. These results suggest that aberrant splicing caused by this mutation is quite efficient as it completely abolishes normal splicing through creation of a novel 5' splice site and activation of cryptic splice sites. These data support the conclusion that BAP1 c.2054 A&T (p.E685V variant is a pathogenic mutation and contributes to MPM through disruption of normal splicing.

  4. Dynamics of ASXL1 mutation and other associated genetic alterations during disease progression in patients with primary myelodysplastic syndrome

    International Nuclear Information System (INIS)

    Chen, T-C; Hou, H-A; Chou, W-C; Tang, J-L; Kuo, Y-Y; Chen, C-Y; Tseng, M-H; Huang, C-F; Lai, Y-J; Chiang, Y-C; Lee, F-Y; Liu, M-C; Liu, C-W; Liu, C-Y; Yao, M; Huang, S-Y; Ko, B-S; Hsu, S-C; Wu, S-J; Tsay, W; Chen, Y-C; Tien, H-F

    2014-01-01

    Recently, mutations of the additional sex comb-like 1 (ASXL1) gene were identified in patients with myelodysplastic syndrome (MDS), but the interaction of this mutation with other genetic alterations and its dynamic changes during disease progression remain to be determined. In this study, ASXL1 mutations were identified in 106 (22.7%) of the 466 patients with primary MDS based on the French-American-British (FAB) classification and 62 (17.1%) of the 362 patients based on the World Health Organization (WHO) classification. ASXL1 mutation was closely associated with trisomy 8 and mutations of RUNX1, EZH2, IDH, NRAS, JAK2, SETBP1 and SRSF2, but was negatively associated with SF3B1 mutation. Most ASXL1-mutated patients (85%) had concurrent other gene mutations at diagnosis. ASXL1 mutation was an independent poor prognostic factor for survival. Sequential studies showed that the original ASXL1 mutation remained unchanged at disease progression in all 32 ASXL1-mutated patients but were frequently accompanied with acquisition of mutations of other genes, including RUNX1, NRAS, KRAS, SF3B1, SETBP1 and chromosomal evolution. On the other side, among the 80 ASXL1-wild patients, only one acquired ASXL1 mutation at leukemia transformation. In conclusion, ASXL1 mutations in association with other genetic alterations may have a role in the development of MDS but contribute little to disease progression

  5. Clinical and genetic investigation of a Japanese family with cardiac fabry disease. Identification of a novel α-galactosidase A missense mutation (G195V).

    Science.gov (United States)

    Nakagawa, Naoki; Maruyama, Hiroki; Ishihara, Takayuki; Seino, Utako; Kawabe, Jun-ichi; Takahashi, Fumihiko; Kobayashi, Motoi; Yamauchi, Atsushi; Sasaki, Yukie; Sakamoto, Naka; Ota, Hisanobu; Tanabe, Yasuko; Takeuchi, Toshiharu; Takenaka, Toshihiro; Kikuchi, Kenjiro; Hasebe, Naoyuki

    2011-01-01

    Fabry disease is an X-linked lysosomal storage disorder caused by mutations of the α-galactosidase A gene (GLA), and the disease is a relatively prevalent cause of left ventricular hypertrophy mimicking idiopathic hypertrophic cardiomyopathy. We assessed clinically 5 patients of a three-generation family and also searched for GLA mutations in 10 family members. The proband had left ventricular hypertrophy with localized thinning in the basal posterior wall and late gadolinium enhancement (LGE) in the near-circumferential wall in cardiovascular magnetic resonance images and her sister had vasospastic angina pectoris without organic stenosis of the coronary arteries. LGE notably appeared in parallel with decreased α-galactosidase A activity and increased NT-pro BNP in our patients. We detected a new GLA missense mutation (G195V) in exon 4, resulting in a glycine-to-valine substitution. Of the 10 family members, 5 family members each were positive and negative for this mutation. These new data extend our clinical and molecular knowledge of GLA gene mutations and confirm that a novel missense mutation in the GLA gene is important not only for a precise diagnosis of heterozygous status, but also for confirming relatives who are negative for this mutation.

  6. A novel PAX3 mutation in a Japanese boy with Waardenburg syndrome type 1.

    Science.gov (United States)

    Yoshida, Yu; Doi, Rieko; Adachi, Kaori; Nanba, Eiji; Kodani, Isamu; Ryoke, Kazuo

    2016-01-01

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant disorder characterized by hair hypopigmentation, abnormal iris pigmentation, and congenital hearing loss. WS1 is caused by mutations in paired box gene 3 (PAX3). We identified a novel PAX3 mutation (c.1107 C>G, p.Ser369Arg) in a Japanese WS1 patient showing abnormal right iris pigmentation, right-sided congenital hearing loss, synophrys, incomplete left cleft lip, and cryptorchidism.

  7. A novel PAX3 mutation in a Japanese boy with Waardenburg syndrome type 1

    OpenAIRE

    Yoshida, Yu; Doi, Rieko; Adachi, Kaori; Nanba, Eiji; Kodani, Isamu; Ryoke, Kazuo

    2016-01-01

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant disorder characterized by hair hypopigmentation, abnormal iris pigmentation, and congenital hearing loss. WS1 is caused by mutations in paired box gene 3 (PAX3). We identified a novel PAX3 mutation (c.1107 C>G, p.Ser369Arg) in a Japanese WS1 patient showing abnormal right iris pigmentation, right-sided congenital hearing loss, synophrys, incomplete left cleft lip, and cryptorchidism.

  8. Phosphatidyl inositol-3 kinase (PIK3CA) E545K mutation confers cisplatin resistance and a migratory phenotype in cervical cancer cells

    Science.gov (United States)

    Arjumand, Wani; Merry, Cole D.; Wang, Chen; Saba, Elias; McIntyre, John B.; Fang, Shujuan; Kornaga, Elizabeth; Ghatage, Prafull; Doll, Corinne M.; Lees, Susan P.

    2016-01-01

    The phosphatidylinositol-3 kinase (PI3K)/Akt/mTOR signaling pathway is activated in many human cancers. Previously, we reported that patients with early stage cervical cancer whose tumours harbour PIK3CA exon 9 or 20 mutations have worse overall survival in response to treatment with radiation and cisplatin than patients with wild-type PIK3CA. The purpose of this study was to determine whether PIK3CA-E545K mutation renders cervical cancer cells more resistant to cisplatin and/or radiation, and whether PI3K inhibition reverses the phenotype. We found that CaSki cells that are heterozygous for the PIK3CA-E545K mutation are more resistant to cisplatin or cisplatin plus radiation than either HeLa or SiHa cells that express only wild-type PIK3CA. Similarly, HeLa cells engineered to stably express PIK3CA-E545K were more resistant to cisplatin or cisplatin plus radiation than cells expressing only wild-type PIK3CA or with PIK3CA depleted. Cells expressing the PIK3CA-E545K mutation also had constitutive PI3K pathway activation and increased cellular migration and each of these phenotypes was reversed by treatment with the PI3K inhibitor GDC-0941/Pictilisib. Our results suggests that cervical cancer patients whose tumours are positive for the PIK3CA-E545K mutation may benefit from PI3K inhibitor therapy in concert with standard cisplatin and radiation therapy. PMID:27489350

  9. Artemisinin resistance without pfkelch13 mutations in Plasmodium falciparum isolates from Cambodia.

    Science.gov (United States)

    Mukherjee, Angana; Bopp, Selina; Magistrado, Pamela; Wong, Wesley; Daniels, Rachel; Demas, Allison; Schaffner, Stephen; Amaratunga, Chanaki; Lim, Pharath; Dhorda, Mehul; Miotto, Olivo; Woodrow, Charles; Ashley, Elizabeth A; Dondorp, Arjen M; White, Nicholas J; Wirth, Dyann; Fairhurst, Rick; Volkman, Sarah K

    2017-05-12

    Artemisinin resistance is associated with delayed parasite clearance half-life in vivo and correlates with ring-stage survival under dihydroartemisinin in vitro. Both phenotypes are associated with mutations in the PF3D7_1343700 pfkelch13 gene. Recent spread of artemisinin resistance and emerging piperaquine resistance in Southeast Asia show that artemisinin combination therapy, such as dihydroartemisinin-piperaquine, are losing clinical effectiveness, prompting investigation of drug resistance mechanisms and development of strategies to surmount emerging anti-malarial resistance. Sixty-eight parasites isolates with in vivo clearance data were obtained from two Tracking Resistance to Artemisinin Collaboration study sites in Cambodia, culture-adapted, and genotyped for pfkelch13 and other mutations including pfmdr1 copy number; and the RSA 0-3h survival rates and response to antimalarial drugs in vitro were measured for 36 of these isolates. Among these 36 parasites one isolate demonstrated increased ring-stage survival for a PfKelch13 mutation (D584V, RSA 0-3h  = 8%), previously associated with slow clearance but not yet tested in vitro. Several parasites exhibited increased ring-stage survival, yet lack pfkelch13 mutations, and one isolate showed evidence for piperaquine resistance. This study of 68 culture-adapted Plasmodium falciparum clinical isolates from Cambodia with known clearance values, associated the D584V PfKelch13 mutation with increased ring-stage survival and identified parasites that lack pfkelch13 mutations yet exhibit increased ring-stage survival. These data suggest mutations other than those found in pfkelch13 may be involved in conferring artemisinin resistance in P. falciparum. Piperaquine resistance was also detected among the same Cambodian samples, consistent with reports of emerging piperaquine resistance in the field. These culture-adapted parasites permit further investigation of mechanisms of both artemisinin and piperaquine

  10. Characterizations of a loss-of-function mutation in the Kir3.4 channel subunit

    DEFF Research Database (Denmark)

    Calloe, Kirstine; Ravn, Lasse Steen; Schmitt, Nicole

    2007-01-01

    and two-electrode voltage-clamp revealed that Kir3.4-G247R basal current was reduced compared to wild-type Kir3.4 and co-expression with the muscarinic acetylcholine receptor type 2 showed that also the acetylcholine induced current was severely reduced in Kir3.4-G247R, indicating that the mutation...... the lack of clear clinical manifestations and further studies are necessary to elucidate if mutations in Kir3.4 are predisposing AF. Udgivelsesdato: 2007-Dec-28...

  11. No Evidence for JAK2(V617F) Mutation in Monoclonal B Cells in 2 Patients with Polycythaemia Vera and Concurrent Monoclonal B Cell Disorder

    NARCIS (Netherlands)

    Stijnis, C.; Kroes, W. G. M.; Balkassmi, S.; Marijt, E. W. A.; van Rossum, A. P.; Bakker, E.; Vlasveld, L. T.

    2012-01-01

    Occurrence of Philadelphia chromosome-negative myeloproliferative neoplasms (Ph- MPN) and lymphoproliferative disorders, like B cell chronic lymphocytic leukaemia (B-CLL), in the same patient is rare. JAK2(V617F) mutation was recently introduced as a powerful diagnostic tool for Ph- MPN. JAK2(V617F)

  12. Identification of p.A684V missense mutation in the WFS1 gene as a frequent cause of autosomal dominant optic atrophy and hearing impairment

    DEFF Research Database (Denmark)

    Rendtorff, Nanna D; Lodahl, Marianne; Boulahbel, Houda

    2011-01-01

    DNA deletions were detected in muscle from one p.A684V patient analyzed. Finally, wolframin p.A684V mutant ectopically expressed in HEK cells showed reduced protein levels compared to wild-type wolframin, strongly indicating that the mutation is disease-causing. Our data support OA and SNHL...

  13. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine.

    Science.gov (United States)

    Stenson, Peter D; Mort, Matthew; Ball, Edward V; Shaw, Katy; Phillips, Andrew; Cooper, David N

    2014-01-01

    The Human Gene Mutation Database (HGMD®) is a comprehensive collection of germline mutations in nuclear genes that underlie, or are associated with, human inherited disease. By June 2013, the database contained over 141,000 different lesions detected in over 5,700 different genes, with new mutation entries currently accumulating at a rate exceeding 10,000 per annum. HGMD was originally established in 1996 for the scientific study of mutational mechanisms in human genes. However, it has since acquired a much broader utility as a central unified disease-oriented mutation repository utilized by human molecular geneticists, genome scientists, molecular biologists, clinicians and genetic counsellors as well as by those specializing in biopharmaceuticals, bioinformatics and personalized genomics. The public version of HGMD (http://www.hgmd.org) is freely available to registered users from academic institutions/non-profit organizations whilst the subscription version (HGMD Professional) is available to academic, clinical and commercial users under license via BIOBASE GmbH.

  14. Mutation breeding newsletter. No. 3

    International Nuclear Information System (INIS)

    1974-01-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants

  15. Mutation breeding newsletter. No. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1974-01-01

    This issue of the Newsletter presents reports and rea search abstracts on mutation breeding programs using radiation or chemical mutagenesis to improve productivity, introduce disease resistance or induce morphological changes in crop plants.

  16. Use of gamma radiation in floriculture industry for development of new varieties through induced mutation

    International Nuclear Information System (INIS)

    Datta, S.K.

    2002-01-01

    Nuclear radiation (gamma rays) can create changes in genetic make up of plant material through mutation. Gamma ray induced mutation is now an established method for crop improvement. It is well known that the crops which are propagated vegetatively are very suitable for the application of mutation breeding methods. In floriculture industry there is always demand and necessity of new and novel ornamental varieties. Flower colour and shape are the most important components of novelties. Gamma rays have been most successfully use to produce quite a large number of new promising,varieties in different ornamental (Bougainvillea - 4, Perennial portulaca-6, Chrysanthemum-43, Hibiscus-1, Rose-16, Tuberose-2, Lantana depressa-3 etc.) plants by bringing about genetic changes at Floriculture Section, National Botanical Research. Institute, Lucknow, India. Research carried out covers radiosensitivity, selection of materials, methods of exposure to gamma rays, suitable dose of gamma rays, detection of mutants, isolation of mutants and commercial exploitation of mutants. A good number of mutant varieties have been well accepted in the floriculture industry. The mutant varieties are with new flower colour and shape. More than three decades of applied mutation breeding work has now established beyond doubt that mutation breeding will constitute an excellent supplement to the conventional methods for development of new varieties . Detection of somatic, mutations in flower colour/shape in different vegetative generations (M 1 V 1 , M 1 V 2 , M 1 V 3 and even in later vegetative generations), mutation frequency and spectrum relationship with dose of gamma radiation have been precisely determined. Studies have clearly proved that mutation breeding technique can be exploited for the creation of new and novel ornamental cultivars of commercial importance by inducing genetic variation in already adapted, modern genotypes and can also enrich the germplasm of ornamental horticulture

  17. Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients.

    Science.gov (United States)

    Cabagnols, Xénia; Favale, Fabrizia; Pasquier, Florence; Messaoudi, Kahia; Defour, Jean Philippe; Ianotto, Jean Christophe; Marzac, Christophe; Le Couédic, Jean Pierre; Droin, Nathalie; Chachoua, Ilyas; Favier, Remi; Diop, M'boyba Khadija; Ugo, Valérie; Casadevall, Nicole; Debili, Najet; Raslova, Hana; Bellanné-Chantelot, Christine; Constantinescu, Stefan N; Bluteau, Olivier; Plo, Isabelle; Vainchenker, William

    2016-01-21

    Mutations in signaling molecules of the cytokine receptor axis play a central role in myeloproliferative neoplasm (MPN) pathogenesis. Polycythemia vera is mainly related to JAK2 mutations, whereas a wider mutational spectrum is detected in essential thrombocythemia (ET) with mutations in JAK2, the thrombopoietin (TPO) receptor (MPL), and the calreticulin (CALR) genes. Here, we studied the mutational profile of 17 ET patients negative for JAK2V617F, MPLW515K/L, and CALR mutations, using whole-exome sequencing and next-generation sequencing (NGS) targeted on JAK2 and MPL. We found several signaling mutations including JAK2V617F at very low allele frequency, 1 homozygous SH2B3 mutation, 1 MPLS505N, 1 MPLW515R, and 2 MPLS204P mutations. In the remaining patients, 4 presented a clonal and 7 a polyclonal hematopoiesis, suggesting that certain triple-negative ETs are not MPNs. NGS on 26 additional triple-negative ETs detected only 1 MPLY591N mutation. Functional studies on MPLS204P and MPLY591N revealed that they are weak gain-of-function mutants increasing MPL signaling and conferring either TPO hypersensitivity or independence to expressing cells, but with a low efficiency. Further studies should be performed to precisely determine the frequency of MPLS204 and MPLY591 mutants in a bigger cohort of MPN. © 2016 by The American Society of Hematology.

  18. Clonal hematopoiesis in acquired aplastic anemia.

    Science.gov (United States)

    Ogawa, Seishi

    2016-07-21

    Clonal hematopoiesis (CH) in aplastic anemia (AA) has been closely linked to the evolution of late clonal disorders, including paroxysmal nocturnal hemoglobinuria and myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML), which are common complications after successful immunosuppressive therapy (IST). With the advent of high-throughput sequencing of recent years, the molecular aspect of CH in AA has been clarified by comprehensive detection of somatic mutations that drive clonal evolution. Genetic abnormalities are found in ∼50% of patients with AA and, except for PIGA mutations and copy-neutral loss-of-heterozygosity, or uniparental disomy (UPD) in 6p (6pUPD), are most frequently represented by mutations involving genes commonly mutated in myeloid malignancies, including DNMT3A, ASXL1, and BCOR/BCORL1 Mutations exhibit distinct chronological profiles and clinical impacts. BCOR/BCORL1 and PIGA mutations tend to disappear or show stable clone size and predict a better response to IST and a significantly better clinical outcome compared with mutations in DNMT3A, ASXL1, and other genes, which are likely to increase their clone size, are associated with a faster progression to MDS/AML, and predict an unfavorable survival. High frequency of 6pUPD and overrepresentation of PIGA and BCOR/BCORL1 mutations are unique to AA, suggesting the role of autoimmunity in clonal selection. By contrast, DNMT3A and ASXL1 mutations, also commonly seen in CH in the general population, indicate a close link to CH in the aged bone marrow, in terms of the mechanism for selection. Detection and close monitoring of somatic mutations/evolution may help with prediction and diagnosis of clonal evolution of MDS/AML and better management of patients with AA. © 2016 by The American Society of Hematology.

  19. Atlanto-axial malformation and instability in dogs with pituitary dwarfism due to an LHX3 mutation.

    Science.gov (United States)

    Voorbij, A M W Y; Meij, B P; van Bruggen, L W L; Grinwis, G C M; Stassen, Q E M; Kooistra, H S

    2015-01-01

    Canine pituitary dwarfism or combined pituitary hormone deficiency (CPHD) in shepherd dogs is associated with an LHX3 mutation and can lead to a wide range of clinical manifestations. Some dogs with CPHD have neurological signs that are localized to the cervical spine. In human CPHD, caused by an LHX3 mutation, anatomical abnormalities in the atlanto-axial (C1-C2) joint have been described. To evaluate the presence of atlanto-axial malformations in dogs with pituitary dwarfism associated with an LHX3 mutation and to investigate the degree of similarity between the atlanto-axial anomalies found in canine and human CPHD patients with an LHX3 mutation. Three client-owned Czechoslovakian wolfdogs and 1 client-owned German shepherd dog, previously diagnosed with pituitary dwarfism caused by an LHX3 mutation, with neurological signs indicating a cervical spinal disorder. Radiography, computed tomography, and magnetic resonance imaging of the cranial neck and skull, necropsy, and histology. Diagnostic imaging identified abnormal positioning of the dens axis and incomplete ossification of the suture lines between the ossification centers of the atlas with concurrent atlanto-axial instability and dynamic compression of the spinal cord by the dens axis. The malformations and aberrant motion at C1-C2 were confirmed at necropsy and histology. The atlanto-axial abnormalities of the dwarf dogs resemble those encountered in human CPHD patients with an LHX3 mutation. These findings suggest an association between the LHX3 mutation in dogs with CPHD and atlanto-axial malformations. Consequently, pituitary dwarfs should be monitored closely for neurological signs. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Internal Medicine.

  20. A novel PAX3 mutation in a Japanese boy with Waardenburg syndrome type 1

    Science.gov (United States)

    Yoshida, Yu; Doi, Rieko; Adachi, Kaori; Nanba, Eiji; Kodani, Isamu; Ryoke, Kazuo

    2016-01-01

    Waardenburg syndrome type 1 (WS1) is a rare autosomal dominant disorder characterized by hair hypopigmentation, abnormal iris pigmentation, and congenital hearing loss. WS1 is caused by mutations in paired box gene 3 (PAX3). We identified a novel PAX3 mutation (c.1107 C>G, p.Ser369Arg) in a Japanese WS1 patient showing abnormal right iris pigmentation, right-sided congenital hearing loss, synophrys, incomplete left cleft lip, and cryptorchidism. PMID:27081571

  1. [PAX3 gene mutation analysis for two Waardenburg syndrome type Ⅰ families and their prenatal diagnosis].

    Science.gov (United States)

    Bai, Y; Liu, N; Kong, X D; Yan, J; Qin, Z B; Wang, B

    2016-12-07

    Objective: To analyze the mutations of PAX3 gene in two Waardenburg syndrome type Ⅰ (WS1) pedigrees and make prenatal diagnosis for the high-risk 18-week-old fetus. Methods: PAX3 gene was first analyzed by Sanger sequencing and multiplex ligation-dependent probe amplification(MLPA) for detecting pathogenic mutation of the probands of the two pedigrees. The mutations were confirmed by MLPA and Sanger in parents and unrelated healthy individuals.Prenatal genetic diagnosis for the high-risk fetus was performed by amniotic fluid cell after genotyping. Results: A heterozygous PAX3 gene gross deletion (E7 deletion) was identified in all patients from WS1-01 family, and not found in 20 healthy individuals.Prenatal diagnosis in WS1-01 family indicated that the fetus was normal. Molecular studies identified a novel deletion mutation c. 1385_1386delCT within the PAX3 gene in all affected WS1-02 family members, but in none of the unaffected relatives and 200 healthy individuals. Conclusions: PAX3 gene mutation is etiological for two WS1 families. Sanger sequencing plus MLPA is effective and accurate for making gene diagnosis and prenatal diagnosis.

  2. Detection of the V1016G mutation in the voltage-gated sodium channel gene of Aedes aegypti (Diptera: Culicidae) by allele-specific PCR assay, and its distribution and effect on deltamethrin resistance in Thailand.

    Science.gov (United States)

    Stenhouse, Steven A; Plernsub, Suriya; Yanola, Jintana; Lumjuan, Nongkran; Dantrakool, Anchalee; Choochote, Wej; Somboon, Pradya

    2013-08-30

    Resistance to pyrethroid insecticides is widespread among populations of Aedes aegypti, the main vector for the dengue virus. Several different point mutations within the voltage-gated sodium channel (VGSC) gene contribute to such resistance. A mutation at position 1016 in domain II, segment 6 of the VGSC gene in Ae. aegypti leads to a valine to glycine substitution (V1016G) that confers resistance to deltamethrin. This study developed and utilized an allele-specific PCR (AS-PCR) assay that could be used to detect the V1016G mutation. The assay was validated against a number of sequenced DNA samples of known genotype and was determined to be in complete agreement. Larvae and pupae were collected from various localities throughout Thailand. Samples were reared to adulthood and their resistance status against deltamethrin was determined by standard WHO susceptibility bioassays. Deltamethrin-resistant and susceptible insects were then genotyped for the V1016G mutation. Additionally, some samples were genotyped for a second mutation at position 1534 in domain III (F1534C) which is also known to confer pyrethroid resistance. The bioassay results revealed an overall mortality of 77.6%. Homozygous 1016G individuals survived at higher rates than either heterozygous or wild-type (1016 V) mosquitoes. The 1016G mutation was significantly and positively associated with deltamethrin resistance and was widely distributed throughout Thailand. Interestingly, wild-type 1016 V mosquitoes tested were homozygous for the 1534C mutation, and all heterozygous mosquitoes were also heterozygous for 1534C. Mutant homozygous (G/G) mosquitoes expressed the wild-type (F/F) at position 1534. However, the presence of the 1534C mutation was not associated with deltamethrin resistance. Our bioassay results indicate that all populations sampled display some degree of resistance to deltamethrin. Homozygous 1016G mosquitoes were far likelier to survive such exposure. However, resistance in some

  3. Germline mutation of CBL is associated with moyamoya disease in a child with juvenile myelomonocytic leukemia and Noonan syndrome-like disorder.

    Science.gov (United States)

    Hyakuna, Nobuyuki; Muramatsu, Hideki; Higa, Takeshi; Chinen, Yasutsugu; Wang, Xinan; Kojima, Seiji

    2015-03-01

    Germline mutations in CBL have been identified in patients with Noonan syndrome-like phenotypes, while juvenile myelomonocytic leukemia (JMML) harbors duplication of a germline CBL, resulting in acquired isodisomy. The association between moyamoya disease and Noonan syndrome carrying a PTPN11 mutation has recently been reported. We present a patient with JMML who developed moyamoya disease and neovascular glaucoma. Our patient exhibited a Noonan syndrome-like phenotype. Genetic analysis revealed acquired isodisomy and a germline heterozygous mutation in CBL. This is a rare case of CBL mutation associated with moyamoya disease. Prolonged RAS pathway signaling may cause disruption of cerebrovascular development. © 2014 Wiley Periodicals, Inc.

  4. Stac3 has a direct role in skeletal muscle-type excitation-contraction coupling that is disrupted by a myopathy-causing mutation.

    Science.gov (United States)

    Polster, Alexander; Nelson, Benjamin R; Olson, Eric N; Beam, Kurt G

    2016-09-27

    In skeletal muscle, conformational coupling between CaV1.1 in the plasma membrane and type 1 ryanodine receptor (RyR1) in the sarcoplasmic reticulum (SR) is thought to underlie both excitation-contraction (EC) coupling Ca(2+) release from the SR and retrograde coupling by which RyR1 increases the magnitude of the Ca(2+) current via CaV1.1. Recent work has shown that EC coupling fails in muscle from mice and fish null for the protein Stac3 (SH3 and cysteine-rich domain 3) but did not establish the functional role of Stac3 in the CaV1.1-RyR1 interaction. We investigated this using both tsA201 cells and Stac3 KO myotubes. While confirming in tsA201 cells that Stac3 could support surface expression of CaV1.1 (coexpressed with its auxiliary β1a and α2-δ1 subunits) and the generation of large Ca(2+) currents, we found that without Stac3 the auxiliary γ1 subunit also supported membrane expression of CaV1.1/β1a/α2-δ1, but that this combination generated only tiny Ca(2+) currents. In Stac3 KO myotubes, there was reduced, but still substantial CaV1.1 in the plasma membrane. However, the CaV1.1 remaining in Stac3 KO myotubes did not generate appreciable Ca(2+) currents or EC coupling Ca(2+) release. Expression of WT Stac3 in Stac3 KO myotubes fully restored Ca(2+) currents and EC coupling Ca(2+) release, whereas expression of Stac3W280S (containing the Native American myopathy mutation) partially restored Ca(2+) currents but only marginally restored EC coupling. We conclude that membrane trafficking of CaV1.1 is facilitated by, but does not require, Stac3, and that Stac3 is directly involved in conformational coupling between CaV1.1 and RyR1.

  5. BRAF mutations in conjunctival melanoma

    DEFF Research Database (Denmark)

    Larsen, Ann-Cathrine; Dahl, Christina; Dahmcke, Christina M.

    2016-01-01

    with atypia. BRAF mutations were identified in 39 of 111 (35%) cases. The rate ratio of BRAF-mutated versus BRAF-wild-type melanoma did not change over time. BRAF mutations were associated with T1 stage (p = 0.007), young age (p = 0.001), male gender (p = 0.02), sun-exposed location (p = 0.01), mixed....../non-pigmented tumour colour (p = 0.02) and nevus origin (p = 0.005), but did not associate with prognosis. BRAF status in conjunctival melanoma and paired premalignant lesions corresponded in 19 of 20 cases. Immunohistochemistry detected BRAF V600E mutations with a sensitivity of 0.94 and a specificity of 1...

  6. Strategies for Overcoming Resistance in Tumours Harboring BRAF Mutations

    Directory of Open Access Journals (Sweden)

    Nourah Mohammad Obaid

    2017-03-01

    Full Text Available The development of resistance to previously effective treatments has been a challenge for health care providers and a fear for patients undergoing cancer therapy. This is an unfortunately frequent occurrence for patients undergoing targeted therapy for tumours harboring the activating V600E mutation of the BRAF gene. Since the initial identification of the BRAF mutation in 2002, a series of small molecular inhibitors that target the BRAFV600E have been developed, but intrinsic and acquired resistance to these drugs has presented an ongoing challenge. More recently, improvements in therapy have been achieved by combining the use of BRAF inhibitors with other drugs, such as inhibitors of the downstream effector mitogen activated protein kinase (MAPK/extracellular-signal regulated kinase (ERK kinase (MEK. Despite improved success in response rates and in delaying resistance using combination therapy, ultimately, the acquisition of resistance remains a concern. Recent research articles have shed light on some of the underlying mechanisms of this resistance and have proposed numerous strategies that might be employed to overcome or avoid resistance to targeted therapies. This review will explore some of the resistance mechanisms, compare what is known in melanoma cancer to colorectal cancer, and discuss strategies under development to manage the development of resistance.

  7. Low frequency of c-MPL gene mutations in Iranian patients with Philadelphia-negative myeloproliferative disorders.

    Science.gov (United States)

    Ghotaslou, A; Nadali, F; Chahardouli, B; Alizad Ghandforosh, N; Rostami, S H; Alimoghaddam, K; Ghavamzadeh, A

    2015-01-01

    Myeloproliferative disorders are a group of diseases characterized by increased proliferation of myeloid lineage. In addition to JAK2V617F mutation, several mutations in the c-MPL gene have been reported in patients with philadelphia-negative chronic myeloproliferative disorders that could be important in the pathogenesis of diseases. The aim of the present study was to investigate the frequency of c-MPL and JAK2V617F mutations in Iranian patients with Philadelphia-negativemyeloproliferative disorders. Peripheral blood samples were collected from 60 patients with Philadelphia-negative MPD) Subgroups ET and PMF) and 25 healthy subjects as control group. The mutation status of c-MPL and Jak2V617F were investigated by using Amplification-refractory mutation system (ARMS) and Allele-Specific PCR (AS-PCR), respectively. The results were confirmed by sequencing. Among 60 patients, 34 (56.6%) and 1(1.7%) had Jak2V617F and c-MPL mutation, respectively. Patients with Jak2V617F mutation had higher WBC counts and hemoglobin concentration than those without the mutation (p= 0.005, p=0.003). In addition, for all healthy subjects in control group, mutations were negative. The present study revealed that the c-MPL mutations unlike the Jak2V617F mutations are rare in Iranian patients with Ph-negative MPNs and the low mutation rate should be considered in the design of screening strategies of MPD patients.

  8. Efficient Culture Adaptation of Hepatitis C Virus Recombinants with Genotype-Specific Core-NS2 by Using Previously Identified Mutations

    DEFF Research Database (Denmark)

    Scheel, Troels Kasper Høyer; Gottwein, Judith M; Carlsen, Thomas H R

    2011-01-01

    Hepatitis C virus (HCV) is an important cause of chronic liver disease, and interferon-based therapy cures only 40 to 80% of patients, depending on HCV genotype. Research was accelerated by genotype 2a (strain JFH1) infectious cell culture systems. We previously developed viable JFH1-based...... (HC-TN and DH6), 1b (DH1 and DH5), and 3a (DBN) isolates, using previously identified adaptive mutations. Introduction of mutations from isolates of the same subtype either led to immediate efficient virus production or accelerated culture adaptation. The DH6 and DH5 recombinants without introduced...... mutations did not adapt to culture. Universal adaptive effects of mutations in NS3 (Q1247L, I1312V, K1398Q, R1408W, and Q1496L) and NS5A (V2418L) were investigated for JFH1-based genotype 1 to 5 core-NS2 recombinants; several mutations conferred adaptation to H77C (1a), J4 (1b), S52 (3a), and SA13 (5a...

  9. Structural Studies of a Rationally Selected Multi-Drug Resistant HIV-1 Protease Reveal Synergistic Effect of Distal Mutations on Flap Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Agniswamy, Johnson; Louis, John M.; Roche, Julien; Harrison, Robert W.; Weber, Irene T. (GSU); (NIH); (Iowa State)

    2016-12-16

    We report structural analysis of HIV protease variant PRS17 which was rationally selected by machine learning to represent wide classes of highly drug-resistant variants. Crystal structures were solved of PRS17 in the inhibitor-free form and in complex with antiviral inhibitor, darunavir. Despite its 17 mutations, PRS17 has only one mutation (V82S) in the inhibitor/substrate binding cavity, yet exhibits high resistance to all clinical inhibitors. PRS17 has none of the major mutations (I47V, I50V, I54ML, L76V and I84V) associated with darunavir resistance, but has 10,000-fold weaker binding affinity relative to the wild type PR. Comparable binding affinity of 8000-fold weaker than PR is seen for drug resistant mutant PR20, which bears 3 mutations associated with major resistance to darunavir (I47V, I54L and I84V). Inhibitor-free PRS17 shows an open flap conformation with a curled tip correlating with G48V flap mutation. NMR studies on inactive PRS17 D25N unambiguously confirm that the flaps adopt mainly an open conformation in solution very similar to that in the inhibitor-free crystal structure. In PRS17, the hinge loop cluster of mutations, E35D, M36I and S37D, contributes to the altered flap dynamics by a mechanism similar to that of PR20. An additional K20R mutation anchors an altered conformation of the hinge loop. Flap mutations M46L and G48V in PRS17/DRV complex alter the Phe53 conformation by steric hindrance between the side chains. Unlike the L10F mutation in PR20, L10I in PRS17 does not break the inter-subunit ion pair or diminish the dimer stability, consistent with a very low dimer dissociation constant comparable to that of wild type PR. Distal mutations A71V, L90M and I93L propagate alterations to the catalytic site of PRS17. PRS17 exhibits a molecular mechanism whereby mutations act synergistically to alter the flap dynamics resulting in significantly weaker binding yet maintaining active site contacts with darunavir.

  10. Targeted cancer exome sequencing reveals recurrent mutations in myeloproliferative neoplasms

    Science.gov (United States)

    Tenedini, E; Bernardis, I; Artusi, V; Artuso, L; Roncaglia, E; Guglielmelli, P; Pieri, L; Bogani, C; Biamonte, F; Rotunno, G; Mannarelli, C; Bianchi, E; Pancrazzi, A; Fanelli, T; Malagoli Tagliazucchi, G; Ferrari, S; Manfredini, R; Vannucchi, A M; Tagliafico, E

    2014-01-01

    With the intent of dissecting the molecular complexity of Philadelphia-negative myeloproliferative neoplasms (MPN), we designed a target enrichment panel to explore, using next-generation sequencing (NGS), the mutational status of an extensive list of 2000 cancer-associated genes and microRNAs. The genomic DNA of granulocytes and in vitro-expanded CD3+T-lymphocytes, as a germline control, was target-enriched and sequenced in a learning cohort of 20 MPN patients using Roche 454 technology. We identified 141 genuine somatic mutations, most of which were not previously described. To test the frequency of the identified variants, a larger validation cohort of 189 MPN patients was additionally screened for these mutations using Ion Torrent AmpliSeq NGS. Excluding the genes already described in MPN, for 8 genes (SCRIB, MIR662, BARD1, TCF12, FAT4, DAP3, POLG and NRAS), we demonstrated a mutation frequency between 3 and 8%. We also found that mutations at codon 12 of NRAS (NRASG12V and NRASG12D) were significantly associated, for primary myelofibrosis (PMF), with highest dynamic international prognostic scoring system (DIPSS)-plus score categories. This association was then confirmed in 66 additional PMF patients composing a final dataset of 168 PMF showing a NRAS mutation frequency of 4.7%, which was associated with a worse outcome, as defined by the DIPSS plus score. PMID:24150215

  11. Loss-of-activity-mutation in the cardiac chloride-bicarbonate exchanger AE3 causes short QT syndrome

    DEFF Research Database (Denmark)

    Thorsen, Kasper; Dam, Vibeke S.; Kjaer-Sorensen, Kasper

    2017-01-01

    unrelated families with SQTS. The mutation causes reduced surface expression of AE3 and reduced membrane bicarbonate transport. Slc4a3 knockdown in zebrafish causes increased cardiac pHi, short QTc, and reduced systolic duration, which is rescued by wildtype but not mutated SLC4A3. Mechanistic analyses...

  12. Vascular Ehlers-Danlos Syndrome With a Novel Missense COL3A1 Mutation Present With Pulmonary Complications and Iliac Arterial Dissection.

    Science.gov (United States)

    Gu, Guangchao; Yang, Hang; Cui, Lijia; Fu, Yuanyuan; Li, Fangda; Zhou, Zhou; Zheng, Yuehong

    2018-02-01

    Vascular Ehlers-Danlos syndrome (vEDS) is a life-threatening connective tissue disorder due to its high tendency of arterial and organ rupture. Pulmonary complications in vEDS are rare. We present a young male patient with vEDS who developed severe pulmonary complications and severe rupture of the iliac artery at different stages of his life. Vascular Ehlers-Danlos syndrome was diagnosed based on clinical manifestations and confirmed by the identification of COL3A1 gene mutation. Due to high bleeding tendency and weak cardiopulmonary capacity, conservative treatment was taken for him. To our knowledge, this is the first report of vEDS case in which the patient developed both pulmonary complications and dissection of large arteries. Our report emphasizes the importance of considering vEDS when an adolescent develops unexplained pulmonary cysts with fragility of lung tissues. Genetic counseling and close monitoring should be performed for earlier diagnosis and prevention of severe complications of large arteries. The typical presentations of vEDS were also discussed by means of a review of case reports on vEDS with pulmonary complications.

  13. Variable clinical expressivity of STAT3 mutation in hyperimmunoglobulin E syndrome: genetic and clinical studies of six patients

    NARCIS (Netherlands)

    Wolach, Ofir; Kuijpers, Taco; Ben-Ari, Josef; Gavrieli, Ronit; Feinstein-Goren, Neta; Alders, Marielle; Garty, Ben Zion; Wolach, Baruch

    2014-01-01

    Autosomal dominant Hyper IgE syndrome (AD-HIES) is a rare and complex primary immunodeficiency that affects multiple systems. Mutations in signal transducer and activator of transcription 3 (STAT3) gene cause AD-HIES. These mutations have a dominant-negative effect and the presence of such mutations

  14. High Myopia Caused by a Mutation in LEPREL1, Encoding Prolyl 3-Hydroxylase 2

    Science.gov (United States)

    Mordechai, Shikma; Gradstein, Libe; Pasanen, Annika; Ofir, Rivka; El Amour, Khalil; Levy, Jaime; Belfair, Nadav; Lifshitz, Tova; Joshua, Sara; Narkis, Ginat; Elbedour, Khalil; Myllyharju, Johanna; Birk, Ohad S.

    2011-01-01

    Autosomal-recessive high-grade axial myopia was diagnosed in Bedouin Israeli consanguineous kindred. Some affected individuals also had variable expressivity of early-onset cataracts, peripheral vitreo-retinal degeneration, and secondary sight loss due to severe retinal detachments. Through genome-wide linkage analysis, the disease-associated gene was mapped to ∼1.7 Mb on chromosome 3q28 (the maximum LOD score was 11.5 at θ = 0 for marker D3S1314). Sequencing of the entire coding regions and intron-exon boundaries of the six genes within the defined locus identified a single mutation (c.1523G>T) in exon 10 of LEPREL1, encoding prolyl 3-hydroxylase 2 (P3H2), a 2-oxoglutarate-dependent dioxygenase that hydroxylates collagens. The mutation affects a glycine that is conserved within P3H isozymes. Analysis of wild-type and p.Gly508Val (c.1523G>T) mutant recombinant P3H2 polypeptides expressed in insect cells showed that the mutation led to complete inactivation of P3H2. PMID:21885030

  15. Leber's hereditary optic neuropathy is associated with mitochondrial ND6 T14502C mutation

    International Nuclear Information System (INIS)

    Zhao, Fuxin; Guan, Minqiang; Zhou, Xiangtian; Yuan, Meixia; Liang, Ming; Liu, Qi; Liu, Yan; Zhang, Yongmei; Yang, Li; Tong, Yi; Wei, Qi-Ping; Sun, Yan-Hong; Qu, Jia

    2009-01-01

    We report here the clinical, genetic, and molecular characterization of three Chinese families with Leber's hereditary optic neuropathy (LHON). There were variable severity and age of onset in visual impairment among these families. Strikingly, there were extremely low penetrances of visual impairment in these Chinese families. Sequence analysis of complete mitochondrial genomes in these pedigrees showed the homoplasmic T14502C (I58V) mutation, which localized at a highly conserved isoleucine at position 58 of ND6, and distinct sets of mtDNA polymorphisms belonging to haplogroups M10a, F1a1, and H2. The occurrence of T14502C mutation in these several genetically unrelated subjects affected by visual impairment strongly indicates that this mutation is involved in the pathogenesis of visual impairment. Here, mtDNA variants I187T in the ND1, A122V in CO1, S99A in the A6, and V254I in CO3 exhibited an evolutionary conservation, indicating a potential modifying role in the development of visual impairment associated with T14502C mutation in those families. Furthermore, nuclear modifier gene(s) or environmental factor(s) may play a role in the phenotypic manifestation of the LHON-associated T14502C mutation in these Chinese families.

  16. Pituitary dwarfism in Saarloos and Czechoslovakian wolfdogs is associated with a mutation in LHX3.

    Science.gov (United States)

    Voorbij, A M W Y; Leegwater, P A; Kooistra, H S

    2014-01-01

    Pituitary dwarfism in German Shepherd Dogs is associated with autosomal recessive inheritance and a mutation in LHX3, resulting in combined pituitary hormone deficiency. Congenital dwarfism also is encountered in breeds related to German Shepherd Dogs, such as Saarloos and Czechoslovakian wolfdogs. To investigate whether Saarloos and Czechoslovakian wolfdog dwarfs have the same LHX3 mutation as do Germans Shepherd Dog dwarfs. A specific aim was to determine the carrier frequency among Saarloos and Czechoslovakian wolfdogs used for breeding. Two client-owned Saarloos wolfdogs and 4 client-owned Czechoslovakian wolfdogs with pituitary dwarfism, 239 clinically healthy client-owned Saarloos wolfdogs, and 200 client-owned clinically healthy Czechoslovakian wolfdogs. Genomic DNA was amplified using polymerase chain reaction (PCR). In the Saarloos and Czechoslovakian wolfdog dwarfs, PCR products were analyzed by sequencing. DNA fragment length analysis was performed on the samples from the clinically healthy dogs. Saarloos and Czechoslovakian wolfdog dwarfs have the same 7 bp deletion in intron 5 of LHX3 as do German Shepherd Dog dwarfs. The frequency of carriers of this mutation among clinically healthy Saarloos and Czechoslovakian wolfdogs used for breeding was 31% and 21%, respectively. An LHX3 mutation is associated with pituitary dwarfism in Saarloos and Czechoslovakian wolfdogs. The rather high frequency of carriers of the mutated gene in the 2 breeds emphasizes the need for screening before breeding. If all breeding animals were genetically tested for the presence of the LHX3 mutation and a correct breeding policy would be implemented, this disease could be eradicated completely. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  17. Kolmogorov-Smirnov statistical test for analysis of ZAP-70 expression in B-CLL, compared with quantitative PCR and IgV(H) mutation status.

    Science.gov (United States)

    Van Bockstaele, Femke; Janssens, Ann; Piette, Anne; Callewaert, Filip; Pede, Valerie; Offner, Fritz; Verhasselt, Bruno; Philippé, Jan

    2006-07-15

    ZAP-70 has been proposed as a surrogate marker for immunoglobulin heavy-chain variable region (IgV(H)) mutation status, which is known as a prognostic marker in B-cell chronic lymphocytic leukemia (CLL). The flow cytometric analysis of ZAP-70 suffers from difficulties in standardization and interpretation. We applied the Kolmogorov-Smirnov (KS) statistical test to make analysis more straightforward. We examined ZAP-70 expression by flow cytometry in 53 patients with CLL. Analysis was performed as initially described by Crespo et al. (New England J Med 2003; 348:1764-1775) and alternatively by application of the KS statistical test comparing T cells with B cells. Receiver-operating-characteristics (ROC)-curve analyses were performed to determine the optimal cut-off values for ZAP-70 measured by the two approaches. ZAP-70 protein expression was compared with ZAP-70 mRNA expression measured by a quantitative PCR (qPCR) and with the IgV(H) mutation status. Both flow cytometric analyses correlated well with the molecular technique and proved to be of equal value in predicting the IgV(H) mutation status. Applying the KS test is reproducible, simple, straightforward, and overcomes a number of difficulties encountered in the Crespo-method. The KS statistical test is an essential part of the software delivered with modern routine analytical flow cytometers and is well suited for analysis of ZAP-70 expression in CLL. (c) 2006 International Society for Analytical Cytology.

  18. AIP mutations in Brazilian patients with sporadic pituitary adenomas: a single-center evaluation

    Directory of Open Access Journals (Sweden)

    Paula Bruna Araujo

    2017-11-01

    Full Text Available Aryl hydrocarbon receptor-interacting protein (AIP gene mutations (AIPmut are the most frequent germline mutations found in apparently sporadic pituitary adenomas (SPA. Our aim was to evaluate the frequency of AIPmut among young Brazilian patients with SPA. We performed an observational cohort study between 2013 and 2016 in a single referral center. AIPmut screening was carried out in 132 SPA patients with macroadenomas diagnosed up to 40 years or in adenomas of any size diagnosed until 18 years of age. Twelve tumor samples were also analyzed. Leukocyte DNA and tumor tissue DNA were sequenced for the entire AIP-coding region for evaluation of mutations. Eleven (8.3% of the 132 patients had AIPmut, comprising 9/74 (12% somatotropinomas, 1/38 (2.6% prolactinoma, 1/10 (10% corticotropinoma and no non-functioning adenomas. In pediatric patients (≤18 years, AIPmut frequency was 13.3% (2/15. Out of the 5 patients with gigantism, two had AIPmut, both truncating mutations. The Y268* mutation was described in Brazilian patients and the K273Rfs*30 mutation is a novel mutation in our patient. No somatic AIP mutations were found in the 12 tumor samples. A tumor sample from an acromegaly patient harboring the A299V AIPmut showed loss of heterozygosity. In conclusion, AIPmut frequency in SPA Brazilian patients is similar to other populations. Our study identified two mutations exclusively found in Brazilians and also shows, for the first time, loss of heterozygosity in tumor DNA from an acromegaly patient harboring the A299V AIPmut. Our findings corroborate previous observations that AIPmut screening should be performed in young patients with SPA.

  19. Genetic and molecular analyses of UV radiation-induced mutations in the fem-3 gene of Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, P S; De Wilde, D; Dwarakanath, V N [Texas Christian Univ., Fort Worth, TX (United States). Dept. of Biology

    1995-06-01

    The utility of a new target gene (fem-3) is described for investigating the molecular nature of mutagenesis in the nematode Caenorhabditis elegans. As a principal attribute, this system allows for the selection, maintenance and molecular analysis of any type of mutation that disrupts the gene, including deletions. In this study, 86 mutant strains were isolated, of which 79 proved to have mutations in fem-3. Twenty of these originally tested as homozygous inviable. Homozygous inviability was expected, as Stewart and coworkers had previously observed that, unlike in other organisms, most UV radiation-induced mutations in C. elegans are chromosomal rearrangements of deficiencies (Mutat. Res 249, 37-54, 1991). However, additional data, including Southern blot analyses on 49 of the strains, indicated that most of the UV radiation-induced fem-3 mutations were not deficiencies, as originally inferred from their homozygous inviability. Instead, the lethals were most likely ``coincident mutations`` in linked, essential genes that were concomitantly induced. As such, they were lost owing to genetic recombination during stock maintenance. As in mammalian cells, yeast and bacteria, the frequency of coincident mutations was much higher than would be predicted by chance. (Author).

  20. Generation and analysis of knock-in mice carrying pseudohypoaldosteronism type II-causing mutations in the cullin 3 gene.

    Science.gov (United States)

    Araki, Yuya; Rai, Tatemitsu; Sohara, Eisei; Mori, Takayasu; Inoue, Yuichi; Isobe, Kiyoshi; Kikuchi, Eriko; Ohta, Akihito; Sasaki, Sei; Uchida, Shinichi

    2015-10-21

    Pseudohypoaldosteronism type II (PHAII) is a hereditary hypertensive disease caused by mutations in four different genes: with-no-lysine kinases (WNK) 1 and 4, Kelch-like family member 3 (KLHL3), and cullin 3 (Cul3). Cul3 and KLHL3 form an E3 ligase complex that ubiquitinates and reduces the expression level of WNK4. PHAII-causing mutations in WNK4 and KLHL3 impair WNK4 ubiquitination. However, the molecular pathogenesis of PHAII caused by Cul3 mutations is unclear. In cultured cells and human leukocytes, PHAII-causing Cul3 mutations result in the skipping of exon 9, producing mutant Cul3 protein lacking 57 amino acids. However, whether this phenomenon occurs in the kidneys and is responsible for the pathogenesis of PHAII in vivo is unknown. We generated knock-in mice carrying a mutation in the C-terminus of intron 8 of Cul3, c.1207-1G>A, which corresponds to a PHAII-causing mutation in the human Cul3 gene. Heterozygous Cul3(G(-1)A/+) knock-in mice did not exhibit PHAII phenotypes, and the skipping of exon 9 was not evident in their kidneys. However, the level of Cul3 mRNA expression in the kidneys of heterozygous knock-in mice was approximately half that of wild-type mice. Furthermore, homozygous knock-in mice were nonviable. It suggested that the mutant allele behaved like a knockout allele and did not produce Cul3 mRNA lacking exon 9. A reduction in Cul3 expression alone was not sufficient to develop PHAII in the knock-in mice. Our findings highlighted the pathogenic role of mutant Cul3 protein and provided insight to explain why PHAII-causing mutations in Cul3 cause kidney-predominant PHAII phenotypes. © 2015. Published by The Company of Biologists Ltd.