WorldWideScience

Sample records for acoustic streaming velocity

  1. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels.

    Science.gov (United States)

    Daru, Virginie; Reyt, Ida; Bailliet, Hélène; Weisman, Catherine; Baltean-Carlès, Diana

    2017-01-01

    Rayleigh streaming is a steady flow generated by the interaction between an acoustic wave and a solid wall, generally assumed to be second order in a Mach number expansion. Acoustic streaming is well known in the case of a stationary plane wave at low amplitude: it has a half-wavelength spatial periodicity and the maximum axial streaming velocity is a quadratic function of the acoustic velocity amplitude at antinode. For higher acoustic levels, additional streaming cells have been observed. Results of laser Doppler velocimetry measurements are here compared to direct numerical simulations. The evolution of axial and radial velocity components for both acoustic and streaming velocities is studied from low to high acoustic amplitudes. Two streaming flow regimes are pointed out, the axial streaming dependency on acoustics going from quadratic to linear. The evolution of streaming flow is different for outer cells and for inner cells. Also, the hypothesis of radial streaming velocity being of second order in a Mach number expansion, is not valid at high amplitudes. The change of regime occurs when the radial streaming velocity amplitude becomes larger than the radial acoustic velocity amplitude, high levels being therefore characterized by nonlinear interaction of the different velocity components.

  2. Streaming Velocities and the Baryon Acoustic Oscillation Scale.

    Science.gov (United States)

    Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M

    2016-03-25

    At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.

  3. Acoustic streaming of a sharp edge.

    Science.gov (United States)

    Ovchinnikov, Mikhail; Zhou, Jianbo; Yalamanchili, Satish

    2014-07-01

    Anomalous acoustic streaming is observed emanating from sharp edges of solid bodies that are vibrating in fluids. The streaming velocities can be orders of magnitude higher than expected from the Rayleigh streaming at similar amplitudes of vibration. Acoustic velocity of fluid relative to a solid body diverges at a sharp edge, giving rise to a localized time-independent body force acting on the fluid. This force results in a formation of a localized jet. Two-dimensional numerical simulations are performed to predict acoustic streaming for low amplitude vibration using two methods: (1) Steady-state solution utilizing perturbation theory and (2) direct transient solution of the Navier-Stokes equations. Both analyses agree with each other and correctly predict the streaming of a sharp-edged vibrating blade measured experimentally. The origin of the streaming can be attributed to the centrifugal force of the acoustic fluid flow around a sharp edge. The dependence of this acoustic streaming on frequency and velocity is examined using dimensional analysis. The dependence law is devised and confirmed by numerical simulations.

  4. Feasibility of using acoustic velocity meters for estimating highly organic suspended-solids concentrations in streams

    Science.gov (United States)

    Patino, Eduardo

    1996-01-01

    A field experiment was conducted at the Levee 4 canal site below control structure G-88 in the Everglades agricultural area in northwestern Broward County, Florida, to study the relation of acoustic attenuation to suspended-solids concentrations. Acoustic velocity meter and temperature data were obtained with concurrent water samples analyzed for suspended-solids concentrations. Two separate acoustic velocity meter frequencies were used, 200 and 500 kilohertz, to determine the sensitivity of acoustic attenuation to frequency for the measured suspended-solids concentration range. Suspended-solids concentrations for water samples collected at the Levee 4 canal site from July 1993 to September 1994 ranged from 22 to 1,058 milligrams per liter, and organic content ranged from about 30 to 93 percent. Regression analyses showed that attenuation data from the acoustic velocity meter (automatic gain control) and temperature data alone do not provide enough information to adequately describe the concentrations of suspended solids. However, if velocity is also included as one of the independent variables in the regression model, a satisfactory correlation can be obtained. Thus, it is feasible to use acoustic velocity meter instrumentation to estimate suspended-solids concentrations in streams, even when suspended solids are primarily composed of organic material. Using the most comprehensive data set available for the study (500 kiloherz data), the best fit regression model produces a standard error of 69.7 milligrams per liter, with actual errors ranging from 2 to 128 milligrams per liter. Both acoustic velocity meter transmission frequencies of 200 and 500 hilohertz produced similar results, suggesting that transducers of either frequency could be used to collect attenuation data at the study site. Results indicate that calibration will be required for each acoustic velocity meter system to the unique suspended-solids regime existing at each site. More robust solutions may

  5. Fast acoustic streaming in standing waves: generation of an additional outer streaming cell.

    Science.gov (United States)

    Reyt, Ida; Daru, Virginie; Bailliet, Hélène; Moreau, Solène; Valière, Jean-Christophe; Baltean-Carlès, Diana; Weisman, Catherine

    2013-09-01

    Rayleigh streaming in a cylindrical acoustic standing waveguide is studied both experimentally and numerically for nonlinear Reynolds numbers from 1 to 30 [Re(NL)=(U0/c0)(2)(R/δν)(2), with U0 the acoustic velocity amplitude at the velocity antinode, c0 the speed of sound, R the tube radius, and δν the acoustic boundary layer thickness]. Streaming velocity is measured by means of laser Doppler velocimetry in a cylindrical resonator filled with air at atmospheric pressure at high intensity sound levels. The compressible Navier-Stokes equations are solved numerically with high resolution finite difference schemes. The resonator is excited by shaking it along the axis at imposed frequency. Results of measurements and of numerical calculation are compared with results given in the literature and with each other. As expected, the axial streaming velocity measured and calculated agrees reasonably well with the slow streaming theory for small ReNL but deviates significantly from such predictions for fast streaming (ReNL>1). Both experimental and numerical results show that when ReNL is increased, the center of the outer streaming cells are pushed toward the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes.

  6. Velocity profiles of acoustic streaming in resulting stokes layer by acoustic standing wave in a duct; Kannai kichi shindo ni okeru stokes sonai onkyoryu ryusoku bunpu no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, M; Kawahashi, M [Saitama University, Saitama (Japan). Faculty of Engineering

    1995-07-25

    Acoustic streaming is generated by Reynolds stress in the sense of mean acoustic momentum flux in a sound field. In the case of an acoustic standing wave produced by an air column oscillation in a closed duct, the friction and the Reynolds stress in the resulting Stokes layer are the essentials of acoustic streaming generation in the vicinity of the duct wall. The thickness of the Stokes layer decreases with the oscillatory Reynolds number. The plane wave propagation in the duct is assumed for the case of high Reynolds number except for the thin Stokes layer adjacent to the duct wall. The velocity profiles of the streaming are estimated theoretically from the steady component of the second-order term of a perturbation expansion in which the first-order approximation is a sinusoidal oscillation of the air column with plane waves. The present paper describes theoretical analysis of the velocity profiles of the acoustic streaming in the Stokes layer by means of the matched asymptotic expansion method. The results obtained show the existence of reverse streaming in a very thin layer adjacent to the wall and the effects of thermal boundary conditions at the wall on the velocity profiles of acoustic streaming in the Stokes layer. 9 refs., 8 figs.

  7. Controlling the acoustic streaming by pulsed ultrasounds.

    Science.gov (United States)

    Hoyos, Mauricio; Castro, Angélica

    2013-01-01

    We propose a technique based on pulsed ultrasounds for controlling, reducing to a minimum observable value the acoustic streaming in closed ultrasonic standing wave fluidic resonators. By modifying the number of pulses and the repetition time it is possible to reduce the velocity of the acoustic streaming with respect to the velocity generated by the continuous ultrasound mode of operation. The acoustic streaming is observed at the nodal plane where a suspension of 800nm latex particles was focused by primary radiation force. A mixture of 800nm and 15μm latex particles has been also used for showing that the acoustic streaming is hardly reduced while primary and secondary forces continue to operate. The parameter we call "pulse mode factor" i.e. the time of applied ultrasound divided by the duty cycle, is found to be the adequate parameter that controls the acoustic streaming. We demonstrate that pulsed ultrasound is more efficient for controlling the acoustic streaming than the variation of the amplitude of the standing waves. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.

    Science.gov (United States)

    Reyt, Ida; Bailliet, Hélène; Valière, Jean-Christophe

    2014-01-01

    Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.

  9. Suppression of acoustic streaming in tapered pulse tubes

    International Nuclear Information System (INIS)

    Olson, J.R.; Swift, G.W.

    1998-01-01

    In a pulse tube cryocooler, the gas in the pulse tube can be thought of as an insulating piston, transmitting pressure and velocity from the cold heat exchanger to the hot end of the pulse tube. Unfortunately, convective heat transfer can carry heat from the hot end to the cold end and reduce the net cooling power. Here, the authors discuss one driver of such convection: steady acoustic streaming as generated by interactions between the boundary and the oscillating pressure, velocity, and temperature. Using a perturbation method, they have derived an analytical expression for the streaming in a tapered pulse tube with axially varying mean temperature in the acoustic boundary layer limit. The calculations showed that the streaming depends strongly on the taper angle, the ratio of velocity and pressure amplitudes, and the phase between the velocity and pressure, but it depends only weakly on the mean temperature profile and is independent of the overall oscillatory amplitude. With the appropriate tapering of the tube, streaming can be eliminated for a particular operating condition. Experimentally, the authors have demonstrated that an orifice pulse tube cryocooler with the calculated zero-streaming taper has more cooling power than one with either a cylindrical tube or a tapered pulse tube with twice the optimum taper angle

  10. Frequency effects on the scale and behavior of acoustic streaming.

    Science.gov (United States)

    Dentry, Michael B; Yeo, Leslie Y; Friend, James R

    2014-01-01

    Acoustic streaming underpins an exciting range of fluid manipulation phenomena of rapidly growing significance in microfluidics, where the streaming often assumes the form of a steady, laminar jet emanating from the device surface, driven by the attenuation of acoustic energy within the beam of sound propagating through the liquid. The frequencies used to drive such phenomena are often chosen ad hoc to accommodate fabrication and material issues. In this work, we seek a better understanding of the effects of sound frequency and power on acoustic streaming. We present and, using surface acoustic waves, experimentally verify a laminar jet model that is based on the turbulent jet model of Lighthill, which is appropriate for acoustic streaming seen at micro- to nanoscales, between 20 and 936 MHz and over a broad range of input power. Our model eliminates the critically problematic acoustic source singularity present in Lighthill's model, replacing it with a finite emission area and enabling determination of the streaming velocity close to the source. At high acoustic power P (and hence high jet Reynolds numbers ReJ associated with fast streaming), the laminar jet model predicts a one-half power dependence (U∼P1/2∼ ReJ) similar to the turbulent jet model. However, the laminar model may also be applied to jets produced at low powers-and hence low jet Reynolds numbers ReJ-where a linear relationship between the beam power and streaming velocity exists: U∼P∼ReJ2. The ability of the laminar jet model to predict the acoustic streaming behavior across a broad range of frequencies and power provides a useful tool in the analysis of microfluidics devices, explaining peculiar observations made by several researchers in the literature. In particular, by elucidating the effects of frequency on the scale of acoustically driven flows, we show that the choice of frequency is a vitally important consideration in the design of small-scale devices employing acoustic streaming

  11. Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels.

    Science.gov (United States)

    Muller, Peter Barkholt; Bruus, Henrik

    2015-12-01

    Based on first- and second-order perturbation theory, we present a numerical study of the temporal buildup and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic conditions and assuming temperature-independent material parameters. The unsteady streaming flow is obtained by averaging the time-dependent velocity field over one oscillation period, and as time increases, it is shown to converge towards the well-known steady time-averaged solution calculated in the frequency domain. Scaling analysis reveals that the acoustic resonance builds up much faster than the acoustic streaming, implying that the radiation force may dominate over the drag force from streaming even for small particles. However, our numerical time-dependent analysis indicates that pulsed actuation does not reduce streaming significantly due to its slow decay. Our analysis also shows that for an acoustic resonance with a quality factor Q, the amplitude of the oscillating second-order velocity component is Q times larger than the usual second-order steady time-averaged velocity component. Consequently, the well-known criterion v(1)≪c(s) for the validity of the perturbation expansion is replaced by the more restrictive criterion v(1)≪c(s)/Q. Our numerical model is available as supplemental material in the form of comsol model files and matlab scripts.

  12. Diversity of acoustic streaming in a rectangular acoustofluidic field.

    Science.gov (United States)

    Tang, Qiang; Hu, Junhui

    2015-04-01

    Diversity of acoustic streaming field in a 2D rectangular chamber with a traveling wave and using water as the acoustic medium is numerically investigated by the finite element method. It is found that the working frequency, the vibration excitation source length, and the distance and phase difference between two separated symmetric vibration excitation sources can cause the diversity in the acoustic streaming pattern. It is also found that a small object in the acoustic field results in an additional eddy, and affects the eddy size in the acoustic streaming field. In addition, the computation results show that with an increase of the acoustic medium's temperature, the speed of the main acoustic streaming decreases first and then increases, and the angular velocity of the corner eddies increases monotonously, which can be clearly explained by the change of the acoustic dissipation factor and shearing viscosity of the acoustic medium with temperature. Commercialized FEM software COMSOL Multiphysics is used to implement the computation tasks, which makes our method very easy to use. And the computation method is partially verified by an established analytical solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Velocity Statistics and Spectra in Three-Stream Jets

    Science.gov (United States)

    Ecker, Tobias; Lowe, K. Todd; Ng, Wing F.; Henderson, Brenda; Leib, Stewart

    2016-01-01

    Velocimetry measurements were obtained in three-stream jets at the NASA Glenn Research Center Nozzle Acoustics Test Rig using the time-resolved Doppler global velocimetry technique. These measurements afford exceptional frequency response, to 125 kHz bandwidth, in order to study the detailed dynamics of turbulence in developing shear flows. Mean stream-wise velocity is compared to measurements acquired using particle image velocimetry for validation. Detailed results for convective velocity distributions throughout an axisymmetric plume and the thick side of a plume with an offset third-stream duct are provided. The convective velocity results exhibit that, as expected, the eddy speeds are reduced on the thick side of the plume compared to the axisymmetric case. The results indicate that the time-resolved Doppler global velocimetry method holds promise for obtaining results valuable to the implementation and refinement of jet noise prediction methods being developed for three-stream jets.

  14. Acoustic Investigation of Jet Mixing Noise in Dual Stream Nozzles

    Science.gov (United States)

    Khavaran, Abbas; Dahl, Milo D.

    2012-01-01

    In an earlier study, a prediction model for jet noise in dual stream jets was proposed that is founded on velocity scaling laws in single stream jets and similarity features of the mean velocity and turbulent kinetic energy in dual stream flows. The model forms a composite spectrum from four component single-stream jets each believed to represent noise-generation from a distinct region in the actual flow. While the methodology worked effectively at conditions considered earlier, recent examination of acoustic data at some unconventional conditions indicate that further improvements are necessary in order to expand the range of applicability of the model. The present work demonstrates how these predictions compare with experimental data gathered by NASA and industry for the purpose of examining the aerodynamic and acoustic performance of such nozzles for a wide range of core and fan stream conditions. Of particular interest are jets with inverted velocity and temperature profiles and the appearance of a second spectral peak at small aft angles to the jet under such conditions. It is shown that a four-component spectrum succeeds in modeling the second peak when the aft angle refraction effects are properly incorporated into the model. A tradeoff of noise emission takes place between two turbulent regions identified as transition and fully mixed regions as the fan stream velocity exceeds that of the core stream. The effect of nozzle discharge coefficients will also be discussed.

  15. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.

    Science.gov (United States)

    Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y

    2016-03-01

    Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Acoustic and aerodynamic performance investigation of inverted velocity profile coannular plug nozzles. [variable cycle engines

    Science.gov (United States)

    Knott, P. R.; Blozy, J. T.; Staid, P. S.

    1981-01-01

    The results of model scale parametric static and wind tunnel aerodynamic performance tests on unsuppressed coannular plug nozzle configurations with inverted velocity profile are discussed. The nozzle configurations are high-radius-ratio coannular plug nozzles applicable to dual-stream exhaust systems typical of a variable cycle engine for Advanced Supersonic Transport application. In all, seven acoustic models and eight aerodynamic performance models were tested. The nozzle geometric variables included outer stream radius ratio, inner stream to outer stream ratio, and inner stream plug shape. When compared to a conical nozzle at the same specific thrust, the results of the static acoustic tests with the coannular nozzles showed noise reductions of up to 7 PNdB. Extensive data analysis showed that the overall acoustic results can be well correlated using the mixed stream velocity and the mixed stream density. Results also showed that suppression levels are geometry and flow regulation dependent with the outer stream radius ratio, inner stream-to-outer stream velocity ratio and inner stream velocity ratio and inner stream plug shape, as the primary suppression parameters. In addition, high-radius ratio coannular plug nozzles were found to yield shock associated noise level reductions relative to a conical nozzle. The wind tunnel aerodynamic tests showed that static and simulated flight thrust coefficient at typical takeoff conditions are quite good - up to 0.98 at static conditions and 0.974 at a takeoff Mach number of 0.36. At low inner stream flow conditions significant thrust loss was observed. Using an inner stream conical plug resulted in 1% to 2% higher performance levels than nozzle geometries using a bent inner plug.

  17. Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices.

    Science.gov (United States)

    Lei, Junjun; Glynne-Jones, Peter; Hill, Martyn

    2013-06-07

    In acoustofluidic manipulation and sorting devices, Rayleigh streaming flows are typically found in addition to the acoustic radiation forces. However, experimental work from various groups has described acoustic streaming that occurs in planar devices in a plane parallel to the transducer face. This is typically a four-quadrant streaming pattern with the circulation parallel to the transducer. Understanding its origins is essential for creating designs that limit or control this phenomenon. The cause of this kind of streaming pattern has not been previously explained as it is different from the well-known classical streaming patterns such as Rayleigh streaming and Eckart streaming, whose circulation planes are generally perpendicular to the face of the acoustic transducer. In order to gain insight into these patterns we present a numerical method based on Nyborg's limiting velocity boundary condition that includes terms ignored in the Rayleigh analysis, and verify its predictions against experimental PIV results in a simple device. The results show that the modelled particle trajectories match those found experimentally. Analysis of the dominant terms in the driving equations shows that the origin of this kind of streaming pattern is related to the circulation of the acoustic intensity.

  18. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming.

    Science.gov (United States)

    Collins, David J; Khoo, Bee Luan; Ma, Zhichao; Winkler, Andreas; Weser, Robert; Schmidt, Hagen; Han, Jongyoon; Ai, Ye

    2017-05-16

    Acoustic streaming has emerged as a promising technique for refined microscale manipulation, where strong rotational flow can give rise to particle and cell capture. In contrast to hydrodynamically generated vortices, acoustic streaming is rapidly tunable, highly scalable and requires no external pressure source. Though streaming is typically ignored or minimized in most acoustofluidic systems that utilize other acoustofluidic effects, we maximize the effect of acoustic streaming in a continuous flow using a high-frequency (381 MHz), narrow-beam focused surface acoustic wave. This results in rapid fluid streaming, with velocities orders of magnitude greater than that of the lateral flow, to generate fluid vortices that extend the entire width of a 400 μm wide microfluidic channel. We characterize the forces relevant for vortex formation in a combined streaming/lateral flow system, and use these acoustic streaming vortices to selectively capture 2 μm from a mixed suspension with 1 μm particles and human breast adenocarcinoma cells (MDA-231) from red blood cells.

  19. Evaluation of the successive approximations method for acoustic streaming numerical simulations.

    Science.gov (United States)

    Catarino, S O; Minas, G; Miranda, J M

    2016-05-01

    This work evaluates the successive approximations method commonly used to predict acoustic streaming by comparing it with a direct method. The successive approximations method solves both the acoustic wave propagation and acoustic streaming by solving the first and second order Navier-Stokes equations, ignoring the first order convective effects. This method was applied to acoustic streaming in a 2D domain and the results were compared with results from the direct simulation of the Navier-Stokes equations. The velocity results showed qualitative agreement between both methods, which indicates that the successive approximations method can describe the formation of flows with recirculation. However, a large quantitative deviation was observed between the two methods. Further analysis showed that the successive approximation method solution is sensitive to the initial flow field. The direct method showed that the instantaneous flow field changes significantly due to reflections and wave interference. It was also found that convective effects contribute significantly to the wave propagation pattern. These effects must be taken into account when solving the acoustic streaming problems, since it affects the global flow. By adequately calculating the initial condition for first order step, the acoustic streaming prediction by the successive approximations method can be improved significantly.

  20. Effect of inhomogeneous temperature fields on acoustic streaming structures in resonators.

    Science.gov (United States)

    Červenka, Milan; Bednařík, Michal

    2017-06-01

    Acoustic streaming in 2D rectangular resonant channels filled with a fluid with a spatial temperature distribution is studied within this work. An inertial force is assumed for driving the acoustic field; the temperature inhomogeneity is introduced by resonator walls with prescribed temperature distribution. The method of successive approximations is employed to derive linear equations for calculation of primary acoustic and time-averaged secondary fields including the streaming velocity. The model equations have a standard form which allows their numerical integration using a universal solver; in this case, COMSOL Multiphysics was employed. The numerical results show that fluid temperature variations in the direction perpendicular to the resonator axis influence strongly the streaming field if the ratio of the channel width and the viscous boundary layer thickness is big enough; the streaming in the Rayleigh vortices can be supported as well as opposed, which can ultimately lead to the appearance of additional vortices.

  1. Estimating stream discharge using stage and multi-level acoustic Doppler velocimetry

    DEFF Research Database (Denmark)

    Poulsen, Jane Bang; Rasmussen, Keld Rømer; Ovesen, Niels Bering

    than traditional stage-discharge methods. In this presentation we shall present results from a study where, at two sites in Denmark, the stream velocity field has been mapped by the use of three Acoustic Doppler Velocity Meter (ADVM) instruments. The ADVM instruments are mounted in three different......For temperate region countries with small or moderately sized streams, such as those in Denmark, seasonal weed growth imposes a significant temporal change of the stage-discharge relation. In the past such problems were often avoided by using hydraulic structures, however, firm ecology based...... in the Northern part of Europe may further violate a stable relation between stage and discharge in streams. Extreme high flow situations cause abrupt rise in stage, and consequently weed can be partly uprooted and partly bend down along the bed, thereby changing the conveyance of the stream. In addition, extreme...

  2. Numerical investigation of symmetry breaking and critical behavior of the acoustic streaming field in high-intensity discharge lamps

    International Nuclear Information System (INIS)

    Baumann, Bernd; Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2015-01-01

    For energy efficiency and material cost reduction it is preferred to drive high-intensity discharge lamps at frequencies of approximately 300 kHz. However, operating lamps at these high frequencies bears the risk of stimulating acoustic resonances inside the arc tube, which can result in low frequency light flicker and even lamp destruction. The acoustic streaming effect has been identified as the link between high frequency resonances and low frequency flicker. A highly coupled three-dimensional multiphysics model has been set up to calculate the acoustic streaming velocity field inside the arc tube of high-intensity discharge lamps. It has been found that the velocity field suffers a phase transition to an asymmetrical state at a critical acoustic streaming force. In certain respects the system behaves similar to a ferromagnet near the Curie point. It is discussed how the model allows to investigate the light flicker phenomenon. Concerning computer resources the procedure is considerably less demanding than a direct approach with a transient model. (paper)

  3. Streaming and particle motion in acoustically-actuated leaky systems

    Science.gov (United States)

    Nama, Nitesh; Barnkob, Rune; Jun Huang, Tony; Kahler, Christian; Costanzo, Francesco

    2017-11-01

    The integration of acoustics with microfluidics has shown great promise for applications within biology, chemistry, and medicine. A commonly employed system to achieve this integration consists of a fluid-filled, polymer-walled microchannel that is acoustically actuated via standing surface acoustic waves. However, despite significant experimental advancements, the precise physical understanding of such systems remains a work in progress. In this work, we investigate the nature of acoustic fields that are setup inside the microchannel as well as the fundamental driving mechanism governing the fluid and particle motion in these systems. We provide an experimental benchmark using state-of-art 3D measurements of fluid and particle motion and present a Lagrangian velocity based temporal multiscale numerical framework to explain the experimental observations. Following verification and validation, we employ our numerical model to reveal the presence of a pseudo-standing acoustic wave that drives the acoustic streaming and particle motion in these systems.

  4. Controlling acoustic streaming in an ultrasonic heptagonal tweezers with application to cell manipulation.

    Science.gov (United States)

    Bernassau, A L; Glynne-Jones, P; Gesellchen, F; Riehle, M; Hill, M; Cumming, D R S

    2014-01-01

    Acoustic radiation force has been demonstrated as a method for manipulating micron-scale particles, but is frequently affected by unwanted streaming. In this paper the streaming in a multi-transducer quasi-standing wave acoustic particle manipulation device is assessed, and found to be dominated by a form of Eckart streaming. The experimentally observed streaming takes the form of two main vortices that have their highest velocity in the region where the standing wave is established. A finite element model is developed that agrees well with experimental results, and shows that the Reynolds stresses that give rise to the fluid motion are strongest in the high velocity region. A technical solution to reduce the streaming is explored that entails the introduction of a biocompatible agar gel layer at the bottom of the chamber so as to reduce the fluid depth and volume. By this means, we reduce the region of fluid that experiences the Reynolds stresses; the viscous drag per unit volume of fluid is also increased. Particle Image Velocimetry data is used to observe the streaming as a function of agar-modified cavity depth. It was found that, in an optimised structure, Eckart streaming could be reduced to negligible levels so that we could make a sonotweezers device with a large working area of up to 13 mm × 13 mm. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. On a computational study for investigating acoustic streaming and heating during focused ultrasound ablation of liver tumor

    International Nuclear Information System (INIS)

    Solovchuk, Maxim A.; Sheu, Tony W.H.; Thiriet, Marc; Lin, Win-Li

    2013-01-01

    The influences of blood vessels and focused location on temperature distribution during high-intensity focused ultrasound (HIFU) ablation of liver tumors are studied numerically. A three-dimensional acoustics-thermal-fluid coupling model is employed to compute the temperature field in the hepatic cancerous region. The model construction is based on the linear Westervelt and bioheat equations as well as the nonlinear Navier–Stokes equations for the liver parenchyma and blood vessels. The effect of acoustic streaming is also taken into account in the present HIFU simulation study. Different blood vessel diameters and focal point locations were investigated. We found from this three-dimensional numerical study that in large blood vessels both the convective cooling and acoustic streaming can considerably change the temperature field and the thermal lesion near blood vessels. If the blood vessel is located within the beam width, both acoustic streaming and blood flow cooling effects should be addressed. The temperature rise on the blood vessel wall generated by a 1.0 MHz focused ultrasound transducer with the focal intensity 327 W/cm 2 was 54% lower when acoustic streaming effect was taken into account. Subject to the applied acoustic power the streaming velocity in a 3 mm blood vessel is 12 cm/s. Thirty percent of the necrosed volume can be reduced, when taking into account the acoustic streaming effect. -- Highlights: • 3D three-field coupling physical model for focused ultrasound tumor ablation is presented. • Acoustic streaming and blood flow cooling effects on ultrasound heating are investigated. • Acoustic streaming can considerably affect the temperature distribution. • The lesion can be reduced by 30% due to the acoustic streaming effect. • Temperature on the blood vessel wall is reduced by 54% due to the acoustic streaming effect

  6. Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices.

    Science.gov (United States)

    Wiklund, Martin; Green, Roy; Ohlin, Mathias

    2012-07-21

    In part 14 of the tutorial series "Acoustofluidics--exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation", we provide a qualitative description of acoustic streaming and review its applications in lab-on-a-chip devices. The paper covers boundary layer driven streaming, including Schlichting and Rayleigh streaming, Eckart streaming in the bulk fluid, cavitation microstreaming and surface-acoustic-wave-driven streaming.

  7. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Directory of Open Access Journals (Sweden)

    Shilei Liu

    2017-07-01

    Full Text Available Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF and acoustic streaming (AS. In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV. Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning.

  8. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields

    Science.gov (United States)

    Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong

    2017-01-01

    Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955

  9. Acoustic streaming in simplified liquid rocket engines with transverse mode oscillations

    Science.gov (United States)

    Fischbach, Sean R.; Flandro, Gary A.; Majdalani, Joseph

    2010-06-01

    This study considers a simplified model of a liquid rocket engine in which uniform injection is imposed at the faceplate. The corresponding cylindrical chamber has a small length-to-diameter ratio with respect to solid and hybrid rockets. Given their low chamber aspect ratios, liquid thrust engines are known to experience severe tangential and radial oscillation modes more often than longitudinal ones. In order to model this behavior, tangential and radial waves are superimposed onto a basic mean-flow model that consists of a steady, uniform axial velocity throughout the chamber. Using perturbation tools, both potential and viscous flow equations are then linearized in the pressure wave amplitude and solved to the second order. The effects of the headwall Mach number are leveraged as well. While the potential flow analysis does not predict any acoustic streaming effects, the viscous solution carried out to the second order gives rise to steady secondary flow patterns near the headwall. These axisymmetric, steady contributions to the tangential and radial traveling waves are induced by the convective flow motion through interactions with inertial and viscous forces. We find that suppressing either the convective terms or viscosity at the headwall leads to spurious solutions that are free from streaming. In our problem, streaming is initiated at the headwall, within the boundary layer, and then extends throughout the chamber. We find that nonlinear streaming effects of tangential and radial waves act to alter the outer solution inside a cylinder with headwall injection. As a result of streaming, the radial wave velocities are intensified in one-half of the domain and reduced in the opposite half at any instant of time. Similarly, the tangential waves are either enhanced or weakened in two opposing sectors that are at 90° angle to the radial velocity counterparts. The second-order viscous solution that we obtain clearly displays both an oscillating and a steady flow

  10. Lattice Boltzmann simulations of attenuation-driven acoustic streaming

    International Nuclear Information System (INIS)

    Haydock, David; Yeomans, J M

    2003-01-01

    We show that lattice Boltzmann simulations can be used to model the attenuation-driven acoustic streaming produced by a travelling wave. Comparisons are made to analytical results and to the streaming pattern produced by an imposed body force approximating the Reynolds stresses. We predict the streaming patterns around a porous material in an attenuating acoustic field

  11. Acoustic streaming produced by a cylindrical bubble undergoing volume and translational oscillations in a microfluidic channel.

    Science.gov (United States)

    Doinikov, Alexander A; Combriat, Thomas; Thibault, Pierre; Marmottant, Philippe

    2016-09-01

    A theoretical model is developed for acoustic streaming generated by a cylindrical bubble confined in a fluid channel between two planar elastic walls. The bubble is assumed to undergo volume and translational oscillations. The volume oscillation is caused by an imposed acoustic pressure field and generates the bulk scattered wave in the fluid gap and Lamb-type surface waves propagating along the fluid-wall interfaces. The translational oscillation is induced by the velocity field of an external sound source such as another bubble or an oscillatory fluid flow. The acoustic streaming is assumed to result from the interaction of the volume and the translational modes of the bubble oscillations. The general solutions for the linear equations of fluid motion and the equations of acoustic streaming are calculated with no restrictions on the ratio between the viscous penetration depth and the bubble size. Approximate solutions for the limit of low viscosity are provided as well. Simulations of streamline patterns show that the geometry of the streaming resembles flows generated by a source dipole, while the vortex orientation is governed by the driving frequency, bubble size, and the distance of the bubble from the source of translational excitation. Experimental verification of the developed theory is performed using data for streaming generated by bubble pairs.

  12. Effects of heat exchange and nonlinearity on acoustic streaming in a vibrating cylindrical cavity.

    Science.gov (United States)

    Gubaidullin, Amir A; Yakovenko, Anna V

    2015-06-01

    Acoustic streaming in a gas filled cylindrical cavity subjected to the vibration effect is investigated numerically. Both thermally insulated walls and constant temperature walls are considered. The range of vibration frequencies from low frequencies, at which the process can be described by an approximate analytical solution, to high frequencies giving rise to strong nonlinear effects is studied. Frequencies lower than the resonant one are chosen, and nonlinearity is achieved due to the large amplitude. The problem is solved in an axisymmetric statement. The dependence of acoustic streaming in narrow channels at vibration frequencies lower than the resonant one on the type of thermal boundary conditions is shown. The streaming vortices' directions of rotation in the case of constant temperature walls are found to be opposite to those in the case of thermally insulated walls. Different nonlinear effects, which increase with the frequency of vibration, are obtained. Nonlinear effects manifesting as the nonuniformity of average temperature, pressure, and density are in turn found to be influencing the streaming velocity and streaming structure.

  13. Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.

    Science.gov (United States)

    Cho, Eunjin; Chung, Sang Kug; Rhee, Kyehan

    2015-09-01

    To elucidate the effects of streaming flow on ultrasound contrast agent (UCA)-assisted drug delivery, streaming velocity fields from sonicated UCA microbubbles were measured using particle image velocimetry (PIV) in a blood vessel model. At the beginning of ultrasound sonication, the UCA bubbles formed clusters and translated in the direction of the ultrasound field. Bubble cluster formation and translation were faster with 2.25MHz sonication, a frequency close to the resonance frequency of the UCA. Translation of bubble clusters induced streaming jet flow that impinged on the vessel wall, forming symmetric vortices. The maximum streaming velocity was about 60mm/s at 2.25MHz and decreased to 15mm/s at 1.0MHz for the same acoustic pressure amplitude. The effect of the ultrasound frequency on wall shear stress was more noticeable. Maximum wall shear stress decreased from 0.84 to 0.1Pa as the ultrasound frequency decreased from 2.25 to 1.0MHz. The maximum spatial gradient of the wall shear stress also decreased from 1.0 to 0.1Pa/mm. This study showed that streaming flow was induced by bubble cluster formation and translation and was stronger upon sonication by an acoustic wave with a frequency near the UCA resonance frequency. Therefore, the secondary radiant force, which is much stronger at the resonance frequency, should play an important role in UCA-assisted drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.

    Science.gov (United States)

    Shilton, Richie J; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco

    2014-08-06

    The relevant length scales in sub-nanometer amplitude surface acoustic wave-driven acoustic streaming are demonstrated. We demonstrate the absence of any physical limitations preventing the downscaling of SAW-driven internal streaming to nanoliter microreactors and beyond by extending SAW microfluidics up to operating frequencies in the GHz range. This method is applied to nanoliter scale fluid mixing. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. PIV for the characterization of focused field induced acoustic streaming: seeding particle choice evaluation.

    Science.gov (United States)

    Ben Haj Slama, Rafika; Gilles, Bruno; Ben Chiekh, Maher; Béra, Jean-Christophe

    2017-04-01

    This research evaluates the use of Particle Image Velocimetry (PIV) technique for characterizing acoustic streaming flow generated by High Intensity Focused Ultrasound (HIFU). PIV qualification tests, focusing on the seeding particle size (diameter of 5, 20 and 50μm) were carried out in degassed water subjected to a focused field of 550kHz-frequency with an acoustic pressure amplitude of 5.2, 10.5 and 15.7bar at the focus. This study shows that the ultrasonic field, especially the radiation force, can strongly affect seeding particle behavior. Large particles (50μm-diameter) are repelled from the focal zone and gathered at radiation pressure convergence lines on either side of the focus. The calculation of the acoustic radiation pressure applied on these particles explains the observed phenomenon. PIV measurements do not, therefore, properly characterize the streaming flow in this case. On the contrary, small particles (5μm-diameter) velocity measurements were in good agreement with the Computational Fluid Dynamics (CFD) simulations of the water velocity field. A simple criterion approximating the diameter threshold below which seeding particles are qualified for PIV in presence of focused ultrasound is then proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Size Control of Sessile Microbubbles for Reproducibly Driven Acoustic Streaming

    Science.gov (United States)

    Volk, Andreas; Kähler, Christian J.

    2018-05-01

    Acoustically actuated bubbles are receiving growing interest in microfluidic applications, as they induce a streaming field that can be used for particle sorting and fluid mixing. An essential but often unspoken challenge in such applications is to maintain a constant bubble size to achieve reproducible conditions. We present an automatized system for the size control of a cylindrical bubble that is formed at a blind side pit of a polydimethylsiloxane microchannel. Using a pressure control system, we adapt the protrusion depth of the bubble into the microchannel to a precision of approximately 0.5 μ m on a timescale of seconds. By comparing the streaming field generated by bubbles of width 80 μ m with a protrusion depth between -12 and 60 μ m , we find that the mean velocity of the induced streaming fields varies by more than a factor of 4. We also find a qualitative change of the topology of the streaming field. Both observations confirm the importance of the bubble size control system in order to achieve reproducible and reliable bubble-driven streaming experiments.

  17. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    Science.gov (United States)

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  18. Three-Dimensional Phenomena in Microbubble Acoustic Streaming

    Science.gov (United States)

    Marin, Alvaro; Rossi, Massimiliano; Rallabandi, Bhargav; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.

    2015-04-01

    Ultrasound-driven oscillating microbubbles are used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting, and manipulation of microparticles. A common configuration consists of side bubbles created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration consists of acoustically excited bubbles with a semicylindrical shape that generate significant streaming flow. Because of the geometry of the channels, such flows are generally considered as quasi-two-dimensional. Similar assumptions are often made in many other microfluidic systems based on flat microchannels. However, in this Letter we show that microparticle trajectories actually present a much richer behavior, with particularly strong out-of-plane dynamics in regions close to the microbubble interface. Using astigmatism particle-tracking velocimetry, we reveal that the apparent planar streamlines are actually projections of a stream surface with a pseudotoroidal shape. We, therefore, show that acoustic streaming cannot generally be assumed as a two-dimensional phenomenon in confined systems. The results have crucial consequences for most of the applications involving acoustic streaming such as particle trapping, sorting, and mixing.

  19. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Laurell, Thomas

    2012-01-01

    We present microparticle image velocimetry measurements of suspended microparticles of diameters from 0.6 to 10μm undergoing acoustophoresis in an ultrasound symmetry plane in a microchannel. The motion of the smallest particles is dominated by the Stokes drag from the induced acoustic streaming...

  20. Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: mathematical and 3D computational simulation.

    Science.gov (United States)

    Sajjadi, Baharak; Raman, Abdul Aziz Abdul; Ibrahim, Shaliza

    2015-05-01

    This paper aims at investigating the influence of ultrasound power amplitude on liquid behaviour in a low-frequency (24 kHz) sono-reactor. Three types of analysis were employed: (i) mechanical analysis of micro-bubbles formation and their activities/characteristics using mathematical modelling. (ii) Numerical analysis of acoustic streaming, fluid flow pattern, volume fraction of micro-bubbles and turbulence using 3D CFD simulation. (iii) Practical analysis of fluid flow pattern and acoustic streaming under ultrasound irradiation using Particle Image Velocimetry (PIV). In mathematical modelling, a lone micro bubble generated under power ultrasound irradiation was mechanistically analysed. Its characteristics were illustrated as a function of bubble radius, internal temperature and pressure (hot spot conditions) and oscillation (pulsation) velocity. The results showed that ultrasound power significantly affected the conditions of hotspots and bubbles oscillation velocity. From the CFD results, it was observed that the total volume of the micro-bubbles increased by about 4.95% with each 100 W-increase in power amplitude. Furthermore, velocity of acoustic streaming increased from 29 to 119 cm/s as power increased, which was in good agreement with the PIV analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Acoustic streaming: an arbitrary Lagrangian-Eulerian perspective.

    Science.gov (United States)

    Nama, Nitesh; Huang, Tony Jun; Costanzo, Francesco

    2017-08-25

    We analyse acoustic streaming flows using an arbitrary Lagrangian Eulerian (ALE) perspective. The formulation stems from an explicit separation of time scales resulting in two subproblems: a first-order problem, formulated in terms of the fluid displacement at the fast scale, and a second-order problem, formulated in terms of the Lagrangian flow velocity at the slow time scale. Following a rigorous time-averaging procedure, the second-order problem is shown to be intrinsically steady, and with exact boundary conditions at the oscillating walls. Also, as the second-order problem is solved directly for the Lagrangian velocity, the formulation does not need to employ the notion of Stokes drift, or any associated post-processing, thus facilitating a direct comparison with experiments. Because the first-order problem is formulated in terms of the displacement field, our formulation is directly applicable to more complex fluid-structure interaction problems in microacoustofluidic devices. After the formulation's exposition, we present numerical results that illustrate the advantages of the formulation with respect to current approaches.

  2. VELOCITY VARIATIONS IN THE PHOENIX–HERMUS STAR STREAM

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, R. G. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Grillmair, C. J., E-mail: carlberg@astro.utoronto.ca, E-mail: carl@ipac.caltech.edu [Spitzer Science Center, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2016-10-20

    Measurements of velocity and density perturbations along stellar streams in the Milky Way provide a time-integrated measure of dark matter substructure at larger galactic radius than the complementary instantaneous inner-halo strong lensing detection of dark matter sub-halos in distant galaxies. An interesting case to consider is the proposed Phoenix–Hermus star stream, which is long, thin, and on a nearly circular orbit, making it a particular good target to study for velocity variations along its length. In the presence of dark matter sub-halos, the stream velocities are significantly perturbed in a manner that is readily understood with the impulse approximation. A set of simulations shows that only sub-halos above a few 10{sup 7} M {sub ⊙} lead to reasonably long-lived observationally detectable velocity variations of amplitude of order 1 km s{sup −1}, with an average of about one visible hit per (two-armed) stream over a 3 Gyr interval. An implication is that globular clusters themselves will not have a visible impact on the stream. Radial velocities have the benefit of being completely insensitive to distance errors. Distance errors scatter individual star velocities perpendicular and tangential to the mean orbit, but their mean values remain unbiased. Calculations like these help build the quantitative case to acquire large, fairly deep, precision velocity samples of stream stars.

  3. Theory of the acoustic instability and behavior of the phase velocity of acoustic waves in a weakly ionized plasma

    International Nuclear Information System (INIS)

    Torosyan, O.S.; Mkrtchyan, A.R.

    2003-01-01

    The amplification of acoustic waves due to the transfer of thermal energy from electrons to the neutral component of a glow discharge plasma is studied theoretically. It is shown that, in order for acoustic instability (sound amplification) to occur, the amount of energy transferred should exceed the threshold energy, which depends on the plasma parameters and the acoustic wave frequency. The energy balance equation for an electron gas in the positive column of a glow discharge is analyzed for conditions typical of experiments in which acoustic wave amplification has been observed. Based on this analysis, one can affirm that, first, the energy transferred to neutral gas in elastic electron-atom collisions is substantially lower than the threshold energy for acoustic wave amplification and, second, that the energy transferred from electrons to neutral gas in inelastic collisions is much higher than that transferred in elastic collisions and thus may exceed the threshold energy. It is also shown that, for amplification to occur, there should exist some heat dissipation mechanism more efficient than gas heat conduction. It is suggested that this may be convective radial mixing within a positive column due to acoustic streaming in the field of an acoustic wave. The features of the phase velocity of sound waves in the presence of acoustic instability are investigated

  4. Acoustic streaming in pulsating flows through porous media

    International Nuclear Information System (INIS)

    Valverde, J.M.; Dura'n-Olivencia, F.J.

    2014-01-01

    When a body immersed in a viscous fluid is subjected to a sound wave (or, equivalently, the body oscillates in the fluid otherwise at rest) a rotational fluid stream develops across a boundary layer nearby the fluid-body interphase. This so-called acoustic streaming phenomenon is responsible for a notable enhancement of heat, mass and momentum transfer and takes place in any process involving two phases subjected to relative oscillations. Understanding the fundamental mechanisms governing acoustic streaming in two-phase flows is of great interest for a wide range of applications such as sonoprocessed fluidized bed reactors, thermoacoustic refrigerators/engines, pulsatile flows through veins/arteries, hemodialysis devices, pipes in off-shore platforms, offshore piers, vibrating structures in the power-generating industry, lab-on-a-chip microfluidics and microgravity acoustic levitation, and solar thermal collectors to name a few. The aim of engineering studies on this vast diversity of systems is oriented towards maximizing the efficiency of each particular process. Even though practical problems are usually approached from disparate disciplines without any apparent linkage, the behavior of these systems is influenced by the same underlying physics. In general, acoustic streaming occurs within the interstices of porous media and usually in the presence of externally imposed steady fluid flows, which gives rise to important effects arising from the interference between viscous boundary layers developed around nearby solid surfaces and the nonlinear coupling between the oscillating and steady flows. This paper is mainly devoted to highlighting the fundamental physics behind acoustic streaming in porous media in order to provide a simple instrument to assess the relevance of this phenomenon in each particular application. The exact microscopic Navier-Stokes equations will be numerically solved for a simplified 2D system consisting of a regular array of oscillating

  5. The Microflown, an acoustic particle velocity sensor

    NARCIS (Netherlands)

    de Bree, H.E.

    2003-01-01

    The Microflown is an acoustic sensor directly measuring particle velocity instead of sound pressure, which is usually measured by conventional microphones. Since its invention in 1994 it is mostly used for measurement purposes (broadband1D and 3D-sound intensity measurement and acoustic impedance).

  6. Active micromixer using surface acoustic wave streaming

    Science.gov (United States)

    Branch,; Darren W. , Meyer; Grant D. , Craighead; Harold, G [Ithaca, NY

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  7. Three-axis acoustic device for levitation of droplets in an open gas stream and its application to examine sulfur dioxide absorption by water droplets.

    Science.gov (United States)

    Stephens, Terrance L; Budwig, Ralph S

    2007-01-01

    Two acoustic devices to stabilize a droplet in an open gas stream (single-axis and three-axis levitators) have been designed and tested. The gas stream was provided by a jet apparatus with a 64 mm exit diameter and a uniform velocity profile. The acoustic source used was a Langevin vibrator with a concave reflector. The single-axis levitator relied primarily on the radial force from the acoustic field and was shown to be limited because of significant droplet wandering. The three-axis levitator relied on a combination of the axial and radial forces. The three-axis levitator was applied to examine droplet deformation and circulation and to investigate the uptake of SO(2) from the gas stream to the droplet. Droplets ranging in diameters from 2 to 5 mm were levitated in gas streams with velocities up to 9 ms. Droplet wandering was on the order of a half droplet diameter for a 3 mm diameter droplet. Droplet circulation ranged from the predicted Hadamard-Rybczynski pattern to a rotating droplet pattern. Droplet pH over a central volume of the droplet was measured by planar laser induced fluorescence. The results for the decay of droplet pH versus time are in general agreement with published theory and experiments.

  8. Near boundary acoustic streaming in Ni-Fe alloy electrodeposition control

    DEFF Research Database (Denmark)

    Pocwiardowski, Pawel; Lasota, H.; Ravn, Christian

    2005-01-01

    Alloy electrodeposition is strongly influenced by diffusion layer phenomena affecting the ion concentration distribution in a different way for each component. This paper presents the method of acoustic agitation leading to controlled uniform electrodeposition of alloys. The method consists...... in generating acoustic flow perpendicular to the surface in the field of an acoustic standing wave parallel to the plated substrate - so called modified Rayleigh streaming. The result showed that the near boundary streaming offers controlled mass transportation in the micrometer thick layer close to the cathode...

  9. Interaction between counter-streaming ion-acoustic solitons and the Langmuir waves

    International Nuclear Information System (INIS)

    Basovich, A.Ya.; Gromov, E.M.; Talanov, V.I.

    1984-01-01

    The interaction between strong counter-streaming ion-acoustic solitons and the Langmuir waves is considered. At first the Langmuir waves spectrum transformation by counter-streaming ion-acoustic solutions of a preset amplitude e has been found. An increase in the frequency and number of the Langmuir waves due to the Doppler effect in the course of multiple reflection from the f front soliton slope has been determined and the wave number range in which the confinement of the Langmuir waves by counter-streaning solitons is possible has s been found. It is shown that the time of the Langmuir wave transformation into the short-wave region under the effect of the counter-streaming soliton may y be short as compared with the time of the Langmuir wave diffusion into the Landau damping region under the effect of random fields of ion-acoustic waves. In the adiabatic fpproximation changes in the counter-streaming ion acoustic parameters of solitons owing to the Langmuir waves have been

  10. Acoustofluidics 13: Analysis of acoustic streaming by perturbation methods.

    Science.gov (United States)

    Sadhal, S S

    2012-07-07

    In this Part 13 of the tutorial series "Acoustofluidics--exploiting ultrasonic standing waves forces and acoustic streaming in microfluidic systems for cell and particle manipulation," the streaming phenomenon is presented from an analytical standpoint, and perturbation methods are developed for analyzing such flows. Acoustic streaming is the phenomenon that takes place when a steady flow field is generated by the absorption of an oscillatory field. This can happen either by attenuation (quartz wind) or by interaction with a boundary. The latter type of streaming can also be generated by an oscillating solid in an otherwise still fluid medium or vibrating enclosure of a fluid body. While we address the first kind of streaming, our focus is largely on the second kind from a practical standpoint for application to microfluidic systems. In this Focus article, we limit the analysis to one- and two-dimensional problems in order to understand the analytical techniques with examples that most-easily illustrate the streaming phenomenon.

  11. Acoustic Streaming and Its Suppression in Inhomogeneous Fluids

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Qiu, Wei; Augustsson, Per

    2018-01-01

    We present a theoretical and experimental study of boundary-driven acoustic streaming in an inhomogeneous fluid with variations in density and compressibility. In a homogeneous fluid this streaming results from dissipation in the boundary layers (Rayleigh streaming). We show...... that in an inhomogeneous fluid, an additional nondissipative force density acts on the fluid to stabilize particular inhomogeneity configurations, which markedly alters and even suppresses the streaming flows. Our theoretical and numerical analysis of the phenomenon is supported by ultrasound experiments performed...

  12. Simulation of acoustic streaming by means of the finite-difference time-domain method

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco

    2012-01-01

    Numerical simulations of acoustic streaming generated by a standing wave in a narrow twodimensional cavity are presented. In this case, acoustic streaming arises from the viscous boundary layers set up at the surfaces of the walls. It is known that streaming vortices inside the boundary layer have...... directions of rotation that are opposite to those of the outer streaming vortices (Rayleigh streaming). The general objective of the work described in this paper has been to study the extent to which it is possible to simulate both the outer streaming vortices and the inner boundary layer vortices using...... the finite-difference time-domain method. To simplify the problem, thermal effects are not considered. The motivation of the described investigation has been the possibility of using the numerical method to study acoustic streaming, particularly under non-steady conditions. Results are discussed for channels...

  13. Numerical performance analysis of acoustic Doppler velocity profilers in the wake of an axial-flow marine hydrokinetic turbine

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C.; Harding, Samuel F.; Romero Gomez, Pedro DJ

    2015-09-01

    The use of acoustic Doppler current profilers (ADCPs) for the characterization of flow conditions in the vicinity of both experimental and full scale marine hydrokinetic (MHK) turbines is becoming increasingly prevalent. The computation of a three dimensional velocity measurement from divergent acoustic beams requires the assumption that the flow conditions are homogeneous between all beams at a particular axial distance from the instrument. In the near wake of MHK devices, the mean fluid motion is observed to be highly spatially dependent as a result of torque generation and energy extraction. This paper examines the performance of ADCP measurements in such scenarios through the modelling of a virtual ADCP (VADCP) instrument in the velocity field in the wake of an MHK turbine resolved using unsteady computational fluid dynamics (CFD). This is achieved by sampling the CFD velocity field at equivalent locations to the sample bins of an ADCP and performing the coordinate transformation from beam coordinates to instrument coordinates and finally to global coordinates. The error in the mean velocity calculated by the VADCP relative to the reference velocity along the instrument axis is calculated for a range of instrument locations and orientations. The stream-wise velocity deficit and tangential swirl velocity caused by the rotor rotation lead to significant misrepresentation of the true flow velocity profiles by the VADCP, with the most significant errors in the transverse (cross-flow) velocity direction.

  14. Acoustic Streaming and Its Suppression in Inhomogeneous Fluids.

    Science.gov (United States)

    Karlsen, Jonas T; Qiu, Wei; Augustsson, Per; Bruus, Henrik

    2018-02-02

    We present a theoretical and experimental study of boundary-driven acoustic streaming in an inhomogeneous fluid with variations in density and compressibility. In a homogeneous fluid this streaming results from dissipation in the boundary layers (Rayleigh streaming). We show that in an inhomogeneous fluid, an additional nondissipative force density acts on the fluid to stabilize particular inhomogeneity configurations, which markedly alters and even suppresses the streaming flows. Our theoretical and numerical analysis of the phenomenon is supported by ultrasound experiments performed with inhomogeneous aqueous iodixanol solutions in a glass-silicon microchip.

  15. Dispersion of acoustic surface waves by velocity gradients

    Science.gov (United States)

    Kwon, S. D.; Kim, H. C.

    1987-10-01

    The perturbation theory of Auld [Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol. II, p. 294], which describes the effect of a subsurface gradient on the velocity dispersion of surface waves, has been modified to a simpler form by an approximation using a newly defined velocity gradient for the case of isotropic materials. The modified theory is applied to nitrogen implantation in AISI 4140 steel with a velocity gradient of Gaussian profile, and compared with dispersion data obtained by the ultrasonic right-angle technique in the frequency range from 2.4 to 14.8 MHz. The good agreement between experiments and our theory suggests that the compound layer in the subsurface region plays a dominant role in causing the dispersion of acoustic surface waves.

  16. Effect of β-PVDF Piezoelectric Transducers’ Positioning on the Acoustic Streaming Flows

    Directory of Open Access Journals (Sweden)

    Susana O. Catarino

    2014-09-01

    Full Text Available This paper reports the numerical and experimental analysis of the acoustic streaming effect in a fluidic domain. The actuation of a piezoelectric transducer generates acoustic waves that propagate to the fluids, generating pressure gradients that induce the flow. The number and positioning of the transducers affect the pressure gradients and, consequently, the resultant flow profile. Two actuation conditions were considered: (1 acoustic streaming generated by a 28 μm thick β-poly(vinylidene fluoride (β-PVDF piezoelectric transducer placed asymmetrically relative to the fluidic domain and (2 acoustic streaming generated by two 28 μm thick β-PVDF piezoelectric transducers placed perpendicularly to each other. The transducers were fixed to the lower left corner of a poly(methyl methacrylate (PMMAcuvette and were actuated with a 24 Vpp and 34.2 MHz sinusoidal voltage. The results show that the number of transducers and their positioning affects the shape and number of recirculation areas in the acoustic streaming flows. The obtained global flows show great potential for mixing and pumping, being an alternative to the previous geometries studied by the authors, namely, a single transducer placed symmetrically under a fluidic domain.

  17. Acoustic streaming induced by two orthogonal ultrasound standing waves in a microfluidic channel.

    Science.gov (United States)

    Doinikov, Alexander A; Thibault, Pierre; Marmottant, Philippe

    2018-07-01

    A mathematical model is derived for acoustic streaming in a microfluidic channel confined between a solid wall and a rigid reflector. Acoustic streaming is produced by two orthogonal ultrasound standing waves of the same frequency that are created by two pairs of counter-propagating leaky surface waves induced in the solid wall. The magnitudes and phases of the standing waves are assumed to be different. Full analytical solutions are found for the equations of acoustic streaming. The obtained solutions are used in numerical simulations to reveal the structure of the acoustic streaming. It is shown that the interaction of two standing waves leads to the appearance of a cross term in the equations of acoustic streaming. If the phase lag between the standing waves is nonzero, the cross term brings about circular vortices with rotation axes perpendicular to the solid wall of the channel. The vortices make fluid particles rotate and move alternately up and down between the solid wall and the reflector. The obtained results are of immediate interest for acoustomicrofluidic applications such as the ultrasonic micromixing of fluids and the manipulation of microparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Aeroacoustics of Three-Stream Jets

    Science.gov (United States)

    Henderson, Brenda S.

    2012-01-01

    Results from acoustic measurements of noise radiated from a heated, three-stream, co-annular exhaust system operated at subsonic conditions are presented. The experiments were conducted for a range of core, bypass, and tertiary stream temperatures and pressures. The nozzle system had a fan-to-core area ratio of 2.92 and a tertiary-to-core area ratio of 0.96. The impact of introducing a third stream on the radiated noise for third-stream velocities below that of the bypass stream was to reduce high frequency noise levels at broadside and peak jet-noise angles. Mid-frequency noise radiation at aft observation angles was impacted by the conditions of the third stream. The core velocity had the greatest impact on peak noise levels and the bypass-to-core mass flow ratio had a slight impact on levels in the peak jet-noise direction. The third-stream jet conditions had no impact on peak noise levels. Introduction of a third jet stream in the presence of a simulated forward-flight stream limits the impact of the third stream on radiated noise. For equivalent ideal thrust conditions, two-stream and three-stream jets can produce similar acoustic spectra although high-frequency noise levels tend to be lower for the three-stream jet.

  19. Estimating propagation velocity through a surface acoustic wave sensor

    Science.gov (United States)

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  20. Near-field Oblique Remote Sensing of Stream Water-surface Elevation, Slope, and Surface Velocity

    Science.gov (United States)

    Minear, J. T.; Kinzel, P. J.; Nelson, J. M.; McDonald, R.; Wright, S. A.

    2014-12-01

    A major challenge for estimating discharges during flood events or in steep channels is the difficulty and hazard inherent in obtaining in-stream measurements. One possible solution is to use near-field remote sensing to obtain simultaneous water-surface elevations, slope, and surface velocities. In this test case, we utilized Terrestrial Laser Scanning (TLS) to remotely measure water-surface elevations and slope in combination with surface velocities estimated from particle image velocimetry (PIV) obtained by video-camera and/or infrared camera. We tested this method at several sites in New Mexico and Colorado using independent validation data consisting of in-channel measurements from survey-grade GPS and Acoustic Doppler Current Profiler (ADCP) instruments. Preliminary results indicate that for relatively turbid or steep streams, TLS collects tens of thousands of water-surface elevations and slopes in minutes, much faster than conventional means and at relatively high precision, at least as good as continuous survey-grade GPS measurements. Estimated surface velocities from this technique are within 15% of measured velocity magnitudes and within 10 degrees from the measured velocity direction (using extrapolation from the shallowest bin of the ADCP measurements). Accurately aligning the PIV results into Cartesian coordinates appears to be one of the main sources of error, primarily due to the sensitivity at these shallow oblique look angles and the low numbers of stationary objects for rectification. Combining remotely-sensed water-surface elevations, slope, and surface velocities produces simultaneous velocity measurements from a large number of locations in the channel and is more spatially extensive than traditional velocity measurements. These factors make this technique useful for improving estimates of flow measurements during flood flows and in steep channels while also decreasing the difficulty and hazard associated with making measurements in these

  1. Velocity and rotation measurements in acoustically levitated droplets

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Abhishek [University of Central Florida, Orlando, FL 32816 (United States); Basu, Saptarshi [Indian Institute of Science, Bangalore 560012 (India); Kumar, Ranganathan, E-mail: ranganathan.kumar@ucf.edu [University of Central Florida, Orlando, FL 32816 (United States)

    2012-10-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. -- Highlights: ► Demonstrates the importance of rotation in a levitated droplet that leads to controlled morphology. ► Provides detailed measurements of Particle Image Velocimetry inside levitated droplets. ► Shows variation of vortex strength with the droplet diameter and viscosity of the liquid.

  2. Velocity and rotation measurements in acoustically levitated droplets

    International Nuclear Information System (INIS)

    Saha, Abhishek; Basu, Saptarshi; Kumar, Ranganathan

    2012-01-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. -- Highlights: ► Demonstrates the importance of rotation in a levitated droplet that leads to controlled morphology. ► Provides detailed measurements of Particle Image Velocimetry inside levitated droplets. ► Shows variation of vortex strength with the droplet diameter and viscosity of the liquid.

  3. Acoustically Induced Streaming Flows near a Model Cod Otolith and their Potential Implications for Fish Hearing

    Energy Technology Data Exchange (ETDEWEB)

    Kotas, Charlotte W [ORNL; Rogers, Peter [Georgia Institute of Technology; Yoda, Minami [Georgia Institute of Technology

    2011-01-01

    The ears of fishes are remarkable sensors for the small acoustic disturbances associated with underwater sound. For example, each ear of the Atlantic cod (Gadus morhua) has three dense bony bodies (otoliths) surrounded by fluid and tissue, and detects sounds at frequencies from 30 to 500 Hz. Atlantic cod have also been shown to localize sounds. However, how their ears perform these functions is not fully understood. Steady streaming, or time-independent, flows near a 350% scale model Atlantic cod otolith immersed in a viscous fluid were studied to determine if these fluid flows contain acoustically relevant information that could be detected by the ear s sensory hair cells. The otolith was oscillated sinusoidally at various orientations at frequencies of 8 24 Hz, corresponding to an actual frequency range of 280 830 Hz. Phaselocked particle pathline visualizations of the resulting flows give velocity, vorticity, and rate of strain fields over a single plane of this mainly two-dimensional flow. Although the streaming flows contain acoustically relevant information, the displacements due to these flows are likely too small to explain Atlantic cod hearing abilities near threshold. The results, however, may suggest a possible mechanism for detection of ultrasound in some fish species.

  4. Experimental investigation of the influence of natural convection and end-effects on Rayleigh streaming in a thermoacoustic engine.

    Science.gov (United States)

    Ramadan, Islam A; Bailliet, Hélène; Valière, Jean-Christophe

    2018-01-01

    The influence of both the natural convection and end-effects on Rayleigh streaming pattern in a simple standing-wave thermoacoustic engine is investigated experimentally at different acoustic levels. The axial mean velocity inside the engine is measured using both Laser Doppler Velocimetry and Particle Image Velocimetry. The mean flow patterns are categorized in three different regions referred to as "cold streaming" region, "hot streaming" region, and "end-effects" region. In the cold streaming region, the dominant phenomenon is Rayleigh streaming and the mean velocity measurements correspond well with the theoretical expectations of Rayleigh streaming at low acoustic levels. At higher acoustic levels, the measurements deviate from the theoretical expectations which complies with the literature. In the hot streaming region, temperature measurements reveal that the non-uniformity of the resonator wall temperature is the origin of natural convection flow. Velocity measurements show that natural convection flow superimposes on the Rayleigh streaming flow so that the measured mean velocity deviates from the theoretical expectations of Rayleigh streaming. In the last region, the measured mean velocity is very different from Rayleigh streaming due to the combined effects of both the flow disturbances generated near the extremity of the stack and the natural convection flow.

  5. Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Bruus, Henrik

    2014-01-01

    We present a numerical study of thermoviscous effects on the acoustic streaming flow generated by an ultrasound standing-wave resonance in a long straight microfluidic channel containing a Newtonian fluid. These effects enter primarily through the temperature and density dependence of the fluid...... viscosity. The resulting magnitude of the streaming flow is calculated and characterized numerically, and we find that even for thin acoustic boundary layers, the channel height affects the magnitude of the streaming flow. For the special case of a sufficiently large channel height, we have successfully...

  6. Acoustic streaming enhanced electrodeposition of nickel

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl; Møller, Per

    2003-01-01

    Electrochemical deposition of Ni from a Watts-type electrolyte under the influence of high frequency ultrasound at both high (250 W) and low (5–10 W) power sonication was investigated. An improvement in the material distribution of the deposited Ni in millimeter-sized groove-features on the catho......-patterns on the surface of the deposit and near-boundary acoustic streaming....

  7. Acoustic Streaming, The “Small Invention” of Cianobacteria?

    Directory of Open Access Journals (Sweden)

    Koiller, Jair

    2010-12-01

    Full Text Available Micro-engineering pumping devices without mechanical parts appeared “way back” in the early 1990’s. The working principle is acoustic streaming. Has Nature “rediscovered” this invention 2.7 Gyr ago? Strands of marine cyanobacteria Synechococcus swim 25 diameters per second without any visible means of propulsion. We show that nanoscale amplitude vibrations on the S-layer (a crystalline shell outside the outer membrane present in motile strands and frequencies of the order of 0.5-1.5 MHz (achievable by molecular motors, could produce steady streaming slip velocities outside a (Stokes boundary layer. Inside this boundary layer the flow pattern is rotational (hence biologically advantageous. In addition to this purported “swimming by singing”, we also indicate other possible instantiations of acoustic streaming. Sir James Lighthill has proposed that acoustic streaming occurs in the cochlear dynamics, and new findings on the outer hair cell membranes are suggestive. Other possibilities are membrane vibrations of yeast cells, enhancing its chemistry (beer and bread, keep it up, yeast!, squirming motion of red blood cells along capillaries, and fluid pumping by silicated diatoms.

    Los mecanismos de bombeo en microingeniería aparecieron al principio de la década de los 90. El principio detrás de esto es el de flujo acústico. ¿Ha descubierto la Naturaleza este invento de hace 2.700 millones de años? Algunas cianobacterias marinas de la especie Synechococcus nadan 25 diámetros por segundo sin ningún medio visible de propulsión. Especulamos en este artículo que vibraciones de amplitud de nanoescala del estrato S (una cáscara cristalina que cubre las membranas exteriores en las cepas móviles y con frecuencias del orden de 0,5-1,5 MHz (y esto es factible por los motores moleculares, podrían producir velocidades de deslizamiento del fluido, en el exterior de la frontera de la región Stokes. Dentro de esta capa límite (que

  8. Acoustic velocity investigation and density calculation in liquid nitrogen tetroxide

    International Nuclear Information System (INIS)

    Belyaeva, O.V.; Nikolaev, V.A.; Timofeev, B.D.

    1979-01-01

    Acoustic velocity in liquid nitrogen tetroxide was investigated on an ultrasonic interferometer, which represents a tube with the 30x2.5 mm diameter, at the ends of which ultrasonic sensors are located. The sensors and the interferometer tube are fabricated of the Kh18N9T stainless steel. The calibration tests were carried out on twice-distilled water at the pressure from 1 to 80 bar in the operational range of temperatures from 283 to 360 K. The relative mean square error in experimental data on the acoustic velocity in liquid nitrogen tetroxide is 0.17%. The experimental data are described by the interpolation polynom in the investigated range of state parameters. On the basis of experimental data on the density of liquid nitrogen tetroxide near the saturation line and the experimental values of acoustic velocity, an interpolation equation is suggested to calculate the substance density under investigation in the range of 290-360 K from pressures corresponding to the saturation line, to 300 bar

  9. Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices.

    Science.gov (United States)

    Lei, Junjun; Hill, Martyn; Glynne-Jones, Peter

    2014-02-07

    This article discusses three-dimensional (3D) boundary-driven streaming in acoustofluidic devices. Firstly, the 3D Rayleigh streaming pattern in a microchannel is simulated and its effect on the movement of microparticles of various sizes is demonstrated. The results obtained from this model show good comparisons with 3D experimental visualisations and demonstrate the fully 3D nature of the acoustic streaming field and the associated acoustophoretic motion of microparticles in acoustofluidic devices. This method is then applied to another acoustofluidic device in order to gain insights into an unusual in-plane streaming pattern. The origin of this streaming has not been fully described and its characteristics cannot be explained from the classical theory of Rayleigh streaming. The simulated in-plane streaming pattern was in good agreement with the experimental visualisation. The mechanism behind it is shown to be related to the active sound intensity field, which supports our previous findings on the mechanism of the in-plane acoustic streaming pattern visualised and modelled in a thin-layered capillary device.

  10. Oscillating acoustic streaming jet

    International Nuclear Information System (INIS)

    Moudjed, Brahim; Botton, Valery; Henry, Daniel; Millet, Severine; Ben Hadid, Hamda; Garandet, Jean-Paul

    2014-01-01

    The present paper provides the first experimental investigation of an oscillating acoustic streaming jet. The observations are performed in the far field of a 2 MHz circular plane ultrasound transducer introduced in a rectangular cavity filled with water. Measurements are made by Particle Image Velocimetry (PIV) in horizontal and vertical planes near the end of the cavity. Oscillations of the jet appear in this zone, for a sufficiently high Reynolds number, as an intermittent phenomenon on an otherwise straight jet fluctuating in intensity. The observed perturbation pattern is similar to that of former theoretical studies. This intermittently oscillatory behavior is the first step to the transition to turbulence. (authors)

  11. Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Bruus, Henrik

    2015-01-01

    Based on first- and second-order perturbation theory, we present a numerical study of the temporal buildup and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic...

  12. Flow Field and Acoustic Predictions for Three-Stream Jets

    Science.gov (United States)

    Simmons, Shaun Patrick; Henderson, Brenda S.; Khavaran, Abbas

    2014-01-01

    Computational fluid dynamics was used to analyze a three-stream nozzle parametric design space. The study varied bypass-to-core area ratio, tertiary-to-core area ratio and jet operating conditions. The flowfield solutions from the Reynolds-Averaged Navier-Stokes (RANS) code Overflow 2.2e were used to pre-screen experimental models for a future test in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center (GRC). Flowfield solutions were considered in conjunction with the jet-noise-prediction code JeNo to screen the design concepts. A two-stream versus three-stream computation based on equal mass flow rates showed a reduction in peak turbulent kinetic energy (TKE) for the three-stream jet relative to that for the two-stream jet which resulted in reduced acoustic emission. Additional three-stream solutions were analyzed for salient flowfield features expected to impact farfield noise. As tertiary power settings were increased there was a corresponding near nozzle increase in shear rate that resulted in an increase in high frequency noise and a reduction in peak TKE. As tertiary-to-core area ratio was increased the tertiary potential core elongated and the peak TKE was reduced. The most noticeable change occurred as secondary-to-core area ratio was increased thickening the secondary potential core, elongating the primary potential core and reducing peak TKE. As forward flight Mach number was increased the jet plume region decreased and reduced peak TKE.

  13. Cell agglomeration in the wells of a 24-well plate using acoustic streaming.

    Science.gov (United States)

    Kurashina, Yuta; Takemura, Kenjiro; Friend, James

    2017-02-28

    Cell agglomeration is essential both to the success of drug testing and to the development of tissue engineering. Here, a MHz-order acoustic wave is used to generate acoustic streaming in the wells of a 24-well plate to drive particle and cell agglomeration. Acoustic streaming is known to manipulate particles in microfluidic devices, and even provide concentration in sessile droplets, but concentration of particles or cells in individual wells has never been shown, principally due to the drag present along the periphery of the fluid in such a well. The agglomeration time for a range of particle sizes suggests that shear-induced migration plays an important role in the agglomeration process. Particles with a diameter of 45 μm agglomerated into a suspended pellet under exposure to 2.134 MHz acoustic waves at 1.5 W in 30 s. Additionally, BT-474 cells also agglomerated as adherent masses at the center bottom of the wells of tissue-culture treated 24-well plates. By switching to low cell binding 24-well plates, the BT-474 cells formed suspended agglomerations that appeared to be spheroids, fully fifteen times larger than any cell agglomerates without the acoustic streaming. In either case, the viability and proliferation of the cells were maintained despite acoustic irradiation and streaming. Intermittent excitation was effective in avoiding temperature excursions, consuming only 75 mW per well on average, presenting a convenient means to form fully three-dimensional cellular masses potentially useful for tissue, cancer, and drug research.

  14. Numerical study of acoustic streaming and radiation forces on micro particles

    DEFF Research Database (Denmark)

    Jensen, Mads Jakob Herring; Muller, Peter Barkholt; Barnkob, Rune

    2012-01-01

    , and 2) Stokes drag from the induced acoustic streaming flow. Both effects are second order and require the solution of the full linearized Navier-Stokes equation in order to be captured correctly. The model shows the transition from streaming drag to radiation force dominated regimes. The transition...

  15. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.

    Science.gov (United States)

    Trujillo, Francisco Javier; Knoerzer, Kai

    2011-11-01

    High power ultrasound reactors have gained a lot of interest in the food industry given the effects that can arise from ultrasonic-induced cavitation in liquid foods. However, most of the new food processing developments have been based on empirical approaches. Thus, there is a need for mathematical models which help to understand, optimize, and scale up ultrasonic reactors. In this work, a computational fluid dynamics (CFD) model was developed to predict the acoustic streaming and induced heat generated by an ultrasonic horn reactor. In the model it is assumed that the horn tip is a fluid inlet, where a turbulent jet flow is injected into the vessel. The hydrodynamic momentum rate of the incoming jet is assumed to be equal to the total acoustic momentum rate emitted by the acoustic power source. CFD velocity predictions show excellent agreement with the experimental data for power densities higher than W(0)/V ≥ 25kWm(-3). This model successfully describes hydrodynamic fields (streaming) generated by low-frequency-high-power ultrasound. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  16. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A. [Center for Advanced Power Generation, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA (United States)

    2010-09-15

    This article describes an experimental investigation of the forced response of a swirl-stabilized partially premixed flame when it is subjected to acoustic velocity and equivalence ratio fluctuations. The flame's response is analyzed using phase-resolved CH{sup *} chemiluminescence images and flame transfer function (FTF) measurements, and compared with the response of a perfectly premixed flame under acoustic perturbations. The nonlinear response of the partially premixed flame is manifested by a partial extinction of the reaction zone, leading to rapid reduction of flame surface area. This nonlinearity, however, is observed only when the phase difference between the acoustic velocity and the equivalence ratio at the combustor inlet is close to zero. The condition, {delta}{phi}{sub {phi}}'-V'{approx}0 , indicates that reactant mixtures with high equivalence ratio impinge on the flame front with high velocity, inducing large fluctuations of the rate of heat release. It is found that the phase difference between the acoustic velocity and equivalence ratio nonuniformities is a key parameter governing the linear/nonlinear response of a partially premixed flame, and it is a function of modulation frequency, inlet velocity, fuel injection location, and fuel injector impedance. The results presented in this article will provide insight into the response of a partially premixed flame, which has not been well explored to date. (author)

  17. Improving H-Q rating curves in temprorary streams by using Acoustic Doppler Current meters

    Science.gov (United States)

    Marchand, P.; Salles, C.; Rodier, C.; Hernandez, F.; Gayrard, E.; Tournoud, M.-G.

    2012-04-01

    Intermittent rivers pose different challenges to stream rating due to high spatial and temporal gradients. Long dry periods, cut by short duration flush flood events explain the difficulty to obtain reliable discharge data, for low flows as well as for floods: problems occur with standard gauging, zero flow period, etc. Our study aims to test the use of an acoustic Doppler currentmeter (ADC) for improving stream rating curves in small catchments subject to large variations of discharge, solid transport and high eutrophication levels. The study is conducted at the outlet of the river Vène, a small coastal river (67 km2) located close to the city of Montpellier (France). The low flow period lasts for more than 6 month; during this period the river flow is sustained by effluents from urban sewage systems, which allows development of algae and macrophytes in the riverbed. The ADC device (Sontek ®Argonaut SW) is a pulsed Doppler current profiling system designed for measuring water velocity profiles and levels that are used to compute volumetric flow rates. It is designed for shallow waters (less than 4 meter depth). Its main advantages are its low cost and high accuracy (±1% of the measured velocity or ±0.05 m/sec, as reported by the manufacturer). The study will evaluate the improvement in rating curves in an intermittent flow context and the effect of differences in sensitivity between low and high water level, by comparing mean flow velocity obtained by ADC to direct discharges measurements. The study will also report long-term use of ADC device, by considering effects of biofilms, algae and macrophytes, as well as solid transport on the accuracy of the measurements. In conclusion, we show the possibility to improve stream rating and continuous data collection of an intermittent river by using a ADC with some precautions.

  18. A simple measurement method of molecular relaxation in a gas by reconstructing acoustic velocity dispersion

    Science.gov (United States)

    Zhu, Ming; Liu, Tingting; Zhang, Xiangqun; Li, Caiyun

    2018-01-01

    Recently, a decomposition method of acoustic relaxation absorption spectra was used to capture the entire molecular multimode relaxation process of gas. In this method, the acoustic attenuation and phase velocity were measured jointly based on the relaxation absorption spectra. However, fast and accurate measurements of the acoustic attenuation remain challenging. In this paper, we present a method of capturing the molecular relaxation process by only measuring acoustic velocity, without the necessity of obtaining acoustic absorption. The method is based on the fact that the frequency-dependent velocity dispersion of a multi-relaxation process in a gas is the serial connection of the dispersions of interior single-relaxation processes. Thus, one can capture the relaxation times and relaxation strengths of N decomposed single-relaxation dispersions to reconstruct the entire multi-relaxation dispersion using the measurements of acoustic velocity at 2N  +  1 frequencies. The reconstructed dispersion spectra are in good agreement with experimental data for various gases and mixtures. The simulations also demonstrate the robustness of our reconstructive method.

  19. Simultaneous measurements with 3D PIV and Acoustic Doppler Velocity Profiler

    NARCIS (Netherlands)

    Blanckaert, K.J.F.; McLelland, S.J.

    2009-01-01

    Simultaneous velocity measurements were taken using Particle Image Velocimetry (PIV) and an Acoustic Doppler Velocity Profiler (ADVP) in a sharp open-channel bend with an immobile gravel bed. The PIV measures 3D velocity vectors in a vertical plane (~40cm x 20cm) at a frequency of 7.5 Hz, whereas

  20. Nontrivial influence of acoustic streaming on the efficiency of annular thermoacoustic prime movers

    International Nuclear Information System (INIS)

    Penelet, G.; Gusev, V.; Lotton, P.; Bruneau, M.

    2006-01-01

    The nonlinear processes controlling the time-dependent evolution of sound in annular thermoacoustic prime movers are studied. It is demonstrated that, under some heating conditions, the evolution of the temperature field induced by the excitation of acoustic streaming provides an additional amplification of sound which results in a complicated periodic onset and damping of thermoacoustic instability. The study of this particular example provides the opportunity to demonstrate that the excitation of acoustic streaming does not necessarily imply a decrease in the engine's efficiency

  1. Estimating discharge using multi-level velocity data from acoustic doppler instruments

    DEFF Research Database (Denmark)

    Poulsen, Jane Bang; Rasmussen, Keld Rømer; Ovesen, Niels Bering

    In the majority of Danish streams, weed growth affects the effective stream width and bed roughness thus imposes temporal variations on the stage-discharge relationship. Small stream-gradients and firm ecology based restrictions prevent that hydraulic structures are made at the discharge stations...... increases to more than 3 m. The Doppler instruments (Nortek) are placed on a vertical pole about 2 m off the right bank at three fixed elevations above the streambed (0.3, 0.6, and 1.3 m); the beams point horizontally towards the left bank perpendicularly to the average flow direction. At each depth......, the Doppler sensor records 10 minute average stream velocities in the central 10 m section of the stream. During summer periods with low flow, stream velocity has only been recorded at two depths since the water table drops below the uppermost sensor. A pressure transducer is also placed at the pole where...

  2. Acoustic streaming induced by an ultrasonically oscillating endodontic file

    NARCIS (Netherlands)

    Verhaagen, B.; Boutsioukis, C.; van der Sluis, L.W.M.; Versluis, M.

    2014-01-01

    Ultrasonically activated irrigation is an advanced dental technique for irrigation of the root canal system during a root canal treatment. The basic cleaning mechanism is a result of acoustic streaming induced by an oscillating file, leading to mixing of the irrigant and pressure and shear stresses

  3. Acoustic streaming induced by an ultrasonically oscillating endodontic file

    NARCIS (Netherlands)

    Verhaagen, B.; Boutsioukis, C.; van der Sluis, L. W. M.; Versluis, M.

    Ultrasonically activated irrigation is an advanced dental technique for irrigation of the root canal system during a root canal treatment. The basic cleaning mechanism is a result of acoustic streaming induced by an oscillating file, leading to mixing of the irrigant and pressure and shear stresses

  4. Numerical study of droplet evaporation in an acoustic levitator

    Science.gov (United States)

    Bänsch, Eberhard; Götz, Michael

    2018-03-01

    We present a finite element method for the simulation of all relevant processes of the evaporation of a liquid droplet suspended in an acoustic levitation device. The mathematical model and the numerical implementation take into account heat and mass transfer across the interface between the liquid and gaseous phase and the influence of acoustic streaming on this process, as well as the displacement and deformation of the droplet due to acoustic radiation pressure. We apply this numerical method to several theoretical and experimental examples and compare our results with the well-known d2-law for the evaporation of spherical droplets and with theoretical predictions for the acoustic streaming velocity. We study the influence of acoustic streaming on the distribution of water vapor and temperature in the levitation device, with special attention to the vapor distribution in the emerging toroidal vortices. We also compare the evaporation rate of a droplet with and without acoustic streaming, as well as the evaporation rates in dependence of different temperatures and sound pressure levels. Finally, a simple model of protein inactivation due to heat damage is considered and studied for different evaporation settings and their respective influence on protein damage.

  5. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.

    Science.gov (United States)

    Collins, David J; Ma, Zhichao; Han, Jongyoon; Ai, Ye

    2016-12-20

    Despite increasing demand in the manipulation of nanoscale objects for next generation biological and industrial processes, there is a lack of methods for reliable separation, concentration and purification of nanoscale objects. Acoustic methods have proven their utility in contactless manipulation of microscale objects mainly relying on the acoustic radiation effect, though the influence of acoustic streaming has typically prevented manipulation at smaller length scales. In this work, however, we explicitly take advantage of the strong acoustic streaming in the vicinity of a highly focused, high frequency surface acoustic wave (SAW) beam emanating from a series of focused 6 μm substrate wavelength interdigital transducers patterned on a piezoelectric lithium niobate substrate and actuated with a 633 MHz sinusoidal signal. This streaming field serves to focus fluid streamlines such that incoming particles interact with the acoustic field similarly regardless of their initial starting positions, and results in particle displacements that would not be possible with a travelling acoustic wave force alone. This streaming-induced manipulation of nanoscale particles is maximized with the formation of micro-vortices that extend the width of the microfluidic channel even with the imposition of a lateral flow, occurring when the streaming-induced flow velocities are an order of magnitude larger than the lateral one. We make use of this acoustic streaming to demonstrate the continuous and differential focusing of 100 nm, 300 nm and 500 nm particles.

  6. Application of acoustic agglomeration for removing sulfuric acid mist from air stream

    Directory of Open Access Journals (Sweden)

    Asghar Sadighzadeh

    2018-01-01

    Full Text Available The application of acoustic fields at high sound pressure levels (SPLs for removing sulfuric acid mists from the air stream was studied. An acoustic agglomeration chamber was used to conduct the experiments. The studied SPLs ranged from 115 to 165 decibel (dB, with three inlet concentrations of acid mist at 5–10, 15–20, and 25–30 ppm. The air flow rates for conducting experiments were 20, 30, and 40 L min−1. The concentration of sulfuric acid mist was measured using US Environmental Protection Agency Method 8 at inlet and outlet of the chamber. The resonance frequencies for experiments were found to be 852, 1410, and 3530 Hz. The maximum acoustic agglomeration efficiency of 86% was obtained at optimum frequency of 852 Hz. The analysis of variance test revealed significant differences between agglomeration efficiency at three resonance frequencies (p-value < 0.001. The maximum acoustic agglomeration efficiency was obtained at SPL level of 165 dB. High initial concentrations of acid mists and lower air flow rates enhance the acoustic agglomeration of mists. High removal efficiency of acid mists from air stream could be achieved by the application of acoustic agglomeration method with appropriate range of frequencies and SPLs. Keywords: Sulfuric acid, Mist, Acoustic agglomeration, SPL

  7. Nearly simultaneous measurements of radar auroral heights and Doppler velocities at 398 MHz

    International Nuclear Information System (INIS)

    Moorcroft, D.; Ruohoniemi, J.M.

    1987-01-01

    Nearly simultaneous measurements of radar auroral heights and Doppler velocities were obtained using the Homer, Alaska, 398-MHz phased-array radar over a total of 16 hours on four different days. The heights show a consistent variation with time, being highest near the time of electrojet current reversal, and lowest late in the morning. A variety of east-west height asymmetries were observed, different from those previously reported, which can be explained in terms of favorable flow angles preferentially favoring high-altitude primary two-stream waves to one side of the field of view. Low-velocity echoes, presumably due to secondary irregularities, are found to be more restricted in height range than echoes with ion acoustic velocities, which presumably come from primary two-stream instabilities. Echo power was examined as a function of velocity and height. For the westward electrojet it was found that echoes with ion acoustic velocities are relatively constant in strength over most of their height range, but for low-velocity echoes the power is a maximum between 100 and 105 km and falls off steadily at greater heights. Doppler speeds show a noticeable decrease at heights below 105 km, in agreement with the expected variation in ion acoustic velocity

  8. Penetration of Liquid Jets into a High-velocity Air Stream

    Science.gov (United States)

    Chelko, Louis J

    1950-01-01

    Data are presented showing the penetration characteristics of liquid jets directed approximately perpendicular to a high-velocity air stream for jet-nozzle-throat diameters from 0.0135 to 0.0625 inch, air stream densities from 0.0805 to 0.1365 pound per cubic foot, liquid jet velocities from 168.1 to 229.0 feet per second and a liquid jet density of approximately 62 pounds per cubic foot. The data were analyzed and a correlation was developed that permitted the determination of the penetration length of the liquid jet for any operation condition within the range of variables investigated.

  9. Patch near field acoustic holography based on particle velocity measurements

    DEFF Research Database (Denmark)

    Zhang, Yong-Bin; Jacobsen, Finn; Bi, Chuan-Xing

    2009-01-01

    Patch near field acoustic holography (PNAH) based on sound pressure measurements makes it possible to reconstruct the source field near a source by measuring the sound pressure at positions on a surface. that is comparable in size to the source region of concern. Particle velocity is an alternative...... examines the use of particle velocity as the input of PNAH. Because the particle velocity decays faster toward the edges of the measurement aperture than the pressure does and because the wave number ratio that enters into the inverse propagator from pressure to velocity amplifies high spatial frequencies...

  10. Measurement of acoustic velocity components in a turbulent flow using LDV and high-repetition rate PIV

    Science.gov (United States)

    Léon, Olivier; Piot, Estelle; Sebbane, Delphine; Simon, Frank

    2017-06-01

    The present study provides theoretical details and experimental validation results to the approach proposed by Minotti et al. (Aerosp Sci Technol 12(5):398-407, 2008) for measuring amplitudes and phases of acoustic velocity components (AVC) that are waveform parameters of each component of velocity induced by an acoustic wave, in fully turbulent duct flows carrying multi-tone acoustic waves. Theoretical results support that the turbulence rejection method proposed, based on the estimation of cross power spectra between velocity measurements and a reference signal such as a wall pressure measurement, provides asymptotically efficient estimators with respect to the number of samples. Furthermore, it is shown that the estimator uncertainties can be simply estimated, accounting for the characteristics of the measured flow turbulence spectra. Two laser-based measurement campaigns were conducted in order to validate the acoustic velocity estimation approach and the uncertainty estimates derived. While in previous studies estimates were obtained using laser Doppler velocimetry (LDV), it is demonstrated that high-repetition rate particle image velocimetry (PIV) can also be successfully employed. The two measurement techniques provide very similar acoustic velocity amplitude and phase estimates for the cases investigated, that are of practical interest for acoustic liner studies. In a broader sense, this approach may be beneficial for non-intrusive sound emission studies in wind tunnel testings.

  11. Receptivity to free stream acoustic disturbances due to a roughness element on a flat plate

    OpenAIRE

    Ashour, Osama Naim

    1993-01-01

    The boundary-layer receptivity resulting from acoustic forcing over a flat plate with a surface irregularity is investigated. The unsteady free-stream disturbances couple with the steady perturbations resulting from the surface irregularity to form a traveling-wave mode. The resonance condition necessary for receptivity requires a forcing at a wave number equal to that of the Tollmien-Schlichting (TS) eigenmode and a frequency equal to that of the free-stream acoustic disturban...

  12. Flow profiling of a surface-acoustic-wave nanopump

    Science.gov (United States)

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-11-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile. The velocity was found to depend on the applied power approximately linearly and to decrease with the inverse third power of the distance from the ultrasound generator on the chip. The found properties reveal acoustic streaming as a promising tool for the controlled agitation during microarray hybridization.

  13. Acoustic methods for measuring bullet velocity

    OpenAIRE

    Courtney, Michael

    2008-01-01

    This article describes two acoustic methods to measure bullet velocity with an accuracy of 1% or better. In one method, a microphone is placed within 0.1 m of the gun muzzle and a bullet is fired at a steel target 45 m away. The bullet's flight time is the recorded time between the muzzle blast and sound of hitting the target minus the time for the sound to return from the target to the microphone. In the other method, the microphone is placed equidistant from both the gun muzzle and the stee...

  14. Acoustic streaming in a microfluidic channel with a reflector: Case of a standing wave generated by two counterpropagating leaky surface waves.

    Science.gov (United States)

    Doinikov, Alexander A; Thibault, Pierre; Marmottant, Philippe

    2017-07-01

    A theory is developed for the modeling of acoustic streaming in a microfluidic channel confined between an elastic solid wall and a rigid reflector. A situation is studied where the acoustic streaming is produced by two leaky surface waves that propagate towards each other in the solid wall and thus form a combined standing wave in the fluid. Full analytical solutions are found for both the linear acoustic field and the field of the acoustic streaming. A dispersion equation is derived that allows one to calculate the wave speed in the system under study. The obtained solutions are used to consider particular numerical examples and to reveal the structure of the acoustic streaming. It is shown that two systems of vortices are established along the boundaries of the microfluidic channel.

  15. Experimental and numerical investigations of resonant acoustic waves in near-critical carbon dioxide.

    Science.gov (United States)

    Hasan, Nusair; Farouk, Bakhtier

    2015-10-01

    Flow and transport induced by resonant acoustic waves in a near-critical fluid filled cylindrical enclosure is investigated both experimentally and numerically. Supercritical carbon dioxide (near the critical or the pseudo-critical states) in a confined resonator is subjected to acoustic field created by an electro-mechanical acoustic transducer and the induced pressure waves are measured by a fast response pressure field microphone. The frequency of the acoustic transducer is chosen such that the lowest acoustic mode propagates along the enclosure. For numerical simulations, a real-fluid computational fluid dynamics model representing the thermo-physical and transport properties of the supercritical fluid is considered. The simulated acoustic field in the resonator is compared with measurements. The formation of acoustic streaming structures in the highly compressible medium is revealed by time-averaging the numerical solutions over a given period. Due to diverging thermo-physical properties of supercritical fluid near the critical point, large scale oscillations are generated even for small sound field intensity. The strength of the acoustic wave field is found to be in direct relation with the thermodynamic state of the fluid. The effects of near-critical property variations and the operating pressure on the formation process of the streaming structures are also investigated. Irregular streaming patterns with significantly higher streaming velocities are observed for near-pseudo-critical states at operating pressures close to the critical pressure. However, these structures quickly re-orient to the typical Rayleigh streaming patterns with the increase operating pressure.

  16. The formation and dissipation of electrostatic shock waves: the role of ion–ion acoustic instabilities

    Science.gov (United States)

    Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping

    2018-05-01

    The role of ion–ion acoustic instabilities in the formation and dissipation of collisionless electrostatic shock waves driven by counter-streaming supersonic plasma flows has been investigated via two-dimensional particle-in-cell simulations. The nonlinear evolution of unstable waves and ion velocity distributions has been analyzed in detail. It is found that for electrostatic shocks driven by moderate-velocity flows, longitudinal and oblique ion–ion acoustic instabilities can be excited in the downstream and upstream regions, which lead to thermalization of the transmitted and reflected ions, respectively. For high-velocity flows, oblique ion–ion acoustic instabilities can develop in the overlap layer during the shock formation process and impede the shock formation.

  17. Acoustic Velocity and Attenuation in Magnetorhelogical fluids based on an effective density fluid model

    Directory of Open Access Journals (Sweden)

    Shen Min

    2016-01-01

    Full Text Available Magnetrohelogical fluids (MRFs represent a class of smart materials whose rheological properties change in response to the magnetic field, which resulting in the drastic change of the acoustic impedance. This paper presents an acoustic propagation model that approximates a fluid-saturated porous medium as a fluid with a bulk modulus and effective density (EDFM to study the acoustic propagation in the MRF materials under magnetic field. The effective density fluid model derived from the Biot’s theory. Some minor changes to the theory had to be applied, modeling both fluid-like and solid-like state of the MRF material. The attenuation and velocity variation of the MRF are numerical calculated. The calculated results show that for the MRF material the attenuation and velocity predicted with this effective density fluid model are close agreement with the previous predictions by Biot’s theory. We demonstrate that for the MRF material acoustic prediction the effective density fluid model is an accurate alternative to full Biot’s theory and is much simpler to implement.

  18. A quasi-one-dimensional velocity regime of super-thermal electron stream propagation through the solar corona

    International Nuclear Information System (INIS)

    Levin, B.N.

    1984-01-01

    The propagation of an inhomogeneous stream of fast electrons through the corona - the type III radio burst source - is considered. It is shown, that the angular spectrum width of plasma waves excited by the stream is defined both by Landau damping by particles of the diffuse component and by damping (in the region of large phase velocities) by particles of the stream itself having large pitch angles. The regime of quasi-one-dimensional diffusion in the velocity space is realized only in the presence of a sufficiently dense diffuse component of super-thermal particles and only for a sufficiently large inhomogeneity scale of the stream. A large scale of the stream space profile is formed, evidently, close to the region of injection of super-thermal particles. It is the result of 'stripping' of part of the electrons from the stream front to its slower part due to essential non-one-dimensionality of the particle diffusion in velocity space. Results obtained may explain, in particular, the evolution of a stream particle angular spectrum in the generation region of type III radio bursts observed by spacecrafts (Lin et al., 1981). For the relatively low energetic part of the stream, the oblique plasma wave stabilization by a diffuse component results in a quasi-one-dimensional regime of diffusion. The latter conserves the beam-like structure of this part of the stream. (orig.)

  19. Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface

    Science.gov (United States)

    Hu, Liang; Zhao, Nannan; Gao, Zhijian; Mao, Kai; Chen, Wenyu; Fu, Xin

    2018-05-01

    Determination of the distribution of a generated acoustic field is valuable for studying ultrasonic transducers, including providing the guidance for transducer design and the basis for analyzing their performance, etc. A method calculating the acoustic field based on laser-measured vibration velocities on the ultrasonic transducer surface is proposed in this paper. Without knowing the inner structure of the transducer, the acoustic field outside it can be calculated by solving the governing partial differential equation (PDE) of the field based on the specified boundary conditions (BCs). In our study, the BC on the transducer surface, i.e. the distribution of the vibration velocity on the surface, is accurately determined by laser scanning measurement of discrete points and follows a data fitting computation. In addition, to ensure the calculation accuracy for the whole field even in an inhomogeneous medium, a finite element method is used to solve the governing PDE based on the mixed BCs, including the discretely measured velocity data and other specified BCs. The method is firstly validated on numerical piezoelectric transducer models. The acoustic pressure distributions generated by a transducer operating in an homogeneous and inhomogeneous medium, respectively, are both calculated by the proposed method and compared with the results from other existing methods. Then, the method is further experimentally validated with two actual ultrasonic transducers used for flow measurement in our lab. The amplitude change of the output voltage signal from the receiver transducer due to changing the relative position of the two transducers is calculated by the proposed method and compared with the experimental data. This method can also provide the basis for complex multi-physical coupling computations where the effect of the acoustic field should be taken into account.

  20. Thermal Cracking in Westerly Granite Monitored Using Direct Wave Velocity, Coda Wave Interferometry, and Acoustic Emissions

    Science.gov (United States)

    Griffiths, L.; Lengliné, O.; Heap, M. J.; Baud, P.; Schmittbuhl, J.

    2018-03-01

    To monitor both the permanent (thermal microcracking) and the nonpermanent (thermo-elastic) effects of temperature on Westerly Granite, we combine acoustic emission monitoring and ultrasonic velocity measurements at ambient pressure during three heating and cooling cycles to a maximum temperature of 450°C. For the velocity measurements we use both P wave direct traveltime and coda wave interferometry techniques, the latter being more sensitive to changes in S wave velocity. During the first cycle, we observe a high acoustic emission rate and large—and mostly permanent—apparent reductions in velocity with temperature (P wave velocity is reduced by 50% of the initial value at 450°C, and 40% upon cooling). Our measurements are indicative of extensive thermal microcracking during the first cycle, predominantly during the heating phase. During the second cycle we observe further—but reduced—microcracking, and less still during the third cycle, where the apparent decrease in velocity with temperature is near reversible (at 450°C, the P wave velocity is decreased by roughly 10% of the initial velocity). Our results, relevant for thermally dynamic environments such as geothermal reservoirs, highlight the value of performing measurements of rock properties under in situ temperature conditions.

  1. The GALAH Survey: Stellar streams and how stellar velocity distributions vary with Galactic longitude, hemisphere and metallicity

    Science.gov (United States)

    Quillen, Alice C.; De Silva, Gayandhi; Sharma, Sanjib; Hayden, Michael; Freeman, Ken; Bland-Hawthorn, Joss; Žerjal, Maruša; Asplund, Martin; Buder, Sven; D'Orazi, Valentina; Duong, Ly; Kos, Janez; Lin, Jane; Lind, Karin; Martell, Sarah; Schlesinger, Katharine; Simpson, Jeffrey D.; Zucker, Daniel B.; Zwitter, Tomaz; Anguiano, Borja; Carollo, Daniela; Casagrande, Luca; Cotar, Klemen; Cottrell, Peter L.; Ireland, Michael; Kafle, Prajwal R.; Horner, Jonathan; Lewis, Geraint F.; Nataf, David M.; Ting, Yuan-Sen; Watson, Fred; Wittenmyer, Rob; Wyse, Rosemary

    2018-04-01

    Using GALAH survey data of nearby stars, we look at how structure in the planar (u, v) velocity distribution depends on metallicity and on viewing direction within the Galaxy. In nearby stars with distance d ≲ 1 kpc, the Hercules stream is most strongly seen in higher metallicity stars [Fe/H]>0.2. The Hercules stream peak v value depends on viewed galactic longitude, which we interpret as due to the gap between the stellar stream and more circular orbits being associated with a specific angular momentum value of about 1640 km s-1 kpc. The association of the gap with a particular angular momentum value supports a bar resonant model for the Hercules stream. Moving groups previously identified in Hipparcos observations are easiest to see in stars nearer than 250 pc, and their visibility and peak velocities in the velocity distributions depends on both viewing direction (galactic longitude and hemisphere) and metallicity. We infer that there is fine structure in local velocity distributions that varies over distances of a few hundred pc in the Galaxy.

  2. Experimental validation of alternate integral-formulation method for predicting acoustic radiation based on particle velocity measurements.

    Science.gov (United States)

    Ni, Zhi; Wu, Sean F

    2010-09-01

    This paper presents experimental validation of an alternate integral-formulation method (AIM) for predicting acoustic radiation from an arbitrary structure based on the particle velocities specified on a hypothetical surface enclosing the target source. Both the normal and tangential components of the particle velocity on this hypothetical surface are measured and taken as the input to AIM codes to predict the acoustic pressures in both exterior and interior regions. The results obtained are compared with the benchmark values measured by microphones at the same locations. To gain some insight into practical applications of AIM, laser Doppler anemometer (LDA) and double hotwire sensor (DHS) are used as measurement devices to collect the particle velocities in the air. Measurement limitations of using LDA and DHS are discussed.

  3. Numerical study of the influence of the convective heat transport on acoustic streaming in a standing wave.

    Science.gov (United States)

    Červenka, Milan; Bednařík, Michal

    2018-02-01

    Within this work, acoustic streaming in an air-filled cylindrical resonator with walls supporting a temperature gradient is studied by means of numerical simulations. A set of equations based on successive approximations is derived from the Navier-Stokes equations. The equations take into account the acoustic-streaming-driven convective heat transport; as time-averaged secondary-field quantities are directly calculated, the equations are much easier to integrate than the original fluid-dynamics equations. The model equations are implemented and integrated employing commercial software COMSOL Multiphysics. Numerical calculations are conducted for the case of a resonator with a wall-temperature gradient corresponding to the action of a thermoacoustic effect. It is shown that due to the convective heat transport, the streaming profile is considerably distorted even in the case of weak wall-temperature gradients. The numerical results are consistent with available experimental data.

  4. Trapping of Embolic Particles in a Vessel Phantom by Cavitation-Enhanced Acoustic Streaming

    Science.gov (United States)

    Maxwell, Adam D.; Park, Simone; Vaughan, Benjamin L.; Cain, Charles A.; Grotberg, James B.; Xu, Zhen

    2014-01-01

    Cavitation clouds generated by short, high-amplitude, focused ultrasound pulses were previously observed to attract, trap, and erode thrombus fragments in a vessel phantom. This phenomenon may offer a noninvasive method to capture and eliminate embolic fragments flowing through the bloodstream during a cardiovascular intervention. In this article, the mechanism of embolus trapping was explored by particle image velocimetry (PIV). PIV was used to examine the fluid streaming patterns generated by ultrasound in a vessel phantom with and without crossflow of blood-mimicking fluid. Cavitation enhanced streaming, which generated fluid vortices adjacent to the focus. The focal streaming velocity, uf, was as high as 120 cm/s, while mean crossflow velocities, uc, were imposed up to 14 cm/s. When a solid particle 3-4 mm diameter was introduced into crossflow, it was trapped near the focus. Increasing uf promoted particle trapping while increasing uc promoted particle escape. The maximum crossflow Reynolds number at which particles could be trapped, Rec, was approximately linear with focal streaming number, Ref, i.e. Rec = 0.25Ref + 67.44 (R2=0.76) corresponding to dimensional velocities uc=0.084uf + 3.122 for 20 < uf < 120 cm/s. The fluidic pressure map was estimated from PIV and indicated a negative pressure gradient towards the focus, trapping the embolus near this location. PMID:25109407

  5. Ultrasound rays in droplets: The role of viscosity and caustics in acoustic streaming

    DEFF Research Database (Denmark)

    Bruus, Henrik

    2017-01-01

    not depend on the viscosity in most simple geometries. However, viscosity has a profound influence on the acoustic streaming as demonstrated by Riaud et al. (J. Fluid Mech., vol. 821, 2017, pp. 384-420) in their study of sessile mm-sized water-glycerol droplets placed on a piezoelectric substrate with a 20...

  6. Acoustic signal propagation and measurement in natural stream channels for application to surrogate bed load measurements: Halfmoon Creek, Colorado

    Science.gov (United States)

    Monitoring sediment-generated noise using submerged hydrophones is a surrogate method for measuring bed load transport in streams with the potential for improving estimates of bed load transport through widespread, inexpensive monitoring. Understanding acoustic signal propagation in natural stream e...

  7. Internal flow of acoustically levitated drops undergoing sectorial oscillations

    International Nuclear Information System (INIS)

    Shen, C.L.; Xie, W.J.; Yan, Z.L.; Wei, B.

    2010-01-01

    We present the experimental observation and theoretical analysis of fluid flow in acoustically levitated water drop undergoing sectorial oscillations. The fluid always flows between the extended sections and the compressed sections. The magnitude of fluid velocity decreases from the equatorial fringe to the centre of levitated drop. The maximum fluid velocity is 60-160 mm/s and the Reynolds number of the oscillations is estimated to be 137-367. The internal flow of the drop is analyzed as potential flow, and the fluid velocity is found to be horizontal. In the equatorial plane, the calculated stream lines and velocity profiles agree well with the experimental observations.

  8. Ultrasonic Acoustic Velocities During Partial Melting of a Mantle Peridotite KLB-1

    Science.gov (United States)

    Weidner, Donald J.; Li, Li; Whitaker, Matthew L.; Triplett, Richard

    2018-02-01

    Knowledge of the elastic properties of partially molten rocks is crucial for understanding low-velocity regions in the interior of the Earth. Models of fluid and solid mixtures have demonstrated that significant decreases in seismic velocity are possible with small amounts of melt, but there is very little available data for testing these models, particularly with both P and S waves for mantle compositions. We report ultrasonic measurements of P and S velocities on a partially molten KLB-1 sample at mantle conditions using a multi-anvil device at a synchrotron facility. The P, S, and bulk sound velocities decrease as melting occurs. We find that the quantity, ∂lnVS/∂lnVB (where VB is the bulk sound velocity) is lower than mechanical models estimate. Instead, our data, as well as previous data in the literature, are consistent with a dynamic melting model in which melting and solidification interact with the stress field of the acoustic wave.

  9. Trapping of embolic particles in a vessel phantom by cavitation-enhanced acoustic streaming

    International Nuclear Information System (INIS)

    Maxwell, Adam D; Park, Simone; Cain, Charles A; Grotberg, James B; Xu, Zhen; Vaughan, Benjamin L

    2014-01-01

    Cavitation clouds generated by short, high-amplitude, focused ultrasound pulses were previously observed to attract, trap, and erode thrombus fragments in a vessel phantom. This phenomenon may offer a noninvasive method to capture and eliminate embolic fragments flowing through the bloodstream during a cardiovascular intervention. In this article, the mechanism of embolus trapping was explored by particle image velocimetry (PIV). PIV was used to examine the fluid streaming patterns generated by ultrasound in a vessel phantom with and without crossflow of blood-mimicking fluid. Cavitation enhanced streaming, which generated fluid vortices adjacent to the focus. The focal streaming velocity, u f , was as high as 120 cm/s, while mean crossflow velocities, u c , were imposed up to 14 cm/s. When a solid particle 3–4 mm diameter was introduced into crossflow, it was trapped near the focus. Increasing u f promoted particle trapping while increasing u c promoted particle escape. The maximum crossflow Reynolds number at which particles could be trapped, Re c , was approximately linear with focal streaming number, Re f , i.e. Re c = 0.25Re f + 67.44 (R 2 = 0.76) corresponding to dimensional velocities u c = 0.084u f + 3.122 for 20 < u f  < 120 cm/s. The fluidic pressure map was estimated from PIV and indicated a negative pressure gradient towards the focus, trapping the embolus near this location. (paper)

  10. AlScN thin film based surface acoustic wave devices with enhanced microfluidic performance

    International Nuclear Information System (INIS)

    Wang, W B; Xuan, W P; Chen, J K; Wang, X Z; Luo, J K; Fu, Y Q; Chen, J J; Duan, P F; Mayrhofer, P; Bittner, A; Schmid, U

    2016-01-01

    This paper reports the characterization of scandium aluminum nitride (Al 1−xS c xN , x   =  27%) films and discusses surface acoustic wave (SAW) devices based on them. Both AlScN and AlN films were deposited on silicon by sputtering and possessed columnar microstructures with (0 0 0 2) crystal orientation. The AlScN/Si SAW devices showed improved electromechanical coupling coefficients ( K 2 , ∼2%) compared with pure AlN films (<0.5%). The performance of the two types of devices was also investigated and compared, using acoustofluidics as an example. The AlScN/Si SAW devices achieved much lower threshold powers for the acoustic streaming and pumping of liquid droplets, and the acoustic streaming and pumping velocities were 2  ×  and 3  ×  those of the AlN/Si SAW devices, respectively. Mechanical characterization showed that the Young’s modulus and hardness of the AlN film decreased significantly when Sc was doped, and this was responsible for the decreased acoustic velocity and resonant frequency, and the increased temperature coefficient of frequency, of the AlScN SAW devices. (paper)

  11. Electron–hole two-stream instability in a quantum semiconductor plasma with exchange-correlation effects

    International Nuclear Information System (INIS)

    Zeba, I.; Yahia, M.E.; Shukla, P.K.; Moslem, W.M.

    2012-01-01

    The electron–hole two-stream instability in a quantum semiconductor plasma has been studied including electrons and holes quantum recoil effects, exchange-correlation potentials, and degenerate pressures of the plasma species. Typical values of GaAs and GaSb semiconductors are used to estimate the growth rate of the two-stream instability. The effects of electron– and hole–phonon collision, quantum recoil effects, the streaming velocities, and the corresponding threshold on the growth rate are investigated numerically. Considering the phonon susceptibility allows the acoustic mode to exist and the collisional instability arises in combination with drift of the holes. -- Highlights: ► Electron–hole two stream instability in quantum plasmas is presented. ► Typical values of GaAs and GaSb semiconductors are used to estimate the growth rate. ► The streaming velocities and the corresponding threshold on the growth rate are investigated numerically.

  12. Acoustic evaluation of wood quality in standing trees. Part I, Acoustic wave behavior

    Science.gov (United States)

    Xiping Wang; Robert J. Ross; Peter Carter

    2007-01-01

    Acoustic wave velocities in standing trees or live softwood species were measured by the time-of-flight (TOF) method. Tree velocities were compared with acoustic velocities measured in corresponding butt logs through a resonance acoustic method. The experimental data showed a skewed relationship between tree and log acoustic measurements. For most trees tested,...

  13. Drag forces of common plant species in temperate streams: consequences of morphology, velocity and biomass

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand

    2008-01-01

    Swift flow in streams may physically influence the morphology and distribution of plants. I quantified drag as a function of velocity, biomass and their interaction on the trailing canopy of seven European stream species in an experimental flume and evaluated its importance for species distributi...... than an uneven distribution with the same biomass confined to dense patches surrounded by open flow channels. Thus, management strategies to ensure a patchy plants distribution should be suitable for combining agricultural drainage and ecological stream quality....

  14. Measurement of vortex velocities over a wide range of vortex age, downstream distance and free stream velocity

    Science.gov (United States)

    Rorke, J. B.; Moffett, R. C.

    1977-01-01

    A wind tunnel test was conducted to obtain vortex velocity signatures over a wide parameter range encompassing the data conditions of several previous researchers while maintaining a common instrumentation and test facility. The generating wing panel was configured with both a revolved airfoil tip shape and a square tip shape and had a semispan aspect of 4.05/1.0 with a 121.9 cm span. Free stream velocity was varied from 6.1 m/sec to 76.2 m/sec and the vortex core velocities were measured at locations 3, 6, 12, 24 and 48 chordlengths downstream of the wing trailing edge, yielding vortex ages up to 2.0 seconds. Wing pitch angles of 6, 8, 9 and 12 deg were investigated. Detailed surface pressure distributions and wing force measurements were obtained for each wing tip configuration. Correlation with vortex velocity data taken in previous experiments is good. During the rollup process, vortex core parameters appear to be dependent primarily on vortex age. Trending in the plateau and decay regions is more complex and the machanisms appear to be more unstable.

  15. Scale dependence of acoustic velocities. An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Gotusso, Angelamaria Pillitteri

    2001-06-01

    Reservoir and overburden data (e.g. seismic, sonic log and core data) are collected at different stages of field development, at different scales, and under different measurement conditions. A more precise reservoir characterization could be obtained by combining all the collected data. Reliable data may also be obtained from drill cuttings. This methodology can give data in quasi-real time, it is easily applicable, and cheap. It is then important, to understand the relationship between results obtained from measurements at different scales. In this Thesis acoustic velocities measured at several different laboratory scales are presented. This experimental study was made in order to give the base for the development of a model aiming to use/combine appropriately the data collected at different scales. The two main aspects analyzed are the experimental limitations due to the decrease in sample size and the significance of measurements in relation to material heterogeneities. Plexiglas, an isotropic, non-dispersive artificial material, with no expected scale effect, was used to evaluate the robustness of the measurement techniques. The results emphasize the importance of the wavelength used with respect to the sample length. If the sample length (L) is at least 5 time bigger than wavelength used ({lambda}), then the measured velocities do not depend on sample size. Leca stone, an artificial isotropic material containing spherical grains was used to evaluate the combined effects of technique, heterogeneities and sample length. The ratio between the scale of the heterogeneities and the sample length has to be taken in to account. In this case velocities increase with decreasing sample length when the ratio L/{lambda} is smaller than 10-15 and at the same time the ratio between sample length and grain size is greater than 10. Measurements on natural rocks demonstrate additional influence of grain mineralogy, shape and orientation. Firenzuola sandstone shows scale and

  16. Effects of non-Maxwellian electron velocity distribution function on two-stream instability in low-pressure discharges

    International Nuclear Information System (INIS)

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2007-01-01

    Electron emission from discharge chamber walls is important for plasma maintenance in many low-pressure discharges. The electrons emitted from the walls are accelerated by the sheath electric field and are injected into the plasma as an electron beam. Penetration of this beam through the plasma is subject to the two-stream instability, which tends to slow down the beam electrons and heat the plasma electrons. In the present paper, a one-dimensional particle-in-cell code is used to simulate these effects both in a collisionless plasma slab with immobile ions and in a cross-field discharge of a Hall thruster. The two-stream instability occurs if the total electron velocity distribution function of the plasma-beam system is a nonmonotonic function of electron speed. Low-pressure plasmas can be depleted of electrons with energy above the plasma potential. This study reveals that under such conditions the two-stream instability depends crucially on the velocity distribution function of electron emission. It is shown that propagation of the secondary electron beams in Hall thrusters may be free of the two-stream instability if the velocity distribution of secondary electron emission is a monotonically decaying function of speed. In this case, the beams propagate between the walls with minimal loss of the beam current and the secondary electron emission does not affect the thruster plasma properties

  17. A Novel Method for Determining the Gas Transfer Velocity of Carbon Dioxide in Streams

    Science.gov (United States)

    McDowell, M. J.; Johnson, M. S.

    2016-12-01

    Characterization of the global carbon cycle relies on the accurate quantification of carbon fluxes into and out of natural and human-dominated ecosystems. Among these fluxes, carbon dioxide (CO2) evasion from surface water has received increasing attention in recent years. However, limitations of current methods, including determination of the gas transfer velocity (k), compromise our ability to evaluate the significance of CO2 fluxes between freshwater systems and the atmosphere. We developed an automated method to determine gas transfer velocities of CO2 (kCO2), and tested it under a range of flow conditions for a first-order stream of a headwater catchment in southwestern British Columbia, Canada. Our method uses continuous in situ measurements of CO2 concentrations using two non-dispersive infrared (NDIR) sensors enclosed in water impermeable, gas permeable membranes (Johnson et al., 2010) downstream from a gas diffuser. CO2 was injected into the stream at regular intervals via a compressed gas tank connected to the diffuser. CO2 injections were controlled by a datalogger at fixed time intervals and in response to storm-induced changes in streamflow. Following the injection, differences in CO2 concentrations at known distances downstream from the diffuser relative to pre-injection baseline levels allowed us to calculate kCO2. Here we present relationships between kCO2 and hydro-geomorphologic (flow velocity, streambed slope, stream width, stream depth), atmospheric (wind speed and direction), and water quality (stream temperature, pH, electrical conductivity) variables. This method has advantages of being automatable and field-deployable, and it does not require supplemental gas chromatography, as is the case for propane injections typically used to determine k. The dataset presented suggests the potential role of this method to further elucidate the role that CO2 fluxes from headwater streams play in the global carbon cycle. Johnson, M. S., Billett, M. F

  18. Impulse excitation scanning acoustic microscopy for local quantification of Rayleigh surface wave velocity using B-scan analysis

    Science.gov (United States)

    Cherry, M.; Dierken, J.; Boehnlein, T.; Pilchak, A.; Sathish, S.; Grandhi, R.

    2018-01-01

    A new technique for performing quantitative scanning acoustic microscopy imaging of Rayleigh surface wave (RSW) velocity was developed based on b-scan processing. In this technique, the focused acoustic beam is moved through many defocus distances over the sample and excited with an impulse excitation, and advanced algorithms based on frequency filtering and the Hilbert transform are used to post-process the b-scans to estimate the Rayleigh surface wave velocity. The new method was used to estimate the RSW velocity on an optically flat E6 glass sample, and the velocity was measured at ±2 m/s and the scanning time per point was on the order of 1.0 s, which are both improvement from the previous two-point defocus method. The new method was also applied to the analysis of two titanium samples, and the velocity was estimated with very low standard deviation in certain large grains on the sample. A new behavior was observed with the b-scan analysis technique where the amplitude of the surface wave decayed dramatically on certain crystallographic orientations. The new technique was also compared with previous results, and the new technique has been found to be much more reliable and to have higher contrast than previously possible with impulse excitation.

  19. Evaluation of performance of Son Tek Argonaut acoustic doppler velocity log in tow tank and sea

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A; Madhan, R.; Mascarenhas, A.A; Desai, R.G.P.; VijayKumar, K.; Dias, M.; Tengali, S.; Methar, A

    Performance of a 500-kHz, 3-beam downward-looking Sontex Argonaut acoustic Doppler velocity log (DVL) based on measurements at tow-tank and sea is addressed. Its accuracy and linearity under tow-tank measurements were largely scattered...

  20. Sediment motion and velocity in a glacier-fed stream

    Science.gov (United States)

    Mao, L.; Dell'Agnese, A.; Comiti, F.

    2017-08-01

    Current understanding of coarse sediment transport (e.g. threshold for motion, travel length and virtual velocity) in mountain rivers is still quite limited, and even less is known about glacial streams. However, the hydrological characteristics of these systems (strong daily discharge fluctuations, high water turbidity) pose challenges to the use of tracers to monitor bed sediment dynamics, as tagged clasts are usually located after bedload events when flow stage has receded, e.g. by means of portable antennas in the case of Passive Integrated Transponders (PIT). The use of stationary antennas, still scarcely in use worldwide, to detect PIT-tagged particles has potential advantages in glacier-fed streams. If water discharge is monitored continuously, a stationary antenna provides real time data on the actual discharge at the moment of tracer particles passage. This study focuses on incipient motion and virtual velocity of bed particles measured by a stationary antennas system in a steep mountain channel (Saldur River, drainage area 18.6 km2, Italian Alps) where significant daily discharge fluctuations and bedload transport occur as a result of a nivo-glacial regime. Four stationary antennas were installed 50-m apart in the study reach. A total of 629 PIT-tagged clasts were inserted in the studied reach between 2011 and 2014, ranging in size from 35 mm to 580 mm, with an overall recovery rate of around 44%. Critical discharge for sediment entrainment was obtained by detecting the movement of tracers placed immediately upstream of antennas. Virtual velocity was derived by knowing distances between the antennas and travel time of tracers. Results on initiation of motion show that the relationship between the size of transported tracers and the discharge measured at the time clasts were passing the stationary antenna is very weak. The influence of antecedent flows on incipient motion was thus investigated by dividing the highest discharge recorded between each PIT

  1. Time-averaged second-order pressure and velocity measurements in a pressurized oscillating flow prime mover

    Energy Technology Data Exchange (ETDEWEB)

    Paridaens, Richard [DynFluid, Arts et Metiers, 151 boulevard de l' Hopital, Paris (France); Kouidri, Smaine [LIMSI-CNRS, Orsay Cedex (France)

    2016-11-15

    Nonlinear phenomena in oscillating flow devices cause the appearance of a relatively minor secondary flow known as acoustic streaming, which is superimposed on the primary oscillating flow. Knowledge of control parameters, such as the time-averaged second-order velocity and pressure, would elucidate the non-linear phenomena responsible for this part of the decrease in the system's energetic efficiency. This paper focuses on the characterization of a travelling wave oscillating flow engine by measuring the time-averaged second order pressure and velocity. Laser Doppler velocimetry technique was used to measure the time-averaged second-order velocity. As streaming is a second-order phenomenon, its measurement requires specific settings especially in a pressurized device. Difficulties in obtaining the proper settings are highlighted in this study. The experiments were performed for mean pressures varying from 10 bars to 22 bars. Non-linear effect does not constantly increase with pressure.

  2. Near field acoustic holography based on the equivalent source method and pressure-velocity transducers

    DEFF Research Database (Denmark)

    Zhang, Y.-B.; Chen, X.-Z.; Jacobsen, Finn

    2009-01-01

    The advantage of using the normal component of the particle velocity rather than the sound pressure in the hologram plane as the input of conventional spatial Fourier transform based near field acoustic holography (NAH) and also as the input of the statistically optimized variant of NAH has recen...... generated by sources on the two sides of the hologram plane is also examined....

  3. The stochastic inverse method for ocean acoustic tomography studies

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.; Mahadevan, R.

    stream_size 10 stream_content_type text/plain stream_name Acoust_Lett_19_15.pdf.txt stream_source_info Acoust_Lett_19_15.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  4. Acoustic and Shear-Wave Velocities in Hydrate-Bearing Sediments Offshore Southwestern Taiwan: Tomography, Converted Waves Analysis and Reverse-Time Migration of OBS Records

    Directory of Open Access Journals (Sweden)

    Philippe Schnurle

    2006-01-01

    Full Text Available A 2.5-D combined seismic reflection and refraction survey has been conducted in the accretionary complex offshore of southwestern Taiwan where BSRs (Bottom Simulating Reflectors are highly concentrated and geochemical signals for the presence of gas hydrate are strong. In this study, we perform velocity analysis of the 6 4-component OBS (Ocean-Bottom Seismometer records along the southernmost transect of this seismic experiment. We utilize 3 independent methods in order to accurately determine the acoustic and shear-wave velocities of the sediments: 1-D Root Mean Square (RMS analysis of the P-P and P-S reflected events on individual datumed components, 2-D inversion of the P-P and P-S reflected and refracted events along the in-line transect, and 3-D acoustic inversion of the first arrivals. The principal sources of bias in the determination of the velocities are the 3-dimentional nature of the topography and the complexity of the underlying structures. The three methods result in consistent velocity profiles. Rapid lateral and vertical variations of the velocities are observed. We then investigate the large scale gas hydrate content through rock physic modeling: at the vertical of each OBS, shear-waves velocities are utilized to estimate the water-filled porosities, and the acoustic velocities predicted for a set of gas hydrate, quartz and clay contents are compared to the observed profiles.

  5. Ion acoustic waves and related plasma observations in the solar wind

    International Nuclear Information System (INIS)

    Gurnett, D.A.; Marsch, E.; Pilipp, W.; Schwenn, R.; Rosenbauer, H.

    1979-01-01

    This paper presents an investigation of solar wind ion acoustic waves and their relationship to the macroscopic and microscopic characteristics of the solar wind plasma. Comparisons with the overall solar wind corotational structure show that the most intense ion acoustic waves usually occur in the low-velocity regions ahead of high-speed solar wind streams. Of the detailed plasma parameters investigated, the ion acoustic wave intensities are found to be most closely correlated with the electron to proton temperature ratio T/sub e//T/sub p/ and with the electron heat flux. Investigations of the detailed electron and proton distribution functions also show that the ion acoustic waves usually occur in regions with highly non-Maxwellian distributions characteristic of double-proton streams. The distribution functions for the double-proton streams are usually not resolved into two clearly defined peaks, but rather they appear as a broad shoulder on the main proton distribution. Two main mechanisms, an electron heat flux instability and a double-ion beam instability, are considered for generating the ion-acoustic-like waves observed in the solar wind. Both mechanisms have favorable and unfavorable features. The electron heat flux mechanism can account for the observed waves at moderate to large ratios of T/sub e//T/sub p/ but has problems when T/sub e//T/sub p/ is small, as sometimes occurs. The ion beam instability appears to provide more flexibility on the T/sub e//T/sub p/ ratio; however detailed comparisons using observed distribution functions indicate that the ion beam mode is usually stable. Possible resolutions of these difficulties are discussed

  6. Comparison of index velocity measurements made with a horizontal acoustic Doppler current profiler

    Science.gov (United States)

    Jackson, P. Ryan; Johnson, Kevin K.; Duncker, James J.

    2012-01-01

    The State of Illinois' annual withdrawal from Lake Michigan is limited by a U.S. Supreme Court decree, and the U.S. Geological Survey (USGS) is responsible for monitoring flows in the Chicago Sanitary and Ship Canal (CSSC) near Lemont, Illinois as a part of the Lake Michigan Diversion Accounting overseen by the U.S. Army Corps of Engineers, Chicago District. Every 5 years, a technical review committee consisting of practicing engineers and academics is convened to review the U.S. Geological Survey's streamgage practices in the CSSC near Lemont, Illinois. The sixth technical review committee raised a number of questions concerning the flows and streamgage practices in the CSSC near Lemont and this report provides answers to many of those questions. In addition, it is the purpose of this report to examine the index velocity meters in use at Lemont and determine whether the acoustic velocity meter (AVM), which is now the primary index velocity meter, can be replaced by the horizontal acoustic Doppler current profiler (H-ADCP), which is currently the backup meter. Application of the AVM and H-ADCP to index velocity measurements in the CSSC near Lemont, Illinois, has produced good ratings to date. The site is well suited to index velocity measurements in spite of the large range of velocities and highly unsteady flows at the site. Flow variability arises from a range of sources: operation of the waterway through control structures, lockage-generated disturbances, commercial and recreational traffic, industrial withdrawals and discharges, natural inflows, seiches, and storm events. The influences of these factors on the index velocity measurements at Lemont is examined in detail in this report. Results of detailed data comparisons and flow analyses show that use of bank-mounted instrumentation such as the AVM and H-ADCP appears to be the best option for index velocity measurement in the CSSC near Lemont. Comparison of the rating curves for the AVM and H-ADCP demonstrates

  7. Visualizing flow fields using acoustic Doppler current profilers and the Velocity Mapping Toolbox

    Science.gov (United States)

    Jackson, P. Ryan

    2013-01-01

    The purpose of this fact sheet is to provide examples of how the U.S. Geological Survey is using acoustic Doppler current profilers for much more than routine discharge measurements. These instruments are capable of mapping complex three-dimensional flow fields within rivers, lakes, and estuaries. Using the Velocity Mapping Toolbox to process the ADCP data allows detailed visualization of the data, providing valuable information for a range of studies and applications.

  8. Reconstruction of the forehead acoustic properties in an Indo-Pacific humpback dolphin (Sousa chinensis), with investigation on the responses of soft tissue sound velocity to temperature.

    Science.gov (United States)

    Song, Zhongchang; Zhang, Yu; Berggren, Per; Wei, Chong

    2017-02-01

    Computed tomography (CT) imaging and ultrasound experimental measurements were combined to reconstruct the acoustic properties (density, velocity, and impedance) of the head from a deceased Indo-Pacific humpback dolphin (Sousa chinensis). The authors extracted 42 soft forehead tissue samples to estimate the sound velocity and density properties at room temperature, 25.0  °C. Hounsfield Units (HUs) of the samples were read from CT scans. Linear relationships between the tissues' HUs and velocity, and HUs and density were revealed through regression analyses. The distributions of the head acoustic properties at axial, coronal, and sagittal cross sections were reconstructed, suggesting that the forehead soft tissues were characterized by low-velocity in the melon, high-velocity in the muscle and connective tissues. Further, the sound velocities of melon, muscle, and connective tissue pieces were measured under different temperatures to investigate tissues' velocity response to temperature. The results demonstrated nonlinear relationships between tissues' sound velocity and temperature. This study represents a first attempt to provide general information on acoustic properties of this species. The results could provide meaningful information for understanding the species' bioacoustic characteristics and for further investigation on sound beam formation of the dolphin.

  9. Multiple-frequency acoustic wave devices for chemical sensing and materials characterization in both gas and liquid phase

    Science.gov (United States)

    Martin, S.J.; Ricco, A.J.

    1993-08-10

    A chemical or intrinsic physical property sensor is described comprising: (a) a substrate; (b) an interaction region of said substrate where the presence of a chemical or physical stimulus causes a detectable change in the velocity and/or an attenuation of an acoustic wave traversing said region; and (c) a plurality of paired input and output interdigitated electrodes patterned on the surface of said substrate where each of said paired electrodes has a distinct periodicity, where each of said paired electrodes is comprised of an input and an output electrode; (d) an input signal generation means for transmitting an input signal having a distinct frequency to a specified input interdigitated electrode of said plurality so that each input electrode receives a unique input signal, whereby said electrode responds to said input signal by generating an acoustic wave of a specified frequency, thus, said plurality responds by generating a plurality of acoustic waves of different frequencies; (e) an output signal receiving means for determining an acoustic wave velocity and an amplitude of said acoustic waves at several frequencies after said waves transverses said interaction region and comparing these values to an input acoustic wave velocity and an input acoustic wave amplitude to produce values for perturbations in acoustic wave velocities and for acoustic wave attenuation as a function of frequency, where said output receiving means is individually coupled to each of said output interdigitated electrode; (f) a computer means for analyzing a data stream comprising information from said output receiving means and from said input signal generation means to differentiate a specified response due to a perturbation from a subsequent specified response due to a subsequent perturbation to determine the chemical or intrinsic physical properties desired.

  10. Calibration of AN Acoustic Sensor (geophone) for Continuous Bedload Monitoring in Mountainous Streams

    Science.gov (United States)

    Tsakiris, A. G.; Papanicolaou, T.

    2010-12-01

    Measurement of bedload rates is a crucial component in the study of alluvial processes in mountainous streams. Stream restoration efforts, the validation of morphodynamic models and the calibration empirical transport formulae rely on accurate bedload transport measurements. Bedload measurements using traditional methods (e.g. samplers, traps) are time consuming, resource intensive and not always feasible, especially at higher flow conditions. These limitations could potentially be addressed by acoustic instruments, which may provide unattended, continuous bedload measurements even at higher flow conditions, provided that these instruments are properly calibrated. The objective of this study is to calibrate an acoustic instrument (geophone) for performing bedload measurements in a well-monitored laboratory environment at conditions corresponding to low flow regime in mountainous streams. The geophone was manufactured by ClampOn® and was attached to the bottom of a steel plate with dimensions 0.15x0.15 m. The geophone registers the energy of the acoustic signal produced by the movement of the bedload particles over the steel plate with time resolution of one second. The plate-sensor system was installed in an acrylic housing such that the steel plate top surface was at the same level with the surface of a flat porous bed consisting of unisize spheres with diameter 19.1 mm. Unisize spherical glass particles, 15.9 mm in diameter, were preplaced along a 2 m long section upstream of the sensor, and were entrained over the steel plate. In these experiments, the geophone records spanned the complete experiment duratio. Plan view video of the particle movement over the steel plate was recorded via an overhead camera, and was used to calculate the actual bedload rate over the steel plate. Synchronized analysis of this plan view video and the geophone time series revealed that the geophone detected 62% of the bedload particles passing over the steel plate, which triggered

  11. A model of the enhancement of coal combustion using high intensity acoustic fields

    International Nuclear Information System (INIS)

    Yavuzkurt, S.; Ha, M.Y.; Koopmann, G.H.; Scaroni, A.

    1989-01-01

    In this paper a model for the enhancement of coal combustion in the presence of high intensity acoustics is developed. A high intensity acoustic field induces an oscillating velocity over pulverized coal particles otherwise entrained in the main gas stream, resulting in increased heat and mass transfer. The augmented heat and mass transfer coefficients, expressed as space- and time-averaged Nusselt and Sherwood numbers for the oscillating flow, were implemented in an existing computer code (PCGC-2) capable of predicting various aspects of pulverized coal combustion and gasification. Increases in the Nusselt and Sherwood numbers of about 45, 60 and 82.5% at sound pressure levels of 160, 165, and 170 dB for 100 μm coal particles were obtained due to increases in the acoustic slop velocity associated with the increased sound pressure levels. The main effect of the acoustic field was observed during the char combustion phase in a diffusionally controlled situation. A decrease in the char burnout length (time) of 15.7% at 160 dB and 30.2% at 170 dB was obtained compared to the case with no sound for the 100 μm coal particles

  12. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    Science.gov (United States)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  13. A STAR IN THE M31 GIANT STREAM: THE HIGHEST NEGATIVE STELLAR VELOCITY KNOWN

    International Nuclear Information System (INIS)

    Caldwell, Nelson; Kenyon, Scott J.; Morrison, Heather; Harding, Paul; Schiavon, Ricardo; Rose, James A.

    2010-01-01

    We report on a single star, B030D, observed as part of a large survey of objects in M31, which has the unusual radial velocity of -780 km s -1 . Based on details of its spectrum, we find that the star is an F supergiant, with a circumstellar shell. The evolutionary status of the star could be one of a post-main-sequence close binary, a symbiotic nova, or less likely, a post-asymptotic giant branch star, which additional observations could help sort out. Membership of the star in the Andromeda Giant Stream can explain its highly negative velocity.

  14. Flow effects on benthic stream invertebrates and ecological processes

    Science.gov (United States)

    Koprivsek, Maja; Brilly, Mitja

    2010-05-01

    is not enough to make a shelter for stream invertebrates. It serves as a shelter only for microorganisms, but the stream invertebrates have to avoid the swift flow or adapt to flow with adaptations described above. To understand what conditions are subject to aquatic organisms and how to adapt, it is essential. Both, knowledge of fluid dynamics in natural watercourses and ecology are needed to understand to what conditions the stream invertebrates are exposed and how they cope with them. Some investigations of near bed flow will be performed on the Glinšica stream. The acoustic Doppler velocimeter SonTek will be adapted to measure so close to the bed as possible. It is expected we should be able to measure the velocities just 0,5 cm above the bed surface. We intend to measure the velocities on a natural and on a regulated reach and then compare the results.

  15. Dual output acoustic wave sensor for molecular identification

    International Nuclear Information System (INIS)

    Frye, G.C.; Martin, S.J.

    1991-01-01

    This patent describes an apparatus for detecting and identifying at least one unknown chemical species. It comprises: an acoustic wave device capable of generating, transmitting and receiving an acoustic wave, means for measuring the velocity of an acoustic wave travelling through the material; means for simultaneously measuring the attenuation of the acoustic wave traveling through the coating material; sampling means to contact the acoustic wave device to the unknown chemical species; means for determining the changes in both the attenuation and velocity values of the acoustic wave upon sorption of the unknown chemical species into the coating material; and means for correlating the magnitudes of the changes of velocity with respect to the changes of the attenuations of the acoustic wave; and means for comparing the values of the velocity and attenuation changes to known values of velocity and attenuation of known chemical species in order to identify the unknown sorbed chemical species

  16. Diffusive Promotion by Velocity Gradient of Cytoplasmic Streaming (CPS in Nitella Internodal Cells.

    Directory of Open Access Journals (Sweden)

    Kenji Kikuchi

    Full Text Available Cytoplasmic streaming (CPS is well known to assist the movement of nutrients, organelles and genetic material by transporting all of the cytoplasmic contents of a cell. CPS is generated by motility organelles that are driven by motor proteins near a membrane surface, where the CPS has been found to have a flat velocity profile in the flow field according to the sliding theory. There is a consistent mixing of contents inside the cell by CPS if the velocity gradient profile is flattened, which is not assisted by advection diffusion but is only supported by Brownian diffusion. Although the precise flow structure of the cytoplasm has an important role for cellular metabolism, the hydrodynamic mechanism of its convection has not been clarified. We conducted an experiment to visualise the flow of cytoplasm in Nitella cells by injecting tracer fluorescent nanoparticles and using a flow visualisation system in order to understand how the flow profile affects their metabolic system. We determined that the velocity field in the cytosol has an obvious velocity gradient, not a flattened gradient, which suggests that the gradient assists cytosolic mixing by Taylor-Aris dispersion more than by Brownian diffusion.

  17. Bias in mean velocities and noise in variances and covariances measured using a multistatic acoustic profiler: the Nortek Vectrino Profiler

    Science.gov (United States)

    Thomas, R. E.; Schindfessel, L.; McLelland, S. J.; Creëlle, S.; De Mulder, T.

    2017-07-01

    This paper compiles the technical characteristics and operating principles of the Nortek Vectrino Profiler and reviews previously reported user experiences. A series of experiments are then presented that investigate instrument behaviour and performance, with a particular focus on variations within the profile. First, controlled tests investigate the sensitivity of acoustic amplitude (and Signal-to-Noise Ratio, SNR) and pulse-to-pulse correlation coefficient, R 2, to seeding concentration and cell geometry. Second, a novel methodology that systematically shifts profiling cells through a single absolute vertical position investigates the sensitivity of mean velocities, SNR and noise to: (a) emitted sound intensity and the presence (or absence) of acoustic seeding; and (b) varying flow rates under ideal acoustic seeding conditions. A new solution is derived to quantify the noise affecting the two perpendicular tristatic systems of the Vectrino Profiler and its contribution to components of the Reynolds stress tensor. Results suggest that for the Vectrino Profiler: 1. optimum acoustic seeding concentrations are ~3000 to 6000 mg L-1 2. mean velocity magnitudes are biased by variable amounts in proximal cells but are consistently underestimated in distal cells; 3. noise varies parabolically with a minimum around the ‘sweet spot’, 50 mm below the transceiver; 4. the receiver beams only intersect at the sweet spot and diverge nearer to and further from the transceiver. This divergence significantly reduces the size of the sampled area away from the sweet spot, reducing data quality; 5. the most reliable velocity data will normally be collected in the region between approximately 43 and 61 mm below the transceiver.

  18. Bias in mean velocities and noise in variances and covariances measured using a multistatic acoustic profiler: the Nortek Vectrino Profiler

    International Nuclear Information System (INIS)

    Thomas, R E; Schindfessel, L; Creëlle, S; De Mulder, T; McLelland, S J

    2017-01-01

    This paper compiles the technical characteristics and operating principles of the Nortek Vectrino Profiler and reviews previously reported user experiences. A series of experiments are then presented that investigate instrument behaviour and performance, with a particular focus on variations within the profile. First, controlled tests investigate the sensitivity of acoustic amplitude (and Signal-to-Noise Ratio, SNR) and pulse-to-pulse correlation coefficient, R 2 , to seeding concentration and cell geometry. Second, a novel methodology that systematically shifts profiling cells through a single absolute vertical position investigates the sensitivity of mean velocities, SNR and noise to: (a) emitted sound intensity and the presence (or absence) of acoustic seeding; and (b) varying flow rates under ideal acoustic seeding conditions. A new solution is derived to quantify the noise affecting the two perpendicular tristatic systems of the Vectrino Profiler and its contribution to components of the Reynolds stress tensor. Results suggest that for the Vectrino Profiler: 1. optimum acoustic seeding concentrations are ∼3000 to 6000 mg L −1 ; 2. mean velocity magnitudes are biased by variable amounts in proximal cells but are consistently underestimated in distal cells; 3. noise varies parabolically with a minimum around the ‘sweet spot’, 50 mm below the transceiver; 4. the receiver beams only intersect at the sweet spot and diverge nearer to and further from the transceiver. This divergence significantly reduces the size of the sampled area away from the sweet spot, reducing data quality; 5. the most reliable velocity data will normally be collected in the region between approximately 43 and 61 mm below the transceiver. (paper)

  19. Pattern-formation under acoustic driving forces

    Science.gov (United States)

    Valverde, Jose Manuel

    2015-07-01

    Chemical and metallurgical processes enhanced by high intensity acoustic waves, thermoacoustic engines and refrigerators, fuel rods in nuclear reactors, heat exchanger tubes, offshore and vibrating structures, solar thermal collectors, acoustic levitators, microfluidic devices, cycling, musical acoustics, blood flow through veins/arteries, hearing in the mammalian ear, carbon nanotube loudspeakers, etc. The evolution of a myriad of processes involving the oscillation of viscous fluids in the presence of solid boundaries is up to a certain extent influenced by acoustic streaming. In addition to the sound field, viscous energy dissipation at the fluid-solid boundary causes a time-independent fluid circulation, which can lead to a significant enhancement of heat, mass and momentum transfer at large oscillation amplitudes. A particularly relevant phenomenon that can be notably affected by acoustic streaming is the promotion of sound waves by temperature gradients or viceversa (thermoacoustics), which is at the basis of potentially efficient and environmental friendly engines and refrigerators that have attracted a renewed interest in the last years. In the present manuscript, historical developments and the underlying basic physics behind acoustic streaming and thermoacoustics are reviewed from an unifying perspective.

  20. Statistically optimized near field acoustic holography using an array of pressure-velocity probes

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Jaud, Virginie

    2007-01-01

    of a measurement aperture that extends well beyond the source can be relaxed. Both NAH and SONAH are based on the assumption that all sources are on one side of the measurement plane whereas the other side is source free. An extension of the SONAH procedure based on measurement with a double layer array...... of pressure microphones has been suggested. The double layer technique makes it possible to distinguish between sources on the two sides of the array and thus suppress the influence of extraneous noise coming from the “wrong” side. It has also recently been demonstrated that there are significant advantages...... in NAH based on an array of acoustic particle velocity transducers (in a single layer) compared with NAH based on an array of pressure microphones. This investigation combines the two ideas and examines SONAH based on an array of pressure-velocity intensity probes through computer simulations as well...

  1. A coaxial plasma gun with a controllable streaming velocity in the range of 2-90 km secsup(-1)

    International Nuclear Information System (INIS)

    Venkataramani, N.; Mattoo, S.K.

    1981-01-01

    A coaxial plasma gun capable of producing a plasma stream of velocity ranging between 2 and 90 km secsup(-1) is described. The velocity of the stream is controlled by a variable (0.2-25 Ω) NaCl salt solution resistor in the discharge path of the energy storage connected across the gun. The resistor dissipates an energy of 200 J in the gun discharge current pulse period of 25 μ sec and the consequent heating and dissociation of the electrolyte are insignificant. The electron density of the plasma stream ranges between 10 18 and 10 19 msup(-3) and the temperature is approximately 10 eV. The total number of ions per plasma pulse is approximately 10 18 . The energy transfer efficiency of the gun is approximately 10%. The low transfer efficiency is explained in terms of the experimental requirements and the performance of the valve which admits gas into the gun region. For evaluation of the performance of the gun, several diagnostics have been deployed. A specially designed high voltage capacitor probe is described. (author)

  2. The role of temporal coherence in auditory stream segregation

    DEFF Research Database (Denmark)

    Christiansen, Simon Krogholt

    The ability to perceptually segregate concurrent sound sources and focus one’s attention on a single source at a time is essential for the ability to use acoustic information. While perceptual experiments have determined a range of acoustic cues that help facilitate auditory stream segregation......, it is not clear how the auditory system realizes the task. This thesis presents a study of the mechanisms involved in auditory stream segregation. Through a combination of psychoacoustic experiments, designed to characterize the influence of acoustic cues on auditory stream formation, and computational models...... of auditory processing, the role of auditory preprocessing and temporal coherence in auditory stream formation was evaluated. The computational model presented in this study assumes that auditory stream segregation occurs when sounds stimulate non-overlapping neural populations in a temporally incoherent...

  3. Flow profiling of a surface acoustic wave nanopump

    OpenAIRE

    Guttenberg, Z.; Rathgeber, A.; Keller, S.; Rädler, J. O.; Wixforth, A.; Kostur, M.; Schindler, M.; Talkner, P.

    2004-01-01

    The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing Surface Acoustic Waves is investigated both experimentally and theoretically. Such ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate an internal streaming within the fluid. Such acoustic streaming can be used for controlled agitation during, e.g., microarray hybridization. We use fluorescence correlation spectroscopy and fluorescence microsc...

  4. Auditory velocity discrimination in the horizontal plane at very high velocities.

    Science.gov (United States)

    Frissen, Ilja; Féron, François-Xavier; Guastavino, Catherine

    2014-10-01

    We determined velocity discrimination thresholds and Weber fractions for sounds revolving around the listener at very high velocities. Sounds used were a broadband white noise and two harmonic sounds with fundamental frequencies of 330 Hz and 1760 Hz. Experiment 1 used velocities ranging between 288°/s and 720°/s in an acoustically treated room and Experiment 2 used velocities between 288°/s and 576°/s in a highly reverberant hall. A third experiment addressed potential confounds in the first two experiments. The results show that people can reliably discriminate velocity at very high velocities and that both thresholds and Weber fractions decrease as velocity increases. These results violate Weber's law but are consistent with the empirical trend observed in the literature. While thresholds for the noise and 330 Hz harmonic stimulus were similar, those for the 1760 Hz harmonic stimulus were substantially higher. There were no reliable differences in velocity discrimination between the two acoustical environments, suggesting that auditory motion perception at high velocities is robust against the effects of reverberation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Hydroelectric plant turbine, stream and spillway flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lampa, J.; Lemon, D.; Buermans, J. [ASL AQ Flow Inc., Sidney, BC (Canada)

    2004-07-01

    This presentation provided schematics of the turbine flow measurements and typical bulb installations at the Kootenay Canal and Wells hydroelectric power facilities in British Columbia. A typical arrangement for measuring stream flow using acoustic scintillation was also illustrated. Acoustic scintillation is portable, non-intrusive, suitable for short intakes, requires minimal maintenance and is cost effective and accurate. A comparison between current meters and acoustic scintillation was also presented. Stream flow measurement is valuable in evaluating downstream areas that are environmentally important for fish habitat. Stream flow measurement makes it possible to define circulation. The effects of any changes can be assessed by combining field measurements and numerical modelling. The presentation also demonstrated that computational fluid dynamics modelling appears promising in determining stream flow and turbulent flow at spillways. tabs., figs.

  6. Renal shear wave velocity by acoustic radiation force impulse did not reflect advanced renal impairment.

    Science.gov (United States)

    Takata, Tomoaki; Koda, Masahiko; Sugihara, Takaaki; Sugihara, Shinobu; Okamoto, Toshiaki; Miyoshi, Kenichi; Matono, Tomomitsu; Hosho, Keiko; Mae, Yukari; Iyama, Takuji; Fukui, Takeaki; Fukuda, Satoko; Munemura, Chishio; Isomoto, Hajime

    2016-12-01

    Acoustic radiation force impulse is a noninvasive method for evaluating tissue elasticity on ultrasound. Renal shear wave velocity measured by this technique has not been fully investigated in patients with renal disease. The aim of the present study was to compare renal shear wave velocity in end-stage renal disease patients and that in patients without chronic kidney disease and to investigate influencing factors. Renal shear wave velocities were measured in 59 healthy young subjects (control group), 31 subjects without chronic kidney disease (non-CKD group), and 39 end-stage renal disease patients (ESRD group). Each measurement was performed 10 times at both kidneys, and the mean value of eight of 10 measurements, excluding the maximum and minimum values, was compared. Renal shear wave velocity could be measured in all subjects. Renal shear wave velocity in the control group was higher than in the non-CKD group and in the ESRD group, and no difference was found between the non-CKD group and the ESRD group. Age and depth were negatively correlated to the renal shear wave velocity. In multiple regression analysis, age and depth were independent factors for renal shear wave velocity, while renal impairment was not. There was no difference between the non-CKD group and the ESRD group, even when ages were matched and depth was adjusted. Renal shear wave velocity was not associated with advanced renal impairment. However, it reflected alteration of renal aging, and this technique may be useful to detect renal impairment in the earlier stages. © 2015 Asian Pacific Society of Nephrology.

  7. Estimation of suspended sediment concentration in rivers using acoustic methods.

    Science.gov (United States)

    Elçi, Sebnem; Aydin, Ramazan; Work, Paul A

    2009-12-01

    Acoustic Doppler current meters (ADV, ADCP, and ADP) are widely used in water systems to measure flow velocities and velocity profiles. Although these meters are designed for flow velocity measurements, they can also provide information defining the quantity of particulate matter in the water, after appropriate calibration. When an acoustic instrument is calibrated for a water system, no additional sensor is needed to measure suspended sediment concentration (SSC). This provides the simultaneous measurements of velocity and concentration required for most sediment transport studies. The performance of acoustic Doppler current meters for measuring SSC was investigated in different studies where signal-to-noise ratio (SNR) and suspended sediment concentration were related using different formulations. However, these studies were each limited to a single study site where neither the effect of particle size nor the effect of temperature was investigated. In this study, different parameters that affect the performance of an ADV for the prediction of SSC are investigated. In order to investigate the reliability of an ADV for SSC measurements in different environments, flow and SSC measurements were made in different streams located in the Aegean region of Turkey having different soil types. Soil samples were collected from all measuring stations and particle size analysis was conducted by mechanical means. Multivariate analysis was utilized to investigate the effect of soil type and water temperature on the measurements. Statistical analysis indicates that SNR readings ob tained from the ADV are affected by water temperature and particle size distribution of the soil, as expected, and a prediction model is presented relating SNR readings to SSC mea surements where both water temperature and sediment characteristics type are incorporated into the model. The coefficients of the suggested model were obtained using the multivariate anal ysis. Effect of high turbidity

  8. Dual-mode nonlinear instability analysis of a confined planar liquid sheet sandwiched between two gas streams of unequal velocities and prediction of droplet size and velocity distribution using maximum entropy formulation

    Science.gov (United States)

    Dasgupta, Debayan; Nath, Sujit; Bhanja, Dipankar

    2018-04-01

    Twin fluid atomizers utilize the kinetic energy of high speed gases to disintegrate a liquid sheet into fine uniform droplets. Quite often, the gas streams are injected at unequal velocities to enhance the aerodynamic interaction between the liquid sheet and surrounding atmosphere. In order to improve the mixing characteristics, practical atomizers confine the gas flows within ducts. Though the liquid sheet coming out of an injector is usually annular in shape, it can be considered to be planar as the mean radius of curvature is much larger than the sheet thickness. There are numerous studies on breakup of the planar liquid sheet, but none of them considered the simultaneous effects of confinement and unequal gas velocities on the spray characteristics. The present study performs a nonlinear temporal analysis of instabilities in the planar liquid sheet, produced by two co-flowing gas streams moving with unequal velocities within two solid walls. The results show that the para-sinuous mode dominates the breakup process at all flow conditions over the para-varicose mode of breakup. The sheet pattern is strongly influenced by gas velocities, particularly for the para-varicose mode. Spray characteristics are influenced by both gas velocity and proximity to the confining wall, but the former has a much more pronounced effect on droplet size. An increase in the difference between gas velocities at two interfaces drastically shifts the droplet size distribution toward finer droplets. Moreover, asymmetry in gas phase velocities affects the droplet velocity distribution more, only at low liquid Weber numbers for the input conditions chosen in the present study.

  9. A GIS-based Computational Tool for Multidimensional Flow Velocity by Acoustic Doppler Current Profilers

    International Nuclear Information System (INIS)

    Kim, D; Winkler, M; Muste, M

    2015-01-01

    Acoustic Doppler Current Profilers (ADCPs) provide efficient and reliable flow measurements compared to other tools for characteristics of the riverine environments. In addition to originally targeted discharge measurements, ADCPs are increasingly utilized to assess river flow characteristics. The newly developed VMS (Velocity Mapping Software) aims at providing an efficient process for quality assurance, mapping velocity vectors for visualization and facilitating comparison with physical and numerical model results. VMS was designed to provide efficient and smooth work flows for processing groups of transects. The software allows the user to select group of files and subsequently to conduct statistical and graphical quality assurance on the files as a group or individually as appropriate. VMS also enables spatial averaging in horizontal and vertical plane for ADCP data in a single or multiple transects over the same or consecutive cross sections. The analysis results are displayed in numerical and graphical formats. (paper)

  10. A computational study for investigating acoustic streaming and tissue heating during high intensity focused ultrasound through blood vessel with an obstacle

    Science.gov (United States)

    Parvin, Salma; Sultana, Aysha

    2017-06-01

    The influence of High Intensity Focused Ultrasound (HIFU) on the obstacle through blood vessel is studied numerically. A three-dimensional acoustics-thermal-fluid coupling model is employed to compute the temperature field around the obstacle through blood vessel. The model construction is based on the linear Westervelt and conjugate heat transfer equations for the obstacle through blood vessel. The system of equations is solved using Finite Element Method (FEM). We found from this three-dimensional numerical study that the rate of heat transfer is increasing from the obstacle and both the convective cooling and acoustic streaming can considerably change the temperature field.

  11. Particle Filter Based Fault-tolerant ROV Navigation using Hydro-acoustic Position and Doppler Velocity Measurements

    DEFF Research Database (Denmark)

    Zhao, Bo; Blanke, Mogens; Skjetne, Roger

    2012-01-01

    This paper presents a fault tolerant navigation system for a remotely operated vehicle (ROV). The navigation system uses hydro-acoustic position reference (HPR) and Doppler velocity log (DVL) measurements to achieve an integrated navigation. The fault tolerant functionality is based on a modied...... particle lter. This particle lter is able to run in an asynchronous manner to accommodate the measurement drop out problem, and it overcomes the measurement outliers by switching observation models. Simulations with experimental data show that this fault tolerant navigation system can accurately estimate...

  12. PIV measurements of acoustic and flow-induced vibration in main stream lines

    International Nuclear Information System (INIS)

    Li, Yanrong; Someya, Satoshi; Okamoto, Koji

    2009-01-01

    Systems with closed side-branches are liable to an excitation of sound, as called cavity tone. In this study, flow-induced acoustic resonances of piping systems containing closed side-branches were investigated experimentally. The present investigation on the coaxial closed side-branches is the first rudimentary study to measure the pressure at the downstream side opening of the cavity by microphone and to visualize the fluid flow in the cross-section by using PIV. High-time-resolved PIV has a possibility to analyze the velocity field and the relation between sound propagation and flow field. The fluid flows at different points in the cavity interact with some phase differences and the relation can be clarified. (author)

  13. Interaction of langmuir and ion acoustic waves

    International Nuclear Information System (INIS)

    Lee, Hee Jae

    1991-01-01

    Interaction of Langmuir and ion acoustic waves in a plasma is described by Landau-Ginzburg type of equation when the group velocity of the Langmuir wave is equal to the wave velocity of ion acoustic wave. (Author)

  14. Drug perfusion enhancement in tissue model by steady streaming induced by oscillating microbubbles.

    Science.gov (United States)

    Oh, Jin Sun; Kwon, Yong Seok; Lee, Kyung Ho; Jeong, Woowon; Chung, Sang Kug; Rhee, Kyehan

    2014-01-01

    Drug delivery into neurological tissue is challenging because of the low tissue permeability. Ultrasound incorporating microbubbles has been applied to enhance drug delivery into these tissues, but the effects of a streaming flow by microbubble oscillation on drug perfusion have not been elucidated. In order to clarify the physical effects of steady streaming on drug delivery, an experimental study on dye perfusion into a tissue model was performed using microbubbles excited by acoustic waves. The surface concentration and penetration length of the drug were increased by 12% and 13%, respectively, with streaming flow. The mass of dye perfused into a tissue phantom for 30s was increased by about 20% in the phantom with oscillating bubbles. A computational model that considers fluid structure interaction for streaming flow fields induced by oscillating bubbles was developed, and mass transfer of the drug into the porous tissue model was analyzed. The computed flow fields agreed with the theoretical solutions, and the dye concentration distribution in the tissue agreed well with the experimental data. The computational results showed that steady streaming with a streaming velocity of a few millimeters per second promotes mass transfer into a tissue. © 2013 Published by Elsevier Ltd.

  15. Study of Ion Acoustic Wave Damping through Green's Functions

    DEFF Research Database (Denmark)

    Hsuan, H.C.S.; Jensen, Vagn Orla

    1973-01-01

    Green's function analyses of ion acoustic waves in streaming plasmas show that, in general, the waves damp algebraically rather than exponentially with distance from exciter.......Green's function analyses of ion acoustic waves in streaming plasmas show that, in general, the waves damp algebraically rather than exponentially with distance from exciter....

  16. The role of heating, cavitation and acoustic streaming in mediating ultrasound-induced changes of TGF-β gene expression in bone cells

    International Nuclear Information System (INIS)

    Harle, J; Mayia, F

    2004-01-01

    This paper relates ultrasound-induced changes in bone cell function to quantitative data assessing the level of several interaction mechanisms within the exposure environment. Characterisation of ultrasound fields in terms of resultant levels of heating, cavitation and acoustic streaming may provide a novel means of accurately assessing the likelihood of biological effects in vitro

  17. Acoustic insulator for combined well equipment of acoustic and radioactivity logging

    International Nuclear Information System (INIS)

    Arkad'ev, E.A.; Gorbachev, Yu.I.; Dseban', I.P.; Yagodov, G.I.

    1977-01-01

    The design of an acoustic insulator for cobined well equipment of acoustic and radioactivity logaing made on the basis of studying the velocity of elastic waves propagation and attenuation in cable structures of various marks is described. It is shown that the cable probe of electric loggign equipment which is recommended as an acoustic insulator for combined well equipment has the necessary sound-insulating properties

  18. Acoustic building infiltration measurement system

    Science.gov (United States)

    Muehleisen, Ralph T.; Raman, Ganesh

    2018-04-10

    Systems and methods of detecting and identifying a leak from a container or building. Acoustic pressure and velocity are measured. Acoustic properties are acquired from the measured values. The acoustic properties are converted to infiltration/leakage information. Nearfield Acoustic Holography (NAH) may be one method to detect the leakages from a container by locating the noise sources.

  19. Observations of Two-Stream Ion Wave Instability

    DEFF Research Database (Denmark)

    Christoffersen, G.B.; Prahm, L.P.

    1973-01-01

    A double‐humped ion velocity distribution function is produced in a Q‐machine cesium plasma. When the plasma becomes unstable, a growing wave amplitude and a characteristic change in the phase velocity of a grid‐excited ion‐acoustic wave are observed.......A double‐humped ion velocity distribution function is produced in a Q‐machine cesium plasma. When the plasma becomes unstable, a growing wave amplitude and a characteristic change in the phase velocity of a grid‐excited ion‐acoustic wave are observed....

  20. Cytoplasmic streaming velocity as a plant size determinant.

    Science.gov (United States)

    Tominaga, Motoki; Kimura, Atsushi; Yokota, Etsuo; Haraguchi, Takeshi; Shimmen, Teruo; Yamamoto, Keiichi; Nakano, Akihiko; Ito, Kohji

    2013-11-11

    Cytoplasmic streaming is active transport widely occurring in plant cells ranging from algae to angiosperms. Although it has been revealed that cytoplasmic streaming is generated by organelle-associated myosin XI moving along actin bundles, the fundamental function in plants remains unclear. We generated high- and low-speed chimeric myosin XI by replacing the motor domains of Arabidopsis thaliana myosin XI-2 with those of Chara corallina myosin XI and Homo sapiens myosin Vb, respectively. Surprisingly, the plant sizes of the transgenic Arabidopsis expressing high- and low-speed chimeric myosin XI-2 were larger and smaller, respectively, than that of the wild-type plant. This size change correlated with acceleration and deceleration, respectively, of cytoplasmic streaming. Our results strongly suggest that cytoplasmic streaming is a key determinant of plant size. Furthermore, because cytoplasmic streaming is a common system for intracellular transport in plants, our system could have applications in artificial size control in plants. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. System and method for investigating sub-surface features and 3D imaging of non-linear property, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation

    Science.gov (United States)

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2015-06-02

    A system and a method for generating a three-dimensional image of a rock formation, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation are provided. A first acoustic signal includes a first plurality of pulses. A second acoustic signal from a second source includes a second plurality of pulses. A detected signal returning to the borehole includes a signal generated by a non-linear mixing process from the first and second acoustic signals in a non-linear mixing zone within an intersection volume. The received signal is processed to extract the signal over noise and/or signals resulting from linear interaction and the three dimensional image of is generated.

  2. Using micro-3D printing to build acoustically driven microswimmers.

    Science.gov (United States)

    Bertin, Nicolas; Stephan, Olivier; Marmottant, Philippe; Spelman, Tamsin; Lauga, Eric; Dyfcom Team; Complex; Biological Fluids Team

    2015-11-01

    With no protection, a micron-sized free air bubble at room temperature in water has a life span shorter than a few tens of seconds. Using two-photon lithography, which is similar to 3D printing at the micron scale, we can build ``armors'' for these bubbles: micro-capsules with an opening to contain the bubble and extend its life to several hours in biological buffer solutions. When excited by an ultrasound transducer, a 20 μm bubble performs large amplitude oscillations in the capsule opening and generates a powerful acoustic streaming flow (velocity up to dozens of mm/s). A collaboration with the Dept. of Applied Mathematics and Theoretical Physics, University of Cambridge, is helping us predict the true resonance of these capsules and the full surrounding streaming flow. The present Bubbleboost project aims at creating red blood cell sized capsules (~ 10-20 μm) that can move on their own with a non-contact acoustic excitation for drug delivery applications. Another application of this research is in microfluidics: we are able to fabricate fields of capsules able to generate mixing effects in microchannels, or use the bubble-generated flow to guide passing objects at a junction. ERC Grant Agreement Bubbleboost no. 614655.

  3. Streaming instabilities in a collisional dusty plasma

    International Nuclear Information System (INIS)

    Mamun, A. A.; Shukla, P. K.

    2000-01-01

    A pair of low-frequency electrostatic modes, which are very similar to those experimentally observed by Praburam and Goree [Phys. Plasmas 3, 1212 (1996)], are found to exist in a dusty plasma with a significant background neutral pressure and background ion streaming. One of these two modes is the dust-acoustic mode and the other one is a new mode which is due to the combined effects of the ion streaming and ion--neutral collisions. It has been shown that in the absence of the ion streaming, the dust-acoustic mode is damped due to the combined effects of the ion--neutral and dust--neutral collisions and the electron--ion recombination onto the dust grain surface. This result disagrees with Kaw and Singh [Phys. Rev. Lett. 79, 423 (1997)], who reported collisional instability of the dust-acoustic mode in such a dusty plasma. It has also been found that a streaming instability with the growth rate of the order of the dust plasma frequency is triggered when the background ion streaming speed relative to the charged dust particles is comparable or higher than the ion--thermal speed. This point completely agrees with Rosenberg [J. Vac. Soc. Technol. A 14, 631 (1996)

  4. Low Energy Gamma Radiation Induced Effects on Ultrasonic Velocity and Acoustic Parameters in Polyvinylidene Fluoride Solution

    Directory of Open Access Journals (Sweden)

    S. S. Kulkarni

    2016-01-01

    Full Text Available The modification of polyvinylidene fluoride (PVDF polymer properties with irradiation is of interest as it possesses unique piezo-, pyro-, and ferroelectric properties. In this paper, we report the results of acoustic parameters of irradiated PVDF mixed with dimethylacetamide (DMAC solution with low energy γ-source (Cs-137. The polymer solution covered with mica film assures only γ-ray passage and the duration was increased from 18 to 50 hours to achieve the higher dose rate. The dose rate was estimated using the strength of the radioactive source and the duration of the exposure. The ultrasonic velocity (v, density (ρ, and viscosity (η of 0.2 wt% and 0.5 wt% PVDF dissolved in pure DMAC solution, irradiated with different dose rate were measured using ultrasonic interferometer (Mittal make, Pyknometer, and Oswald’s viscometer, respectively. It is observed that the values of v, ρ, and η change with dose rate. The acoustic parameters such as adiabatic compressibility (β, intermolecular free path length (Lf, acoustic impedance (Z, relative association (RA, ultrasonic attenuation (α/f2, and relaxation time (τ are calculated using the experimental data. These results are interpreted in terms of the solute-solvent interaction in a polymer solution and scissoring chain damage.

  5. Assessment of attenuation processes in a chlorinated ethene plume by use of stream bed Passive Flux Meters, streambed Point Velocity Probes and contaminant mass balances

    Science.gov (United States)

    Rønde, V.; McKnight, U. S.; Annable, M. D.; Devlin, J. F.; Cremeans, M.; Sonne, A. T.; Bjerg, P. L.

    2017-12-01

    Chlorinated ethenes (CE) are abundant groundwater contaminants and pose risk to both groundwater and surface water bodies, as plumes can migrate through aquifers to streams. After release to the environment, CE may undergo attenuation. The hyporheic zone is believed to enhance CE attenuation, however studies contradicting this have also been reported. Since dilution commonly reduces contaminant concentrations in streams to below quantification limits, use of mass balances along the pathway from groundwater to stream is unusual. Our study is conducted at the low-land Grindsted stream, Denmark, which is impacted by a contaminant plume. CE have been observed in the stream water; hence our study site provides an unusual opportunity to study attenuation processes in a CE plume as it migrates through the groundwater at the stream bank, through the stream bed and further to the point of fully mixed conditions in the stream. The study undertook the determination of redox conditions and CE distribution from bank to stream; streambed contaminant flux estimation using streambed Passive Flux Meters (sPFM); and quantification of streambed water fluxes using temperature profiling and streambed Point Velocity Probes (SBPVP). The advantage of the sPFM is that it directly measures the contaminant flux without the need for water samples, while the advantage of the SBPVP is its ability to measure the vertical seepage velocity without the need for additional geological parameters. Finally, a mass balance assessment along the plume pathway was conducted to account for any losses or accumulations. The results show consistencies in spatial patterns between redox conditions and extent of dechlorination; between contaminant fluxes from sPFM and concentrations from water samples; and between seepage velocities from SBPVP and temperature-based water fluxes. Mass balances and parent-metabolite compound ratios indicate limited degradation between the bank and the point of fully mixed stream

  6. Acoustofluidics: Theory and simulation of streaming and radiation forces at ultrasound resonances in microfluidic devices

    DEFF Research Database (Denmark)

    Bruus, Henrik

    2009-01-01

    fields, which are directly related to the acoustic radiation force on single particles and to the acoustic streaming of the liquid. For the radiation pressure effects, there is good agreement between theory and simulation, while the numeric results for the acoustic streaming effects are more problematic...

  7. Double streams of protons in the distant geomagnetic tail

    International Nuclear Information System (INIS)

    Villante, U.; Lazarus, A.J.

    1975-01-01

    Two intermingled streams of protons have been observed in the distant geomagnetic tail. The number densities of the two streams are comparable, and their velocity difference tends to lie along the field direction. The lower-velocity stream is probably composed of magnetosheath protons which have diffused through the boundary of the distant tail. The higher-velocity stream appears to originate in the field reversal region

  8. Double streams of protons in the distant geomagnetic tail

    Science.gov (United States)

    Villante, U.; Lazarus, A. J.

    1975-01-01

    Two intermingled streams of protons have been observed in the distant geomagnetic tail. The number densities of the two streams are comparable, and their velocity difference tends to lie along the field direction. The lower-velocity stream is probably composed of magnetosheath protons which have diffused through the boundary of the distant tail. The higher-velocity stream appears to originate in the field reversal region.

  9. Acoustic radiation force impulse elastography of the kidneys: is shear wave velocity affected by tissue fibrosis or renal blood flow?

    Science.gov (United States)

    Asano, Kenichiro; Ogata, Ai; Tanaka, Keiko; Ide, Yoko; Sankoda, Akiko; Kawakita, Chieko; Nishikawa, Mana; Ohmori, Kazuyoshi; Kinomura, Masaru; Shimada, Noriaki; Fukushima, Masaki

    2014-05-01

    The aim of this study was to identify the main influencing factor of the shear wave velocity (SWV) of the kidneys measured by acoustic radiation force impulse elastography. The SWV was measured in the kidneys of 14 healthy volunteers and 319 patients with chronic kidney disease. The estimated glomerular filtration rate was calculated by the serum creatinine concentration and age. As an indicator of arteriosclerosis of large vessels, the brachial-ankle pulse wave velocity was measured in 183 patients. Compared to the degree of interobserver and intraobserver deviation, a large variance of SWV values was observed in the kidneys of the patients with chronic kidney disease. Shear wave velocity values in the right and left kidneys of each patient correlated well, with high correlation coefficients (r = 0.580-0.732). The SWV decreased concurrently with a decline in the estimated glomerular filtration rate. A low SWV was obtained in patients with a high brachial-ankle pulse wave velocity. Despite progression of renal fibrosis in the advanced stages of chronic kidney disease, these results were in contrast to findings for chronic liver disease, in which progression of hepatic fibrosis results in an increase in the SWV. Considering that a high brachial-ankle pulse wave velocity represents the progression of arteriosclerosis in the large vessels, the reduction of elasticity succeeding diminution of blood flow was suspected to be the main influencing factor of the SWV in the kidneys. This study indicates that diminution of blood flow may affect SWV values in the kidneys more than the progression of tissue fibrosis. Future studies for reducing data variance are needed for effective use of acoustic radiation force impulse elastography in patients with chronic kidney disease.

  10. PVT Degradation Studies: Acoustic Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Dib, Gerges [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tucker, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-01

    Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. This document reports on a study of acoustic techniques to determine whether they can provide a diagnostic for the fogging of PVT. Different ultrasound techniques were employed for detecting the level of internal fogging in PVT, including wave velocity measurements, attenuation, nonlinear acoustics, and acoustic microscopy. The results indicate that there are linear relations between the wave velocity and wave attenuation with the level of internal fogging. The effects of fogging on ultrasound wave attenuation is further verified by acoustic microscopy imaging, where regions with fog in the specimen demonstration higher levels of attenuation compared to clear regions. Results from the nonlinear ultrasound measurements were inconclusive due to high sensitivities to transducer coupling and fixture variabilities.

  11. Nonlinear ion acoustic waves in a quantum degenerate warm plasma with dust grains

    International Nuclear Information System (INIS)

    Dubinov, A. E.; Kolotkov, D. Yu.; Sazonkin, M. A.

    2011-01-01

    A study is made of the propagation of ion acoustic waves in a collisionless unmagnetized dusty plasma containing degenerate ion and electron gases at nonzero temperatures. In linear theory, a dispersion relation for isothermal ion acoustic waves is derived and an exact expression for the linear ion acoustic velocity is obtained. The dependence of the linear ion acoustic velocity on the dust density in a plasma is calculated. An analysis of the dispersion relation reveals parameter ranges in which the problem has soliton solutions. In nonlinear theory, an exact solution to the basic equations is found and examined. The analysis is carried out by Bernoulli’s pseudopotential method. The ranges of the phase velocities of periodic ion acoustic waves and the velocities of solitons are determined. It is shown that these ranges do not overlap and that the soliton velocity cannot be lower than the linear ion acoustic velocity. The profiles of the physical quantities in a periodic wave and in a soliton are evaluated, as well as the dependence of the critical velocity of solitons on the dust density in a plasma.

  12. A mean flow acoustic engine capable of wind energy harvesting

    International Nuclear Information System (INIS)

    Sun Daming; Xu Ya; Chen Haijun; Wu, Ke; Liu Kaikai; Yu Yan

    2012-01-01

    Highlights: ► A mean flow acoustic engine for wind energy harvesting is designed and manufactured. ► Stable standing wave acoustic field is established at specific flow velocity. ► Experimental and computational results reveal the acoustic field characteristics. ► Acoustic field has monofrequency characteristic and remarkable energy density. - Abstract: Based on the mean flow induced acoustic oscillation effect, a mean flow acoustic engine (MFAE) converts wind energy and fluid energy in pipeline into acoustic energy which can be used to drive thermoacoustic refrigerators and generators without any mechanical moving parts. With natural wind simulated by a centrifugal air fan, a MFAE with a cross-junction configuration was designed and manufactured for experimental study. Stable standing wave acoustic fields were established in specific ranges of air flow velocity. Experimental and computational results reveal the acoustic field distribution in the engine and show the effect of the mean flow velocity and the Strouhal number on the acoustic field characteristics. With a mean flow velocity of 50.52 m/s and a mean pressure of 106.19 kPa, the maximum pressure amplitude of 6.20 kPa was achieved, which was about 5.8% of the mean pressure. It has laid a good foundation for driving power generation devices and thermoacoustic refrigerators by a MFAE.

  13. Integrating unmanned aerial systems and LSPIV for rapid, cost-effective stream gauging

    Science.gov (United States)

    Lewis, Quinn W.; Lindroth, Evan M.; Rhoads, Bruce L.

    2018-05-01

    Quantifying flow in rivers is fundamental to assessments of water supply, water quality, ecological conditions, hydrological responses to storm events, and geomorphological processes. Image-based surface velocity measurements have shown promise in extending the range of discharge conditions that can be measured in the field. The use of Unmanned Aerial Systems (UAS) in image-based measurements of surface velocities has the potential to expand applications of this method. Thus far, few investigations have assessed this potential by evaluating the accuracy and repeatability of discharge measurements using surface velocities obtained from UAS. This study uses large-scale particle image velocimetry (LSPIV) derived from videos captured by cameras on a UAS and a fixed tripod to obtain discharge measurements at ten different stream locations in Illinois, USA. Discharge values are compared to reference values measured by an acoustic Doppler current profiler, a propeller meter, and established stream gauges. The results demonstrate the effects of UAS flight height, camera steadiness and leveling accuracy, video sampling frequency, and LSPIV interrogation area size on surface velocities, and show that the mean difference between fixed and UAS cameras is less than 10%. Differences between LSPIV-derived and reference discharge values are generally less than 20%, not systematically low or high, and not related to site parameters like channel width or depth, indicating that results are relatively insensitive to camera setup and image processing parameters typically required of LSPIV. The results also show that standard velocity indices (between 0.85 and 0.9) recommended for converting surface velocities to depth-averaged velocities yield reasonable discharge estimates, but are best calibrated at specific sites. The study recommends a basic methodology for LSPIV discharge measurements using UAS that is rapid, cost-efficient, and does not require major preparatory work at a

  14. Noise reducing screen devices for in-flow pressure sensors

    Science.gov (United States)

    Schmitz, Fredric (Inventor); Liu, Sandy (Inventor); Jaeger, Stephen (Inventor); Horne, W. Clifton (Inventor)

    1997-01-01

    An acoustic sensor assembly is provided for sensing acoustic signals in a moving fluid such as high speed fluid stream. The assembly includes one or more acoustic sensors and a porous, acoustically transparent screen supported between the moving fluid stream and the sensor and having a major surface disposed so as to be tangent to the moving fluid. A layer of reduced velocity fluid separating the sensor from the porous screen. This reduced velocity fluid can comprise substantially still air. A foam filler material attenuates acoustic signals arriving at the assembly from other than a predetermined range of incident angles.

  15. Development of habitat suitability criteria for Neotropical stream fishes and an assessment of their transferability to streams with different conservation status

    Directory of Open Access Journals (Sweden)

    Fabrício Barreto Teresa

    Full Text Available We assessed the preference of 10 fish species for depth and velocity conditions in forested streams from southeastern Brazil using habitat suitability criteria (HSC curves. We also tested whether preference patterns observed in forested streams can be transferred to deforested streams. We used data from fish sampled in 62 five-meter sites in three forested streams to construct preference curves. Astyanax altiparanae, A. fasciatus, Knodus moenkhausii, and Piabina argentea showed a preference for deep slow habitats, whereas Aspidoras fuscoguttatus, Characidium zebra, Cetopsorhamdia iheringi, Pseudopimelodus pulcher, and Hypostomus nigromaculatus showed an opposite pattern: preference for shallow fast habitats. Hypostomus ancistroides showed a multimodal pattern of preference for depth and velocity. To evaluate whether patterns observed in forested streams may be transferred to deforested streams, we sampled 64 five-meters sites in three deforested streams using the same methodology. The preference for velocity was more consistent than for depth, as success in the transferability criterion was 86% and 29% of species, respectively. This indicates that velocity is a good predictor of species abundance in streams, regardless of their condition

  16. Trapping and exclusion zones in complex streaming patterns around a large assembly of microfluidic bubbles under ultrasound

    Science.gov (United States)

    Combriat, Thomas; Mekki-Berrada, Flore; Thibault, Pierre; Marmottant, Philippe

    2018-01-01

    Pulsating bubbles have proved to be a versatile tool for trapping and sorting particles. In this article, we investigate the different streaming patterns that can be obtained with a group of bubbles in a confined geometry under ultrasound. In the presence of an external flow strong enough to oppose the streaming velocities but not drag the trapped bubbles, we observe either the appearance of exclusion zones near the bubbles or asymmetric streaming patterns that we interpret as the superposition of a two-dimensional (2D) streaming function and of a potential flow. When studying a lattice of several bubbles, we show that the streaming pattern can be accurately predicted by superimposing the contributions of every pair of bubbles present in the lattice, thus allowing one to predict the sizes and the shapes of exclusion zones created by a group of bubbles under acoustic excitation. We suggest that such systems could be used to enhance mixing at a small scale or to catch and release chemical species initially trapped in vortices created around bubble pairs.

  17. IDENTIFYING STAR STREAMS IN THE MILKY WAY HALO

    Energy Technology Data Exchange (ETDEWEB)

    King, Charles III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J., E-mail: cking@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-05-01

    We develop statistical methods for identifying star streams in the halo of the Milky Way that exploit observed spatial and radial velocity distributions. Within a great circle, departures of the observed spatial distribution from random provide a measure of the likelihood of a potential star stream. Comparisons between the radial velocity distribution within a great circle and the radial velocity distribution of the entire sample also measure the statistical significance of potential streams. The radial velocities enable construction of a more powerful joint statistical test for identifying star streams in the Milky Way halo. Applying our method to halo stars in the Hypervelocity Star (HVS) survey, we detect the Sagittarius stream at high significance. Great circle counts and comparisons with theoretical models suggest that the Sagittarius stream comprises 10%-17% of the halo stars in the HVS sample. The population of blue stragglers and blue horizontal branch stars varies along the stream and is a potential probe of the distribution of stellar populations in the Sagittarius dwarf galaxy prior to disruption.

  18. IDENTIFYING STAR STREAMS IN THE MILKY WAY HALO

    International Nuclear Information System (INIS)

    King, Charles III; Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.

    2012-01-01

    We develop statistical methods for identifying star streams in the halo of the Milky Way that exploit observed spatial and radial velocity distributions. Within a great circle, departures of the observed spatial distribution from random provide a measure of the likelihood of a potential star stream. Comparisons between the radial velocity distribution within a great circle and the radial velocity distribution of the entire sample also measure the statistical significance of potential streams. The radial velocities enable construction of a more powerful joint statistical test for identifying star streams in the Milky Way halo. Applying our method to halo stars in the Hypervelocity Star (HVS) survey, we detect the Sagittarius stream at high significance. Great circle counts and comparisons with theoretical models suggest that the Sagittarius stream comprises 10%-17% of the halo stars in the HVS sample. The population of blue stragglers and blue horizontal branch stars varies along the stream and is a potential probe of the distribution of stellar populations in the Sagittarius dwarf galaxy prior to disruption.

  19. Animal models for auditory streaming

    Science.gov (United States)

    Itatani, Naoya

    2017-01-01

    Sounds in the natural environment need to be assigned to acoustic sources to evaluate complex auditory scenes. Separating sources will affect the analysis of auditory features of sounds. As the benefits of assigning sounds to specific sources accrue to all species communicating acoustically, the ability for auditory scene analysis is widespread among different animals. Animal studies allow for a deeper insight into the neuronal mechanisms underlying auditory scene analysis. Here, we will review the paradigms applied in the study of auditory scene analysis and streaming of sequential sounds in animal models. We will compare the psychophysical results from the animal studies to the evidence obtained in human psychophysics of auditory streaming, i.e. in a task commonly used for measuring the capability for auditory scene analysis. Furthermore, the neuronal correlates of auditory streaming will be reviewed in different animal models and the observations of the neurons’ response measures will be related to perception. The across-species comparison will reveal whether similar demands in the analysis of acoustic scenes have resulted in similar perceptual and neuronal processing mechanisms in the wide range of species being capable of auditory scene analysis. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044022

  20. Velocity bias induced by flow patterns around ADCPs and associated deployment platforms

    Science.gov (United States)

    Mueller, David S.

    2015-01-01

    Velocity measurements near the Acoustic Doppler Current Profiler (ADCP) are important for mapping surface currents, measuring velocity and discharge in shallow streams, and providing accurate estimates of discharge in the top unmeasured portion of the water column. Improvements to ADCP performance permit measurement of velocities much closer (5 cm) to the transducer than has been possible in the past (25 cm). Velocity profiles collected by the U.S. Geological Survey (USGS) with a 1200 kHz Rio Grande Zedhead ADCP in 2002 showed a negative bias in measured velocities near the transducers. On the basis of these results, the USGS initiated a study combining field, laboratory, and numerical modeling data to assess the effect of flow patterns caused by flow around the ADCP and deployment platforms on velocities measured near the transducers. This ongoing study has shown that the negative bias observed in the field is due to the flow pattern around the ADCP. The flow pattern around an ADCP violates the basic assumption of flow homogeneity required for an accurate three-dimensional velocity solution. Results, to date (2014), have indicated velocity biases within the measurable profile, due to flow disturbance, for the TRDI 1200 kHz Rio Grande Zedhead and the SonTek RiverSurveyor M9 ADCPs. The flow speed past the ADCP, the mount and the deployment platform have also been shown to play an important role in the magnitude and extent of the velocity bias.

  1. Circumferential-wave phase velocities for empty, fluid-immersed spherical metal shells

    DEFF Research Database (Denmark)

    Überall, Herbert; Claude Ahyi, A.; Raju, P. K.

    2001-01-01

    Our earlier studies regarding acoustic scattering resonances and the dispersive phase velocities of the surface waves that generate them, have demonstrated the effectiveness of obtaining phase velocity dispersion curves from the known acoustic resonance frequencies, and their accuracy. This possi...

  2. Use of acoustic field in gas cleaning

    International Nuclear Information System (INIS)

    Boulaud, D.; Madelaine, G.; Malherbe, C.

    1985-01-01

    The use of acoustic field in gas cleaning can be done in two ways: the first is the conditioning of an aerosol by acoustic agglomeration before filtration by conventional methods (cyclones, granular beds, etc.), the second is the collection efficiency improvement of granular bed filters exposed to an acoustic field. In a first part, experimental results are given on the acoustic agglomeration of a polydisperse aerosol of mass concentration between 0.5 and 1 g/m 3 . An important effect of wall precipitation of particles is described and deposition velocity due to the presence of an acoustic field are measured as a function of particle diameter, sound pressure level and acoustic frequency. A dimensionless relationship between the deposition velocity and particle relaxation time is established for these results. At the end of this part energetic criteria for the use of acoustic agglomeration in a gas cleaning train is given. In a second part, experimental results are given to the influence of acoustic field on the collection efficiency of monodispersed aerosols ranging from 0.1 to 1 μm. For these both uses of acoustic field in industrial gas cleaning the different alternatives for the acoustic field generation are discussed

  3. On Collisionless Damping of Ion Acoustic Waves

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Petersen, P.I.

    1973-01-01

    Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero.......Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero....

  4. Panel acoustic contribution analysis.

    Science.gov (United States)

    Wu, Sean F; Natarajan, Logesh Kumar

    2013-02-01

    Formulations are derived to analyze the relative panel acoustic contributions of a vibrating structure. The essence of this analysis is to correlate the acoustic power flow from each panel to the radiated acoustic pressure at any field point. The acoustic power is obtained by integrating the normal component of the surface acoustic intensity, which is the product of the surface acoustic pressure and normal surface velocity reconstructed by using the Helmholtz equation least squares based nearfield acoustical holography, over each panel. The significance of this methodology is that it enables one to analyze and rank relative acoustic contributions of individual panels of a complex vibrating structure to acoustic radiation anywhere in the field based on a single set of the acoustic pressures measured in the near field. Moreover, this approach is valid for both interior and exterior regions. Examples of using this method to analyze and rank the relative acoustic contributions of a scaled vehicle cabin are demonstrated.

  5. Stability analysis of confined V-shaped flames in high-velocity streams.

    Science.gov (United States)

    El-Rabii, Hazem; Joulin, Guy; Kazakov, Kirill A

    2010-06-01

    The problem of linear stability of confined V-shaped flames with arbitrary gas expansion is addressed. Using the on-shell description of flame dynamics, a general equation governing propagation of disturbances of an anchored flame is obtained. This equation is solved analytically for V-flames anchored in high-velocity channel streams. It is demonstrated that dynamics of the flame disturbances in this case is controlled by the memory effects associated with vorticity generated by the perturbed flame. The perturbation growth rate spectrum is determined, and explicit analytical expressions for the eigenfunctions are given. It is found that the piecewise linear V structure is unstable for all values of the gas expansion coefficient. Despite the linearity of the basic pattern, however, evolutions of the V-flame disturbances are completely different from those found for freely propagating planar flames or open anchored flames. The obtained results reveal strong influence of the basic flow and the channel walls on the stability properties of confined V-flames.

  6. Single-droplet evaporation kinetics and particle formation in an acoustic levitator. Part 1: evaporation of water microdroplets assessed using boundary-layer and acoustic levitation theories.

    Science.gov (United States)

    Schiffter, Heiko; Lee, Geoffrey

    2007-09-01

    The suitability of a single droplet drying acoustic levitator as a model for the spray drying of aqueous, pharmaceutically-relevant solutes used to produce protein-loaded particles has been examined. The acoustic levitator was initially evaluated by measuring the drying rates of droplets of pure water in dependence of drying-air temperature and flow rate. The measured drying rates were higher than those predicted by boundary layer theory because of the effects of primary acoustic streaming. Sherwood numbers of 2.6, 3.6, and 4.4 at drying-air temperatures of 25 degrees C, 40 degrees C, and 60 degrees C were determined, respectively. Acoustic levitation theory could predict the measured drying rates and Sherwood numbers only when a forced-convection drying-air stream was used to neuralize the retarding effect of secondary acoustic streaming on evaporation rate. At still higher drying-air flow rates, the Ranz-Marshall correlation accurately predicts Sherwood number, provided a stable droplet position in the standing acoustic wave is maintained. The measured Sherwood numbers and droplet Reynolds numbers show that experiments performed in the levitator in still air are taking place effectively under conditions of substantial forced convection. The similitude of these values to those occurring in spray dryers is fortuitous for the suitability of the acoustic levitator as a droplet evaporation model for spray drying. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  7. Small-scale structure and the Lyman-α forest baryon acoustic oscillation feature

    Science.gov (United States)

    Hirata, Christopher M.

    2018-02-01

    The baryon-acoustic oscillation (BAO) feature in the Lyman-α forest is a key probe of the cosmic expansion rate at redshifts z ˜ 2.5, well before dark energy is believed to have become significant. A key advantage of the BAO as a standard ruler is that it is a sharp feature and hence is more robust against broad-band systematic effects than other cosmological probes. However, if the Lyman-α forest transmission is sensitive to the initial streaming velocity of the baryons relative to the dark matter, then the BAO peak position can be shifted. Here we investigate this sensitivity using a suite of hydrodynamic simulations of small regions of the intergalactic medium with a range of box sizes and physics assumptions; each simulation starts from initial conditions at the kinematic decoupling era (z ˜ 1059), undergoes a discrete change from neutral gas to ionized gas thermal evolution at reionization (z ˜ 8), and is finally processed into a Lyman-α forest transmitted flux cube. Streaming velocities suppress small-scale structure, leading to less violent relaxation after reionization. The changes in the gas distribution and temperature-density relation at low redshift are more subtle, due to the convergent temperature evolution in the ionized phase. The change in the BAO scale is estimated to be of the order of 0.12 per cent at z = 2.5; some of the major uncertainties and avenues for future improvement are discussed. The predicted streaming velocity shift would be a subdominant but not negligible effect (of order 0.26σ) for the upcoming DESI Lyman-α forest survey, and exceeds the cosmic variance floor.

  8. Observation of large-amplitude ion acoustic wave in microwave-plasma interaction experiments

    International Nuclear Information System (INIS)

    Yugami, Noboru; Nishida, Yasushi

    1997-01-01

    Large amplitude ion acoustic wave, which is not satisfied with a linear dispersion relationship of ion acoustic wave, is observed in microwave-plasma interaction experiments. This ion acoustic wave is excited around critical density layer and begins to propagate to underdense region with a phase velocity one order faster than sound velocity C s , which is predicted by the linear theory, the phase velocity and the wave length of the wave decreases as it propagates. Finally, it converges to C s and strongly dumps. Diagnostic by the Faraday cup indicates that this ion acoustic wave is accompanied with a hot ion beam. (author)

  9. Spatially resolved acoustic spectroscopy for rapid imaging of material microstructure and grain orientation

    International Nuclear Information System (INIS)

    Smith, Richard J; Li, Wenqi; Coulson, Jethro; Clark, Matt; Somekh, Michael G; Sharples, Steve D

    2014-01-01

    Measuring the grain structure of aerospace materials is very important to understand their mechanical properties and in-service performance. Spatially resolved acoustic spectroscopy is an acoustic technique utilizing surface acoustic waves to map the grain structure of a material. When combined with measurements in multiple acoustic propagation directions, the grain orientation can be obtained by fitting the velocity surface to a model. The new instrument presented here can take thousands of acoustic velocity measurements per second. The spatial and velocity resolution can be adjusted by simple modification to the system; this is discussed in detail by comparison of theoretical expectations with experimental data. (paper)

  10. Scale Model Acoustic Test Validation of IOP-SS Water Prediction using Loci-STREAM-VoF

    Science.gov (United States)

    Nielsen, Tanner; West, Jeff

    2015-01-01

    The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). SMAT consists of a 5% scale representation of the ignition overpressure sound-suppression system (IOP-SS) that is being tested to quantify the water flow and induced air entrainment in and around the mobile launcher exhaust hole. This data will be compared with computational fluid dynamics (CFD) simulations using the newly developed Loci-STREAM Volume of Fluid (VoF) methods. Compressible and incompressible VoF methods have been formulated, and are currently being used to simulate the water flow of SMAT IOP-SS. The test data will be used to qualitatively and quantitatively assess and validate the VoF methods.

  11. Referencing geostrophic velocities using ADCP data Referencing geostrophic velocities using ADCP data

    Directory of Open Access Journals (Sweden)

    Isis Comas-Rodríguez

    2010-06-01

    Full Text Available Acoustic Doppler Current Profilers (ADCPs have proven to be a useful oceanographic tool in the study of ocean dynamics. Data from D279, a transatlantic hydrographic cruise carried out in spring 2004 along 24.5°N, were processed, and lowered ADCP (LADCP bottom track data were used to assess the choice of reference velocity for geostrophic calculations. The reference velocities from different combinations of ADCP data were compared to one another and a reference velocity was chosen based on the LADCP data. The barotropic tidal component was subtracted to provide a final reference velocity estimated by LADCP data. The results of the velocity fields are also shown. Further studies involving inverse solutions will include the reference velocity calculated here.

  12. Ion acoustic waves in the solar wind

    International Nuclear Information System (INIS)

    Gurnett, D.A.; Frank, L.A.

    1978-01-01

    Plasma wave measurements on the Helios I and 2 spacecraft have revealed the occurrence of electric field turbulence in the solar wind at frequencies between the electron and ion plasma frequencies. Wavelength measurements with the Imp 6 spacecraft now provide strong evidence that these waves are short-wavelength ion acoustic waves which are Doppler-shifted upward in frequency by the motion of the solar wind. Comparison of the Helios results with measurements from the earth-orbiting Imp 6 and 8 spacecraft shows that the ion acoustic turbulence detected in interplanetary space has characteristics essentially identical to those of bursts of electrostatic turbulence generated by protons streaming into the solar wind from the earth's bow shock. In a few cases, enhanced ion acoustic wave intensities have been observed in direct association with abrupt increases in the anisotropy of the solar wind electron distribution. This relationship strongly suggests that the ion acoustic waves detected by Helios far from the earth are produced by an electron heat flux instability, as was suggested by Forslund. Possible related mechanisms which could explain the generation of ion acoustic waves by protons streaming into the solar wind from the earth's bow shock are also considered

  13. Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors.

    Science.gov (United States)

    Ahmed, Suzanne; Wang, Wei; Bai, Lanjun; Gentekos, Dillon T; Hoyos, Mauricio; Mallouk, Thomas E

    2016-04-26

    Bimetallic nanorods are propelled without chemical fuels in megahertz (MHz) acoustic fields, and exhibit similar behaviors to single-metal rods, including autonomous axial propulsion and organization into spinning chains. Shape asymmetry determines the direction of axial movement of bimetallic rods when there is a small difference in density between the two metals. Movement toward the concave end of these rods is inconsistent with a scattering mechanism that we proposed earlier for acoustic propulsion, but is consistent with an acoustic streaming model developed more recently by Nadal and Lauga ( Phys. Fluids 2014 , 26 , 082001 ). Longer rods were slower at constant power, and their speed was proportional to the square of the power density, in agreement with the acoustic streaming model. The streaming model was further supported by a correlation between the disassembly of spinning chains of rods and a sharp decrease in the axial speed of autonomously moving motors within the levitation plane of the cylindrical acoustic cell. However, with bimetallic rods containing metals of different densities, a consistent polarity of motion was observed with the lighter metal end leading. Speed comparisons between single-metal rods of different densities showed that those of lower density are propelled faster. So far, these density effects are not explained in the streaming model. The directionality of bimetallic rods in acoustic fields is intriguing and offers some new possibilities for designing motors in which shape, material, and chemical asymmetry might be combined for enhanced functionality.

  14. Cosmological streaming velocities and large-scale density maxima

    International Nuclear Information System (INIS)

    Peacock, J.A.; Lumsden, S.L.; Heavens, A.F.

    1987-01-01

    The statistical testing of models for galaxy formation against the observed peculiar velocities on 10-100 Mpc scales is considered. If it is assumed that observers are likely to be sited near maxima in the primordial field of density perturbations, then the observed filtered velocity field will be biased to low values by comparison with a point selected at random. This helps to explain how the peculiar velocities (relative to the microwave background) of the local supercluster and the Rubin-Ford shell can be so similar in magnitude. Using this assumption to predict peculiar velocities on two scales, we test models with large-scale damping (i.e. adiabatic perturbations). Allowed models have a damping length close to the Rubin-Ford scale and are mildly non-linear. Both purely baryonic universes and universes dominated by massive neutrinos can account for the observed velocities, provided 0.1 ≤ Ω ≤ 1. (author)

  15. Controlled rotation and translation of spherical particles or living cells by surface acoustic waves.

    Science.gov (United States)

    Bernard, Ianis; Doinikov, Alexander A; Marmottant, Philippe; Rabaud, David; Poulain, Cédric; Thibault, Pierre

    2017-07-11

    We show experimental evidence of the acoustically-assisted micromanipulation of small objects like solid particles or blood cells, combining rotation and translation, using high frequency surface acoustic waves. This was obtained from the leakage in a microfluidic channel of two standing waves arranged perpendicularly in a LiNbO 3 piezoelectric substrate working at 36.3 MHz. By controlling the phase lag between the emitters, we could, in addition to translation, generate a swirling motion of the emitting surface which, in turn, led to the rapid rotation of spherical polystyrene Janus beads suspended in the channel and of human red and white blood cells up to several rounds per second. We show that these revolution velocities are compatible with a torque caused by the acoustic streaming that develops at the particles surface, like that first described by [F. Busse et al., J. Acoust. Soc. Am., 1981, 69(6), 1634-1638]. This device, based on standard interdigitated transducers (IDTs) adjusted to emit at equal frequencies, opens a way to a large range of applications since it allows the simultaneous control of the translation and rotation of hard objects, as well as the investigation of the response of cells to shear stress.

  16. Acoustic emission by self-organising effects of micro-hollow cathode discharges

    Science.gov (United States)

    Kotschate, Daniel; Gaal, Mate; Kersten, Holger

    2018-04-01

    We designed micro-hollow cathode discharge prototypes under atmospheric pressure and investigated their acoustic characteristics. For the acoustic model of the discharge, we correlated the self-organisation effect of the current density distribution with the ideal model of an acoustic membrane. For validation of the obtained model, sound particle velocity spectroscopy was used to detect and analyse the acoustic emission experimentally. The results have shown a behaviour similar to the ideal acoustic membrane. Therefore, the acoustic excitation is decomposable into its eigenfrequencies and predictable. The model was unified utilising the gas exhaust velocity caused by the electrohydrodynamic force. The results may allow a contactless prediction of the current density distribution by measuring the acoustic emission or using the micro-discharge as a tunable acoustic source for specific applications as well.

  17. Characterization of microchannel anechoic corners formed by surface acoustic waves

    Science.gov (United States)

    Destgeer, Ghulam; Alam, Ashar; Ahmed, Husnain; Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Sung, Hyung Jin

    2018-02-01

    Surface acoustic waves (SAWs) generated in a piezoelectric substrate couple with a liquid according to Snell's law such that a compressional acoustic wave propagates obliquely at a Rayleigh angle ( θ t) inside the microchannel to form a region devoid of a direct acoustic field, which is termed a microchannel anechoic corner (MAC). In the present study, we used microchannels with various heights and widths to characterize the width of the MAC region formed by a single travelling SAW. The attenuation of high-frequency SAWs produced a strong acoustic streaming flow that moved the particles in and out of the MAC region, whereas reflections of the acoustic waves within the microchannel resulted in standing acoustic waves that trapped particles at acoustic pressure nodes located within or outside of the MAC region. A range of actuation frequencies and particle diameters were used to investigate the effects of the acoustic streaming flow and the direct acoustic radiation forces by the travelling as well as standing waves on the particle motion with respect to the MAC region. The width of the MAC ( w c), measured experimentally by tracing the particles, increased with the height of the microchannel ( h m) according to a simple trigonometric equation w c = h m × tan ( θ t ).

  18. The molecular mechanism and physiological role of cytoplasmic streaming.

    Science.gov (United States)

    Tominaga, Motoki; Ito, Kohji

    2015-10-01

    Cytoplasmic streaming occurs widely in plants ranging from algae to angiosperms. However, the molecular mechanism and physiological role of cytoplasmic streaming have long remained unelucidated. Recent molecular genetic approaches have identified specific myosin members (XI-2 and XI-K as major and XI-1, XI-B, and XI-I as minor motive forces) for the generation of cytoplasmic streaming among 13 myosin XIs in Arabidopsis thaliana. Simultaneous knockout of these myosin XI members led to a reduced velocity of cytoplasmic streaming and marked defects of plant development. Furthermore, the artificial modifications of myosin XI-2 velocity changed plant and cell sizes along with the velocity of cytoplasmic streaming. Therefore, we assume that cytoplasmic streaming is one of the key regulators in determining plant size. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Limits on the streaming and escape of electrons in thermal models for solar hard X-ray emission

    International Nuclear Information System (INIS)

    Smith, D.F.; Brown, J.C.

    1980-01-01

    Upper limits on the number of fast electrons streaming through and escaping from a plasma whose electrons have been heated to approx.10 8 K and confined by a collisionless ion-acoustic thermal conduction front are determined. It is shown that such a front is fairly transparent to fast electrons with velocities much larger than the thermal velocity because the anisotropic ion-acoustic waves cannot scatter them, making them collisionless on a scale much larger than the thickness of the front. The collisionless analog of the collisional thermoelectric field is derived self-consistently and shown to offer a significant impediment to fast electrons because they must climb over a large potential barrier than in the collisional case. The only factors limiting the escape of electrons able to surmount this barrier are their rate of production and the requirement that they carry less heat flux than the maximum heat flux allowable. The rate of production is determined for the case of a Maxwellian whose tail is being filled collisionally. Requirements for the stability of these electrons in the hot source plasma and conduction front are given. Methods of refining these limits are discussed

  20. THE PAL 5 STAR STREAM GAPS

    International Nuclear Information System (INIS)

    Carlberg, R. G.; Hetherington, Nathan; Grillmair, C. J.

    2012-01-01

    Pal 5 is a low-mass, low-velocity-dispersion, globular cluster with spectacular tidal tails. We use the Sloan Digital Sky Survey Data Release 8 data to extend the density measurements of the trailing star stream to 23 deg distance from the cluster, at which point the stream runs off the edge of the available sky coverage. The size and the number of gaps in the stream are measured using a filter which approximates the structure of the gaps found in stream simulations. We find 5 gaps that are at least 99% confidence detections with about a dozen gaps at 90% confidence. The statistical significance of a gap is estimated using bootstrap resampling of the control regions on either side of the stream. The density minimum closest to the cluster is likely the result of the epicyclic orbits of the tidal outflow and has been discounted. To create the number of 99% confidence gaps per unit length at the mean age of the stream requires a halo population of nearly a thousand dark matter sub-halos with peak circular velocities above 1 km s –1 within 30 kpc of the galactic center. These numbers are a factor of about three below cold stream simulation at this sub-halo mass or velocity but, given the uncertainties in both measurement and more realistic warm stream modeling, are in substantial agreement with the LCDM prediction.

  1. Flame-vortex interaction and mixing behaviors of turbulent non-premixed jet flames under acoustic forcing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Munki; Choi, Youngil; Oh, Jeongseog; Yoon, Youngbin [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea)

    2009-12-15

    This study examines the effect of acoustic excitation using forced coaxial air on the flame characteristics of turbulent hydrogen non-premixed flames. A resonance frequency was selected to acoustically excite the coaxial air jet due to its ability to effectively amplify the acoustic amplitude and reduce flame length and NO{sub x} emissions. Acoustic excitation causes the flame length to decrease by 15% and consequently, a 25% reduction in EINO{sub x} is achieved, compared to coaxial air flames without acoustic excitation at the same coaxial air to fuel velocity ratio. Moreover, acoustic excitation induces periodical fluctuation of the coaxial air velocity, thus resulting in slight fluctuation of the fuel velocity. From phase-lock PIV and OH PLIF measurement, the local flow properties at the flame surface were investigated under acoustic forcing. During flame-vortex interaction in the near field region, the entrainment velocity and the flame surface area increased locally near the vortex. This increase in flame surface area and entrainment velocity is believed to be a crucial factor in reducing flame length and NO{sub x} emission in coaxial jet flames with acoustic excitation. Local flame extinction occurred frequently when subjected to an excessive strain rate, indicating that intense mass transfer of fuel and air occurs radially inward at the flame surface. (author)

  2. Cytoplasmic streaming in Chara rhizoids: studies in a reduced gravitational field during parabolic flights of rockets.

    Science.gov (United States)

    Buchen, B; Hejnowicz, Z; Braun, M; Sievers, A

    1991-01-01

    In-vivo videomicroscopy of Chara rhizoids under 10(-4)g demonstrated that gravity affected the velocities of cytoplasmic streaming. Both, the acropetal and basipetal streaming velocities increased on the change to microgravity. The endogenous difference in the velocities of the oppositely directed cytoplasmic streams was maintained under microgravity, yet the difference was diminished as the basipetal streaming velocity increased more than the acropetal streaming velocity. Direction and structure of microfilaments labeled by rhodamine-phalloidin had not changed after 6 min of microgravity.

  3. A comparative study of plasma heating by ion acoustic and modified two-stream instabilities at subcritical quasi-perpendicular shocks

    International Nuclear Information System (INIS)

    Winske, D.; Giacalone, J.; Thomsen, M.F.; Mellott, M.M.

    1987-01-01

    Plasma heating due to the ion instability and the modified two-stream instability is examined for quasi-perpendicular subcritical shocks. Electron and ion heating is investigated as a function of upstream electron to ion temperature ratio and plasma beta using second-order heating rates. A simple shock model is employed in which the cross-field electron-ion drift speed is adjusted until the total (adiabatic plus anomalous) heating matches that required by the Rankine-Hugoniot relations. Quantities such as the width of the shock and the maximum electric field fluctuations are also calculated, and the results are compared with the ISEE data set of subcritical box shock crossings. The observed width of the shock, the amount of plasma heating, and the low-frequency electric field intensity are in reasonably good agreement with the calculations for the modified two-stream instability. On the other hand, the wave intensities at higher frequency are about 4 orders of magnitude smaller than those predicted for the ion acoustic instability at saturation, consistent with the fact that the measured shock widths imply cross-field drift speeds that are below threshold for this instability. It is therefore concluded that the dissipation at these shocks is most likely due to the lower frequency, modified two-stream instability

  4. Jet Noise Scaling in Dual Stream Nozzles

    Science.gov (United States)

    Khavaran, Abbas; Bridges, James

    2010-01-01

    Power spectral laws in dual stream jets are studied by considering such flows a superposition of appropriate single-stream coaxial jets. Noise generation in each mixing region is modeled using spectral power laws developed earlier for single stream jets as a function of jet temperature and observer angle. Similarity arguments indicate that jet noise in dual stream nozzles may be considered as a composite of four single stream jets representing primary/secondary, secondary/ambient, transition, and fully mixed zones. Frequency filter are designed to highlight spectral contribution from each jet. Predictions are provided at an area ratio of 2.0--bypass ratio from 0.80 to 3.40, and are compared with measurements within a wide range of velocity and temperature ratios. These models suggest that the low frequency noise in unheated jets is dominated by the fully mixed region at all velocity ratios, while the high frequency noise is dominated by the secondary when the velocity ratio is larger than 0.80. Transition and fully mixed jets equally dominate the low frequency noise in heated jets. At velocity ratios less than 0.50, the high frequency noise from primary/bypass becomes a significant contributing factor similar to that in the secondary/ambient jet.

  5. Photo-acoustic and video-acoustic methods for sensing distant sound sources

    Science.gov (United States)

    Slater, Dan; Kozacik, Stephen; Kelmelis, Eric

    2017-05-01

    Long range telescopic video imagery of distant terrestrial scenes, aircraft, rockets and other aerospace vehicles can be a powerful observational tool. But what about the associated acoustic activity? A new technology, Remote Acoustic Sensing (RAS), may provide a method to remotely listen to the acoustic activity near these distant objects. Local acoustic activity sometimes weakly modulates the ambient illumination in a way that can be remotely sensed. RAS is a new type of microphone that separates an acoustic transducer into two spatially separated components: 1) a naturally formed in situ acousto-optic modulator (AOM) located within the distant scene and 2) a remote sensing readout device that recovers the distant audio. These two elements are passively coupled over long distances at the speed of light by naturally occurring ambient light energy or other electromagnetic fields. Stereophonic, multichannel and acoustic beam forming are all possible using RAS techniques and when combined with high-definition video imagery it can help to provide a more cinema like immersive viewing experience. A practical implementation of a remote acousto-optic readout device can be a challenging engineering problem. The acoustic influence on the optical signal is generally weak and often with a strong bias term. The optical signal is further degraded by atmospheric seeing turbulence. In this paper, we consider two fundamentally different optical readout approaches: 1) a low pixel count photodiode based RAS photoreceiver and 2) audio extraction directly from a video stream. Most of our RAS experiments to date have used the first method for reasons of performance and simplicity. But there are potential advantages to extracting audio directly from a video stream. These advantages include the straight forward ability to work with multiple AOMs (useful for acoustic beam forming), simpler optical configurations, and a potential ability to use certain preexisting video recordings. However

  6. Should tsunami simulations include a nonzero initial horizontal velocity?

    Science.gov (United States)

    Lotto, Gabriel C.; Nava, Gabriel; Dunham, Eric M.

    2017-08-01

    Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require initial conditions on sea surface height and depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). Full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor confirm that substantial horizontal momentum is imparted to the ocean. However, almost all of that initial momentum is carried away by ocean acoustic waves, with negligible momentum imparted to the tsunami. We also compare tsunami propagation in each simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial velocity. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves from ocean acoustic and seismic waves at some final time, and backpropagating the tsunami waves to their initial state by solving the

  7. HUNTING THE PARENT OF THE ORPHAN STREAM: IDENTIFYING STREAM MEMBERS FROM LOW-RESOLUTION SPECTROSCOPY

    International Nuclear Information System (INIS)

    Casey, Andrew R.; Da Costa, Gary; Keller, Stefan C.; Maunder, Elizabeth

    2013-01-01

    We present candidate K-giant members in the Orphan Stream that have been identified from low-resolution data taken with the AAOmega spectrograph on the Anglo-Australian Telescope. From modest signal-to-noise spectra and independent cuts in photometry, kinematics, gravity, and metallicity we yield self-consistent, highly probable stream members. We find a revised stream distance of 22.5 ± 2.0 kpc near the celestial equator and our kinematic signature peaks at V GSR = 82.1 ± 1.4 km s –1 . The observed velocity dispersion of our most probable members is consistent with arising from the velocity uncertainties alone. This indicates that at least along this line of sight, the Orphan Stream is kinematically cold. Our data indicate an overall stream metallicity of [Fe/H] = –1.63 ± 0.19 dex which is more metal-rich than previously found and unbiased by spectral type. Furthermore, the significant metallicity dispersion displayed by our most probable members, σ([Fe/H]) = 0.56 dex, suggests that the unidentified Orphan Stream parent is a dSph satellite. We highlight likely members for high-resolution spectroscopic follow-up.

  8. Re-Meandering of Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats...... and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled...... along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored...

  9. Stability Dust-Ion-Acoustic Wave In Dusty Plasmas With Stream -Influence Of Charge Fluctuation Of Dust Grains

    International Nuclear Information System (INIS)

    Atamaniuk, Barbara; Zuchowski, Krzysztof

    2006-01-01

    There is a quickly increasing wealth of experimental data on so-called dusty plasmas i. e. ionized gases or usual plasmas that contain micron sized charged particles. Interest in these structures is driven both by their importance in many astrophysical as well as commercial situations. Among them are linear and nonlinear wave phenomena. We consider the influence of dust charge fluctuations on stability of the ion-acoustic waves when the stream of particles is present. It is assumed that all grains of dust have equal masses but charges are not constant in time-they may fluctuate in time. The dust charges are not really independent of the variations of the plasma potentials. All modes will influence the charging mechanism, and feedback will lead to several new interesting and unexpected phenomena. The charging of the grains depends on local plasma characteristics. If the waves disturb these characteristic, then charging of the grains is affected and the grain charge is modified, with a resulting feedback on the wave mode. In case considering here, when temperature of electrons is much greater then the temperature of the ions and temperature of electrons is not great enough for further ionization of the ions, we show that stability of the acoustic wave depends only one phenomenological coefficient

  10. Acoustic evaluation of standing trees : recent research development

    Science.gov (United States)

    Xiping Wang; Robert J. Ross; Peter Carter

    2005-01-01

    This paper presents some research results from recent trial studies on measuring acoustic velocities on standing trees of five softwood species. The relationships between tree velocities measured by time of flight method and log velocities measured by resonance method were evaluated. Theoretical and empirical models were developed for adjusting observed tree velocity...

  11. Nitrogen saturation in stream ecosystems.

    Science.gov (United States)

    Earl, Stevan R; Valett, H Maurice; Webster, Jackson R

    2006-12-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer (15NO3-N) to measure uptake. Experiments were conducted in streams spanning a gradient of background N concentration. Uptake increased in four of six streams as NO3-N was incrementally elevated, indicating that these streams were not saturated. Uptake generally corresponded to Michaelis-Menten kinetics but deviated from the model in two streams where some other growth-critical factor may have been limiting. Proximity to saturation was correlated to background N concentration but was better predicted by the ratio of dissolved inorganic N (DIN) to soluble reactive phosphorus (SRP), suggesting phosphorus limitation in several high-N streams. Uptake velocity, a reflection of uptake efficiency, declined nonlinearly with increasing N amendment in all streams. At the same time, uptake velocity was highest in the low-N streams. Our conceptual model of N transport, uptake, and uptake efficiency suggests that, while streams may be active sites of N uptake on the landscape, N saturation contributes to nonlinear changes in stream N dynamics that correspond to decreased uptake efficiency.

  12. Membrane potential dynamics of populations of cortical neurons during auditory streaming

    Science.gov (United States)

    Farley, Brandon J.

    2015-01-01

    How a mixture of acoustic sources is perceptually organized into discrete auditory objects remains unclear. One current hypothesis postulates that perceptual segregation of different sources is related to the spatiotemporal separation of cortical responses induced by each acoustic source or stream. In the present study, the dynamics of subthreshold membrane potential activity were measured across the entire tonotopic axis of the rodent primary auditory cortex during the auditory streaming paradigm using voltage-sensitive dye imaging. Consistent with the proposed hypothesis, we observed enhanced spatiotemporal segregation of cortical responses to alternating tone sequences as their frequency separation or presentation rate was increased, both manipulations known to promote stream segregation. However, across most streaming paradigm conditions tested, a substantial cortical region maintaining a response to both tones coexisted with more peripheral cortical regions responding more selectively to one of them. We propose that these coexisting subthreshold representation types could provide neural substrates to support the flexible switching between the integrated and segregated streaming percepts. PMID:26269558

  13. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.

    Science.gov (United States)

    Nama, Nitesh; Barnkob, Rune; Mao, Zhangming; Kähler, Christian J; Costanzo, Francesco; Huang, Tony Jun

    2015-06-21

    We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.

  14. The measurement of low air flow velocities

    NARCIS (Netherlands)

    Aghaei, A.; Mao, X.G.; Zanden, van der A.J.J.; Schaik, W.H.J.; Hendriks, N.A.

    2005-01-01

    Air flow velocity is measured with an acoustic sensor, which can be used especially for measuring low air flow velocities as well as the temperature of the air simultaneously. Two opposite transducers send a sound pulse towards each other. From the difference of the transit times, the air flow

  15. Material parameters and vector scaling in transformation acoustics

    International Nuclear Information System (INIS)

    Cummer, Steven A; Rahm, Marco; Schurig, David

    2008-01-01

    The degree to which the coordinate transformation concept first demonstrated for electromagnetic waves can be applied to other classes of waves remains an open question. In this work, we thoroughly examine the coordinate transformation invariance of acoustic waves. We employ a purely physical argument to show how the acoustic velocity vector must transform differently than the E and H fields in Maxwell's equations, which explains why acoustic coordinate transformation invariance was not found in some previous analyses. A first principles analysis of the acoustic equations under arbitrary coordinate transformations confirms that the divergence operator is preserved only if velocity transforms in this physically correct way. This analysis also yields closed-form expressions for the bulk modulus and mass density tensor of the material required to realize an arbitrary coordinate transformation on the acoustic fields, which we show are equivalent to forms presented elsewhere. We demonstrate the computation of these material parameters in two specific cases and show that the change in velocity and pressure gradient vectors under a nonorthogonal coordinate transformation is precisely how these vectors must change from purely physical arguments. This analysis confirms that all of the electromagnetic devices and materials that have been conceived using the coordinate transformation approach are also in principle realizable for acoustic waves. Together with previous work, this analysis also shows how the curl, divergence and gradient operators maintain form under arbitrary coordinate transformations, opening the door to analyzing other wave systems built on these three vector operators.

  16. Combustion response to acoustic perturbation in liquid rocket engines

    Science.gov (United States)

    Ghafourian, Akbar

    An experimental study of the effect of acoustic perturbations on combustion behavior of a model liquid propellant rocket engine has been carried out. A pair of compression drivers were used to excite transverse and longitudinal acoustic fields at strengths of up to 156.6 dB and 159.5 dB respectively in the combustion chamber of the experimental rocket engine. Propellant simulants were injected into the combustion chamber through a single element shear coaxial injector. Water and air were used in cold flow studies and ethanol and oxygen-enriched air were used as fuel and oxidizer in reacting hot flow studies. In cold flow studies an imposed transverse acoustic field had a more pronounced effect on the spray pattern than a longitudinal acoustic fields. A transverse acoustic field widened the spray by as much as 33 percent and the plane of impingement of the spray with chamber walls moved up closer to the injection plane. The behavior was strongly influenced by the gas phase velocity but was less sensitive to changes in the liquid phase velocity. In reacting hot flow studies the effects of changes in equivalence ratio, excitation amplitude, excitation frequency, liquid and gas phase velocity and chamber pressure on the response of the injector to imposed high frequency transverse acoustic excitation were measured. Reducing the equivalence ratio from 7.4 to 3.8 increased the chamber pressure response to the imposed excitation at 3000 Hz. Increasing the excitation amplitude from 147 dB to 155.6 dB at 3000 Hz increased the chamber pressure response to the excitation. In the frequency range of 1240 Hz to 3220 Hz, an excitation frequency of 3000 Hz resulted in the largest response of the chamber pressure indicating the importance of fluid dynamic coupling. Increasing the liquid phase velocity from 9.2 m/sec to 22.7 m/sec, did not change the amplitude of the chamber pressure response to excitation. This implied the importance of local equivalence ratio and not the overall

  17. UHF RiverSonde Observations of Water Surface Velocity at Threemile Slough, California

    National Research Council Canada - National Science Library

    Teague, Calvin C; Barrick, Donald E; Lilleboe, Peter M; Cheng, Ralph T; Ruhl, Catherine A

    2005-01-01

    .... The velocity is measured every 15 minutes by an ultrasonic velocity meter (UVM) which determines the water velocity from two-way acoustic propagation time-difference measurements made across the channel...

  18. Acoustic Velocity Data for Clay Bearing Carbonate Rocks

    DEFF Research Database (Denmark)

    Lind, Ida; Shogenova, Alla

    1998-01-01

    Two sets of acoustic data on carbonates were combined to span the porosity interval from below 5% to more than 75%: dolomite and limestone of Paleozoic age from Estonia and mixed sediments from the Caribbean. The carbonate content of the samples ranges from less than 50% to 100%, and it was attem...

  19. Computing discharge using the index velocity method

    Science.gov (United States)

    Levesque, Victor A.; Oberg, Kevin A.

    2012-01-01

    Application of the index velocity method for computing continuous records of discharge has become increasingly common, especially since the introduction of low-cost acoustic Doppler velocity meters (ADVMs) in 1997. Presently (2011), the index velocity method is being used to compute discharge records for approximately 470 gaging stations operated and maintained by the U.S. Geological Survey. The purpose of this report is to document and describe techniques for computing discharge records using the index velocity method. Computing discharge using the index velocity method differs from the traditional stage-discharge method by separating velocity and area into two ratings—the index velocity rating and the stage-area rating. The outputs from each of these ratings, mean channel velocity (V) and cross-sectional area (A), are then multiplied together to compute a discharge. For the index velocity method, V is a function of such parameters as streamwise velocity, stage, cross-stream velocity, and velocity head, and A is a function of stage and cross-section shape. The index velocity method can be used at locations where stage-discharge methods are used, but it is especially appropriate when more than one specific discharge can be measured for a specific stage. After the ADVM is selected, installed, and configured, the stage-area rating and the index velocity rating must be developed. A standard cross section is identified and surveyed in order to develop the stage-area rating. The standard cross section should be surveyed every year for the first 3 years of operation and thereafter at a lesser frequency, depending on the susceptibility of the cross section to change. Periodic measurements of discharge are used to calibrate and validate the index rating for the range of conditions experienced at the gaging station. Data from discharge measurements, ADVMs, and stage sensors are compiled for index-rating analysis. Index ratings are developed by means of regression

  20. Development of acoustic flow instruments for solid/gas pipe flows

    International Nuclear Information System (INIS)

    Sheen, S.H.; Raptis, A.C.

    1986-05-01

    Two nonintrusive acoustic flow sensing techniques are reported. One technique, passive in nature, simply measures the bandpassed acoustic noise level produced by particle/particle and particle/wall collisions. The noise levels, given in true RMS voltages or in autocorrelations, show a linear relationship to particle velocity but increase with solid concentration. Therefore, the passive technique requires calibration and a separate measure of solid concentration before it can be used to monitor the particle velocity. The second technique is based on the active cross-correlation principle. It measures particle velocity directly by correlating flow-related signatures at two sensing stations. The velocity data obtained by this technique are compared with measurements by a radioactive-particle time-of-flight (TOF) method. A multiplier of 1.53 is required to bring the acoustic data into agreement with the radioactive TOF result. The difference may originate from the difference in flow fields where particles are detected. The radioactive method senses particles mainly in the turbulent region and essentially measures average particle velocity across the pipe, while the acoustic technique detects particles near the pipe wall, and so measures the particle velocity in the viscous sublayer. Both techniques were tested in flows of limestone and air and 1-mm glass beads and air at the Argonne National Laboratory Solid/Gas Test Facility (SGFTF). The test matrix covered solid velocities of 20 to 30 m/s in a 2-in. pipe and solid-to-gas loading ratios of 6 to 22. 37 refs., 19 figs., 4 tabs

  1. Net currents in the wave bottom boundary layer: on waveshape streaming and progressive wave streaming

    NARCIS (Netherlands)

    Kranenburg, Wouter; Ribberink, Jan S.; Uittenbogaard, R.E.; Hulscher, Suzanne J.M.H.

    2012-01-01

    The net current (streaming) in a turbulent bottom boundary layer under waves above a flat bed, identified as potentially relevant for sediment transport, is mainly determined by two competing mechanisms: an onshore streaming resulting from the horizontal non-uniformity of the velocity field under

  2. Streaming tearing mode

    Science.gov (United States)

    Shigeta, M.; Sato, T.; Dasgupta, B.

    1985-01-01

    The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.

  3. Room Acoustical Fields

    CERN Document Server

    Mechel, Fridolin

    2013-01-01

    This book presents the theory of room acoustical fields and revises the Mirror Source Methods for practical computational use, emphasizing the wave character of acoustical fields.  The presented higher methods include the concepts of “Mirror Point Sources” and “Corner sources which allow for an excellent approximation of complex room geometries and even equipped rooms. In contrast to classical description, this book extends the theory of sound fields describing them by their complex sound pressure and the particle velocity. This approach enables accurate descriptions of interference and absorption phenomena.

  4. The role of remediation, natural alkalinity sources and physical stream parameters in stream recovery.

    Science.gov (United States)

    Kruse, Natalie A; DeRose, Lisa; Korenowsky, Rebekah; Bowman, Jennifer R; Lopez, Dina; Johnson, Kelly; Rankin, Edward

    2013-10-15

    Acid mine drainage (AMD) negatively impacts not only stream chemistry, but also aquatic biology. The ultimate goal of AMD treatment is restoration of the biological community, but that goal is rarely explicit in treatment system design. Hewett Fork in Raccoon Creek Watershed, Ohio, has been impacted by historic coal mining and has been treated with a calcium oxide doser in the headwaters of the watershed since 2004. All of the acidic inputs are isolated to a 1.5 km stretch of stream in the headwaters of the Hewett Fork watershed. The macroinvertebrate and fish communities have begun to recover and it is possible to distinguish three zones downstream of the doser: an impaired zone, a transition zone and a recovered zone. Alkalinity from both the doser and natural sources and physical stream parameters play a role in stream restoration. In Hewett Fork, natural alkaline additions downstream are higher than those from the doser. Both, alkaline additions and stream velocity drive sediment and metal deposition. Metal deposition occurs in several patterns; aluminum tends to deposit in regions of low stream velocity, while iron tends to deposit once sufficient alkalinity is added to the system downstream of mining inputs. The majority of metal deposition occurs upstream of the recovered zone. Both the physical stream parameters and natural alkalinity sources influence biological recovery in treated AMD streams and should be considered in remediation plans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Measurements and Predictions of the Noise from Three-Stream Jets

    Science.gov (United States)

    Henderson, Brenda S.; Leib, Stewart J.; Wernet, Mark P.

    2015-01-01

    An experimental and numerical investigation of the noise produced by high-subsonic and supersonic three-stream jets was conducted. The exhaust system consisted of externally-mixed-convergent nozzles and an external plug. Bypass- and tertiary-to-core area ratios between 1.0 and 2.5, and 0.4 and 1.0, respectively, were studied. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated conditions. For axisymmetric configurations, the addition of the third stream was found to reduce peak- and high-frequency acoustic levels in the peak-jet-noise direction, with greater reductions at the lower bypass-to-core area ratios. For the offset configurations, an offset duct was found to decrease acoustic levels on the thick side of the tertiary nozzle relative to those produced by the simulated two-stream jet with up to 8 dB mid-frequency noise reduction at large angles to the jet inlet axis. Noise reduction in the peak-jet-noise direction was greater for supersonic core speeds than for subsonic core speeds. The addition of a tertiary nozzle insert used to divert the third-stream jet to one side of the nozzle system provided no noise reduction. Noise predictions are presented for selected cases using a method based on an acoustic analogy with mean flow interaction effects accounted for using a Green's function, computed in terms of its coupled azimuthal modes for the offset cases, and a source model previously used for round and rectangular jets. Comparisons of the prediction results with data show that the noise model predicts the observed increase in low-frequency noise with the introduction of a third, axisymmetric stream, but not the high-frequency reduction. For an offset third stream, the model predicts the observed trend of decreased sound levels on the thick side of the jet compared with the thin side, but the predicted azimuthal variations are much less than those seen in the data. Also, the shift of the spectral peak to lower frequencies with

  6. Dynamical modeling of tidal streams

    International Nuclear Information System (INIS)

    Bovy, Jo

    2014-01-01

    I present a new framework for modeling the dynamics of tidal streams. The framework consists of simple models for the initial action-angle distribution of tidal debris, which can be straightforwardly evolved forward in time. Taking advantage of the essentially one-dimensional nature of tidal streams, the transformation to position-velocity coordinates can be linearized and interpolated near a small number of points along the stream, thus allowing for efficient computations of a stream's properties in observable quantities. I illustrate how to calculate the stream's average location (its 'track') in different coordinate systems, how to quickly estimate the dispersion around its track, and how to draw mock stream data. As a generative model, this framework allows one to compute the full probability distribution function and marginalize over or condition it on certain phase-space dimensions as well as convolve it with observational uncertainties. This will be instrumental in proper data analysis of stream data. In addition to providing a computationally efficient practical tool for modeling the dynamics of tidal streams, the action-angle nature of the framework helps elucidate how the observed width of the stream relates to the velocity dispersion or mass of the progenitor, and how the progenitors of 'orphan' streams could be located. The practical usefulness of the proposed framework crucially depends on the ability to calculate action-angle variables for any orbit in any gravitational potential. A novel method for calculating actions, frequencies, and angles in any static potential using a single orbit integration is described in the Appendix.

  7. Helioseismology in a bottle: modal acoustic velocimetry

    International Nuclear Information System (INIS)

    Triana, Santiago Andrés; Zimmerman, Daniel S; Lathrop, Daniel P; Nataf, Henri-Claude; Thorette, Aurélien; Lekic, Vedran

    2014-01-01

    Measurement of the differential rotation of the Sun's interior is one of the great achievements of helioseismology, providing important constraints for stellar physics. The technique relies on observing and analyzing rotationally-induced splittings of p-modes in the star. Here, we demonstrate the first use of the technique in a laboratory setting. We apply it in a spherical cavity with a spinning central core (spherical-Couette flow) to determine the mean azimuthal velocity of the air filling the cavity. We excite a number of acoustic resonances (analogous to p-modes in the Sun) using a speaker and record the response with an array of small microphones on the outer sphere. Many observed acoustic modes show rotationally-induced splittings, which allow us to perform an inversion to determine the air's azimuthal velocity as a function of both radius and latitude. We validate the method by comparing the velocity field obtained through inversion against the velocity profile measured with a calibrated hot film anemometer. This modal acoustic velocimetry technique has great potential for laboratory setups involving rotating fluids in axisymmetric cavities. It will be useful especially in liquid metals where direct optical methods are unsuitable and ultrasonic techniques very challenging at best. (paper)

  8. Acoustic Doppler current profiler applications used in rivers and estuaries by the U.S. Geological Survey

    Science.gov (United States)

    Gotvald, Anthony J.; Oberg, Kevin A.

    2009-01-01

    The U.S. Geological Survey (USGS) has collected streamflow information for the Nation's streams since 1889. Streamflow information is used to predict floods, manage and allocate water resources, design engineering structures, compute water-quality loads, and operate water-control structures. The current (2007) size of the USGS streamgaging network is over 7,400 streamgages nationwide. The USGS has progressively improved the streamgaging program by incorporating new technologies and techniques that streamline data collection while increasing the quality of the streamflow data that are collected. The single greatest change in streamflow measurement technology during the last 100 years has been the development and application of high frequency acoustic instruments for measuring streamflow. One such instrument, the acoustic Doppler current profiler (ADCP), is rapidly replacing traditional mechanical current meters for streamflow measurement (Muste and others, 2007). For more information on how an ADCP works see Simpson (2001) or visit http://hydroacoustics.usgs.gov/. The USGS has used ADCPs attached to manned or tethered boats since the mid-1990s to measure streamflow in a wide variety of conditions (fig. 1). Recent analyses have shown that ADCP streamflow measurements can be made with similar or greater accuracy, efficiency, and resolution than measurements made using conventional current-meter methods (Oberg and Mueller, 2007). ADCPs also have the ability to measure streamflow in streams where traditional current-meter measurements previously were very difficult or costly to obtain, such as streams affected by backwater or tides. In addition to streamflow measurements, the USGS also uses ADCPs for other hydrologic measurements and applications, such as computing continuous records of streamflow for tidally or backwater affected streams, measuring velocity fields with high spatial and temporal resolution, and estimating suspended-sediment concentrations. An overview

  9. Acoustic radiation from weakly wrinkled premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Lieuwen, Tim; Mohan, Sripathi; Rajaram, Rajesh; Preetham, [School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150 (United States)

    2006-01-01

    This paper describes a theoretical analysis of acoustic radiation from weakly wrinkled (i.e., u'/S{sub L}<1) premixed flames. Specifically, it determines the transfer function relating the spectrum of the acoustic pressure oscillations, P'({omega}), to that of the turbulent velocity fluctuations in the approach flow, U'({omega}). In the weakly wrinkled limit, this transfer function is local in frequency space; i.e., velocity fluctuations at a frequency {omega} distort the flame and generate sound at the same frequency. This transfer function primarily depends upon the flame Strouhal number St (based on mean flow velocity and flame length) and the correlation length, {lambda}, of the flow fluctuations. For cases where the ratio of the correlation length and duct radius {lambda}/a>>1, the acoustic pressure and turbulent velocity power spectra are related by P'({omega})-{omega}{sup 2}U'({omega}) and P'({omega})-U'({omega}) for St<<1 and St>>1, respectively. For cases where {lambda}/a<<1, the transfer functions take the form P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}U'({omega}) and P'({omega})-{omega}{sup 2}({lambda}/a){sup 2}({psi}-{delta}ln({lambda}/a))U'({omega}) for St<<1 and St>>1, respectively, where (PS) and {delta} are constants. The latter result demonstrates that this transfer function does not exhibit a simple power law relationship in the high frequency region of the spectra. The simultaneous dependence of this pressure-velocity transfer function upon the Strouhal number and correlation length suggests a mechanism for the experimentally observed maximum in acoustic spectra and provides some insight into the controversy in the literature over how this peak should scale with the flame Strouhal number.

  10. Geological formation characterisation by acoustic waves

    International Nuclear Information System (INIS)

    Mari, J.L.; Gaudiani, P.; Delay, J.

    2010-01-01

    Document available in extended abstract form only. For many years, the transmission of a sonic wave through formations has been used for drilling measurements. The tools used are of monopole or dipole type. Monopole-type tools are the most commonly used. Sources and receivers are multidirectional. In the fluid, sources generate a compression wave which creates in the formation a compression wave (P wave) and a shear wave (S wave) at the refraction limit angles. In a vertical well, such tools permit the recording of five propagation modes: the refracted compression wave, the refracted shear wave (only in fast formations), the fluid wave, two dispersive guided modes which are the pseudo Rayleigh waves (only in fast formations) and the Stoneley waves. Full waveform acoustic measurements are represented as constant-offset sections or as common source point gathers, similar to those used in seismic operations. For the different modes, the acoustic parameters which are usually measured are: picked time, amplitude and frequency. The acoustic parameters allow one to determine the propagation velocities of the various modes and some petro-physical parameters and to obtain lithologic and mechanical information if the shear velocity of the formation has been measured. Usually the picking of the refracted S wave is difficult due to the interferences of different wave trains such as leaky modes associated with the refracted P waves and the pseudo Rayleigh. To compute a continuous log of shear velocity, we propose an hybrid method based on the local measurement of the shear velocity (picking of the arrival time of the refracted S wave) and on the analysis of the dispersion curve of the Stoneley modes ( Biot 1956, White 1965). We also show the benefit of using a shape index parameter named Ic, computed from the amplitudes (A1, A2 and A3) of the first refracted P wave to detect acoustic anomalies specially in fractured formation. The Ic parameter is independent of the energy of

  11. Measuring the 3D motion of particles in microchannel acoustophoresis using astigmatism particle tracking velocimetry

    DEFF Research Database (Denmark)

    Augustsson, P.; Barnkob, Rune; Bruus, Henrik

    2012-01-01

    We introduce full three-dimensional tracking of particles in an acoustophoresis microchannel using Astigmatism Particle Tracking Velocimetry (APTV) [1]. For the first time the interaction between acoustic streaming and the primary acoustic radiation force in microchannel acoustophoresis are exami...... relative to the influence from the acoustic radiation force. The current study opens the route to optimized acoustophoretic system design and operation to enable manipulation of small biological components such as spores, bacteria and viruses.......We introduce full three-dimensional tracking of particles in an acoustophoresis microchannel using Astigmatism Particle Tracking Velocimetry (APTV) [1]. For the first time the interaction between acoustic streaming and the primary acoustic radiation force in microchannel acoustophoresis...... are examined in three dimensions. We have quantified the velocity of particles driven by the primary acoustic radiation force and acoustic streaming, respectively, using 0.5-μm and 5-μm particles. Increased ultrasound frequency and lowered viscosity of the medium reduced the influence of acoustic streaming...

  12. Response of a swirl-stabilized flame to transverse acoustic excitation

    Science.gov (United States)

    O'Connor, Jacqueline

    This work addresses the issue of transverse combustion instabilities in annular gas turbine combustor geometries. While modern low-emissions combustion strategies have made great strides in reducing the production of toxic emissions in aircraft engines and power generation gas turbines, combustion instability remains one of the foremost technical challenges in the development of next generation combustor technology. To that end, this work investigates the response of a swirling flow and swirl-stabilized flame to a transverse acoustic field is using a variety of high-speed laser techniques, especially high-speed particle image velocimetry (PIV) for detailed velocity measurements of this highly unsteady flow phenomenon. Several important issues are addressed. First, the velocity-coupled pathway by which the unsteady velocity field excites the flame is described in great detail. Here, a transfer function approach has been taken to illustrate the various pathways through which the flame is excited by both acoustic and vortical velocity fluctuations. It has been shown that while the direct excitation of the flame by the transverse acoustic field is a negligible effect in most combustor architectures, the coupling between the transverse acoustic mode in the combustor and the longitudinal mode in the nozzle is an important pathway that can result in significant flame response. In this work, the frequency response of this pathway as well as the resulting flame response is measured using PIV and chemiluminescence measurements, respectively. Next, coupling between the acoustic field and the hydrodynamically unstable swirling flow provides a pathway that can lead to significant flame wrinkling by large coherent structures in the flow. Swirling flows display two types of hydrodynamic instability: an absolutely unstable jet and convectively unstable shear layers. The absolute instability of the jet results in vortex breakdown, a large recirculation zone along the centerline of

  13. Escaping the maze: micro-swimmers using acoustic forces to navigate

    Science.gov (United States)

    Louf, Jean-Francois; Dollet, Benjamin; Stephan, Olivier; Marmottant, Philippe

    2017-11-01

    The goal of this study is to make 3D micro-swimmers containing a bubble that can be stimulated with acoustic waves emitted by a transducer, and whose direction is accurately controlled. By using 3D micro-fabrication techniques, we designed 40x40 μm swimmers with a trapped air bubble. We then applied acoustic vibration to the bubble, which generates a strong steady flow (1-100 mm/s) behind it, an effect referred as acoustic streaming. However, independently from the orientation of the bubble and thus from the flow, the motion of the swimmer is found to be towards the transducer. This suggests that primary Bjerknes forces, i.e. acoustic radiation forces, are involved. Subsequently, using different transducers located at different points, we could be able to navigate the swimmer in a chosen direction. The next step of our study is to use a stationary wave and Bjerknes forces to bring encapsulated objects in a pressure node. Without bubbles, the effect of acoustic streaming on big objects of more than a micrometer is not sufficient to generate motion. However, with the presence of bubbles, our swimmers should be able to move. ERC BUBBLEBOOST.

  14. Effect of drift-acoustic waves on magnetic island stability in slab geometry

    International Nuclear Information System (INIS)

    Fitzpatrick, R.; Waelbroeck, F.L.

    2005-01-01

    A mathematical formalism is developed for calculating the ion polarization term in the Rutherford island width evolution equation in the presence of drift-acoustic waves. The calculation is fully nonlinear, includes both ion and electron diamagnetic effects, as well as ion compressibility, but is performed in slab geometry. Magnetic islands propagating in a certain range of phase velocities are found to emit drift-acoustic waves. Wave emission gives rise to rapid oscillations in the ion polarization term as the island phase velocity varies, and also generates a net electromagnetic force acting on the island region. Increasing ion compressibility is found to extend the range of phase velocities over which drift-acoustic wave emission occurs in the electron diamagnetic direction

  15. Properties of Stellar Streams in the Galactic Disk

    Directory of Open Access Journals (Sweden)

    Marsakov V. A.

    2016-12-01

    Full Text Available Stars of the Sirius, Coma Berenices, Hyades, Pleiades, Wolf 630, Dehnen 6, Dehnen 14, HR 1614, η Cephei, γ Leo streams, the newly identified two subgroups of the Hercules stream, and the streams BB 14, BB 17, BB 20, and BB 21 are selected using the components of space velocities from three independent catalogs. The relationship between their ages, metallicities and relative abundances of α-elements are studied. The data of the three catalogs show slightly different properties for each of the streams studied. However, the general tendency shows that the dependences studied for the stars within the streams hardly differ from those found for the field stars with the corresponding velocities. The dependences found confirm the assumption that all of the streams studied could have been formed as a result of resonance effects due to the Galactic bar or spiral density waves acting on field stars.

  16. Laser streaming: Turning a laser beam into a flow of liquid.

    Science.gov (United States)

    Wang, Yanan; Zhang, Qiuhui; Zhu, Zhuan; Lin, Feng; Deng, Jiangdong; Ku, Geng; Dong, Suchuan; Song, Shuo; Alam, Md Kamrul; Liu, Dong; Wang, Zhiming; Bao, Jiming

    2017-09-01

    Transforming a laser beam into a mass flow has been a challenge both scientifically and technologically. We report the discovery of a new optofluidic principle and demonstrate the generation of a steady-state water flow by a pulsed laser beam through a glass window. To generate a flow or stream in the same path as the refracted laser beam in pure water from an arbitrary spot on the window, we first fill a glass cuvette with an aqueous solution of Au nanoparticles. A flow will emerge from the focused laser spot on the window after the laser is turned on for a few to tens of minutes; the flow remains after the colloidal solution is completely replaced by pure water. Microscopically, this transformation is made possible by an underlying plasmonic nanoparticle-decorated cavity, which is self-fabricated on the glass by nanoparticle-assisted laser etching and exhibits size and shape uniquely tailored to the incident beam profile. Hydrophone signals indicate that the flow is driven via acoustic streaming by a long-lasting ultrasound wave that is resonantly generated by the laser and the cavity through the photoacoustic effect. The principle of this light-driven flow via ultrasound, that is, photoacoustic streaming by coupling photoacoustics to acoustic streaming, is general and can be applied to any liquid, opening up new research and applications in optofluidics as well as traditional photoacoustics and acoustic streaming.

  17. The Dependence of the Peak Velocity of High-Speed Solar Wind Streams as Measured in the Ecliptic by ACE and the STEREO satellites on the Area and Co-latitude of Their Solar Source Coronal Holes.

    Science.gov (United States)

    Hofmeister, Stefan J; Veronig, Astrid; Temmer, Manuela; Vennerstrom, Susanne; Heber, Bernd; Vršnak, Bojan

    2018-03-01

    We study the properties of 115 coronal holes in the time range from August 2010 to March 2017, the peak velocities of the corresponding high-speed streams as measured in the ecliptic at 1 AU, and the corresponding changes of the Kp index as marker of their geoeffectiveness. We find that the peak velocities of high-speed streams depend strongly on both the areas and the co-latitudes of their solar source coronal holes with regard to the heliospheric latitude of the satellites. Therefore, the co-latitude of their source coronal hole is an important parameter for the prediction of the high-speed stream properties near the Earth. We derive the largest solar wind peak velocities normalized to the coronal hole areas for coronal holes located near the solar equator and that they linearly decrease with increasing latitudes of the coronal holes. For coronal holes located at latitudes ≳ 60°, they turn statistically to zero, indicating that the associated high-speed streams have a high chance to miss the Earth. Similarly, the Kp index per coronal hole area is highest for the coronal holes located near the solar equator and strongly decreases with increasing latitudes of the coronal holes. We interpret these results as an effect of the three-dimensional propagation of high-speed streams in the heliosphere; that is, high-speed streams arising from coronal holes near the solar equator propagate in direction toward and directly hit the Earth, whereas solar wind streams arising from coronal holes at higher solar latitudes only graze or even miss the Earth.

  18. Vortex formation at the open end of an acoustic waveguide

    Science.gov (United States)

    Martinez Del Rio, Leon; Rendon, Pablo L.; Malaga, Carlos; Zenit, Roberto

    2017-11-01

    For high enough levels of acoustic pressure inside a cylindrical tube, a nonlinear mechanism is responsible for the formation of annular vortices at the open end of the tube, which results in energy loss. Higher sound pressure levels in the tube lead, in turn, to larger values of the acoustic velocity at the exit, and thus to higher Reynolds numbers. It has been observed [Buick et al., 2011] that, provided the magnitude of the acoustic velocity is large enough, two nonlinear regimes are possible: in the first regime, the vorticity appears only in the immediate vicinity of the tube; for higher velocities, vortex rings are formed at the open end of the tube and are advected outwards. We use a Lattice Boltzmann Method (LBM) to simulate the velocity and the pressure fields at the exit of the tube in 3D, with Reynolds numbers based on the acoustic boundary layer thickness 18 >Rδ > 1.8 . We also conduct experiments with phase-locked particle image velocimetry (PL-PIV) 2D within a range of 25.5 >Rδ > 10.2 . Experimental and numerical results are compared for a range of Womersley numbers. The effects of varying both the tube geometry and the end shape are addressed.

  19. Nonlinear acoustics of water-saturated marine sediments

    DEFF Research Database (Denmark)

    Jensen, Leif Bjørnø

    1976-01-01

    Interest in the acoustic qualities of water-saturated marine sediments has increased considerably during recent years. The use of sources of high-intensity sound in oil propsecting, in geophysical and geological studies of bottom and subbottom materials and profiles and recently in marine...... archaeology has emphasized the need of information about the nonlinear acoustic qualities of water-saturated marine sediments. While the acoustic experiments and theoretical investigations hitherto performed have concentrated on a determination of the linear acoustic qualities of water-saturated marine...... sediments, their parameters of nonlinear acoustics are still unexplored. The strong absorption, increasing about linearly with frequency, found in most marine sediments and the occurrence of velocity dispersion by some marine sediments restrict the number of nonlinear acoustic test methods traditionally...

  20. Evaluation of Maryland abutment scour equation through selected threshold velocity methods

    Science.gov (United States)

    Benedict, S.T.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Maryland State Highway Administration, used field measurements of scour to evaluate the sensitivity of the Maryland abutment scour equation to the critical (or threshold) velocity variable. Four selected methods for estimating threshold velocity were applied to the Maryland abutment scour equation, and the predicted scour to the field measurements were compared. Results indicated that performance of the Maryland abutment scour equation was sensitive to the threshold velocity with some threshold velocity methods producing better estimates of predicted scour than did others. In addition, results indicated that regional stream characteristics can affect the performance of the Maryland abutment scour equation with moderate-gradient streams performing differently from low-gradient streams. On the basis of the findings of the investigation, guidance for selecting threshold velocity methods for application to the Maryland abutment scour equation are provided, and limitations are noted.

  1. CO2 dynamics along Danish lowland streams

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand; Stæhr, Peter Anton

    2012-01-01

    conditions except during calm summer nights. Piston velocity from 0.4 to 21.6 cm h−1 was closely related to current velocity permitting calculation of evasion rates for entire streams. CO2 evasion rates were highest in midstream reaches (170–1,200 mmol m−2 day−1) where CO2-rich soil water entered fast stream...

  2. A new definition for acoustic dose

    International Nuclear Information System (INIS)

    Duck, F A

    2011-01-01

    This paper discusses a recent proposal for definitions of acoustic dose and acoustic dose-rate. Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Its time-derivative, acoustic dose-rate, Q m , in W kg -1 is central to the prediction of both rate of temperature rise and radiation force. These quantities have spatial and temporal dependency, depending on the local field parameters (acoustic pressure, particle velocity, intensity) and local material properties (absorption coefficient, α a , and mass density, ρ 0 ). Spatial and/or temporal averaging can be applied where appropriate. For plane-wave monochromatic conditions in a homogeneous medium, Q m =2α a I/ρ 0 , (I is the time-averaged intensity), a simple expression which may also incorporate frequency dependencies of energy deposition. Acoustic dose and acoustic does-rate are exact analogues for Specific Absorption and Specific Absorption Rate (SAR), quantities central to radiofrequency (RF) and microwave dosimetry. Acoustic dosimetry in the presence of tissue/gas interfaces remains a considerable challenge.

  3. Baryon acoustic signature in the clustering of density maxima

    International Nuclear Information System (INIS)

    Desjacques, Vincent

    2008-01-01

    We reexamine the two-point correlation of density maxima in Gaussian initial conditions. Spatial derivatives of the linear density correlation, which were ignored in the calculation of Bardeen et al.[Astrophys. J. 304, 15 (1986)], are included in our analysis. These functions exhibit large oscillations around the sound horizon scale for generic cold dark matter (CDM) power spectra. We derive the exact leading-order expression for the correlation of density peaks and demonstrate the contribution of those spatial derivatives. In particular, we show that these functions can modify significantly the baryon acoustic signature of density maxima relative to that of the linear density field. The effect depends upon the exact value of the peak height, the filter shape and size, and the small-scale behavior of the transfer function. In the ΛCDM cosmology, for maxima identified in the density field smoothed at mass scale M≅10 12 -10 14 M · /h and with linear threshold height ν=1.673/σ(M), the contrast of the baryon acoustic oscillations (BAO) can be a few tens of percent larger than in the linear matter correlation. Overall, the BAO is amplified for ν > or approx. 1 and damped for ν < or approx. l 1. Density maxima thus behave quite differently than linearly biased tracers of the density field, whose acoustic signature is a simple scaled version of the linear baryon acoustic oscillation. We also calculate the mean streaming of peak pairs in the quasilinear regime. We show that the leading-order 2-point correlation and pairwise velocity of density peaks are consistent with a nonlinear, local biasing relation involving gradients of the density field. Biasing will be an important issue in ascertaining how much of the enhancement of the BAO in the primeval correlation of density maxima propagates into the late-time clustering of galaxies.

  4. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping

    DEFF Research Database (Denmark)

    Augustsson, Per; Karlsen, Jonas Tobias; Su, Hao-Wei

    2016-01-01

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance...... of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide...... theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic...

  5. On the influence of drag effect on acoustic modes in two-condensate relativistic superfluid systems

    International Nuclear Information System (INIS)

    Vil'chinskij, S.I.

    1999-01-01

    Equations of velocities of acoustic excitations in a relativistic two-condensate superfluid system are derived with due account of reciprocal drag of superfluid motion (drag effect). The influence of the drag effect on acoustic modes in the system is considered. It is shown that the effect does not influence the nature of acoustic excitation oscillations but produces changes in the velocities of the second, third and fourth sounds

  6. Ion Acoustic Waves in the Presence of Electron Plasma Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....

  7. Acoustic phonons in the hexagonal perovskite CsNiCl3 around the Gamma-point

    DEFF Research Database (Denmark)

    Visser, D.; Monteith, A.R.; Rønnow, H.M.

    2000-01-01

    The acoustic phonon dispersion curves of the hexagonal perovskite CsNiCl3 were measured at room temperature in the vicinity of the Gamma-point along the [0 0 1] and [1 1 0] directions. The derived velocity of sound values for the longitudinal and transverse acoustic phonons are compared with the ......The acoustic phonon dispersion curves of the hexagonal perovskite CsNiCl3 were measured at room temperature in the vicinity of the Gamma-point along the [0 0 1] and [1 1 0] directions. The derived velocity of sound values for the longitudinal and transverse acoustic phonons are compared...

  8. Homotopy Based Reconstruction from Acoustic Images

    DEFF Research Database (Denmark)

    Sharma, Ojaswa

    of the inherent arrangement. The problem of reconstruction from arbitrary cross sections is a generic problem and is also shown to be solved here using the mathematical tool of continuous deformations. As part of a complete processing, segmentation using level set methods is explored for acoustic images and fast...... GPU (Graphics Processing Unit) based methods are suggested for a streaming computation on large volumes of data. Validation of results for acoustic images is not straightforward due to unavailability of ground truth. Accuracy figures for the suggested methods are provided using phantom object...

  9. Mean Flow Augmented Acoustics in Rocket Systems

    Science.gov (United States)

    Fischbach, Sean R.

    2014-01-01

    Oscillatory motion in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. The customary approach to modeling acoustic waves inside a rocket chamber is to apply the classical inhomogeneous wave equation to the combustion gas. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while the acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The converging section of a rocket nozzle, where gradients in pressure, density, and velocity become large, is a notable region where this approach is not applicable. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. An accurate model of the acoustic behavior within this region where acoustic modes are influenced by the presence of a steady mean flow is required for reliable stability predictions. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The acoustic velocity potential (psi) describing the acoustic wave motion in the presence of an inhomogeneous steady high-speed flow is defined by, (del squared)(psi) - (lambda/c)(exp 2)(psi) - M(dot)[M(dot)(del)(del(psi))] - 2(lambda(M/c) + (M(dot)del(M))(dot)del(psi)-2(lambda)(psi)[M(dot)del(1/c)]=0 (1) with M as the Mach vector, c as the speed of sound, and lambda as the complex eigenvalue. French apply the finite volume method to solve the steady flow field within the combustion chamber and nozzle with inviscid walls. The complex eigenvalues and eigenvector are determined with the use of the ARPACK eigensolver. The

  10. Vortex flow in acoustically levitated drops

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Z.L.; Xie, W.J. [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China); Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-08-29

    The internal flow of acoustically levitated water drops is investigated experimentally. This study reveals a kind of vortex flow which rotates in the meridional plane of the levitated drop. The magnitude of fluid velocity is nearly vanishing at the drop center, whereas it increases toward the free surface of a levitated drop until the maximum value of about 80 mm/s. A transition of streamline shapes from concentric circles to ellipses takes place at the distance of about 1.2 mm from the drop center. The fluid velocity distribution is plotted as a function of polar angle for seven characteristic streamlines. -- Highlights: → We experimentally observe the internal flow of acoustically levitated water drops. → We present a fascinating structure of vortex flow inside the levitated water drop. → This vortex flow rotates around the drop center in the meridional plane. → Velocity distribution information of this vortex flow is quantitatively analyzed.

  11. Vortex flow in acoustically levitated drops

    International Nuclear Information System (INIS)

    Yan, Z.L.; Xie, W.J.; Wei, B.

    2011-01-01

    The internal flow of acoustically levitated water drops is investigated experimentally. This study reveals a kind of vortex flow which rotates in the meridional plane of the levitated drop. The magnitude of fluid velocity is nearly vanishing at the drop center, whereas it increases toward the free surface of a levitated drop until the maximum value of about 80 mm/s. A transition of streamline shapes from concentric circles to ellipses takes place at the distance of about 1.2 mm from the drop center. The fluid velocity distribution is plotted as a function of polar angle for seven characteristic streamlines. -- Highlights: → We experimentally observe the internal flow of acoustically levitated water drops. → We present a fascinating structure of vortex flow inside the levitated water drop. → This vortex flow rotates around the drop center in the meridional plane. → Velocity distribution information of this vortex flow is quantitatively analyzed.

  12. Acoustic biosensors.

    Science.gov (United States)

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  13. Measurement of sound velocity on metal surfaces by impulsive stimulated Brillouin scattering

    International Nuclear Information System (INIS)

    Shimada, Yukihiro; Murakami, Hiroshi; Nishimura, Akihiko

    2005-01-01

    Impulsive stimulated Brillouin Scattering (ISBS) experiment was performed in order to measure acoustic waves on metal surfaces. The ISBS technique offers robust method of obtaining acoustic velocities without physical contact. The generation and detection mechanism were discussed. (author)

  14. Experimental study on flow-induced acoustic resonance in square closed side branch

    International Nuclear Information System (INIS)

    Zhang Hui; Gu Hanyang; Liu Xiaojing; Zhang Kai; Xie Yongcheng; Zu Hongbiao

    2014-01-01

    Flow-induced acoustic resonance is a phenomenon caused by the interaction of flow and acoustic fields in special structure. Acoustic resonance characteristic experiments were carried out on square closed side branch. The influences of the velocity in main pipe and the length of the side branch on acoustic resonance were studied. The range of occurrence and characteristics of pressure pulsation were analyzed. Three lengths of side branches (L/d=5.6 and 7) were experimentally studied and the Reynolds number in the experiment was 2.74 X 10 4 -2.429 X 10 5 while the Mach number was 0.025-0.218. The results show that the resonance frequency shows a lock-in phenomenon with the increase of velocity. As the length of the side branch increasing, the amplitude of the acoustic pressure and the resonance frequency decrease. In the considered structure, the acoustic resonance occurs when Strouhal number is 0.3-0.6 and 0.7-1.0. (authors)

  15. AN ORBIT FIT FOR THE GRILLMAIR DIONATOS COLD STELLAR STREAM

    International Nuclear Information System (INIS)

    Willett, Benjamin A.; Newberg, Heidi Jo; Zhang Haotong; Yanny, Brian; Beers, Timothy C.

    2009-01-01

    We use velocity and metallicity information from Sloan Digital Sky Survey and Sloan Extension for Galactic Understanding and Exploration stellar spectroscopy to fit an orbit to the narrow 63 deg. stellar stream of Grillmair and Dionatos. The stars in the stream have a retrograde orbit with eccentricity e = 0.33 (perigalacticon of 14.4 kpc and apogalacticon of 28.7 kpc) and inclination approximately i ∼ 35 deg. In the region of the orbit which is detected, it has a distance of about 7-11 kpc from the Sun. Assuming a standard disk plus bulge and logarithmic halo potential for the Milky Way stars plus dark matter, the stream stars are moving with a large space velocity of approximately 276 km s -1 at perigalacticon. Using this stream alone, we are unable to determine if the dark matter halo is oblate or prolate. The metallicity of the stream is [Fe/H] = -2.1 ± 0.1. Observed proper motions for individual stream members above the main sequence turnoff are consistent with the derived orbit. None of the known globular clusters in the Milky Way have positions, radial velocities, and metallicities that are consistent with being the progenitor of the GD-1 stream.

  16. An Orbit Fit for the Grillmair Dionatos Cold Stellar Stream

    Energy Technology Data Exchange (ETDEWEB)

    Willett, Benjamin A.; Newberg, Heidi Jo; Zhang, Haotong; Yanny, Brian; Beers, Timothy C.

    2009-01-01

    We use velocity and metallicity information from Sloan Digital Sky Survey and Sloan Extension for Galactic Understanding and Exploration stellar spectroscopy to fit an orbit to the narrow 63{sup o} stellar stream of Grillmair and Dionatos. The stars in the stream have a retrograde orbit with eccentricity e = 0.33 (perigalacticon of 14.4 kpc and apogalacticon of 28.7 kpc) and inclination approximately i {approx} 35{sup o}. In the region of the orbit which is detected, it has a distance of about 7-11 kpc from the Sun. Assuming a standard disk plus bulge and logarithmic halo potential for the Milky Way stars plus dark matter, the stream stars are moving with a large space velocity of approximately 276 km s{sup -1} at perigalacticon. Using this stream alone, we are unable to determine if the dark matter halo is oblate or prolate. The metallicity of the stream is [Fe/H] = -2.1 {+-} 0.1. Observed proper motions for individual stream members above the main sequence turnoff are consistent with the derived orbit. None of the known globular clusters in the Milky Way have positions, radial velocities, and metallicities that are consistent with being the progenitor of the GD-1 stream.

  17. Use of acoustic backscatter and vertical velocity to estimate concentration and dynamics of suspended solids in Upper Klamath Lake, south-central Oregon: Implications for Aphanizomenon flos-aquae

    Science.gov (United States)

    Wood, Tamara M.; Gartner, Jeffrey W.

    2010-01-01

    Vertical velocity and acoustic backscatter measurements by acoustic Doppler current profilers were used to determine seasonal, subseasonal (days to weeks), and diel variation in suspended solids in a freshwater lake where massive cyanobacterial blooms occur annually. During the growing season, the suspended material in the lake is dominated by the buoyancy-regulating cyanobacteria, Aphanizomenon flos-aquae. Measured variables (water velocity, relative backscatter [RB], wind speed, and air and water temperatures) were averaged over the deployment season at each sample time of day to determine average diel cycles. Phase shifts between diel cycles in RB and diel cycles in wind speed, vertical water temperature differences (delta T(degree)), and horizontal current speeds were found by determining the lead or lag that maximized the linear correlation between the respective diel cycles. Diel cycles in RB were more in phase with delta T(degree) cycles, and, to a lesser extent, wind cycles, than to water current cycles but were out of phase with the cycle that would be expected if the vertical movement of buoyant cyanobacteria colonies was controlled primarily by light. Clear evidence of a diel cycle in vertical velocity was found only at the two deepest sites in the lake. Cycles of vertical velocity, where present, were out of phase with expected vertical motion of cyanobacterial colonies based on the theoretical cycle for light-driven vertical movement. This suggests that water column stability and turbulence were more important factors in controlling vertical distribution of colonies than light. Variations at subseasonal time scales were determined by filtering data to pass periods between 1.2 and 15 days. At subseasonal time scales, correlations between RB and currents or air temperature were consistent with increased concentration of cyanobacterial colonies near the surface when water column stability increased (higher air temperatures or weaker currents) and

  18. One-dimensional acoustic standing waves in rectangular channels for flow cytometry.

    Science.gov (United States)

    Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A; Naivar, Mark A; Lόpez, Gabriel P; Graves, Steven W

    2012-07-01

    Flow cytometry has become a powerful analytical tool for applications ranging from blood diagnostics to high throughput screening of molecular assemblies on microsphere arrays. However, instrument size, expense, throughput, and consumable use limit its use in resource poor areas of the world, as a component in environmental monitoring, and for detection of very rare cell populations. For these reasons, new technologies to improve the size and cost-to-performance ratio of flow cytometry are required. One such technology is the use of acoustic standing waves that efficiently concentrate cells and particles to the center of flow channels for analysis. The simplest form of this method uses one-dimensional acoustic standing waves to focus particles in rectangular channels. We have developed one-dimensional acoustic focusing flow channels that can be fabricated in simple capillary devices or easily microfabricated using photolithography and deep reactive ion etching. Image and video analysis demonstrates that these channels precisely focus single flowing streams of particles and cells for traditional flow cytometry analysis. Additionally, use of standing waves with increasing harmonics and in parallel microfabricated channels is shown to effectively create many parallel focused streams. Furthermore, we present the fabrication of an inexpensive optical platform for flow cytometry in rectangular channels and use of the system to provide precise analysis. The simplicity and low-cost of the acoustic focusing devices developed here promise to be effective for flow cytometers that have reduced size, cost, and consumable use. Finally, the straightforward path to parallel flow streams using one-dimensional multinode acoustic focusing, indicates that simple acoustic focusing in rectangular channels may also have a prominent role in high-throughput flow cytometry. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Intelligent front-end sample preparation tool using acoustic streaming.

    Energy Technology Data Exchange (ETDEWEB)

    Cooley, Erika J.; McClain, Jaime L.; Murton, Jaclyn K.; Edwards, Thayne L.; Achyuthan, Komandoor E.; Branch, Darren W.; Clem, Paul Gilbert; Anderson, John Mueller; James, Conrad D.; Smith, Gennifer; Kotulski, Joseph Daniel

    2009-09-01

    We have successfully developed a nucleic acid extraction system based on a microacoustic lysis array coupled to an integrated nucleic acid extraction system all on a single cartridge. The microacoustic lysing array is based on 36{sup o} Y cut lithium niobate, which couples bulk acoustic waves (BAW) into the microchannels. The microchannels were fabricated using Mylar laminates and fused silica to form acoustic-fluidic interface cartridges. The transducer array consists of four active elements directed for cell lysis and one optional BAW element for mixing on the cartridge. The lysis system was modeled using one dimensional (1D) transmission line and two dimensional (2D) FEM models. For input powers required to lyse cells, the flow rate dictated the temperature change across the lysing region. From the computational models, a flow rate of 10 {micro}L/min produced a temperature rise of 23.2 C and only 6.7 C when flowing at 60 {micro}L/min. The measured temperature changes were 5 C less than the model. The computational models also permitted optimization of the acoustic coupling to the microchannel region and revealed the potential impact of thermal effects if not controlled. Using E. coli, we achieved a lysing efficacy of 49.9 {+-} 29.92 % based on a cell viability assay with a 757.2 % increase in ATP release within 20 seconds of acoustic exposure. A bench-top lysing system required 15-20 minutes operating up to 58 Watts to achieve the same level of cell lysis. We demonstrate that active mixing on the cartridge was critical to maximize binding and release of nucleic acid to the magnetic beads. Using a sol-gel silica bead matrix filled microchannel the extraction efficacy was 40%. The cartridge based magnetic bead system had an extraction efficiency of 19.2%. For an electric field based method that used Nafion films, a nucleic acid extraction efficiency of 66.3 % was achieved at 6 volts DC. For the flow rates we tested (10-50 {micro}L/min), the nucleic acid extraction

  20. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping.

    Science.gov (United States)

    Augustsson, Per; Karlsen, Jonas T; Su, Hao-Wei; Bruus, Henrik; Voldman, Joel

    2016-05-16

    Mechanical phenotyping of single cells is an emerging tool for cell classification, enabling assessment of effective parameters relating to cells' interior molecular content and structure. Here, we present iso-acoustic focusing, an equilibrium method to analyze the effective acoustic impedance of single cells in continuous flow. While flowing through a microchannel, cells migrate sideways, influenced by an acoustic field, into streams of increasing acoustic impedance, until reaching their cell-type specific point of zero acoustic contrast. We establish an experimental procedure and provide theoretical justifications and models for iso-acoustic focusing. We describe a method for providing a suitable acoustic contrast gradient in a cell-friendly medium, and use acoustic forces to maintain that gradient in the presence of destabilizing forces. Applying this method we demonstrate iso-acoustic focusing of cell lines and leukocytes, showing that acoustic properties provide phenotypic information independent of size.

  1. Hydrocarbon saturation determination using acoustic velocities obtained through casing

    Science.gov (United States)

    Moos, Daniel

    2010-03-09

    Compressional and shear velocities of earth formations are measured through casing. The determined compressional and shear velocities are used in a two component mixing model to provides improved quantitative values for the solid, the dry frame, and the pore compressibility. These are used in determination of hydrocarbon saturation.

  2. Theory of nonlinear acoustic forces acting on fluids and particles in microsystems

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias

    fundamentally new capabilities in chemical, biomedical, or clinical studies of single cells and bioparticles. This thesis, entitled Theory of nonlinear acoustic forces acting on fluids and particles in microsystems, advances the fundamental understanding of acoustofluidics by addressing the origin...... of the nonlinear acoustic forces acting on fluids and particles. Classical results in nonlinear acoustics for the non-dissipative acoustic radiation force acting on a particle or an interface, as well as the dissipative acoustic force densities driving acoustic streaming, are derived and discussed in terms...... in the continuous fluid parameters of density and compressibility, e.g., due to a solute concentration field, the thesis presents novel analytical results on the acoustic force density acting on inhomogeneous fluids in acoustic fields. This inhomogeneity-induced acoustic force density is non-dissipative in origin...

  3. A statistical-based approach for acoustic tomography of the atmosphere.

    Science.gov (United States)

    Kolouri, Soheil; Azimi-Sadjadi, Mahmood R; Ziemann, Astrid

    2014-01-01

    Acoustic travel-time tomography of the atmosphere is a nonlinear inverse problem which attempts to reconstruct temperature and wind velocity fields in the atmospheric surface layer using the dependence of sound speed on temperature and wind velocity fields along the propagation path. This paper presents a statistical-based acoustic travel-time tomography algorithm based on dual state-parameter unscented Kalman filter (UKF) which is capable of reconstructing and tracking, in time, temperature, and wind velocity fields (state variables) as well as the dynamic model parameters within a specified investigation area. An adaptive 3-D spatial-temporal autoregressive model is used to capture the state evolution in the UKF. The observations used in the dual state-parameter UKF process consist of the acoustic time of arrivals measured for every pair of transmitter/receiver nodes deployed in the investigation area. The proposed method is then applied to the data set collected at the Meteorological Observatory Lindenberg, Germany, as part of the STINHO experiment, and the reconstruction results are presented.

  4. Study of uranium dioxide pellets by micro-acoustic techniques

    International Nuclear Information System (INIS)

    Roque, V.

    1999-01-01

    In order to reduce the volume of spent fuel to reprocess and to improve the productivity and the safety of the nuclear reactor, 'Electricite De France' aim to increase the average fuel discharge burn-up. To elaborate the safety reports, EDF develops codes to simulate the thermo-mechanical behaviour of the nuclear fuel element. These numeric simulations need to evaluate accurately and locally the evolution of the material and of its properties. One of the major concern today is the local characterisation of the intrinsic volume fraction porosity and the mechanical properties of the irradiated fuel. The fuel pellet fragmentation, the steep radial gradient in its physical properties evolution and the chemical evolution of the irradiated material make difficult nay the use of the conventional techniques. This leads EDF to pay interest for the use of two complementary techniques: micro-indentation on the one hand and acoustic methods on the other hand (acoustic microscopy and micro-echography), with an additional constrain to perform on active materials. The objective of this work has been to adapt the acoustic methods for an application on uranium dioxide pellets, used as nuclear fuel in Water Pressurised Reactor. Acquisitions protocols have been set to measure accurately the Rayleigh velocity and the longitudinal velocity of the UO 2 . Using these protocols, we have calibrated these acoustic methods by analysing non irradiated nuclear pellet which properties were well known. This process enable to quantify the effects of different physico-chemical parameters of the UO 2 on the ultrasonic velocities measured. Particularly, the large influence of the porosity has been demonstrated and empirical laws to express the evolution of the acoustic velocities as a function of the volume fraction porosity were established. Moreover, we have established a methodology to characterise the intrinsic elastic constants and the volume fraction porosity on irradiated UO 2 fuel pellets

  5. The Effects of the Impedance of the Flow Source on the Design of Tidal Stream Generators

    Science.gov (United States)

    Salter, S.

    2011-12-01

    The maximum performance of a wind turbine is set by the well-known Betz limit. If the designer of a wind turbine uses too fast a rotation, too large a blade chord or too high an angle of blade pitch, the air flow can take an easier path over or around the rotor. Most estimates of the tidal stream resource use equations borrowed from wind and would be reasonably accurate for a single unit. But water cannot flow through the seabed or over rotors which reach to the surface. If contra-rotating, vertical-axis turbines with a rectangular flow-window are placed close to one another and reach from the surface close to the seabed, the leakage path is blocked and they become more like turbines in a closed duct. Instead of an equation with area times velocity-cubed we should use the first power of volume flow rate though the rotor times the pressure difference across it. A long channel with a rough bed will already be losing lots of energy and will behave more like a high impedance flow. Attempts to block it with closely-packed turbines will increase the head across the turbines with only a small effect on flow rate. The same thing will occur if a close-packed line of turbines is built out to sea from a headland. It is necessary to understand the impedance of the flow source all the way out to mid-ocean. In deep seas where the current velocities at the seabed are too slow to disturb the ooze the friction coefficients will be similar to those of gloss paint, perhaps 0.0025. But the higher velocities in shallow water will remove ooze and quite large sediments leaving rough, bare rock and leading to higher friction-coefficients. Energy dissipation will be set by the higher friction coefficients and the cube of the higher velocities. The presence of turbines will reduce seabed losses and about one third of the present loss can be converted to electricity. The velocity reduction would be about 10%. In many sites the energy output will be far higher than the wind turbine equations

  6. The critical ionization velocity

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1980-06-01

    The critical ionization velocity effect was first proposed in the context of space plasmas. This effect occurs for a neutral gas moving through a magnetized plasma and leads to rapid ionization and braking of the relative motion when a marginal velocity, 'the critical velocity', is exceeded. Laboratory experiments have clearly established the significance of the critical velocity and have provided evidence for an underlying mechanism which relies on the combined action of electron impact ionization and a collective plasma interaction heating electrons. There is experimental support for such a mechanism based on the heating of electrons by the modified two-stream instability as part of a feedback process. Several applications to space plasmas have been proposed and the possibility of space experiments has been discussed. (author)

  7. The influence of clay minerals on acoustic properties of sandstones

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Olav

    1997-12-31

    This thesis aims to provide better understanding of the relationship between the acoustic properties and the petrophysical/mineralogical properties in sand-prone rock. It emphasizes the influence of clay minerals. The author develops a method to deposit clay minerals/mineral aggregates in pore space of a rigid rock framework. Kaolinite aggregates were flushed into porous permeable Bentheimer sandstone to evaluate the effect of pore filling minerals on porosity, permeability and acoustic properties. The compressional velocity was hardly affected by the clay content and it was found that the effect of minor quantities of pore filling minerals may be acoustically modelled as an ideal suspension, where the pore fluid bulk modulus is modified by the bulk modulus of the clay minerals. The influence of clays on acoustic velocities in petroleum reservoir rocks was investigated through ultrasonic measurements of compressional- and shear-waves on core material from reservoir and non-reservoir units on the Norwegian Continental Shelf. The measured velocities decrease as the porosity increases, but are not strongly dependent on the clay content. The measured velocities are less dependent on the petrophysical and lithological properties than indicated by previous authors and published mathematical models, and stiffness reduction factors are introduced in two of the models to better match the data. Velocities are estimated along the wellbores based on non-sonic well logs and reflect well the actual sonic log well measurements. In some wells the compressional velocity cannot be modelled correctly by the models suggested. Very high compressional wave anisotropy was measured in the dry samples at atmospheric conditions. As the samples were saturated, the anisotropy was reduced to a maximum of about 30% and decreases further upon pressurization. Reservoir rocks retrieved from 2500 m are more stress dependent than those retrieved from less than 200 m depth. 168 refs., 117 figs., 24

  8. Acoustic cavity transducers for the manipulation of cells and biomolecules

    Science.gov (United States)

    Tovar, Armando; Patel, Maulik; Lee, Abraham P.

    2010-02-01

    A novel fluidic actuator that is simple to fabricate, integrate, and operate is demonstrated for use within microfluidic systems. The actuator is designed around the use of trapped air bubbles in lateral cavities and the resultant acoustic streaming generated from an outside acoustic energy source. The orientation of the lateral cavities to the main microchannel is used to control the bulk fluid motion within the device. The first order flow generated by the oscillating bubble is used to develop a pumping platform that is capable of driving fluid within a chip. This pump is integrated into a recirculation immunoassay device for enhanced biomolecule binding through fluid flow for convection limited transport. The recirculation system showed an increase in binding site concentration when compared with traditional passive and flow-through methods. The acoustic cavity transducer has also been demonstrated for application in particle switching. Bursts of acoustic energy are used to generate a second order streaming pattern near the cavity interface to drive particles away or towards the cavity. The use of this switching mechanism is being extended to the application of sorting cells and other particles within a microfluidic system.

  9. Experimental demonstration of the Rayleigh acoustic viscous boundary layer theory.

    Science.gov (United States)

    Castrejón-Pita, J R; Castrejón-Pita, A A; Huelsz, G; Tovar, R

    2006-03-01

    Amplitude and phase velocity measurements on the laminar oscillatory viscous boundary layer produced by acoustic waves are presented. The measurements were carried out in acoustic standing waves in air with frequencies of 68.5 and 114.5 Hz using laser Doppler anemometry and particle image velocimetry. The results obtained by these two techniques are in good agreement with the predictions made by the Rayleigh viscous boundary layer theory and confirm the existence of a local maximum of the velocity amplitude and its expected location.

  10. Patch near-field acoustic holography: The influence of acoustic contributions from outside the source

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Zhang, Yong-Bin

    2009-01-01

    It is a requirement of conventional Near-field Acoustic Holography that the measurement area covers the entire surface of the source. In the case of Patch Near-field Acoustic Holography (patch NAH), the measurement area can be reduced to cover only a specific area of the source which...... is of particular interest (known as the “patch” or “source patch”). The area of the source beyond this patch is not of interest in the analysis. However, its acoustic output may nevertheless contribute to the total sound field in the measurement plane, and influence the reconstruction of the field close...... to the patch. The purpose of this paper is to investigate how the acoustic radiation from outside the patch area influences the reconstruction of the sound field close to the source. The reconstruction is based on simulated measurements of sound pressure and particle velocity. The methods used in this paper...

  11. Systematic Error of Acoustic Particle Image Velocimetry and Its Correction

    Directory of Open Access Journals (Sweden)

    Mickiewicz Witold

    2014-08-01

    Full Text Available Particle Image Velocimetry is getting more and more often the method of choice not only for visualization of turbulent mass flows in fluid mechanics, but also in linear and non-linear acoustics for non-intrusive visualization of acoustic particle velocity. Particle Image Velocimetry with low sampling rate (about 15Hz can be applied to visualize the acoustic field using the acquisition synchronized to the excitation signal. Such phase-locked PIV technique is described and used in experiments presented in the paper. The main goal of research was to propose a model of PIV systematic error due to non-zero time interval between acquisitions of two images of the examined sound field seeded with tracer particles, what affects the measurement of complex acoustic signals. Usefulness of the presented model is confirmed experimentally. The correction procedure, based on the proposed model, applied to measurement data increases the accuracy of acoustic particle velocity field visualization and creates new possibilities in observation of sound fields excited with multi-tonal or band-limited noise signals.

  12. Sound velocity in potassium hydroxide aqueous solution

    International Nuclear Information System (INIS)

    Tsapuryan, Kh.D.; Aleksandrov, A.A.; Kochetkov, A.I.

    1992-01-01

    Measurements of ultrasonic velocities in potassium hydroxide aqueous solutions are carried out within the frames of studies on improvement of water chemistry in NPP cooling systems. Method of echo pulses superposition with acoustic path length of 41.447 mm is used for measurements. The measurements are performed at 2.6 MHz frequency. Complex temperature dependence of ultrasonic velocity is determined. Ultrasonic velocity dependence on pressure is close to linear one. The formula for calculation of thermodynamic properties of the studied solutions on the basis of experimental data obtained is proposed

  13. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    Science.gov (United States)

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Spatial interpolation of point velocities in stream cross-section

    Directory of Open Access Journals (Sweden)

    Hasníková Eliška

    2015-03-01

    Full Text Available The most frequently used instrument for measuring velocity distribution in the cross-section of small rivers is the propeller-type current meter. Output of measuring using this instrument is point data of a tiny bulk. Spatial interpolation of measured data should produce a dense velocity profile, which is not available from the measuring itself. This paper describes the preparation of interpolation models.

  15. Acoustic anisotropy of acoustooptic TI(3)AsS(4) crystals.

    Science.gov (United States)

    Martynyuk-Lototska, Iryna; Kushnirevych, Marian; Zapeka, Bohdan; Krupych, Oleh; Kokhan, Oleksandr; Pogodin, Artem; Peresh, Eugen; Mys, Oksana; Vlokh, Rostyslav

    2015-02-20

    We present comprehensive experimental measurements and analysis of anisotropy of the acoustic wave velocities for TI(3)AsS(4) crystals, including the obliquity and nonorthogonality of the acoustic waves, and the deviations from purely longitudinal and transverse polarization types. We have found that the crystals under analysis are characterized by rather low transverse wave velocities v(23) and v(32), which are both equal to 630 m/s. It is shown that the efficiency of acoustooptic (AO) interactions in TI(3)AsS(4) can be notably increased when providing anisotropic interaction with the slowest transverse acoustic wave. Under the previously mentioned conditions, the AO figure-of-merit can be estimated to be extremely high, i.e., approximately 3×10(-12) s(3)/kg.

  16. Circumferential-wave phase velocities for empty, fluid-immersed spherical metal shells

    DEFF Research Database (Denmark)

    Überall, Herbert; Ahyi, A. C.; Raju, P. K.

    2002-01-01

    In earlier studies of acoustic scattering resonances and of the dispersive phase velocities of surface waves that generate them [see, e.g., Talmant et al., J. Acoust. Soc. Am. 86, 278–289 (1989) for spherical aluminum shells] we have demonstrated the effectiveness and accuracy of obtaining phase ...

  17. Investigation of the Sintering Process Using Non-Contact Electromagnetic Acoustic Transducers

    International Nuclear Information System (INIS)

    James C. Foley; David K. Rehbein; Daniel J. Barnard

    2001-01-01

    In-situ characterizations of green state part density and sintering state have long been desired in the powder metal community. Recent advances in non-contact electromagnetic acoustic transducer (EMAT) technology have enabled in-situ monitoring of acoustic amplitude and velocity as sintering proceeds. Samples were made from elemental powders of Al (99.99%), Al (99.7%), Ag, (99.99%), Cu (99.99%) and Fe (99.9%). The powders were pressed in a uniaxial die and examined with acoustic waves for changes in velocity and amplitude during sintering for the samples containing Al, Ag, and Cu. The changes in acoustic properties were correlated with sample microstructures and mechanical properties. Evolution of a series of reverberating echoes during sintering is shown to provide information on the state of sintering, and changes in sintering kinetics as well as having the potential for detection of interior flaws

  18. Effect of elastic collisions on acoustic wave propagation in simplified nuclear glass: Molecular dynamics simulation

    International Nuclear Information System (INIS)

    Deladerriere, N.; Delaye, J.-M.; Peuget, S.; Bureau, G.

    2008-01-01

    A novel method based on classical molecular dynamics was used to measure acoustic velocities in simplified glasses and in pure silica. The method was then applied to observe the acoustic velocity variation in a simple glass subjected to displacement cascades. The Rayleigh velocity and Young's modulus were observed to decrease; this behavior is consistent with experimental results obtained for the same glass irradiated by heavy ions. The increasing disorder and reduction in atomic density resulting from elastic collisions are thus directly related to the drop in the Rayleigh velocities and Young's modulus

  19. Detection method of internal leakage from valve using acoustic method

    International Nuclear Information System (INIS)

    Kumagai, Horomichi

    1990-01-01

    The purpose of this study is to estimate the availability of acoustic method for detecting the internal leakage of valves at power plants. Experiments have been carried out on the characteristics of acoustic noise caused by the leak simulated flow. From the experimental results, the mechanism of the acoustic noisegenerated from flow, the relation between acoustic intensity and leak flow velocity, and the characteristics of the acoustic frequency spectrum were clarified. The acoustic method was applied to valves at site, and the background noises were measured in abnormal plant conditions. When the background level is higher than the acoustic signal, the difference between the background noise frequency spectrum and the acoustic signal spectrum provide a very useful leak detection method. (author)

  20. Simulation of acoustic pressure and flow velocity in human glottis

    Czech Academy of Sciences Publication Activity Database

    Šidlof, Petr; Chaigne, A.; Doaré, O.; Cadot, O.

    2008-01-01

    Roč. 123, - (2008), s. 3664-3664 ISSN 0001-4966 R&D Projects: GA AV ČR KJB200760801 Institutional research plan: CEZ:AV0Z20760514 Keywords : flow separation * Navier-Stokes equations * vocal fold s Subject RIV: BI - Acoustics

  1. Grain size distributions and their effects on auto-acoustic compaction

    Science.gov (United States)

    Taylor, S.; Brodsky, E. E.

    2013-12-01

    A variety of geophysical and geomorphological processes depend on the response of granular mixtures to shear stress. For example, if shear sliding in a fault zone causes gouge to compact or dilate, this has implications on our understanding of earthquake nucleation and propagation. The behavior of granular flows has previously been found to be strongly dependent on shear rate. At relatively slow shear velocities, a granular flow will support stresses elastically through force chains in what is recognized as the 'quasi-static' regime. At relatively high shear velocities, it will support stresses by transferring momentum in higher velocity grain collisions in the 'grain-inertial' regime, which results in dilation of the flow. Recent experiments conducted using a commercial torsional rheometer found that at intermediate shear velocities, force chain collapse in angular sand samples produced sound waves capable of vibrating the shear zone enough to cause compaction. To expand on the characterization of this newly identified rheological regime, the 'auto-acoustic' regime, we used the same experimental set up to observe how volumetric and acoustic response to shear stress changes with grain size mean and range. Stepped velocity ramp experiments were conducted first on five separate grain size bins, and then on various mixtures of these grain sizes. As expected, larger grain sizes entered the mass-dependent grain-inertial regime at lower shear velocities than smaller grain sizes. Interestingly, smaller grain sizes exhibited more pronounced compaction at slower velocities resulting from the auto-acoustic regime, and the largest grain sizes showed no compaction, implying a grain size threshold for auto-acoustic compaction. In mixtures of different grain size bins, the response of the flow to intermediate shear velocities was consistent with the response of the smallest grain size bin included in the mixture, while the response of the flow to high shear velocities was most

  2. Measurement of sound velocity profiles in fluids for process monitoring

    International Nuclear Information System (INIS)

    Wolf, M; Kühnicke, E; Lenz, M; Bock, M

    2012-01-01

    In ultrasonic measurements, the time of flight to the object interface is often the only information that is analysed. Conventionally it is only possible to determine distances or sound velocities if the other value is known. The current paper deals with a novel method to measure the sound propagation path length and the sound velocity in media with moving scattering particles simultaneously. Since the focal position also depends on sound velocity, it can be used as a second parameter. Via calibration curves it is possible to determine the focal position and sound velocity from the measured time of flight to the focus, which is correlated to the maximum of averaged echo signal amplitude. To move focal position along the acoustic axis, an annular array is used. This allows measuring sound velocity locally resolved without any previous knowledge of the acoustic media and without a reference reflector. In previous publications the functional efficiency of this method was shown for media with constant velocities. In this work the accuracy of these measurements is improved. Furthermore first measurements and simulations are introduced for non-homogeneous media. Therefore an experimental set-up was created to generate a linear temperature gradient, which also causes a gradient of sound velocity.

  3. Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations.

    Science.gov (United States)

    Hagsäter, S M; Jensen, T Glasdam; Bruus, H; Kutter, J P

    2007-10-01

    We show that full-image micro-PIV analysis in combination with images of transient particle motion is a powerful tool for experimental studies of acoustic radiation forces and acoustic streaming in microfluidic chambers under piezo-actuation in the MHz range. The measured steady-state motion of both large 5 microm and small 1 microm particles can be understood in terms of the acoustic eigenmodes or standing ultra-sound waves in the given experimental microsystems. This interpretation is supported by numerical solutions of the corresponding acoustic wave equation.

  4. Subsurface offset behaviour in velocity analysis with extended reflectivity images

    NARCIS (Netherlands)

    Mulder, W.A.

    2013-01-01

    Migration velocity analysis with the constant-density acoustic wave equation can be accomplished by the focusing of extended migration images, obtained by introducing a subsurface shift in the imaging condition. A reflector in a wrong velocity model will show up as a curve in the extended image. In

  5. Shear dilatancy and acoustic emission in dry and saturated granular materials

    Science.gov (United States)

    Brodsky, E. E.; Siman-Tov, S.

    2017-12-01

    Shearing of granular materials plays a strong role in naturally sheared systems as landslides and faults. Many works on granular flows have concentrated on dry materials, but relatively little work has been done on water saturated sands. Here we experimentally investigate dry versus saturated quartz-rich sand to understand the effect of the fluid medium on the rheology and acoustic waves emission of the sheared sand. The sand was sheared in a rotary shear rheometer under applied constant normal stress boundary at low (100 µm/s) to high (1 m/s) velocities. Mechanical, acoustic data and deformation were continuously recorded and imaged. For dry and water saturated experiments the granular volume remains constant for low shear velocities ( 10-3 m/s) and increases during shearing at higher velocities ( 1 m/s). Continuous imaging of the sheared sand show that the steady state shear band thickness is thicker during the high velocity steps. No significant change observed in the shear band thickness between dry and water saturated experiments. In contrast, the amount of dilation during water saturated experiments is about half the value measured for dry material. The measured decrease cannot be explained by shear band thickness change as such is not exist. However, the reduced dilation is supported by our acoustic measurements. In general, the event rate and acoustic event amplitudes increase with shear velocity. While isolated events are clearly detected during low velocities at higher the events overlap, resulting in a noisy signal. Although detection is better for saturated experiments, during the high velocity steps the acoustic energy measured from the signal is lower compared to that recorded for dry experiments. We suggest that the presence of fluid suppresses grain motion and particles impacts leading to mild increase in the internal pressure and therefore for the reduced dilation. In addition, the viscosity of fluids may influence the internal pressure via

  6. Sediment acoustic index method for computing continuous suspended-sediment concentrations

    Science.gov (United States)

    Landers, Mark N.; Straub, Timothy D.; Wood, Molly S.; Domanski, Marian M.

    2016-07-11

    Suspended-sediment characteristics can be computed using acoustic indices derived from acoustic Doppler velocity meter (ADVM) backscatter data. The sediment acoustic index method applied in these types of studies can be used to more accurately and cost-effectively provide time-series estimates of suspended-sediment concentration and load, which is essential for informed solutions to many sediment-related environmental, engineering, and agricultural concerns. Advantages of this approach over other sediment surrogate methods include: (1) better representation of cross-sectional conditions from large measurement volumes, compared to other surrogate instruments that measure data at a single point; (2) high temporal resolution of collected data; (3) data integrity when biofouling is present; and (4) less rating curve hysteresis compared to streamflow as a surrogate. An additional advantage of this technique is the potential expansion of monitoring suspended-sediment concentrations at sites with existing ADVMs used in streamflow velocity monitoring. This report provides much-needed standard techniques for sediment acoustic index methods to help ensure accurate and comparable documented results.

  7. Broadband manipulation of acoustic wavefronts by pentamode metasurface

    International Nuclear Information System (INIS)

    Tian, Ye; Wei, Qi; Cheng, Ying; Xu, Zheng; Liu, Xiaojun

    2015-01-01

    An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing

  8. Electron-beam-induced acoustic-wave enhancement of gaseous combustion

    International Nuclear Information System (INIS)

    Bidwell, S.W.; Bosch, R.A.; Gilgenbach, R.M.

    1989-01-01

    The combustion rate of premixed gases in a closed vessel was increased by injecting a high-current electron beam into the gas mixture within about 20 ms of spark ignition. This effect was observed with the fuels ethylene, methane, ethane, propane, and n-butane. Experimental results provide strong evidence that e-beam excitation of the fundamental longitudinal-acoustic mode of the cylindrical chamber is the mechanism of combustion enhancement. An observable combustion enhancement required that the amplitude of the fluid velocity oscillation in this acoustic mode be greater than or approximately equal to the flame propagation speed and was associated with a wrinkled or cellular flame structure with dimensions on the order of 1/2 cm. These results are in good agreement with values for the threshold acoustic velocity amplitude and dimension of cellular structure predicted for a periodically accelerated flame

  9. Numerical analysis on acoustic impulse response for watermelon

    International Nuclear Information System (INIS)

    Kim, Yong Sul; Yang, Dong Hoon; Choi, Young Jae; Bae, Tas Joo; So, Chul Ho; Lee, Yun Ho

    2002-01-01

    In this study, we conducted both analysis on impact pulse signal and acoustic impulse response method using numerical analysistic finite element method. Considering its velocity, density, Young's Modulus, and Poisson's Ratio, we extracted featured parameters and compared both results of analysis on impact pulse signal and numerical analysis on acoustic impulse response then we found the feature of generated acoustic sound signal by way of numerical analysis varying featured parameters and consequently intended to extract feature indices influenced on its internal maturity through analysis of acoustic impulse response. As we analyzed impact pulse signal and extracted featured parameters concerned with evaluation of its ripeness, we found the plausibility of progress on nondestructive evaluation of ripeness and adoption of numerical analysis on acoustic impulse response.

  10. Acoustic and Thermal Vibrational Behavior of Rare Earth Glasses

    International Nuclear Information System (INIS)

    Senin, H. B.; Kancono, W.; Sidek, H. A. A.

    2007-01-01

    The ultrasonic wave velocity and the thermal expansion of the rare earth glasses have been measured as functions of temperature and pressure to test predictions of the soft potential model for the acoustic and thermal properties. The longitudinal ultrasonic wave velocities increase under pressure. The hydrostatic pressure derivative of the bulk modulus is positive: these glasses show a normal elastic response as compressed. However, the pressure derivative of the shear modulus is negative and small, indicating weak softening of shear modes under pressure. The results found are used to determine the Gruneisen parameters. This is to obtain the acoustic mode contribution to thermal expansion. After subtraction of the relaxation and anharmonic contributions, the temperature dependence of the shear wave ultrasound velocity follows a linear law as predicted by the Soft Potential Model

  11. Reliability of Phase Velocity Measurements of Flexural Acoustic Waves in the Human Tibia In-Vivo.

    Science.gov (United States)

    Vogl, Florian; Schnüriger, Karin; Gerber, Hans; Taylor, William R

    2016-01-01

    Axial-transmission acoustics have shown to be a promising technique to measure individual bone properties and detect bone pathologies. With the ultimate goal being the in-vivo application of such systems, quantification of the key aspects governing the reliability is crucial to bring this method towards clinical use. This work presents a systematic reliability study quantifying the sources of variability and their magnitudes of in-vivo measurements using axial-transmission acoustics. 42 healthy subjects were measured by an experienced operator twice per week, over a four-month period, resulting in over 150000 wave measurements. In a complementary study to assess the influence of different operators performing the measurements, 10 novice operators were trained, and each measured 5 subjects on a single occasion, using the same measurement protocol as in the first part of the study. The estimated standard error for the measurement protocol used to collect the study data was ∼ 17 m/s (∼ 4% of the grand mean) and the index of dependability, as a measure of reliability, was Φ = 0.81. It was shown that the method is suitable for multi-operator use and that the reliability can be improved efficiently by additional measurements with device repositioning, while additional measurements without repositioning cannot improve the reliability substantially. Phase velocity values were found to be significantly higher in males than in females (p < 10-5) and an intra-class correlation coefficient of r = 0.70 was found between the legs of each subject. The high reliability of this non-invasive approach and its intrinsic sensitivity to mechanical properties opens perspectives for the rapid and inexpensive clinical assessment of bone pathologies, as well as for monitoring programmes without any radiation exposure for the patient.

  12. Acoustic characterization of a CANDU primary heat transport pump at the blade-passing frequency

    International Nuclear Information System (INIS)

    Rzentkowski, G.; Zbroja, S.

    2000-01-01

    In this paper, we examine the acoustics of a single-stage, double-volute CANDU heat transport pump based on a full-scale experimental investigation. We estimate the strength of source variables (acoustic pressure and velocity) and establish the pump characteristics as an acoustic source at the blade-passing frequency. We conduct this analysis by first assessing the resonance effects in the test loop, and then decomposing the measured signal into the components associated with pump action and loop acoustics with the use of a simple pump model. The pump model is based on a linear superposition of pressure wave transmission and excitation. The results of this analysis indicate that the pump source variables are nearly free of acoustic resonance effects in the test loop. The source pressure and velocity are each estimated at approximately 10 kPa (zero-to-peak). The results also indicate that the pump may act as both a pressure and a velocity source. At the loop resonance, the pump acoustic behavior is exclusively governed by the pressure term. This observation leads to the conclusion that the maximum amplification of pressure pulsations in a reactor heat transport system may be predicted by modeling the pump as a pressure source. (orig.)

  13. Observations of the Magellanic Stream between declinations -200 and 00

    International Nuclear Information System (INIS)

    Cohen, R.J.

    1982-01-01

    The region of the Magellanic Stream between RA 23sup(h) 00sup(m) and 00sup(h) 20sup(m) and Dec - 20 0 and 0 0 (1950) has been mapped in the 21-cm line of neutral hydrogen using the Jodrell Bank Mk II telescope (beamwidth 31 x 34 arcmin 2 ). The detection level of the measurements is 0.1 K. The Stream is much more extensive in this part of the sky than hitherto realized, and has a very complex filamentary structure. All the filaments follow a regular velocity pattern. In addition to the known gradient of velocity along the Stream there is a gradient transverse to the Stream. In this and other respects the Stream is very similar to tidal bridges and tails seen in the nearby M81 group of galaxies. (author)

  14. Should tsunami models use a nonzero initial condition for horizontal velocity?

    Science.gov (United States)

    Nava, G.; Lotto, G. C.; Dunham, E. M.

    2017-12-01

    Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require two initial conditions: one on sea surface height and another on depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). We run several full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor, using both idealized structures and a more realistic Tohoku structure. Substantial horizontal momentum is imparted to the ocean, but almost all momentum is carried away in the form of ocean acoustic waves. We compare tsunami propagation in each full-physics simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial conditions. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves (from ocean acoustic and seismic waves) at some final time, and backpropagating the tsunami

  15. Anomalous acoustic dispersion in architected microlattice metamaterials

    Science.gov (United States)

    KröDel, Sebastian; Palermo, Antonio; Daraio, Chiara

    The ability to control dispersion in acoustic metamaterials is crucial to realize acoustic filtering and rectification devices as well as perfect imaging using negative refractive index materials. Architected microlattice metamaterials immersed in fluid constitute a versatile platform for achieving such control. We investigate architected microlattice materials able to exploit locally resonant modes of their fundamental building blocks that couple with propagating acoustic waves. Using analytical, numerical and experimental methods we find that such lattice materials show a hybrid dispersion behavior governed by Biot's theory for long wavelengths and multiple scattering theory when wave frequency is close to the resonances of the building block. We identify the relevant geometric parameters to alter and control the group and phase velocities in this class of acoustic metamaterials. Furthermore, we fabricate small-scale acoustic metamaterial samples using high precision SLA additive manufacturing and test the resulting materials experimentally using a customized ultrasonic setup. This work paves the way for new acoustic devices based on microlattice metamaterials.

  16. Using of CFD software for setting the location of water stream micro turbines

    Directory of Open Access Journals (Sweden)

    Borsuk Łukasz

    2016-01-01

    Full Text Available The aim of this work was to estimate the efficiency of CFD software in calculating flow velocity magnitude in natural water streams. These kinds of estimations are essential for setting the locations of water stream micro turbines. These devices can be useful to provide electricity in areas remote from power generating facilities or as backup power supply in case of power grid failure. The analysed water stream has length of 100 m and its average slope was approximately 10%. Water velocity varies in the range from 0.5 m3*s−1 to 5 m3*s−1. Additionally, the influence of ground roughness on the stream velocity was also an important factor. Results proved to be satisfactory. In the analysed stream, velocities were in a range which allows the proposed micro turbine to be effective. Calculation grid created by CFD software did not have many areas which may raise doubts. Also, the influence of changes in the ground roughness factor was noticeable. Preliminary CFD simulations allow to estimate where in the stream the micro turbine will be most efficient. On the other hand, despite these calculations, profitability and return on the investment still can be questionable.

  17. Study of stream flow effects on bubble motion

    International Nuclear Information System (INIS)

    Sami, S.S.

    1983-01-01

    The formation of air bubbles at constant-pressure by submerged orifices was investigated in both quiescent and moving streams inside a vertical tube. Parameters affecting the bubble rise velocity, such as bubble generating frequency and diameter, were studied and analyzed for bubbles rising in a chain and homogeneous mixture. A special technique for measuring bubble motion parameters has been developed, tested, and employed throughout the experimental investigation. The method is based on a water-air impedance variation. Results obtained in stagnant liquid show that increasing the bubble diameter serves to increase bubble rise velocity, while an opposite trend has been observed for stream liquid where the bubble diameter increase reduces the bubble rise velocity. The increase of bubble generation frequency generally increases the bubble rise velocity. Experimental data covered with bubble radial distribution showed symmetrical profiles of bubble velocity and frequency, and the radial distribution of the velocity profiles sometimes has two maxima and one minimum depending on the liquid velocity. Finally, in stagnant liquid, a normalized correlation has been developed to predict the terminal rise velocity in terms of bubble generating frequency, bubble diameter, single bubble rise velocity, and conduit dimensions. Another correlation is presented for forced bubbly flow, where the bubble rise velocity is expressed as a function of bubble generating frequency, bubble diameter, and water superficial velocity

  18. THE DAWNING OF THE STREAM OF AQUARIUS IN RAVE

    International Nuclear Information System (INIS)

    Williams, M. E. K.; Steinmetz, M.; De Jong, R. S.; Minchev, I.; Sharma, S.; Bland-Hawthorn, J.; Parker, Q. A.; Seabroke, G. M.; Helmi, A.; Freeman, K. C.; Binney, J.; Bienayme, O.; Campbell, R.; Fulbright, J. P.; Gibson, B. K.; Gilmore, G. F.; Grebel, E. K.; Munari, U.; Navarro, J. F.; Reid, W.

    2011-01-01

    We identify a new, nearby (0.5kpc ∼ 0 0 and -70 0 0 , with heliocentric line-of-sight velocities V los ∼ -200 km s -1 . The members are outliers in the radial velocity distribution, and the overdensity is statistically significant when compared to mock samples created with both the Besancon Galaxy model and newly developed code Galaxia. The metallicity distribution function and isochrone fit in the log g-T eff plane suggest that the stream consists of a 10 Gyr old population with [M/H] ∼ -1.0. We explore relations to other streams and substructures, finding that the stream cannot be identified with known structures: it is a new, nearby substructure in the Galaxy's halo. Using a simple dynamical model of a dissolving satellite galaxy, we account for the localization of the stream. We find that the stream is dynamically young and therefore likely the debris of a recently disrupted dwarf galaxy or globular cluster. The Aquarius stream is thus a specimen of ongoing hierarchical Galaxy formation, rare for being right in the solar suburb.

  19. Impact of layer and substrate properties on the surface acoustic wave velocity in scandium doped aluminum nitride based SAW devices on sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Gillinger, M., E-mail: manuel.gillinger@tuwien.ac.at; Knobloch, T.; Schneider, M.; Schmid, U. [Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna (Austria); Shaposhnikov, K.; Kaltenbacher, M. [Institute of Mechanics and Mechatronics, TU Wien, 1040 Vienna (Austria)

    2016-06-06

    This paper investigates the performance of surface acoustic wave (SAW) devices consisting of reactively sputter deposited scandium doped aluminum nitride (Sc{sub x}Al{sub 1-x}N) thin films as piezoelectric layers on sapphire substrates for wireless sensor or for RF-MEMS applications. To investigate the influence of piezoelectric film thickness on the device properties, samples with thickness ranging from 500 nm up to 3000 nm are fabricated. S{sub 21} measurements and simulations demonstrate that the phase velocity is predominantly influenced by the mass density of the electrode material rather than by the thickness of the piezoelectric film. Additionally, the wave propagation direction is varied by rotating the interdigital transducer structures with respect to the crystal orientation of the substrate. The phase velocity is about 2.5% higher for a-direction compared to m-direction of the sapphire substrate, which is in excellent agreement with the difference in the anisotropic Young's modulus of the substrate corresponding to these directions.

  20. Elastic wave velocity and acoustic emission monitoring during Gypsum dehydration under triaxial stress conditions

    Science.gov (United States)

    Brantut, N.; David, E. C.; Héripré, E.; Schubnel, A. J.; Zimmerman, R. W.; Gueguen, Y.

    2010-12-01

    Dehydration experiments were performed on natural Gypsum polycrystal samples coming from Volterra, Italy in order to study contemporaneously the evolution of P and S elastic wave velocities and acoustic emission (AE) triggering. During these experiments, temperature was slowly raised at 0.15 degrees C per minute under constant stress conditions. Two experiments were realized under quasi-hydrostatic stress (15 and 55 MPa respectively). The third experiment was realized under constant triaxial stress (σ3=45MPa, σ1=75MPa). All three were drained (10MPa constant pore pressure). In each experiments, both P and S wave velocities reduced drastically (as much as approx. 50% in the low confining pressure case) at the onset of dehydration. Importantly, the Vp/Vs ratio also decreased. Shortly after the onset of decrease in P and S wave velocities, the dehydration reaction was also accompanied by bursts of AEs. Time serie locations of the AEs show that they initiated from the pore pressure port, ie from where the pore fluid could easily be drained, and then slowly migrated within the sample. In each experiments, the AE rate could be positively correlated to the reaction rate, inferred from pore volumetry. In such a way, the AE rate reached a peak when the reaction was the fastest. Focal mechanism analysis of the largest AEs showed they had a large volumetric component in compaction, confirming that AEs were indeed related to pore closure and/or collapse. In addition, the AE rate also increased with confinement, ie when a larger amount of compaction was observed. Interestingly, when under differential stress conditions, AE focal mechanisms were mainly in shear. Additional dehydration experiments performed within an environmental scanning electron microscope under low vacuum highlight that, in drained conditions at least, the reaction seems to take place in two phases. First, cracks are being opened along cleavage planes within a single gypsum crystal, which allows for the

  1. Effective modelling of acoustofluidic devices

    DEFF Research Database (Denmark)

    Ley, Mikkel Wennemoes Hvitfeld

    , and 3) acoustic streaming patterns in the devices considered in model 2). 1) We derive an effective model for numerical studies of hydrodynamic particle-particle interactions in microfluidic high-concentration suspensions. A suspension of microparticles placed in a microfluidic channel and influenced......, and of the momentum transfer between the particles and the suspension. 2) We derive a full 3D numerical model for the coupled acoustic fields in mm-sized water-filled glass capillaries, calculating pressure field in the liquid coupled to the displacement field of the glass channel, taking into account mixed standing...... for the acoustic field in glass capillary devices derived in 2), we make an effective model for calculating the acoustic streaming velocity in 3D. To do this, we use recent analytical results that allows calculation of the acoustic streaming field resulting from channel-wall oscillations in any direction...

  2. Acoustic levitator for containerless measurements on low temperature liquids

    Energy Technology Data Exchange (ETDEWEB)

    Benmore, Chris J [Argonne National Laboratory (ANL); Weber, Richard [Argonne National Laboratory (ANL); Neuefeind, Joerg C [ORNL; Rey, Charles A A [Charles Ray, Inc.

    2009-01-01

    A single-axis acoustic levitator was constructed and used to levitate liquid and solid drops at temperatures from -40 to +40 C. The levitator consisted of: (i) two acoustic transducers mounted on a rigid vertical support that was bolted to an optical breadboard, (ii) a acoustic power supply that controlled acoustic intensity, relative phase of the drive to the transducers, and could modulate the acoustic forces at frequencies up to 1kHz, (iii) a video camera, and (iv) a system for providing a stream of controlled temperature gas flow over the sample. The acoustic transducers were operated at their resonant frequency of ~ 22 kHz and could produce sound pressure levels up to 160 dB. The force applied by the acoustic field could be modulated using a frequency generator to excite oscillations in the sample. Sample temperature was controlled using a modified Cryostream Plus and measured using thermocouples and an infrared thermal imager. The levitator was installed at x-ray beamline 11 ID-C at the Advanced Photon Source and used to investigate the structure of supercooled liquids.

  3. Physical acoustics principles and methods

    CERN Document Server

    Mason, Warren P

    2012-01-01

    Physical Acoustics: Principles and Methods, Volume IV, Part B: Applications to Quantum and Solid State Physics provides an introduction to the various applications of quantum mechanics to acoustics by describing several processes for which such considerations are essential. This book discusses the transmission of sound waves in molten metals. Comprised of seven chapters, this volume starts with an overview of the interactions that can happen between electrons and acoustic waves when magnetic fields are present. This text then describes acoustic and plasma waves in ionized gases wherein oscillations are subject to hydrodynamic as well as electromagnetic forces. Other chapters examine the resonances and relaxations that can take place in polymer systems. This book discusses as well the general theory of the interaction of a weak sinusoidal field with matter. The final chapter describes the sound velocities in the rocks composing the Earth. This book is a valuable resource for physicists and engineers.

  4. Numerical analysis on acoustic impulse response for watermelon

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Sul; Yang, Dong Hoon; Choi, Young Jae; Bae, Tas Joo; So, Chul Ho [Dongshin University, Naju (Korea, Republic of); Lee, Yun Ho [Korea Inspection and Engineering CO.,LTD., Seoul (Korea, Republic of)

    2002-11-15

    In this study, we conducted both analysis on impact pulse signal and acoustic impulse response method using numerical analysistic finite element method. Considering its velocity, density, Young's Modulus, and Poisson's Ratio, we extracted featured parameters and compared both results of analysis on impact pulse signal and numerical analysis on acoustic impulse response then we found the feature of generated acoustic sound signal by way of numerical analysis varying featured parameters and consequently intended to extract feature indices influenced on its internal maturity through analysis of acoustic impulse response. As we analyzed impact pulse signal and extracted featured parameters concerned with evaluation of its ripeness, we found the plausibility of progress on nondestructive evaluation of ripeness and adoption of numerical analysis on acoustic impulse response.

  5. Streaming reversal of energetic particles in the magnetetail during a substorm

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Williams, D.J.; Eastman, T.E.; Frank, L.A.; Akasofu, S.

    1984-01-01

    Reversal from tailward streaming to earthward streaming of energetic ions at 0.29--0.50 MeV during a substorm on February 3, 1978, is studied with measurements of energetic particles, plasma, and magnetic field from that IMP 8 spacecraft near the dusk flank of the magnetotail. Four new features emerge when high time resolution data are examined in detail. The times of reversal from tailward to earthward streaming of energetic ions and from tailward to earthward plasma flow do not coincide. Second, the velocity distribution in the tailward flowing plasma has a cresent shape, whereas the velocity distribution in the earthward flowing plasma has a crescent shape, whereas the velocity distribution in the earthward flowing plasma resembles a convecting Maxwellian. Third, tailward streaming of energetic ions is sometime detected in northward magnetic field regions and conversely, earthward streaming in southward field environments. Fourth, energetic ions scattering earthward are occasionally present in conjunction with a strong tailward streaming population in the same energy range. These new features suggest that the streaming reversal of energetic ions and the plasma flow reversal in this event are due to the spacecraft traversing different plasma regions during the substorm-associated configurational change of the plasma sheet and the magnetotail and is unrelated to the motion of an acceleration region such as an X type neutral line moving past the spacecraft

  6. Validation and application of Acoustic Mapping Velocimetry

    Science.gov (United States)

    Baranya, Sandor; Muste, Marian

    2016-04-01

    The goal of this paper is to introduce a novel methodology to estimate bedload transport in rivers based on an improved bedform tracking procedure. The measurement technique combines components and processing protocols from two contemporary nonintrusive instruments: acoustic and image-based. The bedform mapping is conducted with acoustic surveys while the estimation of the velocity of the bedforms is obtained with processing techniques pertaining to image-based velocimetry. The technique is therefore called Acoustic Mapping Velocimetry (AMV). The implementation of this technique produces a whole-field velocity map associated with the multi-directional bedform movement. Based on the calculated two-dimensional bedform migration velocity field, the bedload transport estimation is done using the Exner equation. A proof-of-concept experiment was performed to validate the AMV based bedload estimation in a laboratory flume at IIHR-Hydroscience & Engineering (IIHR). The bedform migration was analysed at three different flow discharges. Repeated bed geometry mapping, using a multiple transducer array (MTA), provided acoustic maps, which were post-processed with a particle image velocimetry (PIV) method. Bedload transport rates were calculated along longitudinal sections using the streamwise components of the bedform velocity vectors and the measured bedform heights. The bulk transport rates were compared with the results from concurrent direct physical samplings and acceptable agreement was found. As a first field implementation of the AMV an attempt was made to estimate bedload transport for a section of the Ohio river in the United States, where bed geometry maps, resulted by repeated multibeam echo sounder (MBES) surveys, served as input data. Cross-sectional distributions of bedload transport rates from the AMV based method were compared with the ones obtained from another non-intrusive technique (due to the lack of direct samplings), ISSDOTv2, developed by the US Army

  7. Investigation of technology for the monitoring of UF6 mass flow in UF6 streams diluted with H2

    International Nuclear Information System (INIS)

    Baker, O.J.; Cooley, J.N.; Hewgley, W.A.; Moran, B.W.; Swindle, D.W. Jr.

    1986-12-01

    The applicability, availability, and effectiveness of gas flow meters are assessed as a means for verifying the mass flows of pure UF 6 streams diluted with a carrier gas. The initial survey identified the orifice, pitot tube, thermal, vortex shedding, and vortex precession (swirl) meters as promising for the intended use. Subsequent assessments of these flow meters revealed that two - the orifice meter and the pitot tube meter - are the best choices for the proposed applications: the first is recommended for low velocity gas, small diameter piping; the latter, for high velocity gas, large diameter piping. Final selection of the gas flow meters should be based on test loop evaluations in which the proposed meters are subjected to gas flows, temperatures, and pressures representative of those expected in service. Known instruments are evaluated that may be applicable to the measurement of uranium or UF 6 concentration in a UF 6 - H 2 process stream at an aerodynamic enrichment plant. Of the six procedures evaluated, four have been used for process monitoring in a UF 6 environment: gas mass spectrometry, infrared-ultraviolet-visible spectrophotometry, gas chromatography, and acoustic gas analysis. The remaining two procedures, laser fluorimetry and atomic absorption spectroscopy, would require significant development work before they could be used for process monitoring. Infrared-ultravioloet-visible spectrophotometry is judged to be the best procedure currently available to perform the required measurement

  8. Visco-acoustic wave-equation traveltime inversion and its sensitivity to attenuation errors

    KAUST Repository

    Yu, Han; Chen, Yuqing; Hanafy, Sherif M.; Huang, Jiangping

    2018-01-01

    A visco-acoustic wave-equation traveltime inversion method is presented that inverts for the shallow subsurface velocity distribution. Similar to the classical wave equation traveltime inversion, this method finds the velocity model that minimizes

  9. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  10. The evolution of magnetic structures due to open-quote open-quote magnetosonic streaming close-quote close-quote

    International Nuclear Information System (INIS)

    Ryutova, M.P.; Kaisig, M.; Tajima, T.

    1996-01-01

    The Faraday effect in gasdynamics called acoustic streaming and its accompanying nonlinear phenomena have analogies in plasma magnetohydrodynamics. A natural place where these effects may occur is the solar atmosphere with its strongly inhomogeneous magnetic fields concentrated in random magnetic flux tubes. Unlike acoustic streaming in the usual gasdynamics, nonlinear phenomena consisting in the generation of plasma flows by an oscillating magnetic flux tube, open-quote open-quote magnetosonic streaming close-quote close-quote (Ryutova 1986), is accompanied by a current drive and results in a specific evolution of magnetic structures: depending on the physical parameters of the medium a single magnetic flux tube may be either split into thinner flux tubes or dissolved diffusively into the ambient plasma. The effect of the open-quote open-quote magnetosonic streaming,close-quote close-quote on one hand, is an obvious candidate for the generation of mass flows at magnetic flux tubes sites, and on the other hand, it plays an essential role in the evolution of magnetic structures and ultimately may determine their lifetime. The theory of magnetosonic streaming is general and can be applied to other astrophysical objects that maintain oscillatory motions and contain structured magnetic fields or magnetic domains. We review analytical results and describe the origin of the magnetosonic streaming in magnetic flux tubes due to their interaction with acoustic waves. We study numerically the regime of the open-quote open-quote magnetosonic streaming close-quote close-quote corresponding to splitting of a magnetic flux tube. Our computer simulation supports and extends the analytical result. copyright 1996 The American Astronomical Society

  11. Acoustics of fish shelters: background noise and signal-to-noise ratio.

    Science.gov (United States)

    Lugli, Marco

    2014-12-01

    Fish shelters (flat stones, shells, artificial covers, etc., with a hollow beneath) increase the sound pressure levels of low frequency sounds (noise ratio (SNR) in the nest. Background noise amplification by the shelter was examined under both laboratory (stones and shells) and field (stones) conditions, and the SNR of tones inside the nest cavity was measured by performing acoustic tests on stones in the stream. Stone and shell shelters amplify the background noise pressure levels inside the cavity with comparable gains and at similar frequencies of an active sound source. Inside the cavity of stream stones, the mean SNR of tones increased significantly below 125 Hz and peaked at 65 Hz (+10 dB). Implications for fish acoustic communication inside nest enclosures are discussed.

  12. Influence of superthermal electrons on obliquely propagating ion-acoustic solitons in magnetized plasmas

    International Nuclear Information System (INIS)

    Kadijani, M Nouri; Abbasi, H; Pajouh, H Hakimi

    2011-01-01

    The effect of superthermal electrons, modeled by a Lorentzian velocity distribution function, on the oblique propagation characteristics of linear and nonlinear ion-acoustic waves in an electron-ion plasma in the presence of a uniform external magnetic field is investigated. First, the linear dispersion relations of the fast and slow modes are obtained. It is shown that the superthermal electrons make both modes propagate with smaller phase velocities. Then, the Korteweg-de Vries equation describing the propagation of nonlinear slow and fast ion-acoustic waves is derived. It is shown that the presence of superthermal electrons has a significant influence on the nature of magnetized ion-acoustic solitons. That is, for a larger population of the superthermal electrons, the soliton velocity of both modes in the laboratory frame significantly decreases and the soliton are slimmer, and on approaching the Maxwellian limit, the width becomes maximum.

  13. Acoustic excitation of diffusion flames with coherent structure in a plane shear layer.; Effects of acoustic excitation on combustion properties; Soshiki kozo wo tomonau sendan kakusan kaen no onkyo reiki.; Onkyo reiki ni yoru nensho tokusei no henka

    Energy Technology Data Exchange (ETDEWEB)

    Ishino, Y.; Kojima, T.; Oiwa, N.; Yamaguchi, S. [Nagoya Institute of Technology, Nagoya (Japan)

    1993-10-25

    This paper reports on experiments for acoustic excitation of plane shear structured flame. Flows of air separated into the higher velocity side and the lower velocity side by a partition on the center of a flow path merge at the measuring point to form a mixed layer with coherent structure. Fuel is supplied to this mixed layer with the flows so adjusted that the generated flame will attach to the partition on the lower velocity side. Acoustic excitation (at a sound pressure level of 100 dB to 120 dB) is performed in a speaker fitted on a wall on the higher velocity side. The paper mentions the results of the experiments as follows: the acoustic excitation produces such changes to diffusion flame in the plane shear layer as shorter flame and blue flame combustion and clarification of flame structures; as seen from spectral characteristics of temperature change in the flames, a flame acoustically excited strongly presents remarkable improvements in periodicity of the structure; as seen from sound pressure distribution in the flow direction at the measuring point, the flame zone of the flame acoustically excited strongly is positioned at the middle of the node and loop of a standing wave. 6 refs., 9 figs., 1 tab.

  14. Acoustic Wave Propagation in Snow Based on a Biot-Type Porous Model

    Science.gov (United States)

    Sidler, R.

    2014-12-01

    Despite the fact that acoustic methods are inexpensive, robust and simple, the application of seismic waves to snow has been sparse. This might be due to the strong attenuation inherent to snow that prevents large scale seismic applications or due to the somewhat counterintuitive acoustic behavior of snow as a porous material. Such materials support a second kind of compressional wave that can be measured in fresh snow and which has a decreasing wave velocity with increasing density of snow. To investigate wave propagation in snow we construct a Biot-type porous model of snow as a function of porosity based on the assumptions that the solid frame is build of ice, the pore space is filled with a mix of air, or air and water, and empirical relationships for the tortuosity, the permeability, the bulk, and the shear modulus.We use this reduced model to investigate compressional and shear wave velocities of snow as a function of porosity and to asses the consequences of liquid water in the snowpack on acoustic wave propagation by solving Biot's differential equations with plain wave solutions. We find that the fast compressional wave velocity increases significantly with increasing density, but also that the fast compressional wave velocity might be even lower than the slow compressional wave velocity for very light snow. By using compressional and shear strength criteria and solving Biot's differential equations with a pseudo-spectral approach we evaluate snow failure due to acoustic waves in a heterogeneous snowpack, which we think is an important mechanism in triggering avalanches by explosives as well as by skiers. Finally, we developed a low cost seismic acquisition device to assess the theoretically obtained wave velocities in the field and to explore the possibility of an inexpensive tool to remotely gather snow water equivalent.

  15. Assessment of stability of a revitalized stream T12 in Orlické Záhoří

    Directory of Open Access Journals (Sweden)

    Jana Marková

    2013-01-01

    Full Text Available The aim of presented project is to execute an analysis and evaluation of stream-bed conditions for streams after revitalisation measures. Revitalisation of stream T12 in Orlické Záhoří has been comprehensive, included changes of stream line and longitudinal and transversal profile. The evaluation was so provided in two absolutely different stream-beds. The evaluation was focused on stream-bed ground and slopes stability, which were established on the base of tangential stress, scouring and nonscouring velocity and of mean velocity in vertical calculation. Then the individual methods of calculation were compared and the results were faced with actual status of stream-bed and supposed development of stream-bed morphology.

  16. Acoustically Driven Fluid and Particle Motion in Confined and Leaky Systems

    Science.gov (United States)

    Barnkob, Rune; Nama, Nitesh; Ren, Liqiang; Huang, Tony Jun; Costanzo, Francesco; Kähler, Christian J.

    2018-01-01

    The acoustic motion of fluids and particles in confined and acoustically leaky systems is receiving increasing attention for its use in medicine and biotechnology. A number of contradicting physical and numerical models currently exist, but their validity is uncertain due to the unavailability of hard-to-access experimental data for validation. We provide experimental benchmarking data by measuring 3D particle trajectories and demonstrate that the particle trajectories can be described numerically without any fitting parameter by a reduced-fluid model with leaky impedance-wall conditions. The results reveal the hitherto unknown existence of a pseudo-standing wave that drives the acoustic streaming as well as the acoustic radiation force on suspended particles.

  17. Time-resolved tomography using acoustic emissions in the laboratory, and application to sandstone compaction

    Science.gov (United States)

    Brantut, Nicolas

    2018-02-01

    Acoustic emission and active ultrasonic wave velocity monitoring are often performed during laboratory rock deformation experiments, but are typically processed separately to yield homogenised wave velocity measurements and approximate source locations. Here I present a numerical method and its implementation in a free software to perform a joint inversion of acoustic emission locations together with the three-dimensional, anisotropic P-wave structure of laboratory samples. The data used are the P-wave first arrivals obtained from acoustic emissions and active ultrasonic measurements. The model parameters are the source locations and the P-wave velocity and anisotropy parameter (assuming transverse isotropy) at discrete points in the material. The forward problem is solved using the fast marching method, and the inverse problem is solved by the quasi-Newton method. The algorithms are implemented within an integrated free software package called FaATSO (Fast Marching Acoustic Emission Tomography using Standard Optimisation). The code is employed to study the formation of compaction bands in a porous sandstone. During deformation, a front of acoustic emissions progresses from one end of the sample, associated with the formation of a sequence of horizontal compaction bands. Behind the active front, only sparse acoustic emissions are observed, but the tomography reveals that the P-wave velocity has dropped by up to 15%, with an increase in anisotropy of up to 20%. Compaction bands in sandstones are therefore shown to produce sharp changes in seismic properties. This result highlights the potential of the methodology to image temporal variations of elastic properties in complex geomaterials, including the dramatic, localised changes associated with microcracking and damage generation.

  18. Acoustic characteristics of the flow over different shapes of nozzle chevrons,

    Directory of Open Access Journals (Sweden)

    Daniel CRUNTEANU

    2013-09-01

    Full Text Available The objective of this paper is to present a comparison between different types of chevrons and their influence on the acoustic power level radiated by the flow over them. The comparison was performed using a two-dimensional simulation of the flow over four different shapes of chevrons resulting propagation of the acoustic waves for each shape. Acoustic characteristics were revealed studying the main flow parameters (pressure, velocity, kinetic energy in order to be able to discover the most efficient shape of chevron regarding the acoustic power level emitted.

  19. Effect of finite ion-temperature on ion-acoustic solitary waves in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Shivamoggi, B.K.

    1981-01-01

    The propagation of weakly nonlinear ion-acoustic waves in an inhomogeneous plasma is studied taking into account the effect of finite ion temperature. It is found that, whereas both the amplitude and the velocity of propagation decrease as the ion-acoustic solitary wave propagates into regions of higher density, the effect of a finite ion temperature is to reduce the amplitude but enhance the velocity of propagation of the solitary wave. (author)

  20. Acoustic waves in unbounded shear flows

    International Nuclear Information System (INIS)

    Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.; Rogava, A.D.

    1996-05-01

    The linear evolution of acoustic waves in fluid flow with constant density and uniform shear of velocity is investigated. The process of the mean flow energy extraction by the three-dimensional acoustic waves which is due to the non-normality of linear dynamics in shear flows is analyzed. The thorough examination of the dynamics of different physical quantities, specifying the wave evolution, is outlined. The revealing of the behaviour becomes possible owing to the nonmodal approach that has been extensively used in the study of the perturbations evolution in shear flows since the beginning of the nineties. In addition, a detailed analyses of the physics of shear energy gain by vortex and acoustic perturbations is presented. (author). 28 refs, 7 figs

  1. Residual stress measurement with focused acoustic waves and direct comparison with X-ray diffraction stress measurements

    International Nuclear Information System (INIS)

    Sathish, Shamachary; Moran, Thomas J.; Martin, Richard W.; Reibel, Richard

    2005-01-01

    The technique of measuring small changes in acoustic wave velocity due to external or internal stress has been used for quantitative determination of residual stress in materials during the last decade. Application of similar methodology with focused acoustic waves leads to residual stress measurement with spatial resolution of a few millimeters to a few microns. The high spatial resolution residual stress measurement required development of new methodologies in both the design of acoustic lenses and the instrumentation for acoustic wave velocity determination. This paper presents two new methodologies developed for the measurement of residual stress with spatial resolution of a few millimeters. The design of new type of acoustic lens for achieving higher spatial resolution in residual stress measurement is introduced. Development of instrumentation for high precision local surface wave velocity measurement will be presented. Residual stresses measured around a crack tip in a sample of Ti-6A1-4V using a focused beam will be compared with X-ray diffraction measurements performed on the same region of the sample. Results of residual stress measurements along a direction perpendicular to the electron beam weld in a sample of Ti-6A1-4V, determined using focused acoustic waves and X-ray diffraction technique, are also presented. The spatial resolution and penetration depth of X-rays and focused acoustic beams with reference to residual stress measurements are discussed

  2. Passive acoustic monitoring of bed load for fluvial applications

    Science.gov (United States)

    The sediment transported as bed load in streams and rivers is notoriously difficult to monitor cheaply and accurately. Passive acoustic methods are relatively simple, inexpensive, and provide spatial integration along with high temporal resolution. In 1963 work began on monitoring emissions from par...

  3. Acoustic forcing of a liquid drop

    Science.gov (United States)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  4. Stick-slip Cycles and Tidal Modulation of Ice Stream Flow

    Science.gov (United States)

    Lipovsky, B.; Dunham, E. M.

    2016-12-01

    The reactivation of a single dormant Antarctic ice stream would double the continent's mass imbalance. Despite importance of understanding the likelihood of such an event, direct observation of the basal processes that lead to the activation and stagnation of streaming ice are minimal. As the only ice stream undergoing stagnation, the Whillans Ice Plain (WIP) occupies a central role in our understanding of these subglacial processes. Complicating matters is the observation, from GPS records, that the WIP experiences most of its motion during episodes of rapid sliding. These sliding events are tidally modulated and separated by 12 hour periods of quiescence. We conduct numerical simulations of ice stream stick-slip cycles. Our simulations include rate- and state-dependent frictional sliding, tidal forcing, inertia, upstream loading in a cross-stream, thickness-averaged formulation. Our principal finding is that ice stream motion may respond to ocean tidal forcing with one of two end member behaviors. In one limit, tidally modulated slip events have rupture velocities that approach the shear wave speed and slip events have a duration that scales with the ice stream width divided by the shear wave speed. In the other limit, tidal modulation results in ice stream sliding velocities with lower amplitude variation but at much longer timescales, i.e. semi-diurnal and longer. This latter behavior more closely mimics the behavior of several active ice streams (Bindschadler, Rutford). We find that WIP slip events exist between these two end member behaviors: rupture velocities are far below the inertial limit yet sliding occurs only episodically. The continuum of sliding behaviors is governed by a critical ice stream width over which slip event nucleate. When the critical width is much longer than the ice stream width, slip events are unable to nucleate. The critical width depends on the subglacial effective pressure, ice thickness, and frictional and elastic constitutive

  5. Surface acoustic waves voltage controlled directional coupler

    Science.gov (United States)

    Golan, G.; Griffel, G.; Yanilov, E.; Ruschin, S.; Seidman, A.; Croitoru, N.

    1988-10-01

    An important condition for the development of surface wave integrated-acoustic devices is the ability to guide and control the propagation of the acoustic energy. This can be implemented by deposition of metallic "loading" channels on an anisotropic piezoelectric substrate. Deposition of such two parallel channels causes an effective coupling of acoustic energy from one channel to the other. A basic requirement for this coupling effect is the existence of the two basic modes: a symmetrical and a nonsymmetrical one. A mode map that shows the number of sustained modes as a function of the device parameters (i.e., channel width; distance between channels; material velocity; and acoustical exciting frequency) is presented. This kind of map can help significantly in the design process of such a device. In this paper we devise an advanced acoustical "Y" coupler with the ability to control its effective coupling by an externally applied voltage, thereby causing modulation of the output intensities of the signals.

  6. Experimental determination of the dynamics of an acoustically levitated sphere

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Nicolás, E-mail: nico@fisica.edu.uy [Centro Universitario de Paysandú, Universidad de la República, Paysandú (Uruguay); Andrade, Marco A. B. [Institute of Physics, University of São Paulo, São Paulo (Brazil); Canetti, Rafael [Facultad de Ingeniería, Universidad de la República, Montevideo (Uruguay); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)

    2014-11-14

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  7. Experimental determination of the dynamics of an acoustically levitated sphere

    International Nuclear Information System (INIS)

    Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael; Adamowski, Julio C.

    2014-01-01

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator

  8. New Analysis Scheme of Flow-Acoustic Coupling for Gas Ultrasonic Flowmeter with Vortex near the Transducer.

    Science.gov (United States)

    Sun, Yanzhao; Zhang, Tao; Zheng, Dandan

    2018-04-10

    Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD), wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to -17%. In addition, the rationality of the simulation was proved by experiments.

  9. New Analysis Scheme of Flow-Acoustic Coupling for Gas Ultrasonic Flowmeter with Vortex near the Transducer

    Science.gov (United States)

    Zhang, Tao; Zheng, Dandan

    2018-01-01

    Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD), wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to −17%. In addition, the rationality of the simulation was proved by experiments. PMID:29642577

  10. New Analysis Scheme of Flow-Acoustic Coupling for Gas Ultrasonic Flowmeter with Vortex near the Transducer

    Directory of Open Access Journals (Sweden)

    Yanzhao Sun

    2018-04-01

    Full Text Available Ultrasonic flowmeters with a small or medium diameter are widely used in process industries. The flow field disturbance on acoustic propagation caused by a vortex near the transducer inside the sensor as well as the mechanism and details of flow-acoustic interaction are needed to strengthen research. For that reason, a new hybrid scheme is proposed; the theories of computational fluid dynamics (CFD, wave acoustics, and ray acoustics are used comprehensively by a new step-by-step method. The flow field with a vortex near the transducer, and its influence on sound propagation, receiving, and flowmeter performance are analyzed in depth. It was found that, firstly, the velocity and vortex intensity distribution were asymmetric on the sensor cross-section and acoustic path. Secondly, when passing through the vortex zone, the central ray trajectory was deflected significantly. The sound pressure on the central line of the sound path also changed. Thirdly, the pressure deviation becomes larger with as the flow velocity increases. The deviation was up to 17% for different velocity profiles in a range of 0.6 m/s to 53 m/s. Lastly, in comparison to the theoretical value, the relative deviation of the instrument coefficient for the velocity profile with a vortex near the transducer reached up to −17%. In addition, the rationality of the simulation was proved by experiments.

  11. Manipulating Liquids With Acoustic Radiation Pressure Phased Arrays

    Science.gov (United States)

    Oeftering, Richard C.

    1999-01-01

    High-intensity ultrasound waves can produce the effects of "Acoustic Radiation Pressure" (ARP) and "acoustic streaming." These effects can be used to propel liquid flows and to apply forces that can be used to move or manipulate floating objects or liquid surfaces. NASA's interest in ARP includes the remote-control agitation of liquids and the manipulation of bubbles and drops in liquid experiments and propellant systems. A high level of flexibility is attained by using a high-power acoustic phased array to generate, steer, and focus a beam of acoustic waves. This is called an Acoustic Radiation Pressure Phased Array, or ARPPA. In this approach, many acoustic transducer elements emit wavelets that converge into a single beam of sound waves. Electronically coordinating the timing, or "phase shift," of the acoustic waves makes it possible to form a beam with a predefined direction and focus. Therefore, a user can direct the ARP force at almost any desired point within a liquid volume. ARPPA lets experimenters manipulate objects anywhere in a test volume. This flexibility allow it to be used for multiple purposes, such as to agitate liquids, deploy and manipulate drops or bubbles, and even suppress sloshing in spacecraft propellant tanks.

  12. Seismic velocities and attenuation in an underground granitic waste repository subjected to heating

    International Nuclear Information System (INIS)

    Paulsson, B.N.P.; King, M.S.

    1984-03-01

    The behavior of a granitic rock mass subjected to thermal load has been studied by an acoustic cross-hole technique between four boreholes, over a period of some two years. Velocities between boreholes were obtained from the times-of-flight of pulses of acoustic waves between transducers clamped to the borehole wall. The attenuation was obtained by a spectral ratios technique. When the heater was turned on, the velocities increased rapidly to an asymptotic value. When the heater was turned off, the velocities decreased rapidly to their original values or below. Velocities along a particular profile were found to increase linearly with the mean temperature in the profile tested. The attenuation showed little correlation with changes in temperature or the associated thermal stresses, but there was a good correlation of attenuation with water content and the related changes in pore pressure. 18 references, 7 figures

  13. Wavelet Transform: Application to Acoustic Logging La transformée en ondelettes : application à la diagraphie acoustique

    OpenAIRE

    Thirion N.; Mars J.; Volant P.; Mari J. L.

    2006-01-01

    The wavelet transform can be used to develop the process which allows group and phase velocity measurement of dispersive waves. The method has been applied to acoustic data to measure formation velocities. The behavior and the accuracy of the method have been checked on synthetic full waveform acoustic data. The method was applied to dispersive waves of the Stoneley type and to flexural modes whose low frequency components are propagated at the formation shear velocity. A raw measurement of t...

  14. Measuring surface flow velocity with smartphones: potential for citizen observatories

    Science.gov (United States)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  15. Experimental aerodynamic and acoustic model testing of the Variable Cycle Engine (VCE) testbed coannular exhaust nozzle system

    Science.gov (United States)

    Nelson, D. P.; Morris, P. M.

    1980-01-01

    Aerodynamic performance and jet noise characteristics of a one sixth scale model of the variable cycle engine testbed exhaust system were obtained in a series of static tests over a range of simulated engine operating conditions. Model acoustic data were acquired. Data were compared to predictions of coannular model nozzle performance. The model, tested with an without a hardwall ejector, had a total flow area equivalent to a 0.127 meter (5 inch) diameter conical nozzle with a 0.65 fan to primary nozzle area ratio and a 0.82 fan nozzle radius ratio. Fan stream temperatures and velocities were varied from 422 K to 1089 K (760 R to 1960 R) and 434 to 755 meters per second (1423 to 2477 feet per second). Primary stream properties were varied from 589 to 1089 K (1060 R to 1960 R) and 353 to 600 meters per second (1158 to 1968 feet per second). Exhaust plume velocity surveys were conducted at one operating condition with and without the ejector installed. Thirty aerodynamic performance data points were obtained with an unheated air supply. Fan nozzle pressure ratio was varied from 1.8 to 3.2 at a constant primary pressure ratio of 1.6; primary pressure ratio was varied from 1.4 to 2.4 while holding fan pressure ratio constant at 2.4. Operation with the ejector increased nozzle thrust coefficient 0.2 to 0.4 percent.

  16. Acoustical tweezers using single spherically focused piston, X-cut, and Gaussian beams.

    Science.gov (United States)

    Mitri, Farid G

    2015-10-01

    Partial-wave series expansions (PWSEs) satisfying the Helmholtz equation in spherical coordinates are derived for circular spherically focused piston (i.e., apodized by a uniform velocity amplitude normal to its surface), X-cut (i.e., apodized by a velocity amplitude parallel to the axis of wave propagation), and Gaussian (i.e., apodized by a Gaussian distribution of the velocity amplitude) beams. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSEs assuming weakly focused beams (with focusing angle α ⩽ 20°) in the Fresnel-Kirchhoff (parabolic) approximation. In contrast with previous analytical models, the derived expressions allow computing the scattering and acoustic radiation force from a sphere of radius a without restriction to either the Rayleigh (a ≪ λ, where λ is the wavelength of the incident radiation) or the ray acoustics (a ≫λ) regimes. The analytical formulations are valid for wavelengths largely exceeding the radius of the focused acoustic radiator, when the viscosity of the surrounding fluid can be neglected, and when the sphere is translated along the axis of wave propagation. Computational results illustrate the analysis with particular emphasis on the sphere's elastic properties and the axial distance to the center of the concave surface, with close connection of the emergence of negative trapping forces. Potential applications are in single-beam acoustical tweezers, acoustic levitation, and particle manipulation.

  17. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    International Nuclear Information System (INIS)

    Kwon, J O; Yang, J S; Lee, S J; Rhee, K; Chung, S K

    2011-01-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  18. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    Science.gov (United States)

    Kwon, J. O.; Yang, J. S.; Lee, S. J.; Rhee, K.; Chung, S. K.

    2011-11-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  19. Tables of the velocity of sound in sea water

    CERN Document Server

    Bark, L S; Meister, N A

    1964-01-01

    Tables of the Velocity of Sound in Sea Water contains tables of the velocity of sound in sea water computed on a ""Strela-3"" high-speed electronic computer and a T-5 tabulator at the Computational Center of the Academy of Sciences. Knowledge of the precise velocity of sound in sea water is of great importance when investigating sound propagations in the ocean and when solving practical problems involving the use of hydro-acoustic devices. This book demonstrates the computations made for the velocity of sound in sea water, which can be found in two ways: by direct measurement with the aid of s

  20. Streaming instability in a velocity–sheared dusty plasma | Duwa ...

    African Journals Online (AJOL)

    A two-stream instability, obtained from kinetic theory, of strongly velocity-sheared inhomogeneous streaming electron in a magnetized plasma in the presence of negatively charged dust is discussed. Various cold plasma approximations were considered and it is shown that when the diamagnetic effect of ion can be ignored ...

  1. Ambiguity of source location in acoustic emission technique

    International Nuclear Information System (INIS)

    Barat, P.; Mukherjee, P.; Kalyanasundaram, P.; Raj, B.

    1996-01-01

    Location of acoustic emission (AE) source in a plane is detected from the difference of the arrival times of the AE signal to at least three sensors placed on it. The detected location may not be unique in all cases. In this paper, the condition for the unambiguous solution for the location of the source has been deduced mathematically in terms of arrival times of the AE signal, the coordinate of the three sensors and the acoustic velocity. (author)

  2. Interior near-field acoustical holography in flight.

    Science.gov (United States)

    Williams, E G; Houston, B H; Herdic, P C; Raveendra, S T; Gardner, B

    2000-10-01

    In this paper boundary element methods (BEM) are mated with near-field acoustical holography (NAH) in order to determine the normal velocity over a large area of a fuselage of a turboprop airplane from a measurement of the pressure (hologram) on a concentric surface in the interior of the aircraft. This work represents the first time NAH has been applied in situ, in-flight. The normal fuselage velocity was successfully reconstructed at the blade passage frequency (BPF) of the propeller and its first two harmonics. This reconstructed velocity reveals structure-borne and airborne sound-transmission paths from the engine to the interior space.

  3. Visualization investigation of acoustic and flow-induced vibration in main stream lines using a high-time-resolved PIV technique

    International Nuclear Information System (INIS)

    Li, Yanrong; Someya, Satoshi; Okamoto, Koji

    2009-01-01

    Systems with closed side-branches are liable to an excitation of sound, as called cavity tone. It may occur in pipe branches leading to safety valves or to boiler relief valves. The outbreak mechanism of the cavity tone has been known by phase-averaged measurement in previous researches, while the relation between sound propagation and flow field is still unclear due to the difficulty of detecting instantaneous velocity field. High-time-resolved PIV has a possibility to analyze the velocity field and the relation mentioned above. In this study, flow-induced acoustic resonance of piping system containing closed side-branches was investigated experimentally. A high-time-resolved PIV technique was applied to measure a gas-flow in a cavity. Air flow containing oil mist as tracer particles was measured using a high frequency pulse laser and a high speed camera. The present investigation on the coaxial closed side-branches is the first rudimentary study to visualize the fluid flow two-dimensionally in the cross-section by using PIV and to measure the pressure at the downstream side opening of the cavity by microphone. The fluid flows at different points in the cavity interact with some phase differences and the relation was clarified. (author)

  4. Guided Acoustic and Optical Waves in Silicon-on-Insulator for Brillouin Scattering and Optomechanics

    Science.gov (United States)

    2016-08-01

    APL PHOTONICS 1, 071301 (2016) Guided acoustic and optical waves in silicon-on- insulator for Brillouin scattering and optomechanics Christopher J...is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin...high sound velocity — makes guiding acoustic waves difficult, motivating the use of soft chalcogenide glasses and partial or complete releases (removal

  5. Nonlinear ion-acoustic waves and solitons in a magnetized plasma

    International Nuclear Information System (INIS)

    Lee, L.C.; Kan, J.R.

    1981-01-01

    A unified formulation is presented to study the nonlinear low-frequency electrostatic waves in a magnetized low-β plasma. It is found that there exist three types of nonlinear waves; (1) nonlinear ion-cyclotron periodic waves with a wave speed V/sub p/ > C/sub s/ (ion-acoustic velocity); (2) nonlinear ion-acoustic periodic waves with V/sub p/ < C/sub s/ costheta; and (3) ion-acoustic solitons with C/sub s/ costheta < V/sub p/ < C/sub s/, where theta is the angle between the wave vector and the magnetic field

  6. Myosin-Powered Membrane Compartment Drives Cytoplasmic Streaming, Cell Expansion and Plant Development.

    Science.gov (United States)

    Peremyslov, Valera V; Cole, Rex A; Fowler, John E; Dolja, Valerian V

    2015-01-01

    Using genetic approaches, particle image velocimetry and an inert tracer of cytoplasmic streaming, we have made a mechanistic connection between the motor proteins (myosins XI), cargo transported by these motors (distinct endomembrane compartment defined by membrane-anchored MyoB receptors) and the process of cytoplasmic streaming in plant cells. It is shown that the MyoB compartment in Nicotiana benthamiana is highly dynamic moving with the mean velocity of ~3 μm/sec. In contrast, Golgi, mitochondria, peroxisomes, carrier vesicles and a cytosol flow tracer share distinct velocity profile with mean velocities of 0.6-1.5 μm/sec. Dominant negative inhibition of the myosins XI or MyoB receptors using overexpression of the N. benthamiana myosin cargo-binding domain or MyoB myosin-binding domain, respectively, resulted in velocity reduction for not only the MyoB compartment, but also each of the tested organelles, vesicles and cytoplasmic streaming. Furthermore, the extents of this reduction were similar for each of these compartments suggesting that MyoB compartment plays primary role in cytosol dynamics. Using gene knockout analysis in Arabidopsis thaliana, it is demonstrated that inactivation of MyoB1-4 results in reduced velocity of mitochondria implying slower cytoplasmic streaming. It is also shown that myosins XI and MyoB receptors genetically interact to contribute to cell expansion, plant growth, morphogenesis and proper onset of flowering. These results support a model according to which myosin-dependent, MyoB receptor-mediated transport of a specialized membrane compartment that is conserved in all land plants drives cytoplasmic streaming that carries organelles and vesicles and facilitates cell growth and plant development.

  7. Dragging force on galaxies due to streaming dark matter

    Science.gov (United States)

    Hara, Tetsuya; Miyoshi, Shigeru

    1990-01-01

    It has been reported that galaxies in large regions (approx. 10(exp 2) Mpc), including some clusters of galaxies, may be streaming coherently with velocities up to 600 km/sec or more with respect to the rest frame determined by the microwave background radiation. On the other hand, it is suggested that the dominant mass component of the universe is dark matter. Because we can only speculate the motion of dark matter from the galaxy motions, much attention should be paid to the correlation of velocities between the observed galaxies and cold dark matter. So the authors investigated whether such coherent large-scale streaming velocities are due to dark matter or only to baryonic objects which may be formed by piling up of gases due to some explosive events. It seems that, although each galaxy will not follow the motion of dark matter, clusters of galaxies may represent the velocity field of dark matter. The origin of the velocity field of dark matter would be due to the initial adiabatic perturbations and, in fact, the observed peculiar velocities of clusters are within the allowed region constrained from the isotropy of the microwave background radiation.

  8. Transverse acoustic forcing of a round hydrodynamically self-excited jet

    Science.gov (United States)

    Kushwaha, Abhijit Kumar; Mazur, Marek; Worth, Nicholas; Dawson, James; Li, Larry K. B.

    2017-11-01

    Hydrodynamically self-excited jets can readily synchronize with longitudinal acoustic forcing, but their response to transverse acoustic forcing is less clear. In this experimental study, we apply transverse acoustic forcing to an axisymmetric low-density jet at frequencies around its natural global frequency. We place the jet in a rectangular box containing two loudspeakers, one at each end, producing nominally one-dimensional standing pressure waves. By traversing the jet across this box, we subject it to a range of acoustic modes, from purely longitudinal (streamwise) modes at the pressure anti-node to purely transverse (cross-stream) modes at the pressure node. Using time-resolved Background-Oriented Schlieren (BOS) imaging and hot-wire anemometry, we characterize the jet response for different forcing frequencies, amplitudes and mode shapes, providing new insight into the way transverse acoustic oscillations interact with axisymmetric hydrodynamic oscillations. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  9. Near-field acoustic holography with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle based on double...... layer measurements of the particle velocity has been proposed. Also, the relation between near-field and far-field radiation from sound sources has been examined using the concept of the supersonic intensity. The calculation of this quantity has been extended to other holographic methods, and studied...

  10. Aquatic Habitat Bottom Classification Using ADCP

    Science.gov (United States)

    Description of physical aquatic habitat often includes data describing distributions of water depth, velocity and bed material type. Water depth and velocity in streams deeper than about 1 m may be continuously mapped using an acoustic Doppler current profiler from a moving boat. Herein we examine...

  11. River Bed Sediment Classification Using ADCP

    Science.gov (United States)

    Description of physical aquatic habitat in rivers often includes data describing distributions of water depth, velocity and bed material type. Water depth and velocity in streams deeper than about 1 m may be continuously mapped using an acoustic Doppler current profiler from a moving boat. Herein ...

  12. Near field acoustic holography with particle velocity transducers

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Liu, Yang

    2005-01-01

    of the pressure measured in a plane further away, high spatial frequency components corresponding to evanescent modes are not only amplified by the distance but also by the wave number ratio (kz/k). By contrast, when the pressure is predicted close to the source on the basis of the particle velocity measured...

  13. Variation in summer nitrogen and phosphorus uptake among Siberian headwater streams

    Directory of Open Access Journals (Sweden)

    John D. Schade

    2016-06-01

    Full Text Available Arctic streams are likely to receive increased inputs of dissolved nutrients and organic matter from thawing permafrost as climate warms. Documenting how Arctic streams process inorganic nutrients is necessary to understand mechanisms that regulate watershed fluxes of permafrost-derived materials to downstream ecosystems. We report on summer nitrogen (N and phosphorus (P uptake in streams draining upland soils from the Pleistocene, and lowland floodplain soils from the Holocene, in Siberia's Kolyma River watershed. Uptake of N and P differed between upland and floodplain streams, suggesting topographic variation in nutrient limitation. In floodplain streams, P uptake rate and uptake velocity were higher than N, while upland streams had similar values for all N and P uptake metrics. Phosphorus uptake velocity and size of the transient hydrologic storage zone were negatively related across all study streams, indicating strong influence of hydrologic processes on nutrient fluxes. Physical sorption of P was higher in floodplain stream sediments relative to upland stream sediments, suggesting more physically driven uptake in floodplain streams and higher biological activity in upland streams. Overall, these results demonstrate that high-latitude headwater streams actively retain N and P during summer base flows; however, floodplain and upland streams varied substantially in N and P uptake and may respond differently to inorganic nutrient and organic matter inputs. Our results highlight the need for a comprehensive assessment of N and P uptake and retention in Arctic streams in order to fully understand the impact of permafrost-derived materials on ecosystem processes, and their fate in continental drainage networks.

  14. On the Validity of the Streaming Model for the Redshift-Space Correlation Function in the Linear Regime

    Science.gov (United States)

    Fisher, Karl B.

    1995-08-01

    The relation between the galaxy correlation functions in real-space and redshift-space is derived in the linear regime by an appropriate averaging of the joint probability distribution of density and velocity. The derivation recovers the familiar linear theory result on large scales but has the advantage of clearly revealing the dependence of the redshift distortions on the underlying peculiar velocity field; streaming motions give rise to distortions of θ(Ω0.6/b) while variations in the anisotropic velocity dispersion yield terms of order θ(Ω1.2/b2). This probabilistic derivation of the redshift-space correlation function is similar in spirit to the derivation of the commonly used "streaming" model, in which the distortions are given by a convolution of the real-space correlation function with a velocity distribution function. The streaming model is often used to model the redshift-space correlation function on small, highly nonlinear, scales. There have been claims in the literature, however, that the streaming model is not valid in the linear regime. Our analysis confirms this claim, but we show that the streaming model can be made consistent with linear theory provided that the model for the streaming has the functional form predicted by linear theory and that the velocity distribution is chosen to be a Gaussian with the correct linear theory dispersion.

  15. Energy Properties of Ion Acoustic Waves in Stable and Unstable Plasmas

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla; Lynov, Jens-Peter

    1979-01-01

    Energy exchange between potential energy and ion kinetic energy in an ion acoustic wave is considered. In order to investigate the linear Landau damping or growth, the energy is calculated by use of first‐order quantities only so that nonlinear effects are not involved. It is found that for ion...... acoustic waves that are growing or damped in space the time average of the sum of the potential and the kinetic energy density is independent of position. Energy absorption spectra in particle velocity space are calculated; they are relatively broad and complicated functions. This shows that plasma ions...... of all velocities exchange energy with the wave....

  16. Thermodynamics of Acoustic Black Holes in Two Dimensions

    Directory of Open Access Journals (Sweden)

    Baocheng Zhang

    2016-01-01

    Full Text Available It is well-known that the thermal Hawking-like radiation can be emitted from the acoustic horizon, but the thermodynamic-like understanding for acoustic black holes was rarely made. In this paper, we will show that the kinematic connection can lead to the dynamic connection at the horizon between the fluid and gravitational models in two dimensions, which implies that there exists the thermodynamic-like description for acoustic black holes. Then, we discuss the first law of thermodynamics for the acoustic black hole via an intriguing connection between the gravitational-like dynamics of the acoustic horizon and thermodynamics. We obtain a universal form for the entropy of acoustic black holes, which has an interpretation similar to the entropic gravity. We also discuss the specific heat and find that the derivative of the velocity of background fluid can be regarded as a novel acoustic analogue of the two-dimensional dilaton potential, which interprets why the two-dimensional fluid dynamics can be connected to the gravitational dynamics but it is difficult for four-dimensional case. In particular, when a constraint is added for the fluid, the analogue of a Schwarzschild black hole can be realized.

  17. The structure of a separating turbulent boundary layer. IV - Effects of periodic free-stream unsteadiness

    Science.gov (United States)

    Simpson, R. L.; Shivaprasad, B. G.; Chew, Y.-T.

    1983-01-01

    Measurements were obtained of the sinusoidal unsteadiness of the free stream velocity during the separation of the turbulent boundary layer. Data were gathered by single wire and cross-wire, anemometry upstream of flow detachment, by laser Doppler velocimetry to detect the movement of the flow in small increments, and by a laser anemometer in the detached zone to measure turbulence and velocities. The study was restricted to a sinusoidal instability frequency of 0.61 and a ratio of oscillation amplitude to mean velocity of 0.3. Large amplitude and phase variations were found after the detachment, with unsteady effects producing hysteresis in the relationships between flow parameters. The detached shear layer decreased in thickness with increasing free-stream velocity and increases in the Reynolds shear stress. Deceleration of the free stream velocity caused thickening in the shear layer and upstream movement of the flow reversal location. The results are useful for studies of compressor blade and helicopter rotors in transition.

  18. Field estimates of floc dynamics and settling velocities in a tidal creek with significant along-channel gradients in velocity and SPM

    Science.gov (United States)

    Schwarz, C.; Cox, T.; van Engeland, T.; van Oevelen, D.; van Belzen, J.; van de Koppel, J.; Soetaert, K.; Bouma, T. J.; Meire, P.; Temmerman, S.

    2017-10-01

    A short-term intensive measurement campaign focused on flow, turbulence, suspended particle concentration, floc dynamics and settling velocities were carried out in a brackish intertidal creek draining into the main channel of the Scheldt estuary. We compare in situ estimates of settling velocities between a laser diffraction (LISST) and an acoustic Doppler technique (ADV) at 20 and 40 cm above bottom (cmab). The temporal variation in settling velocity estimated were compared over one tidal cycle, with a maximum flood velocity of 0.46 m s-1, a maximum horizontal ebb velocity of 0.35 m s-1 and a maximum water depth at high water slack of 2.41 m. Results suggest that flocculation processes play an important role in controlling sediment transport processes in the measured intertidal creek. During high-water slack, particles flocculated to sizes up to 190 μm, whereas at maximum flood and maximum ebb tidal stage floc sizes only reached up to 55 μm and 71 μm respectively. These large differences indicate that flocculation processes are mainly governed by turbulence-induced shear rate. In this study, we specifically recognize the importance of along-channel gradients that places constraints on the application of the acoustic Doppler technique due to conflicts with the underlying assumptions. Along-channel gradients were assessed by additional measurements at a second location and scaling arguments which could be used as an indication whether the Reynolds-flux method is applicable. We further show the potential impact of along-channel advection of flocs out of equilibrium with local hydrodynamics influencing overall floc sizes.

  19. A two-wavelength imaging pyrometer for measuring particle temperature, velocity and size in thermal spray processes

    International Nuclear Information System (INIS)

    Craig, J.E.; Parker, R.A.; Lee, D.Y.; Biancaniello, F.; Ridder, S.

    1999-01-01

    An imaging pyrometer has been developed to measure the surface temperature of hot metal objects and to measure particle temperature, velocity and size in thermal spray, spray-fonning and atomization processes. The two-wavelength surface imaging pyrometer provides true temperature measurement with high resolution, even when the surface has emissivity variation caused by roughness or oxidation. The surface imaging pyrometer has been calibrated for use in a material processing lab calibration over the range of 1000 to 3000 deg K, and these results are described. The particle imaging pyrometer has a field of view that spans the entire particle stream in typical thermal spray devices, and provides continuous measurement of the entire particle stream. Particle temperature and velocity are critical parameters for producing high quality spray coatings efficiently and reliably. The software locates the particle streaks in the image, and determines the intensity ratio for each particle streak pair to obtain the temperature. The dimensions of the particle streak image are measured to determine the velocity and size. Because the vision-based sensor samples the entire particle stream in every video frame, the particle temperature, velocity and size data are updated at 30 Hz at all points in the particle stream. Particle measurements in a plasma spray at NIST are described. In this paper, we will describe our experiments with ceramic powders, in which measurements have been made at several positions along the particle stream. The particle data are represented as profiles across the particle stream, histograms of the full particle stream or time histories of the full-stream average. The results are compared and calibrated with other temperature and diagnostic measurement systems. (author)

  20. Removal of radioiodine species from gaseous stream on inorganic absorbents

    International Nuclear Information System (INIS)

    Vujisic, L.

    1978-11-01

    As a contribution to the development of an impregnated absorbent for the removal of airborne iodine species in the off-gas streams of nuclear facilities the adsorption of 131 l-labelled methyl iodide on impregnated alumina was investigated. Alcoa alumina H-151 was impregnated with metal nitrates (Ag, Ag+Cd, Ag+Pb) and with triethylenediamine (TEDA). The removal efficiency of CH 3 l was experimentally evaluated, as functions of relative humidity of air-stream, its temperature and flow rate and of the amount of impregnated materials. Under constant temperature, relative humidity and face velocity, the retention of CH 3 l increases as the total amount of Ag impregnation increases. In a wet air-stream the only efficient impregnation was found to be with silver nitrate. At constant temperature the CH 3 l retention decreases with increasing relative humidity or face velocity of the stream. An increase of temperature favours the CH 3 l retention. Very low retention of CH 3 l was found on TEDA impregnated alumina

  1. Resonant surface acoustic wave chemical detector

    Science.gov (United States)

    Brocato, Robert W.; Brocato, Terisse; Stotts, Larry G.

    2017-08-08

    Apparatus for chemical detection includes a pair of interdigitated transducers (IDTs) formed on a piezoelectric substrate. The apparatus includes a layer of adsorptive material deposited on a surface of the piezoelectric substrate between the IDTs, where each IDT is conformed, and is dimensioned in relation to an operating frequency and an acoustic velocity of the piezoelectric substrate, so as to function as a single-phase uni-directional transducer (SPUDT) at the operating frequency. Additionally, the apparatus includes the pair of IDTs is spaced apart along a propagation axis and mutually aligned relative to said propagation axis so as to define an acoustic cavity that is resonant to surface acoustic waves (SAWs) at the operating frequency, where a distance between each IDT of the pair of IDTs ranges from 100 wavelength of the operating frequency to 400 wavelength of the operating frequency.

  2. A study on the evaluation of internal leak in valve using acoustic emission method(3)

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Lee, Wook Ryun; Park, Jong Hyuck; Kim, Kwang Hong

    2005-01-01

    The objective of this study is to estimate the feasibility of acoustic emission method for the internal leak from the valves. In this study, valve leak tests using various types of specimen simulated seat damage were performed in order to analyzer acoustic emission properties when leaks arise in valve seat. As a result of leak test for specimens simulated valve seat, we conformed that leak sound level increased in proportion to the increase of hole diameter and leak velocity, and decreased in proportion to the increase of leak depth. And also, leak sound level has hysteresis for leak velocity. From the experimental results, it was suggested that the acoustic emission method for monitoring of leak was feasible.

  3. Mass conservative fluid flow visualization for CFD velocity fields

    International Nuclear Information System (INIS)

    Li, Zhenquan; Mallinson, Gordon D.

    2001-01-01

    Mass conservation is a key issue for accurate streamline and stream surface visualization of flow fields. This paper complements an existing method (Feng et al., 1997) for CFD velocity fields defined at discrete locations in space that uses dual stream functions to generate streamlines and stream surfaces. Conditions for using the method have been examined and its limitations defined. A complete set of dual stream functions for all possible cases of the linear fields on which the method relies are presented. The results in this paper are important for developing new methods for mass conservative streamline visualization from CFD data and using the existing method

  4. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    Science.gov (United States)

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Matthew; Clark, Jordan F.

    2018-02-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  5. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    Science.gov (United States)

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Mathew; Clark, Jordan F.

    2018-01-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  6. Unification of acoustic drillhole logging data

    International Nuclear Information System (INIS)

    Oehman, I.; Palmen, J.; Heikkinen, E.

    2009-04-01

    Posiva Oy prepares for disposal of spent nuclear fuel in bedrock in Olkiluoto, Eurajoki. This is in accordance of the application filed in 1999, the Decision-in-Principle of the State Council in 2000, and ratification by the Parliament in 2001. The site characterization at Olkiluoto has included comprehensive geological, hydrological, geochemical and geophysical investigations airborne, on ground and in drillholes since 1988. One of key techniques in geophysical drillhole surveys has been acoustic full waveform logging, which has been implemented since 1994. Various tools have been used in acquisition of acoustic data and several processing techniques have been applied. The logging work and processing to P and S wave velocities has been previously carried out on single drillhole basis. Comparisons to actual values and levels have not been made, and the results have not been calibrated. Therefore results for different drillholes have not been comparable. Resolution of the P and S wave velocity has been rather coarse, and depth correlation to the core data has been on tentative level. As the investigation data has been accumulating, it has become possible to correlate the results to geological and laboratory control data and to calibrate the results of separate measurement campaigns and different drillholes together onto same reference level and resolution. The presented technique has been applied for drillhole OL-KR29 onwards and has set the processing standard, settings and reference levels for later surveys. This approach will further assist the application of the method for mapping and numerical description of lithology variation and possible effect of alteration and deformation on it. Further on, the P and S wave velocity data together with density can be used in computing of dynamic in situ rock mechanical parameters, and possibly in correlating rock strength laboratory data to P and S wave velocity logging data. The acoustic logging data from drillholes OL-KR1

  7. Ultrasound-driven Viscous Streaming, Modelled via Momentum Injection

    Directory of Open Access Journals (Sweden)

    James PACKER

    2008-12-01

    Full Text Available Microfluidic devices can use steady streaming caused by the ultrasonic oscillation of one or many gas bubbles in a liquid to drive small scale flow. Such streaming flows are difficult to evaluate, as analytic solutions are not available for any but the simplest cases, and direct computational fluid dynamics models are unsatisfactory due to the large difference in flow velocity between the steady streaming and the leading order oscillatory motion. We develop a numerical technique which uses a two-stage multiscale computational fluid dynamics approach to find the streaming flow as a steady problem, and validate this model against experimental results.

  8. Acoustic propagation mode in a cylindrical plasma

    International Nuclear Information System (INIS)

    Ishida, Yoshio; Idehara, Toshitaka; Inada, Hideyo

    1975-01-01

    The sound velocity in a cylindrical plasma produced by a high frequency discharge is measured by an interferometer system. The result shows that the acoustic wave guide effect does exist in a neutral gas and in a plasma. It is found that the wave propagates in the mode m=2 in a rigid boundary above the cut-off frequency fsub(c) and in the mode m=0 below fsub(c). Because the mode m=0 is identical to a plane wave, the sound velocity in free space can be evaluated exactly. In the mode m=2, the sound velocity approaches the free space value, when the frequency increases sufficiently. (auth.)

  9. Acoustic properties of a porous glass (vycor) at hypersonic frequencies

    International Nuclear Information System (INIS)

    Levelut, C; Pelous, J

    2007-01-01

    Brillouin scattering experiments have been performed from 5 to 1600 K in vycor, a porous silica glass. The acoustic velocity and attenuation at hypersonic frequencies are compared to those of bulk silica and others porous silica samples. The experimental evidence for the influence of porosity on the scattering by acoustic waves is compared to calculations. The correlation between internal friction and thermal conductivity at low temperature is discussed

  10. Noncontacting acoustics-based temperature measurement techniques in rapid thermal processing

    Science.gov (United States)

    Lee, Yong J.; Chou, Ching-Hua; Khuri-Yakub, Butrus T.; Saraswat, Krishna C.

    1991-04-01

    Temperature measurement of silicon wafers based on the temperature dependence of acoustic waves is studied. The change in the temperature-dependent dispersion relations of the plate modes through the wafer can be exploited to provide a viable temperature monitoring scheme with advantages over both thermocouples and pyrometers. Velocity measurements of acoustic waves through a thin layer of ambient directly above the wafer provides the temperature of the wafer-ambient interface. 1.

  11. Spatial simulation of smallmouth bass in streams

    International Nuclear Information System (INIS)

    Jager, H.I.; Schmoyer, D.D.; Sale, M.J.; Van Winkle, W.; DeAngelis, D.L.; Sabo, M.J.

    1993-01-01

    The hydropower industry and its regulators are hampered by the inability to predict the relationship between alternative flow regimes and fish population response. We have developed a spatially explicit, individual-based model of populations of small-mouth bass in streams as part of the Compensatory Mechanisms in Fish Populations Program (see Sale and Otto 1991). In the model, the profitability of alternative stream locations varies in response to habitat depth and velocity through changes in the frequency of prey encounters and the metabolic costs experienced by fish. We conducted an evaluation of our hydraulic simulation at the scale of individual stream cells. The potential error in predictions for individual cell velocities suggests that larger-scale model predictions for the representative reach are most appropriate. At this scale, the model appears to produce realistic patterns in the growth and dispersal of young-of-year small-mouth bass. This verification step allows us to proceed with greater confidence in evaluating the original question of how small-mouth bass populations respond to alternative flow regimes

  12. Acoustic reflection log in transversely isotropic formations

    Science.gov (United States)

    Ronquillo Jarillo, G.; Markova, I.; Markov, M.

    2018-01-01

    We have calculated the waveforms of sonic reflection logging for a fluid-filled borehole located in a transversely isotropic rock. Calculations have been performed for an acoustic impulse source with the characteristic frequency of tens of kilohertz that is considerably less than the frequencies of acoustic borehole imaging tools. It is assumed that the borehole axis coincides with the axis of symmetry of the transversely isotropic rock. It was shown that the reflected wave was excited most efficiently at resonant frequencies. These frequencies are close to the frequencies of oscillations of a fluid column located in an absolutely rigid hollow cylinder. We have shown that the acoustic reverberation is controlled by the acoustic impedance of the rock Z = Vphρs for fixed parameters of the borehole fluid, where Vph is the velocity of horizontally propagating P-wave; ρs is the rock density. The methods of waveform processing to determine the parameters characterizing the reflected wave have been discussed.

  13. Staggered-grid finite-difference acoustic modeling with the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS).

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David Franklin; Collier, Sandra L. (U.S. Army Research Laboratory); Marlin, David H. (U.S. Army Research Laboratory); Ostashev, Vladimir E. (NOAA/Environmental Technology Laboratory); Symons, Neill Phillip; Wilson, D. Keith (U.S. Army Cold Regions Research Engineering Lab.)

    2005-05-01

    This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. The TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.

  14. Apparatus for production of ultrapure amorphous metals utilizing acoustic cooling

    Science.gov (United States)

    Lee, M. C. (Inventor)

    1985-01-01

    Amorphous metals are produced by forming a molten unit of metal and deploying the unit into a bidirectional acoustical levitating field or by dropping the unit through a spheroidizing zone, a slow quenching zone, and a fast quenching zone in which the sphere is rapidly cooled by a bidirectional jet stream created in the standing acoustic wave field produced between a half cylindrical acoustic driver and a focal reflector or a curved driver and a reflector. The cooling rate can be further augmented first by a cryogenic liquid collar and secondly by a cryogenic liquid jacket surrounding a drop tower. The molten unit is quenched to an amorphous solid which can survive impact in a unit collector or is retrieved by a vacuum chuck.

  15. Temporally variable macroinvertebrate-stone relationships in streams

    DEFF Research Database (Denmark)

    Jacobsen, D.

    2005-01-01

    of fauna parameter and stone variable from different sampling dates (n=9-11) were rarely correlated to any of the measures of stream stability, this study has demonstrated high temporal variability in fauna-stone relationships (CV's of regression slopes). Consequently, temporally un-replicated studies......Stones were used to sample macroinvertebrates and characterise microhabitats at monthly or bimonthly intervals in six Ecuadorian streams covering a gradient in four different stability measures and other stream characteristics. The physical variables current velocity, water depth, horizontal...... of families vs. individuals) were related to the physical characteristics of individual stone habitats. My second objective was to quantify temporal variability in fauna-stone relationships and to analyse if such variability was related to overall stability of stream reaches. Partial Least Squares (PLS...

  16. Acoustic wave (AW) based moisture sensor for use with corrosive gases

    Science.gov (United States)

    Pfeifer, K.B.; Frye, G.C.; Schneider, T.W.

    1996-11-05

    Moisture corrosive gas stream is measured as a function of the difference in resonant frequencies between two acoustic wave (AW) devices, each with a film which accepts at least one of the components of the gas stream. One AW is located in the gas stream while the other is located outside the gas stream but in the same thermal environment. In one embodiment, the film is a hydrophilic material such as SiO{sub 2}. In another embodiment, the SiO{sub 2} is covered with another film which is impermeable to the corrosive gas, such that the AW device in the gas stream measures only the water vapor. In yet another embodiment, the film comprises polyethylene oxide which is hydrophobic and measures only the partial pressure of the corrosive gas. Other embodiments allow for compensation of drift in the system. 8 figs.

  17. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    Science.gov (United States)

    Sellar, Brian; Harding, Samuel; Richmond, Marshall

    2015-08-01

    An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the water column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1 MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of C-ADP to standard divergent ADP (D-ADP) velocity measurements reveals a mean difference of 8 mm s-1, standard deviation of 18 mm s-1, and an order of magnitude reduction in realisable length scale. C-ADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the C-ADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved quantification of flow turbulence. Since waves are simultaneously measured via profiled velocities, pressure measurements and surface detection, it is expected that derivatives of this system will be a powerful tool in

  18. Mesoscale variations in acoustic signals induced by atmospheric gravity waves.

    Science.gov (United States)

    Chunchuzov, Igor; Kulichkov, Sergey; Perepelkin, Vitaly; Ziemann, Astrid; Arnold, Klaus; Kniffka, Anke

    2009-02-01

    The results of acoustic tomographic monitoring of the coherent structures in the lower atmosphere and the effects of these structures on acoustic signal parameters are analyzed in the present study. From the measurements of acoustic travel time fluctuations (periods 1 min-1 h) with distant receivers, the temporal fluctuations of the effective sound speed and wind speed are retrieved along different ray paths connecting an acoustic pulse source and several receivers. By using a coherence analysis of the fluctuations near spatially distanced ray turning points, the internal wave-associated fluctuations are filtered and their spatial characteristics (coherences, horizontal phase velocities, and spatial scales) are estimated. The capability of acoustic tomography in estimating wind shear near ground is shown. A possible mechanism describing the temporal modulation of the near-ground wind field by ducted internal waves in the troposphere is proposed.

  19. Acoustic emission and ultrasonic-velocity methods used to characterise the excavation disturbance associated with deep tunnels in hard rock

    Science.gov (United States)

    Falls, Stephen D.; Young, R. Paul

    1998-04-01

    Acoustic emission (AE) and ultrasonic-velocity monitoring studies have been undertaken at both the Atomic Energy of Canada Limited (AECL) Underground Research Laboratory (URL) and at the Swedish Nuclear Fuel Waste Management Company (SKB) Hard Rock Laboratory (HRL). At both locations the excavations were tunnels in granitic material at approximately 420 m depth. However, the stress regime was more severe at the URL Mine-by tunnel site than the HRL ZEDEX tunnel. Different parts of the ZEDEX tunnel were created using different excavation techniques. Using AE and ultrasonic techniques to study these tunnels we have been able to examine the nature of the excavation-disturbed zone around the tunnel, as well as examining the effects of different stress regimes and excavation techniques. Studies were undertaken both during and after the Mine-by tunnel excavation and during excavation in the ZEDEX tunnel. AE monitoring in the wall of the Mine-by tunnel during excavation showed that some activity occurred in the sidewall regions, but the spatial density of AE hypocentres increased toward the regions in the floor and roof of the tunnel where breakout notches formed. This sidewall activity was clustered primarily within 0.5 m of the tunnel wall. AE monitoring in the floor of the tunnel showed that small numbers of AE continued to occur in the notch region in the floor of the tunnel over 2 years after excavation was completed. This activity became more acute as the rock was heated, imposing thermally induced stresses on the volume. Ultrasonic-velocity studies both in the floor and the wall of the tunnel showed that the velocity is strongly anisotropic with the direction of slowest velocity orthogonal to the tunnel surface. The velocity increased with distance into the rock from the tunnel surface. In the floor, this effect was seen up to 2 m from the tunnel surface. Most of the change occurred within the first 0.5 m from the tunnel perimeter. At the lower-stress HRL, most of

  20. Reflection and absorption of ion-acoustic waves in a plasma density gradient

    International Nuclear Information System (INIS)

    Ishihara, O.

    1977-01-01

    Plasma is characterized by electrical quasineutrality and the collective behavior. There exists a longitudinal low-frequency wave called an ion-acoustic wave in a plasma. One problem in the experimental study of ion-acoustic waves has been that sometimes they are observed to be reflected from discharge tube walls, and sometimes to be absorbed. Theoretical computation reveals that a velocity gradient produced by a density gradient plays a significant role in the reflection. The velocity gradient produces the subsonic-supersonic transition and long wavelength waves are reflected before reaching the transition while short wavelength waves penetrate over the transition and are absorbed in the supersonic flow plasma

  1. Study on the simulation of acoustic logging measurements in horizontal and deviated wells

    Science.gov (United States)

    Liu, He; Wang, Bing; Tao, Guo; Zhang, Kuo; Yue, Wen-Zheng

    2017-09-01

    The conventional acoustic logging interpretation method, which is based on vertical wells that penetrate isotropic formations, is not suitable for horizontal and deviated wells penetrating anisotropic formations. This unsuitability is because during horizontal and deviated well drilling, cuttings will splash on the well wall or fall into the borehole bottom and form a thin bed of cuttings. In addition, the high velocity layers at different depths and intrinsic anisotropy may affect acoustic logging measurements. In this study, we examine how these factors affect the acoustic wave slowness measured in horizontal and deviated wells that are surrounded by an anisotropic medium using numerical simulation. We use the staggered-grid finite difference method in time domain (FDTD) combined with hybrid-PML. First, we acquire the acoustic slowness using a simulated array logging system, and then, we analyze how various factors affect acoustic slowness measurements and the differences between the effects of these factors. The factors considered are high-velocity layers, thin beds of cuttings, dipping angle, formation thickness, and anisotropy. The simulation results show that these factors affect acoustic wave slowness measurements differently. We observe that when the wavelength is much smaller than the distance between the borehole wall and high velocity layer, the true slowness of the formation could be acquired. When the wavelengths are of the same order (i.e., in the near-field scenarios), the geometrical acoustics theory is no longer applicable. Furthermore, when a thin bed of cuttings exists at the bottom of the borehole, Fermat's principle is still applicable, and true slowness can be acquired. In anisotropic formations, the measured slowness changes with increments in the dipping angle. Finally, for a measurement system with specific spacing, the slowness of a thin target layer can be acquired when the distance covered by the logging tool is sufficiently long. Based

  2. Skin friction on a flat perforated acoustic liner

    Science.gov (United States)

    Boldman, D. R.; Brinich, P. F.

    1976-01-01

    The report concerns the measurement of friction coefficients of a typical perforated acoustic liner installed in the side of a wind tunnel. The results are compared with measured friction coefficients of a smooth hard wall for the same mean flow velocities in a wind tunnel. At a velocity of 61 m/sec, an increase in the local skin coefficient of only a few percent was observed, but at the highest velocity of 213 m/sec an increase of about 20% was obtained. This velocity is a realistic velocity for turbo-machinery components utilizing such liners, so a loss in performance is to be expected. Some tests were also performed to see if changes in the mean boundary layer induced by imposed noise would result in friction increase, but only at low velocity levels was such an increase in friction noted.

  3. Experimental observation of both negative and positive phase velocities in a two-dimensional sonic crystal

    International Nuclear Information System (INIS)

    Lu, Ming-Hui; Feng, Liang; Liu, Xiao-Ping; Liu, Xiao-Kang; Chen, Yan-Feng; Zhu, Yong-Yuan; Mao, Yi-Wei; Zi, Jian

    2007-01-01

    Both negative and positive phase velocities for acoustic waves have been experimentally established in a two-dimensional triangular sonic crystal (SC) consisting of steel cylinders embedded in air at first. With the increase of the SCs thickness layer by layer in the experiments, phase shifts decrease in the second band but increase in the first band, showing the negative and the positive phase velocities, respectively. Moreover, the dispersion relation of the SC is constructed by the phase information, which is consistent well with the theoretical results. These abundant characteristics of acoustic wave propagation in the SC might be useful for the device applications

  4. Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    Science.gov (United States)

    Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar

    2014-01-01

    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched

  5. Predictive Acoustic Tracking with an Adaptive Neural Mechanism

    DEFF Research Database (Denmark)

    Shaikh, Danish; Manoonpong, Poramate

    2017-01-01

    model of the lizard peripheral auditory system to extract information regarding sound direction. This information is utilised by a neural machinery to learn the acoustic signal’s velocity through fast and unsupervised correlation-based learning adapted from differential Hebbian learning. This approach...

  6. Acoustic characteristics of sand sediment with circular cylindrical pores

    International Nuclear Information System (INIS)

    Roh, Heui-Seol; Lee, Kang-Il; Yoon, Suk-Wang

    2004-01-01

    The acoustic pressure transmission coefficient and the phase velocity are experimentally measured as functions of the frequency and the porosity in sand sediment slabs with circular cylindrical pores filled with water and air. They are also theoretically estimated with the modified Biot-Attenborough (MBA) model, which uses a separate treatment of the viscous and the thermal effects in a non-rigid porous medium with water- and air-filled cylindrical pores. In this study, the fast (first kind) wave and the slow (second kind) wave are not separated in the transmitted signals through a sediment slab without the circular cylindrical pores, but they are separated in the transmitted signals through a sediment slab with pores. Both the phase velocities and the transmission coefficients of the fast wave and the slow wave in the sediment slabs with water- and air-filled cylindrical pores are sensitive to the air and the water porosities. It is proposed that the fast and the slow waves have opposite behaviors for several acoustic characteristics. The generalized tortuosity factor and the dynamic shape factor are introduced from the acoustic characteristics of the fast wave. The experimental results show reasonable agreement with the theoretical results estimated with the MBA model. These results suggest the possibility of predicting the acoustic characteristics of a sediment as functions of arbitrary water and air porosities. This study may also be applicable to understanding acoustic wave propagations in a bubbly liquid sediment for underwater applications and in cancellous bone for the diagnosis of osteoporosis.

  7. Solar wind stream interfaces

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1978-01-01

    Measurements aboard Imp 6, 7, and 8 reveal that approximately one third of all high-speed solar wind streams observed at 1 AU contain a sharp boundary (of thickness less than approx.4 x 10 4 km) near their leading edge, called a stream interface, which separates plasma of distinctly different properties and origins. Identified as discontinuities across which the density drops abruptly, the proton temperature increases abruptly, and the speed rises, stream interfaces are remarkably similar in character from one stream to the next. A superposed epoch analysis of plasma data has been performed for 23 discontinuous stream interfaces observed during the interval March 1971 through August 1974. Among the results of this analysis are the following: (1) a stream interface separates what was originally thick (i.e., dense) slow gas from what was originally thin (i.e., rare) fast gas; (2) the interface is the site of a discontinuous shear in the solar wind flow in a frame of reference corotating with the sun; (3) stream interfaces occur at speeds less than 450 km s - 1 and close to or at the maximum of the pressure ridge at the leading edges of high-speed streams; (4) a discontinuous rise by approx.40% in electron temperature occurs at the interface; and (5) discontinuous changes (usually rises) in alpha particle abundance and flow speed relative to the protons occur at the interface. Stream interfaces do not generally recur on successive solar rotations, even though the streams in which they are embedded often do. At distances beyond several astronomical units, stream interfaces should be bounded by forward-reverse shock pairs; three of four reverse shocks observed at 1 AU during 1971--1974 were preceded within approx.1 day by stream interfaces. Our observations suggest that many streams close to the sun are bounded on all sides by large radial velocity shears separating rapidly expanding plasma from more slowly expanding plasma

  8. Noise-robust cortical tracking of attended speech in real-world acoustic scenes

    DEFF Research Database (Denmark)

    Fuglsang, Søren; Dau, Torsten; Hjortkjær, Jens

    2017-01-01

    Selectively attending to one speaker in a multi-speaker scenario is thought to synchronize low-frequency cortical activity to the attended speech signal. In recent studies, reconstruction of speech from single-trial electroencephalogram (EEG) data has been used to decode which talker a listener...... is attending to in a two-talker situation. It is currently unclear how this generalizes to more complex sound environments. Behaviorally, speech perception is robust to the acoustic distortions that listeners typically encounter in everyday life, but it is unknown whether this is mirrored by a noise......-robust neural tracking of attended speech. Here we used advanced acoustic simulations to recreate real-world acoustic scenes in the laboratory. In virtual acoustic realities with varying amounts of reverberation and number of interfering talkers, listeners selectively attended to the speech stream...

  9. Acoustic modes in dense dusty plasmas

    International Nuclear Information System (INIS)

    Avinash, K.; Bhattacharjee, A.; Hu, S.

    2002-01-01

    Properties of acoustic modes in high dust density dusty plasmas are studied. The solutions of fluid equations for electrons, ions, and dust grains with collisional and ionization effects are solved along with an equation for grain charging. The high dust density effects on the acoustic modes are interpreted in terms of a change in the screening properties of the grain charge. At low dust density, the grain charge is screened due to electrons and ions. However, at high dust density, the screening of the grain charge due to other grains also becomes important. This leads to a reduction of the phase-velocity, which in turn is shown to make the plasma more unstable at high dust density. In this regime the role of the ion acoustic mode is replaced by the charging mode. The relevance of these results to earlier theoretical studies and experimental results are discussed

  10. Balance Velocities of the Greenland Ice Sheet

    Science.gov (United States)

    Joughin, Ian; Fahnestock, Mark; Ekholm, Simon; Kwok, Ron

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetry data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail the location of an ice stream in northeastern Greenland, which was only recently discovered using satellite imagery. Enhanced flow associated with all of the major outlets is clearly visible, although small errors in the source data result in less accurate estimates of the absolute flow speeds. Nevertheless, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning.

  11. Development of habitat suitability criteria for Neotropical stream fishes and an assessment of their transferability to streams with different conservation status

    Directory of Open Access Journals (Sweden)

    Fabrício Barreto Teresa

    Full Text Available We assessed the preference of 10 fish species for depth and velocity conditions in forested streams from southeastern Brazil using habitat suitability criteria (HSC curves. We also tested whether preference patterns observed in forested streams can be transferred to deforested streams. We used data from fish sampled in 62 five-meter sites in three forested streams to construct preference curves. Astyanax altiparanae, A. fasciatus, Knodus moenkhausii, and Piabina argentea showed a preference for deep slow habitats, whereas Aspidoras fuscoguttatus, Characidium zebra, Cetopsorhamdia iheringi, Pseudopimelodus pulcher, and Hypostomus nigromaculatus showed an opposite pattern: preference for shallow fast habitats. Hypostomus ancistroides showed a multimodal pattern of preference for depth and velocity. To evaluate whether patterns observed in forested streams may be transferred to deforested streams, we sampled 64 five-meters sites in three deforested streams using the same methodology. The preference for velocity was more consistent than for depth, as success in the transferability criterion was 86% and 29% of species, respectively. This indicates that velocity is a good predictor of species abundance in streams, regardless of their conditionNeste estudo avaliamos a preferência de 10 espécies de peixes por condições de profundidade e fluxo em riachos florestados do sudeste do Brasil por meio do critério de adequabilidade de habitat (habitat suitability criteria - curvas HSC. Testamos também se os padrões de preferência observados nos riachos florestados podem ser transferidos para riachos desmatados. Foram realizadas amostragens da ictiofauna em 62 trechos de cinco metros de extensão em três riachos florestados para a construção das curvas de preferência. Astyanax altiparanae, A. fasciatus, Knodus moenkhausii e Piabina argentea apresentaram preferência por habitats lentos e profundos, enquanto Aspidoras fuscoguttatus, Characidium zebra

  12. A spectral hybridizable discontinuous Galerkin method for elastic-acoustic wave propagation

    Science.gov (United States)

    Terrana, S.; Vilotte, J. P.; Guillot, L.

    2018-04-01

    We introduce a time-domain, high-order in space, hybridizable discontinuous Galerkin (DG) spectral element method (HDG-SEM) for wave equations in coupled elastic-acoustic media. The method is based on a first-order hyperbolic velocity-strain formulation of the wave equations written in conservative form. This method follows the HDG approach by introducing a hybrid unknown, which is the approximation of the velocity on the elements boundaries, as the only globally (i.e. interelement) coupled degrees of freedom. In this paper, we first present a hybridized formulation of the exact Riemann solver at the element boundaries, taking into account elastic-elastic, acoustic-acoustic and elastic-acoustic interfaces. We then use this Riemann solver to derive an explicit construction of the HDG stabilization function τ for all the above-mentioned interfaces. We thus obtain an HDG scheme for coupled elastic-acoustic problems. This scheme is then discretized in space on quadrangular/hexahedral meshes using arbitrary high-order polynomial basis for both volumetric and hybrid fields, using an approach similar to the spectral element methods. This leads to a semi-discrete system of algebraic differential equations (ADEs), which thanks to the structure of the global conservativity condition can be reformulated easily as a classical system of first-order ordinary differential equations in time, allowing the use of classical explicit or implicit time integration schemes. When an explicit time scheme is used, the HDG method can be seen as a reformulation of a DG with upwind fluxes. The introduction of the velocity hybrid unknown leads to relatively simple computations at the element boundaries which, in turn, makes the HDG approach competitive with the DG-upwind methods. Extensive numerical results are provided to illustrate and assess the accuracy and convergence properties of this HDG-SEM. The approximate velocity is shown to converge with the optimal order of k + 1 in the L2-norm

  13. Computational analysis of acoustic transmission through periodically perforated interfaces

    Directory of Open Access Journals (Sweden)

    Rohan E.

    2009-06-01

    Full Text Available The objective of the paper is to demonstrate the homogenization approach applied to modelling the acoustic transmission on perforated interfaces embedded in the acoustic fluid. We assume a layer, with periodically perforated obstacles, separating two half-spaces filled with the fluid. The homogenization method provides limit transmission conditions which can be prescribed at the homogenized surface representing the "limit" interface. The conditions describe relationship between jump of the acoustic pressures and the transversal acoustic velocity, on introducing the "in-layer pressure" which describes wave propagation in the tangent directions with respect to the interface.This approach may serve as a relevant tool for optimal design of devices aimed at attenuation of the acoustic waves, such as the engine exhaust mufflers or other structures fitted with sieves and grillages. We present numerical examples of wave propagation in a muffler-like structure illustrating viability of the approach when complex 3D geometries of the interface perforation are considered.

  14. 2D acoustic-elastic coupled waveform inversion in the Laplace domain

    KAUST Repository

    Bae, Hoseuk

    2010-04-01

    Although waveform inversion has been intensively studied in an effort to properly delineate the Earth\\'s structures since the early 1980s, most of the time- and frequency-domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non-linear objective function and the unreliable low-frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace-domain waveform inversion has been proposed. The Laplace-domain waveform inversion has been known to provide a long-wavelength velocity model even for field data, which may be because it employs the zero-frequency component of the damped wavefield and a well-behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media.We extend the Laplace-domain waveform inversion algorithm to a 2D acoustic-elastic coupled medium, which is encountered in marine exploration environments. In 2D acoustic-elastic coupled media, the Laplace-domain pressures behave differently from those of 2D acoustic media, although the overall features are similar to each other. The main differences are that the pressure wavefields for acoustic-elastic coupled media show negative values even for simple geological structures unlike in acoustic media, when the Laplace damping constant is small and the water depth is shallow. The negative values may result from more complicated wave propagation in elastic media and at fluid-solid interfaces.Our Laplace-domain waveform inversion algorithm is also based on the finite-element method and logarithmic wavefields. To compute gradient direction, we apply the back-propagation technique. Under the assumption that density is fixed, P- and S-wave velocity models are inverted from the pressure data. We applied our inversion algorithm to the SEG/EAGE salt model and the numerical results showed that the Laplace-domain waveform inversion

  15. An acoustic eikonal equation for attenuating orthorhombic media

    KAUST Repository

    Hao, Qi

    2017-04-06

    Attenuating orthorhombic models are often used to describe the azimuthal variation of the seismic wave velocity and amplitude in finely layered hydrocarbon reservoirs with vertical fractures. In addition to the P-wave related medium parameters, shear wave parameters are also present in the complex eikonal equation needed to describe the P-wave complex-valued traveltime in an attenuating orthorhombic medium, which increases the complexity of using the P-wave traveltime to invert for the medium parameters in practice. Here, we use the acoustic assumption to derive an acoustic eikonal equation that approximately governs the complex-valued traveltime of P-waves in an attenuating orthorhombic medium. For a homogeneous attenuating orthorhombic media, we solve the eikonal equation using a combination of the perturbation method and Shanks transform. For a horizontal attenuating orthorhombic layer, both the real and imaginary part of the complex-valued reflection traveltime have nonhyperbolic behaviors in terms of the source-receiver offset. Similar to the roles of normal moveout (NMO) velocity and anellipticity, the attenuation NMO velocity and the attenuation anellipticity characterize the variation of the imaginary part of the complex-valued reflection traveltime around zero source-receiver offset.

  16. Modelling climate change impacts on stream habitat conditions

    DEFF Research Database (Denmark)

    Boegh, Eva; Conallin, John; Karthikeyan, Matheswaran

    Impact from groundwater abstraction on freshwater resources and ecosystems is an issue of sincere concern in Denmark and many other countries worldwide. In addition, climate change projections add complexity to the existing conflict between water demands to satisfy human needs and water demands...... required to conserve streams as biologically diverse and healthy ecosystems. Solutions to this intensifying conflict require a holistic approach whereby stream biota is related to their physical environment at catchment scale, as also demanded by the EU Water Framework Directive. In the present study......, climate impacts on stream ecological conditions were quantified by combining a heat and mass stream flow with a habitat suitability modelling approach. Habitat suitability indices were developed for stream velocity, water depth, water temperature and substrate. Generally, water depth was found...

  17. Simultaneous realization of slow and fast acoustic waves using a fractal structure of Koch curve.

    Science.gov (United States)

    Ding, Jin; Fan, Li; Zhang, Shu-Yi; Zhang, Hui; Yu, Wei-Wei

    2018-01-24

    An acoustic metamaterial based on a fractal structure, the Koch curve, is designed to simultaneously realize slow and fast acoustic waves. Owing to the multiple transmitting paths in the structure resembling the Koch curve, the acoustic waves travelling along different paths interfere with each other. Therefore, slow waves are created on the basis of the resonance of a Koch-curve-shaped loop, and meanwhile, fast waves even with negative group velocities are obtained due to the destructive interference of two acoustic waves with opposite phases. Thus, the transmission of acoustic wave can be freely manipulated with the Koch-curve shaped structure.

  18. Observation and analysis of abrupt changes in the interplanetary plasma velocity and magnetic field.

    Science.gov (United States)

    Martin, R. N.; Belcher, J. W.; Lazarus, A. J.

    1973-01-01

    This paper presents a limited study of the physical nature of abrupt changes in the interplanetary plasma velocity and magnetic field based on 19 day's data from the Pioneer 6 spacecraft. The period was chosen to include a high-velocity solar wind stream and low-velocity wind. Abrupt events were accepted for study if the sum of the energy density in the magnetic field and velocity changes was above a specified minimum. A statistical analysis of the events in the high-velocity solar wind stream shows that Alfvenic changes predominate. This conclusion is independent of whether steady state requirements are imposed on conditions before and after the event. Alfvenic changes do not dominate in the lower-speed wind. This study extends the plasma field evidence for outwardly propagating Alfvenic changes to time scales as small as 1 min (scale lengths on the order of 20,000 km).

  19. Computer based ultrasonic system for mechanical and acoustical characterization of materials

    International Nuclear Information System (INIS)

    Rosly Jaafar; Mohd Rozni Mohd Yusof; Khaidzir Hamzah; Md Supar Rohani; Rashdi Shah Ahmad; Amiruddin Shaari

    2001-01-01

    Propagation of both modes of ultrasonic waves velocity i.e. longitudinal (compressional) and transverse (shear), propagating in a material are closely linked with the material's physical and mechanical properties. By measuring both velocity modes, materials' properties such as Young's, bulk and shear moduli, compressibility, Poisson ratio and acoustic impedance can be determined. This paper describes the development of a system that is able to perform the above tasks and is known as Computer Based Ultrasonic for Mechanical and Acoustical Characterisation of Materials (UMC). The system was developed in the NDT Instrumentation and Signal Processing (NDTSP) laboratory of the Physics Department, Universiti Teknologi Malaysia. Measurements were made on four solid samples, namely, glass, copper, mild steel and aluminium. The results of measurements obtained were found to be in good agreement with the values of measurements made using standard methods. The main advantage of using this system over other methods is that single measurement of two ultrasonic velocity modes yields six material's properties. (Author)

  20. Some far-field acoustics characteristics of the XV-15 tilt-rotor aircraft

    Science.gov (United States)

    Golub, Robert A.; Conner, David A.; Becker, Lawrence E.; Rutledge, C. Kendall; Smith, Rita A.

    1990-01-01

    Far-field acoustics tests have been conducted on an instrumented XV-15 tilt-rotor aircraft. The purpose of these acoustic measurements was to create an encompassing, high confidence (90 percent), and accurate (-1.4/ +1/8 dB theoretical confidence interval) far-field acoustics data base to validate ROTONET and other current rotorcraft noise prediction computer codes. This paper describes the flight techniques used, with emphasis on the care taken to obtain high-quality far-field acoustic data. The quality and extensiveness of the data base collected are shown by presentation of ground acoustic contours for level flyovers for the airplane flight mode and for several forward velocities and nacelle tilts for the transition mode and helicopter flight mode. Acoustic pressure time-histories and fully analyzed ensemble averaged far-field data results (spectra) are shown for each of the ground contour cases.

  1. Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics

    Directory of Open Access Journals (Sweden)

    Christopher J. Sarabalis

    2016-10-01

    Full Text Available We numerically study silicon waveguides on silica showing that it is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI material system. Thin waveguides, or fins, exhibit geometrically softened mechanical modes at gigahertz frequencies with phase velocities below the Rayleigh velocity in glass, eliminating acoustic radiation losses. We propose slot waveguides on glass with telecom optical frequencies and strong radiation pressure forces resulting in Brillouin gains on the order of 500 and 50 000 W−1m−1 for backward and forward Brillouin scattering, respectively.

  2. Pressure-Velocity Correlations in the Cove of a Leading Edge Slat

    Science.gov (United States)

    Wilkins, Stephen; Richard, Patrick; Hall, Joseph

    2015-11-01

    One of the major sources of aircraft airframe noise is related to the deployment of high-lift devices, such as leading-edge slats, particularly when the aircraft is preparing to land. As the engines are throttled back, the noise produced by the airframe itself is of great concern, as the aircraft is low enough for the noise to impact civilian populations. In order to reduce the aeroacoustic noise sources associated with these high lift devices for the next generation of aircraft an experimental investigation of the correlation between multi-point surface-mounted fluctuating pressures measured via flush-mounted microphones and the simultaneously measured two-component velocity field measured via Particle Image Velocimetry (PIV) is studied. The development of the resulting shear-layer within the slat cove is studied for Re =80,000, based on the wing chord. For low Mach number flows in air, the major acoustic source is a dipole acoustic source tied to fluctuating surface pressures on solid boundaries, such as the underside of the slat itself. Regions of high correlations between the pressure and velocity field near the surface will likely indicate a strong acoustic dipole source. In order to study the underlying physical mechanisms and understand their role in the development of aeroacoustic noise, Proper Orthogonal Decomposition (POD) by the method of snapshots is employed on the velocity field. The correlation between low-order reconstructions and the surface-pressure measurements are also studied.

  3. Probing dark matter streams with CoGeNT

    International Nuclear Information System (INIS)

    Natarajan, Aravind; Savage, Christopher; Freese, Katherine

    2011-01-01

    We examine the future sensitivity of CoGeNT to the presence of dark matter streams and find that consideration of streams in the data may lead to differences in the interpretation of the results. We show the allowed particle mass and cross section for different halo parameters, assuming spin-independent elastic scattering. As an example, we choose a stream with the same velocity profile as that of the Sagittarius stream (and in the Solar neighborhood) and find that, with an exposure of ∼10 kg yr, the CoGeNT results can be expected to exclude the standard-halo-model-only halo in favor of a standard halo model+stream halo at the 95% (99.7%) confidence level, provided the stream contributes 3% (5%) of the local dark matter density. The presence of a significant stream component may result in incorrect estimates of the particle mass and cross section unless the presence of the stream is taken into account. We conclude that the CoGeNT experiment is sensitive to streams and care should be taken to include the possibility of streams when analyzing experimental results.

  4. Evaluation of forced-convection nucleate boiling detection by acoustic emission

    International Nuclear Information System (INIS)

    Wells, R.P.; Paterson, J.A.

    1981-10-01

    Acoustic Emission techniques are being investigated for use as protection systems in neutral beam accelerators and water cooled beam dumps. For this purpose, the characteristics of the boiling curve for forced-convection surface boiling have been compared to the Acoustic Emission (AE) produced. Results indicate that AE, in the form of count-rate, is a sensitive indicator of nucleate boiling incipience and is relatively insensitive to flow velocity in the 0 to 12 m/s range

  5. The influence of electron inertia on the modulational instability of ion-acoustic waves

    International Nuclear Information System (INIS)

    Parkes, E.J.

    1993-01-01

    The influence of electron inertia, ion streaming and weak relativistic effects on the modulational instability of ion-acoustic waves in a collisionless unmagnetized plasma is investigated. The derivative expansion method is used to derive a nonlinear Schroedinger equation, from which an instability criterion is deduced. When electron inertia is ignored, ion streaming and weak relativistic effects have little effect on the instability criterion. It is shown that when electron inertia is taken into account, the instability criterion is sensitive to weakly relativistic ion streaming, but not to the ratio of electron mass to ion mass. (Author)

  6. Size-sensitive particle trajectories in three-dimensional micro-bubble acoustic streaming flows

    Science.gov (United States)

    Volk, Andreas; Rossi, Massimiliano; Hilgenfeldt, Sascha; Rallabandi, Bhargav; Kähler, Christian; Marin, Alvaro

    2015-11-01

    Oscillating microbubbles generate steady streaming flows with interesting features and promising applications for microparticle manipulation. The flow around oscillating semi-cylindrical bubbles has been typically assumed to be independent of the axial coordinate. However, it has been recently revealed that particle motion is strongly three-dimensional: Small tracer particles follow vortical trajectories with pronounced axial displacements near the bubble, weaving a toroidal stream-surface. A well-known consequence of bubble streaming flows is size-dependent particle migration, which can be exploited for sorting and trapping of microparticles in microfluidic devices. In this talk, we will show how the three-dimensional toroidal topology found for small tracer particles is modified as the particle size increases up to 1/3 of the bubble radius. Our results show size-sensitive particle positioning along the axis of the semi-cylindrical bubble. In order to analyze the three-dimensional sorting and trapping capabilities of the system, experiments with an imposed flow and polydisperse particle solutions are also shown.

  7. Low frequency waves in streaming quantum dusty plasmas

    Science.gov (United States)

    Rozina, Ch.; Jamil, M.; Khan, Arroj A.; Zeba, I.; Saman, J.

    2017-09-01

    The influence of quantum effects on the excitation of two instabilities, namely quantum dust-acoustic and quantum dust-lower-hybrid waves due to the free streaming of ion/dust particles in uniformly magnetized dusty plasmas has been investigated using a quantum hydrodynamic model. We have obtained dispersion relations under some particular conditions applied on streaming ions and two contrastreaming dust particle beams at equilibrium and have analyzed the growth rates graphically. We have shown that with the increase of both the electron number density and the streaming speed of ion there is enhancement in the instability due to the fact that the dense plasma particle system with more energetic species having a high speed results in the increase of the growth rate in the electrostatic mode. The application of this work has been pointed out for laboratory as well as for space dusty plasmas.

  8. Digital image correlation, acoustic emission and ultrasonic pulse velocity for the detection of cracks in the concrete buffer of the Belgian nuclear supercontainer

    International Nuclear Information System (INIS)

    Iliopoulos, Sokratis; Tsangouri, Eleni; Aggelis, Dimitrios G.; Pyl, Lincy; Areias, Lou; Vrije Univ., Brussels

    2014-01-01

    The long term management of high-level and heat emitting radioactive waste is a worldwide concern, as it directly influences the environment and future generations. To address this issue, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials has come up with the conceptual design of a massive concrete structure called Supercontainer. The feasibility to construct these structures is being evaluated through a number of scaled models that are tested using classical as well as state of the art measurement techniques. In the current paper, the results obtained from the simultaneous application of the Digital Image Correlation (DIC), the Acoustic Emission (AE) and the Ultrasonic Pulse Velocity (UPV) nondestructive testing techniques on the second scaled model for the detection and monitoring of cracks will be presented.

  9. Experimental and analytical characterization of the 3D motion of particles in acoustofluidic devices

    DEFF Research Database (Denmark)

    Rossi, M.; Barnkob, Rune; Augustsson, P.

    2012-01-01

    and to examine the accuracy of analytical force predictions. Polystyrene spheres with diameter of 0.5µm and 5µm were displaced under controlled conditions in a long straight rectangular acoustofluidic microchannel, actuated in its 2-MHz resonance mode, a transverse half-wavelength standing acoustic wave......In this work we present an experimental and analytical study of the acoustophoretic motion of spherical polystyrene particles of different sizes. The primary aim is to understand the three-dimensional extension of the acoustic radiation force and the acoustic streaming-induced drag force...... for the smaller 0.5-µm particles. The experimental 3D data is used to validate new theoretical predictions of the streaming velocity....

  10. Reducing the effects of acoustic heterogeneity with an iterative reconstruction method from experimental data in microwave induced thermoacoustic tomography

    International Nuclear Information System (INIS)

    Wang, Jinguo; Zhao, Zhiqin; Song, Jian; Chen, Guoping; Nie, Zaiping; Liu, Qing-Huo

    2015-01-01

    Purpose: An iterative reconstruction method has been previously reported by the authors of this paper. However, the iterative reconstruction method was demonstrated by solely using the numerical simulations. It is essential to apply the iterative reconstruction method to practice conditions. The objective of this work is to validate the capability of the iterative reconstruction method for reducing the effects of acoustic heterogeneity with the experimental data in microwave induced thermoacoustic tomography. Methods: Most existing reconstruction methods need to combine the ultrasonic measurement technology to quantitatively measure the velocity distribution of heterogeneity, which increases the system complexity. Different to existing reconstruction methods, the iterative reconstruction method combines time reversal mirror technique, fast marching method, and simultaneous algebraic reconstruction technique to iteratively estimate the velocity distribution of heterogeneous tissue by solely using the measured data. Then, the estimated velocity distribution is used subsequently to reconstruct the highly accurate image of microwave absorption distribution. Experiments that a target placed in an acoustic heterogeneous environment are performed to validate the iterative reconstruction method. Results: By using the estimated velocity distribution, the target in an acoustic heterogeneous environment can be reconstructed with better shape and higher image contrast than targets that are reconstructed with a homogeneous velocity distribution. Conclusions: The distortions caused by the acoustic heterogeneity can be efficiently corrected by utilizing the velocity distribution estimated by the iterative reconstruction method. The advantage of the iterative reconstruction method over the existing correction methods is that it is successful in improving the quality of the image of microwave absorption distribution without increasing the system complexity

  11. Anomalous conductivity and electron heating in a plasma unstable to the two-stream instability

    International Nuclear Information System (INIS)

    Clark, W.H.M.; Hamberger, S.M.

    1979-01-01

    An experiment to excite the electron-ion two-stream instability in a cylindrical Q-machine plasma column is described. The mechanism for establishing a large pulsed electron drift velocity in the plasma by applying a potential difference between the end electrodes is discussed. The pulsed current-voltage characteristic of the plasma column and the temporal evolution of the electron density, drift velocity and thermal velocity are measured. In contrast with the behaviour of some computer simulations of the two-stream instability, the plasma exhibits a constant conductivity and the electron thermal velocity increases to values far in excess of the drift velocity. The electrical dissipation is consistent with the increase of the electron thermal energy, both indicating an anomalous conductivity of the same order as an empirical scaling found in earlier experiments on a toroidal discharge. (author)

  12. Impact of acoustic impedance and flow resistance on the power output capacity of the regenerators in travelling-wave thermoacoustic engines

    International Nuclear Information System (INIS)

    Yu Zhibin; Jaworski, Artur J.

    2010-01-01

    This paper considers the role of acoustic impedance, flow resistance, configuration and geometrical dimensions of regenerators on the power produced in travelling-wave thermoacoustic engines. The effects are modelled assuming a pure travelling-wave and ideal gas, which allows defining a pair of dimensionless factors based on the 'net' acoustic power production. Based on the analysis provided, the acoustic power flow in the regenerators is investigated numerically. It is shown that impedance essentially reflects the proportion between the acoustic power produced from heat energy through the thermoacoustic processes and the acoustic power dissipated by viscous and thermal-relaxation effects in the regenerators. Viscous resistance of the regenerator mainly determines the magnitude of the volumetric velocity and then affects the magnitude of acoustic impedance. High impedance and high volumetric velocity are both required in the regenerators for high power engines. The results also show that the optimum transverse dimension of the gas passage exists, but depends on the local acoustic impedance. In principle, it is possible to obtain an optimum combination between these two parameters.

  13. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Barnkob, Rune; Jensen, Mads Jakob Herring

    2012-01-01

    We present a numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave: the acoustic radiation force from the scattering of sound waves on the particles...

  14. Pacing the phasing of leg and arm movements in breaststroke swimming to minimize intra-cyclic velocity fluctuations.

    Directory of Open Access Journals (Sweden)

    Josje van Houwelingen

    Full Text Available In swimming propelling efficiency is partly determined by intra-cyclic velocity fluctuations. The higher these fluctuations are at a given average swimming velocity, the less efficient is the propulsion. This study explored whether the leg-arm coordination (i.e. phase relation ϕ within the breaststroke cycle can be influenced with acoustic pacing, and whether the so induced changes are accompanied by changes in intra-cyclic velocity fluctuations. Twenty-six participants were asked to couple their propulsive leg and arm movements to a double-tone metronome beat and to keep their average swimming velocity constant over trials. The metronome imposed five different phase relations ϕi (90, 135, 180, 225 and 270° of leg-arm coordination. Swimmers adjusted their technique under the influence of the metronome, but failed to comply to the velocity requirement for ϕ = 90 and 135°. For imposed ϕ = 180, 225 and 270°, the intra-cyclic velocity fluctuations increased with increasing ϕ, while average swimming velocity did not differ. This suggests that acoustic pacing may be used to adjust ϕ and thereby performance of breaststroke swimming given the dependence of propelling efficiency on ϕ.

  15. Open-Lake Experimental Investigation of Azimuth Angle Estimation Using a Single Acoustic Vector Sensor

    Directory of Open Access Journals (Sweden)

    Anbang Zhao

    2018-01-01

    Full Text Available Five well-known azimuth angle estimation methods using a single acoustic vector sensor (AVS are investigated in open-lake experiments. A single AVS can measure both the acoustic pressure and acoustic particle velocity at a signal point in space and output multichannel signals. The azimuth angle of one source can be estimated by using a single AVS in a passive sonar system. Open-lake experiments are carried out to evaluate how these different techniques perform in estimating azimuth angle of a source. The AVS that was applied in these open-lake experiments is a two-dimensional accelerometer structure sensor. It consists of two identical uniaxial velocity sensors in orthogonal orientations, plus a pressure sensor—all in spatial collocation. These experimental results indicate that all these methods can effectively realize the azimuth angle estimation using only one AVS. The results presented in this paper reveal that AVS can be applied in a wider range of application in distributed underwater acoustic systems for passive detection, localization, classification, and so on.

  16. Shock formation and structure in magnetic reconnection with a streaming flow.

    Science.gov (United States)

    Wu, Liangneng; Ma, Zhiwei; Zhang, Haowei

    2017-08-18

    The features of magnetic reconnection with a streaming flow have been investigated on the basis of compressible resistive magnetohydrodynamic (MHD) model. The super-Alfvenic streaming flow largely enhances magnetic reconnection. The maximum reconnection rate is almost four times larger with super-Alfvenic streaming flow than sub-Alfvénic streaming flow. In the nonlinear stage, it is found that there is a pair of shocks observed in the inflow region, which are manifested to be slow shocks for sub-Alfvénic streaming flow, and fast shocks for super-Alfvénic streaming flow. The quasi-period oscillation of reconnection rates in the decaying phase for super-Alfvénic streaming flow is resulted from the different drifting velocities of the shock and the X point.

  17. The power flow angle of acoustic waves in thin piezoelectric plates.

    Science.gov (United States)

    Kuznetsova, Iren E; Zaitsev, Boris D; Teplykh, Andrei A; Joshi, Shrinivas G; Kuznetsova, Anastasia S

    2008-09-01

    The curves of slowness and power flow angle (PFA) of quasi-antisymmetric (A(0)) and quasi-symmetric (S(0)) Lamb waves as well as quasi-shear-horizontal (SH(0)) acoustic waves in thin plates of lithium niobate and potassium niobate of X-,Y-, and Z-cuts for various propagation directions and the influence of electrical shorting of one plate surface on these curves and PFA have been theoretically investigated. It has been found that the group velocity of such waves does not coincide with the phase velocity for the most directions of propagation. It has been also shown that S(0) and SH(0) wave are characterized by record high values of PFA and its change due to electrical shorting of the plate surface in comparison with surface and bulk acoustic waves in the same material. The most interesting results have been verified by experiment. As a whole, the results obtained may be useful for development of various devices for signal processing, for example, electrically controlled acoustic switchers.

  18. A novel five-wire micro anemometer with 3D directionality for low speed air flow detection and acoustic particle velocity detecting capability

    Science.gov (United States)

    Li, Zhe; Chang, Wenhan; Gao, Chengchen; Hao, Yilong

    2018-04-01

    In this paper, a novel five-wire micro-fabricated anemometer with 3D directionality based on calorimetric principle is proposed, which is capable of measuring low speed airflow. This structure is realized by vertically bonding two different dies, which can be fabricated on the same wafer resulting in a simple fabrication process. Experiments on speed lower than 200 mm s-1 are conducted, showing good repeatability and directionality. The speed of airflow is controlled by the volumetric flow rate. The measured velocity sensitivity is 9.4 mV · s m-1, with relative direction sensitivity of 37.1 dB. The deviation between the expected and the measured directivity is analyzed by both theories and simulations. A correction procedure is proposed and turns out to be useful to eliminate this deviation. To further explore the potential of our device, we expose it to acoustic plane waves in a standing wave tube, showing consistent planar directivity of figure of eight. The measured velocity sensitivity at 1 kHz and 120 dBC is 4.4 mV · s m-1, with relative direction sensitivity of 27.0 dB. By using the correction method proposed above, the maximum angle error is about  ±2°, showing its good directionality accuracy.

  19. Monolithic acoustic graphene transistors based on lithium niobate thin film

    Science.gov (United States)

    Liang, J.; Liu, B.-H.; Zhang, H.-X.; Zhang, H.; Zhang, M.-L.; Zhang, D.-H.; Pang, W.

    2018-05-01

    This paper introduces an on-chip acoustic graphene transistor based on lithium niobate thin film. The graphene transistor is embedded in a microelectromechanical systems (MEMS) acoustic wave device, and surface acoustic waves generated by the resonator induce a macroscopic current in the graphene due to the acousto-electric (AE) effect. The acoustic resonator and the graphene share the lithium niobate film, and a gate voltage is applied through the back side of the silicon substrate. The AE current induced by the Rayleigh and Sezawa modes was investigated, and the transistor outputs a larger current in the Rayleigh mode because of a larger coupling to velocity ratio. The output current increases linearly with the input radiofrequency power and can be effectively modulated by the gate voltage. The acoustic graphene transistor realized a five-fold enhancement in the output current at an optimum gate voltage, outperforming its counterpart with a DC input. The acoustic graphene transistor demonstrates a paradigm for more-than-Moore technology. By combining the benefits of MEMS and graphene circuits, it opens an avenue for various system-on-chip applications.

  20. Anisotropic surface acoustic waves in tungsten/lithium niobate phononic crystals

    Science.gov (United States)

    Sun, Jia-Hong; Yu, Yuan-Hai

    2018-02-01

    Phononic crystals (PnC) were known for acoustic band gaps for different acoustic waves. PnCs were already applied in surface acoustic wave (SAW) devices as reflective gratings based on the band gaps. In this paper, another important property of PnCs, the anisotropic propagation, was studied. PnCs made of circular tungsten films on a lithium niobate substrate were analyzed by finite element method. Dispersion curves and equal frequency contours of surface acoustic waves in PnCs of various dimensions were calculated to study the anisotropy. The non-circular equal frequency contours and negative refraction of group velocity were observed. Then PnC was applied as an acoustic lens based on the anisotropic propagation. Trajectory of SAW passing PnC lens was calculated and transmission of SAW was optimized by selecting proper layers of lens and applying tapered PnC. The result showed that PnC lens can suppress diffraction of surface waves effectively and improve the performance of SAW devices.

  1. EISCAT measurements of solar wind velocity and the associated level of interplanetary scintillation

    Directory of Open Access Journals (Sweden)

    R. A. Fallows

    2002-09-01

    Full Text Available A relative scintillation index can be derived from EISCAT observations of Interplanetary Scintillation (IPS usually used to study the solar wind velocity. This provides an ideal opportunity to compare reliable measurements of the solar wind velocity derived for a number of points along the line-of-sight with measurements of the overall level of scintillation. By selecting those occasions where either slow- or fast-stream scattering was dominant, it is shown that at distances from the Sun greater than 30 RS , in both cases the scintillation index fell with increasing distance as a simple power law, typically as R-1.7. The level of scintillation for slow-stream scattering is found to be 2.3 times the level for fast-stream scattering.Key words. Interplanetary physics (solar wind plasma

  2. Laboratory ultrasonic pulse velocity logging for determination of elastic properties from rock core

    Science.gov (United States)

    Blacklock, Natalie Erin

    During the development of deep underground excavations spalling and rockbursting have been recognized as significant mechanisms of violent brittle failure. In order to predict whether violent brittle failure will occur, it is important to identify the location of stiffness transitions that are associated with geologic structure. One approach to identify the effect of geologic structures is to apply borehole geophysical tools ahead of the tunnel advance. Stiffness transitions can be identified using mechanical property analysis surveys that combine acoustic velocity and density data to calculate acoustic estimates of elastic moduli. However, logistical concerns arise since the approach must be conducted at the advancing tunnel face. As a result, borehole mechanical property analyses are rarely used. Within this context, laboratory ultrasonic pulse velocity testing has been proposed as a potential alternative to borehole mechanical property analysis since moving the analysis to the laboratory would remove logistical constraints and improve safety for the evaluators. In addition to the traditional method of conducting velocity testing along the core axis, two new methodologies for point-focused testing were developed across the core diameter, and indirectly along intact lengths of drill core. The indirect test procedure was implemented in a continuous ultrasonic velocity test program along 573m of drill core to identify key geologic structures that generated transitions in ultrasonic elastic moduli. The test program was successful at identifying the location of geologic contacts, igneous intrusions, faults and shear structures. Ultrasonic values of Young's modulus and bulk modulus were determined at locations of significant velocity transitions to examine the potential for energy storage and energy release. Comparison of results from different ultrasonic velocity test configurations determined that the indirect test configuration provided underestimates for values of

  3. Surface acoustic wave actuated cell sorting (SAWACS).

    Science.gov (United States)

    Franke, T; Braunmüller, S; Schmid, L; Wixforth, A; Weitz, D A

    2010-03-21

    We describe a novel microfluidic cell sorter which operates in continuous flow at high sorting rates. The device is based on a surface acoustic wave cell-sorting scheme and combines many advantages of fluorescence activated cell sorting (FACS) and fluorescence activated droplet sorting (FADS) in microfluidic channels. It is fully integrated on a PDMS device, and allows fast electronic control of cell diversion. We direct cells by acoustic streaming excited by a surface acoustic wave which deflects the fluid independently of the contrast in material properties of deflected objects and the continuous phase; thus the device underlying principle works without additional enhancement of the sorting by prior labelling of the cells with responsive markers such as magnetic or polarizable beads. Single cells are sorted directly from bulk media at rates as fast as several kHz without prior encapsulation into liquid droplet compartments as in traditional FACS. We have successfully directed HaCaT cells (human keratinocytes), fibroblasts from mice and MV3 melanoma cells. The low shear forces of this sorting method ensure that cells survive after sorting.

  4. MEMS Gyroscopes Based on Acoustic Sagnac Effect

    Directory of Open Access Journals (Sweden)

    Yuanyuan Yu

    2016-12-01

    Full Text Available This paper reports on the design, fabrication and preliminary test results of a novel microelectromechanical systems (MEMS device—the acoustic gyroscope. The unique operating mechanism is based on the “acoustic version” of the Sagnac effect in fiber-optic gyros. The device measures the phase difference between two sound waves traveling in opposite directions, and correlates the signal to the angular velocity of the hosting frame. As sound travels significantly slower than light and develops a larger phase change within the same path length, the acoustic gyro can potentially outperform fiber-optic gyros in sensitivity and form factor. It also promises superior stability compared to vibratory MEMS gyros as the design contains no moving parts and is largely insensitive to mechanical stress or temperature. We have carried out systematic simulations and experiments, and developed a series of processes and design rules to implement the device.

  5. Consequences of variation in stream-landscape connections for stream nitrate retention and export

    Science.gov (United States)

    Handler, A. M.; Helton, A. M.; Grimm, N. B.

    2017-12-01

    Hydrologic and material connections among streams, the surrounding terrestrial landscape, and groundwater systems fluctuate between extremes in dryland watersheds, yet the consequences of this variation for stream nutrient retention and export remain uncertain. We explored how seasonal variation in hydrologic connection among streams, landscapes, and groundwater affect nitrate and ammonium concentrations across a dryland stream network and how this variation mediates in-stream nitrate uptake and watershed export. We conducted spatial surveys of stream nitrate and ammonium concentration across the 1200 km2 Oak Creek watershed in central Arizona (USA). In addition, we conducted pulse releases of a solution containing biologically reactive sodium nitrate, with sodium chloride as a conservative hydrologic tracer, to estimate nitrate uptake rates in the mainstem (Q>1000 L/s) and two tributaries. Nitrate and ammonium concentrations generally increased from headwaters to mouth in the mainstem. Locally elevated concentrations occurred in spring-fed tributaries draining fish hatcheries and larger irrigation ditches, but did not have a substantial effect on the mainstem nitrogen load. Ambient nitrate concentration (as N) ranged from below the analytical detection limit of 0.005 mg/L to 0.43 mg/L across all uptake experiments. Uptake length—average stream distance traveled for a nutrient atom from the point of release to its uptake—at ambient concentration ranged from 250 to 704 m and increased significantly with higher discharge, both across streams and within the same stream on different experiment dates. Vertical uptake velocity and aerial uptake rate ranged from 6.6-10.6 mm min-1 and 0.03 to 1.4 mg N m-2 min-1, respectively. Preliminary analyses indicate potentially elevated nitrogen loading to the lower portion of the watershed during seasonal precipitation events, but overall, the capacity for nitrate uptake is high in the mainstem and tributaries. Ongoing work

  6. Effect of temperature on Acoustic Evaluation of standing trees and logs: Part 2: Field Investigation

    Science.gov (United States)

    Shan Gao; Xiping Wang; Lihai Wang; R. Bruce Allison

    2013-01-01

    The objectives of this study were to investigate the effect of seasonal temperature changes on acoustic velocity measured on standing trees and green logs and to develop models for compensating temperature differences because acoustic measurements are performed in different climates and seasons. Field testing was conducted on 20 red pine (Pinus resinosa...

  7. High-frequency modulation of ion-acoustic waves.

    Science.gov (United States)

    Albright, N. W.

    1972-01-01

    A large amplitude, high-frequency electromagnetic oscillation is impressed on a nonrelativistic, collisionless plasma from an external source. The frequency is chosen to be far from the plasma frequency (in fact, lower). The resulting electron velocity distribution function strongly modifies the propagation of ion-acoustic waves parallel to the oscillating electric field. The complex frequency is calculated numerically.

  8. A neuroplasticity-inspired neural circuit for acoustic navigation with obstacle avoidance that learns smooth motion paths

    DEFF Research Database (Denmark)

    Shaikh, Danish; Manoonpong, Poramate

    2018-01-01

    steered the robot towards an acoustic target. The architecture mapped sound direction information, extracted by a model of the peripheral auditory system of lizards, to appropriate wheel velocities. An obstacle avoidance behaviour using distance information overrode the wheel velocities during navigation...

  9. THE ORBIT OF THE ORPHAN STREAM

    International Nuclear Information System (INIS)

    Newberg, Heidi Jo; Willett, Benjamin A.; Yanny, Brian; Xu Yan

    2010-01-01

    We use recent Sloan Extension for Galactic Understanding and Exploration (SEGUE) spectroscopy and the Sloan Digital Sky Survey (SDSS) and SEGUE imaging data to measure the sky position, distance, and radial velocities of stars in the tidal debris stream that is commonly referred to as the 'Orphan Stream'. We fit orbital parameters to the data and find a prograde orbit with an apogalacticon, perigalacticon, and eccentricity of 90 kpc, 16.4 kpc, and e = 0.7, respectively. Neither the dwarf galaxy UMa II nor the Complex A gas cloud has velocities consistent with a kinematic association with the Orphan Stream. It is possible that Segue-1 is associated with the Orphan Stream, but no other known Galactic clusters or dwarf galaxies in the Milky Way lie along its orbit. The detected portion of the stream ranges from 19 to 47 kpc from the Sun and is an indicator of the mass interior to these distances. There is a marked increase in the density of Orphan Stream stars near (l, b) = (253 0 , 49 0 ), which could indicate the presence of the progenitor at the edge of the SDSS data. If this is the progenitor, then the detected portion of the Orphan Stream is a leading tidal tail. We find blue horizontal branch (BHB) stars and F turnoff stars associated with the Orphan Stream. The turnoff color is (g - r) 0 = 0.22. The BHB stars have a low metallicity of [Fe/H] WBG = -2.1. The orbit is best fit to a halo potential with a halo plus disk mass of about 2.6 x 10 11 M sun , integrated to 60 kpc from the Galactic center. Our fits are done to orbits rather than full N-body simulations; we show that if N-body simulations are used, the inferred mass of the galaxy would be slightly smaller. Our best fit is found with a logarithmic halo speed of v halo = 73 ± 24 km s -1 , a disk+bulge mass of M(R 11 M sun , and a halo mass of M(R 11 M sun . However, we can find similar fits to the data that use a Navarro-Frenk-White halo profile or that have smaller disk masses and correspondingly larger

  10. Cleaning lateral morphological features of the root canal: the role of streaming and cavitation.

    Science.gov (United States)

    Robinson, J P; Macedo, R G; Verhaagen, B; Versluis, M; Cooper, P R; van der Sluis, L W M; Walmsley, A D

    2018-01-01

    To investigate the effects of ultrasonic activation file type, lateral canal location and irrigant on the removal of a biofilm-mimicking hydrogel from a fabricated lateral canal. Additionally, the amount of cavitation and streaming was quantified for these parameters. An intracanal sonochemical dosimetry method was used to quantify the cavitation generated by an IrriSafe 25 mm length, size 25 file inside a root canal model filled with filtered degassed/saturated water or three different concentrations of NaOCl. Removal of a hydrogel, demonstrated previously to be an appropriate biofilm mimic, was recorded to measure the lateral canal cleaning rate from two different instruments (IrriSafe 25 mm length, size 25 and K 21 mm length, size 15) activated with a P5 Suprasson (Satelec) at power P8.5 in degassed/saturated water or NaOCl. Removal rates were compared for significant differences using nonparametric Kruskal-Wallis and/or Mann-Whitney U-tests. Streaming was measured using high-speed particle imaging velocimetry at 250 kfps, analysing both the oscillatory and steady flow inside the lateral canals. There was no significant difference in amount of cavitation between tap water and oversaturated water (P = 0.538), although more cavitation was observed than in degassed water. The highest cavitation signal was generated with NaOCl solutions (1.0%, 4.5%, 9.0%) (P streaming. The oscillatory velocities were higher inside the lateral canal 3 mm compared to 6 mm from WL and were higher for NaOCl than for saturated water, which in turn was higher than for degassed water. Measurements of cavitation and acoustic streaming have provided insight into their contribution to cleaning. Significant differences in cleaning, cavitation and streaming were found depending on the file type and size, lateral canal location and irrigant used. In general, the IrriSafe file outperformed the K-file, and NaOCl performed better than the other irrigants tested. The cavitation and

  11. An asymptotic inversion method of inferring the sound velocity distribution in the sun from the spectrum of p-mode oscillations

    International Nuclear Information System (INIS)

    Sekii, Takashi; Shibahashi, Hiromoto

    1989-01-01

    We present an inversion method of inferring the sound velocity distribution in the Sun from its oscillation data of p-modes. The equation governing the p-mode oscillations is reduced to a form similar to the Schroedinger equation in quantum mechanics. By using a quantization rule based on the KWBJ asymptotic method, we derive an integral equation of which solution provides the 'acoustic potential' of the wave equation. The acoustic potential consists of two parts: One of them is related with the squared sound velocity and is dependent on the degree of the mode l, while the other term is independent of l and dominates in the outer part of the Sun. By examining the l-dependence of the acoustic potential obtained as the solution of the integral equation, we separate these two components of the potential and eventually obtain the sound velocity distribution from a set of eigenfrequencies of p-modes. In order to evaluate prospects of this inversion method, we perform numerical simulations in which eigenfrequencies of a theoretical solar model are used to reproduce the sound velocity distribution of the model. The error of thus inferred sound velocity relative to the true values is estimated to be less than a few percent. (author)

  12. Stream-groundwater exchange and hydrologic turnover at the network scale

    Science.gov (United States)

    Covino, Tim; McGlynn, Brian; Mallard, John

    2011-12-01

    The exchange of water between streams and groundwater can influence stream water quality, hydrologic mass balances, and attenuate solute export from watersheds. We used conservative tracer injections (chloride, Cl-) across 10 stream reaches to investigate stream water gains and losses from and to groundwater at larger spatial and temporal scales than typically associated with hyporheic exchanges. We found strong relationships between reach discharge, median tracer velocity, and gross hydrologic loss across a range of stream morphologies and sizes in the 11.4 km2 Bull Trout Watershed of central ID. We implemented these empirical relationships in a numerical network model and simulated stream water gains and losses and subsequent fractional hydrologic turnover across the stream network. We found that stream gains and losses from and to groundwater can influence source water contributions and stream water compositions across stream networks. Quantifying proportional influences of source water contributions from runoff generation locations across the network on stream water composition can provide insight into the internal mechanisms that partially control the hydrologic and biogeochemical signatures observed along networks and at watershed outlets.

  13. Surface acoustic waves and elastic constants of InN epilayers determined by Brillouin scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Rioboo, R.J.; Prieto, C. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, Madrid (Spain); Cusco, R.; Domenech-Amador, N.; Artus, L. [Institut Jaume Almera, Consell Superior d' Investigacions Cientifiques (CSIC), Lluis Sole i Sabaris s.n., Barcelona, Catalonia (Spain); Yamaguchi, T.; Nanishi, Y. [Faculty of Science and Engineering, Ritsumeikan University, Noji-Higashi, Kusatsu, Shiga (Japan)

    2012-06-15

    The surface acoustic wave velocity in InN has been experimentally determined by means of Brillouin scattering experiments on c - and m -face epilayers. From simulations based on the Green's function formalism we determine the shear elastic constants c{sub 66} and c{sub 44} and propose a complete set of elastic constants for wurtzite InN. The analysis of the sagittal and azimuthal dependence of the surface acoustic wave velocity indicates a slightly different elastic behavior of the m -face sample that basically affects the c{sub 44} elastic constant. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Iterative reflectivity-constrained velocity estimation for seismic imaging

    Science.gov (United States)

    Masaya, Shogo; Verschuur, D. J. Eric

    2018-03-01

    This paper proposes a reflectivity constraint for velocity estimation to optimally solve the inverse problem for active seismic imaging. This constraint is based on the velocity model derived from the definition of reflectivity and acoustic impedance. The constraint does not require any prior information of the subsurface and large extra computational costs, like the calculation of so-called Hessian matrices. We incorporate this constraint into the Joint Migration Inversion algorithm, which simultaneously estimates both the reflectivity and velocity model of the subsurface in an iterative process. Using so-called full wavefield modeling, the misfit between forward modeled and measured data is minimized. Numerical and field data examples are given to demonstrate the validity of our proposed algorithm in case accurate initial models and the low frequency components of observed seismic data are absent.

  15. A numerically efficient damping model for acoustic resonances in microfluidic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, P., E-mail: hahnp@ethz.ch; Dual, J. [Institute of Mechanical Systems (IMES), Department of Mechanical and Process Engineering, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich (Switzerland)

    2015-06-15

    Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results are fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.

  16. Acoustic imaging of underground storage tank wastes: A feasibility study. Final report

    International Nuclear Information System (INIS)

    Turpening, R.; Zhu, Z.; Caravana, C.; Matarese, J.

    1995-01-01

    The objectives for this underground storage tank (UST) imaging investigation are: (1) to assess the feasibility of using acoustic methods in UST wastes, if shown to be feasible, develop and assess imaging strategies; (2) to assess the validity of using chemical simulants for the development of acoustic methods and equipment. This investigation examined the velocity of surrogates, both salt cake and sludge surrogates. In addition collected seismic cross well data in a real tank (114-TX) on the Hanford Reservation. Lastly, drawing on the knowledge of the simulants and the estimates of the velocities of the waste in tank 114-TX the authors generated a hypothetical model of waste in a tank and showed that non-linear travel time tomographic imaging would faithfully image that stratigraphy

  17. Acoustic properties of nanoscale oxide heterostructures probed by UV Raman spectroscopy

    International Nuclear Information System (INIS)

    Bruchhausen, A; Lanzillotti-Kimura, N D; Fainstein, A; Soukiassian, A; Tenne, D A; Schlom, D; Xi, X X; Cantarero, A

    2007-01-01

    We study high quality molecular-beam epitaxy grown BaTiO 3 /SrTiO 3 superlat-tices using ultraviolet Raman spectroscopy. In the low energy spectral region, acoustic phonon doublets are observed. These are due to the artificial superlattice periodicity and consequent folding of the acoustic phonon dispersion. From the study of samples with different BaTiO 3 /SrTiO 3 layer thicknesses the effective sound velocities within each of the layers are obtained

  18. Acoustic properties of nanoscale oxide heterostructures probed by UV Raman spectroscopy

    Science.gov (United States)

    Bruchhausen, A.; Lanzillotti-Kimura, N. D.; Fainstein, A.; Soukiassian, A.; Tenne, D. A.; Schlom, D.; Xi, X. X.; Cantarero, A.

    2007-12-01

    We study high quality molecular-beam epitaxy grown BaTiO3/SrTiO3 superlat-tices using ultraviolet Raman spectroscopy. In the low energy spectral region, acoustic phonon doublets are observed. These are due to the artificial superlattice periodicity and consequent folding of the acoustic phonon dispersion. From the study of samples with different BaTiO3/SrTiO3 layer thicknesses the effective sound velocities within each of the layers are obtained.

  19. Evaluation of acoustic resonance at branch section in main steam line. Part 1. Effects of steam wetness on acoustic resonance

    International Nuclear Information System (INIS)

    Uchiyama, Yuta; Morita, Ryo

    2011-01-01

    The power uprating of the nuclear power plant (NPP) is conducted in United States, EU countries and so on, and also is planned in Japan. However, the degradation phenomena such as flow-induced vibration and wall thinning may increase or expose in the power uprate condition. In U.S. NPP, the dryer had been damaged by high cycle fatigue due to acoustic-induced vibration under a 17% extended power uprating (EPU) condition. This is caused by acoustic resonance at the stub pipes of safety relief valves (SRVs) in the main steam lines (MSL). Increased velocity by uprating excites the pressure fluctuations and makes large amplitude resonance. To evaluate the acoustic resonance at the stub pipes of SRVs in actual BWR, it is necessary to clarify the acoustic characteristics in steam flow. Although there are several previous studies about acoustic resonance, most of them are not steam flow but air flow. Therefore in this study, to investigate the acoustic characteristics in steam flow, we conducted steam flow experiments in each dry and wet steam conditions, and also nearly saturated condition. We measured pressure fluctuation at the top of the single stub pipe and in main steam piping. As a result, acoustic resonance in dry steam flow could be evaluated as same as that in air flow. It is clarified that resonance amplitude of fluctuating pressure at the top of the stub pipe in wet steam was reduced to one-tenth compared with that in dry. (author)

  20. DNS and the theory of receptivity of a supersonic boundary layer to free-stream disturbances

    International Nuclear Information System (INIS)

    Soudakov, Vitaly; Fedorov, Alexander; Ryzhov, Alexander

    2011-01-01

    Direct numerical simulation (DNS) of receptivity of a boundary layer over flat plate is carried out. The free stream Mach number is equal to 6. The following two-dimensional disturbances are introduced into the free-stream flow: fast and slow acoustic waves, temperature spottiness. A theoretical model describing the excitation of unstable waves in the boundary layer is developed using the biorthogonal eigenfunction decomposition method. The DNS results agree with the theoretical predictions.

  1. Effect of Temperature on Acoustic Evaluation of Standing trees and logs: Part 1-Laboratory investigation

    Science.gov (United States)

    Shan Gao; Xiping Wang; Lihai Wang; R. Bruce. Allison

    2012-01-01

    The goals of this study were to investigate the effect of environment temperature on acoustic velocity of standing trees and green logs and to develop workable models for compensating temperature differences as acoustic measurements are performed in different climates and seasons. The objective of Part 1 was to investigate interactive effects of temperature and...

  2. Measurement of stiffness of standing trees and felled logs using acoustics: A review.

    Science.gov (United States)

    Legg, Mathew; Bradley, Stuart

    2016-02-01

    This paper provides a review on the use of acoustics to measure stiffness of standing trees, stems, and logs. An outline is given of the properties of wood and how these are related to stiffness and acoustic velocity throughout the tree. Factors are described that influence the speed of sound in wood, including the different types of acoustic waves which propagate in tree stems and lumber. Acoustic tools and techniques that have been used to measure the stiffness of wood are reviewed. The reasons for a systematic difference between direct and acoustic measurements of stiffness for standing trees, and methods for correction, are discussed. Other techniques, which have been used in addition to acoustics to try to improve stiffness measurements, are also briefly described. Also reviewed are studies which have used acoustic tools to investigate factors that influence the stiffness of trees. These factors include different silvicultural practices, geographic and environmental conditions, and genetics.

  3. Critical ionisation velocity effects in astrophysical plasmas

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1979-08-01

    Critical ionisation velocity effects are relevant to astrophysical situations where neutral gas moves through a magnetised plasma. The experimental significance of the critical velocity is well established and the physical basis is now becoming clear. The underlying mechanism depends on the combined effects of electron impact ionisation and electron energisation by collective plasma interactions. For low density plasmas a theory based on a circular process involving electron heating through a modified two stream instability has been developed. Several applications of critical velocity effects to astrophysical plasmas have been discussed in the literature. The importance of the effect in any particular case may be determined from a detailed consideration of energy and momentum balance, using appropriate atomic rate coefficients and taking full account of collective plasma processes. (Auth.)

  4. Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons

    Science.gov (United States)

    Nasir Khattak, M.; Mushtaq, A.; Qamar, A.

    2015-12-01

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.

  5. Ion streaming instabilities in pair ion plasma and localized structure with non-thermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, M. Nasir; Qamar, A., E-mail: mnnasirphysics@gmail.com [Department of Physics, University of Peshawar (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University Mardan, National Center for Physics, Mardan (Pakistan)

    2015-12-15

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A quasi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted. (author)

  6. Nonlinear Relationship of Near-Bed Velocity and Growth of Riverbed Periphyton

    Directory of Open Access Journals (Sweden)

    Mohamed Ateia

    2016-10-01

    Full Text Available Artificial streams were set up to test the relationship between near-bed water velocity and periphyton growth. Periphyton community samples collected from a Japanese stream were incubated for 44 days under a light intensity of 252 ± 72 μmol·photons/m2·s, a temperature of 20–25 °C, and three near-bed water velocity classes: low (<17.9 cm/s, moderate (17.9–32.8 cm/s, and high (>32.8 cm/s. A logistic model was applied to estimate the maximum net growth rate (μmax and carrying capacity (Bmax. A response surface method was also applied to estimate chlorophyll a (Chl-a and ash-free dry mass (AFDM with respect to the independent variables (i.e., time and water velocity. We detected both the highest μmax (1.99 d−1 and highest Bmax (7.01 mg/m2 for Chl-a at the moderate water velocity. For AFDM, we observed the highest μmax (0.57 d−1 and Bmax (1.47 g/m2 at the low and moderate velocity classes, respectively. The total algae density in the region of moderate velocity at the end of the experiment was 6.47 × 103 cells/cm2, corresponding to levels 1.7 and 1.3 times higher than those at lower and higher velocities, respectively. Our findings indicated that the moderate near-bed water velocity provided favorable conditions for algal growth and corresponding biomass accumulation.

  7. THE USE OF RADIOISOTOPES IN ON-STREAM ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Haffner, James W.

    1963-09-15

    A wide variety of radioisotope techniques is presently in use for on- stream measurements. Among these are gages to measure thickness, density, viscosity, dilution, volume, velocity, and level. A few unique combinations of the above techniques are also detailed--a mass-flow gage, a beryllium-in-air monitor, and a double thickness/double density gage. Several available on-stream techniques utilizing neutrons, which have not been fully exploited, are discussed, including neutron inelastic scattering, neutron thermalization, neutron capture, and neutron activation. (auth)

  8. Stress wave velocity patterns in the longitudinal-radial plane of trees for defect diagnosis

    Science.gov (United States)

    Guanghui Li; Xiang Weng; Xiaocheng Du; Xiping Wang; Hailin Feng

    2016-01-01

    Acoustic tomography for urban tree inspection typically uses stress wave data to reconstruct tomographic images for the trunk cross section using interpolation algorithm. This traditional technique does not take into account the stress wave velocity patterns along tree height. In this study, we proposed an analytical model for the wave velocity in the longitudinal–...

  9. Experiment on dust acoustic solitons in strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Boruah, Abhijit; Sharma, Sumita Kumari; Bailung, Heremba

    2015-01-01

    Dusty plasma, which contains nanometer to micrometer sized dust particles along with electrons and ions, supports a low frequency wave called Dust Acoustic wave, analogous to ion acoustic wave in normal plasma. Due to high charge and low temperature of the dust particles, dusty plasma can easily transform into a strongly coupled state when the Coulomb interaction potential energy exceeds the dust kinetic energy. Dust acoustic perturbations are excited in such strongly coupled dusty plasma by applying a short negative pulse (100 ms) of amplitude 5 - 20 V to an exciter. The perturbation steepens due to nonlinear effect and forms a solitary structure by balancing dispersion present in the medium. For specific discharge conditions, excitation amplitude above a critical value, the perturbation is found to evolve into a number of solitons. The experimental results on the excitation of multiple dust acoustic solitons in the strongly coupled regime are presented in this work. The experiment is carried out in radio frequency discharged plasma produced in a glass chamber at a pressure 0.01 - 0.1 mbar. Few layers of dust particles (∼ 5 μm in diameter) are levitated above a grounded electrode inside the chamber. Wave evolution is observed with the help of green laser sheet and recorded in a high resolution camera at high frame rate. The high amplitude soliton propagates ahead followed by smaller amplitude solitons with lower velocity. The separation between the solitons increases as time passes by. The characteristics of the observed dust acoustic solitons such as amplitude-velocity and amplitude- Mach number relationship are compared with the solutions of Korteweg-de Vries (KdV) equation. (author)

  10. Ion temperature effect on the propagation of ion acoustic solitary waves in a relativistic magnetoplasma

    International Nuclear Information System (INIS)

    Salahuddin, M.

    1990-01-01

    Using the reductive perturbation technique the Korteweg-de Vries (KdV) equation is derived for ion acoustic waves, in the presence of weak relativistic effects and warm ions, in a magnetized plasma. The influence of non ideal effects on the amplitude and width of the ion acoustic solitary waves is also discussed. The results are depicted in the figures. It is shown that the simultaneous presence of ion streaming and magnetic field stops the tendency of soliton breaking. (author)

  11. Axial and radial velocities in the creeping flow in a pipe

    Directory of Open Access Journals (Sweden)

    Zuykov Andrey L'vovich

    2014-05-01

    Full Text Available The article is devoted to analytical study of transformation fields of axial and radial velocities in uneven steady creeping flow of a Newtonian fluid in the initial portion of the cylindrical channel. It is shown that the velocity field of the flow is two-dimensional and determined by the stream function. The article is a continuation of a series of papers, where normalized analytic functions of radial axial distributions in uneven steady creeping flow in a cylindrical tube with azimuthal vorticity and stream function were obtained. There is Poiseuille profile for the axial velocity in the uniform motion of a fluid at an infinite distance from the entrance of the pipe (at x = ∞, here taken equal to zero radial velocity. There is uniform distribution of the axial velocity in the cross section at the tube inlet at x = 0, at which the axial velocity is constant along the current radius. Due to the axial symmetry of the flow on the axis of the pipe (at r = 0, the radial velocities and the partial derivative of the axial velocity along the radius, corresponding to the condition of the soft function extremum, are equal to zero. The authors stated vanishing of the velocity of the fluid on the walls of the pipe (at r = R , where R - radius of the tube due to its viscous sticking and tightness of the walls. The condition of conservation of volume flow along the tube was also accepted. All the solutions are obtained in the form of the Fourier - Bessel. It is shown that the hydraulic losses at uniform creeping flow of a Newtonian fluid correspond to Poiseuille - Hagen formula.

  12. Fluid aspects of electron streaming instability in electron-ion plasmas

    International Nuclear Information System (INIS)

    Jao, C.-S.; Hau, L.-N.

    2014-01-01

    Electrons streaming in a background electron and ion plasma may lead to the formation of electrostatic solitary wave (ESW) and hole structure which have been observed in various space plasma environments. Past studies on the formation of ESW are mostly based on the particle simulations due to the necessity of incorporating particle's trapping effects. In this study, the fluid aspects and thermodynamics of streaming instabilities in electron-ion plasmas including bi-streaming and bump-on-tail instabilities are addressed based on the comparison between fluid theory and the results from particle-in-cell simulations. The energy closure adopted in the fluid model is the polytropic law of d(pρ −γ )/dt=0 with γ being a free parameter. Two unstable modes are identified for the bump-on-tail instability and the growth rates as well as the dispersion relation of the streaming instabilities derived from the linear theory are found to be in good agreement with the particle simulations for both bi-streaming and bump-on-tail instabilities. At the nonlinear saturation, 70% of the electrons are trapped inside the potential well for the drift velocity being 20 times of the thermal velocity and the pρ −γ value is significantly increased. Effects of ion to electron mass ratio on the linear fluid theory and nonlinear simulations are also examined

  13. Clustering big data streams : recent challenges and contributions

    NARCIS (Netherlands)

    Hassani, M.; Seidl, T.

    Traditional clustering algorithms merely considered static data. Today's various applications and research issues in big data mining have however to deal with continuous, possibly infinite streams of data, arriving at high velocity. Web traffic data, surveillance data, sensor measurements and stock

  14. Acoustic gain in piezoelectric semiconductors at ε-near-zero response

    DEFF Research Database (Denmark)

    Willatzen, Morten; Christensen, Johan

    2014-01-01

    We demonstrate strong acoustic gain in electric-field biased piezoelectric semiconductors at frequencies near the plasmon frequency in the terahertz range. When the electron drift velocity produced by an external electric field is higher than the speed of sound, Cherenkov radiation of phonons...

  15. An Experimental Study into Pylon, Wing, and Flap Installation Effects on Jet Noise Generated by Commercial Aircraft

    Science.gov (United States)

    Perrino, Michael

    A pylon bottom bifurcation and a wing with variable flaps were designed and built to attach to a scaled model of a coaxial exhaust nozzle system. The presence of the pylon bifurcation, wing, and flaps modify the characteristics of the exhaust flow forc- ing asymmetric flow and acoustics. A parametric study was carried out for assessing and relating the flow field characteristics to the near-field pressure and far-field acous- tic spectra. The flow field was investigated experimentally using both stream-wise and cross-stream PIV techniques where the near-field pressure and far-field acoustic spectra were measured using microphone arrays. Contour mapping of the flow field characteristics (e.g. mean velocity and turbulence kinetic energy levels) and near-field acoustics with and without installation effects were used to explain the changes in the far-field acoustics.

  16. Study on flow-induced acoustic resonance in symmetrically located side-branches using dynamic PIV technique

    International Nuclear Information System (INIS)

    Li, Yanrong; Inagaki, Terumi; Nishi, Yasuyuki; Someya, Satoshi; Okamoto, Koji

    2014-01-01

    Flow-induced acoustic resonance in a piping system containing closed coaxial side-branches was investigated experimentally. Resonance characteristics of the piping system were examined by a microphone. The results revealed that the resonance frequencies of the shear layer instability were locked in corresponding to the natural frequencies of the side-branches. Phase-averaged velocity fields were obtained two-dimensionally in the junction of coaxial side-branches by dynamic particle image velocimetry (PIV), while the acoustic resonance was induced at the first and second hydrodynamic modes. Patterns of jet correspond to two hydrodynamic modes were derived from the phase-averaged velocity fields. The dynamic PIV can acquire time-series velocity fluctuations, then, two-dimensional phase delay maps under resonance and off-resonance conditions in the junction of coaxial side-branches were obtained. Experimental results show that the proposed phase delay map method costs less experiment and computation time and achieves a better accuracy and repetition than the phase-locking technique. In addition, the phase delay map method can obtain phase difference under the different frequency components. This is important when two different acoustic modes were induced in one experimental condition. (author)

  17. Influence of electrical boundary conditions on profiles of acoustic field and electric potential of shear-horizontal acoustic waves in potassium niobate plates.

    Science.gov (United States)

    Kuznetsova, I E; Nedospasov, I A; Kolesov, V V; Qian, Z; Wang, B; Zhu, F

    2018-05-01

    The profiles of an acoustic field and electric potential of the forward and backward shear-horizontal (SH) acoustic waves of a higher order propagating in X-Y potassium niobate plate have been theoretically investigated. It has been shown that by changing electrical boundary conditions on a surface of piezoelectric plates, it is possible to change the distributions of an acoustic field and electric potential of the forward and backward acoustic waves. The dependencies of the distribution of a mechanical displacement and electrical potential over the plate thickness for electrically open and electrically shorted plates have been plotted. The influence of a layer with arbitrary conductivity placed on a one or on the both plate surfaces on the profiles under study, phase and group velocities of the forward and backward acoustic waves in X-Y potassium niobate has been also investigated. The obtained results can be useful for development of the method for control of a particle or electrical charge movement inside the piezoelectric plates, as well a sensor for definition of the thin film conductivity. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Acoustic properties of nanoscale oxide heterostructures probed by UV Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bruchhausen, A [Instituto Balseiro and Centro Atomico Bariloche, Av. E. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Lanzillotti-Kimura, N D [Instituto Balseiro and Centro Atomico Bariloche, Av. E. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Fainstein, A [Instituto Balseiro and Centro Atomico Bariloche, Av. E. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Soukiassian, A [Department of Physics, Pennsylvania State University, University Park, PA, 16802 (United States); Tenne, D A [Department of Physics, Pennsylvania State University, University Park, PA, 16802 (United States); Schlom, D [Department of Physics, Pennsylvania State University, University Park, PA, 16802 (United States); Xi, X X [Department of Physics, Pennsylvania State University, University Park, PA, 16802 (United States); Cantarero, A [Materials Science Institute, University of Valencia, PO Box 22085, E-46071 Valencia (Spain)

    2007-12-15

    We study high quality molecular-beam epitaxy grown BaTiO{sub 3}/SrTiO{sub 3} superlat-tices using ultraviolet Raman spectroscopy. In the low energy spectral region, acoustic phonon doublets are observed. These are due to the artificial superlattice periodicity and consequent folding of the acoustic phonon dispersion. From the study of samples with different BaTiO{sub 3}/SrTiO{sub 3} layer thicknesses the effective sound velocities within each of the layers are obtained.

  19. EZG08 project: acoustic experiments to monitor the EDZ during the gallery excavation process in the Mont Terri Underground Research Laboratory (Switzerland)

    International Nuclear Information System (INIS)

    Le Gonidec, Y.; Kergosien, B.; Schubnel, A.; Gueguen, Y.; Wassermann, J.; Gibert, D.; Sarout, J.; Nussbaum, C.

    2010-01-01

    Document available in extended abstract form only. In the Underground Research Laboratory (URL) at Mont Terri, a new gallery G08 was planned to be excavated in 2008 following an original process: the excavation process allowed to monitor the Excavation Damaged Zone (EDZ) from geophysical measurements designed and installed at the end of face of the EZ-G04 gallery during the excavation from the other side, i.e. the end face of the EZ-G08 gallery. The objectives of the project concern spatio-temporal changes of the EDZ: among the methodological developments adapted for the EZG08 project to provide complementary information, acoustic experiments have been prepared in horizontal boreholes to perform the continuous acoustic monitoring of the Excavation Damaged Zone (EDZ). The acoustic measurements, performed on acoustic arrays of several receivers, have been recorded during one month, following two main steps: - Active acoustic surveys: a source is introduced in a central borehole (BEZG5) allowing tomography experiments in the far field and in the near field, i.e. close to and far from BEZG5, respectively. - Acoustic emissions: during the excavation process, numerous acoustic emissions can be detected and associated to micro-seismic events due to rapid crack propagation, generated by the rock relaxation, or simply associated to the excavation process. From the tomography measurements, the acoustic wave velocity field can be estimated, with P and S-wave velocities roughly equal to 2500 m/s-3500 m/s, and 1500 m/s, respectively. The acoustic setup does not show variations of P-wave velocity during the campaign, but spatial variations which could be associated to anisotropic elastic properties of the rock with the maximum P-wave velocities close to the bedding plane. An original method based on a multifrequency approach puts in evidence a frequency dependence of the velocity, with a striking phenomena since the wave velocity decreases with increasing frequency. This effect

  20. Limitations of the acoustic approximation for seismic crosshole tomography

    Science.gov (United States)

    Marelli, Stefano; Maurer, Hansruedi

    2010-05-01

    implemented by setting the shear wave velocity to almost zero (Vs ~ 0). This approach was checked against a purely acoustic 2D pseudo-spectral time-domain modelling code and found to yield very similar results. In a variety of numerical 2D and 3D experiments, we propagated both acoustic only and full elastic waves through models of increasing complexity. We first investigated three basic simple-shaped anomalies embedded in a homogeneous background, including i) a vertical layer ii) a horizontal layer and iii) two-rectangular blocks. Maximum velocity contrast in these models is about 50% We then tested a more complex model representing a realistic-scale, engineered-nuclear waste repository-like structure, embedded in a granite host rock. Velocity contrasts were chosen to be much higher in this model. Our results indicate that for the simplest models (horizontal and vertical layers) the acoustic approximation is reasonable for the early portions of the seismograms, but for even only moderately complex subsurface models involving several interfaces (e.g. the two block anomalies), the acoustic approximation breaks down and fails to account for the synthesised wavefields. We attribute this failure to the presence of significant P-to-S mode conversions at each interface. Comparable observations were found for both the 2D and the 3D simulations. The main advantage of seismic waveform inversion is that subtle changes in amplitude and phase of the waveforms can be exploited for constructing subsurface models at sub-wavelength resolution. The significant deficiencies of the acoustic approximation for crosshole problems, even in the presence of relatively minor anomalies, therefore strongly question the usefulness of acoustic waveform transmission tomography. Consequently, efforts have to be made to implement the computationally much more challenging elastic waveform inversion scheme.

  1. Effect of gas adsorption on acoustic wave propagation in MFI zeolite membrane materials: experiment and molecular simulation.

    Science.gov (United States)

    Manga, Etoungh D; Blasco, Hugues; Da-Costa, Philippe; Drobek, Martin; Ayral, André; Le Clezio, Emmanuel; Despaux, Gilles; Coasne, Benoit; Julbe, Anne

    2014-09-02

    The present study reports on the development of a characterization method of porous membrane materials which consists of considering their acoustic properties upon gas adsorption. Using acoustic microscopy experiments and atomistic molecular simulations for helium adsorbed in a silicalite-1 zeolite membrane layer, we showed that acoustic wave propagation could be used, in principle, for controlling the membranes operando. Molecular simulations, which were found to fit experimental data, showed that the compressional modulus of the composite system consisting of silicalite-1 with adsorbed He increases linearly with the He adsorbed amount while its shear modulus remains constant in a large range of applied pressures. These results suggest that the longitudinal and Rayleigh wave velocities (VL and VR) depend on the He adsorbed amount whereas the transverse wave velocity VT remains constant.

  2. Demonstration of slow sound propagation and acoustic transparency with a series of detuned resonators

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.

    2014-01-01

    We present experimental results demonstrating the phenomenon of acoustic transparency with a significant slowdown of sound propagation realized with a series of paired detuned acoustic resonators (DAR) side-attached to a waveguide. The phenomenon mimics the electromagnetically induced transparency...... than 20 dB on both sides of the transparency window, and we quantify directly (using a pulse propagation) the acoustic slowdown effect, resulting in the sound group velocity of 9.8 m/s (i.e. in the group refractive index of 35). We find very similar values of the group refractive index by using...

  3. Listening in on Friction: Stick-Slip Acoustical Signatures in Velcro

    Science.gov (United States)

    Hurtado Parra, Sebastian; Morrow, Leslie; Radziwanowski, Miles; Angiolillo, Paul

    2013-03-01

    The onset of kinetic friction and the possible resulting stick-slip motion remain mysterious phenomena. Moreover, stick-slip dynamics are typically accompanied by acoustic bursts that occur temporally with the slip event. The dry sliding dynamics of the hook-and-loop system, as exemplified by Velcro, manifest stick-slip behavior along with audible bursts that are easily micrphonically collected. Synchronized measurements of the friction force and acoustic emissions were collected as hooked Velcro was driven at constant velocity over a bed of looped Velcro in an anechoic chamber. Not surprising, the envelope of the acoustic bursts maps well onto the slip events of the friction force time series and the intensity of the bursts trends with the magnitude of the difference of the friction force during a stick-slip event. However, the analysis of the acoustic emission can serve as a sensitive tool for revealing some of the hidden details of the evolution of the transition from static to kinetic friction. For instance, small acoustic bursts are seen prior to the Amontons-Coulomb threshold, signaling precursor events prior to the onset of macroscopically observed motion. Preliminary spectral analysis of the acoustic emissions including intensity-frequency data will be presented.

  4. Zebra mussel control using acoustic energy

    International Nuclear Information System (INIS)

    Tiller, G.W.; Gaucher, T.A.; Menezes, J.K.; Dolat, S.W.

    1992-01-01

    A practical and economical device or method that reduces zebra mussel colonization without detrimental side effects is highly desirable. An ideal method is one that could be installed near, on, or in existing raw water intakes and conduits. It must have a known effect that is limited to a defined area, should have maximum effects on a targeted species, and preferably have a low life cycle cost than the current alternative methods of control and maintenance. Underwater sound could be such a desirable solution, if found to be an effective control measure for zebra mussels. Although sound most often applies specifically to acoustic energy that is audible to humans, 20 Hertz (Hz) to 20 kiloHertz (kHz), in this report we will use the terms sound and acoustic to include acoustic energy between 100 Hz and 100 MegaHertz (MHz). This research on zebra mussel biofouling is designed to effect the early developmental stages in the life cycle of Dreissena polymorpha (Pallas). Vulnerable stages in the development of D. polymorpha that might yield to site-specific acoustic deterrence measures include the free-swimming larval veliger stage, the postveliger pre-attachment demersal stage, and the immediate post-attachment stage. The proposed applications include surface treatment to prevent, reduce or eliminate colonization on underwater structures, and the stream treatment to reduce or eliminate (destroy) mussel larvae entrained in a moving volume of water

  5. OSO 8 observational limits to the acoustic coronal heating mechanism

    Science.gov (United States)

    Bruner, E. C., Jr.

    1981-01-01

    An improved analysis of time-resolved line profiles of the C IV resonance line at 1548 A has been used to test the acoustic wave hypothesis of solar coronal heating. It is shown that the observed motions and brightness fluctuations are consistent with the existence of acoustic waves. Specific account is taken of the effect of photon statistics on the observed velocities, and a test is devised to determine whether the motions represent propagating or evanescent waves. It is found that on the average about as much energy is carried upward as downward such that the net acoustic flux density is statistically consistent with zero. The statistical uncertainty in this null result is three orders of magnitue lower than the flux level needed to heat the corona.

  6. The Dependence of the Peak Velocity of High-Speed Solar Wind Streams as Measured in the Ecliptic by ACE and the STEREO satellites on the Area and Co-Latitude of their Solar Source Coronal Holes

    DEFF Research Database (Denmark)

    Hofmeister, Stefan J.; Veronig, Astrid; Temmer, Manuela

    2018-01-01

    We study the properties of 115 coronal holes in the time‐range from 2010/08 to 2017/03, the peak velocities of the corresponding high‐speed streams as measured in the ecliptic at 1AU, and the corresponding changes of the Kp index as marker of their geo‐effectiveness. We find that the peak...... statistically to zero, indicating that the associated high‐speed streams have a high chance to miss the Earth. Similar, the Kp index per coronal hole area is highest for the coronal holes located near the solar equator and strongly decreases with increasing latitudes of the coronal holes. We interpret...

  7. Complete de-Dopplerization and acoustic holography for external noise of a high-speed train.

    Science.gov (United States)

    Yang, Diange; Wen, Junjie; Miao, Feng; Wang, Ziteng; Gu, Xiaoan; Lian, Xiaomin

    2016-09-01

    Identification and measurement of moving sound sources are the bases for vehicle noise control. Acoustic holography has been applied in successfully identifying the moving sound source since the 1990s. However, due to the high demand for the accuracy of holographic data, currently the maximum velocity achieved by acoustic holography is just above 100 km/h. The objective of this study was to establish a method based on the complete Morse acoustic model to restore the measured signal in high-speed situations, and to propose a far-field acoustic holography method applicable for high-speed moving sound sources. Simulated comparisons of the proposed far-field acoustic holography with complete Morse model, the acoustic holography with simplified Morse model and traditional delay-and-sum beamforming were conducted. Experiments with a high-speed train running at the speed of 278 km/h validated the proposed far-field acoustic holography. This study extended the applications of acoustic holography to high-speed situations and established the basis for quantitative measurements of far-field acoustic holography.

  8. Acoustic cloaking and transformation acoustics

    International Nuclear Information System (INIS)

    Chen Huanyang; Chan, C T

    2010-01-01

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  9. Ion velocity distributions within the LLBL and their possible implication to multiple reconnections

    Directory of Open Access Journals (Sweden)

    O. L. Vaisberg

    2004-01-01

    Full Text Available We analyze two LLBL crossings made by the Interball-Tail satellite under a southward or variable magnetosheath magnetic field: one crossing on the flank of the magnetosphere, and another one closer to the subsolar point. Three different types of ion velocity distributions within the LLBL are observed: (a D-shaped distributions, (b ion velocity distributions consisting of two counter-streaming components of magnetosheath-type, and (c distributions with three components, one of which has nearly zero parallel velocity and two counter-streaming components. Only the (a type fits to the single magnetic flux tube formed by reconnection between the magnetospheric and magnetosheath magnetic fields. We argue that two counter-streaming magnetosheath-like ion components observed by Interball within the LLBL cannot be explained by the reflection of the ions from the magnetic mirror deeper within the magnetosphere. Types (b and (c ion velocity distributions would form within spiral magnetic flux tubes consisting of a mixture of alternating segments originating from the magnetosheath and from magnetospheric plasma. The shapes of ion velocity distributions and their evolution with decreasing number density in the LLBL indicate that a significant part of the LLBL is located on magnetic field lines of long spiral flux tube islands at the magnetopause, as has been proposed and found to occur in magnetopause simulations. We consider these observations as evidence for multiple reconnection Χ-lines between magnetosheath and magnetospheric flux tubes. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; solar wind-magnetosphere interactions

  10. Aspects of electron acoustic wave physics in laser backscatter from plasmas

    International Nuclear Information System (INIS)

    Sircombe, N J; Arber, T D; Dendy, R O

    2006-01-01

    Recent experimental results from the Trident laser confirm the importance of kinetic effects in determining laser reflectivities at high intensities. Examples observed include scattering from low frequency electron acoustic waves (EAWs) and the first few stages of a cascade towards turbulence through the Langmuir decay instability. Interpretive and predictive computational capability in this area is assisted by the development of Vlasov codes, which offer high velocity space resolution in high energy regions of particle phase space and do not require analytical pre-processing of the fundamental equations. A direct Vlasov solver, capable of resolving these kinetic processes, is used here to address fundamental aspects of the existence and stability of the electron acoustic wave, together with its collective scattering properties. These simulations are extended to realistic laser and plasma parameters characteristic of single hot-spot experiments. Results are in qualitative agreement with experiments displaying both stimulated Raman and stimulated electron acoustic scattering. The amplitude of simulated EAWs is greater than that observed experimentally and is accompanied by a higher phase velocity. These minor differences can be attributed to the limitations of a one-dimensional collisionless model

  11. Streaming reversal of energetic particles in the magnetotail during a substorm

    Science.gov (United States)

    Lui, A. T. Y.; Williams, D. J.; Eastman, T. E.; Frank, L. A.; Akasofu, S.-I.

    1984-01-01

    A case of reversal in the streaming anisotropy of energetic ions and in the plasma flow observed from the IMP 8 spacecraft during a substorm on February 8, 1978 is studied in detail using measurements of energetic particles, plasma, and magnetic field. Four new features emerge when high time resolution data are examined in detail. The times of streaming reversal of energetic particles in different energy ranges do not coincide with the time of plasma flow reversal. Qualitatively different velocity distributions are observed in earthward and tailward plasma flows during the observed flow reversal intervals. Strong tailward streaming of energetic particles can be detected during northward magnetic field environments and, conversely, earthward streaming in southward field environments. During the period of tailward streaming of energetic particles, earthward streaming fluxes are occasionally detected.

  12. Acoustic black holes: recent developments in the theory and applications.

    Science.gov (United States)

    Krylov, Victor

    2014-08-01

    Acoustic black holes are relatively new physical objects that have been introduced and investigated mainly during the last decade. They can absorb almost 100% of the incident wave energy, and this makes them very attractive for such traditional engineering applications as vibration damping in different engineering structures and sound absorption in gases and liquids. They also could be useful for some ultrasonic devices using Lamb wave propagation to provide anechoic termination for such waves. So far, acoustic black holes have been investigated mainly for flexural waves in thin plates, for which the required gradual changes in local wave velocity with distance can be easily achieved by changing the plates' local thickness. The present paper provides a brief review of the theory of acoustic black holes, including their comparison with optic black holes introduced about five years ago. Review is also given of the recent experimental work carried out at Loughborough University on damping structural vibrations using the acoustic black hole effect. This is followed by the discussion on potential applications of the acoustic black hole effect for sound absorption in air.

  13. Emergence of acoustic waves from vorticity fluctuations: impact of non-normality.

    Science.gov (United States)

    George, Joseph; Sujith, R I

    2009-10-01

    Chagelishvili et al. [Phys. Rev. Lett. 79, 3178 (1997)] discovered a linear mechanism of acoustic wave emergence from vorticity fluctuations in shear flows. This paper illustrates how this "nonresonant" phenomenon is related to the non-normality of the operator governing the linear dynamics of disturbances in shear flows. The non-self-adjoint nature of the governing operator causes the emergent acoustic wave to interact strongly with the vorticity disturbance. Analytical expressions are obtained for the nondivergent vorticity perturbation. A discontinuity in the x component of the velocity field corresponding to the vorticity disturbance was originally identified to be the cause of acoustic wave emergence. However, a different mechanism is proposed in this paper. The correct "acoustic source" is identified and the reason for the abrupt nature of wave emergence is explained. The impact of viscous damping is also discussed.

  14. Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels by means of a slender wedge probe and direct numerical simulation

    Science.gov (United States)

    Wagner, Alexander; Schülein, Erich; Petervari, René; Hannemann, Klaus; Ali, Syed R. C.; Cerminara, Adriano; Sandham, Neil D.

    2018-05-01

    Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels were conducted by means of a slender wedge probe and direct numerical simulation. The study comprises comparative tunnel noise measurements at Mach 3, 6 and 7.4 in two Ludwieg tube facilities and a shock tunnel. Surface pressure fluctuations were measured over a wide range of frequencies and test conditions including harsh test environments not accessible to measurement techniques such as pitot probes and hot-wire anemometry. Quantitative results of the tunnel noise are provided in frequency ranges relevant for hypersonic boundary layer transition. In combination with the experimental studies, direct numerical simulations of the leading-edge receptivity to fast and slow acoustic waves were performed for the slender wedge probe at conditions corresponding to the experimental free-stream conditions. The receptivity to fast acoustic waves was found to be characterized by an early amplification of the induced fast mode. For slow acoustic waves an initial decay was found close to the leading edge. At all Mach numbers, and for all considered frequencies, the leading-edge receptivity to fast acoustic waves was found to be higher than the receptivity to slow acoustic waves. Further, the effect of inclination angles of the acoustic wave with respect to the flow direction was investigated. The combined numerical and experimental approach in the present study confirmed the previous suggestion that the slow acoustic wave is the dominant acoustic mode in noisy hypersonic wind tunnels.

  15. The kinematic footprints of five stellar streams in Andromeda's halo

    Science.gov (United States)

    Chapman, S. C.; Ibata, R.; Irwin, M.; Koch, A.; Letarte, B.; Martin, N.; Collins, M.; Lewis, G. F.; McConnachie, A.; Peñarrubia, J.; Rich, R. M.; Trethewey, D.; Ferguson, A.; Huxor, A.; Tanvir, N.

    2008-11-01

    We present a spectroscopic analysis of five stellar streams (`A', `B', `Cr', `Cp' and `D') as well as the extended star cluster, EC4, which lies within Stream`C', all discovered in the halo of M31 from our Canada-France-Hawaii Telescope/MegaCam survey. These spectroscopic results were initially serendipitous, making use of our existing observations from the DEep Imaging Multi-Object Spectrograph mounted on the Keck II telescope, and thereby emphasizing the ubiquity of tidal streams that account for ~70 per cent of the M31 halo stars in the targeted fields. Subsequent spectroscopy was then procured in Stream`C' and Stream`D' to trace the velocity gradient along the streams. Nine metal-rich ([Fe/H] ~ -0.7) stars at vhel = -349.5kms-1,σv,corr ~ 5.1 +/- 2.5km s-1 are proposed as a serendipitous detection of Stream`Cr', with follow-up kinematic identification at a further point along the stream. Seven metal-poor ([Fe/H] ~-1.3) stars confined to a narrow, 15 km s-1 velocity bin centred at vhel = -285.6, σv,corr = 4.3+1.7-1.4 km s-1 represent a kinematic detection of Stream`Cp', again with follow-up kinematic identification further along the stream. For the cluster EC4, candidate member stars with average [Fe/H] ~-1.4, are found at vhel = -282 suggesting it could be related to Stream`Cp'. No similarly obvious cold kinematic candidate is found for Stream`D', although candidates are proposed in both of two spectroscopic pointings along the stream (both at ~ -400km s-1). Spectroscopy near the edge of Stream`B' suggests a likely kinematic detection at vhel ~ -330, σv,corr ~ 6.9km s-1, while a candidate kinematic detection of Stream`A' is found (plausibly associated to M33 rather than M31) with vhel ~ -170, σv,corr = 12.5km s-1. The low dispersion of the streams in kinematics, physical thickness and metallicity makes it hard to reconcile with a scenario whereby these stream structures as an ensemble are related to the giant southern stream. We conclude that the M31 stellar

  16. Sediment denitrification and nitrification is enhanced by the presence of macrophytes in a restored agricultural stream, Black Earth Creek, WI USA

    Science.gov (United States)

    Restoration of habitats that support microbial processing can enhance nitrate removal in agricultural streams. Macrophytes are common both in-stream and in the wetted fringe of agricultural stream systems, but are often removed in restoration to increase stream velocity or stabil...

  17. Antarctic Glaciological Data at NSIDC: field data, temperature, and ice velocity

    Science.gov (United States)

    Bauer, R.; Bohlander, J.; Scambos, T.; Berthier, E.; Raup, B.; Scharfen, G.

    2003-12-01

    An extensive collection of many Antarctic glaciological parameters is available for the polar science community upon request. The National Science Foundation's Office of Polar Programs funds the Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) to archive and distribute Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program. AGDC facilitates data exchange among Principal Investigators, preserves recently collected data useful to future research, gathers data sets from past research, and compiles continent-wide information useful for modeling and field work planning. Data sets are available via our web site, http://nsidc.org/agdc/. From here, users can access extensive documentation, citation information, locator maps, derived images and references, and the numerical data. More than 50 Antarctic scientists have contributed data to the archive. Among the compiled products distributed by AGDC are VELMAP and THERMAP. THERMAP is a compilation of over 600 shallow firn temperature measurements ('10-meter temperatures') collected since 1950. These data provide a record of mean annual temperature, and potentially hold a record of climate change on the continent. The data are represented with maps showing the traverse route, and include data sources, measurement technique, and additional measurements made at each site, i.e., snow density and accumulation. VELMAP is an archive of surface ice velocity measurements for the Antarctic Ice Sheet. The primary objective of VELMAP is to assemble a historic record of outlet glaciers and ice shelf ice motion over the Antarctic. The collection includes both PI-contributed measurements and data generated at NSIDC using Landsat and SPOT satellite imagery. Tabular data contain position, speed, bearing, and data quality information, and related references. Two new VELMAP data sets are highlighted: the Mertz Glacier and the Institute Ice Stream. Mertz Glacier ice

  18. On-line slurry viscosity and concentration measurement as a real-time waste stream characterization tool. 1997 annual progress report

    International Nuclear Information System (INIS)

    Powell, R.L.

    1997-01-01

    'The main scope of this work is to: (1) develop a novel tomographic ultrasonic technique to obtain the real-time distribution of acoustic velocity and flow velocity; (2) use nuclear magnetic resonance imaging (NMRI) to measure velocity profiles and rheological properties of complex fluids and suspensions; (3) establish a facility for making laser Doppler velocimetry (LDV) measurements that can be The overall goal is to obtain real-time rheology and solids concentration within a solid-liquid suspension flowing in a pipeline. To nondestructively obtain the rheology of the fluid flowing in a pipe, accurate measurement of local shear rate distribution is required. This objective was met by using two real-time tomographic techniques: an ultrasonic Doppler velocimetry system and an NMRI system. The first method combines the existing state-of-the-art ultrasonic velocimetry technology base with a novel tomographic concept to non-intrusively obtain high resolution acoustic and flow velocity profile at a section of the flow field. The acoustic velocity profile provides a means of improving the flow velocity measurement accuracy. These data are also, used to yield the profile of solids concentration. In addition, the volumetric flow rate was determined from integration of the velocity profile. From the knowledge of the concentration profile the mass flow rate can also be determined, Similar work was undertaken for the NMNRI system. In this case, single phase Newtonian fluids have been used to model complex rheological behavior. Finally, a LDV system has been purchased and set - up in the laboratory at UC Davis.'

  19. Reconstructing the Dwarf Galaxy Progenitor from Tidal Streams Using MilkyWay@home

    Science.gov (United States)

    Newberg, Heidi; Shelton, Siddhartha

    2018-04-01

    We attempt to reconstruct the mass and radial profile of stars and dark matter in the dwarf galaxy progenitor of the Orphan Stream, using only information from the stars in the Orphan Stream. We show that given perfect data and perfect knowledge of the dwarf galaxy profile and Milky Way potential, we are able to reconstruct the mass and radial profiles of both the stars and dark matter in the progenitor to high accuracy using only the density of stars along the stream and either the velocity dispersion or width of the stream in the sky. To perform this test, we simulated the tidal disruption of a two component (stars and dark matter) dwarf galaxy along the orbit of the Orphan Stream. We then created a histogram of the density of stars along the stream and a histogram of either the velocity dispersion or width of the stream in the sky as a function of position along the stream. The volunteer supercomputer MilkyWay@home was given these two histograms, the Milky Way potential model, and the orbital parameters for the progenitor. N-body simulations were run, varying dwarf galaxy parameters and the time of disruption. The goodness-of-fit of the model to the data was determined using an Earth-Mover Distance algorithm. The parameters were optimized using Differential Evolution. Future work will explore whether currently available information on the Orphan Stream stars is sufficient to constrain its progenitor, and how sensitive the optimization is to our knowledge of the Milky Way potential and the density model of the dwarf galaxy progenitor, as well as a host of other real-life unknowns.

  20. Streaming instabilities of a non-neutral plasma with turning points

    International Nuclear Information System (INIS)

    Turner, L.; Finn, J.M.

    1995-01-01

    Streaming instabilities of a reflexing beam in a slab model of a beam Penning trap or an inertial electrostatic confinement device are studied. Particles may have turning points that may be between the walls. Linear theory is developed for the case in which the self-field cancels the external potential. If the electric field perturbation is odd about the center, these two-stream modes couple the slow waves on the two beams. Even modes consist of two classes: a class of two-stream modes and another class of complex-frequency modes, coupling the slow and fast waves on the same beam. The latter are unstable over a larger range than the two-stream modes. Thermal spread is stabilizing only when the thermal and streaming velocities are comparable. Numerical results for the general class of equilibria show both two-stream-like modes and oscillating modes

  1. Daytime habitat selection for juvenile parr brown trout (Salmo trutta in small lowland streams

    Directory of Open Access Journals (Sweden)

    Conallin J.

    2014-03-01

    Full Text Available Physical habitat is important in determining the carrying capacity of juvenile brown trout, and within freshwater management. Summer daytime physical habitat selection for the parr lifestage (7–20 cm juvenile brown trout (Salmo trutta was assessed in 6 small lowland streams. Habitat preference was determined for the four variables; water velocity, water depth, substrate and cover, and the preferences for physical habitat selection were expressed in terms of habitat suitability indices (HSI’s. The statistical confidence of HSI’s was evaluated using power analysis. It was found that a minimum of 22 fish observations was needed to have statistical confidence in the HSIs for water depth, and a minimum of 92 fish observations for water velocity during daytime summer conditions. Generally parr were utilising the deeper habitats, indicating preference for deeper water. Cover was also being selected for at all sites, but selection was inconsistent among sites for the variables substrate and velocity. The results indicate that during daytime summer conditions water depth is a significant variable for parr habitat selection in these small lowland streams, with cover also being important. Therefore, daytime refugia may be a critical limiting factor for parr in small lowland streams, and important for stream management actions under the Water Framework Directive.

  2. Effects of urban stream burial on nitrogen uptake and ...

    Science.gov (United States)

    Urbanization has resulted in extensive burial and channelization of headwater streams, yet little is known about impacts on stream ecosystem functions critical for reducing downstream nitrogen pollution. To characterize the biogeochemical impact of stream burial, we measured NO3- uptake, using 15N-NO3- isotope tracer releases, and whole stream metabolism, during four seasons in three paired buried and open streams reaches within the Baltimore Ecosystem Study Long-term Ecological Research Network. Stream burial increased NO3- uptake lengths, by a factor of 7.5 (p < 0.01) and decreased nitrate uptake velocity and areal nitrate uptake rate by factors of 8.2 (p = 0.01) and 9.6 (p < 0.001), respectively. Stream burial decreased gross primary productivity by a factor of 9.2 (p < 0.05) and decreased ecosystem respiration by a factor of 4.2 (p = 0.06). From statistical analysis of Excitation Emissions Matrices (EEMs), buried streams were also found to have significantly less labile dissolved organic matter. Furthermore, buried streams had significantly lower transient storage and water temperatures. Overall, differences in NO3- uptake and metabolism were primarily explained by decreased transient storage and light availability in buried streams. We estimate that stream burial increases daily watershed nitrate export by as much as 500% due to decreased in-stream retention and may considerably decrease carbon export via decreased primary production. These results

  3. A comparison of inverse boundary element method and near-field acoustical holography

    DEFF Research Database (Denmark)

    Schuhmacher, Andreas; Hald, Jørgen; Saemann, E.-U.

    1999-01-01

    An inverse boundary element method (IBEM) is used to estimate the surface velocity of a rolling tyre from measurements of the near-field pressure. Subsequently, the sound pressure is calculated over a finite plane surface next to the tyre from the reconstructed velocity field on the tyre surface........ In order to verify the reconstruction process, part of the measurement data is used together with Near-Field Acoustical Holography (NAH). Estimated distributions of sound pressure and particle velocity over a plane surface obtained from the two methods are compared....

  4. Numerical calculation of acoustic radiation from band-vibrating structures via FEM/FAQP method

    Directory of Open Access Journals (Sweden)

    GAO Honglin

    2017-08-01

    Full Text Available The Finite Element Method (FEM combined with the Frequency Averaged Quadratic Pressure method (FAQP are used to calculate the acoustic radiation of structures excited in the frequency band. The surface particle velocity of stiffened cylindrical shells under frequency band excitation is calculated using finite element software, the normal vibration velocity is converted from the surface particle velocity to calculate the average energy source (frequency averaged across intensity, frequency averaged across pressure and frequency averaged across velocity, and the FAQP method is used to calculate the average sound pressure level within the bandwidth. The average sound pressure levels are then compared with the bandwidth using finite element and boundary element software, and the results show that FEM combined with FAQP is more suitable for high frequencies and can be used to calculate the average sound pressure level in the 1/3 octave band with good stability, presenting an alternative to applying frequency-by-frequency calculation and the average frequency process. The FEM/FAQP method can be used as a prediction method for calculating acoustic radiation while taking the randomness of vibration at medium and high frequencies into consideration.

  5. The Dependence of the Peak Velocity of High-Speed Solar Wind Streams as Measured in the Ecliptic by ACE and the STEREO satellites on the Area and Co-Latitude of their Solar Source Coronal Holes

    DEFF Research Database (Denmark)

    Hofmeister, Stefan J.; Veronig, Astrid; Temmer, Manuela

    2018-01-01

    We study the properties of 115 coronal holes in the time‐range from 2010/08 to 2017/03, the peak velocities of the corresponding high‐speed streams as measured in the ecliptic at 1AU, and the corresponding changes of the Kp index as marker of their geo‐effectiveness. We find that the peak velocit...

  6. High accuracy acoustic relative humidity measurement in duct flow with air

    NARCIS (Netherlands)

    Schaik, van W.; Grooten, M.H.M.; Wernaart, T.; Geld, van der C.W.M.

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and

  7. ENVIRONMENTAL FACTORS INFLUENCING THE VEGETATION IN MIDDLE-SIZED STREAMS IN LATVIA

    Directory of Open Access Journals (Sweden)

    L. GRINBERGA

    2011-04-01

    Full Text Available In this study the species diversity and distribution of macrophytes in 131 surveyed sites of middle-sized streams of Latvia were investigated. The aim of the study was to determine the composition of macrophyte vegetation in Latvian streams in relation to the environmental factors (stream width, water depth, substrate type, shading and flow velocity. On the basis of these factors, five major groups of streams were distinguished representing mutually different typical macrophyte communities – (1 fast flowing streams on gravelly and stony substrate, (2 slow flowing streams on gravelly and stony substrate, (3 fast flowing streams on sandy substrate, (4 slow flowing streams on sandy substrate, and (5 streams with soft, silty substrate. Totally, 47 macrophyte taxa were found in the streams. The most common macrophyte species were Nuphar lutea found in 65% of all sites, followed by Sparganium emersum (64%, S. erectum s.l. (48%, Phalaris arundinacea (50%, Alisma plantago-aquatica (54% and Lemna minor (41%. The highest species richness (22 was found in slow flowing streams with gravelly substrate. Species-poor macrophyte communities were characteristic for fast flowing streams on sandy substrate.

  8. ENVIRONMENTAL FACTORS INFLUENCING THE VEGETATION IN MIDDLE-SIZED STREAMS IN LATVIA

    Directory of Open Access Journals (Sweden)

    L. GRINBERGA

    2011-01-01

    Full Text Available In this study the species diversity and distribution of macrophytes in 131 surveyed sites of middle-sized streams of Latvia were investigated. The aim of the study was to determine the composition of macrophyte vegetation in Latvian streams in relation to the environmental factors (stream width, water depth, substrate type, shading and flow velocity. On the basis of these factors, five major groups of streams were distinguished representing mutually different typical macrophyte communities – (1 fast flowing streams on gravelly and stony substrate, (2 slow flowing streams on gravelly and stony substrate, (3 fast flowing streams on sandy substrate, (4 slow flowing streams on sandy substrate, and (5 streams with soft, silty substrate. Totally, 47 macrophyte taxa were found in the streams. The most common macrophyte species were Nuphar lutea found in 65% of all sites, followed by Sparganium emersum (64%, S. erectum s.l. (48%, Phalaris arundinacea (50%, Alisma plantago-aquatica (54% and Lemna minor (41%. The highest species richness (22 was found in slow flowing streams with gravelly substrate. Species-poor macrophyte communities were characteristic for fast flowing streams on sandy substrate.

  9. Acoustic and electromagnetic emission as a tool for crack localization

    International Nuclear Information System (INIS)

    Sedlak, P; Sikula, J; Lokajicek, T; Mori, Y

    2008-01-01

    The creation of cracks is accompanied by electric charge redistribution due to loosened chemical bounds. Electric charge on a crack wall creates dipole moments. Vibrations of crack walls produce time-dependent dipole moments and, consequently, electric and magnetic fields are generated. An electric signal is induced on metal electrodes. Simultaneously with the electromagnetic emission (EME) signal, an acoustic emission (AE) signal is generated, but due to the different velocities of propagation of both waves, the detection of the AE signal is delayed. This time delay presents the time of the wave propagation from the individual acoustic emission sensor to the crack. The defect can be located by means of these time intervals. This paper describes the localization using acoustic and electromagnetic emission signals for the two-dimensional case

  10. Effects of inhomogeneity on the Shukla-Nambu-Salimullah and wake potentials in a streaming dusty magnetoplasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Khan, M.I.U.; Amin, R.; Nitta, H.; Shukla, P.K.

    2005-10-01

    Detailed properties of the electrostatic Shukla-Nambu-Salimullah and the dynamical oscillatory wake potentials in an inhomogeneous dusty magnetoplasma in the presence of ion streaming, as in a laboratory discharge plasma, have been examined analytically. The potentials become sensitive functions of the external static magnetic field, the scale-length of inhomogeneity, and the deviation from the linear ion streaming velocity. For a decreasing ion density gradient, there is a limit of existence of the static modified shielding potential. For a strongly inhomogeneous dusty plasma, the effective length of the oscillatory wake potential increases with increasing deviation of the ion streaming velocity (u i0y ), but it does not depend on the external magnetic field. (author)

  11. An acoustic eikonal equation for attenuating VTI media

    KAUST Repository

    Hao, Qi

    2016-09-06

    We present an acoustic eikonal equation governing the complex-valued travel time of P-waves in attenuating, transversely isotropic media with a vertical symmetry axis (VTI). This equation is based on the assumption that the Pwave complex-valued travel time is independent of the Swave velocity parameter v in Thomsen\\'s notation and the attenuation coefficient A in the Thomsen-type notation for attenuating VTI media. We combine perturbation theory and Shanks transform to develop practical approximations to the attenuating acoustic eikonal equation, capable of admitting analytical description of the attenuation in homogeneous media. For a horizontal, attenuating VTI layer, we also derive non-hyperbolic approximations for the real and imaginary parts of the complex-valued reflection travel time.

  12. Application of heat-resistant non invasive acoustic transducers for coolant control in the NPP pipelines

    International Nuclear Information System (INIS)

    Melnikov, V.; Nigmatulin, B.

    1997-01-01

    The use of ultrasonic waves enables remote testing of the coolant flow, detection of solid and gaseous occlusions and measuring of the water velocity and level. Analysis of the acoustic noise makes it possible to detect coolant leaks and diagnose the state and operation of the rotating mechanisms and bearings. Results are given of the research in the development of highly reliable waveguide-type non-invasive acoustic transducers with a long service life. Examples are given of the use of transducers in various fields of nuclear technology: detection of gas in coolant, indication of the coolant level, control of pipe filling and drainage, measurement of liquid film velocity at the pipe inner surface. (M.D.)

  13. Ion-acoustic double-layers in a magnetized plasma with nonthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rios, L. A. [Centro Brasileiro de Pesquisas Físicas and Instituto Nacional de Ciência e Tecnologia de Sistemas Complexos, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Galvão, R. M. O. [Centro Brasileiro de Pesquisas Físicas and Instituto Nacional de Ciência e Tecnologia de Sistemas Complexos, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Instituto de Física, Universidade de São Paulo, 05508-900 São Paulo (Brazil)

    2013-11-15

    In the present work we investigate the existence of obliquely propagating ion-acoustic double layers in magnetized two-electron plasmas. The fluid model is used to describe the ion dynamics, and the hot electron population is modeled via a κ distribution function, which has been proved to be appropriate for modeling non-Maxwellian plasmas. A quasineutral condition is assumed to investigate these nonlinear structures, which leads to the formation of double-layers propagating with slow ion-acoustic velocity. The problem is investigated numerically, and the influence of parameters such as nonthermality is discussed.

  14. Acoustic-hydrodynamic-flame coupling—A new perspective for zero and low Mach number flows

    Science.gov (United States)

    Pulikkottil, V. V.; Sujith, R. I.

    2017-04-01

    A combustion chamber has a hydrodynamic field that convects the incoming fuel and oxidizer into the chamber, thereby causing the mixture to react and produce heat energy. This heat energy can, in turn, modify the hydrodynamic and acoustic fields by acting as a source and thereby, establish a positive feedback loop. Subsequent growth in the amplitude of the acoustic field variables and their eventual saturation to a limit cycle is generally known as thermo-acoustic instability. Mathematical representation of these phenomena, by a set of equations, is the subject of this paper. In contrast to the ad hoc models, an explanation of the flame-acoustic-hydrodynamic coupling, based on fundamental laws of conservation of mass, momentum, and energy, is presented in this paper. In this paper, we use a convection reaction diffusion equation, which, in turn, is derived from the fundamental laws of conservation to explain the flame-acoustic coupling. The advantage of this approach is that the physical variables such as hydrodynamic velocity and heat release rate are coupled based on the conservation of energy and not based on an ad hoc model. Our approach shows that the acoustic-hydrodynamic interaction arises from the convection of acoustic velocity fluctuations by the hydrodynamic field and vice versa. This is a linear mechanism, mathematically represented as a convection operator. This mechanism resembles the non-normal mechanism studied in hydrodynamic theory. We propose that this mechanism could relate the instability mechanisms of hydrodynamic and thermo-acoustic systems. Furthermore, the acoustic-hydrodynamic interaction is shown to be responsible for the convection of entropy disturbances from the inlet of the chamber. The theory proposed in this paper also unifies the observations in the fields of low Mach number flows and zero Mach number flows. In contrast to the previous findings, where compressibility is shown to be causing different physics for zero and low Mach

  15. Electrical modulation and switching of transverse acoustic phonons

    Science.gov (United States)

    Jeong, H.; Jho, Y. D.; Rhim, S. H.; Yee, K. J.; Yoon, S. Y.; Shim, J. P.; Lee, D. S.; Ju, J. W.; Baek, J. H.; Stanton, C. J.

    2016-07-01

    We report on the electrical manipulation of coherent acoustic phonon waves in GaN-based nanoscale piezoelectric heterostructures which are strained both from the pseudomorphic growth at the interfaces as well as through external electric fields. In such structures, transverse symmetry within the c plane hinders both the generation and detection of the transverse acoustic (TA) modes, and usually only longitudinal acoustic phonons are generated by ultrafast displacive screening of potential gradients. We show that even for c -GaN, the combined application of lateral and vertical electric fields can not only switch on the normally forbidden TA mode, but they can also modulate the amplitudes and frequencies of both modes. By comparing the transient differential reflectivity spectra in structures with and without an asymmetric potential distribution, the role of the electrical controllability of phonons was demonstrated as changes to the propagation velocities, the optical birefringence, the electrically polarized TA waves, and the geometrically varying optical sensitivities of phonons.

  16. High-precision measurement of tidal current structures using coastal acoustic tomography

    Science.gov (United States)

    Zhang, Chuanzheng; Zhu, Xiao-Hua; Zhu, Ze-Nan; Liu, Wenhu; Zhang, Zhongzhe; Fan, Xiaopeng; Zhao, Ruixiang; Dong, Menghong; Wang, Min

    2017-07-01

    A high-precision coastal acoustic tomography (CAT) experiment for reconstructing the current variation in Dalian Bay (DLB) was successfully conducted by 11 coastal acoustic tomography systems during March 7-8, 2015. The horizontal distributions of tidal currents and residual currents were mapped well by the inverse method, which used reciprocal travel time data along 51 successful sound transmission rays. The semi-diurnal tide is dominant in DLB, with a maximum speed of 0.69 m s-1 at the eastern and southwestern parts near the bay mouth that gradually decreases toward the inner bay with an average velocity of 0.31 m s-1. The residual current enters the observational domain from the two flanks of the bay mouth and flows out in the inner bay. One anticyclone and one cyclone were noted inside DLB as was one cyclone at the bay mouth. The maximum residual current in the observational domain reached 0.11 m s-1, with a mean residual current of 0.03 m s-1. The upper 15-m depth-averaged inverse velocities were in excellent agreement with the moored Acoustic Doppler Current Profiler (ADCP) at the center of the bay, with a root-mean-square difference (RMSD) of 0.04 m s-1 for the eastward and northward components. The precision of the present tomography measurements was the highest thus far owing to the largest number of transmission rays ever recorded. Sensitivity experiments showed that the RMSD between CAT and moored-ADCP increased from 0.04 m s-1 to 0.08 m s-1 for both the eastward and northward velocities when reducing the number of transmission rays from 51 to 11. The observational accuracy was determined by the spatial resolution of acoustic ray in the CAT measurements. The cost-optimal scheme consisted of 29 transmission rays with a spatial resolution of acoustic ray of 2.03 √{ km2 / ray numbers } . Moreover, a dynamic analysis of the residual currents showed that the horizontal pressure gradient of residual sea level and Coriolis force contribute 38.3% and 36

  17. Analysis of Wave Velocity Patterns in Black Cherry Trees and its Effect on Internal Decay Detection

    Science.gov (United States)

    Guanghui Li; Xiping Wang; Jan Wiedenbeck; Robert J. Ross

    2013-01-01

    In this study, we examined stress wave velocity patterns in the cross sections of black cherry trees, developed analytical models of stress wave velocity in sound healthy trees, and then tested the effectiveness of the models as a tool for tree decay diagnosis. Acoustic tomography data of the tree cross sections were collected from 12 black cherry trees at a production...

  18. Propagation of nonlinear ion acoustic wave with generation of long-wavelength waves

    International Nuclear Information System (INIS)

    Ohsawa, Yukiharu; Kamimura, Tetsuo

    1978-01-01

    The nonlinear propagation of the wave packet of an ion acoustic wave with wavenumber k 0 asymptotically equals k sub(De) (the electron Debye wavenumber) is investigated by computer simulations. From the wave packet of the ion acoustic wave, waves with long wavelengths are observed to be produced within a few periods for the amplitude oscillation of the original wave packet. These waves are generated in the region where the original wave packet exists. Their characteristic wavelength is of the order of the length of the wave packet, and their propagation velocity is almost equal to the ion acoustic speed. The long-wavelength waves thus produced strongly affect the nonlinear evolution of the original wave packet. (auth.)

  19. Large amplitude ion-acoustic waves in a plasma with an electron beam

    International Nuclear Information System (INIS)

    Nejoh, Y.; Sanuki, H.

    1995-01-01

    The nonlinear wave structures of large amplitude ion-acoustic waves are studied in a plasma with an electron beam, by the pseudopotential method. The region of the existence of large amplitude ion-acoustic waves is examined, showing that the condition of the existence sensitively depends on the parameters such as the electron beam temperature, the ion temperature, the electrostatic potential, and the concentration of the electron beam density. It turns out that the region of the existence spreads as the beam temperature increases but the effect of the electron beam velocity is relatively small. New findings of large amplitude ion-acoustic waves in a plasma with an electron beam are predicted. copyright 1995 American Institute of Physics

  20. Nutrient spiraling in streams and river networks

    Science.gov (United States)

    Ensign, Scott H.; Doyle, Martin W.

    2006-12-01

    Over the past 3 decades, nutrient spiraling has become a unifying paradigm for stream biogeochemical research. This paper presents (1) a quantitative synthesis of the nutrient spiraling literature and (2) application of these data to elucidate trends in nutrient spiraling within stream networks. Results are based on 404 individual experiments on ammonium (NH4), nitrate (NO3), and phosphate (PO4) from 52 published studies. Sixty-nine percent of the experiments were performed in first- and second-order streams, and 31% were performed in third- to fifth-order streams. Uptake lengths, Sw, of NH4 (median = 86 m) and PO4 (median = 96 m) were significantly different (α = 0.05) than NO3 (median = 236 m). Areal uptake rates of NH4 (median = 28 μg m-2 min-1) were significantly different than NO3 and PO4 (median = 15 and 14 μg m-2 min-1, respectively). There were significant differences among NH4, NO3, and PO4 uptake velocity (median = 5, 1, and 2 mm min-1, respectively). Correlation analysis results were equivocal on the effect of transient storage on nutrient spiraling. Application of these data to a stream network model showed that recycling (defined here as stream length ÷ Sw) of NH4 and NO3 generally increased with stream order, while PO4 recycling remained constant along a first- to fifth-order stream gradient. Within this hypothetical stream network, cumulative NH4 uptake decreased slightly with stream order, while cumulative NO3 and PO4 uptake increased with stream order. These data suggest the importance of larger rivers to nutrient spiraling and the need to consider how stream networks affect nutrient flux between terrestrial and marine ecosystems.