WorldWideScience

Sample records for acoustic droplet vaporization

  1. Acoustic droplet vaporization of vascular droplets in gas embolotherapy

    Science.gov (United States)

    Bull, Joseph

    2016-11-01

    This work is primarily motivated by a developmental gas embolotherapy technique for cancer treatment. In this methodology, infarction of tumors is induced by selectively formed vascular gas bubbles that arise from the acoustic vaporization of vascular droplets. Additionally, micro- or nano-droplets may be used as vehicles for localized drug delivery, with or without flow occlusion. In this talk, we examine the dynamics of acoustic droplet vaporization through experiments and theoretical/computational fluid mechanics models, and investigate the bioeffects of acoustic droplet vaporization on endothelial cells and in vivo. Functionalized droplets that are targeted to tumor vasculature are examined. The influence of fluid mechanical and acoustic parameters, as well as droplet functionalization, is explored. This work was supported by NIH Grant R01EB006476.

  2. Droplet Vaporization In A Levitating Acoustic Field

    Science.gov (United States)

    Ruff, G. A.; Liu, S.; Ciobanescu, I.

    2003-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. While the low-gravity test facility is being completed, tests have been conducted in 1-g to characterize the effect of the acoustic field on the vaporization of single and multiple droplets. This is important because in the combustion experiment, the droplets will be formed and

  3. Linear Stability Analysis of an Acoustically Vaporized Droplet

    Science.gov (United States)

    Siddiqui, Junaid; Qamar, Adnan; Samtaney, Ravi

    2015-11-01

    Acoustic droplet vaporization (ADV) is a phase transition phenomena of a superheat liquid (Dodecafluoropentane, C5F12) droplet to a gaseous bubble, instigated by a high-intensity acoustic pulse. This approach was first studied in imaging applications, and applicable in several therapeutic areas such as gas embolotherapy, thrombus dissolution, and drug delivery. High-speed imaging and theoretical modeling of ADV has elucidated several physical aspects, ranging from bubble nucleation to its subsequent growth. Surface instabilities are known to exist and considered responsible for evolving bubble shapes (non-spherical growth, bubble splitting and bubble droplet encapsulation). We present a linear stability analysis of the dynamically evolving interfaces of an acoustically vaporized micro-droplet (liquid A) in an infinite pool of a second liquid (liquid B). We propose a thermal ADV model for the base state. The linear analysis utilizes spherical harmonics (Ynm, of degree m and order n) and under various physical assumptions results in a time-dependent ODE of the perturbed interface amplitudes (one at the vapor/liquid A interface and the other at the liquid A/liquid B interface). The perturbation amplitudes are found to grow exponentially and do not depend on m. Supported by KAUST Baseline Research Funds.

  4. Measurement of droplet vaporization rate enhancement caused by acoustic disturbances

    Science.gov (United States)

    Anderson, T. J.; Winter, M.

    1992-10-01

    Advanced laser diagnostics are being applied to quantify droplet vaporization enhancement in the presence of acoustic fields which can lead to instability in liquid-fueled rockets. While models have been developed to describe the interactions between subcritical droplet vaporization and acoustic fields in the surrounding gases, they have not been verified experimentally. In the super critical environment of a rocket engine combustor, little is understood about how the injected fluid is distributed. Experiments in these areas have been limited because of the lack of diagnostic techniques capable of providing quantitative results. Recently, however, extremely accurate vaporization rate measurements have been performed on droplets in a subcritical environment using morphology-dependent resonances (MDR's) in which fluorescence from an individual droplet provides information about its diameter. Initial measurements on methanol droplets behind a pressure pulse with a pressure ratio of 1.2 indicated that the evaporation rate in the first few microsec after wave passage was extremely high. Subsequent measurements have been made to validate these results using MDR's acquired from similarly-sized droplets using a pulse with a 1.1 pressure ratio. A baseline measurement was also made using a non evaporative fluid under similar Weber and Reynolds number conditions. The MDR technique employed for these measurements is explained and the facilities are described. The evaporation measurement results are shown and the rates observed from different droplet materials and different wave strengths are compared.

  5. Acoustic Droplet Vaporization in Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Chung-Yin Lin

    2013-01-01

    Full Text Available This paper reviews the literature regarding the use of acoustic droplet vaporization (ADV in clinical applications of imaging, embolic therapy, and therapeutic delivery. ADV is a physical process in which the pressure waves of ultrasound induce a phase transition that causes superheated liquid nanodroplets to form gas bubbles. The bubbles provide ultrasonic imaging contrast and other functions. ADV of perfluoropentane was used extensively in imaging for preclinical trials in the 1990s, but its use declined rapidly with the advent of other imaging agents. In the last decade, ADV was proposed and explored for embolic occlusion therapy, drug delivery, aberration correction, and high intensity focused ultrasound (HIFU sensitization. Vessel occlusion via ADV has been explored in rodents and dogs and may be approaching clinical use. ADV for drug delivery is still in preclinical stages with initial applications to treat tumors in mice. Other techniques are still in preclinical studies but have potential for clinical use in specialty applications. Overall, ADV has a bright future in clinical application because the small size of nanodroplets greatly reduces the rate of clearance compared to larger contrast agent bubbles and yet provides the advantages of ultrasonographic contrast, acoustic cavitation, and nontoxicity of conventional perfluorocarbon contrast agent bubbles.

  6. A model for acoustic vaporization dynamics of a bubble/droplet system encapsulated within a hyperelastic shell.

    Science.gov (United States)

    Lacour, Thomas; Guédra, Matthieu; Valier-Brasier, Tony; Coulouvrat, François

    2018-01-01

    Nanodroplets have great, promising medical applications such as contrast imaging, embolotherapy, or targeted drug delivery. Their functions can be mechanically activated by means of focused ultrasound inducing a phase change of the inner liquid known as the acoustic droplet vaporization (ADV) process. In this context, a four-phases (vapor + liquid + shell + surrounding environment) model of ADV is proposed. Attention is especially devoted to the mechanical properties of the encapsulating shell, incorporating the well-known strain-softening behavior of Mooney-Rivlin material adapted to very large deformations of soft, nearly incompressible materials. Various responses to ultrasound excitation are illustrated, depending on linear and nonlinear mechanical shell properties and acoustical excitation parameters. Different classes of ADV outcomes are exhibited, and a relevant threshold ensuring complete vaporization of the inner liquid layer is defined. The dependence of this threshold with acoustical, geometrical, and mechanical parameters is also provided.

  7. Numerical study of droplet evaporation in an acoustic levitator

    Science.gov (United States)

    Bänsch, Eberhard; Götz, Michael

    2018-03-01

    We present a finite element method for the simulation of all relevant processes of the evaporation of a liquid droplet suspended in an acoustic levitation device. The mathematical model and the numerical implementation take into account heat and mass transfer across the interface between the liquid and gaseous phase and the influence of acoustic streaming on this process, as well as the displacement and deformation of the droplet due to acoustic radiation pressure. We apply this numerical method to several theoretical and experimental examples and compare our results with the well-known d2-law for the evaporation of spherical droplets and with theoretical predictions for the acoustic streaming velocity. We study the influence of acoustic streaming on the distribution of water vapor and temperature in the levitation device, with special attention to the vapor distribution in the emerging toroidal vortices. We also compare the evaporation rate of a droplet with and without acoustic streaming, as well as the evaporation rates in dependence of different temperatures and sound pressure levels. Finally, a simple model of protein inactivation due to heat damage is considered and studied for different evaporation settings and their respective influence on protein damage.

  8. Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis.

    Science.gov (United States)

    Wang, Chung-Hsin; Kang, Shih-Tsung; Lee, Ya-Hsuan; Luo, Yun-Ling; Huang, Yu-Fen; Yeh, Chih-Kuang

    2012-02-01

    Tumor therapy requires multi-functional treatment strategies with specific targeting of therapeutics to reduce general toxicity and increase efficacy. In this study we fabricated and functionally tested aptamer-conjugated and doxorubicin (DOX)-loaded acoustic droplets comprising cores of liquid perfluoropentane compound and lipid-based shell materials. Conjugation of sgc8c aptamers provided the ability to specifically target CCRF-CEM cells for both imaging and therapy. High-intensity focused ultrasound (HIFU) was introduced to trigger targeted acoustic droplet vaporization (ADV) which resulted in both mechanical cancer cell destruction by inertial cavitation and chemical treatment through localized drug release. HIFU insonation showed a 56.8% decrease in cell viability with aptamer-conjugated droplets, representing a 4.5-fold increase in comparison to non-conjugated droplets. In addition, the fully-vaporized droplets resulted in the highest DOX uptake by cancer cells, compared to non-vaporized or partially vaporized droplets. Optical studies clearly illustrated the transient changes that occurred upon ADV of droplet-targeted CEM cells, and B-mode ultrasound imaging revealed contrast enhancement by ADV in ultrasound images. In conclusion, our fabricated droplets functioned as a hybrid chemical and mechanical strategy for the specific destruction of cancer cells upon ultrasound-mediated ADV, while simultaneously providing ultrasound imaging capability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Velocity and rotation measurements in acoustically levitated droplets

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Abhishek [University of Central Florida, Orlando, FL 32816 (United States); Basu, Saptarshi [Indian Institute of Science, Bangalore 560012 (India); Kumar, Ranganathan, E-mail: ranganathan.kumar@ucf.edu [University of Central Florida, Orlando, FL 32816 (United States)

    2012-10-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. -- Highlights: ► Demonstrates the importance of rotation in a levitated droplet that leads to controlled morphology. ► Provides detailed measurements of Particle Image Velocimetry inside levitated droplets. ► Shows variation of vortex strength with the droplet diameter and viscosity of the liquid.

  10. Velocity and rotation measurements in acoustically levitated droplets

    International Nuclear Information System (INIS)

    Saha, Abhishek; Basu, Saptarshi; Kumar, Ranganathan

    2012-01-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. -- Highlights: ► Demonstrates the importance of rotation in a levitated droplet that leads to controlled morphology. ► Provides detailed measurements of Particle Image Velocimetry inside levitated droplets. ► Shows variation of vortex strength with the droplet diameter and viscosity of the liquid.

  11. Dynamic Leidenfrost temperature on micro-textured surfaces: Acoustic wave absorption into thin vapor layer

    Science.gov (United States)

    Jerng, Dong Wook; Kim, Dong Eok

    2018-01-01

    The dynamic Leidenfrost phenomenon is governed by three types of pressure potentials induced via vapor hydrodynamics, liquid dynamic pressure, and the water hammer effect resulting from the generation of acoustic waves at the liquid-vapor interface. The prediction of the Leidenfrost temperature for a dynamic droplet needs quantitative evaluation and definition for each of the pressure fields. In particular, the textures on a heated surface can significantly affect the vapor hydrodynamics and the water hammer pressure. We present a quantitative model for evaluating the water hammer pressure on micro-textured surfaces taking into account the absorption of acoustic waves into the thin vapor layer. The model demonstrates that the strength of the acoustic flow into the liquid droplet, which directly contributes to the water hammer pressure, depends on the magnitude of the acoustic resistance (impedance) in the droplet and the vapor region. In consequence, the micro-textures of the surface and the increased spacing between them reduce the water hammer coefficient ( kh ) defined as the ratio of the acoustic flow into the droplet to total generated flow. Aided by numerical calculations that solve the laminar Navier-Stokes equation for the vapor flow, we also predict the dynamic Leidenfrost temperature on a micro-textured surface with reliable accuracy consistent with the experimental data.

  12. Structural morphology of acoustically levitated and heated nanosilica droplet

    International Nuclear Information System (INIS)

    Kumar, Ranganathan; Tijerino, Erick; Saha, Abhishek; Basu, Saptarshi

    2010-01-01

    We study the vaporization and precipitation dynamics of a nanosilica encapsulated water droplet by levitating it acoustically and heating it with a CO 2 laser. For all concentrations, we observe three phases: solvent evaporation, surface agglomeration, and precipitation leading to bowl or ring shaped structures. At higher concentrations, ring reorientation and rotation are seen consistently. The surface temperature from an infrared camera is seen to be dependent on the final geometrical shape of the droplet and its rotation induced by the acoustic field of the levitator. With nonuniform particle distribution, these structures can experience rupture which modifies the droplet rotational speed.

  13. Acoustic Droplet Vaporization, Cavitation, and Therapeutic Properties of Copolymer-Stabilized Perfluorocarbon Nanoemulsions

    International Nuclear Information System (INIS)

    Nam, Kweon-Ho; Christensen, Douglas A.; Rapoport, Natalya; Kennedy, Anne M.

    2009-01-01

    Acoustic and therapeutic properties of Doxorubicin (DOX) and paclitaxel (PTX)-loaded perfluorocarbon nanoemulsions have been investigated in a mouse model of ovarian cancer. The nanoemulsions were stabilized by two biodegradable amphiphilic block copolymers that differed in the structure of the hydrophobic block. Acoustic droplet vaporization (ADV) and cavitation parameters were measured as a function of ultrasound frequency, pressure, duty cycles, and temperature. The optimal parameters that induced ADV and inertial cavitation of the formed microbubbles were used in vivo in the experiments on the ultrasound-mediated chemotherapy of ovarian cancer. A combination tumor treatment by intravenous injections of drug-loaded perfluoropentane nanoemulsions and tumor-directed 1-MHz ultrasound resulted in a dramatic decrease of ovarian or breast carcinoma tumor volume and sometimes complete tumor resolution. However, tumors often recurred three to six weeks after the treatment indicating that some cancer cells survived the treatment. The recurrent tumors proved more aggressive and resistant to the repeated therapy than initial tumors suggesting selection for the resistant cells during the first treatment.

  14. Microlayered flow structure around an acoustically levitated droplet under a phase-change process.

    Science.gov (United States)

    Hasegawa, Koji; Abe, Yutaka; Goda, Atsushi

    2016-01-01

    The acoustic levitation method (ALM) has found extensive applications in the fields of materials science, analytical chemistry, and biomedicine. This paper describes an experimental investigation of a levitated droplet in a 19.4-kHz single-axis acoustic levitator. We used water, ethanol, water/ethanol mixture, and hexane as test samples to investigate the effect of saturated vapor pressure on the flow field and evaporation process using a high-speed camera. In the case of ethanol, water/ethanol mixtures with initial ethanol fractions of 50 and 70 wt%, and hexane droplets, microlayered toroidal vortexes are generated in the vicinity of the droplet interface. Experimental results indicate the presence of two stages in the evaporation process of ethanol and binary mixture droplets for ethanol content >10%. The internal and external flow fields of the acoustically levitated droplet of pure and binary mixtures are clearly observed. The binary mixture of the levitated droplet shows the interaction between the configurations of the internal and external flow fields of the droplet and the concentration of the volatile fluid. Our findings can contribute to the further development of existing theoretical prediction.

  15. Multicomponent droplet vaporization in a convecting environment

    International Nuclear Information System (INIS)

    Megaridis, C.M.; Sirignano, W.A.

    1990-01-01

    In this paper a parametric study of the fundamental exchange processes for energy, mass and momentum between the liquid and gas phases of multicomponent liquid vaporizing droplets is presented. The model, which examines an isolated, vaporizing, multicomponent droplet in an axisymmetric, convecting environment, considers the different volatilities of the liquid components, the alteration of the liquid-phase properties due to the spatial/temporal variations of the species concentrations and also the effects of multicomponent diffusion. In addition, the model accounts for variable thermophysical properties, surface blowing and droplet surface regression due to vaporization, transient droplet heating with internal liquid circulation, and finally droplet deceleration with respect to the free flow due to drag. The numerical calculation employs finite-difference techniques and an iterative solution procedure that provides time-varying spatially-resolved data for both phases. The effects of initial droplet composition, ambient temperature, initial Reynolds number (based on droplet diameter), and volatility differential between the two liquid components are investigated for a liquid droplet consisting of two components with very different volatilities. It is found that mixtures with higher concentration of the less volatile substance actually vaporize faster on account of intrinsically higher liquid heating rates

  16. Numerical modeling of a vaporizing multicomponent droplet

    Science.gov (United States)

    Megaridis, C. M.; Sirignano, W. A.

    The fundamental processes governing the energy, mass, and momentum exchange between the liquid and gas phases of vaporizing, multicomponent liquid droplets have been investigated. The axisymmetric configuration under consideration consists of an isolated multicomponent droplet vaporizing in a convective environment. The model considers different volatilities of the liquid components, variable liquid properties due to variation of the species concentrations, and non-Fickian multicomponent gaseous diffusion. The bicomponent droplet model was employed to examine the commonly used assumptions of unity Lewis number in the liquid phase and Fickian gaseous diffusion. It is found that the droplet drag coefficients, the vaporization rates, and the related transfer numbers are not influenced by the above assumptions in a significant way.

  17. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  18. Vapor-droplet flow equations

    International Nuclear Information System (INIS)

    Crowe, C.T.

    1975-01-01

    General features of a vapor-droplet flow are discussed and the equations expressing the conservation of mass, momentum, and energy for the vapor, liquid, and mixture using the control volume approach are derived. The phenomenological laws describing the exchange of mass, momentum, and energy between phases are also reviewed. The results have application to development of water-dominated geothermal resources

  19. Water Evaporation from Acoustically Levitated Aqueous Solution Droplets.

    Science.gov (United States)

    Combe, Nicole A; Donaldson, D James

    2017-09-28

    We present a systematic study of the effect of solutes on the evaporation rate of acoustically levitated aqueous solution droplets by suspending individual droplets in a zero-relative humidity environment and measuring their size as a function of time. The ratios of the early time evaporation rates of six simple salts (NaCl, NaBr, NaNO 3 , KCl, MgCl 2 , CaCl 2 ) and malonic acid to that of water are in excellent agreement with predictions made by modifying the Maxwell equation to include the time-dependent water activity of the evaporating aqueous salt solution droplets. However, the early time evaporation rates of three ammonium salt solutions (NH 4 Cl, NH 4 NO 3 , (NH 4 ) 2 SO 4 ) are not significantly different from the evaporation rate of pure water. This finding is in accord with a previous report that ammonium sulfate does not depress the evaporation rate of its solutions, despite reducing its water vapor pressure, perhaps due to specific surface effects. At longer evaporation times, as the droplets approach crystallization, all but one (MgCl 2 ) of the solution evaporation rates are well described by the modified Maxwell equation.

  20. Interfacial Dynamics of Condensing Vapor Bubbles in an Ultrasonic Acoustic Field

    Science.gov (United States)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2016-11-01

    Enhancement of vapor condensation in quiescent subcooled liquid using ultrasonic actuation is investigated experimentally. The vapor bubbles are formed by direct injection from a pressurized steam reservoir through nozzles of varying characteristic diameters, and are advected within an acoustic field of programmable intensity. While kHz-range acoustic actuation typically couples to capillary instability of the vapor-liquid interface, ultrasonic (MHz-range) actuation leads to the formation of a liquid spout that penetrates into the vapor bubble and significantly increases its surface area and therefore condensation rate. Focusing of the ultrasonic beam along the spout leads to ejection of small-scale droplets from that are propelled towards the vapor liquid interface and result in localized acceleration of the condensation. High-speed video of Schlieren images is used to investigate the effects of the ultrasonic actuation on the thermal boundary layer on the liquid side of the vapor-liquid interface and its effect on the condensation rate, and the liquid motion during condensation is investigated using high-magnification PIV measurements. High-speed image processing is used to assess the effect of the actuation on the dynamics and temporal variation in characteristic scale (and condensation rate) of the vapor bubbles.

  1. Simulation of water vapor condensation on LOX droplet surface using liquid nitrogen

    Science.gov (United States)

    Powell, Eugene A.

    1988-01-01

    The formation of ice or water layers on liquid oxygen (LOX) droplets in the Space Shuttle Main Engine (SSME) environment was investigated. Formulation of such ice/water layers is indicated by phase-equilibrium considerations under conditions of high partial pressure of water vapor (steam) and low LOX droplet temperature prevailing in the SSME preburner or main chamber. An experimental investigation was begun using liquid nitrogen as a LOX simulant. A monodisperse liquid nitrogen droplet generator was developed which uses an acoustic driver to force the stream of liquid emerging from a capillary tube to break up into a stream of regularly space uniformly sized spherical droplets. The atmospheric pressure liquid nitrogen in the droplet generator reservoir was cooled below its boiling point to prevent two phase flow from occurring in the capillary tube. An existing steam chamber was modified for injection of liquid nitrogen droplets into atmospheric pressure superheated steam. The droplets were imaged using a stroboscopic video system and a laser shadowgraphy system. Several tests were conducted in which liquid nitrogen droplets were injected into the steam chamber. Under conditions of periodic droplet formation, images of 600 micron diameter liquid nitrogen droplets were obtained with the stroboscopic video systems.

  2. Evolution of acoustically vaporized microdroplets in gas embolotherapy

    KAUST Repository

    Qamar, Adnan; Wong, ZhengZheng; Fowlkes, Brian Brian; Bull, Joseph L.

    2012-01-01

    Acoustic vaporization dynamics of a superheated dodecafluoropentane (DDFP) microdroplet inside a microtube and the resulting bubble evolution is investigated in the present work. This work is motivated by a developmental gas embolotherapy technique that is intended to treat cancers by infarcting tumors using gas bubbles. A combined theoretical and computational approach is utilized and compared with the experiments to understand the evolution process and to estimate the resulting stress distribution associated with vaporization event. The transient bubble growth is first studied by ultra-high speed imaging and then theoretical and computational modeling is used to predict the entire bubble evolution process. The evolution process consists of three regimes: an initial linear rapid spherical growth followed by a linear compressed oval shaped growth and finally a slow asymptotic nonlinear spherical bubble growth. Although the droplets are small compared to the tube diameter, the bubble evolution is influenced by the tube wall. The final bubble radius is found to scale linearly with the initial droplet radius and is approximately five times the initial droplet radius. A short pressure pulse with amplitude almost twice as that of ambient conditions is observed. The width of this pressure pulse increases with increasing droplet size whereas the amplitude is weakly dependent. Although the rise in shear stress along the tube wall is found to be under peak physiological limits, the shear stress amplitude is found to be more prominently influenced by the initial droplet size. The role of viscous dissipation along the tube wall and ambient bulk fluid pressure is found to be significant in bubble evolution dynamics. © 2012 American Society of Mechanical Engineers.

  3. Mass spectrometry of acoustically levitated droplets.

    Science.gov (United States)

    Westphall, Michael S; Jorabchi, Kaveh; Smith, Lloyd M

    2008-08-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air-droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-microL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing charge recombination after ion desorption.

  4. Modeling of fuel vapor jet eruption induced by local droplet heating

    KAUST Repository

    Sim, Jaeheon

    2014-01-10

    The evaporation of a droplet by non-uniform heating is numerically investigated in order to understand the mechanism of the fuel-vapor jet eruption observed in the flame spread of a droplet array under microgravity condition. The phenomenon was believed to be mainly responsible for the enhanced flame spread rate through a droplet cloud at microgravity conditions. A modified Eulerian-Lagrangian method with a local phase change model is utilized to describe the interfacial dynamics between liquid droplet and surrounding air. It is found that the localized heating creates a temperature gradient along the droplet surface, induces the corresponding surface tension gradient, and thus develops an inner flow circulation commonly referred to as the Marangoni convection. Furthermore, the effect also produces a strong shear flow around the droplet surface, thereby pushing the fuel vapor toward the wake region of the droplet to form a vapor jet eruption. A parametric study clearly demonstrated that at realistic droplet combustion conditions the Marangoni effect is indeed responsible for the observed phenomena, in contrast to the results based on constant surface tension approximation

  5. A Planar-Fluorescence Imaging Technique for Studying Droplet-Turbulence Interactions in Vaporizing Sprays

    Science.gov (United States)

    Santavicca, Dom A.; Coy, E.

    1990-01-01

    Droplet turbulence interactions directly affect the vaporization and dispersion of droplets in liquid sprays and therefore play a major role in fuel oxidizer mixing in liquid fueled combustion systems. Proper characterization of droplet turbulence interactions in vaporizing sprays require measurement of droplet size velocity and size temperature correlations. A planar, fluorescence imaging technique is described which is being developed for simultaneously measuring the size, velocity, and temperature of individual droplets in vaporizing sprays. Preliminary droplet size velocity correlation measurements made with this technique are presented. These measurements are also compared to and show very good agreement with measurements made in the same spray using a phase Doppler particle analyzer.

  6. Framework for simulating droplet vaporization in turbulent flows

    Science.gov (United States)

    Palmore, John; Desjardins, Olivier

    2017-11-01

    A framework for performing direct numerical simulations of droplet vaporization is presented. The work is motivated by spray combustion in engines wherein fuel droplets vaporize in a turbulent gas flow. The framework is built into a conservative finite volume code for simulating low Mach number turbulent multiphase flows. Phase tracking is performed using a discretely conservative geometric volume of fluid method, while the transport of mass fraction and temperature is performed using the BQUICK scheme. Special attention is given to the implementation of transport equations near the interface to ensure the consistency between fluxes of mass, momentum, and scalars. The effect of evaporation on the flow appears as a system of coupled source terms which depend on the local thermodynamic equilibrium between the phases. The sources are implemented implicitly using an unconditionally stable, monotone scheme. Two methodologies for resolving the system's thermodynamic equilibrium are compared for their accuracy, robustness, and computational expense. Verification is performed by comparing results to known solutions in one and three dimensions. Finally, simulations of droplets vaporizing in turbulence are demonstrated, and trends for mass fraction and temperature fields are discussed.

  7. Deformation pathways and breakup modes in acoustically levitated bicomponent droplets under external heating

    Science.gov (United States)

    Pathak, Binita; Basu, Saptarshi

    2016-03-01

    Controlled breakup of droplets using heat or acoustics is pivotal in applications such as pharmaceutics, nanoparticle production, and combustion. In the current work we have identified distinct thermal acoustics-induced deformation regimes (ligaments and bubbles) and breakup dynamics in externally heated acoustically levitated bicomponent (benzene-dodecane) droplets with a wide variation in volatility of the two components (benzene is significantly more volatile than dodecane). We showcase the physical mechanism and universal behavior of droplet surface caving in leading to the inception and growth of ligaments. The caving of the top surface is governed by a balance between the acoustic pressure field and the restrictive surface tension of the droplet. The universal collapse of caving profiles for different benzene concentration (70 % by volume). The findings are portable to any similar bicomponent systems with differential volatility.

  8. Experimental analysis of shape deformation of evaporating droplet using Legendre polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Apratim [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 (India); Basu, Saptarshi, E-mail: sbasu@mecheng.iisc.ernet.in [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012 (India); Kumar, Ranganathan [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States)

    2014-01-24

    Experiments involving heating of liquid droplets which are acoustically levitated, reveal specific modes of oscillations. For a given radiation flux, certain fluid droplets undergo distortion leading to catastrophic bag type breakup. The voltage of the acoustic levitator has been kept constant to operate at a nominal acoustic pressure intensity, throughout the experiments. Thus the droplet shape instabilities are primarily a consequence of droplet heating through vapor pressure, surface tension and viscosity. A novel approach is used by employing Legendre polynomials for the mode shape approximation to describe the thermally induced instabilities. The two dominant Legendre modes essentially reflect (a) the droplet size reduction due to evaporation, and (b) the deformation around the equilibrium shape. Dissipation and inter-coupling of modal energy lead to stable droplet shape while accumulation of the same ultimately results in droplet breakup.

  9. Experimental analysis of shape deformation of evaporating droplet using Legendre polynomials

    International Nuclear Information System (INIS)

    Sanyal, Apratim; Basu, Saptarshi; Kumar, Ranganathan

    2014-01-01

    Experiments involving heating of liquid droplets which are acoustically levitated, reveal specific modes of oscillations. For a given radiation flux, certain fluid droplets undergo distortion leading to catastrophic bag type breakup. The voltage of the acoustic levitator has been kept constant to operate at a nominal acoustic pressure intensity, throughout the experiments. Thus the droplet shape instabilities are primarily a consequence of droplet heating through vapor pressure, surface tension and viscosity. A novel approach is used by employing Legendre polynomials for the mode shape approximation to describe the thermally induced instabilities. The two dominant Legendre modes essentially reflect (a) the droplet size reduction due to evaporation, and (b) the deformation around the equilibrium shape. Dissipation and inter-coupling of modal energy lead to stable droplet shape while accumulation of the same ultimately results in droplet breakup.

  10. Effect of holed reflector on acoustic radiation force in noncontact ultrasonic dispensing of small droplets

    Science.gov (United States)

    Tanaka, Hiroki; Wada, Yuji; Mizuno, Yosuke; Nakamura, Kentaro

    2016-06-01

    We investigated the fundamental aspects of droplet dispensing, which is an important procedure in the noncontact ultrasonic manipulation of droplets in air. A holed reflector was used to dispense a droplet from a 27.4 kHz standing-wave acoustic field to a well. First, the relationship between the hole diameter of the reflector and the acoustic radiation force acting on a levitated droplet was clarified by calculating the acoustic impedance of the point just above the hole. When the hole diameter was half of (or equal to) the acoustic wavelength λ, the acoustic radiation force was ∼80% (or 50%) of that without a hole. The maximal diameters of droplets levitated above the holes through flat and half-cylindrical reflectors were then experimentally investigated. For instance, with the half-cylindrical reflector, the maximal diameter was 5.0 mm for a hole diameter of 6.0 mm, and droplets were levitatable up to a hole diameter of 12 mm (∼λ).

  11. On the formation of nitrogen oxides during the combustion of partially pre-vaporized droplets

    Energy Technology Data Exchange (ETDEWEB)

    Moesl, Klaus Georg

    2012-12-12

    This study contributes to the topic of nitrogen oxide (NO{sub x}) formation at the level of single droplet and droplet array combustion. The influence of the degree of droplet vaporization and the influence of ambient conditions on NO{sub x} emissions are studied in detail by experiments as well as by numerical simulations. Consequently, this study illustrates correlations and dependencies of the most relevant parameters with respect to the formation of NO{sub x}. It merges the fields of droplet pre-vaporization, ignition, combustion, and exhaust gas formation, including a sophisticated approach to NO{sub x} determination. Even though the study was conducted in order to help understand the fundamental process of burning idealized droplets, the processes in spray combustion have also been taken into consideration within its scope. The portability of results obtained from those idealized droplet burning regimes is evaluated for real applications. Thus, this study may also help to derive design recommendations for liquid-fueled combustion devices. While the experimental part focuses on droplet array combustion, the numerical part highlights spherically symmetric single droplet combustion. By performing experiments in a microgravity environment, quasi-spherical conditions were facilitated for droplet burning, and comparability was provided for the experimental and numerical results. A novelty of the numerical part is the investigation of mechanisms of NO{sub x} formation under technically relevant conditions. This includes partial pre-vaporization of the droplets as well as droplet combustion in a hot exhaust gas environment, such as an aero-engine. The results show that the trade-off between ambient temperature and available oxygen determines the NO{sub x} formation of droplets burning in hot exhaust gas. If the ambient temperature is high and there is still sufficient oxygen for full oxidation of the fuel provided by the droplet, the maximum of NOx formation is

  12. Droplet behaviour in an acoustic field: application to high frequency instability in liquid propellant rocket engines; Comportement de gouttes dans un champ acoustique: applications aux instabilites hautes-frequences dans les moteurs de fusees a ergols liquides

    Energy Technology Data Exchange (ETDEWEB)

    Boisneau, O.; Lecourt, R.; Grisch, F.; Orain, M.

    2002-07-01

    A setup has been developed at ONERA in the scope of studying interaction between calibrated droplets and a transversal acoustic wave in the scope of high frequency instabilities in liquid rocket engines. First, the setup has been checked acoustically by hot-wire anemometer and microphone. We present an analytical solution of the Stokes' droplet motion equation in an acoustic field. The trajectory equation can be split into three different parts: a sinusoidal part (negligible in liquid rocket engines), a transient part and a final mean position (only function of the loudspeaker characteristics but never reached). Some kind of vibrational breakup at low Weber's number has been observed using line-of-sight visualization of acoustic/droplet interactions. However, preponderant phenomena observed were jet oscillations and droplet coalescence. For ambient temperature, PLIF visualization has shown a coupling between the created vapor cylinder and the acoustic induced jet position. For hot temperature, some unsteady phenomena seem to appear but further processing are needed. (authors)

  13. Sectorial oscillation of acoustically levitated nanoparticle-coated droplet

    Science.gov (United States)

    Zang, Duyang; Chen, Zhen; Geng, Xingguo

    2016-01-01

    We have investigated the dynamics of a third mode sectorial oscillation of nanoparticle-coated droplets using acoustic levitation in combination with active modulation. The presence of nanoparticles at the droplet surface changes its oscillation amplitude and frequency. A model linking the interfacial rheology and oscillation dynamics has been proposed in which the compression modulus ɛ of the particle layer is introduced into the analysis. The ɛ obtained with the model is in good agreement with that obtained by the Wilhelmy plate approach, highlighting the important role of interfacial rheological properties in the sectorial oscillation of droplets.

  14. Three-axis acoustic device for levitation of droplets in an open gas stream and its application to examine sulfur dioxide absorption by water droplets.

    Science.gov (United States)

    Stephens, Terrance L; Budwig, Ralph S

    2007-01-01

    Two acoustic devices to stabilize a droplet in an open gas stream (single-axis and three-axis levitators) have been designed and tested. The gas stream was provided by a jet apparatus with a 64 mm exit diameter and a uniform velocity profile. The acoustic source used was a Langevin vibrator with a concave reflector. The single-axis levitator relied primarily on the radial force from the acoustic field and was shown to be limited because of significant droplet wandering. The three-axis levitator relied on a combination of the axial and radial forces. The three-axis levitator was applied to examine droplet deformation and circulation and to investigate the uptake of SO(2) from the gas stream to the droplet. Droplets ranging in diameters from 2 to 5 mm were levitated in gas streams with velocities up to 9 ms. Droplet wandering was on the order of a half droplet diameter for a 3 mm diameter droplet. Droplet circulation ranged from the predicted Hadamard-Rybczynski pattern to a rotating droplet pattern. Droplet pH over a central volume of the droplet was measured by planar laser induced fluorescence. The results for the decay of droplet pH versus time are in general agreement with published theory and experiments.

  15. Relative spectral absorption of solar radiation by water vapor and cloud droplets

    Science.gov (United States)

    Davies, R.; Ridgway, W. L.

    1983-01-01

    A moderate (20/cm) spectral resolution model which accounts for both the highly variable spectral transmission of solar radiation through water vapor within and above cloud, as well as the more slowly varying features of absorption and anisotropic multiple scattering by the cloud droplets, is presented. Results from this model as applied to the case of a typical 1 km thick stratus cloud in a standard atmosphere, with cloud top altitude of 2 km and overhead sun, are discussed, showing the relative importance of water vapor above the cloud, water vapor within the cloud, and cloud droplets on the spectral absorption of solar radiation.

  16. The Influence of Acoustic Field Induced by HRT on Oscillation Behavior of a Single Droplet

    Directory of Open Access Journals (Sweden)

    Can Ruan

    2017-01-01

    Full Text Available This paper presents an experimental and theoretical study on the effects of an acoustic field induced by Hartmann Resonance Tube (HRT on droplet deformation behavior. The characteristics of the acoustic field generated by HRT are investigated. Results show that the acoustic frequency decreases with the increase of the resonator length, the sound pressure level (SPL increases with the increase of nozzle pressure ratio (NPR, and it is also noted that increasing resonator length can cause SPL to decrease, which has rarely been reported in published literature. Further theoretical analysis reveals that the resonance frequency of a droplet has several modes, and when the acoustic frequency equals the droplet’s frequency, heightened droplet responses are observed with the maximum amplitude of the shape oscillation. The experimental results for different resonator cavity lengths, nozzle pressure ratios and droplet diameters confirm the non-linear nature of this problem, and this conclusion is in good agreement with theoretical analysis. Measurements by high speed camera have shown that the introduction of an acoustic field can greatly enhance droplet oscillation, which means with the use of an ultrasonic atomizer based on HRT, the quality of atomization and combustion can be highly improved.

  17. Phononic fluidics: acoustically activated droplet manipulations

    Science.gov (United States)

    Reboud, Julien; Wilson, Rab; Bourquin, Yannyk; Zhang, Yi; Neale, Steven L.; Cooper, Jonathan M.

    2011-02-01

    Microfluidic systems have faced challenges in handling real samples and the chip interconnection to other instruments. Here we present a simple interface, where surface acoustic waves (SAWs) from a piezoelectric device are coupled into a disposable acoustically responsive microfluidic chip. By manipulating droplets, SAW technologies have already shown their potential in microfluidics, but it has been limited by the need to rely upon mixed signal generation at multiple interdigitated electrode transducers (IDTs) and the problematic resulting reflections, to allow complex fluid operations. Here, a silicon chip was patterned with phononic structures, engineering the acoustic field by using a full band-gap. It was simply coupled to a piezoelectric LiNbO3 wafer, propagating the SAW, via a thin film of water. Contrary to the use of unstructured superstrates, phononic metamaterials allowed precise spatial control of the acoustic energy and hence its interaction with the liquids placed on the surface of the chip, as demonstrated by simulations. We further show that the acoustic frequency influences the interaction between the SAW and the phononic lattice, providing a route to programme complex fluidic manipulation onto the disposable chip. The centrifugation of cells from a blood sample is presented as a more practical demonstration of the potential of phononic crystals to realize diagnostic systems.

  18. Single-droplet evaporation kinetics and particle formation in an acoustic levitator. Part 1: evaporation of water microdroplets assessed using boundary-layer and acoustic levitation theories.

    Science.gov (United States)

    Schiffter, Heiko; Lee, Geoffrey

    2007-09-01

    The suitability of a single droplet drying acoustic levitator as a model for the spray drying of aqueous, pharmaceutically-relevant solutes used to produce protein-loaded particles has been examined. The acoustic levitator was initially evaluated by measuring the drying rates of droplets of pure water in dependence of drying-air temperature and flow rate. The measured drying rates were higher than those predicted by boundary layer theory because of the effects of primary acoustic streaming. Sherwood numbers of 2.6, 3.6, and 4.4 at drying-air temperatures of 25 degrees C, 40 degrees C, and 60 degrees C were determined, respectively. Acoustic levitation theory could predict the measured drying rates and Sherwood numbers only when a forced-convection drying-air stream was used to neuralize the retarding effect of secondary acoustic streaming on evaporation rate. At still higher drying-air flow rates, the Ranz-Marshall correlation accurately predicts Sherwood number, provided a stable droplet position in the standing acoustic wave is maintained. The measured Sherwood numbers and droplet Reynolds numbers show that experiments performed in the levitator in still air are taking place effectively under conditions of substantial forced convection. The similitude of these values to those occurring in spray dryers is fortuitous for the suitability of the acoustic levitator as a droplet evaporation model for spray drying. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  19. Sound Propagation in Saturated Gas-Vapor-Droplet Suspensions Considering the Effect of Transpiration on Droplet Evaporation

    Science.gov (United States)

    Kandula, Max

    2012-01-01

    The Sound attenuation and dispersion in saturated gas-vapor-droplet mixtures with evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson (1975) to accommodate the effects of transpiration on the linear particle relaxation processes of mass, momentum and energy transfer. It is shown that the inclusion of transpiration in the presence of mass transfer improves the agreement between the theory and the experimental data of Cole and Dobbins (1971) for sound attenuation in air-water fogs at low droplet mass concentrations. The results suggest that transpiration has an appreciable effect on both sound absorption and dispersion for both low and high droplet mass concentrations.

  20. Acoustic response of superheated droplet detectors to neutrons

    International Nuclear Information System (INIS)

    Gao Size; Zhang Guiying; Ni Bangfa; Zhao Changjun; Zhang Huanqiao; Guan Yongjing; Chen Zhe; Xiao Caijin; Liu Chao; Liu Cunxiong

    2012-01-01

    The search for dark matter (DM) is a hot field nowadays, a number of innovative techniques have emerged. The superheated droplet technique is relatively mature; however, it is recently revitalized in a number of frontier fields including the search for DM. In this work, the acoustic response of Superheated Droplet Detectors (SDDs) to neutrons was studied by using a 252 Cf neutron source, SDDs developed by the China Institute of Atomic Energy, a sound sensor, a sound card and a PC. Sound signals were filtered. The characteristics of FFT spectra, power spectra and time constants were used to determine the authenticity of the bubbles analyzed.

  1. Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery

    Science.gov (United States)

    Wu, Shih-Ying; Fix, Samantha M.; Arena, Christopher B.; Chen, Cherry C.; Zheng, Wenlan; Olumolade, Oluyemi O.; Papadopoulou, Virginie; Novell, Anthony; Dayton, Paul A.; Konofagou, Elisa E.

    2018-02-01

    Focused ultrasound with nanodroplets could facilitate localized drug delivery after vaporization with potentially improved in vivo stability, drug payload, and minimal interference outside of the focal zone compared with microbubbles. While the feasibility of blood-brain barrier (BBB) opening using nanodroplets has been previously reported, characterization of the associated delivery has not been achieved. It was hypothesized that the outcome of drug delivery was associated with the droplet’s sensitivity to acoustic energy, and can be modulated with the boiling point of the liquid core. Therefore, in this study, octafluoropropane (OFP) and decafluorobutane (DFB) nanodroplets were used both in vitro for assessing their relative vaporization efficiency with high-speed microscopy, and in vivo for delivering molecules with a size relevant to proteins (40 kDa dextran) to the murine brain. It was found that at low pressures (300-450 kPa), OFP droplets vaporized into a greater number of microbubbles compared to DFB droplets at higher pressures (750-900 kPa) in the in vitro study. In the in vivo study, successful delivery was achieved with OFP droplets at 300 kPa and 450 kPa without evidence of cavitation damage using ¼ dosage, compared to DFB droplets at 900 kPa where histology indicated tissue damage due to inertial cavitation. In conclusion, the vaporization efficiency of nanodroplets positively impacted the amount of molecules delivered to the brain. The OFP droplets due to the higher vaporization efficiency served as better acoustic agents to deliver large molecules efficiently to the brain compared with the DFB droplets.

  2. Droplet trapping and fast acoustic release in a multi-height device with steady-state flow.

    Science.gov (United States)

    Rambach, Richard W; Linder, Kevin; Heymann, Michael; Franke, Thomas

    2017-10-11

    We demonstrate a novel multilayer polydimethylsiloxane (PDMS) device for selective storage and release of single emulsion droplets. Drops are captured in a microchannel cavity and can be released on-demand through a triggered surface acoustic wave pulse. The surface acoustic wave (SAW) is excited by a tapered interdigital transducer (TIDT) deposited on a piezoelectric lithium niobate (LiNbO 3 ) substrate and inverts the pressure difference across the cavity trap to push a drop out of the trap and back into the main flow channel. Droplet capture and release does not require a flow rate change, flow interruption, flow inversion or valve action and can be achieved in as fast as 20 ms. This allows both on-demand droplet capture for analysis and monitoring over arbitrary time scales, and continuous device operation with a high droplet rate of 620 drops per s. We hence decouple long-term droplet interrogation from other operations on the chip. This will ease integration with other microfluidic droplet operations and functional components.

  3. Vapor-based interferometric measurement of local evaporation rate and interfacial temperature of evaporating droplets.

    Science.gov (United States)

    Dehaeck, Sam; Rednikov, Alexey; Colinet, Pierre

    2014-03-04

    The local evaporation rate and interfacial temperature are two quintessential characteristics for the study of evaporating droplets. Here, it is shown how one can extract these quantities by measuring the vapor concentration field around the droplet with digital holographic interferometry. As a concrete example, an evaporating freely receding pending droplet of 3M Novec HFE-7000 is analyzed at ambient conditions. The measured vapor cloud is shown to deviate significantly from a pure-diffusion regime calculation, but it compares favorably to a new boundary-layer theory accounting for a buoyancy-induced convection in the gas and the influence upon it of a thermal Marangoni flow. By integration of the measured local evaporation rate over the interface, the global evaporation rate is obtained and validated by a side-view measurement of the droplet shape. Advective effects are found to boost the global evaporation rate by a factor of 4 as compared to the diffusion-limited theory.

  4. Real Time Monitoring of Containerless Microreactions in Acoustically Levitated Droplets via Ambient Ionization Mass Spectrometry.

    Science.gov (United States)

    Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A

    2016-09-06

    Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information.

  5. Simulation and modeling of turbulent non isothermal vapor-droplet dispersed flow

    International Nuclear Information System (INIS)

    Baalbaki, Daoud

    2011-01-01

    One of the reference accident that may occur in PWR (Pressurized Water Reactor) is LOCA (Loss of Coolant Accident). The LOCA is studied to design some emergency systems implemented in the basic nuclear installations. The LOCA corresponds to the break of a pipe in the primary loop. This accident is associated with a loss of pressure which leads to the vaporization of the water in the reactor core and then to the rise of the temperature of the assemblies. In this study, we focus on the area of vapor-droplet flow, where the cooling effectiveness of such a mixture is a major concern. The droplets act as heat sinks for the vapor and control the vapor temperature profile which, in turn, determines the wall heat transfer rate. Our general objective is to ameliorate the modeling of the vapor-droplet flow (i.e. at CFD scale). Particularly the estimation of the radial distribution of the droplets. The volume fraction distribution of the two phases depends on the size and dispersion of the droplets in the flow. The size of the droplets is controlled by the rupture and coalescence mechanisms and the interfacial mass transfer (evaporation/condensation). The distribution of the droplets is controlled by the transfer of momentum between the two phases. Our study focuses particularly on the latter point. We are restricted to flows where the liquid water flows under the form of non-deformable spherical droplets that do not interact with each other. Both phases are treated by a two-fluid approach Euler-Euler. In chapter 2, a description of two-phase flow model is presented, using separate mass, momentum, and energy equations for the two phases. These separate balance equations are obtained in an averaging process starting from the local instantaneous conservation equations of the individual phases. During the averaging process, important information on local flow processes are lost and, consequently, additional correlations are needed in order to close the system of equations. The

  6. Sound Propagation in Gas-Vapor-Droplet Suspensions with Evaporation and Nonlinear Particle Relaxation

    Science.gov (United States)

    Kandula, Max

    2012-01-01

    The Sound attenuation and dispersion in saturated gas-vapor-droplet mixture in the presence of evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson to accommodate the effects of nonlinear particle relaxation processes of mass, momentum and energy transfer on sound attenuation and dispersion. The results indicate the existence of a spectral broadening effect in the attenuation coefficient (scaled with respect to the peak value) with a decrease in droplet mass concentration. It is further shown that for large values of the droplet concentration the scaled attenuation coefficient is characterized by a universal spectrum independent of droplet mass concentration.

  7. Computational Thermodynamics Analysis of Vaporizing Fuel Droplets in the Human Upper Airways

    Science.gov (United States)

    Zhang, Zhe; Kleinstreuer, Clement

    The detailed knowledge of air flow structures as well as particle transport and deposition in the human lung for typical inhalation flow rates is an important precursor for dosimetry-and-health-effect studies of toxic particles as well as for targeted drug delivery of therapeutic aerosols. Focusing on highly toxic JP-8 fuel aerosols, 3-D airflow and fluid-particle thermodynamics in a human upper airway model starting from mouth to Generation G3 (G0 is the trachea) are simulated using a user-enhanced and experimentally validated finite-volume code. The temperature distributions and their effects on airflow structures, fuel vapor deposition and droplet motion/evaporation are discussed. The computational results show that the thermal effect on vapor deposition is minor, but it may greatly affect droplet deposition in human airways.

  8. Acoustic separation of oil droplets, colloidal particles and their mixtures in a microfluidic cell

    KAUST Repository

    Vakarelski, Ivan Uriev; Li, Erqiang; Abdel-Fattah, Amr I.; Thoroddsen, Sigurdur T

    2016-01-01

    Here we report direct macroscopic and microscopic observations of acoustic driven separation of dodecane oil droplets in water in the presence and absence of colloidal silica particles suspended in the water phase. The experiments were conducted in a simple rectangular channel glass microfluidic cell in which an ultrasound standing wave pattern was generated at 300 KHz frequency. The separation process of both oil droplets and colloidal particles inside the cell was recorded using a high-speed video camera equipped with a macro-objective lens for macroscopic observation or with a high-speed camera attached to an inverted optical microscope for a higher resolution microscopic observation. We characterize the clustering process in the case of emulsion droplets or solid colloidal particles and ultimately demonstrate the emulsion droplets separation from the solid particles in the mixtures based on their different acoustic contrast factors. Finally, we conduct proof of concept experiment to show that the same approach can be used in a continuous fluid flow process.

  9. Acoustic separation of oil droplets, colloidal particles and their mixtures in a microfluidic cell

    KAUST Repository

    Vakarelski, Ivan Uriev

    2016-06-15

    Here we report direct macroscopic and microscopic observations of acoustic driven separation of dodecane oil droplets in water in the presence and absence of colloidal silica particles suspended in the water phase. The experiments were conducted in a simple rectangular channel glass microfluidic cell in which an ultrasound standing wave pattern was generated at 300 KHz frequency. The separation process of both oil droplets and colloidal particles inside the cell was recorded using a high-speed video camera equipped with a macro-objective lens for macroscopic observation or with a high-speed camera attached to an inverted optical microscope for a higher resolution microscopic observation. We characterize the clustering process in the case of emulsion droplets or solid colloidal particles and ultimately demonstrate the emulsion droplets separation from the solid particles in the mixtures based on their different acoustic contrast factors. Finally, we conduct proof of concept experiment to show that the same approach can be used in a continuous fluid flow process.

  10. Moving Liquids with Sound: The Physics of Acoustic Droplet Ejection for Robust Laboratory Automation in Life Sciences.

    Science.gov (United States)

    Hadimioglu, Babur; Stearns, Richard; Ellson, Richard

    2016-02-01

    Liquid handling instruments for life science applications based on droplet formation with focused acoustic energy or acoustic droplet ejection (ADE) were introduced commercially more than a decade ago. While the idea of "moving liquids with sound" was known in the 20th century, the development of precise methods for acoustic dispensing to aliquot life science materials in the laboratory began in earnest in the 21st century with the adaptation of the controlled "drop on demand" acoustic transfer of droplets from high-density microplates for high-throughput screening (HTS) applications. Robust ADE implementations for life science applications achieve excellent accuracy and precision by using acoustics first to sense the liquid characteristics relevant for its transfer, and then to actuate transfer of the liquid with customized application of sound energy to the given well and well fluid in the microplate. This article provides an overview of the physics behind ADE and its central role in both acoustical and rheological aspects of robust implementation of ADE in the life science laboratory and its broad range of ejectable materials. © 2015 Society for Laboratory Automation and Screening.

  11. Particle image velocimetry and infrared thermography in a levitated droplet with nanosilica suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Abhishek; Kumar, Ranganathan [University of Central Florida, Department of Mechanical Materials and Aerospace Engineering, Orlando, FL (United States); Basu, Saptarshi [Indian Institute of Science, Department of Mechanical Engineering, Bangalore (India)

    2012-03-15

    Preferential accumulation and agglomeration kinetics of nanoparticles suspended in an acoustically levitated water droplet under radiative heating has been studied. Particle image velocimetry performed to map the internal flow field shows a single cell recirculation with increasing strength for decreasing viscosities. Infrared thermography and high speed imaging show details of the heating process for various concentrations of nanosilica droplets. Initial stage of heating is marked by fast vaporization of liquid and sharp temperature rise. Following this stage, aggregation of nanoparticles is seen resulting in various structure formations. At low concentrations, a bowl structure of the droplet is dominant, maintained at a constant temperature. At high concentrations, viscosity of the solution increases, leading to rotation about the levitator axis due to the dominance of centrifugal motion. Such complex fluid motion inside the droplet due to acoustic streaming eventually results in the formation of a ring structure. This horizontal ring eventually reorients itself due to an imbalance of acoustic forces on the ring, exposing larger area for laser absorption and subsequent sharp temperature rise. (orig.)

  12. An Experimental Study on the Dynamics of a Single Droplet Vapor Explosion

    International Nuclear Information System (INIS)

    Concilio Hansson, Roberta

    2010-01-01

    The present study aims to develop a mechanistic understanding of the thermal-hydraulic processes in a vapor explosion, which may occur in nuclear power plants during a hypothetical severe accident involving interactions of high-temperature corium melt and volatile coolant. Over the past several decades, a large body of literature has been accumulated on vapor explosion phenomenology and methods for assessment of the related risk. Vapor explosion is driven by a rapid fragmentation of high temperature melt droplets, leading to a substantial increase of heat transfer areas and subsequent explosive evaporation of the volatile coolant. Constrained by the liquid-phase coolant, the rapid vapor production in the interaction zone causes pressurization and dynamic loading on surrounding structures. While such a general understanding has been established, the triggering mechanism and subsequent dynamic fine fragmentation have yet not been clearly understood. A few mechanistic fragmentation models have been proposed, however, computational efforts to simulate the phenomena generated a large scatter of results. Dynamics of the hot liquid (melt) droplet and the volatile liquid (coolant) are investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography, called SHARP (Simultaneous High-speed Acquisition of X-ray Radiography and Photography). After an elaborate image processing, the SHARP images depict the evolution of both melt material (dispersal) and coolant (bubble dynamics), and their microscale interactions, i.e. the triggering phenomenology. The images point to coolant entrainment into the droplet surface as the mechanism for direct contact/mixing ultimately responsible for energetic interactions. Most importantly, the MISTEE data reveals an inverse

  13. An Experimental Study on the Dynamics of a Single Droplet Vapor Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Concilio Hansson, Roberta

    2010-07-01

    The present study aims to develop a mechanistic understanding of the thermal-hydraulic processes in a vapor explosion, which may occur in nuclear power plants during a hypothetical severe accident involving interactions of high-temperature corium melt and volatile coolant. Over the past several decades, a large body of literature has been accumulated on vapor explosion phenomenology and methods for assessment of the related risk. Vapor explosion is driven by a rapid fragmentation of high temperature melt droplets, leading to a substantial increase of heat transfer areas and subsequent explosive evaporation of the volatile coolant. Constrained by the liquid-phase coolant, the rapid vapor production in the interaction zone causes pressurization and dynamic loading on surrounding structures. While such a general understanding has been established, the triggering mechanism and subsequent dynamic fine fragmentation have yet not been clearly understood. A few mechanistic fragmentation models have been proposed, however, computational efforts to simulate the phenomena generated a large scatter of results. Dynamics of the hot liquid (melt) droplet and the volatile liquid (coolant) are investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography, called SHARP (Simultaneous High-speed Acquisition of X-ray Radiography and Photography). After an elaborate image processing, the SHARP images depict the evolution of both melt material (dispersal) and coolant (bubble dynamics), and their microscale interactions, i.e. the triggering phenomenology. The images point to coolant entrainment into the droplet surface as the mechanism for direct contact/mixing ultimately responsible for energetic interactions. Most importantly, the MISTEE data reveals an inverse

  14. A computational study of droplet evaporation with fuel vapor jet ejection induced by localized heat sources

    KAUST Repository

    Sim, Jaeheon

    2015-05-12

    Droplet evaporation by a localized heat source under microgravity conditions was numerically investigated in an attempt to understand the mechanism of the fuel vapor jet ejection, which was observed experimentally during the flame spread through a droplet array. An Eulerian-Lagrangian method was implemented with a temperature-dependent surface tension model and a local phase change model in order to effectively capture the interfacial dynamics between liquid droplet and surrounding air. It was found that the surface tension gradient caused by the temperature variation within the droplet creates a thermo-capillary effect, known as the Marangoni effect, creating an internal flow circulation and outer shear flow which drives the fuel vapor into a tail jet. A parametric study demonstrated that the Marangoni effect is indeed significant at realistic droplet combustion conditions, resulting in a higher evaporation constant. A modified Marangoni number was derived in order to represent the surface force characteristics. The results at different pressure conditions indicated that the nonmonotonic response of the evaporation rate to pressure may also be attributed to the Marangoni effect.

  15. Investigation of air-assisted sprays submitted to high frequency transverse acoustic fields: Droplet clustering

    Science.gov (United States)

    Ficuciello, A.; Blaisot, J. B.; Richard, C.; Baillot, F.

    2017-06-01

    An experimental investigation of the effects of a high amplitude transverse acoustic field on coaxial jets is presented in this paper. Water and air are used as working fluids at ambient pressure. The coaxial injectors are placed on the top of a semi-open resonant cavity where the acoustic pressure fluctuations of the standing wave can reach a maximum peak-to-peak amplitude of 12 kPa at the forcing frequency of 1 kHz. Several test conditions are considered in order to quantify the influence of injection conditions, acoustic field amplitude, and injector position with respect to the standing wave acoustic field. A high speed back-light visualization technique is used to characterize the jet response. Image processing is used to obtain valuable information about the jet behavior. It is shown that the acoustic field drastically affects the atomization process for all atomization regimes. The position of the injector in the acoustic field determines the jet response, and a droplet-clustering phenomenon is highlighted in multi-point injection conditions and quantified by determining discrete droplet location distributions. A theoretical model based on nonlinear acoustics related to the spatial distribution of the radiation pressure exerted on an object explains the behavior observed.

  16. Laser Techniques on Acoustically Levitated Droplets

    Directory of Open Access Journals (Sweden)

    Cannuli Antonio

    2018-01-01

    acoustically levitated droplets of trehalose aqueous solutions in order to perform spectroscopic analyses as a function of concentration and to test the theoretical diameter law. The study of such systems is important in order to better understand the behaviour of trehalose-synthesizing extremophiles that live in extreme environments. In particular, it will be shown how acoustic levitation, combined with optical spectroscopic instruments allows to explore a wide concentration range and to test the validity of the diameter law as a function of levitation lag time, i.e. the D2 vs t law. On this purpose a direct diameter monitoring by a video camera and a laser pointer was first performed; then the diameter was also evaluated by an indirect measure through an OH/CH band area ratio analysis of collected Raman and Infrared spectra. It clearly emerges that D2 vs t follows a linear trend for about 20 minutes, reaching then a plateau at longer time. This result shows how trehalose is able to avoid total water evaporation, this property being essential for the surviving of organisms under extreme environmental conditions.

  17. Heat Transfer Characteristics of a Focused Surface Acoustic Wave (F-SAW Device for Interfacial Droplet Jetting

    Directory of Open Access Journals (Sweden)

    Donghwi Lee

    2018-06-01

    Full Text Available In this study, we investigate the interfacial droplet jetting characteristics and thermal stability of a focused surface acoustic wave device (F-SAW. An F-SAW device capable of generating a 20 MHz surface acoustic wave by applying sufficient radio frequency power (2–19 W on a 128°-rotated YX-cut piezoelectric lithium niobate substrate for interfacial droplet jetting is proposed. The interfacial droplet jetting characteristics were visualized by a shadowgraph method using a high-speed camera, and a heat transfer experiment was conducted using K-type thermocouples. The interfacial droplet jetting characteristics (jet angle and height were analyzed for two different cases by applying a single interdigital transducer and two opposite interdigital transducers. Surface temperature variations were analyzed with radio frequency input power increases to evaluate the thermal stability of the F-SAW device in air and water environments. We demonstrate that the maximum temperature increase of the F-SAW device in the water was 1/20 of that in the air, owing to the very high convective heat transfer coefficient of the water, resulting in prevention of the performance degradation of the focused acoustic wave device.

  18. Electrospray droplet exposure to organic vapors: metal ion removal from proteins and protein complexes.

    Science.gov (United States)

    DeMuth, J Corinne; McLuckey, Scott A

    2015-01-20

    The exposure of aqueous nanoelectrospray droplets to various organic vapors can dramatically reduce sodium adduction on protein ions in positive ion mass spectra. Volatile alcohols, such as methanol, ethanol, and isopropanol lead to a significant reduction in sodium ion adduction but are not as effective as acetonitrile, acetone, and ethyl acetate. Organic vapor exposure in the negative ion mode, on the other hand, has essentially no effect on alkali ion adduction. Evidence is presented to suggest that the mechanism by which organic vapor exposure reduces alkali ion adduction in the positive mode involves the depletion of alkali metal ions via ion evaporation of metal ions solvated with organic molecules. The early generation of metal/organic cluster ions during the droplet desolvation process results in fewer metal ions available to condense on the protein ions formed via the charged residue mechanism. These effects are demonstrated with holomyoglobin ions to illustrate that the metal ion reduction takes place without detectable protein denaturation, which might be revealed by heme loss or an increase in charge state distribution. No evidence is observed for denaturation with exposure to any of the organic vapors evaluated in this work.

  19. Laser Techniques on Acoustically Levitated Droplets

    Science.gov (United States)

    Cannuli, Antonio; Caccamo, Maria Teresa; Castorina, Giuseppe; Colombo, Franco; Magazù, Salvatore

    2018-01-01

    This work reports the results of an experimental study where laser techniques are applied to acoustically levitated droplets of trehalose aqueous solutions in order to perform spectroscopic analyses as a function of concentration and to test the theoretical diameter law. The study of such systems is important in order to better understand the behaviour of trehalose-synthesizing extremophiles that live in extreme environments. In particular, it will be shown how acoustic levitation, combined with optical spectroscopic instruments allows to explore a wide concentration range and to test the validity of the diameter law as a function of levitation lag time, i.e. the D2 vs t law. On this purpose a direct diameter monitoring by a video camera and a laser pointer was first performed; then the diameter was also evaluated by an indirect measure through an OH/CH band area ratio analysis of collected Raman and Infrared spectra. It clearly emerges that D2 vs t follows a linear trend for about 20 minutes, reaching then a plateau at longer time. This result shows how trehalose is able to avoid total water evaporation, this property being essential for the surviving of organisms under extreme environmental conditions.

  20. Vapor Bubbles in Flow and Acoustic Fields

    NARCIS (Netherlands)

    Prosperetti, Andrea; Hao, Yue; Sadhal, S.S

    2002-01-01

    A review of several aspects of the interaction of bubbles with acoustic and flow fields is presented. The focus of the paper is on bubbles in hot liquids, in which the bubble contains mostly vapor, with little or no permanent gas. The topics covered include the effect of translation on condensation

  1. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  2. Dynamic Control of Particle Deposition in Evaporating Droplets by an External Point Source of Vapor.

    Science.gov (United States)

    Malinowski, Robert; Volpe, Giovanni; Parkin, Ivan P; Volpe, Giorgio

    2018-02-01

    The deposition of particles on a surface by an evaporating sessile droplet is important for phenomena as diverse as printing, thin-film deposition, and self-assembly. The shape of the final deposit depends on the flows within the droplet during evaporation. These flows are typically determined at the onset of the process by the intrinsic physical, chemical, and geometrical properties of the droplet and its environment. Here, we demonstrate deterministic emergence and real-time control of Marangoni flows within the evaporating droplet by an external point source of vapor. By varying the source location, we can modulate these flows in space and time to pattern colloids on surfaces in a controllable manner.

  3. Acoustic imaging of vapor bubbles through optically non-transparent media

    International Nuclear Information System (INIS)

    Kolbe, W.F.; Turko, B.T.; Leskovar, B.

    1983-10-01

    A preliminary investigation of the feasibility of acoustic imaging of vapor bubbles through optically nontransparent media is described. Measurements are reported showing the echo signals produced by air filled glass spheres of various sizes positioned in an aqueous medium as well as signals produced by actual vapor bubbles within a water filled steel pipe. In addition, the influence of the metallic wall thickness and material on the amplitude of the echo signals is investigated. Finally several examples are given of the imaging of spherical bubbles within metallic pipes using a simulated array of acoustic transducers mounted circumferentially around the pipe. The measurement procedures and a description of the measuring system are also given

  4. Discussion on numerical simulation techniques for patterns of water vapor rise and droplet deposition at NPP cooling tower

    International Nuclear Information System (INIS)

    Guo Dongpeng; Yao Rentai

    2010-01-01

    Based on the working principle of cooling tower, analysis and comparison are made of both advantages and disadvantages of the numerical simulation models, such as ORFAD, KUMULUS, ISCST:A, ANL/UI, CFD etc., which predict the rise and droplet deposition pattern of cooling tower water vapor. The results showed that, CFD model is currently a better model that is used of three-dimensional Renault fluid flow equations predicting the rise and droplet deposition pattern of cooling tower water vapor. The impact of the line trajectory deviation and the speed change inn plume rising is not considered in any other models, and they can not be used for prediction of particle rise and droplet deposition when a larger particle or large buildings in the direction of cooling tower. (authors)

  5. Binary particle separation in droplet microfluidics using acoustophoresis

    Science.gov (United States)

    Fornell, Anna; Cushing, Kevin; Nilsson, Johan; Tenje, Maria

    2018-02-01

    We show a method for separation of two particle species with different acoustic contrasts originally encapsulated in the same droplet in a continuous two-phase system. This was realized by using bulk acoustic standing waves in a 380 μm wide silicon-glass microfluidic channel. Polystyrene particles (positive acoustic contrast particles) and in-house synthesized polydimethylsiloxane (PDMS) particles (negative acoustic contrast particles) were encapsulated inside water-in-oil droplets either individually or in a mixture. At acoustic actuation of the system at the fundamental resonance frequency, the polystyrene particles were moved to the center of the droplet (pressure node), while the PDMS particles were moved to the sides of the droplet (pressure anti-nodes). The acoustic particle manipulation step was combined in series with a trifurcation droplet splitter, and as the original droplet passed through the splitter and was divided into three daughter droplets, the polystyrene particles were directed into the center daughter droplet, while the PDMS particles were directed into the two side daughter droplets. The presented method expands the droplet microfluidics tool-box and offers new possibilities to perform binary particle separation in droplet microfluidic systems.

  6. Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound.

    Science.gov (United States)

    Sheeran, Paul S; Luois, Samantha; Dayton, Paul A; Matsunaga, Terry O

    2011-09-06

    Recent efforts in the area of acoustic droplet vaporization with the objective of designing extravascular ultrasound contrast agents has led to the development of stabilized, lipid-encapsulated nanodroplets of the highly volatile compound decafluorobutane (DFB). We developed two methods of generating DFB droplets, the first of which involves condensing DFB gas (boiling point from -1.1 to -2 °C) followed by extrusion with a lipid formulation in HEPES buffer. Acoustic droplet vaporization of micrometer-sized lipid-coated droplets at diagnostic ultrasound frequencies and mechanical indices were confirmed optically. In our second formulation methodology, we demonstrate the formulation of submicrometer-sized lipid-coated nanodroplets based upon condensation of preformed microbubbles containing DFB. The droplets are routinely in the 200-300 nm range and yield microbubbles on the order of 1-5 μm once vaporized, consistent with ideal gas law expansion predictions. The simple and effective nature of this methodology allows for the development of a variety of different formulations that can be used for imaging, drug and gene delivery, and therapy. This study is the first to our knowledge to demonstrate both a method of generating ADV agents by microbubble condensation and formulation of primarily submicrometer droplets of decafluorobutane that remain stable at physiological temperatures. Finally, activation of DFB nanodroplets is demonstrated using pressures within the FDA guidelines for diagnostic imaging, which may minimize the potential for bioeffects in humans. This methodology offers a new means of developing extravascular contrast agents for diagnostic and therapeutic applications. © 2011 American Chemical Society

  7. Enzyme kinetics in acoustically levitated droplets of supercooled water: a novel approach to cryoenzymology.

    Science.gov (United States)

    Weis, David D; Nardozzi, Jonathan D

    2005-04-15

    The rate of the alkaline phosphatase-catalyzed hydrolysis of 4-methylumbelliferone phosphate was measured in acoustically levitated droplets of aqueous tris (50 mM) at pH 8.5 at 22 +/- 2 degrees C and in supercooled solution at -6 +/- 2 degrees C. At 22 degrees C, the rate of product formation was in excellent agreement with the rate observed in bulk solution in a cuvette, indicating that the acoustic levitation process does not alter the enzyme activity. The rate of the reaction decreased 6-fold in supercooled solution at -6 +/- 2 degrees C. The acoustic levitator apparatus is described in detail.

  8. Ultrasound rays in droplets: The role of viscosity and caustics in acoustic streaming

    DEFF Research Database (Denmark)

    Bruus, Henrik

    2017-01-01

    not depend on the viscosity in most simple geometries. However, viscosity has a profound influence on the acoustic streaming as demonstrated by Riaud et al. (J. Fluid Mech., vol. 821, 2017, pp. 384-420) in their study of sessile mm-sized water-glycerol droplets placed on a piezoelectric substrate with a 20...

  9. Micro-Electromechanical Acoustic Resonator Coated with Polyethyleneimine Nanofibers for the Detection of Formaldehyde Vapor

    Directory of Open Access Journals (Sweden)

    Da Chen

    2018-02-01

    Full Text Available We demonstrate a promising strategy to combine the micro-electromechanical film bulk acoustic resonator and the nanostructured sensitive fibers for the detection of low-concentration formaldehyde vapor. The polyethyleneimine nanofibers were directly deposited on the resonator surface by a simple electrospinning method. The film bulk acoustic resonator working at 4.4 GHz acted as a sensitive mass loading platform and the three-dimensional structure of nanofibers provided a large specific surface area for vapor adsorption and diffusion. The ultra-small mass change induced by the absorption of formaldehyde molecules onto the amine groups in polyethyleneimine was detected by measuring the frequency downshift of the film bulk acoustic resonator. The proposed sensor exhibits a fast, reversible and linear response towards formaldehyde vapor with an excellent selectivity. The gas sensitivity and the detection limit were 1.216 kHz/ppb and 37 ppb, respectively. The study offers a great potential for developing sensitive, fast-response and portable sensors for the detection of indoor air pollutions.

  10. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  11. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schad, Kelly C; Hynynen, Kullervo, E-mail: khynynen@sri.utoronto.c [Imaging Research, Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, University of Toronto (Canada)

    2010-09-07

    Focused ultrasound therapy can be enhanced with microbubbles by thermal and cavitation effects. However, localization of treatment is difficult as bioeffects can occur outside of the target region. Spatial control of bubbles can be achieved by ultrasound-induced conversion of liquid perfluorocarbon droplets to gas bubbles. This study was undertaken to determine the acoustic parameters for bubble production by droplet conversion and how it depends on the acoustic conditions and droplet physical parameters. Lipid-encapsulated droplets containing dodecafluoropentane were manufactured with sizes ranging from 1.9 to 7.2 {mu}m in diameter and diluted to a concentration of 8 x 10{sup 6} droplets mL{sup -1}. The droplets were sonicated in vitro with a focused ultrasound transducer and varying frequency and exposure under flow conditions through an acoustically transparent vessel. The sonications were 10 ms in duration at frequencies of 0.578, 1.736 and 2.855 MHz. The pressure threshold for droplet conversion was measured with an active transducer operating in pulse-echo mode and simultaneous measurements of broadband acoustic emissions were performed with passive acoustic detection. The results show that droplets cannot be converted at low frequency without broadband emissions occurring. However, the pressure threshold for droplet conversion decreased with increasing frequency, exposure and droplet size. The pressure threshold for broadband emissions was independent of the droplet size and was 2.9, 4.4 and 5.3 MPa for 0.578, 1736 and 2.855 MHz, respectively. In summary, we have demonstrated that droplet conversion is feasible for clinically relevant sized droplets and acoustic exposures.

  12. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy

    International Nuclear Information System (INIS)

    Schad, Kelly C; Hynynen, Kullervo

    2010-01-01

    Focused ultrasound therapy can be enhanced with microbubbles by thermal and cavitation effects. However, localization of treatment is difficult as bioeffects can occur outside of the target region. Spatial control of bubbles can be achieved by ultrasound-induced conversion of liquid perfluorocarbon droplets to gas bubbles. This study was undertaken to determine the acoustic parameters for bubble production by droplet conversion and how it depends on the acoustic conditions and droplet physical parameters. Lipid-encapsulated droplets containing dodecafluoropentane were manufactured with sizes ranging from 1.9 to 7.2 μm in diameter and diluted to a concentration of 8 x 10 6 droplets mL -1 . The droplets were sonicated in vitro with a focused ultrasound transducer and varying frequency and exposure under flow conditions through an acoustically transparent vessel. The sonications were 10 ms in duration at frequencies of 0.578, 1.736 and 2.855 MHz. The pressure threshold for droplet conversion was measured with an active transducer operating in pulse-echo mode and simultaneous measurements of broadband acoustic emissions were performed with passive acoustic detection. The results show that droplets cannot be converted at low frequency without broadband emissions occurring. However, the pressure threshold for droplet conversion decreased with increasing frequency, exposure and droplet size. The pressure threshold for broadband emissions was independent of the droplet size and was 2.9, 4.4 and 5.3 MPa for 0.578, 1736 and 2.855 MHz, respectively. In summary, we have demonstrated that droplet conversion is feasible for clinically relevant sized droplets and acoustic exposures.

  13. In vitro characterization of perfluorocarbon droplets for focused ultrasound therapy

    Science.gov (United States)

    Schad, Kelly C.; Hynynen, Kullervo

    2010-09-01

    Focused ultrasound therapy can be enhanced with microbubbles by thermal and cavitation effects. However, localization of treatment is difficult as bioeffects can occur outside of the target region. Spatial control of bubbles can be achieved by ultrasound-induced conversion of liquid perfluorocarbon droplets to gas bubbles. This study was undertaken to determine the acoustic parameters for bubble production by droplet conversion and how it depends on the acoustic conditions and droplet physical parameters. Lipid-encapsulated droplets containing dodecafluoropentane were manufactured with sizes ranging from 1.9 to 7.2 µm in diameter and diluted to a concentration of 8 × 106 droplets mL-1. The droplets were sonicated in vitro with a focused ultrasound transducer and varying frequency and exposure under flow conditions through an acoustically transparent vessel. The sonications were 10 ms in duration at frequencies of 0.578, 1.736 and 2.855 MHz. The pressure threshold for droplet conversion was measured with an active transducer operating in pulse-echo mode and simultaneous measurements of broadband acoustic emissions were performed with passive acoustic detection. The results show that droplets cannot be converted at low frequency without broadband emissions occurring. However, the pressure threshold for droplet conversion decreased with increasing frequency, exposure and droplet size. The pressure threshold for broadband emissions was independent of the droplet size and was 2.9, 4.4 and 5.3 MPa for 0.578, 1736 and 2.855 MHz, respectively. In summary, we have demonstrated that droplet conversion is feasible for clinically relevant sized droplets and acoustic exposures.

  14. Acoustic Studies on Nanodroplets, Microbubbles and Liposomes

    Science.gov (United States)

    Kumar, Krishna Nandan

    Microbubbles and droplets are nanometer to micron size biocompatible particles which are primarily used for drug delivery and contrast imaging. Our aim is to broaden the use of microbubbles from contrast imaging to other applications such as measuring blood pressure. The other goal is to develop in situ contrast agents (phase shift droplets) which can be used for applications such as cancer tumor imaging. Therefore, the focus is on developing and validating the concept using experimental and theoretical methods. Below is an overview of each of the projects performed on droplets and microbubbles. Phase shift droplets vaporizable by acoustic stimulation offer many advantages over microbubbles as contrast agents due to their higher stability and possibility of smaller sizes. In this study, the acoustic droplet vaporization (ADV) threshold of a suspension of PFP droplets (400-3000nm) was acoustically measured as a function of the excitation frequency by examining the scattered signals, fundamental, sub- and second-harmonic. This work presents the experimental methodology to determine ADV threshold. The threshold increases with frequency: 1.25 MPa at 2.25 MHz, 2.0 MPa at 5 MHz and 2.5 MPa at 10 MHz. The scattered response from droplets was also found to match well with that of independently prepared lipid-coated microbubble suspension in magnitude as well as trends above the threshold value. Additionally, we have employed classical nucleation theory (CNT) to investigate the ADV, specifically the threshold value of the peak negative pressure required for vaporization. The theoretical analysis predicts that the ADV threshold increases with increasing surface tension of the droplet core and frequency of excitation, while it decreases with increasing temperature and droplet size. The predictions are in qualitative agreement with experimental observations. A technique to measure the ambient pressure using microbubbles was developed. Here we are presenting the results of an

  15. Phase change events of volatile liquid perfluorocarbon contrast agents produce unique acoustic signatures

    International Nuclear Information System (INIS)

    Sheeran, Paul S; Dayton, Paul A; Matsunaga, Terry O

    2014-01-01

    Phase-change contrast agents (PCCAs) provide a dynamic platform to approach problems in medical ultrasound (US). Upon US-mediated activation, the liquid core vaporizes and expands to produce a gas bubble ideal for US imaging and therapy. In this study, we demonstrate through high-speed video microscopy and US interrogation that PCCAs composed of highly volatile perfluorocarbons (PFCs) exhibit unique acoustic behavior that can be detected and differentiated from standard microbubble contrast agents. Experimental results show that when activated with short pulses PCCAs will over-expand and undergo unforced radial oscillation while settling to a final bubble diameter. The size-dependent oscillation phenomenon generates a unique acoustic signal that can be passively detected in both time and frequency domain using confocal piston transducers with an ‘activate high’ (8 MHz, 2 cycles), ‘listen low’ (1 MHz) scheme. Results show that the magnitude of the acoustic ‘signature’ increases as PFC boiling point decreases. By using a band-limited spectral processing technique, the droplet signals can be isolated from controls and used to build experimental relationships between concentration and vaporization pressure. The techniques shown here may be useful for physical studies as well as development of droplet-specific imaging techniques. (paper)

  16. Determination of the Accommodation Coefficient Using Vapor/gas Bubble Dynamics in an Acoustic Field

    Science.gov (United States)

    Gumerov, Nail A.; Hsiao, Chao-Tsung; Goumilevski, Alexei G.; Allen, Jeff (Technical Monitor)

    2001-01-01

    Nonequilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum. The rate at which such a phase transformation occurs depends on the "condensation" or "accommodation" coefficient, Beta, which is a property of the interface. Existing measurement techniques for Beta are complex and expensive. The development of a relatively inexpensive and reliable technique for measurement of Beta for a wide range of substances and temperatures is of great practical importance. The dynamics of a bubble in an acoustic field strongly depends on the value of Beta. It is known that near the saturation temperature, small vapor bubbles grow under the action of an acoustic field due to "rectified heat transfer." This finding can be used as the basis for an effective measurement technique of Beta. We developed a theory of vapor bubble behavior in an isotropic acoustic wave and in a plane standing acoustic wave. A numerical code was developed which enables simulation of a variety of experimental situations and accurately takes into account slowly evolving temperature. A parametric study showed that the measurement of Beta can be made over a broad range of frequencies and bubble sizes. We found several interesting regimes and conditions which can be efficiently used for measurements of Beta. Measurements of Beta can be performed in both reduced and normal gravity environments.

  17. A study of the effect of binary oxide materials in a single droplet vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, R.C., E-mail: rch@kth.se [Royal Institute of Technology, Stockholm (Sweden); Dinh, T.N.; Manickam, L.T. [Royal Institute of Technology, Stockholm (Sweden)

    2013-11-15

    In an effort to explore fundamental mechanisms that may govern the effect of melt material on vapor explosion's triggering, fine fragmentation and energetics, a series of experiments using a binary-oxide mixture with eutectic and non-eutectic compositions were performed. Interactions of a hot liquid (WO{sub 3}–CaO) droplet and a volatile liquid (water) were investigated in well-controlled, externally triggered, single-droplet experiments conducted in the Micro-interactions in steam explosion experiments (MISTEE) facility. The tests were visualized by means of a synchronized digital cinematography and continuous X-ray radiography system, called simultaneous high-speed acquisition of X-ray radiography and photography (SHARP). The acquired images followed by further analysis indicate milder interactions for the droplet with non-eutectic melt composition in the tests with low melt superheat, whereas no evident differences between eutectic and non-eutectic melt compositions regarding bubble dynamics, energetics and melt preconditioning was observed in the tests with higher melt superheat.

  18. A study of the effect of binary oxide materials in a single droplet vapor explosion

    International Nuclear Information System (INIS)

    Hansson, R.C.; Dinh, T.N.; Manickam, L.T.

    2013-01-01

    In an effort to explore fundamental mechanisms that may govern the effect of melt material on vapor explosion's triggering, fine fragmentation and energetics, a series of experiments using a binary-oxide mixture with eutectic and non-eutectic compositions were performed. Interactions of a hot liquid (WO 3 –CaO) droplet and a volatile liquid (water) were investigated in well-controlled, externally triggered, single-droplet experiments conducted in the Micro-interactions in steam explosion experiments (MISTEE) facility. The tests were visualized by means of a synchronized digital cinematography and continuous X-ray radiography system, called simultaneous high-speed acquisition of X-ray radiography and photography (SHARP). The acquired images followed by further analysis indicate milder interactions for the droplet with non-eutectic melt composition in the tests with low melt superheat, whereas no evident differences between eutectic and non-eutectic melt compositions regarding bubble dynamics, energetics and melt preconditioning was observed in the tests with higher melt superheat

  19. Determination of the Accomodation Coefficient Using Vapor/Gas Bubble Dynamics in an Acoustic Field

    Science.gov (United States)

    Gumerov, Nail A.

    1999-01-01

    Non-equilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum, in processing of molten metals, and in vapor explosions. The rate at which such a phase transformation occurs, Xi, can be described by the Hertz-Knudsen-Langmuir formula. More than one century of the history of the accommodation coefficient measurements shows many problems with its determination. This coefficient depends on the temperature, is sensitive to the conditions at the interface, and is influenced by small amounts of impurities. Even recent measurements of the accommodation coefficient for water (Hagen et al, 1989) showed a huge variation in Beta from 1 for 1 micron droplets to 0.006 for 15 micron droplets. Moreover, existing measurement techniques for the accommodation coefficient are complex and expensive. Thus development of a relatively inexpensive and reliable technique for measurement of the accommodation coefficient for a wide range of substances and temperatures is of great practical importance.

  20. The effect of binary oxide materials on a single droplet vapor explosion triggering

    International Nuclear Information System (INIS)

    Hansson, R.C.; Manickam, L.T.; Dinh, T.N.

    2011-01-01

    In order to explore the fundamental mechanism dictated by the material influence on triggering, fine fragmentation and subsequent vapor explosion energetics, a series of experiments using a mixture of eutectic and non-eutectic binary oxide were initiated. Dynamics of the hot liquid (WO 3 -CaO) droplet and the volatile liquid (water) were investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography, called SHARP (Simultaneous High-speed Acquisition of X-ray Radiography and Photography). The acquired images followed by further analysis showed a milder interaction for the non-eutectic melt composition for the tests with low melt superheat, whether no evident differences between eutectic and non-eutectic melt compositions regarding bubble dynamics, energetics and melt preconditioning was perceived for the high melt superheat tests. (author)

  1. The effect of binary oxide materials on a single droplet vapor explosion triggering

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, R.C.; Manickam, L.T.; Dinh, T.N. [Royal Inst. of Tech., Stockholm (Sweden)

    2011-07-01

    In order to explore the fundamental mechanism dictated by the material influence on triggering, fine fragmentation and subsequent vapor explosion energetics, a series of experiments using a mixture of eutectic and non-eutectic binary oxide were initiated. Dynamics of the hot liquid (WO{sub 3}-CaO) droplet and the volatile liquid (water) were investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography, called SHARP (Simultaneous High-speed Acquisition of X-ray Radiography and Photography). The acquired images followed by further analysis showed a milder interaction for the non-eutectic melt composition for the tests with low melt superheat, whether no evident differences between eutectic and non-eutectic melt compositions regarding bubble dynamics, energetics and melt preconditioning was perceived for the high melt superheat tests. (author)

  2. The impact of vaporized nanoemulsions on ultrasound-mediated ablation.

    Science.gov (United States)

    Zhang, Peng; Kopechek, Jonathan A; Porter, Tyrone M

    2013-01-01

    The clinical feasibility of using high-intensity focused ultrasound (HIFU) for ablation of solid tumors is limited by the high acoustic pressures and long treatment times required. The presence of microbubbles during sonication can increase the absorption of acoustic energy and accelerate heating. However, formation of microbubbles within the tumor tissue remains a challenge. Phase-shift nanoemulsions (PSNE) have been developed as a means for producing microbubbles within tumors. PSNE are emulsions of submicron-sized, lipid-coated, and liquid perfluorocarbon droplets that can be vaporized into microbubbles using short (5 MPa) acoustic pulses. In this study, the impact of vaporized phase-shift nanoemulsions on the time and acoustic power required for HIFU-mediated thermal lesion formation was investigated in vitro. PSNE containing dodecafluoropentane were produced with narrow size distributions and mean diameters below 200 nm using a combination of sonication and extrusion. PSNE was dispersed in albumin-containing polyacrylamide gel phantoms for experimental tests. Albumin denatures and becomes opaque at temperatures above 58°C, enabling visual detection of lesions formed from denatured albumin. PSNE were vaporized using a 30-cycle, 3.2-MHz, at an acoustic power of 6.4 W (free-field intensity of 4,586 W/cm(2)) pulse from a single-element, focused high-power transducer. The vaporization pulse was immediately followed by a 15-s continuous wave, 3.2-MHz signal to induce ultrasound-mediated heating. Control experiments were conducted using an identical procedure without the vaporization pulse. Lesion formation was detected by acquiring video frames during sonication and post-processing the images for analysis. Broadband emissions from inertial cavitation (IC) were passively detected with a focused, 2-MHz transducer. Temperature measurements were acquired using a needle thermocouple. Bubbles formed at the HIFU focus via PSNE vaporization enhanced HIFU-mediated heating

  3. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.

    Science.gov (United States)

    Wang, Zhuochen; Zhe, Jiang

    2011-04-07

    Manipulation of microscale particles and fluid liquid droplets is an important task for lab-on-a-chip devices for numerous biological researches and applications, such as cell detection and tissue engineering. Particle manipulation techniques based on surface acoustic waves (SAWs) appear effective for lab-on-a-chip devices because they are non-invasive, compatible with soft lithography micromachining, have high energy density, and work for nearly any type of microscale particles. Here we review the most recent research and development of the past two years in SAW based particle and liquid droplet manipulation for lab-on-a-chip devices including particle focusing and separation, particle alignment and patterning, particle directing, and liquid droplet delivery.

  4. Numerical simulation of vapor film collapse behavior on high-temperature droplet surface with three-dimensional lattice gas cellular automata

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Abe, Yutaka; Matsukuma, Yosuke

    2008-01-01

    It is pointed out that a vapor film on a premixed high-temperature droplet surface is needed to be collapsed to trigger vapor explosion. Thus, it is important to clarify the micromechanism of vapor film collapse behavior for the occurrence of vapor explosion. In a previous study, it is suggested experimentally that vapor film collapse behavior is dominated by phase change phenomena rather than by the surrounding fluid motion. In the present study, vapor film collapse behavior is investigated to clarify the dominant factor of vapor film collapse behavior with lattice gas automata of three-dimensional immiscible lattice gas model (3-D ILG model). First, in order to represent the boiling and phase change phenomena, the thermal model of a heat wall model and a phase change model is newly constructed. Next, the numerical simulation of vapor film collapse behavior is performed with and without the phase change effect. As a result, the computational result with the phase change effect is observed to be almost same as the experimental result. It can be considered that vapor film collapse behavior is dominated by phase change phenomena. (author)

  5. Why droplet dimension can be larger than, equal to, or smaller than the nanowire dimension

    Science.gov (United States)

    Mohammad, S. Noor

    2009-11-01

    Droplets play central roles in the nanowire (NW) growth by vapor phase mechanisms. These mechanisms include vapor-liquid-solid (VLS), vapor-solid-solid or vapor-solid (VSS), vapor-quasisolid-solid or vapor-quasiliquid-solid (VQS), oxide-assisted growth (OAG), and self-catalytic growth (SCG) mechanisms. Fundamentals of the shape, size, characteristics, and dynamics of droplets and the impacts of them on the NW growth, have been studied. The influence of growth techniques, growth parameters (e.g., growth temperature, partial pressure, gas flow rates, etc.), thermodynamic conditions, surface and interface energy, molar volume, chemical potentials, etc. have been considered on the shapes and sizes of droplets. A model has been presented to explain why droplets can be larger than, equal to, or smaller than the associated NWs. Various growth techniques have been analyzed to understand defects created in NWs. Photoluminescence characteristics have been presented to quantify the roles of droplets in the creation of NW defects. The study highlights the importance of the purity of the droplet material. It attests to the superiority of the SCG mechanism, and clarifies the differences between the VSS, VQS, VLS, and SCG mechanisms. It explains why droplets produced by some mechanisms are visible but droplets produced by some other mechanisms are not visible. It elucidates the formation mechanisms of very large and very small droplets, and discusses the ground rules for droplets creating necked NWs. It puts forth reasons to demonstrate that very large droplets may not behave as droplets.

  6. Vaporization of mercury from molten lead droplets doped with mercury: Pb/Hg source term experiment for the APT/SILC target

    International Nuclear Information System (INIS)

    Tutu, N.K.; Greene, G.A.

    1994-09-01

    Experiments were performed to measure the fraction of mercury inventory released when droplets of molten lead, doped with a known concentration of mercury, fall through a controlled environment. The temperature of molten droplets ranged from 335 C to 346 C, and the concentration of mercury in the droplets ranged from 0.2 mass % to 1.0 mass %. The environment consisted of an air stream, at a temperature nominally equal to the melt temperature, and moving vertically upwards at a velocity of 10 cm/s. Direct observations and chemical analysis showed that no mercury was released from the molten droplets. Based upon the experimental results, it is concluded that no mercury vapor is likely to be released from the potentially molten source rod material in the APT-SILC Neutron Source Array to the confinement atmosphere during a postulated Large Break Loss Of Coolant Accident scenario leading to the melting of a fraction of the source rods

  7. Nucleation and droplet growth from supersaturated vapor at temperatures below the triple point temperature

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2016-01-01

    temperature Ttr.p. crystallizes via a liquid droplet is an example of Ostwald's step rule. The homogeneous nucleation in the supersaturated gas is not to a crystal, but to a liquid-like critical nucleus. We have for the first time performed constant energy (NVE) Molecular Dynamics (MD) of homogeneous...... nucleation without the use of a thermostat. The simulations of homogeneous nucleation in a Lennard-Jones system from supersaturated vapor at temperatures below Ttr.p. reveals that the nucleation to a liquid-like critical nucleus is initiated by a small cold cluster [S. Toxvaerd, J. Chem. Phys. \\textbf{143...

  8. Spontaneous droplet trampolining on rigid superhydrophobic surfaces

    Science.gov (United States)

    Schutzius, Thomas M.; Jung, Stefan; Maitra, Tanmoy; Graeber, Gustav; Köhme, Moritz; Poulikakos, Dimos

    2015-11-01

    Spontaneous removal of condensed matter from surfaces is exploited in nature and in a broad range of technologies to achieve self-cleaning, anti-icing and condensation control. But despite much progress, our understanding of the phenomena leading to such behaviour remains incomplete, which makes it challenging to rationally design surfaces that benefit from its manifestation. Here we show that water droplets resting on superhydrophobic textured surfaces in a low-pressure environment can self-remove through sudden spontaneous levitation and subsequent trampoline-like bouncing behaviour, in which sequential collisions with the surface accelerate the droplets. These collisions have restitution coefficients (ratios of relative speeds after and before collision) greater than unity despite complete rigidity of the surface, and thus seemingly violate the second law of thermodynamics. However, these restitution coefficients result from an overpressure beneath the droplet produced by fast droplet vaporization while substrate adhesion and surface texture restrict vapour flow. We also show that the high vaporization rates experienced by the droplets and the associated cooling can result in freezing from a supercooled state that triggers a sudden increase in vaporization, which in turn boosts the levitation process. This effect can spontaneously remove surface icing by lifting away icy drops the moment they freeze. Although these observations are relevant only to systems in a low-pressure environment, they show how surface texturing can produce droplet-surface interactions that prohibit liquid and freezing water-droplet retention on surfaces.

  9. Multicomponent evaporation model for pure and blended biodiesel droplets in high temperature convective environment

    Energy Technology Data Exchange (ETDEWEB)

    Saha, K.; Abu-Ramadan, E.; Li, X. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering

    2010-07-01

    Renewable energy sources are currently being investigated for their reliability, efficiency, and applicability. Biodiesel is one of the most promising alternatives to conventional diesel fuels in compression-ignition (CI) engines. This paper reported on a study that compared pure biodiesel, pure diesel and blended fuels using a comprehensive multicomponent droplet vaporization model. The model considers the difference in the gas phase diffusivity of diesel and biodiesel vapors. The paper presented the vaporization characteristics of pure diesel, pure biodiesel fuel droplets as well as the effect of mixing them in different proportions (B20 and B50). The model successfully predicted the vaporization history of a multicomponent droplet. The modeling study revealed that biodiesel droplets evaporate at a slower rate than the diesel droplets because of relatively low vapor pressure. As such, the blending of diesel fuel with small proportions of biodiesel will result in an increase in the evaporation time of diesel fuel to some extent. 31 refs., 6 figs.

  10. Conceptual design analysis of an MHD power conversion system for droplet-vapor core reactors. Final report

    International Nuclear Information System (INIS)

    Anghaie, S.; Saraph, G.

    1995-01-01

    A nuclear driven magnetohydrodynamic (MHD) generator system is proposed for the space nuclear applications of few hundreds of megawatts. The MHD generator is coupled to a vapor-droplet core reactor that delivers partially ionized fissioning plasma at temperatures in range of 3,000 to 4,000 K. A detailed MHD model is developed to analyze the basic electrodynamics phenomena and to perform the design analysis of the nuclear driven MHD generator. An incompressible quasi one dimensional model is also developed to perform parametric analyses

  11. Laser-induced fluorescence imaging of acetone inside evaporating and burning fuel droplets

    Science.gov (United States)

    Shringi, D. S.; Shaw, B. D.; Dwyer, H. A.

    2009-01-01

    Laser-induced fluorescence was used to visualize acetone fields inside individual droplets of pure acetone as well as droplets composed of methanol or 1-propanol initially mixed with acetone. Droplets were supported on a horizontal wire and two vaporization conditions were investigated: (1) slow evaporation in room air and (2) droplet combustion, which leads to substantially faster droplet surface regression rates. Acetone was preferentially gasified, causing its concentration in droplets to drop in time with resultant decreases in acetone fluorescence intensities. Slowly vaporizing droplets did not exhibit large spatial variations of fluorescence within droplets, indicating that these droplets were relatively well mixed. Ignition of droplets led to significant variations in fluorescence intensities within droplets, indicating that these droplets were not well mixed. Ignited droplets composed of mixtures of 1-propanol and acetone showed large time-varying changes in shapes for higher acetone concentrations, suggesting that bubble formation was occurring in these droplets.

  12. Clustering and entrainment effects on the evaporation of dilute droplets in a turbulent jet

    Science.gov (United States)

    Dalla Barba, Federico; Picano, Francesco

    2018-03-01

    The evaporation of droplets within turbulent sprays involves unsteady, multiscale, and multiphase processes which make its comprehension and modeling capabilities still limited. The present work aims to investigate the dynamics of droplet vaporization within a turbulent spatial developing jet in dilute, nonreacting conditions. We address the problem considering a turbulent jet laden with acetone droplets and using the direct numerical simulation framework based on a hybrid Eulerian-Lagrangian approach and the point droplet approximation. A detailed statistical analysis of both phases is presented. In particular, we show how crucial is the preferential sampling of the vapor phase induced by the inhomogeneous localization of the droplets through the flow. Strong droplet preferential segregation develops suddenly downstream from the inflow section both within the turbulent core and the jet mixing layer. Two distinct mechanisms have been found to drive this phenomenon: the inertial small-scale clustering in the jet core and the intermittent dynamics of droplets across the turbulent-nonturbulent interface in the mixing layer, where dry air entrainment occurs. These phenomenologies strongly affect the overall vaporization process and lead to an impressive widening of the droplet size and vaporization rate distributions in the downstream evolution of the turbulent spray.

  13. Evaporation of Liquid Droplet in Nano and Micro Scales from Statistical Rate Theory.

    Science.gov (United States)

    Duan, Fei; He, Bin; Wei, Tao

    2015-04-01

    The statistical rate theory (SRT) is applied to predict the average evaporation flux of liquid droplet after the approach is validated in the sessile droplet experiments of the water and heavy water. The steady-state experiments show a temperature discontinuity at the evaporating interface. The average evaporation flux is evaluated by individually changing the measurement at a liquid-vapor interface, including the interfacial liquid temperature, the interfacial vapor temperature, the vapor-phase pressure, and the droplet size. The parameter study shows that a higher temperature jump would reduce the average evaporation flux. The average evaporation flux can significantly be influenced by the interfacial liquid temperature and the vapor-phase pressure. The variation can switch the evaporation into condensation. The evaporation flux is found to remain relative constant if the droplet is larger than a micro scale, while the smaller diameters in nano scale can produce a much higher evaporation flux. In addition, a smaller diameter of droplets with the same liquid volume has a larger surface area. It is suggested that the evaporation rate increases dramatically as the droplet shrinks into nano size.

  14. Cavitation-induced fragmentation of an acoustically-levitated droplet

    Science.gov (United States)

    Gonzalez Avila, Silvestre Roberto; Ohl, Claus-Dieter

    2015-12-01

    In this paper we investigate the initial sequence of events that lead to the fragmentation of a millimetre sized water droplets when interacting with a focused ns-laser pulse. The experimental results show complex processes that result from the reflection of an initial shock wave from plasma generation with the soft boundary of the levitating droplet; furthermore, when the reflected waves from the walls of the droplet refocus they leave behind a trail of microbubbles that later act as cavitation inception regions. Numerical simulations of a shock wave impacting and reflecting from a soft boundary are also reported; the simulated results show that the lowest pressure inside the droplet occurs at the equatorial plane. The results of the numerical model display good agreement with the experimental results both in time and in space.

  15. Cavitation-induced fragmentation of an acoustically-levitated droplet

    International Nuclear Information System (INIS)

    Avila, Silvestre Roberto Gonzalez; Ohl, Claus-Dieter

    2015-01-01

    In this paper we investigate the initial sequence of events that lead to the fragmentation of a millimetre sized water droplets when interacting with a focused ns-laser pulse. The experimental results show complex processes that result from the reflection of an initial shock wave from plasma generation with the soft boundary of the levitating droplet; furthermore, when the reflected waves from the walls of the droplet refocus they leave behind a trail of microbubbles that later act as cavitation inception regions. Numerical simulations of a shock wave impacting and reflecting from a soft boundary are also reported; the simulated results show that the lowest pressure inside the droplet occurs at the equatorial plane. The results of the numerical model display good agreement with the experimental results both in time and in space. (paper)

  16. Simultaneous measurement of surface tension and viscosity using freely decaying oscillations of acoustically levitated droplets

    Science.gov (United States)

    Kremer, J.; Kilzer, A.; Petermann, M.

    2018-01-01

    Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.

  17. Numerical fluid dynamics calculations of nonequilibrium steam-water flows with entrained droplets

    International Nuclear Information System (INIS)

    Williams, K.A.

    1984-01-01

    The present work has developed a computational fluid dynamics formulation that efficiently solves the conservation laws for a vapor field, a continuous liquid field, and two dispersed droplet fields. The thermal-hydraulic effects resulting from the exchange of mass, momentum and energy between the vapor and the dispersed droplet phases has been accurately modeled. This work is an advancement of the state-of-the-art for engineering analyses of nonequilibrium steam-water-droplet flows in heated channels. It is particularly applicable for boiling steam-water flows in which it is important to represent the effects of significant thermal nonequilibrium between the vapor and the liquid phases. This work was shown to be in good agreement with unique experimental measurements of significant thermal nonequilibrium between the vapor and dispersed droplets. The tests analyzed covered a range of mass fluxes and wall heating rates, and were all at low pressures where nonequilibrium effects are most pronounced

  18. Droplet impact on superheated micro-structured surfaces

    NARCIS (Netherlands)

    Tran, Tuan; Staat, Erik-Jan; Susarrey Arce, A.; Foertsch, T.C.; van Houselt, Arie; Gardeniers, Johannes G.E.; Prosperetti, Andrea; Lohse, Detlef; Sun, Chao

    2013-01-01

    When a droplet impacts upon a surface heated above the liquid's boiling point, the droplet either comes into contact with the surface and boils immediately (contact boiling), or is supported by a developing vapor layer and bounces back (film boiling, or Leidenfrost state). We study the transition

  19. Analysis of ultrasonically rotating droplet using moving particle semi-implicit and distributed point source methods

    Science.gov (United States)

    Wada, Yuji; Yuge, Kohei; Tanaka, Hiroki; Nakamura, Kentaro

    2016-07-01

    Numerical analysis of the rotation of an ultrasonically levitated droplet with a free surface boundary is discussed. The ultrasonically levitated droplet is often reported to rotate owing to the surface tangential component of acoustic radiation force. To observe the torque from an acoustic wave and clarify the mechanism underlying the phenomena, it is effective to take advantage of numerical simulation using the distributed point source method (DPSM) and moving particle semi-implicit (MPS) method, both of which do not require a calculation grid or mesh. In this paper, the numerical treatment of the viscoacoustic torque, which emerges from the viscous boundary layer and governs the acoustical droplet rotation, is discussed. The Reynolds stress traction force is calculated from the DPSM result using the idea of effective normal particle velocity through the boundary layer and input to the MPS surface particles. A droplet levitated in an acoustic chamber is simulated using the proposed calculation method. The droplet is vertically supported by a plane standing wave from an ultrasonic driver and subjected to a rotating sound field excited by two acoustic sources on the side wall with different phases. The rotation of the droplet is successfully reproduced numerically and its acceleration is discussed and compared with those in the literature.

  20. Evaporation of polydispersed droplets in a highly turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Cochet, M.; Bazile, Rudy; Ferret, B.; Cazin, S. [INPT, UPS, IMFT (Institut de Mecanique des Fluides de Toulouse), Universite de Toulouse (France)

    2009-09-15

    A model experiment for the study of evaporating turbulent two-phase flows is presented here. The study focuses on a situation where pre-atomized and dispersed droplets vaporize and mix in a heated turbulent flow. The test bench consists in a channel flow with characteristics of homogeneous and isotropic turbulence where fluctuations levels reach very high values (25% in the established zone). An ultrasonic atomizer allows the injection of a mist of small droplets of acetone in the carrier flow. The large range diameters ensure that every kind of droplet behavior with regards to turbulence is possible. Instantaneous concentration fields of the vaporized phase are extracted from fluorescent images (PLIF) of the two phase flow. The evolution of the mixing of the acetone vapor is analyzed for two different liquid mass loadings. Despite the high turbulence levels, concentration fluctuations remain significant, indicating that air and acetone vapor are not fully mixed far from the injector. (orig.)

  1. Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates.

    Science.gov (United States)

    Pan, Zhenhai; Dash, Susmita; Weibel, Justin A; Garimella, Suresh V

    2013-12-23

    Evaporation rates are predicted and important transport mechanisms identified for evaporation of water droplets on hydrophobic (contact angle ~110°) and superhydrophobic (contact angle ~160°) substrates. Analytical models for droplet evaporation in the literature are usually simplified to include only vapor diffusion in the gas domain, and the system is assumed to be isothermal. In the comprehensive model developed in this study, evaporative cooling of the interface is accounted for, and vapor concentration is coupled to local temperature at the interface. Conjugate heat and mass transfer are solved in the solid substrate, liquid droplet, and surrounding gas. Buoyancy-driven convective flows in the droplet and vapor domains are also simulated. The influences of evaporative cooling and convection on the evaporation characteristics are determined quantitatively. The liquid-vapor interface temperature drop induced by evaporative cooling suppresses evaporation, while gas-phase natural convection acts to enhance evaporation. While the effects of these competing transport mechanisms are observed to counterbalance for evaporation on a hydrophobic surface, the stronger influence of evaporative cooling on a superhydrophobic surface accounts for an overprediction of experimental evaporation rates by ~20% with vapor diffusion-based models. The local evaporation fluxes along the liquid-vapor interface for both hydrophobic and superhydrophobic substrates are investigated. The highest local evaporation flux occurs at the three-phase contact line region due to proximity to the higher temperature substrate, rather than at the relatively colder droplet top; vapor diffusion-based models predict the opposite. The numerically calculated evaporation rates agree with experimental results to within 2% for superhydrophobic substrates and 3% for hydrophobic substrates. The large deviations between past analytical models and the experimental data are therefore reconciled with the

  2. Effect of Latent Heat Released by Freezing Droplets during Frost Wave Propagation.

    Science.gov (United States)

    Chavan, Shreyas; Park, Deokgeun; Singla, Nitish; Sokalski, Peter; Boyina, Kalyan; Miljkovic, Nenad

    2018-05-21

    Frost spreads on nonwetting surfaces during condensation frosting via an interdroplet frost wave. When a supercooled condensate water droplet freezes on a hydrophobic or superhydrophobic surface, neighboring droplets still in the liquid phase begin to evaporate. Two possible mechanisms govern the evaporation of neighboring water droplets: (1) The difference in saturation pressure of the water vapor surrounding the liquid and frozen droplets induces a vapor pressure gradient, and (2) the latent heat released by freezing droplets locally heats the substrate, leading to evaporation of nearby droplets. The relative significance of these two mechanisms is still not understood. Here, we study the significance of the latent heat released into the substrate by freezing droplets, and its effect on adjacent droplet evaporation, by studying the dynamics of individual water droplet freezing on aluminum-, copper-, and glass-based hydrophobic and superhydrophobic surfaces. The latent heat flux released into the substrate was calculated from the measured droplet sizes and the respective freezing times ( t f ), defined as the time from initial ice nucleation within the droplet to complete droplet freezing. To probe the effect of latent heat release, we performed three-dimensional transient finite element simulations showing that the transfer of latent heat to neighboring droplets is insignificant and accounts for a negligible fraction of evaporation during microscale frost wave propagation. Furthermore, we studied the effect of substrate thermal conductivity on the transfer of latent heat transfer to neighboring droplets by investigating the velocity of ice bridge formation. The velocity of the ice bridge was independent of the substrate thermal conductivity, indicating that adjacent droplet evaporation during condensation frosting is governed solely by vapor pressure gradients. This study not only provides key insights into the individual droplet freezing process but also

  3. Acoustic cavitation as a mechanism of fragmentation of hot molten droplets in in cool liquids

    International Nuclear Information System (INIS)

    Kazimi, M.; Watson, C.; Lanning, D.; Rohsenow, W.; Todreas, N.

    1976-11-01

    A mechanism that explains several of the observations of fragmentation of hot molten drops in coolants is presented. The mechanism relates the fragmentation to the development of acoustic cavitation and subsequent bubble growth within the molten material. The cavitation is assumed due to the severe pressure excursions calculated within the hot material as a result of the pressure pulses accompanying coolant vaporization at the sphere surface. The growth of the cavitation vapor nuclei inside the hot drop is shown to be influenced by the subsequent long duration surface pressure pulses. The variation of the amplitude of these surface pulses with experimental variables is shown to exhibit the same trends with these variables as does the variation in extent of fragmentation

  4. Source of temperature and pressure pulsations during sessile droplet evaporation into multicomponent atmospheres.

    Science.gov (United States)

    Persad, Aaron H; Sefiane, Khellil; Ward, Charles A

    2013-10-29

    During sessile droplet evaporation, studies with IR thermography and shadowgraphs have indicated temperature pulsations. We confirm those observations with microthermocouples, but microthermocouples also indicate temperature pulsations in the atmosphere of the droplet. The pressure in this atmosphere pulsated as well and was correlated with the temperature pulsations in the droplet. Also, we find that if a droplet evaporates into its own vapor, there are no temperature or pressure pulsations. The pulsations occur only if the droplet evaporates into an atmosphere with a component having a heat of solution with the droplet when it adsorbs-absorbs. None of the currently proposed mechanisms for the temperature pulsations provide an explanation for the coupling between the temperature pulsations in the droplet and the vapor-phase pressure pulsations, and for the absence of the pulsations when the system is single-component. As a mechanism for the pulsations, we propose that when a droplet is exposed to an atmosphere containing a component that has a heat of solution with the droplet, energy will be released from adsorption-absorption. This energy will cause pulsations in the evaporation flux, and these pulsations could cause the observed temperature and pressure pulsations. We examine this mechanism by showing that, if the measured temperature pulsations in a water droplet exposed to a methanol atmosphere are used as the input to a theory of evaporation kinetics (statistical rate theory), the pressure pulsations of the water vapor in the methanol atmosphere are predicted and agree with those measured with a quadrupole mass analyzer. When the inputs and outputs are reversed in the theory, we find that the temperature pulsations in the droplet are correctly predicted from the measured water vapor pulsations in the atmosphere.

  5. Dancing droplets: Contact angle, drag, and confinement

    Science.gov (United States)

    Benusiglio, Adrien; Cira, Nate; Prakash, Manu

    2015-11-01

    When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.

  6. Experimental study of the vaporization of a droplets injection in a fluidized gas-solid media; Etude experimentale de la vaporisation d'un jet de goutelettes au contact d'un milieu gaz-solide fluidise

    Energy Technology Data Exchange (ETDEWEB)

    Leclere, K.

    2002-09-01

    The quality of feedstock injection in the Fluid Catalytic Process (FCC) is essential to ensure a good vaporization. The vaporization should be fast so that the cracking reaction in the gaseous phase can happen within the short residence time in the riser (a few seconds). Vaporization is helped by a uniform injection of droplets as small as possible as well as a good mixing with the catalyst particles that represent the main heat source. Several models were developed to predict the droplet vaporization in a gas-solid media. However, no experimental validation exists for these models, whose predictions vary (from 1 to several hundreds of milliseconds). The objective of this study was to get a better understanding of the physical phenomena taking place during droplet vaporization. This was done in two steps. First, operating limits had to be defined to ensure an optimal vaporization and to avoid local saturation and agglomerate formation. These limits were precisely determined under laboratory conditions to validate a model that showed that agglomeration does not occur under industrial conditions. Then, a kinematic study of vaporization under operating conditions without agglomerate formation was performed. An original measurement technique was developed to get samples at very short times (tens of milliseconds). Experiments showed that heat transfer was not limiting and that mass transfer was the limiting process during vaporization. The developed model was thus based on mass transfer through a boundary layer. The validation of this model in a dense fluidized bed justified its application to operating conditions were the bed voidance is higher. A detailed study of operating parameters will help determine how to improve vaporization. (author)

  7. Drag of evaporating or condensing droplets in low Reynolds number flow

    International Nuclear Information System (INIS)

    Dukowicz, J.K.

    1984-01-01

    The steady-state drag of evaporating or condensing droplets in low Reynolds number flow is computed. Droplet drag in air is obtained for five representative liquids (water, methanol, benzene, heptane, octane) for a range of ambient temperatures, pressures, and vapor concentrations. The drag is in general increased for a condensing droplet, and decreased for an evaporating droplet. The changes in drag can be quite large and depend in detail on the degree of evaporation or condensation, and on the individual liquid and vapor properties. The present results are used to test the existing experimentally derived correlations of Eisenklam and Yuen and Chen in the low Reynolds number regime. The Yuen and Chen correlation is found to be quite successful, but only in the case of condensation or mild evaporation. An improved correlation is suggested for evaporating droplets

  8. The Intrinsic Variability in the Water Vapor Saturation Ratio due to Turbulence

    Science.gov (United States)

    Anderson, J. C.; Cantrell, W. H.; Chandrakar, K. K.; Kostinski, A. B.; Niedermeier, D.; Shaw, R. A.

    2017-12-01

    In the atmosphere, the concentration of water vapor plays an important role in Earth's weather and climate. The mean concentration of water vapor is key to its efficiency as a greenhouse gas; the fluctuations about the mean are important for heat fluxes near the surface of earth. In boundary layer clouds, fluctuations in the water vapor concentration are linked to turbulence. Conditions representative of boundary layer clouds are simulated in Michigan Tech's multiphase, turbulent reaction chamber, the ∏ chamber, where the boundary conditions are controlled and repeatable. Measurements for temperature and water vapor concentration were recorded under forced Rayleigh-Bénard convection. As expected, the distributions for temperature and water vapor concentration broaden as the turbulence becomes more vigorous. From these two measurements the saturation ratio can be calculated. The fluctuations in the water vapor concentration are more important to the variability in the saturation ratio than fluctuations in temperature. In a cloud, these fluctuations in the saturation ratio can result in some cloud droplets experiencing much higher supersaturations. Those "lucky" droplets grow by condensation at a faster rate than other cloud droplets. The difference in the droplet growth rate could contribute to a broadened droplet distribution, which leads to the onset of collision-coalescence. With more intense turbulence these effect will become more pronounced as the fluctuations about the mean saturation ratio become more pronounced.

  9. Experimental study of detonation of large-scale powder-droplet-vapor mixtures

    Science.gov (United States)

    Bai, C.-H.; Wang, Y.; Xue, K.; Wang, L.-F.

    2018-05-01

    Large-scale experiments were carried out to investigate the detonation performance of a 1600-m3 ternary cloud consisting of aluminum powder, fuel droplets, and vapor, which were dispersed by a central explosive in a cylindrically stratified configuration. High-frame-rate video cameras and pressure gauges were used to analyze the large-scale explosive dispersal of the mixture and the ensuing blast wave generated by the detonation of the cloud. Special attention was focused on the effect of the descending motion of the charge on the detonation performance of the dispersed ternary cloud. The charge was parachuted by an ensemble of apparatus from the designated height in order to achieve the required terminal velocity when the central explosive was detonated. A descending charge with a terminal velocity of 32 m/s produced a cloud with discernably increased concentration compared with that dispersed from a stationary charge, the detonation of which hence generates a significantly enhanced blast wave beyond the scaled distance of 6 m/kg^{1/3}. The results also show the influence of the descending motion of the charge on the jetting phenomenon and the distorted shock front.

  10. Experiments on Nitrogen Oxide Production of Droplet Arrays Burning under Microgravity Conditions

    Science.gov (United States)

    Moesl, Klaus; Sattelmayer, Thomas; Kikuchi, Masao; Yamamoto, Shin; Yoda, Shinichi

    The optimization of the combustion process is top priority in current aero-engine and aircraft development, particularly from the perspectives of high efficiency, minimized fuel consumption, and a sustainable exhaust gas production. Aero-engines are exclusively liquid-fueled with a strong correlation between the combustion temperature and the emissions of nitric oxide (NOX ). Due to safety concerns, the progress in NOX reduction has been much slower than in stationary gas turbines. In the past, the mixing intensity in the primary zone of aero-engine combustors was improved and air staging implemented. An important question for future aero-engine combustors, consequently, is how partial vaporization influences the NOX emissions of spray flames? In order to address this question, the combustion of partially vaporized, linear droplet arrays was studied experimentally under microgravity conditions. The influence of fuel pre-vaporization on the NOX emissions was assessed in a wide range. The experiments were performed in a drop tower and a sounding rocket campaign. The microgravity environment provided ideal experiment conditions without the disturbing ef-fect of natural convection. This allowed the study of the interacting phenomena of multi-phase flow, thermodynamics, and chemical kinetics. This way the understanding of the physical and chemical processes related to droplet and spray combustion could be improved. The Bremen drop tower (ZARM) was utilized for the precursor campaign in July 2008, which was com-prised of 30 drops. The sounding rocket experiments, which totaled a microgravity duration of 6 minutes, were finally performed on the flight of TEXUS-46 in November 2009. On both campaigns the "Japanese Combustion Module" (JCM) was used. It is a cooperative experi-ment on droplet array combustion between the Japan Aerospace Exploration Agency (JAXA) and ESA's (European Space Agency) research team, working on the combustion properties of partially premixed sprays

  11. Fast selective trapping and release of picoliter droplets in a 3D microfluidic PDMS multi-trap system with bubbles.

    Science.gov (United States)

    Rambach, Richard W; Biswas, Preetika; Yadav, Ashutosh; Garstecki, Piotr; Franke, Thomas

    2018-02-12

    The selective manipulation and incubation of individual picoliter drops in high-throughput droplet based microfluidic devices still remains challenging. We used a surface acoustic wave (SAW) to induce a bubble in a 3D designed multi-trap polydimethylsiloxane (PDMS) device to manipulate multiple droplets and demonstrate the selection, incubation and on-demand release of aqueous droplets from a continuous oil flow. By controlling the position of the acoustic actuation, individual droplets are addressed and selectively released from a droplet stream of 460 drops per s. A complete trapping and releasing cycle can be as short as 70 ms and has no upper limit for incubation time. We characterize the fluidic function of the hybrid device in terms of electric power, pulse duration and acoustic path.

  12. Generation of a strong core-centering force in a submillimeter compound droplet system

    International Nuclear Information System (INIS)

    Lee, M.C.; Feng, I.; Elleman, D.D.; Wang, T.G.; Young, A.T.

    1981-01-01

    By amplitude-modulating the driving voltage of an acoustic levitating apparatus, a strong core-centering force can be generated in a submillimeter compound droplet system suspended by the radiation pressure in a gaseous medium. Depending on the acoustic characteristics of the droplet system, it has been found that the technique can be utilized advantageously in the multiple-layer coating of an inertial-confinement-fusion pellet

  13. A Computational Study of Internal Flows in a Heated Water-Oil Emulsion Droplet

    KAUST Repository

    Sim, Jaeheon

    2015-01-05

    The vaporization characteristics of water-oil emulsion droplets are investigated by high fidelity computational simulations. One of the key objectives is to identify the physical mechanism for the experimentally observed behavior that the component in the dispersed micro-droplets always vaporizes first, for both oil-in-water and water-in-oil emulsion droplets. The mechanism of this phenomenon has not been clearly understood. In this study, an Eulerian-Lagrangian method was implemented with a temperature-dependent surface tension model and a dynamic adaptive mesh refinement in order to effectively capture the thermo-capillary effect of a micro-droplet in an emulsion droplet efficiently. It is found that the temperature difference in an emulsion droplet creates a surface tension gradient along the micro-droplet surface, inducing surface movement. Subsequently, the outer shear flow and internal flow circulation inside the droplet, referred to as the Marangoni convection, are created. The present study confirms that the Marangoni effect can be sufficiently large to drive the micro-droplets to the emulsion droplet surface at higher temperature, for both water-in-oil and oil-and-water emulsion droplets. A further parametric study with different micro-droplet sizes and temperature gradients demonstrates that larger micro-droplets move faster with larger temperature gradient. The oil micro-droplet in oil-in-water emulsion droplets moves faster due to large temperature gradients by smaller thermal conductivity.

  14. Motion of water droplets in the counter flow of high-temperature combustion products

    Science.gov (United States)

    Volkov, R. S.; Strizhak, P. A.

    2018-01-01

    This paper presents the experimental studies of the deceleration, reversal, and entrainment of water droplets sprayed in counter current flow to a rising stream of high-temperature (1100 K) combustion gases. The initial droplets velocities 0.5-2.5 m/s, radii 10-230 μm, relative volume concentrations 0.2·10-4-1.8·10-4 (m3 of water)/(m3 of gas) vary in the ranges corresponding to promising high-temperature (over 1000 K) gas-vapor-droplet applications (for example, polydisperse fire extinguishing using water mist, fog, or appropriate water vapor-droplet veils, thermal or flame treatment of liquids in the flow of combustion products or high-temperature air; creating coolants based on flue gas, vapor and water droplets; unfreezing of granular media and processing of the drossed surfaces of thermal-power equipment; ignition of liquid and slurry fuel droplets). A hardware-software cross-correlation complex, high-speed (up to 105 fps) video recording tools, panoramic optical techniques (Particle Image Velocimetry, Particle Tracking Velocimetry, Interferometric Particle Imagine, Shadow Photography), and the Tema Automotive software with the function of continuous monitoring have been applied to examine the characteristics of the processes under study. The scale of the influence of initial droplets concentration in the gas flow on the conditions and features of their entrainment by high-temperature gases has been specified. The dependencies Red = f(Reg) and Red' = f(Reg) have been obtained to predict the characteristics of the deceleration of droplets by gases at different droplets concentrations.

  15. Direct numerical simulation of droplet-laden isotropic turbulence

    Science.gov (United States)

    Dodd, Michael S.

    us to explain the pathways for TKE exchange between the carrier turbulent flow and the flow inside the droplet. We also explain the role of the interfacial surface energy in the two-fluid TKE equation through work performed by surface tension. Furthermore, we derive the relationship between the power of surface tension and the rate of change of total droplet surface area. This link allows us to explain how droplet deformation, breakup and coalescence play roles in the temporal evolution of TKE. We then extend the code for non-evaporating droplets and develop a combined VoF method and low-Mach-number approach to simulate evaporating and condensing droplets. The two main novelties of the method are: (i) the VOF algorithm captures the motion of the liquid gas interface in the presence of mass transfer due to evaporation and condensation without requiring a projection step for the liquid velocity, and (ii) the low-Mach-number approach allows for local volume changes caused by phase change while the total volume of the liquid-gas system is constant. The method is verified against an analytical solution for a Stefan flow problem, and the D2 law is verified for a single droplet in quiescent gas. Finally, we perform DNS of an evaporating liquid droplet in forced isotropic turbulence. We show that the method accurately captures the temperature and vapor fields in the turbulent regime, and that the local evaporation rate can vary along the droplet surface depending on the structure of the surrounding vapor cloud. We also report the time evolution of the mean Sherwood number, which indicates that turbulence enhances the vaporization rate of liquid droplets.

  16. Method And Apparatus For Atomizing And Vaporizing Liquid

    KAUST Repository

    Lal, Amit; Mayet, Abdulilah M.

    2014-01-01

    A method and apparatus for atomizing and vaporizing liquid is described. An apparatus having an ejector configured to eject one or more droplets of liquid may be inserted into a reservoir containing liquid. The ejector may have a vibrating device that vibrates the ejector and causes liquid to move from the reservoir up through the ejector and out through an orifice located on the top of the ejector. The one or more droplets of liquid ejected from the ejector may be heated and vaporized into the air.

  17. Method And Apparatus For Atomizing And Vaporizing Liquid

    KAUST Repository

    Lal, Amit

    2014-09-18

    A method and apparatus for atomizing and vaporizing liquid is described. An apparatus having an ejector configured to eject one or more droplets of liquid may be inserted into a reservoir containing liquid. The ejector may have a vibrating device that vibrates the ejector and causes liquid to move from the reservoir up through the ejector and out through an orifice located on the top of the ejector. The one or more droplets of liquid ejected from the ejector may be heated and vaporized into the air.

  18. Micromachined ultrasonic droplet generator based on a liquid horn structure

    Science.gov (United States)

    Meacham, J. M.; Ejimofor, C.; Kumar, S.; Degertekin, F. L.; Fedorov, A. G.

    2004-05-01

    A micromachined ultrasonic droplet generator is developed and demonstrated for drop-on-demand fluid atomization. The droplet generator comprises a bulk ceramic piezoelectric transducer for ultrasound generation, a reservoir for the ejection fluid, and a silicon micromachined liquid horn structure as the nozzle. The nozzles are formed using a simple batch microfabrication process that involves wet etching of (100) silicon in potassium hydroxide solution. Device operation is demonstrated by droplet ejection of water through 30 μm orifices at 1.49 and 2.30 MHz. The finite-element simulations of the acoustic fields in the cavity and electrical impedance of the device are in agreement with the measurements and indicate that the device utilizes cavity resonances in the 1-5 MHz range in conjunction with acoustic wave focusing by the pyramidally shaped nozzles to achieve low power operation.

  19. Theoretical analysis of the axial growth of nanowires starting with a binary eutectic droplet via vapor-liquid-solid mechanism

    Science.gov (United States)

    Liu, Qing; Li, Hejun; Zhang, Yulei; Zhao, Zhigang

    2018-06-01

    A series of theoretical analysis is carried out for the axial vapor-liquid-solid (VLS) growth of nanowires starting with a binary eutectic droplet. The growth model considering the entire process of axial VLS growth is a development of the approaches already developed by previous studies. In this model, the steady and unsteady state growth are considered both. The amount of solute species in a variable liquid droplet, the nanowire length, radius, growth rate and all other parameters during the entire axial growth process are treated as functions of growth time. The model provides theoretical predictions for the formation of nanowire shape, the length-radius and growth rate-radius dependences. It is also suggested by the model that the initial growth of single nanowire is significantly affected by Gibbs-Thompson effect due to the shape change. The model was applied on predictions of available experimental data of Si and Ge nanowires grown from Au-Si and Au-Ge systems respectively reported by other works. The calculations with the proposed model are in satisfactory agreement with the experimental results of the previous works.

  20. Experimental and numerical study of palm oil and castor oil biodiesel droplet evaporation

    OpenAIRE

    Botero, M.L; Molina, A.

    2017-01-01

    ABSTRACT: The vaporization characteristics of Palm and Castor oil biodiesel (Ricinus comunis) droplets were studied. An experimental set-up for measuring the evaporation rate of fuel droplets at atmospheric pressure and variable temperatures was developed. The droplets were suspended on a quartz fiber with initial droplet diameters ranging from 0.9 mm to 1.3 mm. The D2 law model for droplet evaporation was used to predict the evaporation rate of the fuels. Biodiesel physical properties were e...

  1. Hydrodynamics of Leidenfrost droplets in one-component fluids

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2013-01-01

    Using the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], we numerically investigate the hydrodynamics of Leidenfrost droplets under gravity in two dimensions. Some recent theoretical predictions and experimental observations are confirmed in our simulations. A Leidenfrost droplet larger than a critical size is shown to be unstable and break up into smaller droplets due to the Rayleigh-Taylor instability of the bottom surface of the droplet. Our simulations demonstrate that an evaporating Leidenfrost droplet changes continuously from a puddle to a circular droplet, with the droplet shape controlled by its size in comparison with a few characteristic length scales. The geometry of the vapor layer under the droplet is found to mainly depend on the droplet size and is nearly independent of the substrate temperature, as reported in a recent experimental study [Phys. Rev. Lett. 109, 074301 (2012)]. Finally, our simulations demonstrate that a Leidenfrost droplet smaller than a characteristic size takes off from the hot substrate because the levitating force due to evaporation can no longer be balanced by the weight of the droplet, as observed in a recent experimental study [Phys. Rev. Lett. 109, 034501 (2012)].

  2. Hydrodynamics of Leidenfrost droplets in one-component fluids

    KAUST Repository

    Xu, Xinpeng

    2013-04-24

    Using the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], we numerically investigate the hydrodynamics of Leidenfrost droplets under gravity in two dimensions. Some recent theoretical predictions and experimental observations are confirmed in our simulations. A Leidenfrost droplet larger than a critical size is shown to be unstable and break up into smaller droplets due to the Rayleigh-Taylor instability of the bottom surface of the droplet. Our simulations demonstrate that an evaporating Leidenfrost droplet changes continuously from a puddle to a circular droplet, with the droplet shape controlled by its size in comparison with a few characteristic length scales. The geometry of the vapor layer under the droplet is found to mainly depend on the droplet size and is nearly independent of the substrate temperature, as reported in a recent experimental study [Phys. Rev. Lett. 109, 074301 (2012)]. Finally, our simulations demonstrate that a Leidenfrost droplet smaller than a characteristic size takes off from the hot substrate because the levitating force due to evaporation can no longer be balanced by the weight of the droplet, as observed in a recent experimental study [Phys. Rev. Lett. 109, 034501 (2012)].

  3. Liquid droplet radiator performance studies

    Science.gov (United States)

    Mattick, A. T.; Hertzberg, A.

    By making use of droplets rather than solid surfaces to radiate waste heat in space, the liquid droplet radiator (LDR) achieves a radiating area/mass much larger than that of conventional radiators which use fins or heat pipes. The lightweight potential of the LDR is shown to be limited primarily by the radiative properties of the droplets. The requirement that the LDR heat transfer fluid have a very low vapor pressure limits the choice of fluids to relatively few—several liquid metals and Dow 705 silicone fluid are the only suitable candidates so far identified. An experimental determination of the emittance of submillimeter droplets of Dow 705 fluid indicates than an LDR using this fluid at temperatures of 275-335 K would be ⋍ 10 times lighter than the lightest solid surface radiators. Although several liquid metals appear to offer excellent performance in LDR applications at temperatures between 200 K and 975 K, experimental determination of liquid metal emissivities is needed for a conclusive assessment.

  4. Negative/positive chemotaxis of a droplet: Dynamic response to a stimulant gas

    Science.gov (United States)

    Sakuta, Hiroki; Magome, Nobuyuki; Mori, Yoshihito; Yoshikawa, Kenichi

    2016-05-01

    We report here the repulsive/attractive motion of an oil droplet floating on an aqueous phase caused by the application of a stimulant gas. A cm-sized droplet of oleic acid is repelled by ammonia vapor. In contrast, a droplet of aniline on an aqueous phase moves toward hydrochloric acid as a stimulant. The mechanisms of these characteristic behaviors of oil droplets are discussed in terms of the spatial gradient of the interfacial tension caused by the stimulant gas.

  5. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels

    KAUST Repository

    Wu, Congmin

    2013-04-04

    For a one-component fluid on a solid substrate, a thermal singularity may occur at the contact line where the liquid-vapor interface intersects the solid surface. Physically, the liquid-vapor interface is almost isothermal at the liquid-vapor coexistence temperature in one-component fluids while the solid surface is almost isothermal for solids of high thermal conductivity. Therefore, a temperature discontinuity is formed if the two isothermal interfaces are of different temperatures and intersect at the contact line. This leads to the so-called thermal singularity. The localized hydrodynamics involving evaporation/condensation near the contact line leads to a contact angle depending on the underlying substrate temperature. This dependence has been shown to lead to the motion of liquid droplets on solid substrates with thermal gradients (Xu and Qian 2012 Phys. Rev. E 85 061603). In the present work, we carry out molecular dynamics (MD) simulations as numerical experiments to further confirm the predictions made from our previous continuum hydrodynamic modeling and simulations, which are actually semi-quantitatively accurate down to the small length scales in the problem. Using MD simulations, we investigate the motion of evaporative droplets in one-component Lennard-Jones fluids confined in nanochannels with thermal gradients. The droplet is found to migrate in the direction of decreasing temperature of solid walls, with a migration velocity linearly proportional to the temperature gradient. This agrees with the prediction of our continuum model. We then measure the effect of droplet size on the droplet motion. It is found that the droplet mobility is inversely proportional to a dimensionless coefficient associated with the total rate of dissipation due to droplet movement. Our results show that this coefficient is of order unity and increases with the droplet size for the small droplets (∼10 nm) simulated in the present work. These findings are in semi

  6. Dynamic interactions of Leidenfrost droplets on liquid metal surface

    Science.gov (United States)

    Ding, Yujie; Liu, Jing

    2016-09-01

    Leidenfrost dynamic interaction effects of the isopentane droplets on the surface of heated liquid metal were disclosed. Unlike conventional rigid metal, such conductive and deformable liquid metal surface enables the levitating droplets to demonstrate rather abundant and complex dynamics. The Leidenfrost droplets at different diameters present diverse morphologies and behaviors like rotation and oscillation. Depending on the distance between the evaporating droplets, they attract and repulse each other through the curved surfaces beneath them and their vapor flows. With high boiling point up to 2000 °C, liquid metal offers a unique platform for testing the evaporating properties of a wide variety of liquid even solid.

  7. Nanoliter-droplet acoustic streaming via ultra high frequency surface acoustic waves.

    Science.gov (United States)

    Shilton, Richie J; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco

    2014-08-06

    The relevant length scales in sub-nanometer amplitude surface acoustic wave-driven acoustic streaming are demonstrated. We demonstrate the absence of any physical limitations preventing the downscaling of SAW-driven internal streaming to nanoliter microreactors and beyond by extending SAW microfluidics up to operating frequencies in the GHz range. This method is applied to nanoliter scale fluid mixing. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Response of two-phase droplets to intense electromagnetic radiation

    Science.gov (United States)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  9. Dynamics of levitated objects in acoustic vortex fields.

    Science.gov (United States)

    Hong, Z Y; Yin, J F; Zhai, W; Yan, N; Wang, W L; Zhang, J; Drinkwater, Bruce W

    2017-08-02

    Acoustic levitation in gaseous media provides a tool to process solid and liquid materials without the presence of surfaces such as container walls and hence has been used widely in chemical analysis, high-temperature processing, drop dynamics and bioreactors. To date high-density objects can only be acoustically levitated in simple standing-wave fields. Here we demonstrate the ability of a small number of peripherally placed sources to generate acoustic vortex fields and stably levitate a wide range of liquid and solid objects. The forces exerted by these acoustic vortex fields on a levitated water droplet are observed to cause a controllable deformation of the droplet and/or oscillation along the vortex axis. Orbital angular momentum transfer is also shown to rotate a levitated object rapidly and the rate of rotation can be controlled by the source amplitude. We expect this research can increase the diversity of acoustic levitation and expand the application of acoustic vortices.

  10. Explosive Breakup of a Water Droplet with a Nontransparent Solid Inclusion Heated in a High-Temperature Gaseous Medium

    Directory of Open Access Journals (Sweden)

    Dmitrienko Margarita A.

    2015-01-01

    Full Text Available This paper investigates the evaporation of a water droplet with a comparably sized solid nontransparent inclusion in a high-temperature (500–800 K gas medium. Water evaporates from the free surface of the inclusion. During this process, intensive vapor formation occurs on the inner interface “water droplet – solid inclusion” with the subsequent explosive decay of the droplet. Experiments have been conducted using high-speed (up to 105 fps video cameras “Phantom” and software “Phantom Camera Control”. The conditions of the explosive vapor formation of the heterogeneous water droplet were found. The typical phase change mechanisms of the heterogeneous water droplet under the conditions of intensive heat exchange were determined.

  11. Morphology development during single droplet drying of mixed component formulations and milk

    NARCIS (Netherlands)

    Both, E.M.; Nuzzo, N.; Millqvist-Fureby, A.; Boom, R.M.; Schutyser, M.A.I.

    2018-01-01

    We report on the influence of selected components and their mixtures on the development of the morphology during drying of single droplets and extend the results to the morphology of whole milk powder particles. Sessile single droplet drying and acoustic levitation methods were employed to study

  12. Method for using magnetic particles in droplet microfluidics

    Science.gov (United States)

    Shah, Gaurav Jitendra (Inventor); Kim, Chang-Jin (Inventor)

    2012-01-01

    Methods of utilizing magnetic particles or beads (MBs) in droplet-based (or digital) microfluidics are disclosed. The methods may be used in enrichment or separation processes. A first method employs the droplet meniscus to assist in the magnetic collection and positioning of MBs during droplet microfluidic operations. The sweeping movement of the meniscus lifts the MBs off the solid surface and frees them from various surface forces acting on the MBs. A second method uses chemical additives to reduce the adhesion of MBs to surfaces. Both methods allow the MBs on a solid surface to be effectively moved by magnetic force. Droplets may be driven by various methods or techniques including, for example, electrowetting, electrostatic, electromechanical, electrophoretic, dielectrophoretic, electroosmotic, thermocapillary, surface acoustic, and pressure.

  13. Investigation of a piezoelectric droplet delivery method for fuel injection and physical property evaluation

    Science.gov (United States)

    Zhao, Wei; Menon, Shyam

    2017-11-01

    A piezoelectric droplet generator is investigated to deliver liquid hydrocarbon fuels to a micro-combustor application. Besides fuel delivery, the setup is intended to measure fuel physical properties such as viscosity and surface tension. These properties are highly relevant to spray generation in internal combustion engines. Accordingly, a drop-on-demand piezoelectric dispenser is used to generate fuel droplet trains, which are studied using imaging and Phase Doppler Particle Anemometry (PDPA). The diagnostics provide information regarding droplet size and velocity and their evolution over time. The measurements are correlated with results from one-dimensional (1D) models that incorporate sub-models for piezo-electric actuation and droplet vaporization. By validating the 1D models for fuels with known physical properties, a technique is developed that has the capability to meter low-vapor pressure liquid fuels to the microcombustor and use information from the droplet train to calculate physical properties of novel fuels.

  14. Bubbles in piezo-acoustic inkjet printing

    NARCIS (Netherlands)

    Lohse, D.; Jeurissen, R.J.M.; de Jong, J.; Versluis, M.; Wijshoff, H.M.A.; van den Berg, M.; Reinten, H.

    2008-01-01

    Ink-jet printing is considered as the hitherto most successful application of microfluidics. A notorious problem in piezo-acoustic ink-jet systems is the formation of air bubbles during operation. They seriously disturb the acoustics and can cause the droplet formation to stop. We could show by a

  15. Influence of surface wettability on transport mechanisms governing water droplet evaporation.

    Science.gov (United States)

    Pan, Zhenhai; Weibel, Justin A; Garimella, Suresh V

    2014-08-19

    Prediction and manipulation of the evaporation of small droplets is a fundamental problem with importance in a variety of microfluidic, microfabrication, and biomedical applications. A vapor-diffusion-based model has been widely employed to predict the interfacial evaporation rate; however, its scope of applicability is limited due to incorporation of a number of simplifying assumptions of the physical behavior. Two key transport mechanisms besides vapor diffusion-evaporative cooling and natural convection in the surrounding gas-are investigated here as a function of the substrate wettability using an augmented droplet evaporation model. Three regimes are distinguished by the instantaneous contact angle (CA). In Regime I (CA ≲ 60°), the flat droplet shape results in a small thermal resistance between the liquid-vapor interface and substrate, which mitigates the effect of evaporative cooling; upward gas-phase natural convection enhances evaporation. In Regime II (60 ≲ CA ≲ 90°), evaporative cooling at the interface suppresses evaporation with increasing contact angle and counterbalances the gas-phase convection enhancement. Because effects of the evaporative cooling and gas-phase convection mechanisms largely neutralize each other, the vapor-diffusion-based model can predict the overall evaporation rates in this regime. In Regime III (CA ≳ 90°), evaporative cooling suppresses the evaporation rate significantly and reverses entirely the direction of natural convection induced by vapor concentration gradients in the gas phase. Delineation of these counteracting mechanisms reconciles previous debate (founded on single-surface experiments or models that consider only a subset of the governing transport mechanisms) regarding the applicability of the classic vapor-diffusion model. The vapor diffusion-based model cannot predict the local evaporation flux along the interface for high contact angle (CA ≥ 90°) when evaporative cooling is strong and the

  16. Contactless transport of matter in the first five resonance modes of a line-focused acoustic manipulator.

    Science.gov (United States)

    Foresti, Daniele; Nabavi, Majid; Poulikakos, Dimos

    2012-02-01

    The first five resonance modes for transport of matter in a line-focused acoustic levitation system are investigated. Contactless transport was achieved by varying the height between the radiating plate and the reflector. Transport and levitation of droplets in particular involve two limits of the acoustic forces. The lower limit corresponds to the minimum force required to overcome the gravitational force. The upper limit corresponds to the maximum acoustic pressure beyond which atomization of the droplet occurs. As the droplet size increases, the lower limit increases and the upper limit decreases. Therefore to have large droplets levitated, relatively flat radiation pressure amplitude during the translation is needed. In this study, using a finite element model, the Gor'kov potential was calculated for different heights between the reflector and the radiating plate. The application of the Gor'kov potential was extended to study the range of droplet sizes for which the droplets can be levitated and transported without atomization. It was found that the third resonant mode (H(3)-mode) represents the best compromise between high levitation force and smooth pattern transition, and water droplets of millimeter radius can be levitated and transported. The H(3)-mode also allows for three translation lines in parallel. © 2012 Acoustical Society of America

  17. Volatility of methylglyoxal cloud SOA formed through OH radical oxidation and droplet evaporation

    Science.gov (United States)

    Ortiz-Montalvo, Diana L.; Schwier, Allison N.; Lim, Yong B.; McNeill, V. Faye; Turpin, Barbara J.

    2016-04-01

    The volatility of secondary organic aerosol (SOA) formed through cloud processing (aqueous hydroxyl radical (radOH) oxidation and droplet evaporation) of methylglyoxal (MGly) was studied. Effective vapor pressure and effective enthalpy of vaporization (ΔHvap,eff) were determined using 1) droplets containing MGly and its oxidation products, 2) a Vibrating Orifice Aerosol Generator (VOAG) system, and 3) Temperature Programmed Desorption Aerosol-Chemical Ionization Mass Spectrometry (TPD Aerosol-CIMS). Simulated in-cloud MGly oxidation (for 10-30 min) produces an organic mixture of higher and lower volatility components with an overall effective vapor pressure of (4 ± 7) × 10-7 atm at pH 3. The effective vapor pressure decreases by a factor of 2 with addition of ammonium hydroxide (pH 7). The fraction of organic material remaining in the particle-phase after drying was smaller than for similar experiments with glycolaldehyde and glyoxal SOA. The ΔHvap,eff of pyruvic acid and oxalic acid + methylglyoxal in the mixture (from TPD Aerosol-CIMS) were smaller than the theoretical enthalpies of the pure compounds and smaller than that estimated for the entire precursor/product mix after droplet evaporation. After 10-30 min of aqueous oxidation (one cloud cycle) the majority of the MGly + radOH precursor/product mix (even neutralized) will volatilize during droplet evaporation; neutralization and at least 80 min of oxidation at 10-12 M radOH (or >12 h at 10-14 M) is needed before low volatility ammonium oxalate exceeds pyruvate.

  18. Single droplet drying step characterization in microsphere preparation.

    Science.gov (United States)

    Al Zaitone, Belal; Lamprecht, Alf

    2013-05-01

    Spray drying processes are difficult to characterize since process parameters are not directly accessible. Acoustic levitation was used to investigate microencapsulation by spray drying on one single droplet facilitating the analyses of droplet behavior upon drying. Process parameters were simulated on a poly(lactide-co-glycolide)/ethyl acetate combination for microencapsulation. The results allowed quantifying the influence of process parameters such as temperature (0-40°C), polymer concentration (5-400 mg/ml), and droplet size (0.5-1.37 μl) on the drying time and drying kinetics as well as the particle morphology. The drying of polymer solutions at temperature of 21°C and concentration of 5 mg/ml, shows that the dimensionless particle diameter (Dp/D0) approaches 0.25 and the particle needs 350 s to dry. At 400 mg/ml, Dp/D0=0.8 and the drying time increases to one order of magnitude and a hollow particle is formed. The study demonstrates the benefit of using the acoustic levitator as a lab scale method to characterize and study the microparticle formation. This method can be considered as a helpful tool to mimic the full scale spray drying process by providing identical operational parameters such as air velocity, temperature, and variable droplet sizes. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Phenomenology and control of buckling dynamics in multicomponent colloidal droplets

    Science.gov (United States)

    Pathak, Binita; Basu, Saptarshi

    2015-06-01

    Self-assembly of nano sized particles during natural drying causes agglomeration and shell formation at the surface of micron sized droplets. The shell undergoes sol-gel transition leading to buckling at the weakest point on the surface and produces different types of structures. Manipulation of the buckling rate with inclusion of surfactant (sodium dodecyl sulphate, SDS) and salt (anilinium hydrochloride, AHC) to the nano-sized particle dispersion (nanosilica) is reported here in an acoustically levitated single droplet. Buckling in levitated droplets is a cumulative, complicated function of acoustic streaming, chemistry, agglomeration rate, porosity, radius of curvature, and elastic energy of shell. We put forward our hypothesis on how buckling occurs and can be suppressed during natural drying of the droplets. Global precipitation of aggregates due to slow drying of surfactant-added droplets (no added salts) enhances the rigidity of the shell formed and hence reduces the buckling probability of the shell. On the contrary, adsorption of SDS aggregates on salt ions facilitates the buckling phenomenon with an addition of minute concentration of the aniline salt to the dispersion. Variation in the concentration of the added particles (SDS/AHC) also leads to starkly different morphologies and transient behaviour of buckling (buckling modes like paraboloid, ellipsoid, and buckling rates). Tuning of the buckling rate causes a transition in the final morphology from ring and bowl shapes to cocoon type of structure.

  20. Modeling Evaporation and Particle Assembly in Colloidal Droplets.

    Science.gov (United States)

    Zhao, Mingfei; Yong, Xin

    2017-06-13

    Evaporation-induced assembly of nanoparticles in a drying droplet is of great importance in many engineering applications, including printing, coating, and thin film processing. The investigation of particle dynamics in evaporating droplets can provide fundamental hydrodynamic insight for revealing the processing-structure relationship in the particle self-organization induced by solvent evaporation. We develop a free-energy-based multiphase lattice Boltzmann method coupled with Brownian dynamics to simulate evaporating colloidal droplets on solid substrates with specified wetting properties. The influence of interface-bound nanoparticles on the surface tension and evaporation of a flat liquid-vapor interface is first quantified. The results indicate that the particles at the interface reduce surface tension and enhance evaporation flux. For evaporating particle-covered droplets on substrates with different wetting properties, we characterize the increase of evaporate rate via measuring droplet volume. We find that droplet evaporation is determined by the number density and circumferential distribution of interfacial particles. We further correlate particle dynamics and assembly to the evaporation-induced convection in the bulk and on the surface of droplet. Finally, we observe distinct final deposits from evaporating colloidal droplets with bulk-dispersed and interface-bound particles. In addition, the deposit pattern is also influenced by the equilibrium contact angle of droplet.

  1. Worldwide data sets constrain the water vapor uptake coefficient in cloud formation.

    Science.gov (United States)

    Raatikainen, Tomi; Nenes, Athanasios; Seinfeld, John H; Morales, Ricardo; Moore, Richard H; Lathem, Terry L; Lance, Sara; Padró, Luz T; Lin, Jack J; Cerully, Kate M; Bougiatioti, Aikaterini; Cozic, Julie; Ruehl, Christopher R; Chuang, Patrick Y; Anderson, Bruce E; Flagan, Richard C; Jonsson, Haflidi; Mihalopoulos, Nikos; Smith, James N

    2013-03-05

    Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought.

  2. Determination of the viscous acoustic field for liquid drop positioning/forcing in an acoustic levitation chamber in microgravity

    Science.gov (United States)

    Lyell, Margaret J.

    1992-01-01

    The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.

  3. The influence of droplet evaporation on fuel-air mixing rate in a burner

    Science.gov (United States)

    Komiyama, K.; Flagan, R. C.; Heywood, J. B.

    1977-01-01

    Experiments involving combustion of a variety of hydrocarbon fuels in a simple atmospheric pressure burner were used to evaluate the role of droplet evaporation in the fuel/air mixing process in liquid fuel spray flames. Both air-assist atomization and pressure atomization processes were studied; fuel/air mixing rates were determined on the basis of cross-section average oxygen concentrations for stoichiometric overall operation. In general, it is concluded that droplets act as point sources of fuel vapor until evaporation, when the fuel jet length scale may become important in determining nonuniformities of the fuel vapor concentration. In addition, air-assist atomizers are found to have short droplet evaporation times with respect to the duration of the fuel/air mixing process, while for the pressure jet atomizer the characteristic evaporation and mixing times are similar.

  4. Formulation and analyses of vaporization and diffusion-controlled combustion of fuel sprays

    OpenAIRE

    Arrieta Sanagustín, Jorge

    2012-01-01

    This dissertation focuses on the modelling of vaporization and combustion of sprays. A general two-continua formulation is given for the numerical computation of spray flows, including the treatment of the droplets as homogenized sources. Group combustion is considered, with the reaction between the fuel coming from the vaporizing droplets and the oxygen of the air modeled in the Burke-Schumann limit of infinitely fast chemical reaction, with nonunity Lewis numbers allowed for the different r...

  5. On-Chip Production of Size-Controllable Liquid Metal Microdroplets Using Acoustic Waves.

    Science.gov (United States)

    Tang, Shi-Yang; Ayan, Bugra; Nama, Nitesh; Bian, Yusheng; Lata, James P; Guo, Xiasheng; Huang, Tony Jun

    2016-07-01

    Micro- to nanosized droplets of liquid metals, such as eutectic gallium indium (EGaIn) and Galinstan, have been used for developing a variety of applications in flexible electronics, sensors, catalysts, and drug delivery systems. Currently used methods for producing micro- to nanosized droplets of such liquid metals possess one or several drawbacks, including the lack in ability to control the size of the produced droplets, mass produce droplets, produce smaller droplet sizes, and miniaturize the system. Here, a novel method is introduced using acoustic wave-induced forces for on-chip production of EGaIn liquid-metal microdroplets with controllable size. The size distribution of liquid metal microdroplets is tuned by controlling the interfacial tension of the metal using either electrochemistry or electrocapillarity in the acoustic field. The developed platform is then used for heavy metal ion detection utilizing the produced liquid metal microdroplets as the working electrode. It is also demonstrated that a significant enhancement of the sensing performance is achieved by introducing acoustic streaming during the electrochemical experiments. The demonstrated technique can be used for developing liquid-metal-based systems for a wide range of applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Nanospiral Formation by Droplet Drying: One Molecule at a Time

    Directory of Open Access Journals (Sweden)

    Wan Lei

    2011-01-01

    Full Text Available Abstract We have created nanospirals by self-assembly during droplet evaporation. The nanospirals, 60–70 nm in diameter, formed when solvent mixtures of methanol and m-cresol were used. In contrast, spin coating using only methanol as the solvent produced epitaxial films of stripe nanopatterns and using only m-cresol disordered structure. Due to the disparity in vapor pressure between the two solvents, droplets of m-cresol solution remaining on the substrate serve as templates for the self-assembly of carboxylic acid molecules, which in turn allows the visualization of solution droplet evaporation one molecule at a time.

  7. Investigation of vapor explosions with alumina droplets in sodium

    International Nuclear Information System (INIS)

    Zimmer, H.J.

    1991-02-01

    Within the analysis of severe hypothetical fast breeder accidents the consequence of a fuel-coolant interaction has to be considered i.e. the thermal interaction between hot molten fuel and sodium. Experiments have been performed to study the thermal fragmentation of a molten alumina droplet in sodium. Alumina temperatures up to 3100 K and sodium temperatures up to 1143 K were used. For the first time film boiling of alumina drops in sodium was achieved. With some droplets undergoing film boiling, the fragmentation was triggered by an externally applied pressure wave. The trigger was followed promptly by a strong reaction pressure wave if and only if a contact temperature threshold of T I =2060±160 K was exceeded. In agreement with similar experiments in which other materials were studied this threshold corresponds to an interfacial temperature close to the homogeneous nucleation temperature of the vaporising liquid. Based on the present and previous experimental results a model concept of thermal fragmentation is developed. (orig.) [de

  8. High-speed monodisperse droplet generation by ultrasonically controlled micro-jet breakup

    Science.gov (United States)

    Frommhold, Philipp Erhard; Lippert, Alexander; Holsteyns, Frank Ludwig; Mettin, Robert

    2014-04-01

    A liquid jet that is ejected from a nozzle into air will disintegrate into drops via the well-known Plateau-Rayleigh instability within a certain range of Ohnesorge and Reynolds numbers. With the focus on the micrometer scale, we investigate the control of this process by superimposing a suitable ultrasonic signal, which causes the jet to break up into a very precise train of monodisperse droplets. The jet leaves a pressurized container of liquid via a small orifice of about 20 μm diameter. The break-up process and the emerging droplets are recorded via high-speed imaging. An extended parameter study of exit speed and ultrasonic frequency is carried out for deionized water to evaluate the jet's state and the subsequent generation of monodisperse droplets. Maximum exit velocities obtained reach almost 120 m s-1, and frequencies have been applied up to 1.8 MHz. Functionality of the method is confirmed for five additional liquids for moderate jet velocities 38 m s-1. For the uncontrolled jet disintegration, the drop size spectra revealed broad distributions and downstream drop growth by collision, while the acoustic control generated monodisperse droplets with a standard deviation less than 0.5 %. By adjustment of the acoustic excitation frequency, drop diameters could be tuned continuously from about 30 to 50 μm for all exit speeds. Good agreement to former experiments and theoretical approaches is found for the relation of overpressure and jet exit speed, and for the observed stability regions of monodisperse droplet generation in the parameter plane of jet speed and acoustic excitation frequency. Fitting of two free parameters of the general theory to the liquids and nozzles used is found to yield an even higher precision. Furthermore, the high-velocity instability limit of regular jet breakup described by von Ohnesorge has been superseded by more than a factor of two without entering the wind-induced instability regime, and monodisperse droplet generation was

  9. An interfacial mechanism for cloud droplet formation on organic aerosols.

    Science.gov (United States)

    Ruehl, Christopher R; Davies, James F; Wilson, Kevin R

    2016-03-25

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depression by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation. Copyright © 2016, American Association for the Advancement of Science.

  10. Post-dryout heat transfer and entrained droplet sizes at low pressure and low flow conditions

    International Nuclear Information System (INIS)

    Jeong, H.Y.; No, H.C.

    1997-01-01

    The entrainment mechanisms and the entrained droplet sizes with relation to the flow regimes are investigated. Through the analysis of many experimental post-dryout data, it is shown that the most probable flow regime near dryout or quench front is not annular flow but churn-turbulent flow when the mass flux is low. A correlation describing the initial droplet size just after the CHF position at low mass flux is suggested through regression analysis. The history-dependent post-dryout model of Varone and Rohsenow replaced by the Webb-Chen model for wall-vapor heat transfer is used as a reference model in the analysis. In the post-dryout region at low pressure and low flow, it is found that the suggested one-dimensional mechanistic model is not applicable when the vapor superficial velocity is very low. This is explained by the change of main entrainment mechanism with the change of flow regime. In bubbly or slug flow a number of tiny droplets generated from bubble burst become important in the heat transfer after dryout. Therefore, the suggested correlation is valid only in the churn-turbulent flow regime (j g * = 0.5∼4.5). It is also suggested that the droplet size generated from the churn-turbulent surface is dependent not only on the pressure but also on the vapor velocity. It turns out that the present model can predict the measured cladding and vapor temperatures within 20% and 25%, respectively

  11. Growth Kinetics of the Homogeneously Nucleated Water Droplets: Simulation Results

    International Nuclear Information System (INIS)

    Mokshin, Anatolii V; Galimzyanov, Bulat N

    2012-01-01

    The growth of homogeneously nucleated droplets in water vapor at the fixed temperatures T = 273, 283, 293, 303, 313, 323, 333, 343, 353, 363 and 373 K (the pressure p = 1 atm.) is investigated on the basis of the coarse-grained molecular dynamics simulation data with the mW-model. The treatment of simulation results is performed by means of the statistical method within the mean-first-passage-time approach, where the reaction coordinate is associated with the largest droplet size. It is found that the water droplet growth is characterized by the next features: (i) the rescaled growth law is unified at all the considered temperatures and (ii) the droplet growth evolves with acceleration and follows the power law.

  12. Atomization of Impinging Droplets on Superheated Superhydrophobic Surfaces

    Science.gov (United States)

    Emerson, Preston; Crockett, Julie; Maynes, Daniel

    2017-11-01

    Water droplets impinging smooth superheated surfaces may be characterized by dynamic vapor bubbles rising to the surface, popping, and causing a spray of tiny droplets to erupt from the droplet. This spray is called secondary atomization. Here, atomization is quantified experimentally for water droplets impinging superheated superhydrophobic surfaces. Smooth hydrophobic and superhydrophobic surfaces with varying rib and post microstructuring were explored. Each surface was placed on an aluminum heating block, and impingement events were captured with a high speed camera at 3000 fps. For consistency among tests, all events were normalized by the maximum atomization found over a range of temperatures on a smooth hydrophobic surface. An estimate of the level of atomization during an impingement event was created by quantifying the volume of fluid present in the atomization spray. Droplet diameter and Weber number were held constant, and atomization was found for a range of temperatures through the lifetime of the impinging droplet. The Leidenfrost temperature was also determined and defined to be the lowest temperature at which atomization ceases to occur. Both atomization and Leidenfrost temperature increase with decreasing pitch (distance between microstructures).

  13. Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film

    International Nuclear Information System (INIS)

    Yu-Jia, Tao; Xiu-Lan, Huai; Zhi-Gang, Li

    2009-01-01

    A mathematical model is developed to investigate the dynamics of vapor bubble growth in a thin liquid film, movement of the interface between two fluids and the surface heat transfer characteristics. The model takes into account the effects of phase change between the vapor and liquid, gravity, surface tension and viscosity. The details of the multiphase now and heat transfer are discussed for two cases: (1) when a water micro-droplet impacts a thin liquid film with a vapor bubble growing and (2) when the vapor bubble grows and merges with the vapor layer above the liquid film without the droplet impacting. The development trend of the interface between the vapor and liquid is coincident qualitatively with the available literature, mostly at the first stage. We also provide an important method to better understand the mechanism of nucleate spray cooling. (fundamental areas of phenomenology (including applications))

  14. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces.

    Science.gov (United States)

    Xu, Wei; Leeladhar, Rajesh; Kang, Yong Tae; Choi, Chang-Hwan

    2013-05-21

    Evaporation modes and kinetics of sessile droplets of water on micropillared superhydrophobic surfaces are experimentally investigated. The results show that a constant contact radius (CCR) mode and a constant contact angle (CCA) mode are two dominating evaporation modes during droplet evaporation on the superhydrophobic surfaces. With the decrease in the solid fraction of the superhydrophobic surfaces, the duration of a CCR mode is reduced and that of a CCA mode is increased. Compared to Rowan's kinetic model, which is based on the vapor diffusion across the droplet boundary, the change in a contact angle in a CCR (pinned) mode shows a remarkable deviation, decreasing at a slower rate on the superhydrophobic surfaces with less-solid fractions. In a CCA (receding) mode, the change in a contact radius agrees well with the theoretical expectation, and the receding speed is slower on the superhydrophobic surfaces with lower solid fractions. The discrepancy between experimental results and Rowan's model is attributed to the initial large contact angle of a droplet on superhydrophobic surfaces. The droplet geometry with a large contact angle results in a narrow wedge region of air along the contact boundary, where the liquid-vapor diffusion is significantly restricted. Such an effect becomes minor as the evaporation proceeds with the decrease in a contact angle. In both the CCR and CCA modes, the evaporative mass transfer shows the linear relationship between mass(2/3) and evaporation time. However, the evaporation rate is slower on the superhydrophobic surfaces, which is more significant on the surfaces with lower solid fractions. As a result, the superhydrophobic surfaces slow down the drying process of a sessile droplet on them.

  15. Numerical simulation of droplet evaporation between two circular plates

    International Nuclear Information System (INIS)

    Bam, Hang Jin; Son, Gi Hun

    2015-01-01

    Numerical simulation is performed for droplet evaporation between two circular plates. The flow and thermal characteristics of the droplet evaporation are numerically investigated by solving the conservation equations of mass, momentum, energy and mass fraction in the liquid and gas phases. The liquid-gas interface is tracked by a sharp-interface level-set method which is modified to include the effects of evaporation at the liquid-gas interface and contact angle hysteresis at the liquid-gas-solid contact line. An analytical model to predict the droplet evaporation is also developed by simplifying the mass and vapor fraction equations in the gas phase. The numerical results demonstrate that the 1-D analytical prediction is not applicable to the high rate evaporation process. The effects of plate gap and receding contact angle on the droplet evaporation are also quantified.

  16. The liquid to vapor phase transition in excited nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, J.B.; Moretto, L.G.; Phair, L.; Wozniak, G.J.; Beaulieu, L.; Breuer, H.; Korteling, R.G.; Kwiatkowski, K.; Lefort, T.; Pienkowski, L.; Ruangma, A.; Viola, V.E.; Yennello, S.J.

    2001-05-08

    For many years it has been speculated that excited nuclei would undergo a liquid to vapor phase transition. For even longer, it has been known that clusterization in a vapor carries direct information on the liquid-vapor equilibrium according to Fisher's droplet model. Now the thermal component of the 8 GeV/c pion + 197 Au multifragmentation data of the ISiS Collaboration is shown to follow the scaling predicted by Fisher's model, thus providing the strongest evidence yet of the liquid to vapor phase transition.

  17. Electrochemical measurements on a droplet using gold microelectrodes

    Science.gov (United States)

    Jenabi, Amin; Souri, Asma; Rastkhadiv, Ali

    2016-03-01

    Facile methods of ion recognition are important for the fabrication of electronic tongue systems. In this work, we demonstrate performing pulsed conductometry on microliter electrolyte droplets dropped on gold microelectrodes vapor deposited on soda lime glass slides. A droplet is dropped between two microelectrodes when a voltage waveform from a preprogramed power supply is applied on them. The temporal variation of the electric current passing through the droplet is recorded, digitized and stored. The obtained data are compared with the database formed out of the previous experiences for the classification of the sample electrolytes. It is shown that the shape of the voltage waveform is the important parameter of the process. We devised a method for the optimization of the voltage waveform profile for obtaining the maximum of discriminating information from the recorded current variations.

  18. Transient heating and evaporation of moving fuel droplets

    DEFF Research Database (Denmark)

    Yin, Chungen

    2014-01-01

    In combustion devices involving direct injection of low-volatility liquid fuel (e.g., bio-oils from pyrolysis process) into the combustor, transient heating and vaporization is an important controlling factor in ignition and combustion of the fuel vapor/air mixture. As a result, quite many...... experimental and numerical efforts have been made on this topic. In this paper, a comprehensive 3D model that addresses the internal circulation, heat and mass transfer within a moving droplet has been successfully developed. The model is calibrated by analytical solutions for simplified cases and validated...

  19. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces.

    Science.gov (United States)

    Birbarah, Patrick; Li, Zhaoer; Pauls, Alexander; Miljkovic, Nenad

    2015-07-21

    Superhydrophobic micro/nanostructured surfaces for dropwise condensation have recently received significant attention due to their potential to enhance heat transfer performance by shedding positively charged water droplets via coalescence-induced droplet jumping at length scales below the capillary length and allowing the use of external electric fields to enhance droplet removal and heat transfer, in what has been termed electric-field-enhanced (EFE) jumping-droplet condensation. However, achieving optimal EFE conditions for enhanced heat transfer requires capturing the details of transport processes that is currently lacking. While a comprehensive model has been developed for condensation on micro/nanostructured surfaces, it cannot be applied for EFE condensation due to the dynamic droplet-vapor-electric field interactions. In this work, we developed a comprehensive physical model for EFE condensation on superhydrophobic surfaces by incorporating individual droplet motion, electrode geometry, jumping frequency, field strength, and condensate vapor-flow dynamics. As a first step toward our model, we simulated jumping droplet motion with no external electric field and validated our theoretical droplet trajectories to experimentally obtained trajectories, showing excellent temporal and spatial agreement. We then incorporated the external electric field into our model and considered the effects of jumping droplet size, electrode size and geometry, condensation heat flux, and droplet jumping direction. Our model suggests that smaller jumping droplet sizes and condensation heat fluxes require less work input to be removed by the external fields. Furthermore, the results suggest that EFE electrodes can be optimized such that the work input is minimized depending on the condensation heat flux. To analyze overall efficiency, we defined an incremental coefficient of performance and showed that it is very high (∼10(6)) for EFE condensation. We finally proposed mechanisms

  20. Vitrification and levitation of a liquid droplet on liquid nitrogen.

    Science.gov (United States)

    Song, Young S; Adler, Douglas; Xu, Feng; Kayaalp, Emre; Nureddin, Aida; Anchan, Raymond M; Maas, Richard L; Demirci, Utkan

    2010-03-09

    The vitrification of a liquid occurs when ice crystal formation is prevented in the cryogenic environment through ultrarapid cooling. In general, vitrification entails a large temperature difference between the liquid and its surrounding medium. In our droplet vitrification experiments, we observed that such vitrification events are accompanied by a Leidenfrost phenomenon, which impedes the heat transfer to cool the liquid, when the liquid droplet comes into direct contact with liquid nitrogen. This is distinct from the more generally observed Leidenfrost phenomenon that occurs when a liquid droplet is self-vaporized on a hot plate. In the case of rapid cooling, the phase transition from liquid to vitrified solid (i.e., vitrification) and the levitation of droplets on liquid nitrogen (i.e., Leidenfrost phenomenon) take place simultaneously. Here, we investigate these two simultaneous physical events by using a theoretical model containing three dimensionless parameters (i.e., Stefan, Biot, and Fourier numbers). We explain theoretically and observe experimentally a threshold droplet radius during the vitrification of a cryoprotectant droplet in the presence of the Leidenfrost effect.

  1. Acoustic interaction forces between small particles in an ideal fluid

    DEFF Research Database (Denmark)

    Silva, Glauber T.; Bruus, Henrik

    2014-01-01

    We present a theoretical expression for the acoustic interaction force between small spherical particles suspended in an ideal fluid exposed to an external acoustic wave. The acoustic interaction force is the part of the acoustic radiation force on one given particle involving the scattered waves...... from the other particles. The particles, either compressible liquid droplets or elastic microspheres, are considered to be much smaller than the acoustic wavelength. In this so-called Rayleigh limit, the acoustic interaction forces between the particles are well approximated by gradients of pair...

  2. Detailed finite element method modeling of evaporating multi-component droplets

    Energy Technology Data Exchange (ETDEWEB)

    Diddens, Christian, E-mail: C.Diddens@tue.nl

    2017-07-01

    The evaporation of sessile multi-component droplets is modeled with an axisymmetic finite element method. The model comprises the coupled processes of mixture evaporation, multi-component flow with composition-dependent fluid properties and thermal effects. Based on representative examples of water–glycerol and water–ethanol droplets, regular and chaotic examples of solutal Marangoni flows are discussed. Furthermore, the relevance of the substrate thickness for the evaporative cooling of volatile binary mixture droplets is pointed out. It is shown how the evaporation of the more volatile component can drastically decrease the interface temperature, so that ambient vapor of the less volatile component condenses on the droplet. Finally, results of this model are compared with corresponding results of a lubrication theory model, showing that the application of lubrication theory can cause considerable errors even for moderate contact angles of 40°. - Graphical abstract:.

  3. Continuous growth of cloud droplets in cumulus cloud

    International Nuclear Information System (INIS)

    Gotoh, Toshiyuki; Suehiro, Tamotsu; Saito, Izumi

    2016-01-01

    A new method to seamlessly simulate the continuous growth of droplets advected by turbulent flow inside a cumulus cloud was developed from first principle. A cubic box ascending with a mean updraft inside a cumulus cloud was introduced and the updraft velocity was self-consistently determined in such a way that the mean turbulent velocity within the box vanished. All the degrees of freedom of the cloud droplets and turbulence fields were numerically integrated. The box ascended quickly inside the cumulus cloud due to the updraft and the mean radius of the droplets grew from 10 to 24 μ m for about 10 min. The turbulent flow tended to slow down the time evolutions of the updraft velocity, the box altitude and the mean cloud droplet radius. The size distribution of the cloud droplets in the updraft case was narrower than in the absence of the updraft. It was also found that the wavenumeber spectra of the variances of the temperature and water vapor mixing ratio were nearly constant in the low wavenumber range. The future development of the new method was argued. (paper)

  4. DNS of droplet motion in a turbulent flow

    Science.gov (United States)

    Rosso, Michele; Elghobashi, S.

    2013-11-01

    The objective of our research is to study the multi-way interactions between turbulence and vaporizing liquid droplets by performing direct numerical simulations (DNS). The freely-moving droplets are fully resolved in 3D space and time and all the relevant scales of the turbulent motion are simultaneously resolved down to the smallest length- and time-scales. Our DNS solve the unsteady three-dimensional Navier-Stokes and continuity equations throughout the whole computational domain, including the interior of the liquid droplets. The droplet surface motion and deformation are captured accurately by using the Level Set method. The pressure jump condition, density and viscosity discontinuities across the interface as well as surface tension are accounted for. Here, we present only the results of the first stage of our research which considers the effects of turbulence on the shape change of an initially spherical liquid droplet, at density ratio (of liquid to carrier fluid) of 1000, moving in isotropic turbulent flow. We validate our results via comparison with available expe. This research has been supported by NSF-CBET Award 0933085 and NSF PRAC (Petascale Computing Resource Allocation) Award.

  5. Dynamics of Water Absorption and Evaporation During Methanol Droplet Combustion in Microgravity

    Science.gov (United States)

    Hicks, Michael C.; Dietrich, Daniel L.; Nayagam, Vedha; Williams, Forman A.

    2012-01-01

    The combustion of methanol droplets is profoundly influenced by the absorption and evaporation of water, generated in the gas phase as a part of the combustion products. Initially there is a water-absorption period of combustion during which the latent heat of condensation of water vapor, released into the droplet, enhances its burning rate, whereas later there is a water-evaporation period, during which the water vapor reduces the flame temperature suffciently to extinguish the flame. Recent methanol droplet-combustion experiments in ambient environments diluted with carbon dioxide, conducted in the Combustion Integrated Rack on the International Space Station (ISS), as a part of the FLEX project, provided a method to delineate the water-absorption period from the water-evaporation period using video images of flame intensity. These were obtained using an ultra-violet camera that captures the OH* radical emission at 310 nm wavelength and a color camera that captures visible flame emission. These results are compared with results of ground-based tests in the Zero Gravity Facility at the NASA Glenn Research Center which employed smaller droplets in argon-diluted environments. A simplified theoretical model developed earlier correlates the transition time at which water absorption ends and evaporation starts. The model results are shown to agree reasonably well with experiment.

  6. Electrochemical measurements on a droplet using gold microelectrodes

    International Nuclear Information System (INIS)

    Jenabi, Amin; Souri, Asma; Rastkhadiv, Ali

    2016-01-01

    Facile methods of ion recognition are important for the fabrication of electronic tongue systems. In this work, we demonstrate performing pulsed conductometry on microliter electrolyte droplets dropped on gold microelectrodes vapor deposited on soda lime glass slides. A droplet is dropped between two microelectrodes when a voltage waveform from a preprogramed power supply is applied on them. The temporal variation of the electric current passing through the droplet is recorded, digitized and stored. The obtained data are compared with the database formed out of the previous experiences for the classification of the sample electrolytes. It is shown that the shape of the voltage waveform is the important parameter of the process. We devised a method for the optimization of the voltage waveform profile for obtaining the maximum of discriminating information from the recorded current variations. (paper)

  7. Post-dryout heat transfer analysis model with droplet Lagrangian simulation

    International Nuclear Information System (INIS)

    Keizo Matsuura; Isao Kataoka; Kaichiro Mishima

    2005-01-01

    Post-dryout heat transfer analysis was carried out considering droplet behavior by using the Lagrangian simulation method. Post-dryout heat transfer is an important heat transfer mechanism in many industrial appliances. Especially in recent Japanese BWR licensing, the standard for assessing the integrity of fuel that has experienced boiling transition is being examined. Although post-dryout heat transfer analysis is important when predicting wall temperature, it is difficult to accurately predict the heat transfer coefficient in the post-dryout regime because of the many heat transfer paths and non-equilibrium status between droplet and vapor. Recently, an analysis model that deals with many heat transfer paths including droplet direct contact heat transfer was developed and its results showed good agreement with experimental results. The model also showed that heat transfer by droplet could not be neglected in the low mass flux condition. However, the model deals with droplet deposition behavior by experimental droplet deposition correlation, so it cannot estimate the effect of droplet flow on turbulent flow field and heat transfer. Therefore, in this study we deal with many droplets separately by using the Lagrangian simulation method and hence estimate the effect of droplet flow on the turbulent flow field. We analyzed post-dryout experimental results and found that they correlated well with the analysis results. (authors)

  8. Energy balance of droplets impinging onto a wall heated above the Leidenfrost temperature

    International Nuclear Information System (INIS)

    Dunand, P.; Castanet, G.; Gradeck, M.; Maillet, D.; Lemoine, F.

    2013-01-01

    Highlights: • Measurement techniques are combined to characterize the heat lost due to liquid vaporization. • The wall heat flux is estimated by infrared thermography associated with inverse heat conduction. • The liquid heating is characterized by the two-color Laser-Induced Fluorescence thermometry. • Results reveal how the heat fluxes vary with the droplet sizes and the Weber number. -- Abstract: This work is an experimental study aiming at characterizing the heat transfers induced by the impingement of water droplets (diameter 80–180 μm) on a thin nickel plate heated by electromagnetic induction. The temperature of the rear face of the nickel sample is measured by means of an infrared camera and the heat removed from the wall due to the presence of the droplets is estimated using a semi-analytical inverse heat conduction model. In parallel, the temperature of the droplets is measured using the two-color Laser-Induced Fluorescence thermometry (2cLIF) which has been extended to imagery for the purpose of these experiments. The measurements of the variation in the droplet temperature occurring during an impact allow determining the sensible heat removed by the liquid. Measurements are performed at wall conditions well above the Leidenfrost temperature. Different values of the Weber numbers corresponding to the bouncing and splashing regimes are tested. Comparisons between the heat flux removed from the wall and the sensible heat gained by the liquid allows estimating the heat flux related to liquid evaporation. Results reveal that the respective level of the droplet sensible heat and the heat lost due to liquid vaporization can vary significantly with the droplet sizes and the Weber number

  9. Explosive Leidenfrost droplets

    Science.gov (United States)

    Colinet, Pierre; Moreau, Florian; Dorbolo, Stéphane

    2017-11-01

    We show that Leidenfrost droplets made of an aqueous solution of surfactant undergo a violent explosion in a wide range of initial volumes and concentrations. This unexpected behavior turns out to be triggered by the formation of a gel-like shell, followed by a sharp temperature increase. Comparing a simple model of the radial surfactant distribution inside a spherical droplet with experiments allows highlighting the existence of a critical surface concentration for the shell to form. The temperature rise (attributed to boiling point elevation with surface concentration) is a key feature leading to the explosion, instead of the implosion (buckling) scenario reported by other authors. Indeed, under some conditions, this temperature increase is shown to be sufficient to trigger nucleation and growth of vapor bubbles in the highly superheated liquid bulk, stretching the surrounding elastic shell up to its rupture limit. The successive timescales characterizing this explosion sequence are also discussed. Funding sources: F.R.S. - FNRS (ODILE and DITRASOL projects, RD and SRA positions of P. Colinet and S. Dorbolo), BELSPO (IAP 7/38 MicroMAST project).

  10. Intensive evaporation and boiling of a heterogeneous liquid droplet with an explosive disintegration in high-temperature gas area

    Directory of Open Access Journals (Sweden)

    Piskunov Maxim V.

    2016-01-01

    Full Text Available The using of the high-speed (not less than 105 frames per second video recording tools (“Phantom” and the software package ("TEMA Automotive" allowed carrying out an experimental research of laws of intensive vaporization with an explosive disintegration of heterogeneous (with a single solid nontransparent inclusion liquid droplet (by the example of water in high-temperature (500-800 K gases (combustion products. Times of the processes under consideration and stages (liquid heat-up, evaporation from an external surface, bubble boiling at internal interfaces, growth of bubble sizes, explosive droplet breakup were established. Necessary conditions of an explosive vaporization of a heterogeneous droplet were found out. Mechanisms of this process and an influence of properties of liquid and inclusion material on them were determined.

  11. Direct numerical simulations of evaporating droplets in turbulence

    Science.gov (United States)

    Palmore, John; Desjardins, Olivier

    2015-11-01

    This work demonstrates direct numerical simulations of evaporating two phase flows, with applications to studying combustion in aircraft engines. Inside the engine, liquid fuel is injected into the combustion chamber where it atomizes into droplets and evaporates. Combustion occurs as the fuel vapor mixes with the surrounding flow of turbulent gas. Understanding combustion, therefore, requires studying evaporation in a turbulent flow and the resulting vapor distribution. We study the problem using a finite volume framework to solve the Navier-Stokes and scalar transport equations under a low-Mach assumption [Desjardins et al., J. Comp. Phys., 2008]. The liquid-gas interface is tracked using a conservative level-set method [Desjardins et al., J. Comp. Phys., 2008] which allows for a sharp reconstruction of the discontinuity across the interface. Special care is taken in the discretization of cells near the liquid-gas interface to ensure the stability and accuracy of the solution. Results are discussed for non-reacting simulations of liquid droplets evaporating into a turbulent field of inert gas.

  12. Modelling for post-dryout heat transfer and droplet sizes at low pressure and low flow conditions

    International Nuclear Information System (INIS)

    Jeong, H.Y.; No, H.C.

    1996-01-01

    A correlation describing the initial droplet size just after the CHF position at low mass flux is suggested through regression analysis. The history-dependent post-dryout model of Varone and Rohsenow replaced by the Webb-Chen model for wall-vapor heat transfer is used as a reference model in the analysis. In the post-dryout region at low pressure and low flow, it is found that the suggested one-dimensional mechanistic model is valid only in the churn-turbulent flow regime (j* g = 0.5 ∼ 4.5). It is also suggested that the droplet size generated from the churn-turbulent surface is dependent not only on the pressure but also on the vapor velocity. It turns out that the present model can predict the measured cladding and vapor temperatures within 20% and 15%, respectively

  13. Cloud Liquid Water, Mean Droplet Radius and Number Density Measurements Using a Raman Lidar

    Science.gov (United States)

    Whiteman, David N.; Melfi, S. Harvey

    1999-01-01

    A new technique for measuring cloud liquid water, mean droplet radius and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid micro-spheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested.

  14. Lattice Boltzmann simulation of droplet formation in T-junction geometries

    Science.gov (United States)

    Busuioc, Sergiu; Ambruş, Victor E.; Sofonea, Victor

    2017-01-01

    The formation of droplets in T-junction configurations is investigated using a two-dimensional Lattice Boltzmann model for liquid-vapor systems. We use an expansion of the equilibrium distribution function with respect to Hermite polynomials and an off-lattice velocity set. To evolve the distribution functions we use the second order corner transport upwind numerical scheme and a third order scheme is used to compute the gradient operators in the force term. The droplet formation successfully recovers the squeezing, dripping and jetting regimes. We find that the droplet length decreases proportionally with the flow rate of the continuous phase and increases with the flow rate of the dispersed phase in all simulation configurations and has a linear dependency on the surface tension parameter κ.

  15. Effect of static deformation and external forces on the oscillations of levitated droplets

    Science.gov (United States)

    Suryanarayana, P. V. R.; Bayazitoglu, Y.

    1991-01-01

    The oscillations of an aspherical droplet subjected to different external forces are considered. For an arbitrary shape deformation, it is shown that the frequency spectrum splits into (2l - 1) peaks for a mode l oscillation, and the splitting of the frequency spectrum is calculated for mode 2, 3, and 4 oscillations. The deformation is then treated as a consequence of a general external force, and the frequency split is obtained in terms of the external force parameters. Droplets levitated by acoustic, electromagnetic, and combined acoustic-electromagnetic forces are considered in particular, and it is shown that the effects of asphericity adequately explain the splitting of the frequency spectrum observed commonly in experiments. The interpretation of spectra with regard to accurate surface tension measurement using the oscillations of levitated droplets is discussed, and the results applied to some previous experimental results. It is shown that the accuracy of surface tension measurements can improve if the asphericity caused by the levitating force, and the resulting frequency split, are taken into account.

  16. Preferential nucleation, guiding, and blocking of self-propelled droplets by dislocations

    Science.gov (United States)

    Kanjanachuchai, Songphol; Wongpinij, Thipusa; Kijamnajsuk, Suphakan; Himwas, Chalermchai; Panyakeow, Somsak; Photongkam, Pat

    2018-04-01

    Lattice-mismatched layers of GaAs/InGaAs are grown on GaAs(001) using molecular beam epitaxy and subsequently heated in vacuum while the surface is imaged in situ using low-energy electron microscopy, in order to study (i) the nucleation of group-III droplets formed as a result of noncongruent sublimation and (ii) the dynamics of these self-propelled droplets as they navigate the surface. It is found that the interfacial misfit dislocation network not only influences the nucleation sites of droplets, but also exerts unusual steering power over their subsequent motion. Atypical droplet flow patterns including 90° and 180° turns are found. The directions of these dislocations-guided droplets are qualitatively explained in terms of in-plane and out-of-plane stress fields associated with the buried dislocations and the driving forces due to chemical potential and stress gradients typical of Marangoni flow. The findings would benefit processes and devices that employ droplets as catalysts or active structures such as droplet epitaxy of quantum nanostructures, vapor-liquid-solid growth of nanowires, or the fabrication of self-integrated circuits.

  17. Low-frequency acoustic atomization with oscillatory flow around micropillars in a microfluidic device

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Yin Nee, E-mail: mailccheung@gmail.com, E-mail: mtnwong@ntu.edu.sg; Wong, Teck Neng, E-mail: mailccheung@gmail.com, E-mail: mtnwong@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Nguyen, Nam Trung, E-mail: nam-trung.nguyen@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane QLD 4111 (Australia)

    2014-10-06

    This letter reports a low frequency acoustic atomization technique with oscillatory extensional flow around micropillars. Large droplets passing through two micropillars are elongated. Small droplets are then produced through the pinch-off process at the spindle-shape ends. As the actuation frequency increases, the droplet size decreases with increasing monodispersity. This method is suitable for in-situ mass production of fine droplets in a multi-phase environment without external pumping. Small particles encapsulation was demonstrated with the current technique.

  18. Surface acoustic wave actuated cell sorting (SAWACS).

    Science.gov (United States)

    Franke, T; Braunmüller, S; Schmid, L; Wixforth, A; Weitz, D A

    2010-03-21

    We describe a novel microfluidic cell sorter which operates in continuous flow at high sorting rates. The device is based on a surface acoustic wave cell-sorting scheme and combines many advantages of fluorescence activated cell sorting (FACS) and fluorescence activated droplet sorting (FADS) in microfluidic channels. It is fully integrated on a PDMS device, and allows fast electronic control of cell diversion. We direct cells by acoustic streaming excited by a surface acoustic wave which deflects the fluid independently of the contrast in material properties of deflected objects and the continuous phase; thus the device underlying principle works without additional enhancement of the sorting by prior labelling of the cells with responsive markers such as magnetic or polarizable beads. Single cells are sorted directly from bulk media at rates as fast as several kHz without prior encapsulation into liquid droplet compartments as in traditional FACS. We have successfully directed HaCaT cells (human keratinocytes), fibroblasts from mice and MV3 melanoma cells. The low shear forces of this sorting method ensure that cells survive after sorting.

  19. Cool-flame Extinction During N-Alkane Droplet Combustion in Microgravity

    Science.gov (United States)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2014-01-01

    Recent droplet combustion experiments onboard the International Space Station (ISS) have revealed that large n-alkane droplets can continue to burn quasi-steadily following radiative extinction in a low-temperature regime, characterized by negative-temperaturecoefficient (NTC) chemistry. In this study we report experimental observations of n-heptane, n-octane, and n-decane droplets of varying initial sizes burning in oxygen/nitrogen/carbon dioxide and oxygen/helium/nitrogen environments at 1.0, 0.7, and 0.5 atmospheric pressures. The oxygen concentration in these tests varied in the range of 14% to 25% by volume. Large n-alkane droplets exhibited quasi-steady low-temperature burning and extinction following radiative extinction of the visible flame while smaller droplets burned to completion or disruptively extinguished. A vapor-cloud formed in most cases slightly prior to or following the "cool flame" extinction. Results for droplet burning rates in both the hot-flame and cool-flame regimes as well as droplet extinction diameters at the end of each stage are presented. Time histories of radiant emission from the droplet captured using broadband radiometers are also presented. Remarkably the "cool flame" extinction diameters for all the three n-alkanes follow a trend reminiscent of the ignition delay times observed in previous studies. The similarities and differences among the n-alkanes during "cool flame" combustion are discussed using simplified theoretical models of the phenomenon

  20. Smart DNA Fabrication Using Sound Waves: Applying Acoustic Dispensing Technologies to Synthetic Biology.

    Science.gov (United States)

    Kanigowska, Paulina; Shen, Yue; Zheng, Yijing; Rosser, Susan; Cai, Yizhi

    2016-02-01

    Acoustic droplet ejection (ADE) technology uses focused acoustic energy to transfer nanoliter-scale liquid droplets with high precision and accuracy. This noncontact, tipless, low-volume dispensing technology minimizes the possibility of cross-contamination and potentially reduces the costs of reagents and consumables. To date, acoustic dispensers have mainly been used in screening libraries of compounds. In this paper, we describe the first application of this powerful technology to the rapidly developing field of synthetic biology, for DNA synthesis and assembly at the nanoliter scale using a Labcyte Echo 550 acoustic dispenser. We were able to successfully downscale PCRs and the popular one-pot DNA assembly methods, Golden Gate and Gibson assemblies, from the microliter to the nanoliter scale with high assembly efficiency, which effectively cut the reagent cost by 20- to 100-fold. We envision that acoustic dispensing will become an instrumental technology in synthetic biology, in particular in the era of DNA foundries. © 2015 Society for Laboratory Automation and Screening.

  1. Phase-Change Nanoparticles Using Highly Volatile Perfluorocarbons: Toward a Platform for Extravascular Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    Terry O. Matsunaga, Paul S. Sheeran, Samantha Luois, Jason E. Streeter, Lee B. Mullin, Bhaskar Banerjee, Paul A. Dayton

    2012-01-01

    Full Text Available Recent efforts using perfluorocarbon (PFC nanoparticles in conjunction with acoustic droplet vaporization has introduced the possibility of expanding the diagnostic and therapeutic capability of ultrasound contrast agents to beyond the vascular space. Our laboratories have developed phase-change nanoparticles (PCNs from the highly volatile PFCs decafluorobutane (DFB, bp =-2 °C and octafluoropropane (OFP, bp =-37 °C for acoustic droplet vaporization. Studies with commonly used clinical ultrasound scanners have demonstrated the ability to vaporize PCN emulsions with frequencies and mechanical indices that may significantly decrease tissue bioeffects. In addition, these contrast agents can be formulated to be stable at physiological temperatures and the perfluorocarbons can be mixed to modulate the balance between sensitivity to ultrasound and general stability. We herein discuss our recent efforts to develop finely-tuned diagnostic/molecular imaging agents for tissue interrogation. We discuss studies currently under investigation as well as potential diagnostic and therapeutic paradigms that may emerge as a result of formulating PCNs with low boiling point PFCs.

  2. Application of rainbow refractometry for measurement of droplets with solid inclusions

    Science.gov (United States)

    Li, Can; Wu, Xue-cheng; Cao, Jian-zheng; Chen, Ling-hong; Gréhan, Gerard; Cen, Ke-fa

    2018-01-01

    Characterization of droplets with solid inclusions is of great research interest and has wide industrial applications. Reported here is a theoretical and experimental investigation of the measurement of droplets with solid inclusions using rainbow refractometry. A rainbow extinction model of a droplet with solid inclusions was deduced based on Beer-Lambert's Law. It takes into account the volume concentration, relative size, scattering efficiency of the solid inclusion, and liquid refractive index. An acoustic levitation system for a single droplet and a global rainbow instrumentation system for spray were integrated to study the effect of the H2O-CaCO3 suspension droplets on the rainbow signal and the measured parameters. The results showed that the rainbow encountered unusual disturbances, introduced by the solid inclusions, but its overall structure was not destroyed. Discoveries also included that for volume concentrations of 2.5% or less the CaCO3 particles with diameters below 4 μm had little effect on the measured parameters of the host droplet. The extinction characteristic was also analyzed. The rainbow extinction model failed to quantity the volume concentration of CaCO3, but succeeded in its qualitative analysis.

  3. Evaporation of Droplets in Plasma Spray-Physical Vapor Deposition Based on Energy Compensation Between Self-Cooling and Plasma Heat Transfer

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2017-10-01

    In the plasma spray-physical vapor deposition process (PS-PVD), there is no obvious heating to the feedstock powders due to the free molecular flow condition of the open plasma jet. However, this is in contrast to recent experiments in which the molten droplets are transformed into vapor atoms in the open plasma jet. In this work, to better understand the heating process of feedstock powders in the open plasma jet of PS-PVD, an evaporation model of molten ZrO2 is established by examining the heat and mass transfer process of molten ZrO2. The results reveal that the heat flux in PS-PVD open plasma jet (about 106 W/m2) is smaller than that in the plasma torch nozzle (about 108 W/m2). However, the flying distance of molten ZrO2 in the open plasma jet is much longer than that in the plasma torch nozzle, so the heating in the open plasma jet cannot be ignored. The results of the evaporation model show that the molten ZrO2 can be partly evaporated by self-cooling, whereas the molten ZrO2 with a diameter <0.28 μm and an initial temperature of 3247 K can be completely evaporated within the axial distance of 450 mm by heat transfer.

  4. Big savings from small holes. [Liquid Droplet Radiator project for space vehicles

    Science.gov (United States)

    White, Alan

    1989-01-01

    The status and results to date of the NASA-Lewis/USAF Astronautics study of technology for large spacecraft heat-dissipation by means of liquid-droplet radiation (LDR) are discussed. The LDR concept uses a droplet generator to create billions of 200-micron droplets of a heatsink fluid which will cool through radiation into deep space as they fly toward a dropet collector. This exposure to the space environment entails the maintenance of vapor pressure as low as 10 to the -7th torr; the fluid must also be very stable chemically. While certain oils are good fluids for LDR use at low temperatures, higher-temperature heatsink fluids include Li, Sn, and Ga liquid metals.

  5. Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Bruus, Henrik

    2015-01-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no rest...... as to handling of nanoparticles in lab-on-a-chip systems.......We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places...... of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well...

  6. Simulating the Surface Relief of Nanoaerosols Obtained via the Rapid Cooling of Droplets

    Science.gov (United States)

    Tovbin, Yu. K.; Zaitseva, E. S.; Rabinovich, A. B.

    2018-03-01

    An approach is formulated that theoretically describes the structure of a rough surface of small aerosol particles obtained from a liquid droplet upon its rapid cooling. The problem consists of two stages. In the first stage, a concentration profile of the droplet-vapor transition region is calculated. In the second stage, local fractions of vacant sites and their pairs are found on the basis of this profile, and the rough structure of a frozen droplet surface transitioning to the solid state is calculated. Model parameters are the temperature of the initial droplet and those of the lateral interaction between droplet atoms. Information on vacant sites inside the region of transition allows us to identify adsorption centers and estimate the monolayer capacity, compared to that of the total space of the region of transition. The approach is oriented toward calculating adsorption isotherms on real surfaces.

  7. Water circulation in non-isothermal droplet-laden turbulent channel flow

    NARCIS (Netherlands)

    Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.; Simos, T.; Psihoyios, G.; Tsitouras, Ch.

    2013-01-01

    We propose a point-particle model for two-way coupling of water droplets dispersed in turbulent flow of a carrier gas consisting of air and water vapor. An incompressible flow formulation is applied for direct numerical simulation (DNS) of turbulent channel flow with a warm and a cold wall. Compared

  8. High-Speed Imaging of Explosive Droplet Boiling at the Superheat Limit

    Science.gov (United States)

    Ferris, F. Robert; Hermanson, Jim; Asadollahi, Arash; Esmaeeli, Asghar

    2017-11-01

    The explosive boiling processes of droplets of diethyl ether (1-2 mm in diameter) at the superheat limit were examined both experimentally and computationally. Experimentally, droplet explosion was studied using a heated bubble column to bring the test droplet to the superheat limit. The droplet fluid was diethyl ether (superheat limit 147 C at 1 bar) with immiscible glycerol employed as the heated host fluid. Tests were carried out at pressures between 0.5 and 4 bar absolute. The pressure rise associated with the explosive boiling event was captured using a piezoelectric quartz pressure transducer with a 1 MHz DAQ system. High-speed imaging of the interfacial behavior during explosive boiling was performed using a Phantom v12.1 camera at a frame rate of up to one million frames per second with the droplets illuminated by diffuse back-lighting. The imaging reveals features of the Rayleigh-Taylor instability at the vapor-liquid interface resulting from the unstable boiling process. Computationally, Direct Numerical Simulations are performed at Southern Illinois University Carbondale to compliment the experimental tests. NSF Award Number 1511152.

  9. Microscale interfacial behavior at vapor film collapse on high-temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke

    2009-01-01

    It has been pointed out that vapor film on a premixed high-temperature droplet surface should be collapsed to trigger vapor explosion. Thus, it is important to clarify the micromechanism of vapor film collapse behavior for the occurrence of vapor explosion. In the present study, microscale vapor-liquid interface behavior upon vapor film collapse caused by an external pressure pulse is experimentally observed and qualitatively analyzed. In the analytical investigation, interfacial temperature and interface movement were estimated with heat conduction analysis and visual data processing technique. Results show that condensation can possibly occur at the vapor-liquid interface when the pressure pulse arrived. That is, this result indicates that the vapor film collapse behavior is dominated not by fluid motion but by phase change. (author)

  10. Fuel Evaporation in an Atmospheric Premixed Burner: Sensitivity Analysis and Spray Vaporization

    Directory of Open Access Journals (Sweden)

    Dávid Csemány

    2017-12-01

    Full Text Available Calculation of evaporation requires accurate thermophysical properties of the liquid. Such data are well-known for conventional fossil fuels. In contrast, e.g., thermal conductivity or dynamic viscosity of the fuel vapor are rarely available for modern liquid fuels. To overcome this problem, molecular models can be used. Currently, the measurement-based properties of n-heptane and diesel oil are compared with estimated values, using the state-of-the-art molecular models to derive the temperature-dependent material properties. Then their effect on droplet evaporation was evaluated. The critical parameters were liquid density, latent heat of vaporization, boiling temperature, and vapor thermal conductivity where the estimation affected the evaporation time notably. Besides a general sensitivity analysis, evaporation modeling in a practical burner ended up with similar results. By calculating droplet motion, the evaporation number, the evaporation-to-residence time ratio can be derived. An empirical cumulative distribution function is used for the spray of the analyzed burner to evaluate evaporation in the mixing tube. Evaporation number did not exceed 0.4, meaning a full evaporation prior to reaching the burner lip in all cases. As droplet inertia depends upon its size, the residence time has a minimum value due to the phenomenon of overshooting.

  11. Acoustic detection of the collapse of a sodium vapor bubble in an infinite sea of sodium

    International Nuclear Information System (INIS)

    Carey, W.M.

    1975-12-01

    A discussion of the problem of sodium vapor bubble collapse is presented. The physics of vapor collapse is presented in light of the work by Peppler et al. Theoretical estimates of the sound source level based on the work by Rayleigh and Judd are compared to an approximate pressure-volume work approach and recent experimental observations. Reactor ambient noise and transmission loss considerations are presented in regard to their impact on this detection problem. A methodology is proposed which considers the importance of the sound source level, ambient noise, transmission loss and a detection threshold and provides a means by which the feasibility of sodium vapor bubble collapse detection in an operating LMFBR may be assessed. The interrelationships between the detection threshold and the probability of detection and false alarm are discussed and applied to a standard acoustic square law detection system. This analysis clearly illustrates that the feasibility of such a detection system is strongly dependent on the knowledge of sound source levels, ambient noise levels and the transmission loss between the source and receiver. Furthermore, requirements of a high degree of probability of detection and a low probability of false alarm were found to require a high signal to noise ratio for a single sensor system but that the probability of false alarm requirement could be relaxed for systems multiple independent sensors. Finally, the need for additional experimental and theoretical information is presented in terms of sound source levels, ambient noise and a means for determining transmission loss

  12. Pengaruh Persentase Biodiesel Minyak Nyamplung – Solar terhadap Karakteristik Pembakaran Droplet

    Directory of Open Access Journals (Sweden)

    Misbach Udin

    2017-05-01

    Full Text Available The aim of this research is to investigate the effect of biodiesel percentage on the droplet combustion characteristic of calophyllum inophyllum biodiesel-diesel fuel blended. The combustion characteristic included ignition delay time, flame visualization, burning rate, and flame temperature. Testing was conducted using fuel blended with biodiesel percentage of 0%, 10%, 30%, 50% and 100%. The fuel was dripped and shaped a droplet that placed on the tip of thermocouple junction and ignited using a heater. The result shown that the ignition delay time increase with increasing biodiesel percentage due to its high flash point temperature and low volatility. Furthermore, burning rate and flame temperature increase with the increasing biodiesel percentage in the blended. These phenomena related to more microexplosion occurrence in the droplet combustion of fuel blended with higher biodiesel content. The last result shown that combustion of diesel fuel droplet has the highest flame dimension, related to its low burning rate and faster vapor diffusion rate.

  13. Phase-field model of vapor-liquid-solid nanowire growth

    Science.gov (United States)

    Wang, Nan; Upmanyu, Moneesh; Karma, Alain

    2018-03-01

    We present a multiphase-field model to describe quantitatively nanowire growth by the vapor-liquid-solid (VLS) process. The free-energy functional of this model depends on three nonconserved order parameters that distinguish the vapor, liquid, and solid phases and describe the energetic properties of various interfaces, including arbitrary forms of anisotropic γ plots for the solid-vapor and solid-liquid interfaces. The evolution equations for those order parameters describe basic kinetic processes including the rapid (quasi-instantaneous) equilibration of the liquid catalyst to a droplet shape with constant mean curvature, the slow incorporation of growth atoms at the droplet surface, and crystallization within the droplet. The standard constraint that the sum of the phase fields equals unity and the conservation of the number of catalyst atoms, which relates the catalyst volume to the concentration of growth atoms inside the droplet, are handled via separate Lagrange multipliers. An analysis of the model is presented that rigorously maps the phase-field equations to a desired set of sharp-interface equations for the evolution of the phase boundaries under the constraint of force balance at three-phase junctions (triple points) given by the Young-Herring relation that includes torque term related to the anisotropy of the solid-liquid and solid-vapor interface excess free energies. Numerical examples of growth in two dimensions are presented for the simplest case of vanishing crystalline anisotropy and the more realistic case of a solid-liquid γ plot with cusped minima corresponding to two sets of (10 ) and (11 ) facets. The simulations reproduce many of the salient features of nanowire growth observed experimentally, including growth normal to the substrate with tapering of the side walls, transitions between different growth orientations, and crawling growth along the substrate. They also reproduce different observed relationships between the nanowire growth

  14. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Freud, Roy [Nuclear Research Center - Negev, Beer-Sheva (Israel)], E-mail: freud@bgu.ac.il; Harari, Ronen [Nuclear Research Center - Negev, Beer-Sheva (Israel); Sher, Eran [Pearlstone Center for Aeronautical Studies, Department of Mechanical Engineering, Ben-Gurion University, Beer-Sheva (Israel)

    2009-04-15

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux

  15. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    International Nuclear Information System (INIS)

    Freud, Roy; Harari, Ronen; Sher, Eran

    2009-01-01

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux during the cooling

  16. Thermodynamic and kinetic theory of nucleation, deliquescence and efflorescence transitions in the ensemble of droplets on soluble particles.

    Science.gov (United States)

    Shchekin, Alexander K; Shabaev, Ilya V; Hellmuth, Olaf

    2013-02-07

    Thermodynamic and kinetic peculiarities of nucleation, deliquescence and efflorescence transitions in the ensemble of droplets formed on soluble condensation nuclei from a solvent vapor have been considered. The interplay of the effects of solubility and the size of condensation nuclei has been analyzed. Activation barriers for the deliquescence and phase transitions and for the reverse efflorescence transition have been determined as functions of the relative humidity of the vapor-gas atmosphere, initial size, and solubility of condensation nuclei. It has been demonstrated that, upon variations in the relative humidity of the atmosphere, the crossover in thermodynamically stable and unstable variables of the droplet state takes place. The physical meaning of stable and unstable variables has been clarified. The kinetic equations for establishing equilibrium and steady distributions of binary droplets have been solved. The specific times for relaxation, deliquescence and efflorescence transitions have been calculated.

  17. Simple scaling laws for the evaporation of droplets pinned on pillars: Transfer-rate- and diffusion-limited regimes.

    Science.gov (United States)

    Hernandez-Perez, Ruth; García-Cordero, José L; Escobar, Juan V

    2017-12-01

    The evaporation of droplets can give rise to a wide range of interesting phenomena in which the dynamics of the evaporation are crucial. In this work, we find simple scaling laws for the evaporation dynamics of axisymmetric droplets pinned on millimeter-sized pillars. Different laws are found depending on whether evaporation is limited by the diffusion of vapor molecules or by the transfer rate across the liquid-vapor interface. For the diffusion-limited regime, we find that a mass-loss rate equal to 3/7 of that of a free-standing evaporating droplet brings a good balance between simplicity and physical correctness. We also find a scaling law for the evaporation of multicomponent solutions. The scaling laws found are validated against experiments of the evaporation of droplets of (1) water, (2) blood plasma, and (3) a mixture of water and polyethylene glycol, pinned on acrylic pillars of different diameters. These results shed light on the macroscopic dynamics of evaporation on pillars as a first step towards the understanding of other complex phenomena that may be taking place during the evaporation process, such as particle transport and chemical reactions.

  18. Simple scaling laws for the evaporation of droplets pinned on pillars: Transfer-rate- and diffusion-limited regimes

    Science.gov (United States)

    Hernandez-Perez, Ruth; García-Cordero, José L.; Escobar, Juan V.

    2017-12-01

    The evaporation of droplets can give rise to a wide range of interesting phenomena in which the dynamics of the evaporation are crucial. In this work, we find simple scaling laws for the evaporation dynamics of axisymmetric droplets pinned on millimeter-sized pillars. Different laws are found depending on whether evaporation is limited by the diffusion of vapor molecules or by the transfer rate across the liquid-vapor interface. For the diffusion-limited regime, we find that a mass-loss rate equal to 3/7 of that of a free-standing evaporating droplet brings a good balance between simplicity and physical correctness. We also find a scaling law for the evaporation of multicomponent solutions. The scaling laws found are validated against experiments of the evaporation of droplets of (1) water, (2) blood plasma, and (3) a mixture of water and polyethylene glycol, pinned on acrylic pillars of different diameters. These results shed light on the macroscopic dynamics of evaporation on pillars as a first step towards the understanding of other complex phenomena that may be taking place during the evaporation process, such as particle transport and chemical reactions.

  19. Evaporation of sessile droplets affected by graphite nanoparticles and binary base fluids.

    Science.gov (United States)

    Zhong, Xin; Duan, Fei

    2014-11-26

    The effects of ethanol component and nanoparticle concentration on evaporation dynamics of graphite-water nanofluid droplets have been studied experimentally. The results show that the formed deposition patterns vary greatly with an increase in ethanol concentration from 0 to 50 vol %. Nanoparticles have been observed to be carried to the droplet surface and form a large piece of aggregate. The volume evaporation rate on average increases as the ethanol concentration increases from 0 to 50 vol % in the binary mixture nanofluid droplets. The evaporation rate at the initial stage is more rapid than that at the late stage to dry, revealing a deviation from a linear fitting line, standing for a constant evaporation rate. The deviation is more intense with a higher ethanol concentration. The ethanol-induced smaller liquid-vapor surface tension leads to higher wettability of the nanofluid droplets. The graphite nanoparticles in ethanol-water droplets reinforce the pinning effect in the drying process, and the droplets with more ethanol demonstrate the depinning behavior only at the late stage. The addition of graphite nanoparticles in water enhances a droplet baseline spreading at the beginning of evaporation, a pinning effect during evaporation, and the evaporation rate. However, with a relatively high nanoparticle concentration, the enhancement is attenuated.

  20. Development of an arsenic trioxide vapor and arsine sampling train

    International Nuclear Information System (INIS)

    Crecelius, E.A.; Sanders, R.W.

    1980-01-01

    A sampling train was evaluated using 76 As tracer for the measurement of particulate arsenic, arsine, and arsenic trioxide vapor in air and industrial process gas streams. In this train, a demister was used to remove droplets of water and oil, and particulates were removed by a filter. Vapor arsenic trioxide was collected in an impinger solution, and arsine gas was collected on silvered quartz beads. Hydrogen sulfide gas did not reduce the arsine trapping efficiency of the silvered beads, and charcoal proved to be an effective trap for both arsine and arsenic trioxide vapor. 1 figure, 2 tables

  1. Photoacoustic measurements of photokinetics in single optically trapped aerosol droplets

    Science.gov (United States)

    Covert, Paul; Cremer, Johannes; Signorell, Ruth; Thaler, Klemens; Haisch, Christoph

    2017-04-01

    It is well established that interaction of light with atmospheric aerosols has a large impact on the Earth's climate. However, uncertainties in the magnitude of this impact remain large, due in part to broad distributions of aerosol size, composition, and chemical reactivity. In this context, photoacoustic spectroscopy is commonly used to measure light absorption by aerosols. Here, we present photoacoustic measurements of single, optically-trapped nanodroplets to reveal droplet size-depencies of photochemical and physical processes. Theoretical considerations have pointed to a size-dependence in the magnitude and phase of the photoacoustic response from aerosol droplets. This dependence is thought to originate from heat transfer processes that are slow compared to the acoustic excitation frequency. In the case of a model aerosol, our measurements of single particle absorption cross-section versus droplet size confirm these theoretical predictions. In a related study, using the same model aerosol, we also demonstrate a droplet size-dependence of photochemical reaction rates [1]. Within sub-micron sized particles, photolysis rates were observed to be an order of magnitude greater than those observed in larger droplets. [1] J. W. Cremer, K. M. Thaler, C. Haisch, and R. Signorell. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nat. Commun., 7:10941, 2016.

  2. The Liquid Droplet Radiator - an Ultralightweight Heat Rejection System for Efficient Energy Conversion in Space

    Science.gov (United States)

    Mattick, A. T.; Hertzberg, A.

    1984-01-01

    A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets ( 100 micron diameter) of low vapor pressure liquids the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejectioon are discussed and solutions are suggested.

  3. Evaluation of evaporation coefficient for micro-droplets exposed to low pressure: A semi-analytical approach

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Prodyut R., E-mail: pchakraborty@iitj.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, 342011 (India); Hiremath, Kirankumar R., E-mail: k.r.hiremath@iitj.ac.in [Department of Mathematics, Indian Institute of Technology Jodhpur, 342011 (India); Sharma, Manvendra, E-mail: PG201283003@iitj.ac.in [Defence Laboratory Jodhpur, Defence Research & Development Organisation, 342011 (India)

    2017-02-05

    Evaporation rate of water is strongly influenced by energy barrier due to molecular collision and heat transfer limitations. The evaporation coefficient, defined as the ratio of experimentally measured evaporation rate to that maximum possible theoretical limit, varies over a conflicting three orders of magnitude. In the present work, a semi-analytical transient heat diffusion model of droplet evaporation is developed considering the effect of change in droplet size due to evaporation from its surface, when the droplet is injected into vacuum. Negligible effect of droplet size reduction due to evaporation on cooling rate is found to be true. However, the evaporation coefficient is found to approach theoretical limit of unity, when the droplet radius is less than that of mean free path of vapor molecules on droplet surface contrary to the reported theoretical predictions. Evaporation coefficient was found to reduce rapidly when the droplet under consideration has a radius larger than the mean free path of evaporating molecules, confirming the molecular collision barrier to evaporation rate. The trend of change in evaporation coefficient with increasing droplet size predicted by the proposed model will facilitate obtaining functional relation of evaporation coefficient with droplet size, and can be used for benchmarking the interaction between multiple droplets during evaporation in vacuum.

  4. Evaluation of evaporation coefficient for micro-droplets exposed to low pressure: A semi-analytical approach

    International Nuclear Information System (INIS)

    Chakraborty, Prodyut R.; Hiremath, Kirankumar R.; Sharma, Manvendra

    2017-01-01

    Evaporation rate of water is strongly influenced by energy barrier due to molecular collision and heat transfer limitations. The evaporation coefficient, defined as the ratio of experimentally measured evaporation rate to that maximum possible theoretical limit, varies over a conflicting three orders of magnitude. In the present work, a semi-analytical transient heat diffusion model of droplet evaporation is developed considering the effect of change in droplet size due to evaporation from its surface, when the droplet is injected into vacuum. Negligible effect of droplet size reduction due to evaporation on cooling rate is found to be true. However, the evaporation coefficient is found to approach theoretical limit of unity, when the droplet radius is less than that of mean free path of vapor molecules on droplet surface contrary to the reported theoretical predictions. Evaporation coefficient was found to reduce rapidly when the droplet under consideration has a radius larger than the mean free path of evaporating molecules, confirming the molecular collision barrier to evaporation rate. The trend of change in evaporation coefficient with increasing droplet size predicted by the proposed model will facilitate obtaining functional relation of evaporation coefficient with droplet size, and can be used for benchmarking the interaction between multiple droplets during evaporation in vacuum.

  5. Performance of droplet generator and droplet collector in liquid droplet radiator under microgravity

    Science.gov (United States)

    Totani, T.; Itami, M.; Nagata, H.; Kudo, I.; Iwasaki, A.; Hosokawa, S.

    2002-06-01

    The Liquid Droplet Radiator (LDR) has an advantage over comparable conventional radiators in terms of the rejected heat power-weight ratio. Therefore, the LDR has attracted attention as an advanced radiator for high-power space systems that will be prerequisite for large space structures. The performance of the LDR under microgravity condition has been studied from the viewpoint of operational space use of the LDR in the future. In this study, the performances of a droplet generator and a droplet collector in the LDR are investigated using drop shafts in Japan: MGLAB and JAMIC. As a result, it is considered that (1) the droplet generator can produce uniform droplet streams in the droplet diameter range from 200 to 280 [µm] and the spacing range from 400 to 950 [µm] under microgravity condition, (2) the droplet collector with the incidence angle of 35 degrees can prevent a uniform droplet stream, in which droplet diameter is 250 [µm] and the velocity is 16 [m/s], from splashing under microgravity condition, whereas splashes may occur at the surface of the droplet collector in the event that a nonuniform droplet stream collides against it.

  6. Nanoparticle motion on the surface of drying droplets

    Science.gov (United States)

    Zhao, Mingfei; Yong, Xin

    2018-03-01

    Advances in solution-based printing and surface patterning techniques for additive manufacturing demand a clear understanding of particle dynamics in drying colloidal droplets and its relationship with deposit structure. Although the evaporation-driven deposition has been studied thoroughly for the particles dispersed in the bulk of the droplet, few investigations have focused on the particles strongly adsorbed to the droplet surface. We modeled the assembly and deposition of the surface-active particles in a drying sessile droplet with a pinned contact line by the multiphase lattice Boltzmann-Brownian dynamics method. The particle trajectory and its area density profile characterize the assembly dynamics and deposition pattern development during evaporation. While the bulk-dispersed particles continuously move to the contact line, forming the typical "coffee-ring" deposit, the interface-bound particles migrate first toward the apex and then to the contact line as the droplet dries out. To understand this unexpected behavior, we resolve the droplet velocity field both in the bulk and within the interfacial region. The simulation results agree well with the analytical solution for the Stokes flow inside an evaporating droplet. At different stages of evaporation, our study reveals that the competition between the tangential surface flow and the downward motion of the evaporating liquid-vapor interface governs the dynamics of the interface-bound particles. In particular, the interface displacement contributes to the particle motion toward the droplet apex in a short phase, while the outward advective flow prevails at the late stage of drying and carries the particles to the contact line. The final deposit of the surface-adsorbed particles exhibits a density enhancement at the center, in addition to a coffee ring. Despite its small influence on the final deposit in the present study, the distinct dynamics of surface-active particles due to the interfacial confinement

  7. Effect of Channel Geometry and Properties of a Vapor-Gas Mixture on Volume Condensation in a Flow through a Nozzle

    Science.gov (United States)

    Sidorov, A. A.; Yastrebov, A. K.

    2018-01-01

    A method of direct numerical solution of the kinetic equation for the droplet size distribution function was used for the numerical investigation of volume condensation in a supersonic vapor-gas flow. Distributions of temperature for the gas phase and droplets, degree of supersaturation, pressure, fraction of droplets by weight, the number of droplets per unit mass, and of the nucleation rate along the channel were determined. The influence of nozzle geometry, mixture composition, and temperature dependence of the mixture properties on the investigated process was evaluated. It has been found that the nozzle divergence angle determines the vapor-gas mixture expansion rate: an increase in the divergence angle enhances the temperature decrease rate and the supersaturation degree raise rate. With an increase or decrease in the partial pressure of incondensable gas, the droplet temperature approaches the gas phase temperature or the saturation temperature at the partial gas pressure, respectively. A considerable effect of the temperature dependence of the liquid surface tension and properties on gas phase parameters and the integral characteristics of condensation aerosol was revealed. However, the difference in results obtained with or without considering the temperature dependence of evaporation heat is negligible. The predictions are compared with experimental data of other investigations for two mixtures: a mixture of heavy water vapor with nitrogen (incondensable gas) or n-nonane vapor with nitrogen. The predictions agree quite well qualitatively and quantitatively with the experiment. The comparison of the predictions with numerical results from other publications obtained using the method of moments demonstrates the usefulness of the direct numerical solution method and the method of moments in a wide range of input data.

  8. Evaporation dynamics of a sessile droplet on glass surfaces with fluoropolymer coatings: focusing on the final stage of thin droplet evaporation.

    Science.gov (United States)

    Gatapova, Elizaveta Ya; Shonina, Anna M; Safonov, Alexey I; Sulyaeva, Veronica S; Kabov, Oleg A

    2018-03-07

    The evaporation dynamics of a water droplet with an initial volume of 2 μl from glass surfaces with fluoropolymer coatings are investigated using the shadow technique and an optical microscope. The droplet profile for a contact angle of less than 5° is constructed using an image-analyzing interference technique, and evaporation dynamics are investigated at the final stage. We coated the glass slides with a thin film of a fluoropolymer by the hot-wire chemical vapor deposition method at different deposition modes depending on the deposition pressure and the temperature of the activating wire. The resulting surfaces have different structures affecting the wetting properties. Droplet evaporation from a constant contact radius mode in the early stage of evaporation was found followed by the mode where both contact angle and contact radius simultaneously vary in time (final stage) regardless of wettability of the coated surfaces. We found that depinning occurs at small contact angles of 2.2-4.7° for all samples, which are smaller than the measured receding contact angles. This is explained by imbibition of the liquid into the developed surface of the "soft" coating that leads to formation of thin droplets completely wetting the surface. The final stage, which is little discussed in the literature, is also recorded. We have singled out a substage where the contact line velocity is abruptly increasing for all coated and uncoated surfaces. The critical droplet height corresponding to the transition to this substage is about 2 μm with R/h = 107. The duration of this substage is the same for all coated and uncoated surfaces. Droplets observed at this substage for all the tested surfaces are axisymmetric. The specific evaporation rate clearly demonstrates an abrupt increase at the final substage of the droplet evaporation. The classical R 2 law is justified for the complete wetting situation where the droplet is disappearing in an axisymmetric manner.

  9. The investigation of contact line effect on nanosized droplet wetting behavior with solid temperature condition

    Science.gov (United States)

    Haegon, Lee; Joonsang, Lee

    2017-11-01

    In many multi-phase fluidic systems, there are essentially contact interfaces including liquid-vapor, liquid-solid, and solid-vapor phase. There is also a contact line where these three interfaces meet. The existence of these interfaces and contact lines has a considerable impact on the nanoscale droplet wetting behavior. However, recent studies have shown that Young's equation does not accurately represent this behavior at the nanoscale. It also emphasized the importance of the contact line effect.Therefore, We performed molecular dynamics simulation to imitate the behavior of nanoscale droplets with solid temperature condition. And we find the effect of solid temperature on the contact line motion. Furthermore, We figure out the effect of contact line force on the wetting behavior of droplet according to the different solid temperature condition. With solid temperature condition variation, the magnitude of contact line friction decreases significantly. We also divide contact line force by effect of bulk liquid, interfacial tension, and solid surface. This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and BrainKorea21plus.

  10. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    International Nuclear Information System (INIS)

    Cuttitta, Christina M.; Ericson, Daniel L.; Scalia, Alexander; Roessler, Christian G.; Teplitsky, Ella; Joshi, Karan; Campos, Olven; Agarwal, Rakhi; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2015-01-01

    An acoustic high-throughput screening method is described for harvesting protein crystals and combining the protein crystals with chemicals such as a fragment library. Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s −1 ) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening

  11. Biomass Burning Organic Aerosol as a Modulator of Droplet Number in the Southern Atlantic

    Science.gov (United States)

    Kacarab, M.; Howell, S. G.; Small Griswold, J. D.; Thornhill, K. L., II; Wood, R.; Redemann, J.; Nenes, A.

    2017-12-01

    Aerosols play a significant yet highly variable role in local and global air quality and climate. They act as cloud condensation nuclei (CCN) and both scatter and absorb radiation, lending a large source of uncertainty to climate predictions. Biomass burning organic aerosol (BBOA) can drastically elevate CCN concentrations, but the response in cloud droplet number may be suppressed or even reversed due to low supersaturations that develop from strong competition for water vapor. Constraining droplet response to BBOA is a key factor to understanding aerosol-cloud interactions. The southeastern Atlantic (SEA) cloud deck off the west coast of central Africa is a prime opportunity to study these cloud-BBOA interactions for marine stratocumulus as during winter in the southern hemisphere the SEA cloud deck is overlain by a large, optically thick BBOA plume. The NASA ObseRvations of Aerosols above Clouds and their intEractionS (ORACLES) study focuses on increasing the understanding of how these BBOA affect the SEA cloud deck. Measurements of CCN concentration, aerosol size distribution and composition, updraft velocities, and cloud droplet number in and around the SEA cloud deck and associated BBOA plume were taken aboard the NASA P-3 aircraft during the first two years of the ORACLES campaign in September 2016 and August 2017. Here we evaluate the predicted and observed droplet number sensitivity to the aerosol fluctuations and quantify, using the data, the drivers of droplet number variability (vertical velocity or aerosol properties) as a function of biomass burning plume characteristics. Over the course of the campaign, different levels of BBOA influence in the marine boundary layer (MBL) were observed, allowing for comparison of cloud droplet number, hygroscopicity parameter (κ), and maximum in-cloud supersaturation over a range of "clean" and "dirty" conditions. Droplet number sensitivity to aerosol concentration, κ, and vertical updraft velocities are also

  12. Film Levitation of Droplet Impact on Heated Nanotube Surfaces

    Science.gov (United States)

    Duan, Fei; Tong, Wei; Qiu, Lu

    2017-11-01

    Contact boiling of an impacting droplet impacting on a heated surface can be observed when the surface temperature is able to activate the nucleation and growth of vapor bubbles, the phenomena are related to nature and industrial application. The dynamic boiling patterns us is investigated when a single falling water droplet impacts on a heated titanium (Ti) surface covered with titanium oxide (TiO2) nanotubes. In the experiments, the droplets were generated from a flat-tipped needle connected to a syringe mounted on a syringe pump. The droplet diameter and velocity before impacting on the heated surface are measured by a high-speed camera with the Weber number is varied from 45 to 220. The dynamic wetting length, spreading diameter, levitation distance, and the associated parameter are measured. Interesting film levitation on titanium (Ti) surface has been revealed. The comparison of the phase diagrams on the nanotube surface and bare Ti surface suggests that the dynamic Leidenfrost point of the surface with the TiO2 nanotubes has been significantly delayed as compared to that on a bare Ti surface. The delay is inferred to result from the increase in the surface wettability and the capillary effect by the nanoscale tube structure. The further relation is discussed.

  13. Improved positioning and detectability of microparticles in droplet microfluidics using two-dimensional acoustophoresis

    DEFF Research Database (Denmark)

    Ohlin, M.; Fornell, A.; Bruus, Henrik

    2017-01-01

    , by using acoustic actuation, (99.8 ± 0.4)% of all encapsulated microparticles can be detected compared to only (79.0 ± 5.1)% for unactuated operation. In our experiments we observed a strong ordering of the microparticles in distinct patterns within the droplet when using 2D acoustophoresis; to explain...

  14. Research into three-component biodiesel fuels combustion process using a single droplet technique

    Directory of Open Access Journals (Sweden)

    L. Raslavičius

    2007-12-01

    Full Text Available In order to reduce the engine emission while at same time improving engine efficiency, it is very important to clarify the combustion mechanism. Even if, there are many researches into investigating the mechanism of engine combustion, so that to clarify the relationship between complicated phenomena, it is very difficult to investigate due to the complicated process of both physical and chemical reaction from the start of fuel injection to the end of combustion event. The numerical simulations are based on a detailed vaporization model and detailed chemical kinetics. The influence of different physical parameters like droplet temperature, gas phase temperature, ambient gas pressure and droplet burning velocity on the ignition delay process is investigated using fuel droplet combustion stand. Experimental results about their influence on ignition delay time were presented.

  15. Acoustic forcing of a liquid drop

    Science.gov (United States)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  16. Parameterization of cloud droplet formation for global and regional models: including adsorption activation from insoluble CCN

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2009-04-01

    Full Text Available Dust and black carbon aerosol have long been known to exert potentially important and diverse impacts on cloud droplet formation. Most studies to date focus on the soluble fraction of these particles, and overlook interactions of the insoluble fraction with water vapor (even if known to be hydrophilic. To address this gap, we developed a new parameterization that considers cloud droplet formation within an ascending air parcel containing insoluble (but wettable particles externally mixed with aerosol containing an appreciable soluble fraction. Activation of particles with a soluble fraction is described through well-established Köhler theory, while the activation of hydrophilic insoluble particles is treated by "adsorption-activation" theory. In the latter, water vapor is adsorbed onto insoluble particles, the activity of which is described by a multilayer Frenkel-Halsey-Hill (FHH adsorption isotherm modified to account for particle curvature. We further develop FHH activation theory to i find combinations of the adsorption parameters AFHH, BFHH which yield atmospherically-relevant behavior, and, ii express activation properties (critical supersaturation that follow a simple power law with respect to dry particle diameter.

    The new parameterization is tested by comparing the parameterized cloud droplet number concentration against predictions with a detailed numerical cloud model, considering a wide range of particle populations, cloud updraft conditions, water vapor condensation coefficient and FHH adsorption isotherm characteristics. The agreement between parameterization and parcel model is excellent, with an average error of 10% and R2~0.98. A preliminary sensitivity study suggests that the sublinear response of droplet number to Köhler particle concentration is not as strong for FHH particles.

  17. Dynamic analysis of ultrasonically levitated droplet with moving particle semi-implicit and distributed point source method

    Science.gov (United States)

    Wada, Yuji; Yuge, Kohei; Nakamura, Ryohei; Tanaka, Hiroki; Nakamura, Kentaro

    2015-07-01

    Numerical analysis of an ultrasonically levitated droplet with a free surface boundary is discussed. The droplet is known to change its shape from sphere to spheroid when it is suspended in a standing wave owing to the acoustic radiation force. However, few studies on numerical simulation have been reported in association with this phenomenon including fluid dynamics inside the droplet. In this paper, coupled analysis using the distributed point source method (DPSM) and the moving particle semi-implicit (MPS) method, both of which do not require grids or meshes to handle the moving boundary with ease, is suggested. A droplet levitated in a plane standing wave field between a piston-vibrating ultrasonic transducer and a reflector is simulated with the DPSM-MPS coupled method. The dynamic change in the spheroidal shape of the droplet is successfully reproduced numerically, and the gravitational center and the change in the spheroidal aspect ratio are discussed and compared with the previous literature.

  18. Modeling Droplet Heat and Mass Transfer during Spray Bar Pressure Control of the Multipurpose Hydrogen Test Bed (MHTB) Tank in Normal Gravity

    Science.gov (United States)

    Kartuzova, O.; Kassemi, M.

    2016-01-01

    A CFD model for simulating pressure control in cryogenic storage tanks through the injection of a subcooled liquid into the ullage is presented and applied to the 1g MHTB spray bar cooling experiments. An Eulerian-Lagrangian approach is utilized to track the spray droplets and capture the interaction between the discrete droplets and the continuous ullage phase. The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. A new model for calculating the droplet-ullage heat and mass transfer is developed. In this model, a droplet is allowed to warm up to the saturation temperature corresponding to the ullage vapor pressure, after which it evaporates while remaining at the saturation temperature. The droplet model is validated against the results of the MHTB spray-bar cooling experiments with 50% and 90% tank fill ratios. The predictions of the present T-sat based model are compared with those of a previously developed kinetic-based droplet mass transfer model. The predictions of the two models regarding the evolving tank pressure and temperature distributions, as well as the droplets' trajectories and temperatures, are examined and compared in detail. Finally, the ullage pressure and local vapor and liquid temperature evolutions are validated against the corresponding data provided by the MHTB spray bar mixing experiment.

  19. The kinetic boundary layer around an absorbing sphere and the growth of small droplets

    International Nuclear Information System (INIS)

    Widder, M.E.; Titulaer, U.M.

    1989-01-01

    Deviations from the classical Smoluchowski expression for the growth rate of a droplet in a supersaturated vapor can be expected when the droplet radius is not large compared to the mean free path of a vapor molecule. The growth rate then depends significantly on the structure of the kinetic boundary layer around a sphere. The authors consider this kinetic boundary layer for a dilute system of Brownian particles. For this system a large class of boundary layer problems for a planar wall have been solved. They show how the spherical boundary layer can be treated by a perturbation expansion in the reciprocal droplet radius. In each order one has to solve a finite number of planar boundary layer problems. The first two corrections to the planar problem are calculated explicitly. For radii down to about two velocity persistence lengths (the analog of the mean free path for a Brownian particle) the successive approximations for the growth rate agree to within a few percent. A reasonable estimate of the growth rate for all radii can be obtained by extrapolating toward the exactly known value at zero radius. Kinetic boundary layer effects increase the time needed for growth from 0 to 10 (or 2 1/2) velocity persistence lengths by roughly 35% (or 175%)

  20. Water liquid-vapor interface subjected to various electric fields: A molecular dynamics study

    Science.gov (United States)

    Nikzad, Mohammadreza; Azimian, Ahmad Reza; Rezaei, Majid; Nikzad, Safoora

    2017-11-01

    Investigation of the effects of E-fields on the liquid-vapor interface is essential for the study of floating water bridge and wetting phenomena. The present study employs the molecular dynamics method to investigate the effects of parallel and perpendicular E-fields on the water liquid-vapor interface. For this purpose, density distribution, number of hydrogen bonds, molecular orientation, and surface tension are examined to gain a better understanding of the interface structure. Results indicate enhancements in parallel E-field decrease the interface width and number of hydrogen bonds, while the opposite holds true in the case of perpendicular E-fields. Moreover, perpendicular fields disturb the water structure at the interface. Given that water molecules tend to be parallel to the interface plane, it is observed that perpendicular E-fields fail to realign water molecules in the field direction while the parallel ones easily do so. It is also shown that surface tension rises with increasing strength of parallel E-fields, while it reduces in the case of perpendicular E-fields. Enhancement of surface tension in the parallel field direction demonstrates how the floating water bridge forms between the beakers. Finally, it is found that application of external E-fields to the liquid-vapor interface does not lead to uniform changes in surface tension and that the liquid-vapor interfacial tension term in Young's equation should be calculated near the triple-line of the droplet. This is attributed to the multi-directional nature of the droplet surface, indicating that no constant value can be assigned to a droplet's surface tension in the presence of large electric fields.

  1. Jumping-droplet electronics hot-spot cooling

    Science.gov (United States)

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle; Neely, Jason; Pilawa-Podgurski, Robert C. N.; Miljkovic, Nenad

    2017-03-01

    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm × 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25 °C air temperature, 20%-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm) and applied heat flux (demonstrated to 13 W/cm2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm2. This work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

  2. Jumping-droplet electronics hot-spot cooling

    International Nuclear Information System (INIS)

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle

    2017-01-01

    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm x 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25°C air temperature, 20-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm), and heat flux (demonstrated to 13 W/cm"2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈ 200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm"2. Finally, this work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

  3. Vapor generation rate model for dispersed drop flow

    International Nuclear Information System (INIS)

    Unal, C.; Tuzla, K.; Cokmez-Tuzla, A.F.; Chen, J.C.

    1991-01-01

    A comparison of predictions of existing nonequilibrium post-CHF heat transfer models with the recently obtained rod bundle data has been performed. The models used the experimental conditions and wall temperatures to predict the heat flux and vapor temperatures at the location of interest. No existing model was able to reasonably predict the vapor superheat and the wall heat flux simultaneously. Most of the models, except Chen-Sundaram-Ozkaynak, failed to predict the wall heat flux, while all of the models could not predict the vapor superheat data or trends. A recently developed two-region heat transfer model, the Webb-Chen two-region model, did not give a reasonable prediction of the vapor generation rate in the far field of the CHF point. A new correlation was formulated to predict the vapor generation rate in convective dispersed droplet flow in terms of thermal-hydraulic parameters and thermodynamic properties. A comparison of predictions of the two-region heat transfer model, with the use of a presently developed correlation, with all the existing post-CHF data, including single-tube and rod bundle, showed significant improvements in predicting the vapor superheat and tube wall heat flux trends. (orig.)

  4. Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not size-dependent

    Science.gov (United States)

    Spiegel, J.K.; Aemisegger, F.; Scholl, M.; Wienhold, F.G.; Collett, J.L.; Lee, T.; van Pinxteren, D.; Mertes, S.; Tilgner, A.; Herrmann, H.; Werner, Roland A.; Buchmann, N.; Eugster, W.

    2012-01-01

    In this work, we present the first observations of stable water isotopologue ratios in cloud droplets of different sizes collected simultaneously. We address the question whether the isotope ratio of droplets in a liquid cloud varies as a function of droplet size. Samples were collected from a ground intercepted cloud (= fog) during the Hill Cap Cloud Thuringia 2010 campaign (HCCT-2010) using a three-stage Caltech Active Strand Cloud water Collector (CASCC). An instrument test revealed that no artificial isotopic fractionation occurs during sample collection with the CASCC. Furthermore, we could experimentally confirm the hypothesis that the δ values of cloud droplets of the relevant droplet sizes (μm-range) were not significantly different and thus can be assumed to be in isotopic equilibrium immediately with the surrounding water vapor. However, during the dissolution period of the cloud, when the supersaturation inside the cloud decreased and the cloud began to clear, differences in isotope ratios of the different droplet sizes tended to be larger. This is likely to result from the cloud's heterogeneity, implying that larger and smaller cloud droplets have been collected at different moments in time, delivering isotope ratios from different collection times.

  5. Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not size-dependent

    Directory of Open Access Journals (Sweden)

    J. K. Spiegel

    2012-10-01

    Full Text Available In this work, we present the first observations of stable water isotopologue ratios in cloud droplets of different sizes collected simultaneously. We address the question whether the isotope ratio of droplets in a liquid cloud varies as a function of droplet size. Samples were collected from a ground intercepted cloud (= fog during the Hill Cap Cloud Thuringia 2010 campaign (HCCT-2010 using a three-stage Caltech Active Strand Cloud water Collector (CASCC. An instrument test revealed that no artificial isotopic fractionation occurs during sample collection with the CASCC. Furthermore, we could experimentally confirm the hypothesis that the δ values of cloud droplets of the relevant droplet sizes (μm-range were not significantly different and thus can be assumed to be in isotopic equilibrium immediately with the surrounding water vapor. However, during the dissolution period of the cloud, when the supersaturation inside the cloud decreased and the cloud began to clear, differences in isotope ratios of the different droplet sizes tended to be larger. This is likely to result from the cloud's heterogeneity, implying that larger and smaller cloud droplets have been collected at different moments in time, delivering isotope ratios from different collection times.

  6. Experimental evidence supporting the insensitivity of cloud droplet formation to the mass accommodation coefficient for condensation of water vapor to liquid water

    Science.gov (United States)

    Langridge, Justin M.; Richardson, Mathews S.; Lack, Daniel A.; Murphy, Daniel M.

    2016-06-01

    The mass accommodation coefficient for uptake of water vapor to liquid water, αM, has been constrained using photoacoustic measurements of aqueous absorbing aerosol. Measurements performed over a range of relative humidities and pressures were compared to detailed model calculations treating coupled heat and mass transfer occurring during photoacoustic laser heating cycles. The strengths and weaknesses of this technique are very different to those for droplet growth/evaporation experiments that have typically been applied to these measurements, making this a useful complement to existing studies. Our measurements provide robust evidence that αM is greater than 0.1 for all humidities tested and greater than 0.3 for data obtained at relative humidities greater than 88% where the aerosol surface was most like pure water. These values of αM are above the threshold at which kinetic limitations are expected to impact the activation and growth of aerosol particles in warm cloud formation.

  7. Ice and water droplets on graphite: A comparison of quantum and classical simulations

    International Nuclear Information System (INIS)

    Ramírez, Rafael; Singh, Jayant K.; Müller-Plathe, Florian; Böhm, Michael C.

    2014-01-01

    Ice and water droplets on graphite have been studied by quantum path integral and classical molecular dynamics simulations. The point-charge q-TIP4P/F potential was used to model the interaction between flexible water molecules, while the water-graphite interaction was described by a Lennard-Jones potential previously used to reproduce the macroscopic contact angle of water droplets on graphite. Several energetic and structural properties of water droplets with sizes between 10 2 and 10 3 molecules were analyzed in a temperature interval of 50–350 K. The vibrational density of states of crystalline and amorphous ice drops was correlated to the one of ice Ih to assess the influence of the droplet interface and molecular disorder on the vibrational properties. The average distance of covalent OH bonds is found 0.01 Å larger in the quantum limit than in the classical one. The OO distances are elongated by 0.03 Å in the quantum simulations at 50 K. Bond distance fluctuations are large as a consequence of the zero-point vibrations. The analysis of the H-bond network shows that the liquid droplet is more structured in the classical limit than in the quantum case. The average kinetic and potential energy of the ice and water droplets on graphite has been compared with the values of ice Ih and liquid water as a function of temperature. The droplet kinetic energy shows a temperature dependence similar to the one of liquid water, without apparent discontinuity at temperatures where the droplet is solid. However, the droplet potential energy becomes significantly larger than the one of ice or water at the same temperature. In the quantum limit, the ice droplet is more expanded than in a classical description. Liquid droplets display identical density profiles and liquid-vapor interfaces in the quantum and classical limits. The value of the contact angle is not influenced by quantum effects. Contact angles of droplets decrease as the size of the water droplet increases

  8. Acoustic signature analysis of the interaction between a dc plasma jet and a suspension liquid jet

    International Nuclear Information System (INIS)

    Rat, V; Coudert, J F

    2009-01-01

    Suspension plasma spraying allows forming finely structured coatings by injecting suspensions of ceramic particles within a dc plasma jet. The electric arc motion in dc plasma torch is the main acoustic source which is modified by the injection of suspension. The analyses of cross-correlations between the arc voltage and the acoustic signal show a decrease in time propagations due to local cooling of the plasma jet when injecting suspensions. Moreover, power spectra highlight acoustic amplifications below a certain frequency threshold and attenuations above. A simplified model of the frequency acoustic response of a two-phase vaporizing mixture is used to interpret experimental measurements. These acoustic effects are due to the dynamics of thermal transfers between vaporizing liquid and plasma.

  9. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing

    OpenAIRE

    Ly, Sonny; Rubenchik, Alexander M.; Khairallah, Saad A.; Guss, Gabe; Matthews, Manyalibo J.

    2017-01-01

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas...

  10. Analysis of an ultrasonically rotating droplet by moving particle semi-implicit and distributed point source method in a rotational coordinate

    Science.gov (United States)

    Wada, Yuji; Yuge, Kohei; Tanaka, Hiroki; Nakamura, Kentaro

    2017-07-01

    Numerical analysis on the rotation of an ultrasonically levitated droplet in centrifugal coordinate is discussed. A droplet levitated in an acoustic chamber is simulated using the distributed point source method and the moving particle semi-implicit method. Centrifugal coordinate is adopted to avoid the Laplacian differential error, which causes numerical divergence or inaccuracy in the global coordinate calculation. Consequently, the duration of calculation stability has increased 30 times longer than that in a the previous paper. Moreover, the droplet radius versus rotational acceleration characteristics show a similar trend to the theoretical and experimental values in the literature.

  11. CFD modeling of condensation process of water vapor in supersonic flows

    DEFF Research Database (Denmark)

    Yang, Yan; Walther, Jens Honore; Yan, Yuying

    2017-01-01

    The condensation phenomenon of vapor plays an important role in various industries, such as the steam flow in turbines and refrigeration system. A mathematical model is developed to predict the spontaneous condensing phenomenon in the supersonic flows using the nucleation and droplet growth...... theories. The numerical approach is validated with the experimental data, which shows a good agreement between them. The condensation characteristics of water vapor in the Laval nozzle are described in detail. The results show that the condensation process is a rapid variation of the vapor-liquid phase...... change both in the space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation....

  12. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    Energy Technology Data Exchange (ETDEWEB)

    Cuttitta, Christina M. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314 (United States); Ericson, Daniel L. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); University at Buffalo, SUNY, 12 Capen Hall, Buffalo, NY 14260 (United States); Scalia, Alexander [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 11973-5000 (United States); Roessler, Christian G. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Teplitsky, Ella [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Stony Brook University, Stony Brook, NY 11794-5215 (United States); Joshi, Karan [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); PEC University of Technology, Chandigarh (India); Campos, Olven [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33414 (United States); Agarwal, Rakhi; Allaire, Marc [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Orville, Allen M. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Sweet, Robert M.; Soares, Alexei S., E-mail: soares@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2015-01-01

    An acoustic high-throughput screening method is described for harvesting protein crystals and combining the protein crystals with chemicals such as a fragment library. Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s{sup −1}) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.

  13. Enhancement of the droplet nucleation in a dense supersaturated Lennard-Jones vapor

    Energy Technology Data Exchange (ETDEWEB)

    Zhukhovitskii, D. I., E-mail: dmr@ihed.ras.ru [Joint Institute of High Temperatures, Russian Academy of Sciences, Izhorskaya 13, Bd. 2, 125412 Moscow (Russian Federation)

    2016-05-14

    The vapor–liquid nucleation in a dense Lennard-Jones system is studied analytically and numerically. A solution of the nucleation kinetic equations, which includes the elementary processes of condensation/evaporation involving the lightest clusters, is obtained, and the nucleation rate is calculated. Based on the equation of state for the cluster vapor, the pre-exponential factor is obtained. The latter diverges as a spinodal is reached, which results in the nucleation enhancement. The work of critical cluster formation is calculated using the previously developed two-parameter model (TPM) of small clusters. A simple expression for the nucleation rate is deduced and it is shown that the work of cluster formation is reduced for a dense vapor. This results in the nucleation enhancement as well. To verify the TPM, a simulation is performed that mimics a steady-state nucleation experiments in the thermal diffusion cloud chamber. The nucleating vapor with and without a carrier gas is simulated using two different thermostats for the monomers and clusters. The TPM proves to match the simulation results of this work and of other studies.

  14. Modeling of liquid ceramic precursor droplets in a high velocity oxy-fuel flame jet

    International Nuclear Information System (INIS)

    Basu, Saptarshi; Cetegen, Baki M.

    2008-01-01

    Production of coatings by high velocity oxy-fuel (HVOF) flame jet processing of liquid precursor droplets can be an attractive alternative method to plasma processing. This article concerns modeling of the thermophysical processes in liquid ceramic precursor droplets injected into an HVOF flame jet. The model consists of several sub-models that include aerodynamic droplet break-up, heat and mass transfer within individual droplets exposed to the HVOF environment and precipitation of ceramic precursors. A parametric study is presented for the initial droplet size, concentration of the dissolved salts and the external temperature and velocity field of the HVOF jet to explore processing conditions and injection parameters that lead to different precipitate morphologies. It is found that the high velocity of the jet induces shear break-up into several μm diameter droplets. This leads to better entrainment and rapid heat-up in the HVOF jet. Upon processing, small droplets (<5 μm) are predicted to undergo volumetric precipitation and form solid particles prior to impact at the deposit location. Droplets larger than 5 μm are predicted to form hollow or precursor containing shells similar to those processed in a DC arc plasma. However, it is found that the lower temperature of the HVOF jet compared to plasma results in slower vaporization and solute mass diffusion time inside the droplet, leading to comparatively thicker shells. These shell-type morphologies may further experience internal pressurization, resulting in possibly shattering and secondary atomization of the trapped liquid. The consequences of these different particle states on the coating microstructure are also discussed in this article

  15. Acoustically levitated droplets: a contactless sampling method for fluorescence studies.

    Science.gov (United States)

    Leiterer, Jork; Grabolle, Markus; Rurack, Knut; Resch-Genger, Ute; Ziegler, Jan; Nann, Thomas; Panne, Ulrich

    2008-01-01

    Acoustic levitation is used as a new tool to study concentration-dependent processes in fluorescence spectroscopy. With this technique, small amounts of liquid and solid samples can be measured without the need for sample supports or containers, which often limits signal acquisition and can even alter sample properties due to interactions with the support material. We demonstrate that, because of the small sample volume, fluorescence measurements at high concentrations of an organic dye are possible without the limitation of inner-filter effects, which hamper such experiments in conventional, cuvette-based measurements. Furthermore, we show that acoustic levitation of liquid samples provides an experimentally simple way to study distance-dependent fluorescence modulations in semiconductor nanocrystals. The evaporation of the solvent during levitation leads to a continuous increase of solute concentration and can easily be monitored by laser-induced fluorescence.

  16. Numerical Investigation of the Main Characteristics of Heat and Mass Transfer while Heating the Heterogeneous Water Droplet in the Hot Gases

    Directory of Open Access Journals (Sweden)

    Piskunov Maxim V.

    2016-01-01

    Full Text Available The processes of heat and evaporation of heterogeneous water droplet with solid (by the example of carbon inclusion in hot (from 800 K to 1500 K gases were investigated by the developed models of heat and mass transfer. We defined the limited conditions, characteristics of the droplet and the gas medium which are sufficient for implementing the “explosive” destruction of heterogeneous droplet due to intensive vaporization on an inner interface, and intensive evaporation of liquid from an external (free droplet surface. The values of the main characteristic of the process (period from start of heating to “explosive” destruction obtained in response to using various heat and mass transfer models were compared.

  17. The dynamics of milk droplet-droplet collisions

    Science.gov (United States)

    Finotello, Giulia; Kooiman, Roeland F.; Padding, Johan T.; Buist, Kay A.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J. A. M.

    2018-01-01

    Spray drying is an important industrial process to produce powdered milk, in which concentrated milk is atomized into small droplets and dried with hot gas. The characteristics of the produced milk powder are largely affected by agglomeration, combination of dry and partially dry particles, which in turn depends on the outcome of a collision between droplets. The high total solids (TS) content and the presence of milk proteins cause a relatively high viscosity of the fed milk concentrates, which is expected to largely influence the collision outcomes of drops inside the spray. It is therefore of paramount importance to predict and control the outcomes of binary droplet collisions. Only a few studies report on droplet collisions of high viscous liquids and no work is available on droplet collisions of milk concentrates. The current study therefore aims to obtain insight into the effect of viscosity on the outcome of binary collisions between droplets of milk concentrates. To cover a wide range of viscosity values, three milk concentrates (20, 30 and 46% TS content) are investigated. An experimental set-up is used to generate two colliding droplet streams with consistent droplet size and spacing. A high-speed camera is used to record the trajectories of the droplets. The recordings are processed by Droplet Image Analysis in MATLAB to determine the relative velocities and the impact geometries for each individual collision. The collision outcomes are presented in a regime map dependent on the dimensionless impact parameter and Weber ( We) number. The Ohnesorge ( Oh) number is introduced to describe the effect of viscosity from one liquid to another and is maintained constant for each regime map by using a constant droplet diameter ( d ˜ 700 μ m). In this work, a phenomenological model is proposed to describe the boundaries demarcating the coalescence-separation regimes. The collision dynamics and outcome of milk concentrates are compared with aqueous glycerol

  18. Estimating sub-surface dispersed oil concentration using acoustic backscatter response.

    Science.gov (United States)

    Fuller, Christopher B; Bonner, James S; Islam, Mohammad S; Page, Cheryl; Ojo, Temitope; Kirkey, William

    2013-05-15

    The recent Deepwater Horizon disaster resulted in a dispersed oil plume at an approximate depth of 1000 m. Several methods were used to characterize this plume with respect to concentration and spatial extent including surface supported sampling and autonomous underwater vehicles with in situ instrument payloads. Additionally, echo sounders were used to track the plume location, demonstrating the potential for remote detection using acoustic backscatter (ABS). This study evaluated use of an Acoustic Doppler Current Profiler (ADCP) to quantitatively detect oil-droplet suspensions from the ABS response in a controlled laboratory setting. Results from this study showed log-linear ABS responses to oil-droplet volume concentration. However, the inability to reproduce ABS response factors suggests the difficultly in developing meaningful calibration factors for quantitative field analysis. Evaluation of theoretical ABS intensity derived from the particle size distribution provided insight regarding method sensitivity in the presence of interfering ambient particles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. High-intensity focused ultrasound sonothrombolysis: the use of perfluorocarbon droplets to achieve clot lysis at reduced acoustic power.

    Science.gov (United States)

    Pajek, Daniel; Burgess, Alison; Huang, Yuexi; Hynynen, Kullervo

    2014-09-01

    The purpose of this study was to evaluate use of intravascular perfluorocarbon droplets to reduce the sonication power required to achieve clot lysis with high-intensity focused ultrasound. High-intensity focused ultrasound with droplets was initially applied to blood clots in an in vitro flow apparatus, and inertial cavitation thresholds were determined. An embolic model for ischemic stroke was used to illustrate the feasibility of this technique in vivo. Recanalization with intravascular droplets was achieved in vivo at 24 ± 5% of the sonication power without droplets. Recanalization occurred in 71% of rabbits that received 1-ms pulsed sonications during continuous intravascular droplet infusion (p = 0.041 vs controls). Preliminary experiments indicated that damage was confined to the ultrasonic focus, suggesting that tolerable treatments would be possible with a more tightly focused hemispheric array that allows the whole focus to be placed inside of the main arteries in the human brain. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Numerical modeling of turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbo-fan jet engines

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lixing; Zhang, Jian [Qinghua Univ., Beijing (China)

    1990-11-01

    Two-dimensional turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbofan jet engines are simulated here by a k-epsilon turbulence model and a particle trajectory model. Comparison of predicted gas velocity and temperature distributions with experimental results for the cases without liquid spray shows good agreement. Gas-droplet two-phase flow predictions give plausible droplet trajectories, fuel-vapor concentration distribution, gas-phase velocity and temperature field in the presence of liquid droplets. One run of computation with this method is made for a particular afterburner. The results indicate that the location of the atomizers is not favorable to flame stabilization and combustion efficiency. The proposed numerical modeling can also be adopted for optimization design and performance evaluation of afterburner combustors of turbofan jet engines. 7 refs.

  1. Acoustic methods for high-throughput protein crystal mounting at next-generation macromolecular crystallographic beamlines.

    Science.gov (United States)

    Roessler, Christian G; Kuczewski, Anthony; Stearns, Richard; Ellson, Richard; Olechno, Joseph; Orville, Allen M; Allaire, Marc; Soares, Alexei S; Héroux, Annie

    2013-09-01

    To take full advantage of advanced data collection techniques and high beam flux at next-generation macromolecular crystallography beamlines, rapid and reliable methods will be needed to mount and align many samples per second. One approach is to use an acoustic ejector to eject crystal-containing droplets onto a solid X-ray transparent surface, which can then be positioned and rotated for data collection. Proof-of-concept experiments were conducted at the National Synchrotron Light Source on thermolysin crystals acoustically ejected onto a polyimide `conveyor belt'. Small wedges of data were collected on each crystal, and a complete dataset was assembled from a well diffracting subset of these crystals. Future developments and implementation will focus on achieving ejection and translation of single droplets at a rate of over one hundred per second.

  2. Analytical Model for Diffusive Evaporation of Sessile Droplets Coupled with Interfacial Cooling Effect.

    Science.gov (United States)

    Nguyen, Tuan A H; Biggs, Simon R; Nguyen, Anh V

    2018-05-30

    Current analytical models for sessile droplet evaporation do not consider the nonuniform temperature field within the droplet and can overpredict the evaporation by 20%. This deviation can be attributed to a significant temperature drop due to the release of the latent heat of evaporation along the air-liquid interface. We report, for the first time, an analytical solution of the sessile droplet evaporation coupled with this interfacial cooling effect. The two-way coupling model of the quasi-steady thermal diffusion within the droplet and the quasi-steady diffusion-controlled droplet evaporation is conveniently solved in the toroidal coordinate system by applying the method of separation of variables. Our new analytical model for the coupled vapor concentration and temperature fields is in the closed form and is applicable for a full range of spherical-cap shape droplets of different contact angles and types of fluids. Our analytical results are uniquely quantified by a dimensionless evaporative cooling number E o whose magnitude is determined only by the thermophysical properties of the liquid and the atmosphere. Accordingly, the larger the magnitude of E o , the more significant the effect of the evaporative cooling, which results in stronger suppression on the evaporation rate. The classical isothermal model is recovered if the temperature gradient along the air-liquid interface is negligible ( E o = 0). For substrates with very high thermal conductivities (isothermal substrates), our analytical model predicts a reversal of temperature gradient along the droplet-free surface at a contact angle of 119°. Our findings pose interesting challenges but also guidance for experimental investigations.

  3. An acoustic on-chip goniometer for room temperature macromolecular crystallography.

    Science.gov (United States)

    Burton, C G; Axford, D; Edwards, A M J; Gildea, R J; Morris, R H; Newton, M I; Orville, A M; Prince, M; Topham, P D; Docker, P T

    2017-12-05

    This paper describes the design, development and successful use of an on-chip goniometer for room-temperature macromolecular crystallography via acoustically induced rotations. We present for the first time a low cost, rate-tunable, acoustic actuator for gradual in-fluid sample reorientation about varying axes and its utilisation for protein structure determination on a synchrotron beamline. The device enables the efficient collection of diffraction data via a rotation method from a sample within a surface confined droplet. This method facilitates efficient macromolecular structural data acquisition in fluid environments for dynamical studies.

  4. Atomic beam formed by the vaporization of a high velocity pellet

    International Nuclear Information System (INIS)

    Foster, C.A.; Hendricks, C.D.

    1974-01-01

    A description of an atomic beam formed by vaporizing an electrostatically accelerated high velocity pellet is given. Uniformly sized droplets of neon will be formed by the mechanical disintegration of liquid jet and frozen by adiabatic vaporization in vacuum. The pellets produced will be charged and accelerated by contacting a needle held at high potential. The accelerated pellets will be vaporized forming a pulse of mono-energetic atoms. The advantages are that a wide range of energies will be possible. The beam will be mono-energetic. The beam is inheretly pulsed, allowing a detailed time of flight velocity distribution measurement. The beam will have a high instantaneous intensity. The beam will be able to operate into an ultra high vacuum chamber

  5. Comparison of various droplet breakup models in gas-liquid flows in high-pressure environments

    International Nuclear Information System (INIS)

    Khaleghi, H.; Ganji, D. D.; Omidvar, A.

    2008-01-01

    Droplet breakup affects spray penetration and evaporation, and plays a critical role in engine efficiency. The purpose of this research was to examine the rate of penetration and evaporation of droplets in a combustion chamber, and the efficiency of the engine when liquid jet is injected into the compressed gas chamber in an axi-symmetrical fashion leading to a turbulent and unsteady flow. As a result of interaction with the highly compressed air in the chamber, the liquid jet breaks up and forms minute droplets. These particles will in turn breakup because of aerodynamic forces, producing even smaller droplets. A number of models are available for analyzing the breakup of droplets; however, each model is typically reliable only over a limited parameter range. In this research three well-known models are applied for droplet breakup modeling and their results are compared. To obtain the details of the flow field, the Eulerian gas phase mass, momentum and energy conservation equations, as well as equations governing the transport of turbulence and fuel vapor mass fraction are solved together with equations of trajectory, momentum, mass and energy conservation for liquid droplets in Lagrangian form. The numerical solution is performed using the finite volume method and EPISO (Engine-PISO) algorithm. The results obtained from the models show that the breakup process in a high pressure environment significantly affects the penetration and evaporation rates of the spray, and the droplet size is determined by the balance between breakup and coalescence processes. It is also shown that the details of atomization in the nozzle do not significantly influence the ultimate size of droplets. It should be mentioned that droplet collision modeling has been taken into account in the computer code and is activated wherever necessary

  6. Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles.

    Science.gov (United States)

    Zhong, Xin; Duan, Fei

    2016-02-01

    The flow regimes and the deposition pattern have been investigated by changing the ethanol concentration in a water-based binary mixture droplet suspended with alumina nanoparticles. To visualize the flow patterns, Particle Image Velocimetry (PIV) has been applied in the binary liquid droplet containing the fluorescent microspheres. Three distinct flow regimes have been revealed in the evaporation. In Regime I, the vortices and chaotic flows are found to carry the particles to the liquid-vapor interface and to promote the formation of particle aggregation. The aggregates move inwards in Regime II as induced by the Marangoni flow along the droplet free surface. Regime III is dominated by the drying of the left water and the capillary flow driving particles radially outward is observed. The relative weightings of Regimes I and II, which are enhanced with an increasing load of ethanol, determine the motion of the nanoparticles and the formation of the final drying pattern.

  7. Acoustic Excitation of Liquid Fuel Droplets and Coaxial Jets

    Science.gov (United States)

    2009-01-01

    would also like to acknowledge the support of the NASA Microgravity Combustion program which made possible the completion of this research and Maj...fuels exposed to different acoustic excitation conditions in a laboratory environment and during free-fall (microgravity) conditions in a NASA drop tower...then sent to two amplifiers, one for each piezo-siren. The amplifiers were a Krohn-Hite (model 7500) and a Trek (model PZD2000A), which amplified the

  8. A Comparison of the Computation Times of Thermal Equilibrium and Non-equilibrium Models of Droplet Field in a Two-Fluid Three-Field Model

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ik Kyu; Cho, Heong Kyu; Kim, Jong Tae; Yoon, Han Young; Jeong, Jae Jun

    2007-12-15

    A computational model for transient, 3 dimensional 2 phase flows was developed by using 'unstructured-FVM-based, non-staggered, semi-implicit numerical scheme' considering the thermally non-equilibrium droplets. The assumption of the thermally equilibrium between liquid and droplets of previous studies was not used any more, and three energy conservation equations for vapor, liquid, liquid droplets were set up. Thus, 9 conservation equations for mass, momentum, and energy were established to simulate 2 phase flows. In this report, the governing equations and a semi-implicit numerical sheme for a transient 1 dimensional 2 phase flows was described considering the thermally non-equilibrium between liquid and liquid droplets. The comparison with the previous model considering the thermally non-equilibrium between liquid and liquid droplets was also reported.

  9. Acoustically levitated dancing drops: Self-excited oscillation to chaotic shedding

    Science.gov (United States)

    Lin, Po-Cheng; I, Lin

    2016-02-01

    We experimentally demonstrate self-excited oscillation and shedding of millimeter-sized water drops, acoustically levitated in a single-node standing waves cavity, by decreasing the steady acoustic wave intensity below a threshold. The perturbation of the acoustic field by drop motion is a possible source for providing an effective negative damping for sustaining the growing amplitude of the self-excited motion. Its further interplay with surface tension, drop inertia, gravity and acoustic intensities, select various self-excited modes for different size of drops and acoustic intensity. The large drop exhibits quasiperiodic motion from a vertical mode and a zonal mode with growing coupling, as oscillation amplitudes grow, until falling on the floor. For small drops, chaotic oscillations constituted by several broadened sectorial modes and corresponding zonal modes are self-excited. The growing oscillation amplitude leads to droplet shedding from the edges of highly stretched lobes, where surface tension no longer holds the rapid expanding flow.

  10. pH dependence of the kinetics of interfacial tension changes during protein adsorption from sessile droplets on FEP-Teflon

    NARCIS (Netherlands)

    VanderVegt, W; Norde, W; VanderMei, HC; Busscher, HJ

    Interfacial tension changes during protein adsorption at both the solid-liquid and the liquid-vapor interface were measured simultaneously by ADSA-P from sessile droplets of protein solutions on fluoroethylenepropylene-Teflon. Four globular proteins of similar size, viz. lysozyme, ribonuclease,

  11. Cylindrical acoustic levitator/concentrator

    Science.gov (United States)

    Kaduchak, Gregory; Sinha, Dipen N.

    2002-01-01

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.

  12. Effect of droplet size on the droplet behavior on the heterogeneous surface

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ho Yeon; Son, Sung Wan; Ha, ManYeong [Pusan National University, Busan (Korea, Republic of); Park, Yong Gap [Pusan National University, Busan (Korea, Republic of)

    2017-06-15

    The characteristics of a three-dimensional hemispherical droplet on a heterogeneous surface were studied using the Lattice Boltzmann method (LBM). The hydrophilic surface has a hydrophobic part at the center. The hemispherical droplets are located at the center of the heterogeneous surface. According to the contact angles of hydrophilic and hydrophobic bottom surfaces, the droplet either separates or reaches a new equilibrium state. The separation time varies according to the change in droplet size, and it affects the status of droplet separation. The droplet separation behavior was investigated by analyzing the velocity vector around the phase boundary line. The shape and separation time of a droplet are determined by the contact angle of each surface. The speed of droplet separation increases as the difference in contact angle increases between the hydrophobic surface and hydrophilic surface. The separation status and the separation time of a droplet are also determined by the change of the droplet size. As the size of the droplet decreases, the effect of surface tension decreases, and the separation time of the droplet also decreases. On the other hand, as the droplet becomes larger, the effect of surface tension increases and the time required for the droplet to separate also increases.

  13. Droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling for simpler and faster PCR assay using wire-guided manipulations.

    Science.gov (United States)

    You, David J; Yoon, Jeong-Yeol

    2012-09-04

    A computer numerical control (CNC) apparatus was used to perform droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling on a single superhydrophobic surface and a multi-chambered PCB heater. Droplets were manipulated using "wire-guided" method (a pipette tip was used in this study). This methodology can be easily adapted to existing commercial robotic pipetting system, while demonstrated added capabilities such as vibrational mixing, high-speed centrifuging of droplets, simple DNA extraction utilizing the hydrophobicity difference between the tip and the superhydrophobic surface, and rapid thermocycling with a moving droplet, all with wire-guided droplet manipulations on a superhydrophobic surface and a multi-chambered PCB heater (i.e., not on a 96-well plate). Serial dilutions were demonstrated for diluting sample matrix. Centrifuging was demonstrated by rotating a 10 μL droplet at 2300 round per minute, concentrating E. coli by more than 3-fold within 3 min. DNA extraction was demonstrated from E. coli sample utilizing the disposable pipette tip to cleverly attract the extracted DNA from the droplet residing on a superhydrophobic surface, which took less than 10 min. Following extraction, the 1500 bp sequence of Peptidase D from E. coli was amplified using rapid droplet thermocycling, which took 10 min for 30 cycles. The total assay time was 23 min, including droplet centrifugation, droplet DNA extraction and rapid droplet thermocycling. Evaporation from of 10 μL droplets was not significant during these procedures, since the longest time exposure to air and the vibrations was less than 5 min (during DNA extraction). The results of these sequentially executed processes were analyzed using gel electrophoresis. Thus, this work demonstrates the adaptability of the system to replace many common laboratory tasks on a single platform (through re-programmability), in rapid succession (using droplets), and with a high level of

  14. Effects of droplet interactions on droplet transport at intermediate Reynolds numbers

    Science.gov (United States)

    Shuen, Jian-Shun

    1987-01-01

    Effects of droplet interactions on drag, evaporation, and combustion of a planar droplet array, oriented perpendicular to the approaching flow, are studied numerically. The three-dimensional Navier-Stokes equations, with variable thermophysical properties, are solved using finite-difference techniques. Parameters investigated include the droplet spacing, droplet Reynolds number, approaching stream oxygen concentration, and fuel type. Results are obtained for the Reynolds number range of 5 to 100, droplet spacings from 2 to 24 diameters, oxygen concentrations of 0.1 and 0.2, and methanol and n-butanol fuels. The calculations show that the gasification rates of interacting droplets decrease as the droplet spacings decrease. The reduction in gasification rates is significant only at small spacings and low Reynolds numbers. For the present array orientation, the effects of interactions on the gasification rates diminish rapidly for Reynolds numbers greater than 10 and spacings greater than 6 droplet diameters. The effects of adjacent droplets on drag are shown to be small.

  15. Droplet size effects on film drainage between droplet and substrate.

    Science.gov (United States)

    Steinhaus, Benjamin; Spicer, Patrick T; Shen, Amy Q

    2006-06-06

    When a droplet approaches a solid surface, the thin liquid film between the droplet and the surface drains until an instability forms and then ruptures. In this study, we utilize microfluidics to investigate the effects of film thickness on the time to film rupture for water droplets in a flowing continuous phase of silicone oil deposited on solid poly(dimethylsiloxane) (PDMS) surfaces. The water droplets ranged in size from millimeters to micrometers, resulting in estimated values of the film thickness at rupture ranging from 600 nm down to 6 nm. The Stefan-Reynolds equation is used to model film drainage beneath both millimeter- and micrometer-scale droplets. For millimeter-scale droplets, the experimental and analytical film rupture times agree well, whereas large differences are observed for micrometer-scale droplets. We speculate that the differences in the micrometer-scale data result from the increases in the local thin film viscosity due to confinement-induced molecular structure changes in the silicone oil. A modified Stefan-Reynolds equation is used to account for the increased thin film viscosity of the micrometer-scale droplet drainage case.

  16. Internal flow inside droplets within a concentrated emulsion during droplet rearrangement

    Science.gov (United States)

    Leong, Chia Min; Gai, Ya; Tang, Sindy K. Y.

    2018-03-01

    Droplet microfluidics, in which each droplet serves as a micro-reactor, has found widespread use in high-throughput biochemical screening applications. These droplets are often concentrated at various steps to form a concentrated emulsion. As part of a serial interrogation and sorting process, such concentrated emulsions are typically injected into a tapered channel leading to a constriction that fits one drop at a time for the probing of droplet content in a serial manner. The flow physics inside the droplets under these flow conditions are not well understood but are critical for predicting and controlling the mixing of reagents inside the droplets as reactors. Here we investigate the flow field inside droplets of a concentrated emulsion flowing through a tapered microchannel using micro-particle image velocimetry. The confining geometry of the channel forces the number of rows of drops to reduce by one at specific and uniformly spaced streamwise locations, which are referred to as droplet rearrangement zones. Within each rearrangement zone, the phase-averaged velocity results show that the motion of the droplets involved in the rearrangement process, also known as a T1 event, creates vortical structures inside themselves and their adjacent droplets. These flow structures increase the circulation inside droplets up to 2.5 times the circulation in droplets at the constriction. The structures weaken outside of the rearrangement zones suggesting that the flow patterns created by the T1 process are transient. The time scale of circulation is approximately the same as the time scale of a T1 event. Outside of the rearrangement zones, flow patterns in the droplets are determined by the relative velocity between the continuous and disperse phases.

  17. Raman scattering temperature measurements for water vapor in nonequilibrium dispersed two-phase flow

    International Nuclear Information System (INIS)

    Anastasia, C.M.; Neti, S.; Smith, W.R.; Chen, J.C.

    1982-09-01

    The objective of this investigation was to determine the feasibility of using Raman scattering as a nonintrusive technique to measure vapor temperatures in dispersed two-phase flow. The Raman system developed for this investigation is described, including alignment of optics and optimization of the photodetector for photon pulse counting. Experimentally obtained Raman spectra are presented for the following single- and two-phase samples: liquid water, atmospheric nitrogen, superheated steam, nitrogen and water droplets in a high void fraction air/water mist, and superheated water vapor in nonequilibrium dispersed flow

  18. Droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling for simpler and faster PCR assay using wire-guided manipulations

    Directory of Open Access Journals (Sweden)

    You David J

    2012-09-01

    Full Text Available Abstract A computer numerical control (CNC apparatus was used to perform droplet centrifugation, droplet DNA extraction, and rapid droplet thermocycling on a single superhydrophobic surface and a multi-chambered PCB heater. Droplets were manipulated using “wire-guided” method (a pipette tip was used in this study. This methodology can be easily adapted to existing commercial robotic pipetting system, while demonstrated added capabilities such as vibrational mixing, high-speed centrifuging of droplets, simple DNA extraction utilizing the hydrophobicity difference between the tip and the superhydrophobic surface, and rapid thermocycling with a moving droplet, all with wire-guided droplet manipulations on a superhydrophobic surface and a multi-chambered PCB heater (i.e., not on a 96-well plate. Serial dilutions were demonstrated for diluting sample matrix. Centrifuging was demonstrated by rotating a 10 μL droplet at 2300 round per minute, concentrating E. coli by more than 3-fold within 3 min. DNA extraction was demonstrated from E. coli sample utilizing the disposable pipette tip to cleverly attract the extracted DNA from the droplet residing on a superhydrophobic surface, which took less than 10 min. Following extraction, the 1500 bp sequence of Peptidase D from E. coli was amplified using rapid droplet thermocycling, which took 10 min for 30 cycles. The total assay time was 23 min, including droplet centrifugation, droplet DNA extraction and rapid droplet thermocycling. Evaporation from of 10 μL droplets was not significant during these procedures, since the longest time exposure to air and the vibrations was less than 5 min (during DNA extraction. The results of these sequentially executed processes were analyzed using gel electrophoresis. Thus, this work demonstrates the adaptability of the system to replace many common laboratory tasks on a single platform (through re-programmability, in rapid succession (using droplets

  19. Multi-scale simulation of droplet-droplet interactions and coalescence

    CSIR Research Space (South Africa)

    Musehane, Ndivhuwo M

    2016-10-01

    Full Text Available Conference on Computational and Applied Mechanics Potchefstroom 3–5 October 2016 Multi-scale simulation of droplet-droplet interactions and coalescence 1,2Ndivhuwo M. Musehane?, 1Oliver F. Oxtoby and 2Daya B. Reddy 1. Aeronautic Systems, Council... topology changes that result when droplets interact. This work endeavours to eliminate the need to use empirical correlations based on phenomenological models by developing a multi-scale model that predicts the outcome of a collision between droplets from...

  20. Modeling and measurement of boiling point elevation during water vaporization from aqueous urea for SCR applications

    International Nuclear Information System (INIS)

    Dan, Ho Jin; Lee, Joon Sik

    2016-01-01

    Understanding of water vaporization is the first step to anticipate the conversion process of urea into ammonia in the exhaust stream. As aqueous urea is a mixture and the urea in the mixture acts as a non-volatile solute, its colligative properties should be considered during water vaporization. The elevation of boiling point for urea water solution is measured with respect to urea mole fraction. With the boiling-point elevation relation, a model for water vaporization is proposed underlining the correction of the heat of vaporization of water in the urea water mixture due to the enthalpy of urea dissolution in water. The model is verified by the experiments of water vaporization as well. Finally, the water vaporization model is applied to the water vaporization of aqueous urea droplets. It is shown that urea decomposition can begin before water evaporation finishes due to the boiling-point elevation

  1. Modeling and measurement of boiling point elevation during water vaporization from aqueous urea for SCR applications

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Ho Jin; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of)

    2016-03-15

    Understanding of water vaporization is the first step to anticipate the conversion process of urea into ammonia in the exhaust stream. As aqueous urea is a mixture and the urea in the mixture acts as a non-volatile solute, its colligative properties should be considered during water vaporization. The elevation of boiling point for urea water solution is measured with respect to urea mole fraction. With the boiling-point elevation relation, a model for water vaporization is proposed underlining the correction of the heat of vaporization of water in the urea water mixture due to the enthalpy of urea dissolution in water. The model is verified by the experiments of water vaporization as well. Finally, the water vaporization model is applied to the water vaporization of aqueous urea droplets. It is shown that urea decomposition can begin before water evaporation finishes due to the boiling-point elevation.

  2. Preventing droplet deformation during dielectrophoretic centering of a compound emulsion droplet

    Science.gov (United States)

    Randall, Greg; Blue, Brent

    2012-11-01

    Compound droplets, or droplets-within-droplets, are traditionally key components in applications ranging from drug delivery to the food industry. Presently, millimeter-sized compound droplets are precursors for shell targets in inertial fusion energy work. However, a key constraint in target fabrication is a uniform shell wall thickness, which in turn requires a centered core droplet in the compound droplet precursor. Previously, Bei et al. (2009, 2010) have shown that compound droplets could be centered in a static fluid using an electric field of 0.7 kV/cm at 20 MHz. Randall et al. (2012) developed a process to center the core of a moving compound droplet, though the ~kV/cm field induced small (fluid mechanics and interfacial rheology perspective and we discuss the effective interfacial charge from an emulsifier and its impact on centering. Work funded by General Atomics Internal R&D.

  3. The SERS and TERS effects obtained by gold droplets on top of Si nanowires.

    Science.gov (United States)

    Becker, M; Sivakov, V; Andrä, G; Geiger, R; Schreiber, J; Hoffmann, S; Michler, J; Milenin, A P; Werner, P; Christiansen, S H

    2007-01-01

    We show that hemispherical gold droplets on top of silicon nanowires when grown by the vapor-liquid-solid (VLS) mechanism, can produce a significant enhancement of Raman scattered signals. Signal enhancement for a few or even just single gold droplets is demonstrated by analyzing the enhanced Raman signature of malachite green molecules. For this experiment, trenches (approximately 800 nm wide) were etched in a silicon-on-insulator (SOI) wafer along crystallographic directions that constitute sidewalls ({110} surfaces) suitable for the growth of silicon nanowires in directions with the intention that the gold droplets on the silicon nanowires can meet somewhere in the trench when growth time is carefully selected. Another way to realize gold nanostructures in close vicinity is to attach a silicon nanowire with a gold droplet onto an atomic force microscopy (AFM) tip and to bring this tip toward another gold-coated AFM tip where malachite green molecules were deposited prior to the measurements. In both experiments, signal enhancement of characteristic Raman bands of malachite green molecules was observed. This indicates that silicon nanowires with gold droplets atop can act as efficient probes for tip-enhanced Raman spectroscopy (TERS). In our article, we show that a nanowire TERS probe can be fabricated by welding nanowires with gold droplets to AFM tips in a scanning electron microscope (SEM). TERS tips made from nanowires could improve the spatial resolution of Raman spectroscopy so that measurements on the nanometer scale are possible.

  4. Formation of microbeads during vapor explosions of Field's metal in water

    KAUST Repository

    Kouraytem, Nadia

    2016-06-17

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field\\'s metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field\\'s metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  5. Formation of microbeads during vapor explosions of Field's metal in water

    KAUST Repository

    Kouraytem, Nadia; Li, Erqiang; Thoroddsen, Sigurdur T

    2016-01-01

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field's metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field's metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  6. Droplet Combustion and Non-Reactive Shear-Coaxial Jets with Transverse Acoustic Excitation

    Science.gov (United States)

    2012-06-01

    for this. Recent studies at UCLA and at NASA Glenn Research Center by Dattarajan et al. [20, 21] have focused on methanol droplet combustion...via Trek PZD2000A high-voltage amplifiers, to each piezo-siren. The waveform generators output signals were locked in frequency. However, their phase...1.3. Verify the wire on Channel 1 of the Tenma oscilloscope (Model No. 72-6800) comes from the output voltage monitor on the Trek -1 amplifier

  7. Single-walled carbon nanotubes nanocomposite microacoustic organic vapor sensors

    Energy Technology Data Exchange (ETDEWEB)

    Penza, M. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy)]. E-mail: michele.penza@brindisi.enea.it; Tagliente, M.A. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy); Aversa, P. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy); Cassano, G. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy); Capodieci, L. [ENEA, Materials and New Technologies Unit, SS. 7, Appia, km 714, 72100 Brindisi (Italy)

    2006-07-15

    We have developed highly sensitive microacoustic vapor sensors based on surface acoustic waves (SAWs) configured as oscillators using a two-port resonator 315, 433 and 915 MHz device. A nanocomposite film of single-walled carbon nanotubes (SWCNTs) embedded in a cadmium arachidate (CdA) amphiphilic organic matrix was prepared by Langmuir-Blodgett technique with a different SWCNTs weight filler content onto SAW transducers as nanosensing interface for vapor detection, at room temperature. The structural properties and surface morphology of the nanocomposite have been examined by X-ray diffraction, transmission and scanning electron microscopy, respectively. The sensing properties of SWCNTs nanocomposite LB films consisting of tangled nanotubules have been also investigated by using Quartz Crystal Microbalance 10 MHz AT-cut quartz resonators. The measured acoustic sensing characteristics indicate that the room-temperature SAW sensitivity to polar and nonpolar tested organic molecules (ethanol, ethylacetate, toluene) of the SWCNTs-in-CdA nanocomposite increases with the filler content of SWCNTs incorporated in the nanocomposite; also the SWCNTs-in-CdA nanocomposite vapor sensitivity results significantly enhanced with respect to traditional organic molecular cavities materials with a linearity in the frequency change response for a given nanocomposite weight composition and a very low sub-ppm limit of detection.

  8. Compact Raman Lidar Measurement of Liquid and Vapor Phase Water Under the Influence of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Shiina Tatsuo

    2016-01-01

    Full Text Available A compact Raman lidar has been developed for studying phase changes of water in the atmosphere under the influence of ionization radiation. The Raman lidar is operated at the wavelength of 349 nm and backscattered Raman signals of liquid and vapor phase water are detected at 396 and 400 nm, respectively. Alpha particles emitted from 241Am of 9 MBq ionize air molecules in a scattering chamber, and the resulting ions lead to the formation of liquid water droplets. From the analysis of Raman signal intensities, it has been found that the increase in the liquid water Raman channel is approximately 3 times as much as the decrease in the vapor phase water Raman channel, which is consistent with the theoretical prediction based on the Raman cross-sections. In addition, the radius of the water droplet is estimated to be 0.2 μm.

  9. Novel Acoustic Loading of a Mass Spectrometer: Toward Next-Generation High-Throughput MS Screening.

    Science.gov (United States)

    Sinclair, Ian; Stearns, Rick; Pringle, Steven; Wingfield, Jonathan; Datwani, Sammy; Hall, Eric; Ghislain, Luke; Majlof, Lars; Bachman, Martin

    2016-02-01

    High-throughput, direct measurement of substrate-to-product conversion by label-free detection, without the need for engineered substrates or secondary assays, could be considered the "holy grail" of drug discovery screening. Mass spectrometry (MS) has the potential to be part of this ultimate screening solution, but is constrained by the limitations of existing MS sample introduction modes that cannot meet the throughput requirements of high-throughput screening (HTS). Here we report data from a prototype system (Echo-MS) that uses acoustic droplet ejection (ADE) to transfer femtoliter-scale droplets in a rapid, precise, and accurate fashion directly into the MS. The acoustic source can load samples into the MS from a microtiter plate at a rate of up to three samples per second. The resulting MS signal displays a very sharp attack profile and ions are detected within 50 ms of activation of the acoustic transducer. Additionally, we show that the system is capable of generating multiply charged ion species from simple peptides and large proteins. The combination of high speed and low sample volume has significant potential within not only drug discovery, but also other areas of the industry. © 2015 Society for Laboratory Automation and Screening.

  10. A comparative study of the mass and heat transfer dynamics of evaporating ethanol/water, methanol/water, and 1-propanol/water aerosol droplets.

    Science.gov (United States)

    Hopkins, Rebecca J; Reid, Jonathan P

    2006-02-23

    The mass and heat transfer dynamics of evaporating multicomponent alcohol/water droplets have been probed experimentally by examining changes in the near surface droplet composition and average droplet temperature using cavity-enhanced Raman scattering (CERS) and laser-induced fluorescence (LIF). The CERS technique provides a sensitive measure of the concentration of the volatile alcohol component in the outer shell of the droplet, due to the exponential relationship between CERS intensity and species concentration. Such volatile droplets, which are probed on a millisecond time scale, evaporate nonisothermally, resulting in both temperature and concentration gradients, as confirmed by comparisons between experimental measurements and quasi-steady state model calculations. An excellent agreement between the experimental evaporation trends and quasi-steady state model predictions is observed. An unexpectedly slow evaporation rate is observed for the evaporation of 1-propanol from a multicomponent droplet when compared to the model; possible explanations for this observation are discussed. In addition, the propagation depth of the CERS signal, and, therefore, the region of the droplet from which compositional measurements are made, can be estimated. Such measurements, when considered in conjunction with quasi-steady state theory, can allow droplet temperature gradients to be measured and vapor pressures and activity coefficients of components within the droplet to be determined.

  11. Droplet Growth

    Science.gov (United States)

    Marder, Michael Paolo

    When a mixture of two materials, such as aluminum and tin, or alcohol and water, is cooled below a certain temperature, the two components begin to separate. If one component is dilute in the other, it may separate out in the form of small spheres, and these will begin to enlarge, depleting the supersaturated material around them. If the dynamics is sufficiently slow, thermodynamics gives one considerable information about how the droplets grow. Two types of experiment have explored this behavior and given puzzling results. Nucleation experiments measure the rate at which droplets initially appear from a seemingly homogeneous mixture. Near the critical point in binary liquids, experiments conducted in the 1960's and early 1970's showed that nucleation was vastly slower than theory seemed to predict. The resolution of this problem arises by considering in detail the dynamics of growing droplets and comparing it with what experiments actually measure. Here will be presented a more detailed comparison of theory and experiment than has before been completed, obtaining satisfactory agreement with no free parameters needed. A second type of experiment measures droplet size distributions after long times. In the late stage, droplets compete with each other for material, a few growing at the expense of others. A theory first proposed by Lifshitz and Slyozov claims that this distribution, properly scaled, should be universal, and independent of properties of materials. Yet experimental measurements consistently find distributions that are more broad and squat than the theory would predict. Satisfactory agreement with experiment can be achieved by considering two points. First, one must study the complete time development of droplet size distributions, to understand when the asymptotic regime obtains. Second, droplet size distributions are spread by correlations between droplets. If one finds a small droplet, it is small because large droplets nearby are competing with it

  12. The acoustic radiation force on a small thermoviscous or thermoelastic particle suspended in a viscous and heat-conducting fluid

    Science.gov (United States)

    Karlsen, Jonas; Bruus, Henrik

    2015-11-01

    We present a theoretical analysis (arxiv.org/abs/1507.01043) of the acoustic radiation force on a single small particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid. Our analysis places no restrictions on the viscous and thermal boundary layer thicknesses relative to the particle radius, but it assumes the particle to be small in comparison to the acoustic wavelength. This is the limit relevant to scattering of ultrasound waves from sub-micrometer particles. For particle sizes smaller than the boundary layer widths, our theory leads to profound consequences for the acoustic radiation force. For example, for liquid droplets and solid particles suspended in gasses we predict forces orders of magnitude larger than expected from ideal-fluid theory. Moreover, for certain relevant choices of materials, we find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to applications in acoustic levitation or separation of micro-particles in gases, as well as to handling of μm- and nm-sized particles such as bacteria and vira in lab-on-a-chip systems.

  13. Aerosols generated by 239PU and 233U droplets burning in air

    International Nuclear Information System (INIS)

    Nelson, L.S.; Raabe, O.G.

    1978-01-01

    The inhalation hazards of radioactive aerosols produced by the explosive disruption and subsequent combustion of metallic plutonium in air are not adequately understood. Results of a study to determine whether uranium can be substituted for plutonium in such a situation in which experiments were performed under identical conditions with laser-ignited, single, freely falling droplets of 239 Pu and 233 U are reported. The total amounts of aerosol produced were studied quantitatively as a function of time during the combustion. Also, particle size distributions of selected aerosols were studied with aerodynamic particle separation techniques. Results showed that the ultimate quantity of aerosols, their final particle size distributions, and depositions as a function of time are not identical mainly because of the different vapor pressures of the metals, and the unlike degrees of violence of the explosions of the droplets

  14. A computational study of droplet evaporation with fuel vapor jet ejection induced by localized heat sources

    KAUST Repository

    Sim, Jaeheon; Im, Hong G.; Chung, Suk-Ho

    2015-01-01

    parametric study demonstrated that the Marangoni effect is indeed significant at realistic droplet combustion conditions, resulting in a higher evaporation constant. A modified Marangoni number was derived in order to represent the surface force

  15. Rectified heat transfer into translating and pulsating vapor bubbles

    NARCIS (Netherlands)

    Hao, Y.; Prosperetti, Andrea

    2002-01-01

    It is well known that, when a stationary vapor bubble is subject to a sufficiently intense acoustic field, it will grow by rectified heat transfer even in a subcooled liquid. The object of this paper is to study how translation, and the ensuing convective effects, influence this process. It is shown

  16. [Micro-droplet characterization and its application for amino acid detection in droplet microfluidic system].

    Science.gov (United States)

    Yuan, Huiling; Dong, Libing; Tu, Ran; Du, Wenbin; Ji, Shiru; Wang, Qinhong

    2014-01-01

    Recently, the droplet microfluidic system attracts interests due to its high throughput and low cost to detect and screen. The picoliter micro-droplets from droplet microfluidics are uniform with respect to the size and shape, and could be used as monodispensed micro-reactors for encapsulation and detection of single cell or its metabolites. Therefore, it is indispensable to characterize micro-droplet and its application from droplet microfluidic system. We first constructed the custom-designed droplet microfluidic system for generating micro-droplets, and then used the micro-droplets to encapsulate important amino acids such as glutamic acid, phenylalanine, tryptophan or tyrosine to test the droplets' properties, including the stability, diffusivity and bio-compatibility for investigating its application for amino acid detection and sorting. The custom-designed droplet microfluidic system could generate the uniformed micro-droplets with a controllable size between 20 to 50 microm. The micro-droplets could be stable for more than 20 h without cross-contamination or fusion each other. The throughput of detection and sorting of the system is about 600 micro-droplets per minute. This study provides a high-throughput platform for the analysis and screening of amino acid-producing microorganisms.

  17. Self-organized morphological evolution and dewetting in solvent vapor annealing of spin coated polymer blend nanostructures.

    Science.gov (United States)

    Roy, Sudeshna; Sharma, Ashutosh

    2015-07-01

    Dewetting pathways, kinetics and morphologies of thin films of phase separating polymer blends are governed by the relative mobilities of the two components. We characterize the morphological transformations of the nanostructures of a PS/PMMA blend by annealing in toluene and chloroform vapors. Toluene leads to faster reorganization of PS, whereas chloroform engenders the opposite effect. Spin coating produces a very rough PMMA rich layer that completely wets the substrate and forms a plethora of slender columns protruding through the continuous PS rich layer on top. The nanostructures were stable under long thermal annealing but in the vapor annealing, phase separation and dewetting occurred readily to form the equilibrium structures of dewetted droplets of PS on top of PMMA which also climbed around the PS droplets to form rims. Toluene and chloroform annealing required around 50 h and 1 h respectively to attain the equilibrium. Substantial differences are observed in the intermediate morphologies (heights of nanostructures, roughness and size). PMMA columns remained embedded in the dewetted PS droplets, whereas a high mobility of PMMA in chloroform allowed its rapid evacuation during dewetting to produce an intermediate swiss-cheese like morphology of PS domains. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Triggering and Energetics of a Single Drop Vapor Explosion: The Role of Entrapped Non-Condensable Gases

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Roberta Concilio [Royal Institute of Technology, Stockholm (Sweden)

    2009-11-15

    The present work pertains to a research program to study Molten Fuel-Coolant Interactions (MFCI), which may occur in a nuclear power plant during a hypothetical severe accident. Dynamics of the hot liquid (melt) droplet and the volatile liquid (coolant) were investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography. The current study is concerned with the MISTEE-NCG test campaign, in which a considerable amount of non-condensable gases (NCG) are present in the film that enfolds the molten droplet. The SHARP images for the MISTEE-NCG tests were analyzed and special attention was given to the morphology (aspect ratio) and dynamics of the air/ vapor bubble, as well as the melt drop preconditioning. Energetics of the vapor explosion (conversion ratio) were also evaluated. The MISTEE.NCG tests showed two main aspects when compared to the MISTEE test series (without entrapped air). First, analysis showed that the melt preconditioning still strongly depends on the coolant subcooling. Second, in respect to the energetics, the tests consistently showed a reduced conversion ratio compared to that of the MISTEE test series

  19. Ethanol vapor-induced fabrication of colloidal crystals with controllable layers and photonic properties.

    Science.gov (United States)

    Zhou, Chuanqiang; Gong, Xiangxiang; Han, Jie; Guo, Rong

    2015-04-07

    A novel fabrication method for colloidal crystals has been proposed for the first time in this research. In this method, a suspension droplet containing colloidal particles was first spread onto a glass substrate placed in an ethanol vapor environment, and then the droplet was extracted from its center. In that case, the contact angle of the droplet reduced and the contact line receded toward the center, during which the colloidal particles self-assembled and immobilized forming a 2D colloidal crystal film on the substrate upon drying the liquid film. Alternately spreading and drying of suspension films could construct fine multi-layers of colloidal crystals, while the ethanol fraction in the suspension would be used to control roughly but rapidly the layer numbers of colloidal crystals. It was also found that the photonic properties of resultant colloidal crystal films were elevated by increasing their thickness.

  20. Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of ultrathin block copolymer films.

    Science.gov (United States)

    Huang, Changchun; Wen, Gangyao; Li, Jingdan; Wu, Tao; Wang, Lina; Xue, Feifei; Li, Hongfei; Shi, Tongfei

    2016-09-15

    Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of spin-coated polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films (dewetting of the films with different thicknesses occur via the spinodal dewetting and the nucleation and growth mechanisms, respectively. The PS-b-PMMA films rupture into droplets which first coalesce into large ones to reduce the surface free energy. Then the large droplets rupture into small ones to increase the contact area between PMMA blocks and acetone molecules resulting from ultimate migration of PMMA blocks to droplet surface, which is a novel dewetting process observed in spin-coated films for the first time. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Droplet generating device for droplet-based μTAS using electro-conjugate fluid

    Science.gov (United States)

    Iijima, Y.; Takemura, K.; Edamura, K.

    2017-05-01

    Droplet-based μTAS, which carries out biochemical inspection and synthesis by handling samples as droplets on a single chip, has been attracting attentions in recent years. Although miniaturization of a chip is progressed, there are some problems in miniaturization of a whole system because of the necessity to connect syringe pumps to the chip. Thus, this study aims to realize a novel droplets generating device for droplet-based μTAS using electro-conjugate fluid (ECF). The ECF is a dielectric liquid generating a powerful flow when subjected to high DC voltage. The ECF flow generation allows us to realize a tiny hydraulic power source. Using the ECF flow, we can develop a droplet generating device for droplet-based μTAS by placing minute electrode pairs in flow channels. The device contains two channels filled with the ECF, which are dispersed and continuous phases meeting at a T-junction. When a sample in the dispersed phase is injected by the ECF flow to the continuous phase at T-junction, droplets are generated by shearing force between the two phases. We conducted droplet generating experiment and confirmed that droplets are successfully generated when the flow rate of the continuous phase is between 90 and 360 mm3 s-1, and the flow rate of the dispersed phase is between 10 and 40 mm3 s-1. We also confirmed that the droplet diameter and the droplet production rate are controllable by tuning the applied voltage to the electrode pairs.

  2. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    Science.gov (United States)

    Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.

    1998-08-18

    The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.

  3. Lossless droplet transfer of droplet-based microfluidic analysis

    Science.gov (United States)

    Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Page, Jason S [Kennewick, WA; Smith, Richard D [Richland, WA

    2011-11-22

    A transfer structure for droplet-based microfluidic analysis is characterized by a first conduit containing a first stream having at least one immiscible droplet of aqueous material and a second conduit containing a second stream comprising an aqueous fluid. The interface between the first conduit and the second conduit can define a plurality of apertures, wherein the apertures are sized to prevent exchange of the first and second streams between conduits while allowing lossless transfer of droplets from the first conduit to the second conduit through contact between the first and second streams.

  4. A Study of Acoustic Forcing on Gas Centered Swirl Coaxial Reacting Flows (Conference Paper with Briefing Charts)

    Science.gov (United States)

    2017-01-09

    chemiluminescence images were taken to capture the liquid fuel film, droplets, and flame response under acoustic excitation . For the acoustic forcing...chemiluminescence was also imaged using a HiCATT intensifier with a Semrock filter (FF01-320/40). The shadowgraph camera was set to a gate of 7 µs...an operating chamber pressure of 3.2 MPa and varying momentum flux ratios were investigated. High-speed shadowgraph images along with OH* and CH

  5. Gallium-Based Room-Temperature Liquid Metals: Actuation and Manipulation of Droplets and Flows

    Directory of Open Access Journals (Sweden)

    Leily Majidi

    2017-08-01

    Full Text Available Gallium-based room-temperature liquid metals possess extremely valuable properties, such as low toxicity, low vapor pressure, and high thermal and electrical conductivity enabling them to become suitable substitutes for mercury and beyond in wide range of applications. When exposed to air, a native oxide layer forms on the surface of gallium-based liquid metals which mechanically stabilizes the liquid. By removing or reconstructing the oxide skin, shape and state of liquid metal droplets and flows can be manipulated/actuated desirably. This can occur manually or in the presence/absence of a magnetic/electric field. These methods lead to numerous useful applications such as soft electronics, reconfigurable devices, and soft robots. In this mini-review, we summarize the most recent progresses achieved on liquid metal droplet generation and actuation of gallium-based liquid metals with/without an external force.

  6. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells.

    Science.gov (United States)

    Cole, Russell H; Tang, Shi-Yang; Siltanen, Christian A; Shahi, Payam; Zhang, Jesse Q; Poust, Sean; Gartner, Zev J; Abate, Adam R

    2017-08-15

    Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. The core technology is a fluorescence-activated droplet sorter coupled to a specialized substrate that together act as a picoliter droplet and single-cell printer, enabling high-throughput generation of intricate arrays of droplets, cells, and microparticles. Printed droplet microfluidics provides a programmable and robust technology to construct arrays of defined cell and reagent combinations and to integrate multiple measurement modalities together in a single assay.

  7. Multiple scattering of light by water cloud droplets with external and internal mixing of black carbon aerosols

    International Nuclear Information System (INIS)

    Wang Hai-Hua; Sun Xian-Ming

    2012-01-01

    The mixture of water cloud droplets with black carbon impurities is modeled by external and internal mixing models. The internal mixing model is modeled with a two-layered sphere (water cloud droplets containing black carbon (BC) inclusions), and the single scattering and absorption characteristics are calculated at the visible wavelength of 0.55 μm by using the Lorenz—Mie theory. The external mixing model is developed assuming that the same amount of BC particles are mixed with the water droplets externally. The multiple scattering characteristics are computed by using the Monte Carlo method. The results show that when the size of the BC aerosol is small, the reflection intensity of the internal mixing model is bigger than that of the external mixing model. However, if the size of the BC aerosol is big, the absorption of the internal mixing model will be larger than that of the external mixing model. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Investigation of droplet nucleation in CCS relevant systems - design and testing of the expansion chamber

    Science.gov (United States)

    Čenský, Miroslav; Hrubý, Jan; Vinš, Václav; Hykl, Jiří; Šmíd, Bohuslav

    2018-06-01

    A unique in-house designed experimental apparatus for investigation of nucleation of droplets in CCS relevant systems is being developed by the present team. The apparatus allows simulating various processes relevant to CCS technologies. Gaseous mixtures with CO2 are prepared in a Mixture Preparation Device (MPD) based on accurate adjustment of flow rates of individual components [EPJ Web of Conferences 143, 02140 (2017)]. The mixture then flows into an expansion chamber, where it undergoes a rapid adiabatic expansion. As a consequence of adiabatic cooling, the mixture becomes supersaturated and nucleation and simultaneous growth of droplets occurs. In this study, we describe the design and testing of the expansion part of the experimental setup. The rapid expansion was realized using two valve systems, one for low pressures (up to 0.7 MPa) and the other for high pressures (up to 10 MPa). A challenge for a proper design of the expansion system is avoiding acoustic oscillations. These can occur either in the mode of Helmholtz resonator, where the compressible gas in the chamber acts as a spring and the rapidly moving gas in the valve system as a mass, or in the "flute" mode, where acoustic waves are generated in a long outlet tubing.

  9. Unusual behavior in magnesium-copper cluster matter produced by helium droplet mediated deposition

    Energy Technology Data Exchange (ETDEWEB)

    Emery, S. B., E-mail: samuel.emery@navy.mil; Little, B. K. [University of Dayton Research Institute, 300 College Park, Dayton, Ohio 45469 (United States); Air Force Research Laboratory, Munitions Directorate, 2306 Perimeter Rd., Eglin AFB, Florida 32542 (United States); Xin, Y. [National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Ridge, C. J.; Lindsay, C. M. [Air Force Research Laboratory, Munitions Directorate, 2306 Perimeter Rd., Eglin AFB, Florida 32542 (United States); Buszek, R. J. [ERC Inc., Edwards AFB, California 93524 (United States); Boatz, J. A. [Air Force Research Laboratory, Aerospace System Directorate, Edwards AFB, California 93524 (United States); Boyle, J. M. [Naval Surface Warfare Center Indian Head Explosive Ordnance Technology Division, Indian Head, Maryland 20640 (United States)

    2015-02-28

    We demonstrate the ability to produce core-shell nanoclusters of materials that typically undergo intermetallic reactions using helium droplet mediated deposition. Composite structures of magnesium and copper were produced by sequential condensation of metal vapors inside the 0.4 K helium droplet baths and then gently deposited onto a substrate for analysis. Upon deposition, the individual clusters, with diameters ∼5 nm, form a cluster material which was subsequently characterized using scanning and transmission electron microscopies. Results of this analysis reveal the following about the deposited cluster material: it is in the un-alloyed chemical state, it maintains a stable core-shell 5 nm structure at sub-monolayer quantities, and it aggregates into unreacted structures of ∼75 nm during further deposition. Surprisingly, high angle annular dark field scanning transmission electron microscopy images revealed that the copper appears to displace the magnesium at the core of the composite cluster despite magnesium being the initially condensed species within the droplet. This phenomenon was studied further using preliminary density functional theory which revealed that copper atoms, when added sequentially to magnesium clusters, penetrate into the magnesium cores.

  10. Droplet based microfluidics

    International Nuclear Information System (INIS)

    Seemann, Ralf; Brinkmann, Martin; Pfohl, Thomas; Herminghaus, Stephan

    2012-01-01

    Droplet based microfluidics is a rapidly growing interdisciplinary field of research combining soft matter physics, biochemistry and microsystems engineering. Its applications range from fast analytical systems or the synthesis of advanced materials to protein crystallization and biological assays for living cells. Precise control of droplet volumes and reliable manipulation of individual droplets such as coalescence, mixing of their contents, and sorting in combination with fast analysis tools allow us to perform chemical reactions inside the droplets under defined conditions. In this paper, we will review available drop generation and manipulation techniques. The main focus of this review is not to be comprehensive and explain all techniques in great detail but to identify and shed light on similarities and underlying physical principles. Since geometry and wetting properties of the microfluidic channels are crucial factors for droplet generation, we also briefly describe typical device fabrication methods in droplet based microfluidics. Examples of applications and reaction schemes which rely on the discussed manipulation techniques are also presented, such as the fabrication of special materials and biophysical experiments.

  11. Fast electric control of the droplet size in a microfluidic T-junction droplet generator

    Science.gov (United States)

    Shojaeian, Mostafa; Hardt, Steffen

    2018-05-01

    The effect of DC electric fields on the generation of droplets of water and xanthan gum solutions in sunflower oil at a microfluidic T-junction is experimentally studied. The electric field leads to a significant reduction of the droplet diameter, by about a factor of 2 in the case of water droplets. The droplet size can be tuned by varying the electric field strength, an effect that can be employed to produce a stream of droplets with a tailor-made size sequence. Compared to the case of purely hydrodynamic droplet production without electric fields, the electric control has about the same effect on the droplet size if the electric stress at the liquid/liquid interface is the same as the hydrodynamic stress.

  12. Can a droplet break up under flow without elongating? Fragmentation of smectic monodisperse droplets

    Science.gov (United States)

    Courbin, L.; Engl, W.; Panizza, P.

    2004-06-01

    We study the fragmentation under shear flow of smectic monodisperse droplets at high volume fraction. Using small angle light scattering and optical microscopy, we reveal the existence of a break-up mechanism for which the droplets burst into daughter droplets of the same size. Surprisingly, this fragmentation process, which is strain controlled and occurs homogeneously in the cell, does not require any transient elongation of the droplets. Systematic experiments as a function of the initial droplet size and the applied shear rate show that the rupture is triggered by an instability of the inner droplet structure.

  13. Dual-nozzle microfluidic droplet generator

    Science.gov (United States)

    Choi, Ji Wook; Lee, Jong Min; Kim, Tae Hyun; Ha, Jang Ho; Ahrberg, Christian D.; Chung, Bong Geun

    2018-05-01

    The droplet-generating microfluidics has become an important technique for a variety of applications ranging from single cell analysis to nanoparticle synthesis. Although there are a large number of methods for generating and experimenting with droplets on microfluidic devices, the dispensing of droplets from these microfluidic devices is a challenge due to aggregation and merging of droplets at the interface of microfluidic devices. Here, we present a microfluidic dual-nozzle device for the generation and dispensing of uniform-sized droplets. The first nozzle of the microfluidic device is used for the generation of the droplets, while the second nozzle can accelerate the droplets and increase the spacing between them, allowing for facile dispensing of droplets. Computational fluid dynamic simulations were conducted to optimize the design parameters of the microfluidic device.

  14. Electrical actuation of dielectric droplets

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-a-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets; however, the actuation of dielectric droplets has remained relatively unexplored, despite the advantages associated with the use of a dielectric droplet. This paper presents modeling and experimental results on the electrical actuation of dielectric droplets between two flat plates. A first-order analytical model, based on the energy-minimization principle, is developed to estimate the electrical actuation force on a dielectric droplet as it moves between two flat plates. Two versions of this analytical model are benchmarked for their suitability and accuracy against a detailed numerical model. The actuation force prediction is then combined with available semi-analytical expressions for predicting the forces opposing droplet motion to develop a model that predicts transient droplet motion under electrical actuation. Electrical actuation of dielectric droplets is experimentally demonstrated by moving transformer oil droplets between two flat plates under the influence of an actuation voltage. Droplet velocities and their dependence on the plate spacing and the applied voltage are experimentally measured and showed reasonable agreement with predictions from the models developed

  15. Optical calorimetry in microfluidic droplets.

    Science.gov (United States)

    Chamoun, Jacob; Pattekar, Ashish; Afshinmanesh, Farzaneh; Martini, Joerg; Recht, Michael I

    2018-05-29

    A novel microfluidic calorimeter that measures the enthalpy change of reactions occurring in 100 μm diameter aqueous droplets in fluoropolymer oil has been developed. The aqueous reactants flow into a microfluidic droplet generation chip in separate fluidic channels, limiting contact between the streams until immediately before they form the droplet. The diffusion-driven mixing of reactants is predominantly restricted to within the droplet. The temperature change in droplets due to the heat of reaction is measured optically by recording the reflectance spectra of encapsulated thermochromic liquid crystals (TLC) that are added to one of the reactant streams. As the droplets travel through the channel, the spectral characteristics of the TLC represent the internal temperature, allowing optical measurement with a precision of ≈6 mK. The microfluidic chip and all fluids are temperature controlled, and the reaction heat within droplets raises their temperature until thermal diffusion dissipates the heat into the surrounding oil and chip walls. Position resolved optical temperature measurement of the droplets allows calculation of the heat of reaction by analyzing the droplet temperature profile over time. Channel dimensions, droplet generation rate, droplet size, reactant stream flows and oil flow rate are carefully balanced to provide rapid diffusional mixing of reactants compared to thermal diffusion, while avoiding thermal "quenching" due to contact between the droplets and the chip walls. Compared to conventional microcalorimetry, which has been used in this work to provide reference measurements, this new continuous flow droplet calorimeter has the potential to perform titrations ≈1000-fold faster while using ≈400-fold less reactants per titration.

  16. Investigation of droplet nucleation in CCS relevant systems – design and testing of the expansion chamber

    Directory of Open Access Journals (Sweden)

    Čenský Miroslav

    2018-01-01

    Full Text Available A unique in-house designed experimental apparatus for investigation of nucleation of droplets in CCS relevant systems is being developed by the present team. The apparatus allows simulating various processes relevant to CCS technologies. Gaseous mixtures with CO2 are prepared in a Mixture Preparation Device (MPD based on accurate adjustment of flow rates of individual components [EPJ Web of Conferences 143, 02140 (2017]. The mixture then flows into an expansion chamber, where it undergoes a rapid adiabatic expansion. As a consequence of adiabatic cooling, the mixture becomes supersaturated and nucleation and simultaneous growth of droplets occurs. In this study, we describe the design and testing of the expansion part of the experimental setup. The rapid expansion was realized using two valve systems, one for low pressures (up to 0.7 MPa and the other for high pressures (up to 10 MPa. A challenge for a proper design of the expansion system is avoiding acoustic oscillations. These can occur either in the mode of Helmholtz resonator, where the compressible gas in the chamber acts as a spring and the rapidly moving gas in the valve system as a mass, or in the “flute” mode, where acoustic waves are generated in a long outlet tubing.

  17. Out of the frying pan: Explosive droplet dynamics

    Science.gov (United States)

    Marston, Jeremy; Li, Chao; Truscott, Tadd; Mansoor, Mohammad

    2017-11-01

    Regardless of culinary skills, most people who have used a stove top have encountered the result of water interacting with hot oil. The phenomenon is particularly memorable if the result is impingement of hot fluid on one's skin. Whilst ubiquitous, a deeper probing of this phenomenon reveals a vastly rich dynamical process. We use high-speed imaging to investigate the idealized case of a single water droplet impacting onto a hot oil film. At a qualitative level, we have observed three regimes of fluid ejection - jets, cones and explosive vaporization. The latter of these results in the spectacular creation of aerosol with sizes down to the sub-micrometer range. We present our experimental findings based upon control parameters such as temperature, film thickness and oil type.

  18. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    Science.gov (United States)

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-05-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography.

  19. Effect of liquid subcooling on acoustic characteristics during the condensation process of vapor bubbles in a subcooled pool

    International Nuclear Information System (INIS)

    Tang, Jiguo; Yan, Changqi; Sun, Licheng; Li, Ya; Wang, Kaiyuan

    2015-01-01

    Highlights: • Deviations of signals increase first and then decrease with increase in subcooling. • Two typical waveforms are observed and correspond to bubble split-up and collapse. • Dominant frequency in low frequency region is found for all condensation regimes. • Peaks in high frequency region were only found in capillary wave regime. • Bubble collapse frequency is close to frequency of first peak in amplitude spectra. - Abstract: Sound characteristics of direct contact condensation of vapor bubbles in a subcooled pool were investigated experimentally with a hydrophone and a high-speed video camera. Three different condensation modes were observed, which were referred to as shape oscillation regime, transition regime and capillary wave regime in the paper. Time domain analysis indicated that the acoustic signals were boosted in their maximum amplitude with increase in subcooling, while their standard and average absolute deviations shifted to decrease after reaching a peak value. In addition, two different waveforms were found, possible sources of which were split-up and collapse of bubbles, respectively. From the amplitude spectra obtained by FFT, the first dominant frequency was found at frequency of 150–300 Hz for all condensation regimes, whereas some peaks in high frequency region were observed only for the capillary wave regime. The first dominant frequency was the result of the periodic variation in the vapor bubble volume, and the peaks in high frequency region were due to the high-frequency oscillation of water in pressure caused by sudden bubble collapse. The frequency of first peak was considered to be resulted from the periodic bubble collapse or split-up and thus was close to the bubble collapse frequency obtained from snapshots of bubble condensation. Moreover, according to results of short-time Fourier transform (STFT), the time intervals in which a certain process of bubble condensing occurred could be well known.

  20. Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems

    OpenAIRE

    Ferrari, A.

    2017-01-01

    Cavitation is the transition from a liquid to a vapour phase, due to a drop in pressure to the level of the vapour tension of the fluid. Two kinds of cavitation have been reviewed here: acoustic cavitation and hydrodynamic cavitation. As acoustic cavitation in engineering systems is related to the propagation of waves through a region subjected to liquid vaporization, the available expressions of the sound speed are discussed. One of the main effects of hydrodynamic cavitation in the nozzles ...

  1. The effect of Na vapor on the Na content of chondrules

    Science.gov (United States)

    Lewis, R. Dean; Lofgren, Gary E.; Franzen, Hugo F.; Windom, Kenneth E.

    1993-01-01

    Chondrules contain higher concentrations of volatiles (Na) than expected for melt droplets in the solar nebula. Recent studies have proposed that chondrules may have formed under non-canonical nebular conditions such as in particle/gas-rich clumps. Such chondrule formation areas may have contained significant Na vapor. To test the hypothesis of whether a Na-rich vapor would minimize Na volatilization reaction rates in a chondrule analog and maintain the Na value of the melt, experiments were designed where a Na-rich vapor could be maintained around the sample. A starting material with a melting point lower that typical chondrules was required to keep the logistics of working with Na volatilization from NaCl within the realm of feasibility. The Knippa basalt, a MgO-rich alkali olivine basalt with a melting temperature of 1325 +/- 5 C and a Na2O content of 3.05 wt%, was used as the chondrule analog. Experiments were conducted in a 1 atm, gas-mixing furnace with the fO2 controlled by a CO/CO2 gas mixture and fixed at the I-W buffer curve. To determine the extent of Na loss from the sample, initial experiments were conducted at high temperatures (1300 C - 1350 C) for duration of up to 72 h without a Na-rich vapor present. Almost all (up to 98%) Na was volatilized in runs of 72 h. Subsequent trials were conducted at 1330 C for 16 h in the presence of a Na-rich vapor, supplied by a NaCl-filled crucible placed in the bottom of the furnace. Succeeding Knudsen cell weight-loss mass-spectrometry analysis of NaCl determined the P(sub Na) for these experimental conditions to be in the 10(exp -6) atm range. This value is considered high for nebula conditions but is still plausible for non-canonical environments. In these trials the Na2O content of the glass was maintained or in some cases increased; Na2O values ranged from 2.62% wt to 4.37% wt. The Na content of chondrules may be controlled by the Na vapor pressure in the chondrule formation region. Most heating events capable

  2. Gentle, fast and effective crystal soaking by acoustic dispensing.

    Science.gov (United States)

    Collins, Patrick M; Ng, Jia Tsing; Talon, Romain; Nekrosiute, Karolina; Krojer, Tobias; Douangamath, Alice; Brandao-Neto, Jose; Wright, Nathan; Pearce, Nicholas M; von Delft, Frank

    2017-03-01

    The steady expansion in the capacity of modern beamlines for high-throughput data collection, enabled by increasing X-ray brightness, capacity of robotics and detector speeds, has pushed the bottleneck upstream towards sample preparation. Even in ligand-binding studies using crystal soaking, the experiment best able to exploit beamline capacity, a primary limitation is the need for gentle and nontrivial soaking regimens such as stepwise concentration increases, even for robust and well characterized crystals. Here, the use of acoustic droplet ejection for the soaking of protein crystals with small molecules is described, and it is shown that it is both gentle on crystals and allows very high throughput, with 1000 unique soaks easily performed in under 10 min. In addition to having very low compound consumption (tens of nanolitres per sample), the positional precision of acoustic droplet ejection enables the targeted placement of the compound/solvent away from crystals and towards drop edges, allowing gradual diffusion of solvent across the drop. This ensures both an improvement in the reproducibility of X-ray diffraction and increased solvent tolerance of the crystals, thus enabling higher effective compound-soaking concentrations. The technique is detailed here with examples from the protein target JMJD2D, a histone lysine demethylase with roles in cancer and the focus of active structure-based drug-design efforts.

  3. Studying the field induced breakup of acoustically levitated drops

    Science.gov (United States)

    Warschat, C.; Riedel, J.

    2017-10-01

    Coulomb fission of charged droplets (The terms drop and droplet are often used synonymous. Throughout this manuscript, to avoid confusion, the terms drop and droplet will be used for liquid spheres with radii in the millimeter range and the micrometer range, respectively. In our experiments, the first correspond to the parent drop while the latter describes the ejected progeny droplets.) is a well-studied natural phenomenon. Controlled droplet fission is already successfully employed in several technological applications. Still, since the occurring surface rupture relies on the exact understanding and description of the liquid gas boundary, some details are still under debate. Most empirical systematic studies observe falling micrometer droplets passing through the electric field inside a plate capacitor. This approach, although easily applicable and reliable, limits the experimental degrees of freedom regarding the observable time and the maximum size of the drops and can only be performed in consecutive individual observations of different subsequent drops. Here we present a novel setup to study the field induced breakup of acoustically levitated drops. The design does not bear any restrictions towards the temporal window of observation, and allows handling of drops of a tunable radius ranging from 10 μm to several millimeters and a real-time monitoring of one single drop. Our comprehensive study includes a time resolved visual inspection, laser shadowgraphy, laser induced fluorescence imaging, and ambient mass spectrometric interrogation of the nascent Taylor cone. The results shown for a millimeter sized drop, previously inaccessible for Coulomb fission experiments, are mostly comparable with previous results for smaller drops. The major difference is the time scale and the threshold potential of the drop rupture. Both values, however, resemble theoretically extrapolations to the larger radius. The technique allows for a systematic study of breakup behavior of

  4. Measurement of droplet dynamics across grid spacer in mist cooling of subchannel of PWR

    International Nuclear Information System (INIS)

    Lee, S.L.; Sheen, H.J.; Cho, S.K.; Issapour, I.

    1984-01-01

    An experiment was conducted of the dynamics and heat transfer of a droplet-vapor mist flow across a test grid spacer in a flow channel of 2 x 2 electrically heated simulation fuel rods. Embedded thermocouples were used to measure the rod cladding temperature and an unshielded Chromel-Alumel thermocouple was transversed in the center of the subchannel to measure the temperature of the water and steam coolant phases at various axial locations. Thermocouples were also embedded in the test grid spacer. Optical measurements of the size and velocity distributions of droplets and the velocity distribution of the superheated steam were made by special laser-Doppler anemometry techniques through quartz glass windows immediately upstream and downstream of the test grid spacer. Experiments over a range of steam and injected water flow rates and rod heat flux have been performed and some representative results and discussions are presented

  5. Stick-Jump (SJ) Evaporation of Strongly Pinned Nanoliter Volume Sessile Water Droplets on Quick Drying, Micropatterned Surfaces.

    Science.gov (United States)

    Debuisson, Damien; Merlen, Alain; Senez, Vincent; Arscott, Steve

    2016-03-22

    We present an experimental study of stick-jump (SJ) evaporation of strongly pinned nanoliter volume sessile water droplets drying on micropatterned surfaces. The evaporation is studied on surfaces composed of photolithographically micropatterned negative photoresist (SU-8). The micropatterning of the SU-8 enables circular, smooth, trough-like features to be formed which causes a very strong pinning of the three phase (liquid-vapor-solid) contact line of an evaporating droplet. This is ideal for studying SJ evaporation as it contains sequential constant contact radius (CCR) evaporation phases during droplet evaporation. The evaporation was studied in nonconfined conditions, and forced convection was not used. Micropatterned concentric circles were defined having an initial radius of 1000 μm decreasing by a spacing ranging from 500 to 50 μm. The droplet evaporates, successively pinning and depinning from circle to circle. For each pinning radius, the droplet contact angle and volume are observed to decrease quasi-linearly with time. The experimental average evaporation rates were found to decrease with decreasing pining radii. In contrast, the experimental average evaporation flux is found to increase with decreasing droplet radii. The data also demonstrate the influence of the initial contact angle on evaporation rate and flux. The data indicate that the total evaporation time of a droplet depends on the specific micropattern spacing and that the total evaporation time on micropatterned surfaces is always less than on flat, homogeneous surfaces. Although the surface patterning is observed to have little effect on the average droplet flux-indicating that the underlying evaporation physics is not significantly changed by the patterning-the total evaporation time is considerably modified by patterning, up to a factor or almost 2 compared to evaporation on a flat, homogeneous surface. The closely spaced concentric circle pinning maintains a large droplet radius and

  6. Influence of radiative heat and mass transfer mechanism in system “water droplet-high-temperature gases” on integral characteristics of liquid evaporation

    Directory of Open Access Journals (Sweden)

    Glushkov Dmitrii O.

    2015-01-01

    Full Text Available Physical and mathematical (system of differential equations in private derivatives models of heat and mass transfer were developed to investigate the evaporation processes of water droplets and emulsions on its base moving in high-temperature (more than 1000 K gas flow. The model takes into account a conductive and radiative heat transfer in water droplet and also a convective, conductive and radiative heat exchange with high-temperature gas area. Water vapors characteristic temperature and concentration in small wall-adjacent area and trace of the droplet, numerical values of evaporation velocities at different surface temperature, the characteristic time of complete droplet evaporation were determined. Experiments for confidence estimation of calculated integral characteristics of processes under investigation - mass liquid evaporation velocities were conducted with use of cross-correlation recording video equipment. Their satisfactory fit (deviations of experimental and theoretical velocities were less than 15% was obtained. The influence of radiative heat and mass transfer mechanism on characteristics of endothermal phase transformations in a wide temperature variation range was established by comparison of obtained results of numerical simulation with known theoretical data for “diffusion” mechanisms of water droplets and other liquids evaporation in gas.

  7. Modeling photothermal and acoustical induced microbubble generation and growth.

    Science.gov (United States)

    Krasovitski, Boris; Kislev, Hanoch; Kimmel, Eitan

    2007-12-01

    Previous experimental studies showed that powerful heating of nanoparticles by a laser pulse using energy density greater than 100 mJ/cm(2), could induce vaporization and generate microbubbles. When ultrasound is introduced at the same time as the laser pulse, much less laser power is required. For therapeutic applications, generation of microbubbles on demand at target locations, e.g. cells or bacteria can be used to induce hyperthermia or to facilitate drug delivery. The objective of this work is to develop a method capable of predicting photothermal and acoustic parameters in terms of laser power and acoustic pressure amplitude that are needed to produce stable microbubbles; and investigate the influence of bubble coalescence on the thresholds when the microbubbles are generated around nanoparticles that appear in clusters. We develop and solve here a combined problem of momentum, heat and mass transfer which is associated with generation and growth of a microbubble, filled with a mixture of non-vaporized gas (air) and water vapor. The microbubble's size and gas content vary as a result of three mechanisms: gas expansion or compression, evaporation or condensation on the bubble boundary, and diffusion of dissolved air in the surrounding water. The simulations predict that when ultrasound is applied relatively low threshold values of laser and ultrasound power are required to obtain a stable microbubble from a single nanoparticle. Even lower power is required when microbubbles are formed by coalescence around a cluster of 10 nanoparticles. Laser pulse energy density of 21 mJ/cm(2) is predicted for instance together with acoustic pressure of 0.1 MPa for a cluster of 10 or 62 mJ/cm(2) for a single nanoparticle. Those values are well within the safety limits, and as such are most appealing for targeted therapeutic purposes.

  8. Butschli Dynamic Droplet System

    DEFF Research Database (Denmark)

    Armstrong, R.; Hanczyc, M.

    2013-01-01

    Dynamical oil-water systems such as droplets display lifelike properties and may lend themselves to chemical programming to perform useful work, specifically with respect to the built environment. We present Butschli water-in-oil droplets as a model for further investigation into the development...... reconstructed the Butschli system and observed its life span under a light microscope, observing chemical patterns and droplet behaviors in nearly three hundred replicate experiments. Self-organizing patterns were observed, and during this dynamic, embodied phase the droplets provided a means of introducing...... temporal and spatial order in the system with the potential for chemical programmability. The authors propose that the discrete formation of dynamic droplets, characterized by their lifelike behavior patterns, during a variable window of time (from 30 s to 30 min after the addition of alkaline water...

  9. Shock wave-induced evaporation of water droplets in a gas-droplet mixture 646

    NARCIS (Netherlands)

    Goossens, H.W.J.; Cleijne, J.W.; Smolders, H.J.; Dongen, van M.E.H.

    1988-01-01

    A model is presented for the droplet evaporation process induced by a shock wave propagating in a fog. The model is based on the existence of a quasi-steady wet bulb state of the droplets during evaporation. It is shown that for moderate shock strength, Ma = <2,=" and=" droplet=" radii=" in=" the="

  10. Droplet Combustion and Non-Reactive Shear-Coaxial Jets with and without Transverse Acoustic Excitation

    Science.gov (United States)

    2012-01-01

    node, there is no droplet deflection, but there is limited evidence for this. Recent studies at UCLA and at NASA Glenn Research Center by Dattarajan et...generator supplied continuous sine wave signals, which were amplified via Trek PZD2000A high-voltage amplifiers, to each piezo-siren. The waveform...1.3. Verify the wire on Channel 1 of the Tenma oscilloscope (Model No. 72-6800) comes from the output voltage monitor on the Trek -1 amplifier and the

  11. Droplet behavior analysis in consideration of droplet entrainment from liquid film in annular dispersed flow

    International Nuclear Information System (INIS)

    Matsuura, Keizo; Otake, Hiroshi; Kataoka, Isao; Serizawa, Akimi

    2000-01-01

    A method of droplet behavior simulation in an annular dispersed flow has been developed. In this method, both droplet deposition and entrainment from liquid film are considered. The Lagrangian method and stochastic model are used to analyze droplet diffusion and deposition behavior in a turbulent flow, and droplet entrainment from liquid film is calculated by an entrainment correlation. For the verification of this method, Gill's experiment is analyzed, in which the transition from annular flow with no entrainment to equilibrium annular dispersed flow was observed. Analysis results can also show the similar transition tendency. The experimental results of radial distribution of droplet mass flux are compared with analysis results. The agreement is good for low liquid flow rate, but entrainment rate must be adjusted for high liquid flow rate, in which gas turbulence is thought to be modified by high droplet density. In future work the effect of high droplet density on turbulence should be considered. (author)

  12. Transport of radioactive droplet moisture from a source in a nuclear power plant spray pond

    International Nuclear Information System (INIS)

    Elokhin, A.P.

    1995-01-01

    In addition to a change in the microclimate in the region surrounding a nuclear power plant resulting from the emission of vapor form a cooling tower, evaporation of water from the water surface of a cooling pond or a spray pond, in the latter case direct radioactive contamination of the underlying surface around the nuclear power plant can also occur due to discharge of process water (radioactive) into the pond and its transport in the air over a certain distance in the form of droplet moisture. A typical example may be the situation at the Zaporozhe nuclear power plant in 1986 when accidental discharge of process water into the cooling pond occurred. Below we present a solution for the problem of transport of droplet moisture taking into account its evaporation, which may be used to estimate the scale of radioactive contamination of the locality

  13. Electrohydrodynamic simulation of electrically controlled droplet generation

    International Nuclear Information System (INIS)

    Ouedraogo, Yun; Gjonaj, Erion; Weiland, Thomas; Gersem, Herbert De; Steinhausen, Christoph; Lamanna, Grazia; Weigand, Bernhard

    2017-01-01

    Highlights: • We develop a full electrohydrodynamic simulation approach which allows for the accurate modeling of droplet dynamics under the influence of transient electric fields. The model takes into account conductive, capacitive as well as convective electrical currents in the fluid. • Simulation results are shown for an electrically driven droplet generator using highly conductive acetone droplets and low conductivity pentane droplets, respectively. Excellent agreement with measurement is found. • We investigate the operation characteristic of the droplet generator by computing droplet sizes and detachment times with respect to the applied voltage. • The droplet charging effect is demonstrated for pentane droplets as well as for acetone droplets under long voltage pulses. We show that due to the very different relaxation times, the charging behavior of the two liquids is very different. • We demonstrate that due to this behavior, also the detachment mechanisms for acetone and pentane droplets are different. For low conductivity (pentane) droplets, droplet detachment is only possible after the electric fields are switched off. This is because the effective electric polarization force points upwards, thus, inhibiting the detachment of the droplet from the capillary tip. - Abstract: An electrohydrodynamic model for the simulation of droplet formation, detachment and motion in an electrically driven droplet generator is introduced. The numerical approach is based on the coupled solution of the multiphase flow problem with the charge continuity equation. For the latter, a modified convection-conduction model is applied, taking into account conductive, capacitive as well as convective electrical currents in the fluid. This allows for a proper description of charge relaxation phenomena in the moving fluid. In particular, the charge received by the droplet after detachment is an important parameter influencing the droplet dynamics in the test chamber

  14. Study on the effect of subcooling on vapor film collapse on high temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke; Yanagida, Hiroshi

    2000-01-01

    Thermal detonation model is proposed to describe vapor explosion. According to this model, vapor film on pre-mixed high temperature droplet surface is needed to be collapsed for the trigger of the vapor explosion. It is pointed out that the vapor film collapse behavior is significantly affected by the subcooling of low temperature liquid. However, the effect of subcooling on micro-mechanism of vapor film collapse behavior is not experimentally well identified. The objective of the present research is to experimentally investigate the effect of subcooling on micro-mechanism of film boiling collapse behavior. As the results, it is experimentally clarified that the vapor film collapse behavior in low subcooling condition is qualitatively different from the vapor film collapse behavior in high subcooling condition. In case of vapor film collapse by pressure pulse, homogeneous vapor generation occurred all over the surface of steel particle in low subcooling condition. On the other hand, heterogeneous vapor generation was observed for higher subcooling condition. In case of vapor film collapse spontaneously, fluctuation of the gas-liquid interface after quenching propagated from bottom to top of the steel particle heterogeneously in low subcooling condition. On the other hand, simultaneous vapor generation occurred for higher subcooling condition. And the time transient of pressure, particle surface temperature, water temperature and visual information were simultaneously measured in the vapor film collapse experiment by external pressure pulse. Film thickness was estimated by visual data processing technique with the pictures taken by the high-speed video camera. Temperature and heat flux at the vapor-liquid interface were estimated by solving the heat condition equation with the measured pressure, liquid temperature and vapor film thickness as boundary conditions. Movement of the vapor-liquid interface were estimated with the PIV technique with the visual observation

  15. Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization

    International Nuclear Information System (INIS)

    Alvarez, Mar; Friend, James; Yeo, Leslie Y

    2008-01-01

    We describe the fabrication of a surface acoustic wave (SAW) atomizer and show its ability to generate monodisperse aerosols and particles for drug delivery applications. In particular, we demonstrate the generation of insulin liquid aerosols for pulmonary delivery and solid protein nanoparticles for transdermal and gastrointestinal delivery routes using 20 MHz SAW devices. Insulin droplets around 3 μm were obtained, matching the optimum range for maximizing absorption in the alveolar region. A new approach is provided to explain these atomized droplet diameters by returning to fundamental physical analysis and considering viscous-capillary and inertial-capillary force balance rather than employing modifications to the Kelvin equation under the assumption of parametric forcing that has been extended to these frequencies in past investigations. In addition, we consider possible mechanisms by which the droplet ejections take place with the aid of high-speed flow visualization. Finally, we show that nanoscale protein particles (50-100 nm in diameter) were obtained through an evaporative process of the initial aerosol, the final size of which could be controlled merely by modifying the initial protein concentration. These results illustrate the feasibility of using SAW as a novel method for rapidly producing particles and droplets with a controlled and narrow size distribution.

  16. Long-Term Stability of Polymer-Coated Surface Transverse Wave Sensors for the Detection of Organic Solvent Vapors.

    Science.gov (United States)

    Stahl, Ullrich; Voigt, Achim; Dirschka, Marian; Barié, Nicole; Richter, Christiane; Waldbaur, Ansgar; Gruhl, Friederike J; Rapp, Bastian E; Rapp, Michael; Länge, Kerstin

    2017-11-03

    Arrays with polymer-coated acoustic sensors, such as surface acoustic wave (SAW) and surface transverse wave (STW) sensors, have successfully been applied for a variety of gas sensing applications. However, the stability of the sensors' polymer coatings over a longer period of use has hardly been investigated. We used an array of eight STW resonator sensors coated with different polymers. This sensor array was used at semi-annual intervals for a three-year period to detect organic solvent vapors of three different chemical classes: a halogenated hydrocarbon (chloroform), an aliphatic hydrocarbon (octane), and an aromatic hydrocarbon (xylene). The sensor signals were evaluated with regard to absolute signal shifts and normalized signal shifts leading to signal patterns characteristic of the respective solvent vapors. No significant time-related changes of sensor signals or signal patterns were observed, i.e., the polymer coatings kept their performance during the course of the study. Therefore, the polymer-coated STW sensors proved to be robust devices which can be used for detecting organic solvent vapors both qualitatively and quantitatively for several years.

  17. Spatial and temporal observation of phase-shift nano-emulsions assisted cavitation and ablation during focused ultrasound exposure.

    Science.gov (United States)

    Qiao, Yangzi; Zong, Yujin; Yin, Hui; Chang, Nan; Li, Zhaopeng; Wan, Mingxi

    2014-09-01

    Phase-shift nano-emulsions (PSNEs) with a small initial diameter in nanoscale have the potential to leak out of the blood vessels and to accumulate at the target point of tissue. At desired location, PSNEs can undergo acoustic droplet vaporization (ADV) process, change into gas bubbles and enhance focused ultrasound efficiency. The threshold of droplet vaporization and influence of acoustic parameters have always been research hotspots in order to spatially control the potential of bioeffects and optimize experimental conditions. However, when the pressure is much higher than PSNEs' vaporization threshold, there were little reports on their cavitation and thermal effects. In this study, PSNEs induced cavitation and ablation effects during pulsed high-intensity focused ultrasound (HIFU) exposure were investigated, including the spatial and temporal information and the influence of acoustic parameters. Two kinds of tissue-mimicking phantoms with uniform PSNEs were prepared because of their optical transparency. The Sonoluminescence (SL) method was employed to visualize the cavitation activities. And the ablation process was observed as the heat deposition could produce white lesion. Precisely controlled HIFU cavitation and ablation can be realized at a relatively low input power. But when the input power was high, PSNEs can accelerate cavitation and ablation in pre-focal region. The cavitation happened layer by layer advancing the transducer. While the lesion appeared to be separated into two parts, one in pre-focal region stemmed from one point and grew quickly, the other in focal region grew much more slowly. The influence of duty cycle has also been examined. Longer pulse off time would cause heat transfer to the surrounding media, and generate smaller lesion. On the other hand, this would give outer layer bubbles enough time to dissolve, and inner bubbles can undergo violent collapse and emit bright light. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Uniform-droplet spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Blue, C.A.; Sikka, V.K. [Oak Ridge National Lab., TN (United States); Chun, Jung-Hoon [Massachusetts Institute of Technology, Cambridge, MA (United States); Ando, T. [Tufts Univ., Medford, MA (United States)

    1997-04-01

    The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets that can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.

  19. Hydrodynamics of a quark droplet

    DEFF Research Database (Denmark)

    Bjerrum-Bohr, Johan J.; Mishustin, Igor N.; Døssing, Thomas

    2012-01-01

    We present a simple model of a multi-quark droplet evolution based on the hydrodynamical description. This model includes collective expansion of the droplet, effects of the vacuum pressure and surface tension. The hadron emission from the droplet is described following Weisskopf's statistical...

  20. Evaporation of inclined water droplets

    Science.gov (United States)

    Kim, Jin Young; Hwang, In Gyu; Weon, Byung Mook

    2017-01-01

    When a drop is placed on a flat substrate tilted at an inclined angle, it can be deformed by gravity and its initial contact angle divides into front and rear contact angles by inclination. Here we study on evaporation dynamics of a pure water droplet on a flat solid substrate by controlling substrate inclination and measuring mass and volume changes of an evaporating droplet with time. We find that complete evaporation time of an inclined droplet becomes longer as gravitational influence by inclination becomes stronger. The gravity itself does not change the evaporation dynamics directly, whereas the gravity-induced droplet deformation increases the difference between front and rear angles, which quickens the onset of depinning and consequently reduces the contact radius. This result makes the evaporation rate of an inclined droplet to be slow. This finding would be important to improve understanding on evaporation dynamics of inclined droplets. PMID:28205642

  1. Multi-Phase Combustion and Transport Processes Under the Influence of Acoustic Excitation

    Science.gov (United States)

    2014-01-01

    waveguide. Alcohol fuels (ethanol and methonal) as well as aviation fuel replacements ( Fischer -Tropsch (FT) synfuel and an FT blend with JP-8) were studied...replacements ( Fischer -Tropsch (FT) synfuel and an FT blend with JP-8) were studied here. During acoustic excitation, the flame surrounding the droplet was...Wegener is approved. Chris R. Anderson Jeff D. Eldredge Ivett A. Leyva Owen I. Smith Ann R. Karagozian, Committee Chair University of California, Los

  2. Liquid droplet radiator technology issues

    International Nuclear Information System (INIS)

    Mattick, A.T.; Hertzberg, A.

    1985-01-01

    The operation of the liquid droplet radiator (LDR) is analyzed to establish design constraints for the LDR components and to predict the performance of an integrated LDR system. The design constraints largely result from mass loss considerations: fluid choice is governed by evaporation loss; droplet generation techniques must be capable of precise aiming of >10 5 droplet streams; and collection losses must be less than 1 droplet in 10 7 . Concepts for droplet generation and collection components are discussed and incorporated into a mass model for an LDR system. This model predicts that LDR's using lithium, Dow 705 silicone fluid, or NaK may be several times lighter than heat pipe radiators. 13 refs

  3. Application of an ultrasonic focusing radiator for acoustic levitation of submillimeter samples

    Science.gov (United States)

    Lee, M. C.

    1981-01-01

    An acoustic apparatus has been specifically developed to handle samples of submillimeter size in a gaseous medium. This apparatus consists of an acoustic levitation device, deployment devices for small liquid and solid samples, heat sources for sample heat treatment, acoustic alignment devices, a cooling system and data-acquisition instrumentation. The levitation device includes a spherical aluminum dish of 12 in. diameter and 0.6 in. thickness, 130 pieces of PZT transducers attached to the back side of the dish and a spherical concave reflector situated in the vicinity of the center of curvature of the dish. The three lowest operating frequencies for the focusing-radiator levitation device are 75, 105 and 163 kHz, respectively. In comparison with other levitation apparatus, it possesses a large radiation pressure and a high lateral positional stability. This apparatus can be used most advantageously in the study of droplets and spherical shell systems, for instance, for fusion target applications.

  4. Mixing fuel particles for space combustion research using acoustics

    Science.gov (United States)

    Burns, Robert J.; Johnson, Jerome A.; Klimek, Robert B.

    1988-01-01

    Part of the microgravity science to be conducted aboard the Shuttle (STS) involves combustion using solids, particles, and liquid droplets. The central experimental facts needed for characterization of premixed quiescent particle cloud flames cannot be adequately established by normal gravity studies alone. The experimental results to date of acoustically mixing a prototypical particulate, lycopodium, in a 5 cm diameter by 75 cm long flame tube aboard a Learjet aircraft flying a 20-sec low-gravity trajectory are described. Photographic and light detector instrumentation combine to measure and characterize particle cloud uniformity.

  5. Evaluating the capabilities and uncertainties of droplet measurements for the fog droplet spectrometer (FM-100

    Directory of Open Access Journals (Sweden)

    J. K. Spiegel

    2012-09-01

    Full Text Available Droplet size spectra measurements are crucial to obtain a quantitative microphysical description of clouds and fog. However, cloud droplet size measurements are subject to various uncertainties. This work focuses on the error analysis of two key measurement uncertainties arising during cloud droplet size measurements with a conventional droplet size spectrometer (FM-100: first, we addressed the precision with which droplets can be sized with the FM-100 on the basis of the Mie theory. We deduced error assumptions and proposed a new method on how to correct measured size distributions for these errors by redistributing the measured droplet size distribution using a stochastic approach. Second, based on a literature study, we summarized corrections for particle losses during sampling with the FM-100. We applied both corrections to cloud droplet size spectra measured at the high alpine site Jungfraujoch for a temperature range from 0 °C to 11 °C. We showed that Mie scattering led to spikes in the droplet size distributions using the default sizing procedure, while the new stochastic approach reproduced the ambient size distribution adequately. A detailed analysis of the FM-100 sampling efficiency revealed that particle losses were typically below 10% for droplet diameters up to 10 μm. For larger droplets, particle losses can increase up to 90% for the largest droplets of 50 μm at ambient wind speeds below 4.4 m s−1 and even to >90% for larger angles between the instrument orientation and the wind vector (sampling angle at higher wind speeds. Comparisons of the FM-100 to other reference instruments revealed that the total liquid water content (LWC measured by the FM-100 was more sensitive to particle losses than to re-sizing based on Mie scattering, while the total number concentration was only marginally influenced by particle losses. Consequently, for further LWC measurements with the FM-100 we strongly recommend to consider (1 the

  6. An acoustical bubble counter for superheated drop detectors

    International Nuclear Information System (INIS)

    Taylor, C.; Montvila, D.; Flynn, D.; Brennan, C.; D'Errico, F.

    2006-01-01

    A new bubble counter has been developed based on the well-established approach of detecting vaporization events acoustically in superheated drop detectors (SDDs). This counter is called the Framework Scientific ABC 1260, and it represents a major improvement over prior versions of this technology. By utilizing advanced acoustic pattern recognition software, the bubble formation event can be differentiated from ambient background noise, as well as from other acoustic signatures. Additional structural design enhancements include a relocation of the electronic components to the bottom of the device; thus allowing for greater stability, easier access to vial SDDs without exposure to system electronics. Upgrades in the electronics permit an increase in the speed of bubble detection by almost 50%, compared with earlier versions of the counters. By positioning the vial on top of the device, temperature and sound insulation can be accommodated for extreme environments. Lead shells can also be utilized for an enhanced response to high-energy neutrons. (authors)

  7. An acoustical bubble counter for superheated drop detectors.

    Science.gov (United States)

    Taylor, Chris; Montvila, Darius; Flynn, David; Brennan, Christopher; d'Errico, Francesco

    2006-01-01

    A new bubble counter has been developed based on the well-established approach of detecting vaporization events acoustically in superheated drop detectors (SDDs). This counter is called the Framework Scientific ABC 1260, and it represents a major improvement over prior versions of this technology. By utilizing advanced acoustic pattern recognition software, the bubble formation event can be differentiated from ambient background noise, as well as from other acoustic signatures. Additional structural design enhancements include a relocation of the electronic components to the bottom of the device; thus allowing for greater stability, easier access to vial SDDs without exposure to system electronics. Upgrades in the electronics permit an increase in the speed of bubble detection by almost 50%, compared with earlier versions of the counters. By positioning the vial on top of the device, temperature and sound insulation can be accommodated for extreme environments. Lead shells can also be utilized for an enhanced response to high-energy neutrons.

  8. A linear relationship between crystal size and fragment binding time observed crystallographically: implications for fragment library screening using acoustic droplet ejection.

    Directory of Open Access Journals (Sweden)

    Krystal Cole

    Full Text Available High throughput screening technologies such as acoustic droplet ejection (ADE greatly increase the rate at which X-ray diffraction data can be acquired from crystals. One promising high throughput screening application of ADE is to rapidly combine protein crystals with fragment libraries. In this approach, each fragment soaks into a protein crystal either directly on data collection media or on a moving conveyor belt which then delivers the crystals to the X-ray beam. By simultaneously handling multiple crystals combined with fragment specimens, these techniques relax the automounter duty-cycle bottleneck that currently prevents optimal exploitation of third generation synchrotrons. Two factors limit the speed and scope of projects that are suitable for fragment screening using techniques such as ADE. Firstly, in applications where the high throughput screening apparatus is located inside the X-ray station (such as the conveyor belt system described above, the speed of data acquisition is limited by the time required for each fragment to soak into its protein crystal. Secondly, in applications where crystals are combined with fragments directly on data acquisition media (including both of the ADE methods described above, the maximum time that fragments have to soak into crystals is limited by evaporative dehydration of the protein crystals during the fragment soak. Here we demonstrate that both of these problems can be minimized by using small crystals, because the soak time required for a fragment hit to attain high occupancy depends approximately linearly on crystal size.

  9. Flame Spread and Group-Combustion Excitation in Randomly Distributed Droplet Clouds with Low-Volatility Fuel near the Excitation Limit: a Percolation Approach Based on Flame-Spread Characteristics in Microgravity

    Science.gov (United States)

    Mikami, Masato; Saputro, Herman; Seo, Takehiko; Oyagi, Hiroshi

    2018-03-01

    Stable operation of liquid-fueled combustors requires the group combustion of fuel spray. Our study employs a percolation approach to describe unsteady group-combustion excitation based on findings obtained from microgravity experiments on the flame spread of fuel droplets. We focus on droplet clouds distributed randomly in three-dimensional square lattices with a low-volatility fuel, such as n-decane in room-temperature air, where the pre-vaporization effect is negligible. We also focus on the flame spread in dilute droplet clouds near the group-combustion-excitation limit, where the droplet interactive effect is assumed negligible. The results show that the occurrence probability of group combustion sharply decreases with the increase in mean droplet spacing around a specific value, which is termed the critical mean droplet spacing. If the lattice size is at smallest about ten times as large as the flame-spread limit distance, the flame-spread characteristics are similar to those over an infinitely large cluster. The number density of unburned droplets remaining after completion of burning attained maximum around the critical mean droplet spacing. Therefore, the critical mean droplet spacing is a good index for stable combustion and unburned hydrocarbon. In the critical condition, the flame spreads through complicated paths, and thus the characteristic time scale of flame spread over droplet clouds has a very large value. The overall flame-spread rate of randomly distributed droplet clouds is almost the same as the flame-spread rate of a linear droplet array except over the flame-spread limit.

  10. A parameterization of cloud droplet nucleation

    International Nuclear Information System (INIS)

    Ghan, S.J.; Chuang, C.; Penner, J.E.

    1993-01-01

    Droplet nucleation is a fundamental cloud process. The number of aerosols activated to form cloud droplets influences not only the number of aerosols scavenged by clouds but also the size of the cloud droplets. Cloud droplet size influences the cloud albedo and the conversion of cloud water to precipitation. Global aerosol models are presently being developed with the intention of coupling with global atmospheric circulation models to evaluate the influence of aerosols and aerosol-cloud interactions on climate. If these and other coupled models are to address issues of aerosol-cloud interactions, the droplet nucleation process must be adequately represented. Here we introduce a droplet nucleation parametrization that offers certain advantages over the popular Twomey (1959) parameterization

  11. Control of charged droplets using electrohydrodynamic repulsion for circular droplet patterning

    International Nuclear Information System (INIS)

    Kim, Bumjoo; Sung, Jungwoo; Lim, Geunbae; Nam, Hyoryung; Kim, Sung Jae; Joo, Sang W

    2011-01-01

    We report a novel method to form a circular pattern of monodisperse microdroplets using an electrohydrodynamic repulsion (EDR) mechanism. EDR is a phenomenon of electrostatical bounced microdroplets from an accumulated droplet on a bottom substrate. In addition to a regular EDR system, by placing a ring electrode between the capillary and ground substrate, two separate regions were created. A parameter study of two regions was carried out for droplet formation and falling velocity to control the radius of the generated droplets and the circular patterns independently. Based on energy conservation theory, our experimental results showed that the free-falling region exerted crucial influences on the sizes of the circular patterns

  12. Forces acting on a small particle in an acoustical field in a thermoviscous fluid.

    Science.gov (United States)

    Karlsen, Jonas T; Bruus, Henrik

    2015-10-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δ(s) and δ(t) relative to the particle radius a, but it assumes the particle to be small in comparison to the acoustic wavelength λ. This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices of materials, we also find a sign change in the acoustic radiation force on different-sized but otherwise identical particles. These findings lead to the concept of a particle-size-dependent acoustophoretic contrast factor, highly relevant to acoustic separation of microparticles in gases, as well as to handling of nanoparticles in lab-on-a-chip systems.

  13. Selfbound quantum droplets

    Science.gov (United States)

    Langen, Tim; Wenzel, Matthias; Schmitt, Matthias; Boettcher, Fabian; Buehner, Carl; Ferrier-Barbut, Igor; Pfau, Tilman

    2017-04-01

    Self-bound many-body systems are formed through a balance of attractive and repulsive forces and occur in many physical scenarios. Liquid droplets are an example of a self-bound system, formed by a balance of the mutual attractive and repulsive forces that derive from different components of the inter-particle potential. On the basis of the recent finding that an unstable bosonic dipolar gas can be stabilized by a repulsive many-body term, it was predicted that three-dimensional self-bound quantum droplets of magnetic atoms should exist. Here we report on the observation of such droplets using dysprosium atoms, with densities 108 times lower than a helium droplet, in a trap-free levitation field. We find that this dilute magnetic quantum liquid requires a minimum, critical number of atoms, below which the liquid evaporates into an expanding gas as a result of the quantum pressure of the individual constituents. Consequently, around this critical atom number we observe an interaction-driven phase transition between a gas and a self-bound liquid in the quantum degenerate regime with ultracold atoms.

  14. International Symposium on Acoustic Remote Sensing of the Atmosphere and Oceans (2nd).

    Science.gov (United States)

    1983-09-26

    work to develop a model the volume wave to form the boundary which relates hydrodynamical features of 6 ~A the ocean-air interface to ambient noise...is my belief oscillating bubbles, splashing waves and that the sodar work is not well known in water droplets, bubble cavitation , the Navy acoustics...Temperature," in accumulate in the same locations. Major Proceedings, InternationaZ Symposi- pollutants include oil spills, drilling w on Remote Sensing of

  15. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    OpenAIRE

    Soichiro Tsujino; Takashi Tomizaki

    2016-01-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinn...

  16. Chip-based droplet sorting

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald; Lee, Abraham; Hatch, Andrew

    2017-11-21

    A non-contact system for sorting monodisperse water-in-oil emulsion droplets in a microfluidic device based on the droplet's contents and their interaction with an applied electromagnetic field or by identification and sorting.

  17. Workshop day on ``films and droplets heat transport``; Journee d`etude sur ``le transport de chaleur par films ou gouttelettes``

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop day was organized by the French society of thermal engineers (SFT). This compilation of proceedings comprises 9 papers dealing with: the effect of droplets evaporation on a poly-dispersed jet under pressure (application to combustion chambers of diesel engines); effect of two-phase heat exchanges on the performances of a piston engine; heat and mass transfers in the entering region of a laminar liquid film; mass transfer at the interface of a free or sheared turbulent film; measurement of gasoline films thickness using laser induced fluorescence - evaluation of the evaporation quickness using several tracers (application to the intake manifold of port-injected and of indirect injection spark ignition engines); heat transfers and condensation inside ducts for the evacuation of combustion products; evaporation of a climbing film on a wall with discontinuous fins (application to the ebullition in heat exchangers); temperature measurement of droplets in a mono-dispersed jet using IR technique and refractometry; influence of homogeneous and isotropic turbulence on the vaporization of fuel droplets. (J.S.)

  18. Workshop day on ``films and droplets heat transport``; Journee d`etude sur ``le transport de chaleur par films ou gouttelettes``

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This workshop day was organized by the French society of thermal engineers (SFT). This compilation of proceedings comprises 9 papers dealing with: the effect of droplets evaporation on a poly-dispersed jet under pressure (application to combustion chambers of diesel engines); effect of two-phase heat exchanges on the performances of a piston engine; heat and mass transfers in the entering region of a laminar liquid film; mass transfer at the interface of a free or sheared turbulent film; measurement of gasoline films thickness using laser induced fluorescence - evaluation of the evaporation quickness using several tracers (application to the intake manifold of port-injected and of indirect injection spark ignition engines); heat transfers and condensation inside ducts for the evacuation of combustion products; evaporation of a climbing film on a wall with discontinuous fins (application to the ebullition in heat exchangers); temperature measurement of droplets in a mono-dispersed jet using IR technique and refractometry; influence of homogeneous and isotropic turbulence on the vaporization of fuel droplets. (J.S.)

  19. OCS in He droplets

    Energy Technology Data Exchange (ETDEWEB)

    Grebenev, V.

    2000-06-01

    Phenomenon of superfluidity of para-hydrogen (pH{sub 2}){sub 1-17} and helium {sup 4}He{sub 1-7000} systems doped with an OCS chromophore molecule was investigated in this work. The study of such systems became possible after the development of the depletion spectroscopy technique in helium droplets. The droplets can be easily created and doped with up to 100 particles such as OCS, para-hydrogen or ortho-hydrogen molecules and {sup 4}He atoms. The measured infrared depletion spectra give the information about the temperature of the droplets and their aggregate state. The depletion spectrum of OCS in pure {sup 4}He droplets was comprehensively studied. The rovibrational OCS spectrum shows well resolved narrow lines. The spectrum is shifted to the red relative to the corresponding gas phase spectrum and the rotational constant of OCS in {sup 4}He droplet is three times smaller than that for free molecule. Different models of OCS rotation in the helium environment were discussed. It was shown that the shapes of the rovibrational lines are defined mainly by inhomogeneous broadening due to the droplet size distribution. The sub-rotational structure of the OCS rovibrational lines was revealed in microwave-infrared double resonance experiments. This structure arises due to the interaction of the OCS with the He environment. However, the information obtained in the experiments was not enough to understand the nature of this interaction. (orig.)

  20. Characterization and monitoring of total organic chloride vapors

    International Nuclear Information System (INIS)

    Anheier, N.C. Jr.; Evans, J.C. Jr.; Olsen, K.B.

    1992-07-01

    Chemical sensors are being developed intermediate highly selective and broadly selective methods. PNL is developing an optical-emission based TOCl (total organic chlorinated compounds) sensor (Halosnif) which is capable of measuring TOCl in real time on an extracted gas sample over a wide linear dynamic range. Halosnif employs an atomic emission sensor that is broadly selective for any moderately volatile organic hclorinated vapor but does not distinguish between classes of chlorinated compounds. A rf-induced He plasma is used to excite the chlorine atoms, causing light emission at 837.6 nm. The sensitivity ranges from 1-2 ppM up to at least 10,000 ppM. Field tests were conducted at Tinker AFB in areas of high TCE contamination, in two boreholes at Savannah River, and at Hanford CCl 4 vapor extraction system. This sensor is briefly compared with acoustic wave sensors being developed by SNL (PAWS). 4 figs

  1. Particle Manipulation Methods in Droplet Microfluidics.

    Science.gov (United States)

    Tenje, Maria; Fornell, Anna; Ohlin, Mathias; Nilsson, Johan

    2018-02-06

    This Feature describes the different particle manipulation techniques available in the droplet microfluidics toolbox to handle particles encapsulated inside droplets and to manipulate whole droplets. We address the advantages and disadvantages of the different techniques to guide new users.

  2. Colliding droplets: A short film presentation

    Science.gov (United States)

    Hendricks, C. D.

    1981-12-01

    A series of experiments were performed in which liquid droplets were caused to collide. Impact velocities to several meters per second and droplet diameters up to 600 micrometers were used. The impact parameters in the collisions vary from zero to greater than the sum of the droplet radii. Photographs of the collisions were taken with a high speed framing camera in order to study the impacts and subsequent behavior of the droplets.

  3. Self-propelled oil droplets consuming "fuel" surfactant

    DEFF Research Database (Denmark)

    Toyota, Taro; Maru, Naoto; Hanczyc, Martin M

    2009-01-01

    A micrometer-sized oil droplet of 4-octylaniline containing 5 mol % of an amphiphilic catalyst exhibited a self-propelled motion, producing tiny oil droplets, in an aqueous dispersion of an amphiphilic precursor of 4-octylaniline. The tiny droplets on the surface of the self-propelled droplet wer...

  4. Droplets, Bubbles and Ultrasound Interactions.

    Science.gov (United States)

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  5. Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons.

    Science.gov (United States)

    Sheeran, Paul S; Luois, Samantha H; Mullin, Lee B; Matsunaga, Terry O; Dayton, Paul A

    2012-04-01

    Recently, an interest has developed in designing biomaterials for medical ultrasonics that can provide the acoustic activity of microbubbles, but with improved stability in vivo and a smaller size distribution for extravascular interrogation. One proposed alternative is the phase-change contrast agent. Phase-change contrast agents (PCCAs) consist of perfluorocarbons (PFCs) that are initially in liquid form, but can then be vaporized with acoustic energy. Crucial parameters for PCCAs include their sensitivity to acoustic energy, their size distribution, and their stability, and this manuscript provides insight into the custom design of PCCAs for balancing these parameters. Specifically, the relationship between size, thermal stability and sensitivity to ultrasound as a function of PFC boiling point and ambient temperature is illustrated. Emulsion stability and sensitivity can be 'tuned' by mixing PFCs in the gaseous state prior to condensation. Novel observations illustrate that stable droplets can be generated from PFCs with extremely low boiling points, such as octafluoropropane (b.p. -36.7 °C), which can be vaporized with acoustic parameters lower than previously observed. Results demonstrate the potential for low boiling point PFCs as a useful new class of compounds for activatable agents, which can be tailored to the desired application. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  7. Leidenfrost boiling of water droplet

    Directory of Open Access Journals (Sweden)

    Orzechowski Tadeusz

    2017-01-01

    Full Text Available The investigations concerned a large water droplet at the heating surface temperature above the Leidenfrost point. The heating cylinder was the main component of experimental stand on which investigations were performed. The measurement system was placed on the high-sensitivity scales. Data transmission was performed through RS232 interface. The author-designed program, with extended functions to control the system, was applied. The present paper examines the behaviour of a large single drop levitating over a hot surface, unsteady mass of the drop, and heat transfer. In computations, the dependence, available in the literature, for the orthogonal droplet projection on the heating surface as a function of time was employed. It was confirmed that the local value of the heat transfer coefficient is a power function of the area of the droplet surface projection. Also, a linear relationship between the flux of mass evaporated from the droplet and the droplet orthogonal projection was observed.

  8. Leidenfrost boiling of water droplet

    Science.gov (United States)

    Orzechowski, Tadeusz

    The investigations concerned a large water droplet at the heating surface temperature above the Leidenfrost point. The heating cylinder was the main component of experimental stand on which investigations were performed. The measurement system was placed on the high-sensitivity scales. Data transmission was performed through RS232 interface. The author-designed program, with extended functions to control the system, was applied. The present paper examines the behaviour of a large single drop levitating over a hot surface, unsteady mass of the drop, and heat transfer. In computations, the dependence, available in the literature, for the orthogonal droplet projection on the heating surface as a function of time was employed. It was confirmed that the local value of the heat transfer coefficient is a power function of the area of the droplet surface projection. Also, a linear relationship between the flux of mass evaporated from the droplet and the droplet orthogonal projection was observed.

  9. Raman Thermometry Measurements of Free Evaporation from Liquid Water Droplets

    International Nuclear Information System (INIS)

    Smith, Jared D.; Cappa, Christopher D.; Drisdell, Walter S.; Cohen, Ronald C.; Saykally, Richard J.

    2006-01-01

    Recent theoretical and experimental studies of evaporation have suggested that on average, molecules in the higher-energy tail of the Boltzmann distribution are more readily transferred into the vapor during evaporation. To test these conclusions, the evaporative cooling rates of a droplet train of liquid water injected into vacuum have been studied via Raman thermometry. The resulting cooling rates are fit to an evaporative cooling model based on Knudsen's maximum rate of evaporation, in which we explicitly account for surface cooling. We have determined that the value of the evaporation coefficient (γ e ) of liquid water is 0.62 ± 0.09, confirming that a rate-limiting barrier impedes the evaporation rate. Such insight will facilitate the formulation of a microscopic mechanism for the evaporation of liquid water

  10. Microfluidic droplet generator with controlled break-up mechanism

    KAUST Repository

    Gonzalez, David Conchouso

    2017-04-13

    Droplet generation devices and systems that parallelize droplet generation devices are provided. The droplet generation devices can include a symmetric block-and-break system and a tapered droplet generation zone. The symmetric block-and-break system can include a pair of break channels and a pair of bypass channels symmetrically arranged with respect to the dispersed-phase input channel and the output channel. The droplet generation devices can generate monodisperse droplets with a predefined volume over a range of flow rates, pressures, and fluid properties. The droplet generation devices are therefore capable of parallelization to achieve large-capacity droplet generation, e.g. greater than 1 L/hr, with small overall coefficients of variation.

  11. Droplet generation during core reflood

    International Nuclear Information System (INIS)

    Kocamustafaogullari, G.; De Jarlais, G.; Ishii, M.

    1983-01-01

    The process of entrainment and disintegration of liquid droplets by a flow of steam has considerable practical importance in calculating the effectivenes of the emergency core cooling system. Liquid entrainment is also important in determination of the critical heat flux point in general. Thus the analysis of the reflooding phase of a LOCA requires detailed knowledge of droplet size. Droplet size is mainly determined by the droplet generation mechanisms involved. To study these mechanisms, data generated in the PWR FLECHT SEASET series of experiments was analyzed. In addition, an experiment was performed in which the hydrodynamics of low quality post-CHF flow (inverted annular flow) were simulated in an adiabatic test section

  12. Influence of film dimensions on film droplet formation.

    Science.gov (United States)

    Holmgren, Helene; Ljungström, Evert

    2012-02-01

    Aerosol particles may be generated from rupturing liquid films through a droplet formation mechanism. The present work was undertaken with the aim to throw some light on the influence of film dimensions on droplet formation with possible consequences for exhaled breath aerosol formation. The film droplet formation process was mimicked by using a purpose-built device, where fluid films were spanned across holes of known diameters. As the films burst, droplets were formed and the number and size distributions of the resulting droplets were determined. No general relation could be found between hole diameter and the number of droplets generated per unit surface area of fluid film. Averaged over all film sizes, a higher surface tension yielded higher concentrations of droplets. Surface tension did not influence the resulting droplet diameter, but it was found that smaller films generated smaller droplets. This study shows that small fluid films generate droplets as efficiently as large films, and that droplets may well be generated from films with diameters below 1 mm. This has implications for the formation of film droplets from reopening of closed airways because human terminal bronchioles are of similar dimensions. Thus, the results provide support for the earlier proposed mechanism where reopening of closed airways is one origin of exhaled particles.

  13. A compact and facile microfluidic droplet creation device using a piezoelectric diaphragm micropump for droplet digital PCR platforms.

    Science.gov (United States)

    Okura, Naoaki; Nakashoji, Yuta; Koshirogane, Toshihiro; Kondo, Masaki; Tanaka, Yugo; Inoue, Kohei; Hashimoto, Masahiko

    2017-10-01

    We have exploited a compact and facile microfluidic droplet creation device consisting of a poly(dimethylsiloxane) microfluidic chip possessing T-junction channel geometry, two inlet reservoirs, and one outlet reservoir, and a piezoelectric (PZT) diaphragm micropump with controller. Air was evacuated from the outlet reservoir using the PZT pump, reducing the pressure inside. The reduced pressure within the outlet reservoir pulled oil and aqueous solution preloaded in the inlet reservoirs into the microchannels, which then merged at the T-junction, successfully forming water-in-oil emulsion droplets at a rate of ∼1000 per second with minimal sample loss. We confirmed that the onset of droplet formation occurred immediately after turning on the pump (<1 s). Over repeated runs, droplet formation was highly reproducible, with droplet size purity (polydispersity, <4%) comparable to that achieved using other microfluidic droplet preparation techniques. We also demonstrated single-molecule PCR amplification in the created droplets, suggesting that the device could be used for effective droplet digital PCR platforms in most laboratories without requiring great expense, space, or time for acquiring technical skills. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Software for the design of acoustical steam silencers of the reaction-absorption type; Software para el diseno de silenciadores acusticos de vapor del tipo reaccion-absorcion

    Energy Technology Data Exchange (ETDEWEB)

    Buendia Dominguez, Eduardo H; Alvarez Chavez, Jose M [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    This paper describes the computer program named SILRA, that determines the outline dimensions of an acoustic steam silencer of the reaction-absorption type. These silencers are employed in the geothermoelectric power plants to lower the high levels of pressure and sound caused by the steam discharge to the surrounding atmosphere. The program has the capacity of predicting the noise level generated by the discharge without silencer depending on the emitting source. On SIRLA was successfully coupled the theory described in specialized literature with optimization techniques and experiences acquired in former designs. SIRLA is a powerful tool that allows the designer to optimize the equipment as well as the design time. [Espanol] En este trabajo se describe el programa de computo SILRA, que determina las dimensiones generales de un silenciador acustico de vapor tipo reaccion-absorcion, estos silenciadores se emplean en las centrales geotermoelectricas para abatir los altos niveles de presion de sonido provocados por la descarga del vapor a la atmosfera. El programa tiene la capacidad de predecir el nivel de ruido que genera la descarga sin silenciador, dependiendo de la fuente emisora. En SILRA se acoplaron con exito la teoria descrita en la literatura especializada con tecnicas de optimacion y experiencias adquiridas en disenos anteriores. SILRA es una poderosa herramienta que permite al disenador optimar tanto el equipo como el tiempo de diseno.

  15. Software for the design of acoustical steam silencers of the reaction-absorption type; Software para el diseno de silenciadores acusticos de vapor del tipo reaccion-absorcion

    Energy Technology Data Exchange (ETDEWEB)

    Buendia Dominguez, Eduardo H.; Alvarez Chavez, Jose M. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1989-12-31

    This paper describes the computer program named SILRA, that determines the outline dimensions of an acoustic steam silencer of the reaction-absorption type. These silencers are employed in the geothermoelectric power plants to lower the high levels of pressure and sound caused by the steam discharge to the surrounding atmosphere. The program has the capacity of predicting the noise level generated by the discharge without silencer depending on the emitting source. On SIRLA was successfully coupled the theory described in specialized literature with optimization techniques and experiences acquired in former designs. SIRLA is a powerful tool that allows the designer to optimize the equipment as well as the design time. [Espanol] En este trabajo se describe el programa de computo SILRA, que determina las dimensiones generales de un silenciador acustico de vapor tipo reaccion-absorcion, estos silenciadores se emplean en las centrales geotermoelectricas para abatir los altos niveles de presion de sonido provocados por la descarga del vapor a la atmosfera. El programa tiene la capacidad de predecir el nivel de ruido que genera la descarga sin silenciador, dependiendo de la fuente emisora. En SILRA se acoplaron con exito la teoria descrita en la literatura especializada con tecnicas de optimacion y experiencias adquiridas en disenos anteriores. SILRA es una poderosa herramienta que permite al disenador optimar tanto el equipo como el tiempo de diseno.

  16. Modeling the fine fragmentation following the triggering stage of a vapor explosion

    International Nuclear Information System (INIS)

    Darbord, I.

    1997-01-01

    In the frame of PWR severe accidents, where the core melt, this thesis studies one of the stages of an FCI (fuel coolant interaction) or vapor explosion. An FCI is a rapid evaporation of a coolant when it comes into contact with a hot liquid. More precisely, the subject of this study is the triggering stage of the FCI, when a fuel drop of diameter around one centimeter breaks up into many fragments, diameter of which is around a hundred micrometers. The model describes the cyclic collapse and growth of a vapor bubble around the fuel droplet and its fragmentation. The main features of the model are: - the destabilization of the film or the vapor bubble due to the growth of Rayleigh-Taylor instabilities (those form coolant jets that contact the fuel surface); - The mechanisms of fragmentation, following the contacts (in the case of entrapment of a certain amount of coolant in the fuel, the entrapped coolant evaporates violently after it has been heated to the homogeneous nucleation temperature); - the transient heat transfer from the fragments to the coolant and the elevated vapor production, which leads to an important expansion of the bubble (about this point, the cooling of the fragments has been described by a transient heat transfer coefficient linked to nucleate boiling). The results of the model show good agreement with experimental data. (Author)

  17. Experimental test of liquid droplet radiator performance

    International Nuclear Information System (INIS)

    Mattick, A.T.; Simon, M.A.

    1986-01-01

    This liquid droplet radiator (LDR) is evolving rapidly as a lightweight system for heat rejection in space power systems. By using recirculating free streams of submillimeter droplets to radiate waste energy directly to space, the LDR can potentially be an order of magnitude lighter than conventional radiator systems which radiate from solid surfaces. The LDR is also less vulnerable to micrometeoroid damage than are conventional radiators, and it has a low transport volume. Three major development issues of this new heat rejection system are the ability to direct the droplet streams with sufficient precision to avoid fluid loss, radiative performance of the array of droplet streams which comprise the radiating elements of the LDR, and the efficacy of the droplet stream collector, again with respect to fluid loss. This paper reports experimental results bearing on the first two issues - droplet aiming in a multikilowatt-sized system, and radiated power from a large droplet array. Parallel efforts on droplet collection and LDR system design are being pursued by several research groups

  18. Impinging Water Droplets on Inclined Glass Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lance, Blake [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ho, Clifford K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0°, 10°, and 45°), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47° contact angle and non-wetting = 93° contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of ~3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45° tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  19. The collaborative work of droplet assembly.

    Science.gov (United States)

    Chen, Xiao; Goodman, Joel M

    2017-10-01

    Three proteins have been implicated in the assembly of cytoplasmic lipid droplets: seipin, FIT2, and perilipin. This review examines the current theories of seipin function as well as the evidence for the involvement of all three proteins in droplet biogenesis, and ends with a proposal of how they collaborate to regulate the formation of droplets. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Droplet collisions in turbulence

    NARCIS (Netherlands)

    Oldenziel, G.

    2014-01-01

    Liquid droplets occur in many natural phenomena and play an important role in a large number of industrial applications. One of the distinct properties of droplets as opposed to solid particles is their ability to merge, or coalesce upon collision. Coalescence of liquid drops is of importance in for

  1. Evaporation of nanofluid droplet on heated surface

    Directory of Open Access Journals (Sweden)

    Yeung Chan Kim

    2015-04-01

    Full Text Available In this study, an experiment on the evaporation of nanofluid sessile droplet on a heated surface was conducted. A nanofluid of 0.5% volumetric concentration mixed with 80-nm-sized CuO powder and pure water were used for experiment. Droplet was applied to the heated surface, and images of the evaporation process were obtained. The recorded images were analyzed to find the volume, diameter, and contact angle of the droplet. In addition, the evaporative heat transfer coefficient was calculated from experimental result. The results of this study are summarized as follows: the base diameter of the droplet was maintained stably during the evaporation. The measured temperature of the droplet was increased rapidly for a very short time, then maintained constantly. The nanofluid droplet was evaporated faster than the pure water droplet under the experimental conditions of the same initial volume and temperature, and the average evaporative heat transfer coefficient of the nanofluid droplet was higher than that of pure water. We can consider the effects of the initial contact angle and thermal conductivity of nanofluid as the reason for this experimental result. However, the effect of surface roughness on the evaporative heat transfer of nanofluid droplet appeared unclear.

  2. Droplet Translation Actuated by Photoelectrowetting.

    Science.gov (United States)

    Palma, Cesar; Deegan, Robert D

    2018-03-13

    In traditional electrowetting-on-dielectric (EWOD) devices, droplets are moved about a substrate using electric fields produced by an array of discrete electrodes. In this study, we show that a drop can be driven across a substrate with a localized light beam by exploiting the photoelectrowetting (PEW) effect, a light-activated variant of EWOD. Droplet transport actuated by PEW eliminates the need for electrode arrays and the complexities entailed in their fabrication and control, and offers a new approach for designing lab-on-a-chip applications. We report measurements of the maximum droplet speed as a function of frequency and magnitude of the applied bias, intensity of illumination, volume of the droplet, and viscosity and also introduce a model that reproduces these data.

  3. Colliding droplets: a short film presentation

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1981-01-01

    A series of experiments were performed in which liquid droplets were caused to collide. Impact velocities to several meters per second and droplet diameters up to 600 micrometers were used. The impact parameters in the collisions vary from zero to greater than the sum of the droplet radii. Photographs of the collisions were taken with a high speed framing camera in order to study the impacts and subsequent behavior of the droplets. The experiments will be discussed and a short movie film presentation of some of the impacts will be shown

  4. Heat and mass transfer boundary conditions at the surface of a heated sessile droplet

    Science.gov (United States)

    Ljung, Anna-Lena; Lundström, T. Staffan

    2017-12-01

    This work numerically investigates how the boundary conditions of a heated sessile water droplet should be defined in order to include effects of both ambient and internal flow. Significance of water vapor, Marangoni convection, separate simulations of the external and internal flow, and influence of contact angle throughout drying is studied. The quasi-steady simulations are carried out with Computational Fluid Dynamics and conduction, natural convection and Marangoni convection are accounted for inside the droplet. For the studied conditions, a noticeable effect of buoyancy due to evaporation is observed. Hence, the inclusion of moisture increases the maximum velocities in the external flow. Marangoni convection will, in its turn, increase the velocity within the droplet with up to three orders of magnitude. Results furthermore show that the internal and ambient flow can be simulated separately for the conditions studied, and the accuracy is improved if the internal temperature gradient is low, e.g. if Marangoni convection is present. Simultaneous simulations of the domains are however preferred at high plate temperatures if both internal and external flows are dominated by buoyancy and natural convection. The importance of a spatially resolved heat and mass transfer boundary condition is, in its turn, increased if the internal velocity is small or if there is a large variation of the transfer coefficients at the surface. Finally, the results indicate that when the internal convective heat transport is small, a rather constant evaporation rate may be obtained throughout the drying at certain conditions.

  5. Settling of fixed erythrocyte suspension droplets

    Science.gov (United States)

    Omenyi, S. N.; Snyder, R. S.

    1983-01-01

    It is pointed out that when particles behave collectively rather than individually, the fractionation of micron-size particles on the basis of size, density, and surface characteristics by centrifugation and electrophoresis is hindered. The formation and sedimentation of droplets containing particles represent an extreme example of collective behavior and pose a major problem for these separation methods when large quantities of particles need to be fractionated. Experiments are described that measure droplet sizes and settling rates for a variety of particles and droplets. Expressions relating the particle concentration in a drop to measurable quantities of the fluids and particles are developed. The number of particles in each droplet is then estimated, together with the effective droplet density. Red blood cells from different animals fixed in glutaraldehyde provide model particle groups.

  6. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces.

    Science.gov (United States)

    Zhao, Lei; Cheng, Jiangtao

    2018-04-05

    Besides the Wenzel state, liquid droplets on micro/nanostructured surfaces can stay in the Cassie state and consequently exhibit intriguing characteristics such as a large contact angle, small contact angle hysteresis and exceptional mobility. Here we report molecular dynamics (MD) simulations of the wetting dynamics of Cassie-state water droplets on nanostructured ultrahydrophobic surfaces with an emphasis on the genesis of the contact line friction (CLF). From an ab initio perspective, CLF can be ascribed to the collective effect of solid-liquid retarding and viscous damping. Solid-liquid retarding is related to the work of adhesion, whereas viscous damping arises from the viscous force exerted on the liquid molecules within the three-phase (liquid/vapor/solid) contact zone. In this work, a universal scaling law is derived to generalize the CLF on nanostructured ultrahydrophobic surfaces. With the decreasing fraction of solid-liquid contact (i.e., the solid fraction), CLF for a Cassie-state droplet gets enhanced due to the fact that viscous damping is counter-intuitively intensified while solid-liquid retarding remains unchanged. Nevertheless, the overall friction between a Cassie-state droplet and the structured surface is indeed reduced since the air cushion formed in the interstices of the surface roughness underneath the Cassie-state droplet applies negligible resistance to the contact line. Our results have revealed the genesis of CLF from an ab initio perspective, demonstrated the effects of surface structures on a moving contact line and justified the critical role of CLF in the analysis of wetting-related situations.

  7. Direct analysis of intact biological macromolecules by low-energy, fiber-based femtosecond laser vaporization at 1042 nm wavelength with nanospray postionization mass spectrometry.

    Science.gov (United States)

    Shi, Fengjian; Flanigan, Paul M; Archer, Jieutonne J; Levis, Robert J

    2015-03-17

    A fiber-based laser with a pulse duration of 435 fs and a wavelength of 1042 nm was used to vaporize biological macromolecules intact from the condensed phase into the gas phase for nanospray postionization and mass analysis. Laser vaporization of dried standard protein samples from a glass substrate by 10 Hz bursts of 20 pulses having 10 μs pulse separation and energy resulted in signal comparable to a metal substrate. The protein signal observed from an aqueous droplet on a glass substrate was negligible compared to either a droplet on metal or a thin film on glass. The mass spectra generated from dried and aqueous protein samples by the low-energy, fiber laser were similar to the results from high-energy (500 μJ), 45-fs, 800-nm Ti:sapphire-based femtosecond laser electrospray mass spectrometry (LEMS) experiments, suggesting that the fiber-based femtosecond laser desorption mechanism involves a nonresonant, multiphoton process, rather than thermal- or photoacoustic-induced desorption. Direct analysis of whole blood performed without any pretreatment resulted in features corresponding to hemoglobin subunit-heme complex ions. The observation of intact molecular ions with low charge states from protein, and the tentatively assigned hemoglobin α subunit-heme complex from blood suggests that fiber-based femtosecond laser vaporization is a "soft" desorption source at a laser intensity of 2.39 × 10(12) W/cm(2). The low-energy, turnkey fiber laser demonstrates the potential of a more robust and affordable laser for femtosecond laser vaporization to deliver biological macromolecules into the gas phase for mass analysis.

  8. Collisions of droplets on spherical particles

    Science.gov (United States)

    Charalampous, Georgios; Hardalupas, Yannis

    2017-10-01

    Head-on collisions between droplets and spherical particles are examined for water droplets in the diameter range between 170 μm and 280 μm and spherical particles in the diameter range between 500 μm and 2000 μm. The droplet velocities range between 6 m/s and 11 m/s, while the spherical particles are fixed in space. The Weber and Ohnesorge numbers and ratio of droplet to particle diameter were between 92 deposition and splashing regimes, a regime is observed in the intermediate region, where the droplet forms a stable crown, which does not breakup but propagates along the particle surface and passes around the particle. This regime is prevalent when the droplets collide on small particles. The characteristics of the collision at the onset of rim instability are also described in terms of the location of the film on the particle surface and the orientation and length of the ejected crown. Proper orthogonal decomposition identified that the first 2 modes are enough to capture the overall morphology of the crown at the splashing threshold.

  9. Levitated droplet dye laser

    DEFF Research Database (Denmark)

    Azzouz, H.; Alkafadiji, L.; Balslev, Søren

    2006-01-01

    a high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine 6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser, and the dye laser emission is analyzed by a fixed grating...

  10. Water Entry by a Train of Droplets

    Science.gov (United States)

    Ohl, Claus-Dieter; Huang, Xin; Chan, Chon U.; Frommhold, Philipp Erhard; Lippert, Alexander

    2014-11-01

    The impact of single droplets on a deep pool is a well-studied phenomenon which reveals reach fluid mechanics. Lesser studied is the impact of a train of droplet and the accompanied formation of largely elongated cavities, in particular for well controlled droplets. The droplets with diameters of 20-40 μm and velocities of approx. 20 m/s are generated with a piezo-actuated nozzle at rates of 200-300 kHz. Individual droplets are selected by electric charging and deflection and the impact is visualized with stroboscopic photography and high-speed videos. We study in particular the formation and shape of the cavity as by varying the number of droplets from one to 64. The cavities reach centimetres in length with lateral diameters of the order of 100 of micrometres.

  11. Electrostatic charging and control of droplets in microfluidic devices.

    Science.gov (United States)

    Zhou, Hongbo; Yao, Shuhuai

    2013-03-07

    Precharged droplets can facilitate manipulation and control of low-volume liquids in droplet-based microfluidics. In this paper, we demonstrate non-contact electrostatic charging of droplets by polarizing a neutral droplet and splitting it into two oppositely charged daughter droplets in a T-junction microchannel. We performed numerical simulation to analyze the non-contact charging process and proposed a new design with a notch at the T-junction in aid of droplet splitting for more efficient charging. We experimentally characterized the induced charge in droplets in microfabricated devices. The experimental results agreed well with the simulation. Finally, we demonstrated highly effective droplet manipulation in a path selection unit appending to the droplet charging. We expect our work could enable precision manipulation of droplets for more complex liquid handling in microfluidics and promote electric-force based manipulation in 'lab-on-a-chip' systems.

  12. The impact of smoke from forest fires on the spectral dispersion of cloud droplet size distributions in the Amazonian region

    International Nuclear Information System (INIS)

    Martins, J A; Silva Dias, M A F

    2009-01-01

    In this paper, the main microphysical characteristics of clouds developing in polluted and clean conditions in the biomass-burning season of the Amazon region are examined, with special attention to the spectral dispersion of the cloud droplet size distribution and its potential impact on climate modeling applications. The dispersion effect has been shown to alter the climate cooling predicted by the so-called Twomey effect. In biomass-burning polluted conditions, high concentrations of low dispersed cloud droplets are found. Clean conditions revealed an opposite situation. The liquid water content (0.43 ± 0.19 g m -3 ) is shown to be uncorrelated with the cloud drop number concentration, while the effective radius is found to be very much correlated with the relative dispersion of the size distribution (R 2 = 0.81). The results suggest that an increase in cloud condensation nuclei concentration from biomass-burning aerosols may lead to an additional effect caused by a decrease in relative dispersion. Since the dry season in the Amazonian region is vapor limiting, the dispersion effect of cloud droplet size distributions could be substantially larger than in other polluted regions.

  13. Charge Transfer into Aqueous Droplets via Kilovolt Potentials

    Science.gov (United States)

    Hamlin, B. S.; Rosenberg, E. R.; Ristenpart, W. D.

    2012-11-01

    When an aqueous droplet immersed in an insulating oil contacts an electrified surface, the droplet acquires net charge. For sufficiently large field strengths, the charged droplet is driven back and forth electrophoretically between the electrodes, in essence ``bouncing'' between them. Although it is clear that the droplet acquires charge, the underlying mechanism controlling the charge transfer process has been unclear. Here we demonstrate that the chemical species present in the droplet strongly affect the charge transfer process into the drop. Using two independent charge measurement techniques, high speed video velocimetry and direct current measurement, we show that the charge acquired during contact is strongly influenced by the droplet pH. We also provide physical evidence that the electrodes undergo electroplating or corrosion for droplets with appropriate chemical species present. Together, the observations strongly suggest that electrochemical reactions govern the charge transfer process into the droplet.

  14. Supersonic laser-induced jetting of aluminum micro-droplets

    International Nuclear Information System (INIS)

    Zenou, M.; Sa'ar, A.; Kotler, Z.

    2015-01-01

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets

  15. Supersonic laser-induced jetting of aluminum micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zenou, M. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel); Sa' ar, A. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Kotler, Z. [Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel)

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  16. Magnetic fluid droplet in a harmonic electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kvasov, D., E-mail: kvasovdmitry@gmail.com [Lomonosov Moscow State University, Moscow (Russian Federation); Naletova, V. [Lomonosov Moscow State University, Moscow (Russian Federation); Beketova, E.; Dikanskii, Yu. [North-Caucasus Federal University, Stavropol (Russian Federation)

    2017-06-01

    A magnetic fluid droplet immersed in oil in an applied harmonic electric field is studied experimentally and theoretically. It is shown that deformations of the droplet observed experimentally are not described by the well-known theory. New double-layer droplet model which describes experimental data well is proposed. - Highlights: • The magnetic fluid droplet in the oil in a harmonic electric field is studied. • The paradoxical flattening effect of the droplet is observed experimentally. • For explaining this effect the model of the double-layer droplet is proposed. • Numerical and experimental data coincide qualitatively and quantitatively.

  17. Switchable and tunable film bulk acoustic resonator fabricated using barium strontium titanate active layer and Ta{sub 2}O{sub 5}/SiO{sub 2} acoustic reflector

    Energy Technology Data Exchange (ETDEWEB)

    Sbrockey, N. M., E-mail: sbrockey@structuredmaterials.com; Tompa, G. S. [Structured Materials Industries, Inc., Piscataway, New Jersey 08854 (United States); Kalkur, T. S.; Mansour, A. [Department of Electrical and Computer Engineering, Colorado State University at Colorado Springs, Colorado Springs, Colorado 80933 (United States); Khassaf, H.; Yu, H.; Aindow, M.; Alpay, S. P. [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States)

    2016-08-01

    A solidly mounted acoustic resonator was fabricated using a Ba{sub 0.60}Sr{sub 0.40}TiO{sub 3} (BST) film deposited by metal organic chemical vapor deposition. The device was acoustically isolated from the substrate using a Bragg reflector consisting of three pairs of Ta{sub 2}O{sub 5}/SiO{sub 2} layers deposited by chemical solution deposition. Transmission electron microscopy verified that the Bragg reflector was not affected by the high temperatures and oxidizing conditions necessary to process high quality BST films. Electrical characterization of the resonator demonstrated a quality factor (Q) of 320 and an electromechanical coupling coefficient (K{sub t}{sup 2}) of 7.0% at 11 V.

  18. Oleoplaning droplets on lubricated surfaces

    Science.gov (United States)

    Daniel, Dan; Timonen, Jaakko V. I.; Li, Ruoping; Velling, Seneca J.; Aizenberg, Joanna

    2017-10-01

    Recently, there has been much interest in using lubricated surfaces to achieve extreme liquid repellency: a foreign droplet immiscible with the underlying lubricant layer was shown to slide off at a small tilt angle behaviour was hypothesized to arise from a thin lubricant overlayer film sandwiched between the droplet and solid substrate, but this has not been observed experimentally. Here, using thin-film interference, we are able to visualize the intercalated film under both static and dynamic conditions. We further demonstrate that for a moving droplet, the film thickness follows the Landau-Levich-Derjaguin law. The droplet is therefore oleoplaning--akin to tyres hydroplaning on a wet road--with minimal dissipative force and no contact line pinning. The techniques and insights presented in this study will inform future work on the fundamentals of wetting for lubricated surfaces and enable their rational design.

  19. Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein

    Energy Technology Data Exchange (ETDEWEB)

    Vrablik, Tracy L. [Washington State Univ., Pullman, WA (United States); Petyuk, Vladislav A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larson, Emily M. [Washington State Univ., Pullman, WA (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Watts, Jennifer [Washington State Univ., Pullman, WA (United States)

    2015-06-27

    Lipid droplets are cytoplasmic organelles that store neutral lipids for membrane synthesis and energy reserves. In this study, we characterized the lipid and protein composition of purified C. elegans lipid droplets. These lipid droplets are composed mainly of triacylglycerols, surrounded by a phospholipid monolayer composed primarily of phosphatidylcholine and phosphatidylethanolamine. The fatty acid composition of the triacylglycerols was rich in fatty acid species obtained from the dietary E. coli, including cyclopropane fatty acids and cis-vaccenic acid. Unlike other organisms, C. elegans lipid droplets contain very little cholesterol or cholesterol esters. Comparison of the lipid droplet proteomes of wild type and high-fat daf-2 mutant strains shows a relative decrease of MDT-28 abundance in lipid droplets isolated from daf-2 mutants. Functional analysis of lipid droplet proteins identified in our proteomic studies indicated an enrichment of proteins required for growth and fat homeostasis in C. elegans.

  20. Janus droplet as a catalytic micromotor

    Science.gov (United States)

    Shklyaev, Sergey

    2015-06-01

    Self-propulsion of a Janus droplet in a solution of surfactant, which reacts on a half of a drop surface, is studied theoretically. The droplet acts as a catalytic motor creating a concentration gradient, which generates its surface-tension-driven motion; the self-propulsion speed is rather high, 60 μ \\text{m/s} and more. This catalytic motor has several advantages over other micromotors: simple manufacturing, easily attained neutral buoyancy. In contrast to a single-fluid droplet, which demonstrates a self-propulsion as a result of symmetry breaking instability, for the Janus one no stability threshold exists; hence, the droplet radius can be scaled down to micrometers.

  1. Using acoustic levitation in synchrotron based laser pump hard x-ray probe experiments

    Science.gov (United States)

    Hu, Bin; Lerch, Jason; Suthar, Kamlesh; Dichiara, Anthony

    Acoustic levitation provides a platform to trap and hold a small amount of material by using standing pressure waves without a container. The technique has a potential to be used for laser pump x-ray probe experiments; x-ray scattering and laser distortion from the container can be avoided, sample consumption can be minimized, and unwanted chemistry that may occur at the container interface can be avoided. The method has been used at synchrotron sources for studying protein and pharmaceutical solutions using x-ray diffraction (XRD) and small angle x-ray scattering (SAXS). However, pump-probe experiments require homogeneously excited samples, smaller than the absorption depth of the material that must be held stably at the intersection of both the laser and x-ray beams. We discuss 1) the role of oscillations in acoustic levitation and the optimal acoustic trapping conditions for x-ray/laser experiments, 2) opportunities to automate acoustic levitation for fast sample loading and manipulation, and 3) our experimental results using SAXS to monitor laser induced thermal expansion in gold nanoparticles solution. We also performed Finite Element Analysis to optimize the trapping performance and stability of droplets ranging from 0.4 mm to 2 mm. Our early x-ray/laser demonstrated the potential of the technique for time-resolved X-ray science.

  2. Transient Droplet Behavior and Droplet Breakup during Bulk and Confined Shear Flow in Blends with One Viscoelastic Component: Experiments, Modelling and Simulations

    Science.gov (United States)

    Cardinaels, Ruth; Verhulst, Kristof; Renardy, Yuriko; Moldenaers, Paula

    2008-07-01

    The transient droplet deformation and droplet orientation after inception of shear, the shape relaxation after cessation of shear and droplet breakup during shear, are microscopically studied, both under bulk and confined conditions. The studied blends contain one viscoelastic Boger fluid phase. A counter rotating setup, based on a Paar Physica MCR300, is used for the droplet visualisation. For bulk shear flow, it is shown that the droplet deformation during startup of shear flow and the shape relaxation after cessation of shear flow are hardly influenced by droplet viscoelasticity, even at moderate to high capillary and Deborah numbers. The effects of droplet viscoelasticity only become visible close to the critical conditions and a novel break-up mechanism is observed. Matrix viscoelasticity has a more pronounced effect, causing overshoots in the deformation and significantly inhibiting relaxation. However, different applied capillary numbers prior to cessation of shear flow, with the Deborah number fixed, still result in a single master curve for shape retraction, as in fully Newtonian systems. The long tail in the droplet relaxation can be qualitatively described with a phenomenological model for droplet deformation, when using a 5-mode Giesekus model for the fluid rheology. It is found that the shear flow history significantly affects the droplet shape evolution and the breakup process in blends with one viscoelastic component. Confining a droplet between two plates accelerates the droplet deformation kinetics, similar to fully Newtonian systems. However, the increased droplet deformation, due to wall effects, causes the steady state to be reached at a later instant in time. Droplet relaxation is less sensitive to confinement, leading to slower relaxation kinetics only for highly confined droplets. For the blend with a viscoelastic droplet, a non-monotonous trend is found for the critical capillary number as a function of the confinement ratio. Finally

  3. Transient Droplet Behavior and Droplet Breakup during Bulk and Confined Shear Flow in Blends with One Viscoelastic Component: Experiments, Modelling and Simulations

    International Nuclear Information System (INIS)

    Cardinaels, Ruth; Verhulst, Kristof; Moldenaers, Paula; Renardy, Yuriko

    2008-01-01

    The transient droplet deformation and droplet orientation after inception of shear, the shape relaxation after cessation of shear and droplet breakup during shear, are microscopically studied, both under bulk and confined conditions. The studied blends contain one viscoelastic Boger fluid phase. A counter rotating setup, based on a Paar Physica MCR300, is used for the droplet visualisation. For bulk shear flow, it is shown that the droplet deformation during startup of shear flow and the shape relaxation after cessation of shear flow are hardly influenced by droplet viscoelasticity, even at moderate to high capillary and Deborah numbers. The effects of droplet viscoelasticity only become visible close to the critical conditions and a novel break-up mechanism is observed. Matrix viscoelasticity has a more pronounced effect, causing overshoots in the deformation and significantly inhibiting relaxation. However, different applied capillary numbers prior to cessation of shear flow, with the Deborah number fixed, still result in a single master curve for shape retraction, as in fully Newtonian systems. The long tail in the droplet relaxation can be qualitatively described with a phenomenological model for droplet deformation, when using a 5-mode Giesekus model for the fluid rheology. It is found that the shear flow history significantly affects the droplet shape evolution and the breakup process in blends with one viscoelastic component. Confining a droplet between two plates accelerates the droplet deformation kinetics, similar to fully Newtonian systems. However, the increased droplet deformation, due to wall effects, causes the steady state to be reached at a later instant in time. Droplet relaxation is less sensitive to confinement, leading to slower relaxation kinetics only for highly confined droplets. For the blend with a viscoelastic droplet, a non-monotonous trend is found for the critical capillary number as a function of the confinement ratio. Finally

  4. Interface-Resolving Simulation of Collision Efficiency of Cloud Droplets

    Science.gov (United States)

    Wang, Lian-Ping; Peng, Cheng; Rosa, Bodgan; Onishi, Ryo

    2017-11-01

    Small-scale air turbulence could enhance the geometric collision rate of cloud droplets while large-scale air turbulence could augment the diffusional growth of cloud droplets. Air turbulence could also enhance the collision efficiency of cloud droplets. Accurate simulation of collision efficiency, however, requires capture of the multi-scale droplet-turbulence and droplet-droplet interactions, which has only been partially achieved in the recent past using the hybrid direct numerical simulation (HDNS) approach. % where Stokes disturbance flow is assumed. The HDNS approach has two major drawbacks: (1) the short-range droplet-droplet interaction is not treated rigorously; (2) the finite-Reynolds number correction to the collision efficiency is not included. In this talk, using two independent numerical methods, we will develop an interface-resolved simulation approach in which the disturbance flows are directly resolved numerically, combined with a rigorous lubrication correction model for near-field droplet-droplet interaction. This multi-scale approach is first used to study the effect of finite flow Reynolds numbers on the droplet collision efficiency in still air. Our simulation results show a significant finite-Re effect on collision efficiency when the droplets are of similar sizes. Preliminary results on integrating this approach in a turbulent flow laden with droplets will also be presented. This work is partially supported by the National Science Foundation.

  5. Development of an imaging system for single droplet characterization using a droplet generator.

    Science.gov (United States)

    Minov, S Vulgarakis; Cointault, F; Vangeyte, J; Pieters, J G; Hijazi, B; Nuyttens, D

    2012-01-01

    The spray droplets generated by agricultural nozzles play an important role in the application accuracy and efficiency of plant protection products. The limitations of the non-imaging techniques and the recent improvements in digital image acquisition and processing increased the interest in using high speed imaging techniques in pesticide spray characterisation. The goal of this study was to develop an imaging technique to evaluate the characteristics of a single spray droplet using a piezoelectric single droplet generator and a high speed imaging technique. Tests were done with different camera settings, lenses, diffusers and light sources. The experiments have shown the necessity for having a good image acquisition and processing system. Image analysis results contributed in selecting the optimal set-up for measuring droplet size and velocity which consisted of a high speed camera with a 6 micros exposure time, a microscope lens at a working distance of 43 cm resulting in a field of view of 1.0 cm x 0.8 cm and a Xenon light source without diffuser used as a backlight. For measuring macro-spray characteristics as the droplet trajectory, the spray angle and the spray shape, a Macro Video Zoom lens at a working distance of 14.3 cm with a bigger field of view of 7.5 cm x 9.5 cm in combination with a halogen spotlight with a diffuser and the high speed camera can be used.

  6. Phase rainbow refractometry for accurate droplet variation characterization.

    Science.gov (United States)

    Wu, Yingchun; Promvongsa, Jantarat; Saengkaew, Sawitree; Wu, Xuecheng; Chen, Jia; Gréhan, Gérard

    2016-10-15

    We developed a one-dimensional phase rainbow refractometer for the accurate trans-dimensional measurements of droplet size on the micrometer scale as well as the tiny droplet diameter variations at the nanoscale. The dependence of the phase shift of the rainbow ripple structures on the droplet variations is revealed. The phase-shifting rainbow image is recorded by a telecentric one-dimensional rainbow imaging system. Experiments on the evaporating monodispersed droplet stream show that the phase rainbow refractometer can measure the tiny droplet diameter changes down to tens of nanometers. This one-dimensional phase rainbow refractometer is capable of measuring the droplet refractive index and diameter, as well as variations.

  7. Surface Acoustic Wave Nebulisation Mass Spectrometry for the Fast and Highly Sensitive Characterisation of Synthetic Dyes in Textile Samples

    Science.gov (United States)

    Astefanei, Alina; van Bommel, Maarten; Corthals, Garry L.

    2017-10-01

    Surface acoustic wave nebulisation (SAWN) mass spectrometry (MS) is a method to generate gaseous ions compatible with direct MS of minute samples at femtomole sensitivity. To perform SAWN, acoustic waves are propagated through a LiNbO3 sampling chip, and are conducted to the liquid sample, which ultimately leads to the generation of a fine mist containing droplets of nanometre to micrometre diameter. Through fission and evaporation, the droplets undergo a phase change from liquid to gaseous analyte ions in a non-destructive manner. We have developed SAWN technology for the characterisation of organic colourants in textiles. It generates electrospray-ionisation-like ions in a non-destructive manner during ionisation, as can be observed by the unmodified chemical structure. The sample size is decreased by tenfold to 1000-fold when compared with currently used liquid chromatography-MS methods, with equal or better sensitivity. This work underscores SAWN-MS as an ideal tool for molecular analysis of art objects as it is non-destructive, is rapid, involves minimally invasive sampling and is more sensitive than current MS-based methods. [Figure not available: see fulltext.

  8. Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change

    Science.gov (United States)

    Li, Qing; Zhou, P.; Yan, H. J.

    2017-12-01

    In this paper, an improved thermal lattice Boltzmann (LB) model is proposed for simulating liquid-vapor phase change, which is aimed at improving an existing thermal LB model for liquid-vapor phase change [S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012), 10.1016/j.ijheatmasstransfer.2012.04.037]. First, we emphasize that the replacement of ∇ .(λ ∇ T ) /∇.(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) is an inappropriate treatment for diffuse interface modeling of liquid-vapor phase change. Furthermore, the error terms ∂t 0(T v ) +∇ .(T vv ) , which exist in the macroscopic temperature equation recovered from the previous model, are eliminated in the present model through a way that is consistent with the philosophy of the LB method. Moreover, the discrete effect of the source term is also eliminated in the present model. Numerical simulations are performed for droplet evaporation and bubble nucleation to validate the capability of the model for simulating liquid-vapor phase change. It is shown that the numerical results of the improved model agree well with those of a finite-difference scheme. Meanwhile, it is found that the replacement of ∇ .(λ ∇ T ) /∇ .(λ ∇ T ) ρ cV ρ cV with ∇ .(χ ∇ T ) leads to significant numerical errors and the error terms in the recovered macroscopic temperature equation also result in considerable errors.

  9. Spray Droplet Characterization from a Single Nozzle by High Speed Image Analysis Using an In-Focus Droplet Criterion.

    Science.gov (United States)

    Minov, Sofija Vulgarakis; Cointault, Frédéric; Vangeyte, Jürgen; Pieters, Jan G; Nuyttens, David

    2016-02-06

    Accurate spray characterization helps to better understand the pesticide spray application process. The goal of this research was to present the proof of principle of a droplet size and velocity measuring technique for different types of hydraulic spray nozzles using a high speed backlight image acquisition and analysis system. As only part of the drops of an agricultural spray can be in focus at any given moment, an in-focus criterion based on the gray level gradient was proposed to decide whether a given droplet is in focus or not. In a first experiment, differently sized droplets were generated with a piezoelectric generator and studied to establish the relationship between size and in-focus characteristics. In a second experiment, it was demonstrated that droplet sizes and velocities from a real sprayer could be measured reliably in a non-intrusive way using the newly developed image acquisition set-up and image processing. Measured droplet sizes ranged from 24 μm to 543 μm, depending on the nozzle type and size. Droplet velocities ranged from around 0.5 m/s to 12 m/s. The droplet size and velocity results were compared and related well with the results obtained with a Phase Doppler Particle Analyzer (PDPA).

  10. Freezing of Water Droplet due to Evaporation

    Science.gov (United States)

    Satoh, Isao; Fushinobu, Kazuyoshi; Hashimoto, Yu

    In this study, the feasibility of cooling/freezing of phase change.. materials(PCMs) due to evaporation for cold storage systems was experimentally examined. A pure water was used as the test PCM, since the latent heat due to evaporation of water is about 7 times larger than that due to freezing. A water droplet, the diameter of which was 1-4 mm, was suspended in a test cell by a fine metal wire (O. D.= 100μm),and the cell was suddenly evacuated up to the pressure lower than the triple-point pressure of water, so as to enhance the evaporation from the water surface. Temperature of the droplet was measured by a thermocouple, and the cooling/freezing behavior and the temperature profile of the droplet surface were captured by using a video camera and an IR thermo-camera, respectively. The obtained results showed that the water droplet in the evacuated cell is effectively cooled by the evaporation of water itself, and is frozen within a few seconds through remarkable supercooling state. When the initial temperature of the droplet is slightly higher than the room temperature, boiling phenomena occur in the droplet simultaneously with the freezing due to evaporation. Under such conditions, it was shown that the degree of supercooling of the droplet is reduced by the bubbles generated in the droplet.

  11. Droplet phase characteristics in liquid-dominated steam--water nozzle flow

    International Nuclear Information System (INIS)

    Alger, T.W.

    1978-01-01

    An experimental study was undertaken to determine the droplet size distribution, the droplet spatial distribution and the mean droplet velocity in low-quality, steam-water flow from a rectangular cross-section, converging-diverging nozzle. A unique forward light scattering technique was developed for droplet size distribution measurements. Droplet spatial variations were investigated using light transmission measurements, and droplet velocities were measured with a laser-Doppler velocimeter (LDV) system incorporating a confocal Fabry-Perot interferometer. Nozzle throat radius of curvature and height were varied to investigte their effects on droplet size. Droplet size distribution measurements yielded a nominal Sauter mean droplet diameter of 1.7 μm and a nominal mass-mean droplet diameter of 2.4 μm. Neither the throat radius of curvature nor the throat height were found to have a significant effect upon the nozzle exit droplet size. The light transmission and LDV measurement results confirmed both the droplet size measurements and demonstrated high spatial uniformity of the droplet phase within the nozzle jet flow. One-dimensional numerical calculations indicated that both the dynamic breakup (thermal equilibrium based on a critical Weber number of 6.0) and the boiling breakup (thermal nonequilibrium based on average droplet temperature) models predicted droplet diameters on the order of 7.5 μm, which are approximately equal to the maximum stable droplet diameters within the nozzle jet flow

  12. Droplet sizes, dynamics and deposition in vertical annular flow

    International Nuclear Information System (INIS)

    Lopes, J.C.B.; Dukler, A.E.

    1985-10-01

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data

  13. Cell agglomeration in the wells of a 24-well plate using acoustic streaming.

    Science.gov (United States)

    Kurashina, Yuta; Takemura, Kenjiro; Friend, James

    2017-02-28

    Cell agglomeration is essential both to the success of drug testing and to the development of tissue engineering. Here, a MHz-order acoustic wave is used to generate acoustic streaming in the wells of a 24-well plate to drive particle and cell agglomeration. Acoustic streaming is known to manipulate particles in microfluidic devices, and even provide concentration in sessile droplets, but concentration of particles or cells in individual wells has never been shown, principally due to the drag present along the periphery of the fluid in such a well. The agglomeration time for a range of particle sizes suggests that shear-induced migration plays an important role in the agglomeration process. Particles with a diameter of 45 μm agglomerated into a suspended pellet under exposure to 2.134 MHz acoustic waves at 1.5 W in 30 s. Additionally, BT-474 cells also agglomerated as adherent masses at the center bottom of the wells of tissue-culture treated 24-well plates. By switching to low cell binding 24-well plates, the BT-474 cells formed suspended agglomerations that appeared to be spheroids, fully fifteen times larger than any cell agglomerates without the acoustic streaming. In either case, the viability and proliferation of the cells were maintained despite acoustic irradiation and streaming. Intermittent excitation was effective in avoiding temperature excursions, consuming only 75 mW per well on average, presenting a convenient means to form fully three-dimensional cellular masses potentially useful for tissue, cancer, and drug research.

  14. Emulsion droplet interactions: a front-tracking treatment

    Science.gov (United States)

    Mason, Lachlan; Juric, Damir; Chergui, Jalel; Shin, Seungwon; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Emulsion coalescence influences a multitude of industrial applications including solvent extraction, oil recovery and the manufacture of fast-moving consumer goods. Droplet interaction models are vital for the design and scale-up of processing systems, however predictive modelling at the droplet-scale remains a research challenge. This study simulates industrially relevant moderate-inertia collisions for which a high degree of droplet deformation occurs. A hybrid front-tracking/level-set approach is used to automatically account for interface merging without the need for `bookkeeping' of interface connectivity. The model is implemented in Code BLUE using a parallel multi-grid solver, allowing both film and droplet-scale dynamics to be resolved efficiently. Droplet interaction simulations are validated using experimental sequences from the literature in the presence and absence of background turbulence. The framework is readily extensible for modelling the influence of surfactants and non-Newtonian fluids on droplet interaction processes. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM), PETRONAS.

  15. Experimental test of liquid droplet radiator performance

    Science.gov (United States)

    Mattick, A. T.; Simon, M. A.

    The liquid droplet radiator (LDR) is a heat rejection system for space power systems wherein an array of heated liquid droplets radiates energy directly to space. The use of submillimeter droplets provides large radiating area-to-mass ratio, resulting in radiator systems which are several times lighter than conventional solid surface radiators. An experiment is described in which the power radiated by an array of 2300 streams of silicone oil droplets is measured to test a previously developed theory of the LDR radiation process. This system would be capable of rejecting several kW of heat in space. Furthermore, it would be suitable as a modular unit of an LDR designed for 100-kW power levels. The experiment provided confirmation of the theoretical dependence of droplet array emissivity on optical depth. It also demonstrated the ability to create an array of more than 1000 droplet streams having a divergence less than 1 degree.

  16. Millifluidic droplet analyser for microbiology

    NARCIS (Netherlands)

    Baraban, L.; Bertholle, F.; Salverda, M.L.M.; Bremond, N.; Panizza, P.; Baudry, J.; Visser, de J.A.G.M.; Bibette, J.

    2011-01-01

    We present a novel millifluidic droplet analyser (MDA) for precisely monitoring the dynamics of microbial populations over multiple generations in numerous (=103) aqueous emulsion droplets (100 nL). As a first application, we measure the growth rate of a bacterial strain and determine the minimal

  17. Targeting the motor regulator Klar to lipid droplets

    Directory of Open Access Journals (Sweden)

    Einstein Jenifer

    2011-02-01

    Full Text Available Abstract Background In Drosophila, the transport regulator Klar displays tissue-specific localization: In photoreceptors, it is abundant on the nuclear envelope; in early embryos, it is absent from nuclei, but instead present on lipid droplets. Differential targeting of Klar appears to be due to isoform variation. Droplet targeting, in particular, has been suggested to occur via a variant C-terminal region, the LD domain. Although the LD domain is necessary and sufficient for droplet targeting in cultured cells, lack of specific reagents had made it previously impossible to analyze its role in vivo. Results Here we describe a new mutant allele of klar with a lesion specifically in the LD domain; this lesion abolishes both droplet localization of Klar and the ability of Klar to regulate droplet motion. It does not disrupt Klar's function for nuclear migration in photoreceptors. Using a GFP-LD fusion, we show that the LD domain is not only necessary but also sufficient for droplet targeting in vivo; it mediates droplet targeting in embryos, in ovaries, and in a number of somatic tissues. Conclusions Our analysis demonstrates that droplet targeting of Klar occurs via a cis-acting sequence and generates a new tool for monitoring lipid droplets in living tissues of Drosophila.

  18. Prediction of water droplet evaporation on zircaloy surface

    International Nuclear Information System (INIS)

    Lee, Chi Young; In, Wang Kee

    2014-01-01

    In the present experimental study, the prediction of water droplet evaporation on a zircaloy surface was investigated using various initial droplet sizes. To the best of our knowledge, this may be the first valuable effort for understanding the details of water droplet evaporation on a zircaloy surface. The initial contact diameters of the water droplets tested ranged from 1.76 to 3.41 mm. The behavior (i.e., time-dependent droplet volume, contact angle, droplet height, and contact diameter) and mode-transition time of the water droplet evaporation were strongly influenced by the initial droplet size. Using the normalized contact angle (θ*) and contact diameter (d*), the transitions between evaporation modes were successfully expressed by a single curve, and their criteria were proposed. To predict the temporal droplet volume change and evaporation rate, the range of θ* > 0.25 and d* > 0.9, which mostly covered the whole evaporation period and the initial contact diameter remained almost constant during evaporation, was targeted. In this range, the previous contact angle functions for the evaporation model underpredicted the experimental data. A new contact angle function of a zircaloy surface was empirically proposed, which represented the present experimental data within a reasonable degree of accuracy. (author)

  19. Investigation on Electrostatical Breakup of Bio-Oil Droplets

    Directory of Open Access Journals (Sweden)

    John Z. Wen

    2012-10-01

    Full Text Available In electrostatic atomization, the input electrical energy causes breaking up of the droplet surface by utilizing a mutual repulsion of net charges accumulating on that surface. In this work a number of key parameters controlling the bio-oil droplet breakup process are identified and these correlations among the droplet size distribution, specific charges of droplets and externally applied electrical voltages are quantified. Theoretical considerations of the bag or strip breakup mechanism of biodiesel droplets experiencing electrostatic potential are compared to experimental outcomes. The theoretical analysis suggests the droplet breakup process is governed by the Rayleigh instability condition, which reveals the effects of droplets size, specific charge, surface tension force, and droplet velocities. Experiments confirm that the average droplet diameters decrease with increasing specific charges and this decreasing tendency is non-monotonic due to the motion of satellite drops in the non-uniform electrical field. The measured specific charges are found to be smaller than the theoretical values. And the energy transformation from the electrical energy to surface energy, in addition to the energy loss, Taylor instability breakup, non-excess polarization and some system errors, accounts for this discrepancy. The electrostatic force is the dominant factor controlling the mechanism of biodiesel breakup in electrostatic atomization.

  20. Some Lipid Droplets Are More Equal Than Others: Different Metabolic Lipid Droplet Pools in Hepatic Stellate Cells.

    Science.gov (United States)

    Molenaar, Martijn R; Vaandrager, Arie B; Helms, J Bernd

    2017-01-01

    Hepatic stellate cells (HSCs) are professional lipid-storing cells and are unique in their property to store most of the retinol (vitamin A) as retinyl esters in large-sized lipid droplets. Hepatic stellate cell activation is a critical step in the development of chronic liver disease, as activated HSCs cause fibrosis. During activation, HSCs lose their lipid droplets containing triacylglycerols, cholesteryl esters, and retinyl esters. Lipidomic analysis revealed that the dynamics of disappearance of these different classes of neutral lipids are, however, very different from each other. Although retinyl esters steadily decrease during HSC activation, triacylglycerols have multiple pools one of which becomes transiently enriched in polyunsaturated fatty acids before disappearing. These observations are consistent with the existence of preexisting "original" lipid droplets with relatively slow turnover and rapidly recycling lipid droplets that transiently appear during activation of HSCs. Elucidation of the molecular machinery involved in the regulation of these distinct lipid droplet pools may open new avenues for the treatment of liver fibrosis.

  1. Droplet ejection and sliding on a flapping film

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2017-03-01

    Full Text Available Water recovery and subsequent reuse are required for human consumption as well as industrial, and agriculture applications. Moist air streams, such as cooling tower plumes and fog, represent opportunities for water harvesting. In this work, we investigate a flapping mechanism to increase droplet shedding on thin, hydrophobic films for two vibrational cases (e.g., ± 9 mm and 11 Hz; ± 2 mm and 100 Hz. Two main mechanisms removed water droplets from the flapping film: vibrational-induced coalescence/sliding and droplet ejection from the surface. Vibrations mobilized droplets on the flapping film, increasing the probability of coalescence with neighboring droplets leading to faster droplet growth. Droplet departure sizes of 1–2 mm were observed for flapping films, compared to 3–4 mm on stationary films, which solely relied on gravity for droplet removal. Additionally, flapping films exhibited lower percentage area coverage by water after a few seconds. The second removal mechanism, droplet ejection was analyzed with respect to surface wave formation and inertia. Smaller droplets (e.g., 1-mm diameter were ejected at a higher frequency which is associated with a higher acceleration. Kinetic energy of the water was the largest contributor to energy required to flap the film, and low energy inputs (i.e., 3.3 W/m2 were possible. Additionally, self-flapping films could enable novel water collection and condensation with minimal energy input.

  2. Droplet size in a rectangular Venturi scrubber

    OpenAIRE

    Costa, M. A. M.; Henrique, P. R.; Gonçalves, J. A. S.; Coury, J.R.

    2004-01-01

    The Venturi scrubber is a device which uses liquid in the form of droplets to efficiently remove fine particulate matter from gaseous streams. Droplet size is of fundamental importance for the scrubber performance. In the present experimental study, a laser diffraction technique was used in order to measure droplet size in situ in a Venturi scrubber with a rectangular cross section. Droplet size distribution was measured as a function of gas velocity (58.3 to 74.9 m/s), liquid-to-gas ratio (0...

  3. Acoustic cloaking and transformation acoustics

    International Nuclear Information System (INIS)

    Chen Huanyang; Chan, C T

    2010-01-01

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  4. New models for droplet heating and evaporation

    KAUST Repository

    Sazhin, Sergei S.

    2013-02-01

    A brief summary of new models for droplet heating and evaporation, developed mainly at the Sir Harry Ricardo Laboratory of the University of Brighton during 2011-2012, is presented. These are hydrodynamic models for mono-component droplet heating and evaporation, taking into account the effects of the moving boundary due to evaporation, hydrodynamic models of multi-component droplet heating and evaporation, taking and not taking into account the effects of the moving boundary, new kinetic models of mono-component droplet heating and evaporation, and a model for mono-component droplet evaporation, based on molecular dynamics simulation. The results, predicted by the new models are compared with experimental data and the prehctions of the previously developed models where possible. © 2013 Asian Network for Scientific Information.

  5. An experimental study on suspended sodium droplet combustion

    International Nuclear Information System (INIS)

    Sato, Kenji

    2003-03-01

    As part of studies for phenomenological investigation of sodium droplet burning behavior, in our previous experimental studies, ignition process and succeeding combustion of suspended single sodium droplet had been investigated by using high speed movie camera, and a temperature measurement system feasible for the experiment had been developed. In the present study, by using 4 mm diam. suspended sodium droplet, combustion experiments were performed for the free-stream velocity of dry air flow of 20 to 60 cm/s, and for the initial droplet temperature of 280 to 400degC, and the effects of the free-stream velocity and initial droplet temperature on the ignition behavior and droplet temperature variation with time were examined by using high speed movie camera and sheath-type fine thermocouple. The experimental results are as follows: (1) When the initial droplet temperature is less than 290degC, before ignition the oxide film accompanied with vertical streak appeared and the droplet turned to teardrop shape. (2) The ignition delay time defined as the time to evolution of orange color light emission zone or flame zone decreases with the increase o the free-stream velocity or of initial droplet temperature. Examples of typical ignition time are 1.4 s at the free-stream velocity 20 cm/s and initial droplet temperature 300degC, and 0.65 s at 60 cm/s and 400degC. (3) the dependence of the ignition delay time on the free-stream velocity decreases as the free stream velocity increases. (4) The droplet temperatures at the moment of melting extending all over the surface and at the moment of ignition are around 460degC and 500 to 600degC (mostly around 575degC), respectively. These values are essentially independent of the free-stream velocity and initial droplet temperature. (5) The rate of temperature rise does not change through the moment of ignition. (6) The asymptotic droplet temperature at approaching to quasi-steady combustion state following ignition is independent of

  6. Heterogeneous nucleation of a droplet pinned at a chemically inhomogeneous substrate: A simulation study of the two-dimensional Ising case

    Science.gov (United States)

    Trobo, Marta L.; Albano, Ezequiel V.; Binder, Kurt

    2018-03-01

    Heterogeneous nucleation is studied by Monte Carlo simulations and phenomenological theory, using the two-dimensional lattice gas model with suitable boundary fields. A chemical inhomogeneity of length b at one boundary favors the liquid phase, while elsewhere the vapor is favored. Switching on the bulk field Hb favoring the liquid, nucleation and growth of the liquid phase starting from the region of the chemical inhomogeneity are analyzed. Three regimes occur: for small fields, Hbbaseline length of the circle-cut sphere droplet would exceed b. For Hbc r i tbaseline has grown to the length b. Assuming that these pinned droplets have a circle cut shape and effective contact angles θeff in the regime θc energy barrier for the "depinning" of the droplet (i.e., growth of θeff to π - θc) vanishes when θeff approaches π/2, in practice only angles θeff up to about θef f m a x≃70 ° were observed. For larger fields (Hb>Hb*), the droplets nucleated at the chemical inhomogeneity grow to the full system size. While the relaxation time for the growth scales as τG∝Hb-1, the nucleation time τN scales as ln τN∝Hb-1. However, the prefactor in the latter relation, as evaluated for our simulations results, is not in accord with an extension of the Volmer-Turnbull theory to two-dimensions, when the theoretical contact angle θc is used.

  7. Aerodynamic and Acoustic Flight Test Results for the Stratospheric Observatory for Infrared Astronomy

    Science.gov (United States)

    Cumming, Stephen B.; Cliatt, Larry James; Frederick, Michael A.; Smith, Mark S.

    2013-01-01

    As part of the Stratospheric Observatory for Infrared Astronomy (SOFIA) program, a 747SP airplane was modified to carry a 2.5 meter telescope in the aft section of the fuselage. The resulting airborne observatory allows for observations above 99 percent of the water vapor in the atmosphere. The open cavity created by the modifications had the potential to significantly affect the airplane in the areas of aerodynamics and acoustics. Several series of flight tests were conducted to clear the airplanes operating envelope for astronomical observations, planned to be performed between the altitudes of 39,000 feet and 45,000 feet. The flight tests were successfully completed. Cavity acoustics were below design limits, and the overall acoustic characteristics of the cavity were better than expected. The modification did have some effects on the stability and control of the airplane, but these effects were not significant. Airplane air data systems were not affected by the modifications. This paper describes the methods used to examine the aerodynamics and acoustic data from the flight tests and provides a discussion of the flight test results in the areas of cavity acoustics, stability and control, and air data.

  8. An experimental study on suspended sodium droplet combustion (3)

    International Nuclear Information System (INIS)

    Sato, Kenji

    2005-03-01

    As part of studies for phenomenological investigation of sodium droplet burning behavior, in our previous experimental studies for suspended single sodium droplet, behavior of ignition process and succeeding combustion, ignition delay time, and droplet temperature history had been investigated. In this study, combustion experiments of suspended sodium droplet were performed in upward dry air flow by expanding the range of free-stream velocity U of air flow into 400 cm/s with initial droplet temperature Ti=300, 350, and 400degC and initial droplet diameter 4 mm at first. Then, the combustion experiments were also performed by changing the initial droplet diameter from 2.3 to 4.4 mm with Ti=350 and 400degC and U=100 cm/s. From the experimental results, the effects of free-stream velocity, initial droplet temperature, and initial droplet diameter on the ignition/burning behavior and ignition delay time were examined. The obtained results are as follows: (1) Ignition phenomena of suspended droplet were observed for all examined experimental conditions up to 400 cm/s. The orange emission observed at the moment of ignition occurs simultaneously over whole droplet surface except the top region of it. (2) The feature of the dependence of ignition delay time on the free-stream velocity is independent of the initial droplet temperature. With the increase of the free-stream velocity, up to 300 cm/s the ignition delay time decreases with decreasing dependency, and then the dependency increases more. (3) The ignition delay time increases with the increase of initial droplet diameter. The dependency increases as the initial droplet diameter increases. The ignition delay time extrapolated toward zero diameters from the obtained results becomes to be essentially zero. (author)

  9. AlScN thin film based surface acoustic wave devices with enhanced microfluidic performance

    International Nuclear Information System (INIS)

    Wang, W B; Xuan, W P; Chen, J K; Wang, X Z; Luo, J K; Fu, Y Q; Chen, J J; Duan, P F; Mayrhofer, P; Bittner, A; Schmid, U

    2016-01-01

    This paper reports the characterization of scandium aluminum nitride (Al 1−xS c xN , x   =  27%) films and discusses surface acoustic wave (SAW) devices based on them. Both AlScN and AlN films were deposited on silicon by sputtering and possessed columnar microstructures with (0 0 0 2) crystal orientation. The AlScN/Si SAW devices showed improved electromechanical coupling coefficients ( K 2 , ∼2%) compared with pure AlN films (<0.5%). The performance of the two types of devices was also investigated and compared, using acoustofluidics as an example. The AlScN/Si SAW devices achieved much lower threshold powers for the acoustic streaming and pumping of liquid droplets, and the acoustic streaming and pumping velocities were 2  ×  and 3  ×  those of the AlN/Si SAW devices, respectively. Mechanical characterization showed that the Young’s modulus and hardness of the AlN film decreased significantly when Sc was doped, and this was responsible for the decreased acoustic velocity and resonant frequency, and the increased temperature coefficient of frequency, of the AlScN SAW devices. (paper)

  10. Droplet size in a rectangular Venturi scrubber

    Directory of Open Access Journals (Sweden)

    M. A. M. Costa

    2004-06-01

    Full Text Available The Venturi scrubber is a device which uses liquid in the form of droplets to efficiently remove fine particulate matter from gaseous streams. Droplet size is of fundamental importance for the scrubber performance. In the present experimental study, a laser diffraction technique was used in order to measure droplet size in situ in a Venturi scrubber with a rectangular cross section. Droplet size distribution was measured as a function of gas velocity (58.3 to 74.9 m/s, liquid-to-gas ratio (0.07 to 0.27 l/m³, and distance from liquid injection point (64 to 173 mm. It was found that all these variables significantly affect droplet size. The results were compared with the predictions from correlations found in the literature.

  11. Droplet Epitaxy Image Contrast in Mirror Electron Microscopy

    Science.gov (United States)

    Kennedy, S. M.; Zheng, C. X.; Jesson, D. E.

    2017-01-01

    Image simulation methods are applied to interpret mirror electron microscopy (MEM) images obtained from a movie of GaAs droplet epitaxy. Cylindrical symmetry of structures grown by droplet epitaxy is assumed in the simulations which reproduce the main features of the experimental MEM image contrast, demonstrating that droplet epitaxy can be studied in real-time. It is therefore confirmed that an inner ring forms at the droplet contact line and an outer ring (or skirt) occurs outside the droplet periphery. We believe that MEM combined with image simulations will be increasingly used to study the formation and growth of quantum structures.

  12. Micro-Particles Motion in an Evaporating Droplet

    International Nuclear Information System (INIS)

    Jung, Jung Yeul; Yoo, Jung Yul; Kim, Young Won

    2007-01-01

    Nano-particles (on the order of 1 to 100 nm) contained within the droplet are moved by liquid flow and stacked at the contact line. The self-pinned contact line under the evaporating droplet is very interesting in the field of patterning and separation of particles and biocells. Models accounting for the nano-particles' flow and deposit patterns have been reported and verified by various experiments. Here, we report for the first time a phenomenon where micro-particles (on the order of 1 μm) in the colloid droplet flow to the center of droplet. There are three modes of fluid and particle flow in the evaporating droplet. In the first mode, a self-pinned contact line is maintained and the fluid and micro/nano-particles flow to the contact line. In the second mode, micro/nano-particles self-assemble at the near contact line, as reported by Jung and Kwak. In the final mode, only micro-particles are adverted to the center of the droplet due to movement of the contact line

  13. Enhancing physicochemical properties of emulsions by heteroaggregation of oppositely charged lactoferrin coated lutein droplets and whey protein isolate coated DHA droplets.

    Science.gov (United States)

    Li, Xin; Wang, Xu; Xu, Duoxia; Cao, Yanping; Wang, Shaojia; Wang, Bei; Sun, Baoguo; Yuan, Fang; Gao, Yanxiang

    2018-01-15

    The formation and physicochemical stability of mixed functional components (lutein & DHA) emulsions through heteroaggregation were studied. It was formed by controlled heteroaggregation of oppositely charged lutein and DHA droplets coated by cationic lactoferrin (LF) and anionic whey protein isolate (WPI), respectively. Heteroaggregation was induced by mixing the oppositely charged LF-lutein and WPI-DHA emulsions together at pH 6.0. Droplet size, zeta-potential, transmission-physical stability, microrheological behavior and microstructure of the heteroaggregates formed were measured as a function of LF-lutein to WPI-DHA droplet ratio. Lutein degradation and DHA oxidation by measurement of lipid hydroperoxides and thiobarbituric acid reactive substances were determined. Upon mixing the two types of bioactive compounds droplets together, it was found that the largest aggregates and highest physical stability occurred at a droplet ratio of 40% LF-lutein droplets to 60% WPI-DHA droplets. Heteroaggregates formation altered the microrheological properties of the mixed emulsions mainly by the special network structure of the droplets. When LF-coated lutein droplets ratios were more than 30% and less than 60%, the mixed emulsions exhibited distinct decreases in the Mean Square Displacement, which indicated that their limited scope of Brownian motion and stable structure. Mixed emulsions with LF-lutein/WPI-DHA droplets ratio of 4:6 exhibited Macroscopic Viscosity Index with 13 times and Elasticity Index with 3 times of magnitudes higher than the individual emulsions from which they were prepared. Compared with the WPI-DHA emulsion or LF-lutein emulsion, the oxidative stability of the heteroaggregate of LF-lutein/WPI-DHA emulsions was improved. Heteroaggregates formed by oppositely charged bioactive compounds droplets may be useful for creating specific food structures that lead to desirable physicochemical properties, such as microrheological property, physical and chemical

  14. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.

    Science.gov (United States)

    Basu, Amar S

    2013-05-21

    Emerging assays in droplet microfluidics require the measurement of parameters such as drop size, velocity, trajectory, shape deformation, fluorescence intensity, and others. While micro particle image velocimetry (μPIV) and related techniques are suitable for measuring flow using tracer particles, no tool exists for tracking droplets at the granularity of a single entity. This paper presents droplet morphometry and velocimetry (DMV), a digital video processing software for time-resolved droplet analysis. Droplets are identified through a series of image processing steps which operate on transparent, translucent, fluorescent, or opaque droplets. The steps include background image generation, background subtraction, edge detection, small object removal, morphological close and fill, and shape discrimination. A frame correlation step then links droplets spanning multiple frames via a nearest neighbor search with user-defined matching criteria. Each step can be individually tuned for maximum compatibility. For each droplet found, DMV provides a time-history of 20 different parameters, including trajectory, velocity, area, dimensions, shape deformation, orientation, nearest neighbour spacing, and pixel statistics. The data can be reported via scatter plots, histograms, and tables at the granularity of individual droplets or by statistics accrued over the population. We present several case studies from industry and academic labs, including the measurement of 1) size distributions and flow perturbations in a drop generator, 2) size distributions and mixing rates in drop splitting/merging devices, 3) efficiency of single cell encapsulation devices, 4) position tracking in electrowetting operations, 5) chemical concentrations in a serial drop dilutor, 6) drop sorting efficiency of a tensiophoresis device, 7) plug length and orientation of nonspherical plugs in a serpentine channel, and 8) high throughput tracking of >250 drops in a reinjection system. Performance metrics

  15. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  16. Interaction of Droplets Separated by an Elastic Film.

    Science.gov (United States)

    Liu, Tianshu; Xu, Xuejuan; Nadermann, Nichole; He, Zhenping; Jagota, Anand; Hui, Chung-Yuen

    2017-01-10

    The Laplace pressure of a droplet placed on one side of an elastic thin film can cause significant deformation in the form of a bulge on its opposite side. Here, we show that this deformation can be detected by other droplets suspended on the opposite side of the film, leading to interaction between droplets separated by the solid (but deformable) film. The interaction is repulsive when the drops have a large overlap and attractive when they have a small overlap. Thus, if two identical droplets are placed right on top of each other (one on either side of the thin film), they tend to repel each other, eventually reaching an equilibrium configuration where there is a small overlap. This observation can be explained by analyzing the energy landscape of the droplets interacting via an elastically deformed film. We further demonstrate this idea by designing a pattern comprising a big central drop with satellite droplets. This phenomenon can lead to techniques for directed motion of droplets confined to one side of a thin elastic membrane by manipulations on the other side.

  17. Experimental investigation of flash pyrolysis oil droplet combustion

    DEFF Research Database (Denmark)

    Ibrahim, Norazana; Jensen, Peter A.; Dam-Johansen, Kim

    2013-01-01

    at a temperature ranging between 1000 and 1400°C with an initial gas velocity of 1.6 m/s and oxygen concentration of 3%. The evolution of combustion of bio-oil droplets was recorded by a digital video camera. It was observed that the combustion behaviour of pyrolysis oil droplet differ from the heavy oil in terms......The aim of this work is to investigate and compare the combustion behaviour of a single droplet of pyrolysis oil derived from wheat straw and heavy fossil oil in a single droplet combustion chamber. The initial oil droplet diameters were in between 500 μm to 2500 μm. The experiments were performed...

  18. The Lipid Droplet – A Well-Connected Organelle

    Directory of Open Access Journals (Sweden)

    Qiang eGao

    2015-08-01

    Full Text Available Our knowledge of inter-organellar communication has grown exponentially in recent years. This review focuses on the interactions that cytoplasmic lipid droplets have with other organelles. Twenty-five years ago droplets were considered simply particles of coalesced fat. Ten years ago there were hints from proteomics studies that droplets might interact with other structures to share lipids and proteins. Now it is clear that the droplets interact with many if not most cellular structures to maintain cellular homeostasis and to buffer against insults such as starvation. The evidence for this statement, as well as probes to understand the nature and results of droplet interactions, are presented.

  19. Spin lattices of walking droplets

    Science.gov (United States)

    Saenz, Pedro; Pucci, Giuseppe; Goujon, Alexis; Dunkel, Jorn; Bush, John

    2017-11-01

    We present the results of an experimental investigation of the spontaneous emergence of collective behavior in spin lattice of droplets walking on a vibrating fluid bath. The bottom topography consists of relatively deep circular wells that encourage the walking droplets to follow circular trajectories centered at the lattice sites, in one direction or the other. Wave-mediated interactions between neighboring drops are enabled through a thin fluid layer between the wells. The sense of rotation of the walking droplets may thus become globally coupled. When the coupling is sufficiently strong, interactions with neighboring droplets may result in switches in spin that lead to preferred global arrangements, including correlated (all drops rotating in the same direction) or anti-correlated (neighboring drops rotating in opposite directions) states. Analogies with ferromagnetism and anti-ferromagnetism are drawn. Different spatial arrangements are presented in 1D and 2D lattices to illustrate the effects of topological frustration. This work was supported by the US National Science Foundation through Grants CMMI-1333242 and DMS-1614043.

  20. Preparation and nucleation of spherical metallic droplet

    Directory of Open Access Journals (Sweden)

    Bing-ge Zhao

    2015-03-01

    Full Text Available The preparation and solidification of metallic droplets attract more and more attention for their significance in both engineering and scientific fields. In this paper, the preparation and characterization of Sn-based alloy droplets using different methods such as atomization and consumable electrode direct current arc (CDCA technique are reviewed. The morphology and structure of these droplets were determined by optical microscopy, X-ray diffraction (XRD and scanning electron microscopy (SEM. The solidification behavior of single droplet was systematically studied by means of scanning calorimetry (DSC, and the nucleation kinetics was also calculated. In particular, the development of fast scanning calorimetry (FSC made it possible to investigate the evolution of undercooling under ultrafast but controllable heating and cooling conditions. The combination of CDCA technique and FSC measurements opens up a new door for quantitative studies on droplet solidification, which is accessible to demonstrate some theories by experiments.

  1. Dynamics of droplet breakup in a T-junction

    NARCIS (Netherlands)

    Hoang, D.A.; Portela, L.M.; Kleijn, C.R.; Kreutzer, M.T.; Van Steijn, V.

    2013-01-01

    The breakup of droplets due to creeping motion in a confined microchannel geometry is studied using three-dimensional numerical simulations. Analogously to unconfined droplets, there exist two distinct breakup phases: (i) a quasi-steady droplet deformation driven by the externally applied flow; and

  2. Calculation and measurement of fog droplet size

    International Nuclear Information System (INIS)

    Laali, A.R.; Courant, J.J.; Kleitz, A.

    1991-01-01

    This paper outlines the elements involved in calculation and measurement of fog droplet size in steam turbines. The condensation calculations are performed for a 600 MW LP fossil fired, and for a 900 MW LP nuclear turbine. A simplified method based on classical condensation theory is used for these calculations. The fog droplet size measurement are carried out downstream of the last moving blades of these turbines in order to validate the program. The comparison between the results could lead to a better understanding of the condensation process in steam turbines. Some large droplet (re-entrained droplet) measurements are also taken using a microvideo probe

  3. Electrostatic field and charge distribution in small charged dielectric droplets

    Science.gov (United States)

    Storozhev, V. B.

    2004-08-01

    The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm.

  4. Electrostatic field and charge distribution in small charged dielectric droplets

    International Nuclear Information System (INIS)

    Storozhev, V.B.

    2004-01-01

    The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm

  5. Analytical detection techniques for droplet microfluidics—A review

    International Nuclear Information System (INIS)

    Zhu, Ying; Fang, Qun

    2013-01-01

    Graphical abstract: -- Highlights: •This is the first review paper focused on the analytical techniques for droplet-based microfluidics. •We summarized the analytical methods used in droplet-based microfluidic systems. •We discussed the advantage and disadvantage of each method through its application. •We also discuss the future development direction of analytical methods for droplet-based microfluidic systems. -- Abstract: In the last decade, droplet-based microfluidics has undergone rapid progress in the fields of single-cell analysis, digital PCR, protein crystallization and high throughput screening. It has been proved to be a promising platform for performing chemical and biological experiments with ultra-small volumes (picoliter to nanoliter) and ultra-high throughput. The ability to analyze the content in droplet qualitatively and quantitatively is playing an increasing role in the development and application of droplet-based microfluidic systems. In this review, we summarized the analytical detection techniques used in droplet systems and discussed the advantage and disadvantage of each technique through its application. The analytical techniques mentioned in this paper include bright-field microscopy, fluorescence microscopy, laser induced fluorescence, Raman spectroscopy, electrochemistry, capillary electrophoresis, mass spectrometry, nuclear magnetic resonance spectroscopy, absorption detection, chemiluminescence, and sample pretreatment techniques. The importance of analytical detection techniques in enabling new applications is highlighted. We also discuss the future development direction of analytical detection techniques for droplet-based microfluidic systems

  6. Stochastic growth of cloud droplets by collisions during settling

    Science.gov (United States)

    Madival, Deepak G.

    2018-04-01

    In the last stage of droplet growth in clouds which leads to drizzle formation, larger droplets begin to settle under gravity and collide and coalesce with smaller droplets in their path. In this article, we shall deal with the simplified problem of a large drop settling amidst a population of identical smaller droplets. We present an expression for the probability that a given large drop suffers a given number of collisions, for a general statistically homogeneous distribution of droplets. We hope that our approach will serve as a valuable tool in dealing with droplet distribution in real clouds, which has been found to deviate from the idealized Poisson distribution due to mechanisms such as inertial clustering.

  7. Janus droplets: liquid marbles coated with dielectric/semiconductor particles.

    Science.gov (United States)

    Bormashenko, Edward; Bormashenko, Yelena; Pogreb, Roman; Gendelman, Oleg

    2011-01-04

    The manufacturing of water droplets wrapped with two different powders, carbon black (semiconductor) and polytetrafluoroethylene (dielectric), is presented. Droplets composed of two hemispheres (Janus droplets) characterized by various physical and chemical properties are reported first. Watermelon-like striped liquid marbles are reported. Janus droplets remained stable on solid and liquid supports and could be activated with an electric field.

  8. Control of the droplet generation by an infrared laser

    Directory of Open Access Journals (Sweden)

    Zhibin Wang

    2018-01-01

    Full Text Available In this work, the control of the droplet generation by a focused infrared (IR laser with a wavelength of 1550 nm was studied, in which the liquid water and the oil with the surfactant of Span 80 were employed as the disperse and continuous phases, respectively. The characteristics of the droplet generation controlled by the laser was explored under various flow rates, laser powers and spot positions and the comparison between the cases with/without the laser was also performed. The results showed that when the laser was focused on the region away from the outlet of the liquid water inflow channel, the droplet shedding was blocked due to the IR laser heating induced thermocapillary flow, leading to the increase of the droplet volume and the cycle time of the droplet generation as compared to the case without the laser. Decreasing the continuous phase flow rate led to the increase of the droplet volume, cycle time of the droplet generation and the volume increase ratio, while increasing the disperse phase flow rate led to the increase of the droplet volume and the decrease of the cycle time and volume increase ratio. For a given flow rate ratio between the continuous and disperse phases, the increase of the flow rates decreased the volume increase ratio. In addition, it is also found that the droplet volume, the cycle time and the volume increase ratio all increased with the laser power. When the laser was focused at the inlet of the downstream channel, the droplet volume, the cycle time and the volume increase ratio were the largest. Moving the laser spot to the downstream or upstream led to the decrease of them. When the laser was focused on the outlet of the liquid water inflow channel, the generated droplet volume and cycle time of the droplet generation were even lower than the case without the laser because of the lowered viscosity. This works provides a comprehensive understanding of the characteristics of the droplet generation controlled

  9. Surfactants from the gas phase may promote cloud droplet formation.

    Science.gov (United States)

    Sareen, Neha; Schwier, Allison N; Lathem, Terry L; Nenes, Athanasios; McNeill, V Faye

    2013-02-19

    Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8-10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas-aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere.

  10. Droplet-based chemistry on a programmable micro-chip

    Science.gov (United States)

    Schwartz, Jon A.; Vykoukal, Jody V.; Gascoyne, Peter R. C.

    2009-01-01

    We describe the manipulation of aqueous droplets in an immiscible, low-permittivity suspending medium. Such droplets may serve as carriers for not only air- and water-borne samples, contaminants, chemical reagents, viral and gene products, and cells, but also the reagents to process and characterise these samples. We present proofs-of-concept for droplet manipulation through dielectrophoresis by: (1) moving droplets on a two-dimensional array of electrodes, (2) achieving dielectrically-activated droplet injection, (3) fusing and reacting droplets, and (4) conducting a basic biological assay through a combination of these steps. A long-term goal of this research is to provide a platform fluidic processor technology that can form the core of versatile, automated, micro-scale devices to perform chemical and biological assays at or near the point of care, which will increase the availability of modern medicine to people who do not have ready access to modern medical institutions, and decrease the cost and delays associated with that lack of access. PMID:15007434

  11. Snap evaporation of droplets on smooth topographies.

    Science.gov (United States)

    Wells, Gary G; Ruiz-Gutiérrez, Élfego; Le Lirzin, Youen; Nourry, Anthony; Orme, Bethany V; Pradas, Marc; Ledesma-Aguilar, Rodrigo

    2018-04-11

    Droplet evaporation on solid surfaces is important in many applications including printing, micro-patterning and cooling. While seemingly simple, the configuration of evaporating droplets on solids is difficult to predict and control. This is because evaporation typically proceeds as a "stick-slip" sequence-a combination of pinning and de-pinning events dominated by static friction or "pinning", caused by microscopic surface roughness. Here we show how smooth, pinning-free, solid surfaces of non-planar topography promote a different process called snap evaporation. During snap evaporation a droplet follows a reproducible sequence of configurations, consisting of a quasi-static phase-change controlled by mass diffusion interrupted by out-of-equilibrium snaps. Snaps are triggered by bifurcations of the equilibrium droplet shape mediated by the underlying non-planar solid. Because the evolution of droplets during snap evaporation is controlled by a smooth topography, and not by surface roughness, our ideas can inspire programmable surfaces that manage liquids in heat- and mass-transfer applications.

  12. Flashing liquid jets and two-phase droplet dispersion I. Experiments for derivation of droplet atomisation correlations.

    Science.gov (United States)

    Cleary, Vincent; Bowen, Phil; Witlox, Henk

    2007-04-11

    The large-scale release of a liquid contained at upstream conditions above its local atmospheric boiling point is a scenario often given consideration in process industry risk analysis. Current-hazard quantification software often employs simplistic equilibrium two-phase approaches. Scaled water experiments have been carried out measuring droplet velocity and droplet size distributions for a range of exit orifice aspect ratios (L/d) and conditions representing low to high superheat. 2D Phase-Doppler Anemometry has been utilised to characterise droplet kinematics and spray quality. Droplet size correlations have been developed for non-flashing, the transition between non-flashing and flashing, and fully flashing jets. Using high-speed shadowography, transition between regimes is defined in terms of criteria identified in the external flow structure. An overview companion paper provides a wider overview of the problem and reports implementation of these correlations into consequence models and subsequent validation. The fluid utilised throughout is water, hence droplet correlations are developed in non-dimensional form to allow extrapolation to other fluids through similarity scaling, although verification of model performance for other fluids is required in future studies. Data is reduced via non-dimensionalisation in terms of the Weber number and Jakob number, essentially representing the fluid mechanics and thermodynamics of the system, respectively. A droplet-size distribution correlation has also been developed, conveniently presented as a volume undersize distribution based on the Rosin-Rammler distribution. Separate correlations are provided for sub-cooled mechanical break-up and fully flashing jets. This form of correlation facilitates rapid estimates of likely mass rainout quantities, as well as full distribution information for more rigorous two-phase thermodynamic modelling in the future.

  13. Interaction mechanisms between ceramic particles and atomized metallic droplets

    Science.gov (United States)

    Wu, Yue; Lavernia, Enrique J.

    1992-10-01

    The present study was undertaken to provide insight into the dynamic interactions that occur when ceramic particles are placed in intimate contact with a metallic matrix undergoing a phase change. To that effect, Al-4 wt pct Si/SiCp composite droplets were synthesized using a spray atomization and coinjection approach, and their solidification microstructures were studied both qualitatively and quantitatively. The present results show that SiC particles (SiCp) were incor- porated into the matrix and that the extent of incorporation depends on the solidification con- dition of the droplets at the moment of SiC particle injection. Two factors were found to affect the distribution and volume fraction of SiC particles in droplets: the penetration of particles into droplets and the entrapment and/or rejection of particles by the solidification front. First, during coinjection, particles collide with the atomized droplets with three possible results: they may penetrate the droplets, adhere to the droplet surface, or bounce back after impact. The extent of penetration of SiC particles into droplets was noted to depend on the kinetic energy of the particles and the magnitude of the surface energy change in the droplets that occurs upon impact. In liquid droplets, the extent of penetration of SiC particles was shown to depend on the changes in surface energy, ΔEs, experienced by the droplets. Accordingly, large SiC particles encoun- tered more resistance to penetration relative to small ones. In solid droplets, the penetration of SiC particles was correlated with the dynamic pressure exerted by the SiC particles on the droplets during impact and the depth of the ensuing crater. The results showed that no pene- tration was possible in such droplets. Second, once SiC particles have penetrated droplets, their final location in the microstructure is governed by their interactions with the solidification front. As a result of these interactions, both entrapment and rejection of

  14. Substrate curvature gradient drives rapid droplet motion.

    Science.gov (United States)

    Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui

    2014-07-11

    Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42  m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100  m/s on tapered surfaces.

  15. In-line characterization and identification of micro-droplets on-chip

    Directory of Open Access Journals (Sweden)

    Weber Emanuel

    2014-01-01

    Full Text Available We present an integrated optofluidic sensor system for in-line characterization of micro-droplets. The device provides information about the droplet generation frequency, the droplet volume, and the content of the droplet. Due to its simplicity this principle can easily be implemented with other microfluidic components on one and the same device. The sensor is based on total internal reflection phenomena. Droplets are pushed through a microfluidic channel which is hit by slightly diverging monochromatic light. At the solid-liquid interface parts of the rays experience total internal reflection while another part is transmitted. The ratio of reflected to transmitted light depends on the refractive index of the solution. Both signals are recorded simultaneously and provide a very stable output signal for the droplet characterization. With the proposed system passing droplets were counted up to 320 droplets per second and droplets with different volumes could be discriminated. In a final experiment droplets with different amounts of dissolved CaCl2 were distinguished based on their reflected and transmitted light pattern. This principle can be applied for the detection of any molecules in microdroplets which significantly influence the refractive index of the buffer solution.

  16. A novel coarsening mechanism of droplets in immiscible fluid mixtures

    Science.gov (United States)

    Shimizu, Ryotaro; Tanaka, Hajime

    2015-06-01

    In our daily lives, after shaking a salad dressing, we see the coarsening of oil droplets suspended in vinegar. Such a demixing process is observed everywhere in nature and also of technological importance. For a case of high droplet density, domain coarsening proceeds with inter-droplet collisions and the resulting coalescence. This phenomenon has been explained primarily by the so-called Brownian-coagulation mechanism: stochastic thermal forces exerted by molecules induce random motion of individual droplets, causing accidental collisions and subsequent interface-tension-driven coalescence. Contrary to this, here we demonstrate that the droplet motion is not random, but hydrodynamically driven by the composition Marangoni force due to an interfacial tension gradient produced in each droplet as a consequence of composition correlation among droplets. This alters our physical understanding of droplet coarsening in immiscible liquid mixtures on a fundamental level.

  17. Thermophoretically driven water droplets on graphene and boron nitride surfaces

    Science.gov (United States)

    Rajegowda, Rakesh; Kannam, Sridhar Kumar; Hartkamp, Remco; Sathian, Sarith P.

    2018-05-01

    We investigate thermally driven water droplet transport on graphene and hexagonal boron nitride (h-BN) surfaces using molecular dynamics simulations. The two surfaces considered here have different wettabilities with a significant difference in the mode of droplet transport. The water droplet travels along a straighter path on the h-BN sheet than on graphene. The h-BN surface produced a higher driving force on the droplet than the graphene surface. The water droplet is found to move faster on h-BN surface compared to graphene surface. The instantaneous contact angle was monitored as a measure of droplet deformation during thermal transport. The characteristics of the droplet motion on both surfaces is determined through the moment scaling spectrum. The water droplet on h-BN surface showed the attributes of the super-diffusive process, whereas it was sub-diffusive on the graphene surface.

  18. Mathematical model for self-propelled droplets driven by interfacial tension

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Ken H. [School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292 (Japan); Tachibana, Kunihito; Tobe, Yuta; Kazama, Masaki [Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Kitahata, Hiroyuki [Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522 (Japan); Omata, Seiro [Faculty of Mathematics and Physics, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Nagayama, Masaharu, E-mail: nagayama@es.hokudai.ac.jp [Research Institute for Electronic Science, Hokkaido University, Hokkaido 060-0812 (Japan); CREST, Japan Science and Technology Agency, Tokyo 102-0076 (Japan)

    2016-03-21

    We propose a model for the spontaneous motion of a droplet induced by inhomogeneity in interfacial tension. The model is derived from a variation of the Lagrangian of the system and we use a time-discretized Morse flow scheme to perform its numerical simulations. Our model can naturally simulate the dynamics of a single droplet, as well as that of multiple droplets, where the volume of each droplet is conserved. We reproduced the ballistic motion and fission of a droplet, and the collision of two droplets was also examined numerically.

  19. Foam droplet separation for nanoparticle synthesis

    International Nuclear Information System (INIS)

    Tyree, Corey A.; Allen, Jonathan O.

    2008-01-01

    A novel approach to nanoparticle synthesis was developed whereby foam bubble bursting produced aerosol droplets, an approach patterned after the marine foam aerosol cycle. The droplets were dried to remove solvent, leaving nanometer-sized particles composed of precursor material. Nanoparticles composed of sodium chloride (mean diameter, D-bar p ∼ 100 nm), phosphotungstic acid (D-bar p ∼ 55 nm), and bovine insulin (D p ∼ 5-30 nm) were synthesized. Foam droplet separation can be carried out at ambient temperature and pressure. The 'soft' nature of the process makes it compatible with a wide range of materials

  20. Heat exchanges between droplets and atmosphere

    International Nuclear Information System (INIS)

    Yadigaroglu, Georges.

    1975-01-01

    Data necessary for calculating the droplet cooling in wet cooling systems are surveyed. This cooling obeys the laws of simultaneous heat and mass transfer. Exchanges with a solid sphere moving inside a surrounding fluid medium are first examined. The corrections needed for taking into account various secondary effects (circulation in the droplet, lack of sphericity, oscillations, etc...) are then dealt with. Some data necessary for calculating the trajectories of the droplets and their behavior in a cooling system are included (diameter distribution, limit velocities, decay thresholds, etc...). Finally, calculation methods applying to spray systems, as well as wet towers broadly outlined [fr

  1. Aerodynamic and Acoustic Flight Test Results and Results for the Stratospheric Observatory for Infrared Astronomy

    Science.gov (United States)

    Cumming, Stephen B.; Smith, Mark S.; Cliatt, Larry J.; Frederick, Michael A.

    2014-01-01

    As part of the Stratospheric Observatory for Infrared Astronomy program, a 747SP airplane was modified to carry a 2.5-m telescope in the aft section of the fuselage. The resulting airborne observatory allows for observations above 99 percent of the water vapor in the atmosphere. The open cavity created by the modifications had the potential to significantly affect the airplane in the areas of aerodynamics and acoustics. Several series of flight tests were conducted to clear the operating envelope of the airplane for astronomical observations, planned to be performed between the altitudes of 35,000 ft and 45,000 ft. The flight tests were successfully completed. Cavity acoustics were below design limits, and the overall acoustic characteristics of the cavity were better than expected. The modification did have some effects on the stability and control of the airplane, but these effects were not significant. Airplane air data systems were not affected by the modifications. This paper describes the methods used to examine the aerodynamics and acoustic data from the flight tests and provides a discussion of the flight-test results in the areas of cavity acoustics, stability and control, and air data.

  2. Frequency-dependent transient response of an oscillating electrically actuated droplet

    International Nuclear Information System (INIS)

    Dash, S; Kumari, N; Garimella, S V

    2012-01-01

    The transient response of a millimeter-sized sessile droplet under electrical actuation is experimentally investigated. Under dc actuation, the droplet spreading rate increases as the applied voltage is increased due to the higher electrical forces induced. At sufficiently high dc voltages, competition between the electrical actuation force, droplet inertia, the retarding surface tension force and contact line friction leads to droplet oscillation. The timescale for the droplet to attain its maximum wetted diameter during step actuation is analyzed. Systematic experiments are conducted over a frequency range of 5–200 Hz and actuation voltages of 40–80 V rms to determine the dependence of droplet oscillation on these parameters. The response of the droplet to different actuation frequencies and voltages is determined in terms of its contact angle and contact radius variation. The frequency of the driving force (equal to twice the frequency of the applied electrical signal) determines the mode of oscillation of the droplet which, together with its resonance characteristics, governs whether the droplet contact angle and contact radius vary in phase or out of phase with each other. In addition to the primary frequency response at the electrical forcing frequency, the droplet oscillation exhibits sub-harmonic oscillation at half of the forcing frequency that is attributed to the parametric nature of the electrical force acting on the triple contact line of the droplet. (paper)

  3. Short-range airborne transmission of expiratory droplets between two people

    DEFF Research Database (Denmark)

    Liu, Li; Li, Yuguo; Nielsen, Peter Vilhelm

    2017-01-01

    , ventilation, and breathing mode. Under the specific set of conditions studied, we found a substantial increase in airborne exposure to droplet nuclei exhaled by the source manikin when a susceptible manikin is within about 1.5 m of the source manikin, referred to as the proximity effect. The threshold...... distance of about 1.5 m distinguishes the two basic transmission processes of droplets and droplet nuclei, that is, short-range modes and the long-range airborne route. The short-range modes include both the conventional large droplet route and the newly defined short-range airborne transmission. We thus...... reveal that transmission occurring in close proximity to the source patient includes both droplet-borne (large droplet) and short-range airborne routes, in addition to the direct deposition of large droplets on other body surfaces. The mechanisms of the droplet-borne and short-range airborne routes...

  4. Behavior of hydroxide at the water/vapor interface

    Science.gov (United States)

    Winter, Bernd; Faubel, Manfred; Vácha, Robert; Jungwirth, Pavel

    2009-06-01

    Hydroxide and hydronium, which represent the ionic products of water autolysis, exhibit a peculiar surface behavior. While consensus has been established that the concentration of hydronium cations is enhanced at the surface with respect to the bulk, the affinity of hydroxide anions for the water/vapor interface has been a subject of an ongoing controversy. On the one hand, electrophoretic and titration measurements of air bubbles or oil droplets in water have been interpreted in terms of a dramatic interfacial accumulation of OH -. On the other hand, surface-selective non-linear spectroscopies, surface tension measurements, and molecular simulations show no or at most a weak surface affinity of hydroxide ions. Here, we summarize the current situation and provide new evidence for the lack of appreciable surface enhancement of OH -, based on photoelectron spectroscopy from a liquid jet and on molecular dynamics simulations with polarizable potentials at varying hydroxide concentrations.

  5. Studies on formation of unconfined detonable vapor cloud using explosive means.

    Science.gov (United States)

    Apparao, A; Rao, C R; Tewari, S P

    2013-06-15

    Certain organic liquid fuels like hydrocarbons, hydrocarbon oxides, when dispersed in air in the form of small droplets, mix with surrounding atmosphere forming vapor cloud (aerosol) and acquire explosive properties. This paper describes the studies on establishment of conditions for dispersion of fuels in air using explosive means resulting in formation of detonable aerosols of propylene oxide and ethylene oxide. Burster charges based on different explosives were evaluated for the capability to disperse the fuels without causing ignition. Parameters like design of canister, burster tube, burster charge type, etc. have been studied based on dispersion experiments. The detonability of the aerosol formed by the optimized burster charge system was also tested. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Transport of expiratory droplets in an aircraft cabin.

    Science.gov (United States)

    Gupta, Jitendra K; Lin, Chao-Hsin; Chen, Qingyan

    2011-02-01

    The droplets exhaled by an index patient with infectious disease such as influenza or tuberculosis may be the carriers of contagious agents. Indoor environments such as the airliner cabins may be susceptible to infection from such airborne contagious agents. The present investigation computed the transport of the droplets exhaled by the index patient seated in the middle of a seven-row, twin-aisle, fully occupied cabin using the CFD simulations. The droplets exhaled were from a single cough, a single breath, and a 15-s talk of the index patient. The expiratory droplets were tracked by using Lagrangian method, and their evaporation was modeled. It was found that the bulk airflow pattern in the cabin played the most important role on the droplet transport. The droplets were contained in the row before, at, and after the index patient within 30 s and dispersed uniformly to all the seven rows in 4 minutes. The total airborne droplet fraction reduced to 48, 32, 20, and 12% after they entered the cabin for 1, 2, 3, and 4 min, respectively, because of the ventilation from the environmental control system. It is critical to predict the risk of airborne infection to take appropriate measures to control and mitigate the risk. Most of the studies in past either assume a homogenous distribution of contaminants or use steady-state conditions. The present study instead provides information on the transient movement of the droplets exhaled by an index passenger in an aircraft cabin. These droplets may contain active contagious agents and can be potent enough to cause infection. The findings can be used by medical professionals to estimate the spatial and temporal distribution of risk of infection to various passengers in the cabin. © 2010 John Wiley & Sons A/S.

  7. Ultralocalized thermal reactions in subnanoliter droplets-in-air.

    Science.gov (United States)

    Salm, Eric; Guevara, Carlos Duarte; Dak, Piyush; Dorvel, Brian Ross; Reddy, Bobby; Alam, Muhammad Ashraf; Bashir, Rashid

    2013-02-26

    Miniaturized laboratory-on-chip systems promise rapid, sensitive, and multiplexed detection of biological samples for medical diagnostics, drug discovery, and high-throughput screening. Within miniaturized laboratory-on-chips, static and dynamic droplets of fluids in different immiscible media have been used as individual vessels to perform biochemical reactions and confine the products. Approaches to perform localized heating of these individual subnanoliter droplets can allow for new applications that require parallel, time-, and space-multiplex reactions on a single integrated circuit. Our method positions droplets on an array of individual silicon microwave heaters on chip to precisely control the temperature of droplets-in-air, allowing us to perform biochemical reactions, including DNA melting and detection of single base mismatches. We also demonstrate that ssDNA probe molecules can be placed on heaters in solution, dried, and then rehydrated by ssDNA target molecules in droplets for hybridization and detection. This platform enables many applications in droplets including hybridization of low copy number DNA molecules, lysing of single cells, interrogation of ligand-receptor interactions, and rapid temperature cycling for amplification of DNA molecules.

  8. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

    Science.gov (United States)

    Nath, Saurabh; Boreyko, Jonathan B

    2016-08-23

    Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.

  9. Propagation of capillary waves and ejection of small droplets in rapid droplet spreading

    KAUST Repository

    Ding, Hang

    2012-03-12

    A new regime of droplet ejection following the slow deposition of drops onto a near-complete wetting solid substrate is identified in experiments and direct numerical simulations; a coalescence cascade subsequent to pinch-off is also observed for the first time. Results of numerical simulations indicate that the propagation of capillary waves that lead to pinch-off is closely related to the self-similar behaviour observed in the inviscid recoil of droplets, and that motions of the crests and troughs of capillary waves along the interface do not depend on the wettability and surface tension (or Ohnesorge number). The simulations also show that a self-similar theory for universal pinch-off can be used for the time evolution of the pinching neck. However, although good agreement is also found with the double-cone shape of the pinching neck for droplet ejection in drop deposition on a pool of the same liquid, substantial deviations are observed in such a comparison for droplet ejection in rapid drop spreading (including the newly identified regime). This deviation is shown to result from interference by the solid substrate, a rapid downwards acceleration of the top of the drop surface and the rapid spreading process. The experiments also confirm non-monotonic spreading behaviour observed previously only in numerical simulations, and suggest substantial inertial effects on the relation between an apparent contact angle and the dimensionless contact-line speed. © 2012 Cambridge University Press.

  10. Propagation of capillary waves and ejection of small droplets in rapid droplet spreading

    KAUST Repository

    Ding, Hang; Li, Erqiang; Zhang, F. H.; Sui, Yi; Spelt, Peter D M; Thoroddsen, Sigurdur T

    2012-01-01

    A new regime of droplet ejection following the slow deposition of drops onto a near-complete wetting solid substrate is identified in experiments and direct numerical simulations; a coalescence cascade subsequent to pinch-off is also observed for the first time. Results of numerical simulations indicate that the propagation of capillary waves that lead to pinch-off is closely related to the self-similar behaviour observed in the inviscid recoil of droplets, and that motions of the crests and troughs of capillary waves along the interface do not depend on the wettability and surface tension (or Ohnesorge number). The simulations also show that a self-similar theory for universal pinch-off can be used for the time evolution of the pinching neck. However, although good agreement is also found with the double-cone shape of the pinching neck for droplet ejection in drop deposition on a pool of the same liquid, substantial deviations are observed in such a comparison for droplet ejection in rapid drop spreading (including the newly identified regime). This deviation is shown to result from interference by the solid substrate, a rapid downwards acceleration of the top of the drop surface and the rapid spreading process. The experiments also confirm non-monotonic spreading behaviour observed previously only in numerical simulations, and suggest substantial inertial effects on the relation between an apparent contact angle and the dimensionless contact-line speed. © 2012 Cambridge University Press.

  11. Evaluation of droplet deposition in rod bundle

    International Nuclear Information System (INIS)

    Ji, W.; Gu, C.Y.; Anglart, H.

    1997-01-01

    Deposition model for droplets in gas droplet two-phase flow in rod bundle is developed in this work using the Lagrangian method. The model is evaluated in a 9-rod bundle geometry. The deposition coefficient in the bundle geometry are compared with that in round tube. The influences of the droplet size and gas mass flow rate on deposition coefficient are investigated. Furthermore, the droplet motion is studied in more detail by dividing the bundle channel into sub-channels. The results show that the overall deposition coefficient in the bundle geometry is close to that in the round tube with the diameter equal to the bundle hydraulic diameter. The calculated deposition coefficient is found to be higher for higher gas mass flux and smaller droplets. The study in the sub-channels show that the ratio between the local deposition coefficient for a sub-channel and the averaged value for the whole bundle is close to a constant value, deviations from the mean value for all the calculated cases being within the range of ±13%. (author)

  12. Splash Dynamics of Falling Surfactant-Laden Droplets

    Science.gov (United States)

    Sulaiman, Nur; Buitrago, Lewis; Pereyra, Eduardo

    2017-11-01

    Splashing dynamics is a common issue in oil and gas separation technology. In this study, droplet impact of various surfactant concentrations onto solid and liquid surfaces is studied experimentally using a high-speed imaging analysis. Although this area has been widely studied in the past, there is still not a good understanding of the role of surfactant over droplet impact and characterization of resulting splash dynamics. The experiments are conducted using tap water laden with anionic surfactant. The effects of system parameters on a single droplet impingement such as surfactant concentration (no surfactant, below, at and above critical micelle concentration), parent drop diameter (2-5mm), impact velocity and type of impact surface (thin and deep pool) are investigated. Image analysis technique is shown to be an effective technique for identification of coalescence to splashing transition. In addition, daughter droplets size distributions are analyzed qualitatively in the events of splashing. As expected, it is observed that the formation of secondary droplets is affected by the surfactant concentration. A summary of findings will be discussed.

  13. Flow field induced particle accumulation inside droplets in rectangular channels.

    Science.gov (United States)

    Hein, Michael; Moskopp, Michael; Seemann, Ralf

    2015-07-07

    Particle concentration is a basic operation needed to perform washing steps or to improve subsequent analysis in many (bio)-chemical assays. In this article we present field free, hydrodynamic accumulation of particles and cells in droplets flowing within rectangular micro-channels. Depending on droplet velocity, particles either accumulate at the rear of the droplet or are dispersed over the entire droplet cross-section. We show that the observed particle accumulation behavior can be understood by a coupling of particle sedimentation to the internal flow field of the droplet. The changing accumulation patterns are explained by a qualitative change of the internal flow field. The topological change of the internal flow field, however, is explained by the evolution of the droplet shape with increasing droplet velocity altering the friction with the channel walls. In addition, we demonstrate that accumulated particles can be concentrated, removing excess dispersed phase by splitting the droplet at a simple channel junction.

  14. Advancement of In-Flight Alumina Powder Spheroidization Process with Water Droplet Injection Using a Small Power DC-RF Hybrid Plasma Flow System

    Science.gov (United States)

    Jang, Juyong; Takana, Hidemasa; Park, Sangkyu; Nishiyama, Hideya

    2012-09-01

    The correlation between plasma thermofluid characteristics and alumina powder spheroidization processes with water droplet injection using a small power DC-RF hybrid plasma flow system was experimentally clarified. Micro-sized water droplets with a low water flow rate were injected into the tail of thermal plasma flow so as not to disturb the plasma flow directly. Injected water droplets were vaporized in the thermal plasma flow and were transported upstream in the plasma flow to the torch by the backflow. After dissociation of water, the production of hydrogen was detected by the optical emission spectroscopy in the downstream RF plasma flow. The emission area of the DC plasma jet expanded and elongated in the vicinity of the RF coils. Additionally, the emission area of RF plasma flow enlarged and was visible as red emission in the downstream RF plasma flow in the vicinity below the RF coils due to hydrogen production. Therefore, the plasma flow mixed with produced hydrogen increased the plasma enthalpy and the highest spheroidization rate of 97% was obtained at a water flow rate of 15 Sm l/min and an atomizing gas flow rate of 8 S l/min using a small power DC-RF hybrid plasma flow system.

  15. Evaluation of droplet size distributions using univariate and multivariate approaches

    DEFF Research Database (Denmark)

    Gauno, M.H.; Larsen, C.C.; Vilhelmsen, T.

    2013-01-01

    of the distribution. The current study was aiming to compare univariate and multivariate approach in evaluating droplet size distributions. As a model system, the atomization of a coating solution from a two-fluid nozzle was investigated. The effect of three process parameters (concentration of ethyl cellulose...... in ethanol, atomizing air pressure, and flow rate of coating solution) on the droplet size and droplet size distribution using a full mixed factorial design was used. The droplet size produced by a two-fluid nozzle was measured by laser diffraction and reported as volume based size distribution....... Investigation of loading and score plots from principal component analysis (PCA) revealed additional information on the droplet size distributions and it was possible to identify univariate statistics (volume median droplet size), which were similar, however, originating from varying droplet size distributions...

  16. Droplet networks with incorporated protein diodes show collective properties

    Science.gov (United States)

    Maglia, Giovanni; Heron, Andrew J.; Hwang, William L.; Holden, Matthew A.; Mikhailova, Ellina; Li, Qiuhong; Cheley, Stephen; Bayley, Hagan

    2009-07-01

    Recently, we demonstrated that submicrolitre aqueous droplets submerged in an apolar liquid containing lipid can be tightly connected by means of lipid bilayers to form networks. Droplet interface bilayers have been used for rapid screening of membrane proteins and to form asymmetric bilayers with which to examine the fundamental properties of channels and pores. Networks, meanwhile, have been used to form microscale batteries and to detect light. Here, we develop an engineered protein pore with diode-like properties that can be incorporated into droplet interface bilayers in droplet networks to form devices with electrical properties including those of a current limiter, a half-wave rectifier and a full-wave rectifier. The droplet approach, which uses unsophisticated components (oil, lipid, salt water and a simple pore), can therefore be used to create multidroplet networks with collective properties that cannot be produced by droplet pairs.

  17. Evaluation of droplet size distributions using univariate and multivariate approaches.

    Science.gov (United States)

    Gaunø, Mette Høg; Larsen, Crilles Casper; Vilhelmsen, Thomas; Møller-Sonnergaard, Jørn; Wittendorff, Jørgen; Rantanen, Jukka

    2013-01-01

    Pharmaceutically relevant material characteristics are often analyzed based on univariate descriptors instead of utilizing the whole information available in the full distribution. One example is droplet size distribution, which is often described by the median droplet size and the width of the distribution. The current study was aiming to compare univariate and multivariate approach in evaluating droplet size distributions. As a model system, the atomization of a coating solution from a two-fluid nozzle was investigated. The effect of three process parameters (concentration of ethyl cellulose in ethanol, atomizing air pressure, and flow rate of coating solution) on the droplet size and droplet size distribution using a full mixed factorial design was used. The droplet size produced by a two-fluid nozzle was measured by laser diffraction and reported as volume based size distribution. Investigation of loading and score plots from principal component analysis (PCA) revealed additional information on the droplet size distributions and it was possible to identify univariate statistics (volume median droplet size), which were similar, however, originating from varying droplet size distributions. The multivariate data analysis was proven to be an efficient tool for evaluating the full information contained in a distribution.

  18. Designed pneumatic valve actuators for controlled droplet breakup and generation.

    Science.gov (United States)

    Choi, Jae-Hoon; Lee, Seung-Kon; Lim, Jong-Min; Yang, Seung-Man; Yi, Gi-Ra

    2010-02-21

    The dynamic breakup of emulsion droplets was demonstrated in double-layered microfluidic devices equipped with designed pneumatic actuators. Uniform emulsion droplets, produced by shearing at a T-junction, were broken into smaller droplets when they passed downstream through constrictions formed by a pneumatically actuated valve in the upper control layer. The valve-assisted droplet breakup was significantly affected by the shape and layout of the control valves on the emulsion flow channel. Interestingly, by actuating the pneumatic valve immediately above the T-junction, the sizes of the emulsion droplets were controlled precisely in a programmatic manner that produced arrays of uniform emulsion droplets in various sizes and dynamic patterns.

  19. Evaporation Kinetics of Polyol Droplets: Determination of Evaporation Coefficients and Diffusion Constants

    Science.gov (United States)

    Su, Yong-Yang; Marsh, Aleksandra; Haddrell, Allen E.; Li, Zhi-Ming; Reid, Jonathan P.

    2017-11-01

    In order to quantify the kinetics of mass transfer between the gas and condensed phases in aerosol, physicochemical properties of the gas and condensed phases and kinetic parameters (mass/thermal accommodation coefficients) are crucial for estimating mass fluxes over a wide size range from the free molecule to continuum regimes. In this study, we report measurements of the evaporation kinetics of droplets of 1-butanol, ethylene glycol (EG), diethylene glycol (DEG), and glycerol under well-controlled conditions (gas flow rates and temperature) using the previously developed cylindrical electrode electrodynamic balance technique. Measurements are compared with a model that captures the heat and mass transfer occurring at the evaporating droplet surface. The aim of these measurements is to clarify the discrepancy in the reported values of mass accommodation coefficient (αM, equals to evaporation coefficient based on microscopic reversibility) for 1-butanol, EG, and DEG and improve the accuracy of the value of the diffusion coefficient for glycerol in gaseous nitrogen. The uncertainties in the thermophysical and experimental parameters are carefully assessed, the literature values of the vapor pressures of these components are evaluated, and the plausible ranges of the evaporation coefficients for 1-butanol, EG, and DEG as well as uncertainty in diffusion coefficient for glycerol are reported. Results show that αM should be greater than 0.4, 0.2, and 0.4 for EG, DEG, and 1-butanol, respectively. The refined values are helpful for accurate prediction of the evaporation/condensation rates.

  20. Manipulation of microfluidic droplets by electrorheological fluid

    KAUST Repository

    Zhang, Menying

    2009-09-01

    Microfluidics, especially droplet microfluidics, attracts more and more researchers from diverse fields, because it requires fewer materials and less time, produces less waste and has the potential of highly integrated and computer-controlled reaction processes for chemistry and biology. Electrorheological fluid, especially giant electrorheological fluid (GERF), which is considered as a kind of smart material, has been applied to the microfluidic systems to achieve active and precise control of fluid by electrical signal. In this review article, we will introduce recent results of microfluidic droplet manipulation, GERF and some pertinent achievements by introducing GERF into microfluidic system: digital generation, manipulation of "smart droplets" and droplet manipulation by GERF. Once it is combined with real-time detection, integrated chip with multiple functions can be realized. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Droplets and sprays

    CERN Document Server

    Sazhin, Sergei

    2014-01-01

    Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models, and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Includes case studies that illustrate the approaches relevance to automotive applications,  it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.

  2. International cooperative research project between NEDO and NASA on advanced combustion science utilizing microgravity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes an international cooperative research project between NEDO and NASA on advanced combustion science utilizing microgravity. In June, 1994, NEDO and NASA reached a basic agreement with each other about this cooperative R and D on combustion under microgravity conditions. In fiscal 2000, Japan proposed an experiment using the drop tower facilities and parabolic aircraft at NASA Glen Research Center and at JAMIC (Japan Microgravity Center). In other words, the proposals from Japan included experiments on combustion of droplets composed of diversified fuels under different burning conditions (vaporization), flame propagation in smoldering porous materials and dispersed particles under microgravity conditions, and control of interactive combustion of two droplets by acoustical and electrical perturbations. Additionally proposed were experiments on effect of low external air flow on solid material combustion under microgravity, and sooting and radiation effects on the burning of large droplets under microgravity conditions. This report gives an outline of the results of these five cooperative R and D projects. The experiments were conducted under ordinary normal gravity and microgravity conditions, with the results compared and examined mutually. (NEDO)

  3. Quantum Nanostructures by Droplet Epitaxy

    OpenAIRE

    Somsak Panyakeow

    2009-01-01

    Droplet epitaxy is an alternative growth technique for several quantum nanostructures. Indium droplets are distributed randomly on GaAs substrates at low temperatures (120-350'C). Under background pressure of group V elements, Arsenic and Phosphorous, InAs and InP nanostructures are created. Quantum rings with isotropic shape are obtained at low temperature range. When the growth thickness is increased, quantum rings are transformed to quantum dot rings. At high temperature range, anisotropic...

  4. AC electric field induced droplet deformation in a microfluidic T-junction.

    Science.gov (United States)

    Xi, Heng-Dong; Guo, Wei; Leniart, Michael; Chong, Zhuang Zhi; Tan, Say Hwa

    2016-08-02

    We present for the first time an experimental study on the droplet deformation induced by an AC electric field in droplet-based microfluidics. It is found that the deformation of the droplets becomes stronger with increasing electric field intensity and frequency. The measured electric field intensity dependence of the droplet deformation is consistent with an early theoretical prediction for stationary droplets. We also proposed a simple equivalent circuit model to account for the frequency dependence of the droplet deformation. The model well explains our experimental observations. In addition, we found that the droplets can be deformed repeatedly by applying an amplitude modulation (AM) signal.

  5. Control of droplet size in rain-zone in wet cooling tower

    Directory of Open Access Journals (Sweden)

    Vitkovicova Rut

    2018-01-01

    Full Text Available The performance of the wet cooling tower is significantly affected by the droplet size occurring in the rain zone. In order to effectively manage the size of these droplets, it was necessary to experimentally determine the effect of the fills of the cooling towers on droplets. Five types of cooling fillers were used for experimental measurements: 3 film fills and 2 splash fills - trickle and grid. Drop size measurements were performed using the LIF method. Histograms of droplets size were obtained from measured droplet sizes under each fill, and for each fill, the Sauter droplet diameter was then calculated. According to a theoretical analysis of a breakdown of droplets, the combinations of some fills and the effect of their surface treatment on the droplet diameter were then measured for comparison.

  6. Variable focus microscopy using a suspended water droplet

    International Nuclear Information System (INIS)

    Chowdhury, F A; Chau, K J

    2012-01-01

    We explore a low-technology methodology to dispense and shape water droplets for application as the magnifying element in a microscope using either reflection-mode or transmission-mode illumination. A water droplet is created at the end of a syringe and then coated with a thin layer of silicone oil to mitigate evaporation. By applying mechanical pressure to the water droplet using a metal tip, the shape of the droplet is tuned to yield focusing properties amenable for microscopy. Images captured using the microscope demonstrate micron-scale resolution, variable magnification and imaging quality comparable to that obtained by a conventional, laboratory-grade microscope. (paper)

  7. Nanoscale footprints of self-running gallium droplets on GaAs surface.

    Directory of Open Access Journals (Sweden)

    Jiang Wu

    Full Text Available In this work, the nanoscale footprints of self-driven liquid gallium droplet movement on a GaAs (001 surface will be presented and analyzed. The nanoscale footprints of a primary droplet trail and ordered secondary droplets along primary droplet trails are observed on the GaAs surface. A well ordered nanoterrace from the trail is left behind by a running droplet. In addition, collision events between two running droplets are investigated. The exposed fresh surface after a collision demonstrates a superior evaporation property. Based on the observation of droplet evolution at different stages as well as nanoscale footprints, a schematic diagram of droplet evolution is outlined in an attempt to understand the phenomenon of stick-slip droplet motion on the GaAs surface. The present study adds another piece of work to obtain the physical picture of a stick-slip self-driven mechanism in nanoscale, bridging nano and micro systems.

  8. Effect of surface free energies on the heterogeneous nucleation of water droplet: A molecular dynamics simulation approach

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.; Lan, Z.; Peng, B. L.; Wen, R. F.; Ma, X. H., E-mail: xuehuma@dlut.edu.cn [Liaoning Provincial Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-02-07

    Heterogeneous nucleation of water droplet on surfaces with different solid-liquid interaction intensities is investigated by molecular dynamics simulation. The interaction potentials between surface atoms and vapor molecules are adjusted to obtain various surface free energies, and the nucleation process and wetting state of nuclei on surfaces are investigated. The results indicate that near-constant contact angles are already established for nano-scale nuclei on various surfaces, with the contact angle decreasing with solid-liquid interaction intensities linearly. Meanwhile, noticeable fluctuation of vapor-liquid interfaces can be observed for the nuclei that deposited on surfaces, which is caused by the asymmetric forces from vapor molecules. The formation and growth rate of nuclei are increasing with the solid-liquid interaction intensities. For low energy surface, the attraction of surface atoms to water molecules is comparably weak, and the pre-existing clusters can depart from the surface and enter into the bulk vapor phase. The distribution of clusters within the bulk vapor phase becomes competitive as compared with that absorbed on surface. For moderate energy surfaces, heterogeneous nucleation predominates and the formation of clusters within bulk vapor phase is suppressed. The effect of high energy particles that embedded in low energy surface is also discussed under the same simulation system. The nucleation preferably initiates on the high energy particles, and the clusters that formed on the heterogeneous particles are trapped around their original positions instead of migrating around as that observed on smooth surfaces. This feature makes it possible for the heterogeneous particles to act as fixed nucleation sites, and simulation results also suggest that the number of nuclei increases monotonously with the number of high energy particles. The growth of nuclei on high energy particles can be divided into three sub-stages, beginning with the formation

  9. Photophoretic trampoline—Interaction of single airborne absorbing droplets with light

    Science.gov (United States)

    Esseling, Michael; Rose, Patrick; Alpmann, Christina; Denz, Cornelia

    2012-09-01

    We present the light-induced manipulation of absorbing liquid droplets in air. Ink droplets from a printer cartridge are used to demonstrate that absorbing liquids—just like their solid counterparts—can interact with regions of high light intensity due to the photophoretic force. It is shown that droplets follow a quasi-ballistic trajectory after bouncing off a high intensity light sheet. We estimate the intensities necessary for this rebound of airborne droplets and change the droplet trajectories through a variation of the manipulating light field.

  10. Hydrodynamic clustering of droplets in turbulence

    Science.gov (United States)

    Kunnen, Rudie; Yavuz, Altug; van Heijst, Gertjan; Clercx, Herman

    2017-11-01

    Small, inertial particles are known to cluster in turbulent flows: particles are centrifuged out of eddies and gather in the strain-dominated regions. This so-called preferential concentration is reflected in the radial distribution function (RDF; a quantitative measure of clustering). We study clustering of water droplets in a loudspeaker-driven turbulence chamber. We track the motion of droplets in 3D and calculate the RDF. At moderate scales (a few Kolmogorov lengths) we find the typical power-law scaling of preferential concentration in the RDF. However, at even smaller scales (a few droplet diameters), we encounter a hitherto unobserved additional clustering. We postulate that the additional clustering is due to hydrodynamic interactions, an effect which is typically disregarded in modeling. Using a perturbative expansion of inertial effects in a Stokes-flow description of two interacting spheres, we obtain an expression for the RDF which indeed includes the additional clustering. The additional clustering enhances the collision probability of droplets, which enhances their growth rate due to coalescence. The additional clustering is thus an essential effect in precipitation modeling.

  11. Equilibrium Droplets on Deformable Substrates: Equilibrium Conditions.

    Science.gov (United States)

    Koursari, Nektaria; Ahmed, Gulraiz; Starov, Victor M

    2018-05-15

    Equilibrium conditions of droplets on deformable substrates are investigated, and it is proven using Jacobi's sufficient condition that the obtained solutions really provide equilibrium profiles of both the droplet and the deformed support. At the equilibrium, the excess free energy of the system should have a minimum value, which means that both necessary and sufficient conditions of the minimum should be fulfilled. Only in this case, the obtained profiles provide the minimum of the excess free energy. The necessary condition of the equilibrium means that the first variation of the excess free energy should vanish, and the second variation should be positive. Unfortunately, the mentioned two conditions are not the proof that the obtained profiles correspond to the minimum of the excess free energy and they could not be. It is necessary to check whether the sufficient condition of the equilibrium (Jacobi's condition) is satisfied. To the best of our knowledge Jacobi's condition has never been verified for any already published equilibrium profiles of both the droplet and the deformable substrate. A simple model of the equilibrium droplet on the deformable substrate is considered, and it is shown that the deduced profiles of the equilibrium droplet and deformable substrate satisfy the Jacobi's condition, that is, really provide the minimum to the excess free energy of the system. To simplify calculations, a simplified linear disjoining/conjoining pressure isotherm is adopted for the calculations. It is shown that both necessary and sufficient conditions for equilibrium are satisfied. For the first time, validity of the Jacobi's condition is verified. The latter proves that the developed model really provides (i) the minimum of the excess free energy of the system droplet/deformable substrate and (ii) equilibrium profiles of both the droplet and the deformable substrate.

  12. Analysis and experimental study on the effect of a resonant tube on the performance of acoustic levitation devices

    Science.gov (United States)

    Jiang, Hai; Liu, Jianfang; Lv, Qingqing; Gu, Shoudong; Jiao, Xiaoyang; Li, Minjiao; Zhang, Shasha

    2016-09-01

    The influence of a resonant tube on the performance of acoustic standing wave-based levitation device (acoustic levitation device hereinafter) is studied by analyzing the acoustic pressure and levitation force of four types of acoustic levitation devices without a resonance tube and with resonance tubes of different radii R using ANSYS and MATLAB. Introducing a resonance tube either enhances or weakens the levitation strength of acoustic levitation device, depending on the resonance tube radii. Specifically, the levitation force is improved to a maximum degree when the resonance tube radius is slightly larger than the size of the reflector end face. Furthermore, the stability of acoustic levitation device is improved to a maximum degree by introducing a resonance tube of R=1.023λ. The experimental platform and levitation force measurement system of the acoustic levitation device with concave-end-face-type emitter and reflector are developed, and the test of suspended matters and liquid drops is conducted. Results show that the Φ6.5-mm steel ball is suspended easily when the resonance tube radius is 1.023λ, and the Φ5.5-mm steel ball cannot be suspended when the resonance tube radius is 1.251λ. The levitation capability of the original acoustic levitation device without a resonance tube is weakened when a resonance tube of R=1.251λ is applied. These results are consistent with the ANSYS simulation results. The levitation time of the liquid droplet with a resonance tube of R=1.023λ is longer than without a resonance tube. This result is also supported by the MATLAB simulation results. Therefore, the performance of acoustic levitation device can be improved by introducing a resonant tube with an appropriate radius.

  13. Analysis and experimental study on the effect of a resonant tube on the performance of acoustic levitation devices

    Directory of Open Access Journals (Sweden)

    Hai Jiang

    2016-09-01

    Full Text Available The influence of a resonant tube on the performance of acoustic standing wave-based levitation device (acoustic levitation device hereinafter is studied by analyzing the acoustic pressure and levitation force of four types of acoustic levitation devices without a resonance tube and with resonance tubes of different radii R using ANSYS and MATLAB. Introducing a resonance tube either enhances or weakens the levitation strength of acoustic levitation device, depending on the resonance tube radii. Specifically, the levitation force is improved to a maximum degree when the resonance tube radius is slightly larger than the size of the reflector end face. Furthermore, the stability of acoustic levitation device is improved to a maximum degree by introducing a resonance tube of R=1.023λ. The experimental platform and levitation force measurement system of the acoustic levitation device with concave-end-face-type emitter and reflector are developed, and the test of suspended matters and liquid drops is conducted. Results show that the Φ6.5-mm steel ball is suspended easily when the resonance tube radius is 1.023λ, and the Φ5.5-mm steel ball cannot be suspended when the resonance tube radius is 1.251λ. The levitation capability of the original acoustic levitation device without a resonance tube is weakened when a resonance tube of R=1.251λ is applied. These results are consistent with the ANSYS simulation results. The levitation time of the liquid droplet with a resonance tube of R=1.023λ is longer than without a resonance tube. This result is also supported by the MATLAB simulation results. Therefore, the performance of acoustic levitation device can be improved by introducing a resonant tube with an appropriate radius.

  14. Mechanism and simulation of droplet coalescence in molten steel

    Science.gov (United States)

    Ni, Bing; Zhang, Tao; Ni, Hai-qi; Luo, Zhi-guo

    2017-11-01

    Droplet coalescence in liquid steel was carefully investigated through observations of the distribution pattern of inclusions in solidified steel samples. The process of droplet coalescence was slow, and the critical Weber number ( We) was used to evaluate the coalescence or separation of droplets. The relationship between the collision parameter and the critical We indicated whether slow coalescence or bouncing of droplets occurred. The critical We was 5.5, which means that the droplets gradually coalesce when We ≤ 5.5, whereas they bounce when We > 5.5. For the carbonate wire feeding into liquid steel, a mathematical model implementing a combined computational fluid dynamics (CFD)-discrete element method (DEM) approach was developed to simulate the movement and coalescence of variably sized droplets in a bottom-argon-blowing ladle. In the CFD model, the flow field was solved on the premise that the fluid was a continuous medium. Meanwhile, the droplets were dispersed in the DEM model, and the coalescence criterion of the particles was added to simulate the collision- coalescence process of the particles. The numerical simulation results and observations of inclusion coalescence in steel samples are consistent.

  15. A droplet entrainment model for horizontal segregated flows

    Energy Technology Data Exchange (ETDEWEB)

    Höhne, Thomas, E-mail: T.Hoehne@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) – Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Hänsch, Susann [Imperial College, Department of Mechanical Engineering, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2015-05-15

    Highlights: • We further developed the flow morphology detection model AIAD. • An advanced droplet entrainment model was introduced. • The new approach is applied against HAWAC experiments. - Abstract: One limitation in simulating horizontal segregated flows is that there is no treatment of droplet formation mechanisms at wavy surfaces. For self-generating waves and slugs, the interfacial momentum exchange and the turbulence parameters have to be modeled correctly. Furthermore, understanding the mechanism of droplet entrainment for heat and mass transfer processes is of great importance in the chemical and nuclear industry. The development of general computational fluid dynamics models is an essential precondition for the application of CFD codes to the modeling of flow related phenomena. The new formulation for the interfacial drag at the free surface and turbulence parameters within the algebraic interfacial area density model (AIAD) represents one step toward a more physical description of free surface flows including less empiricism. The AIAD approach allows the use of different physical models depending on the local fluid morphology inside a macro-scale multi-fluid framework. A further step of improving the modeling of free interfaces lies within the consideration of droplet entrainment mechanisms. In this paper a new sub-grid entrainment model is proposed, which assumes that due to liquid turbulence the interface gets rough and wavy leading to the formation of droplets. Therefore, the droplet entrainment model requires the consideration of an additional droplet phase, which is described with an own set of balance equations in the spirit of the particle model. Two local key factors determine the rate of droplet entrainment: the liquid turbulent kinetic energy as well as the outward velocity gradient of the liquid relative to the interface motion. The new droplet entrainment approach is included into CFD simulations for attempting to reproduce existing

  16. High intensity laser interactions with sub-micron droplets

    International Nuclear Information System (INIS)

    Mountford, L.C.

    1999-01-01

    A high-density source of liquid ethanol droplets has been developed, characterised and used in laser interaction studies for the first time. Mie Scattering and attenuation measurements show that droplets with a radius of (0.5 ± 0.1) μm and atomic densities of 10 19 atoms/cm 3 can be produced, bridging the gap between clusters and macroscopic solids. Lower density (10 16 cm -3 ) sprays can also be produced and these are electrostatically split into smaller droplets with a radius of (0.3 ± 0.1) μm. This work has been accepted for publication in Review of Scientific Instruments. A range of high intensity interaction experiments have been carried out with this unique sub-micron source. The absolute yield of keV x-rays, generated using 527 nm, 2 ps pulses focused to ∼10 17 W/cm 2 , was measured for the first time. ∼7 μJ of x-rays with photon energies above 1 keV were produced, comparable to yields obtained from much higher Z Xenon clusters. At intensities ≤10 16 W/cm 2 the yield from droplets exceeds that from solid targets of similar Z. The droplet medium is debris free and self-renewing, providing a suitable x-ray source for lithographic techniques. Due to the spacing between the droplets, it was expected that the droplet plasma temperature would exceed that of a solid target plasma, which is typically limited by rapid heat conduction to <1 keV. Analysis of the x-ray data shows this to be true with a mean droplet plasma temperature of (2 ± 0.8) keV, and a number of measurements exceeding 5 keV (to appear in Applied Physics Letters). The absorption of high intensity laser pulses in the dense spray has been measured for the first time and this was found to be wavelength and polarisation independent and in excess of 60%. These first interaction measurements clearly indicate that there are significant differences between the laser heating of droplet, solid and cluster targets. (author)

  17. Statistical steady states in turbulent droplet condensation

    Science.gov (United States)

    Bec, Jeremie; Krstulovic, Giorgio; Siewert, Christoph

    2017-11-01

    We investigate the general problem of turbulent condensation. Using direct numerical simulations we show that the fluctuations of the supersaturation field offer different conditions for the growth of droplets which evolve in time due to turbulent transport and mixing. This leads to propose a Lagrangian stochastic model consisting of a set of integro-differential equations for the joint evolution of the squared radius and the supersaturation along droplet trajectories. The model has two parameters fixed by the total amount of water and the thermodynamic properties, as well as the Lagrangian integral timescale of the turbulent supersaturation. The model reproduces very well the droplet size distributions obtained from direct numerical simulations and their time evolution. A noticeable result is that, after a stage where the squared radius simply diffuses, the system converges exponentially fast to a statistical steady state independent of the initial conditions. The main mechanism involved in this convergence is a loss of memory induced by a significant number of droplets undergoing a complete evaporation before growing again. The statistical steady state is characterised by an exponential tail in the droplet mass distribution.

  18. High-Energy Laser Interaction with Gases, Droplets, and Bulk Liquids.

    Science.gov (United States)

    Jarzembski, Maurice Anthony

    Breakdown threshold intensities (I_ {rm TH}) were measured as functions of wavelengths and pressure for air, He, Ar, and Xe using a Nd:YAG pulsed laser. Multiphoton absorption dominates in the UV and cascade collision ionization dominates in the IR; however, both can be affected by other electron gain and loss processes. Presence of droplets lowers breakdown of gases due to field enhancements. Breakdown is initiated either in the droplet material or in the gas. At lambda = 0.532mum for a 50 μm dia. water droplet in He, Ar, and air for p pressure. For droplet -in-Xe, at p pressure. For droplet-in-Xe, at p 140 Torr, breakdown occurs outside the droplet and is dependent on gas pressure. Pressure dependence of breakdown was observed for 120mum dia. water droplets in Ar at p > 400 Torr. The required intensity for breakdown of droplet depends on I_{ rm TH} of bulk liquid and the effective field enhancement created by the droplet. The I _{rm TH} of droplet-in-air provides an upper limit to the propagation of a high energy laser beam in the atmosphere containing particles. By geometrical optics approach, a significant field enhancement located at the critical ring region, encircling the axis of the sphere in the forward direction at angle theta_{c}, was discovered where nonlinear processes can occur. This was confirmed experimentally and by Mie theory. Field enhancements calculated at the critical ring for water droplets of different sizes agree well with measurements. For a droplet of given size and real refractive index, the effective field enhancement and the volume over which it occurs are two important factors governing the occurrence of breakdown in droplets for both off resonance and on resonance conditions. Measurements of wavelength dependence of breakdown showed that in the UV, I_{rm TH} for droplets and bulk liquids were comparable and lower by few orders of magnitude from that of air. Transmittance and reflectance of bulk liquids in the UV change with

  19. Faraday Waves-Based Integrated Ultrasonic Micro-Droplet Generator and Applications.

    Science.gov (United States)

    Tsai, Chen S; Mao, Rong W; Tsai, Shirley C; Shahverdi, Kaveh; Zhu, Yun; Lin, Shih K; Hsu, Yu-Hsiang; Boss, Gerry; Brenner, Matt; Mahon, Sari; Smaldone, Gerald C

    2017-01-01

    An in-depth review on a new ultrasonic micro-droplet generator which utilizes megahertz (MHz) Faraday waves excited by silicon-based multiple Fourier horn ultrasonic nozzles (MFHUNs) and its potential applications is presented. The new droplet generator has demonstrated capability for producing micro droplets of controllable size and size distribution and desirable throughput at very low electrical drive power. For comparison, the serious deficiencies of current commercial droplet generators (nebulizers) and the other ultrasonic droplet generators explored in recent years are first discussed. The architecture, working principle, simulation, and design of the multiple Fourier horns (MFH) in resonance aimed at the amplified longitudinal vibration amplitude on the end face of nozzle tip, and the fabrication and characterization of the nozzles are then described in detail. Subsequently, a linear theory on the temporal instability of Faraday waves on a liquid layer resting on the planar end face of the MFHUN and the detailed experimental verifications are presented. The linear theory serves to elucidate the dynamics of droplet ejection from the free liquid surface and predict the vibration amplitude onset threshold for droplet ejection and the droplet diameters. A battery-run pocket-size clogging-free integrated micro droplet generator realized using the MFHUN is then described. The subsequent report on the successful nebulization of a variety of commercial pulmonary medicines against common diseases and on the experimental antidote solutions to cyanide poisoning using the new droplet generator serves to support its imminent application to inhalation drug delivery.

  20. Strange particle production from quark matter droplets

    International Nuclear Information System (INIS)

    Werner, K.; Hladik, M.

    1995-01-01

    We recently introduced new methods to study ultrarelativistic nuclear scattering by providing a link between the string model approach and a thermal description. The string model is used to provide information about fluctuations in energy density. Regions of high energy density are considered to be quark matter droplets and treated macroscopically. At SPS energies, we find mainly medium size droplets---with energies up to few tens of Gev. A key issue is the microcanonical treatment of individual quark matter droplets. Each droplet hadronizes instantaneously according to the available n-body phase space. Due to the huge number of possible hadron configurations, special Monte Carlo techniques have been developed to calculate this disintegration. We present results concerning the production of strange particles from such a hadronization as compared to string decay. copyright 1995 American Institute of Physics

  1. Mechanism of petroleum-induced sex-specific protein droplet nephropathy and renal cell proliferation in Fischer-344 rats: relevance to humans

    International Nuclear Information System (INIS)

    Charbonneau, M.; Short, B.G.; Lock, E.A.; Swenberg, J.A.

    1987-01-01

    Acute inhalation exposure of male rats to vaporized unleaded gasoline causes a protein droplet-nephropathy syndrome, whereas chronic exposure produces a significant increase renal tumor incidence. The renal lesions produced by chronic or acute exposure to UG have not been observed in kidneys of female rats, or either sex of mice. The assessment of the genotoxic properties of unleaded gasoline by a battery of tests has shown that unleaded gasoline is non-genotoxic. A 21-day histoautoradiographic study in male rats exposed to inhaled unleaded gasoline or gavaged with 2,2,4-trimethylpentane (TMP), a nephrotoxic component of unleaded gasoline selected as a model compound, has shown a dose-dependent increase in cell proliferation specifically in the proximal tubule, segments that have an increased protein droplet formation. A disposition study in male and female rats showed that after a single dose of [ 14 C]-TMP, TMP-derived radiolabel was retained in kidneys of male rats. An increase in the renal α2u-globulin concentration was concomitantly observed in male but not female rats

  2. Electronically droplet energy harvesting using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud Al

    2012-01-01

    A report is presented on free falling droplet energy harvesting using piezoelectric cantilevers. The harvester incorporates a multimorph clamped-free cantilever which is composed of five layers of lead zirconate titanate piezoelectric thick films. During the impact, the droplet kinetic energy is transferred into the form of mechanical stress forcing the piezoelectric structure to vibrate. Experimental results show energy of 0.3 μJ per droplet. The scenario of moderate falling drop intensity, i.e. 230 drops per second, yields a total energy of 400 μJ. © 2012 The Institution of Engineering and Technology.

  3. Instability of expanding bacterial droplets.

    Science.gov (United States)

    Sokolov, Andrey; Rubio, Leonardo Dominguez; Brady, John F; Aranson, Igor S

    2018-04-03

    Suspensions of motile bacteria or synthetic microswimmers, termed active matter, manifest a remarkable propensity for self-organization, and formation of large-scale coherent structures. Most active matter research deals with almost homogeneous in space systems and little is known about the dynamics of strongly heterogeneous active matter. Here we report on experimental and theoretical studies on the expansion of highly concentrated bacterial droplets into an ambient bacteria-free fluid. The droplet is formed beneath a rapidly rotating solid macroscopic particle inserted in the suspension. We observe vigorous instability of the droplet reminiscent of a violent explosion. The phenomenon is explained in terms of continuum first-principle theory based on the swim pressure concept. Our findings provide insights into the dynamics of active matter with strong density gradients and significantly expand the scope of experimental and analytic tools for control and manipulation of active systems.

  4. Vapor pressure and enthalpy of vaporization of aliphatic propanediamines

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Chernyak, Yury

    2012-01-01

    Highlights: ► We measured vapor pressure of four aliphatic 1,3-diamines. ► Vaporization enthalpies at 298 K were derived. ► We examined consistency of new and available data in the literature. ► A group-contribution method for prediction was developed. - Abstract: Vapor pressures of four aliphatic propanediamines including N-methyl-1,3-propanediamine (MPDA), N,N-dimethyl-1,3-propanediamine (DMPDA), N,N-diethyl-1,3-propanediamine (DEPDA) and N,N,N′,N′-tetramethyl-1,3-propanediamine (4MPDA) were measured using the transpiration method. The vapor pressures developed in this work and reported in the literature were used to derive molar enthalpy of vaporization values at the reference temperature 298.15 K. An internal consistency check of the enthalpy of vaporization was performed for the aliphatic propanediamines studied in this work. A group-contribution method was developed for the validation and prediction vaporization enthalpies of amines and diamines.

  5. TRAJECTORY AND INCINERATION OF ROGUE DROPLETS IN A TURBULENT DIFFUSION FLAME

    Science.gov (United States)

    The trajectory and incineration efficiency of individual droplet streams of a fuel mixture injected into a swirling gas turbulent diffusion flame were measured as a function of droplet size, droplet velocity, interdroplet spacing, and droplet injection angle. Additional experimen...

  6. Transforming a Simple Commercial Glue into Highly Robust Superhydrophobic Surfaces via Aerosol-Assisted Chemical Vapor Deposition.

    Science.gov (United States)

    Zhuang, Aoyun; Liao, Ruijin; Lu, Yao; Dixon, Sebastian C; Jiamprasertboon, Arreerat; Chen, Faze; Sathasivam, Sanjayan; Parkin, Ivan P; Carmalt, Claire J

    2017-12-06

    Robust superhydrophobic surfaces were synthesized as composites of the widely commercially available adhesives epoxy resin (EP) and polydimethylsiloxane (PDMS). The EP layer provided a strongly adhered micro/nanoscale structure on the substrates, while the PDMS was used as a post-treatment to lower the surface energy. In this study, the depositions of EP films were taken at a range of temperatures, deposition times, and substrates via aerosol-assisted chemical vapor deposition (AACVD). A novel dynamic deposition temperature approach was developed to create multiple-layered periodic micro/nanostructures that significantly improved the surface mechanical durability. Water droplet contact angles (CA) of 160° were observed with droplet sliding angles (SA) frequently UV testing (365 nm, 3.7 mW/cm 2 , 120 h) were carried out to exhibit the environmental stability of the films. Self-cleaning behavior was demonstrated in clearing the surfaces of various contaminating powders and aqueous dyes. This facile and flexible method for fabricating highly durable superhydrophobic polymer films points to a promising future for AACVD in their scalable and low-cost production.

  7. Nucleation and growth of microdroplets of ionic liquids deposited by physical vapor method onto different surfaces

    Science.gov (United States)

    Costa, José C. S.; Coelho, Ana F. S. M. G.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2018-01-01

    Nanoscience and technology has generated an important area of research in the field of properties and functionality of ionic liquids (ILs) based materials and their thin films. This work explores the deposition process of ILs droplets as precursors for the fabrication of thin films, by means of physical vapor deposition (PVD). It was found that the deposition (by PVD on glass, indium tin oxide, graphene/nickel and gold-coated quartz crystal surfaces) of imidazolium [C4mim][NTf2] and pyrrolidinium [C4C1Pyrr][NTf2] based ILs generates micro/nanodroplets with a shape, size distribution and surface coverage that could be controlled by the evaporation flow rate and deposition time. No indication of the formation of a wetting-layer prior to the island growth was found. Based on the time-dependent morphological analysis of the micro/nanodroplets, a simple model for the description of the nucleation process and growth of ILs droplets is presented. The proposed model is based on three main steps: minimum free area to promote nucleation; first order coalescence; second order coalescence.

  8. Study on factors affecting the droplet temperature in plasma MIG welding process

    Science.gov (United States)

    Mamat, Sarizam Bin; Tashiro, Shinichi; Tanaka, Manabu; Yusoff, Mahani

    2018-04-01

    In the present study, the mechanism to control droplet temperature in the plasma MIG welding was discussed based on the measurements of the droplet temperature for a wide range of MIG currents with different plasma electrode diameters. The measurements of the droplet temperatures were conducted using a two color temperature measurement method. The droplet temperatures in the plasma MIG welding were then compared with those in the conventional MIG welding. As a result, the droplet temperature in the plasma MIG welding was found to be reduced in comparison with the conventional MIG welding under the same MIG current. Especially when the small plasma electrode diameter was used, the decrease in the droplet temperature reached maximally 500 K. Also, for a particular WFS, the droplet temperatures in the plasma MIG welding were lower than those in the conventional MIG welding. It is suggested that the use of plasma contributes to reducing the local heat input into the base metal by the droplet. The presence of the plasma surrounding the wire is considered to increase the electron density in its vicinity, resulting in the arc attachment expanding upwards along the wire surface to disperse the MIG current. This dispersion of MIG current causes a decrease in current density on the droplet surface, lowering the droplet temperature. Furthermore, dispersed MIG current also weakens the electromagnetic pinch force acting on the neck of the wire above the droplet. This leads to a larger droplet diameter with increased surface area through lower frequency of droplet detachment to decrease the MIG current density on the droplet surface, as compared to the conventional MIG welding at the same MIG current. Thus, the lower droplet temperature is caused by the reduction of heat flux into the droplet. Consequently, the mechanism to control droplet temperature in the plasma MIG welding was clarified.

  9. Coding/decoding and reversibility of droplet trains in microfluidic networks.

    Science.gov (United States)

    Fuerstman, Michael J; Garstecki, Piotr; Whitesides, George M

    2007-02-09

    Droplets of one liquid suspended in a second, immiscible liquid move through a microfluidic device in which a channel splits into two branches that reconnect downstream. The droplets choose a path based on the number of droplets that occupy each branch. The interaction among droplets in the channels results in complex sequences of path selection. The linearity of the flow through the microchannels, however, ensures that the behavior of the system can be reversed. This reversibility makes it possible to encrypt and decrypt signals coded in the intervals between droplets. The encoding/decoding device is a functional microfluidic system that requires droplets to navigate a network in a precise manner without the use of valves, switches, or other means of external control.

  10. Bioreactor droplets from liposome-stabilized all-aqueous emulsions

    Science.gov (United States)

    Dewey, Daniel C.; Strulson, Christopher A.; Cacace, David N.; Bevilacqua, Philip C.; Keating, Christine D.

    2014-08-01

    Artificial bioreactors are desirable for in vitro biochemical studies and as protocells. A key challenge is maintaining a favourable internal environment while allowing substrate entry and product departure. We show that semipermeable, size-controlled bioreactors with aqueous, macromolecularly crowded interiors can be assembled by liposome stabilization of an all-aqueous emulsion. Dextran-rich aqueous droplets are dispersed in a continuous polyethylene glycol (PEG)-rich aqueous phase, with coalescence inhibited by adsorbed ~130-nm diameter liposomes. Fluorescence recovery after photobleaching and dynamic light scattering data indicate that the liposomes, which are PEGylated and negatively charged, remain intact at the interface for extended time. Inter-droplet repulsion provides electrostatic stabilization of the emulsion, with droplet coalescence prevented even for submonolayer interfacial coatings. RNA and DNA can enter and exit aqueous droplets by diffusion, with final concentrations dictated by partitioning. The capacity to serve as microscale bioreactors is established by demonstrating a ribozyme cleavage reaction within the liposome-coated droplets.

  11. Universal evaporation dynamics of a confined sessile droplet

    Science.gov (United States)

    Bansal, Lalit; Hatte, Sandeep; Basu, Saptarshi; Chakraborty, Suman

    2017-09-01

    Droplet evaporation under confinement is ubiquitous to multitude of applications such as microfluidics, surface patterning, and ink-jet printing. However, the rich physics governing the universality in the underlying dynamics remains grossly elusive. Here, we bring out hitherto unexplored universal features of the evaporation dynamics of a sessile droplet entrapped in a 3D confined fluidic environment. We show, through extensive set of experiments and theoretical formulations, that the evaporation timescale for such a droplet can be represented by a unique function of the initial conditions. Moreover, using same theoretical considerations, we are able to trace and universally merge the volume evolution history of the droplets along with evaporation lifetimes, irrespective of the extent of confinement. We also showcase the internal flow transitions caused by spatio-temporal variation of evaporation flux due to confinement. These findings may be of profound importance in designing functionalized droplet evaporation devices for emerging engineering and biomedical applications.

  12. Capillary-based integrated digital PCR in picoliter droplets.

    Science.gov (United States)

    Chen, Jinyu; Luo, Zhaofeng; Li, Lin; He, Jinlong; Li, Luoquan; Zhu, Jianwei; Wu, Ping; He, Liqun

    2018-01-30

    The droplet digital polymerase chain reaction (ddPCR) is becoming more and more popular in diagnostic applications in academia and industry. In commercially available ddPCR systems, after they have been made by a generator, the droplets have to be transferred manually to modules for amplification and detection. In practice, some of the droplets (∼10%) are lost during manual transfer, leading to underestimation of the targets. In addition, the droplets are also at risk of cross-contamination during transfer. By contrast, in labs, some chip-based ddPCRs have been demonstrated where droplets always run in channels. However, the droplets easily coalesce to large ones in chips due to wall wetting as well as thermal oscillation. The loss of droplets becomes serious when such ddPCRs are applied to absolutely quantify rare mutations, such as in early diagnostics in clinical research or when measuring biological diversity at the cell level. Here, we propose a capillary-based integrated ddPCR system that is used for the first time to realize absolute quantification in this way. In this system, a HPLC T-junction is used to generate droplets and a long HPLC capillary connects the generator with both a capillary-based thermocycler and a capillary-based cytometer. The performance of the system is validated by absolute quantification of a gene specific to lung cancer (LunX). The results show that this system has very good linearity (0.9988) at concentrations ranging from NTC to 2.4 × 10 -4 copies per μL. As compared to qPCR, the all-in-one scheme is superior both in terms of the detection limit and the smaller fold changes measurement. The system of ddPCR might provide a powerful approach for clinical or academic applications where rare events are mostly considered.

  13. Gas scavenging of insoluble vapors: Condensation of methyl salicylate vapor onto evaporating drops of water

    Science.gov (United States)

    Seaver, Mark; Peele, J. R.; Rubel, Glenn O.

    We have observed the evaporation of acoustically levitated water drops at 0 and 32% relative humidity in a moving gas stream which is nearly saturated with methyl salicylate vapor. The initial evaporation rate is characteristic of a pure water drop and gradually slows until the evaporation rate becomes that of pure methyl salicylate. The quantity of condensed methyl salicylate exceeds its Henry's law solubility in water by factors of more than 30-50. This apparent violation of Henry's law agrees with the concentration enhancements in the liquid phase found by glotfelty et al. (1987, Nature235, 602-605) during their field measurements of organophorus pesticides in fog water. Under our conditions, visual evidence demonstrates the presence of two liquid phases, thus invalidating the use of Henry's law. A continuum evaporation-condensation model for an immiscible two-component system which accounts for evaporative self-cooling of the drop correctly predicts the amount of methyl salicylate condensed onto the water drops.

  14. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    Science.gov (United States)

    Irshad, Wasim

    Widely Tunable RF Filters that are small, cost-effective and offer ultra low power consumption are extremely desirable. Indeed, such filters would allow drastic simplification of RF front-ends in countless applications from cell phones to satellites in space by replacing switched-array of static acoustic filters and YIG filters respectively. Switched array of acoustic filters are de facto means of channel selection in mobile applications such as cell phones. SAW and BAW filters satisfy most criteria needed by mobile applications such as low cost, size and power consumption. However, the trade-off is a significant loss of 3-4 dB in modern cell phone RF front-end. This leads to need for power-hungry amplifiers and short battery life. It is a necessary trade-off since there are no better alternatives. These devices are in mm scale and consume mW. YIG filters dominate applications where size or power is not a constraint but demand excellent RF performance like low loss and high tuning ratio. These devices are measured in inches and require several watts to operate. Clearly, a tunable RF filter technology that would combine the cost, size and power consumption benefits of acoustic filters with excellent RF performance of YIG filters would be extremely desirable and imminently useful. The objective of this dissertation is to develop such a technology based upon RF-MEMS Evanescent-mode cavity filter. Two highly novel RF-MEMS devices have been developed over the course of this PhD to address the unique MEMS needs of this technology. The first part of the dissertation is dedicated to introducing the fundamental concepts of tunable cavity resonators and filters. This includes the physics behind it, key performance metrics and what they depend on and requirements of the MEMS tuners. Initial gap control and MEMS attachment method are identified as potential hurdles towards achieving very high RF performance. Simple and elegant solutions to both these issues are discussed in

  15. Supercritical droplet dynamics and emission in low speed cross-flows

    International Nuclear Information System (INIS)

    Chae, J. W.; Yang, H. S.; Yoon, W. S.

    2008-01-01

    Droplet dynamics and emission of a supercritical droplet in crossing gas stream are numerically investigated. Effects of ambient pressure and velocity of nitrogen gas on the dynamics of the supercritical oxygen droplet are parametrically examined. Unsteady conservative axisymmetric Navier-Stokes equations in curvilinear coordinates are preconditioned and solved by dual-time stepping method. A unified property evaluation scheme based on a fundamental equation of state and extended corresponding-state principle is established to deal with thermodynamic non-idealities and transport anomalies. At lower pressures and velocities of nitrogen cross flows, both the diffusion and the convection are important in determining the droplet dynamics. Relative flow motion causes a secondary breakup and cascading vortices, and the droplet lifetime is reduced with increasing in ambient pressure. At higher ambient pressures and velocities, however, the droplet dynamics become convection-controlled while the secondary breakup is hindered by reduced diffusivity of the oxygen. Gas-phase mixing depends on the convection and diffusion velocities in conjunction with corresponding droplet deformation and flow interaction. Supercritical droplet dynamics and emission is not similar with respect to the pressure and velocity of the ambient gas and thus provides no scale

  16. An experimental study on suspended sodium droplet combustion (2)

    International Nuclear Information System (INIS)

    Sato, Kenji

    2004-03-01

    As part of studies for phenomenological investigation of sodium droplet burning behavior, in our previous experimental studies for suspended single sodium droplet, behavior of ignition process and succeeding combustion, ignition delay time, and droplet temperature history had been investigated. In the present study, by using 4 mm diam. suspended sodium droplet, combustion experiments were performed for extended free-stream velocity range of dry air up to 200 cm/s, and for the initial droplet temperature T i =300degC and 400degC, and the effects of the free-stream velocity and initial droplet temperature on the ignition/burning behavior and ignition delay time were examined by using high speed video camera. The obtained experimental results are as follows: (1) Ignition phenomena of suspended spherical shape droplet were observed for all examined experimental conductions except the case of free-stream velocity U=200 cm/s at 300degC, where detachment of droplet from the support due to strained oxide film occurred. (2) The ignition delay time defined as the time to evolution of orange-light emitting zone or flame zone decreases with the increase of the free-stream velocity or of initial droplet temperature. Examples of typical ignition delay time are 0.68 s at U=20 cm/s, 0.52 s at U=100 cm/s, and 0.37 s at 200 cm/s for T i =400degC. (3) The orange-light emission at the moment of ignition occurs simultaneously over whole surface except the top region of the droplet. The intensity of the emission at the moment of ignition takes its maximum at the bottom region or upstream region of the droplet, and the emission intensity during the stable burning period increases with the increase of U. (4) When T i is 300degC, formation of temporal multiple short projections are observed before ignition for all examined free-stream velocities. The projections often do not disappear before ignition when the velocity is relatively high. (5) The layer or cloud composed of aerosol is formed

  17. Lipid droplets as ubiquitous fat storage organelles in C. elegans

    Directory of Open Access Journals (Sweden)

    Guo Fengli

    2010-12-01

    Full Text Available Abstract Background Lipid droplets are a class of eukaryotic cell organelles for storage of neutral fat such as triacylglycerol (TAG and cholesterol ester (CE. We and others have recently reported that lysosome-related organelles (LROs are not fat storage structures in the nematode C. elegans. We also reported the formation of enlarged lipid droplets in a class of peroxisomal fatty acid β-oxidation mutants. In the present study, we seek to provide further evidence on the organelle nature and biophysical properties of fat storage structures in wild-type and mutant C. elegans. Results In this study, we provide biochemical, histological and ultrastructural evidence of lipid droplets in wild-type and mutant C. elegans that lack lysosome related organelles (LROs. The formation of lipid droplets and the targeting of BODIPY fatty acid analogs to lipid droplets in live animals are not dependent on lysosomal trafficking or peroxisome dysfunction. However, the targeting of Nile Red to lipid droplets in live animals occurs only in mutants with defective peroxisomes. Nile Red labelled-lipid droplets are characterized by a fluorescence emission spectrum distinct from that of Nile Red labelled-LROs. Moreover, we show that the recently developed post-fix Nile Red staining method labels lipid droplets exclusively. Conclusions Our results demonstrate lipid droplets as ubiquitous fat storage organelles and provide a unified explanation for previous studies on fat labelling methods in C. elegans. These results have important applications to the studies of fat storage and lipid droplet regulation in the powerful genetic system, C. elegans.

  18. Faraday Waves-Based Integrated Ultrasonic Micro-Droplet Generator and Applications

    Directory of Open Access Journals (Sweden)

    Chen S. Tsai

    2017-02-01

    Full Text Available An in-depth review on a new ultrasonic micro-droplet generator which utilizes megahertz (MHz Faraday waves excited by silicon-based multiple Fourier horn ultrasonic nozzles (MFHUNs and its potential applications is presented. The new droplet generator has demonstrated capability for producing micro droplets of controllable size and size distribution and desirable throughput at very low electrical drive power. For comparison, the serious deficiencies of current commercial droplet generators (nebulizers and the other ultrasonic droplet generators explored in recent years are first discussed. The architecture, working principle, simulation, and design of the multiple Fourier horns (MFH in resonance aimed at the amplified longitudinal vibration amplitude on the end face of nozzle tip, and the fabrication and characterization of the nozzles are then described in detail. Subsequently, a linear theory on the temporal instability of Faraday waves on a liquid layer resting on the planar end face of the MFHUN and the detailed experimental verifications are presented. The linear theory serves to elucidate the dynamics of droplet ejection from the free liquid surface and predict the vibration amplitude onset threshold for droplet ejection and the droplet diameters. A battery-run pocket-size clogging-free integrated micro droplet generator realized using the MFHUN is then described. The subsequent report on the successful nebulization of a variety of commercial pulmonary medicines against common diseases and on the experimental antidote solutions to cyanide poisoning using the new droplet generator serves to support its imminent application to inhalation drug delivery.

  19. Fast Evaporation of Spreading Droplets of Colloidal Suspensions

    Science.gov (United States)

    Maki, Kara; Kumar, Satish

    2011-11-01

    When a coffee droplet dries on a countertop, a dark ring of coffee solute is left behind, a phenomenon often referred to as ``the coffee-ring effect.'' A closely related yet less-well-explored phenomenon is the formation of a layer of particles, or skin, at the surface of the droplet. In this work, we explore the behavior of a mathematical model that can qualitatively describe both phenomena. We consider a thin axisymmetric droplet of a colloidal suspension on a horizontal substrate undergoing spreading and rapid evaporation. The lubrication approximation is applied to simplify the mass and momentum conservation equations, and the colloidal particles are allowed to influence droplet rheology through their effect on the viscosity. By describing the transport of the colloidal particles with the full convection-diffusion equation, we are able to capture depthwise gradients in particle concentration and thus describe skin formation, a feature neglected in prior models of droplet evaporation. Whereas capillarity creates a flow that drives particles to the contact line to produce a coffee-ring, Marangoni flows can compete with this and promote skin formation. Increases in viscosity due to particle concentration slow down droplet dynamics, and can lead to a significant reduction in the spreading rate.

  20. Impact of droplet evaporation rate on resulting in vitro performance parameters of pressurized metered dose inhalers.

    Science.gov (United States)

    Sheth, Poonam; Grimes, Matthew R; Stein, Stephen W; Myrdal, Paul B

    2017-08-07

    Pressurized metered dose inhalers (pMDIs) are widely used for the treatment of pulmonary diseases. The overall efficiency of pMDI drug delivery may be defined by in vitro parameters such as the amount of drug that deposits on the model throat and the proportion of the emitted dose that has particles that are sufficiently small to deposit in the lung (i.e., fine particle fraction, FPF). The study presented examines product performance of ten solution pMDI formulations containing a variety of cosolvents with diverse chemical characteristics by cascade impaction with three inlets (USP induction port, Alberta Idealized Throat, and a large volume chamber). Through the data generated in support of this study, it was demonstrated that throat deposition, cascade impactor deposition, FPF, and mass median aerodynamic diameter of solution pMDIs depend on the concentration and vapor pressure of the cosolvent, and the selection of model throat. Theoretical droplet lifetimes were calculated for each formulation using a discrete two-stage evaporation process model and it was determined that the droplet lifetime is highly correlated to throat deposition and FPF indicating that evaporation kinetics significantly influences pMDI drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.