Sample records for acoustic analysis presenting

  1. Uncertainty analysis in acoustic investigations



    The problem of uncertainty assessment in acoustic investigations is presented in the hereby paper. The aspect of the uncertainty asymmetry in processing of data obtained in the measuring test of sound levels, determined in decibels, was sketched. On the basis of the analysis of data obtained in the continuous monitoring of road traffic noise in Krakow typical probability distributions for a day, evening and night were determined. The method of the uncertainty assessment based on the propagati...

  2. Particle analysis in an acoustic cytometer

    Energy Technology Data Exchange (ETDEWEB)

    Kaduchak, Gregory; Ward, Michael D


    The present invention is a method and apparatus for acoustically manipulating one or more particles. Acoustically manipulated particles may be separated by size. The particles may be flowed in a flow stream and acoustic radiation pressure, which may be radial, may be applied to the flow stream. This application of acoustic radiation pressure may separate the particles. In one embodiment, the particles may be separated by size, and as a further example, the larger particles may be transported to a central axis.

  3. Acoustic neuroma ingrowth in the cochlear nerve: does it influence the clinical presentation?

    NARCIS (Netherlands)

    Forton, G.E.J.; Cremers, C.W.R.J.; Offeciers, E.E.


    We examined the clinical presentation in patients with a histologically proven ingrowth of the cochlear nerve by acoustic neuroma to see whether this differs from what is known from large acoustic neuroma series. In total, 85 acoustic neuromas had an en bloc dissection to study histologically the re


    Institute of Scientific and Technical Information of China (English)


    Conventional element based methods for modeling acoustic problems are limited to low-frequency applications due to the huge computational efforts. For high-frequency applications, probabilistic techniques, such as statistical energy analysis (SEA), are used. For mid-frequency range, currently no adequate and mature simulation methods exist. Recently, wave based method has been developed which is based on the indirect TREFFTZ approach and has shown to be able to tackle problems in the mid-frequency range. In contrast with the element based methods, no discretization is required. A sufficient, but not necessary, condition for convergence of this method is that the acoustic problem domain is convex. Non-convex domains have to be partitioned into a number of (convex) subdomains. At the interfaces between subdomains, specific coupling conditions have to be imposed. The considered two-dimensional coupled vibro-acoustic problem illustrates the beneficial convergence rate of the proposed wave based prediction technique with high accuracy. The results show the new technique can be applied up to much higher frequencies.

  5. Finite element analysis of piezoelectric underwater transducers for acoustic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hwan [Inha University, Incheon (Korea, Republic of); Kim, Heung Soo [Catholic University, Daegu (Korea, Republic of)


    This paper presents a simulation technique for analyzing acoustic characteristics of piezoelectric underwater transducers. A finite element method is adopted for modeling piezoelectric coupled problems including material damping and fluid-structure interaction problems by taking system matrices in complex form. For the finite element modeling of unbounded acoustic fluid, infinite wave envelope element (IWEE) is adopted to take into account the infinite domain. An in-house finite element program is developed and technical issues for implementing the program are explained. Using the simulation program, acoustic characteristics of tonpilz transducer are analyzed in terms of modal analysis, radiated pressure distribution, pressure spectrum, transmitting-voltage response and impedance analysis along with experimental comparison. The developed simulation technique can be used for designing ultrasonic transducers in the areas of nondestructive evaluation, underwater acoustics and bioengineering

  6. Acoustic Gaits: Gait Analysis With Footstep Sounds. (United States)

    Altaf, M Umair Bin; Butko, Taras; Juang, Biing-Hwang Fred


    We describe the acoustic gaits-the natural human gait quantitative characteristics derived from the sound of footsteps as the person walks normally. We introduce the acoustic gait profile, which is obtained from temporal signal analysis of sound of footsteps collected by microphones and illustrate some of the spatio-temporal gait parameters that can be extracted from the acoustic gait profile by using three temporal signal analysis methods-the squared energy estimate, Hilbert transform and Teager-Kaiser energy operator. Based on the statistical analysis of the parameter estimates, we show that the spatio-temporal parameters and gait characteristics obtained using the acoustic gait profile can consistently and reliably estimate a subset of clinical and biometric gait parameters currently in use for standardized gait assessments. We conclude that the Teager-Kaiser energy operator provides the most consistent gait parameter estimates showing the least variation across different sessions and zones. Acoustic gaits use an inexpensive set of microphones with a computing device as an accurate and unintrusive gait analysis system. This is in contrast to the expensive and intrusive systems currently used in laboratory gait analysis such as the force plates, pressure mats and wearable sensors, some of which may change the gait parameters that are being measured.

  7. Underwater acoustic communication research at TNO-Past and present

    NARCIS (Netherlands)

    Dol, H.; Walree, P. van


    This paper provides an overview of more than 12 years of underwater acoustic communication research at the Sonar Department of TNO The Hague. The research covered both point-to-point links and relay networks, from long-range covert communication to short-range high-data-rate communication, for both

  8. Acoustic perfect absorber based on metasurface with deep sub-wavelength thickness (Conference Presentation) (United States)

    Assouar, Badreddine; Li, Yong


    The concept of the coiling up space, based on which artificial structures could exhibit extreme acoustic properties, such as high refractive index, double negativity, near-zero index, etc., have been investigated intensively recently due to the fascinating underlying physics and diverse potential applications [1-3]. One of the most important functionality is the ability to shrink bulky structures into deep sub-wavelength scale. It is therefore intuitive to prospect that the concept of coiling up space, if could be extended into the perforated system, will benefit to significantly reduce the total thickness while keeping total absorption. Conventional acoustic absorbers require a structure with a thickness comparable to the working wavelength, resulting major obstacles in real applications in low frequency range. We present a metasurface-based perfect absorber capable of achieving the total absorption of acoustic wave in extremely low frequency region. The metasurface possessing a deep sub-wavelength thickness down to a feature size of ~ lambda/223 is composed of a perforated plate and a coiled coplanar air chamber. Simulations based on fully coupled acoustic with thermodynamic equations and theoretical impedance analysis are utilized to reveal the underlying physics and the acoustic performances, showing an excellent agreement. Our realization should have high impact on amount of applications due to the extremely thin thickness, easy fabrication and high efficiency of the proposed structure. References 1. Z. Liang and J. Li, Phys. Rev. Lett. 108, 114301 (2012). 2. Y. Li, B. Liang, X. Tao, X. F. Zhu, X. Y. Zou, and J. C. Cheng, Appl. Phys. Lett. 101, 233508 (2012). 3. Y. Xie, W. Wang, H. Chen, A. Konneker, B. I. Popa, and S. A. Cummer, Nat. Commun. 5, 5553 (2014).

  9. [Sudden deafness as a presentation of acoustic neuroma]. (United States)

    Bartoszewicz, Robert; Niemczyk, Kazimierz; Marchel, Andrzej; Kowalska, Małgorzata


    Sudden deafness (SD) is thought to be a heterogenic group of disorders as to etiopathogenesis. Acoustic neuroma should always be considered in the differential diagnosis. The authors analysed symptoms occurring in the group of 89 patients, diagnosed with acoustic neuroma. A special attention was paid to the role of sudden deafness as a clinical manifestation of the VIIIth nerve pathology. Progressive hearing loss, tinnitus, headache and sudden deafness were the most common complaints. Sudden deafness was developed by approximately 1 of the investigated patients (24.7%). Progressive hearing loss, tinnitus and sudden deafness were also dominating initial signs. The sudden deafness onset was preceded by the period of progressive hearing loss in 3 patients. In one case episode of SD occurred twice.

  10. Vibro-acoustic analysis of the acoustic-structure interaction of flexible structure due to acoustic excitation (United States)

    Djojodihardjo, Harijono


    The application of BE-FE acoustic-structure interaction on a structure subject to acoustic load is elaborated using the boundary element-finite element acoustic structural coupling and the utilization of the computational scheme developed earlier. The plausibility of the numerical treatment is investigated and validated through application to generic cases. The analysis carried out in the work is intended to serve as a baseline in the analysis of acoustic structure interaction for lightweight structures. Results obtained thus far exhibit the robustness of the method developed.

  11. Acoustic signal analysis of underwater elastic cylinder

    Institute of Scientific and Technical Information of China (English)

    LI Xiukun; YANG Shi'e


    The echoes of underwater elastic cylinder comprise two types of acoustic components: Geometrical scattering waves and elastic scattering waves. The transfer function is appropriate to characterize the echo of targets. And the discrete wavelet transform of amplitude spectrum is presented and used to identify the resonant components of underwater targets.PACS numbers: 43.30, 43.60

  12. Pressure potential and stability analysis in an acoustical noncontact transportation (United States)

    Li, J.; Liu, C. J.; Zhang, W. J.


    Near field acoustic traveling wave is one of the most popular principles in noncontact manipulations and transportations. The stability behavior is a key factor in the industrial applications of acoustical noncontact transportation. We present here an in-depth analysis of the transportation stability of a planar object levitated in near field acoustic traveling waves. To more accurately describe the pressure distributions on the radiation surface, a 3D nonlinear traveling wave model is presented. A closed form solution is derived based on the pressure potential to quantitatively calculate the restoring forces and moments under small disturbances. The physical explanations of the effects of fluid inertia and the effects of non-uniform pressure distributions are provided in detail. It is found that a vibration rail with tapered cross section provides more stable transportation than a rail with rectangular cross section. The present study sheds light on the issue of quantitative evaluation of stability in acoustic traveling waves and proposes three main factors that influence the stability: (a) vibration shape, (b) pressure distribution and (c) restoring force/moment. It helps to provide a better understanding of the physics behind the near field acoustic transportation and provide useful design and optimization tools for industrial applications.

  13. Dynamic response analysis of an aircraft structure under thermal-acoustic loads (United States)

    Cheng, H.; Li, H. B.; Zhang, W.; Wu, Z. Q.; Liu, B. R.


    Future hypersonic aircraft will be exposed to extreme combined environments includes large magnitude thermal and acoustic loads. It presents a significant challenge for the integrity of these vehicles. Thermal-acoustic test is used to test structures for dynamic response and sonic fatigue due to combined loads. In this research, the numerical simulation process for the thermal acoustic test is presented, and the effects of thermal loads on vibro-acoustic response are investigated. To simulate the radiation heating system, Monte Carlo theory and thermal network theory was used to calculate the temperature distribution. Considering the thermal stress, the high temperature modal parameters are obtained with structural finite element methods. Based on acoustic finite element, modal-based vibro-acoustic analysis is carried out to compute structural responses. These researches are very vital to optimum thermal-acoustic test and structure designs for future hypersonic vehicles structure

  14. Acoustic streaming jets: A scaling and dimensional analysis (United States)

    Botton, V.; Moudjed, B.; Henry, D.; Millet, S.; Ben-Hadid, H.; Garandet, J. P.


    We present our work on acoustic streaming free jets driven by ultrasonic beams in liquids. These jets are steady flows generated far from walls by progressive acoustic waves. As can be seen on figure 1, our set-up, denominated AStrID for Acoustic Streaming Investigation Device, is made of a water tank in which a 29 mm plane source emits continuous ultrasonic waves at typically 2 MHz. Our approach combines an experimental characterization of both the acoustic pressure field (hydrophone) and the obtained acoustic streaming velocity field (PIV visualization) on one hand, with CFD using an incompressible Navier-Stokes solver on the other hand.

  15. Acoustic streaming jets: A scaling and dimensional analysis

    Energy Technology Data Exchange (ETDEWEB)

    Botton, V., E-mail:; Henry, D.; Millet, S.; Ben-Hadid, H. [LMFA, UMR CNRS 5509, Université de Lyon, ECL/INSA Lyon/Univ. Lyon 1, 36 avenue Guy deCollongue, 69134 Ecully Cedex (France); Moudjed, B. [LMFA, UMR CNRS 5509, Université de Lyon, ECL/INSA Lyon/Univ. Lyon 1, 36 avenue Guy deCollongue, 69134 Ecully Cedex (France); LIEFT, CEA-Saclay, 91191 Gif-sur-Yvette cedex (France); Garandet, J. P. [LIEFT, CEA-Saclay, 91191 Gif-sur-Yvette cedex (France)


    We present our work on acoustic streaming free jets driven by ultrasonic beams in liquids. These jets are steady flows generated far from walls by progressive acoustic waves. As can be seen on figure 1, our set-up, denominated AStrID for Acoustic Streaming Investigation Device, is made of a water tank in which a 29 mm plane source emits continuous ultrasonic waves at typically 2 MHz. Our approach combines an experimental characterization of both the acoustic pressure field (hydrophone) and the obtained acoustic streaming velocity field (PIV visualization) on one hand, with CFD using an incompressible Navier-Stokes solver on the other hand.

  16. Analysis of acoustic emission data for bearings subject to unbalance

    Directory of Open Access Journals (Sweden)

    Rapinder Sawhney


    Full Text Available Acoustic Emission (AE is an effective nondestructive method for investigating the behavior of materials under stress. In recent decades, AE applications in structural health monitoring have been extended to other areas such as rotating machineries and cutting tools. This research investigates the application of acoustic emission data for unbalance analysis and detection in rotary systems. The AE parameter of interest in this study is a discrete variable that covers the significance of count, duration and amplitude of AE signals. A statistical model based on Zero-Inflated Poisson (ZIP regression is proposed to handle over-dispersion and excess zeros of the counting data. The ZIP model indicates that faulty bearings can generate more transient wave in the AE waveform. Control charts can easily detect the faulty bearing using the parameters of the ZIP model. Categorical data analysis based on generalized linear models (GLM is also presented. The results demonstrate the significance of the couple unbalance.

  17. Acoustic design sensitivity analysis of structural sound radiation

    Institute of Scientific and Technical Information of China (English)



    This paper presents an acoustic design sensitivity(ADS)analysis on sound radiation of structures by using the boundary element method(BEM).We calculated the velocity distribution of the thin plate by analytical method and the surface sound pressure by Rayleigh integral,and expressed the sound radiation power of the structure in a positive definite quadratic form of the Hermitian with an impedance matrix.The ADS analysis of the plate was thus translated into the analysis of structure dynamic sensitivity and ...

  18. Response Analysis Of Payload Fairing Due To Acoustic Excitation

    Directory of Open Access Journals (Sweden)

    Annu Cherian


    Full Text Available Abstract During flight missions launch vehicles are subjected to a severe dynamic pressure loading aero-acoustic and structure-borne excitations of various circumstances which can endanger the survivability of the payload and the vehicles electronic equipment and consequently the success of the mission. The purpose of the fairing is to protect the satellite from damage during launch until deployment in space. Both the structural and acoustic loads are significant during the first few minutes of a launch and have the potential to damage the payload. This paper describes the analysis of mechanical structure and the inner acoustic cavity of the payload fairing subjected to acoustic field. The vibro-acoustic behaviour of the fairing is analyzed using Statistical Energy Analysis SEA Model. The software VA One is used for the statistical energy analysis of launch vehicle payload fairing due to acoustic excitation.

  19. An analysis of beam parameters on proton-acoustic waves through an analytic approach. (United States)

    Aytac Kipergil, Esra; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet


    It has been reported that acoustic waves are generated when a high energy pulsed proton beam is deposited in a small volume within tissue. One possible application of the proton induced acoustics is to get a real-time feedback for intratreatment adjustments by monitoring such acoustic waves. High spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution to the proton induced acoustic wave is presented to reveal the dependence of signal on beam parameters, and then combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration, and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of proton-acoustic signals. Our results show that smaller spill time of proton beam upsurges the amplitude of acoustic wave for constant number of protons, and hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  20. Research on modal analysis of structural acoustic radiation using structural vibration modes and acoustic radiation modes

    Institute of Scientific and Technical Information of China (English)

    LI Sheng; ZHAO Deyou


    Modal analysis of structural acoustic radiation from a vibrating structure is discussed using structural vibration modes and acoustic radiation modes based on the quadratic form of acoustic power. The finite element method is employed for discretisizing the structure.The boundary element method and Rayleigh integral are used for modeling the acoustic fluid.It is shown that the power radiated by a single vibration mode is to increase the radiated power and the effect of modal interaction can lead to an increase or a decrease or no change in the radiated power, moreover, control of vibration modes is a good way to reduce both vibration and radiated sound as long as the influence of interaction of vibration modes on sound radiation is insignificant. Stiffeners may change mode shapes of a plate and thus change radiation efficiency of the plate's modes. The CHIEF method is adopted to obtain an acoustic radiation mode formulation without the nonuniqueness difficulty at critical frequencies for three-dimensional structures by using Moore-Penrose inverse. A pulsating cube is involved to verify the formulation. Good agreement is obtained between the numerical and analytical solutions. The shapes and radiation efficiencies of acoustic radiation modes of the cube are discussed. The structural acoustic control using structural vibration modes and acoustic radiation modes are compared and studied.

  1. Acoustofluidics 13: Analysis of acoustic streaming by perturbation methods. (United States)

    Sadhal, S S


    In this Part 13 of the tutorial series "Acoustofluidics--exploiting ultrasonic standing waves forces and acoustic streaming in microfluidic systems for cell and particle manipulation," the streaming phenomenon is presented from an analytical standpoint, and perturbation methods are developed for analyzing such flows. Acoustic streaming is the phenomenon that takes place when a steady flow field is generated by the absorption of an oscillatory field. This can happen either by attenuation (quartz wind) or by interaction with a boundary. The latter type of streaming can also be generated by an oscillating solid in an otherwise still fluid medium or vibrating enclosure of a fluid body. While we address the first kind of streaming, our focus is largely on the second kind from a practical standpoint for application to microfluidic systems. In this Focus article, we limit the analysis to one- and two-dimensional problems in order to understand the analytical techniques with examples that most-easily illustrate the streaming phenomenon.

  2. Linear Stability Analysis of an Acoustically Vaporized Droplet (United States)

    Siddiqui, Junaid; Qamar, Adnan; Samtaney, Ravi


    Acoustic droplet vaporization (ADV) is a phase transition phenomena of a superheat liquid (Dodecafluoropentane, C5F12) droplet to a gaseous bubble, instigated by a high-intensity acoustic pulse. This approach was first studied in imaging applications, and applicable in several therapeutic areas such as gas embolotherapy, thrombus dissolution, and drug delivery. High-speed imaging and theoretical modeling of ADV has elucidated several physical aspects, ranging from bubble nucleation to its subsequent growth. Surface instabilities are known to exist and considered responsible for evolving bubble shapes (non-spherical growth, bubble splitting and bubble droplet encapsulation). We present a linear stability analysis of the dynamically evolving interfaces of an acoustically vaporized micro-droplet (liquid A) in an infinite pool of a second liquid (liquid B). We propose a thermal ADV model for the base state. The linear analysis utilizes spherical harmonics (Ynm, of degree m and order n) and under various physical assumptions results in a time-dependent ODE of the perturbed interface amplitudes (one at the vapor/liquid A interface and the other at the liquid A/liquid B interface). The perturbation amplitudes are found to grow exponentially and do not depend on m. Supported by KAUST Baseline Research Funds.

  3. Acoustic analysis assessment in speech pathology detection

    Directory of Open Access Journals (Sweden)

    Panek Daria


    Full Text Available Automatic detection of voice pathologies enables non-invasive, low cost and objective assessments of the presence of disorders, as well as accelerating and improving the process of diagnosis and clinical treatment given to patients. In this work, a vector made up of 28 acoustic parameters is evaluated using principal component analysis (PCA, kernel principal component analysis (kPCA and an auto-associative neural network (NLPCA in four kinds of pathology detection (hyperfunctional dysphonia, functional dysphonia, laryngitis, vocal cord paralysis using the a, i and u vowels, spoken at a high, low and normal pitch. The results indicate that the kPCA and NLPCA methods can be considered a step towards pathology detection of the vocal folds. The results show that such an approach provides acceptable results for this purpose, with the best efficiency levels of around 100%. The study brings the most commonly used approaches to speech signal processing together and leads to a comparison of the machine learning methods determining the health status of the patient

  4. Design and Analysis of Underwater Acoustic Networks with Reflected Links (United States)

    Emokpae, Lloyd

    -of-sight (LOS) and NLOS links by utilizing directional antennas, which will boost the signal-to-noise ratio (SNR) at the receiver while promoting NLOS usage. In our model, we employ a directional underwater acoustic antenna composed of an array of hydrophones that can be summed up at various phases and amplitudes resulting in a beam-former. We have also adopted a practical multimodal directional transducer concept which generates both directional and omni-directional beam patterns by combining the fundamental vibration modes of a cylindrical acoustic radiator. This allows the transducer to be electrically controlled and steered by simply adjusting the electrical voltage weights. A prototype acoustic modem is then developed to utilize the multimodal directional transducer for both LOS and NLOS communication. The acoustic modem has also been used as a platform for empirically validating our SBR communication model in a tank and with empirical data. Networking protocols have been developed to exploit the SBR communication model. These protocols include node discovery and localization, directional medium access control (D-MAC) and geographical routing. In node discovery and localization, each node will utilize SBR-based range measurements to its neighbors to determine their relative position. The D-MAC protocol utilizes directional antennas to increase the network throughput due to the spatial efficiency of the antenna model. In the proposed reflection-enabled directional MAC protocol (RED-MAC), each source node will be able to determine if an obstacle is blocking the LOS link to the destination and switch to the best NLOS link by utilizing surface/bottom reflections. Finally, we have developed a geographical routing algorithm which aims to establish the best stable route from a source node to a destination node. The optimized route is selected to achieve maximum network throughput. Extensive analysis of the network throughput when utilizing directional antennas is also presented

  5. On the vibro-acoustical operational modal analysis of a helicopter cabin (United States)

    Pierro, E.; Mucchi, E.; Soria, L.; Vecchio, A.


    This paper aims to present a modal decomposition formulation for a vibro-acoustical operational modal analysis (OMA). In literature many works can be found on this topic, but until now no attention has been focused on the analytical form of the cross-power spectra (CPs) between the system outputs when a fluid-structure coupling is present. In this work it is shown that the CPs modal decomposition depends on the choice of the references, i.e. acoustical or structural. At first it is theoretically pointed out that the CP formulation for the acoustical and structural case is formally identical if appropriately pre-processed. Then, this theoretical result is verified through the results of an extensive experimental testing on the helicopter EUROCOPTER EC-135. The CPs between the structural output velocities and the acoustical response of the microphone inside the helicopter cabin are considered as inputs of an OMA. In order to verify the effectiveness of the modal model so obtained a classical modal analysis is also performed. The acoustical reference choice reveals to be suitable for a vibro-acoustical OMA. It is highlighted, indeed, that the acoustical pressure measurement inside the enclosure can be used as reference instead of the commonly used structural sensors, both from the theoretical and practical point of view. This is useful for high scale structures where the structural responses are usually measured by means of moving sensor arrays and additional fixed reference sensors should be positioned on the surface.

  6. An acoustical analysis of a room with a concave dome ceiling element (United States)

    Utami, Sentagi S.


    Concave surfaces are often considered detrimental in room acoustics, especially because of the impact they have on the distribution of sound energy. This paper explores certain acoustical characteristics and anomalies found in spaces below concave dome ceiling elements. The architectural design of the Darusshollah mosque in East Java, Indonesia is used as a case study with specific spatial and functional concerns. Investigations of the mosque have been conducted through both a 1:12 scale model and a computer model that utilizes ray tracing and image source methods. Analysis techniques are discussed. Results are presented and compared to provide useful insights into the acoustics of such distinctive environments.

  7. Computational analysis of acoustic transmission through periodically perforated interfaces

    Directory of Open Access Journals (Sweden)

    Rohan E.


    Full Text Available The objective of the paper is to demonstrate the homogenization approach applied to modelling the acoustic transmission on perforated interfaces embedded in the acoustic fluid. We assume a layer, with periodically perforated obstacles, separating two half-spaces filled with the fluid. The homogenization method provides limit transmission conditions which can be prescribed at the homogenized surface representing the "limit" interface. The conditions describe relationship between jump of the acoustic pressures and the transversal acoustic velocity, on introducing the "in-layer pressure" which describes wave propagation in the tangent directions with respect to the interface.This approach may serve as a relevant tool for optimal design of devices aimed at attenuation of the acoustic waves, such as the engine exhaust mufflers or other structures fitted with sieves and grillages. We present numerical examples of wave propagation in a muffler-like structure illustrating viability of the approach when complex 3D geometries of the interface perforation are considered.

  8. Numerical analysis of acoustic impedance microscope utilizing acoustic lens transducer to examine cultured cells. (United States)

    Gunawan, Agus Indra; Hozumi, Naohiro; Takahashi, Kenta; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji


    A new technique is proposed for non-contact quantitative cell observation using focused ultrasonic waves. This technique interprets acoustic reflection intensity into the characteristic acoustic impedance of the biological cell. The cells are cultured on a plastic film substrate. A focused acoustic beam is transmitted through the substrate to its interface with the cell. A two-dimensional (2-D) reflection intensity profile is obtained by scanning the focal point along the interface. A reference substance is observed under the same conditions. These two reflections are compared and interpreted into the characteristic acoustic impedance of the cell based on a calibration curve that was created prior to the observation. To create the calibration curve, a numerical analysis of the sound field is performed using Fourier Transforms and is verified using several saline solutions. Because the cells are suspended by two plastic films, no contamination is introduced during the observation. In a practical observation, a sapphire lens transducer with a center frequency of 300 MHz was employed using ZnO thin film. The objects studied were co-cultured rat-derived glial (astrocyte) cells and glioma cells. The result was the clear observation of the internal structure of the cells. The acoustic impedance of the cells was spreading between 1.62 and 1.72 MNs/m(3). Cytoskeleton was indicated by high acoustic impedance. The introduction of cytochalasin-B led to a significant reduction in the acoustic impedance of the glioma cells; its effect on the glial cells was less significant. It is believed that this non-contact observation method will be useful for continuous cell inspections.

  9. Attenuation Analysis and Acoustic Pressure Levels for Combined Absorptive Mufflers

    Directory of Open Access Journals (Sweden)

    Ovidiu Vasile


    Full Text Available The paper describes the pressure-wave propagation in a muffler for an internal combustion engine in case of two combined mufflers geometry. The approach is generally applicable to analyzing the damping of propagation of harmonic pressure waves. The paper purpose is to show finite elements analysis of both inductive and resistive damping in pressure acoustics. The main output is the attenuation and acoustic pressure levels for the frequency range 50 Hz–3000 Hz.

  10. Effect of stimuli presentation method on perception of room size using only acoustic cues (United States)

    Hunt, Jeffrey Barnabas

    People listen to music and speech in a large variety of rooms and many room parameters, including the size of the room, can drastically affect how well the speech is understood or the music enjoyed. While multi-modal (typically hearing and sight) tests may be more realistic, in order to isolate what acoustic cues listeners use to determine the size of a room, a listening-only tests is conducted here. Nearly all of the studies to-date on the perception of room volume using acoustic cues have presented the stimuli only over headphones and these studies have reported that, in most cases, the perceived room volume is more highly correlated with the perceived reverberation (reverberance) than with actual room volume. While reverberance may be a salient acoustic cue used for the determination or room size, the actual sound field in a room is not accurately reproduced when presented over headphones and it is thought that some of the complexities of the sound field that relate to perception of geometric volume, specifically directional information of reflections, may be lost. It is possible that the importance of reverberance may be overemphasized when using only headphones to present stimuli so a comparison of room-size perception is proposed where the sound field (from modeled and recorded impulse responses) is presented both over headphones and also over a surround system using higher order ambisonics to more accurately produce directional sound information. Major results are that, in this study, no difference could be seen between the two presentation methods and that reverberation time is highly correlated to room-size perception while real room size is not.

  11. DARHT Multi-intelligence Seismic and Acoustic Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Garrison Nicole [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Van Buren, Kendra Lu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    The purpose of this report is to document the analysis of seismic and acoustic data collected at the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory for robust, multi-intelligence decision making. The data utilized herein is obtained from two tri-axial seismic sensors and three acoustic sensors, resulting in a total of nine data channels. The goal of this analysis is to develop a generalized, automated framework to determine internal operations at DARHT using informative features extracted from measurements collected external of the facility. Our framework involves four components: (1) feature extraction, (2) data fusion, (3) classification, and finally (4) robustness analysis. Two approaches are taken for extracting features from the data. The first of these, generic feature extraction, involves extraction of statistical features from the nine data channels. The second approach, event detection, identifies specific events relevant to traffic entering and leaving the facility as well as explosive activities at DARHT and nearby explosive testing sites. Event detection is completed using a two stage method, first utilizing signatures in the frequency domain to identify outliers and second extracting short duration events of interest among these outliers by evaluating residuals of an autoregressive exogenous time series model. Features extracted from each data set are then fused to perform analysis with a multi-intelligence paradigm, where information from multiple data sets are combined to generate more information than available through analysis of each independently. The fused feature set is used to train a statistical classifier and predict the state of operations to inform a decision maker. We demonstrate this classification using both generic statistical features and event detection and provide a comparison of the two methods. Finally, the concept of decision robustness is presented through a preliminary analysis where

  12. Finite element analysis for acoustic characteristics of a magnetostrictive transducer (United States)

    Kim, Jaehwan; Jung, Eunmi


    This paper presents a finite element analysis for a magnetostrictive transducer by taking into account the nonlinear behavior of the magnetostrictive material and fluid interaction. A finite element formulation is derived for the coupling of magnetostrictive and elastic materials based upon a separated magnetic and displacement field calculation and a curve fitting technique of material properties. The fluid and structure coupled problem is taken into account based upon pressure and velocity potential fields formulation. Infinite wave envelope elements are introduced at an artificial boundary to deal with the infinite fluid domain. A finite element code for the analysis of a magnetostrictive transducer is developed. A magnetostrictive tonpilz transducer is taken as an example and verification for the developed program is made by comparing with a commercial code. The acoustic characteristics of the magnetostrictive tonpilz transducer are calculated in terms of radiation pattern and transmitted current response.

  13. Acoustical Analysis of a Test Horn. (United States)


    Laboratories, Inc. if /pliable) Flight Dynamics Laboratory (AFWAL/ FIBRA ) n/a Air Force Wright Aeronautical Laboratories 6c. ADDRESS (City, State, and ZIPCode) 7b...AFWAL/ FIBRA DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED "S.,, PREFACE This acoustical

  14. Dimensional analysis of acoustically propagated signals (United States)

    Hansen, Scott D.; Thomson, Dennis W.


    Traditionally, long term measurements of atmospherically propagated sound signals have consisted of time series of multiminute averages. Only recently have continuous measurements with temporal resolution corresponding to turbulent time scales been available. With modern digital data acquisition systems we now have the capability to simultaneously record both acoustical and meteorological parameters with sufficient temporal resolution to allow us to examine in detail relationships between fluctuating sound and the meteorological variables, particularly wind and temperature, which locally determine the acoustic refractive index. The atmospheric acoustic propagation medium can be treated as a nonlinear dynamical system, a kind of signal processor whose innards depend on thermodynamic and turbulent processes in the atmosphere. The atmosphere is an inherently nonlinear dynamical system. In fact one simple model of atmospheric convection, the Lorenz system, may well be the most widely studied of all dynamical systems. In this paper we report some results of our having applied methods used to characterize nonlinear dynamical systems to study the characteristics of acoustical signals propagated through the atmosphere. For example, we investigate whether or not it is possible to parameterize signal fluctuations in terms of fractal dimensions. For time series one such parameter is the limit capacity dimension. Nicolis and Nicolis were among the first to use the kind of methods we have to study the properties of low dimension global attractors.

  15. Analysis of Vibration and Acoustic Noise in Permanent Magnet Motors. (United States)

    Hwang, Sangmoon

    The drive motor is a frequent source of vibration and acoustic noise in many precision spindle motors. One of the electromagnetic sources of vibration in permanent magnet motors is the torque ripple, consisting of the reluctance torque and electromagnetic torque fluctuation. This type of vibration is becoming more serious with the advent of new high-grade magnets with increased flux density. Acoustic noise of electromagnetic origin is difficult to predict and its exact mechanism is unclear. The mechanism of noise generation should be revealed to design a quieter motor which is the modern customer's demand. For motor operation at low speeds and loads, torque ripple due to the reluctance torque is often a source of vibration and control difficulty. The reluctance torque in a motor was calculated from the flux density by a finite element method and the Maxwell stress method. Effects of design parameters, such as stator slot width, permanent slot width, airgap length and magnetization direction, were investigated. Magnet pole shaping, by gradually decreasing the magnet thickness toward edges, yields a sinusoidal shape of the reluctance torque with reduced harmonics, thus reducing the vibration. This dissertation also presents two motor design techniques: stator tooth notching and rotor pole skewing with magnet pole shaping, and the effect of each method on the output torque. The analysis shows that the reluctance torque can be nearly eliminated by the suggested designs, with minimal sacrifice of the output torque. In permanent magnet DC motors, the most popular design type is the trapezoidal back electro-motive force (BEMF), for switched DC controllers. It is demonstrated that the output torque profile of one phase energized is qualitatively equivalent to the BEMF profile for motors with reduced reluctance torque. It implies that design of BEMF profile is possible by magnetic modeling of a motor, without expensive and time-consuming experiments for different designs

  16. Coefficient of variation spectral analysis: An application to underwater acoustics (United States)

    Herstein, P. D.; Laplante, R. F.


    Acoustic noise in the ocean is often described in terms of its power spectral density. Just as in other media, this noise consists of both narrowband and broadband frequency components. A major problem in the analysis of power spectral density measurements is distinguishing between narrowband spectral components of interest and contaminating narrowband components. In this paper, the use of coefficient of variation (Cv) spectrum is examined as an adjunct to the conventional power spectrum to distinguish narrowband components of interest from contaminating components. The theory of the Cv is presented. Coefficients for several classical input distributions are developed. It is shown that Cv spectra can be easily implemented as an adjunct procedure during the computation of the ensemble of averaged power spectra. Power and Cv spectra derived from actual at-sea sonobuoy measurements of deep ocean ambient noise separate narrowband components from narrowband lines of interest in the ensemble of averaged power spectra, these acoustic components of interest can be distinguished in the Cv spectra.

  17. Isogeometric finite element analysis of time-harmonic exterior acoustic scattering problems

    CERN Document Server

    Khajah, Tahsin; Bordas, Stéphane P A


    We present an isogeometric analysis of time-harmonic exterior acoustic problems. The infinite space is truncated by a fictitious boundary and (simple) absorbing boundary conditions are applied. The truncation error is included in the exact solution so that the reported error is an indicator of the performance of the isogeometric analysis, in particular of the related pollution error. Numerical results performed with high-order basis functions (third or fourth orders) showed no visible pollution error even for very high frequencies. This property combined with exact geometrical representation makes isogeometric analysis a very promising platform to solve high-frequency acoustic problems.

  18. A comparative acoustic analysis of purring in four cats


    Schötz, Susanne; Eklund, Robert


    This paper reports results from a comparative analysis of purring in four domesticcats. An acoustic analysis describes sound pressure level, duration, number ofcycles and fundamental frequency for egressive and ingressive phases. Significantindividual differences are found between the four cats in several respects.

  19. Integrating Financial Analysis into Presentations (United States)

    Saatci, Elizabeth


    Assignments that combine case studies with applied research can work for presentations as well as for written reports. One such assignment that has proven to be successful both in the author's classes and later in the students' professional lives is based on (1) incorporating banking concepts and encouraging their use in presentations; (2)…

  20. A Phonemic and Acoustic Analysis of Hindko Oral Stops

    Directory of Open Access Journals (Sweden)

    Haroon Ur RASHID


    Full Text Available Hindko is an Indo-Aryan language that is mainly spoken in Khyber Pukhtoonkhaw province of Pakistan. This work aims to identify the oral stops of Hindko and determine the intrinsic acoustic cues for them. The phonemic analysis is done with the help of minimal pairs and phoneme distribution in contrastive environments which reveals that Hindko has twelve oral stops with three way series. The acoustic analysis of these segments shows that intrinsically voice onset time (VOT, closure duration and burst are reliable and distinguishing cues of stops in Hindko.

  1. Comparison of electroglottographic and acoustic analysis of pitch perturbation. (United States)

    LaBlance, G R; Maves, M D; Scialfa, T M; Eitnier, C M; Steckol, K F


    Pitch perturbation is a measure of the cycle-to-cycle variation in vocal fold vibration. Perturbation can be assessed by means of electroglottographic or acoustic signals. The purpose of this study was to determine if these two analysis techniques are equivalent measures. The Laryngograph, an electroglottograph, and the Visi-Pitch, an acoustic analyzer, were used to measure pitch perturbation in 80 dysphonic subjects. Both instruments use Koike's formula to calculate relative average perturbation. While intra-subject variability appeared erratic, statistical analysis of intersubject data indicated that the two instruments provided an equivalent measure of pitch perturbation.

  2. Acoustic analysis in Mudejar-Gothic churches: experimental results. (United States)

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara


    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria.

  3. Acoustic analysis in Mudejar-Gothic churches: Experimental results (United States)

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara


    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria. .

  4. Simulation and Analysis Chain for Acoustic Ultra-high Energy Neutrino Detectors in Water

    CERN Document Server

    Neff, M; Enzenhöfer, A; Graf, K; Hößl, J; Katz, U; Lahmann, R; Sieger, C


    Acousticneutrinodetectionisapromisingapproachforlarge-scaleultra-highenergyneutrinodetectorsinwater.In this article, a Monte Carlo simulation chain for acoustic neutrino detection devices in water will be presented. The simulation chain covers the generation of the acoustic pulse produced by a neutrino interaction and its propagation to the sensors within the detector. Currently, ambient and transient noise models for the Mediterranean Sea and simulations of the data acquisition hardware, equivalent to the one used in ANTARES/AMADEUS, are implemented. A pre-selection scheme for neutrino-like signals based on matched filtering is employed, as it is used for on-line filtering. To simulate the whole processing chain for experimental data, signal classification and acoustic source reconstruction algorithms are integrated in an analysis chain. An overview of design and capabilities of the simulation and analysis chain will be presented and preliminary studies will be discussed.

  5. Accuracy of Dynamic and Acoustic Analysis of Lightweight Panel Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Dickow, Kristoffer Ahrens; Andersen, Lars Vabbersgaard


    in such buildings is important. In the lowfrequency range, prediction of sound and vibration in building structures may be achieved by finite-element analysis (FEA). The aim of this paper is to compare the two commercial codes ABAQUS and ANSYS for FEA of an acoustic-structural coupling in a timber lightweight panel...... structure. For this purpose, modal analyses are carried out employing a fully coupled model of sound waves within an acoustic medium and vibrations in the structural part. The study concerns the frequency range 50–250 Hz....

  6. Wavelet analysis of acoustic emission signals from thermal barrier coatings

    Institute of Scientific and Technical Information of China (English)

    YANG Li; ZHOU Yi-chun


    The wavelet transform is applied to the analysis of acoustic emission signals collected during tensile test of the ZrO2-8% Y2O3 (YSZ) thermal barrier coatings (TBCs). The acoustic emission signals are de-noised using the Daubechies discrete wavelets,and then decomposed into different wavelet levels using the programs developed by the authors. Each level is examined for its specific frequency range. The ratio of energy in different levels to the total energy gives information on the failure modes (coating micro-failures and substrate micro-failures) associated with TBCs system.

  7. A novel method for perceptual assessment of small room acoustics using rapid sensory analysis

    DEFF Research Database (Denmark)

    Kaplanis, Neofytos; Bech, Søren; Lokki, Tapio


    presented with auralized sound over a loudspeaker array and followed a rapid sensory analysis protocol. The elicited attributes and ratings are analyzed and possible links to the acoustical properties of these spaces are discussed. [This study is a part of Marie Curie Network on Dereverberation...... and Reverberation of Audio, Music, and Speech. EU-FP7 under agreement ITN-GA-2012-316969.]...

  8. Acoustic detection of intracranial aneurysms : A decision analysis

    NARCIS (Netherlands)

    vanBruggen, AC; Dippel, DWJ; Habbema, JDF; Mooij, JJA


    We present a further evaluation of an improved recording method for the acoustic detection of intracranial aneurysms (ADA). A sensor was applied to the patient's eyes. Two measures were derived to summarize the power spectral density functions of the sound frequencies that were obtained from each pa

  9. Preliminary Work for Modeling the Propellers of an Aircraft as a Noise Source in an Acoustic Boundary Element Analysis (United States)

    Vlahopoulos, Nickolas; Lyle, Karen H.; Burley, Casey L.


    An algorithm for generating appropriate velocity boundary conditions for an acoustic boundary element analysis from the kinematics of an operating propeller is presented. It constitutes the initial phase of Integrating sophisticated rotorcraft models into a conventional boundary element analysis. Currently, the pressure field is computed by a linear approximation. An initial validation of the developed process was performed by comparing numerical results to test data for the external acoustic pressure on the surface of a tilt-rotor aircraft for one flight condition.

  10. Near-field acoustic holography analysis of modulated sound source

    Institute of Scientific and Technical Information of China (English)

    MAO Rongfu; ZHU Haichao; DU Xianghua; ZHU Haipeng


    When conventional near-field acoustic holography (NAH) technique is appliedto sound field induced by modulated signal, the modulating frequency can not be revealed by the reconstructed results. To solve the problem, a NAH analysis methodology for modulated sound source was proposed. Firstly, Hilbert transform was introduced to demodulate the signal, and then modulating component was reconstructed by NAH technique. Both numerical simulation and experiment results demonstrate that accurate reconstruction analysis can be obtained by the proposed method.

  11. Dynamic Analysis of the Titanium Alloy Plate under Thermal-acoustic Loadings

    Directory of Open Access Journals (Sweden)

    Zou Xuefeng


    Full Text Available Hypersonic vehicles structures suffer complex combined loadings generally. For the thin-walled structures and thermal protection systems of the aircraft, high temperature and intensity acoustic loadings are the significant factors that leading to their break. The object of this paper is typical simply supported titanium alloy plate, the finite element method was adopted to calculate the critical thermal buckling temperature the ordinal coupling method and Newmark method were adopted to calculate the thermal-acoustic dynamic response. Based on the FEM analysis, the power spectrum densities (PSD of center point was presented. Research results show that the thermal buckling of the typical simply supported titanium alloy plate occurs easily because of the low critical thermal buckling temperature, dynamic response of the thermal buckled plate suffering acoustic loads performs strong nonlinear characteristics and complex forms of exercise.

  12. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki


    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  13. Perceptual centres in speech - an acoustic analysis (United States)

    Scott, Sophie Kerttu

    Perceptual centres, or P-centres, represent the perceptual moments of occurrence of acoustic signals - the 'beat' of a sound. P-centres underlie the perception and production of rhythm in perceptually regular speech sequences. P-centres have been modelled both in speech and non speech (music) domains. The three aims of this thesis were toatest out current P-centre models to determine which best accounted for the experimental data bto identify a candidate parameter to map P-centres onto (a local approach) as opposed to the previous global models which rely upon the whole signal to determine the P-centre the final aim was to develop a model of P-centre location which could be applied to speech and non speech signals. The first aim was investigated by a series of experiments in which a) speech from different speakers was investigated to determine whether different models could account for variation between speakers b) whether rendering the amplitude time plot of a speech signal affects the P-centre of the signal c) whether increasing the amplitude at the offset of a speech signal alters P-centres in the production and perception of speech. The second aim was carried out by a) manipulating the rise time of different speech signals to determine whether the P-centre was affected, and whether the type of speech sound ramped affected the P-centre shift b) manipulating the rise time and decay time of a synthetic vowel to determine whether the onset alteration was had more affect on P-centre than the offset manipulation c) and whether the duration of a vowel affected the P-centre, if other attributes (amplitude, spectral contents) were held constant. The third aim - modelling P-centres - was based on these results. The Frequency dependent Amplitude Increase Model of P-centre location (FAIM) was developed using a modelling protocol, the APU GammaTone Filterbank and the speech from different speakers. The P-centres of the stimuli corpus were highly predicted by attributes of

  14. Acoustical Characteristics of Mastication Sounds: Application of Speech Analysis Techniques (United States)

    Brochetti, Denise

    Food scientists have used acoustical methods to study characteristics of mastication sounds in relation to food texture. However, a model for analysis of the sounds has not been identified, and reliability of the methods has not been reported. Therefore, speech analysis techniques were applied to mastication sounds, and variation in measures of the sounds was examined. To meet these objectives, two experiments were conducted. In the first experiment, a digital sound spectrograph generated waveforms and wideband spectrograms of sounds by 3 adult subjects (1 male, 2 females) for initial chews of food samples differing in hardness and fracturability. Acoustical characteristics were described and compared. For all sounds, formants appeared in the spectrograms, and energy occurred across a 0 to 8000-Hz range of frequencies. Bursts characterized waveforms for peanut, almond, raw carrot, ginger snap, and hard candy. Duration and amplitude of the sounds varied with the subjects. In the second experiment, the spectrograph was used to measure the duration, amplitude, and formants of sounds for the initial 2 chews of cylindrical food samples (raw carrot, teething toast) differing in diameter (1.27, 1.90, 2.54 cm). Six adult subjects (3 males, 3 females) having normal occlusions and temporomandibular joints chewed the samples between the molar teeth and with the mouth open. Ten repetitions per subject were examined for each food sample. Analysis of estimates of variation indicated an inconsistent intrasubject variation in the acoustical measures. Food type and sample diameter also affected the estimates, indicating the variable nature of mastication. Generally, intrasubject variation was greater than intersubject variation. Analysis of ranks of the data indicated that the effect of sample diameter on the acoustical measures was inconsistent and depended on the subject and type of food. If inferences are to be made concerning food texture from acoustical measures of mastication

  15. Wavenumber transform analysis for acoustic black hole design. (United States)

    Feurtado, Philip A; Conlon, Stephen C


    Acoustic black holes (ABHs) are effective, passive, lightweight vibration absorbers that have been developed and shown to effectively reduce the structural vibration and radiated sound of beam and plate structures. ABHs employ a local thickness change that reduces the speed of bending waves and increases the transverse vibration amplitude. The vibrational energy can then be effectively focused and dissipated by material losses or through conventional viscoelastic damping treatments. In this work, the measured vibratory response of embedded ABH plates was transformed into the wavenumber domain in order to investigate the use of wavenumber analysis for characterizing, designing, and optimizing practical ABH systems. The results showed that wavenumber transform analysis can be used to simultaneously visualize multiple aspects of ABH performance including changes in bending wave speed, transverse vibration amplitude, and energy dissipation. The analysis was also used to investigate the structural acoustic coupling of the ABH system and determine the radiation efficiency of the embedded ABH plates compared to a uniform plate. The results demonstrated that the ABH effect results in acoustic decoupling as well as vibration reduction. The wavenumber transform based methods and results will be useful for implementing ABHs into real world structures.

  16. Parallel Finite Element Domain Decomposition for Structural/Acoustic Analysis (United States)

    Nguyen, Duc T.; Tungkahotara, Siroj; Watson, Willie R.; Rajan, Subramaniam D.


    A domain decomposition (DD) formulation for solving sparse linear systems of equations resulting from finite element analysis is presented. The formulation incorporates mixed direct and iterative equation solving strategics and other novel algorithmic ideas that are optimized to take advantage of sparsity and exploit modern computer architecture, such as memory and parallel computing. The most time consuming part of the formulation is identified and the critical roles of direct sparse and iterative solvers within the framework of the formulation are discussed. Experiments on several computer platforms using several complex test matrices are conducted using software based on the formulation. Small-scale structural examples are used to validate thc steps in the formulation and large-scale (l,000,000+ unknowns) duct acoustic examples are used to evaluate the ORIGIN 2000 processors, and a duster of 6 PCs (running under the Windows environment). Statistics show that the formulation is efficient in both sequential and parallel computing environmental and that the formulation is significantly faster and consumes less memory than that based on one of the best available commercialized parallel sparse solvers.

  17. Machine Fault Detection Based on Filter Bank Similarity Features Using Acoustic and Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Mauricio Holguín-Londoño


    Full Text Available Vibration and acoustic analysis actively support the nondestructive and noninvasive fault diagnostics of rotating machines at early stages. Nonetheless, the acoustic signal is less used because of its vulnerability to external interferences, hindering an efficient and robust analysis for condition monitoring (CM. This paper presents a novel methodology to characterize different failure signatures from rotating machines using either acoustic or vibration signals. Firstly, the signal is decomposed into several narrow-band spectral components applying different filter bank methods such as empirical mode decomposition, wavelet packet transform, and Fourier-based filtering. Secondly, a feature set is built using a proposed similarity measure termed cumulative spectral density index and used to estimate the mutual statistical dependence between each bandwidth-limited component and the raw signal. Finally, a classification scheme is carried out to distinguish the different types of faults. The methodology is tested in two laboratory experiments, including turbine blade degradation and rolling element bearing faults. The robustness of our approach is validated contaminating the signal with several levels of additive white Gaussian noise, obtaining high-performance outcomes that make the usage of vibration, acoustic, and vibroacoustic measurements in different applications comparable. As a result, the proposed fault detection based on filter bank similarity features is a promising methodology to implement in CM of rotating machinery, even using measurements with low signal-to-noise ratio.

  18. A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method

    Directory of Open Access Journals (Sweden)

    Kim Hyun-Sil


    Full Text Available Insertion loss prediction of large acoustical enclosures using Statistical Energy Analysis (SEA method is presented. The SEA model consists of three elements: sound field inside the enclosure, vibration energy of the enclosure panel, and sound field outside the enclosure. It is assumed that the space surrounding the enclosure is sufficiently large so that there is no energy flow from the outside to the wall panel or to air cavity inside the enclosure. The comparison of the predicted insertion loss to the measured data for typical large acoustical enclosures shows good agreements. It is found that if the critical frequency of the wall panel falls above the frequency region of interest, insertion loss is dominated by the sound transmission loss of the wall panel and averaged sound absorption coefficient inside the enclosure. However, if the critical frequency of the wall panel falls into the frequency region of interest, acoustic power from the sound radiation by the wall panel must be added to the acoustic power from transmission through the panel.

  19. Spectral analysis methods for vehicle interior vibro-acoustics identification (United States)

    Hosseini Fouladi, Mohammad; Nor, Mohd. Jailani Mohd.; Ariffin, Ahmad Kamal


    Noise has various effects on comfort, performance and health of human. Sound are analysed by human brain based on the frequencies and amplitudes. In a dynamic system, transmission of sound and vibrations depend on frequency and direction of the input motion and characteristics of the output. It is imperative that automotive manufacturers invest a lot of effort and money to improve and enhance the vibro-acoustics performance of their products. The enhancement effort may be very difficult and time-consuming if one relies only on 'trial and error' method without prior knowledge about the sources itself. Complex noise inside a vehicle cabin originated from various sources and travel through many pathways. First stage of sound quality refinement is to find the source. It is vital for automotive engineers to identify the dominant noise sources such as engine noise, exhaust noise and noise due to vibration transmission inside of vehicle. The purpose of this paper is to find the vibro-acoustical sources of noise in a passenger vehicle compartment. The implementation of spectral analysis method is much faster than the 'trial and error' methods in which, parts should be separated to measure the transfer functions. Also by using spectral analysis method, signals can be recorded in real operational conditions which conduce to more consistent results. A multi-channel analyser is utilised to measure and record the vibro-acoustical signals. Computational algorithms are also employed to identify contribution of various sources towards the measured interior signal. These achievements can be utilised to detect, control and optimise interior noise performance of road transport vehicles.

  20. Statistical Analysis of Acoustic Wave Parameters Near Solar Active Regions (United States)

    Rabello-Soares, M. Cristina; Bogart, Richard S.; Scherrer, Philip H.


    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyze the differences in the parameters in magnetically quiet regions nearby an active region (which we call “nearby regions”), compared with those of quiet regions at the same disk locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring-diagram analysis of all active regions observed by the Helioseismic and Magnetic Imager (HMI) during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhacement (the “acoustic halo effect”) is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes from a deficit to an excess at around 4.2 mHz, but averages to zero over all modes. The frequency difference in nearby regions increases with increasing frequency until a point at which the frequency shifts turn over sharply, as in active regions. However, this turnover occurs around 4.9 mHz, which is significantly below the acoustic cutoff frequency. Inverting the horizontal flow parameters in the direction of the neigboring active regions, we find flows that are consistent with a model of the thermal energy flow being blocked directly below the active region.


    Directory of Open Access Journals (Sweden)

    Miroslav Neslušan


    Full Text Available The paper deals with analysis of chip formation and related aspects of the chip formation during turning hardened steel 100Cr6. The paper draws a comparison of some aspects of the chip formation between turning annealed and hardened roll bearing steel. The results of the analysis show that there is the formation of a segmented chip in the case of hard turning. Frequency of segmentation is very high. A conventional piezoelectric dynamometer limits the frequency response to about 3.5 kHz. On the other hand, the frequency of process fluctuation may by obtained by using accelerometers or acoustic emission. This paper reports about the dynamic character of cutting process when hard turning and correlation among the calculated segmentation frequencies and the experimental analysis.

  2. Statistical analysis of acoustic wave parameters near active regions

    CERN Document Server

    Soares, M Cristina Rabello; Scherrer, Philip H


    In order to quantify the influence of magnetic fields on acoustic mode parameters and flows in and around active regions, we analyse the differences in the parameters in magnetically quiet regions nearby an active region (which we call `nearby regions'), compared with those of quiet regions at the same disc locations for which there are no neighboring active regions. We also compare the mode parameters in active regions with those in comparably located quiet regions. Our analysis is based on ring diagram analysis of all active regions observed by HMI during almost five years. We find that the frequency at which the mode amplitude changes from attenuation to amplification in the quiet nearby regions is around 4.2 mHz, in contrast to the active regions, for which it is about 5.1 mHz. This amplitude enhancement (the `acoustic halo effect') is as large as that observed in the active regions, and has a very weak dependence on the wave propagation direction. The mode energy difference in nearby regions also changes...

  3. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders


    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  4. Linearized Unsteady Aerodynamic Analysis of the Acoustic Response to Wake/Blade-Row Interaction (United States)

    Verdon, Joseph M.; Huff, Dennis L. (Technical Monitor)


    The three-dimensional, linearized Euler analysis, LINFLUX, is being developed to provide a comprehensive and efficient unsteady aerodynamic scheme for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. LINFLUX couples a near-field, implicit, wave-split, finite-volume solution to far-field acoustic eigensolutions, to predict the aerodynamic responses of a blade row to prescribed structural and aerodynamic excitations. It is applied herein to predict the acoustic responses of a fan exit guide vane (FEGV) to rotor wake excitations. The intent is to demonstrate and assess the LINFLUX analysis via application to realistic wake/blade-row interactions. Numerical results are given for the unsteady pressure responses of the FEGV, including the modal pressure responses at inlet and exit. In addition, predictions for the modal and total acoustic power levels at the FEGV exit are compared with measurements. The present results indicate that the LINFLUX analysis should be useful in the aeroacoustic design process, and for understanding the three-dimensional flow physics relevant to blade-row noise generation and propagation.

  5. Residual Stress Analysis Based on Acoustic and Optical Methods

    Directory of Open Access Journals (Sweden)

    Sanichiro Yoshida


    Full Text Available Co-application of acoustoelasticity and optical interferometry to residual stress analysis is discussed. The underlying idea is to combine the advantages of both methods. Acoustoelasticity is capable of evaluating a residual stress absolutely but it is a single point measurement. Optical interferometry is able to measure deformation yielding two-dimensional, full-field data, but it is not suitable for absolute evaluation of residual stresses. By theoretically relating the deformation data to residual stresses, and calibrating it with absolute residual stress evaluated at a reference point, it is possible to measure residual stresses quantitatively, nondestructively and two-dimensionally. The feasibility of the idea has been tested with a butt-jointed dissimilar plate specimen. A steel plate 18.5 mm wide, 50 mm long and 3.37 mm thick is braze-jointed to a cemented carbide plate of the same dimension along the 18.5 mm-side. Acoustoelasticity evaluates the elastic modulus at reference points via acoustic velocity measurement. A tensile load is applied to the specimen at a constant pulling rate in a stress range substantially lower than the yield stress. Optical interferometry measures the resulting acceleration field. Based on the theory of harmonic oscillation, the acceleration field is correlated to compressive and tensile residual stresses qualitatively. The acoustic and optical results show reasonable agreement in the compressive and tensile residual stresses, indicating the feasibility of the idea.

  6. Design, Analysis, and Presentation of Crossover Trials


    Guyatt Gordon H; Vail Andy; Wu Ping; Chan An-Wen; Mills Edward J; Altman Douglas G


    Abstract Objective Although crossover trials enjoy wide use, standards for analysis and reporting have not been established. We reviewed methodological aspects and quality of reporting in a representative sample of published crossover trials. Methods We searched MEDLINE for December 2000 and identified all randomized crossover trials. We abstracted data independently, in duplicate, on 14 design criteria, 13 analysis criteria, and 14 criteria assessing the data presentation. Results We identif...

  7. Design, analysis, and presentation of crossover trials

    Directory of Open Access Journals (Sweden)

    Guyatt Gordon H


    Full Text Available Abstract Objective Although crossover trials enjoy wide use, standards for analysis and reporting have not been established. We reviewed methodological aspects and quality of reporting in a representative sample of published crossover trials. Methods We searched MEDLINE for December 2000 and identified all randomized crossover trials. We abstracted data independently, in duplicate, on 14 design criteria, 13 analysis criteria, and 14 criteria assessing the data presentation. Results We identified 526 randomized controlled trials, of which 116 were crossover trials. Trials were drug efficacy (48%, pharmacokinetic (28%, and nonpharmacologic (30%. The median sample size was 15 (interquartile range 8–38. Most (72% trials used 2 treatments and had 2 periods (64%. Few trials reported allocation concealment (17% or sequence generation (7%. Only 20% of trials reported a sample size calculation and only 31% of these considered pairing of data in the calculation. Carry-over issues were addressed in 29% of trial's methods. Most trials reported and defended a washout period (70%. Almost all trials (93% tested for treatment effects using paired data and also presented details on by-group results (95%. Only 29% presented CIs or SE so that data could be entered into a meta-analysis. Conclusion Reports of crossover trials frequently omit important methodological issues in design, analysis, and presentation. Guidelines for the conduct and reporting of crossover trials might improve the conduct and reporting of studies using this important trial design.

  8. Health monitoring of Ceramic Matrix Composites from waveform-based analysis of Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Maillet Emmanuel


    Full Text Available Ceramic Matrix Composites (CMCs are anticipated for use in the hot section of aircraft engines. Their implementation requires the understanding of the various damage modes that are involved and their relation to life expectancy. Acoustic Emission (AE has been shown to be an efficient technique for monitoring damage evolution in CMCs. However, only a waveform-based analysis of AE can offer the possibility to validate and precisely examine the recorded AE data with a view to damage localization and identification. The present work fully integrates wave initiation, propagation and acquisition in the analysis of Acoustic Emission waveforms recorded at various sensors, therefore providing more reliable information to assess the relation between Acoustic Emission and damage modes. The procedure allows selecting AE events originating from damage, accurate determination of their location as well as the characterization of effects of propagation on the recorded waveforms. This approach was developed using AE data recorded during tensile tests on carbon/carbon composites. It was then applied to melt-infiltrated SiC/SiC composites.

  9. Development of an Acoustic Signal Analysis Tool “Auto-F” Based on the Temperament Scale (United States)

    Modegi, Toshio

    The MIDI interface is originally designed for electronic musical instruments but we consider this music-note based coding concept can be extended for general acoustic signal description. We proposed applying the MIDI technology to coding of bio-medical auscultation sound signals such as heart sounds for retrieving medical records and performing telemedicine. Then we have tried to extend our encoding targets including vocal sounds, natural sounds and electronic bio-signals such as ECG, using Generalized Harmonic Analysis method. Currently, we are trying to separate vocal sounds included in popular songs and encode both vocal sounds and background instrumental sounds into separate MIDI channels. And also, we are trying to extract articulation parameters such as MIDI pitch-bend parameters in order to reproduce natural acoustic sounds using a GM-standard MIDI tone generator. In this paper, we present an overall algorithm of our developed acoustic signal analysis tool, based on those research works, which can analyze given time-based signals on the musical temperament scale. The prominent feature of this tool is producing high-precision MIDI codes, which reproduce the similar signals as the given source signal using a GM-standard MIDI tone generator, and also providing analyzed texts in the XML format.

  10. Detecting unilateral phrenic paralysis by acoustic respiratory analysis.

    Directory of Open Access Journals (Sweden)

    José Antonio Fiz

    Full Text Available The consequences of phrenic nerve paralysis vary from a considerable reduction in respiratory function to an apparently normal state. Acoustic analysis of lung sound intensity (LSI could be an indirect non-invasive measurement of respiratory muscle function, comparing activity on the two sides of the thoracic cage. Lung sounds and airflow were recorded in ten males with unilateral phrenic paralysis and ten healthy subjects (5 men/5 women, during progressive increasing airflow maneuvers. Subjects were in sitting position and two acoustic sensors were placed on their back, on the left and right sides. LSI was determined from 1.2 to 2.4 L/s between 70 and 2000 Hz. LSI was significantly greater on the normal (19.3±4.0 dB than the affected (5.7±3.5 dB side in all patients (p = 0.0002, differences ranging from 9.9 to 21.3 dB (13.5±3.5 dB. In the healthy subjects, the LSI was similar on both left (15.1±6.3 dB and right (17.4±5.7 dB sides (p = 0.2730, differences ranging from 0.4 to 4.6 dB (2.3±1.6 dB. There was a positive linear relationship between the LSI and the airflow, with clear differences between the slope of patients (about 5 dB/L/s and healthy subjects (about 10 dB/L/s. Furthermore, the LSI from the affected side of patients was close to the background noise level, at low airflows. As the airflow increases, the LSI from the affected side did also increase, but never reached the levels seen in healthy subjects. Moreover, the difference in LSI between healthy and paralyzed sides was higher in patients with lower FEV1 (%. The acoustic analysis of LSI is a relevant non-invasive technique to assess respiratory function. This method could reinforce the reliability of the diagnosis of unilateral phrenic paralysis, as well as the monitoring of these patients.

  11. Basin Acoustic Seamount Scattering Experiment (BASSEX) Data Analysis and Modeling (United States)


    Kauai source at various ranges and bearings. OBJECTIVES The primary objective of this work is to measure aspects of acoustic propagation that...range-dependent environments. The primary goal is to understand the physics of the acoustic propagation in complex environments. Three specific...During the test acoustic transmissions from sources used in the SPICEX and LOAPEX experiments (PI: Dr. Peter Worcester, SIO and Dr. Jim Mercer, APL-UW

  12. Operational Performance Analysis of Passive Acoustic Monitoring for Killer Whales

    Energy Technology Data Exchange (ETDEWEB)

    Matzner, Shari; Fu, Tao; Ren, Huiying; Deng, Zhiqun; Sun, Yannan; Carlson, Thomas J.


    For the planned tidal turbine site in Puget Sound, WA, the main concern is to protect Southern Resident Killer Whales (SRKW) due to their Endangered Species Act status. A passive acoustic monitoring system is proposed because the whales emit vocalizations that can be detected by a passive system. The algorithm for detection is implemented in two stages. The first stage is an energy detector designed to detect candidate signals. The second stage is a spectral classifier that is designed to reduce false alarms. The evaluation presented here of the detection algorithm incorporates behavioral models of the species of interest, environmental models of noise levels and potential false alarm sources to provide a realistic characterization of expected operational performance.

  13. Acoustic emission analysis as a non-destructive test procedure for fiber compound structures (United States)

    Block, J.


    The concept of acoustic emission analysis is explained in scientific terms. The detection of acoustic events, their localization, damage discrimination, and event summation curves are discussed. A block diagram of the concept of damage-free testing of fiber-reinforced synthetic materials is depicted. Prospects for application of the concept are assessed.

  14. Using rotor or tip speed in the acoustical analysis of small wind turbines (United States)

    Acoustical noise data have been collected and analyzed on small wind turbines used for water pumping at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near Bushland, Texas. This acoustical analysis differed from previous research in that the data were analyzed with rotor or tip ...

  15. Fuzzy net present value for engineering analysis

    Directory of Open Access Journals (Sweden)

    Ali Nazeri


    Full Text Available Cash flow analysis is one of the most popular methods for investigating the outcome of an economical project. The costs and benefits of a construction project are often involved with uncertainty and it is not possible to find a precise value for a particular project. In this paper, we present a simple method to calculate the net present value of a cash flow when both costs and benefits are given as triangular numbers. The proposed model of this paper uses Delphi method to figure out the fair values of all costs and revenues and then using fizzy programming techniques, it calculates the fuzzy net present value. The implementation of the proposed model is demonstrated using a simple example.

  16. Characteristics Analysis of Joint Acoustic Echo and Noise Suppression in Periodic Drillstring Waveguide

    Directory of Open Access Journals (Sweden)

    Li Cheng


    Full Text Available A new method of wireless data telemetry used by oil industry uses compressional acoustic waves to transmit downhole information from the bottom hole to the surface. Unfortunately, acoustic echoes and drilling vibration noises in periodic drillstring are a major issue in transmission performance. A combined acoustic echo and noise suppression method based on wave motion characteristic in drillstring is adopted to enhance an upward-going transmitted acoustic signal. The presented scheme consists of a primary acoustic echo canceller using an array of two accelerometers for dealing with the downward-going noises and a secondary acoustic insulation structure for restraining the upward-going vibration noises. Furthermore, the secondary acoustic insulation structure exhibits a banded and dispersive spectral structure because of periodic groove configuration. By using a finite-differential algorithm for the one-dimensional propagation of longitudinal waves, acoustic receiving characteristics of transmitted signals are simulated with additive Gaussian noise in a periodic pipe structure of limited length to investigate the effects on transmission performance optimization. The results reveal that the proposed scheme can achieve a much lower error bit ratio over a specified acoustic isolation frequency range with a 30–40 dB reduction in the average noise level compared to traditional single-receiver scheme.

  17. Built Environment Energy Analysis Tool Overview (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C.


    This presentation provides an overview of the Built Environment Energy Analysis Tool, which is designed to assess impacts of future land use/built environment patterns on transportation-related energy use and greenhouse gas (GHG) emissions. The tool can be used to evaluate a range of population distribution and urban design scenarios for 2030 and 2050. This tool was produced as part of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  18. Surface acoustic wave nebulization facilitating lipid mass spectrometric analysis. (United States)

    Yoon, Sung Hwan; Huang, Yue; Edgar, J Scott; Ting, Ying S; Heron, Scott R; Kao, Yuchieh; Li, Yanyan; Masselon, Christophe D; Ernst, Robert K; Goodlett, David R


    Surface acoustic wave nebulization (SAWN) is a novel method to transfer nonvolatile analytes directly from the aqueous phase to the gas phase for mass spectrometric analysis. The lower ion energetics of SAWN and its planar nature make it appealing for analytically challenging lipid samples. This challenge is a result of their amphipathic nature, labile nature, and tendency to form aggregates, which readily precipitate clogging capillaries used for electrospray ionization (ESI). Here, we report the use of SAWN to characterize the complex glycolipid, lipid A, which serves as the membrane anchor component of lipopolysaccharide (LPS) and has a pronounced tendency to clog nano-ESI capillaries. We also show that unlike ESI SAWN is capable of ionizing labile phospholipids without fragmentation. Lastly, we compare the ease of use of SAWN to the more conventional infusion-based ESI methods and demonstrate the ability to generate higher order tandem mass spectral data of lipid A for automated structure assignment using our previously reported hierarchical tandem mass spectrometry (HiTMS) algorithm. The ease of generating SAWN-MS(n) data combined with HiTMS interpretation offers the potential for high throughput lipid A structure analysis.

  19. Acoustic emission analysis of tooth-composite interfacial debonding. (United States)

    Cho, N Y; Ferracane, J L; Lee, I B


    This study detected tooth-composite interfacial debonding during composite restoration by means of acoustic emission (AE) analysis and investigated the effects of composite properties and adhesives on AE characteristics. The polymerization shrinkage, peak shrinkage rate, flexural modulus, and shrinkage stress of a methacrylate-based universal hybrid, a flowable, and a silorane-based composite were measured. Class I cavities on 49 extracted premolars were restored with 1 of the 3 composites and 1 of the following adhesives: 2 etch-and-rinse adhesives, 2 self-etch adhesives, and an adhesive for the silorane-based composite. AE analysis was done for 2,000 sec during light-curing. The silorane-based composite exhibited the lowest shrinkage (rate), the longest time to peak shrinkage rate, the lowest shrinkage stress, and the fewest AE events. AE events were detected immediately after the beginning of light-curing in most composite-adhesive combinations, but not until 40 sec after light-curing began for the silorane-based composite. AE events were concentrated at the initial stage of curing in self-etch adhesives compared with etch-and-rinse adhesives. Reducing the shrinkage (rate) of composites resulted in reduced shrinkage stress and less debonding, as evidenced by fewer AE events. AE is an effective technique for monitoring, in real time, the debonding kinetics at the tooth-composite interface.

  20. Acoustic radiation force analysis using finite difference time domain method. (United States)

    Grinenko, A; Wilcox, P D; Courtney, C R P; Drinkwater, B W


    Acoustic radiation force exerted by standing waves on particles is analyzed using a finite difference time domain Lagrangian method. This method allows the acoustic radiation force to be obtained directly from the solution of nonlinear fluid equations, without any assumptions on size or geometry of the particles, boundary conditions, or acoustic field amplitude. The model converges to analytical results in the limit of small particle radii and low field amplitudes, where assumptions within the analytical models apply. Good agreement with analytical and numerical models based on solutions of linear scattering problems is observed for compressible particles, whereas some disagreement is detected when the compressibility of the particles decreases.

  1. Thermal-Acoustic Analysis of a Metallic Integrated Thermal Protection System Structure (United States)

    Behnke, Marlana N.; Sharma, Anurag; Przekop, Adam; Rizzi, Stephen A.


    A study is undertaken to investigate the response of a representative integrated thermal protection system structure under combined thermal, aerodynamic pressure, and acoustic loadings. A two-step procedure is offered and consists of a heat transfer analysis followed by a nonlinear dynamic analysis under a combined loading environment. Both analyses are carried out in physical degrees-of-freedom using implicit and explicit solution techniques available in the Abaqus commercial finite-element code. The initial study is conducted on a reduced-size structure to keep the computational effort contained while validating the procedure and exploring the effects of individual loadings. An analysis of a full size integrated thermal protection system structure, which is of ultimate interest, is subsequently presented. The procedure is demonstrated to be a viable approach for analysis of spacecraft and hypersonic vehicle structures under a typical mission cycle with combined loadings characterized by largely different time-scales.


    Institute of Scientific and Technical Information of China (English)

    ZhongWeffang; WuYongdong; WuGuorong; LiangYide


    The acoustical scattering by a cracked elastic structure is studied. The mixed method of boundary element and fractal finite element is adopted to solve the cracked structure-acoustic coupling problem. The fractal two-level finite element method is employed for the cracked structure, which can reduce the degree of freedoms (DOFs) greatly, and the boundary element method is used for the exterior acoustic field which can automatically satisfy Sommerfeld's radiation condition. Numerical examples show that the resonance frequency is lower with the crack's depth increase, and that the effect on the acoustical field by the crack is particularly pronounced in the vicinity of the crack tip. This mixed method of boundary element and finite element is effective in solving the scattering problem by a cracked structure.

  3. Acoustic Seaglider: PhilSea10 Data Analysis (United States)


    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES ...ABSTRACT Broadband acoustic source transmissions recorded on Seagliders at ranges up to 700 km are used to estimate subsurface glider position...error by up to 1000 m. 6 Figure 4: Circles indicate acoustically derived ranges from sources T1 (red, 275.6 km), T2 (orange, 115.4 km), T3 (green

  4. Computation of unsteady transonic flows through rotating and stationary cascades. 3: Acoustic far-field analysis (United States)

    Slutsky, S.; Fischer, D.; Erdos, J. I.


    A small perturbation type analysis has been developed for the acoustic far field in an infinite duct extending upstream and downstream of an axial turbomachinery stage. The analysis is designed to interface with a numerical solution of the near field of the blade rows and, thereby, to provide the necessary closure condition to complete the statement of infinite duct boundary conditions for the subject problem. The present analysis differs from conventional inlet duct analyses in that a simple harmonic time dependence was not assumed, since a transient signal is generated by the numerical near-field solution and periodicity is attained only asymptotically. A description of the computer code developed to carry out the necessary convolutions numerically is included, as well as the results of a sample application using an impulsively initiated harmonic signal.

  5. Research present situation and analysis on classification of rock drillability

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhi-hong; MA Qin-yong


    Rock drillability reflects the drill bit fragments rock hardly or easily. At present, rock drillability classification indexes have rock single-axle compressive strength, point load intensity,fracture stress during chiseling, drill speed, chiseling specific work, acoustic parameter, cutting magnitude, and so on. Every index reflects rock drillability but isn't overall. It is feasible that using many indexes of fuzzy mathematics method etc. to evaluate rock drillability.

  6. Acoustic emission analysis coupled with thermogravimetric experiments dedicated to high temperature corrosion studies on metallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Serris, Eric; Al Haj, Omar; Peres, Veronique; Cournil, Michel [Ecole Nationale Superieure des Mines de Saint-Etienne (France); Kittel, Jean; Grosjean, Francois; Ropital, Francois [IFP Energies nouvelles, BP3 rond-point de l' echangeur de Solaize (France)


    High temperature corrosion of metallic alloys (like iron, nickel, zirconium alloys) can damage equipment of many industrial fields (refinery, petrochemical, nuclear..). Acoustic emission (AE) is an interesting method owing to its sensitivity and its non-destructive aspect to quantify the level of damage in use of these alloys under various environmental conditions. High temperature corrosive phenomena create stresses in the materials; the relaxation by cracks of these stresses can be recorded and analyzed using the AE system. The goal of our study is to establish an acoustic signals database which assigns the acoustic signals to the specific corrosion phenomena. For this purpose, thermogravimetric analysis (TGA) is coupled with acoustic emission (AE) devices. The oxidation of a zirconium alloy, zircaloy-4, is first studied using thermogravimetric experiment coupled to acoustic emission analysis at 900 C. An inward zirconium oxide scale, preliminary dense, then porous, grow during the isothermal isobaric step. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration occurs with an increase of acoustic emission activity. Most of the acoustic emission bursts are recorded after the kinetic transition. Acoustic emission signals are also observed during the cooling of the sample. AE numerical treatments (using wavelet transform) completed by SEM microscopy characterizations allows us to distinguish the different populations of cracks. Metal dusting represents also a severe form of corrosive degradation of metal alloy. Iron metal dusting corrosion is studied by AE coupled with TGA at 650 C under C{sub 4}H{sub 10} + H{sub 2} + He atmosphere. Acoustic emission signals are detected after a significant increase of the sample mass.

  7. [Application of acoustic analysis of the voice to diagnosis and treatment of functional dysphonia]. (United States)

    Chernobel'skiĭ, S I


    Acoustic analysis of the voice was used to facilitate diagnosis and to objectively evaluate results of the treatment of psychogenic dysphonia (PD) in 20 women. The control group comprised 20 women showing no signs of laryngeal pathology. The following parameters were measure: jitter, shimmer, signal to noise ratio, and response in the voicing test. Other methods applied included laryngoscopy, videolaryngoscopy, and laryngostroboscopy. It was shown that hoarseness in patients with PD results from the disturbances of mechanisms controlling stability of phonation. This observation is confirmed by the results of the acoustic test. It is concluded that dysphonia confirmed in the acoustic test in the absence of organic changes in the larynx is caused by psychogenic factors. Acoustic analysis of the voice is indicated to objectively evaluate results of the treatment of psychogenic dysphonia.

  8. Analysis of acoustic radiation mode in time domain

    Institute of Scientific and Technical Information of China (English)


    The acoustic radiation mode of plane, whose radiating operator is constructed by Rayleigh integral, is investigated in the time domain and its physical meaning is given. The relationship between the acoustic radiation modes of time domain and frequency domain is discussed. It is verified that the acoustic radiation modes are the natural property of the radiator and they can be obtained by different methods. These time domain radiation modes, whose shapes are only dependent on the geometry size and shape of the radiator, can radiate sound power independently. Especially, the first time domain radiation mode accounts for most of the sound radiation. All these simplify the calculation and control of the structure-borne sound power. Based on these observations, the sound power radiated from the vibrating plate is estimated by the time domain radiation mode for verifying the proposed method. The influence factors on the estimating accuracy in different conditions are discussed.

  9. Experimental Acoustic Evaluation of an Auditorium

    Directory of Open Access Journals (Sweden)

    Marina Dana Ţopa


    Full Text Available The paper presents a case history: the acoustical analysis of a rectangular auditorium. The following acoustical parameters were evaluated: early decay time, reverberation time, clarity, definition, and center time. The excitation signal was linear sweep sine and additional analysis was carried out: peak-to-noise ratio, reverberation time for empty and occupied room, standard deviation of acoustical parameters, diffusion, and just noticeable differences analysis. Conclusions about room’s destination and modeling were drawn in the end.

  10. The Use of Denoising and Analysis of the Acoustic Signal Entropy in Diagnosing Engine Valve Clearance

    Directory of Open Access Journals (Sweden)

    Tomasz Figlus


    Full Text Available The paper presents a method for processing acoustic signals which allows the extraction, from a very noisy signal, of components which contain diagnostically useful information on the increased valve clearance of a combustion engine. This method used two-stage denoising of the acoustic signal performed by means of a discrete wavelet transform. Afterwards, based on the signal cleaned-up in this manner, its entropy was calculated as a quantitative measure of qualitative changes caused by the excessive clearance. The testing and processing of the actual acoustic signal of a combustion engine enabled clear extraction of components which contain information on the valve clearance being diagnosed.

  11. Signal analysis of acoustic and flow-induced vibrations of BWR main steam line

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Paredes, G., E-mail: [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Prieto-Guerrero, A. [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Núñez-Carrera, A. [Comisión Nacional de Seguridad Nuclear y Salvaguardias, Doctor Barragán 779, Col. Narvarte, México, D.F. 03020 (Mexico); Vázquez-Rodríguez, A. [División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, México, D.F. 09340 (Mexico); Centeno-Pérez, J. [Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas Unidad Profesional “Adolfo López Mateos”, Av. IPN, s/n, México, D.F. 07738 (Mexico); Espinosa-Martínez, E.-G. [Departamento de Sistemas Energéticos, Universidad Nacional Autónoma de México, México, D.F. 04510 (Mexico); and others


    Highlights: • Acoustic and flow-induced vibrations of BWR are analyzed. • BWR performance after extended power uprate is considered. • Effect of acoustic side branches (ASB) is analyzed. • The ASB represents a reduction in the acoustic loads to the steam dryer. • Methodology developed for simultaneous analyzing the signals in the MSL. - Abstract: The aim of this work is the signal analysis of acoustic waves due to phenomenon known as singing in Safety Relief Valves (SRV) of the main steam lines (MSL) in a typical BWR5. The acoustic resonance in SRV standpipes and fluctuating pressure is propagated from SRV to the dryer through the MSL. The signals are analyzed with a novel method based on the Multivariate Empirical Mode Decomposition (M-EMD). The M-EMD algorithm has the potential to find common oscillatory modes (IMF) within multivariate data. Based on this fact, we implement the M-EMD technique to find the oscillatory mode in BWR considering the measurements obtained collected by the strain gauges located around the MSL. These IMF, analyzed simultaneously in time, allow obtaining an estimation of the effects of the multiple-SRV in the MSL. Two scenarios are analyzed: the first is the signal obtained before the installation of the acoustic dampers (ASB), and the second, the signal obtained after installation. The results show the effectiveness of the ASB to damp the strong resonances when the steam flow increases, which represents an important reduction in the acoustic loads to the steam dryer.

  12. Mathematical Modelling and Acoustical Analysis of Classical Guitars and Their Soundboards

    Directory of Open Access Journals (Sweden)

    Meng Koon Lee


    Full Text Available Research has shown that the soundboard plays an increasingly important role compared to the sound hole, back plate, and the bridge at high frequencies. The frequency spectrum of investigation can be extended to 5 kHz. Design of bracings and their placements on the soundboard increase its structural stiffness as well as redistributing its deflection to nonbraced regions and affecting its loudness as well as its response at low and high frequencies. This paper attempts to present a review of the current state of the art in guitar research and to propose viable alternatives that will ultimately result in a louder and better sounding instrument. Current research is an attempt to increase the sound level with bracing designs and their placements, control of natural frequencies using scalloped braces, as well as improve the acoustic radiation of this instrument at higher frequencies by deliberately inducing asymmetric modes in the soundboard using the concept of “splitting board.” Various mathematical methods are available for analysing the soundboard based on the theory of thin plates. Discrete models of the instrument up to 4 degrees of freedom are also presented. Results from finite element analysis can be utilized for the evaluation of acoustic radiation.

  13. Error Analysis: Past, Present, and Future (United States)

    McCloskey, George


    This commentary will take an historical perspective on the Kaufman Test of Educational Achievement (KTEA) error analysis, discussing where it started, where it is today, and where it may be headed in the future. In addition, the commentary will compare and contrast the KTEA error analysis procedures that are rooted in psychometric methodology and…

  14. Comparison of Modal Analysis Methods Applied to a Vibro-Acoustic Test Article (United States)

    Pritchard, Jocelyn; Pappa, Richard; Buehrle, Ralph; Grosveld, Ferdinand


    Modal testing of a vibro-acoustic test article referred to as the Aluminum Testbed Cylinder (ATC) has provided frequency response data for the development of validated numerical models of complex structures for interior noise prediction and control. The ATC is an all aluminum, ring and stringer stiffened cylinder, 12 feet in length and 4 feet in diameter. The cylinder was designed to represent typical aircraft construction. Modal tests were conducted for several different configurations of the cylinder assembly under ambient and pressurized conditions. The purpose of this paper is to present results from dynamic testing of different ATC configurations using two modal analysis software methods: Eigensystem Realization Algorithm (ERA) and MTS IDEAS Polyreference method. The paper compares results from the two analysis methods as well as the results from various test configurations. The effects of pressurization on the modal characteristics are discussed.

  15. Monitoring and Analysis of In-Pile Phenomena in Advanced Test Reactor using Acoustic Telemetry

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Human Factors, Controls, and Statistics; Smith, James A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Fuel Performance and Design; Jewell, James Keith [Idaho National Lab. (INL), Idaho Falls, ID (United States). Dept. of Fuel Performance and Design


    The interior of a nuclear reactor presents a particularly harsh and challenging environment for both sensors and telemetry due to high temperatures and high fluxes of energetic and ionizing particles among the radioactive decay products. A number of research programs are developing acoustic-based sensing approach to take advantage of the acoustic transmission properties of reactor cores. Idaho National Laboratory has installed vibroacoustic receivers on and around the Advanced Test Reactor (ATR) containment vessel to take advantage of acoustically telemetered sensors such as thermoacoustic (TAC) transducers. The installation represents the first step in developing an acoustic telemetry infrastructure. This paper presents the theory of TAC, application of installed vibroacoustic receivers in monitoring the in-pile phenomena inside the ATR, and preliminary data processing results.

  16. Phase-based dispersion analysis for acoustic array borehole logging data. (United States)

    Assous, Said; Elkington, Peter; Linnett, Laurie


    A phase-based dispersion analysis method for velocity (slowness) extraction from guided waves recorded by an acoustic borehole logging tool in a geological formation is presented. The technique consists of acquiring waveforms from an array of receivers distributed along the tool and constructing the dispersion characteristic by processing in the frequency domain and exploiting phase information to measure the travel time for each frequency component. The approach is nonparametric and completely data-driven and provides high resolution estimates that do not rely on velocity guesses or assumptions regarding the type of modes. Results are free of the aliases and spurious modes which are characteristic of some prior approaches. Examples of dispersion estimation curves are presented using synthesized flexural waves and field data from wireline dipole sonic tools; results are compared with those from the weighted spectral semblance (WSS) and amplitude and phase slowness estimation (APES) methods to demonstrate the effectiveness and utility of the proposed method.

  17. Analysis of short circuit transfer behavior using acoustic signal detection

    Directory of Open Access Journals (Sweden)

    Eakkachai Warinsiriruk


    Full Text Available The stability of a short circuiting period is important to obtain the desired weld quality. The objective of this research is to analyze the uniformity of liquid bridge disruption period during short circuit mode affected by various shielding gas compositions. The shielding gas compositions of 100% CO2 and 84%Ar+2%O2+14%CO2 were used in this study. Short circuiting period was detected by using acoustic signals emitting from the arc. Acoustic data were recorded by using multimedia function of XP windows audio card through a high sensitivity microphone. The results of short circuit acoustic data were analyzed by using continuous wavelet transformation for classifying the difference of acoustic emitting mechanism of electrode tip touching with base metal and pinching cut-off. For 84%Ar+2%O2+14%CO2 shielding gas, it clearly showed smoothershort circuit transfer than that of CO2 shielding gas. CO2 shielding gas gave large variation in disruption period comparing with that of 84%Ar+2%O2+14%CO2 gas mixture.

  18. MOCHA - Multi-Study Ocean Acoustics Human Effects Analysis (United States)


    Monitoring Program with the following objectives : monitor and assess the effects of Navy activities on protected marine species; ensure that data...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. MOCHA - Multi -Study Ocean Acoustics Human Effects...part of each current Navy-funded BRS project. We aim for synergies by looking at the studies in combination. OBJECTIVES The overall objective

  19. Design and performance analysis of digital acoustic underwater telemetry system (United States)

    Catipovic, J. A.; Baggeroer, A. B.; Vonderheydt, K.; Koelsch, D. E.


    The work discusses the design and performance characteristics of a Digital Acoustic Telemetry System (DATS) which incorporates the current state-of-the-art technology and is capable of reliable data transmission at rates useful to a wide range of ocean exploration and development gear.

  20. GLider Acoustics Sensing of Sediments (GLASS): Experiments and Data Analysis (United States)


    water depth the acoustic backscatter is high, and at deeper depth the backscattering is low. This is interpreted as a series of sand dunes ( CMRE, and by ONR-G under GRANT No.: N62909-12-1-7040, and ONR through the N- STAR /ILIR program. – 26 – CMRE–FR-2013-025 References [1] A. Alvarez

  1. Acoustic cardiac signals analysis: a Kalman filter–based approach

    Directory of Open Access Journals (Sweden)

    Salleh SH


    Full Text Available Sheik Hussain Salleh,1 Hadrina Sheik Hussain,2 Tan Tian Swee,2 Chee-Ming Ting,2 Alias Mohd Noor,2 Surasak Pipatsart,3 Jalil Ali,4 Preecha P Yupapin31Department of Biomedical Instrumentation and Signal Processing, Universiti Teknologi Malaysia, Skudai, Malaysia; 2Centre for Biomedical Engineering Transportation Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, Malaysia; 3Nanoscale Science and Engineering Research Alliance, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand; 4Institute of Advanced Photonics Science, Universiti Teknologi Malaysia, Johor Bahru, MalaysiaAbstract: Auscultation of the heart is accompanied by both electrical activity and sound. Heart auscultation provides clues to diagnose many cardiac abnormalities. Unfortunately, detection of relevant symptoms and diagnosis based on heart sound through a stethoscope is difficult. The reason GPs find this difficult is that the heart sounds are of short duration and separated from one another by less than 30 ms. In addition, the cost of false positives constitutes wasted time and emotional anxiety for both patient and GP. Many heart diseases cause changes in heart sound, waveform, and additional murmurs before other signs and symptoms appear. Heart-sound auscultation is the primary test conducted by GPs. These sounds are generated primarily by turbulent flow of blood in the heart. Analysis of heart sounds requires a quiet environment with minimum ambient noise. In order to address such issues, the technique of denoising and estimating the biomedical heart signal is proposed in this investigation. Normally, the performance of the filter naturally depends on prior information related to the statistical properties of the signal and the background noise. This paper proposes Kalman filtering for denoising statistical heart sound. The cycles of heart sounds are certain to follow first-order Gauss–Markov process. These cycles are observed with additional noise

  2. Acoustic mapping velocimetry (United States)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.


    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  3. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.


    This is a presentation about the Fuel Cell Electric Vehicle Learning Demo, a 7-year project and the largest single FCEV and infrastructure demonstration in the world to date. Information such as its approach, technical accomplishments and progress; collaborations and future work are discussed.

  4. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films (United States)

    Hines, Jacqueline H. (Inventor)


    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  5. Multi-bearing defect detection with trackside acoustic signal based on a pseudo time-frequency analysis and Dopplerlet filter (United States)

    Zhang, Haibin; Lu, Siliang; He, Qingbo; Kong, Fanrang


    The diagnosis of train bearing defects based on the acoustic signal acquired by a trackside microphone plays a significant role in the transport system. However, the wayside acoustic signal suffers from the Doppler distortion due to the high moving speed and also contains the multi-source signals from different train bearings. This paper proposes a novel solution to overcome the two difficulties in trackside acoustic diagnosis. In the method a pseudo time-frequency analysis (PTFA) based on an improved Dopplerlet transform (IDT) is presented to acquire the time centers for different bearings. With the time centers, we design a series of Dopplerlet filters (DF) in time-frequency domain to work on the signal's time-frequency distribution (TFD) gained by the short time Fourier transform (STFT). Then an inverse STFT (ISTFT) is utilized to get the separated signals for each sound source which means bearing here. Later the resampling method based on certain motion parameters eliminates the Doppler Effect and finally the diagnosis can be made effectively according to the envelope spectrum of each separated signal. With the effectiveness of the technique validated by both simulated and experimental cases, the proposed wayside acoustic diagnostic scheme is expected to be available in wayside defective bearing detection.

  6. Uncertainty analysis of a structural-acoustic problem using imprecise probabilities based on p-box representations (United States)

    Chen, Ning; Yu, Dejie; Xia, Baizhan; Beer, Michael


    Imprecise probabilities can capture epistemic uncertainty, which reflects limited available knowledge so that a precise probabilistic model cannot be established. In this paper, the parameters of a structural-acoustic problem are represented with the aid of p-boxes to capture epistemic uncertainty in the model. To perform the necessary analysis of the structural-acoustic problem with p-boxes, a first-order matrix decomposition perturbation method (FMDPM) for interval analysis is proposed, and an efficient interval Monte Carlo method based on FMDPM is derived. In the implementation of the efficient interval Monte Carlo method based on FMDPM, constant matrices are obtained, first, through an uncertain parameter extraction on the basis of the matrix decomposition technique. Then, these constant matrices are employed to perform multiple interval analyses by using the first-order perturbation method. A numerical example is provided to illustrate the feasibility and effectiveness of the presented approach.

  7. Acoustical User Identification Based on MFCC Analysis of Keystrokes

    Directory of Open Access Journals (Sweden)

    Matus Pleva


    Full Text Available This paper introduces a novel approach of person identification using acoustical monitoring of typing the required word on the monitored keyboard. This experiment was motivated by the idea of COST IC1106 (Integrating Biometrics and Forensics for the Digital Age partners to acoustically analyse the captured keystroke dynamics database using widely used time-invariant mathematical models tools. The MFCC (Mel-Frequency Cepstral Coefficients and HMM (Hidden Markov Models was introduced in this experiment, which gives promising results of 99.33% accuracy, when testing 25% of realizations (randomly selected from 100 identifying between 50 users/models. The experiment was repeated for different training/testing configurations and cross-validated, so this first approach could be a good starting point for next research including feature selection algorithms, biometric authentication score normalization, different audio & keyboard setup tests, etc.

  8. Analysis of the Acoustic Response of a Railroad Bridge (United States)


    atmospheric explosions, surf, missiles, rockets, weather systems and even animal vocalizations [1]. In order for up-going infrasonic energy to – Animal vocalizations – Urban Noise* PREMISE: Structures generate coupled low-frequency acoustics as fundamental modes of motion What is...rating tests: – Strain Gages (44 Used) • Main Structural Elements – One Train Engine Stringer Bottom Chord Diagonal Chord Diagonal Floor Beam Top

  9. Perceptually-Driven Signal Analysis for Acoustic Event Classification (United States)


    study of musical timbre . Defined as "the subjective attribute of sound which differentiates two or more sounds that have the same loudness, pitch and...therefore a better estimate of the likelihood function. 56 Bibliography [1] J. M. Grey, -AMultidimensional perceptual scaling of musical timbres ...Display, 2005. [10] J. M. Grey, "Perceptual effects of spectral modifications on musical timbres ," Journal of the Acoustical Society of America, vol. 63

  10. Shelfbreak PRIMER Data Analysis: Acoustic Propagation and Ocean Tomography (United States)


    acoustic tomography, SeaSoar, thermistor- string , ADCP and current-meter data. APPROACH The experimental approach involves detailed and simultaneous...quite different (integral as oppose to point), combining the complementary tomographic data with SeaSoar, thermistor- string , ADCP and in dynamically-constrained, joint inversions can provide for a powerful means of testing different theories and hypotheses. WORK COMPLETED Work

  11. Anomaly Analysis of Hawking Radiation from Acoustic Black Hole

    CERN Document Server

    Kim, Wontae


    The Hawking radiation from the three dimensional rotating acoustic black hole is considered from the viewpoint of anomaly cancellation method initiated by Robinson and Wilczek. Quantum field near the horizon is effectively described by two dimensional charged field with a charge identified as the angular momentum m. The fluxes of charge and energy are obtained from the anomaly cancellation condition and regularity at the horizon, and are shown to match with those of the two dimensional black body radiation at the Hawking temperature.

  12. Analysis of acoustic radiation mode in time domain

    Institute of Scientific and Technical Information of China (English)

    WU WeiGuo


    The acoustic radiation mode of plane,whose radiating operator is constructed by Rayleigh integral,is Investigated in the time domain and its physical meaning is given.The relationship between the acoustic radiation modes of time domain end frequency domain is discussed.It is verified that the acoustic radiation modes are the natural property of the radiator and they can be obtained by different methods.These time domain radiation modes,whose shapes are only dependent on the geometry size and shape of the radiator,can radiate sound power independently.Especially,the first time domain radiation mode accounts for most of the sound radiation.All these simplify the calculation and control of the structure-borne sound power.Based on these observations,the sound power radiated from the vibrating plate is estimated by the time domain radiation mode for verifying the proposed method.The influence factors on the estimating accuracy in different conditions are discussed.

  13. In situ high temperature oxidation analysis of Zircaloy-4 using acoustic emission coupled with thermogravimetry (United States)

    Omar, Al Haj; Véronique, Peres; Eric, Serris; François, Grosjean; Jean, Kittel; François, Ropital; Michel, Cournil


    Zircaloy-4 oxidation behavior at high temperature (900 °C), which can be reached in case of severe accidental situations in nuclear pressurised water reactor, was studied using acoustic emission analysis coupled with thermogravimetry. Two different atmospheres were used to study the oxidation of Zircaloy-4: (a) helium and pure oxygen, (b) helium and oxygen combined with slight addition of air. The experiments with 20% of oxygen confirm the dependence on oxygen anions diffusion in the oxide scale. Under a mixture of oxygen and air in helium, an acceleration of the corrosion was observed due to the detrimental effect of nitrogen. The kinetic rate increased significantly after a kinetic transition (breakaway). This acceleration was accompanied by an acoustic emission activity. Most of the acoustic emission bursts were recorded after the kinetic transition (post-transition) or during the cooling of the sample. The characteristic features of the acoustic emission signals appear to be correlated with the different populations of cracks and their occurrence in the ZrO2 layer or in the α-Zr(O) layer. Acoustic events were recorded during the isothermal dwell time at high temperature under air. They were associated with large cracks in the zirconia porous layer. Acoustic events were also recorded during cooling after oxidation tests both under air or oxygen. For the latter, cracks were observed in the oxygen enriched zirconium metal phase and not in the dense zirconia layer after 5 h of oxidation.

  14. Acoustic effects analysis utilizing speckle pattern with fixed-particle Monte Carlo (United States)

    Vakili, Ali; Hollmann, Joseph A.; Holt, R. Glynn; DiMarzio, Charles A.


    Optical imaging in a turbid medium is limited because of multiple scattering a photon undergoes while traveling through the medium. Therefore, optical imaging is unable to provide high resolution information deep in the medium. In the case of soft tissue, acoustic waves unlike light, can travel through the medium with negligible scattering. However, acoustic waves cannot provide medically relevant contrast as good as light. Hybrid solutions have been applied to use the benefits of both imaging methods. A focused acoustic wave generates a force inside an acoustically absorbing medium known as acoustic radiation force (ARF). ARF induces particle displacement within the medium. The amount of displacement is a function of mechanical properties of the medium and the applied force. To monitor the displacement induced by the ARF, speckle pattern analysis can be used. The speckle pattern is the result of interfering optical waves with different phases. As light travels through the medium, it undergoes several scattering events. Hence, it generates different scattering paths which depends on the location of the particles. Light waves that travel along these paths have different phases (different optical path lengths). ARF induces displacement to scatterers within the acoustic focal volume, and changes the optical path length. In addition, temperature rise due to conversion of absorbed acoustic energy to heat, changes the index of refraction and therefore, changes the optical path length of the scattering paths. The result is a change in the speckle pattern. Results suggest that the average change in the speckle pattern measures the displacement of particles and temperature rise within the acoustic wave focal area, hence can provide mechanical and thermal properties of the medium.

  15. Vibration impact acoustic emission technique for identification and analysis of defects in carbon steel tubes: Part B Cluster analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Zakiah Abd [Universiti Teknikal Malaysia Melaka (Malaysia); Jamaludin, Nordin; Junaidi, Syarif [Faculty of Engineering and Built, Universiti Kebangsaan Malaysia, Bangi (Malaysia); Yahya, Syed Yusainee Syed [Universiti Teknologi MARA, Shah Alam (Malaysia)


    Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. Part A of this work details the methodology involved in the newly developed non-invasive, non-destructive tube inspection technique based on the integration of vibration impact (VI) and acoustic emission (AE) systems known as the vibration impact acoustic emission (VIAE) technique. AE signals have been introduced into a series of ASTM A179 seamless steel tubes using the impact hammer. Specifically, a good steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AEs propagation was captured using a high frequency sensor of AE systems. The present study explores the cluster analysis approach based on autoregressive (AR) coefficients to automatically interpret the AE signals. The results from the cluster analysis were graphically illustrated using a dendrogram that demonstrated the arrangement of the natural clusters of AE signals. The AR algorithm appears to be the more effective method in classifying the AE signals into natural groups. This approach has successfully classified AE signals for quick and confident interpretation of defects in carbon steel tubes.

  16. Analysis of Acoustic Emission Signals During Laser Spot Welding of SS304 Stainless Steel (United States)

    Lee, Seounghwan; Ahn, Suneung; Park, Changsoon


    In this article, an in-process monitoring scheme for a pulsed Nd:YAG laser spot welding (LSW) is presented. Acoustic emission (AE) was selected for the feedback signal, and the AE data during LSW were sampled and analyzed for varying process conditions such as laser power and pulse duration. In the analysis, possible AE generation sources such as melting and solidification mechanism during welding were investigated using both the time- and frequency-domain signal processings. The results, which show close relationships between LSW and AE signals, were adopted in the feature (input) selection of a back-propagation artificial neural network, to predict the weldability of stainless steel sheets. Processed outputs agree well with LSW experimental data, which confirms the usefulness of the proposed scheme.

  17. Freddie Mercury-acoustic analysis of speaking fundamental frequency, vibrato, and subharmonics. (United States)

    Herbst, Christian T; Hertegard, Stellan; Zangger-Borch, Daniel; Lindestad, Per-Åke


    Freddie Mercury was one of the twentieth century's best-known singers of commercial contemporary music. This study presents an acoustical analysis of his voice production and singing style, based on perceptual and quantitative analysis of publicly available sound recordings. Analysis of six interviews revealed a median speaking fundamental frequency of 117.3 Hz, which is typically found for a baritone voice. Analysis of voice tracks isolated from full band recordings suggested that the singing voice range was 37 semitones within the pitch range of F#2 (about 92.2 Hz) to G5 (about 784 Hz). Evidence for higher phonations up to a fundamental frequency of 1,347 Hz was not deemed reliable. Analysis of 240 sustained notes from 21 a-cappella recordings revealed a surprisingly high mean fundamental frequency modulation rate (vibrato) of 7.0 Hz, reaching the range of vocal tremor. Quantitative analysis utilizing a newly introduced parameter to assess the regularity of vocal vibrato corroborated its perceptually irregular nature, suggesting that vibrato (ir)regularity is a distinctive feature of the singing voice. Imitation of subharmonic phonation samples by a professional rock singer, documented by endoscopic high-speed video at 4,132 frames per second, revealed a 3:1 frequency locked vibratory pattern of vocal folds and ventricular folds.

  18. Analysis of enhanced modal damping ratio in porous materials using an acoustic-structure interaction model

    Directory of Open Access Journals (Sweden)

    Junghwan Kook


    Full Text Available The aim of this paper is to investigate the enhancement of the damping ratio of a structure with embedded microbeam resonators in air-filled internal cavities. In this context, we discuss theoretical aspects in the framework of the effective modal damping ratio (MDR and derive an approximate relation expressing how an increased damping due to the acoustic medium surrounding the microbeam affect the MDR of the macrobeam. We further analyze the effect of including dissipation of the acoustic medium by using finite element (FE analysis with acoustic-structure interaction (ASI using a simple phenomenological acoustic loss model. An eigenvalue analysis is carried out to demonstrate the improvement of the damping characteristic of the macrobeam with the resonating microbeam in the lossy air and the results are compared to a forced vibration analysis for a macrobeam with one or multiple embedded microbeams. Finally we demonstrate the effect of randomness in terms of position and size of microbeams and discuss the difference between the phenomenological acoustic loss model and a full thermoacoustic model.

  19. In situ high temperature oxidation analysis of Zircaloy-4 using acoustic emission coupled with thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Al Haj [Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS:UMR 5307, LGF, 42023 Saint-Etienne (France); Véronique, Peres, E-mail: [Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS:UMR 5307, LGF, 42023 Saint-Etienne (France); Eric, Serris [Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS:UMR 5307, LGF, 42023 Saint-Etienne (France); François, Grosjean; Jean, Kittel; François, Ropital [IFP Energies nouvelles, Rond-point de l’échangeur de Solaize BP3, 69360 Solaize (France); Michel, Cournil [Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS:UMR 5307, LGF, 42023 Saint-Etienne (France)


    Highlights: • Thermogravimetry associated to acoustic emission (AE) improves knowledge on the corrosion of metals at high temperature. • Kinetic transition is detected under air oxidation tests at 900 °C of Zircaloy-4 by a change in the rate of mass gain and by the AE activity. • AE analysis is complementary to characterizations of post mortem oxidized samples. • AE allows us to distinguish the cracks which occur during the Zircaloy-4 oxidation from the cracks which arise during the cooling of the samples. - Abstract: Zircaloy-4 oxidation behavior at high temperature (900 °C), which can be reached in case of severe accidental situations in nuclear pressurised water reactor, was studied using acoustic emission analysis coupled with thermogravimetry. Two different atmospheres were used to study the oxidation of Zircaloy-4: (a) helium and pure oxygen, (b) helium and oxygen combined with slight addition of air. The experiments with 20% of oxygen confirm the dependence on oxygen anions diffusion in the oxide scale. Under a mixture of oxygen and air in helium, an acceleration of the corrosion was observed due to the detrimental effect of nitrogen. The kinetic rate increased significantly after a kinetic transition (breakaway). This acceleration was accompanied by an acoustic emission activity. Most of the acoustic emission bursts were recorded after the kinetic transition (post-transition) or during the cooling of the sample. The characteristic features of the acoustic emission signals appear to be correlated with the different populations of cracks and their occurrence in the ZrO{sub 2} layer or in the α-Zr(O) layer. Acoustic events were recorded during the isothermal dwell time at high temperature under air. They were associated with large cracks in the zirconia porous layer. Acoustic events were also recorded during cooling after oxidation tests both under air or oxygen. For the latter, cracks were observed in the oxygen enriched zirconium metal phase and

  20. FRP/steel composite damage acoustic emission monitoring and analysis (United States)

    Li, Dongsheng; Chen, Zhi


    FRP is a new material with good mechanical properties, such as high strength of extension, low density, good corrosion resistance and anti-fatigue. FRP and steel composite has gotten a wide range of applications in civil engineering because of its good performance. As the FRP/steel composite get more and more widely used, the monitor of its damage is also getting more important. To monitor this composite, acoustic emission (AE) is a good choice. In this study, we prepare four identical specimens to conduct our test. During the testing process, the AE character parameters and mechanics properties were obtained. Damaged properties of FRP/steel composite were analyzed through acoustic emission (AE) signals. By the growing trend of AE accumulated energy, the severity of the damage made on FRP/steel composite was estimated. The AE sentry function has been successfully used to study damage progression and fracture emerge release rate of composite laminates. This technique combines the cumulative AE energy with strain energy of the material rather than analyzes the AE information and mechanical separately.

  1. Vibration impact acoustic emission technique for identification and analysis of defects in carbon steel tubes: Part A Statistical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Halim, Zakiah Abd [Universiti Teknikal Malaysia Melaka (Malaysia); Jamaludin, Nordin; Junaidi, Syarif [Faculty of Engineering and Built, Universiti Kebangsaan Malaysia, Bangi (Malaysia); Yahya, Syed Yusainee Syed [Universiti Teknologi MARA, Shah Alam (Malaysia)


    Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. This paper presents a statistical analysis of high frequency stress wave signals captured from a newly developed noninvasive, non-destructive tube inspection technique known as the vibration impact acoustic emission (VIAE) technique. Acoustic emission (AE) signals have been introduced into the ASTM A179 seamless steel tubes using an impact hammer, and the AE wave propagation was captured using an AE sensor. Specifically, a healthy steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AE features extracted from the captured signals are rise time, peak amplitude, duration and count. The VIAE technique also analysed the AE signals using statistical features such as root mean square (r.m.s.), energy, and crest factor. It was evident that duration, count, r.m.s., energy and crest factor could be used to automatically identify the presence of defect in carbon steel tubes using AE signals captured using the non-invasive VIAE technique.

  2. Radiation acoustics

    CERN Document Server

    Lyamshev, Leonid M


    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  3. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju


    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  4. On the Accuracy of Dynamic and Acoustic Analysis of Lightweight Panel Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Andersen, Lars Vabbersgaard; Dickow, Kristoffer Ahrens


    in such buildings is important. In the low-frequency range, prediction of sound and vibration in building structures may be achieved by finite-element analysis (FEA). The aim of this paper is to compare the two commercial codes ABAQUS and ANSYS for FEA of an acoustic-structural coupling in a timber, lightweight...... panel structure. For this purpose, modal analyses are carried out employing a fully coupled model of sound waves within an acoustic medium and vibrations in the structural part. The study concerns the frequency range 50–250 Hz....

  5. Quasinormal modes and stability of the rotating acoustic black hole: numerical analysis

    CERN Document Server

    Cardoso, V; Yoshida, S; Cardoso, Vitor; Lemos, Jose' P. S.; Yoshida, Shijun


    The study of the quasinormal modes (QNMs) of the 2+1 dimensional rotating draining bathtub acoustic black hole, the closest analogue found so far to the Kerr black hole, is performed. Both the real and imaginary parts of the quasinormal (QN) frequencies as a function of the rotation parameter B are found through a full non-linear numerical analysis. Since there is no change in sign in the imaginary part of the frequency as B is increased we conclude that the 2+1 dimensional rotating draining bathtub acoustic black hole is stable against small perturbations.

  6. Analysis of Fumarole Acoustics at Aso Volcano, Japan (United States)

    McKee, K. F.; Yokoo, A.; Fee, D.; Huang, Y. C.; Yoshikawa, S.; Utsugi, M.; Minami, T.; Ohkura, T.


    The lowermost portion of large eruption columns is the momentum-driven, fluid flow portion known as a volcanic jet. The perturbation of the atmosphere from this region produces a sound known as jetting or jet noise. Recent work has shown that this volcanic jet noise produced by a volcano has similar characteristics as the sound from jet and rocket engines. The study of volcanic jet noise has gained much from laboratory jet engine studies; however, jet engines have been engineered to reduce noise thereby limiting their use as a comparison tool to the complex, ever-changing volcanic jet. Previous studies have noted that fumaroles produce jet noise without further detailed investigation. The goal of this work is to enhance our understanding of large-scale volcanic jets by studying an accessible, less hazardous fumarolic jet. We aim to characterize the acoustic signature of fumaroles and evaluate if fumarolic jets scale to that of large volcanic jets. To investigate this, we deployed a 6-element acoustic array at two different locations along the edge of the crater wall at Aso Volcano, Japan from early July through mid-August 2015. Approximately two months before this deployment, the pyroclastic cone within Aso's crater partially collapsed into the vent. The cone was constructed during both ash venting and strombolian-style explosive activity in the last year. After the deployment, on July 13 a new small vent opened on the southwest flank of the pyroclastic cone. The vent is several meters in diameter and has consistent gas jetting which produces audible jet noise. To better capture the acoustic signature of the gas jetting we moved the array to the southwestern edge of the crater. The array is 230 meters from the vent and is positioned 54 degrees from the vertical jet axis, a recording angle usually not feasible in volcanic environments. Preliminary investigations suggest directionality at the source and the influence of topography along the propagation path as

  7. Acoustic analysis reveals a new cryptic bush-cricket in the Carpathian Mountains (Orthoptera, Phaneropteridae). (United States)

    Iorgu, Ionuţ Ştefan


    A new morphologically cryptic species of phaneropterid bush-cricket from the genus Isophya is described from the Eastern Carpathian Mountains: Isophya dochiasp. n. Sound analysis and morphological details are discussed in the paper comparing the new species with several Isophya species having similar morphology and acoustic behavior.

  8. Acoustic analysis reveals a new cryptic bush–cricket in the Carpathian Mountains (Orthoptera, Phaneropteridae

    Directory of Open Access Journals (Sweden)

    Ionut Iorgu


    Full Text Available A new morphologically cryptic species of phaneropterid bush–cricket from the genus Isophya is described from the Eastern Carpathian Mountains: Isophya dochia sp. n. Sound analysis and morphological details are discussed in the paper, comparing the new species with several Isophya speciessimilar morphology and acoustic behavior.

  9. Acoustic analysis reveals a new cryptic bush–cricket in the Carpathian Mountains (Orthoptera, Phaneropteridae)


    Ionut Iorgu


    Abstract A new morphologically cryptic species of phaneropterid bush–cricket from the genus Isophya is described from the Eastern Carpathian Mountains: Isophya dochia sp. n. Sound analysis and morphological details are discussed in the paper comparing the new species with several Isophya species having similar morphology and acoustic behavior.

  10. Integrating acoustic analysis in the architectural design process using parametric modelling

    DEFF Research Database (Denmark)

    Peters, Brady


    This paper discusses how parametric modeling techniques can be used to provide architectural designers with a better understanding of the acoustic performance of their designs and provide acoustic engineers with models that can be analyzed using computational acoustic analysis software. Architects...... are increasingly using parametric modeling techniques in their design processes to allow the exploration of large numbers of design options using multiple criteria. Parametric modeling software can be performance-driven and sound has the potential to become one of these performance-driven dimensions. This can...... provide a method by which architects and engineers can work together more efficiently and communicate better. This research is illustrated through the design of an architectural project, a new school in Copenhagen, Denmark by JJW Architects, where parametric modeling techniques have been used in different...

  11. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells. (United States)

    Yang, Tie; Bragheri, Francesca; Nava, Giovanni; Chiodi, Ilaria; Mondello, Chiara; Osellame, Roberto; Berg-Sørensen, Kirstine; Cristiani, Ilaria; Minzioni, Paolo


    We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental apparatus parameters before performing the cell-characterization experiments, including a non-destructive method to characterize the optical force distribution inside the microchannel. The chip was used to study important cell-mechanics parameters in two human breast cancer cell lines, MCF7 and MDA-MB231. Results indicate that MDA-MB231 has both higher acoustic compressibility and higher optical deformability than MCF7, but statistical analysis shows that optical deformability and acoustic compressibility are not correlated parameters. This result suggests the possibility to use them to analyze the response of different cellular structures. We also demonstrate that it is possible to perform both measurements on a single cell, and that the order of the two experiments does not affect the retrieved values.

  12. Statistical analysis of acoustic characteristics of Tibetan Lhasa dialect speech emotion

    Directory of Open Access Journals (Sweden)

    Guo Dandan


    Full Text Available The paper makes a quantitative analysis and comparison on the continuous speech emotion of Lhasa Tibetan in the four basic emotional patterns (happy, surprise, sad, neutral pitch, energy and time length by experimental phonetics and the linear statistical research methods, found that there is a positive correlation between the Lhasa Tibetan emotional speech and pitch, energy and duration, etc. And the pitch, energy and duration of negative emotion acoustic parameters are bigger than positive emotion, on this basis, drawing the Lhasa Tibetan speech emotion acoustic feature patterns. Compared with the Chinese language and the Tibetan, even though both have the tone prosodic features, they also have significant differences in the acoustic characteristics of the speech emotion.

  13. Analysis of spherical thermo-acoustic radiation in gas

    Directory of Open Access Journals (Sweden)

    Hanping Hu


    Full Text Available A general solution of the spherical thermo-acoustic (TA radiation from any solid in gas is derived by using a fully thermally-mechanically coupled TA model. Therefore, the characteristics and regularities of spherical TA emission can be studied more completely. It is shown that flat amplitude-frequency response, the most important feature for planar TA emission from technical standpoint, still exists for spherical TA emission, and changes with the radius of a sphere, thickness of TA sample, and the distance from surface. This expression agrees well with experimental and theoretical results of planer TA emission for much larger sphere and lays the foundation to calculate complex TA emission problems.

  14. Precision analysis of non-conformal reconstruction for the surface acoustic field on axisymmetric structures

    Institute of Scientific and Technical Information of China (English)

    HE Yuanan; HE Zuoyong


    Reconstruction of the surface acoustic field of axisymmetric body with arbitrary boundary conditions using near-field acoustic data is studied. The method of numerical reconstruction based on orthonormalization function expansion (OFE) and boundary element integral (BEI) is presented which can overcome the singular integral problem in the boundary integral equations. By numerical examples, the precision of reconstruction for the non-conformal surface with the axisymmetric or non-axisymmetric vibrating on axisymmetric body is given.The results of the numerical simulation are shown that this kind of reconstruction method is available for engineering.

  15. Global modes, receptivity, and sensitivity analysis of diffusion flames coupled with duct acoustics

    CERN Document Server

    Magri, Luca


    In this theoretical and numerical paper, we derive the adjoint equations for a thermo-acoustic system consisting of an infinite-rate chemistry diffusion flame coupled with duct acoustics. We then calculate the thermo-acoustic system's linear global modes (i.e. the frequency/growth rate of oscillations, together with their mode shapes), and the global modes' receptivity to species injection, sensitivity to base-state perturbations, and structural sensitivity to advective-velocity perturbations. We then compare these with the Rayleigh index. The receptivity analysis shows the regions of the flame where open-loop injection of fuel or oxidizer will have most influence on the thermo-acoustic oscillation. We find that the flame is most receptive at its tip. The base-state sensitivity analysis shows the influence of each parameter on the frequency/growth rate. We find that perturbations to the stoichiometric mixture fraction, the fuel slot width, and the heat-release parameter have most influence, while perturbation...

  16. Theoretical analysis of the acoustical characteristics of suspended micro-perforated panel absorbers

    Institute of Scientific and Technical Information of China (English)

    SHENG Shengwo; SONG Yongmin; WANG Jiqing


    Sound absorption characteristics of suspended micro-perforated panel absorbers were investigated theoretically. The method of half thickness model of such panel absorber with quadripole analysis was used for predicting its acoustic performance. The analysis results show that the predictions agree well with the measurements of absorption in the reverberation chamber. The factors affecting the absorption characteristics for such absorbers were discussed,and some rules as design guidelines were given.

  17. Data dependent random forest applied to screening for laryngeal disorders through analysis of sustained phonation: acoustic versus contact microphone. (United States)

    Verikas, A; Gelzinis, A; Vaiciukynas, E; Bacauskiene, M; Minelga, J; Hållander, M; Uloza, V; Padervinskis, E


    Comprehensive evaluation of results obtained using acoustic and contact microphones in screening for laryngeal disorders through analysis of sustained phonation is the main objective of this study. Aiming to obtain a versatile characterization of voice samples recorded using microphones of both types, 14 different sets of features are extracted and used to build an accurate classifier to distinguish between normal and pathological cases. We propose a new, data dependent random forests-based, way to combine information available from the different feature sets. An approach to exploring data and decisions made by a random forest is also presented. Experimental investigations using a mixed gender database of 273 subjects have shown that the perceptual linear predictive cepstral coefficients (PLPCC) was the best feature set for both microphones. However, the linear predictive coefficients (LPC) and linear predictive cosine transform coefficients (LPCTC) exhibited good performance in the acoustic microphone case only. Models designed using the acoustic microphone data significantly outperformed the ones built using data recorded by the contact microphone. The contact microphone did not bring any additional information useful for the classification. The proposed data dependent random forest significantly outperformed the traditional random forest.

  18. Acoustic analysis of the vocal tract during vowel production by finite-difference time-domain method. (United States)

    Takemoto, Hironori; Mokhtari, Parham; Kitamura, Tatsuya


    The vocal tract shape is three-dimensionally complex. For accurate acoustic analysis, a finite-difference time-domain method was introduced in the present study. By this method, transfer functions of the vocal tract for the five Japanese vowels were calculated from three-dimensionally reconstructed magnetic resonance imaging (MRI) data. The calculated transfer functions were compared with those obtained from acoustic measurements of vocal tract physical models precisely constructed from the same MRI data. Calculated transfer functions agreed well with measured ones up to 10 kHz. Acoustic effects of the piriform fossae, epiglottic valleculae, and inter-dental spaces were also examined. They caused spectral changes by generating dips. The amount of change was significant for the piriform fossae, while it was almost negligible for the other two. The piriform fossae and valleculae generated spectral dips for all the vowels. The dip frequencies of the piriform fossae were almost stable, while those of the valleculae varied among vowels. The inter-dental spaces generated very small spectral dips below 2.5 kHz for the high and middle vowels. In addition, transverse resonances within the oral cavity generated small spectral dips above 4 kHz for the low vowels.

  19. Analysis of Acoustic Emission Signals using WaveletTransformation Technique

    Directory of Open Access Journals (Sweden)

    S.V. Subba Rao


    Full Text Available Acoustic emission (AE monitoring is carried out during proof pressure testing of pressurevessels to find the occurrence of any crack growth-related phenomenon. While carrying out AEmonitoring, it is often found that the background noise is very high. Along with the noise, thesignal includes various phenomena related to crack growth, rubbing of fasteners, leaks, etc. Dueto the presence of noise, it becomes difficult to identify signature of the original signals related to the above phenomenon. Through various filtering/ thresholding techniques, it was found that the original signals were getting filtered out along with noise. Wavelet transformation technique is found to be more appropriate to analyse the AE signals under such situations. Wavelet transformation technique is used to de-noise the AE data. The de-noised signal is classified to identify a signature based on the type of phenomena.Defence Science Journal, 2008, 58(4, pp.559-564, DOI:

  20. Phase Time and Envelope Time in Time-Distance Analysis and Acoustic Imaging (United States)

    Chou, Dean-Yi; Duvall, Thomas L.; Sun, Ming-Tsung; Chang, Hsiang-Kuang; Jimenez, Antonio; Rabello-Soares, Maria Cristina; Ai, Guoxiang; Wang, Gwo-Ping; Goode Philip; Marquette, William; Ehgamberdiev, Shuhrat; Landenkov, Oleg


    Time-distance analysis and acoustic imaging are two related techniques to probe the local properties of solar interior. In this study, we discuss the relation of phase time and envelope time between the two techniques. The location of the envelope peak of the cross correlation function in time-distance analysis is identified as the travel time of the wave packet formed by modes with the same w/l. The phase time of the cross correlation function provides information of the phase change accumulated along the wave path, including the phase change at the boundaries of the mode cavity. The acoustic signals constructed with the technique of acoustic imaging contain both phase and intensity information. The phase of constructed signals can be studied by computing the cross correlation function between time series constructed with ingoing and outgoing waves. In this study, we use the data taken with the Taiwan Oscillation Network (TON) instrument and the Michelson Doppler Imager (MDI) instrument. The analysis is carried out for the quiet Sun. We use the relation of envelope time versus distance measured in time-distance analyses to construct the acoustic signals in acoustic imaging analyses. The phase time of the cross correlation function of constructed ingoing and outgoing time series is twice the difference between the phase time and envelope time in time-distance analyses as predicted. The envelope peak of the cross correlation function between constructed ingoing and outgoing time series is located at zero time as predicted for results of one-bounce at 3 mHz for all four data sets and two-bounce at 3 mHz for two TON data sets. But it is different from zero for other cases. The cause of the deviation of the envelope peak from zero is not known.

  1. Design basis of industrial acoustic separators

    NARCIS (Netherlands)

    Cappon, H.J.; Keesman, K.J.


    This study presents the process of obtaining a basic design for an industrial scale acoustic separator based on flow characteristics inside the separation chamber, on acoustic analysis within the chamber and calculated particle trajectories combining these two analyses. Adequate criteria for subsequ

  2. Analysis of Acoustic Features in Speakers with Cognitive Disorders and Speech Impairments (United States)

    Saz, Oscar; Simón, Javier; Rodríguez, W. Ricardo; Lleida, Eduardo; Vaquero, Carlos


    This work presents the results in the analysis of the acoustic features (formants and the three suprasegmental features: tone, intensity and duration) of the vowel production in a group of 14 young speakers suffering different kinds of speech impairments due to physical and cognitive disorders. A corpus with unimpaired children's speech is used to determine the reference values for these features in speakers without any kind of speech impairment within the same domain of the impaired speakers; this is 57 isolated words. The signal processing to extract the formant and pitch values is based on a Linear Prediction Coefficients (LPCs) analysis of the segments considered as vowels in a Hidden Markov Model (HMM) based Viterbi forced alignment. Intensity and duration are also based in the outcome of the automated segmentation. As main conclusion of the work, it is shown that intelligibility of the vowel production is lowered in impaired speakers even when the vowel is perceived as correct by human labelers. The decrease in intelligibility is due to a 30% of increase in confusability in the formants map, a reduction of 50% in the discriminative power in energy between stressed and unstressed vowels and to a 50% increase of the standard deviation in the length of the vowels. On the other hand, impaired speakers keep good control of tone in the production of stressed and unstressed vowels.

  3. Analysis of Acoustic Features in Speakers with Cognitive Disorders and Speech Impairments

    Directory of Open Access Journals (Sweden)

    Oscar Saz


    Full Text Available This work presents the results in the analysis of the acoustic features (formants and the three suprasegmental features: tone, intensity and duration of the vowel production in a group of 14 young speakers suffering different kinds of speech impairments due to physical and cognitive disorders. A corpus with unimpaired children's speech is used to determine the reference values for these features in speakers without any kind of speech impairment within the same domain of the impaired speakers; this is 57 isolated words. The signal processing to extract the formant and pitch values is based on a Linear Prediction Coefficients (LPCs analysis of the segments considered as vowels in a Hidden Markov Model (HMM based Viterbi forced alignment. Intensity and duration are also based in the outcome of the automated segmentation. As main conclusion of the work, it is shown that intelligibility of the vowel production is lowered in impaired speakers even when the vowel is perceived as correct by human labelers. The decrease in intelligibility is due to a 30% of increase in confusability in the formants map, a reduction of 50% in the discriminative power in energy between stressed and unstressed vowels and to a 50% increase of the standard deviation in the length of the vowels. On the other hand, impaired speakers keep good control of tone in the production of stressed and unstressed vowels.

  4. Modal analysis of acoustic leak signal in pipelines using time-frequency analysis

    Institute of Scientific and Technical Information of China (English)

    JIAO Jing-pin; FEI Ren-yuan; HE Cun-fu; WU Bin


    It is important to analyze the propagation characteristics of guided waves in acoustic leak location in pipelines.In this paper,the acoustic leak signal is analyzed in the time-frequency domain.Based on the relation of time-frequency distribution of the acoustic leak signal and the dispersion curves of guided waves,the mode components of acoustic leak signals were obtained.The research can provide a guideline for the mode selection in pipeline leak location,and help improve the accuracy of leak location.

  5. Room acoustic analysis of blower unit and noise control plan in the typical steel industry

    Directory of Open Access Journals (Sweden)


    Full Text Available Introduction: In the steel industry,air blowers used to supply compressed air are considered as sources of annoying noise. This study aims to acoustics analysis of theairblower workroomand sound source characteristics in order to present noise controlmeasuresinthe steel industry. .Material and Method: Measurement of noiselevel and its frequency analysis was performed usingsound levelmetermodelof CASELLA-Cell.450. Distribution of noise level in the investigated workroom in form of noise map was provided using Surfer software. In addition, acoustic analysis of workroom and control room was performed in view point of soundabsorption andinsulation. Redesignofdoor and window of controlroom and installation of soundabsorbing materialson theceiling of the workroom were proposed and the efficiency of these interventionswasestimated. .Result: The totalsound pressurelevelin the blower workroom was 95.4 dB(L and the dominant frequency was 2000Hz. Sound pressure level inside the room control was 80.1dB(A. The average absorption coefficient and reverberation time in the blower workroom was estimated equal to 0.082 Sab.m2 and 3.9 seconds respectively. These value in control room was 0.04 Sab.m2 and 3/4 seconds respectively. In control room, sound transmission loss between the two parts of the wall dividing was 13.7 dB(A. The average of noise dose in blower operators was 230%. With the installation of sound absorber on ceiling of workroom, average of absorption coefficient can increase to 0.33 Sab.m2 and sound transmission loss of the new designed door and window was estimated equal to 20dB. . Conclusion: The main cause of noise leakage in the control room was insufficient insulation properties of door and windows. By replacing the door and window and installation of sound absorbing on ceiling of workroom, the noise dose can reduce to 49.6%. New Improved door and window of control room can reduce noise dose to 69.65% solely.

  6. Analysis of acoustic and entropy disturbances in a hypersonic wind tunnel (United States)

    Schilden, Thomas; Schröder, Wolfgang; Ali, Syed Raza Christopher; Schreyer, Anne-Marie; Wu, Jie; Radespiel, Rolf


    The tunnel noise in a Mach 5.9 Ludwieg tube is determined by two methods, a newly developed cone-probe-DNS method and a reliable hot-wire-Pitot-probe method. The new method combines pressure and heat flux measurements using a cone probe and direct numerical simulation (DNS). The modal analysis is based on transfer functions obtained by the DNS to link the measured quantities to the tunnel noise. The measurements are performed for several unit-Reynolds numbers in the range of 5 ṡ 106 ≤ Re/m ≤ 16 ṡ 106 and probe positions to identify the sensitivities of tunnel noise. The DNS solutions show similar response mechanisms of the cone probe to incident acoustic and entropy waves which leads to high condition numbers of the transfer matrix such that a unique relationship between response and source mechanism can be only determined by neglecting the contribution of the non-acoustic modes to the pressure and heat flux fluctuations. The results of the cone-probe-DNS method are compared to a modal analysis based on the hot-wire-Pitot-probe method which provides reliable results in the frequency range less than 50 kHz. In this low frequency range the findings of the two different mode analyses agree well. At higher frequencies, the newly developed cone-probe-DNS method is still valid. The tunnel noise is dominated by the acoustic mode, since the entropy mode is lower by one order of magnitude and the vorticity mode can be neglected. The acoustic mode is approximately 0.5% at 30 kHz and the cone-probe-DNS data illustrate the acoustic mode to decrease and to asymptotically approach 0.2%.

  7. Numerical acoustic analysis of a turbulent flow around a bluff body (United States)

    Cianferra, Marta; Ianniello, Sandro; Armenio, Vincenzo


    A body invested by a fluid flow gives rise to vortical and turbulent three-dimensional fields, whose structure depends on the shape of the body itself and the Reynolds number. Then, pressure fluctuations occur in the field and propagate far away as noise. The acoustic analogy based on the Ffowcs Williams-Hawkings (FWH) equation represents a rigorous way to deal with the problem, enabling the evaluation of noise through a post-processing of fluid dynamic data. Moreover, the presence of separate source terms theoretically allows to identify the dominant generating noise mechanisms taking place in the flow, which, of course, repre- sents a key information in view of any possible reduction or alteration of the acoustic field. This paper deals with a numerical, FWH-based acoustic analysis of a turbulent flow around a bluff body and, in particular, a 3D square cylinder in a uniform velocity field. The fluid dynamic solution is obtained through Large eddy simulations carried out using a standard Smagorinsky model at different Reynolds numbers. The acoustic solution is pursued by different integral solution forms of the FWH equation, in the attempt of recognizing the main noise sources and pointing out the potentiality and possible weak-points of the alternative numerical approaches.

  8. Blend uniformity analysis of pharmaceutical products by Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS). (United States)

    Fitzpatrick, Dara; Scanlon, Eoin; Krüse, Jacob; Vos, Bastiaan; Evans-Hurson, Rachel; Fitzpatrick, Eileen; McSweeney, Seán


    Blend uniformity analysis (BUA) is a routine and highly regulated aspect of pharmaceutical production. In most instances, it involves quantitative determination of individual components of a blend in order to ascertain the mixture ratio. This approach often entails the use of costly and sophisticated instrumentation and complex statistical methods. In this study, a new and simple qualitative blend confirmatory test is introduced based on a well known acoustic phenomenon. Several over the counter (OTC) product powder blends are analysed and it is shown that each product has a unique and highly reproducible acoustic signature. The acoustic frequency responses generated during the dissolution of the product are measured and recorded in real time. It is shown that intra-batch and inter-batch variation for each product is either insignificant or non-existent when measured in triplicate. This study demonstrates that Broadband Acoustic Resonance Dissolution Spectroscopy or BARDS can be used successfully to determine inter-batch variability, stability and uniformity of powder blends. This is just one application of a wide range of BARDS applications which are more cost effective and time efficient than current methods.

  9. Theory of Acoustic Raman Modes in Proteins (United States)

    DeWolf, Timothy; Gordon, Reuven


    We present a theoretical analysis that associates the resonances of extraordinary acoustic Raman (EAR) spectroscopy [Wheaton et al., Nat. Photonics 9, 68 (2015)] with the collective modes of proteins. The theory uses the anisotropic elastic network model to find the protein acoustic modes, and calculates Raman intensity by treating the protein as a polarizable ellipsoid. Reasonable agreement is found between EAR spectra and our theory. Protein acoustic modes have been extensively studied theoretically to assess the role they play in protein function; this result suggests EAR spectroscopy as a new experimental tool for studies of protein acoustic modes.

  10. The Harmonic Response Analysis with Acoustic-vibration Coupling of the Combustion Chamber under Different Combustion Conditions

    Directory of Open Access Journals (Sweden)

    Zheng Min


    Full Text Available In this paper, numerical calculations of harmonic response with acoustic-vibration coupling of the combustion chamber under different combustion conditions has been performed by combining CFD and FEM methods. Temperature and sound pressure fields created by the flame in the combustion chamber are calculated first. And then the results of the CFD are exported to the FEM analysis for the interaction between acoustic waves and wall vibrations. The possible acoustic-vibration coupled eigenfrequencies at given combustion conditions are predicted by the harmonic response analysis.

  11. Acoustical Klein-Gordon equation: a time-independent perturbation analysis. (United States)

    Forbes, Barbara J; Pike, E Roy


    The perturbation analysis of an ideal acoustical duct was first made by Rayleigh in 1878 and the result has since stood in the literature. However, the analysis is based on the assumption of potential and kinetic energy densities that remain constant as a change in cross section occurs, whereas, in fact, they may fluctuate significantly in comparison to the slowly varying "wave function," Psi(x,t), of the acoustical Klein-Gordon equation. The square of the time-independent eigenfunction, psi(2)(x), is directly proportional to the potential energy per unit length of fluid, and it is shown that it is precisely the perturbation in potential energy that defines correctly the eigenvalue shifts.

  12. A modal analysis for the acoustic radiation problems,I.Theory

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhe


    For the acoustic radiation problems from a complex vibrating body surface, a modal analysis approach is put forward. All the normal vibration velocities on a vibrating surface form the Hilbert space. In the Hilbert space, an operator is defined, which includes the radiation property of the vibrating surface and is linear, self-adjoint and positive. Using the operator, a set of basis functions in the Hilbert space are obtained, which describe the radiation patterns and are called the radiation modes. Based on the radiation modes, a set of basis functions of the radiation field are obtained by the Helmholtz simple layer potentials,which describe the distribution patterns of the radiation field and are called the field distribution modes. The radiation behavior can be expressed by expansions of the radiation modes and the field distribution modes. The modal analysis approach is introduced into the acoustic radiation problems.

  13. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions (United States)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory


    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  14. Presentation

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Freire Vieira


    Full Text Available This dossier focuses on one of the essential debate topics today about the territorial dimension of the new development strategies concerned with the worsening of the global socioecological crisis, that is: the challenges related to the activation and integration in networks of localized agri-food systems. For its composition, some contributions presented and debated during the VI International Conference on Localized Agri-food System - The LAFS facing the opportunities and challenges of the new global context have been gathered. The event took place in the city of Florianópolis, from May 21th to 25th of 2013. The event was promoted by the Federal University of Santa Catarina (UFSC and by the Center for the International Cooperation on Agricultural Research for Development (CIRAD. Besides UFSC and CIRAD, EPAGRI, State University of Santa Catarina (UDESC, as well as research institutes and universities from other states (UFMG, IEA/SP, UFS, UFRGS and Mexican and Argentinian partners from the RED SIAL Latino Americana also participated in the organization of lectures, discussion tables and workshops.

  15. Acoustics of courtyard theatres

    Institute of Scientific and Technical Information of China (English)

    WANG Jiqing


    The traditional Chinese theatre was often built with a courtyard. In such open-top space, the absence of a roof would mean little reverberation and non-diffused sound field.Acoustically the situation is quite different from that of any enclosed space. The refore, theclassic room acoustics, such as Sabine reverberation formula, would no longer be applicable due to the lack of sound reflections from the ceiling. As the parameter of reverberation time T30 shows the decay rate only, it would not properly characterize the prominent change in the fine structure of the echogram, particularly in case of a large reduction of reflections during the decay process. The sense of reverbrance in a courtyard space would differ noticeably from that of the equivalent 3D-T30 in an enclosed space. Based upon the characteristic analysis of the sound field in an open-top space, this paper presents a preliminary study on the acoustics of the courtyard theatres.

  16. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton;


    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  17. Analysis of Field Data to Describe the Effect of Context (Acoustic and Non-Acoustic Factors on Urban Soundscapes

    Directory of Open Access Journals (Sweden)

    Karmele Herranz-Pascual


    Full Text Available The need to improve acoustic environments in our cities has led to increased interest in correcting or minimising noise pollution in urban environments, something that has been associated with the resurgence of the soundscape approach. This line of research highlights the importance of context in the perception of acoustic environments. Despite this, few studies consider together a wide number of variables relating to the context, and analyse the relative importance of each. The purpose of this paper is therefore to identify the acoustic and non-acoustic characteristics of a place (context that influence an individual’s perception of the sound environment and the relative importance of these factors in soundscape. The aim is to continue advancing in the definition of an acoustic comfort indicator for urban places. The data used here were collected in various soundscape campaigns carried out by Tecnalia in Bilbao (Spain between 2011 and 2014. These studies involved 534 evaluations of 10 different places. The results indicate that many diverse contextual factors determine soundscape, the most important being the congruence between soundscape and landscape. The limitations of the findings and suggestions for further research are also discussed.

  18. Presentation

    Directory of Open Access Journals (Sweden)

    Eduardo Vicente


    Full Text Available In the present edition of Significação – Scientific Journal for Audiovisual Culture and in the others to follow something new is brought: the presence of thematic dossiers which are to be organized by invited scholars. The appointed subject for the very first one of them was Radio and the invited scholar, Eduardo Vicente, professor at the Graduate Course in Audiovisual and at the Postgraduate Program in Audiovisual Media and Processes of the School of Communication and Arts of the University of São Paulo (ECA-USP. Entitled Radio Beyond Borders the dossier gathers six articles and the intention of reuniting works on the perspectives of usage of such media as much as on the new possibilities of aesthetical experimenting being build up for it, especially considering the new digital technologies and technological convergences. It also intends to present works with original theoretical approach and original reflections able to reset the way we look at what is today already a centennial media. Having broadened the meaning of “beyond borders”, four foreign authors were invited to join the dossier. This is the first time they are being published in this country and so, in all cases, the articles where either written or translated into Portuguese.The dossier begins with “Radio is dead…Long live to the sound”, which is the transcription of a thought provoking lecture given by Armand Balsebre (Autonomous University of Barcelona – one of the most influential authors in the world on the Radio study field. It addresses the challenges such media is to face so that it can become “a new sound media, in the context of a new soundscape or sound-sphere, for the new listeners”. Andrew Dubber (Birmingham City University regarding the challenges posed by a Digital Era argues for a theoretical approach in radio studies which can consider a Media Ecology. The author understands the form and discourse of radio as a negotiation of affordances and

  19. Seismo-acoustic analysis of the Buncefield oil depot explosion in the UK, 2005 December 11 (United States)

    Ottemöller, L.; Evers, L. G.


    A massive vapour cloud explosion occurred at the Buncefield fuel depot near Hemel Hempstead, UK, in the morning of 2005 December 11. The explosion was the result of an overflow from one of the storage tanks with the release of over 300 tons of petrol and generating a vapour cloud that spread over an area of 80000 m2, before being ignited. Considerable damage was caused in the vicinity of the explosion and a total of 43 people were injured. The explosion was detected by seismograph stations in the UK and the Netherlands and by infrasound arrays in the Netherlands. We analysed the seismic recordings to determine the origin time of 06:01:31.45 +/-0.5 s (UTC) from P-wave arrival times. Uncertainties in determination of origin time from acoustic arrival times alone were less than 10 s. Amplitudes of P-, Lg and primary acoustic waves were measured to derive decay relationships as function of distance. From the seismic amplitudes we estimated a yield of 2-10 tons equivalent to a buried explosion. Most seismic stations recorded primary and secondary acoustic waves. We used atmospheric ray tracing to identify the various travel paths, which depend on temperature and wind speed as function of altitude, leading to directional variation. Refracted waves were observed from the troposphere, stratosphere and thermosphere with a good match between observed and calculated traveltimes. The various wave types were also identified through array processing, which provides backazimuth and slowness, of recordings from an infrasound array in the Netherlands. The amplitude of stratospheric refracted acoustic waves recorded by the array microbarometers was used to estimate a yield of 21.6 (+/-5) tons TNT equivalent. We have demonstrated through joint seismo-acoustic analysis of the explosion that both the seismic velocity model and the atmospheric model are sufficient to explain the observed traveltimes.

  20. Presentation

    Directory of Open Access Journals (Sweden)

    Helmut Renders


    Full Text Available We present to our esteemed readers the second edition of our journal for 2008. We have chosen the theme “The life and work of Prof. Dr. Jürgen Moltmann” as its special emphasis. It is our way to pay homage to J. Moltmann in the year the Universidade Metodista de São Paulo awards him an honorary Doctor Honoris Causa degree. Sincethe seventies, Moltmann and Latin America have been in dialog. In his emblematic work “A Theology of Liberation”, Gustavo Gutiérrez, the Catholic, discussed with Moltmann, the Reformed, the relationship between eschatology and history (GUTIÉRREZ, Gustavo.Teologia da Libertação. 5ª edição. Petrópolis, RJ: Vozes, 1985, p. 27, 137-139. A dialog held in the premises of IMS, which nowadays is called UMESP, has produced the little book “Passion for life” (MOLTMANN, Jürgen. Paixão pela vida. São Paulo, SP: ASTE - Associaçãode Seminários Teológicos Evangélicos, 1978.In the following years, the wide theological work of J. Moltmann went all the way from debates to congresses and has conquered the classrooms. Most probably, J. Moltmann is nowadays the most widely read European author in Brazilian theological seminaries. Thisrecognition can only be held in unison and the wide response to our request for articles confirms the huge repercussion that Moltmann’s work has been having up to today in Brazil. The ecumenical theologian J. Moltmann is ecumenically read. We believe that thisway we may be better equipped to answer to anyone who asks us for the reason there is hope in us. We have organized the articles on J. Moltmann’s theology according to the original publication date of the books dealt with in each essay. We also communicate that some articles which were originally requested for this edition of the journal will be published in the journal Estudos de Regilião in May 2009.As it is usual with the journal Caminhando, we have, besides this thematic emphasis, yet other contributions in the areas of

  1. Aquatic Acoustic Metrics Interface Utility for Underwater Sound Monitoring and Analysis

    Directory of Open Access Journals (Sweden)

    Thomas J. Carlson


    Full Text Available Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. In this paper, we provide a detailed description of a new software package, the Aquatic Acoustic Metrics Interface (AAMI, specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame. The features of the AAMI software are discussed, and several case studies are presented to illustrate its functionality.

  2. Presentation

    Directory of Open Access Journals (Sweden)

    Nicanor Lopes


    Full Text Available The Journal Caminhando debuts with a new editorial format: eachmagazine will have a Dossier.In 2010 Christianity celebrated the centenary of Edinburgh. TheWorld Missionary Conference in Edinburgh in 1910 is regarded by manyas missiological watershed in the missionary and ecumenical movement.So the Faculty of Theology of the Methodist Church (FATEO decidedto organize a Wesleyan Week discussing the issue of mission. For anevent of this magnitude FATEO invited the Rev. Dr. Wesley Ariarajah,Methodist pastor and teacher of Sri Lanka with extensive experience inpastoral ministry in local churches and professor of History of Religionsand the New Testament at the Theological College of Lanka, maintainedby the Protestant Churches in Sri Lanka. In 1981 he was invited to jointhe World Council of Churches, where he presided for over ten years theCouncil of Interreligious Dialogue. From 1992 he served as Deputy GeneralSecretary of the WCC.The following texts are not the speeches of the Rev. Dr. WesleyAriarajah, for they will be published separately. Nevertheless, the journaldialogs with the celebrations of the centenary of Edinburgh, parting formthe intriguing theme: "Mission in the 21st century in Brazil". After all, howis it that mission takes place among us in personal, church, and communityactivities?Within the Dossier, as common to the journal, the textos are organizedas follows: Bible, Theology / History and Pastoral Care. Other items thatdo not fit within the Dossier, but, do articulate mission, can be found inthe section Declarations and Documents and Book Reviews.The authors of the Dossier have important considerations in buildinga contemporary missiological concept considering Brazilian reality.Anderson de Oliveira, in the Bible-Section, presents a significantexegeses of Matthew 26.6-13. What does it mean when Jesus is quotedwith the words: "For the poor always ye have with you, but me ye havenot always." Is this declaration challenging the gospels

  3. Analysis and Classification of Acoustic Emission Signals During Wood Drying Using the Principal Component Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ho Yang [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Kim, Ki Bok [Chungnam National University, Daejeon (Korea, Republic of)


    In this study, acoustic emission (AE) signals due to surface cracking and moisture movement in the flat-sawn boards of oak (Quercus Variablilis) during drying under the ambient conditions were analyzed and classified using the principal component analysis. The AE signals corresponding to surface cracking showed higher in peak amplitude and peak frequency, and shorter in rise time than those corresponding to moisture movement. To reduce the multicollinearity among AE features and to extract the significant AE parameters, correlation analysis was performed. Over 99% of the variance of AE parameters could be accounted for by the first to the fourth principal components. The classification feasibility and success rate were investigated in terms of two statistical classifiers having six independent variables (AE parameters) and six principal components. As a result, the statistical classifier having AE parameters showed the success rate of 70.0%. The statistical classifier having principal components showed the success rate of 87.5% which was considerably than that of the statistical classifier having AE parameters

  4. A Short Integrated Presentation of Valuation, Profitability and Growth Analysis

    DEFF Research Database (Denmark)

    Pettersson, Kim; Sørensen, Ole


    of this teaching note is to highlight the purpose of profitability and growth analysis in financial statement analysis by incorporating the point of value relevance in applied finance. We hope this reduced presentation of valuation and profitability and growth analysis will help students to understand...

  5. Near-Field Acoustic Power Level Analysis of F31/A31 Open Rotor Model at Simulated Cruise Conditions, Technical Report II (United States)

    Sree, Dave


    Near-field acoustic power level analysis of F31A31 open rotor model has been performed to determine its noise characteristics at simulated cruise flight conditions. The non-proprietary parts of the test data obtained from experiments in the 8x6 supersonic wind tunnel were provided by NASA-Glenn Research Center. The tone and broadband components of total noise have been separated from raw test data by using a new data analysis tool. Results in terms of sound pressure levels, acoustic power levels, and their variations with rotor speed, freestream Mach number, and input shaft power, with different blade-pitch setting angles at simulated cruise flight conditions, are presented and discussed. Empirical equations relating models acoustic power level and input shaft power have been developed. The near-field acoustic efficiency of the model at simulated cruise conditions is also determined. It is hoped that the results presented in this work will serve as a database for comparison and improvement of other open rotor blade designs and also for validating open rotor noise prediction codes.

  6. Frequency domain analysis of lamb wave scattering and application to film bulk acoustic wave resonators. (United States)

    Thalmayr, Florian; Hashimoto, Ken-Ya; Omori, Tatsuya; Yamaguchi, Masatsune


    This paper demonstrates a novel frequency domain analysis (FDA) to evaluate the scattering behavior of a waveguide mode at arbitrary scattering geometries by a time harmonic simulation based on the finite element method (FEM). To this end, we add an injection-damping mechanism (IDM) to avoid interference at the acoustic input port. The IDM can be easily constructed by a numerical operation. Our approach offers improved time consumption and calculation power necessary over the established method in the time domain. After checking the validity of the proposed method, we discuss the importance of considering wave scattering phenomena in film bulk acoustic wave resonator (FBAR) devices by applying the proposed method to two simplified models of an FBAR device.

  7. Analysis of acoustic to seismic coupling technique for buried landmines detection

    Institute of Scientific and Technical Information of China (English)

    WANG Chi; XIE Yulai; LI Xingfei; SUN Fei; ZHANG Guoxiong


    The mechanical interaction between the induced seismic waves and landmines was analyzed according to acoustic-to-seismic coupling theory. And a geophone array based exper-imental system for landmine detection was developed. By modeling a compliant mine and the soil on top of the mine as a mass-spring system, analytic method was adopted to study the resonance mechanism of the system. A loudspeaker was employed as energy source to excite a swept sine tone over the soil. We also used a geophone array to measure the vibration velocity of the ground surface. In order to analysis the landmine effect on the surface vibration, the magnitude spectra curves of the measured velocity values on-and-off mine were plotted. The results showed that the data measured on mine is much bigger than that off target and the proposed system can be applied to further investigation of acoustic landmines detection.

  8. Acoustic analysis of lightweight auto-body based on finite element method and boundary element method

    Institute of Scientific and Technical Information of China (English)

    LIANG Xinhua; ZHU Ping; LIN Zhongqin; ZHANG Yan


    A lightweight automotive prototype using alter- native materials and gauge thickness is studied by a numeri- cal method. The noise, vibration, and harshness (NVH) performance is the main target of this study. In the range of 1-150 Hz, the frequency response function (FRF) of the body structure is calculated by a finite element method (FEM) to get the dynamic behavior of the auto-body structure. The pressure response of the interior acoustic domain is solved by a boundary element method (BEM). To find the most contrib- uting panel to the inner sound pressure, the panel acoustic contribution analysis (PACA) is performed. Finally, the most contributing panel is located and the resulting structural optimization is found to be more efficient.

  9. Acoustic Analysis and Design of the E-STA MSA Simulator (United States)

    Bittinger, Samantha A.


    The Orion European Service Module Structural Test Article (E-STA) Acoustic Test was completed in May 2016 to verify that the European Service Module (ESM) can withstand qualification acoustic environments. The test article required an aft closeout to simulate the Multi-Purpose Crew Vehicle (MPCV) Stage Adapter (MSA) cavity, however, the flight MSA design was too cost-prohibitive to build. NASA Glenn Research Center (GRC) had 6 months to design an MSA Simulator that could recreate the qualification prediction MSA cavity sound pressure level to within a reasonable tolerance. This paper summarizes the design and analysis process to arrive at a design for the MSA Simulator, and then compares its performance to the final prediction models created prior to test.

  10. Acoustic Analysis of Voice in Dysarthria following Stroke (United States)

    Wang, Yu-Tsai; Kent, Ray D.; Kent, Jane Finley; Duffy, Joseph R.; Thomas, Jack E.


    Although perceptual studies indicate the likelihood of voice disorders in persons with stroke, there have been few objective instrumental studies of voice dysfunction in dysarthria following stroke. This study reports automatic analysis of sustained vowel phonation for 61 speakers with stroke. The results show: (1) men with stroke and healthy…

  11. Hypernasal Speech Detection by Acoustic Analysis of Unvoiced Plosive Consonants

    Directory of Open Access Journals (Sweden)

    Alexander Sepúlveda-Sepúlveda


    Full Text Available People with a defective velopharyngeal mechanism speak with abnormal nasal resonance (hypernasal speech. Voice analysis methods for hypernasality detection commonly use vowels and nasalized vowels. However to obtain a more general assessment of this abnormality it is necessary to analyze stops and fricatives. This study describes a method with high generalization capability for hypernasality detection analyzing unvoiced Spanish stop consonants. The importance of phoneme-by-phoneme analysis is shown, in contrast with whole word parametrization which includes irrelevant segments from the classification point of view. Parameters that correlate the imprints of Velopharyngeal Incompetence (VPI over voiceless stop consonants were used in the feature estimation stage. Classification was carried out using a Support Vector Machine (SVM, including the Rademacher complexity model with the aim of increasing the generalization capability. Performances of 95.2% and 92.7% were obtained in the processing and verification stages for a repeated cross-validation classifier evaluation.

  12. Performance analysis of an acoustic time reversal system in dynamic and random oceanic environments (United States)

    Khosla, Sunny Rajendra

    This dissertation provides a theoretical framework along with specific performance predictions for an acoustic time reversal system in shallow oceanic environments. Acoustic time-reversal is a robust means of retrofocusing acoustic energy, in both time and space, to the original sound-source location without any information about the acoustic environment in which it is deployed. The effect of three performance limiting oceanic complexities addressed, include (i)ambient noise field, (ii)reflection and volume scattering from a deterministic soliton internal wave traveling on the thermocline between two water masses, and (iii)volume scattering from a random superposition of linear internal waves convecting a gradient in the sound speed profile. The performance analysis establishes acoustic time reversal to be a promising technology for a two-way communication system in an oceanic medium. For an omni-directional noisy environment a general formulation for the probability of retrofocusing is developed that includes the effect of the medium, accounts for the system hardware and the acoustic parameters. Monte-Carlo simulations in both, a free-space environment and a shallow-ocean sound-channel environment compare well with theory. A 41 element TRA spanning a shallow water depth of 60 m is predicted to return a 70% focal probability at -15 dB SNR for a source to array range of 6 km. Preliminary research with broadband signals suggest that they should outperform narrowband response in both free space and sound channel environments. The impact of the nonlinear solitary waves is addressed using a two-path Green's function to treat the presence of a flat thermocline, and the single scattering Born approximation to address scattering from the soliton internal wave. It is predicted that a stationary soliton located along ray turning paths between the source and the TRA can lead to both enhanced and degraded focal performance. Based on extension of previous research in wave

  13. Review and analysis of the DNW/Model 360 rotor acoustic data base (United States)

    Zinner, R. A.; Boxwell, D. A.; Spencer, R. H.


    A comprehensive model rotor aeroacoustic data base was collected in a large anechoic wind tunnel in 1986. Twenty-six microphones were positioned around the azimuth to collect acoustic data for approximately 150 different test conditions. A dynamically scaled, blade-pressure-instrumented model of the forward rotor of the BH360 helicopter simultaneously provided blade pressures for correlation with the acoustic data. High-speed impulsive noise, blade-vortex interaction noise, low-frequency noise, and broadband noise were all captured in this extensive data base. Trends are presentes for each noise source, with important parametric variations. The purpose of this paper is to introduce this data base and illustrate its potential for predictive code validation.

  14. Finite element analysis of solitary wave propagation by acoustic velocity method (United States)

    Maruoka, Akira; Uchiyama, Ichiro; Kawahara, Mutsuto


    There is discontinuity between compressible and incompressible states in fluid flows. If we subtract the thermal effect from compressible fluid flows, we obtain adiabatic fluid flows, from which incompressible fluid flows are obtained if we let the acoustic velocity tend to infinity. Thus, we employ the idea of adiabatic fluid flows to solve incompressible flows. In the computation, the physical value of the acoustic velocity is employed. This idea corresponds to an extension of artificial compressibility under physical considerations. We present the new SUPG formulation of adiabatic fluid flows, by which not only the effect of SUPG but also those of PSPG and LSIC of incompressible fluid flows are derived. After the numerical verifications, three-dimensional solitary wave propagations are computed. Close agreement between computed and experimental values is obtained.

  15. Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part I. Sensitivity

    CERN Document Server

    Magri, Luca; Juniper, Matthew


    We present an adjoint-based method for the calculation of eigenvalue perturbations in nonlinear, degenerate and non self-adjoint eigenproblems. This method is applied to a thermo-acoustic annular combustor network, the stability of which is governed by a nonlinear eigenproblem. We calculate the first- and second-order sensitivities of the growth rate and frequency to geometric, flow and flame parameters. Three different configurations are analysed. The benchmark sensitivities are obtained by finite difference, which involves solving the nonlinear eigenproblem at least as many times as the number of parameters. By solving only one adjoint eigenproblem, we obtain the sensitivities to any thermo-acoustic parameter, which match the finite-difference solutions at much lower computational cost.

  16. Analysis of the inversion monitoring capabilities of a monostatic acoustic radar in complex terrain. [Tennessee River Valley (United States)

    Koepf, D.; Frost, W.


    A qualitative interpretation of the records from a monostatic acoustic radar is presented. This is achieved with the aid of airplane, helicopter, and rawinsonde temperature soundings. The diurnal structure of a mountain valley circulation pattern is studied with the use of two acoustic radars, one located in the valley and one on the downwind ridge. The monostatic acoustic radar was found to be sufficiently accurate in locating the heights of the inversions and the mixed layer depth to warrant use by industry even in complex terrain.

  17. DOE 2009 Geothermal Risk Analysis: Methodology and Results (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Young, K. R.; Augustine, C.; Anderson, A.


    This presentation summarizes the methodology and results for a probabilistic risk analysis of research, development, and demonstration work-primarily for enhanced geothermal systems (EGS)-sponsored by the U.S. Department of Energy Geothermal Technologies Program.

  18. Data Analysis for ARRA Early Fuel Cell Market Demonstrations (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.


    Presentation about ARRA Early Fuel Cell Market Demonstrations, including an overview of the ARRE Fuel Cell Project, the National Renewable Energy Laboratory's data analysis objectives, deployment composite data products, and planned analyses.

  19. Acoustic data analysis and scenario over watch from an aerostat at the NATO SET-153 field experiment (United States)

    Reiff, Christian; Scanlon, Michael


    The purpose of the NATO SET-153 field experiment was to provide an opportunity to demonstrate multiple sensor technologies in an urban environment and determine integration capabilities for future development. The Army Research Laboratory (ARL) experimental aerostat was used primarily as a persistent over watch capability as a substitute for a UAV. Continuous video was recorded on the aerostat and segments of video were captured of the scenarios on the ground that the camera was following manually. Some of the segments showing scenario activities will be presented. The captured pictures and video frames have telemetry in the headers that provides the UTM time and the Inertial Navigation System (INS) GPS location and the inertial roll, pitch, and yaw as well as the camera gimbal pan and tilt angles. The timing is useful to synchronize the images with the scenario events providing activity ground truth. The INS, GPS, and camera gimbal angle values can be used with the acoustic solution for the location of a sound source to determine the relative accuracy of the solution if the camera is pointed at the sound source. This method will be confirmed by the use of a propane cannon whose GPS location is logged. During the field experiment, other interesting acoustic events such as vehicle convoys, platoon level firefights with vehicles using blanks, and a UAV helicopter were recorded and will be presented in a quick analysis.

  20. A note on acoustic analysis of dairy calves’ vocalizations at 1 day after separation from dam

    Directory of Open Access Journals (Sweden)

    Doo Hwan Kim


    Full Text Available The vocalizations of animals are very useful in assessing an emotional state and welfare because they involve information about various emotions. Hence, the findings of the acoustic features of vocalization can be used to improve the productivity and welfare of animals. This study was conducted to analyse the vocalizations of dairy calves separated from the dam. At 6 days after birth, 12 dairy calves were moved into an individual calf pen (3.0m×2.0m bedded with sawdust and straw. One and a half litres of whole milk were fed twice daily and free access to water was allowed. The calves’ vocalizations were divided into humming vocalizations (HVs: low continuous calls without tone changed, semi-humming vocalizations (SHVs: low continuous calls with tone changed, and general vocalizations (GVs. These vocalizations were classified, based on the shapes of waveforms and spectrograms. Differences in the duration, fundamental frequency, intensity, and formants among the classified vocalizations were found (P<0.0001. Acoustic parameters except intensity and 3rd formant were not different between HVs and SHVs. These results suggest that vocalization analysis could be a useful tool in assessing the emotions of calves. Acoustic parameters are also useful in classifying vocalizations. Also, intensity and 3rd formant are advantageous in distinguishing HVs and SHVs.

  1. 30th International Acoustical Imaging Symposium

    CERN Document Server

    Jones, Joie; Lee, Hua


    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place every two years since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2009 the 30th International Symposium on Acoustical Imaging was held in Monterey, CA, USA, March 1-4. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 30 in the Series contains an excellent collection of forty three papers presented in five major categories: Biomedical Imaging Acoustic Microscopy Non-Destructive Evaluation Systems Analysis Signal Analysis and Image Processing Audience Researchers in medical imaging and biomedical instrumentation experts.

  2. Acoustic cardiac signals analysis: a Kalman filter-based approach. (United States)

    Salleh, Sheik Hussain; Hussain, Hadrina Sheik; Swee, Tan Tian; Ting, Chee-Ming; Noor, Alias Mohd; Pipatsart, Surasak; Ali, Jalil; Yupapin, Preecha P


    Auscultation of the heart is accompanied by both electrical activity and sound. Heart auscultation provides clues to diagnose many cardiac abnormalities. Unfortunately, detection of relevant symptoms and diagnosis based on heart sound through a stethoscope is difficult. The reason GPs find this difficult is that the heart sounds are of short duration and separated from one another by less than 30 ms. In addition, the cost of false positives constitutes wasted time and emotional anxiety for both patient and GP. Many heart diseases cause changes in heart sound, waveform, and additional murmurs before other signs and symptoms appear. Heart-sound auscultation is the primary test conducted by GPs. These sounds are generated primarily by turbulent flow of blood in the heart. Analysis of heart sounds requires a quiet environment with minimum ambient noise. In order to address such issues, the technique of denoising and estimating the biomedical heart signal is proposed in this investigation. Normally, the performance of the filter naturally depends on prior information related to the statistical properties of the signal and the background noise. This paper proposes Kalman filtering for denoising statistical heart sound. The cycles of heart sounds are certain to follow first-order Gauss-Markov process. These cycles are observed with additional noise for the given measurement. The model is formulated into state-space form to enable use of a Kalman filter to estimate the clean cycles of heart sounds. The estimates obtained by Kalman filtering are optimal in mean squared sense.

  3. A Short Integrated Presentation of Valuation, Profitability and Growth Analysis

    DEFF Research Database (Denmark)

    Pettersson, Kim; Sørensen, Ole


    We demonstrate how the valuation models used in finance theory and the profitability and growth analysis taught in financial statement analysis are related. Traditional textbooks on finance and financial statement analysis are often very comprehensive, comprising a vast number of chapters. However......, the learning cost associated to this seems to be that many students are unable to understand either the interrelations between the chapters in a financial statement analysis textbook, or the origins of financial information (i.e., financial statements) in applied finance. Thus, the underlying motivation...... of this teaching note is to highlight the purpose of profitability and growth analysis in financial statement analysis by incorporating the point of value relevance in applied finance. We hope this reduced presentation of valuation and profitability and growth analysis will help students to understand...

  4. Contribution of the supraglottic larynx to the vocal product: imaging and acoustic analysis (United States)

    Gracco, L. Carol


    Horizontal supraglottic laryngectomy is a surgical procedure to remove a mass lesion located in the region of the pharynx superior to the true vocal folds. In contrast to full or partial laryngectomy, patients who undergo horizontal supraglottic laryngectomy often present with little or nor involvement to the true vocal folds. This population provides an opportunity to examine the acoustic consequences of altering the pharynx while sparing the laryngeal sound source. Acoustic and magnetic resonance imaging (MRI) data were acquired in a group of four patients before and after supraglottic laryngectomy. Acoustic measures included the identification of vocal tract resonances and the fundamental frequency of the vocal fold vibration. 3D reconstruction of the pharyngeal portion of each subjects' vocal tract were made from MRIs taken during phonation and volume measures were obtained. These measures reveal a variable, but often dramatic difference in the surgically-altered area of the pharynx and changes in the formant frequencies of the vowel/i/post surgically. In some cases the presence of the tumor created a deviation from the expected formant values pre-operatively with post-operative values approaching normal. Patients who also underwent radiation treatment post surgically tended to have greater constriction in the pharyngeal area of the vocal tract.

  5. Evaluation of correlation between chemical dosimetry and subharmonic spectrum analysis to examine the acoustic cavitation. (United States)

    Hasanzadeh, Hadi; Mokhtari-Dizaji, Manijhe; Bathaie, S Zahra; Hassan, Zuhair M


    Currently several therapeutic applications of ultrasound in cancer treatment are under progress which uses cavitation phenomena to deliver their effects. There are several methods to evaluate cavitation activity such as chemical dosimetry and measurement of subharmonic signals. In this study, the cavitation activity induced by the ultrasound irradiation on exposure parameters has been measured by terephthalic acid chemical dosimetry and subharmonic analysis. Experiments were performed in the near 1 MHz fields in the progressive wave mode and effect of duty cycles changes with 2 W/cm(2) intensity (I(SATA)) and acoustic intensity changes in continuous mode on both fluorescence intensity and subharmonic intensity were measured. The dependence between fluorescence intensity of terephthalic acid chemical dosimetry and subharmonic intensity analysis were analyzed by Pearson correlation (p-value subharmonic intensity and the fluorescence intensity for continuous mode is higher than for pulsing mode (p-value subharmonic intensity and the fluorescence intensity with sonication intensity (p-value subharmonic intensity at different duty cycles (R=0.997, p-value subharmonic intensity (microW/cm(2)) significantly correlated with the fluorescence intensity (count) (R=0.901; psubharmonic intensity due to subharmonic spectrum analysis. It is concluded that there is dependence between terephthalic acid chemical dosimetry and subharmonic spectrum analysis to examine the acoustic cavitation activity.

  6. Acoustic and temporal analysis of speech: A potential biomarker for schizophrenia.

    LENUS (Irish Health Repository)

    Rapcan, Viliam


    Currently, there are no established objective biomarkers for the diagnosis or monitoring of schizophrenia. It has been previously reported that there are notable qualitative differences in the speech of schizophrenics. The objective of this study was to determine whether a quantitative acoustic and temporal analysis of speech may be a potential biomarker for schizophrenia. In this study, 39 schizophrenic patients and 18 controls were digitally recorded reading aloud an emotionally neutral text passage from a children\\'s story. Temporal, energy and vocal pitch features were automatically extracted from the recordings. A classifier based on linear discriminant analysis was employed to differentiate between controls and schizophrenic subjects. Processing the recordings with the algorithm developed demonstrated that it is possible to differentiate schizophrenic patients and controls with a classification accuracy of 79.4% (specificity=83.6%, sensitivity=75.2%) based on speech pause related parameters extracted from recordings carried out in standard office (non-studio) environments. Acoustic and temporal analysis of speech may represent a potential tool for the objective analysis in schizophrenia.

  7. Guidelines for numerical vibration and acoustic analysis of disc brake squeal using simple models of brake systems (United States)

    Oberst, S.; Lai, J. C. S.; Marburg, S.


    Brake squeal has become of increasing concern to the automotive industry but guidelines on how to confidently predict squeal propensity are yet to be established. While it is standard practice to use the complex eigenvalue analysis to predict unstable vibration modes, there have been few attempts to calculate their acoustic radiation. Here guidelines are developed for numerical vibration and acoustic analysis of brake squeal using models of simplified brake systems with friction contact by considering (1) the selection of appropriate elements, contact and mesh; (2) the extraction of surface velocities via forced response; and (3) the calculation of the acoustic response itself. Results indicate that quadratic tetrahedral elements offer the best option for meshing more realistic geometry. A mesh has to be sufficiently fine especially in the contact region to predict mesh-independent unstable vibration modes. Regarding the vibration response, only the direct, steady-state method with a pressurised pad and finite sliding formulation (allowing contact separation) should be used. Comparison of different numerical methods suggest that a obroadband fast multi-pole boundary element method with the Burton-Miller formulation would efficiently solve the acoustic radiation of a full brake system. Results also suggest that a pad lift-off can amplify the acoustic radiation similar to a horn effect. A horn effect is also observed for chamfered pads which are used in practice to reduce the number and strength of unstable vibration modes. These results highlight the importance of optimising the pad shape to reduce acoustic radiation of unstable vibration modes.

  8. Acoustics of the piezo-electric pressure probe (United States)

    Dutt, G. S.


    Acoustical properties of a piezoelectric device are reported for measuring the pressure in the plasma flow from an MPD arc. A description and analysis of the acoustical behavior in a piezoelectric probe is presented for impedance matching and damping. The experimental results are presented in a set of oscillographic records.

  9. Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part II. Uncertainty quantification

    CERN Document Server

    Magri, Luca; Nicoud, Franck; Juniper, Matthew


    Monte Carlo and Active Subspace Identification methods are combined with first- and second-order adjoint sensitivities to perform (forward) uncertainty quantification analysis of the thermo-acoustic stability of two annular combustor configurations. This method is applied to evaluate the risk factor, i.e., the probability for the system to be unstable. It is shown that the adjoint approach reduces the number of nonlinear-eigenproblem calculations by up to $\\sim\\mathcal{O}(M)$, as many as the Monte Carlo samples.

  10. Energy based prediction models for building acoustics

    DEFF Research Database (Denmark)

    Brunskog, Jonas


    In order to reach robust and simplified yet accurate prediction models, energy based principle are commonly used in many fields of acoustics, especially in building acoustics. This includes simple energy flow models, the framework of statistical energy analysis (SEA) as well as more elaborated...... principles as, e.g., wave intensity analysis (WIA). The European standards for building acoustic predictions, the EN 12354 series, are based on energy flow and SEA principles. In the present paper, different energy based prediction models are discussed and critically reviewed. Special attention is placed...

  11. African Primary Care Research: quantitative analysis and presentation of results. (United States)

    Mash, Bob; Ogunbanjo, Gboyega A


    This article is part of a series on Primary Care Research Methods. The article describes types of continuous and categorical data, how to capture data in a spreadsheet, how to use descriptive and inferential statistics and, finally, gives advice on how to present the results in text, figures and tables. The article intends to help Master's level students with writing the data analysis section of their research proposal and presenting their results in their final research report.

  12. African Primary Care Research: Quantitative analysis and presentation of results

    Directory of Open Access Journals (Sweden)

    Bob Mash


    Full Text Available This article is part of a series on Primary Care Research Methods. The article describes types of continuous and categorical data, how to capture data in a spreadsheet, how to use descriptive and inferential statistics and, finally, gives advice on how to present the results in text, figures and tables. The article intends to help Master’s level students with writing the data analysis section of their research proposal and presenting their results in their final research report.

  13. Acoustic elliptical cylindrical cloaks

    Institute of Scientific and Technical Information of China (English)

    Ma Hua; Qu Shao-Bo; Xu Zhuo; Wang Jia-Fu


    By making a comparison between the acoustic equations and the 2-dimensional (2D) Maxwell equations, we obtain the material parameter equations (MPE) for acoustic elliptical cylindrical cloaks. Both the theoretical results and the numerical results indicate that an elliptical cylindrical cloak can realize perfect acoustic invisibility when the spatial distributions of mass density and bulk modulus are exactly configured according to the proposed equations. The present work is the meaningful exploration of designing acoustic cloaks that are neither sphere nor circular cylinder in shape, and opens up possibilities for making complex and multiplex acoustic cloaks with simple models such as spheres, circular or elliptic cylinders.

  14. Design and analysis of the trapeziform and flat acoustic cloaks with controllable invisibility performance in a quasi-space

    Directory of Open Access Journals (Sweden)

    Jian Zhu


    Full Text Available We present the design, implementation and detailed performance analysis for a class of trapeziform and flat acoustic cloaks. An effective large invisible area is obtained compared with the traditional carpet cloak. The cloaks are realized with homogeneous metamaterials which are made of periodic arrangements of subwavelength unit cells composed of steel embedded in air. The microstructures and its effective parameters of the cloaks are determined quickly and precisely in a broadband frequency range by using the effective medium theory and the proposed parameters optimization method. The invisibility capability of the cloaks can be controlled by the variation of the key design parameters and scale factor which are proved to have more influence on the performance in the near field than that in the far field. Different designs are suitable for different application situations. Good cloaking performance demonstrates that such a device can be physically realized with natural materials which will greatly promote the real applications of invisibility cloak.

  15. Global Analysis of Helicity PDFs: past - present - future

    Energy Technology Data Exchange (ETDEWEB)

    de Florian, D.; Stratmann, M.; Sassot, R.; Vogelsang, W.


    We discuss the current status of the DSSV global analysis of helicity-dependent parton densities. A comparison with recent semi-inclusive DIS data from COMPASS is presented, and constraints on the polarized strangeness density are examined in some detail.

  16. Wargaming and Analysis. Presentation for MORS Special Meeting (United States)


    Meeting 5c. PROGRAM ELEMENT NUMBER 0605154N 6. AUTHOR(S) 5d. PROJECT NUMBER R0148 Perla , Peter 5e. TASK NUMBER McGrady, Ed 5f. WORK UNIT NUMBER 7...6966.Al /Final October 2007 Wargamning and Analysis Presentation for MORS Special Meeting Peter Perla o Ed McGrady 20080108142 482 MrCeter Drive

  17. High school students presenting science: An interactional sociolinguistic analysis (United States)

    Bleicher, Robert

    Presenting science is an authentic activity of practicing scientists. Thus, effective communication of science is an important skill to nurture in high school students who are learning science. This study examines strategies employed by high school students as they make science presentations; it assesses students' conceptual understandings of particular science topics through their presentations and investigates gender differences. Data are derived from science presentation given by eight high school students, three females and five males who attended a summer science program. Data sources included videotaped presentations, ethnographic fieldnotes, interviews with presenters and members of the audience, and presenter notes and overheads. Presentations were transcribed and submitted to discourse analysis from an interactional sociolinguistic perspective. This article focuses on the methodology employed and how it helps inform the above research questions. The author argues that use of this methodology leads to findings that inform important social-communicative issues in the learning of science. Practical advice for teaching students to present science, implications for use of presentations to assess conceptual learning, and indications of some possible gender differences are discussed.Received: 14 April 1993; Revised: 15 February 1994;

  18. [Processing acoustically presented time intervals of seconds duration: an expression of the phonological loop of the working memory?]. (United States)

    Grube, D


    Working memory has been proposed to contribute to the processing of time, rhythm and music; the question which component of working memory is involved is under discussion. The present study tests the hypothesis that the phonological loop component (Baddeley, 1986) is involved in the processing of auditorily presented time intervals of a few seconds' duration. Typical effects well known with short-term retention of verbal material could be replicated with short-term retention of temporal intervals: The immediate reproduction of time intervals was impaired under conditions of background music and articulatory suppression. Neither the accuracy nor the speed of responses in a (non-phonological) mental rotation task were diminished under these conditions. Processing of auditorily presented time intervals seems to be constrained by the capacity of the phonological loop: The immediate serial recall of sequences of time intervals was shown to be related to the immediate serial recall of words (memory span). The results confirm the notion that working memory resources, and especially the phonological loop component, underlie the processing of auditorily presented temporal information with a duration of a few seconds.

  19. Acoustic absorption by sunspots (United States)

    Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.


    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.

  20. A mixing surface acoustic wave device for liquid sensing applications: Design, simulation, and analysis (United States)

    Bui, ThuHang; Morana, Bruno; Scholtes, Tom; Chu Duc, Trinh; Sarro, Pasqualina M.


    This work presents the mixing wave generation of a novel surface acoustic wave (M-SAW) device for sensing in liquids. Two structures are investigated: One including two input and output interdigital transducer (IDT) layers and the other including two input and one output IDT layers. In both cases, a thin (1 μm) piezoelectric AlN layer is in between the two patterned IDT layers. These structures generate longitudinal and transverse acoustic waves with opposite phase which are separated by the film thickness. A 3-dimensional M-SAW device coupled to the finite element method is designed to study the mixing acoustic wave generation propagating through a delay line. The investigated configuration parameters include the number of finger pairs, the piezoelectric cut profile, the thickness of the piezoelectric substrate, and the operating frequency. The proposed structures are evaluated and compared with the conventional SAW structure with the single IDT layer patterned on the piezoelectric surface. The wave displacement along the propagation path is used to evaluate the amplitude field of the mixing longitudinal waves. The wave displacement along the AlN depth is used to investigate the effect of the bottom IDT layer on the transverse component generated by the top IDT layer. The corresponding frequency response, both in simulations and experiments, is an additive function, consisting of sinc(X) and uniform harmonics. The M-SAW devices are tested to assess their potential for liquid sensing, by dropping liquid medium in volumes between 0.05 and 0.13 μl on the propagation path. The interaction with the liquid medium provides information about the liquid, based on the phase attenuation change. The larger the droplet volume is, the longer the duration of the phase shift to reach stability is. The resolution that the output change of the sensor can measure is 0.03 μl.

  1. Nondeterministic wave-based methods for low- and mid-frequency response analysis of acoustic field with limited information (United States)

    Xia, Baizhan; Yin, Hui; Yu, Dejie


    The response of the acoustic field, especially for the mid-frequency response, is very sensitive to uncertainties rising from manufacturing/construction tolerances, aggressive environmental factors and unpredictable excitations. To quantify these uncertainties with limited information effectively, two nondeterministic models (the interval model and the hybrid probability-interval model) are introduced. And then, two corresponding nondeterministic numerical methods are developed for the low- and mid-frequency response analysis of the acoustic field under these two nondeterministic models. The first one is the interval perturbation wave-based method (IPWBM) which is proposed to predict the maximal values of the low- and mid-frequency responses of the acoustic field under the interval model. The second one is the hybrid perturbation wave-based method (HPWBM) which is proposed to predict the maximal values of expectations and standard variances of the low- and mid-frequency responses of the acoustic field under the hybrid probability-interval model. The effectiveness and efficiency of the proposed nondeterministic numerical methods for the low- and mid-frequency response analysis of the acoustic field under the interval model and the hybrid probability-interval model are investigated by a numerical example.

  2. Systems analysis of past, present, and future chemical terrorism scenarios.

    Energy Technology Data Exchange (ETDEWEB)

    Hoette, Trisha Marie


    Throughout history, as new chemical threats arose, strategies for the defense against chemical attacks have also evolved. As a part of an Early Career Laboratory Directed Research and Development project, a systems analysis of past, present, and future chemical terrorism scenarios was performed to understand how the chemical threats and attack strategies change over time. For the analysis, the difficulty in executing chemical attack was evaluated within a framework of three major scenario elements. First, historical examples of chemical terrorism were examined to determine how the use of chemical threats, versus other weapons, contributed to the successful execution of the attack. Using the same framework, the future of chemical terrorism was assessed with respect to the impact of globalization and new technologies. Finally, the efficacy of the current defenses against contemporary chemical terrorism was considered briefly. The results of this analysis justify the need for continued diligence in chemical defense.

  3. Auto-identification of engine fault acoustic signal through inverse trigonometric instantaneous frequency analysis

    Directory of Open Access Journals (Sweden)

    Dayong Ning


    Full Text Available The acoustic signals of internal combustion engines contain valuable information about the condition of engines. These signals can be used to detect incipient faults in engines. However, these signals are complex and composed of a faulty component and other noise signals of background. As such, engine conditions’ characteristics are difficult to extract through wavelet transformation and acoustic emission techniques. In this study, an instantaneous frequency analysis method was proposed. A new time–frequency model was constructed using a fixed amplitude and a variable cycle sine function to fit adjacent points gradually from a time domain signal. The instantaneous frequency corresponds to single value at any time. This study also introduced instantaneous frequency calculation on the basis of an inverse trigonometric fitting method at any time. The mean value of all local maximum values was then considered to identify the engine condition automatically. Results revealed that the mean of local maximum values under faulty conditions differs from the normal mean. An experiment case was also conducted to illustrate the availability of the proposed method. Using the proposed time–frequency model, we can identify engine condition and determine abnormal sound produced by faulty engines.

  4. Gamma knife radiosurgery for acoustic neurinomas. Pt. 2. The analysis of functional outcome

    Energy Technology Data Exchange (ETDEWEB)

    Fukuoka, Seiji; Takanashi, Masami; Seo, Yoshinobu [Nakamura Memorial Hospital, Sapporo (Japan)] [and others


    Forty-three patients with the unilateral type of acoustic neurinoma treated by gamma knife radiosurgery were evaluated from the viewpoint of functional preservation of cranial nerves and complications. The follow-up period ranged from 22 to 55 months (mean 36 months). The tumors, which ranged in volume from 0.1 to 18.7 ml (mean 4.0 ml), were treated with marginal radiation doses of 9-15 Gy (mean 13.4 Gy) with multiple isocenters (mean 8.7). Functional hearing was preserved in 80% of patients, and actuarial hearing preservation rates were 83% at 1 year, 77% at 2 years, and 77% at 3 years after gamma knife radiosurgery. No factor was found to correlate with hearing deterioration using Cox`s proportional hazards regression model. Transient facial and trigeminal neuropathies occurred in 2.3% and 4.7% of patients, respectively. Ten patients (23%) experienced transient dizziness 3 to 6 months after radiosurgery, but only preradiosurgery canal palsy was found to correlate with this using multiple regression analysis (p=0.02). Three patients developed communicating hydrocephalus, which may have been due to the high cerebrospinal fluid protein concentration (mean 149 mg/dl). Our results show that gamma knife radiosurgery should be considered as alternative therapy for patients with small-to medium-sized acoustic neurinomas, especially in those with functional hearing, due to the high cranial nerve function preservation rates achieved with this procedure. (author)

  5. Experimental analysis of crack evolution in concrete by the acoustic emission technique

    Directory of Open Access Journals (Sweden)

    J. Saliba


    Full Text Available The fracture process zone (FPZ was investigated on unnotched and notched beams with different notch depths. Three point bending tests were realized on plain concrete under crack mouth opening displacement (CMOD control. Crack growth was monitored by applying the acoustic emission (AE technique. In order to improve our understanding of the FPZ, the width and length of the FPZ were followed based on the AE source locations maps and several AE parameters were studied during the entire loading process. The bvalue analysis, defined as the log-linear slope of the frequency-magnitude distribution of acoustic emissions, was also carried out to describe quantitatively the influence of the relative notch depth on the fracture process. The results show that the number of AE hits increased with the decrease of the relative notch depth and an important AE energy dissipation was observed at the crack initiation in unnotched beams. In addition, the relative notch depth influenced the AE characteristics, the process of crack propagation, and the brittleness of concrete.

  6. An Improved Variable Structure Adaptive Filter Design and Analysis for Acoustic Echo Cancellation

    Directory of Open Access Journals (Sweden)

    A. Kar


    Full Text Available In this research an advance variable structure adaptive Multiple Sub-Filters (MSF based algorithm for single channel Acoustic Echo Cancellation (AEC is proposed and analyzed. This work suggests a new and improved direction to find the optimum tap-length of adaptive filter employed for AEC. The structure adaptation, supported by a tap-length based weight update approach helps the designed echo canceller to maintain a trade-off between the Mean Square Error (MSE and time taken to attain the steady state MSE. The work done in this paper focuses on replacing the fixed length sub-filters in existing MSF based AEC algorithms which brings refinements in terms of convergence, steady state error and tracking over the single long filter, different error and common error algorithms. A dynamic structure selective coefficient update approach to reduce the structural and computational cost of adaptive design is discussed in context with the proposed algorithm. Simulated results reveal a comparative performance analysis over proposed variable structure multiple sub-filters designs and existing fixed tap-length sub-filters based acoustic echo cancellers.

  7. Acoustic multivariate condition monitoring - AMCM

    Energy Technology Data Exchange (ETDEWEB)

    Rosenhave, P.E. [Vestfold College, Maritime Dept., Toensberg (Norway)


    In Norway, Vestfold College, Maritime Department presents new opportunities for non-invasive, on- or off-line acoustic monitoring of rotating machinery such as off-shore pumps and diesel engines. New developments within acoustic sensor technology coupled with chemometric data analysis of complex signals now allow condition monitoring of hitherto unavailable flexibility and diagnostic specificity. Chemometrics paired with existing knowledge yields a new and powerful tool for condition monitoring. By the use of multivariate techniques and acoustics it is possible to quantify wear and tear as well as predict the performance of working components in complex machinery. This presentation describes the AMCM method and one result of a feasibility study conducted onboard the LPG/C `Norgas Mariner` owned by Norwegian Gas Carriers as (NGC), Oslo. (orig.) 6 refs.

  8. Acoustics in mechanical engineering undergraduate core courses: Challenges and opportunities (United States)

    Prasad, M. G.


    Generally in an undergraduate curriculum of mechanical engineering, acoustics is not included as a core course. The major core courses deal with mechanics, design, dynamics of machinery, etc. However, engineering aspects of acoustics or noise can be included through elective courses. Given the limited slots for elective courses in a curriculum, it is difficult to run elective courses in acoustics regularly with a required number of students. The challenge is to find innovative ways to include acoustics into core courses so that all students are exposed to the field and its applications. The design and analysis of machine elements such as cams, gears, etc. are always part of core courses. It is in these contexts that the acoustics through noise aspects including multimedia can be introduced. Acoustics as an effect due to vibration as cause can be included in vibration analysis. A core course on system modeling can include acoustics. The integration of acoustical topics not only strengthens the core courses but also prepares the graduating engineer to deal with real problems better. Thus, it is important for academic acousticians to bring acoustics into the core courses. This paper presents some efforts to include the acoustics material in some core courses.

  9. Laboratory test and acoustic analysis of cabin treatment for propfan test assessment aircraft (United States)

    Kuntz, H. L.; Gatineau, R. J.


    An aircraft cabin acoustic enclosure, built in support of the Propfan Test Assessment (PTA) program, is described. Helmholtz resonators were attached to the cabin trim panels to increase the sidewall transmission loss (TL). Resonators (448) were located between the trim panels and fuselage shell. In addition, 152 resonators were placed between the enclosure and aircraft floors. The 600 resonators were each tuned to a 235 Hz resonance frequency. After flight testing on the PTA aircraft, the enclosure was tested in the Kelly Johnson R and D Center Acoustics Lab. Laboratory noise reduction (NR) test results are discussed. The enclosure was placed in a Gulfstream 2 fuselage section. Broadband (138 dB overall SPL) and tonal (149 dB overall SPL) excitations were used in the lab. Tonal excitation simulated the propfan flight test excitation. The fundamental tone was stepped in 2 Hz intervals from 225 through 245 Hz. The resonators increase the NR of the cabin walls around the resonance frequency of the resonator array. The effects of flanking, sidewall absorption, cabin adsorption, resonator loading of trim panels, and panel vibrations are presented. Increases in NR of up to 11 dB were measured.

  10. Monitoring and Failure Analysis of Corroded Bridge Cables under Fatigue Loading Using Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Hui Li


    Full Text Available Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index.

  11. Monitoring and failure analysis of corroded bridge cables under fatigue loading using acoustic emission sensors. (United States)

    Li, Dongsheng; Ou, Jinping; Lan, Chengming; Li, Hui


    Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE) technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index.

  12. Vibro-acoustic modelling of aircraft double-walls with structural links using Statistical Energy Analysis (United States)

    Campolina, Bruno L.

    The prediction of aircraft interior noise involves the vibroacoustic modelling of the fuselage with noise control treatments. This structure is composed of a stiffened metallic or composite panel, lined with a thermal and acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a commercial lining panel (trim). The goal of this work aims at tailoring the noise control treatments taking design constraints such as weight and space optimization into account. For this purpose, a representative aircraft double-wall is modelled using the Statistical Energy Analysis (SEA) method. Laboratory excitations such as diffuse acoustic field and point force are addressed and trends are derived for applications under in-flight conditions, considering turbulent boundary layer excitation. The effect of the porous layer compression is firstly addressed. In aeronautical applications, compression can result from the installation of equipment and cables. It is studied analytically and experimentally, using a single panel and a fibrous uniformly compressed over 100% of its surface. When compression increases, a degradation of the transmission loss up to 5 dB for a 50% compression of the porous thickness is observed mainly in the mid-frequency range (around 800 Hz). However, for realistic cases, the effect should be reduced since the compression rate is lower and compression occurs locally. Then the transmission through structural connections between panels is addressed using a four-pole approach that links the force-velocity pair at each side of the connection. The modelling integrates experimental dynamic stiffness of isolators, derived using an adapted test rig. The structural transmission is then experimentally validated and included in the double-wall SEA model as an equivalent coupling loss factor (CLF) between panels. The tested structures being flat, only axial transmission is addressed. Finally, the dominant sound transmission paths are

  13. Advanced Active Acoustics Lab (AAAL) (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  14. Prediction and Measurement of the Vibration and Acoustic Radiation of Panels Subjected to Acoustic Loading (United States)

    Turner, Travis L.; Rizzi, Stephen A.


    Interior noise and sonic fatigue are important issues in the development and design of advanced subsonic and supersonic aircraft. Conventional aircraft typically employ passive treatments, such as constrained layer damping and acoustic absorption materials, to reduce the structural response and resulting acoustic levels in the aircraft interior. These techniques require significant addition of mass and only attenuate relatively high frequency noise transmitted through the fuselage. Although structural acoustic coupling is in general very important in the study of aircraft fuselage interior noise, analysis of noise transmission through a panel supported in an infinite rigid baffle (separating two semi-infinite acoustic domains) can be useful in evaluating the effects of active/adaptive materials, complex loading, etc. Recent work has been aimed at developing adaptive and/or active methods of controlling the structural acoustic response of panels to reduce the transmitted noise1. A finite element formulation was recently developed to study the dynamic response of shape memory alloy (SMA) hybrid composite panels (conventional composite panel with embedded SMA fibers) subject to combined acoustic and thermal loads2. Further analysis has been performed to predict the far-field acoustic radiation using the finite element dynamic panel response prediction3. The purpose of the present work is to validate the panel vibration and acoustic radiation prediction methods with baseline experimental results obtained from an isotropic panel, without the effect of SMA.

  15. Possibilities of Railway Development in Lithuania: the Analysis of Regulations for Railway Design in the Aspect of Reduction of Acoustic Noise

    Directory of Open Access Journals (Sweden)

    Aja Tumavičė


    Full Text Available All over the world railways are of the least-polluting vehicles, and they became increasingly popular. However, the noise emission from railway infrastructure is the most problematic issue, especially at the development planning stage. This article presents analysis of Lithuanian regulations for railway design in the aspect of reduction of acoustic noise. It analyses regulations, which are mandatory for Lithuanian railway designers and builders. In addition, the overview of regulations’provisions, which are related to noise mitigation measures, are presented.

  16. Theory for the Acoustic Raman Modes of Proteins

    CERN Document Server

    DeWolf, Timothy


    We present a theoretical analysis that associates the resonances of extraordinary acoustic Raman (EAR) spectroscopy [Wheaton et al., Nat Photon 9, 68 (2015)] with the collective modes of proteins. The theory uses the anisotropic elastic network model to find the protein acoustic modes, and calculates Raman intensity by treating the protein as a polarizable ellipsoid. Reasonable agreement is found between EAR spectra and our theory. Protein acoustic modes have been extensively studied theoretically to assess the role they play in protein function; this result suggests EAR as a new experimental tool for studies of protein acoustic modes.

  17. Testing of containers made of glass-fiber reinforced plastic with the aid of acoustic emission analysis (United States)

    Wolitz, K.; Brockmann, W.; Fischer, T.


    Acoustic emission analysis as a quasi-nondestructive test method makes it possible to differentiate clearly, in judging the total behavior of fiber-reinforced plastic composites, between critical failure modes (in the case of unidirectional composites fiber fractures) and non-critical failure modes (delamination processes or matrix fractures). A particular advantage is that, for varying pressure demands on the composites, the emitted acoustic pulses can be analyzed with regard to their amplitude distribution. In addition, definite indications as to how the damages occurred can be obtained from the time curves of the emitted acoustic pulses as well as from the particular frequency spectrum. Distinct analogies can be drawn between the various analytical methods with respect to whether the failure modes can be classified as critical or non-critical.

  18. Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.


    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  19. Analysis of the acoustic climate of a spa park using the fuzzy set theory (United States)

    Sztubecka, Małgorzata; Sztubecki, Jacek


    The paper describes the differences between the actual results of the measurement of equivalent sound level and the feelings of people visiting "a Spa Park". Noise, as one of the environmental pollutants, cause detrimental effects on the recipient. Measurements of noise are usually performed in urban areas, especially in the road environments, providing a basis for measures to limit their impact on the environment. Often in the measurement there are ignored areas for recreation. Usually, they do not determine the relationship between the results of measurements of noise equivalent sound level and the individual feelings of the people living in these areas. The analysis was performed with the use of fuzzy set theory. The evaluation of the acoustic climate on the "Spa Park" should be determined on the basis of sound level measurements and questionnaires.

  20. Characteristic analysis of underwater acoustic scattering echoes in the wavelet transform domain (United States)

    Yang, Mei; Li, Xiukun; Yang, Yang; Meng, Xiangxia


    Underwater acoustic scattering echoes have time-space structures and are aliasing in time and frequency domains. Different series of echoes properties are not identified when incident angle is unknown. This article investigates variations in target echoes of monostatic sonar to address this problem. The mother wavelet with similar structures has been proposed on the basis of preprocessing signal waveform using matched filter, and the theoretical expressions between delay factor and incident angle are derived in the wavelet domain. Analysis of simulation data and experimental results in free-field pool show that this method can effectively separate geometrical scattering components of target echoes. The time delay estimation obtained from geometrical echoes at a single angle is consistent with target geometrical features, which provides a basis for object recognition without angle information. The findings provide valuable insights for analyzing elastic scattering echoes in actual ocean environment.

  1. Finite element approach analysis for characteristics of electromagnetic acoustic Lamb wave (United States)

    Chen, Xiaoming; Li, Songsong


    The electromagnetic acoustic Lamb wave, with the advantages of quickly detecting the defect and sensitivity to the defects, is widely used in non-destructive testing of thin sheet. In this paper, the directivity of sound field, Phase velocity, group velocity and particle displacement amplitude of Lamb wave are study based on finite element analysis method. The results show that, for 1mm aluminum, when the excitation frequency 0.64MHz, the displacement amplitude of A0 mode is minimum, and the displacement amplitude S0 mode is largest. Appropriate to increase the displacement amplitude of a mode, while reducing displacement amplitude of another mode, to achieve the excitation of a single mode Lamb wave. It is helpful to the Optimization of transducer parameters, the choice of Lamb wave modes and providing optimal excitation frequency.

  2. Acoustic Signals and Systems

    DEFF Research Database (Denmark)


    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...

  3. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Mohd, Shukri [Nondestructive Testing Group, Industrial Technology Division, Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Holford, Karen M.; Pullin, Rhys [Cardiff School of Engineering, Cardiff University, Queen' s Buildings, The Parade, CARDIFF CF24 3AA (United Kingdom)


    Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.

  4. Analysis of intracranial pressure: past, present, and future. (United States)

    Di Ieva, Antonio; Schmitz, Erika M; Cusimano, Michael D


    The monitoring of intracranial pressure (ICP) is an important tool in medicine for its ability to portray the brain's compliance status. The bedside monitor displays the ICP waveform and intermittent mean values to guide physicians in the management of patients, particularly those having sustained a traumatic brain injury. Researchers in the fields of engineering and physics have investigated various mathematical analysis techniques applicable to the waveform in order to extract additional diagnostic and prognostic information, although they largely remain limited to research applications. The purpose of this review is to present the current techniques used to monitor and interpret ICP and explore the potential of using advanced mathematical techniques to provide information about system perturbations from states of homeostasis. We discuss the limits of each proposed technique and we propose that nonlinear analysis could be a reliable approach to describe ICP signals over time, with the fractal dimension as a potential predictive clinically meaningful biomarker. Our goal is to stimulate translational research that can move modern analysis of ICP using these techniques into widespread practical use, and to investigate to the clinical utility of a tool capable of simplifying multiple variables obtained from various sensors.

  5. Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions (United States)

    Strutzenberg, Louise L.; Liever, Peter A.


    This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.

  6. Influence of input acoustic power on regenerator's performance

    Institute of Scientific and Technical Information of China (English)


    Performance of a pulse tube cooler significantly depends on the efficient operation of its regenerator. Influence of input acoustic power on regenerator's performance is simulated and analyzed with simple harmonic analysis method. Given regenerator's dimensions and pressure ratio, there is an optimal input acoustic power for achieving a highest coefficient of performance, due to a compromise between relative time-averaged total energy flux in regenerator and relative acoustic power at regenerator's cold end. Additionally, optimal dimensions of regenerator are also estimated and presented for different input acoustic powers. The computed optimal diameter obviously increases with increase of input acoustic power, while the optimal length decreases slightly,and as a result, a larger input acoustic power requires a smaller aspect ratio (length over diameter).

  7. GPU performance analysis of a nodal discontinuous Galerkin method for acoustic and elastic models

    CERN Document Server

    Modave, Axel; Warburton, Tim


    Finite element schemes based on discontinuous Galerkin methods possess features amenable to massively parallel computing accelerated with general purpose graphics processing units (GPUs). However, the computational performance of such schemes strongly depends on their implementation. In the past, several implementation strategies have been proposed. They are based exclusively on specialized compute kernels tuned for each operation, or they can leverage BLAS libraries that provide optimized routines for basic linear algebra operations. In this paper, we present and analyze up-to-date performance results for different implementations, tested in a unified framework on a single NVIDIA GTX980 GPU. We show that specialized kernels written with a one-node-per-thread strategy are competitive for polynomial bases up to the fifth and seventh degrees for acoustic and elastic models, respectively. For higher degrees, a strategy that makes use of the NVIDIA cuBLAS library provides better results, able to reach a net arith...

  8. Analysis of structural - acoustic coupling of elastic rectangular enclosure with arbitrary boundary conditions

    Institute of Scientific and Technical Information of China (English)


    The structural acoustic coupling characteristics of a rectangular enclosure consisting of two elastic supported flexible plates and four rigid plates are analyzed. A general formulation considering the full coupling between the plates and cavity is developed by using Hamiltonian function and Rayleigh-Ritz method. By means of continuous distributions of artificial springs along boundary of flexible plates, a wide variety of boundary conditions and structure joint conditions are considered. To demonstrate the validity of the analytical model,the responses of sound pressure in the cavity and plate velocity are worked out. The analytical results coincides well with Kim's experimental results. The result is satisfactory. Finally, analytical results on the structure vibration and the sound field inside the cavity are presented.These results indicate that the coupling of the combined structure is relatively weak, so the internal cavity sound is controlled by plate directly excited,and the translational stiffness affects the sound more than the rotational stiffness does.

  9. Analysis of acoustic scattering from fluid bodies using a multipoint source model. (United States)

    Boag, A; Leviatan, Y


    A moment-method solution is presented for the problem of acoustic scattering from homogeneous fluid bodies. It uses fictitious isotropic point sources to simulate both the field scattered by the body and the field inside the body and, in turn, point-matches the continuity conditions for the normal component of the velocity and for the pressure across the surface of the body. The procedure is simple to execute and is general in that bodies of arbitrary smooth shape can be handled effectively. Perfectly rigid bodies are treated as reduced cases of the general procedure. Results are given and compared with available analytic solutions, which demonstrate the very good performance of the procedure.

  10. Presentation Anxiety Analysis: Comparing Face-to-Face Presentations and Webinars (United States)

    Campbell, Scott


    This study is an exploration in the changing landscape of how people deliver presentations in an attempt to determine the advantages and disadvantages of both forms. The study focused on key differences of student expectations and experiences delivering a presentation to an audience in the same location (face-to-face) compared to a presentation…

  11. Prediction and validation of high frequency vibration repsonses of NASA Mars Pathfinder spacecraft due to acoustic launch load using statistical energy analysis (United States)

    Hwang, H. J.


    Mid and high frequency structural responses of a spacecraft during the launch condition are mainly dominated by the intense acoustic pressure field over the exterior of the launch vehicle. The prediction of structural responses due to the acoustic launch load is therefore an important analysis for engineers and scientists to correctly define various dynamics specifications of the spacecraft.

  12. Reproducible Data Processing Research for the CABRI R.I.A. experiments Acoustic Emission signal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pantera, Laurent [CEA, DEN, CAD/DER/SRES/LPRE, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Issiaka Traore, Oumar [Laboratory of Machanics and Acoustics (LMA) CNRS, 13402 Marseille (France)


    The CABRI facility is an experimental nuclear reactor of the French Atomic Energy Commission (CEA) designed to study the behaviour of fuel rods at high burnup under Reactivity Initiated Accident (R.I.A.) conditions such as the scenario of a control rod ejection. During the experimental phase, the behaviour of the fuel element generates acoustic waves which can be detected by two microphones placed upstream and downstream from the test device. Studies carried out on the last fourteen tests showed the interest in carrying out temporal and spectral analyses on these signals by showing the existence of signatures which can be correlated with physical phenomena. We want presently to return to this rich data in order to have a new point of view by applying modern signal processing methods. Such an antecedent works resumption leads to some difficulties. Although all the raw data are accessible in the form of text files, analyses and graphics representations were not clear in reproducing from the former studies since the people who were in charge of the original work have left the laboratory and it is not easy when time passes, even with our own work, to be able to remember the steps of data manipulations and the exact setup. Thus we decided to consolidate the availability of the data and its manipulation in order to provide a robust data processing workflow to the experimentalists before doing any further investigations. To tackle this issue of strong links between data, treatments and the generation of documents, we adopted a Reproducible Research paradigm. We shall first present the tools chosen in our laboratory to implement this workflow and, then we shall describe the global perception carried out to continue the study of the Acoustic Emission signals recorded by the two microphones during the last fourteen CABRI R.I.A. tests. (authors)

  13. Asymptotic modal analysis of a rectangular acoustic cavity excited by wall vibration (United States)

    Peretti, Linda F.; Dowell, Earl H.


    Asymptotic modal analysis, a method that has recently been developed for structural dynamical systems, has been applied to a rectangular acoustic cavity. The cavity had a flexible vibrating portion on one wall, and the other five walls were rigid. Banded white noise was transmitted through the flexible portion (plate) only. Both the location along the wall and the size of the plate were varied. The mean square pressure levels of the cavity interior were computed as a ratio of the result obtained from classical modal analysis to that obtained from asymptotic modal analysis for the various plate configurations. In general, this ratio converged to 1.0 as the number of responding modes increased. Intensification effects were found due to both the excitation location and the response location. The asymptotic modal analysis method was both efficient and accurate in solving the given problem. The method has advantages over the traditional methods that are used for solving dynamics problems with a large number of responding modes.

  14. A new acoustic portal into the odontocete ear and vibrational analysis of the tympanoperiotic complex.

    Directory of Open Access Journals (Sweden)

    Ted W Cranford

    Full Text Available Global concern over the possible deleterious effects of noise on marine organisms was catalyzed when toothed whales stranded and died in the presence of high intensity sound. The lack of knowledge about mechanisms of hearing in toothed whales prompted our group to study the anatomy and build a finite element model to simulate sound reception in odontocetes. The primary auditory pathway in toothed whales is an evolutionary novelty, compensating for the impedance mismatch experienced by whale ancestors as they moved from hearing in air to hearing in water. The mechanism by which high-frequency vibrations pass from the low density fats of the lower jaw into the dense bones of the auditory apparatus is a key to understanding odontocete hearing. Here we identify a new acoustic portal into the ear complex, the tympanoperiotic complex (TPC and a plausible mechanism by which sound is transduced into the bony components. We reveal the intact anatomic geometry using CT scanning, and test functional preconceptions using finite element modeling and vibrational analysis. We show that the mandibular fat bodies bifurcate posteriorly, attaching to the TPC in two distinct locations. The smaller branch is an inconspicuous, previously undescribed channel, a cone-shaped fat body that fits into a thin-walled bony funnel just anterior to the sigmoid process of the TPC. The TPC also contains regions of thin translucent bone that define zones of differential flexibility, enabling the TPC to bend in response to sound pressure, thus providing a mechanism for vibrations to pass through the ossicular chain. The techniques used to discover the new acoustic portal in toothed whales, provide a means to decipher auditory filtering, beam formation, impedance matching, and transduction. These tools can also be used to address concerns about the potential deleterious effects of high-intensity sound in a broad spectrum of marine organisms, from whales to fish.

  15. Analysis of a Cartesian PML approximation to acoustic scattering problems in and

    KAUST Repository

    Bramble, James H.


    We consider the application of a perfectly matched layer (PML) technique applied in Cartesian geometry to approximate solutions of the acoustic scattering problem in the frequency domain. The PML is viewed as a complex coordinate shift ("stretching") and leads to a variable complex coefficient equation for the acoustic wave posed on an infinite domain, the complement of the bounded scatterer. The use of Cartesian geometry leads to a PML operator with simple coefficients, although, still complex symmetric (non-Hermitian). The PML reformulation results in a problem whose solution coincides with the original solution inside the PML layer while decaying exponentially outside. The rapid decay of the PML solution suggests truncation to a bounded domain with a convenient outer boundary condition and subsequent finite element approximation (for the truncated problem). This paper provides new stability estimates for the Cartesian PML approximations both on the infinite and the truncated domain. We first investigate the stability of the infinite PML approximation as a function of the PML strength σ0. This is done for PML methods which involve continuous piecewise smooth stretching as well as piecewise constant stretching functions. We next introduce a truncation parameter M which determines the size of the PML layer. Our analysis shows that the truncated PML problem is stable provided that the product of Mσ0 is sufficiently large, in which case the solution of the problem on the truncated domain converges exponentially to that of the original problem in the domain of interest near the scatterer. This justifies the simple computational strategy of selecting a fixed PML layer and increasing σ0 to obtain the desired accuracy. The results of numerical experiments varying M and σ0 are given which illustrate the theoretically predicted behavior. © 2013 Elsevier B.V. All rights reserved.


    Directory of Open Access Journals (Sweden)



    Full Text Available This paper surveys the workflow analysis in the view of business process for all organizations. The business can be defined as an organization that provides goods and services to others, who want or need them. The concept of managing business processes is referred to as Business Process Management (BPM. A workflow is the automation of a business process, in whole or part, during which documents, information or tasks are passed from one participant to another for action, according to a set of procedural rules. The process mining aims at extracting useful and meaningful information from event logs, which is a set of real executions of business process at any organizations. This paper briefly reviews the state-or-the-art of business processes developed so far and the techniques adopted. Also presents, the survey of workflow analysis in the view of business process can be broadly classified into four major categories, they are Business Process Modeling, Ontology based Business Process Management, Workflow based Business Process Controlling and Business Process Mining.

  17. Room acoustics analysis using circular arrays: an experimental study based on sound field plane-wave decomposition. (United States)

    Torres, Ana M; Lopez, Jose J; Pueo, Basilio; Cobos, Maximo


    Plane-wave decomposition (PWD) methods using microphone arrays have been shown to be a very useful tool within the applied acoustics community for their multiple applications in room acoustics analysis and synthesis. While many theoretical aspects of PWD have been previously addressed in the literature, the practical advantages of the PWD method to assess the acoustic behavior of real rooms have been barely explored so far. In this paper, the PWD method is employed to analyze the sound field inside a selected set of real rooms having a well-defined purpose. To this end, a circular microphone array is used to capture and process a number of impulse responses at different spatial positions, providing angle-dependent data for both direct and reflected wavefronts. The detection of reflected plane waves is performed by means of image processing techniques applied over the raw array response data and over the PWD data, showing the usefulness of image-processing-based methods for room acoustics analysis.

  18. Thermal and fluid dynamic analysis of partially premixed turbulent combustion driven by thermo acoustic effects

    NARCIS (Netherlands)

    Shahi, M.; Kok, J.B.W.; Pozarlik, A.K.; Sponfeldner, Thomas; Malcolm, M.J.; Pawelczyk, M.; Paosawatyangyong, B.


    Thermo-acoustic instability can be caused by the feedback mechanism between unsteady heat release, acoustic oscillations and flow perturbations. In a gas turbine combustor limit cycles of pressure oscillations at elevated temperatures generated by the unstable combustion process enhance the structur

  19. Interactions in an acoustic world

    CERN Document Server

    Simaciu, Ion; Borsos, Zoltan; Bradac, Mariana


    The present paper aims to complete an earlier paper where the acoustic world was introduced. This is accomplished by analyzing the interactions which occur between the inhomogeneities of the acoustic medium, which are induced by the acoustic vibrations traveling in the medium. When a wave packet travels in a medium, the medium becomes inhomogeneous. The spherical wave packet behaves like an acoustic spherical lens for the acoustic plane waves. According to the principle of causality, there is an interaction between the wave and plane wave packet. In specific conditions the wave packet behaves as an acoustic black hole.

  20. Time-frequency analysis of the bistatic acoustic scattering from a spherical elastic shell. (United States)

    Anderson, Shaun D; Sabra, Karim G; Zakharia, Manell E; Sessarego, Jean-Pierre


    The development of low-frequency sonar systems, using, for instance, a network of autonomous systems in unmanned vehicles, provides a practical means for bistatic measurements (i.e., when the source and receiver are widely separated) allowing for multiple viewpoints of the target of interest. Time-frequency analysis, in particular, Wigner-Ville analysis, takes advantage of the evolution time dependent aspect of the echo spectrum to differentiate a man-made target, such as an elastic spherical shell, from a natural object of the similar shape. A key energetic feature of fluid-loaded and thin spherical shell is the coincidence pattern, also referred to as the mid-frequency enhancement (MFE), that results from antisymmetric Lamb-waves propagating around the circumference of the shell. This article investigates numerically the bistatic variations of the MFE with respect to the monostatic configuration using the Wigner-Ville analysis. The observed time-frequency shifts of the MFE are modeled using a previously derived quantitative ray theory by Zhang et al. [J. Acoust. Soc. Am. 91, 1862-1874 (1993)] for spherical shell's scattering. Additionally, the advantage of an optimal array beamformer, based on joint time delays and frequency shifts is illustrated for enhancing the detection of the MFE recorded across a bistatic receiver array when compared to a conventional time-delay beamformer.

  1. Parametric Analysis of Acoustical Requirements for Lateral Reflections: Melbourne Recital Hall Case Study

    Directory of Open Access Journals (Sweden)

    Erica Claustro


    Full Text Available This paper is an investigation of the Melbourne Recital Centre as a case study to define the parameters necessary for good acoustical quality as it relates to the Binaural Quality Index and determining the intimacy of the hall by its initial time delay gap. The Melbourne Recital Centre, designed by Ashton Raggatt McDougall Architects, is a significant case study, as its design was driven by the acoustic requirements of reflection and diffusion through Odeon Acoustical Software. It achieves the same acoustical quality of older, ornately designed shoebox concert halls, from the perspective of contemporary design and fabrication tools and techniques. The sleek design of the Melbourne Recital Centre successfully reflects sound waves in low, mid, and high frequencies due to corresponding wall panel differentiation in the corresponding scales, as engineered by Arup Acoustics.

  2. A modal analysis for the acoustic radiation problems,II.Examples

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhe


    The acoustic radiation modes and the field distribution modes describe the radiation patterns of a complex vibrating surface and the field distribution patterns respectively.The physical meanings of the acoustic radiation modes and the field distribution modes are revealed by numerical method. For a sphere body, a spinning body and a rectangular body, the geometrical patterns of the acoustic radiation modes and the field distribution modes are given.The radiation mode 1 represents the radiation behavior of a monopole radiator, the radiation modes 2 through 4 represent the radiation behavior of dipole radiators respectively, and the radiation modes 5 through 9 represent the radiation behavior of quadrapole radiators respectively. The acoustic radiation modes and the field distribution modes introduce the multi-pole decomposition method into discussion of the acoustic radiation problems.

  3. Acoustic signature analysis of the interaction between a dc plasma jet and a suspension liquid jet

    Energy Technology Data Exchange (ETDEWEB)

    Rat, V; Coudert, J F [SPCTS-CNRS UMR 6638, University of Limoges, 123 av. A Thomas 87060 Limoges cedex (France)


    Suspension plasma spraying allows forming finely structured coatings by injecting suspensions of ceramic particles within a dc plasma jet. The electric arc motion in dc plasma torch is the main acoustic source which is modified by the injection of suspension. The analyses of cross-correlations between the arc voltage and the acoustic signal show a decrease in time propagations due to local cooling of the plasma jet when injecting suspensions. Moreover, power spectra highlight acoustic amplifications below a certain frequency threshold and attenuations above. A simplified model of the frequency acoustic response of a two-phase vaporizing mixture is used to interpret experimental measurements. These acoustic effects are due to the dynamics of thermal transfers between vaporizing liquid and plasma.

  4. 维吾尔语浊塞音的声学特征分析%Acoustic feature analysis of the plosives in the Uyghur language

    Institute of Scientific and Technical Information of China (English)

    艾斯卡尔·艾木都拉; 赛尔达尔·雅力坤; 祖丽皮亚·阿曼; 地里木拉提·吐尔逊


    This paper presents a statistical analysis of voiced plosives such as b,d,g that occur in 466 Uyghur single-syllable or multi-syllable words in the "Uyghur language acoustical database".The results describe the acoustical features such as the formants,sound intensity,duration,voice onset time (VOT) and the GAP (silence segment) distribution model.The acoustic phonetics are compared to identify the devoiced parametric features of the plosives and the tenuis consonants.The real speech data shows that the plosives have features of tenuis consonants devoiced.The critical acoustical parameters are identified that differentiate the plosives.%该文从实验语音学的角度出发,利用“维吾尔语语音声学参数库”,选择其中包含浊塞音b、d、g的466个单音节及多音节词,对其声学参数进行统计分析,归纳了其共振峰、音强、时长、嗓音起始时间和无声段的分布模式.根据语音学的规律对各浊塞音的声学特点进行了深入研究,通过分别对浊塞音发生清化和保持原来浊特点时的特征参数同其对立清塞音相应的特征参数进行对比,探讨了浊塞音的清化现象.该文用实验数据证明了浊塞音清化时会表现出清塞音特征,并获得了区分浊塞音的诸多声学参数.

  5. Protection of window glass from acoustic leakage


    Lych, Sergij; Rakobovchuk, Volodymyr


    In a survey was presented an analysis of the most common glass samples on the Ukrainian market on their protection level against leakage of acoustic information. The glass samples were studied by means of roentgen analysis, and the impact of elemental composition of glass according to a laser beam reflection factor was defined.

  6. Opto-Acoustic Biosensing with Optomechanofluidic Resonators

    CERN Document Server

    Zhu, Kaiyuan; Carmon, Tal; Fan, Xudong; Bahl, Gaurav


    Opto-mechano-fluidic resonators (OMFRs) are a unique optofluidics platform that can measure the acoustic properties of fluids and bioanalytes in a fully-contained microfluidic system. By confining light in ultra-high-Q whispering gallery modes of OMFRs, optical forces such as radiation pressure and electrostriction can be used to actuate and sense structural mechanical vibrations spanning MHz to GHz frequencies. These vibrations are hybrid fluid-shell modes that entrain any bioanalyte present inside. As a result, bioanalytes can now reflect their acoustic properties on the optomechanical vibrational spectrum of the device, in addition to optical property measurements with existing optofluidics techniques. In this work, we investigate acoustic sensing capabilities of OMFRs using computational eigenfrequency analysis. We analyze the OMFR eigenfrequency sensitivity to bulk fluid-phase materials as well as nanoparticles, and propose methods to extract multiple acoustic parameters from multiple vibrational modes. ...

  7. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  8. Acoustic constituents of prosodic typology (United States)

    Komatsu, Masahiko

    Different languages sound different, and considerable part of it derives from the typological difference of prosody. Although such difference is often referred to as lexical accent types (stress accent, pitch accent, and tone; e.g. English, Japanese, and Chinese respectively) and rhythm types (stress-, syllable-, and mora-timed rhythms; e.g. English, Spanish, and Japanese respectively), it is unclear whether these types are determined in terms of acoustic properties, The thesis intends to provide a potential basis for the description of prosody in terms of acoustics. It argues for the hypothesis that the source component of the source-filter model (acoustic features) approximately corresponds to prosody (linguistic features) through several experimental-phonetic studies. The study consists of four parts. (1) Preliminary experiment: Perceptual language identification tests were performed using English and Japanese speech samples whose frequency spectral information (i.e. non-source component) is heavily reduced. The results indicated that humans can discriminate languages with such signals. (2) Discussion on the linguistic information that the source component contains: This part constitutes the foundation of the argument of the thesis. Perception tests of consonants with the source signal indicated that the source component carries the information on broad categories of phonemes that contributes to the creation of rhythm. (3) Acoustic analysis: The speech samples of Chinese, English, Japanese, and Spanish, differing in prosodic types, were analyzed. These languages showed difference in acoustic characteristics of the source component. (4) Perceptual experiment: A language identification test for the above four languages was performed using the source signal with its acoustic features parameterized. It revealed that humans can discriminate prosodic types solely with the source features and that the discrimination is easier as acoustic information increases. The

  9. Structural-acoustic coupling characteristics of honeycomb sandwich plate based on parameter sensitivity analysis

    Institute of Scientific and Technical Information of China (English)

    王盛春; 沈卫东; 徐嘉锋; 李赟


    The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate (HSP) by applying Green function method. Then an equivalent circuit model of the weakly-strongly coupled system was proposed. Based on that, the estimation formulae of the coupled eigenfrequency were derived. The accuracy of the theoretical predictions was checked against experimental data, with good agreement achieved. Finally, the effects of HSP design parameters on the system coupling degree, the acoustic cavity eigenfrequency, and sound pressure response were analyzed. The results show that mechanical and acoustical characteristics of HSP can be improved by increasing the thickness of face sheet and reducing the mass density of material.

  10. Review of the present situation and development of acoustic stealth technology for submarines abroad%国外潜艇声隐身技术现状与发展综述

    Institute of Scientific and Technical Information of China (English)

    孟晓宇; 肖国林; 陈虹


    分析了国外先进的潜艇声隐身单项技术,介绍了国外潜艇声隐身技术的发展现状和特点,发现其主要体现在降低辐射噪声和目标强度等方面.通过对各项技术的深入分析,得出了美俄先进核潜艇声隐身技术重点发展的5个方面.最后对潜艇声隐身技术的未来发展进行了展望.%In this article, the information of submarine acoustic stealth technology is analyzed, and introduces the present situation and characteristics of submarines abroad. The submarine acoustic stealth technology has two aspects; suppression of sound radiation and target strength. The five aspects of American and Russian advanced nuclear submarine's acoustic stealth technology are gained by in-depth study. Finally, the future developments and prospects of submarine acoustic stealth technology are presented.

  11. Student design projects in applied acoustics. (United States)

    Bös, Joachim; Moritz, Karsten; Skowronek, Adam; Thyes, Christian; Tschesche, Johannes; Hanselka, Holger


    This paper describes a series of student projects which are intended to complement theoretical education in acoustics and engineering noise control with practical experience. The projects are also intended to enhance the students' ability to work in a team, to manage a project, and to present their results. The projects are carried out in close cooperation with industrial partners so that the students can get a taste of the professional life of noise control engineers. The organization of such a project, its execution, and some of the results from the most recent student project are presented as a demonstrative example. This latest project involved the creation of noise maps of a production hall, the acoustic analysis of a packaging machine, and the acoustic analysis of a spiral vibratory conveyor. Upon completion of the analysis, students then designed, applied, and verified some simple preliminary noise reduction measures to demonstrate the potential of these techniques.

  12. A variational formulation for vibro-acoustic analysis of a panel backed by an irregularly-bounded cavity (United States)

    Xie, Xiang; Zheng, Hui; Qu, Yegao


    A weak form variational based method is developed to study the vibro-acoustic responses of coupled structural-acoustic system consisting of an irregular acoustic cavity with general wall impedance and a flexible panel subjected to arbitrary edge-supporting conditions. The structural and acoustical models of the coupled system are formulated on the basis of a modified variational method combined with multi-segment partitioning strategy. Meanwhile, the continuity constraints on the sub-segment interfaces are further incorporated into the system stiffness matrix by means of least-squares weighted residual method. Orthogonal polynomials, such as Chebyshev polynomials of the first kind, are employed as the wholly admissible unknown displacement and sound pressure field variables functions for separate components without meshing, and hence mapping the irregular physical domain into a square spectral domain is necessary. The effects of weighted parameter together with the number of truncated polynomial terms and divided partitions on the accuracy of present theoretical solutions are investigated. It is observed that applying this methodology, accurate and efficient predictions can be obtained for various types of coupled panel-cavity problems; and in weak or strong coupling cases for a panel surrounded by a light or heavy fluid, the inherent principle of velocity continuity on the panel-cavity contacting interface can all be handled satisfactorily. Key parametric studies concerning the influences of the geometrical properties as well as impedance boundary are performed. Finally, by performing the vibro-acoustic analyses of 3D car-like coupled miniature, we demonstrate that the present method seems to be an excellent way to obtain accurate mid-frequency solution with an acceptable CPU time.

  13. Efficient modeling of flat and homogeneous acoustic treatments for vibroacoustic finite element analysis. Finite size correction by image sources (United States)

    Alimonti, L.; Atalla, N.


    This work is concerned with the hybrid finite element-transfer matrix methodology recently proposed by the authors. The main assumption behind this hybrid method consists in neglecting the actual finite lateral extent of the acoustic treatment. Although a substantial increase of the computational efficiency can be achieved, the effect of the reflected field (i.e. finite size effects) may be sometimes important, preventing the hybrid model from giving quantitative meaningful results. For this reason, a correction to account for wave reflections at the lateral boundaries of the acoustic treatment is sought. It is shown in the present paper that the image source method can be successfully employed to retrieve such finite size effects. Indeed, such methodology is known to be effective when the response of the system is a smooth function of the frequency, like in the case of highly dissipative acoustic treatments. The main concern of this paper is to assess accuracy and feasibility of the image source method in the context of acoustic treatments modeling. Numerical examples show that the performance of the standard hybrid model can be substantially improved by the proposed correction without deteriorating excessively the computational efficiency.

  14. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik


    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  15. Acoustic telemetry (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive acoustic...

  16. Application wavelet of the analysis for identification of acoustic issue's signals

    Institute of Scientific and Technical Information of China (English)

    Bashkov; O.; V.; Semashko; N.A.; Bashkova; T.; I.; Shpak; D.; A.; Gololobova; I.; M.


    Acoustic issue at deformation and destruction of materials carries in itself weight of the information on the physical processes happening in structure of a material, mechanisms, to energy of destruction, intensity, speed of deformation, etc.……

  17. Application wavelet of the analysis for identification of acoustic issue's signals

    Institute of Scientific and Technical Information of China (English)


    @@ Acoustic issue at deformation and destruction of materials carries in itself weight of the information on the physical processes happening in structure of a material, mechanisms, to energy of destruction, intensity, speed of deformation, etc.

  18. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells

    DEFF Research Database (Denmark)

    Yang, Tie; Bragheri, Francesca; Nava, Giovanni


    We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental ap...

  19. Perceptual and acoustic analysis of lexical stress in Greek speakers with dysarthria. (United States)

    Papakyritsis, Ioannis; Müller, Nicole


    The study reported in this paper investigated the abilities of Greek speakers with dysarthria to signal lexical stress at the single word level. Three speakers with dysarthria and two unimpaired control participants were recorded completing a repetition task of a list of words consisting of minimal pairs of Greek disyllabic words contrasted by lexical stress location only. Fourteen listeners were asked to determine the attempted stress location for each word pair. Acoustic analyses of duration and intensity ratios, both within and across words, were undertaken to identify possible acoustic correlates of the listeners' judgments concerning stress location. Acoustic and perceptual data indicate that while each participant with dysarthria in this study had some difficulty in signaling stress unambiguously, the pattern of difficulty was different for each speaker. Further, it was found that the relationship between the listeners' judgments of stress location and the acoustic data was not conclusive.

  20. Analysis, Design, and Evaluation of Acoustic Feedback Cancellation Systems for Hearing Aids

    DEFF Research Database (Denmark)

    Guo, Meng


    application that whereas the traditional and stateof- the-art acoustic feedback cancellation systems fail with significant sound distortions and howling as consequences, the new probe noise approach is able to remove feedback artifacts caused by the feedback path change in no more than a few hundred......Acoustic feedback problems occur when the output loudspeaker signal of an audio system is partly returned to the input microphone via an acoustic coupling through the air. This problem often causes significant performance degradations in applications such as public address systems and hearing aids....... In the worst case, the audio system becomes unstable and howling occurs. In this work, first we analyze a general multiple microphone audio processing system, where a cancellation system using adaptive filters is used to cancel the effect of acoustic feedback. We introduce and derive an accurate approximation...

  1. Seeing Sound - Image Analysis of the Lift-off Acoustic Field Project (United States)

    National Aeronautics and Space Administration — A launch vehicle and its launch facilities are subjected to intense acoustic loads generated by the vehicle's propulsion system. The vehicle, its payload, and...

  2. Analysis of acoustic-seismic coupling behaviour for CTBT on-site inspection performance improvement

    Energy Technology Data Exchange (ETDEWEB)

    Liebsch, Mattes; Knoop, Jan-Frederik [Technische Univ. Dortmund (Germany)


    After teleseismic detection of a big underground explosion, during on-site inspections under the Comprehensive Nuclear Test-Ban Treaty (CTBT) weak seismic signals from aftershocks are to be detected. These, however, can be masked by soil vibrations which are caused by acoustic waves which couple to the ground. To analyse the coupling behaviour between acoustic waves and soil vibrations several experiments with different acoustic sources (helicopters, firecrackers, loudspeaker) were performed. Of special interest is the influence of surface waves, excited in a larger area around the sensor, which can superpose constructively at the position of the sensor and can increase the measured seismic signal. A better understanding of the acoustic-seismic coupling can be used to develop guidelines for seismic aftershock measurements, such as a suitable sensor setup, with the goal of reducing or even preventing disturbing signals to improve the performance of on-site inspections for the CTBT.

  3. Acoustic Signal Feature Extraction of Vehicle Targets

    Institute of Scientific and Technical Information of China (English)

    蓝金辉; 马宝华; 李科杰


    Acoustic signal feature extraction is an important part of target recognition. The mechanisms for producing acoustic signals and their propagation are analyzed to extract the features of the radiated noise from different targets. Analysis of the acoustic spectra of typical vehicle targets acquired outdoors shows that the vehicles can be classified based on the acoustic spectra and amplitudes.

  4. Distribution of Acoustic Power Spectra for an Isolated Helicopter Fuselage

    Directory of Open Access Journals (Sweden)

    Kusyumov A.N.


    Full Text Available The broadband aerodynamic noise can be studied, assuming isotropic flow, turbulence and decay. Proudman’s approach allows practical calculations of noise based on CFD solutions of RANS or URANS equations at the stage of post processing and analysis of the solution. Another aspect is the broadband acoustic spectrum and the distribution of acoustic power over a range of frequencies. The acoustic energy spectrum distribution in isotropic turbulence is non monotonic and has a maximum at a certain value of Strouhal number. In the present work the value of acoustic power peak frequency is determined using a prescribed form of acoustic energy spectrum distribution presented in papers by S. Sarkar and M. Y. Hussaini and by G. M. Lilley. CFD modelling of the flow around isolated helicopter fuselage model was considered using the HMB CFD code and the RANS equations.

  5. Analysis of and Techniques for Adaptive Equalization for Underwater Acoustic Communication (United States)


    pages 435–440, 1995. [101] M. Stojanovic. High speed underwater accoustic comunications . In Under- water Acoustic Digital Signal Processing and...and have been used in virtually every ocean environment [77]. The goal of wireless, acoustic communication is to transmit digital data reli- ably... digital domain where frequency shift keying (FSK) and more recently phase shift keying (PSK) (for increased bandwidth efficiency) are used for data

  6. Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic Emission Signals (United States)

    Moradian, Zabihallah; Einstein, Herbert H.; Ballivy, Gerard


    Determination of the cracking levels during the crack propagation is one of the key challenges in the field of fracture mechanics of rocks. Acoustic emission (AE) is a technique that has been used to detect cracks as they occur across the specimen. Parametric analysis of AE signals and correlating these parameters (e.g., hits and energy) to stress-strain plots of rocks let us detect cracking levels properly. The number of AE hits is related to the number of cracks, and the AE energy is related to magnitude of the cracking event. For a full understanding of the fracture process in brittle rocks, prismatic specimens of granite containing pre-existing flaws have been tested in uniaxial compression tests, and their cracking process was monitored with both AE and high-speed video imaging. In this paper, the characteristics of the AE parameters and the evolution of cracking sequences are analyzed for every cracking level. Based on micro- and macro-crack damage, a classification of cracking levels is introduced. This classification contains eight stages (1) crack closure, (2) linear elastic deformation, (3) micro-crack initiation (white patch initiation), (4) micro-crack growth (stable crack growth), (5) micro-crack coalescence (macro-crack initiation), (6) macro-crack growth (unstable crack growth), (7) macro-crack coalescence and (8) failure.

  7. Finite element method analysis of surface acoustic wave devices with microcavities for detection of liquids (United States)

    Senveli, Sukru U.; Tigli, Onur


    This paper introduces the use of finite element method analysis tools to investigate the use of a Rayleigh type surface acoustic wave (SAW) sensor to interrogate minute amounts of liquids trapped in microcavities placed on the delay line. Launched surface waves in the ST-X quartz substrate couple to the liquid and emit compressional waves. These waves form a resonant cavity condition and interfere with the surface waves in the substrate. Simulations show that the platform operates in a different mechanism than the conventional mass loading of SAW devices. Based on the proposed detection mechanism, it is able to distinguish between variations of 40% and 90% glycerin based on phase relations while using liquid volumes smaller than 10 pl. Results from shallow microcavities show high correlation with sound velocity parameter of the liquid whereas deeper microcavities display high sensitivities with respect to glycerin concentration. Simulated devices yield a maximum sensitivity of -0.77°/(% glycerin) for 16 μm wavelength operation with 8 μm deep, 24 μm wide, and 24 μm long microcavities.

  8. Intensity of noise in the classroom and analysis of acoustic emissions in schoolchildren

    Directory of Open Access Journals (Sweden)

    Almeida Filho, Nelson de


    Full Text Available Introduction: Noise-induced hearing loss is a sensorineural hearing loss, usually bilateral, irreversible and progressive with time of exposure. As the noise made by children in school may be considered detrimental, the study looks of their occurrence in Taubaté's schools. Objective: To determine if students are exposed to noise intensity affecting the cochlea, define the profile of these schoolchildren, demonstrating the occurrence of changes in cochlear activity following exposure to noise in a day of class. Method: Study's way prospective transversal cross sectional cut with 28 elementary school students in the first half of 2009. Questionnaires for assessing preexisting cochlear damage . Evaluation of cochlear function by analysis of acoustic emissions evoked distortion product, made before the students come into class and immediately after the end of these. Measurement of noise inside the classrooms and recreation areas during the interval. Results: 57.1% accused some hearing loss in the examinations before class. By day's end, 04 girls and 03 boys had worsened in relation of the first examination. The noise reached levels higher than recommended at the three class rooms. The largest number of students with worsening, belong to the class room with higher noise level. The noise during the intervals is also excessive. Conclusions: The noise in this school is above the limit. 42.85% of students who had experienced worsening had school performance inadequate. 25% had worse after noise exposure in a school day.

  9. Stability analysis and investigation of higher order Schroedinger equation for strongly dispersive ion-acoustic wave in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gogoi, R; Kalita, L; Devi, N, E-mail:, E-mail:, E-mail: [Department of Mathematics, Cotton College, Guwahati-781001, Assam (India)


    Much interest was shown towards the studies on nonlinear stability in the late sixties. Plasma instabilities play an important role in plasma dynamics. More attention has been given towards stability analysis after recognizing that they are one of the principal obstacles in the way of a successful resolution of the problem of controlled thermonuclear fusion. Nonlinearity and dispersion are the two important characteristics of plasma instabilities. Instabilities and nonlinearity are the two important and interrelated terms. In our present work, the continuity and momentum equations for both ions and electrons together with the Poisson equation are considered as cold plasma model. Then we have adopted the modified reductive perturbation technique (MRPT) from Demiray [1] to derive the higher order equation of the Nonlinear Schroedinger equation (NLSE). In this work, detailed mathematical expressions and calculations are done to investigate the changing character of the modulation of ion acoustic plasma wave through our derived equation. Thus we have extended the application of MRPT to derive the higher order equation. Both progressive wave solutions as well as steady state solutions are derived and they are plotted for different plasma parameters to observe dark/bright solitons. Interesting structures are found to exist for different plasma parameters.

  10. Present and foreseeable future of metabolomics in forensic analysis. (United States)

    Castillo-Peinado, L S; Luque de Castro, M D


    The revulsive publications during the last years on the precariousness of forensic sciences worldwide have promoted the move of major steps towards improvement of this science. One of the steps (viz. a higher involvement of metabolomics in the new era of forensic analysis) deserves to be discussed under different angles. Thus, the characteristics of metabolomics that make it a useful tool in forensic analysis, the aspects in which this omics is so far implicit, but not mentioned in forensic analyses, and how typical forensic parameters such as the post-mortem interval or fingerprints take benefits from metabolomics are critically discussed in this review. The way in which the metabolomics-forensic binomial succeeds when either conventional or less frequent samples are used is highlighted here. Finally, the pillars that should support future developments involving metabolomics and forensic analysis, and the research required for a fruitful in-depth involvement of metabolomics in forensic analysis are critically discussed.

  11. Fractal analysis on the spatial distribution of acoustic emission in the failure process of rock specimens

    Institute of Scientific and Technical Information of China (English)

    Rui-fu Yuan; Yuan-hui Li


    The spatial distribution of acoustic emission (AE) events in the failure process of several rock specimens was acquired us-ing an advanced AE acquiring and analyzing system.The box counting method (BCM) was employed to calculate the fractal dimen-sion (FD) of AE spatial distribution.There is a similar correlation between the fractal dimension and the load strength for different rock specimens.The fractal dimension presents a decreasing trend with the increase of load strength.For the same kind of specimens,their FD values will decrease to the level below a relatively same value when they reach failure.This value can be regarded as the critical value,which implies that the specimen will reach failure soon.The results reflect that it is possible to correlate the damage of rock with a macroscopic parameter,the FD value of AE signals.Furthermore,the FD value can be also used to forecast the final fail-ure of rock.This conclusion allows identifying or predicting the damage in rock with a great advantage over the classic theory and is very crucial for forecasting rockburst or other dynamic disasters in mines.

  12. GPU performance analysis of a nodal discontinuous Galerkin method for acoustic and elastic models (United States)

    Modave, A.; St-Cyr, A.; Warburton, T.


    Finite element schemes based on discontinuous Galerkin methods possess features amenable to massively parallel computing accelerated with general purpose graphics processing units (GPUs). However, the computational performance of such schemes strongly depends on their implementation. In the past, several implementation strategies have been proposed. They are based exclusively on specialized compute kernels tuned for each operation, or they can leverage BLAS libraries that provide optimized routines for basic linear algebra operations. In this paper, we present and analyze up-to-date performance results for different implementations, tested in a unified framework on a single NVIDIA GTX980 GPU. We show that specialized kernels written with a one-node-per-thread strategy are competitive for polynomial bases up to the fifth and seventh degrees for acoustic and elastic models, respectively. For higher degrees, a strategy that makes use of the NVIDIA cuBLAS library provides better results, able to reach a net arithmetic throughput 35.7% of the theoretical peak value.

  13. Mass sensitivity analysis and designing of surface acoustic wave resonators for chemical sensors (United States)

    Kshetrimayum, Roshan; Yadava, R. D. S.; Tandon, R. P.


    The sensitivity of surface acoustic wave (SAW) chemical sensors depends on several factors such as the frequency and phase point of SAW device operation, sensitivity of the SAW velocity to surface mass loading, sensitivity of the SAW oscillator resonance to the loop phase shift, film thickness and oscillator electronics. This paper analyzes the influence of the phase point of operation in SAW oscillator sensors based on two-port resonator devices. It is found that the mass sensitivity will be enhanced if the SAW device has a nonlinear dependence on the frequency (delay ~ frequency-1). This requires the device to generate and operate in a ωτg(ω) = const region in the device passband, where ω denotes the angular frequency of oscillation and τg(ω) denotes the phase slope of the SAW resonator device. A SAW coupled resonator filter (CRF) that take advantage of mode coupling is considered in realizing such a device to help in shaping the phase transfer characteristics of a high mass sensitivity sensor. The device design and simulation results are presented within the coupling-of-modes formalism.

  14. Presenting the Iterative Curriculum Discourse Analysis (ICDA) Approach (United States)

    Iversen, Lars Laird


    The article presents a method for analysing recurring curriculum documents using discourse theory inspired by Ernesto Laclau and Chantal Mouffe. The article includes a presentation of the method in seven practical steps, and is illustrated and discussed throughout using the author's recent case study on religion, identity and values in Norwegian…

  15. Acoustic ground impedance meter (United States)

    Zuckerwar, A. J. (Inventor)


    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  16. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake - Data collection/analysis techniques (United States)

    Hall, David G.; Heidelberg, Laurence; Konno, Kevin


    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.

  17. Acoustic mode measurements in the inlet of a model turbofan using a continuously rotating rake: Data collection/analysis techniques (United States)

    Hall, David G.; Heidelberg, Laurence; Konno, Kevin


    The rotating microphone measurement technique and data analysis procedures are documented which are used to determine circumferential and radial acoustic mode content in the inlet of the Advanced Ducted Propeller (ADP) model. Circumferential acoustic mode levels were measured at a series of radial locations using the Doppler frequency shift produced by a rotating inlet microphone probe. Radial mode content was then computed using a least squares curve fit with the measured radial distribution for each circumferential mode. The rotating microphone technique is superior to fixed-probe techniques because it results in minimal interference with the acoustic modes generated by rotor-stator interaction. This effort represents the first experimental implementation of a measuring technique developed by T. G. Sofrin. Testing was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. The design is included of the data analysis software and the performance of the rotating rake apparatus. The effect of experiment errors is also discussed.

  18. Experimental verification of the asymtotic modal analysis method as applied to a rectangular acoustic cavity excited by structural vibration (United States)

    Peretti, L. F.; Dowell, E. H.


    An experiment was performed on a rigid wall rectangular acoustic cavity driven by a flexible plate mounted in a quarter of one end wall and excited by white noise. The experiment was designed so that the assumptions of Asymptotic Modal Analysis (AMA) were satisfied for certain bandwidths and center frequencies. Measurements of sound pressure levels at points along the boundaries and incrementally into tbe interior were taken. These were compared with the theoretical results predicted with AMA, and found to be in good agreement, particularly for moderate (1/3 octave) bandwidths and sufficiently high center frequencies. Sound pressure level measurements were also taken well into the cavity interior at various points along the 5 totally rigid walls. The AMA theory, including boundary intensification effects, was shown to be accurate provided the assumption of large number of acoustic modes is satisfied, and variables such as power spectra of the wall acceleration, frequency, and damping are slowly varying in the frequency of bandwidth.

  19. Subwavelength diffractive acoustics and wavefront manipulation with a reflective acoustic metasurface (United States)

    Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.


    Acoustic metasurfaces provide useful wavefront shaping capabilities, such as beam steering, acoustic focusing, and asymmetric transmission, in a compact structure. Most acoustic metasurfaces described in the literature are transmissive devices and focus their performance on steering sound beam of the fundamental diffractive order. In addition, the range of incident angles studied is usually below the critical incidence predicted by generalized Snell's law of reflection. In this work, we comprehensively analyze the wave interaction with a generic periodic phase-modulating structure in order to predict the behavior of all diffractive orders, especially for cases beyond critical incidence. Under the guidance of the presented analysis, a broadband reflective metasurface is designed based on an expanded library of labyrinthine acoustic metamaterials. Various local and nonlocal wavefront shaping properties are experimentally demonstrated, and enhanced absorption of higher order diffractive waves is experimentally shown for the first time. The proposed methodology provides an accurate approach for predicting practical diffracted wave behaviors and opens a new perspective for the study of acoustic periodic structures. The designed metasurface extends the functionalities of acoustic metasurfaces and paves the way for the design of thin planar reflective structures for broadband acoustic wave manipulation and extraordinary absorption.

  20. Particle manipulation by a non-resonant acoustic levitator

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marco A. B., E-mail: [Institute of Physics, University of São Paulo, CP 66318, 05314-970 São Paulo (Brazil); Pérez, Nicolás [Centro Universitario de Paysandú, Universidad de la República, Ruta 3 km 363, 60000 Paysandú (Uruguay); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, Av. Mello Moraes, 2231, 05508-030 São Paulo (Brazil)


    We present the analysis of a non-resonant acoustic levitator, formed by an ultrasonic transducer and a concave reflector. In contrast to traditional levitators, the geometry presented herein does not require the separation distance between the transducer and the reflector to be a multiple of half wavelength. The levitator behavior is numerically predicted by applying a numerical model to calculate the acoustic pressure distribution and the Gor'kov theory to obtain the potential of the acoustic radiation force that acts on a levitated particle. We also demonstrate that levitating particles can be manipulated by controlling the reflector position while maintaining the transducer in a fixed position.

  1. Synchronized imaging and acoustic analysis of the upper airway in patients with sleep-disordered breathing. (United States)

    Chang, Yi-Chung; Huon, Leh-Kiong; Pham, Van-Truong; Chen, Yunn-Jy; Jiang, Sun-Fen; Shih, Tiffany Ting-Fang; Tran, Thi-Thao; Wang, Yung-Hung; Lin, Chen; Tsao, Jenho; Lo, Men-Tzung; Wang, Pa-Chun


    Progressive narrowing of the upper airway increases airflow resistance and can produce snoring sounds and apnea/hypopnea events associated with sleep-disordered breathing due to airway collapse. Recent studies have shown that acoustic properties during snoring can be altered with anatomic changes at the site of obstruction. To evaluate the instantaneous association between acoustic features of snoring and the anatomic sites of obstruction, a novel method was developed and applied in nine patients to extract the snoring sounds during sleep while performing dynamic magnetic resonance imaging (MRI). The degree of airway narrowing during the snoring events was then quantified by the collapse index (ratio of airway diameter preceding and during the events) and correlated with the synchronized acoustic features. A total of 201 snoring events (102 pure retropalatal and 99 combined retropalatal and retroglossal events) were recorded, and the collapse index as well as the soft tissue vibration time were significantly different between pure retropalatal (collapse index, 2 ± 11%; vibration time, 0.2 ± 0.3 s) and combined (retropalatal and retroglossal) snores (collapse index, 13 ± 7% [P ≤ 0.0001]; vibration time, 1.2 ± 0.7 s [P ≤ 0.0001]). The synchronized dynamic MRI and acoustic recordings successfully characterized the sites of obstruction and established the dynamic relationship between the anatomic site of obstruction and snoring acoustics.

  2. Acoustical analysis of trained and untrained singers onsite before and after prolonged voice use (United States)

    Jackson, Christophe E.

    Controlled acoustic environments are important in voice research. Recording environment affects the quality of voice recordings. While sound booths and anechoic chambers are examples of controlled acoustic environments widely used in research, they are both costly and not portable. The long-term goal of this project is to compare the voice usage and efficiency of trained and untrained singers onsite immediately before and after vocal performance. The specific goal of this project is the further of development a Portable Sound Booth (PSB) and standardization of onsite voice recording procedures under controlled conditions. We hypothesized that the simple and controlled acoustic environment provided by the PSB would enable consistent reliable onsite voice recordings and the immediate differences as a consequence of voice usage were measurable. Research has suggested that it would be possible to conduct onsite voice recordings. Proof of concept research titled "Construction and Characterization of a Portable Sound Booth for Onsite Measurement" was conducted before initiating the full research effort. Preliminary findings revealed that: (1) it was possible to make high-quality voice recordings onsite, (2) the use of a Portable Sound Booth (PSB) required further acoustic characterization of its inherent acoustic properties, and (3) testable differences before and after performance were evident. The specific aims were to (1) develop and refine onsite objective voice measurements in the PSB and (2) evaluate use of the PSB to measure voice quality changes before and after voice usage.

  3. Sentiment Analysis: A Perspective on its Past, Present and Future

    Directory of Open Access Journals (Sweden)

    Teeja Mary Sebastian


    Full Text Available Abstract—The proliferation of Web-enabled devices, including desktops, laptops, tablets, and mobile phones, enables people to communicate, participate and collaborate with each other in various Web communities, viz., forums, social networks, blogs. Simultaneously, the enormous amount of heterogeneous data that is generated by the users of these communities, offers an unprecedented opportunity to create and employ theories & technologies that search and retrieve relevant data from the huge quantity of information available and mine for opinions thereafter. Consequently, Sentiment Analysis which automatically extracts and analyses the subjectivities and sentiments (or polarities in written text has emerged as an active area of research. This paper previews and reviews the substantial research on the subject of sentiment analysis, expounding its basic terminology, tasks and granularity levels. It further gives an overview of the state- of – art depicting some previous attempts to study sentiment analysis. Its practical and potential applications are also discussed, followed by the issues and challenges that will keep the field dynamic and lively for years to come.

  4. Presenting the Straddle Lemma in an Introductory Real Analysis Course (United States)

    Soares, A.; dos Santos, A. L.


    In this article, we revisit the concept of strong differentiability of real functions of one variable, underlying the concept of differentiability. Our discussion is guided by the Straddle Lemma, which plays a key role in this context. The proofs of the results presented are designed to meet a young audience in mathematics, typical of students in…

  5. An Analysis of Chinese College students’Present Pragmatic Competence

    Institute of Scientific and Technical Information of China (English)

    Pan Dongmei


    This paper aims at analyzing the current situation of Chinese College students' Present Pragmatic Competence. It also gives some explanations of the importance of pragmatic competence and introduces the concept of pragmatic failure. The focus is on the causes of pragmatic failure in English learning and communication. The author also explores the ways of cultivating and developing students' pragmatic competence in English teaching.

  6. Analysis, Implementation, and Application of Acoustic and Seismic Arrays%声音与震动阵列的分析、实现与应用

    Institute of Scientific and Technical Information of China (English)



    In this paper, we consider the analysis, implementation, and application of wideband sources using both seismic and acoustic sensors. We use the approximate maximum likelihood (AML)algorithm to perform acoustic direction of arrival (DOA). For non-uniform noise spectra, whitening filtering was applied to the received acoustic signals before the AML operation. For short-range seismic DOA applications, one method was based on eigen-decomposition of the covariance matrix and a second method was based on surface wave analysis. Two well-known optimization schemes were used to estimate the source locations from the estimated DOAs at sensors of known locations.Experimental estimation of the DOAs and resulting localizations using the acoustic and seismic signals generated by striking a heavy metal plate by a hammer were reported.

  7. Understanding acoustics an experimentalist’s view of acoustics and vibration

    CERN Document Server

    Garrett, Steven L


    This textbook provides a unified approach to acoustics and vibration suitable for use in advanced undergraduate and first-year graduate courses on vibration and fluids. The book includes thorough treatment of vibration of harmonic oscillators, coupled oscillators, isotropic elasticity, and waves in solids including the use of resonance techniques for determination of elastic moduli. Drawing on 35 years of experience teaching introductory graduate acoustics at the Naval Postgraduate School and Penn State, the author presents a hydrodynamic approach to the acoustics of sound in fluids that provides a uniform methodology for analysis of lumped-element systems and wave propagation that can incorporate attenuation mechanisms and complex media. This view provides a consistent and reliable approach that can be extended with confidence to more complex fluids and future applications. Understanding Acoustics opens with a mathematical introduction that includes graphing and statistical uncertainty, followed by five chap...

  8. Passive Acoustic Radar for Detecting Supersonic Cruise Missile

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; XIAO Hui


    A Passive Acoustic Radar is presented as a necessary complement to electromagnetic wave radar, which will be expected to be an effective means for detecting cruise missiles. Acoustic characteristics of supersonic flying projectiles with diverse shapes are expounded via experiment. It is pointed out that simulation experiment could be implemented using bullet or shell instead of cruise missile. Based on theoretical analysis and experiment, the "acoustic fingerprint" character of cruise missile is illustrated to identify it in a strong noise environment. After establishing a locating mathematical model,the technique of acoustic embattling is utilized to resolve a problem of confirming the time of early-warning, considering the fact that velocity of sound is much slower than that of light. Thereby, a whole system of passive acoustic radar for detecting supersonic cruise missile is formed.

  9. Spatial Analysis and Synthesis of Car Audio System and Car Cabin Acoustics with a Compact Microphone Array

    DEFF Research Database (Denmark)

    Sakari, Tervo; Pätynen, Jukka; Kaplanis, Neofytos


    This research proposes a spatial sound analysis and synthesis approach for automobile sound systems, where the acquisition of the measurement data is much faster than with the Binaural Car Scanning method. This approach avoids the problems that are typically found with binaural reproduction...... the synthesis of multichannel loudspeaker reproduction. Because of the extreme acoustics of an automobile cabin, the authors recommend several steps to improve both the objective and perceptual performance. Because SDM is a parametric approach to spatial impulse response analysis, this allows automobile audio...

  10. 2006 progress report on acoustic and visual monitoring for cetaceans along the outer Washington Coast


    Oleson, Erin M.; Hildebrand, John A.; Calambokidis, John; Schorr, Greg; Falcone, Erin


    An acoustic and visual monitoring effort for cetaceans was initiated within the boundaries of the proposed expansion area for the Quinault Underwater Tracking Range in July 2004. Acoustic data collection consisted of recordings at a site on the continental shelf to the west of Cape Elizabeth and another in deep water within Quinault Canyon. An analysis plan for acoustic data is included. Results for 32 visual surveys are presented as tables and charts for pinnipeds, dolphins, porpoises, an...


    Directory of Open Access Journals (Sweden)

    Junichi Toyota


    Full Text Available In this paper, a concept of overlapping grammatical categories in alinguistic analysis is discussed. This overlap has gained recognition in research and is often termed as gradience. A specific instance of gradience concerning various types of the passive voice, especially the one involving less-typical information status, is used asan example to illustrate how gradience exists in different languages. The passive is known to function as a topic marker in a clause, but there are some cases where it is used as a focus device. By studying these features both synchronically and diachronically, one can find gradience of the passive both structurally and functionally.

  12. Analysis of Acoustic Emission Signal by Fractal Theory in Aluminum Alloy Spot Welding

    Institute of Scientific and Technical Information of China (English)


    The relation between acoustic emission signal and nugget during aluminum alloy spot welding was investigated in order to evaluate spot welding quality. Due to the nonlinearity of the signals, fractal theory was utilized to quantitatively describe the characteristics of the signals instead of classical Euclidean geometry which cannot describe the acoustic emission signal accurately. Through experiments and computing, the box counting dimension is found distinct from other acoustic emission signals and is a better approach to discriminating weld nugget stages. Results show that fractal dimensions increase from 1.51 to 1.78,and they are related to nugget areas added from non-fusion to over-heated nugget.And the box counting dimension can effectively evaluate the quality of the nugget in the spot welding and can be applied with current, displace, and other spot welding parameters.

  13. Diagnostics of DC and Induction Motors Based on the Analysis of Acoustic Signals (United States)

    Glowacz, A.


    In this paper, a non-invasive method of early fault diagnostics of electric motors was proposed. This method uses acoustic signals generated by electric motors. Essential features were extracted from acoustic signals of motors. A plan of study of acoustic signals of electric motors was proposed. Researches were carried out for faultless induction motor, induction motor with one faulty rotor bar, induction motor with two faulty rotor bars and flawless Direct Current, and Direct Current motor with shorted rotor coils. Researches were carried out for methods of signal processing: log area ratio coefficients, Multiple signal classification, Nearest Neighbor classifier and the Bayes classifier. A pattern creation process was carried out using 40 samples of sound. In the identification process 130 five-second test samples were used. The proposed approach will also reduce the costs of maintenance and the number of faulty motors in the industry.

  14. Modeling and experimental analysis of acoustic cavitation bubbles for Burst Wave Lithotripsy (United States)

    Maeda, Kazuki; Colonius, Tim; Kreider, Wayne; Maxwell, Adam; Cunitz, Bryan; Bailey, Michael


    A combined modeling and experimental study of acoustic cavitation bubbles that are initiated by focused ultrasound waves is reported. Focused ultrasound waves of frequency 335 kHz and peak negative pressure 8 MPa are generated in a water tank by a piezoelectric transducer to initiate cavitation. The resulting pressure field is obtained by direct numerical simulation (DNS) and used to simulate single bubble oscillation. The characteristics of cavitation bubbles observed by high-speed photography qualitatively agree withs the simulation result. Finally, bubble clouds are captured using acoustic B-mode imaging that works in synchronization with high-speed photography. PMID:27087826

  15. Accelerated Analyte Uptake on Single Beads in Microliter-scale Batch Separations using Acoustic Streaming: Plutonium Uptake by Anion Exchange for Analysis by Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Walter F.; O' Hara, Matthew J.; Peper, Shane M.; Petersen, Steven L.; Grate, Jay W.


    The use of acoustic streaming as a non-contact mixing platform to accelerate mass transport-limited diffusion processes in small volume heterogeneous reactions has been investigated. Single bead anion exchange of plutonium at nanomolar and sub-picomolar concentrations in 20 microliter liquid volumes was used to demonstrate the effect of acoustic mixing. Pu uptake rates on individual ~760 micrometer diameter AG 1x4 anion exchange resin beads were determined using acoustic mixing and compared with Pu uptake rates achieved by static diffusion alone. An 82 MHz surface acoustic wave (SAW) device was placed in contact with the underside of a 384-well microplate containing flat-bottomed semiconical wells. Acoustic energy was coupled into the solution in the well, inducing acoustic streaming. Pu uptake rates were determined by the plutonium remaining in solution after specific elapsed time intervals, using liquid scintillation counting (LSC) for nanomolar concentrations and thermal ionization mass spectrometry (TIMS) analysis for the sub-picomolar concentration experiments. It was found that this small batch uptake reaction could be accelerated by a factor of about five-fold or more, depending on the acoustic power applied.

  16. Acoustic Data Processing and Transient Signal Analysis for the Hybrid Wing Body 14- by 22-Foot Subsonic Wind Tunnel Test (United States)

    Bahr, Christopher J.; Brooks, Thomas F.; Humphreys, William M.; Spalt, Taylor B.; Stead, Daniel J.


    An advanced vehicle concept, the HWB N2A-EXTE aircraft design, was tested in NASA Langley's 14- by 22-Foot Subsonic Wind Tunnel to study its acoustic characteristics for var- ious propulsion system installation and airframe con gurations. A signi cant upgrade to existing data processing systems was implemented, with a focus on portability and a re- duction in turnaround time. These requirements were met by updating codes originally written for a cluster environment and transferring them to a local workstation while en- abling GPU computing. Post-test, additional processing of the time series was required to remove transient hydrodynamic gusts from some of the microphone time series. A novel automated procedure was developed to analyze and reject contaminated blocks of data, under the assumption that the desired acoustic signal of interest was a band-limited sta- tionary random process, and of lower variance than the hydrodynamic contamination. The procedure is shown to successfully identify and remove contaminated blocks of data and retain the desired acoustic signal. Additional corrections to the data, mainly background subtraction, shear layer refraction calculations, atmospheric attenuation and microphone directivity corrections, were all necessary for initial analysis and noise assessments. These were implemented for the post-processing of spectral data, and are shown to behave as expected.

  17. Acoustic Evidence for Phonologically Mismatched Speech Errors (United States)

    Gormley, Andrea


    Speech errors are generally said to accommodate to their new phonological context. This accommodation has been validated by several transcription studies. The transcription methodology is not the best choice for detecting errors at this level, however, as this type of error can be difficult to perceive. This paper presents an acoustic analysis of…

  18. Analysis of the Digital Evidence Presented in the Yahoo! Case (United States)

    Kwan, Michael; Chow, Kam-Pui; Lai, Pierre; Law, Frank; Tse, Hayson

    The “Yahoo! Case” led to considerable debate about whether or not an IP address is personal data as defined by the Personal Data (Privacy) Ordinance (Chapter 486) of the Laws of Hong Kong. This paper discusses the digital evidence presented in the Yahoo! Case and evaluates the impact of the IP address on the verdict in the case. A Bayesian network is used to quantify the evidentiary strengths of hypotheses in the case and to reason about the evidence. The results demonstrate that the evidence about the IP address was significant to obtaining a conviction in the case.

  19. Workers' exposure to noise inside complex acoustic environments in Canada : a qualitative analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hertil, S. [Inst. of Noise Control Engineers, Calgary, AB (Canada)


    Occupational noise regulations in Canada have limits on the permissible exposure of a worker to noise in the workplace. These limits are set in terms of an 8-hour average sound level of 85 dBA, with limits of 135 dBC on peak sound pressure levels. However, these noise regulations do not specify any qualitative limits on noise levels and are not clear enough for providing adequate protection of workers against low-frequency noise and inaudible air vibrations and infrasound commonly found in heavy industrial sites and power generation plants. This paper presented actual sound level data that was collected at various power plants in Canada during the period 1995 - 2005. It was shown that noise in the work place includes inaudible low-frequency noise and air vibrations that are impossible to detect by dosimeters or type 1 and type 2 hand held sound level meters. The paper described exposure to noise inside a small, gas-fired generator hall; exposure to noise inside a large steam processing plant; exposure to noise in the area of roller ball mills; noise quality inside a steam processing plant; noise quality inside a coal ball mill building; noise quality inside a large water feed pump area; and quality of noise inside a steam turbine hall. The frequencies that are harmful to workers were identified in an effort to design noise control features for machinery or equipment and to develop abatement measures to protect workers operating in complex acoustic environments. It was concluded that noise control is a collective task that should be undertaken by many professionals from all the fields related to health, safety, hearing and hearing conservation. 3 refs., 2 tabs., 6 figs.

  20. Acoustic-Seismic Coupling in Porous Ground - Measurements and Analysis for On-Site-Inspection Support (United States)

    Liebsch, Mattes; Gorschlüter, Felix; Altmann, Jürgen


    During on-site inspections (OSI) of the Comprehensive Nuclear Test Ban Treaty Organisation (CTBTO) a local seismic network can be installed to measure seismic aftershock signals of an assumed underground nuclear explosion. These signals are caused by relaxation processes in and near the cavity created by the explosion and when detected can lead to a localisation of the cavity. This localisation is necessary to take gas samples from the ground which are analysed for radioactive noble gas isotopes to confirm or dismiss the suspicion of a nuclear test. The aftershock signals are of very low magnitude so they can be masked by different sources, in particular periodic disturbances caused by vehicles and aircraft in the inspection area. Vehicles and aircraft (mainly helicopters) will be used for the inspection activities themselves, e.g. for overhead imagery or magnetic-anomaly sensing. While vehicles in contact with the ground can excite soil vibrations directly, aircraft and vehicles alike emit acoustic waves which excite soil vibrations when hitting the ground. These disturbing signals are of periodic nature while the seismic aftershock signals are pulse-shaped, so their separation is possible. The understanding of the coupling of acoustic waves to the ground is yet incomplete, a better understanding is necessary to improve the performance of an OSI, e.g. to address potential consequences for the sensor placement, the helicopter trajectories etc. In a project funded by the Young Scientist Research Award of the CTBTO to one of us (ML), we investigated the acoustic-seismic coupling of airborne signals of jet aircraft and artificially induced ones by a speaker. During a measurement campaign several acoustic and seismic sensors were placed below the take-off trajectory of an airport at 4 km distance. Therefore taking off and landing jet aircraft passed nearly straightly above the setup. Microphones were placed close to the ground to record the sound pressure of incident

  1. Modeling, design, packing and experimental analysis of liquid-phase shear-horizontal surface acoustic wave sensors (United States)

    Pollard, Thomas B

    Recent advances in microbiology, computational capabilities, and microelectromechanical-system fabrication techniques permit modeling, design, and fabrication of low-cost, miniature, sensitive and selective liquid-phase sensors and lab-on-a-chip systems. Such devices are expected to replace expensive, time-consuming, and bulky laboratory-based testing equipment. Potential applications for devices include: fluid characterization for material science and industry; chemical analysis in medicine and pharmacology; study of biological processes; food analysis; chemical kinetics analysis; and environmental monitoring. When combined with liquid-phase packaging, sensors based on surface-acoustic-wave (SAW) technology are considered strong candidates. For this reason such devices are focused on in this work; emphasis placed on device modeling and packaging for liquid-phase operation. Regarding modeling, topics considered include mode excitation efficiency of transducers; mode sensitivity based on guiding structure materials/geometries; and use of new piezoelectric materials. On packaging, topics considered include package interfacing with SAW devices, and minimization of packaging effects on device performance. In this work novel numerical models are theoretically developed and implemented to study propagation and transduction characteristics of sensor designs using wave/constitutive equations, Green's functions, and boundary/finite element methods. Using developed simulation tools that consider finite-thickness of all device electrodes, transduction efficiency for SAW transducers with neighboring uniform or periodic guiding electrodes is reported for the first time. Results indicate finite electrode thickness strongly affects efficiency. Using dense electrodes, efficiency is shown to approach 92% and 100% for uniform and periodic electrode guiding, respectively; yielding improved sensor detection limits. A numerical sensitivity analysis is presented targeting viscosity

  2. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging


    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  3. Finite element analysis of surface acoustic waves in high aspect ratio electrodes

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim


    down the SAWvelocity because of mechanical energy storage. A finite model is furthermore employed to study the acousto-optical interaction and shows that it is possible to get a bigger change in effective refractive index with these surface acoustic waves compared to using conventional interdigital...

  4. Detection and Resolvability of Pulsed Acoustic Signals Through the South China Sea Basin: A Modeling Analysis (United States)


    of the internal wave distribution developed by Hsu and Liu (2000) compiled from hundreds of Synthetic Aperture Radar (SAR) images from the First...Hamiltonian Acoustic Raytracing Program for the Ocean (Jones et al., 1986). HARPO traces rays by numerically integrating Hamilton’s equations of motion

  5. Analysis of acoustic resonator with shape deformation using finite element method

    Indian Academy of Sciences (India)

    G M Kalmse; Ajay Chaudhari; P B Patil


    An acoustic resonator with shape deformation has been analysed using the finite element method. The shape deformation issuch that the volume of the resonator remains constant. The effect of deformation on the resonant frequencies is studied. Deformation splits the degenerate frequencies.

  6. Articulatory-to-Acoustic Relations in Talkers with Dysarthria: A First Analysis (United States)

    Mefferd, Antje


    Purpose: The primary purpose of this study was to determine the strength of interspeaker and intraspeaker articulatory-to-acoustic relations of vowel contrast produced by talkers with dysarthria and controls. Methods: Six talkers with amyotrophic lateral sclerosis (ALS), six talkers with Parkinson's disease (PD), and 12 controls repeated a…

  7. Analysis tools for the design of active structural acoustic control systems

    NARCIS (Netherlands)

    Oude Nijhuis, Marco Hendrikus Hermanus


    Acoustic noise is an important problem in the modern society and provides much of the impetus for the development of noise reduction techniques. Passive methods, such as the use of sound absorbing materials, provide an adequate solution to many noise problems, but for noise reduction at low frequenc

  8. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore


    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  9. Acoustic biosensors


    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A.


    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of ...

  10. Coupled vibro-acoustic model updating using frequency response functions (United States)

    Nehete, D. V.; Modak, S. V.; Gupta, K.


    Interior noise in cavities of motorized vehicles is of increasing significance due to the lightweight design of these structures. Accurate coupled vibro-acoustic FE models of such cavities are required so as to allow a reliable design and analysis. It is, however, experienced that the vibro-acoustic predictions using these models do not often correlate acceptably well with the experimental measurements and hence require model updating. Both the structural and the acoustic parameters addressing the stiffness as well as the damping modeling inaccuracies need to be considered simultaneously in the model updating framework in order to obtain an accurate estimate of these parameters. It is also noted that the acoustic absorption properties are generally frequency dependent. This makes use of modal data based methods for updating vibro-acoustic FE models difficult. In view of this, the present paper proposes a method based on vibro-acoustic frequency response functions that allow updating of a coupled FE model by considering simultaneously the parameters associated with both the structural as well as the acoustic model of the cavity. The effectiveness of the proposed method is demonstrated through numerical studies on a 3D rectangular box cavity with a flexible plate. Updating parameters related to the material property, stiffness of joints between the plate and the rectangular cavity and the properties of absorbing surfaces of the acoustic cavity are considered. The robustness of the method under presence of noise is also studied.

  11. Study of low frequency acoustic signals from superheated droplet detector

    CERN Document Server

    Mondal, P K; Das, M; Bhattacharjee, P


    The bubble nucleation process in superheated droplet detector (SDD) is associated with the emission of an acoustic pulse that can be detected by an acoustic sensor. We have studied the neutron and gamma-ray induced nucleation events in a SDD with the active liquid R-12 (CCl2F2, b.p. -29.8oC) using a condenser microphone sensor. A comparative study in the low frequency region (~ 0-10kHz) for the neutron and gamma-ray induced nucleation is presented here. From the analysis of the waveforms we observe a significant difference between the neutron and gamma-ray induced acoustic events.

  12. Statistical relations among architectural features and objective acoustical measurements of concert halls

    DEFF Research Database (Denmark)

    Gade, Anders Christian; Siebein, G. W.; Chiang, W.


    A statistical analysis of architectural features and detailed objective acoustical measurements made in eight concert halls and several multi-use rooms in their concert configuration will be presented. A method for evaluating the architectural features of rooms that affect their acoustical...

  13. Frequency effects on the scale and behavior of acoustic streaming. (United States)

    Dentry, Michael B; Yeo, Leslie Y; Friend, James R


    Acoustic streaming underpins an exciting range of fluid manipulation phenomena of rapidly growing significance in microfluidics, where the streaming often assumes the form of a steady, laminar jet emanating from the device surface, driven by the attenuation of acoustic energy within the beam of sound propagating through the liquid. The frequencies used to drive such phenomena are often chosen ad hoc to accommodate fabrication and material issues. In this work, we seek a better understanding of the effects of sound frequency and power on acoustic streaming. We present and, using surface acoustic waves, experimentally verify a laminar jet model that is based on the turbulent jet model of Lighthill, which is appropriate for acoustic streaming seen at micro- to nanoscales, between 20 and 936 MHz and over a broad range of input power. Our model eliminates the critically problematic acoustic source singularity present in Lighthill's model, replacing it with a finite emission area and enabling determination of the streaming velocity close to the source. At high acoustic power P (and hence high jet Reynolds numbers ReJ associated with fast streaming), the laminar jet model predicts a one-half power dependence (U∼P1/2∼ ReJ) similar to the turbulent jet model. However, the laminar model may also be applied to jets produced at low powers-and hence low jet Reynolds numbers ReJ-where a linear relationship between the beam power and streaming velocity exists: U∼P∼ReJ2. The ability of the laminar jet model to predict the acoustic streaming behavior across a broad range of frequencies and power provides a useful tool in the analysis of microfluidics devices, explaining peculiar observations made by several researchers in the literature. In particular, by elucidating the effects of frequency on the scale of acoustically driven flows, we show that the choice of frequency is a vitally important consideration in the design of small-scale devices employing acoustic streaming

  14. Sensitivity analysis of a time-delayed thermo-acoustic system via an adjoint-based approach

    CERN Document Server

    Magri, Luca


    We apply adjoint-based sensitivity analysis to a time-delayed thermo-acoustic system: a Rijke tube containing a hot wire. We calculate how the growth rate and frequency of small oscillations about a base state are affected either by a generic passive control element in the system (the structural sensitivity analysis) or by a generic change to its base state (the base-state sensitivity analysis). We illustrate the structural sensitivity by calculating the effect of a second hot wire with a small heat release parameter. In a single calculation, this shows how the second hot wire changes the growth rate and frequency of the small oscillations, as a function of its position in the tube. We then examine the components of the structural sensitivity in order to determine the passive control mechanism that has the strongest influence on the growth rate. We find that a force applied to the acoustic momentum equation in the opposite direction to the instantaneous velocity is the most stabilizing feedback mechanism. We ...

  15. Analysis of Precursors Prior to Rock Burst in Granite Tunnel Using Acoustic Emission and Far Infrared Monitoring

    Directory of Open Access Journals (Sweden)

    Zhengzhao Liang


    Full Text Available To understand the physical mechanism of the anomalous behaviors observed prior to rock burst, the acoustic emission (AE and far infrared (FIR techniques were applied to monitor the progressive failure of a rock tunnel model subjected to biaxial stresses. Images of fracturing process, temperature changes of the tunnel, and spatiotemporal serials of acoustic emission were simultaneously recorded during deformation of the model. The b-value derived from the amplitude distribution data of AE was calculated to predict the tunnel rock burst. The results showed that the vertical stress enhanced the stability of the tunnel, and the tunnels with higher confining pressure demonstrated a more abrupt and strong rock burst. Abnormal temperature changes around the wall were observed prior to the rock burst of the tunnel. Analysis of the AE events showed that a sudden drop and then a quiet period could be considered as the precursors to forecast the rock burst hazard. Statistical analysis indicated that rock fragment spalling occurred earlier than the abnormal temperature changes, and the abnormal temperature occurred earlier than the descent of the AE b-value. The analysis indicated that the temperature changes were more sensitive than the AE b-value changes to predict the tunnel rock bursts.

  16. Surdez súbita unilateral como manifestação de schwannoma vestibular: relato de caso Sudden deafness as a presenting symptom of acoustic neuroma: case report

    Directory of Open Access Journals (Sweden)

    Sérgio Marquez Nascentes


    Full Text Available O schwannoma vestibular, também conhecido como neuroma ou neurinoma do acústico, é o tumor mais freqüente do ângulo pontocerebelar correspondendo a aproximadamente a 9% de todos os tumores intracranianos. APRESENTAÇÃO DO CASO: Os autores apresentam um relato de caso de surdez súbita e zumbido unilateral com melhora dos sintomas através de tratamento clínico com Prednisona e Pentoxifilina e posterior diagnóstico por exame de imagem de schwannoma vestibular. DISCUSSÃO: A surdez súbita pode ser descrita como uma perda neurossensorial abrupta e intensa. Costuma ser acima de 30 dB, em três ou mais freqüências contíguas e se desenvolve em menos de três dias. CONCLUSÃO: É de grande importância a pesquisa da etiologia nos casos de surdez súbita para a boa condução do caso e orientação terapêutica.Vestibular schwannoma, also known as acoustic neurinoma, is the most frequent tumor of the cerebellopontine angle, and represents 9% of all intracranial tumors. CASE REPORT: The authors report a case of sudden deafness with unilateral tinnitus. The patients responded to therapy with Prednisone and Pentoxifylline after the diagnosis of acoustic neurinoma by imaging exams. DISCUSSION: Sudden deafness can be described as an intense and abrupt sensorineural loss. Usually it is higher than 30 dB at three or more frequencies and develops in less than three days. CONCLUSION: Investigation of the etiology of sudden deafness is extremely important to establish the adequate strategy for the case.

  17. Verification of nonlinear dynamic structural test results by combined image processing and acoustic analysis (United States)

    Tene, Yair; Tene, Noam; Tene, G.


    An interactive data fusion methodology of video, audio, and nonlinear structural dynamic analysis for potential application in forensic engineering is presented. The methodology was developed and successfully demonstrated in the analysis of heavy transportable bridge collapse during preparation for testing. Multiple bridge elements failures were identified after the collapse, including fracture, cracks and rupture of high performance structural materials. Videotape recording by hand held camcorder was the only source of information about the collapse sequence. The interactive data fusion methodology resulted in extracting relevant information form the videotape and from dynamic nonlinear structural analysis, leading to full account of the sequence of events during the bridge collapse.

  18. Acoustic telemetry.

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.


    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  19. Characterizing noise in nonhuman vocalizations: Acoustic analysis and human perception of barks by coyotes and dogs (United States)

    Riede, Tobias; Mitchell, Brian R.; Tokuda, Isao; Owren, Michael J.


    Measuring noise as a component of mammalian vocalizations is of interest because of its potential relevance to the communicative function. However, methods for characterizing and quantifying noise are less well established than methods applicable to harmonically structured aspects of signals. Using barks of coyotes and domestic dogs, we compared six acoustic measures and studied how they are related to human perception of noisiness. Measures of harmonic-to-noise-ratio (HNR), percent voicing, and shimmer were found to be the best predictors of perceptual rating by human listeners. Both acoustics and perception indicated that noisiness was similar across coyote and dog barks, but within each species there was significant variation among the individual vocalizers. The advantages and disadvantages of the various measures are discussed.

  20. Time-domain CFD computation and analysis of acoustic attenuation performance of water-filled silencers

    Institute of Scientific and Technical Information of China (English)

    刘晨; 季振林; 程垠钟; 刘胜兰


    The multi-dimensional time-domain computational fluid dynamics (CFD) approach is extended to calculate the acoustic attenuation performance of water-filled piping silencers. Transmission loss predictions from the time-domain CFD approach and the frequency-domain finite element method (FEM) agree well with each other for the dual expansion chamber silencer, straight-through and cross-flow perforated tube silencers without flow. Then, the time-domain CFD approach is used to investigate the effect of flow on the acoustic attenuation characteristics of perforated tube silencers. The numerical predictions demonstrate that the mean flow increases the transmission loss, especially at higher frequencies, and shifts the transmission loss curve to lower frequencies.

  1. Theoretical analysis and experiment study on the acoustic parameters of metal rubber materials

    Institute of Scientific and Technical Information of China (English)

    JIANG Hongyuan; WU Guoqi; E.A.Izzheurov


    The acoustic parameters of metal rubber materials were theoretically and experimentally investigated.Under the assumption that metal rubber materials were homogenous,isotropic and porous structures,formulas were deduced for the calculations of effective sound velocity,characteristic impedance,propagation constant,structural constant and flow resistivity.The structural constant of metal rubber materials with different structural parameters were obtained and analyzed by using experiments.The experimental and theoretical values of characteristic impedance and propagation constant were compared and analyzed.It is shown that the proposed theoretic method based on the homogenous,isotropic and porous material model is suitable to calculate the acoustic parameters of metal rubber materials.

  2. Acoustic radiation analysis and experimental verification of a broadband dense plane array

    Institute of Scientific and Technical Information of China (English)

    LIU Wangsheng; LI Ya'an; YU Hongpei


    The sound field distribution of a broadband array is calculated using the acoustics FEM and BEM. The FEM-BEM model is established for a nine-element plane array and its numerical method of calculating mutual radiation impedance among the transducers is given. The changing law of mutual radiation impedance influencing acoustics performances is analyzed. The directivity and beam width of the plane array are calculated at three resonance frequencies. A broadband dense plane array with nine elements is developed using triply resonant transducers. The input impedance and directivity of the plane array are measured in anechoic water tank. Results show that it is reasonable to design the array according to the half wavelengh of the first resonance frequency of the array element. The numerical solution agrees with the measuring results well, which indicates the FEM-BEM method is feasible to calculate sound field distribution and analyze mutual impedances.

  3. Theoretical and numerical analysis of layered cylindrical p entamo de acoustic cloak%圆柱形分层五模材料声学隐身衣的理论与数值分析

    Institute of Scientific and Technical Information of China (English)

    张向东; 陈虹; 王磊; 赵志高; 赵爱国


    As a newly-developed method, acoustic cloak made of pentamode materials is on its speedway to the promising potential application. However, physical fabrication of pentamode cloak with continuously varying material parameters can be a tough work, if not totally impossible. Layering is a natural compromise to bypass this quandary. Researches on layering effects of inertial cloak are ample. However, researches on layering pentamode acoustic cloak are relatively limited. Among these researches Scandrett extends the effective bandwidth through optimization of material parame-ters[2010 J. Acoust. Soc. Am. 127 2856, 2011 Wave Motion. 48 505]. The present work concerns the layering effects of pentamode acoustic cloak. By comparing with precedent results, the present paper has two major innovations: Firstly, cylinder is chosen to be the basic geometry. This is of obvious advantage since cylinder is the basic geometry of acoustic cloak’s important potential host. Secondly, effects of layers’ number and thickness distribution on the stealth effect are analyzed. The two are key parameters to be determined in the layering process. This paper is organized as follows: Firstly, analytical expression of the scattering pressure field of layered cloak is deduced by means of variables separation. In this process Fourier expansion plays a key role. And the harmonic assumption of the incident acoustic wave is made. Secondly, typical cases are calculated to verify the validation of the theoretical analysis. First let material parameters tend towards that of water, and compare the scattering field with that of the bare rigid object when the cloak is replaced by water. Second let the layering number goes to infinity, and compare the scattering field with that of the continuous cloak. Phenomena conforming with basic physical laws are observed. And validity of the theory and codes is confirmed. Thirdly, effects of layers’ number and thickness distribution on the stealth character are

  4. Bayesian hindcast of acoustic transmission loss in the western Pacific Ocean (United States)

    Palmsten, Margaret; Paquin Fabre, J.


    A Bayesian network is developed to demonstrate the feasibility of using environmental acoustic feature vectors (EAFVs) to predict underwater acoustic transmission loss (TL) versus range at two locations for a single acoustic source depth and frequency. Features for the networks are chosen based on a sensitivity analysis. The final network design resulted in a well-trained network, with high skill, little gain error, and low bias. The capability presented here shows promise for expansion to a more generalized approach, which could be applied at varying locations, depths and frequencies to estimate acoustic performance over a highly variable oceanographic area in real-time or near-real-time.

  5. Hearing preservation in acoustic neuroma resection: Analysis of petrous bone measurement and intraoperative application

    Directory of Open Access Journals (Sweden)

    Levent Tanrikulu


    Conclusion: Petrous bone measurement by high-resolution MRI data enables safe surgical exposure of the internal acoustic canal with avoidance of injury to the labyrinth and a better postoperative prognosis, especially for intrameatal ANs and for the resection of intrameatal portions of larger neuromas. The prognostic factors enable the patients and the surgeon a better estimation of postoperative results regarding deafness and postoperative hypacusis and support a consolidated treatment planning.

  6. Local-linear-prediction analysis for underwater acoustic target radiated noise

    Institute of Scientific and Technical Information of China (English)

    LIANG Juan; LU Jiren


    Local-linear-prediction in phase space is performed for the underwater acoustic target radiated noise. Relation curve of average prediction error versus neighboring points' number is calculated. The result is used in judging the nonlinearity of radiated noise time series, and obtaining the appropriate form and coefficients of predicting model. The line and continuous spectral component are predicted respectively. Choice of some model parameters minimizing the prediction error is also discussed.

  7. Criteria and Thresholds for U.S. Navy Acoustic and Explosive Effects Analysis (United States)


    other active acoustic sources, since the EQL portion of the Type II functions are based on tonal noise exposures most closely related to sonars. For...considerable body of laboratory data exist on injuries from impulsive sound exposure, usually from explosive pulses , obtained from tests with a variety of...1973; U.S. Navy, 2001). The impulse required for mortality is assumed to increase proportionally to the square root of the ratio of the combined

  8. Acoustic imaging system (United States)

    Smith, Richard W.


    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  9. Acoustic Strength of Green Turtle and Fish Based on FFT Analysis

    Directory of Open Access Journals (Sweden)

    Azrul Mahfurdz


    Full Text Available the acoustic power at difference angle and distance were measure for four different ages of Green Turtles and three species of fish using modified echo sounder V1082. The echo signal from TVG output was digitized at a sampling rate 1MHz using analog to digital converter (Measurement Computing USB1208HS. Animals were tied with wood frame to ensure it can’t move away from the sound beam. The scatter value for fish demonstrates echo strength is different and depends on the angle of measurement. The lowest acoustic power of fish was recorded from their tail. The finding show that, there is significant difference between fish and turtles aged 12 to 18 years at 4.5 meter and 5 meter. The carapace and plastron of sea turtle gives high backscattering strength compare to other side. The high value obtained probably because of the hard surface of the carapace and plastron. This result is considered important in determining the best method of separating sea turtle and fish. Through this result, revealed that size, surface and animal angle play important role in determining acoustic strength value.

  10. Analysis of acoustic-seismic coupling for CTBT on-site inspection support

    Energy Technology Data Exchange (ETDEWEB)

    Liebsch, Mattes [Experimentelle Physik III, TU Dortmund (Germany)


    The measurements of weak seismic signals, e.g. aftershock measurements during an on-site inspection for the Comprehensive Nuclear Test-Ban Treaty (CTBT), can be masked by man-made disturbances. These can be caused by airborne signals, like the noises of aircraft or helicopters, which couple to the ground and excite soil vibrations. We have measured sound pressure and corresponding soil vibrations caused by aircraft and by signals produced artificially with a speaker. Methods of acoustic deadening were applied to reduce the incident acoustic power locally. The influence on soil vibrations in different depths below the surface is investigated. The underlying question was whether the coupling of sound happens locally or soil vibrations created in a wide area around the sensor sum up to the total seismic signal. A better understanding of acoustic-seismic coupling can be used to develop guidelines for seismic aftershock measurements in order to improve the performance of on-site inspections for the CTBT.

  11. Effect of feed and bleed rate on hybridoma cells in an acoustic perfusion bioreactor: Metabolic analysis

    NARCIS (Netherlands)

    Dalm, M.C.F.; Lamers, P.P.; Cuijten, S.M.R.; Tjeerdsma, A.M.; Grunsven, van W.M.J.; Tramper, J.; Martens, D.E.


    For the development of optimal perfusion processes, insight into the effect of feed and bleed rate on cell growth, productivity, and metabolism is essential. In the here presented study the effect of the feed and bleed rate on cell metabolism was investigated using metabolic flux analysis. Under all

  12. Damage analysis of CFRP-confined circular concrete-filled steel tubular columns by acoustic emission techniques (United States)

    Li, Dongsheng; Chen, Zhi; Feng, Quanming; Wang, Yanlei


    Damage properties of carbon fiber-reinforced polymer (CFRP) confined circular concrete-filled steel tubular (CCFT) columns were analyzed through acoustic emission (AE) signals. AE characteristic parameters were obtained through axial compression tests. The severity of damage to CFRP-CCFT columns was estimated using the growing trend of AE accumulated energy as basis. The bearing capacity of CFRP-CCFT columns and AE accumulated energy improved as CFRP layers increased. The damage process was studied using a number of crucial AE parameters. The cracks’ mode can be differentiated through the ratio of the rise time to the waveform amplitude and through average frequency analysis. With the use of intensity signal analysis, the damage process of the CFRP-CCFT columns can be classified into three levels that represent different degrees. Based on b-value analysis, the development of the obtained cracks can be defined. Thus, identifying an initial yielding and providing early warning is possible.

  13. Hydrodynamic and acoustic analysis in 3-D of a section of main steam line to EPU conditions; Analisis hidrodinamico y acustico en 3D de una seccion de linea de vapor principal a condiciones de EPU

    Energy Technology Data Exchange (ETDEWEB)

    Centeno P, J.; Castillo J, V.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Nunez C, A.; Polo L, M. A., E-mail: [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)


    The objective of this word is to study the hydrodynamic and acoustic phenomenon in the main steam lines (MSLs). For this study was considered the specific case of a pipe section of the MSL, where is located the standpipe of the pressure and/or safety relief valve (SRV). In the SRV cavities originates a phenomenon known as whistling that generates a hydrodynamic disturbance of acoustic pressure waves with different tones depending of the reactor operation conditions. In the SRV cavities the propagation velocity of the wave can originate mechanical damage in the structure of the steam dryer and on free parts. The importance of studying this phenomenon resides in the safety of the integrity of the reactor pressure vessel. To dissipate the energy of the pressure wave, acoustic side branches (ASBs) are used on the standpipe of the SRVs. The ASBs are arrangements of compacted lattices similar to a porous medium, where the energy of the whistling phenomenon is dissipate and therefore the acoustic pressure load that impacts in particular to the steam dryers, and in general to the interns of the vessel, diminishes. For the analysis of the whistling phenomenon two three-dimensional (3-D) models were built, one hydrodynamic in stationary state and other acoustic for the harmonic times in transitory regimen, in which were applied techniques of Computational Fluid Dynamics. The study includes the reactor operation analysis under conditions of extended power up rate (EPU) with ASB and without ASB. The obtained results of the gauges simulated in the MSL without ASB and with ASB, show that tones with values of acoustic pressure are presented in frequency ranges between 160 and 200 Hz around 12 MPa and of 7 MPa, respectively. This attenuation of tones implies the decrease of the acoustic loads in the steam dryer and in the interns of the vessel that are designed to support pressures not more to 7.5 MPa approximately. With the above-mentioned is possible to protect the steam dryer

  14. Structural Acoustic Response of Shape Memory Alloy Hybrid Composite Panels (United States)

    Turner, Travis L.


    A method has been developed to predict the structural acoustic response of shape memory alloy hybrid composite panels subjected to acoustic excitation. The panel is modeled by a finite element analysis and the radiated field is predicted using Rayleigh's integral. Transmission loss predictions for the case of an aluminum panel excited by a harmonic acoustic pressure are shown to compare very well with a classical analysis. Predictions of the normal velocity response and transmitted acoustic pressure for a clamped aluminum panel show excellent agreement with experimental measurements. Predicted transmission loss performance for a composite panel with and without shape memory alloy reinforcement are also presented. The preliminary results demonstrate that the transmission loss can be significantly increased with shape memory alloy reinforcement.

  15. Investigation on influencing factors of acoustic streaming in thermoacoustic waveguides with slowly varying cross-section

    Institute of Scientific and Technical Information of China (English)

    FAN Yuxian; LIU Ke; YANG Jun


    The influencing factors of acoustic streaming in thermoacoustic waveguides with slowly varying cross-section are analyzed based on theoretical analysis and numerical simulation. The distribution curves of acoustic streaming velocity in waveguides with different characteristic scales are presented in several specific cases. The results show that appropriate forms of varying cross-section can strengthen or weaken acoustic streaming for specific acoustic fields and the thermophysical parameters have no effect on this part. In addition, the influence of time-average temperature distribution on acoustic streaming is substantial in tubes with a width of the order of the thermal penetration depth. Without time-average temperature distribution, the effect of heat conduction on acoustic streaming is great in tubes whose width is an order of about 10 to 20 times the viscous penetration depth.

  16. A mixed method for measuring low-frequency acoustic properties of macromolecular materials

    Institute of Scientific and Technical Information of China (English)

    LIU; Hongwei; YAO; Lei; ZHAO; Hong; ZHANG; Jichuan; XUE; Zhaohong


    A mixed method for measuring low-frequency acoustic properties of macromolecular materials is presented.The dynamic mechanical parameters of materials are first measured by using Dynamic Mechanical Thermal Apparatus(DMTA) at low frequencies,usually less than 100 Hz; then based on the Principles of Time-Temperature Super position (TTS),these parameters are extended to the frequency range that acousticians are concerned about,usually from hundreds to thousands of hertz; finally the extended dynamic mechanical parameters are transformed into acoustic parameters with the help of acoustic measurement and inverse analysis.To test the feasibility and accuracy,we measure a kind of rubber sample in DMTA and acquire the basic acoustic parameters of the sample by using this method.While applying the basic parameters to calculating characteristics of the sample in acoustic pipe,a reasonable agreement of sound absorption coefficients is obtained between the calculations and measurements in the acoustic pipe.

  17. Modeling fish egg production and spatial distribution from acoustic data: a step forward into the analysis of recruitment.

    Directory of Open Access Journals (Sweden)

    Andrés Ospina-Álvarez

    Full Text Available To date, there are numerous transport simulation studies demonstrating the relevance of the hydrodynamics for the advection, dispersion and recruitment of early stages of marine organisms. However, the lack of data has conditioned the use of realistic locations for the model setup and configuration in transport studies. This work (I demonstrates the key role played by the use of the realistic initial position of the eggs of small pelagic fishes in the analysis of late-larval recruitment in coastal nursery areas and (II provides a general solution for deriving future egg positions and abundances from adult biomass obtained from acoustic surveys and available fecundity data. Using European anchovy in the NW Mediterranean as a case study, we first analyzed the impact of the initial location, timing, egg buoyancy and diel vertical migration of larvae on the potential late-larval recruitment to coastal areas. The results suggested that prior knowledge of the initial spawning grounds may substantially affect the estimates of potential recruitment. We then integrated biological and acoustics-derived data (the biomass and size structure, sex ratio, a weight-batch fecundity model, mean weight, number of fish and mean spawning to build a predictive model for interannual egg production. This model was satisfactorily contrasted with field data for two years obtained with the Daily Egg Production Method (DEPM. We discuss our results in the context of the fluctuations of European anchovy egg abundance from 2003 through 2010 in the NW Mediterranean and in terms of the potential applicability of the acoustics-based spatial predictive egg production model.

  18. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.


    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  19. Audio segmentation using Flattened Local Trimmed Range for ecological acoustic space analysis

    Directory of Open Access Journals (Sweden)

    Giovany Vega


    Full Text Available The acoustic space in a given environment is filled with footprints arising from three processes: biophony, geophony and anthrophony. Bioacoustic research using passive acoustic sensors can result in thousands of recordings. An important component of processing these recordings is to automate signal detection. In this paper, we describe a new spectrogram-based approach for extracting individual audio events. Spectrogram-based audio event detection (AED relies on separating the spectrogram into background (i.e., noise and foreground (i.e., signal classes using a threshold such as a global threshold, a per-band threshold, or one given by a classifier. These methods are either too sensitive to noise, designed for an individual species, or require prior training data. Our goal is to develop an algorithm that is not sensitive to noise, does not need any prior training data and works with any type of audio event. To do this, we propose: (1 a spectrogram filtering method, the Flattened Local Trimmed Range (FLTR method, which models the spectrogram as a mixture of stationary and non-stationary energy processes and mitigates the effect of the stationary processes, and (2 an unsupervised algorithm that uses the filter to detect audio events. We measured the performance of the algorithm using a set of six thoroughly validated audio recordings and obtained a sensitivity of 94% and a positive predictive value of 89%. These sensitivity and positive predictive values are very high, given that the validated recordings are diverse and obtained from field conditions. The algorithm was then used to extract audio events in three datasets. Features of these audio events were plotted and showed the unique aspects of the three acoustic communities.

  20. Coupling-of-modes analysis of thin film plate acoustic wave resonators utilizing the S0 Lamb mode. (United States)

    Yantchev, Ventsislav


    In this work the applicability of the coupling-of-modes (COM) approach to the analysis of thin AlN film plate acoustic resonators (FPAR), utilizing the S0 Lamb wave, is discussed. Analysis based on the Floquet-Bloch theorem as well as COM parameter extraction from a micromachined FPAR test structure are simultaneously used to verify the applicability of the COM approach. Finite element model simulation is used to further study the contribution of the higher order mass loading effects over the Lamb wave propagation under a periodical grating. A possibility to achieve zero sensitivity of the FPAR resonance with respect to the grating strip thickness is identified and physically interpreted for the first time.

  1. Multi scale analysis by acoustic emission of damage mechanisms in natural fibre woven fabrics/epoxy composites.

    Directory of Open Access Journals (Sweden)

    Touchard F.


    Full Text Available This paper proposes to develop an experimental program to characterize the type and the development of damage in composite with complex microstructure. A multi-scale analysis by acoustic emission has been developed and applied to hemp fibre woven fabrics/epoxy composite. The experimental program consists of tensile tests performed on single yarn, neat epoxy resin and composite materials to identify their AE amplitude signatures. A statistical analysis of AE amplitude signals has been realised and correlated with microscopic observations. Results have enabled to identify three types of damage in composites and their associated AE amplitudes: matrix cracking, interfacial debonding and reinforcement damage and fracture. Tracking of these damage mechanisms in hemp/epoxy composites has been performed to show the process of damage development in natural fibre reinforced composites.

  2. Multi scale analysis by acoustic emission of damage mechanisms in natural fibre woven fabrics/epoxy composites. (United States)

    Bonnafous, C.; Touchard, F.; Chocinski-Arnault, L.


    This paper proposes to develop an experimental program to characterize the type and the development of damage in composite with complex microstructure. A multi-scale analysis by acoustic emission has been developed and applied to hemp fibre woven fabrics/epoxy composite. The experimental program consists of tensile tests performed on single yarn, neat epoxy resin and composite materials to identify their AE amplitude signatures. A statistical analysis of AE amplitude signals has been realised and correlated with microscopic observations. Results have enabled to identify three types of damage in composites and their associated AE amplitudes: matrix cracking, interfacial debonding and reinforcement damage and fracture. Tracking of these damage mechanisms in hemp/epoxy composites has been performed to show the process of damage development in natural fibre reinforced composites.

  3. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R


    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  4. Fundamentals of Shallow Water Acoustics

    CERN Document Server

    Katsnelson, Boris; Lynch, James


    Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.

  5. Analysis of oscillational instabilities in acoustic levitation using the finite-difference time-domain method

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco


    The aim of the work described in this paper has been to investigate the use of the finite-difference time-domain method to describe the interactions between a moving object and a sound field. The main objective was to simulate oscillational instabilities that appear in single-axis acoustic...... levitation devices and to describe their evolution in time to further understand the physical mechanism involved. The study shows that the method gives accurate results for steady state conditions, and that it is a promising tool for simulations with a moving object....

  6. An exact analysis of surface acoustic waves in a plate of functionally graded materials. (United States)

    Gao, Liming; Wang, Ji; Zhong, Zheng; Du, Jianke


    Some traditional applications of structures and devices with homogeneous materials are being gradually replaced by functionally graded materials (FGM) with spatial variation of properties. The analysis of SAW propagating in FGM structures will be different primarily due to variations of material properties and resulting differential equations with variable coefficients. To provide an effective method and accurate results for the analysis of SAWs in FGM structures, we employed the Frobenius method as the only available method for a detailed analysis of SAW in materials with property variations in a linear pattern. Analytical examples are presented to demonstrate the effectiveness of the method and the effect of FGM on changes of surface displacements in SAW propagation.

  7. A thorough analysis of the short- and mid-term activity-related variations in the solar acoustic frequencies

    CERN Document Server

    Santos, A R G; Avelino, P P; Chaplin, W J; Campante, T L


    The frequencies of the solar acoustic oscillations vary over the activity cycle. The variations in other activity proxies are found to be well correlated with the variations in the acoustic frequencies. However, each proxy has a slightly different time behaviour. Our goal is to characterize the differences between the time behaviour of the frequency shifts and of two other activity proxies, namely, the area covered by sunspots and the 10.7cm flux. We define a new observable that is particularly sensitive to the short-term frequency variations. We then compare the observable when computed from model frequency shifts and from observed frequency shifts obtained with the Global Oscillation Network Group (GONG) for cycle 23. Our analysis shows that on the shortest time-scales the variations in the frequency shifts seen in the GONG observations are strongly correlated with the variations in the area covered by sunspots. However, a significant loss of correlation is still found. We verify that the times when the fre...

  8. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator (United States)

    Salvado, José; Espírito-Santo, António; Calado, Maria


    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications. PMID:22969364

  9. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    Directory of Open Access Journals (Sweden)

    Maria Calado


    Full Text Available This paper proposes a distributed system for analysis and monitoring (DSAM of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs. The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  10. An intelligent sensor array distributed system for vibration analysis and acoustic noise characterization of a linear switched reluctance actuator. (United States)

    Salvado, José; Espírito-Santo, António; Calado, Maria


    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  11. A theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels

    CERN Document Server

    Muller, Peter Barkholt


    Based on first- and second-order perturbation theory, we present a numerical study of the temporal build-up and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic conditions and assuming temperature-independent material parameters. The unsteady streaming flow is obtained by averaging the time-dependent velocity field over one oscillation period, and as time increases, it is shown to converge towards the well-known steady time-averaged solution calculated in the frequency domain. Scaling analysis reveals that the acoustic resonance builds up much faster than the acoustic streaming, implying that the radiation force may dominate over the drag force from streaming even for small particles. However, our numerical time-dependent analysis indicates that pulsed actuation does not reduce streaming significantly due to its slow decay. Our analysis also shows that for an acoustic resonance wit...

  12. Acoustic loading effects on oscillating rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.H.


    An analytical study of the interaction between an infinite acoustic medium and a cluster of circular rods is described. The acoustic field due to oscillating rods and the acoustic loading on the rods are first solved in a closed form. The acoustic loading is then used as a forcing function for rod responses, and the acousto-elastic couplings are solved simultaneously. Numerical examples are presented for several cases to illustrate the effects of various system parameters on the acoustic reaction force coefficients. The effect of the acoustic loading on the coupled eigenfrequencies are discussed.

  13. Acoustics Research (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  14. Room Acoustics (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  15. Vibro-acoustic design sensitivity analysis using the wave-based method (United States)

    Koo, Kunmo; Pluymers, Bert; Desmet, Wim; Wang, Semyung


    Conventional element-based methods, such as the finite element method (FEM) and boundary element method (BEM), require mesh refinements at higher frequencies in order to converge. Therefore, their applications are limited to low frequencies. Compared to element-based methods, the wave-based method (WBM) adopts exact solutions of the governing differential equation instead of simple polynomials to describe the dynamic response variables within the subdomains. As such, the WBM does not require a finer division of subdomains as the frequency increases in order to exhibit high computational efficiency. In this paper, the design sensitivity formulation of a semi-coupled structural-acoustic problem is implemented using the WBM. Here, the results of structural harmonic analyses are imported as the boundary conditions for the acoustic domain, which consists of multiple wave-based subdomains. The cross-sectional area of each beam element is considered as a sizing design variable. Then, the adjoint variable method (AVM) is used to efficiently compute the sensitivity. The adjoint variable is obtained from structural reanalysis using an adjoint load composed of the system matrix and an evaluation of the wave functions of each boundary. The proposed sensitivity formulation is subsequently applied to a two-dimensional (2D) vehicle model. Finally, the sensitivity results are compared to the finite difference sensitivity results, which show good agreement.

  16. Analysis of Acoustic Access to the Prostate Through the Abdomen and Perineum for Extracorporeal Ablation (United States)

    Hall, Timothy L.; Hempel, Christopher R.; Sabb, Brian J.; Roberts, William W.


    As part of the development of a noninvasive treatment for BPH using histotripsy, this study aimed to measure acoustic access for extracorporeal ablation of the prostate. Both transabdominal and transperineal approaches were considered. The objective was to measure the size and shape of a transducer aperture that could target the prostate without obstruction. CT images obtained from 17 subjects >56 years of age were used to create 3D reconstructions of the lower abdomen and pelvis. Target locations on the urethra at the base, mid, and apex in the prostate were marked along with a transrectal imaging probe. Evenly space rays spanning were traced from each target location towards the perineum and separately towards the abdomen with the maximum x-ray density encountered along each path recorded. The overall free aperture through the perineum was found to be a triangular shaped region bounded by the lower bones of the pelvis and the transrectal probe varying significantly in size between subjects. The free aperture through the abdomen was wedge shaped limited by the pubis also with great subject to subject variability. Average unblocked fractions of an f/1 transducer to target base, veru, and apex through the perineum were 77.0%, 94.4%, and 99.6%, respectively. Averages targeting through the abdomen were 86.1%, 52.3%, and 11.0%. Acoustic access to the prostate for through the perineum was judged to be feasible.


    Institute of Scientific and Technical Information of China (English)



    A finite difference/boundary integral procedure to determine the acoustic reflected pressure from a fluid-loaded bi-laminate plate is described. The bi-laminate is composed of a piezoelectric layer and an elastic layer in contact with the fluid. The plate is either of finite length and held at its two ends in an acoustically hard baffle or of infinite length with periodically etched electrodes.In the numerical model, the fluid pressure at fluid/solid interface is replaced by a continuum of point sources weighted by the normal acceleration of the elastic plate, and the governing equation system is solved in the solid domain. It is demonstrated that an appropriate applied voltage potential across the baffled piezoelectric layer has the effect of cancelling the reflected pressure at any chosen field points,and a piecewise constant voltage potential with properly chosen amplitude and phase in the periodic structure has the effect of cancelling the fundamental propagating mode of the reflected waves.

  18. Hydro-seismic-acoustical monitoring of submarine earthquakes preparation: observations and analysis

    Directory of Open Access Journals (Sweden)

    E. V. Sasorova


    Full Text Available The results of laboratory experiments on rock sample destruction and the observation data obtained from several series of the hydro-acoustic observations in which the researchers succeeded to register the signals in the critical stage of the earthquake (EQ preparation were compared. According to theoretical research (Alekseev et al., 2001 two distinct dilatant zones occur in the EQ preparation stage. The first one is located around the source and the second one represents the near-surface dilatant zone. Only high-frequency seismic-acoustic signals (SAS radiated from the near-surface dilatant zone do not attenuate completely on the passage through a solid medium. Parameters of the SAS such as the source depth under the ocean floor, frequency maximum and the signal power level were estimated. It was shown that the critical stage of the EQ preparation continues several tens hours and this process has a hierarchical nature. At first the micro-ruptures are formed over a large area. Then the high frequency radiation begins to decrease, the SAS emission area begins to shrink and the micro-earthquakes occur in the area surrounding the epicenter. The obtained results are in close agreement with the theoretical conception about the evolution of the SAS in the surface dilatant zone and with the results of laboratory experiments.

  19. Circuit-field coupled finite element analysis method for an electromagnetic acoustic transducer under pulsed voltage excitation

    Institute of Scientific and Technical Information of China (English)

    Hao Kuan-Sheng; Huang Song-Ling; Zhao Wei; Wang Shen


    This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT).Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static nagnetic field on the Lorentz force under pulsed voltage excitation are studied.

  20. Numerical and experimental analysis of high frequency acoustic microscopy and infrared reflectance system for early detection of melanoma (United States)

    Karagiannis, Georgios; Apostolidis, Georgios; Georgoulias, Panagiotis


    Melanoma is a very malicious type of cancer as it metastasizes early and hence its late diagnosis leads to death. Consequently, early diagnosis of melanoma and its removal is considered the most effective way of treatment. We present a design of a high frequency acoustic microscopy and infrared reflectance system for the early detection of melanoma. Specifically, the identification of morphological changes related to carcinogenesis is required. In this work, we simulate of the propagation of the ultrasonic waves of the order of 100 MHz as well as of electromagnetic waves of the order of 100 THz in melanoma structures targeting to the estimation and optimization of the basic characteristics of the systems. The simulation results of the acoustic microscopy subsystem aim to provide information such as the geometry of the transducer, the center frequency of operation, the focal length where the power transmittance is optimum and the spot size in focal length. As far as the infrared is concerned the optimal frequency range and the spot illumination size of the external probe is provided. This information is next used to assemble a properly designed system which is applied to melanoma phantoms as well as real skin lesions. Finally, the measurement data are visualized to reveal the information of the experimented structures, proving noteworthy accuracy.

  1. Acoustic Neurinomas

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji Rad


    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  2. Acoustic Center or Time Origin?

    DEFF Research Database (Denmark)

    Staffeldt, Henrik


    The paper discusses the acoustic center in relation to measurements of loudspeaker polar data. Also, it presents the related concept time origin and discusses the deviation that appears between positions of the acoustic center found by wavefront based and time based measuring methods....

  3. Room Acoustical Fields

    CERN Document Server

    Mechel, Fridolin


    This book presents the theory of room acoustical fields and revises the Mirror Source Methods for practical computational use, emphasizing the wave character of acoustical fields.  The presented higher methods include the concepts of “Mirror Point Sources” and “Corner sources which allow for an excellent approximation of complex room geometries and even equipped rooms. In contrast to classical description, this book extends the theory of sound fields describing them by their complex sound pressure and the particle velocity. This approach enables accurate descriptions of interference and absorption phenomena.

  4. Comparative Analysis of Continuous Acoustic Emission (AE) Data, Acquired from 12 and 16 Bit Streaming Systems during Rock Deformation Experiments (United States)

    Flynn, J.; Goodfellow, S. D.; Nasseri, M. H.; Reyes-Montes, J. M.; Young, R.


    A comparative analysis of continuous acoustic emission (AE) data acquired during a triaxial compression test, using a 12-bit and a 16-bit acquisition system, is presented. A cylindrical sample (diameter 50.1 mm and length 125 mm) of Berea sandstone was triaxally deformed at a confining pressure of 15 MPa and a strain rate of 1.6E-06 s-1. The sample was loaded differentially until failure occurred at approximately σ1 = 160 MPa. AE activity was monitored for the duration of the experiment by an array of 8 broadband piezoelectric transducers coupled to the rock sample. Raw signals were amplified by 40 dB using pre-amplifiers equipped with filter modules with a frequency passband of 100 kHz to 1 MHz. The amplifiers had a split output enabling the measured signal to be fed into a 12-bit and a 16-bit acquisition system. AE waveforms were continuously recorded at 10 MS/s on 8 data acquisition channels per system. Approximately 4,500 events were harvested and source located from the continuous data for each system. P-wave arrivals were automatically picked and event locations calculated using the downhill Simplex method and a time-varying transverse isotropic velocity model based on periodical surveys across the sample. Events detected on the 12-bit and 16-bit systems were compared both in terms of their P-wave picks and their source locations. In the early stages of AE activity, there appeared to be little difference between P-wave picks and hypocenter locations from both data sets. As the experiment progressed into the post-peak stress regime, which was accompanied by an increase in AE rate and amplitude, fewer events could be harvested from the 12-bit data compared to the 16-bit data. This is linked to the observation of a higher signal-to-noise ratio on AE waveforms harvested from the 16-bit stream compared to those from the 12-bit stream, which results in an easier identification of P-wave onsets. Similarly a higher confidence in source location is expected. Analysis

  5. Conservation properties of the trapezoidal rule in linear time domain analysis of acoustics and structures

    CERN Document Server

    Nandy, Arup Kumar


    The trapezoidal rule, which is a special case of the Newmark family of algorithms, is one of the most widely used methods for transient hyperbolic problems. In this work, we show that this rule conserves linear and angular momenta and energy in the case of undamped linear elastodynamics problems, and an `energy-like measure' in the case of undamped acoustic problems. These conservation properties, thus, provide a rational basis for using this algorithm. In linear elastodynamics problems, variants of the trapezoidal rule that incorporate `high-frequency' dissipation are often used, since the higher frequencies, which are not approximated properly by the standard displacement-based approach, often result in unphysical behavior. Instead of modifying the trapezoidal algorithm, we propose using a hybrid finite element framework for constructing the stiffness matrix. Hybrid finite elements, which are based on a two-field variational formulation involving displacement and stresses, are known to approximate the eigen...

  6. Acoustic Borehole Images for Fracture Extraction and Analysis in Second Pre-pilot Drillhole of CCSD

    Institute of Scientific and Technical Information of China (English)

    Zou Changchun; Shi Ge; Pan Lingzhi


    Ultrasonic imaging logging provides continuous and oriented images of structures vs. depth. In the Chinese Continental Scientific Drilling (CCSD) Project, acoustic borehole images were recorded in the second pre-pilot drillhole which penetrates the metamorphic rocks. This paper focuses on fracture evaluation of the drillhole with these images. Both least square fit and a modified Hough transform are used for fracture extraction, and 269 fractures were mapped in the interval from 69.5 to 1 020 m. Most fractures dip steeply, with an average angle of 54°.Fracture dip directions are dominantly in the range of 220°-280° above the depth of 267 m, but 80°-120°in the lower zones. These observations may indicate the differences in structural movements or in-situ stress fields between the upper and lower zones in the drillhole.

  7. Traceability of Acoustic Emission measurements for a proposed calibration method - Classification of characteristics and identification using signal analysis (United States)

    Griffin, James


    When using Acoustic Emission (AE) technologies, tensile, compressive and shear stress/strain tests can provide a detector for material deformation and dislocations. In this paper improvements are made to standardise calibration techniques for AE against known metrics such as force. AE signatures were evaluated from various calibration energy sources based on the energy from the first harmonic (dominant energy band) [1,2]. The effects of AE against its calibration identity are investigated: where signals are correlated to the average energy and distance of the detected phenomena. In addition, extra tests are investigated in terms of the tensile tests and single grit tests characterising different materials. Necessary translations to the time-frequency domain were necessary when segregating salient features between different material properties. Continuing this work the obtained AE is summarised and evaluated by a Neural Network (NN) regression classification technique which identifies how far the malformation has progressed (in terms of energy/force) during material transformation. Both genetic-fuzzy clustering and tree rule based classifier techniques were used as the second and third classification techniques respectively to verify the NN output giving a weighted three classifier system. The work discussed in this paper looks at both distance and force relationships for various prolonged Acoustic Emission stresses. Later such analysis was realised with different classifier models and finally implemented into the Simulink simulations. Further investigations were made into classifier models for different material interactions in terms of force and distance which add further dimension to this work with different materials based simulation realisations. Within the statistical analysis section there are two varying prolonged stress tests which together offer the mechanical calibration system (automated solenoid and pencil break calibration system). Taking such a

  8. Análise acústica em brinquedos ruidosos Acoustics analysis of the noisy toys

    Directory of Open Access Journals (Sweden)

    Carla Linhares Taxini


    Inmetro and 10 without the seal with the use of digital sound level meter in an acoustically treated room, and the sound analysis was performed using the Praat program. RESULTS: toys placed at 2.5 cm from the equipment with the seal of the Inmetro had an intensity ranging from 61.50 to 91.55 dB (A and from 69.75 to 95.05 dB (C, positioned at 25 cm ranged from 58.3 to 79.85 dB (A and from 62.50 to 83.65 dB (C. The results of the toys without warranty stamps placed at 2.5 cm ranged from 67.45 to 94.30 dB (A and 65.4 to 99.50 dB (C and the distance of 25 cm recorded from 61. 30 to 87.45 dB (A and 63.75 to 97.60 dB (C, so that the findings demonstrated that there are noisy toys that go beyond the values recommended by the current legislation in both groups, with and without warranty stamps . CONCLUSION: the toys without the seal of Inmetro showed intensities values significantly higher than the other group, offering more risk to the children’s hearing health.

  9. Acoustic biosensors (United States)

    Fogel, Ronen; Seshia, Ashwin A.


    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  10. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;


    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has onl...

  11. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;


    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...

  12. Acoustic detection of pneumothorax (United States)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.


    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  13. Experimental and Theoretical Analysis for a Fluid-Loaded, Simply Supported Plate Covered by a Damping and Decoupling Composite Acoustic Coating

    Directory of Open Access Journals (Sweden)

    Baihua Yuan


    Full Text Available This work presents a vibroacoustic response model for a fluid-loaded, simply supported rectangular plate covered by a composite acoustic coating consisting of damping and decoupling layers. The model treated the damping layer and base plate as a unified whole under pure bending moments and the decoupling layer as a three-dimensional, isotropic, linear elastic solid. The validity of the model was verified by both numerical analysis and experiments and was shown to accurately extend previous studies that were limited to a plate covered by a single damping or decoupling layer with an evaluation confined solely to numerical analysis. The trends of the numerical and experimental results are generally consistent, with some differences due to the influences of water pressure and the frequency dependence of the material parameters, which are not taken into account by the numerical analysis. Both experimental and numerical results consistently show that the radiated noise reduction effect of the composite coating is superior to that of single-type coatings, which is attributed to the fact that the composite coating combines the merits of both the high vibration suppression performance of the damping layer and the superior vibration isolation performance of the decoupling layer.

  14. The Acoustic Performance of Plane Laggings and Similar Multi-Layer Acoustic Structures. (United States)

    Au, Chak Kuen

    Acoustic laggings are used to inhibit the transmission of the sound radiated from the vibrating surfaces of machines, ducts, pipes, etc. They are formed of layers of porous materials such as fibreglass or mineral wool, layers of impervious materials such as metal cladding sheets and sometimes airspaces. A novel procedure for estimating the diffuse field 1/3 octave band insertion loss which a plane acoustic lagging produces when applied to a plane structure is developed. This novel procedure, which constitutes the major contribution of the work described in the thesis to new knowledge, is based on sets of formulae which describe how obliquely incident plane sound waves interact with the different basic layers, such as the porous layers and the impervious layers which form the lagging. The validity of the procedure is demonstrated by comparing the results it produces with measured results. The procedure is then used to undertake a parametric study to assess the effect of the properties of the various types of layers. Often the cladding sheet of a lagging is fastened to the base structure which is being lagged and an approximate analysis to consider the effect of such fastening is presented. The influence of corrugated cladding sheets is also considered. The principles used to predict the performance of plane acoustic laggings can be adapted to predict other acoustic properties such as the acoustic absorption of plane acoustic structures and this is done in the final part of the thesis. A comparison is made between the predicted and the measured performances of various types of acoustic structures.

  15. A numerically efficient damping model for acoustic resonances in microfluidic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, P., E-mail:; Dual, J. [Institute of Mechanical Systems (IMES), Department of Mechanical and Process Engineering, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich (Switzerland)


    Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results are fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.

  16. Generalization of von Neumann analysis for a model of two discrete half-spaces: The acoustic case (United States)

    Haney, M.M.


    Evaluating the performance of finite-difference algorithms typically uses a technique known as von Neumann analysis. For a given algorithm, application of the technique yields both a dispersion relation valid for the discrete time-space grid and a mathematical condition for stability. In practice, a major shortcoming of conventional von Neumann analysis is that it can be applied only to an idealized numerical model - that of an infinite, homogeneous whole space. Experience has shown that numerical instabilities often arise in finite-difference simulations of wave propagation at interfaces with strong material contrasts. These interface instabilities occur even though the conventional von Neumann stability criterion may be satisfied at each point of the numerical model. To address this issue, I generalize von Neumann analysis for a model of two half-spaces. I perform the analysis for the case of acoustic wave propagation using a standard staggered-grid finite-difference numerical scheme. By deriving expressions for the discrete reflection and transmission coefficients, I study under what conditions the discrete reflection and transmission coefficients become unbounded. I find that instabilities encountered in numerical modeling near interfaces with strong material contrasts are linked to these cases and develop a modified stability criterion that takes into account the resulting instabilities. I test and verify the stability criterion by executing a finite-difference algorithm under conditions predicted to be stable and unstable. ?? 2007 Society of Exploration Geophysicists.

  17. On Architectural Acoustics Design using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning


    is to investigate the field of application an acoustic simulation program can have during an architectural acoustics design process. A case study is carried out in order to represent the iterative working process of an architect. The working process is divided into five phases and represented by typical results......The acoustical quality of a given building, or space within the building, is highly dependent on the architectural design. Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in the architectural acoustic and the emergence of potent...... room acoustic simulation programs it is now possible to subjectively analyze and evaluate acoustic properties prior to the actual construction of a facility. With the right tools applied, the acoustic design can become an integrated part of the architectural design process. The aim of the present paper...

  18. Software Developed for the Reduction, Analysis and Presentation of MILOCSURVNORLANT Environmental Data, (United States)

    seasonal and spatial dependance upon environmental factors. The major software, developed on an Elliott 503 computer, for the reduction, analysis and presentation of MILOCSURVNORLANT 70 data is described.

  19. Droplets Acoustics

    CERN Document Server

    Dahan, Raphael; Carmon, Tal


    Contrary to their capillary resonances (Rayleigh, 1879) and their optical resonances (Ashkin, 1977), droplets acoustical resonances were rarely considered. Here we experimentally excite, for the first time, the acoustical resonances of a droplet that relies on sound instead of capillary waves. Droplets vibrations at 37 MHz rates and 100 quality factor are optically excited and interrogated at an optical threshold of 68 microWatt. Our vibrations span a spectral band that is 1000 times higher when compared with drops previously-studied capillary vibration.

  20. Acoustic black holes

    CERN Document Server

    Visser, M


    Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.

  1. Practical acoustic emission testing

    CERN Document Server


    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  2. Multiscale analysis of the acoustic scattering by many scatterers of impedance type (United States)

    Challa, Durga Prasad; Sini, Mourad


    We are concerned with the acoustic scattering problem, at a frequency {κ}, by many small obstacles of arbitrary shapes with impedance boundary condition. These scatterers are assumed to be included in a bounded domain {Ω} in {{R}^3} which is embedded in an acoustic background characterized by an eventually locally varying index of refraction. The collection of the scatterers {D_m, m=1,ldots,M} is modeled by four parameters: their number M, their maximum radius a, their minimum distance d and the surface impedances {λ_m, m=1,ldots,M}. We consider the parameters M, d and {λ_m}'s having the following scaling properties: {M:=M(a)=O(a^{-s}), d:=d(a)≈ a^t} and {λ_m:=λ_m(a)=λ_{m,0}a^{-β}}, as {a→ 0}, with non negative constants s, t and {β} and complex numbers {λ_{m, 0}}'s with eventually negative imaginary parts. We derive the asymptotic expansion of the far-fields with explicit error estimate in terms of a, as {a→ 0}. The dominant term is the Foldy-Lax field corresponding to the scattering by the point-like scatterers located at the centers {z_m}'s of the scatterers {D_m}'s with {λ_m \\vert partial D_m\\vert} as the related scattering coefficients. This asymptotic expansion is justified under the following conditions a ≤ a_0, \\vert Re (λ_{m,0})\\vert ≥ λ_-,quad \\vertλ_{m,0}\\vert ≤ λ_+,quad β quad 0 ≤ s ≤2-β,quads/3 ≤ t and the error of the approximation is {C a^{3-2β-s}}, as {a → 0}, where the positive constants {a_0, λ_-,λ_+} and C depend only on the a priori uniform bounds of the Lipschitz characters of the obstacles {D_m}'s and the ones of {M(a)a^s} and {d(a)/a^t}. We do not assume the periodicity in distributing the small scatterers. In addition, the scatterers can be arbitrary close since t can be arbitrary large, i.e., we can handle the mesoscale regime. Finally, for spherical scatterers, we can also allow the limit case {β=1} with a slightly better error of the approximation.

  3. Acoustic metamaterials with circular sector cavities and programmable densities. (United States)

    Akl, W; Elsabbagh, A; Baz, A


    Considerable interest has been devoted to the development of various classes of acoustic metamaterials that can control the propagation of acoustical wave energy throughout fluid domains. However, all the currently exerted efforts are focused on studying passive metamaterials with fixed material properties. In this paper, the emphasis is placed on the development of a class of composite one-dimensional acoustic metamaterials with effective densities that are programmed to adapt to any prescribed pattern along the metamaterial. The proposed acoustic metamaterial is composed of a periodic arrangement of cell structures, in which each cell consists of a circular sector cavity bounded by actively controlled flexible panels to provide the capability for manipulating the overall effective dynamic density. The theoretical analysis of this class of multilayered composite active acoustic metamaterials (CAAMM) is presented and the theoretical predictions are determined for a cascading array of fluid cavities coupled to flexible piezoelectric active boundaries forming the metamaterial domain with programmable dynamic density. The stiffness of the piezoelectric boundaries is electrically manipulated to control the overall density of the individual cells utilizing the strong coupling with the fluid domain and using direct acoustic pressure feedback. The interaction between the neighboring cells of the composite metamaterial is modeled using a lumped-parameter approach. Numerical examples are presented to demonstrate the performance characteristics of the proposed CAAMM and its potential for generating prescribed spatial and spectral patterns of density variation.

  4. 水下等离子体声源的声效率分析与研究%Analysis and research on acoustic efficiency of underwater plasma sound source

    Institute of Scientific and Technical Information of China (English)

    刘小龙; 黄建国; 雷开卓


    To study the acoustic efficiency problem of an underwater plasma sound source discharge system, a complete set of models for computation of the acoustic efficency of the system were established based on the analyses of the microcosmic mechanisms of corona discharge and spark discharge of underwater plasma, and the investigation of the energy transformation process of each part of the system. The experimental system for underwater pulsed discharge was proposed. The acoustic efficiency of underwater pulsed corona discharge and that of underwater pulsed spark discharge were compared and analyzed by the experiments with the self-established underwater plasma sound source experiment system. The experiments discovered that the acoustic efficiency of underwater spark discharge was evidently high in this system. On the basis of this, a series of performance experiments were carried out, and the influences of the key components of the underwater plasma discharge system on the acoustic efficiency were presented. The acoustic efficiency analysis can be used to evaluate the design of a pulsed discharge system'.%为研究水下等离子体声源放电系统的声效率问题,系统地分析了水下等离子体电晕放电和电弧放电两种放电方式的微观机理以及等离子体声源放电系统各部分之间的能量转换流程,建立了一套完整的系统声效率计算模型,同时设计了水下等离子体脉冲放电试验系统.通过比较和分析水下脉冲电晕放电和水下脉冲电弧放电的声效率发现,系统中电弧放电的声效率明显高于电晕放电.通过水下高压脉冲放电试验,详细分析了水下等离子体放电系统中关键部件对系统声效率的影响.分析结果表明:关键部件的设计和参数的优化配置对整个系统的声效率有重要影响;通过声效率的分析,能够准确评估水下等离子体声源的设计合理性.

  5. Numerical analysis of acoustically driven viscous flow through a circular hole (United States)

    Notomi, Tetsuo; Namba, Masanobu


    Periodic viscous flows through a circular hole driven by fluctuating far field pressure are numerically studied. The time-dependent incompressible Navier-Stokes equations formulated with orthogonal curvilinear coordinates are solved by using a finite difference method. The flow patterns are classified into three regimes by fluctuating pressure amplitude and frequency: flows with no laminar separation (high frequency-low pressure range), flows with attached separation bubble (intermediate frequency and pressure range) and flows with detached vortex ring (low frequency-high pressure range). The flow resistance of the circular hole is proportional to the acoustic particle velocity but independent of the viscosity of the fluid and almost invariant with the frequency for the low frequency-high pressure range. On the other hand, for the high frequency-low pressure range, the flow resistance is independent of the periodic pressure amplitude and varies directly with 2/3 powers of frequency. Finally, the predicted circular hole impedance is in good agreement with Ingard and Ising's (1967) experimental data for the orifice impedance.

  6. Theoretical analysis of transcranial magneto-acoustical stimulation with Hodgkin–Huxley neuron model

    Directory of Open Access Journals (Sweden)

    Yi eYuan


    Full Text Available Transcranial magneto-acoustical stimulation (TMAS is a novel stimulation technology in which an ultrasonic wave within a magnetostatic field generates an electric current in an area of interest in the brain to modulate neuronal activities. As a key part of the neural network, neurons transmit information in the nervous system. However, the effect of TMAS on the neuronal firing rhythm remains unknown. To address this problem, we investigated the stimulatory mechanism of TMAS on neurons with a Hodgkin-Huxley neuron model. The simulation results indicate that the magnetostatic field intensity and ultrasonic power can affect the amplitude and interspike interval of neuronal action potential under continuous wave ultrasound. The simulation results also show that the ultrasonic power, duty cycle and repetition frequency can alter the firing rhythm of neural action potential under pulsed ultrasound. This study can help to reveal and explain the biological mechanism of TMAS and to provide a theoretical basis for TMAS in the treatment or rehabilitation of neuropsychiatric disorders.

  7. Analysis of the spectrum of a Cartesian Perfectly Matched Layer (PML) approximation to acoustic scattering problems

    KAUST Repository

    Kim, Seungil


    In this paper, we study the spectrum of the operator which results when the Perfectly Matched Layer (PML) is applied in Cartesian geometry to the Laplacian on an unbounded domain. This is often thought of as a complex change of variables or "complex stretching." The reason that such an operator is of interest is that it can be used to provide a very effective domain truncation approach for approximating acoustic scattering problems posed on unbounded domains. Stretching associated with polar or spherical geometry lead to constant coefficient operators outside of a bounded transition layer and so even though they are on unbounded domains, they (and their numerical approximations) can be analyzed by more standard compact perturbation arguments. In contrast, operators associated with Cartesian stretching are non-constant in unbounded regions and hence cannot be analyzed via a compact perturbation approach. Alternatively, to show that the scattering problem PML operator associated with Cartesian geometry is stable for real nonzero wave numbers, we show that the essential spectrum of the higher order part only intersects the real axis at the origin. This enables us to conclude stability of the PML scattering problem from a uniqueness result given in a subsequent publication. © 2009 Elsevier Inc. All rights reserved.

  8. Analysis of in-flight acoustic data for a twin-engined turboprop airplane (United States)

    Wilby, J. F.; Wilby, E. G.


    Acoustic measurements were made on the exterior and interior of a general aviation turboprop airplane during four flight tests. The test conditions were carefully controlled and repeated for each flight in order to determine data variability. For the first three flights the cabin was untreated and for the fourth flight the fuselage was treated with glass fiber batts. On the exterior, measured propeller harmonic sound pressure levels showed typical standard deviations of +1.4 dB, -2.3 dB, and turbulent boundary layer pressure levels, +1.2 dB, -1.6. Propeller harmonic levels in the cabin showed greater variability, with typical standard deviations of +2.0 dB, -4.2 dB. When interior sound pressure levels from different flights with different cabin treatments were used to evaluate insertion loss, the standard deviations were typically plus or minus 6.5 dB. This is due in part to the variability of the sound pressure level measurements, but probably is also influenced by changes in the model characteristics of the cabin. Recommendations are made for the planning and performance of future flight tests to measure interior noise of propeller-driven aircraft, either high-speed advanced turboprop or general aviation propellers.

  9. Numerical analysis of the vibroacoustic properties of plates with embedded grids of acoustic black holes. (United States)

    Conlon, Stephen C; Fahnline, John B; Semperlotti, Fabio


    The concept of an Acoustic Black Hole (ABH) has been developed and exploited as an approach for passively attenuating structural vibration. The basic principle of the ABH relies on proper tailoring of the structure geometrical properties in order to produce a gradual reduction of the flexural wave speed, theoretically approaching zero. For practical systems the idealized "zero" wave speed condition cannot be achieved so the structural areas of low wave speed are treated with surface damping layers to allow the ABH to approach the idealized dissipation level. In this work, an investigation was conducted to assess the effects that distributions of ABHs embedded in plate-like structures have on both vibration and structure radiated sound, focusing on characterizing and improving low frequency performance. Finite Element and Boundary Element models were used to assess the vibration response and radiated sound power performance of several plate configurations, comparing baseline uniform plates with embedded periodic ABH designs. The computed modal loss factors showed the importance of the ABH unit cell low order modes in the overall vibration reduction effectiveness of the embedded ABH plates at low frequencies where the free plate bending wavelengths are longer than the scale of the ABH.

  10. A study of vocal nonlinearities in humpback whale songs: from production mechanisms to acoustic analysis (United States)

    Cazau, Dorian; Adam, Olivier; Aubin, Thierry; Laitman, Jeffrey T.; Reidenberg, Joy S.


    Although mammalian vocalizations are predominantly harmonically structured, they can exhibit an acoustic complexity with nonlinear vocal sounds, including deterministic chaos and frequency jumps. Such sounds are normative events in mammalian vocalizations, and can be directly traceable to the nonlinear nature of vocal-fold dynamics underlying typical mammalian sound production. In this study, we give qualitative descriptions and quantitative analyses of nonlinearities in the song repertoire of humpback whales from the Ste Marie channel (Madagascar) to provide more insight into the potential communication functions and underlying production mechanisms of these features. A low-dimensional biomechanical modeling of the whale’s U-fold (vocal folds homolog) is used to relate specific vocal mechanisms to nonlinear vocal features. Recordings of living humpback whales were searched for occurrences of vocal nonlinearities (instabilities). Temporal distributions of nonlinearities were assessed within sound units, and between different songs. The anatomical production sources of vocal nonlinearities and the communication context of their occurrences in recordings are discussed. Our results show that vocal nonlinearities may be a communication strategy that conveys information about the whale’s body size and physical fitness, and thus may be an important component of humpback whale songs. PMID:27721476

  11. A study of vocal nonlinearities in humpback whale songs: from production mechanisms to acoustic analysis (United States)

    Cazau, Dorian; Adam, Olivier; Aubin, Thierry; Laitman, Jeffrey T.; Reidenberg, Joy S.


    Although mammalian vocalizations are predominantly harmonically structured, they can exhibit an acoustic complexity with nonlinear vocal sounds, including deterministic chaos and frequency jumps. Such sounds are normative events in mammalian vocalizations, and can be directly traceable to the nonlinear nature of vocal-fold dynamics underlying typical mammalian sound production. In this study, we give qualitative descriptions and quantitative analyses of nonlinearities in the song repertoire of humpback whales from the Ste Marie channel (Madagascar) to provide more insight into the potential communication functions and underlying production mechanisms of these features. A low-dimensional biomechanical modeling of the whale’s U-fold (vocal folds homolog) is used to relate specific vocal mechanisms to nonlinear vocal features. Recordings of living humpback whales were searched for occurrences of vocal nonlinearities (instabilities). Temporal distributions of nonlinearities were assessed within sound units, and between different songs. The anatomical production sources of vocal nonlinearities and the communication context of their occurrences in recordings are discussed. Our results show that vocal nonlinearities may be a communication strategy that conveys information about the whale’s body size and physical fitness, and thus may be an important component of humpback whale songs.

  12. Theoretical Analysis of Transcranial Magneto-Acoustical Stimulation with Hodgkin-Huxley Neuron Model. (United States)

    Yuan, Yi; Chen, Yudong; Li, Xiaoli


    Transcranial magneto-acoustical stimulation (TMAS) is a novel stimulation technology in which an ultrasonic wave within a magnetostatic field generates an electric current in an area of interest in the brain to modulate neuronal activities. As a key part of the neural network, neurons transmit information in the nervous system. However, the effect of TMAS on the neuronal firing pattern remains unknown. To address this problem, we investigated the stimulatory mechanism of TMAS on neurons, by using a Hodgkin-Huxley neuron model. The simulation results indicated that the magnetostatic field intensity and ultrasonic power affect the amplitude and interspike interval of neuronal action potential under a continuous wave ultrasound. The simulation results also showed that the ultrasonic power, duty cycle and repetition frequency can alter the firing pattern of neural action potential under pulsed wave ultrasound. This study may help to reveal and explain the biological mechanism of TMAS and to provide a theoretical basis for TMAS in the treatment or rehabilitation of neuropsychiatric disorders.

  13. Detection of multiple AE signal by triaxial hodogram analysis; Sanjiku hodogram ho ni yoru taju acoustic emission no kenshutsu

    Energy Technology Data Exchange (ETDEWEB)

    Nagano, K.; Yamashita, T. [Muroran Institute of Technology, Hokkaido (Japan)


    In order to evaluate dynamic behavior of underground cracks, analysis and detection were attempted on multiple acoustic emission (AE) events. The multiple AE is a phenomenon in which multiple AE signals generated by underground cracks developed in an extremely short time interval are superimposed, and observed as one AE event. The multiple AE signal consists of two AE signals, whereas the second P-wave is supposed to have been inputted before the first S-wave is inputted. The first P-wave is inputted first, where linear three-dimensional particle movements are observed, but the movements are made random due to scattering and sensor characteristics. When the second P-wave is inputted, the linear particle movements are observed again, but are superimposed with the existing input signals and become multiple AE, which creates poor S/N ratio. The multiple AE detection determines it a multiple AE event when three conditions are met, i. e. a condition of equivalent time interval of a maximum value in a scalogram analysis, a condition of P-wave vibrating direction, and a condition of the linear particle movement. Seventy AE signals observed in the Kakkonda geothermal field were analyzed and AE signals that satisfy the multiple AE were detected. However, further development is required on an analysis method with high resolution for the time. 4 refs., 4 figs.

  14. Analysis and experimental validation of the middle-frequency vibro-acoustic coupling property for aircraft structural model based on the wave coupling hybrid FE-SEA method (United States)

    Yan, Yunju; Li, Pengbo; Lin, Huagang


    The finite element (FE) method is suitable for low frequency analysis and the statistical energy analysis (SEA) for high frequency analysis, but the vibro-acoustic coupling analysis at middle frequency, especially with a certain range of uncertainty system, requires some new methods. A hybrid FE-SEA method is proposed in this study and the Monte Carlo method is used to check the hybrid FE-SEA method through the energy response analysis of a beam-plate built-up structure with some uncertainty, and the results show that two kinds of calculation results match well consistently. Taking the advantage of the hybrid FE-SEA method, the structural vibration and the cabin noise field responses under the vibro-acoustic coupling for an aircraft model are numerically analyzed, and, also, the corresponding experiment is carried out to verify the simulated results. Results show that the structural vibration responses at low frequency accord well with the experiment, but the error at high frequency is greater. The error of sound pressure response level in cabin throughout the spectrum is less than 3 dB. The research proves the reliability of the method proposed in this paper. This indicates that the proposed method can overcome the strict limitations of the traditional method for a large complex structure with uncertainty factors, and it can also avoid the disadvantages of solving complex vibro-acoustic system using the finite element method or statistical energy analysis in the middle frequency.

  15. Acoustic Absorption in Porous Materials (United States)

    Kuczmarski, Maria A.; Johnston, James C.


    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  16. Improving the Accuracy of Software-Based Energy Analysis for Residential Buildings (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Polly, B.


    This presentation describes the basic components of software-based energy analysis for residential buildings, explores the concepts of 'error' and 'accuracy' when analysis predictions are compared to measured data, and explains how NREL is working to continuously improve the accuracy of energy analysis methods.

  17. Measurement and Analysis of Coherent Flow Structures over Sand Dunes in the Missouri River near St. Louis, MO, by means of an Acoustic Doppler Current Profiler and a Multibeam Echo Sounder (United States)

    Boldt, J.; Oberg, K. A.; Best, J. L.; Parsons, D. R.


    The topology, magnitude, and sediment transport capabilities of large-scale turbulence generated over alluvial sand dunes is influential in creating and maintaining dune morphology and in dominating both the flow field and the transport of suspended sediment above dune-covered beds. Combined measurements by means of an acoustic Doppler current profiler (ADCP) and a multibeam echo sounder (MBES) were made in order to examine flow over a series of sand dunes in the Missouri River, near St. Louis, MO, USA in October 2007. The bed topography of the Missouri River was mapped using a RESON 7125 MBES immediately before the ADCP data collection. Time series of velocity and acoustic backscatter were measured using a down-looking 1200 kHz ADCP while anchored at two locations in the dune field. The ADCP used in this study has a sampling rate of 2-3 Hz with 20-25 cm bin sizes. Two time series were collected having durations of 712 and 589 seconds at one location, while the third time series, collected about 4 meters upstream, was 2,270 seconds in duration. Measured streamwise velocities ranged from 0.1 to 2.7 ms-1 for all three stationary time series. Sediment concentration profiles were obtained at the same two locations as the stationary ADCP data using a P-61 sediment sampler and were compared to ADCP acoustic backscatter. Characteristics of turbulent flow structures in a sand bed river are presented. This paper presents data that can be used to investigate the issue of obtaining reliable estimates of turbulence parameters with an ADCP. The analyses will include mean velocity profiles, turbulence intensities, Reynolds shear stresses, quadrant analysis, power spectra, cross-correlation, and frequency analysis. Semi-periodic patterns were observed in each time series, characterized by periods of elevated acoustic backscatter with positive vertical velocities, followed by reduced acoustic backscatter with negative vertical velocities. The utility and limitations of combined

  18. Present status and perspective of radiochemical analysis of radionuclides in Nordic countries

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Olsson, Mattias; Togneri, Laura


    for emergency analysis. In Nordic countries, many laboratories are involved in the determination of radionuclides for various purposes, and a series of radiochemical analytical methods have been developed and applied. This article presents the present status and progress on radiochemical analysis...... of radionuclides, especially in Nordic countries; some requirements from nuclear industries and research organizations, as well as perspectives on the development of radiochemical analysis are discussed....

  19. Frequency-Dependent Spherical-Wave Reflection in Acoustic Media: Analysis and Inversion (United States)

    Li, Jingnan; Wang, Shangxu; Wang, Jingbo; Dong, Chunhui; Yuan, Sanyi


    Spherical-wave reflectivity (SWR), which describes the seismic wave reflection in real subsurface media more accurately than plane-wave reflectivity (PWR), recently, again attracts geophysicists' attention. The recent studies mainly focus on the amplitude variation with offset/angle (AVO/AVA) attributes of SWR. For a full understanding of the reflection mechanism of spherical wave, this paper systematically investigates the frequency-dependent characteristics of SWR in a two-layer acoustic medium model with a planar interface. Two methods are used to obtain SWR. The first method is through the calculation of classical Sommerfeld integral. The other is by 3D wave equation numerical modeling. To enhance computation efficiency, we propose to perform wave equation simulation in cylindrical coordinates, wherein we for the first time implement unsplit convolutional perfectly matched layer as the absorbing boundary. Both methods yield the same results, which demonstrate the validity and accuracy of the computation. From both the numerical tests and the theoretical demonstration, we find that the necessary condition when frequency dependence of SWR occurs is that the upper and lower media have different velocities. At the precritical small angle, the SWR exhibits complicated frequency-dependent characteristics for varying medium parameters. Especially when the impedance of upper medium equals that of lower one, the PWR is zero according to geometric seismics. Whereas the SWR is nonzero: the magnitude of SWR decreases with growing frequency, and approaches that of the corresponding PWR at high frequency; the phase of SWR increases with growing frequency, but approaches 90° or -90° at high frequency. At near- and post-critical angles, large difference exists between SWR and PWR, and the difference is particularly great at low frequencies. Finally, we propose a nonlinear inversion method to estimate physical parameters and interface depth of media by utilizing the frequency

  20. Cluster analysis of stress corrosion mechanisms for steel wires used in bridge cables through acoustic emission particle swarm optimization. (United States)

    Li, Dongsheng; Yang, Wei; Zhang, Wenyao


    Stress corrosion is the major failure type of bridge cable damage. The acoustic emission (AE) technique was applied to monitor the stress corrosion process of steel wires used in bridge cable structures. The damage evolution of stress corrosion in bridge cables was obtained according to the AE characteristic parameter figure. A particle swarm optimization cluster method was developed to determine the relationship between the AE signal and stress corrosion mechanisms. Results indicate that the main AE sources of stress corrosion in bridge cables included four types: passive film breakdown and detachment of the corrosion product, crack initiation, crack extension, and cable fracture. By analyzing different types of clustering data, the mean value of each damage pattern's AE characteristic parameters was determined. Different corrosion damage source AE waveforms and the peak frequency were extracted. AE particle swarm optimization cluster analysis based on principal component analysis was also proposed. This method can completely distinguish the four types of damage sources and simplifies the determination of the evolution process of corrosion damage and broken wire signals.

  1. Clinical utility of acoustic radiation force impulse imaging for identification of malignant liver lesions: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Li; Lin, Xiao; Xie, Zuo-Liu; Tang, Fei-Yun; Hu, Yuan-Ping [First Affiliated Hospital of Wenzhou Medical College, Department of Ultrasonography, Wenzhou (China); Shi, Ke-Qing [First Affiliated Hospital of Wenzhou Medical College, Department of Infection and Liver Diseases, Institution of Hepatology, Wenzhou (China)


    To assess the performance of acoustic radiation force impulse (ARFI) imaging for identification of malignant liver lesions using meta-analysis. PubMed, the Cochrane Library, the ISI Web of Knowledge and the China National Knowledge Infrastructure were searched. The studies published in English or Chinese relating to evaluation accuracy of ARFI imaging for identification of malignant liver lesions were collected. A hierarchical summary receiver operating characteristic (HSROC) curve was used to examine the ARFI imaging accuracy. Clinical utility of ARFI imaging for identification of malignant liver lesions was evaluated by Fagan plot analysis. A total of eight studies which included 590 liver lesions were analysed. The summary sensitivity and specificity for identification of malignant liver lesions were 0.86 (95 % confidence interval (CI) 0.74-0.93) and 0.89 (95 % CI 0.81-0.94), respectively. The HSROC was 0.94 (95 % CI 0.91-0.96). After ARFI imaging results over the cut-off value for malignant liver lesions (''positive'' result), the corresponding post-test probability for the presence (if pre-test probability was 50 %) was 89 %; in ''negative'' measurement, the post-test probability was 13 %. ARFI imaging has a high accuracy in the classification of liver lesions. (orig.)

  2. Comparative study of binding constants from Love wave surface acoustic wave and surface plasmon resonance biosensors using kinetic analysis. (United States)

    Lee, Sangdae; Kim, Yong-Il; Kim, Ki-Bok


    Biosensors are used in a variety of fields for early diagnosis of diseases, measurement of toxic contaminants, quick detection of pathogens, and separation of specific proteins or DNA. In this study, we fabricated and evaluated the capability of a high sensitivity Love wave surface acoustic wave (SAW) biosensor. The experimental setup was composed of the fabricated 155-MHz Love wave SAW biosensor, a signal measurement system, a liquid flow system, and a temperature-control system. Subsequently, we measured the lower limit of detection (LOD) of the 155-MHz Love wave SAW biosensor, and calculated the association and dissociation constants between protein G and anti-mouse IgG using kinetic analysis. We compared these results with those obtained using a commercial surface plasmon resonance (SPR) biosensor. We found that the LOD of the SAW biosensor for anti-mouse IgG and mouse IgG was 0.5 and 1 microg/ml, respectively, and the resultant equilibrium association and dissociation constants were similar to the corresponding values obtaining using the commercial SPR biosensor. Thus, we conclude that the fabricated 155-MHz Love wave SAW biosensor exhibited the high sensitivity of the commercial SPR biosensor and was able to analyze the binding properties of the ligand and receptor by kinetic analysis similarly to the commercial SPR biosensor.

  3. 4th Pacific Rim Underwater Acoustics Conference

    CERN Document Server

    Xu, Wen; Cheng, Qianliu; Zhao, Hangfang


    These proceedings are a collection of 16 selected scientific papers and reviews by distinguished international experts that were presented at the 4th Pacific Rim Underwater Acoustics Conference (PRUAC), held in Hangzhou, China in October 2013. The topics discussed at the conference include internal wave observation and prediction; environmental uncertainty and coupling to sound propagation; environmental noise and ocean dynamics; dynamic modeling in acoustic fields; acoustic tomography and ocean parameter estimation; time reversal and matched field processing; underwater acoustic localization and communication as well as measurement instrumentations and platforms. These proceedings provide insights into the latest developments in underwater acoustics, promoting the exchange of ideas for the benefit of future research.

  4. Acoustic vs Interferometric Measurements of Lightning (United States)

    Arechiga, R. O.; Erives, H.; Sonnenfeld, R. G.; Stanley, M. A.; Rison, W.; Thomas, R. J.; Edens, H. E.; Lapierre, J. L.; Stock, M.; Jensen, D.; Morris, K.


    During the summer of 2015 we acquired acoustic and RF data on severalflashes from thunderstorms over Fort Morgan CO. and Langmuir Laboratoryin the Magdalena mountains of central New Mexico. The acoustic arrayswere located at a distance of roughly 150 m from the interferometers.Lightning mapping array and slow antenna data were also obtained. Theacoustic arrays consist of arrays of five audio-range and six infrasoundmicrophones operating at 50 KHz and 1 KHz respectively. The lightninginterferometer at Fort Morgan CO. consists of three flat-plate, 13" diameterantennas at the vertices of an equilateral 50 m per side triangle. Theinterferometer at Langmuir Laboratory consists of three 13" dishes separatedby about 15 m. Both interferometers, operating at 180 Megasamples persecond, use the analysis software and digitizer hardware pioneered byStanley, Stock et al. The high data rate allows for excellent spatialresolution of high speed (and typically high current) processes such asK-changes, return strokes and dart-leaders. In previous studies, we haveshown the usefulness of acoustic recordings to locate thunder sources aswell as infrasound pulses from lightning. This work will present acomparison of Acoustic and Interferometric measurements from lightning,using some interesting flashes, including a positive cloud to ground,that occurred in these campaigns.

  5. Acoustic tomography in the atmospheric surface layer

    Directory of Open Access Journals (Sweden)

    A. Ziemann

    Full Text Available Acoustic tomography is presented as a technique for remote monitoring of meteorological quantities. This method and a special algorithm of analysis can directly produce area-averaged values of meteorological parameters. As a result consistent data will be obtained for validation of numerical atmospheric micro-scale models. Such a measuring system can complement conventional point measurements over different surfaces. The procedure of acoustic tomography uses the horizontal propagation of sound waves in the atmospheric surface layer. Therefore, to provide a general overview of sound propagation under various atmospheric conditions a two-dimensional ray-tracing model according to a modified version of Snell's law is used. The state of the crossed atmosphere can be estimated from measurements of acoustic travel time between sources and receivers at different points. Derivation of area-averaged values of the sound speed and furthermore of air temperature results from the inversion of travel time values for all acoustic paths. Thereby, the applied straight ray two-dimensional tomographic model using SIRT (simultaneous iterative reconstruction technique is characterised as a method with small computational requirements, satisfactory convergence and stability properties as well as simple handling, especially, during online evaluation.

    Key words. Meteorology and atmospheric dynamics (turbulence; instruments and techniques.

  6. Spin-electron acoustic waves: The Landau damping and ion contribution in the spectrum

    CERN Document Server

    Andreev, Pavel A


    Separated spin-up and spin-down quantum kinetics is derived for more detailed research of the spin-electron acoustic waves. Kinetic theory allows to obtain spectrum of the spin-electron acoustic waves including effects of occupation of quantum states more accurately than quantum hydrodynamics. We apply quantum kinetic to calculate the Landau damping of the spin-electron acoustic waves. We have considered contribution of ions dynamics in the spin-electron acoustic wave spectrum. We obtain contribution of ions in the Landau damping in temperature regime of classic ions. Kinetic analysis for ion-acoustic, zero sound, and Langmuir waves at separated spin-up and spin-down electron dynamics is presented as well.

  7. A survey of acoustic conditions in semi-open plan classrooms in the United Kingdom. (United States)

    Greenland, Emma E; Shield, Bridget M


    This paper reports the results of a large scale, detailed acoustic survey of 42 open plan classrooms of varying design in the UK each of which contained between 2 and 14 teaching areas or classbases. The objective survey procedure, which was designed specifically for use in open plan classrooms, is described. The acoustic measurements relating to speech intelligibility within a classbase, including ambient noise level, intrusive noise level, speech to noise ratio, speech transmission index, and reverberation time, are presented. The effects on speech intelligibility of critical physical design variables, such as the number of classbases within an open plan unit and the selection of acoustic finishes for control of reverberation, are examined. This analysis enables limitations of open plan classrooms to be discussed and acoustic design guidelines to be developed to ensure good listening conditions. The types of teaching activity to provide adequate acoustic conditions, plus the speech intelligibility requirements of younger children, are also discussed.

  8. Design of sandwich acoustic window for sonar domes

    Institute of Scientific and Technical Information of China (English)

    YU Mengsa; LI Dongsheng; GONG Li; XU Jian


    Aimed at the low noise design of sonar dome in ships, a method has been presented for calculating the sonar self noise of a simplified sonar dome consisting of sandwich acoustic window and parallel acoustic cavity, which is excited by stationary random pressure fluctuation of turbulence boundary layer, using temporal and spatial double Fourier transform and wavenumber-frequency spectrum analysis. After numerically analyzing the influence of geometrical and physical parameters of acoustic window on the sonar self noise, the design method and reasonable parameters for sandwich acoustic window are proposed. The results show that the property of low noise induced by acoustic window of sandwich is dominated by the cut-off effect of longitudinal wave and transverse wave propagating in the visco-elastic layer of sandwich as well as the mismatch effect of impedance. If the thickness, density, Young's modulus and damping factor of plates and visco-elastic layer as well as the sound speed of longitudinal wave and transverse wave in the visco-elastic layer are selected reasonably, the maximum noise reduction of sandwich acoustic window is 6.5 dB greater than that of a single glass fiber reinforced plastic plate.


    Directory of Open Access Journals (Sweden)

    J. J. Almeida-Pérez


    Full Text Available In this paper appears a solution for acoustic emission analysis commonly known as noise. For the accomplishmentof this work a personal computer is used, besides sensors (microphones and boards designed and built for signalconditioning. These components are part of a virtual instrument used for monitoring the acoustical emission. Themain goal of this work is to develop a virtual instrument that supplies many important data as the result of ananalysis allowing to have information in an easy and friendly way. Moreover this information is very useful forstudying and resolving several situations in planning, production and testing areas.The main characteristics of the virtual instrument are: signal analysis in time, effective power measurement inDecibels (dB, average intensity taken from the principle of paired microphones, as well as the data analysis infrequency. These characteristics are included to handle two information channels.

  10. Analysis and experimental study on the effect of a resonant tube on the performance of acoustic levitation devices (United States)

    Jiang, Hai; Liu, Jianfang; Lv, Qingqing; Gu, Shoudong; Jiao, Xiaoyang; Li, Minjiao; Zhang, Shasha


    The influence of a resonant tube on the performance of acoustic standing wave-based levitation device (acoustic levitation device hereinafter) is studied by analyzing the acoustic pressure and levitation force of four types of acoustic levitation devices without a resonance tube and with resonance tubes of different radii R using ANSYS and MATLAB. Introducing a resonance tube either enhances or weakens the levitation strength of acoustic levitation device, depending on the resonance tube radii. Specifically, the levitation force is improved to a maximum degree when the resonance tube radius is slightly larger than the size of the reflector end face. Furthermore, the stability of acoustic levitation device is improved to a maximum degree by introducing a resonance tube of R=1.023λ. The experimental platform and levitation force measurement system of the acoustic levitation device with concave-end-face-type emitter and reflector are developed, and the test of suspended matters and liquid drops is conducted. Results show that the Φ6.5-mm steel ball is suspended easily when the resonance tube radius is 1.023λ, and the Φ5.5-mm steel ball cannot be suspended when the resonance tube radius is 1.251λ. The levitation capability of the original acoustic levitation device without a resonance tube is weakened when a resonance tube of R=1.251λ is applied. These results are consistent with the ANSYS simulation results. The levitation time of the liquid droplet with a resonance tube of R=1.023λ is longer than without a resonance tube. This result is also supported by the MATLAB simulation results. Therefore, the performance of acoustic levitation device can be improved by introducing a resonant tube with an appropriate radius.

  11. A finite element-least square point interpolation method for simulation analysis of plate structural-acoustic coupled systems%板结构-声场耦合分析的 FE-LSPIM/FE-LSPIM 法

    Institute of Scientific and Technical Information of China (English)

    陈宁; 于德介; 吕辉; 夏百战


    In order to improve the accuracy of simulation analysis of plate structural-acoustic coupled systems,the finite element-least square point interpolation method (FE-LSPIM)was extended to solve plate structural -acoustic coupled problems and a coupled FE-LSPIM for plate structural-acoustic coupled systems was proposed.With the proposed method,the shape functions of the finite element method and the least square point interpolation were used for local approximation,the element-compatibility of the finite element method and the quadratic polynomial completeness of LSPIM were inherited.Thus,the accuracy of simulation analysis could be improved.Numerical example of a box structural-acoustic coupled model was presented.Its results showed that using FE-LSPIMachieves a higher accuracy,compared with using FEMand smoothed FEMfor simulation of plate structural -acoustic coupled problems.%为提高板结构-声场耦合分析的计算精度,将有限元-最小二乘点插值法(Finite Element-Least Square Point Interpolation Method,FE-LSPIM)推广到板结构-声场耦合问题的分析中,提出了板结构-声场耦合问题分析的 FE-LSPIM/FE-LSPIM方法,推导了 FE-LSPIM/FE-LSPIM分析板结构-声场耦合问题的计算公式。FE-LSPIM/FE-LSPIM方法应用有限元单元形函数和最小二乘点插值法进行局部逼近,继承了有限元法的单元兼容性和最小二乘插值法的二次多项式完备性,提高了计算精度。以一六面体声场-结构耦合模型为研究对象进行分析,结果表明,与板结构-声场耦合问题分析的 FEM/FEM和光滑有限元/有限元(Smoothed Finite Element Method /Finite Element Method,SFEM/FEM)相比,FE-LSPIM/FE-LSPIM在分析板结构-声场耦合问题时具有更高的精度。

  12. Study of Ocean Bottom Interactions with Acoustic Waves by a New Elastic Wave Propagation Algorithm and an Energy Flow Analysis Technique (United States)


    imaging to study the wave / sea -bottom interaction, energy partitioning, scattering mechanism and other problems that are crucial for many ocean bottom...Study Of Ocean Bottom Interactions With Acoustic Waves By A New Elastic Wave Propagation Algorithm And An Energy Flow Analysis Technique Ru-Shan Wu...elastic wave propagation and interaction with the ocean water and ocean bottom environment. The method will be applied to numerical simulations and

  13. Acoustic/Magnetic Stress Sensor (United States)

    Heyman, J. S.; Namkung, M.


    High-resolution sensor fast, portable, does not require permanent bonding to structure. Sensor measures nondestructively type (compressive or tensile) and magnitude of stresses and stress gradients present in class of materials. Includes precise high-resolution acoustic interferometer, sending acoustic transducer, receiving acoustic transducer, electromagnet coil and core, power supply, and magnetic-field-measuring device such as Hall probe. This measurement especially important for construction and applications where steel is widely used. Sensor useful especially for nondestructive evaluation of stress in steel members because of portability, rapid testing, and nonpermanent installation.

  14. Acoustic dose and acoustic dose-rate. (United States)

    Duck, Francis


    Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.

  15. Handbook of Signal Processing in Acoustics

    CERN Document Server

    Havelock, David; Vorländer, Michael


    The Handbook of Signal Processing in Acoustics presents signal processing as it is practiced in the field of acoustics. The Handbook is organized by areas of acoustics, with recognized leaders coordinating the self-contained chapters of each section. It brings together a wide range of perspectives from over 100 authors to reveal the interdisciplinary nature of signal processing in acoustics. Success in acoustic applications often requires juggling both the acoustic and the signal processing parameters of the problem. This handbook brings the key issues from both into perspective and is complementary to other reference material on the two subjects. It is a unique resource for experts and practitioners alike to find new ideas and techniques within the diversity of signal processing in acoustics.

  16. Determination of ammonium in Kjeldahl digests by gas-diffusion flow-injection analysis with a bulk acoustic wave-impedance sensor. (United States)

    Su, X L; Nie, L H; Yao, S Z


    A novel flow-injection analysis (FIA) system has been developed for the rapid and direct determination of ammonium in Kjeldahl digests. The method is based on diffusion of ammonia across a PTFE gas-permeable membrane from an alkaline (NaOH/EDTA) stream into a stream of diluted boric acid. The trapped ammonium in the acceptor is determined on line by a bulk acoustic wave (BAW)-impedance sensor and the signal is proportional to the ammonium concentration present in the digests. The proposed system exhibits a favorable frequency response to 5.0 x 10(-6)-4.0 x 10(-3) mol l(-1) ammonium with a detection limit of 1.0 x 10(-6) mol l(-1), and the precision was better than 1% (RSD) for 0.025-1.0 mM ammonium at a through-put of 45-50 samples h(-1). Results obtained for nitrogen determination in amino acids and for proteins determination in blood products are in good agreement with those obtained by the conventional distillation/titration method, respectively. The effects of composition of acceptor stream, cell constant of conductivity electrode, sample volume, flow rates and potential interferents on the FIA signals were discussed in detail.

  17. Analysis Results for ARRA Projects: Enabling Fuel Cell Market Transformation (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.


    This presentation discusses analysis results for American Recovery and Reinvestment Act early market fuel cell deployments and describes the objective of the project and its relevance to the Department of Energy Hydrogen and Fuel Cells Program; NREL's analysis approach; technical accomplishments including publication of a fourth set of composite data products; and collaborations and future work.

  18. 基于Kraken模型的海洋声场及相干性分析%Ocean acoustic filed and its coherence analysis based on Kraken model

    Institute of Scientific and Technical Information of China (English)

    赵闪; 陈新华; 于倍; 孙长瑜


    海洋环境的复杂性和多变性严重影响着水下信号处理系统的性能,海洋声场研究及其相干性分析利于海洋中声纳设备有的布放,为海洋环境的相关场分析和声场的战术运用提供理论依据.射线模型、简正波模型、抛物线等模型分别适合于不同的海洋声场环境,以Kraken简正波模型为基础,完成对不同频率下典型的海洋声场计算与分析,得到不同条件下声场的传播损失图.海洋声场相干性分析侧重于声场水平纵向相干及垂直相干研究,结合其结构产生分别对纵向相干与声源深度及垂直相干与阵元间距等因素的关系展开讨论.研究表明:对不同频率下的声场传播损失的分析及海洋声场的水平纵向相干、垂直相干等问题的探究能够为海洋环境的相关场分析和声场实际应用提供一定参考.%The performance of underwater signal processing system is heavily influenced by the complexity and wide variability of the marine environment. Therefore, ocean acoustic filed research and its coherence analysis could be beneficial to the sonar device placed in the ocean and the tactical utilization of the acoustic filed. Ray models, normal mode model, parabolic equation models etc were for different ocean acoustic filed environments. The study of ocean acoustic filed was established on Kraken normal mode model, aiming at the calculating and analyzing of the typical ocean acoustic field in the different frequencies to obtain the image for propagation loss in different conditions. The ocean a-coustic filed coherence analysis focuses on the level of acoustic field longitudinal coherence and vertical coherent research. Combined with its structure produced, the factors, such as the depth to level longitudinal coherence and element spacing to vertical coherence were discussed. Studies show that the ocean acoustic filed and its coherence analysis can provide some reference for analyzing the marine

  19. An acoustic study of accentuation in Estonian Swedish compounds


    Schötz, Susanne; Asu, Eva Liina


    This study, addressing the analysis of pitch patterns in Estonian Swedish compounds, enables us to draw some preliminary conclusions about the characteristics of accentuation in this little studied regional variety of Swedish. The analysis in the first part of the paper was inspired by the classification of Edvin Lagman (1979) who on the basis of auditory analysis distinguished between four accent types for Estonian Swedish compounds. Using the same materials, the present acoustic study broad...

  20. Numerical simulation of a laser-acoustic landmine detection system (United States)

    Lancranjan, Ion I.; Miclos, Sorin; Savastru, Dan; Savastru, Roxana; Opran, Constantin


    The preliminary numerical simulation results obtained in the analysis of a landmine detection system based on laser excitation of acoustic - seismic waves in the soil and observing its surface vibration above the embedded landmine are presented. The presented numerical simulations comprise three main parts: 1) Laser oscillator and laser beam propagation and absorption in soil; a laser oscillator operated in Q-switched regime is considered; different laser wavelengths are investigated. 2) Acoustic - seismic wave generation by absorption in soil of laser pulse energy; 3) Evaluation of acoustic - seismic wave generation by the buried in soil landmine; 4) Comparison of Distributed Feed- Back Fiber Laser (DFB-FL) and Laser Doppler Vibrometer (LDV) detector used for soil vibrations evaluation. The above mentioned numerical simulation is dedicated for evaluation of an integrated portable detection system.

  1. Analysis of the thermal environment and thermal response associated with thermal-acoustic testing (United States)

    Turner, T. L.; Ash, R. L.


    A method is developed for predicting the radiant heat flux distribution produced by a bank of quartz radiant heaters which accounts for the specular and diffuse effects of a flat reflector or the diffuse effects of individual parabolic reflectors. This analysis is experimentally verified for a single unreflected lamp and a single lamp with a flat reflector. Observations on the further development of this analysis and experimental validation are discussed.

  2. Semi-real-time monitoring of cracking on couplings by neural network analysis of acoustic emission signals (United States)

    Godinez-Azcuaga, Valery F.; Shu, Fong; Finlayson, Richard D.; O'Donnell, Bruce W.


    This paper presents the results obtained during the development of a semi-real-time monitoring methodology based on Neural Network Pattern Recognition of Acoustic Emission (AE) signals for early detection of cracks in couplings used in aircraft and engine drive systems. AE signals were collected in order to establish a baseline of a gear-testing fixture background noise and its variations due to rotational speed and torque. Also, simulated cracking signals immersed in background noise were collected. EDM notches were machined in the driving gear and the load on the gearbox was increased until damaged was induced. Using these data, a Neural Network Signal Classifier (NNSC) was implemented and tested. The testing showed that the NNSC was capable of correctly identifying six different classes of AE signals corresponding to different gearbox operation conditions. Also, a semi-real-time classification software was implemented. This software includes functions that allow the user to view and classify AE data from a dynamic process as they are recorded at programmable time intervals. The software is capable of monitoring periodic statistics of AE data, which can be used as an indicator of damage presence and severity in a dynamic system. The semi-real-time classification software was successfully tested in situations where a delay of 10 seconds between data acquisition and classification was achieved with a hit rate of 50 hits/second per channel on eight active AE channels.

  3. Time-Frequency Feature Representation Using Multi-Resolution Texture Analysis and Acoustic Activity Detector for Real-Life Speech Emotion Recognition

    Directory of Open Access Journals (Sweden)

    Kun-Ching Wang


    Full Text Available The classification of emotional speech is mostly considered in speech-related research on human-computer interaction (HCI. In this paper, the purpose is to present a novel feature extraction based on multi-resolutions texture image information (MRTII. The MRTII feature set is derived from multi-resolution texture analysis for characterization and classification of different emotions in a speech signal. The motivation is that we have to consider emotions have different intensity values in different frequency bands. In terms of human visual perceptual, the texture property on multi-resolution of emotional speech spectrogram should be a good feature set for emotion classification in speech. Furthermore, the multi-resolution analysis on texture can give a clearer discrimination between each emotion than uniform-resolution analysis on texture. In order to provide high accuracy of emotional discrimination especially in real-life, an acoustic activity detection (AAD algorithm must be applied into the MRTII-based feature extraction. Considering the presence of many blended emotions in real life, in this paper make use of two corpora of naturally-occurring dialogs recorded in real-life call centers. Compared with the traditional Mel-scale Frequency Cepstral Coefficients (MFCC and the state-of-the-art features, the MRTII features also can improve the correct classification rates of proposed systems among different language databases. Experimental results show that the proposed MRTII-based feature information inspired by human visual perception of the spectrogram image can provide significant classification for real-life emotional recognition in speech.

  4. Using Principal Component and Tidal Analysis as a Quality Metric for Detecting Systematic Heading Uncertainty in Long-Term Acoustic Doppler Current Profiler Data (United States)

    Morley, M. G.; Mihaly, S. F.; Dewey, R. K.; Jeffries, M. A.


    Ocean Networks Canada (ONC) operates the NEPTUNE and VENUS cabled ocean observatories to collect data on physical, chemical, biological, and geological ocean conditions over multi-year time periods. Researchers can download real-time and historical data from a large variety of instruments to study complex earth and ocean processes from their home laboratories. Ensuring that the users are receiving the most accurate data is a high priority at ONC, requiring quality assurance and quality control (QAQC) procedures to be developed for all data types. While some data types have relatively straightforward QAQC tests, such as scalar data range limits that are based on expected observed values or measurement limits of the instrument, for other data types the QAQC tests are more comprehensive. Long time series of ocean currents from Acoustic Doppler Current Profilers (ADCP), stitched together from multiple deployments over many years is one such data type where systematic data biases are more difficult to identify and correct. Data specialists at ONC are working to quantify systematic compass heading uncertainty in long-term ADCP records at each of the major study sites using the internal compass, remotely operated vehicle bearings, and more analytical tools such as principal component analysis (PCA) to estimate the optimal instrument alignments. In addition to using PCA, some work has been done to estimate the main components of the current at each site using tidal harmonic analysis. This paper describes the key challenges and presents preliminary PCA and tidal analysis approaches used by ONC to improve long-term observatory current measurements.

  5. Acoustical experiment of yogurt fermentation process. (United States)

    Ogasawara, H; Mizutani, K; Ohbuchi, T; Nakamura, T


    One of the important factors through food manufacturing is hygienic management. Thus, food manufactures prove their hygienic activities by taking certifications like a Hazard Analysis and Critical Control Point (HACCP). This concept also applies to food monitoring. Acoustical measurements have advantage for other measurement in food monitoring because they make it possible to measure with noncontact and nondestructive. We tried to monitor lactic fermentation of yogurt by a probing sensor using a pair of acoustic transducers. Temperature of the solution changes by the reaction heat of fermentation. Consequently the sound velocity propagated through the solution also changes depending on the temperature. At the same time, the solution change its phase from liquid to gel. The transducers usage in the solution indicates the change of the temperature as the change of the phase difference between two transducers. The acoustic method has advantages of nondestructive measurement that reduces contamination of food product by measuring instrument. The sensor was inserted into milk with lactic acid bacterial stain of 19 degrees C and monitored phase retardation of propagated acoustic wave and its temperature with thermocouples in the mild. The monitoring result of fermentation from milk to Caspian Sea yogurt by the acoustic transducers with the frequency of 3.7 MHz started to show gradient change in temperature caused by reaction heat of fermentation but stop the gradient change at the end although the temperature still change. The gradient change stopped its change because of phase change from liquid to gel. The present method will be able to measure indirectly by setting transducers outside of the measuring object. This noncontact sensing method will have great advantage of reduces risk of food contamination from measuring instrument because the measurement probes are set out of fermentation reactor or food containers. Our proposed method will contribute to the

  6. Modelling of Particles Aglomeration in the Acoustic Field

    Directory of Open Access Journals (Sweden)

    Irina Grinbergienė


    Full Text Available The article includes particles agglomeration principles analysis. Forces describes with the equations operating particle of its moving in the vibes. It presents equations of particle movement speed and trajectory estimation. It have performed agglomerations simulation of two identical (5 m and 5 m and different (5 m and 10 m diameters particles in the acoustic field using the discrete element method (DEM. The results showed that the two equal diameter particle agglomeration gravity affects at 8 kHz acoustic signal frequency.

  7. Visualizing acoustical beats with a smartphones

    CERN Document Server

    Giménez, Marcos H; Castro-Palacio, Juan C; Gómez-Tejedor, José A; Monsoriu, Juan A


    In this work, a new Physics laboratory experiment on Acoustics beats is presented. We have designed a simple experimental setup to study superposition of sound waves of slightly different frequencies (acoustic beat). The microphone of a smartphone is used to capture the sound waves emitted by two equidistant speakers from the mobile which are at the same time connected to two AC generators. The smartphone is used as a measuring instrument. By means of a simple and free AndroidTM application, the sound level (in dB) as a function of time is measured and exported to a .csv format file. Applying common graphing analysis and a fitting procedure, the frequency of the beat is obtained. The beat frequencies as obtained from the smartphone data are compared with the difference of the frequencies set at the AC generator. A very good agreement is obtained being the percentage discrepancies within 1 %.

  8. Performance Analysis of High-Order Numerical Methods for Time-Dependent Acoustic Field Modeling

    KAUST Repository

    Moy, Pedro Henrique Rocha


    The discretization of time-dependent wave propagation is plagued with dispersion in which the wavefield is perceived to travel with an erroneous velocity. To remediate the problem, simulations are run on dense and computationally expensive grids yielding plausible approximate solutions. This work introduces an error analysis tool which can be used to obtain optimal simulation parameters that account for mesh size, orders of spatial and temporal discretizations, angles of propagation, temporal stability conditions (usually referred to as CFL conditions), and time of propagation. The classical criteria of 10-15 nodes per wavelength for second-order finite differences, and 4-5 nodes per wavelength for fourth-order spectral elements are shown to be unrealistic and overly-optimistic simulation parameters for different propagation times. This work analyzes finite differences, spectral elements, optimally-blended spectral elements, and isogeometric analysis.

  9. Acoustic analysis of the unvoiced stop consonants for detecting hypernasal speech


    Castellanos Domínguez, César Germán; Sepúlveda Sepúlveda, Franklin Alexander; Godino Llorente, Juan Ignacio


    Speakers having evidence of a defective velopharyngeal mechanism produce speech with inappropriate nasal resonance (hypernasal speech). Voice analysis methods for the detection of hypernasality commonly use vowels and nasalized vowels. However, to obtain a more general assessment of this abnormality it is necessary to analyze stops and fricatives. This study describes a method for hipernasality detection analyzing the unvoiced Spanish stop consonants /k/ and /p/, as well. The importance of ph...

  10. A membrane-type acoustic metamaterial with adjustable acoustic properties (United States)

    Langfeldt, F.; Riecken, J.; Gleine, W.; von Estorff, O.


    A new realization of a membrane-type acoustic metamaterial (MAM) with adjustable sound transmission properties is presented. The proposed design distinguishes itself from other realizations by a stacked arrangement of two MAMs which is inflated using pressurized air. The static pressurization leads to large nonlinear deformations and, consequently, geometrical stiffening of the MAMs which is exploited to adjust the eigenmodes and sound transmission loss of the structure. A theoretical analysis of the proposed inflatable MAM design using numerical and analytical models is performed in order to identify two important mechanisms, namely the shifting of the eigenfrequencies and modal residuals due to the pressurization, responsible for the transmission loss adjustment. Analytical formulas are provided for predicting the eigenmode shifting and normal incidence sound transmission loss of inflated single and double MAMs using the concept of effective mass. The investigations are concluded with results from a test sample measurement inside an impedance tube, which confirm the theoretical predictions.

  11. Assessment of dysphonia due to benign vocal fold lesions by acoustic and aerodynamic indices: a multivariate analysis. (United States)

    Cantarella, Giovanna; Baracca, Giovanna; Pignataro, Lorenzo; Forti, Stella


    The goal was to identify acoustic and aerodynamic indices that allow the discrimination of a benign organic dysphonic voice from a normal voice. Fifty-three patients affected by dysphonia caused by vocal folds benign lesions, and a control group were subjected to maximum phonation time (MPT) measurements, GRB perceptual evaluations and acoustic/aerodynamic tests. All analyzed variables except the airflow variation coefficient were significantly different between the two groups. The unique significant factors in the discrimination between healthy and dysphonic subjects were the aerodynamic indices of MPT and Glottal efficiency index, and the acoustic index Shimmer. These results show that a combination of three parameters can discriminate a voice deviance and highlight the importance of a multidimensional assessment for objective voice evaluation.

  12. Phase Velocity and Full-Waveform Analysis of Co-located Distributed Acoustic Sensing (DAS) Channels and Geophone Sensor (United States)

    Parker, L.; Mellors, R. J.; Thurber, C. H.; Wang, H. F.; Zeng, X.


    A 762-meter Distributed Acoustic Sensing (DAS) array with a channel spacing of one meter was deployed at the Garner Valley Downhole Array in Southern California. The array was approximately rectangular with dimensions of 180 meters by 80 meters. The array also included two subdiagonals within the rectangle along which three-component geophones were co-located. Several active sources were deployed, including a 45-kN, swept-frequency, shear-mass shaker, which produced strong Rayleigh waves across the array. Both DAS and geophone traces were filtered in 2-Hz steps between 4 and 20 Hz to obtain phase velocities as a function of frequency from fitting the moveout of travel times over distances of 35 meters or longer. As an alternative to this traditional means of finding phase velocity, it is theoretically possible to find the Rayleigh-wave phase velocity at each point of co-location as the ratio of DAS and geophone responses, because DAS is sensitive to ground strain and geophones are sensitive to ground velocity, after suitable corrections for instrument response (Mikumo & Aki, 1964). The concept was tested in WPP, a seismic wave propagation program, by first validating and then using a 3D synthetic, full-waveform seismic model to simulate the effect of increased levels of noise and uncertainty as data go from ideal to more realistic. The results obtained from this study provide a better understanding of the DAS response and its potential for being combined with traditional seismometers for obtaining phase velocity at a single location. This analysis is part of the PoroTomo project (Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology,

  13. High Resolution Acoustic Microscopy with Low Frequency and Its Applications in Analysis of Ferroelectrics

    Institute of Scientific and Technical Information of China (English)


    Ferroelectrics have spontaneous polarization, which can be oriented along with electric field and show high dielectric constant, high switching speed, nonvolatile memory character and large capacity memories on a given silicon wafer. Large-scale manufacturing is presently underway to incorporate ferroelectric materials as storage and bypass capacitors in IC circuitry. Nondestructive observation of domain structure of ferroelectrics, dynamic behavior under external field and related phenomena is becoming sig...

  14. Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Bruus, Henrik


    Based on first- and second-order perturbation theory, we present a numerical study of the temporal buildup and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic...... conditions and assuming temperature-independent material parameters. The unsteady streaming flow is obtained by averaging the time-dependent velocity field over one oscillation period, and as time increases, it is shown to converge towards the well-known steady time-averaged solution calculated...... in the frequency domain. Scaling analysis reveals that the acoustic resonance builds up much faster than the acoustic streaming, implying that the radiation force may dominate over the drag force from streaming even for small particles. However, our numerical time-dependent analysis indicates that pulsed actuation...

  15. Non-linear wave propagation in acoustically lined circular ducts (United States)

    Nayfeh, A. H.; Tsai, M.-S.


    An analysis is presented of the nonlinear effects of the gas motion as well as of the acoustic lining material on the transmission and attenuation of sound in a circular duct with a uniform cross-section and no mean flow. The acoustic material is characterized by an empirical, nonlinear impedance in which the instantaneous resistance is a nonlinear function of both the frequency and the acoustic velocity. The results show that there exist frequency bandwidths around the resonant frequencies in which the nonlinearity decreases the attenuation rate, and outside which the nonlinearity increases the attenuation rate, in qualitative agreement with experimental observations. Moreover, the effect of the gas nonlinearity increases with increasing sound frequency, whereas the effect of the material nonlinearity decreases with increasing sound frequency.

  16. Suppression of Spontaneous Gas Oscillations by Acoustic Self-Feedback (United States)

    Biwa, Tetsushi; Sawada, Yoshiki; Hyodo, Hiroaki; Kato, Soichiro


    This paper demonstrates a method of acoustical self-feedback to suppress spontaneous gas oscillations such as those observed in combustors of gas-turbine engines. Whereas a conventional feedback system consists of electromechanical devices, the present method achieves acoustical self-feedback with a hollow tube that connects two positions of the oscillation system. A model oscillator of combustion-driven gas oscillations is designed and built to demonstrate the applicability of the self-feedback concept. Stability analysis through measurements of Q values (quality factor) of oscillations shows that the desired delay time and gain are obtained when the tube length is equal to the odd integer times half the wavelength of the anticipated acoustic oscillations.

  17. Drift and ion acoustic wave driven vortices with superthermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ali Shan, S. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); National Centre For Physics (NCP), Shahdra Valley Road, QAU Campus, 44000 Islamabad (Pakistan); Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad (Pakistan); Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); National Centre For Physics (NCP), Shahdra Valley Road, QAU Campus, 44000 Islamabad (Pakistan)


    Linear and nonlinear analysis of coupled drift and acoustic mode is presented in an inhomogeneous electron-ion plasma with {kappa}-distributed electrons. A linear dispersion relation is found which shows that the phase speed of both the drift wave and the ion acoustic wave decreases in the presence of superthermal electrons. Several limiting cases are also discussed. In the nonlinear regime, stationary solutions in the form of dipolar and monopolar vortices are obtained. It is shown that the condition for the boundedness of the solution implies that the speed of drift wave driven vortices reduces with increase in superthermality effect. Ignoring density inhomogeniety, it is investigated that the lower and upper limits on the speed of the ion acoustic driven vortices spread with the inclusion of high energy electrons. The importance of results with reference to space plasmas is also pointed out.

  18. Nonadhesive acoustic membranes based on polyimide

    Directory of Open Access Journals (Sweden)

    Vorob'ev A.V.


    Full Text Available The paper presents a comparison of technical characteristics of acoustic membranes with an adhesive layer and nonadhesive membranes. The authors present the manufacturing technology for acoustic membranes based on aluminum-polyimide film dielectrics and analyze the advantages of such membranes in comparison to other sound emitters.

  19. Acoustic characteristics of Danish infant directed speech

    DEFF Research Database (Denmark)

    Bohn, Ocke-Schwen


    Danish presents several challenges for language learners, such as a very densely packed upper portion of the acoustic vowel space, and a sibilant contrast that is acoustically less distinct than in e.g. English. The present study examined whether Danish caregivers enhance Danish contrasts when......'s receptive vocabulary knowledge....

  20. Opto-acoustic cell permeation

    Energy Technology Data Exchange (ETDEWEB)

    Visuri, S R; Heredia, N


    Optically generated acoustic waves have been used to temporarily permeate biological cells. This technique may be useful for enhancing transfection of DNA into cells or enhancing the absorption of locally delivered drugs. A diode-pumped frequency-doubled Nd:YAG laser operating at kHz repetition rates was used to produce a series of acoustic pulses. An acoustic wave was formed via thermoelastic expansion by depositing laser radiation into an absorbing dye. Generated pressures were measured with a PVDF hydrophone. The acoustic waves were transmitted to cultured and plated cells. The cell media contained a selection of normally- impermeable fluorescent-labeled dextran dyes. Following treatment with the opto-acoustic technique, cellular incorporation of dyes, up to 40,000 Molecular Weight, was noted. Control cells that did not receive opto-acoustic treatment had unremarkable dye incorporation. Uptake of dye was quantified via fluorescent microscopic analysis. Trypan Blue membrane exclusion assays and fluorescent labeling assays confirmed the vitality of cells following treatment. This method of enhanced drug delivery has the potential to dramatically reduce required drug dosages and associated side effects and enable revolutionary therapies.

  1. Wind turbine acoustics (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.


    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  2. [The SWOT analysis and strategic considerations for the present medical devices' procurement]. (United States)

    Li, Bin; He, Meng-qiao; Cao, Jian-wen


    In this paper, the SWOT analysis method is used to find out the internal strength, weakness, exterior opportunities and threats of the present medical devices' procurements in hospitals and some strategic considerations are suggested as "one direction, two expansions, three changes and four countermeasures".

  3. Effect of the acoustic boundary layer on the wave propagation in ducts (United States)

    Nayfeh, A. H.


    An analysis is presented for the wave propagation in two-dimensional and circular lined ducts taking into account the effects of viscosity in both the mean and the acoustic problems. The method of composite expansions is used to express each acoustic flow quantity as the sum of an inviscid part and a boundary layer part insignificant outside a thin layer next to the wall. The problem is reduced to solving a second-order ordinary differential equation for the pressure perturbation as in the inviscid acoustic case but with a modified specific wall admittance. An analytic expression is presented for the variation of the modified admittance with the wall and flow parameters, such as the acoustic boundary layer thickness, the mean velocity and temperature gradients at the wall, the frequency of oscillation, and the wavelength.

  4. The unified acoustic and aerodynamic prediction theory of advanced propellers in the time domain (United States)

    Farassat, F.


    This paper presents some numerical results for the noise of an advanced supersonic propeller based on a formulation published last year. This formulation was derived to overcome some of the practical numerical difficulties associated with other acoustic formulations. The approach is based on the Ffowcs Williams-Hawkings equation and time domain analysis is used. To illustrate the method of solution, a model problem in three dimensions and based on the Laplace equation is solved. A brief sketch of derivation of the acoustic formula is then given. Another model problem is used to verify validity of the acoustic formulation. A recent singular integral equation for aerodynamic applications derived from the acoustic formula is also presented here.

  5. Acoustic analysis of the directional information captured by five different hearing aid styles. (United States)

    Durin, Virginie; Carlile, Simon; Guillon, Pierre; Best, Virginia; Kalluri, Sridhar


    This study compared the head-related transfer functions (HRTFs) recorded from the bare ear of a mannequin for 393 spatial locations and for five different hearing aid styles: Invisible-in-the-canal (IIC), completely-in-the-canal (CIC), in-the-canal (ITC), in-the-ear (ITE), and behind-the-ear (BTE). The spectral distortions of each style compared to the bare ear were described qualitatively in terms of the gain and frequency characteristics of the prominent spectral notch and two peaks in the HRTFs. Two quantitative measures of the differences between the HRTF sets and a measure of the dissimilarity of the HRTFs within each set were also computed. In general, the IIC style was most similar and the BTE most dissimilar to the bare ear recordings. The relative similarities among the CIC, ITC, and ITE styles depended on the metric employed. The within-style spectral dissimilarities were comparable for the bare ear, IIC, CIC, and ITC with increasing ambiguity for the ITE and BTE styles. When the analysis bandwidth was limited to 8 kHz, the HRTFs within each set became much more similar.

  6. Blind Separation of Acoustic Signals Combining SIMO-Model-Based Independent Component Analysis and Binary Masking

    Directory of Open Access Journals (Sweden)

    Hiekata Takashi


    Full Text Available A new two-stage blind source separation (BSS method for convolutive mixtures of speech is proposed, in which a single-input multiple-output (SIMO-model-based independent component analysis (ICA and a new SIMO-model-based binary masking are combined. SIMO-model-based ICA enables us to separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources in their original form at the microphones. Thus, the separated signals of SIMO-model-based ICA can maintain the spatial qualities of each sound source. Owing to this attractive property, our novel SIMO-model-based binary masking can be applied to efficiently remove the residual interference components after SIMO-model-based ICA. The experimental results reveal that the separation performance can be considerably improved by the proposed method compared with that achieved by conventional BSS methods. In addition, the real-time implementation of the proposed BSS is illustrated.

  7. Gender identification using acoustic analysis in birds without external sexual dimorphism

    Institute of Scientific and Technical Information of China (English)

    Ilya A.Volodin; Elena V.Volodina; Anna V.Klenova; Vera A.Matrosova


    Zoo and wildlife management faces a problem with bird sexing,as many bird taxa have indiscernible gender differences in size and coloration.Problematic groups are geese,cranes,rails,raptors,owls,parrots,doves,auks,shearwaters and some passerines.Commonly accepted invasive sexing techniques based on genetics,laparoscopy,morphometric and on cloacal inspection,are all needed in bird capturing and handling.Capturing and subsequent manipulations may be inapplicable for free-ranging birds,whereas distant voice-based sexing is relevant for many species.This review evaluates the potential for noninvasive sexing by separate calls or duet calls,for adult birds of 69 species from 16 orders and for chicks of 11 species from 7 orders.For adult birds of 25 species,a single call per individual was sufficient for 100 % reliable sexing by ear or using spectrographic analysis.For chicks,the potential for voice-based sexing seems to be very limited.For birds calling rarely or unpredictably,we propose a simple way of provoking vocalization using playbacks of species-specific calls that are available from sound libraries.We conclude that sexing by voice may represent a feasible alternative to the classical sexing techniques,both in the wild and in captivity.

  8. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller


    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  9. Acoustic cryocooler (United States)

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray


    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  10. Analysis of acoustic impedance matching in dual-band ultrasound transducers. (United States)

    Myhre, Ola Finneng; Johansen, Tonni Franke; Johan Angelsen, Bjørn Atle


    Dual-frequency band probes are needed for ultrasound (US) reverberation suppression and are useful for image-guided US therapy. A challenge is to design transducer stacks that achieve high bandwidth and efficiency at both operating frequencies when the frequencies are widely separated with a frequency ratio ∼6:1-20:1. This paper studies the loading and backing conditions of transducers in such stacks. Three stack configurations are presented and analyzed using one-dimensional models. It is shown that a configuration with three layers of material separating the transducers is favorable, as it reduces high frequency ringing by ∼20 dB compared to other designs, and matches the low frequency (LF) transducer to the load at a lower frequency. In some cases, the LF load matching is governed by a simple mass-spring interaction in spite of having a complicated matching structure. The proposed design should yield improved performance of reverberation suppression algorithms. Its suitability for reduction of probe heating, also in single-band probes, should be investigated.

  11. Simulation and performance Analysis of a Novel Model for Short Range Underwater Acoustic communication Channel Using Ray Tracing Method in Turbulent Shallow Water Regions of the Persian Gulf

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Dargahi


    Full Text Available High data rate acoustic transmission is required for diverse underwater operations such as the retrieval of large amounts of data from bottom packages and real time transmission of signals from underwater sensors. The major obstacle to underwater acoustic communication is the interference of multipath signals due to surface and bottom reflections. High speed acoustic transmission over a shallow water channel characterized by small grazing angles presents formidable difficulties. The reflection losses associated with such small angles are low, causing large amplitudes in multi-path signals. In this paper, based on the results obtained from practical measurements in the Persian Gulf and available data about sound speed variations in different depths, we propose a simple but effective model for shallow water short-range multipath acoustic channel. Based on the Ray theory, mathematical modeling of multipath effects is carried out. Also in channel modeling, the attenuation due to the wave scatterings at the surface and its bottom reflections for deferent grazing angles and bottom types is considered. In addition, we consider the attenuations due to the absorption of different materials and ambient noises such as see-state noise, shipping noise, thermal noise and turbulences. We use a three-dimensional hydrodynamic model (COHERENS in a fully prognostic mode to study the circulation and water mass properties of the Persian Gulf - a large inverse estuary. Maximum sound speed occurs during the summer in the Persian Gulf which decreases gradually moving from the Strait of Hormuz to the north western part of the Gulf. A gradual decrease in sound speed profiles with depth was commonly observed in almost all parts of the Gulf. However, an exception occurred in the Strait of Hormuz during the winter. The results of the model are in very good agreement with our observations.

  12. How Native Do They Sound? An Acoustic Analysis of the Spanish Vowels of Elementary Spanish Immersion Students (United States)

    Menke, Mandy R.


    Language immersion students' lexical, syntactic, and pragmatic competencies are well documented, yet their phonological skill has remained relatively unexplored. This study investigates the Spanish vowel productions of a cross-sectional sample of 35 one-way Spanish immersion students. Learner productions were analyzed acoustically and compared to…

  13. What's All the Noise? Differentiating Dimensions of Acoustic Stress and the Limits to Meta-Analysis: Reply to Smith (2012) (United States)

    Szalma, J. L.; Hancock, P. A.


    Smith (2012) has provided pertinent observations on our recently published meta-analytic review (Szalma & Hancock, 2011) of the effects of acoustic noise on performance. His main points are as follows: (a) our review excluded some areas of research; (b) there were conceptual problems with our moderator analyses; and (c) limitations to…

  14. Laughter Differs in Children with Autism: An Acoustic Analysis of Laughs Produced by Children with and without the Disorder (United States)

    Hudenko, William J.; Stone, Wendy; Bachorowski, Jo-Anne


    Few studies have examined vocal expressions of emotion in children with autism. We tested the hypothesis that during social interactions, children diagnosed with autism would exhibit less extreme laugh acoustics than their nonautistic peers. Laughter was recorded during a series of playful interactions with an examiner. Results showed that…

  15. High-sensitivity fiber optic acoustic sensors (United States)

    Lu, Ping; Liu, Deming; Liao, Hao


    Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.

  16. Acoustic levitation of a large solid sphere (United States)

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.


    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  17. Systematic design of acoustic devices by topology optimization

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole


    We present a method to design acoustic devices with topology optimization. The general algorithm is exemplified by the design of a reflection chamber that minimizes the transmission of acoustic waves in a specified frequency range.......We present a method to design acoustic devices with topology optimization. The general algorithm is exemplified by the design of a reflection chamber that minimizes the transmission of acoustic waves in a specified frequency range....

  18. Modulation of a quantum positron acoustic wave (United States)

    Amin, M. R.


    Amplitude modulation of a positron acoustic wave is considered in a four-component electron-positron plasma in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the particle exchange-correlation potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to viscosity in the momentum balance equation of the charged carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the quantum positron acoustic wave by employing the standard reductive perturbation technique. Detailed analysis of the linear and nonlinear dispersions of the quantum positron acoustic wave is presented. For a typical parameter range, relevant to some dense astrophysical objects, it is found that the quantum positron acoustic wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the quantum effect due to the particle exchange-correlation potential is significant in comparison to the effect due to the Bohm potential for smaller values of the carrier wavenumber. However, for comparatively larger values of the carrier wavenumber, the Bohm potential effect overtakes the effect of the exchange-correlation potential. It is found that the critical wavenumber for the modulation instability depends on the ratio of the equilibrium hot electron number density and the cold positron number density and on the ratio of the equilibrium hot positron number density and the cold positron number density. A numerical result on the growth rate of the modulation instability is also presented.

  19. Sonic effervescence: A tutorial on acoustic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Apfel, R.E. [Yale University, New Haven, Connecticut 06520-8286 (United States)


    This article on acoustic cavitation is a revision of a tutorial lecture presented at the Acoustical Society of America meeting in Austin, Texas, on 28 November 1994. The general approach adopted here differs from a review article in stressing the overarching themes that come under the category of acoustic cavitation, rather than being an encyclopedic reference on the topic. When possible, specific order-of-magnitude estimates have been given so that the reader can better understand the particular phenomena being described. The basic physics is discussed, and applications are reviewed with the goal of putting them in a useful context. {copyright} {ital 1997 Acoustical Society of America.}

  20. Modern acoustics in China related to Dah-You MAA

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jialu


    The history of Acoustics is very long, but for modern Acoustics it was only started from the end of 19th century after Bell's and Sabine's works. Modern Acoustics in China was developed even later. The main contributions to the development of modern Acoustics in China of Dah-You MAA and his academic achievements were presented in this paper. It is shown that Dah-You MAA who is one of the founders of the normal mode theory and the modern Acoustics in China has played an important role in developing modern Acoustics. Some preliminary studies of MAA's scientific philosophy and his social activities were discussed in this paper also.

  1. Information Presentation in Decision and Risk Analysis: Answered, Partly Answered, and Unanswered Questions. (United States)

    Keller, L Robin; Wang, Yitong


    For the last 30 years, researchers in risk analysis, decision analysis, and economics have consistently proven that decisionmakers employ different processes for evaluating and combining anticipated and actual losses, gains, delays, and surprises. Although rational models generally prescribe a consistent response, people's heuristic processes will sometimes lead them to be inconsistent in the way they respond to information presented in theoretically equivalent ways. We point out several promising future research directions by listing and detailing a series of answered, partly answered, and unanswered questions.

  2. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification (United States)

    Jena, D. P.; Panigrahi, S. N.


    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  3. Physiological Acoustics (United States)

    Young, Eric D.

    The analysis of physiological sound in the peripheral auditory system solves three important problems. First, sound energy impinging on the head must be captured and presented to the transduction apparatus in the ear as a suitable mechanical signal; second, this mechanical signal needs to be transduced into a neural representation that can be used by the brain; third, the resulting neural representation needs to be analyzed by central neurons to extract information useful to the animal. This chapter provides an overview of some aspects of the first two of these processes. The description is entirely focused on the mammalian auditory system, primarily on human hearing and on the hearing of a few commonly used laboratory animals (mainly rodents and carnivores). Useful summaries of non-mammalian hearing are available [1]. Because of the large size of the literature, review papers are referenced wherever possible.

  4. Real-time data analysis at the LHC: present and future

    CERN Document Server

    Gligorov, Vladimir V


    The Large Hadron Collider (LHC), which collides protons at an energy of 14 TeV, produces hundreds of exabytes of data per year, making it one of the largest sources of data in the world today. At present it is not possible to even transfer most of this data from the four main particle detectors at the LHC to "offline" data facilities, much less to permanently store it for future processing. For this reason the LHC detectors are equipped with real-time analysis systems, called triggers, which process this volume of data and select the most interesting proton-proton collisions. The LHC experiment triggers reduce the data produced by the LHC by between 1/1000 and 1/100000, to tens of petabytes per year, allowing its economical storage and further analysis. The bulk of the data-reduction is performed by custom electronics which ignores most of the data in its decision making, and is therefore unable to exploit the most powerful known data analysis strategies. I cover the present status of real-time data analysis ...

  5. Sonification of acoustic emission data (United States)

    Raith, Manuel; Große, Christian


    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  6. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D


    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  7. Spectral statistics of the acoustic stadium (United States)

    Méndez-Sánchez, R. A.; Báez, G.; Leyvraz, F.; Seligman, T. H.


    We calculate the normal-mode frequencies and wave amplitudes of the two-dimensional acoustical stadium. We also obtain the statistical properties of the acoustical spectrum and show that they agree with the results given by random matrix theory. Some normal-mode wave amplitudes showing scarring are presented.

  8. Acoustic Spatiality

    Directory of Open Access Journals (Sweden)

    Brandon LaBelle


    Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.

  9. Acoustic wave propagation in high-pressure system. (United States)

    Foldyna, Josef; Sitek, Libor; Habán, Vladimír


    Recently, substantial attention is paid to the development of methods of generation of pulsations in high-pressure systems to produce pulsating high-speed water jets. The reason is that the introduction of pulsations into the water jets enables to increase their cutting efficiency due to the fact that the impact pressure (so-called water-hammer pressure) generated by an impact of slug of water on the target material is considerably higher than the stagnation pressure generated by corresponding continuous jet. Special method of pulsating jet generation was developed and tested extensively under the laboratory conditions at the Institute of Geonics in Ostrava. The method is based on the action of acoustic transducer on the pressure liquid and transmission of generated acoustic waves via pressure system to the nozzle. The purpose of the paper is to present results obtained during the research oriented at the determination of acoustic wave propagation in high-pressure system. The final objective of the research is to solve the problem of transmission of acoustic waves through high-pressure water to generate pulsating jet effectively even at larger distances from the acoustic source. In order to be able to simulate numerically acoustic wave propagation in the system, it is necessary among others to determine dependence of the sound speed and second kinematical viscosity on operating pressure. Method of determination of the second kinematical viscosity and speed of sound in liquid using modal analysis of response of the tube filled with liquid to the impact was developed. The response was measured by pressure sensors placed at both ends of the tube. Results obtained and presented in the paper indicate good agreement between experimental data and values of speed of sound calculated from so-called "UNESCO equation". They also show that the value of the second kinematical viscosity of water depends on the pressure.

  10. Monotonic tensile behavior analysis of three-dimensional needle-punched woven C/SiC composites by acoustic emission

    Institute of Scientific and Technical Information of China (English)

    Peng Fang; Laifei Cheng; Litong Zhang; Jingjiang Nie


    High toughness and reliable three-dimensional needled C/SiC composites were fabricated by chemical vapor infiltration (CVI). An approach to analyze the tensile behaviors at room temperature and the damage accumulation of the composites by means of acoustic emission was researched. Also the fracture morphology was examined by S-4700 SEM after tensile tests to prove the damage mechanism. The results indicate that the cumulative energy of acoustic emission (AE) signals can be used to monitor and evaluate the damage evolution in ceramic-matrix composites. The initiation of room-temperature tensile damage in C/SiC composites occurred with the growth of micro-cracks in the matrix at the stress level about 40% of the ultimate fracture stress. The level 70% of the fracture stress could be defined as the critical damage strength.

  11. Diagnostics of glass fiber reinforced polymers and comparative analysis of their fabrication techniques with the use of acoustic emission (United States)

    Bashkov, O. V.; Bryansky, A. A.; Panin, S. V.; Zaikov, V. I.


    Strength properties of the glass fiber reinforced polymers (GFRP) fabricated by vacuum and vacuum autoclave molding techniques were analyzed. Measurements of porosity of the GFRP parts manufactured by various molding techniques were conducted with the help of optical microscopy. On the basis of experimental data obtained by means of acoustic emission hardware/software setup, the technique for running diagnostics and forecasting the bearing capacity of polymeric composite materials based on the result of three-point bending tests has been developed. The operation principle of the technique is underlined by the evaluation of the power function index change which takes place on the dependence of the total acoustic emission counts versus the loading stress.

  12. Usefulness of acoustic studies on the differential diagnostics of organic and functional dysphonia. (United States)

    Pruszewicz, A; Obrebowski, A; Swidziński, P; Demeńko, G; Wika, T; Wojciechowska, A


    Phoniatric and acoustic examinations were carried out in a group of 30 patients with dysphonia, including 15 with organic type and 15 with functional type. A complex phoniatric assessment offered the possibility to differentiate between these two groups of pathological voices. This was achieved also on the basis of acoustic analysis of the voice by extracting characteristics such as: formant frequency, Fo and its range, percentage of noise in the analysed verbal text, mean and maximum values of jitter. The possibility of differential diagnosis of these two different types of dysphonia in acoustic studies was confirmed by clinical examinations. The acoustic studies presented can be regarded as a new approach to a fast and sufficiently precise method in the screening diagnostics of dysphonia conditioned by growth of the vocal fold mass.

  13. Airy acoustical-sheet spinner tweezers (United States)

    Mitri, F. G.


    The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in

  14. Liquid rocket combustion chamber acoustic characterization

    Directory of Open Access Journals (Sweden)

    Cândido Magno de Souza


    Full Text Available Over the last 40 years, many solid and liquid rocket motors have experienced combustion instabilities. Among other causes, there is the interaction of acoustic modes with the combustion and/or fluid dynamic processes inside the combustion chamber. Studies have been showing that, even if less than 1% of the available energy is diverted to an acoustic mode, combustion instability can be generated. On one hand, this instability can lead to ballistic pressure changes, couple with other propulsion systems such as guidance or thrust vector control, and in the worst case, cause motor structural failure. In this case, measures, applying acoustic techniques, must be taken to correct/minimize these influences on the combustion. The combustion chamber acoustic behavior in operating conditions can be estimated by considering its behavior in room conditions. In this way, acoustic tests can be easily performed, thus identifying the cavity modes. This paper describes the procedures to characterize the acoustic behavior in the inner cavity of four different configurations of a combustion chamber. Simple analytical models are used to calculate the acoustic resonance frequencies and these results are compared with acoustic natural frequencies measured at room conditions. Some comments about the measurement procedures are done, as well as the next steps for the continuity of this research. The analytical and experimental procedures results showed good agreement. However, limitations on high frequency band as well as in the identification of specific kinds of modes indicate that numerical methods able to model the real cavity geometry and an acoustic experimental modal analysis may be necessary for a more complete analysis. Future works shall also consider the presence of passive acoustic devices such as baffles and resonators capable of introducing damping and avoiding or limiting acoustic instabilities.

  15. Value of acoustic perceptual method for analysis of compensatory articulation errors in postoperative patients with cleft palate

    Institute of Scientific and Technical Information of China (English)


    Objective To establish an acoustic perceptual method analyzing the compensatory articulation errors in children with operated cleft palate via the formants of Chinese pure vowels. Methods The first three formants which represent vocal transmission character in Chinese pure vowels of 84 subjects with operated cleft palate, were measured by Computerized Speech Signal Processing System (CSSPS). The Chinese vowel graph of postoperative patients with cleft palate was stated by the first formant frequencies (F1) ...

  16. Acoustic source for generating an acoustic beam

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian


    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  17. Acoustic Localization with Infrasonic Signals (United States)

    Threatt, Arnesha; Elbing, Brian


    Numerous geophysical and anthropogenic events emit infrasonic frequencies (wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  18. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials (United States)

    Shen, Jian Qi


    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  19. New insight in quantitative analysis of vascular permeability during immune reaction (Conference Presentation) (United States)

    Kalchenko, Vyacheslav; Molodij, Guillaume; Kuznetsov, Yuri; Smolyakov, Yuri; Israeli, David; Meglinski, Igor; Harmelin, Alon


    The use of fluorescence imaging of vascular permeability becomes a golden standard for assessing the inflammation process during experimental immune response in vivo. The use of the optical fluorescence imaging provides a very useful and simple tool to reach this purpose. The motivation comes from the necessity of a robust and simple quantification and data presentation of inflammation based on a vascular permeability. Changes of the fluorescent intensity, as a function of time is a widely accepted method to assess the vascular permeability during inflammation related to the immune response. In the present study we propose to bring a new dimension by applying a more sophisticated approach to the analysis of vascular reaction by using a quantitative analysis based on methods derived from astronomical observations, in particular by using a space-time Fourier filtering analysis followed by a polynomial orthogonal modes decomposition. We demonstrate that temporal evolution of the fluorescent intensity observed at certain pixels correlates quantitatively to the blood flow circulation at normal conditions. The approach allows to determine the regions of permeability and monitor both the fast kinetics related to the contrast material distribution in the circulatory system and slow kinetics associated with extravasation of the contrast material. Thus, we introduce a simple and convenient method for fast quantitative visualization of the leakage related to the inflammatory (immune) reaction in vivo.

  20. Experiments for possible hydroacoustic discrimination of free-swimming juvenile gadoid fish by analysis of broadband pulse spectra as well as 3D fish position form video images and split beam acoustics

    DEFF Research Database (Denmark)

    Lundgren, Bo; Nielsen, J. Rasmus


    , alignment of acoustic and optical-reference frames, and automatic position-fitting of fish models to manually marked fix-points on fish images. The software also performs Fourier spectrum analysis and pulse-shape analysis of broad-bandwidth echoes. Therefore, several measurement series on free......Measurements were made of the broad-bandwidth (80–220 kHz) acoustic backscattering from free-swimming juvenile gadoids at various orientations and positions in an acoustic beam, under controlled conditions. The experimental apparatus consisted of a stereo-video camera system, a broad...... were estimated from stereo-images captured synchronously when broad-bandwidth echoes were received from passing fish. Fish positions were also estimated from data collected with a synchronized split-beam echosounder. Software was developed for image analysis and modelling, including calibration...

  1. Aero-acoustic simulation of a subsonic hot jet; Simulation aeroacoustique d'un jet chaud subsonique

    Energy Technology Data Exchange (ETDEWEB)

    Biancherin, A.; Rahier, G.; Prieur, J.; Vuillot, F.; Lupoglazoff, N.


    This paper presents a numerical simulation of subsonic a hot jet (M 0,7) and its acoustic analysis. The MSD code of the ONERA is used to resolve the Navier-Stokes equations. A detailed study, parametric and theoretical is realized to analyze the influence of the formulation, the position, the part and the nature of the control surface on the acoustic calculation results. The acoustic predictions in far field are compared to measures realized by the ONERA in the anechoic CEPRA 19 wind tunnel. (A.L.B.)

  2. Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome with stroke-like imaging presentation: clinical, biochemical and molecular analysis. (United States)

    Al-Hassnan, Zuhair N; Rashed, Mohamed S; Al-Dirbashi, Osama Y; Patay, Zoltan; Rahbeeni, Zuhair; Abu-Amero, Khaled K


    Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is an autosomal recessive disorder caused by mutations in ORNT1 gene that encodes a mitochondrial ornithine transporter. It has variable clinical presentations with episodic hyperammonemia, liver dysfunction, and chronic neurological manifestations. In this work, we report the findings of HHH syndrome in 3 Saudi siblings. The 4-year-old proband presented with recurrent Reye-like episodes, hypotonia, and multiple stroke-like lesions on brain MRI. Biochemical and molecular analysis confirmed that she had HHH syndrome. She significantly improved on protein restriction and sodium benzoate. Her two older siblings have milder phenotypes with protein intolerance and learning problems. In comparison to their sister, their homocitrulline and orotic acid were only mildly elevated even before treatment. The three patients were homozygous for a novel mutation in ORNT1 with a Gly220Arg change. In view of the CNS lesions, which initially were felt to be suggestive of MELAS, we sequenced the entire mtDNA genome and no potential pathogenic mutations were detected. Analysis of ORNT2 did not provide explanation of the clinical and biochemical variability. This work presents a yet unreported CNS involvement pattern, notably multiple supratentorial stroke-like lesions in association with HHH syndrome. Moreover, it illustrates considerable clinical/biochemical correlation, and describes a novel mutation. We suggest including HHH syndrome in the differential diagnosis of patients found to have stroke-like lesions on brain MRI.

  3. Evaluation in discussion sessions of conference presentations: theoretical foundations for a multimodal analysis

    Directory of Open Access Journals (Sweden)

    Mercedes Querol-Julián


    Full Text Available Discussions sessions have not received much attention within the genre of conference presentations. In this paper, we present the theoretical framework that underlies the approach followed to analyse the multimodal expression of evaluation. Then, an example of the application of the study has been considered necessary to understand it. Corpus linguistics provided the indications to collect the corpus, annotate it and find the appropriate software to digitalise the relevant information for the study. Secondly, genre studies and conversational analysis gave the clues to establish a structure in the linguistic expressions found in the discussion sessions of paper presentations. Thirdly, systemic functional linguistics and pragmatics provided the basis for an evaluative scheme that could be applied to the academic discourse of the corpus, considering its multimodal nature. Fourthly, the tools to observe the non-verbal communication associated with evaluative language were found in multimodal discourse analysis studies. All together, the application of these variables led to an original study of discussion sessions, which deployed interesting results.

  4. An acoustic analysis of consonants in mandarin speaking patients with hearing impairment%听障患者辅音的声学分析

    Institute of Scientific and Technical Information of China (English)

    郭晶; 刘勇智


    Deafness in hearing impaired patients is a major adverse effect and interferes with their speech production and development . While there is increased research on deaf patients’verbal ability, there are limited reports on acoustic analysis of their voices. Many dialects in the Chinese language have distinctive-ly different pronunciation than mandarin Chinese and a number of approaches for acoustic analysis of conso-nants exist. This article is a preliminary summary on patients who speak mandarin Chinese.%耳聋对于听障患者最不利的影响之一,就是妨碍他们语言的形成和发展。目前对于听障患者言语能力发展变化的研究较多,而对于发声情况的声学分析研究相对较少,汉语中有许多方言同普通话的发音方法及发音部位区别较大。辅音的声学分析很多,本文主要对听障患者的普通话的辅音声学分析方法进行初步总结。

  5. Analysis of shallow-water experimental acoustic data including a comparison with a broad-band normal-mode-propagation model

    NARCIS (Netherlands)

    Simons, D.G.; McHugh, R.; Snellen, M.; McCormick, N.H.; Lawson, E.A.


    Channel temporal variability, resulting from fluctuations in oceanographic parameters, is an important issue for reliable communications in shallow-water-long-range acoustic propagation. As part of an acoustic model validation exercise, audio-band acoustic data and oceanographic data were collected

  6. An analysis on present situation and development of Medical Delivery System in China

    Institute of Scientific and Technical Information of China (English)

    TIAN Wei; ZHANG Lu-lu; OU Chong-yang; QIU Yuan-feng; MA Yu-qin


    Objective:To explore the present situation and development of Medical Delivery System in China. Methods:The data in three Nation Health Service Investigations were compared and analyzed by applying literature meta-analysis, Delphi and cross-sectional investigation, etc. Results:The Medical Service resource develops fast, and public cost for medical treatment keeps increasing. Organization structure presents a vertical and flat trend. Inhabitant health level rises year by year, and it is hard to resolve the problem of potential medical demand transformed. Conclusion: Medical Delivery System in China has formed, but the development of Medical Service System still exists structural problems in the deeper layer. The development trend predicts that the supervision of the government is gradually reinforcing and community health service develops step by step.

  7. High transmission acoustic focusing by impedance-matched acoustic meta-surfaces

    KAUST Repository

    Al Jahdali, Rasha


    Impedance is an important issue in the design of acoustic lenses because mismatched impedance is detrimental to real focusing applications. Here, we report two designs of acoustic lenses that focus acoustic waves in water and air, respectively. They are tailored by acoustic meta-surfaces, which are rigid thin plates decorated with periodically distributed sub-wavelength slits. Their respective building blocks are constructed from the coiling-up spaces in water and the layered structures in air. Analytic analysis based on coupled-mode theory and transfer matrix reveals that the impedances of the lenses are matched to those of the background media. With these impedance-matched acoustic lenses, we demonstrate the acoustic focusing effect by finite-element simulations.

  8. Atlantic Herring Acoustic Surveys (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and underwater...

  9. Performing Active Noise Control and Acoustic Experiments Remotely

    Directory of Open Access Journals (Sweden)

    Imran Khan


    Full Text Available This paper presents a novel and advanced remotely controlled laboratory for conducting Active Noise Control (ANC, acoustic and Digital Signal Processing (DSP experiments. The laboratory facility, recently developed by Blekinge Institute of Technology (BTH Sweden, supports remote learning through internet covering beginners level such as simple experimental measurements to advanced users and even researchers such as algorithm development and their performance evaluation on DSP. The required software development for ANC algorithms and equipment control are carried out anywhere in the world remotely from an internet-connected client PC using a standard web browser. The paper describes in detail how ANC, acoustic and DSP experiments can be performed remotely The necessary steps involved in an ANC experiment such as validity of ANC, forward path estimation and active control applied to a broad band random noise [0-200Hz] in a ventilation duct will be described in detail. The limitations and challenges such as the forward path and nonlinearities pertinent to the remote laboratory setup will be described for the guidance of the user. Based on the acoustic properties of the ventilation duct some of the possible acoustic experiments such as mode shapes analysis and standing waves analysis etc. will also be discussed in the paper.

  10. Acoustic Mechanical Feedthroughs (United States)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea


    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  11. 12th Anglo-French Physical Acoustics Conference (AFPAC2013) (United States)


    The Anglo-French Physical Acoustics Conference (AFPAC) had its 12th annual meeting in Villa Clythia, Fréjus, France, from 16th to 18th January 2013. This series of meetings is a collaboration between the Physical Acoustics Group (PAG) of the Institute of Physics and the Groupe d'Acoustique Physique, Sous-marine et UltraSonore (GAPSUS) of the Société Française d'Acoustique. This year, attendees got the opportunity to see the French Riviera with its Mediterranean vegetation covered by a nice thick snow layer. The participants heard 34 excellent oral presentations and saw 3 posters covering an exciting and diverse range of subjects and of frequencies, from ultrasonic wave propagation in chocolate to metamaterials applied to seismic waves for protecting buildings. Among them, invited talks were given by Pr F A Duck ( Enhanced healing by ultrasound: clinical effects and mechanisms), Pr. J-C Valiére, who actually gave two invited talks ( 1. Measurement of audible acoustic particle velocity using laser: Principles, signal processing and applications, 2. Acoustic pots in ancient and medieval buildings: Literary analysis of ancient texts and comparison with recent observations in French churches), Dr P Huthwaite ( Ultrasonic imaging through the resolution of inverse problems), Dr X Lurton ( Underwater acoustic systems on oceanographic research vessels: principles and applications), Dr S Guenneau ( From platonics to seismic metamaterials). For the fifth consecutive year AFPAC is followed by the publication of its proceedings with 12 peer-reviewed papers which cover the most recent research developments in the field of Physical Acoustics in the UK and France. Alain Lhémery (CEA, France) and Nader Saffari (UCL, United Kingdom) French Riviera 12th AFPAC — Villa Clythia, Fréjus (French Riviera), the 17th of January 2013

  12. Dry acoustic microscope for visualizing the defects in eletronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Tohmyoh, Hironori; Saka, Masumi [Dept. of Nanomechanics, Tohoku University, Tohoku (Japan)


    Acoustic microscopy/imaging has been widely used in electronics industry for the non-destructive detection and evaluation of defects in electronic devices. However, the conventional acoustic microscope requires the immersion of the samples in water, which puts a limitation on the samples that can be analyzed. To realize the high-resolution acoustic inspection of electronic devices without immersing them in water, the dry acoustic microscope, where a polymer film is inserted between water and the devices, has been developed, In this paper, we demonstrate the high-resolution acoustic imaging of two types of electronic devices under the dry environment by the present dry acoustic microscope. One is the silicon chip package with high acoustic impedance, and the other is the plastic package with low acoustic impedance.

  13. Metabolomic Analysis of Clinical Plasma from Cerebral Infarction Patients Presenting with Blood Stasis

    Directory of Open Access Journals (Sweden)

    Min Ho Cha


    Full Text Available Blood stasis (BS is characterized as a disorder of blood circulation. In traditional Korean medicine (TKM, it is viewed as a cause factor of diseases such as multiple sclerosis and stroke. This study investigated differences in the plasma metabolites profiles of subjects displaying BS or non-BS patterns. Thirty-one patients with cerebral infarction diagnosed with BS and an equal number of sex- and age-matched non-BS patients were enrolled. Metabolic profiling was performed using UPLC-MS. The ratio of subjects with a rough pulse and purple coloration of the tongue was higher in patients presenting with BS pattern. Through metabolomics analysis, 82 metabolites that differed significantly between the BS and non-BS pattern were identified, and the two groups were significantly separated using an orthogonal partial least square-discriminant analysis model (P<0.001. Of these 82 metabolites, acetyl carnitine, leucine, kynurenine, phosphocholine, hexanoyl carnitine, and decanoyl carnitine were present in significantly higher levels in patients with a BS pattern than those with a non-BS pattern. Our results also demonstrated that seven plasma metabolites, including acyl-carnitines and kynurenine, were associated with a BS pattern, suggesting that variant plasma metabolic profiles may serve as a biomarker for diagnosis of BS in patients with cerebral infarction.

  14. On-line acquisition, analysis and presentation of neurophysiological data based on a personal microcomputer system. (United States)

    Stromquist, B R; Pavlides, C; Zelano, J A


    A microcomputer based system is described for the acquisition, averaging, displaying, analysis and storage of electrophysiological (EPSP and post-stimulus histogram) data. The system consists of commercially available hardware (IBM-PC AT compatible, 80286 or 80386 based microcomputer, Burr-Brown analog-to-digital (A/D) converter), a custom built interface module, and a combination of commercially available and custom built software packages. The software operates within a Microsoft Windows environment and is comprised of custom built data acquisition and review modules which are linked to Microsoft's Excel program. The system is capable of four channel A/D conversion of EPSP's at a sampling frequency of up to 10 KHz (50 KHz single channel), the averaging of data including the addition and subtraction of various channels, the graphical display of data, the extraction of various data parameters, and the transfer of data to an Excel spreadsheet. The spreadsheet allows for the development of mathematical formulas for statistical analysis of data and presentation of the results in graphical form. Finally, data can easily be output to a laser printer or plotter. A sample experiment, illustrating system operation, is presented.

  15. Analysis on surface nanostructures present in hindwing of dragon fly (Sympetrum vulgatum) using atomic force microscopy. (United States)

    Selvakumar, Rajendran; Karuppanan, Karthikeyan K; Pezhinkattil, Radhakrishnan


    The present study involves the analysis of surface nanostructures and its variation present in the hind wing of dragon fly (Sympetrum vulgatum) using atomic force microscopy (AFM). The hindwing was dissected into 4 parts (D1-D4) and each dissected section was analyzed using AFM in tapping mode at different locations. The AFM analysis revealed the presence of irregular shaped nanostructures on the surface of the wing membrane with size varying between 83.25±1.79 nm to 195.08±10.25 nm. The size and shape of the nanostructure varied from tip (pterostigma) to the costa part. The membrane surface of the wing showed stacked arrangement leading to increase in size of the nanostructure. Such arrangement of the nanostructures has lead to the formation of nanometer sized valleys of different depth and length on the membrane surface giving them ripple wave morphology. The average roughness of the surface nanostructures varied from 18.58±3.12 nm to 24.25±8.33 nm. Surfaces of the wings had positive skewness in D1, D2 and D4 regions and negative skewness in D3 region. These surface nanostructures may contribute asymmetric resistance under mechanical loading during the flight by increasing the bending and torsional resistance of the wing.

  16. Portable point-of-care blood analysis system for global health (Conference Presentation) (United States)

    Dou, James J.; Aitchison, James Stewart; Chen, Lu; Nayyar, Rakesh


    In this paper we present a portable blood analysis system based on a disposable cartridge and hand-held reader. The platform can perform all the sample preparation, detection and waste collection required to complete a clinical test. In order to demonstrate the utility of this approach a CD4 T cell enumeration was carried out. A handheld, point-of-care CD4 T cell system was developed based on this system. In particular we will describe a pneumatic, active pumping method to control the on-chip fluidic actuation. Reagents for the CD4 T cell counting assay were dried on a reagent plug to eliminate the need for cold chain storage when used in the field. A micromixer based on the active fluidic actuation was designed to complete sample staining with fluorescent dyes that was dried on the reagent plugs. A novel image detection and analysis algorithm was developed to detect and track the flight of target particles and cells during each analysis. The handheld, point-of-care CD4 testing system was benchmarked against clinical cytometer. The experimental results demonstrated experimental results were closely matched with the flow cytometry. The same platform can be further expanded into a bead-array detection system where other types of biomolecules such as proteins can be detected using the same detection system.

  17. Clinical Presentation and Microarray Analysis of Peruvian Children with Atypical Development and/or Aberrant Behavior

    Directory of Open Access Journals (Sweden)

    Merlin G. Butler


    Full Text Available We report our experience with high resolution microarray analysis in infants and young children with developmental disability and/or aberrant behavior enrolled at the Centro Ann Sullivan del Peru in Lima, Peru, a low income country. Buccal cells were collected with cotton swabs from 233 participants for later DNA isolation and identification of copy number variation (deletions/duplications and regions of homozygosity (ROH for estimating consanguinity status in 15 infants and young children (12 males, 3 females; mean age ± SD = 28.1 m ±   7.9 m; age range 14 m–41 m randomly selected for microarray analysis. An adequate DNA yield was found in about one-half of the enrolled participants. Ten participants showed deletions or duplications containing candidate genes reported to impact behavior or cognitive development. Five children had ROHs which could have harbored recessive gene alleles contributing to their clinical presentation. The coefficient of inbreeding was calculated and three participants showed first-second cousin relationships, indicating consanguinity. Our preliminary study showed that DNA isolated from buccal cells using cotton swabs was suboptimal, but yet in a subset of participants the yield was adequate for high resolution microarray analysis and several genes were found that impact development and behavior and ROHs identified to determine consanguinity status.

  18. Acoustic Communications (ACOMMS) ATD (United States)


    develop and demonstrate emerging undersea acoustic communication technologies at operationally useful ranges and data rates. The secondary objective...Technology Demonstration program (ACOMMS ATD) was to demonstrate long range and moderate data rate underwater acoustic communications between a submarine...moderate data rate acoustic communications capability for tactical use between submarines, surface combatants, unmanned undersea vehicles (UUVs), and other

  19. Tutorial on architectural acoustics (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio


    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  20. Characterizing response to elemental unit of acoustic imaging noise: an FMRI study. (United States)

    Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M


    Acoustic imaging noise produced during functional magnetic resonance imaging (fMRI) studies can hinder auditory fMRI research analysis by altering the properties of the acquired time-series data. Acoustic imaging noise can be especially confounding when estimating the time course of the hemodynamic response (HDR) in auditory event-related fMRI (fMRI) experiments. This study is motivated by the desire to establish a baseline function that can serve not only as a comparison to other quantities of acoustic imaging noise for determining how detrimental is one's experimental noise, but also as a foundation for a model that compensates for the response to acoustic imaging noise. Therefore, the amplitude and spatial extent of the HDR to the elemental unit of acoustic imaging noise (i.e., a single ping) associated with echoplanar acquisition were characterized and modeled. Results from this fMRI study at 1.5 T indicate that the group-averaged HDR in left and right auditory cortex to acoustic imaging noise (duration of 46 ms) has an estimated peak magnitude of 0.29% (right) to 0.48% (left) signal change from baseline, peaks between 3 and 5 s after stimulus presentation, and returns to baseline and remains within the noise range approximately 8 s after stimulus presentation.