WorldWideScience

Sample records for acoustic 4f imaging

  1. Three-dimensional photoacoustic imaging system with a 4f aspherical acoustic lens

    Science.gov (United States)

    Jen, En; Lin, Hsintien; Chiang, Huihua Kenny

    2016-08-01

    Photoacoustic (PA) imaging is a modality for achieving high-contrast images of blood vessels or tumors. Most PA imaging systems use complex reconstruction algorithms under conventional linear array transducers. We introduced the optical simulating method to improve the acoustic lens design and obtain a PA imaging system with improved spatial revolution (a 0.5-mm point spread function and a lateral image resolution of more than 1 mm) is realized using a 4f aspherical acoustic lens. The acoustic lens approach improved the image resolution and enabled direct reconstruction of three-dimensional (3-D) PA images. The system demonstrated a lateral resolution of more than 1 mm, a field of view of 8.5 deg, and a depth of focus of 10 mm. The system displays great potential for developing a real-time 3-D PA camera system for biomedical ultrasound imaging applications.

  2. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  3. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  4. 4F-based optical phase imaging system

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to 4F-based optical phase imaging system and in particular to reconstructing quantitative phase information of an object when using such systems. The invention applies a two-dimensional, complex spatial light modulator (SLM) to impress a complex spatial synthesized modulation...... in addition to the complex spatial modulation impressed by the object. This SLM is arranged so that the synthesized modulation is superimposed with the object modulation and is thus placed at an input plane to the phase imaging system. By evaluating output images from the phase imaging system, the synthesized...... modulation is selected to optimize parameters in the output image which improves the reconstruction of qualitative and quantitative object phase information from the resulting output images....

  5. Phase-retrieval algorithms applied in a 4-f system for optical image encryption: a comparison

    Science.gov (United States)

    Situ, Guohai; Zhang, Jingjuan

    2005-01-01

    Phase retrieval algorithms based on 4-f system for optical image encryption are compared in respect of the image retrieval quality and the convergence. Simulation results show that enlarging the searching space can decrypt the image with extremely high quality, while employing the searching strategy of modifying both the phase-distributions in the input and the frequency planes can result in much faster convergence for the algorithm.

  6. Acoustic imaging system

    Science.gov (United States)

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  7. Electromagnetic acoustic imaging.

    Science.gov (United States)

    Emerson, Jane F; Chang, David B; McNaughton, Stuart; Jeong, Jong Seob; Shung, K K; Cerwin, Stephen A

    2013-02-01

    Electromagnetic acoustic imaging (EMAI) is a new imaging technique that uses long-wavelength RF electromagnetic (EM) waves to induce ultrasound emission. Signal intensity and image contrast have been found to depend on spatially varying electrical conductivity of the medium in addition to conventional acoustic properties. The resultant conductivity- weighted ultrasound data may enhance the diagnostic performance of medical ultrasound in cancer and cardiovascular applications because of the known changes in conductivity of malignancy and blood-filled spaces. EMAI has a potential advantage over other related imaging techniques because it combines the high resolution associated with ultrasound detection with the generation of the ultrasound signals directly related to physiologically important electrical properties of the tissues. Here, we report the theoretical development of EMAI, implementation of a dual-mode EMAI/ultrasound apparatus, and successful demonstrations of EMAI in various phantoms designed to establish feasibility of the approach for eventual medical applications.

  8. Image processing techniques for acoustic images

    Science.gov (United States)

    Murphy, Brian P.

    1991-06-01

    The primary goal of this research is to test the effectiveness of various image processing techniques applied to acoustic images generated in MATLAB. The simulated acoustic images have the same characteristics as those generated by a computer model of a high resolution imaging sonar. Edge detection and segmentation are the two image processing techniques discussed in this study. The two methods tested are a modified version of the Kalman filtering and median filtering.

  9. Acoustic imaging system

    Science.gov (United States)

    Kendall, J. M., Jr.

    1977-01-01

    Tool detects noise sources by scanning sound "scene" and displaying relative location of noise-producing elements in area. System consists of ellipsoidal acoustic mirror and microphone and a display device.

  10. Acoustic image-processing software

    Science.gov (United States)

    Several algorithims that display, enhance and analyze side-scan sonar images of the seafloor, have been developed by the University of Washington, Seattle, as part of an Office of Naval Research funded program in acoustic image analysis. One of these programs, PORTAL, is a small (less than 100K) image display and enhancement program that can run on MS-DOS computers with VGA boards. This program is now available in the public domain for general use in acoustic image processing.PORTAL is designed to display side-scan sonar data that is stored in most standard formats, including SeaMARC I, II, 150 and GLORIA data. (See image.) In addition to the “standard” formats, PORTAL has a module “front end” that allows the user to modify the program to accept other image formats. In addition to side-scan sonar data, the program can also display digital optical images from scanners and “framegrabbers,” gridded bathymetry data from Sea Beam and other sources, and potential field (magnetics/gravity) data. While limited in image analysis capability, the program allows image enhancement by histogram manipulation, and basic filtering operations, including multistage filtering. PORTAL can print reasonably high-quality images on Postscript laser printers and lower-quality images on non-Postscript printers with HP Laserjet emulation. Images suitable only for index sheets are also possible on dot matrix printers.

  11. Simultaneous measurements of nonlinear refraction and nonlinear absorption using a 4f imaging system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A method is reported to simultaneously measure the nonlinear absorption and re-fraction coefficients of materials using a nonlinear-imaging technique with a phase object. In this technique, the sign and magnitude of both the nonlinear absorption and refraction can be acquired conveniently from the analysis of three experiment images: the linear image, the nonlinear image and the image without sample. In order to validate our approach, we demonstrate this method for ZnSe at 532 nm where two-photon absorption is present and the nonlinear refractive index n2 is negative. The values of β (nonlinear absorption coefficient) and n2 we measured are very close to the values found in other literature.

  12. An Opto-VLSI-based reconfigurable optical adddrop multiplexer employing an off-axis 4-f imaging system.

    Science.gov (United States)

    Shen, Mingya; Xiao, Feng; Ahderom, Selam; Alameh, Kamal

    2009-08-03

    A novel reconfigurable optical add-drop multiplexer (ROADM) structure is proposed and demonstrated experimentally. The ROADM structure employs two arrayed waveguide gratings (AWGs), an array of optical fiber pairs, an array of 4-f imaging microlenses that are offset in relation to the axis of symmetry of the fiber pairs, and a reconfigurable Opto-VLSI processor that switches various wavelength channels between the fiber pairs to achieve add or drop multiplexing. Experimental results are shown, which demonstrate the principle of add/drop multiplexing with crosstalk of less than -27dB and insertion loss of less than 8dB over the Cband for drop and through operation modes.

  13. A novel reconfigurable optical interconnect architecture using an Opto-VLSI processor and a 4-f imaging system.

    Science.gov (United States)

    Shen, Mingya; Xiao, Feng; Alameh, Kamal

    2009-12-07

    A novel reconfigurable optical interconnect architecture for on-board high-speed data transmission is proposed and experimentally demonstrated. The interconnect architecture is based on the use of an Opto-VLSI processor in conjunction with a 4-f imaging system to achieve reconfigurable chip-to-chip or board-to-board data communications. By reconfiguring the phase hologram of an Opto-VLSI processor, optical data generated by a vertical Cavity Surface Emitting Laser (VCSEL) associated to a chip (or a board) is arbitrarily steered to the photodetector associated to another chip (or another board). Experimental results show that the optical interconnect losses range from 5.8dB to 9.6dB, and that the maximum crosstalk level is below -36dB. The proposed architecture is tested for high-speed data transmission, and measured eye diagrams display good eye opening for data rate of up to 10Gb/s.

  14. Reflective echo tomographic imaging using acoustic beams

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  15. 30th International Acoustical Imaging Symposium

    CERN Document Server

    Jones, Joie; Lee, Hua

    2011-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place every two years since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2009 the 30th International Symposium on Acoustical Imaging was held in Monterey, CA, USA, March 1-4. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 30 in the Series contains an excellent collection of forty three papers presented in five major categories: Biomedical Imaging Acoustic Microscopy Non-Destructive Evaluation Systems Analysis Signal Analysis and Image Processing Audience Researchers in medical imaging and biomedical instrumentation experts.

  16. Acoustic 3D imaging of dental structures

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D.K. [Lawrence Livermore National Lab., CA (United States); Hume, W.R. [California Univ., Los Angeles, CA (United States); Douglass, G.D. [California Univ., San Francisco, CA (United States)

    1997-02-01

    Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.

  17. Magnetic resonance imaging of acoustic neuroma

    Energy Technology Data Exchange (ETDEWEB)

    Kashihara, Kengo; Murata, Hideaki; Ito, Haruhide; Onishi, Hiroaki; Kadoya, Masumi; Suzuki, Masayuki.

    1989-03-01

    Thirteen patients with acoustic neuroma were studied on a 1.5T superconductive magnetic resonance (MR) imager. Acoustic neuromas appeared as lower signal intensity than the surrounding brain stem on T1 weighted image (W.I.), and as higher signal intensity on T2 W.I.. Axial and coronal sections of T1 W.I. were very useful in observing the tumor in the auditory canal and in investigating the anatomical relations of the tumor and the surrounding structures. MR imaging is very excellent examination to make early diagnosis of the acoustic neuroma and preoperative anatomical evaluation.

  18. Acoustic Imaging of Combustion Noise

    Science.gov (United States)

    Ramohalli, K. N.; Seshan, P. K.

    1984-01-01

    Elliposidal acoustic mirror used to measure sound emitted at discrete points in burning turbulent jets. Mirror deemphasizes sources close to target source and excludes sources far from target. At acoustic frequency of 20 kHz, mirror resolves sound from region 1.25 cm wide. Currently used by NASA for research on jet flames. Produces clearly identifiable and measurable variation of acoustic spectral intensities along length of flame. Utilized in variety of monitoring or control systems involving flames or other reacting flows.

  19. Pulsed-Source Interferometry in Acoustic Imaging

    Science.gov (United States)

    Shcheglov, Kirill; Gutierrez, Roman; Tang, Tony K.

    2003-01-01

    A combination of pulsed-source interferometry and acoustic diffraction has been proposed for use in imaging subsurface microscopic defects and other features in such diverse objects as integrated-circuit chips, specimens of materials, and mechanical parts. A specimen to be inspected by this technique would be mounted with its bottom side in contact with an acoustic transducer driven by a continuous-wave acoustic signal at a suitable frequency, which could be as low as a megahertz or as high as a few hundred gigahertz. The top side of the specimen would be coupled to an object that would have a flat (when not vibrating) top surface and that would serve as the acoustical analog of an optical medium (in effect, an acoustical "optic").

  20. Magnetic resonance acoustic radiation force imaging.

    Science.gov (United States)

    McDannold, Nathan; Maier, Stephan E

    2008-08-01

    Acoustic radiation force impulse imaging is an elastography method developed for ultrasound imaging that maps displacements produced by focused ultrasound pulses systematically applied to different locations. The resulting images are "stiffness weighted" and yield information about local mechanical tissue properties. Here, the feasibility of magnetic resonance acoustic radiation force imaging (MR-ARFI) was tested. Quasistatic MR elastography was used to measure focal displacements using a one-dimensional MRI pulse sequence. A 1.63 or 1.5 MHz transducer supplied ultrasound pulses which were triggered by the magnetic resonance imaging hardware to occur before a displacement-encoding gradient. Displacements in and around the focus were mapped in a tissue-mimicking phantom and in an ex vivo bovine kidney. They were readily observed and increased linearly with acoustic power in the phantom (R2=0.99). At higher acoustic power levels, the displacement substantially increased and was associated with irreversible changes in the phantom. At these levels, transverse displacement components could also be detected. Displacements in the kidney were also observed and increased after thermal ablation. While the measurements need validation, the authors have demonstrated the feasibility of detecting small displacements induced by low-power ultrasound pulses using an efficient magnetic resonance imaging pulse sequence that is compatible with tracking of a dynamically steered ultrasound focal spot, and that the displacement increases with acoustic power. MR-ARFI has potential for elastography or to guide ultrasound therapies that use low-power pulsed ultrasound exposures, such as drug delivery.

  1. Optical and opto-acoustic interventional imaging.

    Science.gov (United States)

    Sarantopoulos, Athanasios; Beziere, Nicolas; Ntziachristos, Vasilis

    2012-02-01

    Many clinical interventional procedures, such as surgery or endoscopy, are today still guided by human vision and perception. Human vision however is not sensitive or accurate in detecting a large range of disease biomarkers, for example cellular or molecular processes characteristic of disease. For this reason advanced optical and opto-acoustic (photo-acoustic) methods are considered for enabling a more versatile, sensitive and accurate detection of disease biomarkers and complement human vision in clinical decision making during interventions. Herein, we outline developments in emerging fluorescence and opto-acoustic sensing and imaging techniques that can lead to practical implementations toward improving interventional vision.

  2. Imaging of Acoustic Waves in Sand

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Vance Albert; Telschow, Kenneth Louis; Watson, Scott Marshall

    2003-08-01

    There is considerable interest in detecting objects such as landmines shallowly buried in loose earth or sand. Various techniques involving microwave, acoustic, thermal and magnetic sensors have been used to detect such objects. Acoustic and microwave sensors have shown promise, especially if used together. In most cases, the sensor package is scanned over an area to eventually build up an image or map of anomalies. We are proposing an alternate, acoustic method that directly provides an image of acoustic waves in sand or soil, and their interaction with buried objects. The INEEL Laser Ultrasonic Camera utilizes dynamic holography within photorefractive recording materials. This permits one to image and demodulate acoustic waves on surfaces in real time, without scanning. A video image is produced where intensity is directly and linearly proportional to surface motion. Both specular and diffusely reflecting surfaces can be accomodated and surface motion as small as 0.1 nm can be quantitatively detected. This system was used to directly image acoustic surface waves in sand as well as in solid objects. Waves as frequencies of 16 kHz were generated using modified acoustic speakers. These waves were directed through sand toward partially buried objects. The sand container was not on a vibration isolation table, but sat on the lab floor. Interaction of wavefronts with buried objects showed reflection, diffraction and interference effects that could provide clues to location and characteristics of buried objects. Although results are preliminary, success in this effort suggests that this method could be applied to detection of buried landmines or other near-surface items such as pipes and tanks.

  3. Acoustic imaging of objects buried in soil.

    Science.gov (United States)

    Frazier, C H; Cadalli, N; Munson, D C; O'Brien, W D

    2000-07-01

    In this study, we demonstrate an acoustic system for high-resolution imaging of objects buried in soil. Our goal is to image cultural artifacts in order to assess in a rapid manner the historical significance of a potential construction site. We describe the imaging system and present preliminary images produced from data collected from a soil phantom. A mathematical model and associated computer software are developed in order to simulate the signals acquired by the system. We have built the imaging system, which incorporates a single element source transducer and a receiver array. The source and receiver array are moved together along a linear path to collect data. Using this system, we have obtained B-mode images of several targets by using delay-and-sum beamforming, and we have also applied synthetic aperture theory to this problem.

  4. Homotopy Based Reconstruction from Acoustic Images

    DEFF Research Database (Denmark)

    Sharma, Ojaswa

    of the inherent arrangement. The problem of reconstruction from arbitrary cross sections is a generic problem and is also shown to be solved here using the mathematical tool of continuous deformations. As part of a complete processing, segmentation using level set methods is explored for acoustic images and fast...... GPU (Graphics Processing Unit) based methods are suggested for a streaming computation on large volumes of data. Validation of results for acoustic images is not straightforward due to unavailability of ground truth. Accuracy figures for the suggested methods are provided using phantom object......This thesis presents work in the direction of generating smooth surfaces from linear cross sections embedded in R2 and R3 using homotopy continuation. The methods developed in this research are generic and can be applied to higher dimensions as well. Two types of problems addressed in this research...

  5. 28th International Acoustical Imaging Symposium

    CERN Document Server

    André, Michael P; Andre, Michael; Arnold, Walter; Bamber, Jeff; Burov, Valentin; Chubachi, Noriyoshi; Erikson, Kenneth; Ermert, Helmut; Fink, Mathias; Gan, Woon S; Granz, Bernd; Greenleaf, James; Hu, Jiankai; Jones, Joie P; Khuri-Yakub, Pierre; Laugier, Pascal; Lee, Hua; Lees, Sidney; Levin, Vadim M; Maev, Roman; Masotti, Leonardo; Nowicki, Andrzej; O’Brien, William; Prasad, Manika; Rafter, Patrick; Rouseff, Daniel; Thijssen, Johan; Tittmann, Bernard; Tortoli, Piero; Steen, Anton; Waag, Robert; Wells, Peter; Acoustical Imaging

    2007-01-01

    The International Acoustical Imaging Symposium has been held continuously since 1968 as a unique forum for advanced research, promoting the sharing of technology, developments, methods and theory among all areas of acoustics. The interdisciplinary nature of the Symposium and the wide international participation are two of its main strengths. Scientists from around the world present their papers in an informal environment conducive to lively discussion and cross-fertilization. The fact that a loyal community of scientists has supported this Series since 1968 is evidence of its impact on the field. The Symposium Series continues to thrive in a busy calendar of scientific meetings without the infrastructure of a professional society. It does so because those who attend and those who rely on the Proceedings as a well-known reference work acknowledge its value. This Volume 28 of the Proceedings likewise contains an excellent collection of papers presented in six major categories, offering both a broad perspective ...

  6. Nonlinear ultrasound imaging of nanoscale acoustic biomolecules

    Science.gov (United States)

    Maresca, David; Lakshmanan, Anupama; Lee-Gosselin, Audrey; Melis, Johan M.; Ni, Yu-Li; Bourdeau, Raymond W.; Kochmann, Dennis M.; Shapiro, Mikhail G.

    2017-02-01

    Ultrasound imaging is widely used to probe the mechanical structure of tissues and visualize blood flow. However, the ability of ultrasound to observe specific molecular and cellular signals is limited. Recently, a unique class of gas-filled protein nanostructures called gas vesicles (GVs) was introduced as nanoscale (˜250 nm) contrast agents for ultrasound, accompanied by the possibilities of genetic engineering, imaging of targets outside the vasculature and monitoring of cellular signals such as gene expression. These possibilities would be aided by methods to discriminate GV-generated ultrasound signals from anatomical background. Here, we show that the nonlinear response of engineered GVs to acoustic pressure enables selective imaging of these nanostructures using a tailored amplitude modulation strategy. Finite element modeling predicted a strongly nonlinear mechanical deformation and acoustic response to ultrasound in engineered GVs. This response was confirmed with ultrasound measurements in the range of 10 to 25 MHz. An amplitude modulation pulse sequence based on this nonlinear response allows engineered GVs to be distinguished from linear scatterers and other GV types with a contrast ratio greater than 11.5 dB. We demonstrate the effectiveness of this nonlinear imaging strategy in vitro, in cellulo, and in vivo.

  7. Acoustic imaging of subtle porosity variations in ceramics

    Science.gov (United States)

    Generazio, E. R.; Roth, D. J.; Baaklini, G. Y.

    1988-01-01

    Acoustic images of silicon carbide ceramic disks were obtained using a precision scanning contact pulse-echo technique. Phase and cross-correlation velocity and attenuation maps were used to form color images of microstructural variations. These acoustic images reveal microstructural variations not observable with X-radiography.

  8. Acoustic and Photoacoustic Molecular Imaging of Cancer

    Science.gov (United States)

    Wilson, Katheryne E.; Wang, Tzu Yin; Willmann, Jürgen K.

    2014-01-01

    Ultrasound and combined optical and ultrasonic (photoacoustic) molecular imaging have shown great promise in the visualization and monitoring of cancer through imaging of vascular and extravascular molecular targets. Contrast-enhanced ultrasound with molecularly targeted microbubbles can detect early-stage cancer through the visualization of targets expressed on the angiogenic vasculature of tumors. Ultrasonic molecular imaging can be extended to the imaging of extravascular targets through use of nanoscale, phase-change droplets and photoacoustic imaging, which provides further molecular information on cancer given by the chemical composition of tissues and by targeted nanoparticles that can interact with extravascular tissues at the receptor level. A new generation of targeted contrast agents goes beyond merely increasing imaging signal at the site of target expression but shows activatable and differential contrast depending on their interactions with the tumor microenvironment. These innovations may further improve our ability to detect and characterize tumors. In this review, recent developments in acoustic and photoacoustic molecular imaging of cancer are discussed. PMID:24187042

  9. Acoustic and photoacoustic molecular imaging of cancer.

    Science.gov (United States)

    Wilson, Katheryne E; Wang, Tzu Yin; Willmann, Jürgen K

    2013-11-01

    Ultrasound and combined optical and ultrasonic (photoacoustic) molecular imaging have shown great promise in the visualization and monitoring of cancer through imaging of vascular and extravascular molecular targets. Contrast-enhanced ultrasound with molecularly targeted microbubbles can detect early-stage cancer through the visualization of targets expressed on the angiogenic vasculature of tumors. Ultrasonic molecular imaging can be extended to the imaging of extravascular targets through use of nanoscale, phase-change droplets and photoacoustic imaging, which provides further molecular information on cancer given by the chemical composition of tissues and by targeted nanoparticles that can interact with extravascular tissues at the receptor level. A new generation of targeted contrast agents goes beyond merely increasing imaging signal at the site of target expression but shows activatable and differential contrast depending on their interactions with the tumor microenvironment. These innovations may further improve our ability to detect and characterize tumors. In this review, recent developments in acoustic and photoacoustic molecular imaging of cancer are discussed.

  10. Imaging of acoustic fields using optical feedback interferometry.

    Science.gov (United States)

    Bertling, Karl; Perchoux, Julien; Taimre, Thomas; Malkin, Robert; Robert, Daniel; Rakić, Aleksandar D; Bosch, Thierry

    2014-12-01

    This study introduces optical feedback interferometry as a simple and effective technique for the two-dimensional visualisation of acoustic fields. We present imaging results for several pressure distributions including those for progressive waves, standing waves, as well as the diffraction and interference patterns of the acoustic waves. The proposed solution has the distinct advantage of extreme optical simplicity and robustness thus opening the way to a low cost acoustic field imaging system based on mass produced laser diodes.

  11. Acoustical Imaging Cameras for the Inspection and Condition Assessment of Hydraulic Structures

    Science.gov (United States)

    2010-08-01

    feasibility of using acoustical imaging for underwater inspection of structures. INTRODUCTION: Visibility in clear water for the human eye and optical ...but higher resolution than sidescan or multibeam acoustical images • Nonhomogeneity of returned signal caused by variation in angles of signals...acoustical imaging. To obtain higher resolutions than other acoustical imaging technologies such as multibeam and sidescan systems, acoustical camera

  12. Magneto-acoustic imaging by continuous-wave excitation.

    Science.gov (United States)

    Shunqi, Zhang; Zhou, Xiaoqing; Tao, Yin; Zhipeng, Liu

    2016-07-01

    The electrical characteristics of tissue yield valuable information for early diagnosis of pathological changes. Magneto-acoustic imaging is a functional approach for imaging of electrical conductivity. This study proposes a continuous-wave magneto-acoustic imaging method. A kHz-range continuous signal with an amplitude range of several volts is used to excite the magneto-acoustic signal and improve the signal-to-noise ratio. The magneto-acoustic signal amplitude and phase are measured to locate the acoustic source via lock-in technology. An optimisation algorithm incorporating nonlinear equations is used to reconstruct the magneto-acoustic source distribution based on the measured amplitude and phase at various frequencies. Validation simulations and experiments were performed in pork samples. The experimental and simulation results agreed well. While the excitation current was reduced to 10 mA, the acoustic signal magnitude increased up to 10(-7) Pa. Experimental reconstruction of the pork tissue showed that the image resolution reached mm levels when the excitation signal was in the kHz range. The signal-to-noise ratio of the detected magneto-acoustic signal was improved by more than 25 dB at 5 kHz when compared to classical 1 MHz pulse excitation. The results reported here will aid further research into magneto-acoustic generation mechanisms and internal tissue conductivity imaging.

  13. Transthoracic Cardiac Acoustic Radiation Force Impulse Imaging

    Science.gov (United States)

    Bradway, David Pierson

    This dissertation investigates the feasibility of a real-time transthoracic Acoustic Radiation Force Impulse (ARFI) imaging system to measure myocardial function non-invasively in clinical setting. Heart failure is an important cardiovascular disease and contributes to the leading cause of death for developed countries. Patients exhibiting heart failure with a low left ventricular ejection fraction (LVEF) can often be identified by clinicians, but patients with preserved LVEF might be undetected if they do not exhibit other signs and symptoms of heart failure. These cases motivate development of transthoracic ARFI imaging to aid the early diagnosis of the structural and functional heart abnormalities leading to heart failure. M-Mode ARFI imaging utilizes ultrasonic radiation force to displace tissue several micrometers in the direction of wave propagation. Conventional ultrasound tracks the response of the tissue to the force. This measurement is repeated rapidly at a location through the cardiac cycle, measuring timing and relative changes in myocardial stiffness. ARFI imaging was previously shown capable of measuring myocardial properties and function via invasive open-chest and intracardiac approaches. The prototype imaging system described in this dissertation is capable of rapid acquisition, processing, and display of ARFI images and shear wave elasticity imaging (SWEI) movies. Also presented is a rigorous safety analysis, including finite element method (FEM) simulations of tissue heating, hydrophone intensity and mechanical index (MI) measurements, and thermocouple transducer face heating measurements. For the pulse sequences used in later animal and clinical studies, results from the safety analysis indicates that transthoracic ARFI imaging can be safely applied at rates and levels realizable on the prototype ARFI imaging system. Preliminary data are presented from in vivo trials studying changes in myocardial stiffness occurring under normal and abnormal

  14. Laser-induced acoustic imaging of underground objects

    Science.gov (United States)

    Li, Wen; DiMarzio, Charles A.; McKnight, Stephen W.; Sauermann, Gerhard O.; Miller, Eric L.

    1999-02-01

    This paper introduces a new demining technique based on the photo-acoustic interaction, together with results from photo- acoustic experiments. We have buried different types of targets (metal, rubber and plastic) in different media (sand, soil and water) and imaged them by measuring reflection of acoustic waves generated by irradiation with a CO2 laser. Research has been focused on the signal acquisition and signal processing. A deconvolution method using Wiener filters is utilized in data processing. Using a uniform spatial distribution of laser pulses at the ground's surface, we obtained 3D images of buried objects. The images give us a clear representation of the shapes of the underground objects. The quality of the images depends on the mismatch of acoustic impedance of the buried objects, the bandwidth and center frequency of the acoustic sensors and the selection of filter functions.

  15. Optimization of a Biometric System Based on Acoustic Images

    Science.gov (United States)

    Izquierdo Fuente, Alberto; Del Val Puente, Lara; Villacorta Calvo, Juan J.; Raboso Mateos, Mariano

    2014-01-01

    On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced. PMID:24616643

  16. Optimization of a Biometric System Based on Acoustic Images

    Directory of Open Access Journals (Sweden)

    Alberto Izquierdo Fuente

    2014-01-01

    Full Text Available On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced.

  17. Combination of acoustical radiosity and the image source method

    DEFF Research Database (Denmark)

    Koutsouris, Georgios I; Brunskog, Jonas; Jeong, Cheol-Ho

    2013-01-01

    A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part...

  18. Magnetic resonance imaging of acoustic streaming: absorption coefficient and acoustic field shape estimation.

    Science.gov (United States)

    Madelin, Guillaume; Grucker, Daniel; Franconi, Jean-Michel; Thiaudiere, Eric

    2006-07-01

    In this study, magnetic resonance imaging (MRI) is used to visualize acoustic streaming in liquids. A single-shot spin echo sequence (HASTE) with a saturation band perpendicular to the acoustic beam permits the acquisition of an instantaneous image of the flow due to the application of ultrasound. An average acoustic streaming velocity can be estimated from the MR images, from which the ultrasonic absorption coefficient and the bulk viscosity of different glycerol-water mixtures can be deduced. In the same way, this MRI method could be used to assess the acoustic field and time-average power of ultrasonic transducers in water (or other liquids with known physical properties), after calibration of a geometrical parameter that is dependent on the experimental setup.

  19. Near-field acoustic imaging based on Laplacian sparsity

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Daudet, Laurent

    2016-01-01

    We present a sound source identification method for near-field acoustic imaging of extended sources. The methodology is based on a wave superposition method (or equivalent source method) that promotes solutions with sparse higher order spatial derivatives. Instead of promoting direct sparsity......, and the validity of the wave extrapolation used for the reconstruction is examined. It is shown that this methodology can overcome conventional limits of spatial sampling, and is therefore valid for wide-band acoustic imaging of extended sources....

  20. Interpreting underwater acoustic images of the upper ocean boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Ulloa, Marco J [Departamento de Fisica, Centro Universitario de Ciencias Exactas e IngenierIas, Universidad de Guadalajara, Avenida Revolucion 1500, Sector Reforma, 44420 Guadalajara, Jal. (Mexico)

    2007-03-15

    A challenging task in physical studies of the upper ocean using underwater sound is the interpretation of high-resolution acoustic images. This paper covers a number of basic concepts necessary for undergraduate and postgraduate students to identify the most distinctive features of the images, providing a link with the acoustic signatures of physical processes occurring simultaneously beneath the surface of the sea. Sonars are so sensitive that they detected a new acoustic signature at the breaking of surface gravity waves in deep water, which resembles oblique motion-like vortices.

  1. Sparse Reconstruction for Micro Defect Detection in Acoustic Micro Imaging.

    Science.gov (United States)

    Zhang, Yichun; Shi, Tielin; Su, Lei; Wang, Xiao; Hong, Yuan; Chen, Kepeng; Liao, Guanglan

    2016-10-24

    Acoustic micro imaging has been proven to be sufficiently sensitive for micro defect detection. In this study, we propose a sparse reconstruction method for acoustic micro imaging. A finite element model with a micro defect is developed to emulate the physical scanning. Then we obtain the point spread function, a blur kernel for sparse reconstruction. We reconstruct deblurred images from the oversampled C-scan images based on l₁-norm regularization, which can enhance the signal-to-noise ratio and improve the accuracy of micro defect detection. The method is further verified by experimental data. The results demonstrate that the sparse reconstruction is effective for micro defect detection in acoustic micro imaging.

  2. Sparse Reconstruction for Micro Defect Detection in Acoustic Micro Imaging

    Directory of Open Access Journals (Sweden)

    Yichun Zhang

    2016-10-01

    Full Text Available Acoustic micro imaging has been proven to be sufficiently sensitive for micro defect detection. In this study, we propose a sparse reconstruction method for acoustic micro imaging. A finite element model with a micro defect is developed to emulate the physical scanning. Then we obtain the point spread function, a blur kernel for sparse reconstruction. We reconstruct deblurred images from the oversampled C-scan images based on l1-norm regularization, which can enhance the signal-to-noise ratio and improve the accuracy of micro defect detection. The method is further verified by experimental data. The results demonstrate that the sparse reconstruction is effective for micro defect detection in acoustic micro imaging.

  3. Shape-adaptable hyperlens for acoustic magnifying imaging

    Science.gov (United States)

    Zhang, Hongkuan; Zhou, Xiaoming; Hu, Gengkai

    2016-11-01

    Previous prototypes of acoustic hyperlens consist of rigid channels, which are unable to adapt in shape to the object under detection. We propose to overcome this limitation by employing soft plastic tubes that could guide acoustics with robustness against bending deformation. Based on the idea of soft-tube acoustics, acoustic magnifying hyperlens with planar input and output surfaces has been fabricated and validated experimentally. The shape-adaption capability of the soft-tube hyperlens is demonstrated by a controlled experiment, in which the magnifying super-resolution images remain stable when the lens input surface is curved. Our study suggests a feasible route toward constructing the flexible channel-structured acoustic metamaterials with the shape-adaption capability, opening then an additional degree of freedom for full control of sound.

  4. Vibro-acoustic Imaging at the Breazeale Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James Arthur [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jewell, James Keith [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lee, James Edwin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    The INL is developing Vibro-acoustic imaging technology to characterize microstructure in fuels and materials in spent fuel pools and within reactor vessels. A vibro-acoustic development laboratory has been established at the INL. The progress in developing the vibro-acoustic technology at the INL is the focus of this report. A successful technology demonstration was performed in a working TRIGA research reactor. Vibro-acoustic imaging was performed in the reactor pool of the Breazeale reactor in late September of 2015. A confocal transducer driven at a nominal 3 MHz was used to collect the 60 kHz differential beat frequency induced in a spent TRIGA fuel rod and empty gamma tube located in the main reactor water pool. Data was collected and analyzed with the INLDAS data acquisition software using a short time Fourier transform.

  5. Photoacoustic imaging using acoustic reflectors to enhance planar arrays.

    Science.gov (United States)

    Ellwood, Robert; Zhang, Edward; Beard, Paul; Cox, Ben

    2014-12-01

    Planar sensor arrays have advantages when used for photoacoustic imaging: they do not require the imaging target to be enclosed, and they are easier to manufacture than curved arrays. However, planar arrays have a limited view of the acoustic field due to their finite size; therefore, not all of the acoustic waves emitted from a photoacoustic source can be recorded. This loss of data results in artifacts in the reconstructed photoacoustic image. A detection array configuration which combines a planar Fabry–Pérot sensor with perpendicular acoustic reflectors is described and experimentally implemented. This retains the detection advantages of the planar sensor while increasing the effective detection aperture in order to improve the reconstructed photoacoustic image.

  6. Time-Reversal Acoustics and Maximum-Entropy Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J G

    2001-08-22

    Target location is a common problem in acoustical imaging using either passive or active data inversion. Time-reversal methods in acoustics have the important characteristic that they provide a means of determining the eigenfunctions and eigenvalues of the scattering operator for either of these problems. Each eigenfunction may often be approximately associated with an individual scatterer. The resulting decoupling of the scattered field from a collection of targets is a very useful aid to localizing the targets, and suggests a number of imaging and localization algorithms. Two of these are linear subspace methods and maximum-entropy imaging.

  7. Assessing the variability in respiratory acoustic thoracic imaging (RATHI).

    Science.gov (United States)

    Charleston-Villalobos, S; Torres-Jiménez, A; González-Camarena, R; Chi-Lem, G; Aljama-Corrales, T

    2014-02-01

    Multichannel analysis of lung sounds (LSs) has enabled the generation of a functional image for the temporal and spatial study of LS intensities in healthy and diseased subjects; this method is known as respiratory acoustic thoracic imaging (RATHI). This acoustic imaging technique has been applied to diverse pulmonary conditions, but it is important to contribute to the understanding of RATHI characteristics, such as acoustic spatial distribution, dependence on airflow and variability. The purpose of the current study is to assess the intra-subject and inter-subject RATHI variabilities in a cohort of 12 healthy male subjects (24.3±1.5 years) using diverse quantitative indices. The indices were obtained directly from the acoustic image and did not require scores from human raters, which helps to prevent inter-observer variability. To generate the acoustic image, LSs were acquired at 25 positions on the posterior thoracic surface by means of airborne sound sensors with a wide frequency band from 75 up to 1000 Hz under controlled airflow conditions at 1.0, 1.5 and 2.0 L/s. To assess intra-subject variability, the degree of similitude between inspiratory acoustic images was evaluated through quadratic mutual information based on the Cauchy-Schwartz inequality (I(CS)). The inter-subject variability was assessed by an image registration procedure between RATHIs and X-ray images to allow the computation of average and variance acoustic image in the same coordinate space. The results indicated that intra-subject RATHI similitude, reflected by I(CS-global), averaged 0.960±0.008, 0.958±0.008 and 0.960±0.007 for airflows of 1.0, 1.5, and 2L/s, respectively. As for the inter-subject variability, the variance image values for three airflow conditions indicated low image variability as they ranged from 0.01 to 0.04. In conclusion, the assessment of intra-subject and inter-subject variability by similitude indices indicated that the acoustic image pattern is repeatable along

  8. Underwater Acoustic Image Transmission System Based on DSP

    Institute of Scientific and Technical Information of China (English)

    Cheng En; Xu Ru

    2002-01-01

    The underwater acoustic image transmission system based on the high-speed DSP device TMS320C549 has been studied. We use Goertzel algorithm for source decoding and MFSK for modulation. Turbo code is used for channel coding and decoding. The purpose is to implement underwater video image data transmission.

  9. Acoustic-optical imaging without immersion

    Science.gov (United States)

    Liu, H.

    1979-01-01

    System using membraneous end wall of Bragg cell to separate test specimen from acoustic transmission medium, operates in real time and uses readily available optical components. System can be easily set up and maintained by people with little or no training in holography.

  10. Performance Evaluation of a Biometric System Based on Acoustic Images

    Directory of Open Access Journals (Sweden)

    Juan J. Villacorta

    2011-10-01

    Full Text Available An acoustic electronic scanning array for acquiring images from a person using a biometric application is developed. Based on pulse-echo techniques, multifrequency acoustic images are obtained for a set of positions of a person (front, front with arms outstretched, back and side. Two Uniform Linear Arrays (ULA with 15 l/2-equispaced sensors have been employed, using different spatial apertures in order to reduce sidelobe levels. Working frequencies have been designed on the basis of the main lobe width, the grating lobe levels and the frequency responses of people and sensors. For a case-study with 10 people, the acoustic profiles, formed by all images acquired, are evaluated and compared in a mean square error sense. Finally, system performance, using False Match Rate (FMR/False Non-Match Rate (FNMR parameters and the Receiver Operating Characteristic (ROC curve, is evaluated. On the basis of the obtained results, this system could be used for biometric applications.

  11. Acoustically modulated x-ray phase contrast imaging.

    Science.gov (United States)

    Hamilton, Theron J; Bailat, Claude J; Rose-Petruck, Christoph; Diebold, Gerald J

    2004-11-07

    We report the use of ultrasonic radiation pressure with phase contrast x-ray imaging to give an image proportional to the space derivative of a conventional phase contrast image in the direction of propagation of an ultrasonic beam. Intense ultrasound is used to exert forces on objects within a body giving displacements of the order of tens to hundreds of microns. Subtraction of images made with and without the ultrasound field gives an image that removes low spatial frequency features and highlights high frequency features. The method acts as an acoustic 'contrast agent' for phase contrast x-ray imaging, which in soft tissue acts to highlight small density changes.

  12. Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects

    Science.gov (United States)

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2008-06-01

    Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.

  13. Transducer Arrays Suitable for Acoustic Imaging

    Science.gov (United States)

    1978-06-01

    extensional resonance of a thin plate. The stif- fened velocity and acoustic im.pedance of the transducer can be defined then as follows: ,,,D 1/2 󈧥 (3...finite radius performing rotaticnal oscillations about its center. Case (a) is identical to the cne evaluated in this pape-. The integrals in...Poisson’s ratio. For (k.L) > I , the impedance is essen- tially real and oscillates slowly about the longitudinal plane wave impedance. Below (k,L) = 1

  14. Systematic Error of Acoustic Particle Image Velocimetry and Its Correction

    Directory of Open Access Journals (Sweden)

    Mickiewicz Witold

    2014-08-01

    Full Text Available Particle Image Velocimetry is getting more and more often the method of choice not only for visualization of turbulent mass flows in fluid mechanics, but also in linear and non-linear acoustics for non-intrusive visualization of acoustic particle velocity. Particle Image Velocimetry with low sampling rate (about 15Hz can be applied to visualize the acoustic field using the acquisition synchronized to the excitation signal. Such phase-locked PIV technique is described and used in experiments presented in the paper. The main goal of research was to propose a model of PIV systematic error due to non-zero time interval between acquisitions of two images of the examined sound field seeded with tracer particles, what affects the measurement of complex acoustic signals. Usefulness of the presented model is confirmed experimentally. The correction procedure, based on the proposed model, applied to measurement data increases the accuracy of acoustic particle velocity field visualization and creates new possibilities in observation of sound fields excited with multi-tonal or band-limited noise signals.

  15. AUV Local Path Planning Based on Acoustic Image Processing

    Institute of Scientific and Technical Information of China (English)

    LI Ye; CHANG Wen-tian; JIANG Da-peng; ZHANG Tie-dong; SU Yu-min

    2006-01-01

    The forward-looking image sonar is a necessary vision device for Autonomous Underwater Vehicles (AUV). Based on the acoustic image received from forward-looking image sonar, AUV local path is planned. When the environment model is made to adapt to local path planning, an iterative algorithm of binary conversion is used for image segmentation. Raw data of the acoustic image, which were received from serial port, are processed. By the use of "Mathematic Morphology" to filter noise, a mathematic model of environment for local path planning is established after coordinate transformation. The optimal path is searched by the distant transmission (Dt) algorithm. Simulation is conducted for the analysis of the algorithm. Experiment on the sea proves it reliable.

  16. Photoacoustic image reconstruction: material detection and acoustical heterogeneities

    Science.gov (United States)

    Schoeder, S.; Kronbichler, M.; Wall, W. A.

    2017-05-01

    The correct consideration of acoustical heterogeneities in the context of photoacoustic image reconstruction is an open topic. In this publication a physically motivated algorithm is proposed that reconstructs the optical absorption and diffusion coefficients using a gradient-based scheme. The simultaneous reconstruction of both material properties allows for a subsequent material identification and an accordant update of the acoustical material properties. The algorithm is general in terms of illumination scenarios, detection geometries and applications. No prior knowledge on material distributions needs to be provided, only expected materials have to be specified. Numerical experiments are performed to gain insight into the complex inverse problem and to validate the proposed method. Results show that acoustical heterogeneities are correctly detected improving the optical images.

  17. Acoustic imaging for temperature distribution reconstruction

    Science.gov (United States)

    Jia, Ruixi; Xiong, Qingyu; Liang, Shan

    2016-12-01

    For several industrial processes, such as burning and drying, temperature distribution is important because it can reflect the internal running state of industrial equipment and assist to develop control strategy and ensure safety in operation of industrial equipment. The principle of this technique is mainly based on the relationship between acoustic velocity and temperature. In this paper, an algorithm for temperature distribution reconstruction is considered. Compared with reconstruction results of simulation experiments with the least square algorithm and the proposed one, the latter indicates a better information reflection of temperature distribution and relatively higher reconstruction accuracy.

  18. Acoustic imaging for temperature distribution reconstruction

    Directory of Open Access Journals (Sweden)

    Ruixi Jia

    2016-12-01

    Full Text Available For several industrial processes, such as burning and drying, temperature distribution is important because it can reflect the internal running state of industrial equipment and assist to develop control strategy and ensure safety in operation of industrial equipment. The principle of this technique is mainly based on the relationship between acoustic velocity and temperature. In this paper, an algorithm for temperature distribution reconstruction is considered. Compared with reconstruction results of simulation experiments with the least square algorithm and the proposed one, the latter indicates a better information reflection of temperature distribution and relatively higher reconstruction accuracy.

  19. Monitoring of rapid sand filters using an acoustic imaging technique

    NARCIS (Netherlands)

    Allouche, N.; Simons, D.G.; Rietveld, L.C.

    2012-01-01

    A novel instrument is developed to acoustically image sand filters used for water treatment and monitor their performance. The instrument consists of an omnidirectional transmitter that generates a chirp with a frequency range between 10 and 110 kHz, and an array of hydrophones. The instrument was e

  20. Acoustic imaging for diagnostics of chemically reacting systems

    Science.gov (United States)

    Ramohalli, K.; Seshan, P.

    1983-01-01

    The concept of local diagnostics, in chemically reacting systems, with acoustic imaging is developed. The elements of acoustic imaging through ellipsoidal mirrors are theoretically discussed. In a general plan of the experimental program, the first system is chosen in these studies to be a simple open jet, non premixed turbulent flame. Methane is the fuel and enriched air is the oxidizer. This simple chemically reacting flow system is established at a Reynolds number (based on cold viscosity) of 50,000. A 1.5 m diameter high resolution acoustic mirror with an f-number of 0.75 is used to map the acoustic source zone along the axis of the flame. The results are presented as acoustic power spectra at various distances from the nozzle exit. It is seen that most of the reaction intensity is localized in a zone within 8 diameters from the exit. The bulk reactions (possibly around the periphery of the larger eddies) are evenly distributed along the length of the flame. Possibilities are seen for locally diagnosing single zones in a multiple cluster of reaction zones that occur frequently in practice. A brief outline is given of the future of this work which will be to apply this technique to chemically reacting flows not limited to combustion.

  1. Acoustic property measurements in a photoacoustic imager

    NARCIS (Netherlands)

    Willemink, Rene; Manohar, Srirang; Slump, Cornelis H.; van der Heijden, Ferdinand; van Leeuwen, Ton; Depeursinge, C.D.

    2007-01-01

    Photoacoustics is a hybrid imaging technique that combines the contrast available to optical imaging with the resolution that is possessed by ultrasound imaging. The technique is based on generating ultrasound from absorbing structures in tissue using pulsed light. In photoacoustic (PA) computerized

  2. Acoustic property measurements in a photoacoustic imager

    NARCIS (Netherlands)

    Willemink, G.H.; Manohar, S.; Slump, C.H.; Heijden, van der F.; Leeuwen, van T.G.; Depeursinge, C.D.

    2007-01-01

    Photoacoustics is a hybrid imaging technique that combines the contrast available to optical imaging with the resolution that is possessed by ultrasound imaging. The technique is based on generating ultrasound from absorbing structures in tissue using pulsed light. In photoacoustic (PA) computerized

  3. Acoustic property measurements in a photoacoustic imager

    Science.gov (United States)

    Willemink, René G. H.; Manohar, Srirang; Slump, Cornelis H.; van der Heijden, Ferdi; van Leeuwen, Ton

    2007-07-01

    Photoacoustics is a hybrid imaging technique that combines the contrast available to optical imaging with the resolution that is possessed by ultrasound imaging. The technique is based on generating ultrasound from absorbing structures in tissue using pulsed light. In photoacoustic (PA) computerized tomography (CT) imaging, reconstruction of the optical absorption in a subject, is performed for example by filtered backprojection. The backprojection is performed along circular paths in image space instead of along straight lines as in X-ray CT imaging. To achieve this, the speed-of-sound through the subject is usually assumed constant. An unsuitable speed-of-sound can degrade resolution and contrast. We discuss here a method of actually measuring the speed-of- sound distribution using ultrasound transmission through the subject under photoacoustic investigation. This is achieved in a simple approach that does not require any additional ultrasound transmitter. The method uses a passive element (carbon fiber) that is placed in the imager in the path of the illumination which generates ultrasound by the photoacoustic effect and behaves as an ultrasound source. Measuring the time-of-flight of this ultrasound transient by the same detector used for conventional photoacoustics, allows a speed-of-sound image to be reconstructed. This concept is validated on phantoms.

  4. Underwater acoustic image segmentation based on deformable template

    Institute of Scientific and Technical Information of China (English)

    SANG Enfang; LIU Zhuofu

    2005-01-01

    In order to solve the problem of deformation and blurred edge in underwater acoustic image segmentation, an approach based on the deformable template is presented. Compared with the energy minimization of the Snake model, the energy function is redefined by adding a shape restriction. This improves the noise-resistance ability so that robustness and high segmentation efficiency are acquired. The energy optimization problem is tackled using the Dijkstra Algorithm. This method has been successfully tested on the filled-in acoustic images.The results show that this algorithm is efficient, precise and very immune to image deformation and noise when compared to results obtained from the Snake model and several traditional optimization methods.

  5. Underwater Imaging with a Moving Acoustic Lens

    Science.gov (United States)

    1998-01-01

    10.00  1998 IEEE Authorized licensed use limited to: NRL. Downloaded on December 1, 2009 at 15:29 from IEEE Xplore . Restrictions apply. Report...licensed use limited to: NRL. Downloaded on December 1, 2009 at 15:29 from IEEE Xplore . Restrictions apply. KAMGAR-PARSI et al.: UNDERWATER IMAGING 93...use limited to: NRL. Downloaded on December 1, 2009 at 15:29 from IEEE Xplore . Restrictions apply. 94 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7

  6. Synchrotron x-ray imaging of acoustic cavitation bubbles induced by acoustic excitation

    Science.gov (United States)

    Jung, Sung Yong; Park, Han Wook; Park, Sung Ho; Lee, Sang Joon

    2017-04-01

    The cavitation induced by acoustic excitation has been widely applied in various biomedical applications because cavitation bubbles can enhance the exchanges of mass and energy. In order to minimize the hazardous effects of the induced cavitation, it is essential to understand the spatial distribution of cavitation bubbles. The spatial distribution of cavitation bubbles visualized by the synchrotron x-ray imaging technique is compared to that obtained with a conventional x-ray tube. Cavitation bubbles with high density in the region close to the tip of the probe are visualized using the synchrotron x-ray imaging technique, however, the spatial distribution of cavitation bubbles in the whole ultrasound field is not detected. In this study, the effects of the ultrasound power of acoustic excitation and working medium on the shape and density of the induced cavitation bubbles are examined. As a result, the synchrotron x-ray imaging technique is useful for visualizing spatial distributions of cavitation bubbles, and it could be used for optimizing the operation conditions of acoustic cavitation.

  7. Opto-acoustic breast imaging with co-registered ultrasound

    Science.gov (United States)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela

    2014-03-01

    We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.

  8. Optical and opto-acoustic imaging.

    Science.gov (United States)

    Ntziachristos, Vasilis; Razansky, Daniel

    2013-01-01

     Since the inception of the microscope, optical imaging is serving the biological discovery for more than four centuries. With the recent emergence of methods appropriate for in vivo staining, such as bioluminescence, fluorescent molecular probes, and proteins, as well as nanoparticle-based targeted agents, significant attention has been shifted toward in vivo interrogations of different dynamic biological processes at the molecular level. This progress has been largely supported by the development of advanced optical tomographic imaging technologies suitable for obtaining volumetric visualization of biomarker distributions in small animals at a whole-body or whole-organ scale, an imaging frontier that is not accessible by the existing tissue-sectioning microscopic techniques due to intensive light scattering beyond the depth of a few hundred microns. Biomedical optoacoustics has also emerged in the recent decade as a powerful tool for high-resolution visualization of optical contrast, overcoming a variety of longstanding limitations imposed by light scattering in deep tissues. By detecting tiny sound vibrations, resulting from selective absorption of light at multiple wavelengths, multispectral optoacoustic tomography methods can now "hear color" in three dimensions, i.e., deliver volumetric spectrally enriched (color) images from deep living tissues at high spatial resolution and in real time. These new-found imaging abilities directly relate to preclinical screening applications in animal models and are foreseen to significantly impact clinical decision making as well.

  9. Acoustic and photoacoustic microscopy imaging of single leukocytes

    Science.gov (United States)

    Strohm, Eric M.; Moore, Michael J.; Kolios, Michael C.

    2016-03-01

    An acoustic/photoacoustic microscope was used to create micrometer resolution images of stained cells from a blood smear. Pulse echo ultrasound images were made using a 1000 MHz transducer with 1 μm resolution. Photoacoustic images were made using a fiber coupled 532 nm laser, where energy losses through stimulated Raman scattering enabled output wavelengths from 532 nm to 620 nm. The laser was focused onto the sample using a 20x objective, and the laser spot co-aligned with the 1000 MHz transducer opposite the laser. The blood smear was stained with Wright-Giemsa, a common metachromatic dye that differentially stains the cellular components for visual identification. A neutrophil, lymphocyte and a monocyte were imaged using acoustic and photoacoustic microscopy at two different wavelengths, 532 nm and 600 nm. Unique features in each imaging modality enabled identification of the different cell types. This imaging method provides a new way of imaging stained leukocytes, with applications towards identifying and differentiating cell types, and detecting disease at the single cell level.

  10. Scanning Michelson interferometer for imaging surface acoustic wave fields.

    Science.gov (United States)

    Knuuttila, J V; Tikka, P T; Salomaa, M M

    2000-05-01

    A scanning homodyne Michelson interferometer is constructed for two-dimensional imaging of high-frequency surface acoustic wave (SAW) fields in SAW devices. The interferometer possesses a sensitivity of ~10(-5)nm/ radicalHz , and it is capable of directly measuring SAW's with frequencies ranging from 0.5 MHz up to 1 GHz. The fast scheme used for locating the optimum operation point of the interferometer facilitates high measuring speeds, up to 50,000 points/h. The measured field image has a lateral resolution of better than 1 mu;m . The fully optical noninvasive scanning system can be applied to SAW device development and research, providing information on acoustic wave distribution that cannot be obtained by merely electrical measurements.

  11. Image reconstruction with acoustic radiation force induced shear waves

    Science.gov (United States)

    McAleavey, Stephen A.; Nightingale, Kathryn R.; Stutz, Deborah L.; Hsu, Stephen J.; Trahey, Gregg E.

    2003-05-01

    Acoustic radiation force may be used to induce localized displacements within tissue. This phenomenon is used in Acoustic Radiation Force Impulse Imaging (ARFI), where short bursts of ultrasound deliver an impulsive force to a small region. The application of this transient force launches shear waves which propagate normally to the ultrasound beam axis. Measurements of the displacements induced by the propagating shear wave allow reconstruction of the local shear modulus, by wave tracking and inversion techniques. Here we present in vitro, ex vivo and in vivo measurements and images of shear modulus. Data were obtained with a single transducer, a conventional ultrasound scanner and specialized pulse sequences. Young's modulus values of 4 kPa, 13 kPa and 14 kPa were observed for fat, breast fibroadenoma, and skin. Shear modulus anisotropy in beef muscle was observed.

  12. Photo acoustic imaging: technology, systems and market trends

    Science.gov (United States)

    Faucheux, Marc; d'Humières, Benoît; Cochard, Jacques

    2017-03-01

    Although the Photo Acoustic effect was observed by Graham Bell in 1880, the first applications (gas analysis) occurred in 1970's using the required energetic light pulses from lasers. During mid 1990's medical imaging research begun to use Photo Acoustic effect and in vivo images were obtained in mid-2000. Since 2009, the number of patent related to Photo Acoustic Imaging (PAI) has dramatically increased. PAI machines for pre-clinical and small animal imaging have been being used in a routine way for several years. Based on its very interesting features (non-ionizing radiation, noninvasive, high depth resolution ratio, scalability, moderate price) and because it is able to deliver not only anatomical, but functional and molecular information, PAI is a very promising clinical imaging modality. It penetrates deeper into tissue than OCT (Optical Coherence Tomography) and provides a higher resolution than ultrasounds. The PAI is one of the most growing imaging modality and some innovative clinical systems are planned to be on market in 2017. Our study analyzes the different approaches such as photoacoustic computed tomography, 3D photoacoustic microscopy, multispectral photoacoustic tomography and endoscopy with the recent and tremendous technological progress over the past decade: advances in image reconstruction algorithms, laser technology, ultrasound detectors and miniaturization. We analyze which medical domains and applications are the most concerned and explain what should be the forthcoming medical system in the near future. We segment the market in four parts: Components and R&D, pre-clinical, analytics, clinical. We analyzed what should be, quantitatively and qualitatively, the PAI medical markets in each segment and its main trends. We point out the market accessibility (patents, regulations, clinical evaluations, clinical acceptance, funding). In conclusion, we explain the main market drivers and challenges to overcome and give a road map for medical

  13. A sidelobe suppression method with experiment for underwater acoustic imaging

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper,a sidelobe suppression method using nonuniformly spaced array with aperture apodization processing is proposed for underwater acoustic imaging in near field,which is studied both in theory and experiment.The focused beamforming based on spherical wave propagation theory is used in the method.Firstly,the nonuniform array with low sidelobe is designed for suppressing the sidelobe of one-way beam pattern by spacing perturbation.Then, applying the aperture apodization technique to underwater ac...

  14. Imaging of acoustic attenuation and speed of sound maps using photoacoustic measurements

    NARCIS (Netherlands)

    Willemink, G.H.; Manohar, S.; Purwar, Y.; Slump, C.H.; Heijden, van der F.; Leeuwen, van T.G.; McAleavey, S.A.; D'Hooge, J.

    2008-01-01

    Photoacoustic imaging is an upcoming medical imaging modality with the potential of imaging both optical and acoustic properties of objects. We present a measurement system and outline reconstruction methods to image both speed of sound and acoustic attenuation distributions of an object using only

  15. Quantifying Image Quality Improvement Using Elevated Acoustic Output in B-Mode Harmonic Imaging.

    Science.gov (United States)

    Deng, Yufeng; Palmeri, Mark L; Rouze, Ned C; Trahey, Gregg E; Haystead, Clare M; Nightingale, Kathryn R

    2017-10-01

    Tissue harmonic imaging has been widely used in abdominal imaging because of its significant reduction in acoustic noise compared with fundamental imaging. However, tissue harmonic imaging can be limited by both signal-to-noise ratio and penetration depth during clinical imaging, resulting in decreased diagnostic utility. A logical approach would be to increase the source pressure, but the in situ pressures used in diagnostic ultrasound are subject to a de facto upper limit based on the U.S. Food and Drug Administration guideline for the mechanical index (tissues without gas bodies, but would only be justified if there were a concurrent improvement in image quality and diagnostic utility. This work evaluates image quality differences between normal and elevated acoustic output hepatic harmonic imaging using a transmit frequency of 1.8 MHz. The results indicate that harmonic imaging using elevated acoustic output leads to modest improvements (3%-7%) in contrast-to-noise ratio of hypo-echoic hepatic vessels and increases in imaging penetration depth on the order of 4 mm per mechanical index increase of 0.1 for a given focal depth. Difficult-to-image patients who suffer from poor ultrasound image quality exhibited larger improvements than easy-to-image study participants. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Airframe noise measurements by acoustic imaging

    Science.gov (United States)

    Kendall, J. M.

    1977-01-01

    Studies of the noise produced by flow past wind tunnel models are presented. The central objective of these is to find the specific locations within a flow which are noisy, and to identify the fluid dynamic processes responsible, with the expectation that noise reduction principles will be discovered. The models tested are mostly simple shapes which result in types of flow that are similar to those occurring on, for example, aircraft landing gear and wheel cavities. A model landing gear and a flap were also tested. Turbulence has been intentionally induced as appropriate in order to simulate full-scale effects more closely. The principal technique involves use of a highly directional microphone system which is scanned about the flow field to be analyzed. The data so acquired are presented as a pictorial image of the noise source distribution. An important finding is that the noise production is highly variable within a flow field and that sources can be attributed to various fluid dynamic features of the flow. Flow separation was not noisy, but separation closure usually was.

  17. An acoustic imaging system of migration technique used in borehole

    Institute of Scientific and Technical Information of China (English)

    LIN Weijun; WU Nan; SUN Jian; ZHANG Hailan

    2008-01-01

    In order to detect the damage of casing boreholes, an acoustic imaging method with a two-dimensional ultrasonic array was presented. Each element of the array independently emits down ultrasonic waves, the echoes received by all elements are sampled and transmitted to a computer on ground surface, where the dynamic migration method is used to form a 2 or 3-dimensional image of the situation in the borehole. The numerical simulation and experiment are conducted that demonstrate a high imaging accuracy with a small number of elements used in array. Since the delay circuits used in the traditional phased array imaging system is not needed in this system, and all data process could be completed in a ground system,the complexity and the volume of system in borehole may be significantly simplified, which is critical to the borehole instrument.

  18. Identifying Vulnerable Plaques with Acoustic Radiation Force Impulse Imaging

    Science.gov (United States)

    Doherty, Joshua Ryan

    The rupture of arterial plaques is the most common cause of ischemic complications including stroke, the fourth leading cause of death and number one cause of long term disability in the United States. Unfortunately, because conventional diagnostic tools fail to identify plaques that confer the highest risk, often a disabling stroke and/or sudden death is the first sign of disease. A diagnostic method capable of characterizing plaque vulnerability would likely enhance the predictive ability and ultimately the treatment of stroke before the onset of clinical events. This dissertation evaluates the hypothesis that Acoustic Radiation Force Impulse (ARFI) imaging can noninvasively identify lipid regions, that have been shown to increase a plaque's propensity to rupture, within carotid artery plaques in vivo. The work detailed herein describes development efforts and results from simulations and experiments that were performed to evaluate this hypothesis. To first demonstrate feasibility and evaluate potential safety concerns, finite- element method simulations are used to model the response of carotid artery plaques to an acoustic radiation force excitation. Lipid pool visualization is shown to vary as a function of lipid pool geometry and stiffness. A comparison of the resulting Von Mises stresses indicates that stresses induced by an ARFI excitation are three orders of magnitude lower than those induced by blood pressure. This thesis also presents the development of a novel pulse inversion harmonic tracking method to reduce clutter-imposed errors in ultrasound-based tissue displacement estimates. This method is validated in phantoms and was found to reduce bias and jitter displacement errors for a marked improvement in image quality in vivo. Lastly, this dissertation presents results from a preliminary in vivo study that compares ARFI imaging derived plaque stiffness with spatially registered composition determined by a Magnetic Resonance Imaging (MRI) gold standard

  19. Signal processing for high speed underwater acoustic transmission of image

    Institute of Scientific and Technical Information of China (English)

    ZHU Weiqing; ZHU Min; WANG Junwei; HUANG Haiyun; YANG Bo; XU Lijun; ZHAO Liang

    2009-01-01

    A signal processing method for high-speed underwater acoustic transmission of image is presented. It has two parts. Part 1 introduces signal processing for underwater acoustic coherent communication. Part 1 includes 3 technical points. (1) Doppler shift compensation.Chirp signals are inserted between data packages. A correlation process between two copy correlation functions gives more accurate estimation of the mean Doppler shift. Then it could be compensated by resampling the data. In adaptive decision feedback equalizer (DFE) an adaptive phase compensator with fast self-optimized least mean square (FOLMS) adaptation algorithm is utilized resulting in better motion tolerance than compensators with 2nd order Phase-Lock Loop algorithm. The performance of the combination of mean Doppler shift compensation and adaptive phase compensator is quite good. (2) A diversity combiner (DC) used in advance of equalizer. Both combiner and adaptive DFE are based on FOLMS adaptation algorithm. This results in reduced computation complexity and better performance. (3) Cascaded equalizer and Turbo-Trellis Coded Modulation (TCM) decoder and the iteration algorithm. A new bitsymbol converter based on Soft Output Viterbi Algorithm (SOVA) is studied. Comparing with the traditional decision, coding and mapping algorithm, the new converter can reduce Bit Error Rate(BER) by nearly 2 orders. Part 2 is mainly around a robust image compression algorithm. Based on Discrete wavelet transform and fixed length coding, a robust compression algorithm for acoustic image is studied. The algorithm includes 4 technical points. (1) Utilizes CDF9/7 wavelet bases to transform the images. (2) Analyses the energy distribution of subband coefficients. Suitable transformation layer number is 3. (3) Applies different quantization steps to different subbands in accordance with their energy distribution. (4) Uses fixed length coding to prevent error propagation. The results show the algorithm achieves a balance

  20. Multi-crack imaging using nonclassical nonlinear acoustic method

    Science.gov (United States)

    Zhang, Lue; Zhang, Ying; Liu, Xiao-Zhou; Gong, Xiu-Fen

    2014-10-01

    Solid materials with cracks exhibit the nonclassical nonlinear acoustical behavior. The micro-defects in solid materials can be detected by nonlinear elastic wave spectroscopy (NEWS) method with a time-reversal (TR) mirror. While defects lie in viscoelastic solid material with different distances from one another, the nonlinear and hysteretic stress—strain relation is established with Preisach—Mayergoyz (PM) model in crack zone. Pulse inversion (PI) and TR methods are used in numerical simulation and defect locations can be determined from images obtained by the maximum value. Since false-positive defects might appear and degrade the imaging when the defects are located quite closely, the maximum value imaging with a time window is introduced to analyze how defects affect each other and how the fake one occurs. Furthermore, NEWS-TR-NEWS method is put forward to improve NEWS-TR scheme, with another forward propagation (NEWS) added to the existing phases (NEWS and TR). In the added phase, scanner locations are determined by locations of all defects imaged in previous phases, so that whether an imaged defect is real can be deduced. NEWS-TR-NEWS method is proved to be effective to distinguish real defects from the false-positive ones. Moreover, it is also helpful to detect the crack that is weaker than others during imaging procedure.

  1. Imaging of contact acoustic nonlinearity using synthetic aperture technique.

    Science.gov (United States)

    Yun, Dongseok; Kim, Jongbeom; Jhang, Kyung-Young

    2013-09-01

    The angle beam incidence and reflection technique for the evaluation of contact acoustic nonlinearity (CAN) at solid-solid contact interfaces (e.g., closed cracks) has recently been developed to overcome the disadvantage of accessing both the inner and outer surfaces of structures for attaching pulsing and receiving transducers in the through-transmission of normal incidence technique. This paper proposes a technique for B-mode imaging of CAN based on the above reflection technique, which uses the synthetic aperture focusing technique (SAFT) and short-time Fourier transform (STFT) to visualize the distribution of the CAN-induced second harmonic magnitude as well as the nonlinear parameter. In order to verify the usefulness of the proposed method, a solid-solid contact interface was tested and the change of the contact acoustic nonlinearity according to the increasing contact pressure was visualized in images of the second harmonic magnitude and the relative nonlinear parameter. The experimental results showed good agreement with the previously developed theory identifying the dependence of the scattered second harmonics on the contact pressure. This technique can be used for the detection and improvement of the sizing accuracy of closed cracks that are difficult to detect using the conventional linear ultrasonic technique.

  2. From acoustic segmentation to language processing: evidence from optical imaging.

    Science.gov (United States)

    Obrig, Hellmuth; Rossi, Sonja; Telkemeyer, Silke; Wartenburger, Isabell

    2010-01-01

    During language acquisition in infancy and when learning a foreign language, the segmentation of the auditory stream into words and phrases is a complex process. Intuitively, learners use "anchors" to segment the acoustic speech stream into meaningful units like words and phrases. Regularities on a segmental (e.g., phonological) or suprasegmental (e.g., prosodic) level can provide such anchors. Regarding the neuronal processing of these two kinds of linguistic cues a left-hemispheric dominance for segmental and a right-hemispheric bias for suprasegmental information has been reported in adults. Though lateralization is common in a number of higher cognitive functions, its prominence in language may also be a key to understanding the rapid emergence of the language network in infants and the ease at which we master our language in adulthood. One question here is whether the hemispheric lateralization is driven by linguistic input per se or whether non-linguistic, especially acoustic factors, "guide" the lateralization process. Methodologically, functional magnetic resonance imaging provides unsurpassed anatomical detail for such an enquiry. However, instrumental noise, experimental constraints and interference with EEG assessment limit its applicability, pointedly in infants and also when investigating the link between auditory and linguistic processing. Optical methods have the potential to fill this gap. Here we review a number of recent studies using optical imaging to investigate hemispheric differences during segmentation and basic auditory feature analysis in language development.

  3. Description and validation of a combination of acoustical radiosity and the image source method

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    A model that combines image source modelling and acoustical radiosity with complex boundary con- ditions, thus including phase shifts on reflection, has been developed. The model is denoted Phased Acoustical Radiosity and Image Source Model (PARISM). It has been developed in order to be able...... to model both specular and diffuse reflections with complex-valued acoustical descriptions of the surfaces. This paper mainly describes the combination of the two models and the implementation of the angle dependent surface descriptions both in the image source model and in acoustical radiosity...... in a rectangular room with a highly absorbing ceilings...

  4. Acoustic Imaging Frequency Dynamics of Ferroelectric Domains by Atomic Force Microscopy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Kun-Yu; Shunji Takekawa; Kenji Kitamura; ZENG Hua-Rong; SONG Hong-Zhang; HUI Sen-Xing; LI Guo-Rong; YIN Qing-Rui; Kiyoshi Shimamura; Chinna Venkadasamy Kannan; Encarnacion Antonia Garcia Villora

    2008-01-01

    We report the acoustic imaging frequency dynamics of ferroelectric domains by low-frequency acoustic probe microscopy based on the commercial atomic force microscopy. It is found that ferroelectric domain could be firstly visualized at lower frequency down to 0.h kHz by AFM-based acoustic microscopy. The frequency-dependent acoustic signal revealed a strong acoustic response in the frequency range from 7 kHz to lO kHz, and reached maximum at 8.1 kHz. The acoustic contrast mechanism can be ascribed to the different elastic response of ferroelectric microstructures to local elastic stress fields, which is induced by the acoustic wave transmitting in the sample when the piezoelectric transducer is vibrating and exciting acoustic wave under ac electric fields due to normal piezoelectric effects.

  5. Ultrasonic phased array with surface acoustic wave for imaging cracks

    Science.gov (United States)

    Ohara, Yoshikazu; Oshiumi, Taro; Nakajima, Hiromichi; Yamanaka, Kazushi; Wu, Xiaoyang; Uchimoto, Tetsuya; Takagi, Toshiyuki; Tsuji, Toshihiro; Mihara, Tsuyoshi

    2017-06-01

    To accurately measure crack lengths, we developed a real-time surface imaging method (SAW PA) combining an ultrasonic phased array (PA) with a surface acoustic wave (SAW). SAW PA using a Rayleigh wave with a high sensitivity to surface defects was implemented for contact testing using a wedge with the third critical angle that allows the Rayleigh wave to be generated. Here, to realize high sensitivity imaging, SAW PA was optimized in terms of the wedge and the imaging area. The improved SAW PA was experimentally demonstrated using a fatigue crack specimen made of an aluminum alloy. For further verification in more realistic specimens, SAW PA was applied to stainless-steel specimens with a fatigue crack and stress corrosion cracks (SCCs). The fatigue crack was visualized with a high signal-to-noise ratio (SNR) and its length was measured with a high accuracy of better than 1 mm. The SCCs generated in the heat-affected zones (HAZs) of a weld were successfully visualized with a satisfactory SNR, although responses at coarse grains appeared throughout the imaging area. The SCC lengths were accurately measured. The imaging results also precisely showed complicated distributions of SCCs, which were in excellent agreement with the optically observed distributions.

  6. Research on the influence and correction method of depth scanning error to the underwater acoustic image measurement

    Institute of Scientific and Technical Information of China (English)

    MEI Jidan; ZHAI Chunpin; WANGYilin; HUI Junying

    2011-01-01

    The technology of underwater acoustic image measurement was a passive locating method with high precision in near field. To improve the precision of underwater acoustic image measurement, the influence of the depth scan error was analyzed and the correcti

  7. From acoustic segmentation to language processing: evidence from optical imaging

    Directory of Open Access Journals (Sweden)

    Hellmuth Obrig

    2010-06-01

    Full Text Available During language acquisition in infancy and when learning a foreign language, the segmentation of the auditory stream into words and phrases is a complex process. Intuitively, learners use ‘anchors’ to segment the acoustic speech stream into meaningful units like words and phrases. Regularities on a segmental (e.g., phonological or suprasegmental (e.g., prosodic level can provide such anchors. Regarding the neuronal processing of these two kinds of linguistic cues a left hemispheric dominance for segmental and a right hemispheric bias for suprasegmental information has been reported in adults. Though lateralization is common in a number of higher cognitive functions, its prominence in language may also be a key to understanding the rapid emergence of the language network in infants and the ease at which we master our language in adulthood. One question here is whether the hemispheric lateralization is driven by linguistic input per se or whether non-linguistic, especially acoustic factors, ‘guide’ the lateralization process. Methodologically, fMRI provides unsurpassed anatomical detail for such an enquiry. However, instrumental noise, experimental constraints and interference with EEG assessment limit its applicability, pointedly in infants and also when investigating the link between auditory and linguistic processing. Optical methods have the potential to fill this gap. Here we review a number of recent studies using optical imaging to investigate hemispheric differences during segmentation and basic auditory feature analysis in language development.

  8. Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations.

    Science.gov (United States)

    Hagsäter, S M; Jensen, T Glasdam; Bruus, H; Kutter, J P

    2007-10-01

    We show that full-image micro-PIV analysis in combination with images of transient particle motion is a powerful tool for experimental studies of acoustic radiation forces and acoustic streaming in microfluidic chambers under piezo-actuation in the MHz range. The measured steady-state motion of both large 5 microm and small 1 microm particles can be understood in terms of the acoustic eigenmodes or standing ultra-sound waves in the given experimental microsystems. This interpretation is supported by numerical solutions of the corresponding acoustic wave equation.

  9. VARIATION METHOD FOR ACOUSTIC WAVE IMAGING OF TWO DIMENSIONAL TARGETS

    Institute of Scientific and Technical Information of China (English)

    冯文杰; 邹振祝

    2003-01-01

    A new way of acoustic wave imaging was investigated. By using the Green function theory a system of integral equations, which linked wave number perturbation function with wave field, was firstly deduced. By taking variation on these integral equations an inversion equation, which reflected the relation between the little variation of wave number perturbation function and that of scattering field, was further obtained. Finally, the perturbation functions of some identical targets were reconstructed, and some properties of the novel method including converging speed, inversion accuracy and the abilities to resist random noise and identify complex targets were discussed. Results of numerical simulation show that the method based on the variation principle has great theoretical and applicable value to quantitative nondestructive evaluation.

  10. Quantitative thermo-acoustic imaging: An exact reconstruction formula

    CERN Document Server

    Ammari, Habib; Jing, Wenjia; Nguyen, Loc

    2012-01-01

    The quantitative thermo-acoustic imaging is considered in this paper. Given several data sets of electromagnetic data, we first establish an exact formula for the absorption coefficient, which involves derivatives of the given data up to the third order. However, because of the dependence of such derivatives, this formula is unstable in the sense that small measurement noises may cause large errors. Hence, with the presence of noise, the obtained formula, together with noise regularization, provides an initial guess for the true absorption coefficient. We next correct the errors by deriving a reconstruction formula based on the least square solution of an optimal control problem and show that this optimization step reduces the errors occurring.

  11. Acoustic-integrated dynamic MR imaging for a patient with obstructive sleep apnea.

    Science.gov (United States)

    Chen, Yunn-Jy; Shih, Tiffany Ting-Fang; Chang, Yi-Chung; Hsu, Ying-Chieh; Huon, Leh-Kiong; Lo, Men-Tzung; Pham, Van-Truong; Lin, Chen; Wang, Pa-Chun

    2015-12-01

    Obstructive sleep apnea syndrome (OSAS) is caused by multi-level upper airway obstruction. Anatomic changes at the sites of obstruction may modify the physical or acoustic properties of snores. The surgical success of OSA depends upon precise localization of obstructed levels. We present a case of OSAS who received simultaneous dynamic MRI and snore acoustic recordings. The synchronized image and acoustic information successfully characterize the sites of temporal obstruction during sleep-disordered breathing events.

  12. Frequency-Modulated Magneto-Acoustic Detection and Imaging: Challenges, Experimental Procedures, and B-Scan Images

    CERN Document Server

    Aliroteh, Miaad S; Arbabian, Amin

    2016-01-01

    Magneto-acoustic tomography combines near-field radio-frequency (RF) and ultrasound with the aim of creating a safe, high resolution, high contrast hybrid imaging technique. We present continuous-wave magneto-acoustic imaging techniques, which improve SNR and/or reduce the required peak-to-average excitation power ratio, to make further integration and larger fields of view feasible. This method relies on the coherency between RF excitation and the resulting ultrasound generated through Lorentz force interactions, which was confirmed by our previous work. We provide detailed methodology, clarify the details of experiments, and explain how the presence of magneto-acoustic phenomenon was verified. An example magneto-acoustic B-scan image is acquired in order to illustrate the capability of magneto-acoustic tomography in highlighting boundaries where electrical conductivity alters, such as between different tissues.

  13. Platforms for hyperspectral imaging, in-situ optical and acoustical imaging in urbanized regions

    Science.gov (United States)

    Bostater, Charles R.; Oney, Taylor

    2016-10-01

    Hyperspectral measurements of the water surface of urban coastal waters are presented. Oblique bidirectional reflectance factor imagery was acquired made in a turbid coastal sub estuary of the Indian River Lagoon, Florida and along coastal surf zone waters of the nearby Atlantic Ocean. Imagery was also collected using a pushbroom hyperspectral imager mounted on a fixed platform with a calibrated circular mechatronic rotation stage. Oblique imagery of the shoreline and subsurface features clearly shows subsurface bottom features and rip current features within the surf zone water column. In-situ hyperspectral optical signatures were acquired from a vessel as a function of depth to determine the attenuation spectrum in Palm Bay. A unique stationary platform methodology to acquire subsurface acoustic images showing the presence of moving bottom boundary nephelometric layers passing through the acoustic fan beam. The acoustic fan beam imagery indicated the presence of oscillatory subsurface waves in the urbanized coastal estuary. Hyperspectral imaging using the fixed platform techniques are being used to collect hyperspectral bidirectional reflectance factor (BRF) measurements from locations at buildings and bridges in order to provide new opportunities to advance our scientific understanding of aquatic environments in urbanized regions.

  14. A combination of the acoustic radiosity and the image source method

    DEFF Research Database (Denmark)

    Koutsouris, Georgios I.; Brunskog, Jonas; Jeong, Cheol-Ho

    2012-01-01

    A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part...

  15. Description and validation of a combination of acoustical radiosity and the image source method

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    to model both specular and diffuse reflections with complex-valued acoustical descriptions of the surfaces. This paper mainly describes the combination of the two models and the implementation of the angle dependent surface descriptions both in the image source model and in acoustical radiosity...

  16. DESIGN OF MODULATION AND COMPRESSION CODING IN UNDERWATER ACOUSTIC IMAGE TRANSMISSION

    Institute of Scientific and Technical Information of China (English)

    程恩; 余丽敏; 林耿超

    2002-01-01

    This paper describes the design of modulation, compression coding and transmissi on control in underwater acoustic color image transmission system. This design adap ts a special system of modulation and transmission control based on a DSP(Digital Signal Processing) chip, to cope with the complex underwater acoustic channel. The hardware block diagram and software flow chart are presented.

  17. DESIGN OF MODULATION AND COMPRESSION CODING IN UNDERWATER ACOUSTIC IMAGE TRANSMISSION

    Institute of Scientific and Technical Information of China (English)

    程恩; 余丽敏; 林耿超

    2002-01-01

    This paper describes the design of modulation, compression coding and transmission control in underwater acoustic color image transmission system. This design adapts a special system of modulation and transmission control based on a DSP(Digital Signal Processing) chip, to cope with the complex underwater acoustic channel. The hardware block diagram and software flow chart are presented.

  18. Characterizing response to elemental unit of acoustic imaging noise: an FMRI study.

    Science.gov (United States)

    Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2009-07-01

    Acoustic imaging noise produced during functional magnetic resonance imaging (fMRI) studies can hinder auditory fMRI research analysis by altering the properties of the acquired time-series data. Acoustic imaging noise can be especially confounding when estimating the time course of the hemodynamic response (HDR) in auditory event-related fMRI (fMRI) experiments. This study is motivated by the desire to establish a baseline function that can serve not only as a comparison to other quantities of acoustic imaging noise for determining how detrimental is one's experimental noise, but also as a foundation for a model that compensates for the response to acoustic imaging noise. Therefore, the amplitude and spatial extent of the HDR to the elemental unit of acoustic imaging noise (i.e., a single ping) associated with echoplanar acquisition were characterized and modeled. Results from this fMRI study at 1.5 T indicate that the group-averaged HDR in left and right auditory cortex to acoustic imaging noise (duration of 46 ms) has an estimated peak magnitude of 0.29% (right) to 0.48% (left) signal change from baseline, peaks between 3 and 5 s after stimulus presentation, and returns to baseline and remains within the noise range approximately 8 s after stimulus presentation.

  19. Phase-sensitive imaging of tissue acoustic vibrations using spectrally encoded interferometry.

    Science.gov (United States)

    Ilgayev, Ovadia; Yelin, Dvir

    2013-08-26

    Acoustic vibrations in tissue are often difficult to image, requiring high-speed scanning, high sensitivity and nanometer-scale axial resolution. Here we use spectrally encoded interferometry to measure the vibration pattern of two-dimensional surfaces, including the skin of a volunteer, at nanometric resolution, without the need for rapid lateral scanning and with no prior knowledge of the driving acoustic waveform. Our results demonstrate the feasibility of this technique for measuring tissue biomechanics using simple and compact imaging probes.

  20. Convolution Models with Shift-invariant kernel based on Matlab-GPU platform for Fast Acoustic Imaging

    OpenAIRE

    Chu, Ning; Gac, Nicolas; Picheral, José; Mohammad-Djafari, Ali

    2014-01-01

    International audience; Acoustic imaging is an advanced technique for acoustic source localization and power reconstruc-tion from limited noisy measurements at microphone sensors. This technique not only involves in a forward model of acoustic propagation from sources to sensors, but also its numerical solution of an ill-posed inverse problem. Nowadays, the Bayesian inference methods in inverse methods have been widely investigated for robust acoustic imaging, but most of Bayesian methods are...

  1. Temporal pattern of acoustic imaging noise asymmetrically modulates activation in the auditory cortex.

    Science.gov (United States)

    Ranaweera, Ruwan D; Kwon, Minseok; Hu, Shuowen; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2016-01-01

    This study investigated the hemisphere-specific effects of the temporal pattern of imaging related acoustic noise on auditory cortex activation. Hemodynamic responses (HDRs) to five temporal patterns of imaging noise corresponding to noise generated by unique combinations of imaging volume and effective repetition time (TR), were obtained using a stroboscopic event-related paradigm with extra-long (≥27.5 s) TR to minimize inter-acquisition effects. In addition to confirmation that fMRI responses in auditory cortex do not behave in a linear manner, temporal patterns of imaging noise were found to modulate both the shape and spatial extent of hemodynamic responses, with classically non-auditory areas exhibiting responses to longer duration noise conditions. Hemispheric analysis revealed the right primary auditory cortex to be more sensitive than the left to the presence of imaging related acoustic noise. Right primary auditory cortex responses were significantly larger during all the conditions. This asymmetry of response to imaging related acoustic noise could lead to different baseline activation levels during acquisition schemes using short TR, inducing an observed asymmetry in the responses to an intended acoustic stimulus through limitations of dynamic range, rather than due to differences in neuronal processing of the stimulus. These results emphasize the importance of accounting for the temporal pattern of the acoustic noise when comparing findings across different fMRI studies, especially those involving acoustic stimulation.

  2. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Thurman E. Scott, Jr.; Younane Abousleiman

    2004-04-01

    The research during this project has concentrated on developing a correlation between rock deformation mechanisms and their acoustic velocity signature. This has included investigating: (1) the acoustic signature of drained and undrained unconsolidated sands, (2) the acoustic emission signature of deforming high porosity rocks (in comparison to their low porosity high strength counterparts), (3) the effects of deformation on anisotropic elastic and poroelastic moduli, and (4) the acoustic tomographic imaging of damage development in rocks. Each of these four areas involve triaxial experimental testing of weak porous rocks or unconsolidated sand and involves measuring acoustic properties. The research is directed at determining the seismic velocity signature of damaged rocks so that 3-D or 4-D seismic imaging can be utilized to image rock damage. These four areas of study are described in the report: (1) Triaxial compression experiments have been conducted on unconsolidated Oil Creek sand at high confining pressures. (2) Initial experiments on measuring the acoustic emission activity from deforming high porosity Danian chalk were accomplished and these indicate that the AE activity was of a very low amplitude. (3) A series of triaxial compression experiments were conducted to investigate the effects of induced stress on the anisotropy developed in dynamic elastic and poroelastic parameters in rocks. (4) Tomographic acoustic imaging was utilized to image the internal damage in a deforming porous limestone sample. Results indicate that the deformation damage in rocks induced during laboratory experimentation can be imaged tomographically in the laboratory. By extension the results also indicate that 4-D seismic imaging of a reservoir may become a powerful tool for imaging reservoir deformation (including imaging compaction and subsidence) and for imaging zones where drilling operation may encounter hazardous shallow water flows.

  3. An Acoustic Charge Transport Imager for High Definition Television

    Science.gov (United States)

    Hunt, William D.; Brennan, Kevin; May, Gary; Glenn, William E.; Richardson, Mike; Solomon, Richard

    1999-01-01

    This project, over its term, included funding to a variety of companies and organizations. In addition to Georgia Tech these included Florida Atlantic University with Dr. William E. Glenn as the P.I., Kodak with Mr. Mike Richardson as the P.I. and M.I.T./Polaroid with Dr. Richard Solomon as the P.I. The focus of the work conducted by these organizations was the development of camera hardware for High Definition Television (HDTV). The focus of the research at Georgia Tech was the development of new semiconductor technology to achieve a next generation solid state imager chip that would operate at a high frame rate (I 70 frames per second), operate at low light levels (via the use of avalanche photodiodes as the detector element) and contain 2 million pixels. The actual cost required to create this new semiconductor technology was probably at least 5 or 6 times the investment made under this program and hence we fell short of achieving this rather grand goal. We did, however, produce a number of spin-off technologies as a result of our efforts. These include, among others, improved avalanche photodiode structures, significant advancement of the state of understanding of ZnO/GaAs structures and significant contributions to the analysis of general GaAs semiconductor devices and the design of Surface Acoustic Wave resonator filters for wireless communication. More of these will be described in the report. The work conducted at the partner sites resulted in the development of 4 prototype HDTV cameras. The HDTV camera developed by Kodak uses the Kodak KAI-2091M high- definition monochrome image sensor. This progressively-scanned charge-coupled device (CCD) can operate at video frame rates and has 9 gm square pixels. The photosensitive area has a 16:9 aspect ratio and is consistent with the "Common Image Format" (CIF). It features an active image area of 1928 horizontal by 1084 vertical pixels and has a 55% fill factor. The camera is designed to operate in continuous mode

  4. Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies

    Science.gov (United States)

    Williams, J.H.; Johnson, C.D.

    2004-01-01

    Imaging with acoustic and optical televiewers results in continuous and oriented 360?? views of the borehole wall from which the character, relation, and orientation of lithologic and structural planar features can be defined for studies of fractured-rock aquifers. Fractures are more clearly defined under a wider range of conditions on acoustic images than on optical images including dark-colored rocks, cloudy borehole water, and coated borehole walls. However, optical images allow for the direct viewing of the character of and relation between lithology, fractures, foliation, and bedding. The most powerful approach is the combined application of acoustic and optical imaging with integrated interpretation. Imaging of the borehole wall provides information useful for the collection and interpretation of flowmeter and other geophysical logs, core samples, and hydraulic and water-quality data from packer testing and monitoring. ?? 2003 Elsevier B.V. All rights reserved.

  5. Nanoparticles Formed by Acoustic Destruction of Microbubbles and Their Utilization for Imaging and Effects on Therapy by High Intensity Focused Ultrasound

    Science.gov (United States)

    Blum, Nicholas T.; Yildirim, Adem; Chattaraj, Rajarshi; Goodwin, Andrew P.

    2017-01-01

    This work reports that when PEG-lipid-shelled microbubbles with fluorocarbon interior (C4F10, C5F12, or C6F14) are subjected to ultrasound pulses, they produce metastable, fluid-filled nanoparticles that can be re-imaged upon administration of HIFU. The nanoparticles produced by destruction of the microbubbles (MBNPs) are of 150 nm average diameter and can be re-imaged for up to an hour after creation for C 4F10, and for at least one day for C5F12. The active species were found to be fluid (gas or liquid) filled nanoparticles rather than lipid debris. The acoustic droplet vaporization threshold of the nanoparticles was found to vary with the vapor pressure of the encapsulated fluorocarbon, and integrated image brightness was found to increase dramatically when the temperature was raised above the normal boiling point of the fluorocarbon. Finally, the vaporization threshold decreases in serum as compared to buffer, and administration of HIFU to the nanoparticles caused breast cancer cells to completely detach from their culture substrate. This work demonstrates a new functionality of microbubbles that could serve as a platform technology for ultrasound-based theranostics. PMID:28255360

  6. Photo-acoustic imaging of coronary arteries with polymer optical fibers

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Broadway, Christian; Lamela, Horacio

    2014-01-01

    less blood to flow through the arteries hence the heart muscle can't get the blood or oxygen it needs. Worse, a plaque can suddenly rupture. As a result, blood clot over the rapture and suddenly cut off the hearts’ blood supply, causing permanent heart dama ge or stroke [1]. Photo-acoustic imaging...... is useful for detection of plaques for prevention of rupture of vulnerable plaques. These vulnerable plaques in the arteries can be distinguished using photo-acoustic imaging based on lipid accumulation with different characteristics of optical absorption. The basic principle of this imaging technique...... relies on exposing lipids to a laser capable of inducing photo-acoustic effect and a sensor affected by the induced pressure. Polymer optical fibre Bragg grating and Fabry-Perot sensors will be developed for detection of photo-acoustic signal in collaboration of Optoelectronics and Laser technology group...

  7. SEM imaging of acoustically stimulated charge transport in solids

    Science.gov (United States)

    Emelin, Evgeny; Cho, H. D.; Insepov, Zeke; Lee, J. C.; Kang, Tae Won; Panin, Gennady; Roshchupkin, Dmitry; Tynyshtykbayev, Kurbangali

    2017-06-01

    Acoustically stimulated charge transport in solids was studied using the scanning electron microscopy method (SEM). The surface acoustic wave on the surface of the YZ-cut of a LiNbO3 crystal was visualized by registration of low-energy secondary electrons in SEM, and the charge distribution on the crystal surface was visualized using the electron beam induced current method. To register the induced current, an interdigital transducer structure was formed from graphene on the crystal surface. It was shown that the charge distribution on the crystal surface corresponds to the distribution of the acoustic wave field on the crystal surface.

  8. Opto-acoustic image fusion technology for diagnostic breast imaging in a feasibility study

    Science.gov (United States)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Ulissey, Michael; Stavros, A. T.; Oraevsky, Alexander; Lavin, Philip; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela

    2015-03-01

    Functional opto-acoustic (OA) imaging was fused with gray-scale ultrasound acquired using a specialized duplex handheld probe. Feasibility Study findings indicated the potential to more accurately characterize breast masses for cancer than conventional diagnostic ultrasound (CDU). The Feasibility Study included OA imagery of 74 breast masses that were collected using the investigational Imagio® breast imaging system. Superior specificity and equal sensitivity to CDU was demonstrated, suggesting that OA fusion imaging may potentially obviate the need for negative biopsies without missing cancers in a certain percentage of breast masses. Preliminary results from a 100 subject Pilot Study are also discussed. A larger Pivotal Study (n=2,097 subjects) is underway to confirm the Feasibility Study and Pilot Study findings.

  9. Acoustic micro-Doppler radar for human gait imaging.

    Science.gov (United States)

    Zhang, Zhaonian; Pouliquen, Philippe O; Waxman, Allen; Andreou, Andreas G

    2007-03-01

    A portable acoustic micro-Doppler radar system for the acquisition of human gait signatures in indoor and outdoor environments is reported. Signals from an accelerometer attached to the leg support the identification of the components in the measured micro-Doppler signature. The acoustic micro-Doppler system described in this paper is simpler and offers advantages over the widely used electromagnetic wave micro-Doppler radars.

  10. Acoustic imaging and mirage effects with high transmittance in a periodically perforated metal slab

    Science.gov (United States)

    Zhao, Sheng-Dong; Wang, Yue-Sheng; Zhang, Chuanzeng

    2016-11-01

    In this paper, we present a high-quality superlens to focus acoustic waves using a periodically perforated metallic structure which is made of zinc and immersed in water. By changing a geometrical parameter gradually, a kind of gradient-index phononic crystal lens is designed to attain the mirage effects. The acoustic waves can propagate along an arc-shaped trajectory which is precisely controlled by the angle and frequency of the incident waves. The negative refraction imaging effect depends delicately on the transmittance of the solid structure. The acoustic impedance matching between the solid and the liquid proposed in this article, which is determined by the effective density and group velocity of the unit-cell, is significant for overcoming the inefficiency problem of acoustic devices. This study focuses on how to obtain the high transmittance imaging and mirage effects based on the adequate material selection and geometrical design.

  11. Acoustic rhinometry (AR): An Alternative Method to Image Nasal Airway Geometry

    DEFF Research Database (Denmark)

    Straszek, Sune; Pedersen, O.F.

      ACOUSTIC RHINOMETRY (AR): AN ALTERNATIVE METHOD TO IMAGE NASAL AIRWAY GEOMETRY.  INTRODUCTION AND BACKGROUND:  In human studies the acoustic reflection technique was first applied to describe the area-distance relationship of the lower airways, but later the acoustic reflection technique appeared...... studies in laboratory animals more reliable. To accomplish this we hope to receive new input from adjacent fields of research.  [OFP1] Det er ikke nogen piezoelektrisk mikrofon. Det er en ganske billig kondensator mikrofon. [OFP2] Jeg tror du kan nøjes med små figurer1) Indfaldende og reflekteret kurve...

  12. Computer Evaluation Of Real-Time X-Ray And Acoustic Images

    Science.gov (United States)

    Jacoby, M. H.; Loe, R. S.; Dondes, P. A.

    1983-03-01

    The weakest link in the inspection process is the subjective interpretation of data by inspectors. To overcome this troublesome fact computer based analysis systems have been developed. In the field of nondestructive evaluation (NDE) there is a large class of inspections that can benefit from computer analysis. X-ray images (both film and fluoroscopic) and acoustic images lend themselves to automatic analysis as do the one-dimensional signals associated with ultrasonic, eddy current and acoustic emission testing. Computer analysis can enhance and evaluate subtle details. Flaws can be located and measured, and accept-ance decisions made by computer in a consistent and objective manner. This paper describes the interactive, computer-based analysis of real-time x-ray images and acoustic images of graphite/epoxy adhesively bonded structures.

  13. Modeling hemodynamic responses in auditory cortex at 1.5 T using variable duration imaging acoustic noise.

    Science.gov (United States)

    Hu, Shuowen; Olulade, Olumide; Castillo, Javier Gonzalez; Santos, Joseph; Kim, Sungeun; Tamer, Gregory G; Luh, Wen-Ming; Talavage, Thomas M

    2010-02-15

    A confound for functional magnetic resonance imaging (fMRI), especially for auditory studies, is the presence of imaging acoustic noise generated mainly as a byproduct of rapid gradient switching during volume acquisition and, to a lesser extent, the radiofrequency transmit. This work utilized a novel pulse sequence to present actual imaging acoustic noise for characterization of the induced hemodynamic responses and assessment of linearity in the primary auditory cortex with respect to noise duration. Results show that responses to brief duration (46 ms) imaging acoustic noise is highly nonlinear while responses to longer duration (>1 s) imaging acoustic noise becomes approximately linear, with the right primary auditory cortex exhibiting a higher degree of nonlinearity than the left for the investigated noise durations. This study also assessed the spatial extent of activation induced by imaging acoustic noise, showing that the use of modeled responses (specific to imaging acoustic noise) as the reference waveform revealed additional activations in the auditory cortex not observed with a canonical gamma variate reference waveform, suggesting an improvement in detection sensitivity for imaging acoustic noise-induced activity. Longer duration (1.5 s) imaging acoustic noise was observed to induce activity that expanded outwards from Heschl's gyrus to cover the superior temporal gyrus as well as parts of the middle temporal gyrus and insula, potentially affecting higher level acoustic processing.

  14. Characterization of acoustic streaming and heating using synchronized infrared thermography and particle image velocimetry.

    Science.gov (United States)

    Layman, Christopher N; Sou, In Mei; Bartak, Rico; Ray, Chittaranjan; Allen, John S

    2011-09-01

    Real-time measurements of acoustic streaming velocities and surface temperature fields using synchronized particle image velocimetry and infrared thermography are reported. Measurements were conducted using a 20 kHz Langevin type acoustic horn mounted vertically in a model sonochemical reactor of either degassed water or a glycerin-water mixture. These dissipative phenomena are found to be sensitive to small variations in the medium viscosity, and a correlation between the heat flux and vorticity was determined for unsteady convective heat transfer.

  15. [Specifics of perception of acoustic image of intrinsic bioelectric brain activity].

    Science.gov (United States)

    Konstantinov, K V; Leonova, M K; Miroshnikov, D B; Klimenko, V M

    2014-06-01

    We studied the particularities of perception of the acoustic image of intrinsic EEG. We found that the assessment of perception of sounds, the presentation of which was synchronized and was agreed with current bioelectric brain activity, is higher that assessment of perception of acoustic EEG image presented in recorded form. Presentation of recorded acoustic image of EEG is accompanied by increased activity of beta-band in the frontal areas, while real-time presentation of acoustic EEG image is accompanied by the increase of slow wave activity: theta- and delta-bands of occipital areas of the brain. Increase activity in theta- and delta-bands of occipital areas in sessions of hearing the acoustic image of EEG in real time depend on the baseline frequency structure of EEG and correlates with expression of alpha-, beta- and theta-bands of bioelectric brain activity in both frontal and occipital areas. We suppose that presentation of sounds synchronized and agreed with the current bioelectric activity, activated the regulatory brain structures.

  16. Seismic wave imaging in visco-acoustic media

    Institute of Scientific and Technical Information of China (English)

    WANG Huazhong; ZHANG Libin; MA Zaitian

    2004-01-01

    Realistic representation of the earth may be achieved by combining the mechanical properties of elastic solids and viscousliquids. That is to say, the amplitude will be attenuated withdifferent frequency and the phase will be changed in the seismicdata acquisition. In the seismic data processing, this effect mustbe compensated. In this paper, we put forward a visco-acoustic wavepropagator which is of better calculating stability and tolerablecalculating cost (little more than an acoustic wave propagator).The quite good compensation effect is demonstrated by thenumerical test results with synthetic seismic data and real data.

  17. Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images.

    Science.gov (United States)

    Berton, Florian; Cheriet, Farida; Miron, Marie-Claude; Laporte, Catherine

    2016-05-01

    Spinal ultrasound imaging is emerging as a low-cost, radiation-free alternative to conventional X-ray imaging for the clinical follow-up of patients with scoliosis. Currently, deformity measurement relies almost entirely on manual identification of key vertebral landmarks. However, the interpretation of vertebral ultrasound images is challenging, primarily because acoustic waves are entirely reflected by bone. To alleviate this problem, we propose an algorithm to segment these images into three regions: the spinous process, its acoustic shadow and other tissues. This method consists, first, in the extraction of several image features and the selection of the most relevant ones for the discrimination of the three regions. Then, using this set of features and linear discriminant analysis, each pixel of the image is classified as belonging to one of the three regions. Finally, the image is segmented by regularizing the pixel-wise classification results to account for some geometrical properties of vertebrae. The feature set was first validated by analyzing the classification results across a learning database. The database contained 107 vertebral ultrasound images acquired with convex and linear probes. Classification rates of 84%, 92% and 91% were achieved for the spinous process, the acoustic shadow and other tissues, respectively. Dice similarity coefficients of 0.72 and 0.88 were obtained respectively for the spinous process and acoustic shadow, confirming that the proposed method accurately segments the spinous process and its acoustic shadow in vertebral ultrasound images. Furthermore, the centroid of the automatically segmented spinous process was located at an average distance of 0.38 mm from that of the manually labeled spinous process, which is on the order of image resolution. This suggests that the proposed method is a promising tool for the measurement of the Spinous Process Angle and, more generally, for assisting ultrasound-based assessment of scoliosis

  18. Study on 3D simulation of wave fields in acoustic reflection image logging

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The borehole acoustic reflection imaging logging is a newly developed acoustic logging method that has attracted many interests. These converted and reflected waves for imaging are usually mixed up with borehole guided waves and therefore difficult to be clearly identified. To improve the downhole tool design and develop more sophisticate data processing and interpretation algorithms,studies on precisely numerical modeling of the wave fields in the acoustic reflection imaging logging are neces-sary and critical. This paper developed a parallelized scheme of 3D finite difference (3DFD) with non-uniform staggered grid and PML absorbing boundary to simulate the acoustic wave fields in isotropic and anisotropic formations. Applications of this scheme to the typical cases of isotropic and anisot-ropic formations and comparison with the results from published analytical solutions have demon-strated the validation and efficiency of the scheme. Higher accuracy and lower computation cost (3.5 times faster than the conventional schemes) have been achieved with this scheme for modeling such a complex wave fields of 60 dB dynamic range with higher frequency (10 kHz). This simulating program provides a quantitative analytical means for studying acoustic reflection imaging tool and development of the data processing and interpretation methods.

  19. Tonpilz piezoelectric transducers with acoustic matching plates for underwater color image transmission.

    Science.gov (United States)

    Inoue, T; Nada, T; Tsuchiya, T; Nakanishi, T; Miyama, T; Konno, M

    1993-01-01

    Tonpilz piezoelectric transducers with multiple acoustic matching plates are suitable for color image acoustic transmission, to achieve wideband low-ripple characteristics as well as high-efficiency high-power transmitting capability. The design method for the transducers was investigated on the basis of multiple-mode filter synthesis theory. For transducers with single, double, and triple matching plates, optimum specific acoustic impedances and lengths were calculated. Moreover, based on this design method, a 24 kHz array comprising nine identical transducers with single matching plates was built and evaluated. As a result, this array showed high-efficiency, low-ripple, and wideband characteristics. Excellent agreement between theoretical values and experimental results was obtained. A field test was carried out on color image transmission from a 3500 m sea depth, using the fabricated array, during which good color images were received.

  20. Auralisations with loudspeaker arrays from a phased combination of the image source method and acoustical radiosity

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy

    2017-01-01

    In order to create a simulation tool that is well-suited for small rooms with low diffusion and highly absorbing ceilings, a new room acoustic simulation tool has been developed that combines a phased version of the image source with acoustical radiosity and that considers the angle dependence...... impulse response, because more directional information is available with acoustical radiosity. Small rooms with absorbing surfaces are tested, because this is the room type that PARISM is particularly useful for....... with PARISM are described and compared to implementations of auralisations with another geometrical acoustic simulation tool, i.e. ODEON and the LoRA toolbox that applies Ambisonics to ODEON simulations. In opposition to the LoRA toolbox, higher order Ambisonics are also applied to the late part of the PARISM...

  1. Auralizations with loudspeaker arrays from a phased combination of the image source method and acoustical radiosity

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2017-01-01

    In order to create a simulation tool that is well-suited for small rooms with low diffusion and highly absorbing ceilings, a new room acoustic simulation tool has been developed that combines a phased version of the image source with acoustical radiosity and that considers the angle dependence...... of the PARISM impulse response, because more directional information is available with acoustical radiosity. Small rooms with absorbing surfaces are tested, because this is the room type that PARISM is particularly useful for....... with PARISM are described and compared to implementations of auralizations with another geometrical acoustic simulation tool, i.e., ODEON and the LoRA toolbox that applies Ambisonics to ODEON simulations. In opposition to the LoRA toolbox, higher order Ambisonics are also applied to the late part...

  2. Synthetic Aperture Acoustic Imaging for Roadside Detection of Solid Objects

    Science.gov (United States)

    2014-11-20

    Conference on Mechanical Vibration and Noise (VIB) . 13-AUG-12, . : , TOTAL: 3 Number of Peer-Reviewed Conference Proceeding publications (other than...targets 6 Laboratory SAA System   Figure 2.1: An illustration of acoustic wavefront reconstruction of a 0.2 m square aluminum plate located at...Equivalent: Total Number: Discipline Chelsea Good 0.25 Mechanical Engineering Nicole Bull 0.05 Mechanical Engineering 0.30 2 Sub Contractors (DD882) Names

  3. Acoustic imaging internal microstructure of a packaging material

    OpenAIRE

    Kao-Walter, Sharon; Levin, M. L.; Petronyuk, J.S.; Walter, Mats

    2008-01-01

    Microstructure of a paper-based packaging material was studied by acoustic microscopy method. The laminate structure of the packaging material contains paperboard, polymer and aluminium, which are widely used for aseptic liquid food package. The method has also been used to detect delaminations inside the material. The results show the possibility to study the micro structural features of paperboard, polymer and aluminium foil layered materials by applying the high-resolution ultrasonic acous...

  4. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties

    Science.gov (United States)

    Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Joshua Pfefer, T.

    2016-10-01

    Established medical imaging technologies such as magnetic resonance imaging and computed tomography rely on well-validated tissue-simulating phantoms for standardized testing of device image quality. The availability of high-quality phantoms for optical-acoustic diagnostics such as photoacoustic tomography (PAT) will facilitate standardization and clinical translation of these emerging approaches. Materials used in prior PAT phantoms do not provide a suitable combination of long-term stability and realistic acoustic and optical properties. Therefore, we have investigated the use of custom polyvinyl chloride plastisol (PVCP) formulations for imaging phantoms and identified a dual-plasticizer approach that provides biologically relevant ranges of relevant properties. Speed of sound and acoustic attenuation were determined over a frequency range of 4 to 9 MHz and optical absorption and scattering over a wavelength range of 400 to 1100 nm. We present characterization of several PVCP formulations, including one designed to mimic breast tissue. This material is used to construct a phantom comprised of an array of cylindrical, hemoglobin-filled inclusions for evaluation of penetration depth. Measurements with a custom near-infrared PAT imager provide quantitative and qualitative comparisons of phantom and tissue images. Results indicate that our PVCP material is uniquely suitable for PAT system image quality evaluation and may provide a practical tool for device validation and intercomparison.

  5. A Correlated Microwave-Acoustic Imaging method for early-stage cancer detection.

    Science.gov (United States)

    Gao, Fei; Zheng, Yuanjin

    2012-01-01

    Microwave-based imaging technique shows large potential in detecting early-stage cancer due to significant dielectric contrast between tumor and surrounding healthy tissue. In this paper, we present a new way named Correlated Microwave-Acoustic Imaging (CMAI) of combining two microwave-based imaging modalities: confocal microwave imaging(CMI) by detecting scattered microwave signal, and microwave-induced thermo-acoustic imaging (TAI) by detecting induced acoustic signal arising from microwave energy absorption and thermal expansion. Necessity of combining CMI and TAI is analyzed theoretically, and by applying simple algorithm to CMI and TAI separately, we propose an image correlation approach merging CMI and TAI together to achieve better performance in terms of resolution and contrast. Preliminary numerical simulation shows promising results in case of low contrast and large variation scenarios. A UWB transmitter is designed and tested for future complete system implementation. This preliminary study inspires us to develop a new medical imaging modality CMAI to achieve real-time, high resolution and high contrast simultaneously.

  6. Acoustical cross-talk in row–column addressed 2-D transducer arrays for ultrasound imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-01-01

    The acoustical cross-talk in row–column addressed 2-D transducer arrays for volumetric ultrasound imaging is investigated. Experimental results from a 2.7 MHz, λ/2-pitch capacitive micromachined ultrasonic transducer (CMUT) array with 62 rows and 62 columns are presented and analyzed...

  7. Method and system to synchronize acoustic therapy with ultrasound imaging

    Science.gov (United States)

    Owen, Neil (Inventor); Bailey, Michael R. (Inventor); Hossack, James (Inventor)

    2009-01-01

    Interference in ultrasound imaging when used in connection with high intensity focused ultrasound (HIFU) is avoided by employing a synchronization signal to control the HIFU signal. Unless the timing of the HIFU transducer is controlled, its output will substantially overwhelm the signal produced by ultrasound imaging system and obscure the image it produces. The synchronization signal employed to control the HIFU transducer is obtained without requiring modification of the ultrasound imaging system. Signals corresponding to scattered ultrasound imaging waves are collected using either the HIFU transducer or a dedicated receiver. A synchronization processor manipulates the scattered ultrasound imaging signals to achieve the synchronization signal, which is then used to control the HIFU bursts so as to substantially reduce or eliminate HIFU interference in the ultrasound image. The synchronization processor can alternatively be implemented using a computing device or an application-specific circuit.

  8. Acoustic structure quantification by using ultrasound Nakagami imaging for assessing liver fibrosis

    OpenAIRE

    Po-Hsiang Tsui; Ming-Chih Ho; Dar-In Tai; Ying-Hsiu Lin; Chiao-Yin Wang; Hsiang-Yang Ma

    2016-01-01

    Acoustic structure quantification (ASQ) is a recently developed technique widely used for detecting liver fibrosis. Ultrasound Nakagami parametric imaging based on the Nakagami distribution has been widely used to model echo amplitude distribution for tissue characterization. We explored the feasibility of using ultrasound Nakagami imaging as a model-based ASQ technique for assessing liver fibrosis. Standard ultrasound examinations were performed on 19 healthy volunteers and 91 patients with ...

  9. 77 FR 321 - Section 4(f) Policy Paper

    Science.gov (United States)

    2012-01-04

    ... Federal Highway Administration Section 4(f) Policy Paper AGENCY: Federal Highway Administration (FHWA... draft Section 4(f) Policy Paper that will provide guidance on the procedures the FHWA will follow when... practicable. Background A copy of the proposed Section 4(f) Policy Paper is available for download and public...

  10. A synchronized particle image velocimetry and infrared thermography technique applied to an acoustic streaming flow

    Energy Technology Data Exchange (ETDEWEB)

    Sou, In Mei; Ray, Chittaranjan [University of Hawaii at Manoa, Department of Civil and Environmental Engineering, Honolulu, HI (United States); Allen, John S.; Layman, Christopher N. [University of Hawaii at Manoa, Department of Mechanical Engineering, Honolulu, HI (United States)

    2011-11-15

    Subsurface coherent structures and surface temperatures are investigated using simultaneous measurements of particle image velocimetry (PIV) and infrared (IR) thermography. Results for coherent structures from acoustic streaming and associated heating transfer in a rectangular tank with an acoustic horn mounted horizontally at the sidewall are presented. An observed vortex pair develops and propagates in the direction along the centerline of the horn. From the PIV velocity field data, distinct kinematic regions are found with the Lagrangian coherent structure (LCS) method. The implications of this analysis with respect to heat transfer and related sonochemical applications are discussed. (orig.)

  11. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.

    Science.gov (United States)

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J R; Krenner, Hubert J; Wixforth, Achim; Salditt, Tim

    2014-10-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length).

  12. Integrating Acoustic Imaging of Flow Regimes With Bathymetry: A Case Study, Main Endeavor Field

    Science.gov (United States)

    Bemis, K. G.; Rona, P. A.; Jackson, D. R.; Jones, C. D.

    2003-12-01

    A unified view of the seafloor and the hydrothermal flow regimes (plumes and diffuse flow) is constructed for three major vent clusters in the Main Endeavour Field (e.g., Grotto, S&M, and Salut) of the Endeavour Segment, Juan de Fuca Ridge. The Main Endeavour Field is one of RIDGE 2000's Integrated Study Sites. A variety of visualization techniques are used to reconstruct the plumes (3D) and the diffuse flow field (2D) based on our acoustic imaging data set (July 2000 cruise). Plumes are identified as volumes of high backscatter intensity (indicating high particulate content or sharp density contrasts due to temperature variations) that remained high intensity when successive acoustic pings were subtracted (indicating that the acoustic targets producing the backscatter were in motion). Areas of diffuse flow are detected using our acoustic scintillation technique (AST). For the Grotto vent region (where a new Doppler technique was used to estimate vertical velocities in the plume), we estimate the areal partitioning between black smoker and diffuse flow in terms of volume fluxes. The volumetric and areal regions, where plume and diffuse flow were imaged, are registered over the bathymetry and compared to geologic maps of each region. The resulting images provide a unified view of the seafloor by integrating hydrothermal flow with geology.

  13. Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging

    Science.gov (United States)

    Lam, Kwok Ho; Li, Ying; Li, Yang; Lim, Hae Gyun; Zhou, Qifa; Shung, Koping Kirk

    2016-11-01

    Non-contact precise manipulation of single microparticles, cells, and organisms has attracted considerable interest in biophysics and biomedical engineering. Similar to optical tweezers, acoustic tweezers have been proposed to be capable of manipulating microparticles and even cells. Although there have been concerted efforts to develop tools for non-contact manipulation, no alternative to complex, unifunctional tweezer has yet been found. Here we report a simple, low-cost, multifunctional single beam acoustic tweezer (SBAT) that is capable of manipulating an individual micrometer scale non-spherical cell at Rayleigh regime and even a single millimeter scale organism at Mie regime, and imaging tissue as well. We experimentally demonstrate that the SBAT with an ultralow f-number (f# = focal length/aperture size) could manipulate an individual red blood cell and a single 1.6 mm-diameter fertilized Zebrafish egg, respectively. Besides, in vitro rat aorta images were collected successfully at dynamic foci in which the lumen and the outer surface of the aorta could be clearly seen. With the ultralow f-number, the SBAT offers the combination of large acoustic radiation force and narrow beam width, leading to strong trapping and high-resolution imaging capabilities. These attributes enable the feasibility of using a single acoustic device to perform non-invasive multi-functions simultaneously for biomedical and biophysical applications.

  14. Investigation of an acoustical holography system for real-time imaging

    Science.gov (United States)

    Fecht, Barbara A.; Andre, Michael P.; Garlick, George F.; Shelby, Ronald L.; Shelby, Jerod O.; Lehman, Constance D.

    1998-07-01

    A new prototype imaging system based on ultrasound transmission through the object of interest -- acoustical holography -- was developed which incorporates significant improvements in acoustical and optical design. This system is being evaluated for potential clinical application in the musculoskeletal system, interventional radiology, pediatrics, monitoring of tumor ablation, vascular imaging and breast imaging. System limiting resolution was estimated using a line-pair target with decreasing line thickness and equal separation. For a swept frequency beam from 2.6 - 3.0 MHz, the minimum resolution was 0.5 lp/mm. Apatite crystals were suspended in castor oil to approximate breast microcalcifications. Crystals from 0.425 - 1.18 mm in diameter were well resolved in the acoustic zoom mode. Needle visibility was examined with both a 14-gauge biopsy needle and a 0.6 mm needle. The needle tip was clearly visible throughout the dynamic imaging sequence as it was slowly inserted into a RMI tissue-equivalent breast biopsy phantom. A selection of human images was acquired in several volunteers: a 25 year-old female volunteer with normal breast tissue, a lateral view of the elbow joint showing muscle fascia and tendon insertions, and the superficial vessels in the forearm. Real-time video images of these studies will be presented. In all of these studies, conventional sonography was used for comparison. These preliminary investigations with the new prototype acoustical holography system showed favorable results in comparison to state-of-the-art pulse-echo ultrasound and demonstrate it to be suitable for further clinical study. The new patient interfaces will facilitate orthopedic soft tissue evaluation, study of superficial vascular structures and potentially breast imaging.

  15. Current Density Imaging through Acoustically Encoded Magnetometry: A Theoretical Exploration

    CERN Document Server

    Sheltraw, Daniel J

    2014-01-01

    The problem of determining a current density confined to a volume from measurements of the magnetic field it produces exterior to that volume is known to have non-unique solutions. To uniquely determine the current density, or the non-silent components of it, additional spatial encoding of the electric current is needed. In biological systems such as the brain and heart, which generate electric current associated with normal function, a reliable means of generating such additional encoding, on a spatial and temporal scale meaningful to the study of such systems, would be a boon for research. This paper explores a speculative method by which the required additional encoding might be accomplished, on the time scale associated with the propagation of sound across the volume of interest, by means of the application of a radially encoding pulsed acoustic spherical wave.

  16. Phase Time and Envelope Time in Time-Distance Analysis and Acoustic Imaging

    Science.gov (United States)

    Chou, Dean-Yi; Duvall, Thomas L.; Sun, Ming-Tsung; Chang, Hsiang-Kuang; Jimenez, Antonio; Rabello-Soares, Maria Cristina; Ai, Guoxiang; Wang, Gwo-Ping; Goode Philip; Marquette, William; Ehgamberdiev, Shuhrat; Landenkov, Oleg

    1999-01-01

    Time-distance analysis and acoustic imaging are two related techniques to probe the local properties of solar interior. In this study, we discuss the relation of phase time and envelope time between the two techniques. The location of the envelope peak of the cross correlation function in time-distance analysis is identified as the travel time of the wave packet formed by modes with the same w/l. The phase time of the cross correlation function provides information of the phase change accumulated along the wave path, including the phase change at the boundaries of the mode cavity. The acoustic signals constructed with the technique of acoustic imaging contain both phase and intensity information. The phase of constructed signals can be studied by computing the cross correlation function between time series constructed with ingoing and outgoing waves. In this study, we use the data taken with the Taiwan Oscillation Network (TON) instrument and the Michelson Doppler Imager (MDI) instrument. The analysis is carried out for the quiet Sun. We use the relation of envelope time versus distance measured in time-distance analyses to construct the acoustic signals in acoustic imaging analyses. The phase time of the cross correlation function of constructed ingoing and outgoing time series is twice the difference between the phase time and envelope time in time-distance analyses as predicted. The envelope peak of the cross correlation function between constructed ingoing and outgoing time series is located at zero time as predicted for results of one-bounce at 3 mHz for all four data sets and two-bounce at 3 mHz for two TON data sets. But it is different from zero for other cases. The cause of the deviation of the envelope peak from zero is not known.

  17. Comparing a phased combination of acoustical radiosity and the image source method with other simulation tools

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2015-01-01

    A phased combination of acoustical radiosity and the image source method (PARISM) has been developed in order to be able to model both specular and diffuse reflections with angle-dependent and complex-valued acoustical descriptions of the surfaces. It is of great interest to model both specular...... and diffuse reflections when simulating the acoustics of small rooms with non-diffuse sound fields, since scattering from walls add to the diffuseness in the room. This room type is often seen in class rooms and offices, as they are often small rectangular rooms with most of the absorption placed...... on the ceiling. Here, PARISM is used for comparisons with other simulation tools and measurements. An empty, rectangular room with a suspended absorbing ceiling is used for the comparisons. It was found that including the phase information in simulations increases the spatial standard deviation, even if only...

  18. Partial-aperture array imaging in acoustic waveguides

    Science.gov (United States)

    Tsogka, Chrysoula; Mitsoudis, Dimitrios A.; Papadimitropoulos, Symeon

    2016-12-01

    We consider the problem of imaging extended reflectors in waveguides using partial-aperture array, i.e. an array that does not span the whole depth of the waveguide. For this imaging, we employ a method that back-propagates a weighted modal projection of the usual array response matrix. The challenge in this setup is to correctly define this projection matrix in order to maintain good energy concentration properties for the imaging method, which were obtained previously by Tsogka et al (2013 SIAM J. Imaging Sci. 6 2714-39) for the full-aperture case. In this paper we propose a way of achieving this and study the properties of the resulting imaging method.

  19. Terahertz Spectroscopy and Brewster Angle Reflection Imaging of Acoustic Tiles

    Directory of Open Access Journals (Sweden)

    Patrick Kilcullen

    2017-01-01

    Full Text Available A Brewster angle reflection imaging apparatus is demonstrated which is capable of detecting hidden water-filled voids in a rubber tile sample. This imaging application simulates a real-world hull inspection problem for Royal Canadian Navy Victoria-class submarines. The tile samples represent a challenging imaging application due to their large refractive index and absorption coefficient. With a rubber transmission window at approximately 80 GHz, terahertz (THz sensing methods have shown promise for probing these structures in the laboratory. Operating at Brewster’s angle allows for the typically strong front surface reflection to be minimized while also conveniently making the method insensitive to air-filled voids. Using a broadband THz time-domain waveform imaging system (THz-TDS, we demonstrate satisfactory imaging and detection of water-filled voids without complicated signal processing. Optical properties of the tile samples at low THz frequencies are also reported.

  20. Analysis list: E4f1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available E4f1 Embryonic fibroblast + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/E4f1....1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/E4f1.5.tsv http://dbarchive.biosciencedb...c.jp/kyushu-u/mm9/target/E4f1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/E4f1.Embryonic_fibr

  1. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    Science.gov (United States)

    Xiong, Jichuan; Xu, Xiaodong; Glorieux, Christ; Matsuda, Osamu; Cheng, Liping

    2015-05-01

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  2. Imaging of transient surface acoustic waves by full-field photorefractive interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Jichuan [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China); School of Electronic and Optical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094 (China); Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Xu, Xiaodong, E-mail: xdxu@nju.edu.cn, E-mail: christ.glorieux@fys.kuleuven.be [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China); Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Glorieux, Christ, E-mail: xdxu@nju.edu.cn, E-mail: christ.glorieux@fys.kuleuven.be [Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Heverlee (Belgium); Matsuda, Osamu [Division of Applied Physics, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Cheng, Liping [Key Laboratory of Modern Acoustics, Nanjing University, Nanjing 210093 (China)

    2015-05-15

    A stroboscopic full-field imaging technique based on photorefractive interferometry for the visualization of rapidly changing surface displacement fields by using of a standard charge-coupled device (CCD) camera is presented. The photorefractive buildup of the space charge field during and after probe laser pulses is simulated numerically. The resulting anisotropic diffraction upon the refractive index grating and the interference between the polarization-rotated diffracted reference beam and the transmitted signal beam are modeled theoretically. The method is experimentally demonstrated by full-field imaging of the propagation of photoacoustically generated surface acoustic waves with a temporal resolution of nanoseconds. The surface acoustic wave propagation in a 23 mm × 17 mm area on an aluminum plate was visualized with 520 × 696 pixels of the CCD sensor, yielding a spatial resolution of 33 μm. The short pulse duration (8 ns) of the probe laser yields the capability of imaging SAWs with frequencies up to 60 MHz.

  3. Imaging and analyzing the elasticity of vascular smooth muscle cells by atomic force acoustic microscope.

    Science.gov (United States)

    Zhang, Bo; Cheng, Qian; Chen, Ming; Yao, Wengang; Qian, Menglu; Hu, Bing

    2012-08-01

    Vascular smooth muscle cells (VSMCs) play an important role in the good performance of the vasculature. To study the surface, intracellular structure and elasticity of VSMCs, atomic force acoustic microscope (AFAM) was used for imaging VSMCs from A7r5 rat aorta arteries. The topography images of VSMCs were obtained in contact mode and the acoustic images were obtained by AFAM in sample vibration mode. Then, the force curve measurement derived using Young's modulus of the interested areas was used for evaluating elasticity properties. The acoustic images were found in higher resolution with more information than the topography images. The force curves showed the difference in Young's modulus of the different parts of VSMC. These findings demonstrate that AFAM is useful for displaying the surface, structure and elasticity property of VSMCs clearly, with short scanning time, negligible harm or damage to cell and nanometer-level resolution. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. Synchronized imaging and acoustic analysis of the upper airway in patients with sleep-disordered breathing.

    Science.gov (United States)

    Chang, Yi-Chung; Huon, Leh-Kiong; Pham, Van-Truong; Chen, Yunn-Jy; Jiang, Sun-Fen; Shih, Tiffany Ting-Fang; Tran, Thi-Thao; Wang, Yung-Hung; Lin, Chen; Tsao, Jenho; Lo, Men-Tzung; Wang, Pa-Chun

    2014-12-01

    Progressive narrowing of the upper airway increases airflow resistance and can produce snoring sounds and apnea/hypopnea events associated with sleep-disordered breathing due to airway collapse. Recent studies have shown that acoustic properties during snoring can be altered with anatomic changes at the site of obstruction. To evaluate the instantaneous association between acoustic features of snoring and the anatomic sites of obstruction, a novel method was developed and applied in nine patients to extract the snoring sounds during sleep while performing dynamic magnetic resonance imaging (MRI). The degree of airway narrowing during the snoring events was then quantified by the collapse index (ratio of airway diameter preceding and during the events) and correlated with the synchronized acoustic features. A total of 201 snoring events (102 pure retropalatal and 99 combined retropalatal and retroglossal events) were recorded, and the collapse index as well as the soft tissue vibration time were significantly different between pure retropalatal (collapse index, 2 ± 11%; vibration time, 0.2 ± 0.3 s) and combined (retropalatal and retroglossal) snores (collapse index, 13 ± 7% [P ≤ 0.0001]; vibration time, 1.2 ± 0.7 s [P ≤ 0.0001]). The synchronized dynamic MRI and acoustic recordings successfully characterized the sites of obstruction and established the dynamic relationship between the anatomic site of obstruction and snoring acoustics.

  5. Synthetic aperture acoustic imaging of canonical targets with a 2-15 kHz linear FM chirp

    Science.gov (United States)

    Vignola, Joseph F.; Judge, John A.; Good, Chelsea E.; Bishop, Steven S.; Gugino, Peter M.; Soumekh, Mehrdad

    2011-06-01

    Synthetic aperture image reconstruction applied to outdoor acoustic recordings is presented. Acoustic imaging is an alternate method having several military relevant advantages such as being immune to RF jamming, superior spatial resolution, capable of standoff side and forward-looking scanning, and relatively low cost, weight and size when compared to 0.5 - 3 GHz ground penetrating radar technologies. Synthetic aperture acoustic imaging is similar to synthetic aperture radar, but more akin to synthetic aperture sonar technologies owing to the nature of longitudinal or compressive wave propagation in the surrounding acoustic medium. The system's transceiver is a quasi mono-static microphone and audio speaker pair mounted on a rail 5meters in length. Received data sampling rate is 80 kHz with a 2- 15 kHz Linear Frequency Modulated (LFM) chirp, with a pulse repetition frequency (PRF) of 10 Hz and an inter-pulse period (IPP) of 50 milliseconds. Targets are positioned within the acoustic scene at slant range of two to ten meters on grass, dirt or gravel surfaces, and with and without intervening metallic chain link fencing. Acoustic image reconstruction results in means for literal interpretation and quantifiable analyses. A rudimentary technique characterizes acoustic scatter at the ground surfaces. Targets within the acoustic scene are first digitally spotlighted and further processed, providing frequency and aspect angle dependent signature information.

  6. Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pinton, Gianmarco [Joint Department of Biomedical Engineering, University of North Carolina - North Carolina State University, 348 Taylor Hall, Chapel Hill, NC 27599, USA gfp@unc.edu (United States)

    2015-10-28

    Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost. Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally challenging it

  7. Application of mathematical modelling methods for acoustic images reconstruction

    Science.gov (United States)

    Bolotina, I.; Kazazaeva, A.; Kvasnikov, K.; Kazazaev, A.

    2016-04-01

    The article considers the reconstruction of images by Synthetic Aperture Focusing Technique (SAFT). The work compares additive and multiplicative methods for processing signals received from antenna array. We have proven that the multiplicative method gives a better resolution. The study includes the estimation of beam trajectories for antenna arrays using analytical and numerical methods. We have shown that the analytical estimation method allows decreasing the image reconstruction time in case of linear antenna array implementation.

  8. Imaging textural variation in the acoustoelastic coefficient of aluminum using surface acoustic waves.

    Science.gov (United States)

    Ellwood, R; Stratoudaki, T; Sharples, S D; Clark, M; Somekh, M G

    2015-11-01

    Much interest has arisen in nonlinear acoustic techniques because of their reported sensitivity to variations in residual stress, fatigue life, and creep damage when compared to traditional linear ultrasonic techniques. However, there is also evidence that the nonlinear acoustic properties are also sensitive to material microstructure. As many industrially relevant materials have a polycrystalline structure, this could potentially complicate the monitoring of material processes when using nonlinear acoustics. Variations in the nonlinear acoustoelastic coefficient on the same length scale as the microstructure of a polycrystalline sample of aluminum are investigated in this paper. This is achieved by the development of a measurement protocol that allows imaging of the acoustoelastic response of a material across a samples surface at the same time as imaging the microstructure. The development, validation, and limitations of this technique are discussed. The nonlinear acoustic response is found to vary spatially by a large factor (>20) between different grains. A relationship is observed when the spatial variation of the acoustoelastic coefficient is compared to the variation in material microstructure.

  9. Acoustic structure quantification by using ultrasound Nakagami imaging for assessing liver fibrosis.

    Science.gov (United States)

    Tsui, Po-Hsiang; Ho, Ming-Chih; Tai, Dar-In; Lin, Ying-Hsiu; Wang, Chiao-Yin; Ma, Hsiang-Yang

    2016-09-08

    Acoustic structure quantification (ASQ) is a recently developed technique widely used for detecting liver fibrosis. Ultrasound Nakagami parametric imaging based on the Nakagami distribution has been widely used to model echo amplitude distribution for tissue characterization. We explored the feasibility of using ultrasound Nakagami imaging as a model-based ASQ technique for assessing liver fibrosis. Standard ultrasound examinations were performed on 19 healthy volunteers and 91 patients with chronic hepatitis B and C (n = 110). Liver biopsy and ultrasound Nakagami imaging analysis were conducted to compare the METAVIR score and Nakagami parameter. The diagnostic value of ultrasound Nakagami imaging was evaluated using receiver operating characteristic (ROC) curves. The Nakagami parameter obtained through ultrasound Nakagami imaging decreased with an increase in the METAVIR score (p Nakagami imaging is a model-based ASQ technique that can be beneficial for the clinical diagnosis of early liver fibrosis.

  10. Near-Field Imaging with Sound: An Acoustic STM Model

    Science.gov (United States)

    Euler, Manfred

    2012-01-01

    The invention of scanning tunneling microscopy (STM) 30 years ago opened up a visual window to the nano-world and sparked off a bunch of new methods for investigating and controlling matter and its transformations at the atomic and molecular level. However, an adequate theoretical understanding of the method is demanding; STM images can be…

  11. Near-Field Imaging with Sound: An Acoustic STM Model

    Science.gov (United States)

    Euler, Manfred

    2012-01-01

    The invention of scanning tunneling microscopy (STM) 30 years ago opened up a visual window to the nano-world and sparked off a bunch of new methods for investigating and controlling matter and its transformations at the atomic and molecular level. However, an adequate theoretical understanding of the method is demanding; STM images can be…

  12. Polymer Optical Fibre Sensors for Endoscopic Opto-Acoustic Imaging

    DEFF Research Database (Denmark)

    Broadway, Christian; Gallego, Daniel; Woyessa, Getinet;

    2015-01-01

    in existing publications. A great advantage can be obtained for endoscopy due to a small size and array potential to provide discrete imaging speed improvements. Optical fibre exhibits numerous advantages over conventional piezo-electric transducers, such as immunity from electromagnetic interference...

  13. High-resolution acoustic imaging at low frequencies using 3D-printed metamaterials

    Directory of Open Access Journals (Sweden)

    S. Laureti

    2016-12-01

    Full Text Available An acoustic metamaterial has been constructed using 3D printing. It contained an array of air-filled channels, whose size and shape could be varied within the design and manufacture process. In this paper we analyze both numerically and experimentally the properties of this polymer metamaterial structure, and demonstrate its use for the imaging of a sample with sub-wavelength dimensions in the audible frequency range.

  14. Acoustic radiation force impulse imaging for evaluation of renal parenchyma elasticity in diabetic nephropathy.

    Science.gov (United States)

    Goya, Cemil; Kilinc, Faruk; Hamidi, Cihad; Yavuz, Alpaslan; Yildirim, Yasar; Cetincakmak, Mehmet Guli; Hattapoglu, Salih

    2015-02-01

    OBJECTIVE. The goal of this study is to evaluate the changes in the elasticity of the renal parenchyma in diabetic nephropathy using acoustic radiation force impulse imaging. SUBJECTS AND METHODS. The study included 281 healthy volunteers and 114 patients with diabetic nephropathy. In healthy volunteers, the kidney elasticity was assessed quantitatively by measuring the shear-wave velocity using acoustic radiation force impulse imaging based on age, body mass index, and sex. The changes in the renal elasticity were compared between the different stages of diabetic nephropathy and the healthy control group. RESULTS. In healthy volunteers, there was a statistically significant correlation between the shear-wave velocity values and age and sex. The shear-wave velocity values for the kidneys were 2.87, 3.14, 2.95, 2.68, and 2.55 m/s in patients with stage 1, 2, 3, 4, and 5 diabetic nephropathy, respectively, compared with 2.35 m/s for healthy control subjects. Acoustic radiation force impulse imaging was able to distinguish between the different diabetic nephropathy stages (except for stage 5) in the kidneys. The threshold value for predicting diabetic nephropathy was 2.43 m/s (sensitivity, 84.1%; specificity, 67.3%; positive predictive value, 93.1%; negative predictive value 50.8%; accuracy, 72.1%; positive likelihood ratio, 2.5; and negative likelihood ratio, 0.23). CONCLUSION. Acoustic radiation force impulse imaging could be used for the evaluation of the renal elasticity changes that are due to secondary structural and functional changes in diabetic nephropathy.

  15. High-resolution acoustic imaging at low frequencies using 3D-printed metamaterials

    Science.gov (United States)

    Laureti, S.; Hutchins, D. A.; Davis, L. A. J.; Leigh, S. J.; Ricci, M.

    2016-12-01

    An acoustic metamaterial has been constructed using 3D printing. It contained an array of air-filled channels, whose size and shape could be varied within the design and manufacture process. In this paper we analyze both numerically and experimentally the properties of this polymer metamaterial structure, and demonstrate its use for the imaging of a sample with sub-wavelength dimensions in the audible frequency range.

  16. Acoustic output of multi-line transmit beamforming for fast cardiac imaging: a simulation study.

    Science.gov (United States)

    Santos, Pedro; Tong, Ling; Ortega, Alejandra; Løvstakken, Lasse; Samset, Eigil; D'hooge, Jan

    2015-07-01

    Achieving higher frame rates in cardiac ultrasound could unveil short-lived myocardial events and lead to new insights on cardiac function. Multi-line transmit (MLT) beamforming (i.e., simultaneously transmitting multiple focused beams) is a potential approach to achieve this. However, two challenges come with it: first, it leads to cross-talk between the MLT beams, appearing as imaging artifacts, and second, it presents acoustic summation in the near field, where multiple MLT beams overlap. Although several studies have focused on the former, no studies have looked into the implications of the latter on acoustic safety. In this paper, the acoustic field of 4-MLT was simulated and compared with single-line transmit (SLT). The findings suggest that standard MLT does present potential concerns. Compared with SLT, it shows a 2-fold increase in mechanical index (MI) (from 1.0 to 2.3), a 6-fold increase in spatial-peak pulse-average intensity (I(sppa)) (from 99 to 576 W∙cm(-2)) and a 12-fold increase in spatial-peak temporalaverage intensity (I(spta)) (from 119 to 1407 mW∙cm(-2)). Subsequently, modifications of the transmit pulse and delay line of MLT were studied. These modifications allowed for a change in the spatio-temporal distribution of the acoustic output, thereby significantly decreasing the safety indices (MI = 1.2, I(sppa) = 92 W∙cm(-2) and I(spta) = 366 mW∙cm(-2)). Accordingly, they help mitigate the concerns around MLT, reducing potential tradeoffs between acoustic safety and image quality.

  17. Underwater Acoustic Matched Field Imaging Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Huichen Yan

    2015-10-01

    Full Text Available Matched field processing (MFP is an effective method for underwater target imaging and localizing, but its performance is not guaranteed due to the nonuniqueness and instability problems caused by the underdetermined essence of MFP. By exploiting the sparsity of the targets in an imaging area, this paper proposes a compressive sensing MFP (CS-MFP model from wave propagation theory by using randomly deployed sensors. In addition, the model’s recovery performance is investigated by exploring the lower bounds of the coherence parameter of the CS dictionary. Furthermore, this paper analyzes the robustness of CS-MFP with respect to the displacement of the sensors. Subsequently, a coherence-excluding coherence optimized orthogonal matching pursuit (CCOOMP algorithm is proposed to overcome the high coherent dictionary problem in special cases. Finally, some numerical experiments are provided to demonstrate the effectiveness of the proposed CS-MFP method.

  18. Finite element modelling for the investigation of edge effect in acoustic micro imaging of microelectronic packages

    Science.gov (United States)

    Shen Lee, Chean; Zhang, Guang-Ming; Harvey, David M.; Ma, Hong-Wei; Braden, Derek R.

    2016-02-01

    In acoustic micro imaging of microelectronic packages, edge effect is often presented as artifacts of C-scan images, which may potentially obscure the detection of defects such as cracks and voids in the solder joints. The cause of edge effect is debatable. In this paper, a 2D finite element model is developed on the basis of acoustic micro imaging of a flip-chip package using a 230 MHz focused transducer to investigate acoustic propagation inside the package in attempt to elucidate the fundamental mechanism that causes the edge effect. A virtual transducer is designed in the finite element model to reduce the coupling fluid domain, and its performance is characterised against the physical transducer specification. The numerical results showed that the under bump metallization (UBM) structure inside the package has a significant impact on the edge effect. Simulated wavefields also showed that the edge effect is mainly attributed to the horizontal scatter, which is observed in the interface of silicon die-to-the outer radius of solder bump. The horizontal scatter occurs even for a flip-chip package without the UBM structure.

  19. A magnetic resonance imaging study on the articulatory and acoustic speech parameters of Malay vowels.

    Science.gov (United States)

    Zourmand, Alireza; Mirhassani, Seyed Mostafa; Ting, Hua-Nong; Bux, Shaik Ismail; Ng, Kwan Hoong; Bilgen, Mehmet; Jalaludin, Mohd Amin

    2014-07-25

    The phonetic properties of six Malay vowels are investigated using magnetic resonance imaging (MRI) to visualize the vocal tract in order to obtain dynamic articulatory parameters during speech production. To resolve image blurring due to the tongue movement during the scanning process, a method based on active contour extraction is used to track tongue contours. The proposed method efficiently tracks tongue contours despite the partial blurring of MRI images. Consequently, the articulatory parameters that are effectively measured as tongue movement is observed, and the specific shape of the tongue and its position for all six uttered Malay vowels are determined.Speech rehabilitation procedure demands some kind of visual perceivable prototype of speech articulation. To investigate the validity of the measured articulatory parameters based on acoustic theory of speech production, an acoustic analysis based on the uttered vowels by subjects has been performed. As the acoustic speech and articulatory parameters of uttered speech were examined, a correlation between formant frequencies and articulatory parameters was observed. The experiments reported a positive correlation between the constriction location of the tongue body and the first formant frequency, as well as a negative correlation between the constriction location of the tongue tip and the second formant frequency. The results demonstrate that the proposed method is an effective tool for the dynamic study of speech production.

  20. Military jet noise source imaging using multisource statistically optimized near-field acoustical holography.

    Science.gov (United States)

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; McKinley, Richard L; James, Michael M

    2016-04-01

    The identification of acoustic sources is critical to targeted noise reduction efforts for jets on high-performance tactical aircraft. This paper describes the imaging of acoustic sources from a tactical jet using near-field acoustical holography techniques. The measurement consists of a series of scans over the hologram with a dense microphone array. Partial field decomposition methods are performed to generate coherent holograms. Numerical extrapolation of data beyond the measurement aperture mitigates artifacts near the aperture edges. A multisource equivalent wave model is used that includes the effects of the ground reflection on the measurement. Multisource statistically optimized near-field acoustical holography (M-SONAH) is used to reconstruct apparent source distributions between 20 and 1250 Hz at four engine powers. It is shown that M-SONAH produces accurate field reconstructions for both inward and outward propagation in the region spanned by the physical hologram measurement. Reconstructions across the set of engine powers and frequencies suggests that directivity depends mainly on estimated source location; sources farther downstream radiate at a higher angle relative to the inlet axis. At some frequencies and engine powers, reconstructed fields exhibit multiple radiation lobes originating from overlapped source regions, which is a phenomenon relatively recently reported for full-scale jets.

  1. Acoustic property reconstruction of a pygmy sperm whale (Kogia breviceps) forehead based on computed tomography imaging.

    Science.gov (United States)

    Song, Zhongchang; Xu, Xiao; Dong, Jianchen; Xing, Luru; Zhang, Meng; Liu, Xuecheng; Zhang, Yu; Li, Songhai; Berggren, Per

    2015-11-01

    Computed tomography (CT) imaging and sound experimental measurements were used to reconstruct the acoustic properties (density, velocity, and impedance) of the forehead tissues of a deceased pygmy sperm whale (Kogia breviceps). The forehead was segmented along the body axis and sectioned into cross section slices, which were further cut into sample pieces for measurements. Hounsfield units (HUs) of the corresponding measured pieces were obtained from CT scans, and regression analyses were conducted to investigate the linear relationships between the tissues' HUs and velocity, and HUs and density. The distributions of the acoustic properties of the head at axial, coronal, and sagittal cross sections were reconstructed, revealing that the nasal passage system was asymmetric and the cornucopia-shaped spermaceti organ was in the right nasal passage, surrounded by tissues and airsacs. A distinct dense theca was discovered in the posterior-dorsal area of the melon, which was characterized by low velocity in the inner core and high velocity in the outer region. Statistical analyses revealed significant differences in density, velocity, and acoustic impedance between all four structures, melon, spermaceti organ, muscle, and connective tissue (p acoustic properties of the forehead tissues provide important information for understanding the species' bioacoustic characteristics.

  2. Estimation of fracture roughness from the acoustic borehole televiewer image

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Dae Soek; Kim, Chun Soo; Kim, Kyung Soo; Park, Byung Yoon; Koh, Yong Kweon

    2000-12-01

    Estimation of fracture roughness - as one of the basic hydraulic fracture parameters - is very important in assessing ground water flow described by using discrete fracture network modeling. Former manual estimation of the roughness for each fracture surface of drill cores is above all a tedious, time-consuming work and will often cause some ambiguities of roughness interpretation partly due to the subjective judgements of observers, and partly due to the measuring procedure itself. However, recently, indebt to the highly reliable Televiewer data for the fracture discrimination, it has led to a guess to develop a relationship between the traditional roughness method based on a linear profiles and the method from the Televiewer image based on a ellipsoidal profile. Hence, the aim of this work is to develop an automatic evaluation algorithm for measuring the roughness from the Televiewer images. A highly reliable software named 'FRAFA' has been developed and realized to the extent that its utility merits. In the developing procedure, various problems - such as the examination of a new base line(ellipsoidal) for measuring the unevenness of fracture, the elimination of overlapping fracture signatures or noise, the wavelet estimation according to the type of fractures and the digitalization of roughness etc. - were considered. With these consideration in mind, the newly devised algorithm for the estimation of roughness curves showed a great potential not only for avoiding ambiguities of roughness interpretation but also for the judgement of roughness classification.

  3. Tunable far-field acoustic imaging by two-dimensional sonic crystal with concave incident surface

    Science.gov (United States)

    Shen, Feng-Fu; Lu, Dan-Feng; Zhu, Hong-Wei; Ji, Chang-Ying; Shi, Qing-Fan

    2017-01-01

    An additional concave incident surface comprised of two-dimensional (2D) sonic crystals (SCs) is employed to tune the acoustic image in the far-field region. The tunability is realized through changing the curvature of the concave surface. To explain the tuning mechanism, a simple ray-trace analysis is demonstrated based on the wave-beam negative refractive law. Then, a numerical confirmation is carried out. Results show that both the position and the intensity of the image can be tuned by the introduced concave surface.

  4. A comparison of traffic estimates of nocturnal flying animals using radar, thermal imaging, and acoustic recording.

    Science.gov (United States)

    Horton, Kyle G; Shriver, W Gregory; Buler, Jeffrey J

    2015-03-01

    There are several remote-sensing tools readily available for the study of nocturnally flying animals (e.g., migrating birds), each possessing unique measurement biases. We used three tools (weather surveillance radar, thermal infrared camera, and acoustic recorder) to measure temporal and spatial patterns of nocturnal traffic estimates of flying animals during the spring and fall of 2011 and 2012 in Lewes, Delaware, USA. Our objective was to compare measures among different technologies to better understand their animal detection biases. For radar and thermal imaging, the greatest observed traffic rate tended to occur at, or shortly after, evening twilight, whereas for the acoustic recorder, peak bird flight-calling activity was observed just prior to morning twilight. Comparing traffic rates during the night for all seasons, we found that mean nightly correlations between acoustics and the other two tools were weakly correlated (thermal infrared camera and acoustics, r = 0.004 ± 0.04 SE, n = 100 nights; radar and acoustics, r = 0.14 ± 0.04 SE, n = 101 nights), but highly variable on an individual nightly basis (range = -0.84 to 0.92, range = -0.73 to 0.94). The mean nightly correlations between traffic rates estimated by radar and by thermal infrared camera during the night were more strongly positively correlated (r = 0.39 ± 0.04 SE, n = 125 nights), but also were highly variable for individual nights (range = -0.76 to 0.98). Through comparison with radar data among numerous height intervals, we determined that flying animal height above the ground influenced thermal imaging positively and flight call detections negatively. Moreover, thermal imaging detections decreased with the presence of cloud cover and increased with mean ground flight speed of animals, whereas acoustic detections showed no relationship with cloud cover presence but did decrease with increased flight speed. We found sampling methods to be positively correlated when comparing mean nightly

  5. Polymer Optical Fibre Sensors for Endoscopic Opto-Acoustic Imaging

    DEFF Research Database (Denmark)

    Broadway, Christian; Gallego, Daniel; Woyessa, Getinet

    2015-01-01

    is the physical size of the device, allowing compatibility with current technology, while governing flexibility of the distal end of the endoscope based on the needs of the sensor. Polymer optical fibre (POF) presents a novel approach for endoscopic applications and has been positively discussed and compared...... in existing publications. A great advantage can be obtained for endoscopy due to a small size and array potential to provide discrete imaging speed improvements. Optical fibre exhibits numerous advantages over conventional piezo-electric transducers, such as immunity from electromagnetic interference...... and a higher resolution at small sizes. Furthermore, micro structured polymer optical fibres offer over 12 times the sensitivity of silica fibre. We present a polymer fibre Bragg grating ultrasound detector with a core diameter of 125 microns. We discuss the ultrasonic signals received and draw conclusions...

  6. Spectroscopic study of the interaction of Nd{sup +3} with amino acids: phenomenological 4f-4f intensity parameters

    Energy Technology Data Exchange (ETDEWEB)

    Jerico, Soraya; Carubelli, Celia R.; Massabni, Ana M.G.; Stucchi, Elizabeth B.; Leite, Sergio R. de A. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica; Malta, Oscar [Pernambuco Univ., Recife, PE (Brazil). Dept. de Quimica Fundamental

    1998-10-01

    We have studied behaviour of the phenomenological 4f-4f intensity parameters in compounds of the Nd{sup 3+} ion with glycine, L-aspartic acid, L-glutamic acid, L-histidine, DL-malic acid and Aspartame{sup TM} in aqueous solution, as function of the pK values and partial charges on the oxygens of the carboxylate groups of these molecules. The results are discussed and qualitatively interpreted in terms of the forced electric dipole and dynamic coupling mechanisms of the 4f-4f intensities, thus indicating that the forced electric dipole mechanism is dominant. (author)

  7. Fish population dynamics revealed by instantaneous continental-shelf scale acoustic imaging

    Science.gov (United States)

    Ratilal, Purnima; Symonds, Deanelle; Makris, Nicholas C.; Nero, Redwood

    2005-04-01

    Video images of fish population densities over vast areas of the New Jersey continental shelf have been produced from acoustic data collected on a long range bistatic sonar system during the Acoustic Clutter 2003 experiment. Areal fish population densities were obtained after correcting the acoustic data for two-way transmission loss modeled using the range-dependent parabolic equation, spatially varying beampattern of the array, source level and mean target strength per fish. The wide-area fish density images reveal the temporal evolution of fish school distributions, their migration, as well as shoal formation and fragmentation at 50 s interval. Time series of the fish population within various density thresholds were made over the period of a day in an area containing millions of fish that at some instances formed a massive shoal extending over 12 km. The analysis shows that fish population in the area can be decomposed into a stable ambient population from lower-fish-density regions and a time-varying population composed from higher-density regions. Estimates of the differential speed between population centers of various shoals show that the average speed is on the order of a slow-moving surface vessel or submarine.

  8. Evaluation of magnetic resonance imaging (MRI) in diagnosis of acoustic neuroma. Comparative study with plain X-ray and CTs

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Kimihisa; Sakai, Makoto; Shinkawa, Atsushi; Miyake, Hirosato; Matsukawa, Junichi

    1987-11-01

    In order to find an approach to earlier and more acurate diagnosis of acoustic neuroma, a comparative evaluation of MRI, plain X-ray (Stenvers' projection), high resolution CT with or without Metrizamide enhancement and air-CT has been made in five clinical cases of acoustic neuroma. A paramagnetic contrast agent, Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA), was used to enhance images resolution in two cases of acoustic neuroma. In MRI, the high singnal mass in the posterior fossa was smaller than 10 x 10 mm in 2 cases, 17 x 20 mm in 2 cases and 35 x 40 mm in one case. MRI revealed enlargement of the neurovascular bundle around the VII and VIII cranial nerves compatible with a diagnosis of acoustic neuroma in all 5 cases, and masses within the cerebellopontine angle were also disclosed. In 2 cases the image of equivocal acoustic neuromas was well enhanced, and these lesions were visualized after intravenous administration of Gd-DTPA. In one of the cases the acoustic neuroma was satisfactorily differentiated from the surrounding cystic lesion with the aid of a contrast medium. Magnetic resonance which uses no ionizing radiation seems to be innocuous and offers several advantages over other imaging methods and CT, which may produce an adverse reaction when a contrast medium is used in CT-cisternography. Further advancement of MR technology will offer greater assistance in differential diagnosis of lesions such as acoustic tumors or other cerebellopontine angle tumors.

  9. Spatial distribution of macroalgae along the shores of Kongsfjorden (West Spitsbergen using acoustic imaging

    Directory of Open Access Journals (Sweden)

    Kruss Aleksandra

    2017-06-01

    Full Text Available The identification of macroalgal beds is a crucial component for the description of fjord ecosystems. Direct, biological sampling is still the most popular investigation technique but acoustic methods are becoming increasingly recognized as a very efficient tool for the assessment of benthic communities. In 2007 we carried out the first acoustic survey of the littoral areas in Kongsfjorden. A 2.68 km2 area comprised within a 12.40 km2 euphotic zone was mapped along the fjord’s coast using single- and multi-beam echosounders. The singlebeam echosounder (SBES proved to be a very efficient and reliable tool for macroalgae detection in Arctic conditions. The multibeam echosounder (MBES was very useful in extending the SBES survey range, even though it’s ability in discriminating benthic communities was limited. The final result of our investigation is a map of the macroalgae distribution around the fjord, showing 39% macroalgae coverage (1.09 km2 of investigated area between isobaths -0.70 m and -30 m. Zonation analysis showed that most of the studied macroalgae areas occur up to 15 m depth (93%. These results were confirmed by biological sampling and observation in key areas. The potential of acoustic imaging of macrophytes, and a proposed methodology for the processing of acoustic data, are presented in this paper along with preliminary studies on the acoustic reflectivity of macroalgae, also highlighting differences among species. These results can be applied to future monitoring of the evolution of kelp beds in different areas of the Arctic, and in the rest of the world.

  10. 77 FR 42802 - Section 4(f) Policy Paper

    Science.gov (United States)

    2012-07-20

    ... Federal Highway Administration Section 4(f) Policy Paper AGENCY: Federal Highway Administration (FHWA... the availability of the final Section 4(f) Policy Paper that will provide guidance on the procedures... Paper may be viewed and copied at the U.S. Department of Transportation, Dockets Management Facility...

  11. 23 CFR 774.3 - Section 4(f) approvals.

    Science.gov (United States)

    2010-04-01

    ..., RECREATION AREAS, WILDLIFE AND WATERFOWL REFUGES, AND HISTORIC SITES (SECTION 4(F)) § 774.3 Section 4(f...) Causes the least overall harm in light of the statute's preservation purpose. The least overall harm is... With Public Parks, Recreation Lands, Wildlife and Waterfowl Refuges, and Historic Sites; (3) Final...

  12. Full-Wave Iterative Image Reconstruction in Photoacoustic Tomography with Acoustically Inhomogeneous Media

    CERN Document Server

    Huang, Chao; Nie, Liming; Wang, Lihong V; Anastasio, Mark A

    2013-01-01

    Existing approaches to image reconstruction in photoacoustic computed tomography (PACT) with acoustically heterogeneous media are limited to weakly varying media, are computationally burdensome, and/or cannot effectively mitigate the effects of measurement data incompleteness and noise. In this work, we develop and investigate a discrete imaging model for PACT that is based on the exact photoacoustic (PA) wave equation and facilitates the circumvention of these limitations. A key contribution of the work is the establishment of a procedure to implement a matched forward and backprojection operator pair associated with the discrete imaging model, which permits application of a wide-range of modern image reconstruction algorithms that can mitigate the effects of data incompleteness and noise. The forward and backprojection operators are based on the k-space pseudospectral method for computing numerical solutions to the PA wave equation in the time domain. The developed reconstruction methodology is investigated...

  13. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves.

    Science.gov (United States)

    Hui, Jie; Li, Rui; Phillips, Evan H; Goergen, Craig J; Sturek, Michael; Cheng, Ji-Xin

    2016-03-01

    The quantized vibration of chemical bonds provides a way of detecting specific molecules in a complex tissue environment. Unlike pure optical methods, for which imaging depth is limited to a few hundred micrometers by significant optical scattering, photoacoustic detection of vibrational absorption breaks through the optical diffusion limit by taking advantage of diffused photons and weak acoustic scattering. Key features of this method include both high scalability of imaging depth from a few millimeters to a few centimeters and chemical bond selectivity as a novel contrast mechanism for photoacoustic imaging. Its biomedical applications spans detection of white matter loss and regeneration, assessment of breast tumor margins, and diagnosis of vulnerable atherosclerotic plaques. This review provides an overview of the recent advances made in vibration-based photoacoustic imaging and various biomedical applications enabled by this new technology.

  14. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves

    Science.gov (United States)

    Hui, Jie; Li, Rui; Phillips, Evan H.; Goergen, Craig J.; Sturek, Michael; Cheng, Ji-Xin

    2016-01-01

    The quantized vibration of chemical bonds provides a way of detecting specific molecules in a complex tissue environment. Unlike pure optical methods, for which imaging depth is limited to a few hundred micrometers by significant optical scattering, photoacoustic detection of vibrational absorption breaks through the optical diffusion limit by taking advantage of diffused photons and weak acoustic scattering. Key features of this method include both high scalability of imaging depth from a few millimeters to a few centimeters and chemical bond selectivity as a novel contrast mechanism for photoacoustic imaging. Its biomedical applications spans detection of white matter loss and regeneration, assessment of breast tumor margins, and diagnosis of vulnerable atherosclerotic plaques. This review provides an overview of the recent advances made in vibration-based photoacoustic imaging and various biomedical applications enabled by this new technology. PMID:27069873

  15. Acoustic Borehole Images for Fracture Extraction and Analysis in Second Pre-pilot Drillhole of CCSD

    Institute of Scientific and Technical Information of China (English)

    Zou Changchun; Shi Ge; Pan Lingzhi

    2004-01-01

    Ultrasonic imaging logging provides continuous and oriented images of structures vs. depth. In the Chinese Continental Scientific Drilling (CCSD) Project, acoustic borehole images were recorded in the second pre-pilot drillhole which penetrates the metamorphic rocks. This paper focuses on fracture evaluation of the drillhole with these images. Both least square fit and a modified Hough transform are used for fracture extraction, and 269 fractures were mapped in the interval from 69.5 to 1 020 m. Most fractures dip steeply, with an average angle of 54°.Fracture dip directions are dominantly in the range of 220°-280° above the depth of 267 m, but 80°-120°in the lower zones. These observations may indicate the differences in structural movements or in-situ stress fields between the upper and lower zones in the drillhole.

  16. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves

    Directory of Open Access Journals (Sweden)

    Jie Hui

    2016-03-01

    Full Text Available The quantized vibration of chemical bonds provides a way of detecting specific molecules in a complex tissue environment. Unlike pure optical methods, for which imaging depth is limited to a few hundred micrometers by significant optical scattering, photoacoustic detection of vibrational absorption breaks through the optical diffusion limit by taking advantage of diffused photons and weak acoustic scattering. Key features of this method include both high scalability of imaging depth from a few millimeters to a few centimeters and chemical bond selectivity as a novel contrast mechanism for photoacoustic imaging. Its biomedical applications spans detection of white matter loss and regeneration, assessment of breast tumor margins, and diagnosis of vulnerable atherosclerotic plaques. This review provides an overview of the recent advances made in vibration-based photoacoustic imaging and various biomedical applications enabled by this new technology.

  17. Acoustic Image Models for Obstacle Avoidance with Forward-Looking Sonar

    Science.gov (United States)

    Masek, T.; Kölsch, M.

    Long-range forward-looking sonars (FLS) have recently been deployed in autonomous unmanned vehicles (AUV). We present models for various features in acoustic images, with the goal of using this sensor for altitude maintenance, obstacle detection and obstacle avoidance. First, we model the backscatter and FLS noise as pixel-based, spatially-varying intensity distributions. Experiments show that these models predict noise with an accuracy of over 98%. Next, the presence of acoustic noise from two other sources including a modem is reliably detected with a template-based filter and a threshold learned from training data. Lastly, the ocean floor location and orientation is estimated with a gradient-descent method using a site-independent template, yielding sufficiently accurate results in 95% of the frames. Temporal information is expected to further improve the performance.

  18. Acoustic imaging of the Mediterranean water outflowing through the Strait of Gibraltar

    Science.gov (United States)

    Biescas Gorriz, Berta; Carniel, Sandro; Sallarès, Valentí; Rodriguez Ranero, Cesar

    2016-04-01

    Acoustic imaging of the Mediterranean water outflowing through the Strait of Gibraltar Berta Biescas (1), Sandro Carniel (2) , Valentí Sallarès (3) and Cesar R. Ranero(3) (1) Istituto di Scienze Marine, CNR, Bologna, Italy (2) Istituto di Scienze Marine, CNR, Venice, Italy (3) Institut de Ciències del Mar, CSIC, Barcelona, Spain Acoustic reflectivity acquired with multichannel seismic reflection (MCS) systems allow to detect and explore the thermohaline structure in the ocean with vertical and lateral resolutions in the order of 10 m, covering hundreds of kilometers in the lateral dimension and the full-depth water column. In this work we present a MCS 2D profile that crosses the Strait of Gibraltar, from the Alboran Sea to the internal Gulf of Cadiz (NE Atlantic Ocean). The MCS data was acquired during the Topomed-Gassis Cruise (European Science Foundation TopoEurope), which was carried out on board of the Spanish R/V Sarmiento de Gamboa in October 2011. The strong thermohaline contrast between the Mediterranean water and the Atlantic water, characterizes this area and allows to visualize, with unprecedented resolution, the acoustic reflectivity associated to the dense flow of the Mediterranean water outflowing through the prominent slope of the Strait of Gibraltar. During the first kilometers, the dense flow drops attached to the continental slope until it reaches the buoyancy depth at 700 m. Then, it detaches from the sea floor and continues flowing towards the Atlantic Ocean, occupying the layer at 700-1500 m deep and developing clear staircase layers. The reflectivity images display near seabed reflections that could well correspond to turbidity layers. The XBT data acquired coincident in time and space with the MCS data will help us in the interpretation and analysis of the acoustic data.

  19. Imaging living cells with a combined high-resolution multi-photon-acoustic microscope

    Science.gov (United States)

    Schenkl, Selma; Weiss, Eike; Stark, Martin; Stracke, Frank; Riemann, Iris; Lemor, Robert; König, Karsten

    2007-02-01

    With increasing demand for in-vivo observation of living cells, microscope techniques that do not need staining become more and more important. In this talk we present a combined multi-photon-acoustic microscope with the possibility to measure synchronously properties addressed by ultrasound and two-photon fluorescence. Ultrasound probes the local mechanical properties of a cell, while the high resolution image of the two-photon fluorescence delivers insight in cell morphology and activity. In the acoustic part of the microscope an ultrasound wave, with a frequency of GHz, is focused by an acoustic sapphire lens and detected by a piezo electric transducer assembled to the lens. The achieved lateral resolution is in the range of 1μm. Contrast in the images arises mainly from the local absorption of sound in the cells, related to properties, such as mass density, stiffness and viscose damping. Additionally acoustic microscopy can access the cell shape and the state of the cell membrane as it is a intrinsic volume scanning technique.The optical part bases on the emission of fluorescent biomolecules naturally present in cells (e.g. NAD(P)H, protophorphyrin IX, lipofuscin, melanin). The nonlinear effect of two-photon absorption provides a high lateral and axial resolution without the need of confocal detection. In addition, in the near-IR cell damages are drastically reduced in comparison to direct excitation in the visible or UV. Both methods can be considered as minimal invasive, as they relay on intrinsic contrast mechanisms and dispense with the need of staining. First results on living cells are presented and discussed.

  20. Acoustic radiation force impulse imaging of human prostates: initial in vivo demonstration.

    Science.gov (United States)

    Zhai, Liang; Polascik, Thomas J; Foo, Wen-Chi; Rosenzweig, Stephen; Palmeri, Mark L; Madden, John; Nightingale, Kathryn R

    2012-01-01

    Reliably detecting prostate cancer (PCa) has been a challenge for current imaging modalities. Acoustic radiation force impulse (ARFI) imaging is an elasticity imaging method that uses remotely generated, focused acoustic beams to probe tissue stiffness. A previous study on excised human prostates demonstrated ARFI images portray various prostatic structures and has the potential to guide prostate needle biopsy with improved sampling accuracy. The goal of this study is to demonstrate the feasibility of ARFI imaging to portray internal structures and PCa in the human prostate in vivo. Custom ARFI imaging sequences were designed and implemented using a modified Siemens Antares™ scanner with a three-dimensional (3-D) wobbler, end-firing, trans-cavity transducer, EV9F4. Nineteen patients were consented and imaged immediately preceding surgical prostatectomy. Pathologies and anatomic structures were identified in histologic slides by a pathologist blinded to ARFI data and were then registered with structures found in ARFI images. The results demonstrated that when PCa is visible, it generally appears as bilaterally asymmetric stiff structures; benign prostatic hyperplasia (BPH) appears heterogeneous with a nodular texture; the verumontanum and ejaculatory ducts appears softer compared with surrounding tissue, which form a unique 'V' shape; and the boundary of the transitional zone (TZ) forms a stiff rim separating the TZ from the peripheral zone (PZ). These characteristic appearances of prostatic structures are consistent with those found in our previous study of prostate ARFI imaging on excised human prostates. Compared with the matched B-mode images, ARFI images, in general, portray prostate structures with higher contrast. With the end-firing transducer used for this study, ARFI depth penetration was limited to 22 mm. Image contrast and resolution were decreased as compared with the previous ex vivo study due to the small transducer aperture. Even with these

  1. Sensing the delivery and endocytosis of nanoparticles using magneto-photo-acoustic imaging

    Directory of Open Access Journals (Sweden)

    M. Qu

    2015-09-01

    Full Text Available Many biomedical applications necessitate a targeted intracellular delivery of the nanomaterial to specific cells. Therefore, a non-invasive and reliable imaging tool is required to detect both the delivery and cellular endocytosis of the nanoparticles. Herein, we demonstrate that magneto-photo-acoustic (MPA imaging can be used to monitor the delivery and to identify endocytosis of magnetic and optically absorbing nanoparticles. The relationship between photoacoustic (PA and magneto-motive ultrasound (MMUS signals from the in vitro samples were analyzed to identify the delivery and endocytosis of nanoparticles. The results indicated that during the delivery of nanoparticles to the vicinity of the cells, both PA and MMUS signals are almost linearly proportional. However, accumulation of nanoparticles within the cells leads to nonlinear MMUS-PA relationship, due to non-linear MMUS signal amplification. Therefore, through longitudinal MPA imaging, it is possible to monitor the delivery of nanoparticles and identify the endocytosis of the nanoparticles by living cells.

  2. Time domain localization technique with sparsity constraint for imaging acoustic sources

    Science.gov (United States)

    Padois, Thomas; Doutres, Olivier; Sgard, Franck; Berry, Alain

    2017-09-01

    This paper addresses source localization technique in time domain for broadband acoustic sources. The objective is to accurately and quickly detect the position and amplitude of noise sources in workplaces in order to propose adequate noise control options and prevent workers hearing loss or safety risk. First, the generalized cross correlation associated with a spherical microphone array is used to generate an initial noise source map. Then a linear inverse problem is defined to improve this initial map. Commonly, the linear inverse problem is solved with an l2 -regularization. In this study, two sparsity constraints are used to solve the inverse problem, the orthogonal matching pursuit and the truncated Newton interior-point method. Synthetic data are used to highlight the performances of the technique. High resolution imaging is achieved for various acoustic sources configurations. Moreover, the amplitudes of the acoustic sources are correctly estimated. A comparison of computation times shows that the technique is compatible with quasi real-time generation of noise source maps. Finally, the technique is tested with real data.

  3. Acoustic property reconstruction of a neonate Yangtze finless porpoise's (Neophocaena asiaeorientalis) head based on CT imaging.

    Science.gov (United States)

    Wei, Chong; Wang, Zhitao; Song, Zhongchang; Wang, Kexiong; Wang, Ding; Au, Whitlow W L; Zhang, Yu

    2015-01-01

    The reconstruction of the acoustic properties of a neonate finless porpoise's head was performed using X-ray computed tomography (CT). The head of the deceased neonate porpoise was also segmented across the body axis and cut into slices. The averaged sound velocity and density were measured, and the Hounsfield units (HU) of the corresponding slices were obtained from computed tomography scanning. A regression analysis was employed to show the linear relationships between the Hounsfield unit and both sound velocity and density of samples. Furthermore, the CT imaging data were used to compare the HU value, sound velocity, density and acoustic characteristic impedance of the main tissues in the porpoise's head. The results showed that the linear relationships between HU and both sound velocity and density were qualitatively consistent with previous studies on Indo-pacific humpback dolphins and Cuvier's beaked whales. However, there was no significant increase of the sound velocity and acoustic impedance from the inner core to the outer layer in this neonate finless porpoise's melon.

  4. Contribution of the supraglottic larynx to the vocal product: imaging and acoustic analysis

    Science.gov (United States)

    Gracco, L. Carol

    1996-04-01

    Horizontal supraglottic laryngectomy is a surgical procedure to remove a mass lesion located in the region of the pharynx superior to the true vocal folds. In contrast to full or partial laryngectomy, patients who undergo horizontal supraglottic laryngectomy often present with little or nor involvement to the true vocal folds. This population provides an opportunity to examine the acoustic consequences of altering the pharynx while sparing the laryngeal sound source. Acoustic and magnetic resonance imaging (MRI) data were acquired in a group of four patients before and after supraglottic laryngectomy. Acoustic measures included the identification of vocal tract resonances and the fundamental frequency of the vocal fold vibration. 3D reconstruction of the pharyngeal portion of each subjects' vocal tract were made from MRIs taken during phonation and volume measures were obtained. These measures reveal a variable, but often dramatic difference in the surgically-altered area of the pharynx and changes in the formant frequencies of the vowel/i/post surgically. In some cases the presence of the tumor created a deviation from the expected formant values pre-operatively with post-operative values approaching normal. Patients who also underwent radiation treatment post surgically tended to have greater constriction in the pharyngeal area of the vocal tract.

  5. Reconstruction of an acoustic pressure field in a resonance tube by particle image velocimetry.

    Science.gov (United States)

    Kuzuu, K; Hasegawa, S

    2015-11-01

    A technique for estimating an acoustic field in a resonance tube is suggested. The estimation of an acoustic field in a resonance tube is important for the development of the thermoacoustic engine, and can be conducted employing two sensors to measure pressure. While this measurement technique is known as the two-sensor method, care needs to be taken with the location of pressure sensors when conducting pressure measurements. In the present study, particle image velocimetry (PIV) is employed instead of a pressure measurement by a sensor, and two-dimensional velocity vector images are extracted as sequential data from only a one- time recording made by a video camera of PIV. The spatial velocity amplitude is obtained from those images, and a pressure distribution is calculated from velocity amplitudes at two points by extending the equations derived for the two-sensor method. By means of this method, problems relating to the locations and calibrations of multiple pressure sensors are avoided. Furthermore, to verify the accuracy of the present method, the experiments are conducted employing the conventional two-sensor method and laser Doppler velocimetry (LDV). Then, results by the proposed method are compared with those obtained with the two-sensor method and LDV.

  6. Imaging of Acoustically Coupled Oscillations Due to Flow Past a Shallow Cavity: Effect of Cavity Length Scale

    Energy Technology Data Exchange (ETDEWEB)

    P. Oshkai; M. Geveci; D. Rockwell; M. Pollack

    2002-12-12

    Flow-acoustic interactions due to fully turbulent inflow past a shallow axisymmetric cavity mounted in a pipe are investigated using a technique of high-image-density particle image velocimetry in conjunction with unsteady pressure measurements. This imaging leads to patterns of velocity, vorticity, streamline topology, and hydrodynamic contributions to the acoustic power integral. Global instantaneous images, as well as time-averaged images, are evaluated to provide insight into the flow physics during tone generation. Emphasis is on the manner in which the streamwise length scale of the cavity alters the major features of the flow structure. These image-based approaches allow identification of regions of the unsteady shear layer that contribute to the instantaneous hydrodynamic component of the acoustic power, which is necessary to maintain a flow tone. In addition, combined image analysis and pressure measurements allow categorization of the instantaneous flow patterns that are associated with types of time traces and spectra of the fluctuating pressure. In contrast to consideration based solely on pressure spectra, it is demonstrated that locked-on tones may actually exhibit intermittent, non-phase-locked images, apparently due to low damping of the acoustic resonator. Locked-on flow tones (without modulation or intermittency), locked-on flow tones with modulation, and non-locked-on oscillations with short-term, highly coherent fluctuations are defined and represented by selected cases. Depending on which of,these regimes occur, the time-averaged Q (quality)-factor and the dimensionless peak pressure are substantially altered.

  7. Acoustical cross-talk in row–column addressed 2-D transducer arrays for ultrasound imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-01-01

    The acoustical cross-talk in row–column addressed 2-D transducer arrays for volumetric ultrasound imaging is investigated. Experimental results from a 2.7 MHz, λ/2-pitch capacitive micromachined ultrasonic transducer (CMUT) array with 62 rows and 62 columns are presented and analyzed...... in the frequency-wavenumber domain. The sources of cross-talk are identified and predicted theoretically. The nearest neighbor cross-talk is 23.9±3.7 dB when the array is used as a 1-D array with the rows functioning as both transmitters and receivers. In the row–column configuration, with the columns transmitting...

  8. Investigating the emotional response to room acoustics: A functional magnetic resonance imaging study.

    Science.gov (United States)

    Lawless, M S; Vigeant, M C

    2015-10-01

    While previous research has demonstrated the powerful influence of pleasant and unpleasant music on emotions, the present study utilizes functional magnetic resonance imaging (fMRI) to assess the positive and negative emotional responses as demonstrated in the brain when listening to music convolved with varying room acoustic conditions. During fMRI scans, subjects rated auralizations created in a simulated concert hall with varying reverberation times. The analysis detected activations in the dorsal striatum, a region associated with anticipation of reward, for two individuals for the highest rated stimulus, though no activations were found for regions associated with negative emotions in any subject.

  9. Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence.

    Science.gov (United States)

    Park, Jinhyoung; Lee, Jungwoo; Lau, Sien Ting; Lee, Changyang; Huang, Ying; Lien, Ching-Ling; Kirk Shung, K

    2012-04-01

    Acoustic radiation force impulse (ARFI) imaging has been developed as a non-invasive method for quantitative illustration of tissue stiffness or displacement. Conventional ARFI imaging (2-10 MHz) has been implemented in commercial scanners for illustrating elastic properties of several organs. The image resolution, however, is too coarse to study mechanical properties of micro-sized objects such as cells. This article thus presents a high-frequency coded excitation ARFI technique, with the ultimate goal of displaying elastic characteristics of cellular structures. Tissue mimicking phantoms and zebrafish embryos are imaged with a 100-MHz lithium niobate (LiNbO₃) transducer, by cross-correlating tracked RF echoes with the reference. The phantom results show that the contrast of ARFI image (14 dB) with coded excitation is better than that of the conventional ARFI image (9 dB). The depths of penetration are 2.6 and 2.2 mm, respectively. The stiffness data of the zebrafish demonstrate that the envelope is harder than the embryo region. The temporal displacement change at the embryo and the chorion is as large as 36 and 3.6 μm. Consequently, this high-frequency ARFI approach may serve as a remote palpation imaging tool that reveals viscoelastic properties of small biological samples.

  10. Temperature-dependent differences in the nonlinear acoustic behavior of ultrasound contrast agents revealed by high-speed imaging and bulk acoustics.

    Science.gov (United States)

    Mulvana, Helen; Stride, Eleanor; Tang, Mengxing; Hajnal, Jo V; Eckersley, Robert

    2011-09-01

    Previous work by the authors has established that increasing the temperature of the suspending liquid from 20°C to body temperature has a significant impact on the bulk acoustic properties and stability of an ultrasound contrast agent suspension (SonoVue, Bracco Suisse SA, Manno, Lugano, Switzerland). In this paper the influence of temperature on the nonlinear behavior of microbubbles is investigated, because this is one of the most important parameters in the context of diagnostic imaging. High-speed imaging showed that raising the temperature significantly influences the dynamic behavior of individual microbubbles. At body temperature, microbubbles exhibit greater radial excursion and oscillate less spherically, with a greater incidence of jetting and gas expulsion, and therefore collapse, than they do at room temperature. Bulk acoustics revealed an associated increase in the harmonic content of the scattered signals. These findings emphasize the importance of conducting laboratory studies at body temperature if the results are to be interpreted for in vivo applications.

  11. Underwater Applications of Acoustical Holography

    Directory of Open Access Journals (Sweden)

    P. C. Mehta

    1984-01-01

    Full Text Available The paper describes the basic technique of acoustical holography. Requirements for recording the acoustical hologram are discussed with its ability for underwater imaging in view. Some practical systems for short-range and medium-range imaging are described. The advantages of acoustical holography over optical imaging, acoustical imaging and sonars are outlined.

  12. Development and validation of a combined phased acoustical radiosity and image source model for predicting sound fields in rooms

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2015-01-01

    A model, combining acoustical radiosity and the image source method, including phase shifts on reflection, has been developed. The model is denoted Phased Acoustical Radiosity and Image Source Method (PARISM), and it has been developed in order to be able to model both specular and diffuse...... reflections with complex-valued and angle-dependent boundary conditions. This paper mainly describes the combination of the two models and the implementation of the angledependent boundary conditions. It furthermore describes how a pressure impulse response is obtained from the energy-based acoustical...... radiosity by regarding the model as being stochastic. Three methods of implementation are proposed and investigated, and finally, recommendations are made for their use. Validation of the image source method is done by comparison with finite element simulations of a rectangular room with a porous absorber...

  13. Negative refraction and imaging of acoustic waves in a two-dimensional square chiral lattice structure

    Science.gov (United States)

    Zhao, Sheng-Dong; Wang, Yue-Sheng

    2016-05-01

    The negative refraction behavior and imaging effect for acoustic waves in a kind of two-dimensional square chiral lattice structure are studied in this paper. The unit cell of the proposed structure consists of four zigzag arms connected through a thin circular ring at the central part. The relation of the symmetry of the unit cell and the negative refraction phenomenon is investigated. Using the finite element method, we calculate the band structures and the equi-frequency surfaces of the system, and confirm the frequency range where the negative refraction is present. Due to the rotational symmetry of the unit cell, a phase difference is induced to the waves propagating from a point source through the structure to the other side. The phase difference is related to the width of the structure and the frequency of the source, so we can get a tunable deviated imaging. This kind of phenomenon is also demonstrated by the numerical simulation of two Gaussian beams that are symmetrical about the interface normal with the same incident angle, and the different negative refractive indexes are presented. Based on this special performance, a double-functional mirror-symmetrical slab is proposed for realizing acoustic focusing and beam separation.

  14. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming.

    Science.gov (United States)

    Lamprecht, Andreas; Lakämper, Stefan; Baasch, Thierry; Schaap, Iwan A T; Dual, Jurg

    2016-07-01

    Acoustic particle manipulation in microfluidic channels is becoming a powerful tool in microfluidics to control micrometer sized objects in medical, chemical and biological applications. By creating a standing acoustic wave in the channel, the resulting pressure field can be employed to trap or sort particles. To design efficient and reproducible devices, it is important to characterize the pressure field throughout the volume of the microfluidic device. Here, we used an optically trapped particle as probe to measure the forces in all three dimensions. By moving the probe through the volume of the channel, we imaged spatial variations in the pressure field. In the direction of the standing wave this revealed a periodic energy landscape for 2 μm beads, resulting in an effective stiffness of 2.6 nN m(-1) for the acoustic trap. We found that multiple fabricated devices showed consistent pressure fields. Surprisingly, forces perpendicular to the direction of the standing wave reached values of up to 20% of the main-axis-values. To separate the direct acoustic force from secondary effects, we performed experiments with different bead sizes, which attributed some of the perpendicular forces to acoustic streaming. This method to image acoustically generated forces in 3D can be used to either minimize perpendicular forces or to employ them for specific applications in novel acoustofluidic designs.

  15. Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector.

    Science.gov (United States)

    Wang, Yi; Li, Chunhui; Wang, Ruikang K

    2011-10-15

    We report on a noncontact photoacoustic imaging (PAI) technique in which a low-coherence interferometer [(LCI), optical coherence tomography (OCT) hardware] is utilized as the acoustic detector. A synchronization approach is used to lock the LCI system at its highly sensitive region for photoacoustic detection. The technique is experimentally verified by the imaging of a scattering phantom embedded with hairs and the blood vessels within a mouse ear in vitro. The system's axial and lateral resolutions are evaluated at 60 and 30 μm, respectively. The experimental results indicate that PAI in a noncontact detection mode is possible with high resolution and high bandwidth. The proposed approach lends itself to a natural integration of PAI with OCT, rather than a combination of two separate and independent systems.

  16. Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide

    CERN Document Server

    Simandoux, Olivier; Gateau, Jerome; Huignard, Jean-Pierre; Moser, Christophe; Psaltis, Demetri; Bossy, Emmanuel

    2015-01-01

    We demonstrate the ability to guide high-frequency photoacoustic waves through thick tissue with a water-filled silica-capillary (150 \\mu m inner diameter and 30 mm long). An optical-resolution photoacoustic image of a 30 \\mu m diameter absorbing nylon thread was obtained by guiding the acoustic waves in the capillary through a 3 cm thick fat layer. The transmission loss through the capillary was about -20 dB, much lower than the -120 dB acoustic attenuation through the fat layer. The overwhelming acoustic attenuation of high-frequency acoustic waves by biological tissue can therefore be avoided by the use of a small footprint capillary acoustic waveguide for remote detection. We finally demonstrate that the capillary can be used as a dual optical-in acoustic-out waveguide, paving the way for the development of minimally invasive optical-resolution photoacoustic endoscopes free of any acoustic or optical elements at their imaging tip.

  17. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography

    Science.gov (United States)

    Ma, Jianguo; Martin, K. Heath; Li, Yang; Dayton, Paul A.; Shung, K. Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-01-01

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with the low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for design of intravascular acoustic angiography transducers. PMID:25856384

  18. Role of 4 f electrons in crystallographic and magnetic complexity

    Science.gov (United States)

    Pathak, Arjun K.; Paudyal, Durga; Mudryk, Yaroslav; Pecharsky, Vitalij K.

    2017-08-01

    The functionality of many magnetic materials critically depends on first manipulating and then taking advantage of highly nonlinear changes of properties that occur during phase transformations. Unique to lanthanides, property-defining 4 f electrons are highly localized and, as commonly accepted, play little to no role in chemical bonding. Yet here we demonstrate that the competition between 4 f -electron energy landscapes of Dy (4 f9 ) and Er (4 f11 ) is the key element of the puzzle required to explain complex interplay of magnetic and structural features observed in E r1 -xD yxC o2 , and likely many other mixed lanthanide systems. Unlike the parent binaries—DyC o2 and ErC o2 —E r1 -xD yxC o2 exhibits two successive magnetostructural transitions: a first order at TC, followed by a second order in the ferrimagnetically ordered state. Supported by first-principles calculations, our results offer new opportunities for targeted design of magnetic materials with multiple functionalities, and also provide a critical insight into the role of 4 f electrons in controlling the magnetism and structure of lanthanide intermetallics.

  19. Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption.

    Science.gov (United States)

    Jose, Jithin; Willemink, Rene G H; Resink, Steffen; Piras, Daniele; van Hespen, J C G; Slump, Cornelis H; Steenbergen, Wiendelt; van Leeuwen, Ton G; Manohar, Srirang

    2011-01-31

    We present a 'hybrid' imaging approach which can image both light absorption properties and acoustic transmission properties of an object in a two-dimensional slice using a computed tomography (CT) photoacoustic imager. The ultrasound transmission measurement method uses a strong optical absorber of small cross-section placed in the path of the light illuminating the sample. This absorber, which we call a passive element acts as a source of ultrasound. The interaction of ultrasound with the sample can be measured in transmission, using the same ultrasound detector used for photoacoustics. Such measurements are made at various angles around the sample in a CT approach. Images of the ultrasound propagation parameters, attenuation and speed of sound, can be reconstructed by inversion of a measurement model. We validate the method on specially designed phantoms and biological specimens. The obtained images are quantitative in terms of the shape, size, location, and acoustic properties of the examined heterogeneities.

  20. Interferometric imaging of acoustical phenomena using high-speed polarization camera and 4-step parallel phase-shifting technique

    Science.gov (United States)

    Ishikawa, K.; Yatabe, K.; Ikeda, Y.; Oikawa, Y.; Onuma, T.; Niwa, H.; Yoshii, M.

    2017-02-01

    Imaging of sound aids the understanding of the acoustical phenomena such as propagation, reflection, and diffraction, which is strongly required for various acoustical applications. The imaging of sound is commonly done by using a microphone array, whereas optical methods have recently been interested due to its contactless nature. The optical measurement of sound utilizes the phase modulation of light caused by sound. Since light propagated through a sound field changes its phase as proportional to the sound pressure, optical phase measurement technique can be used for the sound measurement. Several methods including laser Doppler vibrometry and Schlieren method have been proposed for that purpose. However, the sensitivities of the methods become lower as a frequency of sound decreases. In contrast, since the sensitivities of the phase-shifting technique do not depend on the frequencies of sounds, that technique is suitable for the imaging of sounds in the low-frequency range. The principle of imaging of sound using parallel phase-shifting interferometry was reported by the authors (K. Ishikawa et al., Optics Express, 2016). The measurement system consists of a high-speed polarization camera made by Photron Ltd., and a polarization interferometer. This paper reviews the principle briefly and demonstrates the high-speed imaging of acoustical phenomena. The results suggest that the proposed system can be applied to various industrial problems in acoustical engineering.

  1. A method for the frequency control in time-resolved two-dimensional gigahertz surface acoustic wave imaging

    Directory of Open Access Journals (Sweden)

    Shogo Kaneko

    2014-01-01

    Full Text Available We describe an extension of the time-resolved two-dimensional gigahertz surface acoustic wave imaging based on the optical pump-probe technique with periodic light source at a fixed repetition frequency. Usually such imaging measurement may generate and detect acoustic waves with their frequencies only at or near the integer multiples of the repetition frequency. Here we propose a method which utilizes the amplitude modulation of the excitation pulse train to modify the generation frequency free from the mentioned limitation, and allows for the first time the discrimination of the resulted upper- and lower-side-band frequency components in the detection. The validity of the method is demonstrated in a simple measurement on an isotropic glass plate covered by a metal thin film to extract the dispersion curves of the surface acoustic waves.

  2. The utility of acoustic radiation force impulse imaging in diagnosing acute appendicitis and staging its severity

    Science.gov (United States)

    Göya, Cemil; Hamidi, Cihad; Okur, Mehmet Hanifi; İçer, Mustafa; Oğuz, Abdullah; Hattapoğlu, Salih; Çetinçakmak, Mehmet Güli; Teke, Memik

    2014-01-01

    PURPOSE The aim of this study was to investigate the feasibility of using acoustic radiation force impulse (ARFI) imaging to diagnose acute appendicitis. METHODS Abdominal ultrasonography (US) and ARFI imaging were performed in 53 patients that presented with right lower quadrant pain, and the results were compared with those obtained in 52 healthy subjects. Qualitative evaluation of the patients was conducted by Virtual Touch™ tissue imaging (VTI), while quantitative evaluation was performed by Virtual Touch™ tissue quantification (VTQ) measuring the shear wave velocity (SWV). The severity of appendix inflammation was observed and rated using ARFI imaging in patients diagnosed with acute appendicitis. Alvarado scores were determined for all patients presenting with right lower quadrant pain. All patients diagnosed with appendicitis received appendectomies. The sensitivity and specificity of ARFI imaging relative to US was determined upon confirming the diagnosis of acute appendicitis via histopathological analysis. RESULTS The Alvarado score had a sensitivity and specificity of 70.8% and 20%, respectively, in detecting acute appendicitis. Abdominal US had 83.3% sensitivity and 80% specificity, while ARFI imaging had 100% sensitivity and 98% specificity, in diagnosing acute appendicitis. The median SWV value was 1.11 m/s (range, 0.6–1.56 m/s) for healthy appendix and 3.07 m/s (range, 1.37–4.78 m/s) for acute appendicitis. CONCLUSION ARFI imaging may be useful in guiding the clinical management of acute appendicitis, by helping its diagnosis and determining the severity of appendix inflammation. PMID:25323836

  3. Acoustically active liposome-nanobubble complexes for enhanced ultrasonic imaging and ultrasound-triggered drug delivery.

    Science.gov (United States)

    Nguyen, An T; Wrenn, Steven P

    2014-01-01

    Ultrasound is well known as a safe, reliable imaging modality. A historical limitation of ultrasound, however, was its inability to resolve structures at length scales less than nominally 20 µm, which meant that classical ultrasound could not be used in applications such as echocardiography and angiogenesis where one requires the ability to image small blood vessels. The advent of ultrasound contrast agents, or microbubbles, removed this limitation and ushered in a new wave of enhanced ultrasound applications. In recent years, the microbubbles have been designed to achieve yet another application, namely ultrasound-triggered drug delivery. Ultrasound contrast agents are thus tantamount to 'theranostic' vehicles, meaning they can do both therapy (drug delivery) and imaging (diagnostics). The use of ultrasound contrast agents as drug delivery vehicles, however, is perhaps less than ideal when compared to traditional drug delivery vehicles (e.g., polymeric microcapsules and liposomes) which have greater drug carrying capacities. The drawback of the traditional drug delivery vehicles is that they are not naturally acoustically active and cannot be used for imaging. The notion of a theranostic vehicle is sufficiently intriguing that many attempts have been made in recent years to achieve a vehicle that combines the echogenicity of microbubbles with the drug carrying capacity of liposomes. The attempts can be classified into three categories, namely entrapping, tethering, and nesting. Of these, nesting is the newest-and perhaps the most promising.

  4. A cross-correlation objective function for least-squares migration and visco-acoustic imaging

    KAUST Repository

    Dutta, Gaurav

    2014-08-05

    Conventional acoustic least-squares migration inverts for a reflectivity image that best matches the amplitudes of the observed data. However, for field data applications, it is not easy to match the recorded amplitudes because of the visco-elastic nature of the earth and inaccuracies in the estimation of source signature and strength at different shot locations. To relax the requirement for strong amplitude matching of least-squares migration, we use a normalized cross-correlation objective function that is only sensitive to the similarity between the predicted and the observed data. Such a normalized cross-correlation objective function is also equivalent to a time-domain phase inversion method where the main emphasis is only on matching the phase of the data rather than the amplitude. Numerical tests on synthetic and field data show that such an objective function can be used as an alternative to visco-acoustic least-squares reverse time migration (Qp-LSRTM) when there is strong attenuation in the subsurface and the estimation of the attenuation parameter Qp is insufficiently accurate.

  5. Evaluating the intensity of the acoustic radiation force impulse (ARFI) in intravascular ultrasound (IVUS) imaging: Preliminary in vitro results.

    Science.gov (United States)

    Shih, Cho-Chiang; Lai, Ting-Yu; Huang, Chih-Chung

    2016-08-01

    The ability to measure the elastic properties of plaques and vessels is significant in clinical diagnosis, particularly for detecting a vulnerable plaque. A novel concept of combining intravascular ultrasound (IVUS) imaging and acoustic radiation force impulse (ARFI) imaging has recently been proposed. This method has potential in elastography for distinguishing between the stiffness of plaques and arterial vessel walls. However, the intensity of the acoustic radiation force requires calibration as a standard for the further development of an ARFI-IVUS imaging device that could be used in clinical applications. In this study, a dual-frequency transducer with 11MHz and 48MHz was used to measure the association between the biological tissue displacement and the applied acoustic radiation force. The output intensity of the acoustic radiation force generated by the pushing element ranged from 1.8 to 57.9mW/cm(2), as measured using a calibrated hydrophone. The results reveal that all of the acoustic intensities produced by the transducer in the experiments were within the limits specified by FDA regulations and could still displace the biological tissues. Furthermore, blood clots with different hematocrits, which have elastic properties similar to the lipid pool of plaques, with stiffness ranging from 0.5 to 1.9kPa could be displaced from 1 to 4μm, whereas the porcine arteries with stiffness ranging from 120 to 291kPa were displaced from 0.4 to 1.3μm when an acoustic intensity of 57.9mW/cm(2) was used. The in vitro ARFI images of the artery with a blood clot and artificial arteriosclerosis showed a clear distinction of the stiffness distributions of the vessel wall. All the results reveal that ARFI-IVUS imaging has the potential to distinguish the elastic properties of plaques and vessels. Moreover, the acoustic intensity used in ARFI imaging has been experimentally quantified. Although the size of this two-element transducer is unsuitable for IVUS imaging, the

  6. Comparison of ultrasound B-mode, strain imaging, acoustic radiation force impulse displacement and shear wave velocity imaging using real time clinical breast images

    Science.gov (United States)

    Manickam, Kavitha; Machireddy, Ramasubba Reddy; Raghavan, Bagyam

    2016-04-01

    It has been observed that many pathological process increase the elastic modulus of soft tissue compared to normal. In order to image tissue stiffness using ultrasound, a mechanical compression is applied to tissues of interest and local tissue deformation is measured. Based on the mechanical excitation, ultrasound stiffness imaging methods are classified as compression or strain imaging which is based on external compression and Acoustic Radiation Force Impulse (ARFI) imaging which is based on force generated by focused ultrasound. When ultrasound is focused on tissue, shear wave is generated in lateral direction and shear wave velocity is proportional to stiffness of tissues. The work presented in this paper investigates strain elastography and ARFI imaging in clinical cancer diagnostics using real time patient data. Ultrasound B-mode imaging, strain imaging, ARFI displacement and ARFI shear wave velocity imaging were conducted on 50 patients (31 Benign and 23 malignant categories) using Siemens S2000 machine. True modulus contrast values were calculated from the measured shear wave velocities. For ultrasound B-mode, ARFI displacement imaging and strain imaging, observed image contrast and Contrast to Noise Ratio were calculated for benign and malignant cancers. Observed contrast values were compared based on the true modulus contrast values calculated from shear wave velocity imaging. In addition to that, student unpaired t-test was conducted for all the four techniques and box plots are presented. Results show that, strain imaging is better for malignant cancers whereas ARFI imaging is superior than strain imaging and B-mode for benign lesions representations.

  7. System design of programmable 4f phase modulation techniques for rapid intensity shaping: a conceptual comparison

    Science.gov (United States)

    Roth, Matthias; Heber, Jörg; Janschek, Klaus

    2016-03-01

    The present study analyses three beam shaping approaches with respect to a light-efficient generation of i) patterns and ii) multiple spots by means of a generic optical 4f-setup. 4f approaches share the property that due to the one-to-one relationship between output intensity and input phase, the need for time-consuming, iterative calculation can be avoided. The resulting low computational complexity offers a particular advantage compared to the widely used holographic principles and makes them potential candidates for real-time applications. The increasing availability of high-speed phase modulators, e.g. on the basis of MEMS, calls for an evaluation of the performances of these concepts. Our second interest is the applicability of 4f methods to high-power applications. We discuss the variants of 4f intensity shaping by phase modulation from a system-level point of view which requires the consideration of application relevant boundary conditions. The discussion includes i) the micro mirror based phase manipulation combined with amplitude masking in the Fourier plane, ii) the Generalized Phase Contrast, and iii) matched phase-only correlation filtering combined with GPC. The conceptual comparison relies on comparative figures of merit for energy efficiency, pattern homogeneity, pattern image quality, maximum output intensity and flexibility with respect to the displayable pattern. Numerical simulations illustrate our findings.

  8. Acoustic radiation- and streaming-induced microparticle velocities determined by microparticle image velocimetry in an ultrasound symmetry plane

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Laurell, Thomas

    2012-01-01

    We present microparticle image velocimetry measurements of suspended microparticles of diameters from 0.6 to 10μm undergoing acoustophoresis in an ultrasound symmetry plane in a microchannel. The motion of the smallest particles is dominated by the Stokes drag from the induced acoustic streaming...

  9. Digital image processing of sectorial oscillations for acoustically levitated drops and surface tension measurement

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A type of non-axisymmetric oscillations of acoustically levitated drops is excited by modulating the ultrasound field at proper frequencies. These oscillations are recorded by a high speed camera and analyzed with a digital image processing method. They are demonstrated to be the third mode sectorial oscillations, and their frequencies are found to decrease with the increase of equatorial radius of the drops, which can be described by a modified Rayleigh equation. These oscillations decay exponentially after the cessation of ultrasound field modulation. The decaying rates agree reasonably with Lamb’s prediction. The rotating rate of the drops accompanying the shape oscillations is found to be less than 1.5 rounds per second. The surface tension of aqueous ethanol has been measured according to the modified Rayleigh equation. The results agree well with previous reports, which demonstrates the possible application of this kind of sectorial oscillations in noncontact measurement of liquid surface tension.

  10. Acoustic characterization of ultrasound contrast microbubbles and echogenic liposomes: Applications to imaging and drug-delivery

    Science.gov (United States)

    Paul, Shirshendu

    Micron- to nanometer - sized ultrasound agents, like encapsulated microbubbles and echogenic liposomes (ELIPs), are being actively developed for possible clinical implementations in diagnostic imaging and ultrasound mediated drug/gene delivery. The primary objective of this thesis is to characterize the acoustic behavior of and the ultrasound-mediated contents release from these contrast agents for developing multi-functional ultrasound contrast agents. Subharmonic imaging using contrast microbubbles can improve image quality by providing a higher signal to noise ratio. However, the design and development of contrast microbubbles with favorable subharmonic behavior requires accurate mathematical models capable of predicting their nonlinear dynamics. To this goal, 'strain-softening' viscoelastic interfacial models of the encapsulation were developed and subsequently utilized to simulate the dynamics of encapsulated microbubbles. A hierarchical two-pronged approach of modeling --- a model is applied to one set of experimental data to obtain the model parameters (material characterization), and then the model is validated against a second independent experiment --- is demonstrated in this thesis for two lipid coated (SonazoidRTM and DefinityRTM) and a few polymer (polylactide) encapsulated microbubbles. The proposed models were successful in predicting several experimentally observed behaviors e.g., low subharmonic thresholds and "compression-only" radial oscillations. Results indicate that neglecting the polydisperse size distribution of contrast agent suspensions, a common practice in the literature, can lead to inaccurate results. In vitro experimental investigation of the dependence of subharmonic response from these microbubbles on the ambient pressure is also in conformity with the recent numerical investigations, showing both increase or decrease under appropriate excitation conditions. Experimental characterization of the ELIPs and polymersomes was performed

  11. Precisely shaped acoustic ablation of tumors utilizing steerable needle and 3D ultrasound image guidance

    Science.gov (United States)

    Boctor, Emad M.; Stolka, Philipp; Kang, Hyun-Jae; Clarke, Clyde; Rucker, Caleb; Croom, Jordon; Burdette, E. Clif; Webster, Robert J., III

    2010-02-01

    Many recent studies have demonstrated the efficacy of interstitial ablative approaches for the treatment of hepatic tumors. Despite these promising results, current systems remain highly dependent on operator skill, and cannot treat many tumors because there is little control of the size and shape of the zone of necrosis, and no control over ablator trajectory within tissue once insertion has taken place. Additionally, tissue deformation and target motion make it extremely difficult to place the ablator device precisely into the target. Irregularly shaped target volumes typically require multiple insertions and several overlapping (thermal) lesions, which are even more challenging to accomplish in a precise, predictable, and timely manner without causing excessive damage to surrounding normal tissues. In answer to these problems, we have developed a steerable acoustic ablator called the ACUSITT with the ability of directional energy delivery to precisely shape the applied thermal dose . In this paper, we address image guidance for this device, proposing an innovative method for accurate tracking and tool registration with spatially-registered intra-operative three-dimensional US volumes, without relying on an external tracking device. This method is applied to guid-ance of the flexible, snake-like, lightweight, and inexpensive ACUSITT to facilitate precise placement of its ablator tip within the liver, with ablation monitoring via strain imaging. Recent advancements in interstitial high-power ultrasound applicators enable controllable and penetrating heating patterns which can be dynamically altered. This paper summarizes the design and development of the first synergistic system that integrates a novel steerable interstitial acoustic ablation device with a novel trackerless 3DUS guidance strategy.

  12. Imaging of Acoustically Coupled Oscillations Due to Flow Past a Shallow Cavity: Effect of Cavity Length Scale

    Energy Technology Data Exchange (ETDEWEB)

    P Oshkai; M Geveci; D Rockwell; M Pollack

    2004-05-24

    Flow-acoustic interactions due to fully turbulent inflow past a shallow axisymmetric cavity mounted in a pipe, which give rise to flow tones, are investigated using a technique of high-image-density particle image velocimetry in conjunction with unsteady pressure measurements. This imaging leads to patterns of velocity, vorticity, streamline topology, and hydrodynamic contributions to the acoustic power integral. Global instantaneous images, as well as time-averaged images, are evaluated to provide insight into the flow physics during tone generation. Emphasis is on the manner in which the streamwise length scale of the cavity alters the major features of the flow structure. These image-based approaches allow identification of regions of the unsteady shear layer that contribute to the instantaneous hydrodynamic component of the acoustic power, which is necessary to maintain a flow tone. In addition, combined image analysis and pressure measurements allow categorization of the instantaneous flow patterns that are associated with types of time traces and spectra of the fluctuating pressure. In contrast to consideration based solely on pressure spectra, it is demonstrated that locked-on tones may actually exhibit intermittent, non-phase-locked images, apparently due to low damping of the acoustic resonator. Locked-on flow tones (without modulation or intermittency), locked-on flow tones with modulation, and non-locked-on oscillations with short-term, highly coherent fluctuations are defined and represented by selected cases. Depending on which of these regimes occur, the time-averaged Q (quality)-factor and the dimensionless peak pressure are substantially altered.

  13. Pulse shaping and characterization with a 4f system

    CSIR Research Space (South Africa)

    Botha, N

    2010-10-01

    Full Text Available . 3. References [1] A. M. Weiner, Review of Scientific Instruments, Volume 71, Number 5, p. 1929-1960 [2] M. Cavallari, G.M. Gale, F. Hache, L.I. Pavlov, E. Rousseau, Optics Communication, Volume 114, p. 329 - 332 Fig.1: 4f pulse shaper...

  14. Trigonal bipyramidal 5d-4f molecules with SMM behavior.

    Science.gov (United States)

    Saber, Mohamed R; Dunbar, Kim R

    2014-02-28

    A family of trigonal bipyramidal (TBP) 5d-4f cyanide bridged aggregates were synthesized that exhibit slow relaxation of the magnetization below 4 K as indicated by a signal in the out-of-phase ac susceptibility data under zero field.

  15. A Bayesian approach for characterization of soft tissue viscoelasticity in acoustic radiation force imaging.

    Science.gov (United States)

    Zhao, Xiaodong; Pelegri, Assimina A

    2016-04-01

    Biomechanical imaging techniques based on acoustic radiation force (ARF) have been developed to characterize the viscoelasticity of soft tissue by measuring the motion excited by ARF non-invasively. The unknown stress distribution in the region of excitation limits an accurate inverse characterization of soft tissue viscoelasticity, and single degree-of-freedom simplified models have been applied to solve the inverse problem approximately. In this study, the ARF-induced creep imaging is employed to estimate the time constant of a Voigt viscoelastic tissue model, and an inverse finite element (FE) characterization procedure based on a Bayesian formulation is presented. The Bayesian approach aims to estimate a reasonable quantification of the probability distributions of soft tissue mechanical properties in the presence of measurement noise and model parameter uncertainty. Gaussian process metamodeling is applied to provide a fast statistical approximation based on a small number of computationally expensive FE model runs. Numerical simulation results demonstrate that the Bayesian approach provides an efficient and practical estimation of the probability distributions of time constant in the ARF-induced creep imaging. In a comparison study with the single degree of freedom models, the Bayesian approach with FE models improves the estimation results even in the presence of large uncertainty levels of the model parameters.

  16. Dynamic simulation of viscoelastic soft tissue in acoustic radiation force creep imaging.

    Science.gov (United States)

    Zhao, Xiaodong; Pelegri, Assimina A

    2014-09-01

    Acoustic radiation force (ARF) creep imaging applies step ARF excitation to induce creep displacement of soft tissue, and the corresponding time-dependent responses are used to estimate soft tissue viscoelasticity or its contrast. Single degree of freedom (SDF) and homogeneous analytical models have been used to characterize soft tissue viscoelasticity in ARF creep imaging. The purpose of this study is to investigate the fundamental limitations of the commonly used SDF and homogeneous assumptions in ARF creep imaging. In this paper, finite element (FE) models are developed to simulate the dynamic behavior of viscoelastic soft tissue subjected to step ARF. Both homogeneous and heterogeneous models are studied with different soft tissue viscoelasticity and ARF configurations. The results indicate that the SDF model can provide good estimations for homogeneous soft tissue with high viscosity, but exhibits poor performance for low viscosity soft tissue. In addition, a smaller focal region of the ARF is desirable to reduce the estimation error with the SDF models. For heterogeneous media, the responses of the focal region are highly affected by the local heterogeneity, which results in deterioration of the effectiveness of the SDF and homogeneous simplifications.

  17. Density Functional Study of Structures and Electron Affinities of BrO4F/BrO4F-

    Directory of Open Access Journals (Sweden)

    Wei Li

    2009-07-01

    Full Text Available The structures, electron affinities and bond dissociation energies of BrO4F/BrO4F− species have been investigated with five density functional theory (DFT methods with DZP++ basis sets. The planar F-Br…O2…O2 complexes possess 3A' electronic state for neutral molecule and 4A' state for the corresponding anion. Three types of the neutral-anion energy separations are the adiabatic electron affinity (EAad, the vertical electron affinity (EAvert, and the vertical detachment energy (VDE. The EAad value predicted by B3LYP method is 4.52 eV. The bond dissociation energies De (BrO4F → BrO4-mF + Om (m = 1-4 and De- (BrO4F- → BrO4-mF- + Om and BrO4F- → BrO4-mF + Om- are predicted. The adiabatic electron affinities (EAad were predicted to be 4.52 eV for F-Br…O2…O2 (3A'← 4A' (B3LYP method.

  18. An electrochemical and high-speed imaging study of micropore decontamination by acoustic bubble entrapment.

    Science.gov (United States)

    Offin, Douglas G; Birkin, Peter R; Leighton, Timothy G

    2014-03-14

    Electrochemical and high-speed imaging techniques are used to study the abilities of ultrasonically-activated bubbles to clean out micropores. Cylindrical pores with dimensions (diameter × depth) of 500 μm × 400 μm (aspect ratio 0.8), 125 μm × 350 μm (aspect ratio 2.8) and 50 μm × 200 μm (aspect ratio 4.0) are fabricated in glass substrates. Each pore is contaminated by filling it with an electrochemically inactive blocking organic material (thickened methyl salicylate) before the substrate is placed in a solution containing an electroactive species (Fe(CN)6(3-)). An electrode is fabricated at the base of each pore and the Faradaic current is used to monitor the decontamination as a function of time. For the largest pore, decontamination driven by ultrasound (generated by a horn type transducer) and bulk fluid flow are compared. It is shown that ultrasound is much more effective than flow alone, and that bulk fluid flow at the rates used cannot decontaminate the pore completely, but that ultrasound can. In the case of the 125 μm pore, high-speed imaging is used to elucidate the cleaning mechanisms involved in ultrasonic decontamination and reveals that acoustic bubble entrapment is a key feature. The smallest pore is used to explore the limits of decontamination and it is found that ultrasound is still effective at this size under the conditions employed.

  19. Imaging surface acoustic wave dynamics in semiconducting polymers by scanning ultrafast electron microscopy.

    Science.gov (United States)

    Najafi, Ebrahim; Liao, Bolin; Scarborough, Timothy; Zewail, Ahmed

    2017-08-24

    Understanding the mechanical properties of organic semiconductors is essential to their electronic and photovoltaic applications. Despite a large volume of research directed toward elucidating the chemical, physical and electronic properties of these materials, little attention has been directed toward understanding their thermo-mechanical behavior. Here, we report the ultrafast imaging of surface acoustic waves (SAWs) on the surface of the Poly(3-hexylthiophene-2,5-diyl) (P3HT) thin film at the picosecond and nanosecond timescales. We then use these images to measure the propagation velocity of SAWs, which we then employ to determine the Young's modulus of P3HT. We further validate our experimental observation by performing a semi-empirical transient thermoelastic finite element analysis. Our findings demonstrate the potential of ultrafast electron microscopy to not only probe charge carrier dynamics in materials as previously reported, but also to measure their mechanical properties with great accuracy. This is particularly important when in situ characterization of stiffness for thin devices and nanomaterials is required. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Assessment of liver steatosis in chicken by using acoustic radiation force impulse imaging: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Guzman Aroca, Florentina; Serrano, Laura; Berna-Serna, Juan D.; Reus, Manuel [Virgen de la Arrixaca University Hospital, Department of Radiology, El Palmar, Murcia (Spain); Ayala, Ignacio [University of Murcia, Department of Animal Medicine and Surgery, Murcia (Spain); Castell, Maria T. [University of Murcia, Department of Cell Biology, Murcia (Spain); Garcia-Perez, Bartolome [Virgen de la Arrixaca University Hospital, Internal Medicine Service, El Palmar, Murcia (Spain)

    2010-10-15

    To evaluate acoustic radiation force impulse (ARFI) imaging as a non-invasive tool for quantification of the grades of liver steatosis in chickens. We used two different diets: a standard diet (SD group) and a hyperlipidaemic diet (HD group). The ARFI technique was performed in all the animals in the right hepatic lobe and shear wave velocity (SWV) was measured and expressed in metres per second (m/s). Plasma lipid levels were analysed. Steatosis was quantified by using semiquantitative analysis. Statistical analysis was used and Pearson's correlation coefficient was calculated. Mean SWV was 0.94 {+-} 0.16 m/s (range 0.8-1.3 m/s) in the SD group and 1.91 {+-} 0.25 m/s (range 1.3-2.2 m/s) in the HD group (p < 0.001). The lowest SWVs ({<=}1.3 m/s) corresponded to the chickens in the SD group, with 100% of the animals returning a score of 0, whereas the range of SWV in the HD group chickens was between 1.6 and 2.2 m/s. A substantial correlation was observed between SWVs with histological semiquantitative analysis of steatosis (r = 0.85, p < 0.001). ARFI imaging is a non-invasive diagnostic tool that allows discrimination between the grades of liver steatosis in chickens. (orig.)

  1. Enlarging the angle of view in Michelson-interferometer-based shearography by embedding a 4f system.

    Science.gov (United States)

    Wu, Sijin; He, Xiaoyuan; Yang, Lianxiang

    2011-07-20

    Digital shearography based on Michelson interferometers suffers from the disadvantage of a small angle of view due to the structure. We demonstrate a novel digital shearography system with a large angle of view. In the optical arrangement, the imaging lens is in front of the Michelson interferometer rather than behind it as in traditional digital shearography. Thus, the angle of view is no longer limited by the Michelson interferometer. The images transmitting between the separate lens and camera are accomplished by a 4f system in the new style of shearography. The influences of the 4f system on shearography are also discussed.

  2. TU-F-CAMPUS-I-04: Head-Only Asymmetric Gradient System Evaluation: ACR Image Quality and Acoustic Noise

    Energy Technology Data Exchange (ETDEWEB)

    Weavers, P; Shu, Y; Tao, S; Bernstein, M [Mayo Clinic, Rochester, Minnesota (United States); Lee, S; Piel, J; Foo, T [GE Global Research, Niskayuna, NY (United States); Mathieu, J-B [GE Healthcare, Florence, SC (Italy)

    2015-06-15

    Purpose: A high-performance head-only magnetic resonance imaging gradient system with an acquisition volume of 26 cm employing an asymmetric design for the transverse coils has been developed. It is able to reach a magnitude of 85 mT/m at a slew rate of 700 T/m/s, but operated at 80 mT/m and 500 T/m/s for this test. A challenge resulting from this asymmetric design is that the gradient nonlinearly exhibits both odd- and even-ordered terms, and as the full imaging field of view is often used, the nonlinearity is pronounced. The purpose of this work is to show the system can produce clinically useful images after an on-site gradient nonlinearity calibration and correction, and show that acoustic noise levels fall within non-significant risk (NSR) limits for standard clinical pulse sequences. Methods: The head-only gradient system was inserted into a standard 3T wide-bore scanner without acoustic damping. The ACR phantom was scanned in an 8-channel receive-only head coil and the standard American College of Radiology (ACR) MRI quality control (QC) test was performed. Acoustic noise levels were measured for several standard pulse sequences. Results: Images acquired with the head-only gradient system passed all ACR MR image quality tests; Both even and odd-order gradient distortion correction terms were required for the asymmetric gradients to pass. Acoustic noise measurements were within FDA NSR guidelines of 99 dBA (with assumed 20 dBA hearing protection) A-weighted and 140 dB for peak for all but one sequence. Note the gradient system was installed without any shroud or acoustic batting. We expect final system integration to greatly reduce noise experienced by the patient. Conclusion: A high-performance head-only asymmetric gradient system operating at 80 mT/m and 500 T/m/s conforms to FDA acoustic noise limits in all but one case, and passes all the ACR MR image quality control tests. This work was supported in part by the NIH grant 5R01EB010065.

  3. Acoustic Imaging of Microstructure and Evaluation of the Adhesive's Physical, Mechanical and Chemical Properties Changes at Different Cure States

    Science.gov (United States)

    Severina, I. A.; Fabre, A. J.; Maeva, E. Yu.

    Epoxy thermoset adhesives transform during cure from liquid state into the highly cross-linked solid. Cure state of the material depends on condition of the reaction (temperature, pressure, time etc.) and resin/hardener ratio. It is known that the cure degree of the adhesive correlates with adhesion strength, which is critical for structural adhesives used in automotive, aerospace and marine industries. In this work, characterization of cure process of the adhesive with acoustic methods is presented. Evolution of the acoustic and elastic properties (attenuation, sound velocity, density, elastic moduli) during cure reaction was monitored in relation to the substantial physical and chemical changes of the material. These macro parameters of the adhesive were compared with the material's microstructure obtained by high-resolution acoustic microscopy technique in frequencies range of 50-400 MHz. Development of the microstructure of the adhesive as it cures at different conditions has been investigated. Appearance and development of the granular structure on the adhesive interface during cure reaction has been demonstrated. Acoustic images were analyzed by mathematical method to quantitatively characterize distribution of the adhesive's components. Statistical analysis of such images provides an accurate quantitative measure of the degree of cure of such samples. Research results presented in this paper can be useful as a basis for non-destructive evaluation of the adhesive materials

  4. Efficient modeling of flat and homogeneous acoustic treatments for vibroacoustic finite element analysis. Finite size correction by image sources

    Science.gov (United States)

    Alimonti, L.; Atalla, N.

    2017-02-01

    This work is concerned with the hybrid finite element-transfer matrix methodology recently proposed by the authors. The main assumption behind this hybrid method consists in neglecting the actual finite lateral extent of the acoustic treatment. Although a substantial increase of the computational efficiency can be achieved, the effect of the reflected field (i.e. finite size effects) may be sometimes important, preventing the hybrid model from giving quantitative meaningful results. For this reason, a correction to account for wave reflections at the lateral boundaries of the acoustic treatment is sought. It is shown in the present paper that the image source method can be successfully employed to retrieve such finite size effects. Indeed, such methodology is known to be effective when the response of the system is a smooth function of the frequency, like in the case of highly dissipative acoustic treatments. The main concern of this paper is to assess accuracy and feasibility of the image source method in the context of acoustic treatments modeling. Numerical examples show that the performance of the standard hybrid model can be substantially improved by the proposed correction without deteriorating excessively the computational efficiency.

  5. Imaging electrical impedance from acoustic measurements by means of magnetoacoustic tomography with magnetic induction (MAT-MI).

    Science.gov (United States)

    Li, Xu; Xu, Yuan; He, Bin

    2007-02-01

    We have conducted computer simulation and experimental studies on magnetoacoustic-tomography with magnetic induction (MAT-MI) for electrical impedance imaging. In MAT-MI, the object to be imaged is placed in a static magnetic field, while pulsed magnetic stimulation is applied in order to induce eddy current in the object. In the static magnetic field, the Lorentz force acts upon the eddy current and causes acoustic vibrations in the object. The propagated acoustic wave is then measured around the object to reconstruct the electrical impedance distribution. In the present simulation study, a two-layer spherical model is used. Parameters of the model such as sample size, conductivity values, strength of the static and pulsed magnetic field, are set to simulate features of biological tissue samples and feasible experimental constraints. In the forward simulation, the electrical potential and current density are solved using Poisson's equation, and the acoustic pressure is calculated as the forward solution. The electrical impedance distribution is then reconstructed from the simulated pressure distribution surrounding the sample. The present computer simulation results suggest that MAT-MI can reconstruct conductivity images of biological tissue with high spatial resolution and high contrast. The feasibility of MAT-MI in providing high spatial resolution images containing impedance-related information has also been demonstrated in a phantom experiment.

  6. Acoustic radiation force impulse (ARFI) imaging: Characterizing the mechanical properties of tissues using their transient response to localized force

    Science.gov (United States)

    Nightingale, Kathryn R.; Palmeri, Mark L.; Congdon, Amy N.; Frinkely, Kristin D.; Trahey, Gregg E.

    2004-05-01

    Acoustic radiation force impulse (ARFI) imaging utilizes brief, high energy, focused acoustic pulses to generate radiation force in tissue, and conventional diagnostic ultrasound methods to detect the resulting tissue displacements in order to image the relative mechanical properties of tissue. The magnitude and spatial extent of the applied force is dependent upon the transmit beam parameters and the tissue attenuation. Forcing volumes are on the order of 5 mm3, pulse durations are less than 1 ms, and tissue displacements are typically several microns. Images of tissue displacement reflect local tissue stiffness, with softer tissues (e.g., fat) displacing farther than stiffer tissues (e.g., muscle). Parametric images of maximum displacement, time to peak displacement, and recovery time provide information about tissue material properties and structure. In both in vivo and ex vivo data, structures shown in matched B-mode images are in good agreement with those shown in ARFI images, with comparable resolution. Potential clinical applications under investigation include soft tissue lesion characterization, assessment of focal atherosclerosis, and imaging of thermal lesion formation during tissue ablation procedures. Results from ongoing studies will be presented. [Work supported by NIH Grant R01 EB002132-03, and the Whitaker Foundation. System support from Siemens Medical Solutions USA, Inc.

  7. Three-dimensional acoustic imaging with planar microphone arrays and compressive sensing

    Science.gov (United States)

    Ning, Fangli; Wei, Jingang; Qiu, Lianfang; Shi, Hongbing; Li, Xiaofan

    2016-10-01

    For obtaining super-resolution source maps, we extend compressive sensing (CS) to three-dimensional acoustic imaging. Source maps are simulated with a planar microphone array and a CS algorithm. Comparing the source maps of the CS algorithm with those of the conventional beamformer (CBF) and Tikhonov Regularization (TIKR), we find that the CS algorithm is computationally more effective and can obtain much higher resolution source maps than the CBF and TIKR. The effectiveness of the CS algorithm is analyzed. The CS algorithm can locate the sound sources exactly when the frequency is above 4000 Hz and the signal-to-noise ratio (SNR) is above 12 dB. The location error of the CS algorithm increases as the frequency drops below the threshold, and the errors in location and power increase as SNR decreases. The further from the array the source is, the larger the location error is. The lateral resolution of the CS algorithm is much better than the range resolution. Finally, experimental measurements are conducted in a semi-anechoic room. Two mobile phones are served as sound sources. The results show that the CS algorithm can reconstruct two sound sources near the bottom of the two mobile phones where the speakers are located. The feasibility of the CS algorithm is also validated with the experiment.

  8. Acoustic radiation force imaging sonoelastography for noninvasive staging of liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    Carmen Fierbinteanu-Braticevici; Dan Andronescu; Radu Usvat; Dragos Cretoiu; Cristian Baicus; Gabriela Marinoschi

    2009-01-01

    AIM: To investigate the diagnostic accuracy of acoustic radiation force impulse (ARFI) imaging as a noninvasive method for the assessment of liver fibrosis in chronic hepatitis C (CHC) patients.METHODS: We performed a prospective blind comparison of ARFI elastography, APRI index and FibroMax in a consecutive series of patients who underwent liver biopsy for CHC in University Hospital Bucharest. Histopathological staging of liver fibrosis according to the METAVIR scoring system served as the reference. A total of 74 patients underwent ARFI elastography, APRI index, FibroMax and successful liver biopsy.RESULTS: The noninvasive tests had a good correlation with the liver biopsy results. The most powerful test in predicting fibrosis was ARFI elastography. The diagnostic accuracy of ARFI elastography, expressed as area under receiver operating characteristic curve (AUROC) had a validity of 90.2% (95% CI AUROC =0.831-0.972, P < 0.001) for the diagnosis of significant fibrosis (F ≥ 2). ARFI sonoelastography predicted even better F3 or F4 fibrosis (AUROC = 0.993, 95% CI =0.979-1).CONCLUSION: ARFI elastography had very good accuracy for the assessment of liver fibrosis and was superior to other noninvasive methods (APRI Index,FibroMax) for staging liver fibrosis.

  9. Detecting crack profile in concrete using digital image correlation and acoustic emission

    Directory of Open Access Journals (Sweden)

    Loukili A.

    2010-06-01

    Full Text Available Failure process in concrete structures is usually accompanied by cracking of concrete. Understanding the cracking pattern is very important while studying the failure governing criteria of concrete. The cracking phenomenon in concrete structures is usually complex and involves many microscopic mechanisms caused by material heterogeneity. Since last many years, fracture or damage analysis by experimental examinations of the cement based composites has shown importance to evaluate the cracking and damage behavior of those heterogeneous materials with damage accumulation due to microcracks development ahead of the propagating crack tip; and energy dissipation resulted during the evolution of damage in the structure. The techniques used in those experiments may be the holographic interferometry, the dye penetration, the scanning electron microscopy, the acoustic emission etc. Those methods offer either the images of the material surface to observe micro-features of the concrete with qualitative analysis, or the black-white fringe patterns of the deformation on the specimen surface, from which it is difficult to observe profiles of the damaged materials.

  10. Testicular microlithiasis and preliminary experience of acoustic radiation force impulse imaging

    Science.gov (United States)

    Osther, Palle Jørn Sloth; Rafaelsen, Søren Rafael

    2016-01-01

    Background Elastography of the testis can be used as a part of multiparametric examination of the scrotum. Purpose To determine the testicular stiffness using acoustic radiation force impulse imaging (ARFI) technique in men with testicular microlithiasis (TML). Material and Methods In 2013, 12 patients with diagnosed testicular microlithiasis in 2008 (mean age, 51 years; age range, 25–76 years) underwent a 5-year follow-up B-mode ultrasonography with three ARFI elastography measurements of each testis. We used a Siemens Acuson S3000 machine. Results No malignancy was found at the 5-year follow-up B-mode and elastography in 2013. However, we found an increase in TML; in the previous ultrasonography in 2008, eight men had bilateral TML, whereas in 2013, 10 men were diagnosed with bilateral TML. The mean elasticity of testicles with TML was 0.82 m/s (interquartile range [IQR], 0.72–0.88 m/s; range, 65–1.08 m/s). Conclusion Elastography velocity of testis with TML seems to be in the same velocity range as in men with normal testis tissue. PMID:27504193

  11. Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity

    Science.gov (United States)

    Ambroziński, Łukasz; Song, Shaozhen; Yoon, Soon Joon; Pelivanov, Ivan; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O’Donnell, Matthew

    2016-12-01

    Elastography plays a key role in characterizing soft media such as biological tissue. Although this technology has found widespread use in both clinical diagnostics and basic science research, nearly all methods require direct physical contact with the object of interest and can even be invasive. For a number of applications, such as diagnostic measurements on the anterior segment of the eye, physical contact is not desired and may even be prohibited. Here we present a fundamentally new approach to dynamic elastography using non-contact mechanical stimulation of soft media with precise spatial and temporal shaping. We call it acoustic micro-tapping (AμT) because it employs focused, air-coupled ultrasound to induce significant mechanical displacement at the boundary of a soft material using reflection-based radiation force. Combining it with high-speed, four-dimensional (three space dimensions plus time) phase-sensitive optical coherence tomography creates a non-contact tool for high-resolution and quantitative dynamic elastography of soft tissue at near real-time imaging rates. The overall approach is demonstrated in ex-vivo porcine cornea.

  12. Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials.

    Science.gov (United States)

    Liu, Aiping; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai

    2012-10-01

    The resonant tunneling effects that could result in complete transmission of evanescent waves are examined in acoustic metamaterials of anisotropic effective mass. The tunneling conditions are first derived for the metamaterials composed of classical mass-in-mass structures. It is found that the tunneling transmission occurs when the total length of metamaterials is an integral number of half-wavelengths of the periodic Bloch wave. Due to the local resonance of building units of metamaterials, the Bloch waves are spatially modulated within the periodic structures, leading to the resonant tunneling occurring in the low-frequency region. The metamaterial slab lens with anisotropic effective mass is designed by which the physics of resonant tunneling and the features for evanescent field manipulations are examined. The designed lens interacts with evanescent waves in the way of the propagating wavenumber weakly dependent on the spatial frequency of evanescent waves. Full-wave simulations validate the imaging performance of the proposed lens with the spatial resolution beyond the diffraction limit.

  13. Optimization of acoustic emitted field of transducer array for ultrasound imaging.

    Science.gov (United States)

    He, Zhengyao

    2014-01-01

    A method is proposed to calculate the weight vector of a transducer array for ultrasound imaging to obtain a low-sidelobe transmitting beam pattern based on the near-field response vector. An optimization problem is established, and the second-order cone (SOC) algorithm is used to solve the problem to obtain the weight vector. The optimized acoustic emitted field of the transducer array is then calculated using the Field II program by applying the obtained weight vector to the array. The simulation results with a 64-element 26 MHz linear phased array show that the proposed method can be used to control the sidelobe of the near-field transmitting beam pattern of the transducer array and achieve a low-sidelobe level. The near-field sound pressure distribution of the transducer array using the proposed method focuses much better than that using the standard delay and sum (DAS) beamforming method. The sound energy is more concentrated using the proposed method.

  14. Test-bench system for a borehole azimuthal acoustic reflection imaging logging tool

    Science.gov (United States)

    Liu, Xianping; Ju, Xiaodong; Qiao, Wenxiao; Lu, Junqiang; Men, Baiyong; Liu, Dong

    2016-06-01

    The borehole azimuthal acoustic reflection imaging logging tool (BAAR) is a new generation of imaging logging tool, which is able to investigate stratums in a relatively larger range of space around the borehole. The BAAR is designed based on the idea of modularization with a very complex structure, so it has become urgent for us to develop a dedicated test-bench system to debug each module of the BAAR. With the help of a test-bench system introduced in this paper, test and calibration of BAAR can be easily achieved. The test-bench system is designed based on the client/server model. The hardware system mainly consists of a host computer, an embedded controlling board, a bus interface board, a data acquisition board and a telemetry communication board. The host computer serves as the human machine interface and processes the uploaded data. The software running on the host computer is designed based on VC++. The embedded controlling board uses Advanced Reduced Instruction Set Machines 7 (ARM7) as the micro controller and communicates with the host computer via Ethernet. The software for the embedded controlling board is developed based on the operating system uClinux. The bus interface board, data acquisition board and telemetry communication board are designed based on a field programmable gate array (FPGA) and provide test interfaces for the logging tool. To examine the feasibility of the test-bench system, it was set up to perform a test on BAAR. By analyzing the test results, an unqualified channel of the electronic receiving cabin was discovered. It is suggested that the test-bench system can be used to quickly determine the working condition of sub modules of BAAR and it is of great significance in improving production efficiency and accelerating industrial production of the logging tool.

  15. A simulation technique for 3D MR-guided acoustic radiation force imaging

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Allison, E-mail: apayne@ucair.med.utah.edu [Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah 84112 (United States); Bever, Josh de [Department of Computer Science, University of Utah, Salt Lake City, Utah 84112 (United States); Farrer, Alexis [Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 (United States); Coats, Brittany [Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Parker, Dennis L. [Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah 84108 (United States); Christensen, Douglas A. [Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112 and Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  16. ee4fγ—A program for e+e-→4f,4f γ with nonzero fermion masses

    Science.gov (United States)

    Kołodziej, Karol; Jegerlehner, Fred

    2004-05-01

    A computer program ee4fγ for calculating cross-sections of any four fermion final state of e+e--annihilation at high energy and the corresponding bremsstrahlung reaction that is possible in the framework of the Standard Model is presented. As the fermion masses are arbitrary, the cross-sections for channels that do not contain e+ and/or e- in the final state can be computed without any collinear cut, the on-shell top quark production can be studied and the Higgs boson exchange can be incorporated in a consistent way. The program can be used as a Monte Carlo generator of unweighted events as well. Program summaryTitle of program:ee4fγ Version: 1.0 (February 2004) Catalogue identifier: ADTQ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTQ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computers: all Operating systems: Unix/Linux Programming language used:FORTRAN 90 CPC Program Library subprograms used:RANLUX, ACPR RANLUX 79 (1994) 111—a random number generator Memory required to execute with typical data: 4.0 Mb No. of bits in a word: 32 No. of bytes in distributed program, including test data, etc.: 364 490 No. of lines in distributed program, including test data, etc.: 45 278 Distribution format: tar gzip file Nature of physical problem: Description of all e+e-→4 fermions and corresponding bremsstrahlung reactions that are possible in the Standard Model (SM) to lowest order and with nonzero fermion masses at center of mass energies typical for next generation linear colliders. Such reactions are relevant, typically, for W-pair or intermediate mass Higgs boson production and decay. Method of solution: Matrix elements are calculated with the helicity amplitude method. The phase space integration is performed numerically utilizing a multi-channel Monte Carlo method. Restrictions on complexity of the problem: No higher order effects are taken into account, except for assuming the fine

  17. Seeing Sound - Image Analysis of the Lift-off Acoustic Field Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A launch vehicle and its launch facilities are subjected to intense acoustic loads generated by the vehicle's propulsion system. The vehicle, its payload, and...

  18. Seeing Sound - Image Analysis of the Lift-off Acoustic Field Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A launch vehicle and its launch facilities are subjected to intense acoustic loads generated by the vehicle's propulsion system. The vehicle, its payload, and...

  19. High-speed imaging, acoustic features, and aeroacoustic computations of jet noise from Strombolian (and Vulcanian) explosions

    Science.gov (United States)

    Taddeucci, J.; Sesterhenn, J.; Scarlato, P.; Stampka, K.; Del Bello, E.; Pena Fernandez, J. J.; Gaudin, D.

    2014-05-01

    High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.

  20. Assessment of hepatic VX2 tumors of rabbits with second harmonic imaging under high and low acoustic pressures

    Institute of Scientific and Technical Information of China (English)

    Wen-Hua Du; Wei-Xiao Yang; Xiang Wang; Xiu-Qin Xiong; Yi Zhou; Tao Li

    2003-01-01

    AIM: To investigate the possible clinical application value of second harmonic imaging under low acoustic pressure.METHODS: Six New Zealand rabbits, averaging 2.7±0.4kg, were selected and operated upon to construct hepatic VX2 tumor carrier model. Hepatic VX2 tumors were imaged with B mode Ultrasonography (US), and second harmonic imaging (SHI) under high mechanic index (1.6) and low mechanic index (0.1). Echo agent was intravenously injected through ear vein at a dose of 0.01 mL/kg under B mode US and high MI SHI, and 0.05 mL/kg under low MI SHI, and then the venous channel was cleaned with sterilized saline.All the images were recorded by magnetic optics (MO),and they were analyzed further by at least two independent experienced sonographers.RESULTS: Totally 6 hypoechoic and 3 hyperechoic lesions were found in the six carrier rabbits with a mean size about 2.1±0.4 under B mode ultrasound, they were oval or round in shape with a clear outline or a hypoechoic halo at the margin of the lesions. Contrast agent could not change the echogenicity of the lesions under B mode US and SHI under high acoustic pressure. However, it could greatly increase the real time visualization sensitivity of the lesions with SHI under low acoustic pressure.CONCLUSION: Our results suggest that contrast enhanced SHI with low MI and a bubble non-destructive method would be much more helpful than conventional SHI in our future clinical applications.

  1. Apparatus for real-time acoustic imaging of Rayleigh-Bénard convection

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Kerry, K.

    2008-10-28

    We have successfully designed, built and tested an experimental apparatus which is capable of providing the first real-time ultrasound images of Rayleigh-B\\'{e}nard convection in optically opaque fluids confined to large aspect ratio experimental cells. The apparatus employs a modified version of a commercially available ultrasound camera to capture images (30 frames per second) of flow patterns in a fluid undergoing Rayleigh Bénard convection. The apparatus was validated by observing convection rolls in 5cSt polydimethylsiloxane (PDMS) polymer fluid. Our first objective, after having built the apparatus, was to use it to study the sequence of transitions from diffusive to time--dependent heat transport in liquid mercury. The aim was to provide important information on pattern formation in the largely unexplored regime of very low Prandtl number fluids. Based on the theoretical stability diagram for liquid mercury, we anticipated that straight rolls should be stable over a range of Rayleigh numbers, between 1708 and approximately 1900. Though some of our power spectral densities were suggestive of the existence of weak convection, we have been unable to unambiguously visualize stable convection rolls above the theoretical onset of convection in liquid mercury. Currently, we are seeking ways to increase the sensitivity of our apparatus, such as (i) improving the acoustic impedance matching between our materials in the ultrasound path and (ii) reducing the noise level in our acoustic images due to turbulence and cavitation in the cooling fluids circulating above and below our experimental cell. If we are able to convincingly improve the sensitivity of our apparatus, and we still do not observe stable convection rolls in liquid mercury, then it may be the case that the theoretical stability diagram requires revision. In that case, either (i) straight rolls are not stable in a large aspect ratio cell at the Prandtl numbers associated with liquid mercury, or (ii

  2. Nearfield Acoustical Holography

    Science.gov (United States)

    Hayek, Sabih I.

    Nearfield acoustical holography (NAH) is a method by which a set of acoustic pressure measurements at points located on a specific surface (called a hologram) can be used to image sources on vibrating surfaces on the acoustic field in three-dimensional space. NAH data are processed to take advantage of the evanescent wavefield to image sources that are separated less that one-eighth of a wavelength.

  3. Energies of 4f^N and 4f^N-15d States Relative to Host Bands in Rare-earth-doped Fluorides

    Science.gov (United States)

    Thiel, C. W.; Joubert, M.-F.; Tkachuk, A.

    2005-03-01

    Energies of 4f^N states relative to crystal band states were measured for rare-earth ions in the optical host materials LiYF4, Na0.4Y0.6F2.2, and LaF3 using x-ray photoemission spectroscopy. Spectra were modeled to determine the valence band maximum and 4f^ electron binding energies in each material. These results were combined with 4f^N to 4f^N-15d transition energies to determine 5d binding energies for the lowest levels of excited 4f^N-15d configurations. While 4f^N ground-state energies vary within several eV of the valence band maximum for different rare-earth ions in each host, the lowest 4f^N-15d states have similar energies and are several eV below the bottom of the conduction band. A simple model accurately described 4f^N and 4f^N-15d binding energies across the entire series of rare-earth ions. These results improve the understanding of optical materials for lasers, phosphors, and spectral hole burning applications for optical signal processing and data storage.

  4. Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method.

    Science.gov (United States)

    Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping

    2015-05-01

    We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.

  5. A rapid magnetic resonance acoustic radiation force imaging sequence for ultrasonic refocusing

    Science.gov (United States)

    Mougenot, Charles; Pichardo, Samuel; Engler, Steven; Waspe, Adam; Constanciel Colas, Elodie; Drake, James M.

    2016-08-01

    Magnetic resonance guided acoustic radiation force imaging (MR-ARFI) is being used to correct for aberrations induced by tissue heterogeneities when using high intensity focusing ultrasound (HIFU). A compromise between published MR-ARFI adaptive solutions is proposed to achieve efficient refocusing of the ultrasound beam in under 10 min. In addition, an ARFI sequence based on an EPI gradient echo sequence was used to simultaneously monitor displacement and temperature with a large SNR and low distortion. This study was conducted inside an Achieva 3T clinical MRI using a Philips Sonalleve MR-HIFU system to emit a 1 ms pulsed sonication with duty cycle of 2.3% at 300 Wac inside a polymer phantom. Virtual elements defined by a Hadamard array with sonication patterns composed of 6 phase steps were used to characterize 64 groups of 4 elements to find the optimal phase of the 256 elements of the transducer. The 384 sonication patterns were acquired in 580 s to identify the set of phases that maximize the displacement at the focal point. Three aberrators (neonatal skull, 8 year old skull and a checkered pattern) were added to each sonication pattern to evaluate the performance of this refocusing algorithm (n  =  4). These aberrators reduced the relative intensities to 95.3%, 69.6% and 25.5% for the neonatal skull, 8 year old skull, and checkered pattern virtual aberrators respectively. Using a 10 min refocusing algorithm, relative intensities of 101.6%, 91.3% and 93.3% were obtained. Better relative intensities of 103.9%, 94.3% and 101% were achieved using a 25 min refocusing algorithm. An average temperature increase of 4.2 °C per refocusing test was induced for the 10 min refocusing algorithm, resulting in a negligible thermal dose of 2 EM. A rapid refocusing of the beam can be achieved while keeping thermal effects to a minimum.

  6. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2001-07-01

    Mechanically weak formations, such as chalks, high porosity sandstones, and marine sediments, pose significant problems for oil and gas operators. Problems such as compaction, subsidence, and loss of permeability can affect reservoir production operations. For example, the unexpected subsidence of the Ekofisk chalk in the North Sea required over one billion dollars to re-engineer production facilities to account for losses created during that compaction (Sulak 1991). Another problem in weak formations is that of shallow water flows (SWF). Deep water drilling operations sometimes encounter cases where the marine sediments, at shallow depths just below the seafloor, begin to uncontrollably flow up and around the drill pipe. SWF problems created a loss of $150 million for the Ursa development project in the U.S. Gulf Coast SWF (Furlow 1998a,b; 1999a,b). The goal of this project is to provide a database on both the rock mechanical properties and the geophysical properties of weak rocks and sediments. These could be used by oil and gas companies to detect, evaluate, and alleviate potential production and drilling problems. The results will be useful in, for example, pre-drill detection of events such as SWF's by allowing a correlation of seismic data (such as hazard surveys) to rock mechanical properties. The data sets could also be useful for 4-D monitoring of the compaction and subsidence of an existing reservoir and imaging the zones of damage. During the second quarter of the project the research team has: (1) completed acoustic sensor construction, (2) conducted reconnaissance tests to map the deformational behaviors of the various rocks, (3) developed a sample assembly for the measurement of dynamic elastic and poroelastic parameters during triaxial testing, and (4) conducted a detailed review of the scientific literature and compiled a bibliography of that review. During the first quarter of the project the research team acquired several rock types for

  7. Accessing 4f-states in single-molecule spintronics.

    Science.gov (United States)

    Fahrendorf, Sarah; Atodiresei, Nicolae; Besson, Claire; Caciuc, Vasile; Matthes, Frank; Blügel, Stefan; Kögerler, Paul; Bürgler, Daniel E; Schneider, Claus M

    2013-01-01

    Magnetic molecules are potential functional units for molecular and supramolecular spintronic devices. However, their magnetic and electronic properties depend critically on their interaction with metallic electrodes. Charge transfer and hybridization modify the electronic structure and thereby influence or even quench the molecular magnetic moment. Yet, detection and manipulation of the molecular spin state by means of charge transport, that is, spintronic functionality, mandates a certain level of hybridization of the magnetic orbitals with electrode states. Here we show how a judicious choice of the molecular spin centres determines these critical molecule-electrode contact characteristics. In contrast to late lanthanide analogues, the 4f-orbitals of single bis(phthalocyaninato)-neodymium(III) molecules adsorbed on Cu(100) can be directly accessed by scanning tunnelling microscopy. Hence, they contribute to charge transport, whereas their magnetic moment is sustained as evident from comparing spectroscopic data with ab initio calculations. Our results showcase how tailoring molecular orbitals can yield all-electrically controlled spintronic device concepts.

  8. Enlarged acceptance angle of a finite size detector in photoacoustic imaging using acoustic lenses

    NARCIS (Netherlands)

    Xia, W.; Piras, D.; Heijblom, Michelle; van Hespen, Johannes C.G.; Steenbergen, Wiendelt; Manohar, Srirang; van Veldhoven, Spiridon; Prins, Christian; van Leeuwen, Ton

    2011-01-01

    A large surface area transducer is preferable to be used to detect extremely weak photoacoustic signals in mammography due to its high sensitivity. The lateral resolution is limited by the small acceptance angle of such a transducer. We introduce an excellent material for an acoustic lens used to en

  9. Acoustic imaging in application to reconstruction of rough rigid surface with airborne ultrasound waves

    Science.gov (United States)

    Krynkin, A.; Dolcetti, G.; Hunting, S.

    2017-02-01

    Accurate reconstruction of the surface roughness is of high importance to various areas of science and engineering. One important application of this technology is for remote monitoring of open channel flows through observing its dynamic surface roughness. In this paper a novel airborne acoustic method of roughness reconstruction is proposed and tested with a static rigid rough surface. This method is based on the acoustic holography principle and Kirchhoff approximation which make use of acoustic pressure data collected at multiple receiver points spread along an arch. The Tikhonov regularisation and generalised cross validation technique are used to solve the underdetermined system of equations for the acoustic pressures. The experimental data are collected above a roughness created with a 3D printer. For the given surface, it is shown that the proposed method works well with the various number of receiver positions. In this paper, the tested ratios between the number of surface points at which the surface elevation can be reconstructed and number of receiver positions are 2.5, 5, and 7.5. It is shown that, in a region comparable with the projected size of the main directivity lobe, the method is able to reconstruct the spatial spectrum density of the actual surface elevation with the accuracy of 20%.

  10. Acoustic Rhinometry (AR): An alternative method to image nasal airway geometry

    DEFF Research Database (Denmark)

    Straszek, Sune

    2007-01-01

    In acoustic rhinometry (AR) a soud pulse enters the nasal cavity, where it is reflected due to changes in the local impedances. From the incident and reflected sound signal we use the Ware-Aki algorithm to calculate an area-distance relationship. The method has been validated in nasal cavity models...

  11. Integration of acoustic radiation force and optical imaging for blood plasma clot stiffness measurement.

    Science.gov (United States)

    Wang, Caroline W; Perez, Matthew J; Helmke, Brian P; Viola, Francesco; Lawrence, Michael B

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood's transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties.

  12. Investigation of energy shift of 4f3 and 4f5d levels in Nd-doped YLF and LLF crystals

    Directory of Open Access Journals (Sweden)

    André Felipe Henriques Librantz

    2006-01-01

    Full Text Available We observed ultraviolet (UV luminescence from 4f25d and 4f3 configuration in Nd-doped YLiF4 (YLF and LuLiF4 (LLF crystals induced by multiphotonic excitation of the three photons (532 nanometers [nm]. The LLF lattice is more compact than the YLF crystal and favours an absorption and emission shift of the main peaks due to crystal field strength. The red and blue shifts of the emission bands towards to lower (and higher energy are different for the transitions from 4f3 and 4f25d levels. The 4f3 transitions have smaller shift (~5 times smaller than the shift of the 4f25d due to 5s25p6 closed-shell shielding effect. On the other hand the 4f25d transitions are more susceptible to lattice change. The effect of the crystalline field was compared for both lattice. The result shows that these emission bands from 4f25d configuration always shift to lower energy when substituting the Y3+ by Lu3+ (i.e., the last one has the ionic radius 5% smaller than Y3+.

  13. Acoustic profiles and images of the Palos Verdes margin: Implications concerning deposition from the White's Point outfall

    Science.gov (United States)

    Hampton, M.A.; Karl, Herman A.; Murray, C.J.

    2002-01-01

    Subbottom profiles and sidescan-sonar images collected on and around the Palos Verdes Shelf show a surficial deposit interpreted to contain effluent from the White's Point diffusers, as well as showing several geologic features that affect the deposit's distribution. The effluent-affected deposit is visible in high-resolution subbottom profiles on the shelf and the adjacent San Pedro basin slope to water depths of 170 m. It has a maximum thickness of 75 cm and was mapped acoustically over an area of 10.8 km2, which encompasses a volume of about 3.2 million m3. The deposit's basal reflector is acoustically distinct over most of the mapped area. implying that the deposit has not been extensively mixed across its base, perhaps being relatively free of reworking since its initial deposition. Nearshore, the basal reflector is weak and fades away toward land, which could result from syndepositional intermixing of coarse native sediment (particularly from the Portuguese Bend landslide) with effluent in the high-energy nearshore zone, or postdepositionally by physical (wave) or biological mixing across the interface. The geometry of the deposit implies that effluent is dispersed primarily in a northwesterly and seaward direction from the diffusers. Dispersal across the shelf break is in some places strongly affected by topography, particularly by submarine canyons. The deposit overlies stratified and unstratified Quaternary sediment, up to 30m thick, that in turn overlies the irregular erosional surface of deformed Miocene bedrock that crops out in places on the shelf and upper basin slope. The effluent-affected deposit rests on potentially unstable landslide deposits on the San Pedro basin slope. The acoustic profiles and side-scan images show evidence for active and inactive vents, probably of hot water and gas, some of which are within the boundary of the effluent-affected sediment deposit and could disrupt it if seepage occurs. ?? 2002 Elsevier Science Ltd. All rights

  14. Neutralization epitopes on rotavirus SA11 4fM outer capsid proteins.

    Science.gov (United States)

    Gorziglia, M; Larralde, G; Ward, R L

    1990-01-01

    The VP7 and VP4 genes of seven antigenic mutants of simian rotavirus SA11 4fM (serotype 3) selected after 39 passages in the presence of SA11 4fM hyperimmune antiserum, were sequenced. Nucleotide sequence analysis indicated the following. (i) Twice as many amino acid substitutions occurred in the VP7 protein than in VP4, which has a molecular weight twice that of VP7. (ii) Most amino acid changes that occurred clustered in six variable regions of VP7 and in two variable regions of VP4; these variable regions may represent immunodominant epitopes. (iii) Most amino acid substitutions that occurred in VP7 and VP4 of these mutants were also observed in antigenic mutants selected with neutralizing monoclonal antibodies (NMAbs); however, some amino acid substitutions occurred that were not selected for NMAbs. (iv) On VP7, some of the neutralization epitopes appeared to be interrelated because amino acid substitution in one site affected binding of specific NMAbs to other sites, while other neutralization epitopes on VP7 appeared to be independent, in that amino acid substitution in one site did not affect the binding of NMAbs to another distant site. Images PMID:1696640

  15. Clinical utility of acoustic radiation force impulse imaging for identification of malignant liver lesions: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Li; Lin, Xiao; Xie, Zuo-Liu; Tang, Fei-Yun; Hu, Yuan-Ping [First Affiliated Hospital of Wenzhou Medical College, Department of Ultrasonography, Wenzhou (China); Shi, Ke-Qing [First Affiliated Hospital of Wenzhou Medical College, Department of Infection and Liver Diseases, Institution of Hepatology, Wenzhou (China)

    2012-12-15

    To assess the performance of acoustic radiation force impulse (ARFI) imaging for identification of malignant liver lesions using meta-analysis. PubMed, the Cochrane Library, the ISI Web of Knowledge and the China National Knowledge Infrastructure were searched. The studies published in English or Chinese relating to evaluation accuracy of ARFI imaging for identification of malignant liver lesions were collected. A hierarchical summary receiver operating characteristic (HSROC) curve was used to examine the ARFI imaging accuracy. Clinical utility of ARFI imaging for identification of malignant liver lesions was evaluated by Fagan plot analysis. A total of eight studies which included 590 liver lesions were analysed. The summary sensitivity and specificity for identification of malignant liver lesions were 0.86 (95 % confidence interval (CI) 0.74-0.93) and 0.89 (95 % CI 0.81-0.94), respectively. The HSROC was 0.94 (95 % CI 0.91-0.96). After ARFI imaging results over the cut-off value for malignant liver lesions (''positive'' result), the corresponding post-test probability for the presence (if pre-test probability was 50 %) was 89 %; in ''negative'' measurement, the post-test probability was 13 %. ARFI imaging has a high accuracy in the classification of liver lesions. (orig.)

  16. Clinical feasibility study of combined opto-acoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors

    Science.gov (United States)

    Zalev, Jason; Clingman, Bryan; Smith, Remie J.; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Ermilov, Sergey; Conjusteau, André; Tsyboulski, Dmitri; Oraevsky, Alexander A.; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela

    2013-03-01

    We report on findings from the clinical feasibility study of the ImagioTM. Breast Imaging System, which acquires two-dimensional opto-acoustic (OA) images co-registered with conventional ultrasound using a specialized duplex hand-held probe. Dual-wavelength opto-acoustic technology is used to generate parametric maps based upon total hemoglobin and its oxygen saturation in breast tissues. This may provide functional diagnostic information pertaining to tumor metabolism and microvasculature, which is complementary to morphological information obtained with conventional gray-scale ultrasound. We present co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical feasibility study. The clinical results illustrate that the technology may have the capability to improve the efficacy of breast tumor diagnosis. In doing so, it may have the potential to reduce biopsies and to characterize cancers that were not seen well with conventional gray-scale ultrasound alone.

  17. Experimental Study of High-Range-Resolution Medical Acoustic Imaging for Multiple Target Detection by Frequency Domain Interferometry

    Science.gov (United States)

    Kimura, Tomoki; Taki, Hirofumi; Sakamoto, Takuya; Sato, Toru

    2009-07-01

    We employed frequency domain interferometry (FDI) for use as a medical acoustic imager to detect multiple targets with high range resolution. The phase of each frequency component of an echo varies with the frequency, and target intervals can be estimated from the phase variance. This processing technique is generally used in radar imaging. When the interference within a range gate is coherent, the cross correlation between the desired signal and the coherent interference signal is nonzero. The Capon method works under the guiding principle that output power minimization cancels the desired signal with a coherent interference signal. Therefore, we utilize frequency averaging to suppress the correlation of the coherent interference. The results of computational simulations using a pseudoecho signal show that the Capon method with adaptive frequency averaging (AFA) provides a higher range resolution than a conventional method. These techniques were experimentally investigated and we confirmed the effectiveness of the proposed method of processing by FDI.

  18. Applications of Lorentz force in medical acoustics: Lorentz force hydrophone, Lorentz Force Electrical Impedance Tomography, Imaging of shear waves induced by Lorentz force

    CERN Document Server

    Grasland-Mongrain, Pol

    2014-01-01

    The ability of the Lorentz force to link a mechanical displacement to an electrical current presents a strong interest for medical acoustics, and three applications were studied in this thesis. In the first part of this work, a hydrophone was developed for mapping the particle velocity of an acoustic field. This hydrophone was constructed using a thin copper wire and an external magnetic field. A model was elaborated to determine the relationship between the acoustic pressure and the measured electrical current, which is induced by Lorentz force when the wire vibrates in the acoustic field of an ultrasound transducer. The built prototype was characterized and its spatial resolution, frequency response, sensitivity, robustness and directivity response were investigated. An imaging method called Lorentz Force Electrical Impedance Tomography was also studied. In this method, a biological tissue is vibrated by ultrasound in a magnetic field, which induces an electrical current by Lorentz force. The electrical imp...

  19. Copper Causes Regiospecific Formation of C4F8-Containing Six-Membered Rings and their Defluorination/Aromatization to C4F4-Containing Rings in Triphenylene/1,4-C4F8I2 Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Rippy, Kerry C.; Bukovsky, Eric V.; Clikeman, Tyler T.; Chen, Yu-Sheng; Hou, Gao-Lei; Wang, Xue B.; Popov, Alexey; Boltalina, Olga V.; Strauss, Steven H.

    2016-01-18

    The presence of Cu in reactions of triphenylene (TRPH) and 1,4-C4F8I2 at 360 °C led to regiospecific substitution of TRPH ortho C(β) atoms to form C4F8-containing rings, completely suppressing substitution on C(α) atoms. In addition, Cu caused selective reductive-defluorination/aromatization (RD/A) to form C4F4- containing aromatic rings. Without Cu, the reactions of TRPH and 1,4- C4F8I2 were not regiospecific and no RD/A was observed. These results, supported by DFT calculations, are the first examples of Cupromoted (i) regiospecific perfluoroannulation, (ii) preparative C–F activation, and (iii) RD/A. HPLC-purified products were characterized by X-ray diffraction, low-temperature PES, and 1H/19F NMR.

  20. Evidence from acoustic imaging for submarine volcanic activity in 2012 off the west coast of El Hierro (Canary Islands, Spain)

    Science.gov (United States)

    Pérez, Nemesio M.; Somoza, Luis; Hernández, Pedro A.; de Vallejo, Luis González; León, Ricardo; Sagiya, Takeshi; Biain, Ander; González, Francisco J.; Medialdea, Teresa; Barrancos, José; Ibáñez, Jesús; Sumino, Hirochika; Nogami, Kenji; Romero, Carmen

    2014-12-01

    We report precursory geophysical, geodetic, and geochemical signatures of a new submarine volcanic activity observed off the western coast of El Hierro, Canary Islands. Submarine manifestation of this activity has been revealed through acoustic imaging of submarine plumes detected on the 20-kHz chirp parasound subbottom profiler (TOPAS PS18) mounted aboard the Spanish RV Hespérides on June 28, 2012. Five distinct "filament-shaped" acoustic plumes emanating from the flanks of mounds have been recognized at water depth between 64 and 88 m on a submarine platform located NW El Hierro. These plumes were well imaged on TOPAS profiles as "flares" of high acoustic contrast of impedance within the water column. Moreover, visible plumes composed of white rafts floating on the sea surface and sourcing from the location of the submarine plumes were reported by aerial photographs on July 3, 2012, 5 days after acoustic plumes were recorded. In addition, several geophysical and geochemical data support the fact that these submarine vents were preceded by several precursory signatures: (i) a sharp increase of the seismic energy release and the number of daily earthquakes of magnitude ≥2.5 on June 25, 2012, (ii) significant vertical and horizontal displacements observed at the Canary Islands GPS network (Nagoya University-ITER-GRAFCAN) with uplifts up to 3 cm from June 25 to 26, 2012, (iii) an anomalous increase of the soil gas radon activity, from the end of April until the beginning of June reaching peak values of 2.7 kBq/m3 on June 3, 2012, and (iv) observed positive peak in the air-corrected value of 3He/4He ratio monitored in ground waters (8.5 atmospheric 3He/4He ratio ( R A)) at the northwestern El Hierro on June 16, 2012. Combining these submarine and subaerial information, we suggest these plumes are the consequence of submarine vents exhaling volcanic gas mixed with fine ash as consequence of an event of rapid rise of volatile-rich magma beneath the NW submarine ridge

  1. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Nonlinear acoustics, synthetic aperture imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lingvall, Fredrik; Ping Wu; Stepinski, Tadeusz [Uppsala Univ., (Sweden). Dept. of Materials Science

    2003-03-01

    This report contains results concerning inspection of copper canisters for spent nuclear fuel by means of ultrasound obtained at Signals and Systems, Uppsala University in year 2001/2002. The first chapter presents results of an investigation of a new method for synthetic aperture imaging. The new method presented here takes the form of a 2D filter based on minimum mean squared error (MMSE) criteria. The filter, which varies with the target position in two dimensions includes information about spatial impulse response (SIR) of the imaging system. Spatial resolution of the MMSE method is investigated and compared experimentally to that of the classical SAFT and phased array imaging. It is shown that the resolution of the MMSE algorithm, evaluated for imaging immersed copper specimen is superior to that observed for the two above-mentioned methods. Extended experimental and theoretical research concerning the potential of nonlinear waves and material harmonic imaging is presented in the second chapter. An experimental work is presented that was conducted using the RITEC RAM-5000 ultrasonic system capable of providing a high power tone-burst output. A new method for simulation of nonlinear acoustic waves that is a combination of the angular spectrum approach and the Burger's equation is also presented. This method was used for simulating nonlinear elastic waves radiated by the annular transducer that was used in the experiments.

  2. Effects of tissue mechanical and acoustic anisotropies on the performance of a cross-correlation-based ultrasound strain imaging method

    Science.gov (United States)

    Li, He; Lee, Wei-Ning

    2017-02-01

    The anisotropic mechanical properties (mechanical anisotropy) and view-dependent ultrasonic backscattering (acoustic anisotropy) of striated muscle due to the underlying myofiber arrangement have been well documented, but whether they impact on ultrasound strain imaging (USI) techniques remains unclear. The aim of this study was therefore to investigate the performance of a cross-correlation-based two-dimensional (2D) USI method in anisotropic media under controlled quasi-static compression in silico and in vitro. First, synthetic pre- and post-deformed 2D radiofrequency images of anisotropic phantoms were simulated in two scenarios to examine the individual effect of the mechanical and acoustic anisotropies on strain estimation. In the first scenario, the phantom was defined to be transversely isotropic with the scatterer amplitudes following a zero-mean Gaussian distribution, while in the second scenario, the phantom was defined to be mechanically isotropic with Gaussian distributed scatterer amplitudes correlated along the principal directions of pre-defined fibers. These two anisotropies were then jointly incorporated into the ultrasound image simulation model with additional depth-dependent attenuation. Three imaging planes—the fiber plane with the fiber direction perpendicular to the ultrasound beam (TISperp_fb), the fiber plane with the fiber direction parallel to the beam (TISpara), and the transverse fiber plane (TISperp_cfb)—were studied. The absolute relative error (ARE) of the lateral strain estimates in TISperp_fb (20.99  ±  15.65%) was much higher than that in TISperp_cfb (4.14  ±  3.17%). The ARE in TISpara was unavailable owing to the large spatial extent of false peaks. The effect of tissue anisotropy on the performance of the 2D USI was further confirmed in an in vitro porcine skeletal muscle phantom. The best in-plane strain quality was again shown in TISperp_cfb (elastographic signal-to-noise ratio, or SNRe:  >25 d

  3. Effects of using inclined parametric echosounding on sub-bottom acoustic imaging and advances in buried object detection

    Science.gov (United States)

    Schneider von Deimling, Jens; Held, Philipp; Feldens, Peter; Wilken, Dennis

    2016-04-01

    This study reports an adaptation of a parametric echosounder system using 15 kHz as secondary frequency to investigate the angular response of sub-bottom backscatter strength of layered mud, providing a new method for enhanced acoustic detection of buried targets. Adaptions to achieve both vertical (0°) and non-vertical inclination (1-15°, 30°, 45° and 60°) comprise mechanical tilting of the acoustic transducer and electronic beam steering. Data were acquired at 18 m water depth at a study site characterized by a flat, muddy seafloor where a 0.1 m diameter power cable lies 1-2 m below the seafloor. Surveying the cable with vertical incidence revealed that the buried cable can hardly be discriminated against the backscatter strength of the layered mud. However, the backscatter strength of layered mud decreases strongly at >3±0.5° incidence and the layered mud echo pattern vanishes beyond 5°. As a consequence, the backscatter pattern of the buried cable is very pronounced in acoustic images gathered at 15°, 30°, 45° and 60° incidence. The size of the cable echo pattern increases linearly with incidence. These effects are attributed to reflection loss from layered mud at larger incidence and to the scattering of the 0.1 m diameter buried cable. Data analyses support the visual impression of superior detection of the cable with an up to 2.6-fold increase of the signal-to-noise ratio at 40° incidence compared to the vertical incidence case.

  4. Mainstream Smoke Chemistry and in Vitro and In Vivo Toxicity of the Reference Cigarettes 3R4F and 2R4F

    Directory of Open Access Journals (Sweden)

    Roemer E

    2014-12-01

    Full Text Available A new reference cigarette, the 3R4F, has been developed to replace the depleting supply of the 2R4F cigarette. The present study was designed to compare mainstream smoke chemistry and toxicity of the two reference cigarettes under the International Organization for Standardization (ISO machine smoking conditions, and to further compare mainstream smoke chemistry and toxicological activity of the 3R4F cigarette by two different smoking regimens, i.e., the machine smoking conditions specified by ISO and the Health Canada intensive (HCI smoking conditions.

  5. Acoustic characterization and contrast imaging of microbubbles encapsulated by polymeric shells coated or filled with magnetic nanoparticles.

    Science.gov (United States)

    Sciallero, Claudia; Grishenkov, Dmitry; Kothapalli, Satya V V N; Oddo, Letizia; Trucco, Andrea

    2013-11-01

    The combination of superparamagnetic iron oxide nanoparticles with polymeric air-filled microbubbles is used to produce two types of multimodal contrast agents to enhance medical ultrasound and magnetic resonance imaging. The nanoparticles are either covalently linked to the shell or physically entrapped into the shell. In this paper, the characterization of the acoustic properties (backscattered power, fracturing pressure, attenuation and dispersion of the ultrasonic wave) and ultrasound imaging of the two types of magnetic microbubbles are presented. In vitro B-mode images are generated using a medical ultrasound scanner by applying a nonconventional signal processing technique that is suitable to detect polymeric bubbles and based on the combination of multipulse excitation and chirp coding. Even if both types of microbubbles can be considered to be effective ultrasound contrast agents, the different structure of the shell loaded with nanoparticles has a pronounced effect on the echogenicity and the detection sensitivity of the imaging technique. The best results are obtained using microbubbles that are externally coated with nanoparticles. A backscattered power of 20 dB was achieved at lower concentration, and an increment of 8 dB in the contrast-to-tissue ratio was observed with respect to the more rigid microbubbles with particles entrapped into the shell.

  6. Detecting the Activation of a Self-Healing Mechanism in Concrete by Acoustic Emission and Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    E. Tsangouri

    2013-01-01

    Full Text Available Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process.

  7. Detecting the activation of a self-healing mechanism in concrete by acoustic emission and digital image correlation.

    Science.gov (United States)

    Tsangouri, E; Aggelis, D G; Van Tittelboom, K; De Belie, N; Van Hemelrijck, D

    2013-01-01

    Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process.

  8. Compressive sensing beamforming based on covariance for acoustic imaging with noisy measurements.

    Science.gov (United States)

    Zhong, Siyang; Wei, Qingkai; Huang, Xun

    2013-11-01

    Compressive sensing, a newly emerging method from information technology, is applied to array beamforming and associated acoustic applications. A compressive sensing beamforming method (CSB-II) is developed based on sampling covariance matrix, assuming spatially sparse and incoherent signals, and then examined using both simulations and aeroacoustic measurements. The simulation results clearly show that the proposed CSB-II method is robust to sensing noise. In addition, aeroacoustic tests of a landing gear model demonstrate the good performance in terms of resolution and sidelobe rejection.

  9. High-speed imaging of an ultrasound-driven bubble in contact with a wall: " Narcissus" effect and resolved acoustic streaming

    NARCIS (Netherlands)

    Marmottant, Philippe; Versluis, Michel; Jong, de Nico; Hilgenfeldt, Sascha; Lohse, Detlef

    2006-01-01

    We report microscopic observations of the primary flow oscillation of an acoustically driven bubble in contact with a wall, captured with the ultra high-speed camera Brandaris 128 (Chin et al. 2003). The driving frequency is up to 200 kHz, and the imaging frequency is up to 25 MHz. The details of th

  10. Ligand field density functional theory calculation of the 4f2→ 4f15d1 transitions in the quantum cutter Cs2KYF6:Pr3+.

    Science.gov (United States)

    Ramanantoanina, Harry; Urland, Werner; Cimpoesu, Fanica; Daul, Claude

    2013-09-07

    Herein we present a Ligand Field Density Functional Theory (LFDFT) based methodology for the analysis of the 4f(n)→ 4f(n-1)5d(1) transitions in rare earth compounds and apply it for the characterization of the 4f(2)→ 4f(1)5d(1) transitions in the quantum cutter Cs2KYF6:Pr(3+) with the elpasolite structure type. The methodological advances are relevant for the analysis and prospection of materials acting as phosphors in light-emitting diodes. The positions of the zero-phonon energy corresponding to the states of the electron configurations 4f(2) and 4f(1)5d(1) are calculated, where the praseodymium ion may occupy either the Cs(+)-, K(+)- or the Y(3+)-site, and are compared with available experimental data. The theoretical results show that the occupation of the three undistorted sites allows a quantum-cutting process. However size effects due to the difference between the ionic radii of Pr(3+) and K(+) as well as Cs(+) lead to the distortion of the K(+)- and the Cs(+)-site, which finally exclude these sites for quantum-cutting. A detailed discussion about the origin of this distortion is also described.

  11. Detection of Breast Microcalcifications Under Ultrasound Using Power Doppler and Acoustic Resonance Imaging

    Science.gov (United States)

    2003-07-01

    2241 010511 imaging, including magnetic resonance Radiology 2002; 224:265-269 Calcium carbonate particles embed- imaging, scintigraphy , and...characterize calcifications. digitized M-mode images: gestational dif- ways feasible because calcifications can- ferences of fetal lung . Ultrasound Med Biol

  12. Assessing hepatic fibrosis: comparing the intravoxel incoherent motion in MRI with acoustic radiation force impulse imaging in US

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chih-Horng; Liang, Po-Chin; Shih, Tiffany Ting-Fang [National Taiwan University Hospital, Department of Medical Imaging, Taipei (China); National Taiwan University College of Medicine, Department of Radiology, Taipei (China); Ho, Ming-Chih; Hu, Rey-Heng; Lai, Hong-Shiee [National Taiwan University Hospital and College of Medicine, Department of Surgery, Taipei (China); Jeng, Yung-Ming [National Taiwan University Hospital and College of Medicine, Department of Pathology, Taipei (China)

    2015-12-15

    This study compared the diagnostic performance of intravoxel incoherent motion (IVIM) in magnetic resonance imaging (MRI) and acoustic radiation force impulse imaging (ARFI) in ultrasound (US) for liver fibrosis (LF) evaluation. A total of 49 patients scheduled for liver surgery were recruited. LF in the non-tumorous liver parenchyma at the right lobe was estimated using a slow diffusion coefficient, fast diffusion coefficient (D{sub fast}), perfusion fraction (f) of the IVIM parameters, the total apparent diffusion coefficient of conventional diffusion-weighted imaging and the shear wave velocity (Vs) of ARFI. LF was graded using the Metavir scoring system on histological examination. The Spearman rank correlation coefficient for correlation and analysis of variance was used for determining difference. The diagnostic performance was compared using receiver operating characteristic curve analysis. LF exhibited significant correlation with the three parameters D{sub fast}, f, and Vs (r = -0.528, -0.337, and 0.481, respectively, P < 0.05). The D{sub fast} values in the F4 group were significantly lower than those in the F0, F1 and F2 groups. D{sub fast} exhibited a non-inferior performance for diagnosing all fibrosis grades compared with that of Vs. Both IVIM and ARFI provide reliable estimations for the noninvasive assessment of LF. (orig.)

  13. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  14. Pre- and post-stimulation characterization of geothermal well GRT-1, Rittershoffen, France: insights from acoustic image logs of hard fractured rock

    Science.gov (United States)

    Vidal, Jeanne; Genter, Albert; Schmittbuhl, Jean

    2016-08-01

    Geothermal well GRT-1 (Rittershoffen, Alsace) was drilled in 2012. Its open-hole section (extending down to a depth of 2.6 km) penetrated fractured sandstones and granite. In 2013, the well was subjected to Thermal, Chemical and Hydraulic (TCH) stimulation, which improved the injectivity index fivefold. The goal of the study was to assess the impact of the stimulation by comparing pre- and post-stimulation well-logging (acoustic and temperature [T] logs) and mud-logging data. This comparison revealed modifications of almost all the natural fractures. However, not all of these fractures are associated with permeability enhancement, and the post-stimulation T logs are important for characterizing this enhancement. Chemical alteration due to mechanical erosion at the tops and bottoms of the fractures was observed in the sandstones. These zones display indications of very small new permeability after the TCH stimulation. Because a major fault zone caved extensively where it crosses the borehole, it was not imaged in the acoustic logs. However, this originally permeable zone was enhanced as demonstrated by the T logs. Based on the natural injectivity of this fault zone, hydraulic erosion and thermal microcracking of its internal quartz veins are associated with this permeability enhancement. Although local changes in the borehole wall observed in the acoustic images cannot be directly linked to the improved injectivity index, the comparison of the acoustic image logs allows for identification of fracture zones impacted by the TCH stimulation.

  15. Digital confocal microscopy using a virtual 4f-system based on numerical beam propagation for depth measurement without mechanical scanning

    Science.gov (United States)

    Goto, Yuta; Okamoto, Atsushi; Toda, Masataka; Kuno, Yasuyuki; Nozawa, Jin; Ogawa, Kazuhisa; Tomita, Akihisa

    2016-08-01

    We propose a digital confocal microscope using a virtual 4f-system based on numerical beam propagation for depth measurement without mechanical scanning. In our technique, the information in the sample target along the depth direction is obtained by defocusing the virtual 4f-system, which consists of two virtual lenses arranged in a computer simulation. The principle of our technique is completely different from that of the mechanical scanning method used in the conventional confocal microscope based on digital holography. By using the virtual 4f-system, the measurement and exposure time can be markedly reduced because multilayered tomographic images are generated using a single measurement. In this study, we tested the virtual depth imaging technique by measuring cover glasses arranged along the depth direction.

  16. Oil/water nano-emulsion loaded with cobalt ferrite oxide nanocubes for photo-acoustic and magnetic resonance dual imaging in cancer: in vitro and preclinical studies.

    Science.gov (United States)

    Vecchione, Raffaele; Quagliariello, Vincenzo; Giustetto, Pierangela; Calabria, Dominic; Sathya, Ayyappan; Marotta, Roberto; Profeta, Martina; Nitti, Simone; Silvestri, Niccolò; Pellegrino, Teresa; Iaffaioli, Rosario V; Netti, Paolo Antonio

    2017-01-01

    Dual imaging dramatically improves detection and early diagnosis of cancer. In this work we present an oil in water (O/W) nano-emulsion stabilized with lecithin and loaded with cobalt ferrite oxide (Co0.5Fe2.5O4) nanocubes for photo-acoustic and magnetic resonance dual imaging. The nanocarrier is responsive in in vitro photo-acoustic and magnetic resonance imaging (MRI) tests. A clear and significant time-dependent accumulation in tumor tissue is shown in in vivo photo-acoustic studies on a murine melanoma xenograft model. The proposed O/W nano-emulsion exhibits also high values of r2/r1 (ranging from 45 to 85, depending on the magnetic field) suggesting a possible use as T2 weighted image contrast agents. In addition, viability and cellular uptake studies show no significant cytotoxicity on the fibroblast cell line. We also tested the O/W nano-emulsion loaded with curcumin against melanoma cancer cells demonstrating a significant cytotoxicity and thus showing possible therapeutic effects in addition to the in vivo imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. B-mode and acoustic radiation force impulse (ARFI) imaging of prostate zonal anatomy: comparison with 3T T2-weighted MR imaging.

    Science.gov (United States)

    Palmeri, Mark L; Miller, Zachary A; Glass, Tyler J; Garcia-Reyes, Kirema; Gupta, Rajan T; Rosenzweig, Stephen J; Kauffman, Christopher; Polascik, Thomas J; Buck, Andrew; Kulbacki, Evan; Madden, John; Lipman, Samantha L; Rouze, Ned C; Nightingale, Kathryn R

    2015-01-01

    Prostate cancer (PCa) is the most common non-cutaneous malignancy among men in the United States and the second leading cause of cancer-related death. Multi-parametric magnetic resonance imaging (mpMRI) has gained recent popularity to characterize PCa. Acoustic Radiation Force Impulse (ARFI) imaging has the potential to aid PCa diagnosis and management by using tissue stiffness to evaluate prostate zonal anatomy and lesions. MR and B-mode/ARFI in vivo imaging datasets were compared with one another and with gross pathology measurements made immediately after radical prostatectomy. Images were manually segmented in 3D Slicer to delineate the central gland (CG) and prostate capsule, and 3D models were rendered to evaluate zonal anatomy dimensions and volumes. Both imaging modalities showed good correlation between estimated organ volume and gross pathologic weights. Ultrasound and MR total prostate volumes were well correlated (R(2) = 0.77), but B-mode images yielded prostate volumes that were larger (16.82% ± 22.45%) than MR images, due to overestimation of the lateral dimension (18.4% ± 13.9%), with less significant differences in the other dimensions (7.4% ± 17.6%, anterior-to-posterior, and -10.8% ± 13.9%, apex-to-base). ARFI and MR CG volumes were also well correlated (R(2) = 0.85). CG volume differences were attributed to ARFI underestimation of the apex-to-base axis (-28.8% ± 9.4%) and ARFI overestimation of the lateral dimension (21.5% ± 14.3%). B-mode/ARFI imaging yielded prostate volumes and dimensions that were well correlated with MR T2-weighted image (T2WI) estimates, with biases in the lateral dimension due to poor contrast caused by extraprostatic fat. B-mode combined with ARFI imaging is a promising low-cost, portable, real-time modality that can complement mpMRI for PCa diagnosis, treatment planning, and management. © The Author(s) 2014.

  18. Modeling the chemical shift of lanthanide 4f electron binding energies

    NARCIS (Netherlands)

    Dorenbos, P.

    2012-01-01

    Lanthanides in compounds can adopt the tetravalent [Xe]4fn−1 (like Ce4+, Pr4+, Tb4+), the trivalent [Xe]4fn (all lanthanides), or the divalent [Xe]4f n+1 configuration (like Eu2+, Yb2+, Sm2+, Tm2+). The 4f-electron binding energy depends on the charge Q of the lanthanide ion and its chemical environ

  19. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Ultrasonic imaging, FSW monitoring with acoustic emission

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Olofsson, Tomas; Wennerstroem, Erik [Uppsala Univ., Dept. of Technical Sciences (Sweden). Signals and Systems

    2006-12-15

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2005/2006. In the first part of the report we propose a concept of monitoring of the friction stir welding (FSW) process by means of acoustic emission (AE) technique. First, we introduce the AE technique and then we present the principle of the system for monitoring the FSW process in cylindrical symmetry specific for the SKB canisters. We propose an omnidirectional circular array of ultrasonic transducers for receiving the AE signals generated by the FSW tool and the releases of the residual stress at canister's circumference. Finally, we review the theory of uniform circular arrays. The second part of the report is concerned with synthetic aperture focusing technique (SAFT) characterized by enhanced spatial resolution. We evaluate three different approaches to perform imaging with less computational cost than that of the extended SAFT (ESAFT) method proposed in our previous reports. First, a sparse version of ESAFT is presented, which solves the reconstruction problem only for a small set of the most probable scatterers in the image. A frequency domain the {omega}-k SAFT algorithm, which relies on the far-field approximation is presented in the second part. Finally, a detailed analysis of the most computationally intense step in the ESAFT and the sparse 2D deconvolution is presented. In the final part of the report we introduce basics of the 3D ultrasonic imaging that has a great potential in the inspection of the FSW welds. We discuss in some detail the three interrelated steps involved in the 3D ultrasonic imaging: data acquisition, 3D reconstruction, and 3D visualization.

  20. Basic investigation on acoustic velocity change imaging method for quantitative assessment of fat content in human liver

    Science.gov (United States)

    Mano, Kazune; Tanigawa, Shohei; Hori, Makoto; Yokota, Daiki; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2016-07-01

    Fatty liver is a disease caused by the excess accumulation of fat in the human liver. The early diagnosis of fatty liver is very important, because fatty liver is the major marker linked to metabolic syndrome. We already proposed the ultrasonic velocity change imaging method to diagnose fatty liver by using the fact that the temperature dependence of ultrasonic velocity is different in water and in fat. For the diagonosis of a fatty liver stage, we attempted a feasibility study of the quantitative assessment of the fat content in the human liver using our ultrasonic velocity change imaging method. Experimental results showed that the fat content in the tissue mimic phantom containing lard was determined by its ultrasonic velocity change in the flat temperature region formed by a circular warming ultrasonic transducer with an acoustic lens having an appropriate focal length. By considering the results of our simulation using a thermal diffusion equation, we determined whether this method could be applied to fatty liver assessment under the condition that the tissue had the thermal relaxation effect caused by blood flow.

  1. Real-time electro-mechano-acoustic imaging for monitoring interactions between trypsin and different inhibitors in articular cartilage.

    Science.gov (United States)

    Zheng, Yong-Ping; Wang, Qing; Butt, Yoki Kwok Chu

    2011-03-01

    The purpose of this study was to observe the real-time interactions between trypsin and various inhibitors in articular cartilage in vitro using a novel electro-mechano-acoustic imaging method. Monitored in real-time, articular cartilage specimens from bovine patellae were first treated with trypsin to reach half proteoglycan depletion (Phase I), then the trypsin solution was replaced with (i) physiological saline buffer (PS), (ii) fetal bovine serum (FBS), (iii) protease inhibitor cocktail (PI) and (iv) 10% formalin (F), respectively, to observe their effects on residual digestion (Phase II). Ultrasound radio frequency signals from the articular cartilage were used to form a M-mode image, where the interface between trypsin digested and intact cartilage tissues could be observed with an additional echo generated. The inhibition time, the digestion depth and digestion fraction were measured for each specimen. The results showed that the dilution of trypsin using saline solution was not sufficient to stop the enzyme action instantly. Although groups FBS and PI had a similar inhibition time of approximately 1.5 h, their digestion depth was obviously different (0.25±0.03 and 0.06±0.06 mm, respectively). In contrast, formalin only took <30 min to stop the trypsin digestion with almost no further digestion. The results demonstrated that the current system was capable of monitoring the trypsin digestion and inhibition process in real time. Also, different chemicals affected the residual trypsin digestion to different degrees.

  2. Field ionization process of Eu 4f76snp Rydberg states

    Institute of Scientific and Technical Information of China (English)

    张婧; 沈礼; 戴长建

    2015-01-01

    The field ionization process of the Eu 4f76snp Rydberg states, converging to the first ionization limit, 4f76s 9S4, is systematically investigated. The spectra of the Eu 4f76snp Rydberg states are populated with three-step laser excitation, and detected by electric field ionization (EFI) method. Two different kinds of the EFI pulses are applied after laser excitation to observe the possible impacts on the EFI process. The exact EFI ionization thresholds for the 4f76snp Rydberg states can be determined by observing the corresponding EFI spectra. In particular, some structures above the EFI threshold are found in the EFI spectra, which may be interpreted as the effect from black body radiation (BBR). Finally, the scaling law of the EFI threshold for the Eu 4f76snp Rydberg states with the effective quantum number is built.

  3. Architectural acoustics

    National Research Council Canada - National Science Library

    Long, Marshall

    2014-01-01

    .... Beginning with a brief history, it reviews the fundamentals of acoustics, human perception and reaction to sound, acoustic noise measurements, noise metrics, and environmental noise characterization...

  4. Postoperative magnetic resonance imaging after acoustic neuroma surgery. Influence of packing materials in the drilled internal auditory canal on assessment of residual tumor

    Energy Technology Data Exchange (ETDEWEB)

    Umezu, Hiromichi; Seki, Yojiro [Toranomon Hospital, Tokyo (Japan)

    1999-02-01

    Serial magnetic resonance (MR) images taken after acoustic neuroma surgery were analyzed to evaluate the pattern and timing of postoperative contrast enhancement in 22 patients who underwent acoustic neuroma removal via the suboccipital transmeatal approach. The opened internal auditory canal (IAC) was covered with a muscle piece in nine patients and with fibrin glue in 13. A total of 56 MR imaging examinations were obtained between days 1 and 930 after surgery. MR imaging showed linear enhancement at the IAC within the first 2 days after surgery, and revealed nodular enhancement on day 3 or later in patients with a muscle piece. MR imaging tended to show linear enhancement at the IAC, irrespective of the timing of the examination in the patients with fibrin glue. Postoperative MR imaging on day 3 or later showed the incidence of nodular enhancement in patients with muscle was significantly higher than in patients with fibrin glue. The results illustrate the difficulty in differentiating nodular enhancement of a muscle piece from tumor by a single postoperative MR imaging study. Therefore, fibrin glue is generally advocated as a packing material of the IAC because it rarely shows masslike enhancement on postoperative MR imaging. When a muscle piece is used in patients at high risk for postoperative cerebrospinal fluid leaks, MR imaging should be obtained within the first 2 days after surgery, since benign enhancement of muscle will not occur and obscure the precise extent of tumor resection. (author)

  5. A New Marmoset P450 4F12 Enzyme Expressed in Small Intestines and Livers Efficiently Metabolizes Antihistaminic Drug Ebastine.

    Science.gov (United States)

    Uehara, Shotaro; Uno, Yasuhiro; Yuki, Yukako; Inoue, Takashi; Sasaki, Erika; Yamazaki, Hiroshi

    2016-06-01

    Common marmosets (Callithrix jacchus) are attracting attention as animal models in preclinical studies for drug development. However, cytochrome P450s (P450s), major drug-metabolizing enzymes, have not been fully identified and characterized in marmosets. In this study, based on the four novel P450 4F genes found on the marmoset genome, we successfully isolated P450 4F2, 4F3B, 4F11, and 4F12 cDNAs in marmoset livers. Deduced amino acid sequences of the four marmoset P450 4F forms exhibited high sequence identities (87%-93%) to the human and cynomolgus monkey P450 4F homologs. Marmoset P450 4F3B and 4F11 mRNAs were predominantly expressed in livers, whereas marmoset P450 4F2 and 4F12 mRNAs were highly expressed in small intestines and livers. Four marmoset P450 4F proteins heterologously expressed in Escherichia coli catalyzed the ω-hydroxylation of leukotriene B4 In addition, marmoset P450 4F12 effectively catalyzed the hydroxylation of antiallergy drug ebastine, a human P450 2J/4F probe substrate. Ebastine hydroxylation activities by small intestine and liver microsomes from marmosets and cynomolgus monkeys showed greatly higher values than those of humans. Ebastine hydroxylation activities by marmoset and cynomolgus monkey small intestine microsomes were inhibited (approximately 60%) by anti-P450 4F antibodies, unlike human small intestine microsomes, suggesting that contribution of P450 4F enzymes for ebastine hydroxylation in the small intestine might be different between marmosets/cynomolgus monkeys and humans. These results indicated that marmoset P450 4F2, 4F3B, 4F11, and 4F12 were expressed in livers and/or small intestines and were functional in the metabolism of endogenous and exogenous compounds, similar to those of cynomolgus monkeys and humans.

  6. Nonlinear characterization of materials using the D4σ method inside a Z-scan 4f-system.

    Science.gov (United States)

    Boudebs, Georges; Besse, Valentin; Cassagne, Christophe; Leblond, Hervé; de Araújo, Cid B

    2013-07-01

    We show that direct measurement of the beam radius in Z-scan experiments using a CCD camera at the output of a 4f-imaging system allows higher sensitivity and better accuracy than Baryscan. One of the advantages is to be insensitive to pointing instability of pulsed lasers because no hard (physical) aperture is employed as in the usual Z-scan. In addition, the numerical calculations involved here and the measurement of the beam radius are simplified since we do not measure the transmittance through an aperture and it is not subject to mathematical artifacts related to a normalization process, especially when the diffracted light intensity is very low.

  7. Development of acoustic model-based iterative reconstruction technique for thick-concrete imaging

    Science.gov (United States)

    Almansouri, Hani; Clayton, Dwight; Kisner, Roger; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector

    2016-02-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.1

  8. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Almansouri, Hani [Purdue University; Clayton, Dwight A [ORNL; Kisner, Roger A [ORNL; Polsky, Yarom [ORNL; Bouman, Charlie [Purdue University; Santos-Villalobos, Hector J [ORNL

    2015-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well s health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  9. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Almansouri, Hani [Purdue University; Clayton, Dwight A [ORNL; Kisner, Roger A [ORNL; Polsky, Yarom [ORNL; Bouman, Charlie [Purdue University; Santos-Villalobos, Hector J [ORNL

    2016-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  10. Acoustic mapping velocimetry

    Science.gov (United States)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  11. Electron attachment properties of c-C4F8O in different environments

    Science.gov (United States)

    Chachereau, A.; Fedor, J.; Janečková, R.; Kočišek, J.; Rabie, M.; Franck, C. M.

    2016-09-01

    The electron attachment properties of octafluorotetrahydrofuran (c-C4F8O) are investigated using two complementary experimental setups. The attachment and ionization cross sections of c-C4F8O are measured using an electron beam experiment. The effective ionization rate coefficient, electron drift velocity and electron diffusion coefficient in c-C4F8O diluted to concentrations lower than 0.6% in the buffer gases N2, CO2 and Ar, are measured using a pulsed Townsend experiment. A kinetic model is proposed, which combines the results of the two experiments.

  12. Surface shift of the occupied and unoccupied 4f levels of the rare-earth metals

    DEFF Research Database (Denmark)

    Aldén, Magnus; Johansson, Börje; Skriver, Hans Lomholt

    1995-01-01

    The surface energy shifts of the occupied and unoccupied 4f levels for the lanthanide metals have been calculated from first principles by means of a Green’s-function technique within the tight-binding linear muffin-tin orbitals method. We use the concept of complete screening to identify the occ...... played by the initial and the different final states of the core-excitation process, permitted by the fact that the so-called initial-state effect is identical upon 4f removal and 4f addition. Surface energy and work function calculations are also reported....

  13. Virtual Acoustics

    Science.gov (United States)

    Lokki, Tapio; Savioja, Lauri

    The term virtual acoustics is often applied when sound signal is processed to contain features of a simulated acoustical space and sound is spatially reproduced either with binaural or with multichannel techniques. Therefore, virtual acoustics consists of spatial sound reproduction and room acoustics modeling.

  14. Acoustic radiation force impulse imaging (ARFI) for differentiation of benign and malignant thyroid nodules--A meta-analysis.

    Science.gov (United States)

    Zhan, Jia; Jin, Jia-Mei; Diao, Xue-Hong; Chen, Yue

    2015-11-01

    Work-up of thyroid nodules remains challenging. Acoustic radiation force impulse imaging (ARFI)-generated shear wave elastography, which can measure quantitatively tissue stiffness (virtual touch tissue quantification) is used as a complement to conventional sonography for improving the diagnosis of thyroid nodules. This meta-analysis was performed to expand on a previous meta-analysis to assess the diagnostic power of ARFI in differentiating benign and malignant thyroid nodules. The MEDLINE, PubMed, SpringerLink databases up to December 31, 2014, were searched. The pooled sensitivity, specificity, and summary receiver operating characteristic curve were obtained from individual studies with a random effects model. Sixteen studies that included a total of 2436 nodules in 2147 patients for ARFI studies were analyzed. The overall mean sensitivity and specificity of ARFI for differentiation of thyroid nodules were 0.80 (95% confidence interval [CI], 0.73-0.87) and 0.85 (95% CI, 0.80-0.90), respectively. A significant heterogeneity was found for both sensitivity and specificity of the different studies (P<0.001). The area under the curve for the ARFI was 0.91. ARFI has high sensitivity and specificity for identification of thyroid. This technique might be useful to select patients with thyroid nodules for surgery. Copyright © 2015. Published by Elsevier Ireland Ltd.

  15. 基于AutoCAD的虚声源法%AutoCAD-Based Image Method for Acoustical Model

    Institute of Scientific and Technical Information of China (English)

    张昌佳

    2007-01-01

    In order to make it possible for an architect and an acoustical designer working together on the same platform, this paper introduces a method to calculate the first two reflections in AutoCAD. The proposed method is based on the image method, and is implemented by using Auto LISP language of AutoCAD. By using this method, the coverage of reflected walls and the time sequence of the first two reflections in a shoe-box-shaped concert hall and a gymnasium are obtained. The results verify the validity and effectiveness of the proposed method.%为实现建筑师与声学设计者在同一平台下的合作,介绍了AutoCAD软件中计算前两次反射的方法.此方法是基于虚声源法,通过利用AutoCAD软件中的Auto LISP语言来实现的.运用此方法,文中得到了一个鞋盒式音乐厅和一个体育馆的反射墙面的覆盖范围及前两次反射声到达时间序列,结果验证了此方法的正确性和有效性.

  16. Virtual touch tissue quantification of acoustic radiation force impulse: a new ultrasound elastic imaging in the diagnosis of thyroid nodules.

    Directory of Open Access Journals (Sweden)

    Yi-Feng Zhang

    Full Text Available OBJECTIVE: Virtual touch tissue quantification (VTQ of acoustic radiation force impulse (ARFI is a new quantitative technique to measure tissue stiffness. The study was aimed to assess the usefulness of VTQ in the diagnosis of thyroid nodules. METHODS: 173 pathologically proven thyroid nodules in 142 patients were included and all were examined by conventional ultrasound (US, conventional elasticity imaging (EI and VTQ of ARFI. The tissue stiffness for VTQ was expressed as shear wave velocity (SWV (m/s. Receiver-operating characteristic curve (ROC analyses were performed to assess the diagnostic performance. Intra- and inter-observer reproducibility of VTQ measurement was assessed. RESULTS: The SWVs of benign and malignant thyroid nodules were 2.34±1.17 m/s (range: 0.61-9.00 m/s and 4.82±2.53 m/s (range: 2.32-9.00 m/s respectively (P20 mm and lowest for those ≤10 mm. The correlation coefficients were 0.904 for intraobserver measurement and 0.864 for interobserver measurement. CONCLUSIONS: VTQ of ARFI provides quantitative and reproducible information about the tissue stiffness, which is useful for the differentiation between benign and malignant thyroid nodules. The diagnostic performance of VTQ is higher than that of conventional EI.

  17. Mechanical model for the generation of acoustic chaos in sonic infrared imaging

    Science.gov (United States)

    Han, Xiaoyan; Loggins, V.; Zeng, Zhi; Favro, L. D.; Thomas, R. L.

    2004-08-01

    We describe a mechanical model for the generation of complex vibrations with fractional "subharmonics" from the contact between a sharply tuned ultrasonic source and a rigid object. The frequency patterns generated by the model mimic the patterns observed in samples undergoing sonic IR imaging. The output of the model is chaotic in the sense that the output appears to lack continuity with respect to the input parameters.

  18. Acoustic radiation force impulse imaging for non-invasive assessment of renal histopathology in chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Qiao Hu

    Full Text Available OBJECTIVE: To investigate the stiffness values obtained by acoustic radiation force impulse (ARFI quantification in assessing renal histological fibrosis of chronic kidney disease (CKD. METHODS: 163 patients with CKD and 32 healthy volunteers were enrolled between June 2013 and April 2014. ARFI quantification, given as shear wave velocity (SWV, was performed to measure renal parenchyma stiffness. Diagnostic performance of ARFI imaging and conventional ultrasound (US were compared with histologic scores at renal biopsy. Intra- and inter-observer reliability of SWV measurement was analyzed. RESULTS: In CKD patients, SWV measurements correlated significantly with pathological parameters (r = -0.422--0.511, P<0.001, serum creatinine (r = -0.503, P<0.001, and glomerular filtration rate (r = 0.587, P<0.001. The mean SWV in kidneys with severely impaired (histologic score: ≥19 points was significant lower than that mildly impaired (histologic score: ≤9 points, moderately impaired (histologic score: 10-18 points, and control groups (all P<0.001. Receiver operating characteristic (ROC curves analyses indicated that the area under the ROC curve for the diagnosis of renal histological fibrosis using ARFI imaging was superior to these conventional US parameters. Using the optimal cut-off value of 2.65 m/s for the diagnosis of mildly impaired kidneys, 2.50 m/s for moderately impaired kidneys, and 2.33 m/s for severely impaired kidneys, the corresponding area under the ROC curves were 0.735, 0.744, and 0.895, respectively. Intra- and intre-observer agreement of SWV measurements were 0.709 (95% CI: 0.390-0.859, P<0.001 and 0.627 (95% CI: 0.233-0.818, P = 0.004, respectively. CONCLUSIONS: ARFI may be an effective tool for evaluating renal histological fibrosis in CKD patients.

  19. Enhanced characterization of calcified areas in intravascular ultrasound virtual histology images by quantification of the acoustic shadow: validation against computed tomography coronary angiography.

    Science.gov (United States)

    Broersen, Alexander; de Graaf, Michiel A; Eggermont, Jeroen; Wolterbeek, Ron; Kitslaar, Pieter H; Dijkstra, Jouke; Bax, Jeroen J; Reiber, Johan H C; Scholte, Arthur J

    2016-04-01

    We enhance intravascular ultrasound virtual histology (VH) tissue characterization by fully automatic quantification of the acoustic shadow behind calcified plaque. VH is unable to characterize atherosclerosis located behind calcifications. In this study, the quantified acoustic shadows are considered calcified to approximate the real dense calcium (DC) plaque volume. In total, 57 patients with 108 coronary lesions were included. A novel post-processing step is applied on the VH images to quantify the acoustic shadow and enhance the VH results. The VH and enhanced VH results are compared to quantitative computed tomography angiography (QTA) plaque characterization as reference standard. The correlation of the plaque types between enhanced VH and QTA differs significantly from the correlation with unenhanced VH. For DC, the correlation improved from 0.733 to 0.818. Instead of an underestimation of DC in VH with a bias of 8.5 mm(3), there was a smaller overestimation of 1.1 mm(3) in the enhanced VH. Although tissue characterization within the acoustic shadow in VH is difficult, the novel algorithm improved the DC tissue characterization. This algorithm contributes to accurate assessment of calcium on VH and could be applied in clinical studies.

  20. Construction of nitronyl nitroxide-based 3d-4f clusters: structure and magnetism.

    Science.gov (United States)

    Wang, Xiu-Feng; Hu, Peng; Li, Yun-Gai; Li, Li-Cun

    2015-02-01

    Three unprecedented nitronyl nitroxide radical-bridged 3d-4f clusters, [Ln2 Cu2 (hfac)10 (NIT-3py)2 (H2 O)2 ](Ln(III) =Y, Gd, Dy), have been obtained from the self-assembly of Ln(hfac)3 , Cu(hfac)2 , and the radical ligand. The Dy complex shows a slow relaxation of magnetization, representing the first nitronyl nitroxide radical-based 3d-4f cluster with single-molecule magnet behavior.

  1. Random matrix theory applied to acoustic backscattering and imaging in complex media.

    Science.gov (United States)

    Aubry, Alexandre; Derode, Arnaud

    2009-02-27

    The singular values distribution of the propagation operator in a random medium is investigated in a backscattering configuration. Experiments are carried out with pulsed ultrasonic waves around 3 MHz, using an array of transducers. Coherent backscattering and field correlations are taken into account. Interestingly, the distribution of singular values shows a dramatically different behavior in the single and multiple-scattering regimes. Based on a matrix separation of single and multiple-scattered waves, an experimental illustration of imaging through a highly scattering slab is presented.

  2. Front-back confusion in systems for the production of virtual acoustic images

    Science.gov (United States)

    Hill, Peter A.

    This thesis investigates the causes of front back confusion in two systems that make use of digital signal processing for the production of virtual images. Front back confusion is well known in psychoacoustics and describes the phenomenon occurring when a source placed behind a listener is perceived to be in front, or vice versa. The two virtual imaging systems studied are designed to use respectively two and four channels to give listeners the impression that sources of sound exist at locations that are other than those used for reproduction. The four channel system is shown to be robust with regard to the production of convincing images at any location in the horizontal plane around the listener. The two channel system is able to achieve good images in front of the listener, but not behind. Both reproduction systems are examined with reference to the signals received at the ears of a listener. These signals are compared to those produced by real sources placed at different locations around the listener. This investigation is carried out by using a simple model of the listeners head based on the sound field scattered by a rigid sphere. These models indicate that the difference between the two systems could be explained in terms of the interaural time delay(ITD). The ITD was measured by calculating the interaural cross-correlation function (IACC). Head movement has been shown by previous work to play a very important part in resolving front back confusion. It is concluded that the rate of change of the IACC with head rotation is an important possible means of resolving these confusions, and that the four channel system is capable of closely replicating this measure. The changes in the IACC resulting from head movements were also modelled and are in accord with the results of the subjective experiments carried out to test the hypothesis from the modelling work. It is believed that this is the method used by the hearing system to interpret the localisation cues

  3. Acoustic Radiation Force Impulse Imaging: A New Tool for the Diagnosis of Papillary Thyroid Microcarcinoma

    Directory of Open Access Journals (Sweden)

    Yi-Feng Zhang

    2014-01-01

    Full Text Available Purpose. To evaluate the diagnostic performance of ARFI imaging in differentiating between benign and malignant thyroid nodules 3.10 m/s had been found to be independent risk factors for predicting PTMC. Conclusion. ARFI elastography can provide elasticity information of PTMC quantitatively (VTQ and directly reflects the overall elastic properties (VTI. Gender, hypoechogenicity, taller than wide, VTI elastography score ≥ 4, and SWV > 3.10 m/s are independent risk factors for predicting PTMC. ARFI elastography seems to be a new tool for the diagnosis of PTMC.

  4. CYP4F18-Deficient Neutrophils Exhibit Increased Chemotaxis to Complement Component C5a

    Directory of Open Access Journals (Sweden)

    Rachel Vaivoda

    2015-01-01

    Full Text Available CYP4Fs were first identified as enzymes that catalyze hydroxylation of leukotriene B4 (LTB4. CYP4F18 has an unusual expression in neutrophils and was predicted to play a role in regulating LTB4-dependent inflammation. We compared chemotaxis of wild-type and Cyp4f18 knockout neutrophils using an in vitro assay. There was no significant difference in the chemotactic response to LTB4, but the response to complement component C5a increased 1.9–2.25-fold in knockout cells compared to wild-type (P < 0.01. This increase was still observed when neutrophils were treated with inhibitors of eicosanoid synthesis. There were no changes in expression of other CYP4 enzymes in knockout neutrophils that might compensate for loss of CYP4F18 or lead to differences in activity. A mouse model of dextran sodium sulfate colitis was used to investigate the consequences of increased C5a-dependent chemotaxis in vivo, but there was no significant difference in weight loss, disease activity, or colonic tissue myeloperoxidase between wild-type and Cyp4f18 knockout mice. This study demonstrates the limitations of inferring CYP4F function based on an ability to use LTB4 as a substrate, points to expanding roles for CYP4F enzymes in immune regulation, and underscores the in vivo challenges of CYP knockout studies.

  5. Acoustic performance of mesh compression paddles for a multimodality breast imaging system.

    Science.gov (United States)

    LeCarpentier, Gerald L; Goodsitt, Mitchell M; Verweij, Sacha; Li, Jie; Padilla, Frederic R; Carson, Paul L

    2014-07-01

    A system incorporating automated 3-D ultrasound and digital X-ray tomosynthesis is being developed for improved breast lesion detection and characterization. The goal of this work is to develop and test candidates for a dual-modality mesh compression paddle. A Computerized Imaging Reference Systems (Norfork, VA, USA) ultrasound phantom with tilted low-contrast cylindrical objects was used. Polyester mesh fabrics (1- and 2-mm spacing), a high-density polyethylene filament grid (Dyneema, DSM Dyneema, Stanley, NC, USA) and a solid polymethylpentene (TPX; Mitsui Plastics, Inc., White Plains, NY) paddle were compared with no overlying structures using a GE Logic 9 with M12L transducer. A viscous gel provided coupling. The phantom was scanned 10 times over 9 cm for each configuration. Image volumes were analyzed for signal strength, contrast and contrast-to-noise ratio. X-ray tests confirmed X-ray transparency for all materials. By all measures, both mesh fabrics outperformed TPX and Dyneema, and there were essentially no differences between 2-mm mesh and unobstructed configurations.

  6. In vivo feasibility case study for evaluating abdominal aortic aneurysm tissue properties and rupture potential using acoustic radiation force impulse imaging.

    Science.gov (United States)

    Tierney, Aine P; Callanan, Anthony; McGloughlin, Timothy M

    2011-04-01

    An abdominal aortic aneurysm (AAA) is defined as a permanent and irreversible localized dilatation of the abdominal aorta. A reliable, non-invasive method to assess the wall mechanics of an aneurysm may provide additional information regarding their susceptibility to rupture. Acoustic radiation force impulse (ARFI) imaging is a phenomenon associated with the propagation of acoustic waves in attenuating media. This study was a preliminary evaluation to explore the feasibility of using ARFI imaging to examine an AAA in vivo. A previously diagnosed in vivo aneurysm case study was imaged to demonstrate the viability of excitation of the abdominal aorta using ARFI imaging. Ex vivo experiments were used to assess an artificially induced aneurysm to establish its development and whether ARFI was able to capture the mechanical changes during artificial aneurysm formation. A combination of in vivo and ex vivo results demonstrated a proposed hypothesis of estimation of the tissue's stiffness properties. The study details a method for non-invasive rupture potential prediction of AAAs using patient-specific moduli to generate a physiological stiffness rupture potential index (PSRPI) of the AAA. Clinical feasibility of ARFI imaging as an additional surgical tool to interrogate AAAs was verified and methods to utilize this data as a diagnostic tool was demonstrated with the PSRPI.

  7. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  8. Simultaneous observation of low temperature 4f-4f and 3d-3d emission spectra in a series of Cr(III)(ox)Ln(III) assembly

    CERN Document Server

    Subhan, M A; Suzuki, T; Choi, J H; Kaizaki, S

    2003-01-01

    We report here the low temperature emission spectra in the heterometal dinuclear 3d-4f assembled molecular system [(acac) sub 2 Cr sup I sup I sup I (mu-ox)Ln sup I sup I sup I (HBpz sub 3) sub 2] (Cr(ox)Ln:acac sup - =acetylacetonate, ox sup 2 sup - =oxalate, HBpz sub 3 sup - =hydrotris(pyrazol-1-yl)borate; Ln=La, Nd, Ho, Er , Tm and Yb) in comparison with those of Na[Cr(acac) sub 2 (ox)] and [(HBpz sub 3) sub 2 Ln(mu-ox)Ln(HBpz sub 3) sub 2](Ln=Nd and Er). From 10 to 150 K the Cr(ox)Ln complexes show a broad emission band around 800 nm from the sup 2 E state of Cr(III) moiety. At room temperature no sup 2 E- sup 4 A sub 2 emission was observed in the Cr(ox)Ln except for the La and Lu complexes. On warming from 10 to 300 K rapid quenching of the sup 2 E- sup 4 A sub 2 emission of Cr(III) is suggested to result from the energy transfer from Cr to Ln in the Cr(ox)Ln. The excitation spectra and the life-time were also measured with monitoring the 4f-4f emission peaks of the Cr(ox)Yb complex.

  9. Preliminary results of acoustic radiation force impulses (ARFI) ultrasound imaging of solid suspicious breast lesions

    Institute of Scientific and Technical Information of China (English)

    Lei Ye; Liping Wang; Yuan Huang; Youbin Deng

    2013-01-01

    Objective: The aim of our study was to make the qualitative and quantitative analysis to breast lesions usingacoustic radiation force impulses (ARFI), and assess the diagnostic value of ARFI for differentiation between benign andmalignant solid breast masses, meanwhile evaluate the influences of ARFI with breast imaging reporting and data system(BI-RADS) of suspicious masses. Methods: Seventy-five women with 86 breast lesions underwent conventional breast ultrasoundexamination. Then B-mode BI-RADS features and assessments were recorded and standard breast US supplementedby ARFI elastographic examination were repeated. The data were recorded and analyzed as following: area ratio of breastlesion, the shear-wave velocity, the ratio of the shear-wave velocity between lesions and surrounding normal tissues, andaccording to the elastographic data reconsidered the BI-RADS category, all the results have been correlated with pathologicalresults and make statistical evaluations of ARFI for differentiation between benign and malignant solid breast masses.Meantime our study has correlated the adjusted BI-RADS category of suspicious breast lesions with the pathological resultsand made assessment. Results: Thirty-eight patients were malignant breast carcinoma (31 invasive ductal carcinoma, 5intraductal carcinoma in situ, 2 medullary carcinoma, 2 invasive lobular carcinoma), 48 patients were benign breast lesions(23 fibroadenoma, 12 benign nodular hyperplasia, 5 phyllodes tumor, 6 adenosis, 2 intraductal papilloma). Underwent conventionalbreast ultrasound exam, 42 cases were BI-RADS category 3, 23 cases were BI-RADS category 4. When addingelastographic data, 46 cases were BI-RADS category 3 and 20 cases were BI-RADS category 4. Compared with pathologicalresults showed for both the specificity of BIRADS features and the area under ROC curve has risen. Virtual touch tissue imaging(VTI) and virtual touch tissue quantification (VTQ) data showed the area ratio (AR) between

  10. Acoustic radiation force impulse (ARFI) ultrasound imaging of pancreatic cystic lesions

    Energy Technology Data Exchange (ETDEWEB)

    D' Onofrio, M., E-mail: mirko.donofrio@univr.it [Department of Radiology, University Hospital G.B. Rossi, Piazzale L.A. Scuro 10, University of Verona, 37134 Verona (Italy); Gallotti, A. [Department of Radiology, University Hospital G.B. Rossi, Piazzale L.A. Scuro 10, University of Verona, 37134 Verona (Italy); Salvia, R. [Department of Surgery, University Hospital G.B. Rossi, Piazzale L.A. Scuro 10, University of Verona, 37134 Verona (Italy); Capelli, P. [Department of Pathology, University Hospital G.B. Rossi, Piazzale L.A. Scuro 10, University of Verona, 37134 Verona (Italy); Mucelli, R. Pozzi [Department of Radiology, University Hospital G.B. Rossi, Piazzale L.A. Scuro 10, University of Verona, 37134 Verona (Italy)

    2011-11-15

    Purpose: To evaluate the ARFI ultrasound imaging with Virtual Touch tissue quantification in studying pancreatic cystic lesions, compared with phantom fluid models. Materials and methods: Different phantom fluids at different viscosity or density (water, iodinate contrast agent, and oil) were evaluated by two independent operators. From September to December 2008, 23 pancreatic cystic lesions were prospectively studied. All lesions were pathologically confirmed. Results: Non-numerical values on water and numerical values on other phantoms were obtained. Inter-observer evaluation revealed a perfect correlation (rs = 1.00; p < 0.0001) between all measurements achieved by both operators per each balloon and fluid. Among the pancreatic cystic lesions, 14 mucinous cystadenomas, 4 pseudocysts, 3 intraductal papillary-mucinous neoplasms and 2 serous cystadenomas were studied. The values obtained ranged from XXXX/0-4,85 m/s in mucinous cystadenomas, from XXXX/0-3,11 m/s in pseudocysts, from XXXX/0-4,57 m/s in intraductal papillary-mucinous neoplasms. In serous cystadenomas all values measured were XXXX/0 m/s. Diagnostic accuracy in benign and non-benign differentiation of pancreatic cystic lesions was 78%. Conclusions: Virtual Touch tissue quantification can be applied in the analysis of fluids and is potentially able to differentiate more complex (mucinous) from simple (serous) content in studying pancreatic cystic lesions.

  11. A method of construction of information images of the acoustic signals of the human bronchopulmonary system

    Science.gov (United States)

    Bureev, A. Sh.; Zhdanov, D. S.; Zemlyakov, I. Yu.; Kiseleva, E. Yu.; Khokhlova, L. A.

    2015-11-01

    The present study focuses on the development of a method of identification of respiratory sounds and noises of a human naturally and in various pathological conditions. The existing approaches based on a simple method of frequency and time signal analysis, have insufficient specificity, efficiency and unambiguous interpretation of the results of a clinical study. An algorithm for a phase selection of respiratory cycles and analysis of respiratory sounds resulting from bronchi examination of a patient has been suggested. The algorithm is based on the method of phase timing analysis of bronchi phonograms. The results of the phase-frequency algorithm with high resolution reflects a time position of the traceable signals and the individual structure of recorded signals. This allows using the proposed method for the formation of information images (models) of the diagnostically significant fragments. A weight function, frequency parameters of which can be selectively modified, is used for this purpose. The vision of the weighting function is specific to each type of respiratory noise, traditionally referred to quality characteristics (wet or dry noise, crackling, etc.).

  12. Photoacoustic imaging with an acoustic lens detects prostate cancer cells labeled with PSMA-targeting near-infrared dye-conjugates

    Science.gov (United States)

    Dogra, Vikram; Chinni, Bhargava; Singh, Shalini; Schmitthenner, Hans; Rao, Navalgund; Krolewski, John J.; Nastiuk, Kent L.

    2016-06-01

    There is an urgent need for sensitive and specific tools to accurately image early stage, organ-confined human prostate cancers to facilitate active surveillance and reduce unnecessary treatment. Recently, we developed an acoustic lens that enhances the sensitivity of photoacoustic imaging. Here, we report the use of this device in conjunction with two molecular imaging agents that specifically target the prostate-specific membrane antigen (PSMA) expressed on the tumor cell surface of most prostate cancers. We demonstrate successful imaging of phantoms containing cancer cells labeled with either of two different PSMA-targeting agents, the ribonucleic acid aptamer A10-3.2 and a urea-based peptidomimetic inhibitor, each linked to the near-infrared dye IRDye800CW. By specifically targeting cells with these agents linked to a dye chosen for optimal signal, we are able to discriminate prostate cancer cells that express PSMA.

  13. A new route for graphene wrapping LiVPO{sub 4}F/C nano composite toward superior lithium storage property

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhaomeng; Peng, Wenjie, E-mail: wjpeng_csu@163.com; Fan, Yulei; Li, Xinhai; Wang, Zhixing; Guo, Huajun; Wang, Jiexi, E-mail: wangjiexikeen@csu.edu.cn

    2015-08-05

    Highlights: • Simple solution route was used for coating process. • Core–shell structure with multi conductive shell was obtained. • Greatly enhanced electrochemical performance was demonstrated. - Abstract: To enhance the electronic conductivity of LiVPO{sub 4}F, graphene-decorated LiVPO{sub 4}F/C nano composites were prepared via a solution route followed by low-temperature calcination. XRD results reveal that the crystal structure of LiVPO{sub 4}F/C with graphene wrapping remains unchanged. SEM and TEM images demonstrate that the as-synthesized graphene modified particles tend to become smaller and are dispersed uniformly into the graphene layers. The graphene sheets stretch out and cross-link into a conducting network around the LiVPO{sub 4}F particles, resulting in improved electronic conductivity and enhanced electrolyte permeability. SAED patterns confirmed the presence of graphene, as well as crystalline nature of LiVPO{sub 4}F with clear lattice structure and sharp diffraction spots. When applied as cathodes for lithium ion batteries, the graphene wrapped LiVPO{sub 4}F/C nano composites exhibit better cycle ability and rate capability than the pristine one. Particularly, the sample prepared by using 60 mL graphene oxide dispersion demonstrates a superior rate capability with a discharge capacity of 117 mA h g{sup −1} at 8 C, as well as excellent cycling stability, maintaining 83.7% capacity retention after 350 cycles at 8 C. CV and EIS tests separately indicate that the graphene modified samples possess lower polarization and faster charge transfer than the bare sample.

  14. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  15. Acoustic field modulation in regenerators

    Science.gov (United States)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  16. Feasibility of High Frequency Acoustic Imaging for Inspection of Containments: Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Rudzinsky, J.; Bondaryk, J.; Conti, M.

    1999-07-01

    The nuclear power industry is concerned with corrosive thinning of portions of the metallic pressure boundary, particularly in areas that are not directly accessible for inspection. This study investigated the feasibility of detecting these thickness degradations using ultrasonic imaging. A commercial ultrasonic system was used to carry out several full-scale, controlled laboratory experiments. Measurements of 0.5 MHz shear wave levels propagated in 25-mm-thick steel plate embedded in concrete showed 1.4-1.6 dB of signal loss for each centimeter of two-way travel in the steel plate (compared to previous numerical predictions of 3-4 dB), and 1.3 dB of signal loss per centimeter of two-way travel in steel plates embedded in concrete prior to setting of the concrete (i.e., plastic). Negligible losses were measured in plates with a decoupling treatment applied between the steel and concrete to simulate the unbonded portions of the pressure boundary. Scattered signals from straight slots of different size and shape were investigated. The return from a 4-mm-deep rectangular slots exhibited levels 23 dB down relative to incidence and 4-6 dB higher than those obtained from both ''v'' shaped and rounded slots of similar depth. The system displayed an input/output dynamic range of 125 dB and measurement variability less than 1-2dB. Based on these results, a 4-mm-deep, rounded degradation embedded 30 cm in concrete has expected returns of -73dB relative to the input and should therefore be detectable. Results of this and a prior study indicate that the technique has merit and should be developed more fully and demonstrated in the field.

  17. Experiments for possible hydroacoustic discrimination of free-swimming juvenile gadoid fish by analysis of broadband pulse spectra as well as 3D fish position form video images and split beam acoustics

    DEFF Research Database (Denmark)

    Lundgren, Bo; Nielsen, J. Rasmus

    2002-01-01

    Measurements were made of the broad-bandwidth (80–220 kHz) acoustic backscattering from free-swimming juvenile gadoids at various orientations and positions in an acoustic beam, under controlled conditions. The experimental apparatus consisted of a stereo-video camera system, a broad......-bandwidth echosounder and echo-processor system, a narrowband 120 kHz split-beam echosounder, a large tank, and a fishnet cage. The net cage was centred on the acoustic beams and was virtually transparent, both acoustically and optically. Accurate three-dimensional positions and angular orientations of individual fish......, alignment of acoustic and optical-reference frames, and automatic position-fitting of fish models to manually marked fix-points on fish images. The software also performs Fourier spectrum analysis and pulse-shape analysis of broad-bandwidth echoes. Therefore, several measurement series on free...

  18. Acoustic telemetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive acoustic...

  19. Overexpression of the Rap2.4f transcriptional factor in Arabidopsis promotes leaf senescence

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Senescence is a complex and highly regulated process. Leaf senescence is influenced by endogenous developmental and external environmental signals. In this work, we found that expression of an Ap2/DREB-type transcription factor gene, Arabidopsis Rap2.4f (At4g28140), was upregulated by salt, mannitol, and dark treatments. Constitutively overexpressing Rap2.4f under the control of the CaMV 35S promoter led to an increased chlorophyll degradation rate and upregulation of many senescence-associated genes in the transgenic Arabidopsis lines. Our results show that Rap2.4f is a positive regulator of senescence, promoting both developmental and dark-induced leaf senescence.

  20. Magnetic x-ray linear dichroism in resonant and non-resonant Gd 4f photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, S.; Gammon, W.J.; Pappas, D.P. [Virginia Commonwealth Univ., Richmond, VA (United States)] [and others

    1997-04-01

    The enhancement of the magnetic linear dichroism in resonant 4f photoemission (MLDRPE) is studied from a 50 monolayer film of Gd/Y(0001). The ALS at beamline 7.0.1 provided the source of linearly polarized x-rays used in this study. The polarized light was incident at an angle of 30 degrees relative to the film plane, and the sample magnetization was perpendicular to the photon polarization. The linear dichroism of the 4f core levels is measured as the photon energy is tuned through the 4d-4f resonance. The authors find that the MLDRPE asymmetry is strongest at the resonance. Near the threshold the asymmetry has several features which are out of phase with the fine structure of the total yield.

  1. Synthesis and evaluation of 4-[F-18]fluoro thalidomide for the in vivo studies of angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Choi, Y. S.; Jeong, K. H.; Lee, K. H.; Choi, Y.; Kim, B. T. [Samsung Medical Center, Seoul (Korea, Republic of)

    2005-07-01

    Thalidomide has been recently rediscovered for its possible utility as an antitumor agent, although it was marketed as a sedative in the 1950s and later found to be a potent teratogen. In this study, therefore, F-18 labeled thalidomide was synthesized and evaluated for the in vivo studies of angiogenesis. 4-[F-18]Fluoro thalidomide ([F-18]1) was prepared by labeling of 4-trimethylammonium thalidomide triflate with TBA[F-18]F in DMSO (90 .deg. C, 10 min) and purified by HPLC. The triflate salt was prepared from 3-fluoro phthalic anhydride in 3 steps. [F-18]1 was incubated with HUVEC cells at 37 .deg. C for 15, 30, 60, and 120 min, respectively. Dynamic PET images of [F-18]1 was obtained in mice implanted with LLC cells. In vitro metabolism study of [F-18]1 was carried out using mouse, rabbit, or human liver microsomes in the presence of NADPH, and the metabolites obtained from the mouse liver microsomal incubation of 1 were analyzed using LC-MS. Radiochemical yield of [F-18]1 was 50-60%, and the specific activity was 42-120 GBq/imol. The HUVEC cell uptake of [F-18]1 increased with time (100% at 15 min and 241% at 120 min). PET images showed that the radioactivity was accumulated in the liver, the kidneys and the bladder of the mice, and brain uptake was shown from 40 min postinjection. However, there was low level of radioactivity uptake in tumor. [F-18]1 was not metabolized by mouse, rabbit, or human liver microsomes but was hydrolyzed significantly at physiological pH. The hydrolyzed product was further analyzed by LC-MS, showing a mass peak corresponding to that of 4-fluoro-N-(o-carboxybenzoyl)glutamic acid imide. This result suggests that [F-18]1 is easily hydrolyzed at physiological pH and thus may not be suitable for the in vivo studies of tumor angiogenesis at least in rodents, although it was reported that the hydrolysis product of thalidomide may be responsible for its angiogenesis activity in humans.

  2. Structure of Some 4f Rare Earth Liquid Metals - A Charged Hard Sphere Approach

    Institute of Scientific and Technical Information of China (English)

    P.B. Thakor; P.N. Gajjar; A.R. Jani

    2006-01-01

    A well-established pseodopotential is used to study the structure of some 4f rare earth liquid metals (Ce,Pr, Eu, Gd, Tb, and Yb). The structure factor S(q), pair distribution function g(r), interatomic distance r1, and coordination number n1 are calculated using Charged Hard Sphere (CHS) reference system. To introduce the exchange and correlation effects, the local field correction due to Sarkar et al. (S) is applied. The present investigation is successful in generating the structural information of Ce, Pr, Eu, Gd, Tb, and Yb 4f rare earth liquid metals.

  3. Acoustic emission linear pulse holography

    Science.gov (United States)

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  4. Enhanced green emission from La0.4F3:Ce0.45,Tb0.15/TiO2 core/shell structure

    Institute of Scientific and Technical Information of China (English)

    T.K. Srinivasan; B.S. Panigrahi; N. Suriyamurthy; P.K. Parida; B. Venkatraman

    2015-01-01

    Nano sized La0.4F3:Ce0.45,Tb0.15 (core), La0.4F3:Ce0.45,Tb0.15 (TiO2) (core) shell, La0.55F:Ce0.45, and La0.85F3:Tb0.15 particles were synthesized by adopting co-precipitation technique in acidic environment and coated with TiO2 to form a core-shell structure by adopting a mechanical dispersion method at room temperature. The synthesized materials were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis) absorption, photoluminescence and lifetime spectroscopy. The crystal structure of La0.4F3:Ce0.45,Tb0.15 remained the same as LaF3 after being doped with Ce and Tb ions but with a slight decrease in the lattice parameter. TEM image confirmed the for-mation of a core-shell structure. The La0.4F3:Ce0.45,Tb0.15/TiO2 exhibited Tb3+fluorescence enhancement by a factor of 1.76. Scin-tillation from the synthesized materials was also observed under X-ray excitation.

  5. Evaluating the Acoustic Effect of Over-the-Rotor Foam-Metal Liner Installed on a Low Speed Fan Using Virtual Rotating Microphone Imaging

    Science.gov (United States)

    Sutliff, Daniel L.; Dougherty, Robert P.; Walker, Bruce E.

    2010-01-01

    An in-duct beamforming technique for imaging rotating broadband fan sources has been used to evaluate the acoustic characteristics of a Foam-Metal Liner installed over-the-rotor of a low-speed fan. The NASA Glenn Research Center s Advanced Noise Control Fan was used as a test bed. A duct wall-mounted phased array consisting of several rings of microphones was employed. The data are mathematically resampled in the fan rotating reference frame and subsequently used in a conventional beamforming technique. The steering vectors for the beamforming technique are derived from annular duct modes, so that effects of reflections from the duct walls are reduced.

  6. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tittmann, B. R. [Penn State; Xi, X. [Penn State

    2014-09-01

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property

  7. High Resolution Acoustical Imaging

    Science.gov (United States)

    1989-05-01

    1028 (September 1982). 26 G. Arfken , Mathematical Methods for Physicists (Academic Press, New York, 1971), 2nd printing, pp.662-666. 27 W. R. Hahn...difference in the approach used by the two methods , as noted in the previous paragraph, forming a direct mathematical com- parison may be impossible...examines high resolution methods which use a linear array to locate stationary objects which have scattered the fressure waves. Several;- new methods

  8. 28 CFR 55.5 - Coverage under section 4(f)(4).

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Coverage under section 4(f)(4). 55.5 Section 55.5 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) IMPLEMENTATION OF THE PROVISIONS OF THE VOTING RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Nature of Coverage § 55.5 Coverage under...

  9. Bulk plasma fragmentation in a C4F8 inductively coupled plasma: A hybrid modeling study

    Science.gov (United States)

    Zhao, Shu-Xia; Zhang, Yu-Ru; Gao, Fei; Wang, You-Nian; Bogaerts, Annemie

    2015-06-01

    A hybrid model is used to investigate the fragmentation of C4F8 inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. CxFy (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C4F8 inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C4F8 reaction set used in the model. The C4F8 plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.

  10. SUM-RULES FOR MAGNETIC DICHROISM IN RARE-EARTH 4F-PHOTOEMISSION

    NARCIS (Netherlands)

    THOLE, BT; VANDERLAAN, G

    1993-01-01

    We present new sum rules for magnetic dichroism in spin polarized photoemission from partly filled shells which give the expectation values of the orbital and spin magnetic moments and their correlations in the ground state. We apply this to the 4f photoemission of rare earths, where the

  11. Mainstream Smoke Chemical Analyses for 2R4F Kentucky Reference Cigarette

    Directory of Open Access Journals (Sweden)

    Chen PX

    2014-12-01

    Full Text Available A new reference cigarette, 2R4F, has been designed to replace the 1R4F Kentucky reference cigarette. This new cigarette has virtually the same blend composition as the 1R4F cigarette. However, the 1R4F cigarette was made in 1983 and the variation in the tobacco from crop year to crop year as well as the difference in the age of the two cigarettes were expected to generate differences in the smoke chemistry. A study done for the quantitation of more than 44 analytes in smoke, including most compounds considered as biologically active, is presented in this report. The analyses were performed by six independent laboratories using a variety of analytical techniques. The smoking was performed using International Standard (ISO recommendations. The results showed only small differences between the two cigarettes regarding ‘tar', nicotine and carbon monoxide (CO, as well as for aminonaphthalenes, resorcinol, and some aldehydes. Although the two reference cigarettes were made as close as possible, the concentrations of a significant number of analytes in the smoke differed between 10% to 30%. Specific trace compounds in the blend such as metals and tobacco specific nitrosamines (TSNA, which may influence the smoke composition, were also different between the two cigarettes. The level of lead, in particular, was very different in tobacco between 1983 and 2002.

  12. Electron Affinity of trans-2-C4F8 from Electron Attachment-Detachment Kinetics

    Science.gov (United States)

    2009-09-04

    either isomer. This attachment rate constant agrees well with other values measured only at 300 K for “2-C4F8” by Bansal and Fessenden (4.9 × 10-8...Grajower, R. Int. J. Mass Spectrom. Ion Phys. 1973, 10, 11. (5) Bansal, K. M.; Fessenden , R. W. J. Chem. Phys. 1973, 59, 1760. (6) Sauers, I

  13. Acoustic cloaking and transformation acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Chen Huanyang [School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006 (China); Chan, C T, E-mail: kenyon@ust.h, E-mail: phchan@ust.h [Department of Physics and the William Mong Institute of NanoScience and Technology, The Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)

    2010-03-24

    In this review, we give a brief introduction to the application of the new technique of transformation acoustics, which draws on a correspondence between coordinate transformation and material properties. The technique is formulated for both acoustic waves and linear liquid surface waves. Some interesting conceptual devices can be designed for manipulating acoustic waves. For example, we can design acoustic cloaks that make an object invisible to acoustic waves, and the cloak can either encompass or lie outside the object to be concealed. Transformation acoustics, as an analog of transformation optics, can go beyond invisibility cloaking. As an illustration for manipulating linear liquid surface waves, we show that a liquid wave rotator can be designed and fabricated to rotate the wave front. The acoustic transformation media require acoustic materials which are anisotropic and inhomogeneous. Such materials are difficult to find in nature. However, composite materials with embedded sub-wavelength resonators can in principle be made and such 'acoustic metamaterials' can exhibit nearly arbitrary values of effective density and modulus tensors to satisfy the demanding material requirements in transformation acoustics. We introduce resonant sonic materials and Helmholtz resonators as examples of acoustic metamaterials that exhibit resonant behaviour in effective density and effective modulus. (topical review)

  14. Luminescence in Li2Sr2Al2PO4F9:Dy3+ - a novel nanophosphor.

    Science.gov (United States)

    Shinde, K N; Dhoble, S J

    2012-01-01

    Earlier research has revealed numerous advantages of the wet chemical method in reaction acceleration, yield improvement, enhanced photoluminescence properties and the evolution of new material phases. In the present study the novel nanophosphor Li(2)Sr(2)Al(2)PO(4)F(9):Dy(3+) was synthesized by a one-step wet chemical method. Formation of single-phase compounds was confirmed by X-ray diffraction (XRD) and characterized by photoluminescence (PL) and transmission electron microscopy (TEM) techniques. The average diameter of the particles was calculated from the TEM image as ca. 20 nm. The synthesized nanophosphor exhibited intense blue and yellow emissions at 482 and 575 nm, respectively, owing to the Dy(3+) ion, by Hg-free excitation at 387 nm, i.e. solid-state lighting excitation. The results obtained showed that phosphors have the potential for applications in the lamp industry.

  15. Latest Trends in Acoustic Sensing

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2014-03-01

    Full Text Available Acoustics-based methods offer a powerful tool for sensing applications. Acoustic sensors can be applied in many fields ranging from materials characterization, structural health monitoring, acoustic imaging, defect characterization, etc., to name just a few. A proper selection of the acoustic wave frequency over a wide spectrum that extends from infrasound (<20 Hz up to ultrasound (in the GHz–band, together with a number of different propagating modes, including bulk longitudinal and shear waves, surface waves, plate modes, etc., allow acoustic tools to be successfully applied to the characterization of gaseous, solid and liquid environments. The purpose of this special issue is to provide an overview of the research trends in acoustic wave sensing through some cases that are representative of specific applications in different sensing fields.

  16. Continuous Monitoring of Fish Population and Behavior by Instantaneous Continental-Shelf-Scale Imaging with Ocean-Waveguide Acoustics

    Science.gov (United States)

    2008-01-01

    Nero , Mike Jech, Olav Rune Godø, Sunwoong Lee, Purnima Ratilal, and Nicholas Makris, “Ocean Acoustic Waveguide Remote Sensing (OAWRS) of Marine...Srinivasan Jagannathan, Deanelle Symonds, Ioannis Bertsatos, Tianrun Chen, Hector Pena, Ruben Patel, Olav Rune Godø, Redwood W. 6 7 Nero , J

  17. Experiments for possible hydroacoustic discrimination of free-swimming juvenile gadoid fish by analysis of broadband pulse spectra as well as 3D fish position form video images and split beam acoustics

    DEFF Research Database (Denmark)

    Lundgren, Bo; Nielsen, J. Rasmus

    2002-01-01

    , alignment of acoustic and optical-reference frames, and automatic position-fitting of fish models to manually marked fix-points on fish images. The software also performs Fourier spectrum analysis and pulse-shape analysis of broad-bandwidth echoes. Therefore, several measurement series on free......Measurements were made of the broad-bandwidth (80–220 kHz) acoustic backscattering from free-swimming juvenile gadoids at various orientations and positions in an acoustic beam, under controlled conditions. The experimental apparatus consisted of a stereo-video camera system, a broad...... were estimated from stereo-images captured synchronously when broad-bandwidth echoes were received from passing fish. Fish positions were also estimated from data collected with a synchronized split-beam echosounder. Software was developed for image analysis and modelling, including calibration...

  18. Spin-forbidden and spin-enabled 4f(14)-->4f(13)5d(1) transitions of Yb(2+)-doped CsCaBr3.

    Science.gov (United States)

    Sánchez-Sanz, Goar; Seijo, Luis; Barandiarán, Zoila

    2009-07-14

    The lowest part of the 4f-->5d absorption spectrum of Yb(2+)-doped CsCaBr(3) crystals has been calculated using methods of quantum chemistry and it is presented here. A first, low-intensity band is found on the low energy side of the spectrum, followed by several strong absorption bands, in agreement with experimental observations in trivalent and divalent lanthanide ions of the second half of the lanthanide series, doped in crystals. Based on Hund's rule, these transitions are usually interpreted as "spin-forbidden" and "spin-allowed" transitions, but this interpretation has been recently questioned in the literature. Here, a two-step relativistic method has been used which reveals the spin composition of the excited state wave functions. The forbidden band is found to be due to spin-forbidden transitions involving "high-spin" excited states because their 1 (3)T(1u) character is 90%. However, the allowed bands cannot be described as spin-allowed transitions involving "low-spin" excited states. Rather, they correspond to "spin-enabled" transitions because they get their intensity from limited (smaller than 45%) electric dipole enabling low-spin (1)T(1u) character. Calculations using a spin-free Hamiltonian revealed that the difference in their electronic structures is related to the fact that the 4f(13)5d(t(2g))(1) manifold is split by an energy gap which separates the lowest (high-spin) 1 (3)T(1u) from the rest of terms, which, in turn, lie very close in energy from each other. As a consequence, the lowest spin-orbit components of 1 (3)T(1u) are shown to remain 90% pure when spin-orbit coupling is considered, whereas a strong spin-orbit coupling exists between the remaining 4f(13)5d(t(2g))(1) terms, among which the 1-3 (1)T(1u) enabling ones lie. As a result, there is a widespread electric dipole enabling (1)T(1u) character, which, although never higher than 45%, leads to a number of spin-enabled absorption bands.

  19. Acoustic biosensors

    OpenAIRE

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of ...

  20. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  1. Gel Structure of the 17R4/F127 Mixed Solutions%17R4/F127混合水溶液的凝胶结构

    Institute of Scientific and Technical Information of China (English)

    谢宇; 吕中元; 孙昭艳; 安立佳; 李秀宏; 吴忠华

    2013-01-01

    Rheology and small angle X-ray scattering(SAXS) were used to study the effect of the content of 17R4(PO14EO24PO14) and temperature on the gel structure of the 17R4/F127(EO99PO65EO99) mixed solutions.It was indicated that the structures of sol,soft gel and hard gel were corresponding to disorder phase,disorder/cubic coexisted phase and cubic phase.With increasing temperature,hard sphere radius and aggregation number of micelle decreased.For pure 17R4,it is difficult to form micelles.However,when the temperature was increased,17R4 chains took part in the formation of micelles and therefore the number of micelles increased,which made the number of F127 chains in one micelle decrease.Thus,the number of PEO blocks of F127 in coronal part decreased and then the coronal part became softer.As a result,a fcc-bcc transition occurred in the system with 17R4/F127 molar ratio of 2.%结合流变学频率扫描和同步辐射小角X射线散射(SAXS),研究了17R4(PO14-EO24-PO14)含量和温度对17R4/F127(EO99-PO65-EO99)混合水溶液凝胶结构的影响.结果表明,溶胶、软凝胶和硬凝胶分别对应无序结构、无序与立方相共存结构以及立方相结构.对于F127水溶液体系,可以将F127形成的胶束看作硬球,随着温度的升高,胶束的硬球半径和胶束中F127链的聚集数随之减小,这是因为17R4在较低温度下很难形成胶束,当温度升高时,17R4链参与胶束的形成,从而使胶束数目增加,因此每个胶束中的F127链数也随之减小.当17R4含量较高时,胶束外壳中F127部分的PEO链段数随着温度升高两减小,胶束外壳变得更软,因此,当17R4/F127摩尔比为2∶1时,混合溶液在高温下呈现面心立方(fcc)到体心立方(bcc)的结构转变.

  2. 4f orbital and spin magnetism in cerium intermetallic compounds studied by magnetic circular x-ray dichroism

    Science.gov (United States)

    Schillé, J. Ph.; Bertran, F.; Finazzi, M.; Brouder, Ch.; Kappler, J. P.; Krill, G.

    1994-08-01

    Magnetic circular x-ray dichroism experiments at the M4,5 absorption edges of cerium in the intermetallic compounds CeCuSi, CeRh3B2, and CeFe2 are reported. By applying general sum rules, it is shown that these experiments are able to yield both the magnitude and the direction of the 4f magnetic moment on Ce. An estimation of the orbital contribution to those 4f moments is given. Our experiments demonstrate the existence of a 4f magnetic moment on Ce in CeFe2 and confirm the extreme sensitivity of the 4f orbital contribution to the degree of localization of the 4f electrons. This 4f orbital contribution is significantly higher than the one predicted from spin-resolved band-structure calculations.

  3. Monte Carlo Simulation of Electron Swarms Parameters in c-C4F8/CF4 Gas Mixtures

    Institute of Scientific and Technical Information of China (English)

    LIU Xue-li; XIAO Deng-ming; WANG Yan-an; ZHANG Zhou-sheng

    2008-01-01

    The swarm parametes for c-C4F8/CF4 mixtures, including the density-normalized effective ionization coefficient, drift velocity and mean energy were calculated using Monte-Carlo method with the null collision technique. The overall density-reduced electric field strength could be varied between 150 and 500 Td,while the c-C4F8 content in gas mixtures is varied in the range of 0-100%. The value of the density-normalize deffective ionization coefficient shows a strong dependence on the c-C4F8 content, becoming more electronegative as the content of c-C4F8 is increased. The drift velocity of c-C4F4/CF4 mixtures is more affected by CF4. The calculated limiting field strength for c-C4F8/CF4 mixtures is higher than that of SF6/CF4.

  4. 4f bands in Ce heavy fermions and mixed valent compounds at T and Gt; T{sub K}

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, A.B. [Los Alamos National Lab., NM (United States); Joyce, J.J. [Los Alamos National Lab., NM (United States); Arko, A.J. [Los Alamos National Lab., NM (United States); Thompson, J.D. [Los Alamos National Lab., NM (United States); Fisk, Z. [Los Alamos National Lab., NM (United States); Tang, J. [Los Alamos National Lab., NM (United States); Lawrence, J.M. [Institute for Surface and Interface Science, UC Irvine, Irvine, CA 92717 (United States); Riseborough, P.S. [Polytechnic Univ., Brooklyn, NY (United States); Canfield, P.C. [Ames Laboratory, Iowa State University, Ames, IA 50011 (United States)

    1995-02-01

    We report evidence of 4f band character in Ce 4f states at T and Gt;T{sub K} using high-resolution angle-resolved resonant photoemission. The Ce intermetallic compound CePt{sub 2+x} was grown and studied in situ by the method of MBE and was characterized by LEED, XPS and XAS. These new findings suggest a need for a re-examination of 4f photoemission in Ce compounds. ((orig.)).

  5. 4f bands in Ce heavy fermions and mixed valent compounds at T {much_gt} T{sub K}

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, A.B.; Joyce, J.J.; Arko, A.J.; Thompson, J.D.; Tang, J.; Fisk, Z. [Los Alamos National Lab., NM (United States); Lawrence, J.M. [California Univ., Irvine, CA (United States). Inst. for Surface and Interface Science; Riseborough, P. [Polytechnic Univ., Brooklyn, NY (United States); Canfield, P.C. [Ames Lab., IA (United States)

    1994-08-01

    We report evidence of 4f band character in Ce 4f states at {Tau}{much_gt}{Tau}{sub K} using the technique of high-resolution angle-resolved resonant photoemission. The Ce intermetallic compound CePt{sub +x} was grown and studied in situ by the method of MBE and was characterized by LEED, XPS and XAS. These new findings would suggest a need for a reexamination of 4f photoemission in Ce compounds.

  6. 4f heavy femion photoelectron spectra do not exhibit the Kondo scale

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; Joyce, J.J.; Andrews, A.B.; Blyth, I.R.; Barlett, R.J.; Fisk, Z. [Los Alamos National Laboratory, NM (United States); Canfield, P.C.; Olson, C.G.; Benning, P.J. [Iowa Sate Univ., Ames, IA (United States); Poirier, D.M.; Weaver, J.H. [Univ. of Minnesota, Minneapolis, MN (United States); Riseborough, P.S. [Polytechnic Univ., Brookyln, NY (United States)

    1994-12-31

    It has been the authors contention for some time that the Single Impurity Anderson Model (SIAM), as extended by Gunnarsson and Schonhammer (GS), or the non-crossing approximation (NCA), does not correctly describe the 4f photoelectron spectra of heavy fermions. Recently they have concentrated on Yb heavy fermions since in these materials the Kondo resonance (KR) is fully occupied and thus accessible via photoemission. In particular, they have repeatedly pointed out that the width, position, spectral weight, lineshape, and temperature dependence of the features assumed to be the KR and its sidebands, are nearly independent of the Kondo temperature, T{sub K}, while at the same time bearing a striking resemblance to the simple 4f core level spectra of pure Yb metal, or of Lu isostructural Lu compounds. It is important to resolve these issues in view of the fundamental nature of the problem.

  7. A rail system for circular synthetic aperture sonar imaging and acoustic target strength measurements: design/operation/preliminary results.

    Science.gov (United States)

    Kennedy, J L; Marston, T M; Lee, K; Lopes, J L; Lim, R

    2014-01-01

    A 22 m diameter circular rail, outfitted with a mobile sonar tower trolley, was designed, fabricated, instrumented with underwater acoustic transducers, and assembled on a 1.5 m thick sand layer at the bottom of a large freshwater pool to carry out sonar design and target scattering response studies. The mobile sonar tower translates along the rail via a drive motor controlled by customized LabVIEW software. The rail system is modular and assembly consists of separately deploying eight circular arc sections, measuring a nominal center radius of 11 m and 8.64 m arc length each, and having divers connect them together in the underwater environment. The system enables full scale measurements on targets of interest with 0.1° angular resolution over a complete 360° aperture, without disrupting target setup, and affording a level of control over target environment conditions and noise sources unachievable in standard field measurements. In recent use, the mobile cart carrying an instrumented sonar tower was translated along the rail in 720 equal position increments and acoustic backscatter data were acquired at each position. In addition, this system can accommodate both broadband monostatic and bistatic scattering measurements on targets of interest, allowing capture of target signature phenomena under diverse configurations to address current scientific and technical issues encountered in mine countermeasure and unexploded ordnance applications. In the work discussed here, the circular rail apparatus is used for acoustic backscatter testing, but this system also has the capacity to facilitate the acquisition of magnetic and optical sensor data from targets of interest. A brief description of the system design and operation will be presented along with preliminary processed results for data acquired from acoustic measurements conducted at the Naval Surface Warfare Center, Panama City Division Test Pond Facility. [Work Supported by the U.S. Office of Naval Research and

  8. Long-term tropospheric trend of octafluorocyclobutane (c-C4F8 or PFC-318

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2012-01-01

    Full Text Available Air samples collected at Cape Grim, Tasmania between 1978 and 2008 and during a series of more recent aircraft sampling programmes have been analysed to determine the atmospheric abundance and trend of octafluorocyclobutane (c-C4F8 or PFC-318. c-C4F8 has an atmospheric lifetime in excess of 3000 yr and a global warming potential (GWP of 10 300 (100 yr time horizon, making it one of the most potent greenhouse gases detected in the atmosphere to date. The abundance of c-C4F8 in the Southern Hemisphere has risen from 0.35 ppt in 1978 to 1.2 ppt in 2010, and is currently increasing at a rate of around 0.03 ppt yr−1. It is the third most abundant perfluorocarbon (PFC in the present day atmosphere, behind CF4 (~75 ppt and C2F6 (~4 ppt. Although a number of potential sources of c-C4F8 have been reported, including the electronics and semi-conductor industries, there remains a large discrepancy in the atmospheric budget. Using a 2-D global model to derive top-down global emissions based on the Cape Grim measurements yields a recent (2007 emission rate of around 1.1 Gg yr−1 and a cumulative emission up to and including 2007 of 38.1 Gg. Emissions reported on the EDGAR emissions database for the period 1986–2005 represent less than 1% of the top-down emissions for the same period, which suggests there is a large unaccounted for source of this compound. It is also apparent that the magnitude of this source has varied considerably over the past 30 yr, declining sharply in the late 1980s before increasing again in the mid-1990s.

  9. Long-term tropospheric trend of octafluorocyclobutane (c-C4F8 or PFC-318

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2011-07-01

    Full Text Available Air samples collected at Cape Grim, Tasmania between 1978 and 2008 and during a series of more recent aircraft sampling programmes have been analysed to determine the atmospheric abundance and trend of octafluorocyclobutane (-C4F8 or PFC-318. c-C4F8 has an atmospheric lifetime in excess of 3000 yr and a global warming potential (GWP of 10 300 (100 yr time horizon, making it one of the most potent greenhouse gases detected in the atmosphere to date. The abundance of c-C4F8 in the Southern Hemisphere has risen from 0.35 ppt in 1978 to 1.2 ppt in 2010, and is currently increasing at a rate of around 0.03 ppt yr−1. It is the third most abundant perfluorocarbon (PFC in the present day atmosphere, behind CF4 (~75 ppt and C2F6 (~4 ppt. The origin of c-C4F8 is unclear. Using a 2-D global model to derive top-down global emissions based on the Cape Grim measurements yields a recent (2007 emission rate of around 1.1 Gg yr−1 and a cumulative emission up to and including 2007 of 38.1 Gg. Emissions reported on the EDGAR emissions database for the period 1986–2005 represent less than 1 % of the top-down emissions for the same period, which suggests there is a large unaccounted for source of this compound. It is also apparent that the magnitude of this source has varied considerably over the past 30 yr, declining sharply in the late 1980s before increasing again in the mid-1990s.

  10. Dehybridization of the 4f shell in Si-substituted CeRh3B2

    Science.gov (United States)

    Malik, S. K.; Shenoy, G. K.; Dhar, S. K.; Paulose, P. L.; Vijayaraghavan, R.

    1986-12-01

    The compound CeRh3B2 is known to order magnetically with an unusually high Curie temperature (TC) of 115 K and a low saturation moment of about 0.4μB. We have studied the magnetic behavior of the system CeRh3(B1-xSix)2 (0CeRh3B2 arises because of the Ce 4f hybridization with the neighboring ligands.

  11. Ab initio molecular dynamics simulations of the Li4F4 cluster

    Science.gov (United States)

    Heidenreich, A.; Sauer, J.

    1995-12-01

    Molecular dynamics simulations have been performed directly on the ab initio potential energy surface of Li4F4, which was generated within the Hartree-Fock approximation using a Gaussian basis set (split valence contraction). Trajectories at different temperatures yield the temperature dependence of the infrared spectra and the photoelectron spectra. For the infrared spectra comparison is made with MD results using a shell model ion pair potential function.

  12. The transcription factor E4F1 coordinates CHK1-dependent checkpoint and mitochondrial functions.

    Science.gov (United States)

    Rodier, Geneviève; Kirsh, Olivier; Baraibar, Martín; Houlès, Thibault; Lacroix, Matthieu; Delpech, Hélène; Hatchi, Elodie; Arnould, Stéphanie; Severac, Dany; Dubois, Emeric; Caramel, Julie; Julien, Eric; Friguet, Bertrand; Le Cam, Laurent; Sardet, Claude

    2015-04-14

    Recent data support the notion that a group of key transcriptional regulators involved in tumorigenesis, including MYC, p53, E2F1, and BMI1, share an intriguing capacity to simultaneously regulate metabolism and cell cycle. Here, we show that another factor, the multifunctional protein E4F1, directly controls genes involved in mitochondria functions and cell-cycle checkpoints, including Chek1, a major component of the DNA damage response. Coordination of these cellular functions by E4F1 appears essential for the survival of p53-deficient transformed cells. Acute inactivation of E4F1 in these cells results in CHK1-dependent checkpoint deficiency and multiple mitochondrial dysfunctions that lead to increased ROS production, energy stress, and inhibition of de novo pyrimidine synthesis. This deadly cocktail leads to the accumulation of uncompensated oxidative damage to proteins and extensive DNA damage, ending in cell death. This supports the rationale of therapeutic strategies simultaneously targeting mitochondria and CHK1 for selective killing of p53-deficient cancer cells.

  13. Effect of Sr doping in layered Eu3Bi2S4F4 superconductor

    Science.gov (United States)

    Zhang, Pan; Zhai, Hui-Fei; Wang, Zhen; Chen, Jian; Feng, Chun-Mu; Cao, Guang-Han; Xu, Zhu-An

    2017-01-01

    We report the effect of Sr-doping in the BiS2-based superconductor {{Eu}}3-xSr x Bi2S4F4. Eu3Bi2S4F4 is a self-doped compound with a mixed Eu valence state. By the partial substitution of Sr for Eu, T c gradually decreases and superconductivity disappears above 0.3 K when x\\gt 1.0. Magnetic-susceptibility and specific-heat measurements reveal that Sr substitution leads to a decrease in both Eu2+ and Eu3+ populations. The decreased Eu3+ population, and the corresponding lower charge carrier density, may be the main origin for the suppression of superconductivity. In addition, we find a significant increase in the Sommerfeld coefficient {γ }0 upon Sr doping, which may be due to the Kondo effect between the magnetic moments (associated to Eu2+ ions) and the conducting electrons. This work implies that the Kondo effect could compete with superconductivity in Eu3Bi2S4F4.

  14. Superhydrophobic treatment using atmospheric-pressure He/C4F8 plasma for buoyancy improvement

    Science.gov (United States)

    Noh, Sooryun; Moon, A.-Young; Moon, Se Youn

    2015-04-01

    A superhydrophobic miniature boat was fabricated with aluminum alloy plates treated with atmospheric-pressure helium (He)/octafluorocyclobutane (C4F8) plasma using 13.56 MHz rf power. When only 0.13% C4F8 was added to He gas, the contact angle of the surface increased to 140° and the surface showed superhydrophobic properties. On the basis of chemical and morphological analyses, fluorinated functional groups (CF, CF2, and CF3) and nano-/micro-sized particles were detected on the Al surface. These features brought about superhydrophobicity similar to the lotus effect. While the miniature boat, assembled with plasma-treated plates, was immersed in water, a layer of air (i.e., a plastron) surrounded the superhydrophobic surfaces. This effect contributed to the development of a 4.7% increase in buoyancy. In addition, the superhydrophobic properties lasted for two months under the submerged condition. These results demonstrate that treatment with atmospheric-pressure He/C4F8 plasma is a promising method of improving the load capacity and antifouling properties, and reducing the friction of marine ships through a fast and low-cost superhydrophobic treatment process.

  15. The Transcription Factor E4F1 Coordinates CHK1-Dependent Checkpoint and Mitochondrial Functions

    Directory of Open Access Journals (Sweden)

    Geneviève Rodier

    2015-04-01

    Full Text Available Recent data support the notion that a group of key transcriptional regulators involved in tumorigenesis, including MYC, p53, E2F1, and BMI1, share an intriguing capacity to simultaneously regulate metabolism and cell cycle. Here, we show that another factor, the multifunctional protein E4F1, directly controls genes involved in mitochondria functions and cell-cycle checkpoints, including Chek1, a major component of the DNA damage response. Coordination of these cellular functions by E4F1 appears essential for the survival of p53-deficient transformed cells. Acute inactivation of E4F1 in these cells results in CHK1-dependent checkpoint deficiency and multiple mitochondrial dysfunctions that lead to increased ROS production, energy stress, and inhibition of de novo pyrimidine synthesis. This deadly cocktail leads to the accumulation of uncompensated oxidative damage to proteins and extensive DNA damage, ending in cell death. This supports the rationale of therapeutic strategies simultaneously targeting mitochondria and CHK1 for selective killing of p53-deficient cancer cells.

  16. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... chapters represent review articles covering the most relevant areas of the field. They are written with the goal of providing students with comprehensive introductions. Further they offer a supply of numerous references to the relevant literature. Besides its usefulness as a textbook, this will make...

  17. Radiation acoustics

    CERN Document Server

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  18. Radiation-force-based estimation of acoustic attenuation using harmonic motion imaging (HMI) in phantoms and in vitro livers before and after HIFU ablation.

    Science.gov (United States)

    Chen, Jiangang; Hou, Gary Y; Marquet, Fabrice; Han, Yang; Camarena, Francisco; Konofagou, Elisa

    2015-10-07

    Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n = 5) and in vitro canine livers (n = 3) were tested, as well as HIFU lesions in in vitro canine livers (n = 5). Results demonstrated that attenuations obtained from the phantoms showed a good correlation (R² = 0.976) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32   ±   0.03 dB cm(-1) MHz(-1), which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58   ±   0.06 dB cm(-1) MHz(-1)) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation.

  19. High-Frequency Underwater Acoustic Propagation in a Port Modeled as a Three-Dimensional Duct Closed at One End Using the Method of Images

    Directory of Open Access Journals (Sweden)

    Pierre-Philippe J. Beaujean

    2012-01-01

    Full Text Available A computer-efficient model for underwater acoustic propagation in a shallow, three-dimensional rectangular duct closed at one end has been developed using the method of images. The duct simulates a turning basin located in a port, surrounded with concrete walls, and filled with sea water. The channel bottom is composed of silt. The modeled impulse response is compared with the impulse response measured between 15 kHz and 33 kHz. Despite small sensor-position inaccuracies and an approximated duct geometry, the impulse response can be modeled with a relative echo magnitude error of 1.62 dB at worst and a relative echo location error varying between 0% and 4% when averaged across multiple measurements and sensor locations. This is a sufficient level of accuracy for the simulation of an acoustic communication system operating in the same frequency band and in shallow waters, as time fluctuations in echo magnitude commonly reach 10 dB in this type of environment.

  20. Impact of the Kohn-Sham Delocalization Error on the 4f Shell Localization and Population in Lanthanide Complexes.

    Science.gov (United States)

    Duignan, Thomas J; Autschbach, Jochen

    2016-07-12

    The extent of ligand to metal donation bonding and mixing of 4f (and 5d) orbitals with ligand orbitals is studied by Kohn-Sham (KS) calculations for LaX3 (X = F, Cl, Br, I), GdX3, and LuX3 model complexes, CeCl6(2-), YbCp3, and selected lanthanide complexes with larger ligands. The KS delocalization error (DE) is quantified via the curvature of the energy for noninteger electron numbers. The extent of donation bonding and 4f-ligand mixing correlates well with the DE. For Lu complexes, the DE also correlates with the extent of mixing of ligand and 4f orbitals in the canonical molecular orbitals (MOs). However, the localized set of MOs and population analyses indicate that the closed 4f shell is localized. Attempts to create situations where mixing of 4f and ligand orbitals occurs due to a degeneracy of fragment orbitals were unsuccessful. For La(III) and, in particular, for Ce(IV), Hartree-Fock, KS, and coupled cluster singles and doubles calculations are in agreement in that excess 4f populations arise from ligand donation, along with donation into the 5d shell. Likewise, KS calculations for all systems with incompletely filled 4f shells, even those with "optimally tuned" functionals affording a small DE, produce varying degrees of excess 4f populations which may be only partially attributed to 5d polarization.

  1. Digital image correlation, acoustic emission and ultrasonic pulse velocity for the detection of cracks in the concrete buffer of the Belgian nuclear supercontainer

    Energy Technology Data Exchange (ETDEWEB)

    Iliopoulos, Sokratis; Tsangouri, Eleni; Aggelis, Dimitrios G.; Pyl, Lincy [Vrije Univ., Brussels (Belgium). Dept. of Mechanics of Materials and Constructions; Vantomme, John [Vrije Univ., Brussels (Belgium). Dept. of Mechanics of Materials and Constructions; Royal Military Academy, Brussels (Belgium). Civil and Material Engineering Dept.; Marcke, Philippe van [ONDRAF/NIRAS (Belgium); Areias, Lou [EURIDICE GIE/SCK.CEN, Mol (Belgium); Vrije Univ., Brussels (Belgium). Dept. of Mechanics of Materials and Constructions

    2014-11-01

    The long term management of high-level and heat emitting radioactive waste is a worldwide concern, as it directly influences the environment and future generations. To address this issue, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials has come up with the conceptual design of a massive concrete structure called Supercontainer. The feasibility to construct these structures is being evaluated through a number of scaled models that are tested using classical as well as state of the art measurement techniques. In the current paper, the results obtained from the simultaneous application of the Digital Image Correlation (DIC), the Acoustic Emission (AE) and the Ultrasonic Pulse Velocity (UPV) nondestructive testing techniques on the second scaled model for the detection and monitoring of cracks will be presented.

  2. Case-study magnetic resonance imaging and acoustic investigation of the effects of vocal warm-up on two voice professionals.

    Science.gov (United States)

    Laukkanen, Anne-Maria; Horáček, Jaromir; Havlík, Radan

    2012-07-01

    Vocal warm-up (WU)-related changes were studied in one male musical singer and one female speech trainer. They sustained vowels before and after WU in a magnetic resonance imaging (MRI) device. Acoustic recordings were made in a studio. The vocal tract area increased after WU, a formant cluster appeared between 2 and 4.5 kHz, and SPL increased. Evidence of larynx lowering was only found for the male. The pharyngeal inlet over the epilaryngeal outlet ratio (A(ph)/A(e)) increased by 10%-28%, being 3-4 for the male and 5-7 for the female. The results seem to represent different voice training traditions. A singer's formant cluster may be achievable without a high A(ph)/A(e) (≥ 6), but limitations of the 2D method should be taken into account.

  3. Alternative pre-mRNA splicing in Drosophila spliceosomal assembly factor RNP-4F during development.

    Science.gov (United States)

    Fetherson, Rebecca A; Strock, Stephen B; White, Kristen N; Vaughn, Jack C

    2006-04-26

    The 5'- and 3'-UTR regions in pre-mRNAs play a variety of roles in controlling eukaryotic gene expression, including translational modulation. Here we report the results of a systematic study of alternative splicing in rnp-4f, which encodes a Drosophila spliceosomal assembly factor. We show that most of the nine introns are constitutively spliced, but several patterns of alternative splicing are observed in two pre-mRNA regions including the 5'-UTR. Intron V is shown to be of recent evolutionary origin and is infrequently spliced, resulting in generation of an in-frame stop codon and a predicted truncated protein lacking a nuclear localization signal, so that alternative splicing regulates its subcellular localization. Intron 0, located in the 5'-UTR, is subject to three different splicing decisions in D. melanogaster. Northern analysis of poly(A+) mRNAs reveals two differently sized rnp-4f mRNA isoforms in this species. A switch in relative isoform abundance occurs during mid-embryo stages, when the larger isoform becomes more abundant. This isoform is shown to represent intron 0 unspliced mRNA, whereas the smaller transcript represents the product of alternative splicing. Comparative genomic analysis predicts that intron 0 is present in diverse Drosophila species. Intron 0 splicing results in loss of an evolutionarily conserved stem-loop constituting a potential cis-regulatory element at the 3'-splice site. A model is proposed for the role of this element both in 5'-UTR alternative splicing decisions and in RNP-4F translational modulation. Preliminary evidences in support of our model are discussed.

  4. Red nucleus and rubrospinal tract disorganization in the absence of Pou4f1

    Science.gov (United States)

    Martinez-Lopez, Jesus E.; Moreno-Bravo, Juan A.; Madrigal, M. Pilar; Martinez, Salvador; Puelles, Eduardo

    2015-01-01

    The red nucleus (RN) is a neuronal population that plays an important role in forelimb motor control and locomotion. Histologically it is subdivided into two subpopulations, the parvocellular RN (pRN) located in the diencephalon and the magnocellular RN (mRN) in the mesencephalon. The RN integrates signals from motor cortex and cerebellum and projects to spinal cord interneurons and motor neurons through the rubrospinal tract (RST). Pou4f1 is a transcription factor highly expressed in this nucleus that has been related to its specification. Here we profoundly analyzed consequences of Pou4f1 loss-of-function in development, maturation and axonal projection of the RN. Surprisingly, RN neurons are specified and maintained in the mutant, no cell death was detected. Nevertheless, the nucleus appeared disorganized with a strong delay in radial migration and with a wider neuronal distribution; the neurons did not form a compacted population as they do in controls, Robo1 and Slit2 were miss-expressed. Cplx1 and Npas1, expressed in the RN, are transcription factors involved in neurotransmitter release, neuronal maturation and motor function processes among others. In our mutant mice, both transcription factors are lost, suggesting an abnormal maturation of the RN. The resulting altered nucleus occupied a wider territory. Finally, we examined RST development and found that the RN neurons were able to project to the spinal cord but their axons appeared defasciculated. These data suggest that Pou4f1 is necessary for the maturation of RN neurons but not for their specification and maintenance. PMID:25698939

  5. Red nucleus and rubrospinal tract disorganization in the absence of Pou4f1

    Directory of Open Access Journals (Sweden)

    Jesus E. eMartinez-Lopez

    2015-02-01

    Full Text Available The red nucleus is a neuronal population that plays an important role in forelimb motor control and locomotion. Histologically it is subdivided into two subpopulations, the parvocellular red nucleus located in the diencephalon and the magnocellular red nucleus in the mesencephalon. The red nucleus integrates signals from motor cortex and cerebellum and projects to spinal cord interneurons and motor neurons through the rubrospinal tract. Pou4f1 is a transcription factor highly expressed in this nucleus that has been related to its specification. Here we profoundly analyzed consequences of Pou4f1 loss-of-function in development, maturation and axonal projection of the red nucleus. Surprisingly, red nucleus neurons are specified and maintained in the mutant, no cell death was detected. Nevertheless, the nucleus appeared disorganized with a strong delay in radial migration and with a wider neuronal distribution; the neurons did not form a compacted population as they do in controls, Robo1 and Slit2 were miss-expressed. Cplx1 and Npas1, expressed in the red nucleus, are transcription factors involved in neurotransmitter release, neuronal maturation and motor function processes among others. In our mutant mice, both transcription factors are lost, suggesting an abnormal maturation of the red nucleus. The resulting altered nucleus occupied a wider territory. Finally, we examined rubrospinal tract development and found that the red nucleus neurons were able to project to the spinal cord but their axons appeared defasciculated. These data suggest that Pou4f1 is necessary for the maturation of red nucleus neurons but not for their specification and maintenance.

  6. Acoustics Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  7. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  8. Room Acoustics

    Science.gov (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  9. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy

    Science.gov (United States)

    Fujimori, Shin-ichi

    2016-04-01

    Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ∼ 7~\\text{eV} ) or high-energy synchrotron radiations (hν ≳ 400~\\text{eV} ) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of \\text{Ce}M\\text{I}{{\\text{n}}5} (M=\\text{Rh} , \\text{Ir} , and \\text{Co} ) and \\text{YbR}{{\\text{h}}2}\\text{S}{{\\text{i}}2} with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant \\text{U}~5f compounds such as \\text{UFeG}{{\\text{a}}5} , their electronic structures can be well-described by the band-structure calculation assuming that all \\text{U}~5f electrons are itinerant. In contrast, the band structures of localized \\text{U}~5f compounds such as \\text{UP}{{\\text{d}}3} and \\text{U}{{\\text{O}}2} are essentially explained by the localized model that treats \\text{U}~5f electrons as localized core states. In regards to heavy fermion \\text{U} -based compounds such as the hidden-order compound \\text{UR}{{\\text{u}}2}\\text{S}{{\\text{i}}2} , their electronic structures exhibit complex behaviors. Their overall band structures

  10. Evidence for the photoemission nature of Gd 4f resonant photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, S.R.; Gammon, W.J. [Virginia Commonwealth Univ., Richmond, VA (United States). Dept. of Physics; Cummins, T.R.; Waddill, G.D. [Univ. of Missouri, Rolla, MO (United States). Dept. of Physics; Laan, G. van der [Daresbury Lab., Warrington (United Kingdom); Goodman, K.W.; Tobin, J.G. [Lawrence Livermore National Lab., CA (United States)

    1998-12-31

    The constructive interference between direct and indirect channels above the absorption threshold of a core level leads to a massive increase in the emission cross section leading to a phenomenon called resonant photoemission. Using novel magnetic linear dichroism in angular distribution photoelectron spectroscopy experiment, the authors have tried to understand the nature of the resonant photoemission process in Gd metal. The presence of dichroism in Gd 4f photoemission intensity at a photo energy corresponding to resonant photoemission clearly demonstrates the photoemission-like nature of the resonant photoemission process.

  11. Temperature dependence of 4f PES features and hole occupancy in ytterbium heavy fermions

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, A.B.; Blyth, R.I.R.; Arko, A.J. [and others

    1993-09-01

    We have measured the temperature dependence between 80 and 300K and spectral weight of the 4f features in clean single crystal Yb heavy fermions, cleaved in a vacuum of 5 {times} 10{sup {minus}11} Torr. A small ({approx}10%) decrease in spectral weight differs substantially from the reported {approx}50% decrease over this range. All divalent features are much larger than expected, yielding n{sub f} values far too small. The intensity of the divalent features in YbAuCu{sub 4} is about 2 orders of magnitude larger than expected.

  12. Temperature dependence of 4f PES features and hole occupancy in ytterbium heavy fermions

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, A.B. (Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)); Blyth, R.I.R. (Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)); Arko, A.J. (Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)); Joyce, J.J. (Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)); Fisk, Z. (Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)); Thompson, J.D. (Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)); Bartlett, R.J. (Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)); Canfield, P.C. (Iowa State University, Ames, Iowa (United States)); Olson, C.G. (Iowa State University, Ames, Iowa (United States)); Benning, P. (Iowa State University, Ames, Iowa (United States)); Riseborough, P.S. (Polytechnic University, Brooklyn, New York (United States))

    1994-04-01

    We have measured the temperature dependence between 80 and 300 K and spectral weight of the 4f features in clean single crystal Yb heavy fermions, cleaved in a vacuum of 5x10[sup -11] Torr. A small ( similar 15%) decrease in spectral weight differs substantially from the reported similar 50% decrease over this range. All divalent features are much larger than expected, yielding n[sub f] values far too small. The intensity of the divalent features in YbAuCu[sub 4] is about two orders of magnitude larger than expected. ((orig.))

  13. System and method to create three-dimensional images of non-linear acoustic properties in a region remote from a borehole

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher; Johnson, Paul A.; Guyer, Robert; TenCate, James A.; Le Bas, Pierre-Yves

    2013-01-01

    In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

  14. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. NDE of friction stir welds, nonlinear acoustics, ultrasonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Lingvall, Fredrik; Wennerstroem, Erik; Ping Wu [Uppsala Univ., Dept. of Materials Science (Sweden). Signals and Systems

    2004-01-01

    This report contains results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2002/2003. After a short introduction a review of the NDE techniques that have been applied to the assessment of friction stir welds (FSW) is presented. The review is based on the results reported by the specialists from the USA, mostly from the aerospace industry. A separate chapter is devoted to the extended experimental and theoretical research concerning potential of nonlinear waves in NDE applications. Further studies concerning nonlinear propagation of acoustic and elastic waves (classical nonlinearity) are reported. Also a preliminary investigation of the nonlinear ultrasonic detection of contacts and interfaces (non-classical nonlinearity) is included. Report on the continuation of previous work concerning computer simulation of nonlinear propagations of ultrasonic beams in water and in immersed solids is also presented. Finally, results of an investigation concerning a new method of synthetic aperture imaging (SAI) and its comparison to the traditional phased array (PA) imaging and to the synthetic aperture focusing technique (SAFT) are presented. A new spatial-temporal filtering method is presented that is a generalization of the previously proposed filter. Spatial resolution of the proposed method is investigated and compared experimentally to that of classical SAFT and PA imaging. Performance of the proposed method for flat targets is also investigated.

  15. On the Acoustic Properties of Vaporized Submicron Perfluorocarbon Droplets

    NARCIS (Netherlands)

    Reznik, Nikita; Lajoinie, Guillaume; Shpak, Oleksandr; Gelderblom, Erik C.; Williams, Ross; Jong, de Nico; Versluis, Michel; Burns, Peter N.

    2014-01-01

    The acoustic characteristics of microbubbles created from vaporized submicron perfluorocarbon droplets with fluorosurfactant coating are examined. Utilizing ultra-high-speed optical imaging, the acoustic response of individual microbubbles to low-intensity diagnostic ultrasound was observed on clini

  16. The 4f-5d luminescence transitions in cerium-doped LuF3

    Science.gov (United States)

    Guerbous, L.; Krachni, O.

    Emission and excitation spectra of the Ce3+ ion in LuF3 single crystal were measured at 77 K. The broad bands observed in these spectra were attributed to the parity-allowed electric-dipole 4f ← 5d transitions within Ce3+ ion. No zero-phonon lines were observed, which is indicative of a strong electron-phonon coupling in this host. It is shown that Ce3+ 5d excited configuration splits into five crystal-field components in LuF3. The influence of the crystalline environment on the position of the lowest Ce3+ 5d level is investigated. The energy of the lowest level of the 4fN-15d excited configuration was predicted for all the trivalent rare earth ions embedded in LuF3. Positions of crystal field spitting levels of 4fN-15d configuration relative to the host electronic bands were discussed.

  17. Li2B3O4F3, a new lithium-rich fluorooxoborate

    Science.gov (United States)

    Pilz, Thomas; Nuss, Hanne; Jansen, Martin

    2012-02-01

    The new lithium fluorooxoborate, Li2B3O4F3, is obtained by a solid state reaction from LiBO2 and LiBF4 at 553 K and crystallizes in the acentric orthorhombic space group P212121 (no. 19) with the cell parameters a=4.8915(9), b=8.734(2), and c=12.301(2) Å. Chains of fluorinated boroxine rings along the b axis consists of BO3 triangles and BO2F2 as well as BO3F tetrahedra. Mobile lithium ions are compensating the negative charge of the anionic chain, in which the fourfold coordinated boron atoms bear a negative formal charge. Annealing Li2B3O4F3 at temperatures above 573 K leads to conversion into Li2B6O9F2. The title compound is an ionic conductor with the highest ion conductivity among the hitherto know lithium fluorooxoborates, with conductivities of 1.6×10-9 and 1.8×10-8 S cm-1 at 473 and 523 K, respectively.

  18. Seismo-acoustic imaging of marine hard substrate habitats: a case study from the German Bight (SE North Sea)

    Science.gov (United States)

    Papenmeier, Svenja; Hass, H. Christian

    2016-04-01

    The detection of hard substrate habitats in sublittoral environments is a considerable challenge in spite of modern high resolution hydroacoustic techniques. In offshore areas those habitats are mainly represented by either cobbles and boulders (stones) often located in wide areas of soft sediments or by glacial relict sediments (heterogeneous mixture of medium sand to gravel size with cobbles and boulders). Sediment classification and object detection is commonly done on the basis of hydroacoustic backscatter intensities recorded with e.g. sidescan sonar (SSS) and multibeam echo sounder (MBES). Single objects lying on the sediment such as stones can generally be recognized by the acoustic shadow behind the object. However, objects close to the sonar's nadir may remain undetected because their shadows are below the data resolution. Further limitation in the detection of objects is caused by sessile communities that thrive on the objects. The bio-cover tends to absorb most of the acoustic signal. Automated identification based on the backscatter signal is often not satisfactory, especially when stones are present in a setting with glacial deposits. Areas characterized by glacial relict sediments are hardly differentiable in their backscatter characteristics from rippled coarse sand and fine gravel (rippled coarse sediments) without an intensive ground-truthing program. From the ecological point of view the relict and rippled coarse sediments are completely different habitats and need to be distinguished. The case study represents a seismo-acoustic approach in which SSS and nonlinear sediment echo sounder (SES) data are combined to enable a reliable and reproducible differentiation between relict sediments (with stones and coarse gravels) and rippled coarse sediments. Elevated objects produce hyperbola signatures at the sediment surface in the echo data which can be used to complement the SSS data. The nonlinear acoustic propagation of the SES sound pulses produces a

  19. Implementation of gray level error conpensation for optical 4f system%光学4f系统灰度误差补偿的实现

    Institute of Scientific and Technical Information of China (English)

    韩亮; 姜孜锜; 蒲秀娟

    2013-01-01

    为补偿光学4f系统灰度误差,提出基于直方图匹配和径向基函数(RBF)神经网络的灰度误差补偿方法.首先利用径向基函数神经网络拟合经光学4f系统输出图像的直方图与对应输入图像的直方图之间的非线性变换,得到输出图像与输入图像的直方图匹配变换曲线的最优估计;再依据直方图匹配曲线的最优估计对经光学4f系统的输出图像进行直方图匹配,得到灰度误差补偿后的图像.利用实际的光学4f系统进行光学实验,灰度误差补偿后图像的信噪比平均提高了2.96 dB,视觉效果明显改善.实验结果表明,该方法能有效补偿光学4f系统灰度误差,提高基于光学4f系统的光学信息处理的精度.%To compensate the gray level error in optical 4f system,a method for gray level error compensation based on histogram matching and Radial Basis Function (RBF) neural network was proposed.The nonlinear transformation of histogram between input and output images in optical 4f System was fitted by RBF neural network,then the optimal estimation of curve for histogram matching between input and output images was obtained.The gray level error compensation image was obtained by utilizing histogram matching according to the optimal estimation of curve for histogram matching.The average Peak Signalto-Noise Ratio (PSNR) gain achieved was 2.96 dB and the visual effect of images processed was improved by utilizing the proposed method in actual optical 4f system.The experimental results show the gray level error in optical 4f system can be compensated effectively and the precision of optical information processing was improved by the proposed method.

  20. Spectroscopy of Pr3+ 4f5d Configuration in LaF3 Nanocrystals/Oxyfluoride Glass Ceramics

    Institute of Scientific and Technical Information of China (English)

    Meng Chunxia; Huang Shihua; You Fangtian; Tao Ye; Xu Jianhua; Zhang Guobin; Wang Xiaojun; Dejneka M J; Yen W M

    2005-01-01

    There are two types of Pr3+ ion in the Pr3+ doped oxyfluoride glass containing LaF3 nanocrystal: the lowest 4f5d state of Pr3+ in LaF3 nanocrystal is located energetically higher than the 1S0 state, while in glass the lowest 4f5d state is lower than the 1S0 state. We deduce the positions of the lowest 4f5d band of these two types of Pr3+ ion by vacuum ultraviolet (VUV) and ultraviolet (UV) excitation spectra. When the sample is excited by 181 nm, the narrow band emission of 4f2→4f2 of Pr3+ ion in the nanocrystal and the broad band emission of 4f5d→4f2 in the glass appear at the same time. However, the second step of the photon cascade emission(PCE) of Pr3+ in the LaF3 nanocrystal, corresponding to the emission of 3P0→3H4, can be observed at 20 K, but not at room temperature. The reason accounting for this phenomenon was discussed in detail.

  1. Measurement of Swarm Parameters of c-C4F8/CO2 and Its Insulation Characteristics Analysis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Liu-chun; XIAO Deng-ming; ZHANG Dong; WU Bian-tao

    2008-01-01

    In c-C4F8 and c-C4F8/CO2 mixtures, the swarm parameters including ionization coefficient, attachment coefficient and effective ionization coefficient were obtained at the ratio of the electric field strength to the gas density between 150-550 Td by the steady-state Townsend (SST) method. Static breakdown voltages at each ratio were also measured at the SST condition. The limiting field strengths were obtained by two methods:computing the density-normalized effective ionization coefficient as a function of the overall density-reduced electric field strength; and measuring static breakdown voltages as a function of the product of gas density and electrode separation. Good agreement was obtained by these two methods, which ensures the correctness of the former method. The limiting field strengths of c-C4F8 and c-C4F8/CO2 mixtures were compared with those ofpure SF6, SF6/CO2 mixtures and pure c-C4Fs. It is found that buffer gas CO2 does not reduce the limiting field strengths of c-C4F8 greatly, the limiting field strengths of c-C4F8/CO2 mixtures are higher than those of SF6/CO2 mixtures or even pure SF6, and so c-C4F8/CO2 mixtures are suggested to be possible substitutes for SF6.

  2. WE-EF-210-07: Development of a Minimally Invasive Photo Acoustic Imaging System for Early Prostate Cancer Detection

    Energy Technology Data Exchange (ETDEWEB)

    Sano, M; Yousefi, S; Xing, L [Stanford University School of Medicine, Stanford, CA (United States)

    2015-06-15

    Purpose: The objective of this work is to design, implement and characterize a catheter-based ultrasound/photoacoustic imaging probe for early-diagnosis of prostate cancer and to aid in image-guided radiation therapy. Methods: The need to image across 6–10cm of tissue to image the whole prostate gland limits the resolution achievable with a transrectal ultrasound approach. In contrast, the urethra bisects the prostate gland, providing a minimally invasive pathway for deploying a high resolution ultrasound transducer. Utilizing a high-frequency (20MHz) ultrasound/photoacoustic probe, high-resolution structural and molecular imaging of the prostate tissue is possible. A custom 3D printed probe containing a high-frequency single-element ultrasound transducer is utilized. The diameter of the probe is designed to fit inside a Foley catheter and the probe is rotated around the central axis to achieve a circular B-scan. A custom ultrasound amplifier and receiver was set up to trigger the ultrasound pulse transmission and record the reflected signal. The reconstructed images were compared to images generated by traditional 5 MHz ultrasound transducers. Results: The preliminary results using the high-frequency ultrasound probe show that it is possible to resolve finely detailed information in a prostate tissue phantom that was not achievable with previous low-frequency ultrasound systems. Preliminary ultrasound imaging was performed on tissue mimicking phantom and sensitivity and signal-to-noise ratio of the catheter was measured. Conclusion: In order to achieve non-invasive, high-resolution, structural and molecular imaging for early-diagnosis and image-guided radiation therapy of the prostate tissue, a transurethral catheter was designed. Structural/molecular imaging using ultrasound/photoacoustic of the prostate tissue will allow for localization of hyper vascularized areas for early-stage prostate cancer diagnosis.

  3. Acoustic Characterization of Soil

    Science.gov (United States)

    2007-11-02

    ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Dept. of Electrical & Computer Enginnering Dept Natural Resources...same transduction device is used for transmit and receive, and the broad-band mechanical matching between the transduction device and the acoustic...has a direct influence over the imaging depth for a given dynamic range. Figure 10 demonstrated the influence of the roundtrip propagation loss as a

  4. Acoustic biosensors

    Science.gov (United States)

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  5. Low-intensity focused ultrasound (LIFU-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging

    Directory of Open Access Journals (Sweden)

    Liu J

    2017-01-01

    Full Text Available Jianxin Liu,1,* Tingting Shang,1,* Fengjuan Wang,1 Yang Cao,1 Lan Hao,1 JianLi Ren,1,2 Haitao Ran,1,2 Zhigang Wang,1,2 Pan Li,1,2 Zhiyu Du3 1Chongqing Key Laboratory of Ultrasound Molecular Imaging, 2Department of Ultrasound, 3Postgraduate Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China *These authors contributed equally to this work Abstract: The commonly used ultrasound (US molecular probes, such as targeted microbubbles and perfluorocarbon emulsions, present a number of inherent problems including the conflict between US visualization and particle penetration. This study describes the successful fabrication of phase changeable folate-targeted perfluoropentane nanodroplets (termed FA-NDs, a novel US molecular probe for tumor molecular imaging with US. Notably, these FA-NDs can be triggered by low-intensity focused US (LIFU sonication, providing excellent US enhancement in B-mode and contrast-enhanced US mode in vitro. After intravenous administration into nude mice bearing SKOV3 ovarian carcinomas, 1,1'-dioctadecyl-3,3,3',3' -tetramethylindotricarbocyanine iodide-labeled FA-NDs were found to accumulate in the tumor region. FA-NDs injection followed by LIFU sonication exhibited remarkable US contrast enhancement in the tumor region. In conclusion, combining our elaborately developed FA-NDs with LIFU sonication provides a potential protocol for US molecular imaging in folate receptor-overexpressing tumors. Keywords: low-intensity focused ultrasound, perfluoropentane nanodroplets, acoustic droplet vaporization, ultrasound molecular imaging, targeting

  6. Hypersensitivity in the 4f-4f absorption spectra of tris (acetylacetonato) neodymium(III) complexes with imidazole and pyrazole in non-aqueous solutions. Effect of environment on hypersensitive transitions

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Anees A.; Ilmi, Rashid [Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Iftikhar, K., E-mail: kiftikhar.ch@jmi.ac.in [Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India)

    2012-01-15

    The optical absorption spectra of [Nd(acac){sub 3}(H{sub 2}O){sub 2}].H{sub 2}O, [Nd(acac){sub 3}(im){sub 2}] and [Nd(acac){sub 3}(pz){sub 2}] (where acac is the anion of acetylacetone, im is imidazole and pz is pyrazole) complexes in the visible region have been analyzed. The transition {sup 4}G{sub 5/2} <- {sup 4}I{sub 9/2} located near the middle of the visible region (17,500 cm{sup -1}) is hypersensitive. Its behavior is in sharp contrast to many other typically weak and consistently unvaried, normal 4f-4f transitions. It is overlapped by a less intense transition {sup 2}G{sub 7/2} <- {sup 4}I{sub 9/2}. The band shapes of the hypersensitive transition show remarkable changes on passing from aqueous solution to various non-aqueous solutions, which is the result of changes in the environment about the Nd(III) ion in the various solutions and suggests coordination of a solvent molecules. Pyridine has been found especially effective in promoting 4f-4f electric-dipole intensity. The DMSO invades the complexes and replaces the water molecules and heterocyclic amines from the coordination sphere. Two DMSO molecules coordinate and the complexes acquire similar structure, [Nd(acac){sub 3}(DMSO){sub 2}] in solution. The oscillator strength and the band shape of the hypersensitive transition of all the complexes remains the same in this solvent. The IR spectra and the NMR spectra of the complexes have also discussed. - Highlights: > Structurally similar eight-coordinate complexes of neodymium are synthesized. > The 4f-4f absorption spectra are investigated in non-aqueous solvents. > Methanol, isopropanol and acetonitrile are coordinating solvents. > Pyridine and DMSO are coordinating solvents by replacing the ancillary ligands. > Pyridine is most effective in promoting the 4f-4f intensity.

  7. Enhanced Acoustic Emission in Relation to the Acoustic Halo Surrounding Active Region 11429

    CERN Document Server

    Hanson, Chris S; Leka, K D

    2015-01-01

    The use of acoustic holography in the high-frequency $p$-mode spectrum can resolve the source distributions of enhanced acoustic emissions within halo structures surrounding active regions. In doing so, statistical methods can then be applied to ascertain relationships with the magnetic field. This is the focus of this study. The mechanism responsible for the detected enhancement of acoustic sources around solar active regions has not yet been explained. Furthermore the relationship between the magnetic field and enhanced acoustic emission has not yet been comprehensively examined. We have used vector magnetograms from the \\Helioseismic and Magnetic Imager (HMI) on-board the Solar Dynamics Observatory (SDO) to image the magnetic-field properties in the halo. We have studied the acoustic morphology of an active region, with a complex halo and "glories," and we have linked some acoustic properties to the magnetic-field configuration. In particular, we find that acoustic sources are significantly enhanced in reg...

  8. A pilot study of the characterization of hepatic tissue strain in children with cystic-fibrosis-associated liver disease (CFLD) by acoustic radiation force impulse imaging

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, Christopher B.; Langholz, Juliane H.; Eiler, Jessika; Jenewein, Raphael; Fuchs, Konstantin; Alzen, Gerhard F.P. [University Hospital Giessen, Department of Pediatric Radiology, Giessen (Germany); Naehrlich, Lutz [University Hospital Giessen, Department of Pediatrics, Giessen (Germany); Harth, Sebastian; Krombach, Gabriele A. [University Hospital Giessen, Department of Radiology, Giessen (Germany)

    2013-03-15

    Progressive fibrotic alterations of liver tissue represent a major complication in children with cystic fibrosis. Correct assessment of cystic-fibrosis-associated liver disease (CFLD) in clinical routine is a challenging issue. Sonographic elastography based on acoustic radiation force impulse imaging (ARFI) is a new noninvasive approach for quantitatively assessing in vivo elasticity of biological tissues in many organs. To characterize ARFI elastography as a diagnostic tool to assess alteration of liver tissue elasticity related to cystic fibrosis in children. ARFI elastography and B-mode US imaging were performed in 36 children with cystic fibrosis. The children's clinical history and laboratory parameters were documented. According to the findings on conventional US, children were assigned to distinct groups indicating severity of hepatic tissue alterations. The relationship between US findings and respective elastography values was assessed. Additionally, differences between ARFI elastography values of each US group were statistically tested. Children with sonomorphologic characteristics of fibrotic tissue remodeling presented significantly increased values for tissue elasticity. Children with normal B-mode US or discrete signs of hepatic tissue alterations showed a tendency toward increased tissue stiffness indicating early tissue remodeling. Assessment of children with CFLD by means of ARFI elastography yields adequate results when compared to conventional US. For detection of early stages of liver disease with mild fibrotic reactions of hepatic tissue, ARFI elastography might offer diagnostic advantages over conventional US. Thus, liver stiffness measured by means of elastography might represent a valuable biological parameter for evaluation and follow-up of CFLD. (orig.)

  9. Self-Assembly of Hexanuclear Clusters of 4f and 5f Elements with Cation Specificity

    Energy Technology Data Exchange (ETDEWEB)

    Diwu, J.; Good, Justin J.; DiStefano, Victoria H.; Albrecht-Schmitt, Thomas E.

    2011-02-10

    Six hexanuclear clusters of 4f and 5f elements were synthesized by room-temperature slow concentration experiments. Cerium(IV), thorium(IV), and plutonium(IV) each form two different hexanuclear clusters, among which the cerium and plutonium clusters are isotypic, whereas the thorium clusters show more diversity. The change in ionic radii of approximately 0.08 Å between these different metal ions tunes the cavity size so that NH{sub 4}{sup +} (1.48 Å) has the right dimensions to assemble the cerium and plutonium clusters, whereas Cs{sup +} (1.69 Å) is necessary to assemble the thorium clusters. If these cations are not used in the reactions, only amorphous material is obtained.

  10. Impulse attack-free four random phase mask encryption based on a 4-f optical system.

    Science.gov (United States)

    Kumar, Pramod; Joseph, Joby; Singh, Kehar

    2009-04-20

    Optical encryption methods based on double random phase encryption (DRPE) have been shown to be vulnerable to different types of attacks. The Fourier plane random phase mask (RPM), which is the most important key, can be cracked with a single impulse function attack. Such an attack is viable because the Fourier transform of a delta function is a unity function. Formation of a unity function can be avoided if RPMs are placed in front of both lenses in a 4-f optical setup, thereby protecting the DRPE from an impulse attack. We have performed numerical simulations to verify the proposed scheme. Resistance of this scheme is checked against the brute force and the impulse function attacks. The experimental results validate the feasibility of the scheme.

  11. Caliciviruses differ in their functional requirements for eIF4F components

    DEFF Research Database (Denmark)

    Chaudhry, Y.; Nayak, A.; Bordeleau, M-E.

    2006-01-01

    Two classes of viruses, namely members of the Potyviridae and Caliciviridae, use a novel mechanism for the initiation of protein synthesis that involves the interaction of translation initiation factors with a viral protein covalently linked to the viral RNA, known as VPg. The calicivirus VPg...... proteins can interact directly with the initiation factors eIF4E and eIF3. Translation initiation on feline calicivirus (FCV) RNA requires eIF4E because it is inhibited by recombinant 4E-BP1. However, to date, there have been no functional studies carried out with respect to norovirus translation...... translation require the RNA helicase component of the eIF4F complex, namely eIF4A, because translation was sensitive (albeit to different degrees) to a dominant negative form and to a small molecule inhibitor of eIF4A (hippuristanol). These results suggest that calicivirus RNAs differ with respect...

  12. Ascorbic acid decomposition into oxalate ions: a simple synthetic route towards oxalato-bridged heterometallic 3d-4f clusters.

    Science.gov (United States)

    Dinca, Alina S; Shova, Sergiu; Ion, Adrian E; Maxim, Catalin; Lloret, Francesc; Julve, Miguel; Andruh, Marius

    2015-04-28

    Two types of oxalato-bridged heterometallic 3d-4f dodeca- and hexanuclear compounds have been obtained by connecting six bi- and, respectively, trinuclear moieties through oxalato bridges arising from the slow decomposition of the L-ascorbic acid.

  13. 4f heavy fermion photoelectron spectra do not exhibit the Kondo scale

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; Joyce, J.J.; Andrews, A.B.; Blyth, R.I.R.; Bartlett, R.J.; Fisk, Z. [Los Alamos National Lab., NM (United States); Canfield, P.C.; Olson, C.G.; Benning, P.J. [Iowa State Univ., Ames, IA (United States); Poirier, D.M.; Weaver, J.H. [Univ. of Minnesota, Minneapolis, MN (United States); Riseborough, P.S. [Polytechnic Univ., Brooklyn, NY (United States)

    1994-02-01

    It has been the authors contention for some time that the Single Impurity Anderson Model (SIAM), as extended by Gunnarsson and Schonhammer (GS), or the non-crossing approximation (NCA), does not correctly describe the 4f photoelectron spectra of heavy fermions. Recently, they have concentrated on Yb heavy fermions since in these materials the Kondo resonance (KR) is fully occupied and thus accessible via photoemission. In particular, they have repeatedly pointed out that the width, position, spectral weight, lineshape, and temperature dependence of the features assumed to be the KR and its sidebands, are nearly independent of the Kondo temperature, T{sub K}, while at the same time bearing a striking resemblance to the simple 4f core level spectra of pure Yb metal, or of Lu in isostructural Lu compounds. It is important to resolve these issues in view of the fundamental nature of the problem. Here, the authors chose to test the bulk vs. surface hypothesis by performing measurements on YbCu{sub 2}Si{sub 2} and YbAl{sub 3} single crystals at hv {approx} 120 eV (UPS) and hv {approx} 1,500 eV(XPS) to see if the n{sub f}, hole occupancy, values increase markedly at XPS energies as the electron escape depth increases by about a factor of 3--5. Measurements were performed at both 300K and 20K using single crystals cleaved in-situ, with photoelectrons collected in normal emission for maximum bulk sensitivity. UPS measurements were performed at NSLS and the University of Wisconsin SRC, while XPS measurements were done at the University of Minnesota. The UPS, ultraviolet photoelectron spectra, and the L{sub III} edge x-ray absorption and photoemission measurements are in fundamental disagreement.

  14. Core-level magnetic circular dichroism in 3d and 4f magnetic systems (invited) (abstract)

    Science.gov (United States)

    Koide, T.

    1994-05-01

    With the recent availability of circulary polarized synchrotron radiation over a wide photon energy range from VUV to hard X rays, the magnetic circular dichroism (MCD) in core-level photoabsorption has rapidly attracted growing interest, both experimentally and theoretically. This novel technique can provide element-specific and site-selective information about the magnetic and the electronic states in various magnetic substances because the core-level MCD process involves optical transitions in which the one-electron initial states are well localized and have well-defined angular momenta. In order to get insight into the local magnetic states in 3d and 4f magnetic systems, we have studied MCD of ferrites, Fe1-xPtx alloys, and mixed-valence CeRh3B2 at the core-absorption edges in the VUV˜soft x-ray region. The experiments were performed by utilizing directly characterized, circularly polarized undulator radiation and off-plane synchrotron radiation1 in conjunction with an ultrahigh vacuum compatible superconducting magnet of special design.2 Clear MCD signals were observed for CeRh3B2 in the prethreshold region of the Ce 4d→4f (N4,5) edges. A comparison of the experimental MCD spectrum with theoretical ones3 for uniaxial crystal fields of Δc=0 and 0.2 eV shows that the experimental spectrum qualitatively agrees with the theoretical one for Δc=0 eV. Theory predicts that the MCD pattern for ΔcCeRh3B2. We will also present the MCD data in the M2,3 core-absorption region for ferrites (Fe3O4 and CoFe2O4) and Fe1-xPtx alloys, discussing the results.

  15. Droplets Acoustics

    CERN Document Server

    Dahan, Raphael; Carmon, Tal

    2015-01-01

    Contrary to their capillary resonances (Rayleigh, 1879) and their optical resonances (Ashkin, 1977), droplets acoustical resonances were rarely considered. Here we experimentally excite, for the first time, the acoustical resonances of a droplet that relies on sound instead of capillary waves. Droplets vibrations at 37 MHz rates and 100 quality factor are optically excited and interrogated at an optical threshold of 68 microWatt. Our vibrations span a spectral band that is 1000 times higher when compared with drops previously-studied capillary vibration.

  16. Charcot-Marie-Tooth type 4F disease caused by S399fsx410 mutation in the PRX gene.

    Science.gov (United States)

    Kabzinska, D; Drac, H; Sherman, D L; Kostera-Pruszczyk, A; Brophy, P J; Kochanski, A; Hausmanowa-Petrusewicz, I

    2006-03-14

    Charcot-Marie-Tooth type 4F disease (CMT4F) is an autosomal recessive neuropathy caused by mutations in the PRX gene. To date, only seven mutations have been identified in the PRX gene. In this study, the authors report a novel S399fsX410 mutation in the PRX gene and its effects at the protein level, which was identified in an 8-year-old patient with early-onset CMT disease.

  17. Synthesis and electrochemical performance of Li2Co1- x M x PO4F (M = Fe, Mn) cathode materials.

    Science.gov (United States)

    Khasanova, Nellie R; Drozhzhin, Oleg A; Fedotov, Stanislav S; Storozhilova, Darya A; Panin, Rodion V; Antipov, Evgeny V

    2013-01-01

    In the search for high-energy materials, novel 3D-fluorophosphates, Li2Co1- x Fe x PO4F and Li2Co1- x Mn x PO4F, have been synthesized. X-ray diffraction and scanning electron microscopy have been applied to analyze the structural and morphological features of the prepared materials. Both systems, Li2Co1- x Fe x PO4F and Li2Co1- x Mn x PO4F, exhibited narrow ranges of solid solutions: x ≤ 0.3 and x ≤ 0.1, respectively. The Li2Co0.9Mn0.1PO4F material demonstrated a reversible electrochemical performance with an initial discharge capacity of 75 mA·h·g(-1) (current rate of C/5) upon cycling between 2.5 and 5.5 V in 1 M LiBF4/TMS electrolyte. Galvanostatic measurements along with cyclic voltammetry supported a single-phase de/intercalation mechanism in the Li2Co0.9Mn0.1PO4F material.

  18. Unusual Mixed Valence of Eu in Two Materials-EuSr2Bi2S4F4 and Eu2SrBi2S4F4: Mössbauer and X-ray Photoemission Spectroscopy Investigations.

    Science.gov (United States)

    Haque, Zeba; Thakur, Gohil Singh; Parthasarathy, Rangasamy; Gerke, Birgit; Block, Theresa; Heletta, Lukas; Pöttgen, Rainer; Joshi, Amish G; Selvan, Ganesan Kalai; Arumugam, Sonachalam; Gupta, Laxmi Chand; Ganguli, Ashok Kumar

    2017-02-28

    We have synthesized two new Eu-based compounds, EuSr2Bi2S4F4 and Eu2SrBi2S4F4, which are derivatives of Eu3Bi2S4F4, an intrinsic superconductor with Tc = 1.5 K. They belong to a tetragonal structure (SG: I4/mmm, Z = 2), similar to the parent compound Eu3Bi2S4F4. Our structural and (151)Eu Mössbauer spectroscopy studies show that, in EuSr2Bi2S4F4, Eu-atoms exclusively occupy the crystallographic 2a-sites. In Eu2SrBi2S4F4, 2a-sites are fully occupied by Eu-atoms and the other half of Eu-atoms and Sr-atoms together fully occupy 4e-sites in a statistical distribution. In both compounds Eu atoms occupying the crystallographic 2a-sites are in a homogeneous mixed valent state ∼2.6-2.7. From our magnetization studies in an applied H ≤ 9 T, we infer that the valence of Eu-atoms in Eu2SrBi2S4F4 at the 2a-sites exhibits a shift toward 2+. Our XPS studies corroborate the occurrence of valence fluctuations of Eu and after Ar-ion sputtering show evidence of enhanced population of Eu(2+)-states. Resistivity measurements, down to 2 K, suggest a semimetallic nature for both compounds.

  19. Progresses of Data Processing Methods for Acoustic Reflection Imaging Logging%声反射成像测井数据处理研究进展

    Institute of Scientific and Technical Information of China (English)

    李超; 岳文正; 金行林; 李永权; 张岩

    2013-01-01

    Acoustic reflection imaging logging is in the last decade has been broadly used to identify the interface of formation, structures and cracks near the borehole. The quality of the data processing is one of the key points for its successful application in the field. In this paper, we study the history and recent improvement of acoustic reflection imaging at home and abroad, and discuss the progress of the data processing methods in the separation, migration and stacking of wave field. Currently, the foreign researchers put their efforts mainly on the linear prediction theory developed in recent years, except this method, our domestic researchers employ the multi-scale correlation method which is based on wavelet transform and STC (Slowness Time Correlation) technology. The migration methods are mainly concentrated in the prestack migration, including the generalized Radon transform, Kirchhoff migration, F-K migration, equivalent offset migration. The introduction of reverse-time migration in seismic data processing is an important direction of imaging technology. In addition, it is a hot topic to employ the method of reflected shear wave extraction and imaging. The dipole S-wave reflection imaging has much better investigation depths and SNR with better azimuth recognition, which not only provides dips of the reflection interfaces and judges the interface trend, but also expands the use of multi-pole sonic logging tools. The phase control array technique is used to study the 3D sonic reflection survey radiated and received from directional sonic fields. And in this survey we need new and outstanding 3D log data processing methods.%围绕国内外声反射成像测井的发展历史及近年研究成果论述波场分离、偏移叠加等方面在其数据处理中的研究进展.国外从最初的F-K滤波发展到现在的多种方法,主要是以线性预测理论为基础的分离方法.国内最新技术是以小波变换和STC方法结合的多尺度相关法.

  20. The Geoclutter Experiment 2001: Remote acoustic imaging of sub-bottom and seafloor geomorphology in continental shelf waters

    Science.gov (United States)

    Makris, Nicholas C.; Ratilal, Purnima; Lai, Yisan; Symonds, Deanelle T.; Ruhlmann, Lilimar A.; Scheer, Edward K.

    2002-11-01

    In the Geoclutter experiment of April-May 2001, an active sonar system was used to remotely and rapidly image geomorphology over wide areas in continental shelf waters by long-range echo sounding. The bistatic system, deployed in the strataform area south of Long Island, imaged extensive networks of buried river channels and inclined subseafloor strata over tens of kilometers in near real time. Bathymetric relief in the strataform area is extremely benign. The vast majority of features imaged apparently correspond to sub-bottom geomorphology that sound waves reach after tunneling as well as propagating through the overlying sediment. Returns from buried river channels were often found to be as discrete and strong as those from calibrated targets placed in the water column. Since buried river channels are expected to be ubiquitous in continental shelf environments, sub-seafloor geomorphology will play a major role in producing ''false alarms'' or clutter in long-range sonar systems that search for submerged objects such as underwater vehicles or marine mammals. Wave guide scattering and propagation are inherent to this new remote sensing technology because source signals are transmitted over hundreds of water-column depths in range to image sub-seafloor and seafloor geomorphology.

  1. Imaging sciences workshop

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1994-11-15

    This workshop on the Imaging Sciences sponsored by Lawrence Livermore National Laboratory contains short abstracts/articles submitted by speakers. The topic areas covered include the following: Astronomical Imaging; biomedical imaging; vision/image display; imaging hardware; imaging software; Acoustic/oceanic imaging; microwave/acoustic imaging; computed tomography; physical imaging; imaging algorithms. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  2. Holograms for acoustics

    Science.gov (United States)

    Melde, Kai; Mark, Andrew G.; Qiu, Tian; Fischer, Peer

    2016-09-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  3. Experimental Study of Partial Discharge Characteristics of C4F8/N2 Mixtures%C4F8/N2混合气体局部放电特性实验研究

    Institute of Scientific and Technical Information of China (English)

    邢卫军; 张国强; 李康; 牛文豪; 王新; 王迎迎

    2011-01-01

    由于SF6气体的温室效应,减少或杜绝SF6气体的使用已成为共识.从局部放电(partial discharge,PD)性能的角度探讨了用C4F8/N2混合气体代替SF6气体用于气体绝缘设备的可行性.通过试验测量C4F8/N2混合气体在不同气压、不同混合比、不同电极距离情形下的局部放电起始电压,得到了这3种因素对混合气体局部放电性能的影响,并与纯SF6气体的局部放电起始电压做了对比.结果表明:纯C4F8气体的局部放电起始电压是纯SF6气体的1.3倍左右:C4F8气体与N2气体具有协同效应,协同系数在0.45左右:C4F8/N2混合气体的局部放电能力与同混合比的SF6/N2混合气体的相似.因此,综合考虑液化温度、环境影响、局部放电性能后,C4F8气体含量在10%-20%的C4F8/N2混合气体有可能替代SF6气体用于气体绝缘设备.%Because of the greenhouse effect of SF6 gas, it became a common view that less or no SF6 gas would be used in future. The partial discharge (PD) characteristics of C4F8/N2 gas mixtures and the possibility of substituting SF6 gas used in gas insulated equipment were discussed. The partial discharge inception voltages of C4F8/N2 gas mixtures were measured in different gas pressures, mixing ratios and electrodes distances,and compared with that of pure SF6 gas. The influences of these factors were also analyzed. The results show that the partial discharge inception voltages of pure C4F8 gas are about 1.3 times of that of pure SF6 gas; the C4F8 gas has a synergism with N2 gas, and the synergism factor is about 0.45; and the partial discharge characteristics of C4F8/N2 mixtures are similar to that of SF6/N2 with the same mixing ratio. Therefore, after considering the liquefaction temperature, the effects on environmental and the characteristics of partial discharge, it has a possibility that C4F8/N2 gas mixtures can be used in gas insulated equipment for substituting SF6 gas.

  4. CYP4F2基因多态性与华法林维持剂量关系的研究进展%Research progress in association between CYP4F2 gene polymorphism and warfarin maintenance dose

    Institute of Scientific and Technical Information of China (English)

    谢爽; 李一石

    2011-01-01

    Currently, warfarin is the most widely used oral anticoagulant in clinic. Since warfarin has narrow therapeutic window and significant individual differences in dose, it easily leads to complications due to improper anticoagulate therapy. In recent 3 years, as the rapid development of pharmacogenomics, it has been found that CYP4F2 (cytochrome P450, family 4, subfamily F, polypeptide 2) gene polymorphism ( rs2108622) relates to warfarin individual dosage requirement. We reviewed research progress in association between CYP4F2 gene polymorphism. Most studies found that CYP4F2 gene polymorphism relates to warfarin dose, and the mutant T allele was associated with higher warfarin dose requirement, CYP4F2 * 3 polymorphism can explain 1% ~ 10% warfarin individual dosage difference.%华法林是目前临床上应用最广泛的口服抗凝药,其治疗安全范围窄,剂量个体差异大,临床应用中容易出现抗凝不当所致的并发症.近3年来,随着药物基因组学的快速发展,发现细胞色素P450酶4F2(CYP4F2)基因多态性(rs2108622)与华法林个体剂量差异相关.本文综述了近3年来在不同人种中进行的有关CYP4F2*3(rs2108622)与华法林的维持剂量关系的研究.大多数研究发现CYP4F2基因多态性与华法林维持剂量存在相关性,其中突变的T等位基因与华法林高剂量相关;CYP4F2*3可以解释1%~10%华法林剂量个体差异.

  5. Data analysis results of the second sea trial of ambient noise imaging with acoustic lens in 2014: Two-dimensional target images affected by direction of field of view and spatial noise distribution

    Science.gov (United States)

    Mori, Kazuyoshi; Ogasawara, Hanako; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2016-07-01

    An aspherical lens with an aperture diameter of 1.0 m has been designed and fabricated to develop a prototype system for ambient noise imaging (ANI). A sea trial of silent target detection using the prototype ANI system was conducted under only natural ocean ambient noise at Uchiura Bay in November 2010. It was verified that targets are successfully detected under natural ocean ambient noise, mainly generated by snapping shrimps. Recently, we have built a second prototype ANI system using an acoustic lens with a two-dimensional (2D) receiver array with 127 elements corresponding to a field of view (FOV) spanning 15° horizontally by 9° vertically. In this study, we investigated the effects of the direction of the FOV and the spatial noise distribution on the 2D target image obtained by ANI. Here, the noise sources in front of the target are called “front light”, and those at the rear of the target are called “back light”. The second sea trial was conducted to image targets arranged in the FOV and measure the positions of noise sources at Uchiura Bay in November 10-14, 2014. For front light, the pixel values in the on-target directions were greater than those in other directions owing to the dominant target scatterings. Reversely, for back light, the pixel values in the on-target directions were lower than those in other directions owing to the dominant direct noises such as “silhouette”.

  6. Acoustic transducer for acoustic microscopy

    Science.gov (United States)

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  7. Detection of non-alcoholic steatohepatitis in patients with morbid obesity before bariatric surgery: preliminary evaluation with acoustic radiation force impulse imaging

    Energy Technology Data Exchange (ETDEWEB)

    Guzman-Aroca, F.; Reus, M.; Dios Berna-Serna, Juan de [Virgen de la Arrixaca University Hospital, Department of of Radiology, El Palmar, Murcia (Spain); Frutos-Bernal, M.D.; Lujan-Mompean, J.A.; Parrilla, P. [Virgen de la Arrixaca University Hospital, Department of Surgery, El Palmar, Murcia (Spain); Bas, A. [Virgen de la Arrixaca University Hospital, Department of Pathology, El Palmar, Murcia (Spain)

    2012-11-15

    To investigate the utility of acoustic radiation force impulse (ARFI) imaging, with the determination of shear wave velocity (SWV), to differentiate non-alcoholic fatty liver disease (NAFLD) from non-alcoholic steatohepatitis (NASH) in patients with morbid obesity before bariatric surgery. Thirty-two patients with morbid obesity were evaluated with ARFI and conventional ultrasound before bariatric surgery. The ARFI and ultrasound results were compared with liver biopsy findings, which is the reference standard. The patients were classed according to their histological findings into three groups: group A, simple steatosis; group B, inflammation; and group C, fibrosis. The median SWV was 1.57 {+-} 0.79 m/s. Hepatic alterations were observed in the histopathological findings for all the patients in the study (100 %), with the results of the laboratory tests proving normal. Differences in SWV were also observed between groups A, B and C: 1.34 {+-} 0.90 m/s, 1.55 {+-} 0.79 m/s and 1.86 {+-} 0.75 m/s (P < 0.001), respectively. The Az for differentiating NAFLD from NASH or fibrosis was 0.899 (optimal cut-off value 1.3 m/s; sensitivity 85 %; specificity 83.3 %). The ARFI technique is a useful diagnostic tool for differentiating NAFLD from NASH in asymptomatic patients with morbid obesity. (orig.)

  8. Evaluation of damage accumulation behavior and strength anisotropy of NITE SiC/SiC composites by acoustic emission, digital image correlation and electrical resistivity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Nozawa, Takashi, E-mail: nozawa.takashi67@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Ozawa, Kazumi [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Asakura, Yuuki; Kohyama, Akira [Muroran Institute of Technology, Muroran, Hokkaido (Japan); Tanigawa, Hiroyasu [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan)

    2014-12-15

    Understanding the cracking process of the composites is essential to establish the design basis for practical applications. This study aims to investigate the damage accumulation process and its anisotropy for nano-infiltration transient eutectic sintered (NITE) SiC/SiC composites by various characterization techniques such as the acoustic emission (AE), digital image correlation (DIC) and electrical resistivity (ER) measurements. Cracking behavior below the proportional limit stress (PLS) was specifically addressed. Similar to the other generic SiC/SiC composites, the 1st AE event was identified below the PLS for NITE SiC/SiC composites with a dependency of fabric orientation. The DIC results support that the primary failure mode depending on fiber orientation affected more than the other minor modes did. Detailed AE waveform analysis by wavelet shows a potential to classify the failure behavior depending on architecture. Cracking below the PLS is a potential concern in component deign but the preliminary ER measurements imply that the impact of cracking below the PLS on composite function was limited.

  9. The diagnostic performance of acoustic radiation force impulse elasticity imaging to differentiate malignant from benign thyroid nodules: Comparison with conventional B- mode sonographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Won Sang; An, Yeong Yi; Ihn, Yon Kwon; Park, Young Ha [Dept. of Radiology, St. Vincent' s Hospital, The Catholic University of Korea, Suwon (Korea, Republic of)

    2016-02-15

    The purpose of this study was to evaluate the diagnostic performance of acoustic radiation force impulse (ARFI) elasticity imaging. One hundred and twenty-seven thyroid nodules were examined by both ARFI elastography and B-mode sonography. Virtual Touch tissue quantification (VTQ) values of the thyroid nodules were measured. Scoring of B-mode sonographic findings of each thyroid nodules was performed. The sums of these VTQ and the B-mode scores were determined. The comparative diagnostic performances of the VTQ value, the B-mode score, and the combined score were analyzed. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of each scoring mode were: B-mode score, 84%, 85%, 66%, 94%, and 85%; VTQ, 75%, 91%, 73%, 92%, and 86%; and combined score, 88%, 87%, 70%, 95%, and 88%. The areas under the curves for B-mode, VTQ, and combined score were 0.895, 0.837, and 0.912, respectively. Pairwise comparisons of receiver-operating characteristic curves showed no statistical differences between B-mode and VTQ, and B-mode and combined score. Combined score showed better diagnostic performance than VTQ value (p = 0.0023). ARFI VTQ value is a good diagnostic modality for differentiating malignant thyroid nodules from benign nodules. However, ARFI evaluation is not superior to B-mode sonographic evaluation, but only has a better diagnostic performance when combined with B-mode sonographic findings.

  10. 图像传感器与声音传感器耐辐照实验%Radiation Resistance Experiments of Image Sensor and Acoustic Sensor

    Institute of Scientific and Technical Information of China (English)

    邓骞; 赵立宏; 左夏茂; 王建

    2011-01-01

    高辐照环境下的监测技术与传统监测技术有很大的不同,对传感器、放大电路以及传输电缆的耐辐照性能有很高的要求.通过对半导体器件的辐射效应的研究以及对比实验发现,动圈式声音传感器的耐辐照性能高出CMOS图像传感器几个数量级,对核设施运行时所产生的音频信号进行故障诊断提供了有力的硬件支持.%Monitoring technology in high radiation environment is very different from traditional monitoring technology, and there is a high radiation resistant performance to sensors, amplifying circuit and transmission cable. According to the research in radiation effect of semiconductor devices and comparison experiment, radiation resistant performance of mov- ing-coil acoustic sensor is above CMOS image sensor several orders of magnitude. This pro- vides a powerful hardware support to that fault diagnosis method based on capturing the au- dio signal while the nuclear facilities are operating.

  11. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Phased arrays, ultrasonic imaging and nonlinear acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Ping Wu; Wennerstroem, Erik [Uppsala Univ. (Sweden). Signals and Systems

    2004-09-01

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2003/2004. After a short introduction a review of beam forming fundamentals required for proper understanding phased array operation is included. The factors that determine lateral resolution during ultrasonic imaging of flaws in solids are analyzed and results of simulations modelling contact inspection of copper are presented. In the second chapter an improved synthetic aperture imaging (SAI) technique is introduced. The proposed SAI technique is characterized by an enhanced lateral resolution compared with the previously proposed extended synthetic aperture focusing technique (ESAFT). The enhancement of imaging performance is achieved due to more realistic assumption concerning the probability density function of scatterers in the region of interest. The proposed technique takes the form of a two-step algorithm using the result obtained in the first step as a prior for the second step. Final chapter contains summary of our recent experimental and theoretical research on nonlinear ultrasonics of unbounded interfaces. A new theoretical model for rough interfaces is developed, and the experimental results from the copper specimens that mimic contact cracks of different types are presented. Derivation of the theory and selected measurement results are given in appendix.

  12. Sinusoidal echo-planar imaging with parallel acquisition technique for reduced acoustic noise in auditory fMRI.

    Science.gov (United States)

    Zapp, Jascha; Schmitter, Sebastian; Schad, Lothar R

    2012-09-01

    To extend the parameter restrictions of a silent echo-planar imaging (sEPI) sequence using sinusoidal readout (RO) gradients, in particular with increased spatial resolution. The sound pressure level (SPL) of the most feasible configurations is compared to conventional EPI having trapezoidal RO gradients. We enhanced the sEPI sequence by integrating a parallel acquisition technique (PAT) on a 3 T magnetic resonance imaging (MRI) system. The SPL was measured for matrix sizes of 64 × 64 and 128 × 128 pixels, without and with PAT (R = 2). The signal-to-noise ratio (SNR) was examined for both sinusoidal and trapezoidal RO gradients. Compared to EPI PAT, the SPL could be reduced by up to 11.1 dB and 5.1 dB for matrix sizes of 64 × 64 and 128 × 128 pixels, respectively. The SNR of sinusoidal RO gradients is lower by a factor of 0.96 on average compared to trapezoidal RO gradients. The sEPI PAT sequence allows for 1) increased resolution, 2) expanded RO frequency range toward lower frequencies, which is in general beneficial for SPL, or 3) shortened TE, TR, and RO train length. At the same time, it generates lower SPL compared to conventional EPI for a wide range of RO frequencies while having the same imaging parameters. Copyright © 2012 Wiley Periodicals, Inc.

  13. Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Solar Dynamics Observatory-Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline

    Science.gov (United States)

    Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, Thomas L., Jr.; Parchevsky, K.; Scherrer, P. H.

    2010-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler-velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time - distance helioseismology pipeline (Zhao et al., Solar Phys. submitted, 2010) has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross-covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time - distance helioseismology: a Gabor-wavelet fitting (Kosovichev and Duvall, SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, Astrophys. J. 571, 966, 2002), and a linearized version of the minimization method (Gizon and Birch, Astrophys. J. 614, 472, 2004). Using Doppler-velocity data from the Michelson Doppler Imager (MDI) instrument onboard SOHO, we tested and compared these definitions for the mean and difference traveltime perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet-Sun region, the method of Gizon and Birch (Astrophys. J. 614, 472, 2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997) and Gizon and Birch (Astrophys. J. 571, 966, 2002). We investigated the relationships among

  14. Non-intrusive telemetry applications in the oilsands: from visible light and x-ray video to acoustic imaging and spectroscopy

    Science.gov (United States)

    Shaw, John M.

    2013-06-01

    While the production, transport and refining of oils from the oilsands of Alberta, and comparable resources elsewhere is performed at industrial scales, numerous technical and technological challenges and opportunities persist due to the ill defined nature of the resource. For example, bitumen and heavy oil comprise multiple bulk phases, self-organizing constituents at the microscale (liquid crystals) and the nano scale. There are no quantitative measures available at the molecular level. Non-intrusive telemetry is providing promising paths toward solutions, be they enabling technologies targeting process design, development or optimization, or more prosaic process control or process monitoring applications. Operation examples include automated large object and poor quality ore during mining, and monitoring the thickness and location of oil water interfacial zones within separation vessels. These applications involve real-time video image processing. X-ray transmission video imaging is used to enumerate organic phases present within a vessel, and to detect individual phase volumes, densities and elemental compositions. This is an enabling technology that provides phase equilibrium and phase composition data for production and refining process development, and fluid property myth debunking. A high-resolution two-dimensional acoustic mapping technique now at the proof of concept stage is expected to provide simultaneous fluid flow and fluid composition data within porous inorganic media. Again this is an enabling technology targeting visualization of diverse oil production process fundamentals at the pore scale. Far infrared spectroscopy coupled with detailed quantum mechanical calculations, may provide characteristic molecular motifs and intermolecular association data required for fluid characterization and process modeling. X-ray scattering (SAXS/WAXS/USAXS) provides characteristic supramolecular structure information that impacts fluid rheology and process

  15. Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline

    Science.gov (United States)

    Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, T. L., Jr.; Parchevsky, K.; Scherrer, P. H.

    2009-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument on board the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time-distance helioseismology pipeline has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time-distance helioseismology: a Gabor wavelet fitting (Kosovichev and Duvall, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, 2002), and a linearized version of the minimization method (Gizon and Birch, 2004). Using Doppler velocity data from the Michelson Doppler Imager (MDI) instrument on board SOHO, we tested and compared these definitions for the mean and difference travel-time perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet Sun region, the method of Gizon and Birch (2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (1997) and Gizon and Birch (2002). We investigated the relationships among these three travel-time definitions, their sensitivities to fitting parameters, and estimated the random errors they produce

  16. Pressure-enhanced superconductivity in Eu3Bi2S4F4

    Science.gov (United States)

    Luo, Yongkang; Zhai, Hui-Fei; Zhang, Pan; Xu, Zhu-An; Cao, Guang-Han; Thompson, J. D.

    2014-12-01

    The pressure effect on the newly discovered charge-transferred BiS2-based superconductor, Eu3Bi2S4F4 , with a Tc of 1.5 K at ambient pressure, is investigated by transport and magnetic measurements. Accompanied with the enhancement of metallicity under pressures, the onset superconducting transition temperature increases abruptly around 1.0 GPa, reaching ˜10.0 K at 2.26 GPa. Alternating current magnetic susceptibility measurements indicate that a new superconducting phase with a higher Tc emerges and dominates at high pressures. In the broad pressure window of 0.68 GPa≤p ≤2.00 GPa, the high-Tc phase coexists with the low-Tc phase. Hall effect measurements reveal a significant difference in electronic structures between the two superconducting phases. Our work devotes the effort to establish the commonality of pressure effect on the BiS2-based superconductors, and also uncovers the importance of electron carrier density in the high-Tc phase.

  17. CXCR4 antagonist 4F-benzoyl-TN14003 inhibits leukemia and multiple myeloma tumor growth.

    Science.gov (United States)

    Beider, Katia; Begin, Michal; Abraham, Michal; Wald, Hanna; Weiss, Ido D; Wald, Ori; Pikarsky, Eli; Zeira, Evelyne; Eizenberg, Orly; Galun, Eithan; Hardan, Izhar; Engelhard, Dan; Nagler, Arnon; Peled, Amnon

    2011-03-01

    The chemokine receptor CXCR4 and its ligand CXCL12 are involved in the progression and dissemination of a diverse number of solid and hematological malignancies. Binding CXCL12 to CXCR4 activates a variety of intracellular signal transduction pathways that regulate cell chemotaxis, adhesion, survival, proliferation, and apoptosis. Here, we demonstrate that the CXCR4 antagonist, 4F-benzoyl-TN14003 (BKT140), but not AMD3100, exhibits a CXCR4-dependent preferential cytotoxicity toward malignant cells of hematopoietic origin. BKT140 significantly and preferentially stimulated multiple myeloma apoptotic cell death. BKT140 treatment induced morphological changes, phosphatidylserine externalization, decreased mitochondrial membrane potential, caspase-3 activation, sub-G1 arrest, and DNA double-stranded breaks. In vivo, subcutaneous injections of BKT140 significantly reduced, in a dose-dependent manner, the growth of human acute myeloid leukemia and multiple myeloma xenografts. Tumors from animals treated with BKT140 were smaller in size and weights, had larger necrotic areas and high apoptotic scores. Taken together, these results suggest a potential therapeutic use for BKT140 in multiple myeloma and leukemia patients. Copyright © 2011 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  18. 4 f excitations in Ce Kondo lattices studied by resonant inelastic x-ray scattering

    Science.gov (United States)

    Amorese, A.; Dellea, G.; Fanciulli, M.; Seiro, S.; Geibel, C.; Krellner, C.; Makarova, I. P.; Braicovich, L.; Ghiringhelli, G.; Vyalikh, D. V.; Brookes, N. B.; Kummer, K.

    2016-04-01

    The potential of resonant inelastic soft x-ray scattering to measure 4 f crystal electric-field excitation spectra in Ce Kondo lattices has been examined. Spectra have been obtained for several Ce systems and show a well-defined structure determined by crystal-field, spin-orbit, and charge-transfer excitations only. The spectral shapes of the excitation spectra can be well understood in the framework of atomic multiplet calculations. For CeCu2Si2 we found notable disagreement between the inelastic x-ray-scattering spectra and theoretical calculations when using the crystal-field scheme proposed from inelastic neutron scattering. Modified sets of crystal-field parameters yield better agreement. Our results also show that, with the very recent improvements of soft x-ray spectrometers in resolution to below 30 meV at the Ce M4 ,5 edges, resonant inelastic x-ray scattering could be an ideal tool to determine the crystal-field scheme in Ce Kondo lattices and other rare-earth compounds.

  19. Dry acoustic microscope for visualizing the defects in eletronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Tohmyoh, Hironori; Saka, Masumi [Dept. of Nanomechanics, Tohoku University, Tohoku (Japan)

    2006-05-15

    Acoustic microscopy/imaging has been widely used in electronics industry for the non-destructive detection and evaluation of defects in electronic devices. However, the conventional acoustic microscope requires the immersion of the samples in water, which puts a limitation on the samples that can be analyzed. To realize the high-resolution acoustic inspection of electronic devices without immersing them in water, the dry acoustic microscope, where a polymer film is inserted between water and the devices, has been developed, In this paper, we demonstrate the high-resolution acoustic imaging of two types of electronic devices under the dry environment by the present dry acoustic microscope. One is the silicon chip package with high acoustic impedance, and the other is the plastic package with low acoustic impedance.

  20. Cloning, sequence analysis, and expression of the large subunit of the human lymphocyte activation antigen 4F2

    Energy Technology Data Exchange (ETDEWEB)

    Lumadue, J.A.; Glick, A.B.; Ruddle, F.H.

    1987-12-01

    Among the earliest expressed antigens on the surface of activated human lymphocytes is the surface antigen 4F2. The authors have used DNA-mediated gene transfer and fluorescence-activated cell sorting to obtain cell lines that contain the gene encoding the large subunit of the human 4F2 antigen in a mouse L-cell background. Human DNAs cloned from these cell lines were subsequently used as hybridization probes to isolate a full-length cDNA clone expressing 4F2. Sequence analysis of the coding region has revealed an amino acid sequence of 529 residues. Hydrophobicity plotting has predicted a probable structure for the protein that includes an external carboxyl terminus, an internal leader sequence, a single hydrophobic transmembrane domain, and two possible membrane-associated domains. The 4F2 cDNA detects a single 1.8-kilobase mRNA in T-cell and B-cell lines. RNA gel blot analysis of RNA derived from quiescent and serum-stimulated Swiss 3T3 fibroblasts reveals a cell-cycle modulation of 4F2 gene expression: the mRNA is present in quiescent fibroblasts but increases 8-fold 24-36 hr after stimulation, at the time of maximal DNA synthesis.

  1. Heterodimerization of y(+)LAT-1 and 4F2hc visualized by acceptor photobleaching FRET microscopy.

    Science.gov (United States)

    Kleemola, Maaria; Toivonen, Minna; Mykkänen, Juha; Simell, Olli; Huoponen, Kirsi; Heiskanen, Kaisa M

    2007-10-01

    y(+)LAT-1 and 4F2hc are the subunits of a transporter complex for cationic amino acids, located mainly in the basolateral plasma membrane of epithelial cells in the small intestine and renal tubules. Mutations in y(+)LAT-1 impair the transport function of this complex and cause a selective aminoaciduria, lysinuric protein intolerance (LPI, OMIM #222700), associated with severe, complex clinical symptoms. The subunits of an active transporter co-localize in the plasma membrane, but the exact process of dimerization is unclear since direct evidence for the assembly of this transporter in intact human cells has not been available. In this study, we used fluorescence resonance energy transfer (FRET) microscopy to investigate the interactions of y(+)LAT-1 and 4F2hc in HEK293 cells expressing y(+)LAT-1 and 4F2hc fused with ECFP or EYFP. FRET was quantified by measuring fluorescence intensity changes in the donor fluorophore (ECFP) after the photobleaching of the acceptor (EYFP). Increased donor fluorescence could be detected throughout the cell, from the endoplasmic reticulum and Golgi complex to the plasma membrane. Therefore, our data prove the interaction of y(+)LAT-1 and 4F2hc prior to the plasma membrane and thus provide evidence for 4F2hc functioning as a chaperone in assisting the transport of y(+)LAT-1 to the plasma membrane.

  2. Comparison between the mainstream smoke of eleven RYO tobacco brands and the reference tobacco 3R4F

    Directory of Open Access Journals (Sweden)

    A. Marcilla

    2014-01-01

    Full Text Available In this study 11 commercial roll-your-own (RYO tobacco brands sold in Spain and the reference tobacco 3R4F have been smoked and several components of the mainstream tobacco smoke have been analyzed. Cigarettes were prepared using commercial tubes, and were smoked under smoking conditions based on the ISO 3308. The gaseous and condensed fractions of the smoke from RYO brands and 3R4F have been analyzed and compared. RYO tobaccos, as opposed to 3R4F, present lower amounts of condensed products in the traps than in the filters. In general, RYO tobaccos also provide lower yields of most of the compounds detected in the gas fraction. The yield of CO is between 15.4 and 20.4 mg/cigarette. In most of the cases studied, RYO tobaccos deliver higher amounts of nicotine than the 3R4F tobacco. On average, the yield of the different chemical families of compounds appearing in the particulate matter retained in the cigarette filters tends to be around three times higher than those obtained from 3R4F, whereas similar values have been obtained in the particulate matter retained in the traps located after the filters. It can be concluded that RYO tobaccos are not less hazardous than the reference tobacco, which may be contrary to popular belief.

  3. Acoustic wave science realized by metamaterials.

    Science.gov (United States)

    Lee, Dongwoo; Nguyen, Duc Minh; Rho, Junsuk

    2017-01-01

    Artificially structured materials with unit cells at sub-wavelength scale, known as metamaterials, have been widely used to precisely control and manipulate waves thanks to their unconventional properties which cannot be found in nature. In fact, the field of acoustic metamaterials has been much developed over the past 15 years and still keeps developing. Here, we present a topical review of metamaterials in acoustic wave science. Particular attention is given to fundamental principles of acoustic metamaterials for realizing the extraordinary acoustic properties such as negative, near-zero and approaching-infinity parameters. Realization of acoustic cloaking phenomenon which is invisible from incident sound waves is also introduced by various approaches. Finally, acoustic lenses are discussed not only for sub-diffraction imaging but also for applications based on gradient index (GRIN) lens.

  4. On the Introduction of Special Sensor Microwave Imager (SSM/I) Data into the Andes Acoustic Ambient Noise Model

    Science.gov (United States)

    1991-04-01

    INTEGER*4 LATINDEX , LONINDEX C C LOCAL VARIABLES C ALAT, ALON . LOCATION FOR WHICH % FOAM IS DESIRED. C DEG PIXEL . SPACING BETWEEN FOAM DATA IN FOAMDAT. C...PIXEL/0.2/ DATA MAX LAT/80.0/ DATA MIN LON/280.0/ DATA BIAS/10.0/ DATA SCALE/5./ C C FIND NEAREST NEIGHBOR GRID POINT IN IMAGE ARRAY. C LATINDEX - NINT...ALON - MINLON)/DEGPIXEL ) + 1 C C RETRIEVE FRACTIONAL FOAM COVERAGE C FOAM - (FOAMDAT( LON INDEX, LATINDEX )-BIAS)/SCALE IF (FOAM.LT.O.0) FOAM-0.0

  5. Acoustic imaging of the passage of turbidity currents and associated hydraulic jumps on underlying cyclic step bedforms. Squamish, BC

    Science.gov (United States)

    Hughes Clarke, J. E.

    2013-12-01

    Active channelized turbidity currents have been repeatedly imaged in 60m of water on the Squamish prodelta. Previously in 2011 and 2012, the prodelta has been repetitively surveyed on daily and hourly timescales and is thus known to exhibit trains of bedforms along the channel floors that resemble cyclic steps that migrate upslope intermittently. Beyond the channel mouths, clear turbidity current flows had previously been detected using a seabed mounted ADCP. In order to directly observe the passage of the flow in the channelized section of the prodelta, in June 2013 a vessel was moored using 4 anchors directly above one of the channels. The vessel operated two hull-mounted single beam sonars at 28 and 200 kHz and a multibeam sonar at 95 kHz, all imaging a near stationary point or swath within or across the channel. In addition a 1200 kHz ADCP was suspended 12m above the seabed and two 500 kHz imaging multibeams were suspended 10m above the channel floor. One of the suspended multibeams was oriented facing upslope examining a 150m range, 120 degree, plan view sector of the channel. The second suspended multibeam was oriented downward to derive a ~30m long along-track section over the length of one of the bedforms. A mechanically dipped CTD and optical backscatter probe was lower repeatedly directly into the active flows until it touched the seabed at about one minute periods. Over a period of 5 days, between 1 and 7 discrete flows per day were monitored passing by within one hour of low water. Their head velocities ranged from ~ 0.5 to 2.5m/s and their thicknesses were generally in the 3-5m range. Looking upstream in plan view, the lobate head of the approaching flows could be seen to be constricted to specific talwegs within the channel floor and rise up and over successive cyclic step bedforms. The higher velocity flows exhibit clear turbulent eddies on their upper surface. The duration of the high velocity component of the flow rarely lasted for more than a few

  6. Determination of 4f energy levels for trivalent lanthanide ions in YAlO{sub 3} by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yuhei; Ueda, Kazushige, E-mail: kueda@che.kyutech.ac.jp

    2016-09-01

    A simple method to analyze 4f energy levels of trivalent lanthanide (Ln) ions was demonstrated by conventional X-ray photoelectron spectroscopy (XPS) measurements using Ln ions doped YAlO{sub 3} sintered polycrystalline samples. Although XPS peaks derived from Ln 4f states overlapped with the host's valence band consisting of O 2p states, the difference XPS spectra between Ln doped and non-doped samples showed only the Ln 4f peaks due to the large difference of photoionization cross sections between Ln 4f and O 2p orbitals. The difference spectra showing Ln 4f states were aligned at the valence band maximum (VBM) making use of the peaks of Al 2p inner shells, and the Ln{sup 3+} 4f energy levels referred to the VBM were determined from the Ln{sup 3+} 4f peak energies. The Ln{sup 3+} 4f energy levels obtained by this simple method were in good agreement with those previously obtained by resonant ultraviolet photoelectron spectroscopy measurements using single crystal samples. - Highlights: • Lanthanide (Ln) 4f energy in YAlO{sub 3} was studied by X-ray photoelectron spectroscopy. • The method used differences in photoionization probability between Ln 4f and O 2p. • Ln 4f states were obtained by difference spectra between Ln- and non-doped samples. • Obtained 4f energy levels agreed with those reported by a sophisticated method.

  7. Acoustic dose and acoustic dose-rate.

    Science.gov (United States)

    Duck, Francis

    2009-10-01

    Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.

  8. The VMI study on angular distribution of ejected electrons from Eu 4f76p1/26d autoionizing states

    Science.gov (United States)

    Zhang, Kai; Shen, Li; Dong, Cheng; Dai, Chang-Jian

    2015-10-01

    The combination of a velocity mapping imaging technique and mathematical transformation is adopted to study the angular distribution of electrons ejected from the Eu 4f76p1/26d autoionizing states, which are excited with a three-step excitation scheme via different Eu 4f76s6d 8 DJ (J = 5/2, 7/2, and 9/2) intermediate states. In order to determine the energy dependence of angular distribution of the ejected electrons, the anisotropic parameters are measured in the spectral profile of the 6p1/26d autoionizing states by tuning the wavelength of the third-step laser across the ionic resonance lines of the Eu 6s+ → 6p+. The configuration interaction is discussed by comparing the angular distributions of ejected electrons from the different states. The present study reveals the profound variations of anisotropic parameters in the entire region of autoionization resonance, highlighting the complicated nature of the autoionization process for the lowest member of 6p1/26d autoionization series. Project supported by the National Natural Science Foundation of China (Grant No. 11174218).

  9. A 4F2-cross-point phase change memory using nano-crystalline doped GeSbTe material

    Science.gov (United States)

    Takaura, Norikatsu; Kinoshita, Masaharu; Tai, Mitsuharu; Ohyanagi, Takasumi; Akita, Kenichi; Morikawa, Takahiro

    2015-04-01

    This paper reports on the use of nano-crystalline doped GeSbTe, or nano-GST, to fabricate a cross-point phase change memory with 4F2 cell size and test results obtained for it. We show the characteristics of a poly-Si diode select device with a high on-off ratio and data writing in a 4F2 memory cell array. The advantages of nano-GST over conventional GeSbTe are presented in terms of neighboring disturbance and 4F2 cross-point array formation. The memory cells’ high drivability, low power, and selective write and read performances are demonstrated. The scalability of the diode current density is also presented.

  10. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  11. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... Back Learn about acoustic neuroma AN Facts What is acoustic neuroma? Diagnosing Symptoms Side Effects Keywords Questions ... kit Treatment Options Overview Observation Radiation Surgery What is acoustic neuroma Diagnosing Symptoms Side effects Question To ...

  12. Description of an optimized ChIP-seq analysis pipeline dedicated to genome wide identification of E4F1 binding sites in primary and transformed MEFs

    Directory of Open Access Journals (Sweden)

    Thibault Houlès

    2015-09-01

    To identify this program, we performed E4F1 ChIP-seq analyses in primary Mouse Embryonic Fibroblasts (MEF and in p53−/−, H-RasV12-transformed MEFs. The program directly controlled by E4F1 was obtained by intersecting the lists of E4F1 genomic targets with the lists of genes differentially expressed in E4F1 KO and E4F1 WT cells (Rodier et al., 2015. We describe hereby how we improved our ChIP-seq analyses workflow by applying prefilters on raw data and by using a combination of two publicly available programs, Cisgenome and QESEQ.

  13. CLEC4F is an inducible C-type lectin in F4/80-positive cells and is involved in alpha-galactosylceramide presentation in liver.

    Directory of Open Access Journals (Sweden)

    Chih-Ya Yang

    Full Text Available CLEC4F, a member of C-type lectin, was first purified from rat liver extract with high binding affinity to fucose, galactose (Gal, N-acetylgalactosamine (GalNAc, and un-sialylated glucosphingolipids with GalNAc or Gal terminus. However, the biological functions of CLEC4F have not been elucidated. To address this question, we examined the expression and distribution of murine CLEC4F, determined its binding specificity by glycan array, and investigated its function using CLEC4F knockout (Clec4f-/- mice. We found that CLEC4F is a heavily glycosylated membrane protein co-expressed with F4/80 on Kupffer cells. In contrast to F4/80, CLEC4F is detectable in fetal livers at embryonic day 11.5 (E11.5 but not in yolk sac, suggesting the expression of CLEC4F is induced as cells migrate from yolk cells to the liver. Even though CLEC4F is not detectable in tissues outside liver, both residential Kupffer cells and infiltrating mononuclear cells surrounding liver abscesses are CLEC4F-positive upon Listeria monocytogenes (L. monocytogenes infection. While CLEC4F has strong binding to Gal and GalNAc, terminal fucosylation inhibits CLEC4F recognition to several glycans such as Fucosyl GM1, Globo H, Bb3∼4 and other fucosyl-glycans. Moreover, CLEC4F interacts with alpha-galactosylceramide (α-GalCer in a calcium-dependent manner and participates in the presentation of α-GalCer to natural killer T (NKT cells. This suggests that CLEC4F is a C-type lectin with diverse binding specificity expressed on residential Kupffer cells and infiltrating monocytes in the liver, and may play an important role to modulate glycolipids presentation on Kupffer cells.

  14. Curbing-The Metallic Mode In-between: An empirical study qualifying and categorizing restrained sounds known as Curbing based on audio perception, laryngostroboscopic imaging, acoustics, LTAS, and EGG.

    Science.gov (United States)

    Thuesen, Mathias Aaen; McGlashan, Julian; Sadolin, Cathrine

    2017-09-01

    This study aims to study the categorization Curbing from the pedagogical method Complete Vocal Technique as a reduced metallic mode compared with the full metallic modes Overdrive and Edge by means of audio perception, laryngostroboscopic imaging, acoustics, long-term average spectrum (LTAS), and electroglottography (EGG). Twenty singers were recorded singing sustained vowels in a restrained character known as Curbing. Two studies were performed: (1) laryngostroboscopic examination using a videonasoendoscopic camera system and the Laryngostrobe program; and (2) simultaneous recording of EGG and acoustic signals using Speech Studio. Images were analyzed based on consensus agreement. Statistical analysis of acoustic, LTAS, and EGG parameters was undertaken using Student paired t tests. The reduced metallic singing mode Curbing has an identifiable laryngeal gesture. Curbing has a more open setting than Overdrive and Edge, with high visibility of the vocal folds, and the false folds giving a rectangular appearance. LTAS showed statistically significant differences between Curbing and the full metallic modes, with less energy across all spectra, yielding a high second and a low third harmonic. Statistically significant differences were identified on Max Qx, Average Qx, Shimmer+, Shimmer-, Shimmer dB, normalized noise energy, cepstral peak prominence, harmonics-to-noise ratio, and mean sound pressure level (P ≤ 0.05). Curbing as a voice production strategy is statistically significantly different from Overdrive and Edge, and can be categorized based on audio perception. This study demonstrates consistently different laryngeal gestures between Curbing and Overdrive and Edge, with high corresponding differences in LTAS, EGG and acoustic measures. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. A novel frameshift mutation of POU4F3 gene associated with autosomal dominant non-syndromic hearing loss

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Keun [Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu (Korea, Republic of); Park, Hong-Joon [Soree Ear Clinic, Seoul (Korea, Republic of); Lee, Kyu-Yup [Vestibulocochlear Research Center, College of Medicine, Wonkwang University, Iksan (Korea, Republic of); Park, Rekil, E-mail: rkpark@wku.ac.kr [Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Kyungpook National University, Daegu (Korea, Republic of); Kim, Un-Kyung, E-mail: kimuk@knu.ac.kr [Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu (Korea, Republic of)

    2010-06-04

    Autosomal dominant mutations in the transcription factor POU4F3 gene are associated with non-syndromic hearing loss in humans; however, there have been few reports of mutations in this gene worldwide. We performed a mutation analysis of the POU4F3 gene in 42 unrelated Koreans with autosomal dominant non-syndromic hearing loss, identifying a novel 14-bp deletion mutation in exon 2 (c.662del14) in one patient. Audiometric examination revealed severe bilateral sensorineural hearing loss in this patient. The novel mutation led to a truncated protein that lacked both functional POU domains. We further investigated the functional distinction between wild-type and mutant POU4F3 proteins using in vitro assays. The wild-type protein was completely localized in the nucleus, while the truncation of protein seriously affected its nuclear localization. In addition, the mutant failed to activate reporter gene expression. This is the first report of a POU4F3 mutation in Asia, and moreover our data suggest that further investigation will need to delineate ethnicity-specific genetic background for autosomal dominant non-syndromic hearing loss within Asian populations.

  16. Bulk plasma fragmentation in a C{sub 4}F{sub 8} inductively coupled plasma: A hybrid modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shu-Xia; Zhang, Yu-Ru [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Gao, Fei; Wang, You-Nian [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Bogaerts, Annemie [Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium)

    2015-06-28

    A hybrid model is used to investigate the fragmentation of C{sub 4}F{sub 8} inductive discharges. Indeed, the resulting reactive species are crucial for the optimization of the Si-based etching process, since they determine the mechanisms of fluorination, polymerization, and sputtering. In this paper, we present the dissociation degree, the density ratio of F vs. C{sub x}F{sub y} (i.e., fluorocarbon (fc) neutrals), the neutral vs. positive ion density ratio, details on the neutral and ion components, and fractions of various fc neutrals (or ions) in the total fc neutral (or ion) density in a C{sub 4}F{sub 8} inductively coupled plasma source, as well as the effect of pressure and power on these results. To analyze the fragmentation behavior, the electron density and temperature and electron energy probability function (EEPF) are investigated. Moreover, the main electron-impact generation sources for all considered neutrals and ions are determined from the complicated C{sub 4}F{sub 8} reaction set used in the model. The C{sub 4}F{sub 8} plasma fragmentation is explained, taking into account many factors, such as the EEPF characteristics, the dominance of primary and secondary processes, and the thresholds of dissociation and ionization. The simulation results are compared with experiments from literature, and reasonable agreement is obtained. Some discrepancies are observed, which can probably be attributed to the simplified polymer surface kinetics assumed in the model.

  17. Interethnic variability of CYP4F2 (V433M) in admixed population of Roma and Hungarians.

    Science.gov (United States)

    Sipeky, Csilla; Weber, Agnes; Melegh, Bela I; Matyas, Petra; Janicsek, Ingrid; Szalai, Renata; Szabo, Istvan; Varnai, Reka; Tarlos, Greta; Ganczer, Alma; Melegh, Bela

    2015-07-01

    Pharmacogenetic based dosing recommendations are provided in FDA-approved warfarin label for Caucasians. Evidence of notable difference in dosing algorithms of under-represented populations forced us to explore the genetic variability of CYP4F2 gene in Roma and Hungarian populations. 484 Roma, 493 Hungarian untreated subjects were genotyped for the CYP4F2*3 (rs2108622) variant by PCR-RFLP assay. We firstly report, that frequencies of the CYP4F2 rs2108622 GG, GA, AA genotypes and A allele in the Roma population were 46.5%, 42.6%, 10.9% and 32.2%; in Hungarians 50.1%, 42.2%, 7.7% and 22.8%, respectively. Bearing of two minor alleles of CYP4F2 missense variant (AA genotype) modestly explains inter-ethnic differences of studied populations (pRoma (0.32) was in higher range, and of Hungarians (0.23) in lower range, as compared with other world populations. Roma have an elevated chance for higher mean warfarin dose, besides a decreased risk of major bleeding events in long-term warfarin use. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Carbothermal reduction synthesis of carbon coated Na2FePO4F for lithium ion batteries

    Science.gov (United States)

    Cui, Dongming; Chen, Shasha; Han, Chang; Ai, Changchun; Yuan, Liangjie

    2016-01-01

    Carbon coated spherical Na2FePO4F particles with typical diameters from 500 nm to 1 μm have been synthesized through an economical carbothermal reduction method with a simple apparatus. Mixed carbon source consists of citric acid and phenolic resin can form highly graphitized carbon and remarkably improve the electrical conductivity. When cycled against lithium, Na2FePO4F/C cathodes deliver maximum discharge capacity of 119 mAh g-1 at a low rate of 0.05 C. Reversible capacity of 110 mAh g-1, 74 mAh g-1 and 52 mAh g-1 can be obtained at 0.1 C, 1 C and 2 C rates, respectively. And after 30 cycles at 0.1 C, 91% of the discharge capacity can still be maintained. The electrochemical kinetic characteristic of electrode material is investigated by EIS and the apparent Li+ diffusion coefficient in the Li/Na2FePO4F system is evaluated to be as high as 1.152 × 10-11 cm2 s-1. This study demonstrates that the practical and economical synthesis process can be a promising way for industrial production of high performance Na2FePO4F/C electrode material for large-scale lithium ion batteries.

  19. Interpretation of the 4f-5d Excitation Spectra of Eu3+ and Tb3+ Doped in Crystals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The structure of the low-temperature 4fN→4fN-15d excitation spectra of Eu3+ and Tb3+ doped in crystals LiYF4, YPO4 and CaF2 measured by van Pieterson et al. In 2002 was analyzed and assigned based on the simple model proposed by Duan and co-workers in the last few years. Some complemental discussion on effects of J-mixing on the f-d transition intensities for Eu3+ due to the f-electron crystal-field interaction Hcf(f), which was ignored in the simple model, was presented. Some previously unexplained peaks for Tb3+ were interpreted to be spin-forbidden transitions to higher 5d crystal-field levels, or assigned to be f→d excitations with the core 4f7 excited from 8S to 6P, 6I and 6D, respectively. It is shown that the main structure of 4f-5d excitation spectra of Eu3+ and Tb3+ can be well interpreted with the simple model.

  20. Correlation between single nucleotide polymorphisms in CYP4F2 and warfarin dosing in chinese valve replacement patients

    Directory of Open Access Journals (Sweden)

    Li Jie-Hui

    2012-09-01

    Full Text Available Abstract Background Individuals with implanted mechanical valve prostheses require lifelong anticoagulation therapy with warfarin. The narrow therapeutic index of warfarin makes it difficult to dose and maintain proper anticoagulation. A number of single nucleotide polymorphisms (SNPs affecting vitamin K or warfarin metabolism have been shown to affect warfarin dosing. Our aim was to study the effect of the CYP4F2 rs2108622-1347 (C > T variant on warfarin dosing in Chinese patients. Methods We studied 352 patients after heart valve replacement surgery. Warfarin dosing for patients was adjusted to achieve 1.8 ≤ INR ≤ 2.5. We determined the presence of SNPs in CYP4F2 in these patients and investigated their association with warfarin dosing. Results We found the frequency of the CYP4F2 rs2108622 C allele was 79.5% and T-allele frequency was 20.5%. The warfarin dose requirement for CC individuals was significantly lower than that for CT or TT individuals (P  Conclusions This study demonstrates that CYP4F2 rs2108622 significantly affects the warfarin dose requirement to achieve adequate anticoagulant activity in Chinese individuals. Genotyping of this SNP may allow clinicians to determine the initiation dose for patients following valve-replacement surgery in China.

  1. R&D studies of a RICH detector using pressurized C$_{4}$F$_{8}$O radiator gas and a CsI-based gaseous photon detector

    CERN Document Server

    Agócs, A.G; Barnaföldi, G.G; Bellwied, R; Bencédi, G; Bencze, G; Berényi, D; Boldizsár, L; Chattopadhyay, S; Chinellato, D.D; Cindolo, F; Das-Bose, L; Das, D; Das, K; De Cataldo, G; Di Bari, D; Di Mauro, A; Futó, E; Garcia, E; Hamar, G; Harton, A; Jimenez, R.T; Kim, D.W; Kim, J.S; Knospe, A; Kovacs, L; Lévai, P; Markert, C; Martinengo, P; Molnar, L; Nappi, E; Olah, L; Paic, G; Pastore, C; Patino, M.E; Peskov, V; Pinsky, L; Piuz, F; Pochybova, S; Sgura, I; Sinha, T; Song, J; Timmins, A; Van Beelen, J.B; Varga, D; Volpe, G; Weber, M; Xaplanteris, L; Yi, J; Yoo, I.-K

    2013-01-01

    We report on studies of layout and performance of a new Ring Imaging Cherenkov detector using for the fi rst time pressurized C 4 F 8 O radiator gas and a photon detector consisting of a MWPC equipped with a CsI photocathode. In particular, we present here the results of beam tests of a MWPC having an adjustable anode – cathode gap, aiming at the optimization of single photoelectron detection and Cherenkov angle resolution. This system was proposed as a Very High Momentum Particle Identi fi cation (VHMPID) upgrade for the ALICE experiment at LHC to provide charged hadron track-by-track identi fi cation in the momentum range 5 – 25 GeV/c.

  2. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies.

    Science.gov (United States)

    Boussemart, Lise; Malka-Mahieu, Hélène; Girault, Isabelle; Allard, Delphine; Hemmingsson, Oskar; Tomasic, Gorana; Thomas, Marina; Basmadjian, Christine; Ribeiro, Nigel; Thuaud, Frédéric; Mateus, Christina; Routier, Emilie; Kamsu-Kom, Nyam; Agoussi, Sandrine; Eggermont, Alexander M; Désaubry, Laurent; Robert, Caroline; Vagner, Stéphan

    2014-09-04

    In BRAF(V600)-mutant tumours, most mechanisms of resistance to drugs that target the BRAF and/or MEK kinases rely on reactivation of the RAS-RAF-MEK-ERK mitogen-activated protein kinase (MAPK) signal transduction pathway, on activation of the alternative, PI(3)K-AKT-mTOR, pathway (which is ERK independent) or on modulation of the caspase-dependent apoptotic cascade. All three pathways converge to regulate the formation of the eIF4F eukaryotic translation initiation complex, which binds to the 7-methylguanylate cap (m(7)G) at the 5' end of messenger RNA, thereby modulating the translation of specific mRNAs. Here we show that the persistent formation of the eIF4F complex, comprising the eIF4E cap-binding protein, the eIF4G scaffolding protein and the eIF4A RNA helicase, is associated with resistance to anti-BRAF, anti-MEK and anti-BRAF plus anti-MEK drug combinations in BRAF(V600)-mutant melanoma, colon and thyroid cancer cell lines. Resistance to treatment and maintenance of eIF4F complex formation is associated with one of three mechanisms: reactivation of MAPK signalling, persistent ERK-independent phosphorylation of the inhibitory eIF4E-binding protein 4EBP1 or increased pro-apoptotic BCL-2-modifying factor (BMF)-dependent degradation of eIF4G. The development of an in situ method to detect the eIF4E-eIF4G interactions shows that eIF4F complex formation is decreased in tumours that respond to anti-BRAF therapy and increased in resistant metastases compared to tumours before treatment. Strikingly, inhibiting the eIF4F complex, either by blocking the eIF4E-eIF4G interaction or by targeting eIF4A, synergizes with inhibiting BRAF(V600) to kill the cancer cells. eIF4F not only appears to be an indicator of both innate and acquired resistance but also is a promising therapeutic target. Combinations of drugs targeting BRAF (and/or MEK) and eIF4F may overcome most of the resistance mechanisms arising in BRAF(V600)-mutant cancers.

  3. The acoustic force density acting on inhomogeneous fluids in acoustic fields

    CERN Document Server

    Karlsen, Jonas T; Bruus, Henrik

    2016-01-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip.

  4. Acoustics and Hearing

    CERN Document Server

    Damaske, Peter

    2008-01-01

    When one listens to music at home, one would like to have an acoustic impression close to that of being in the concert hall. Until recently this meant elaborate multi-channelled sound systems with 5 or more speakers. But head-related stereophony achieves the surround-sound effect in living rooms with only two loudspeakers. By virtue of their slight directivity as well as an electronic filter the limitations previously common to two-speaker systems can be overcome and this holds for any arbitrary two-channel recording. The book also investigates the question of how a wide and diffuse sound image can arise in concert halls and shows that the quality of concert halls decisively depends on diffuse sound images arising in the onset of reverberation. For this purpose a strong onset of reverberation is modified in an anechoic chamber by electroacoustic means. Acoustics and Hearing proposes ideas concerning signal processing in the auditory system that explain the measured results and the resultant sound effects plea...

  5. Density-near-zero using the acoustically induced transparency of a Fano acoustic resonator

    KAUST Repository

    Elayouch, A.

    2017-01-05

    We report experimental results of near-zero mass density involving an acoustic metamaterial supporting Fano resonance. For this, we designed and fabricated an acoustic resonator with two closely coupled modes and measured its transmission properties. Our study reveals that the phenomenon of acoustically induced transparency is accompanied by an effect of near-zero density. Indeed, the dynamic effective parameters obtained from experimental data show the presence of a frequency band where the effective mass density is close to zero, with high transmission levels reaching 0.7. Furthermore, we demonstrate that such effective parameters lead to wave guiding in a 90-degrees-bent channel. This kind of acoustic metamaterial can, therefore, give rise to acoustic functions like controlling the wavefront, which may lead to very promising applications in acoustic cloacking or imaging.

  6. Magneto-structural variety of new 3d-4f-4(5)d heterotrimetallic complexes.

    Science.gov (United States)

    Visinescu, Diana; Alexandru, Maria-Gabriela; Madalan, Augustin M; Pichon, Céline; Duhayon, Carine; Sutter, Jean-Pascal; Andruh, Marius

    2015-10-14

    Three families of heterotrimetallic chains (type 1-type 3), with different topologies, have been obtained by reacting the 3d-4f complexes, [{Cu(L(1))}xLn(NO3)3] with x = 1 or 2, formed in situ by the reaction of Schiff-base bi-compartmental [Cu(II)(L(1))] complexes and lanthanide(iii) salts, with (NHBu3)3[M(CN)8] (M = Mo(V), W(V)). For type 1 series of compounds, 1-D coordination polymers, with the general formula [{Cu2(valpn)2Ln}{M(CN)8}]·nH2O·mCH3CN (where H2valpn = 1,3-propanediylbis(2-iminomethylene-6-methoxy-phenol), result from the association of trinuclear {CuLn(III)} moieties and [M(V)(CN)8](3-) anions acting as tri-connecting spacers [Ln = La (1), Ce (2), Eu (3), Tb (4), Ho (5), M = Mo; Ln = Tb (6), Ho (7), M = W; m = 0, n = 1.5 (7) and 2 (1-4, 6); n = 1, m = 1 (5)]. The type 2 family has the general formula [{Cu(valdp)Ln(H2O)4}{M(CN)8}]·2H2O·CH3CN (where H2valdp = 1,2-propanediylbis(2-iminomethylene-6-methoxy-phenol)) and also consists of heterotrimetallic chains involving binuclear {Cu(II)Ln(III)} units linked to [M(CN)8](3-) anions coordinating through two cyano groups [Ln = Gd (8), Tb (9), Dy (10); M = Mo; Ln = La (11), Gd (12), Tb (13), Dy (14); M = W]. With large Ln(III) ions (La(III) and Pr(III)), the type 3 family of heterotrimetallic compounds are assembled: [{Cu2(valdp)2Ln(H2O)4}{Mo(CN)8}]·nCH3OH·mCH3CN, n, m = 0, Ln = La (15); n = m = 1, Pr (16), in which the trinuclear {CuLn(III)} nodes are connected to [Mo(V)(CN)8](3-) anions that act as tetra-connecting spacers. For Tb(III) derivatives of the type 1 (compounds 4 and 6), the DC magnetic properties indicate a predominant ferromagnetic Cu(II)-Tb(III) interaction, while the AC magnetic susceptibility (in the presence of a static magnetic field, HDC = 3000 Oe) emphasize the slow relaxation of the magnetization (Ueff/kB = 20.55 K and τ0 = 5.5 × 10(-7) s for compound 4, Ueff/kBT = 15.1 K and τ0 = 1.5 × 10(-7) s for compound 6). A predominant ferromagnetic Cu(II)-Ln(III) interaction was

  7. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  8. Acoustic cryocooler

    Science.gov (United States)

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  9. Acoustic transducer

    Science.gov (United States)

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  10. Factors Influencing Hearing Preservation in Acoustic Tumor Surgery

    OpenAIRE

    Rastogi, Pawan; Cacace, Anthony T.; Lovely, Thomas J.

    1995-01-01

    In patients who underwent neurosurgery for excision of acoustic tumors, we used correlation and multivariate logistic regression analysis to study relationships among nine variables thought to have value in predicting hearing preservation. These variables included auditory perceptual, auditory neurophysiologic, and imaging-related characteristics of acoustic tumor dimensions. The univariate correlations showed two general trends. The first trend demonstrated relationships among imaging-relate...

  11. Coupled High Speed Imaging and Seismo-Acoustic Recordings of Strombolian Explosions at Etna, July 2014: Implications for Source Processes and Signal Inversions.

    Science.gov (United States)

    Taddeucci, J.; Del Bello, E.; Scarlato, P.; Ricci, T.; Andronico, D.; Kueppers, U.; Cannata, A.; Sesterhenn, J.; Spina, L.

    2015-12-01

    Seismic and acoustic surveillance is routinely performed at several persistent activity volcanoes worldwide. However, interpretation of the signals associated with explosive activity is still equivocal, due to both source variability and the intrinsically limited information carried by the waves. Comparison and cross-correlation of the geophysical quantities with other information in general and visual recording in particular is therefore actively sought. At Etna (Italy) in July 2014, short-lived Strombolian explosions ejected bomb- to lapilli-sized, molten pyroclasts at a remarkably repeatable time interval of about two seconds, offering a rare occasion to systematically investigate the seismic and acoustic fields radiated by this common volcanic source. We deployed FAMoUS (FAst, MUltiparametric Setup for the study of explosive activity) at 260 meters from the vents, recording more than 60 explosions in thermal and visible high-speed videos (50 to 500 frames per second) and broadband seismic and acoustic instruments (1 to 10000 Hz for the acoustic and from 0.01 to 30 Hz for the seismic). Analysis of this dataset highlights nonlinear relationships between the exit velocity and mass of ejecta and the amplitude and frequency of the acoustic signals. It also allows comparing different methods to estimate source depth, and to validate existing theory on the coupling of airwaves with ground motion.

  12. Acoustic telemetry.

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  13. Simulation and experimental verification of acoustic image of echo bright spots for single hull submarine targets%单层壳体潜艇回波亮点声图像仿真和试验验证

    Institute of Scientific and Technical Information of China (English)

    孙昕; 范威; 范军

    2012-01-01

    为了从水下目标回波声图像中获得尺度、要害部位等重要特征信息,提出一种将板块元分析和正交波束形成相结合来实现对潜艇目标进行回波声图像分析的方法,并对多波束系统条件下单层壳体潜艇的时间-角度回波结构和二维几何亮点声图像进行了仿真,通过目标表面高频亮区的分布解释了单层壳体潜艇亮点声图像的形成原因,最后利用湖上试验验证理论仿真结果.试验结果表明;亮点声图像可以反映水下目标几何亮点的分布规律,并在一定程度上反映目标的尺度和姿态特征;单层壳体潜艇回波亮点主要来源于艇体、指挥台围壳、艉舵3个部位.%To obtain the important information about the size and key-parts of a submerged target from its echo geometrical acoustic images, a new analysis method was presented which combined planar element analysis with orthogonal beam-forming to deal with the echo acoustic images of the submarine. Based on the multi-beam system, the method was used to simulate time-angle echo structure and 2D acoustic images of bright spots for the single hull submarine target. The mechanism of forming two-dimensional acoustic image bright spots was explained through the target s surface high frequency highlight distribution. Experiments made on the lake verified the results of the theoretical calculation. The results shows that the characteristics of the size and attitude can be extracted to some extent from the geometrical highlight of the underwater targets, and that the bright spots of the single-hull submarine mainly come from the hull, sail and stern.

  14. Effects of Ar and O2 additives on SiO2 etching in C4F8-based plasmas

    Science.gov (United States)

    Li, Xi; Ling, Li; Hua, Xuefeng; Fukasawa, Masanaga; Oehrlein, Gottlieb S.; Barela, Marcos; Anderson, Harold M.

    2003-01-01

    Gas mixtures based on C4F8 are promising for the development of high-performance SiO2 plasma etching processes. Measurements of important gas phase species, thin film etching rates and surface chemistry changes were performed for inductively coupled plasmas fed with C4F8/Ar and C4F8/O2 gas mixtures. The addition of Ar to C4F8 causes a strong increase of the plasma density relative to that of pure C4F8 (by up to a factor of 4× at 90% Ar). For O2 addition the changes in plasma density are small up to 90% O2 relative to pure C4F8. Infrared laser absorption spectroscopy was used to determine the absolute densities of neutral CF, CF2 and COF2 radical species as a function of the gas composition. The densities of CF and CF2 were enhanced for certain operating conditions when Ar was added to C4F8 as long as the amount of Ar remained below 20%. For instance, the partial pressure of CF was 0.1 mTorr for a 20 mTorr 1400 W source power discharge for pure C4F8, and increased to 0.13 mTorr at 20% Ar. Above 20% Ar it decreased, roughly following the gas dilution. The CF2 partial pressure was about 5 mTorr for the same conditions, and increased by about 10% at 20% Ar. Above 20% Ar the CF2 partial pressure decreased roughly linearly with the amount of Ar added, to about 2 mTorr at 50% Ar. Of particular interest was the analysis of the difference in behavior of CF, CF2 and COF2 partial pressures over SiO2 and Si surfaces, with and without rf bias power (in the latter case a self-bias voltage of -100 V was used). For pure C4F8 discharges at 20 mTorr and 1400 W inductive power without rf bias the partial pressures of CF, CF2 and COF2 radicals are comparable over SiO2 and Si surfaces. Upon applying a rf bias, the CF2 partial pressure over a SiO2 surface is reduced much more strongly than for a Si surface. The overall reduction appears to be consistent with the relative SiO2/Si etch rate ratios observed for these conditions. These results indicate that CF2 is consumed during the

  15. Influence of different frequencies and insertion depths on the diagnostic accuracy of liver elastography by acoustic radiation force impulse imaging (ARFI)

    Energy Technology Data Exchange (ETDEWEB)

    Potthoff, Andrej, E-mail: potthoff.andrej@mh-hannover.de [Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover (Germany); Attia, Dina; Pischke, Sven; Kirschner, Janina; Mederacke, Ingmar; Wedemeyer, Heiner; Manns, Michael P.; Gebel, Michael J.; Rifai, Kinan [Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover (Germany)

    2013-08-15

    Background: Acoustic Radiation Force Impulse Imaging (ARFI) is an innovative elastography for staging of liver fibrosis. We evaluated the diagnostic accuracy of different probes to perform ARFI at different insertion depths. Methods: In a prospective study, 89 chronic HCV infected patients underwent ARFI elastography using both available probes (c-ARFI: C4-1-MHz; l-ARFI: L9-4 MHz) in comparison to Fibroscan{sup ®}. Variability of ARFI elastography at different insertion depths was systematically evaluated in 39 patients (44%). According to Fibroscan{sup ®} elastography, 32 patients (36%) presented with liver cirrhosis, 23 patients (26%) had significant fibrosis and 34 patients (38%) had no significant fibrosis. Results: Mean propagation velocity with c-ARFI was 1.70 ± 0.67 m/s and 1.91 ± 0.87 m/s with l-ARFI. Results of both probes were correlated to each other (p < 0.001; r = 0.70) and to Fibroscan{sup ®} (p < 0.001, r = 0.82 and 0.84, respectively). In patients with significant fibrosis or with cirrhosis, mean values by l-ARFI were significantly higher than by c-ARFI (p < 0.001). For detection of liver cirrhosis, AUROC was 0.97 for c-ARFI (cut-off level 1.72 m/s) and 0.90 for l-ARFI (cut-off 2.04 m/s). Correlation coefficients of c-ARFI with Fibroscan{sup ®} were highest at an insertion depth of 5–6 cm (r = 0.882 and 0.864, respectively, p < 0.001) and at 3–4 cm for l-ARFI (r = 0.850 and 0.838, respectively, p < 0.001). Conclusions: ARFI elastography with the linear and with the convex probes showed comparable validity and accuracy in the estimation of liver stiffness. The linear probe gave higher ARFI values. The most accurate insertion depth was 5–6 cm for c-ARFI and 3–4 cm for l-ARFI indicating that measurements should not be performed close to the liver capsule.

  16. The revised human liver cytochrome P450 "Pie": absolute protein quantification of CYP4F and CYP3A enzymes using targeted quantitative proteomics.

    Science.gov (United States)

    Michaels, Scott; Wang, Michael Zhuo

    2014-08-01

    The CYP4F subfamily of enzymes has been identified recently to be involved in the metabolism of endogenous compounds (arachidonic acid and leukotriene B4), nutrients (vitamins K1 and E), and xenobiotics (pafuramidine and fingolimod). CYP4F2 and CYP4F3B are reported to be expressed in the human liver. However, absolute concentrations of these enzymes in human liver microsomes (HLMs) and their interindividual variability have yet to be determined because of the lack of specific antibodies. Here, an liquid chromatography with tandem mass spectrometry (LC-MS/MS)-based targeted quantitative proteomic approach was employed to determine the absolute protein concentrations of CYP4F2 and CYP4F3B compared with CYP3A in two panels of HLMs (n = 31). As a result, the human hepatic cytochrome P450 (P450) "pie" has been revised to include the contribution of CYP4F enzymes, which amounts to 15% of the total hepatic cytochrome P450 enzymes. CYP4F3B displayed low interindividual variability (3.3-fold) in the HLM panels whereas CYP4F2 displayed large variability (21-fold). However, CYP4F2 variability decreased to 3.4-fold if the two donors with the lowest expression were excluded. In contrast, CYP3A exhibited 29-fold interindividual variability in the same HLM panels. The proposed marker reaction for CYP4F enzymes pafuramidine/DB289 M1 formation did not correlate with CYP4F protein content, suggesting alternate metabolic pathways for DB289 M1 formation in HLMs. In conclusion, CYP4F enzymes are highly expressed in the human liver and their physiologic and pharmacologic roles warrant further investigation.

  17. Predicting the Dielectric Strength of c-C4F8 and SF6 Gas Mixtures by Monte Carlo Method

    Institute of Scientific and Technical Information of China (English)

    WU Bian-tao; XIAO Deng-ming

    2007-01-01

    An improved Monte Carlo method was used to simulate the motion of electrons in c-C4F8 and SF6 gas mixtures for pulsed townsend discharge. The electron swarm parameters such as effective ionization coefficient, (-α) and drift velocity over the E/N range from 280~700 Td(1Td= 10-21 V·m2) were calculated by employing a set of cross sections available in literature. From the variation cure of (-α) with SF6 partial pressure p, the limiting field (E/N)lim of gas mixture at different gas content was determined. It is found that the limiting field of c-C4F8 and SF6gas mixture is higher than that of pure SF6 at any SF6 mixture ratio. Simulation results show excellent agreement with experiment data available in previous literature.

  18. Acoustical Scanning of Optical Images

    Science.gov (United States)

    1982-01-01

    1976. 6. S. S. Li "Theoretical Analysis of a Novel MPN Gallium Arsenide Schottky Barrier Solar Cell ," Solid State Electronics, 21, 435-438, 1978. 7. R...circuits presented here. inverse frequency dependence Principle of Operat 4on NW 110 RC • = (5) The electrical admittance of the C ( interdigital ...500 V0 (mV) - INTERDIGITAL TRANSDUCER VD (MV)SCHOTTKY DIOE ARRAY Fig. 8. Forward 1-V curves with implant dose as zno parameter. Curve for no implant is

  19. Sistema Óptico de Encriptación de Doble Máscara de Fase bajo Arquitectura 4f

    OpenAIRE

    Carlos A. Ríos; Edgar A. Rueda; John F. Barrera

    2010-01-01

    Nowadays the area of optical encryption of information concentrates the efforts of many researchers in laboratories around the world, mainly because contributions presented in the last two decades have shown the reliability, versatility and applicability of such systems. One of the most successful systems, which is currently protected by several patents, is based on the use of two random phase masks and a 4f architecture. In this contribution we do a review of this optical encryption system. ...

  20. Processing nanoparticles with A4F-SAXS for toxicological studies: Iron oxide in cell-based assays.

    Science.gov (United States)

    Knappe, Patrick; Boehmert, Linda; Bienert, Ralf; Kamutzki, Silvana; Karmutzki, Silvana; Niemann, Birgit; Lampen, Alfonso; Thünemann, Andreas F

    2011-07-01

    Nanoparticles are not typically ready-to-use for in vitro cell culture assays. Prior to their use in assays, powder samples containing nanoparticles must be dispersed, de-agglomerated, fractionated by size, and characterized with respect to size and size distribution. For this purpose we report exemplarily on polyphosphate-stabilized iron oxide nanoparticles in aqueous suspension. Fractionation and online particle size analysis was performed in a time-saving procedure lasting 50 min by combining asymmetrical flow field-flow fractionation (A4F) and small-angle X-ray scattering (SAXS). Narrowly distributed nanoparticle fractions with radii of gyration (R(g)) from 7 to 21 nm were obtained from polydisperse samples. The A4F-SAXS combination is introduced for the preparation of well-characterized sample fractions originating from a highly polydisperse system as typically found in engineered nanoparticles. A4F-SAXS processed particles are ready-to-use for toxicological studies. The results of preliminary tests of the effects of fractionated iron oxide nanoparticles with a R(g) of 15 nm on a human colon model cell line are reported.

  1. grc4f v1.1 a four-fermion event generator for e+e- collisions

    CERN Document Server

    Fujimoto, J; Kaneko, T; Kato, K; Kawabata, S; Kurihara, Y; Munehisa, T; Perret-Gallix, D; Shimizu, Y; Tanaka, H

    1996-01-01

    grc4f is a Monte-Carlo package for generating e+e- to 4-fermion processes in the standard model. All of the 76 LEP-2 allowed fermionic final state processes evaluated at tree level are included in version 1.1. grc4f addresses event simulation requirements at e+e- colliders such as LEP and up-coming linear colliders. Most of the attractive aspects of grc4f come from its link to the GRACE system: a Feynman diagram automatic computation system. The GRACE system has been used to produce the computational code for all final states, giving a higher level of confidence in the calculation correctness. Based on the helicity amplitude calculation technique, all fermion masses can be kept finite and helicity information can be propagated down to the final state particles. The phase space integration of the matrix element gives the total and differential cross sections, then unweighted events are Generated. Initial state radiation (ISR) corrections are implemented in two ways, one is based on the electron structure funct...

  2. Grc4f v1.0 a four-fermion event generator for e+e- collisions

    CERN Document Server

    Fujimoto, J; Kaneko, T; Kato, K; Kawabata, S; Kurihara, Y; Munehisa, T; Perret-Gallix, D; Shimizu, Y; Tanaka, H

    1996-01-01

    grc4f is a Monte-Carlo package for generating e+e- to 4-fermion processes in the standard model. All of the 76 LEP-2 allowed fermionic final state processes evaluated at tree level are included in version 1.0. grc4f addresses event simulation requirements at e+e- colliders such as LEP and up-coming linear colliders. Most of the attractive aspects of grc4f come from its link to the GRACE system: a Feynman diagram automatic computation system. The GRACE system has been used to produce the computational code for all final states, giving a higher level of confidence in the calculation correctness. Based on the helicity amplitude calculation technique, all fermion masses can be kept finite and helicity information can be propagated down to the final state particles. The phase space integration of the matrix element gives the total and differential cross sections, then unweighted events are Generated. Initial state radiation (ISR) corrections are implemented in two ways, one is based on the electron structure funct...

  3. Frequency steerable acoustic transducers

    Science.gov (United States)

    Senesi, Matteo

    Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing

  4. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  5. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  6. Acoustic Spatiality

    Directory of Open Access Journals (Sweden)

    Brandon LaBelle

    2012-06-01

    Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.

  7. Acoustic Neurinomas

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  8. Acoustic Neurinomas

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  9. CT findings of acoustic neuroma

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Do Choul; Lee, Jae Mun; Shinn, Kyung Sub; Bahk, Yong Whee [Catholic Univ., Seoul (Korea, Republic of)

    1987-10-15

    Computed Tomography (CT) is very accurate in evaluating the location, size, shape and extension of acoustic neuroma. We analysed CT findings of 23 acoustic neuromas seen at Department of Radiology, Kangnam St. Mary's Hospital, Catholic University Medical College during the period of from January 1981 to June 1987. 1. Five (22%) were men and 18 (78%) were women with the high incidence occurring in the 4th and 5th decades. 2. Twenty two cases were diagnosed satisfactorily by CT examinations which included axial, coronal and reconstruction images. One with the smallest dimension of 8 mm in diameter could not be detected by the conventional CT scan. But is could be seen after metrizamide cisternography. mean size of the tumor masses was estimated 3.6 cm in diameter. 3. The shape of the tumor was oval in 50%, round in 27% and lobulated in 23%. The masses were presented as hypodense in 50%, isodense in 32% and hyperdense in 18%. All tumors were extended from the internal acoustic and toward the cerebellopontine angle. The internal acoustic canal was widened in 77%. Hydrocephalus was associated in 45%. Widening of cerebellopontine angle cistern was noted in 50%. 4. After contrast infusion the tumors were enhanced markedly in 45%, moderately in 32% and mildly in 23%. The enhanced pattern was homogeneous in 41%, mixed in 41% and rim in 18%. The margin of the tumors was sharply defined in 82%. The tumors were attached to the petrous bone with acute angle in 73%. Cystic change within the tumor was found in 27%. The peritumoral edema was noted in 45%. In conclusion, CT is of most effective modalities to evaluate size, shape, extent and internal architecture of acoustic neuroma as well as relationship with adjacent anatomic structures including the internal acoustic canal.

  10. The Sounds of Nanoscience: Acoustic STM Analogues

    Science.gov (United States)

    Euler, Manfred

    2013-01-01

    A hands-on model of scanning tunnelling microscopy (STM) is presented. It uses near-field imaging with sound and computer assisted visualization to create acoustic mappings of resonator arrangements. Due to the (partial) analogy of matter and sound waves the images closely resemble STM scans of atoms. Moreover, the method can be extended to build…

  11. Acoustic source for generating an acoustic beam

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  12. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    Science.gov (United States)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  13. Phase retrieval with background compensation in 4f configuration: advanced augmented Lagrangian technique for amplitude object

    CERN Document Server

    Migukin, Artem; Katkovnik, Vladimir

    2012-01-01

    Generally, wave field reconstructions obtained by phase-retrieval algorithms are noisy, blurred and corrupted by various artifacts such as irregular waves, spots, etc. These disturbances, arising due to many factors such as non-idealities of optical system (misalignment, focusing errors), dust on optical elements, reflections, vibration, are hard to be localized and specified. It is assumed that there is a generalized pupil function at the object plane which describes aberrations in the coherent imaging system manifested at the sensor plane. Here we propose a novel two steps phase-retrieval algorithm to compensate these distortions. We first estimate the cumulative disturbance, called background, using special calibration experiments. Then, we use this background for reconstruction of the object amplitude and phase. The second part of the algorithm is based on the maximum likelihood approach and, in this way, targeted on the optimal amplitude and phase reconstruction from noisy data. Numerical experiments dem...

  14. A4F-SAXS online-coupling for the investigation of nanoparticles and polymers; Die A4F-SAXS Online-Kopplung zur Untersuchung von Nanopartikeln und Polymeren

    Energy Technology Data Exchange (ETDEWEB)

    Knappe, Patrick

    2012-07-13

    In the present thesis the online-coupling of asymmetric flow field-flow fractionation (A4F) with small-angle X-ray scattering (SAXS) as a versatile analytical tool is introduced and applied to current challenges in nanoparticle analysis as well as to model systems of technically relevant polymers. The A4F provides size separation of sample solutions and suspensions. Due to the separation principle only low shear forces are applied which appear in competing methods. Therefore, this method allows processing of very sensitive sample materials. SAXS allows non-destructive probing of nanoscale structures in the range of about one to one hundred nanometers. By coupling with A4F, the complexity of sample systems with broad size distributions, which are therefore frequently hard to characterize, is reduced significantly prior to further analysis. Applying this approach, detailed information about sample properties can be gained accurately with respect to the shape, size and size distribution of particles or conformation of macromolecules in short time. Addition of a dynamic light scattering detector to the setup allows a further conclusion. With the latter, a nanoparticles suspension was characterized rapidly and with good precision with respect to the core properties of the particles as well as the thickness of the stabilizer's shell in a single online run. These parameters are important when dealing not only with functionality but also with the bioavailability or toxicity of nanoparticles. This methodology was also successfully applied to polymer systems for the first time, namely poly(vinyl pyrrolidone)s as well as strong and weak polyelectrolytes. Additionally, due to the applied separation method samples with broad molar mass distributions were processable which otherwise tend to interfere with stationary phase-based chromatography. Furthermore, using SAXS, structural properties can be resolved from smaller polymer size-fractions which are hardly accessible with

  15. Holographic acoustic elements for manipulation of levitated objects

    Science.gov (United States)

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-10-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.

  16. Acoustic holography based on composite metasurface with decoupled modulation of phase and amplitude

    Science.gov (United States)

    Tian, Ye; Wei, Qi; Cheng, Ying; Liu, Xiaojun

    2017-05-01

    Acoustic holography has extensive possibilities in acoustic sensing, acoustic illusion, contactless particle manipulation, and medical imaging. Based on coating unit cells and perforated panels, an acoustic composite metasurface is constructed with a decoupled modulation of phase and amplitude, which has been used to design acoustic holography. This proposal not only has lower complexity than conventional acoustic holography of active arrays due to the avoidance of complex structures and circuits but also provides more flexibility than acoustic holography based on the acoustic metasurface with phase-only modulation benefitting from the efficient decoupled modulation of phase and amplitude. We have further demonstrated three acoustic holographic applications, such as multi-directional transmission, multi-focal focusing, and holographic imaging. Due to the low complexity and the great flexibility, this proposal has potential to achieve the high-quality holograms with high information content, fine resolution, and large scale.

  17. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Phillips, Nathan RJ; Hughes, James S.; Fischer, Eric S.; Ploskey, Gene R.

    2011-10-01

    This report presents the results of an evaluation of juvenile Chinook salmonid (Oncorhynchus tshawytscha) behavior in the immediate forebay of the Water Temperature Control (WTC) tower at Cougar Dam in 2010. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers. The overall goal of the study was to characterize juvenile salmonid behavior and movement patterns in the immediate forebay of the WTC tower for fisheries resource managers to use to make decisions on bioengineering designs for long-term structures and/or operations to facilitate safe downstream passage for juvenile salmonids. We collected acoustic imaging (Dual-Frequency Identification Sonar; DIDSON) data from February 1, 2010 through January 31, 2011 to evaluate juvenile salmonid behavior year-round in the immediate forebay surface layer of the WTC tower (within 20 m, depth 0-5 m). From October 28, 2010 through January 31, 2011 a BlueView acoustic camera was also deployed in an attempt to determine its usefulness for future studies as well as augment the DIDSON data. For the DIDSON data, we processed a total of 35 separate 24-h periods systematically covering every other week in the 12-month study. Two different 24-hour periods were processed for the BlueView data for the feasibility study. Juvenile salmonids were present in the immediate forebay of the WTC tower throughout 2010. The juvenile salmonid abundance index was low in the spring (<200 fish per sample-day), began increasing in late April and peaked in mid-May. Fish abundance index began decreasing in early June and remained low in the summer months. Fish abundance increased again in the fall, starting in October, and peaked on November 8-9. A second peak occurred on December 22. Afterwards, abundance was low for the rest of the study (through January 2011). Average fish length for juvenile salmonids during early spring 2010 was 214 {+-} 86 mm (standard deviation). From May through early November

  18. CLEC4F Is an Inducible C-Type Lectin in F4/80-Positive Cells and Is Involved in Alpha-Galactosylceramide Presentation in Liver

    NARCIS (Netherlands)

    Yang, C.Y.; Chen, J.B.; Tsai, T.F.; Tsai, Y.C.; Tsai, C.Y.; Liang, P.H.; Hsu, T.L.; Wu, C.Y.; Netea, M.G.; Wong, C.H.; Hsieh, S.L.

    2013-01-01

    CLEC4F, a member of C-type lectin, was first purified from rat liver extract with high binding affinity to fucose, galactose (Gal), N-acetylgalactosamine (GalNAc), and un-sialylated glucosphingolipids with GalNAc or Gal terminus. However, the biological functions of CLEC4F have not been elucidated.

  19. Atlantic Herring Acoustic Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and underwater...

  20. Acoustic Neuroma Educational Video

    Medline Plus

    Full Text Available ... acoustic neuroma resource Click to learn more... LOGIN EVENTS DONATE Home Learn Back Learn about acoustic neuroma ... support group for me? Find a Group Upcoming Events Video Library Photo Gallery One-on-One Support ...

  1. Exotic phenomena in 4f systems: From complex magnetism to surface conduction

    Science.gov (United States)

    Thomas, Sean Michael

    For materials synthesized with f-electron elements, the interaction between f-electrons and conduction electrons often leads to interesting physics. As the temperature is lowered, the f-electrons can hybridize with the conduction electrons in a process known as the Kondo effect. In a Kondo lattice material, the screening may become coherent at the so-called coherence temperature T*. The resulting material is often metallic, containing heavy bands with effective masses many times larger than the free electron mass. In some cases, the development of coherence leads to a filled heavy-electron band where the chemical potential lies within the hybridization gap, resulting in insulating behavior. CeAgBi2 is an antiferromagnetic compound (TN = 6.4 K) belonging to the former (metallic) case. The close energy scales of the Kondo coherence, antiferromagnetism, and crystal field levels results in complex physical properties. Transport measurements reveal a coupling between the different magnetic phases and Hall resistivity. As the field is increased, the antiferromagnetic transition temperature is suppressed to zero Kelvin. Typically, this is expected to result in a quantum critical point. However, due to strange transport behavior in the paramagnetic regime, the usual signatures of quantum criticality are hidden. SmB6 is a Kondo insulator due to the fact that the hybridization results in the opening of a gap. However, as the temperature is further lowered, the resistance saturates. Originally believed to be due to in-gap conduction states in the bulk, the true reason for the resistance saturation is a robust conducting surface state. Several theories predict that the surface state is a result of SmB6 belonging to a class of materials known as topological insulators. However, direct imaging of the spin-momentum locking of the surface states indicative of a topological insulator has proved elusive. Through transport and magnetic measurements, indirect evidence of the nature of

  2. The apolipoprotein-AI mimetic peptide L4F at a modest dose does not attenuate weight gain, inflammation, or atherosclerosis in LDLR-null mice.

    Directory of Open Access Journals (Sweden)

    Michelle M Averill

    Full Text Available High density lipoprotein (HDL cholesterol levels are inversely related to cardiovascular disease risk and associated with a reduced risk of type 2 diabetes. Apolipoprotein A-I (apoA-I; major HDL protein mimetics have been reported to reduce atherosclerosis and decrease adiposity. This study investigated the effect of L4F mimetic peptide and apoA-I overexpression on weight gain, insulin resistance, and atherosclerosis in an LDL receptor deficient (Ldlr-/- model fed a high fat high sucrose with cholesterol (HFHSC diet.Studies in differentiated 3T3-L1 adipocytes tested whether L4F could inhibit palmitate-induced adipocyte inflammation. In vivo studies used male Ldlr-/- mice fed a HFHSC diet for 12 weeks and were injected daily with L4F (100 µg/mouse subcutaneously during the last 8 weeks. Wild-type and apoA-I overexpressing Ldlr-/- mice were fed HFHSC diet for 16 weeks.Neither L4F administration nor apoA-I overexpression affected weight gain, total plasma cholesterol or triglycerides in our studies. While pre-treatment of 3T3-L1 adipocytes with either L4F or HDL abolished palmitate-induced cytokine expression in vitro, L4F treatment did not affect circulating or adipose tissue inflammatory markers in vivo. Neither L4F administration nor apoA-I overexpression affected glucose tolerance. ApoA-I overexpression significantly reduced atherosclerotic lesion size, yet L4F treatment did not affect atherosclerosis.Our results suggest that neither L4F (100 µg/day/mouse nor apoA-I overexpression affects adiposity or insulin resistance in this model. We also were unable to confirm a reduction in atherosclerosis with L4F in our particular model. Further studies on the effect of apoA-I mimetics on atherosclerosis and insulin resistance in a variety of dietary contexts are warranted.

  3. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook will pr...

  4. Tutorial on architectural acoustics

    Science.gov (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  5. Vapor pressures of mixtures of CFC-114 with the potential replacement coolants C{sub 4}F{sub 10} and c-C{sub 4}F{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Trowbridge, L.D. [Oak Ridge K-25 Site, TN (United States); Otey, M.G. [Paducah Gaseous Diffusion Plant, KY (United States)

    1994-09-01

    The U.S. Enrichment Corporation`s production of isotopically enriched uranium depends solely on two plants which utilize the gaseous diffusion process. This process uses large quantities of CFC-114 as an evaporative coolant. CFC-114, however, will be phased out of production at the end of 1995 due to its potential to deplete stratospheric ozone. A search has been underway for substitutes for a number of years. The initial search (1988-89) for an ozone-friendly, commercially available, chemically compatible substitute yielded two candidates, FC-c318 (c-C{sub 4}F{sub 8}) and FC-3110 (C{sub 4}F{sub 10}). The intended mode of replacing coolant was to stage the new coolant into independent subsystems of the plants, so that some systems would continue to operate on CFC-114, and an increasing number would operate on the new coolant. During that changeover process, the possibility of coolant mixing arises in variety of scenarios. This work was intended to generate sufficient experimental information to be able to predict the vapor pressure of coolant mixtures over the range of operating conditions likely to be found in the diffusion plants. Specifically, vapor pressures were measured over the temperature range 322 to 355 K (120{degrees}F to 180{degrees}F) and over the full range of mole fractions for binary mixtures of CFC-114 with FC-3110, and of CFC-114 with FC-c318.

  6. Theoretical study of Pr3+:ZBLAN upconversion ultraviolet fiber laser based on 4f5d state

    Institute of Scientific and Technical Information of China (English)

    Aiping Fang; Zhenwen Dai; Tao Luo; Guijuan Sun; Lijun Wang; Zhankui Jiang

    2005-01-01

    A theoretical study of the kinetics of two-step-excitation upconversion ultraviolet cw fiber laser based on the 4f5d state in Pr3+:ZBLAN is performed using steady population rate equations and light propagation equations. Under different Pr3+ concentrations, the dependence of the threshold pump powers on the other pump power, the variations of laser output power with reflectivity of output coupler, pump powers and fiber length as well as the dependence of the optimum fiber length on pump powers are investigated.The results predict some optimum laser parameters for maximizing output power.

  7. Two nanosized 3d-4f clusters featuring four Ln6 octahedra encapsulating a Zn4 tetrahedron.

    Science.gov (United States)

    Zheng, Xiu-Ying; Wang, Shi-Qiang; Tang, Wen; Zhuang, Gui-Lin; Kong, Xiang-Jian; Ren, Yan-Ping; Long, La-Sheng; Zheng, Lan-Sun

    2015-07-01

    Two high-nuclearity 3d-4f clusters Ln24Zn4 (Ln = Gd and Sm) featuring four Ln6 octahedra encapsulating a Zn4 tetrahedron were obtained through the self-assembly of Zn(OAc)2 and Ln(ClO4)3. Quantum Monte Carlo (QMC) simulations show the antiferromagnetic coupling between Gd(3+) ions. Studies of the magnetocaloric effect (MCE) show that the Gd24Zn4 cluster exhibits the entropy change (-ΔSm) of 31.4 J kg(-1) K(-1).

  8. A sound future for acoustic metamaterials.

    Science.gov (United States)

    Cummer, Steven

    2017-05-01

    The field of acoustic metamaterials borrowed ideas from electromagnetics and optics to create engineered structures that exhibit desired fluid or fluid-like properties for the propagation of sound. These metamaterials offer the possibility of manipulating and controlling sound waves in ways that are challenging or impossible with conventional materials. Metamaterials with zero, or negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. And active acoustic metamaterials use external control and power to create effective material properties that are fundamentally not possible with passive structures. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and, critically, converting exciting laboratory experiments into practically useful devices. In this presentation, I will outline the recent history of the field, describe some of the designs and properties of materials with unusual acoustic parameters, discuss examples of extreme manipulation of sound, and finally, provide a personal perspective on future directions in the field.

  9. Indoor acoustic gain design

    Science.gov (United States)

    Concha-Abarca, Justo Andres

    2002-11-01

    The design of sound reinforcement systems includes many variables and usually some of these variables are discussed. There are criteria to optimize the performance of the sound reinforcement systems under indoor conditions. The equivalent acoustic distance, the necessary acoustic gain, and the potential acoustic gain are parameters which must be adjusted with respect to the loudspeaker array, electric power and directionality of loudspeakers, the room acoustics conditions, the distance and distribution of the audience, and the type of the original sources. The design and installation of front of the house and monitoring systems have individual criteria. This article is about this criteria and it proposes general considerations for the indoor acoustic gain design.

  10. Potential Hazards Relating to Pyrolysis of c-C{sub 4}F{sub 8}O, n-C{sub 4}F{sub 10}, and c-C{sub 4}F{sub 8} in Selected Gaseous Diffusion Plant Operations

    Energy Technology Data Exchange (ETDEWEB)

    Trowbridge, L.D.

    2000-03-29

    As part of a program intended to replace the present evaporative coolant at the gaseous diffusion plants (GDPs) with a non-ozone-depleting alternate, a series of investigations of the suitability of candidate substitutes is under way. This report summarizes studies directed at estimating the chemical and thermal stability of three candidate coolants, c-C{sub 4}F{sub 8}, n-C{sub 4}F{sub 10}, and c-C{sub 4}F{sub 8}O, in a few specific environments to be found in gaseous diffusion plant operations. One issue concerning the new coolants is the possibility that they might produce the highly toxic compound perfluoroisobutylene (PFIB) in high-temperature environments. Two specific high-temperature thermal environments are examined, namely the use of a flame test for the presence of coolant vapors and welding in the presence of coolant vapors. A second issue relates to the thermal or chemical decomposition of the coolants in the gaseous diffusion process environment. The primary purpose of the study was to develop and evaluate available data to provide information that will allow the technical and industrial hygiene staff at the GDPs to perform appropriate safety evaluations and to determine the need for field testing or experimental work. The scope of this study included a literature search and an evaluation of the information developed therefrom. Part of that evaluation consists of chemical kinetics modeling of coolant decomposition in the two operational environments. The general conclusions are that PFIB formation is unlikely in either situation but that it cannot be ruled out completely under extreme conditions. The presence of oxygen, moisture, and combustion products will tend to lead to the formation of CF{sub 4} and oxidation products (COF{sub 2}, CO, CO{sub 2}, and HF) rather than PFIB.

  11. Carbon nanoscroll from C4H/C4F-type graphene superlattice: MD and MM simulation insights.

    Science.gov (United States)

    Liu, Zilong; Xue, Qingzhong; Tao, Yehan; Li, Xiaofang; Wu, Tiantian; Jin, Yakang; Zhang, Zhongyang

    2015-02-01

    Morphology manipulation opens up a new avenue for controlling and tailoring the functional properties of graphene, enabling the exploration of graphene-based nanomaterials. Through mixing single-side-hydrogenated graphene (C4H) with fluorinated graphene (C4F) on one single sheet, the C4H/C4F-type graphene superlattices can self-scroll at room temperature. We demonstrate using molecular dynamic (MD) simulations that different proportions, sizes, directions of hydrogenation and fluorination, and geometry of graphene have a great influence on the self-scrolling of superlattices into a variety of well-defined carbon nanoscrolls (CNSs), thus providing a controllable approach to tune their structures. Based on molecular mechanics (MM) simulations, the CNSs bear more than eight times the radial pressure than that of their multiwalled carbon nanotube (MWNT) counterparts, and an excellent radial elasticity of CNSs is also shown. Compared with conventional CNSs, these novel CNSs are endowed with more ample and flexible heterogeneous structures due to the on-demand hydrogenation and fluorination. Besides, this work provides a feasible route to achieve the necessary electronic and optical changes to be applied in graphene device applications.

  12. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Phillips, Nathan RJ; Hughes, James S.; Fischer, Eric S.; Ham, Kenneth D.; Ploskey, Gene R.

    2012-04-01

    This report presents the results of an evaluation of juvenile Chinook salmon (Oncorhynchus tshawytscha) behavior at Cougar Dam on the south fork of the McKenzie River in Oregon in 2010. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE). The overall goal of the study was to characterize juvenile salmonid behavior and movement patterns in the immediate forebay of the Water Temperature Control (WTC) tower of the dam for USACE and fisheries resource managers use in making decisions about bioengineering designs for long-term structures and/or operations to facilitate safe downstream passage for juvenile salmonids. We collected acoustic imaging (Dual-Frequency Identification Sonar; DIDSON) data from March 1, 2010, through January 31, 2011. Juvenile salmonids (hereafter, called 'fish') were present in the immediate forebay of the WTC tower throughout the study. Fish abundance index was low in early spring (<200 fish per sample-day), increased in late April, and peaked on May 19 (6,039 fish). A second peak was observed on June 6 (2904 fish). Fish abundance index decreased in early June and remained low in the summer months (<100 fish per sample-day). During the fall and winter, fish numbers varied with a peak on November 10 (1881 fish) and a minimum on December 7 (12 fish). A second, smaller, peak occurred on December 22 (607 fish). A univariate statistical analysis indicated fish abundance index (log10-transformed) was significantly (P<0.05) positively correlated with forebay elevation, velocity over the WTC tower intake gate weirs, and river flows into the reservoir. A subsequent multiple regression analysis resulted in a model (R2=0.70) predicting fish abundance (log-transformed index values) using two independent variables of mean forebay elevation and the log10 of the forebay elevation range. From the approximate fish length measurements made using the DIDSON imaging software, the average fish

  13. Acoustic Radiation Force Impulse Imaging in Diagnosing Nonalcoholic Fatty Liver Analysis%声辐射力脉冲成像技术对非酒精性单纯性脂肪肝的诊断价值分析

    Institute of Scientific and Technical Information of China (English)

    李玉丹

    2015-01-01

    目的 对声辐射力脉冲成像技术在非酒精性单纯性脂肪肝中的诊断价值进行研究. 方法 随机选取2013年11月-2014年11月该院诊治的100例非酒精性单纯性脂肪肝患者和30例健康体检者, 采用声辐射力脉冲成像技术对两组进行VTQ值检测. 结果 对照组VTQ测量值为(1.05±0.14)m/s,轻度患者为(1.02±0.06)m/s,中度患者为(1.56±0.67)m/s,重度患者为(0.82±0.06)m/s,肝脏剪切传播速度与ALT、AST具有较大相关性. 结论 声辐射力脉冲成像技术与传统超声相结合,能够定量评估非酒精性单纯性脂肪肝的分度,诊断价值较大.%Objective Diagnostic value of acoustic radiation force impulse imaging in nonalcoholic fatty liver were studied. Meth-ods Select November 2013-November 2014 100 cases nonalcoholic fatty liver patients and 30 healthy subjects, using acoustic ra-diation force impulse imaging technology to detect two groups VTQ value. Results In control group VTQ measured value (1.05 ± 0.14) m/s, mild patients (1.02 ± 0.06) m/s, moderate patients (1.56±0.67) m/s, with severe patients (0.82±0.06) m/s, the propagation velocity and shear liver ALT, AST have greater relevance. Conclusion The acoustic radiation force impulse imaging technology combined with traditional ultrasound, can be quantitatively evaluate indexing nonalcoholic fatty liver disease, diagnostics great value.

  14. Parametric Room Acoustic Workflows

    DEFF Research Database (Denmark)

    Parigi, Dario; Svidt, Kjeld; Molin, Erik

    2017-01-01

    The paper investigates and assesses different room acoustics software and the opportunities they offer to engage in parametric acoustics workflow and to influence architectural designs. The first step consists in the testing and benchmarking of different tools on the basis of accuracy, speed...... and interoperability with Grasshopper 3d. The focus will be placed to the benchmarking of three different acoustic analysis tools based on raytracing. To compare the accuracy and speed of the acoustic evaluation across different tools, a homogeneous set of acoustic parameters is chosen. The room acoustics parameters...... included in the set are reverberation time (EDT, RT30), clarity (C50), loudness (G), and definition (D50). Scenarios are discussed for determining at different design stages the most suitable acoustic tool. Those scenarios are characterized, by the use of less accurate but fast evaluation tools to be used...

  15. Crystal field splitting of the 4f 5d electronic configuration of Pr 3+ ions in wide band gap fluoride dielectric crystals

    Science.gov (United States)

    Sarantopoulou, E.; Kollia, Z.; Cefalas, A. C.; Semashko, V. V.; Yu. Abdulsabirov, R.; Naumov, A. K.; Korableva, S. L.; Szczurek, T.; Kobe, S.; McGuiness, P. J.

    2002-07-01

    The absorption and the laser-induced fluorescence spectra of Pr 3+ ion in YF 3, LaF 3, KY 3 F 10 and LiLuF 4, single crystal hosts were obtained in the vacuum ultraviolet region of the spectrum. The energy position and the spacing of the levels of the 4f 5d electronic configuration depend on the host matrix. In addition, strong vacuum ultraviolet emission bands were observed, following crystal excitation at 157 nm with the molecular fluorine laser. The emission bands were due to the interconfigurational 4 f 5 d→4 f2 dipole-allowed transitions in Pr 3+ ions, and they were assigned to the transitions between the edge of the lowest Stark component of the 4f 5d electronic configuration and the levels of the 4f 2 electronic configuration. The VUV spectra can be interpreted by applying the crystal field model, and taking into consideration that lanthanide contraction of the 4f n-1 5d electronic configurations of the rare earth ions, and shielding of the positive ion charge from the electrons in the 4f n electronic configuration is taking place. Finally, a new method for monitoring the concentration of the rare earth ions in wide band gap fluoride dielectric crystals in a non-destructive way, by measuring magnetic dipole moments with the vibrating sample magnetometer (VSM) method, is presented for the first time to our knowledge for this type of crystals.

  16. 偶极横波远探测测井技术进展及其应用%A Review on the Progress and Application of Dipole Acoustic Reflection Imaging Technology

    Institute of Scientific and Technical Information of China (English)

    唐晓明; 魏周拓; 苏远大; 庄春喜

    2013-01-01

    Single-well acoustic reflection imaging has recently emerged as an important geophysical well-logging technology.It greatly improves our ability to detect geological structures away from borehole.This paper provides a review of the single-well imaging technology with emphasis on the dipole shear wave imaging.It elaborates the theory and method of the shear-wave imaging using borehole dipole source,points out some advantages of dipole acoustic reflection imaging technology.Field data processing examples will be used to demonstrate the advantages of the dipole shear-wave imaging,which can effectively detect fracture structure through borehole and near-borehole,identify borehole hidden reservoir structure and provides an important application for shale gas reservoir detection.Finally,we discuss future improvement and development trend of this technology.Through this paper,readers can have an understanding of the progress,the methods of the newly-developed technology,as well as its application scope and development direction.%声波远探测测井技术是近年来发展起来的一门重要的石油地球物理测井技术,它极大地提高了人们对井旁地质构造的认识程度.叙述了声波远探测测井技术的发展,重点介绍了偶极横波远探测测井技术的进展,论述了偶极横波远探测测井的处理方法,指出偶极远探测测井技术的优势,结合现场实例对该技术的具体应用作了详细说明.该技术可以有效探测过井及井旁的裂缝构造,识别井旁隐蔽储层构造,为页岩气的储层构造探测提供重要技术.展望了该技术今后的改进和发展方向.

  17. Enhancement by LDL of transfer of L-4F and oxidized lipids to HDL in C57BL/6J mice and human plasma.

    Science.gov (United States)

    Meriwether, David; Imaizumi, Satoshi; Grijalva, Victor; Hough, Greg; Vakili, Ladan; Anantharamaiah, G M; Farias-Eisner, Robin; Navab, Mohamad; Fogelman, Alan M; Reddy, Srinivasa T; Shechter, Ishaiahu

    2011-10-01

    The apoA-I mimetic peptide L-4F [(Ac-D-W-F-K-A-F-Y-D-K-V-A-E-K-F-K-E-A-F-NH2) synthesized from all L-amino acids] has shown potential for the treatment of a variety of diseases. Here, we demonstrate that LDL promotes association between L-4F and HDL. A 2- to 3-fold greater association of L-4F with human HDL was observed in the presence of human LDL as compared with HDL by itself. This association further increased when LDL was supplemented with the oxidized lipid 15S-hydroxy-5Z, 8Z, 11Z, 13E-eicosatetraenoic acid (15HETE). Additionally, L-4F significantly (P = 0.02) promoted the transfer of 15HETE from LDL to HDL. The transfer of L-4F from LDL to HDL was demonstrated both in vitro and in C57BL/6J mice. L-4F, injected into C57BL/6J mice, associated rapidly with HDL and was then cleared quickly from the circulation. Similarly, L-4F loaded onto human HDL and injected into C57BL/6J mice was cleared quickly with T(1/2) = 23.6 min. This was accompanied by a decline in human apoA-I with little or no effect on the mouse apoA-I. Based on these results, we propose that i) LDL promotes the association of L-4F with HDL and ii) in the presence of L-4F, oxidized lipids in LDL are rapidly transferred to HDL allowing these oxidized lipids to be acted upon by HDL-associated enzymes and/or cleared from the circulation.

  18. Microstress contrast in scanning electron acoustic microscopy of ceramics

    Science.gov (United States)

    Cantrell, John H.; Qian, Menglu

    1991-01-01

    A mathematical model of image contrast in scanning electron acoustic microscopy (SEAM) due to the effect of residual stresses in materials is presented. It is found that in regions near the ends of the radial cracks induced by Vickers indentation the SEAM micrographs reveal a rather large variation of the acoustic output signal.

  19. Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions.

    Science.gov (United States)

    Macak, Jan M; Tsuchiya, Hiroaki; Taveira, Luciano; Ghicov, Andrei; Schmuki, Patrik

    2005-12-15

    The present work reports the fabrication of self-organized porous oxide-nanotube layers on the biomedical titanium alloys Ti-6Al-7Nb and Ti-6Al-4V by a simple electrochemical treatment. These two-phase alloys were anodized in 1M (NH(4))(2)SO(4) electrolytes containing 0.5 wt % of NH(4)F. The results show that under specific anodization conditions self-organized porous oxide structures can be grown on the alloy surface. SEM images revealed that the porous layers consist of arrays of single nanotubes with a diameter of 100 nm and a spacing of 150 nm. For the V-containing alloy enhanced etching of the beta phase is observed, leading to selective dissolution and an inhomogeneous pore formation. For the Nb-containing alloy an almost ideal coverage of both phases is obtained. According to XPS measurements the tubes are a mixed oxide with an almost stoichiometric oxide composition, and can be grown to thicknesses of several hundreds of nanometers. These findings represent a simple surface treatment for Ti alloys that has high potential for biomedical applications.

  20. Immunochemical quantification of cynomolgus CYP2J2, CYP4A and CYP4F enzymes in liver and small intestine.

    Science.gov (United States)

    Uehara, Shotaro; Murayama, Norie; Nakanishi, Yasuharu; Nakamura, Chika; Hashizume, Takanori; Zeldin, Darryl C; Yamazaki, Hiroshi; Uno, Yasuhiro

    2015-02-01

    1. An increasing number of studies have indicated the roles of CYP4 proteins in drug metabolism; however, CYP4 expression has not been measured in cynomolgus monkeys, an important animal species for drug metabolism studies. 2. In this study, cynomolgus CYP4A11, CYP4F2/3, CYP4F11 and CYP4F12, along with CYP2J2, were immunoquantified using selective antibodies in 28 livers and 35 small intestines, and their content was compared with CYP1A, CYP2A, CYP2B6, CYP2C9/19, CYP2D, CYP2E1, CYP3A4 and CYP3A5, previously quantified. 3. In livers, CYP2J2, CYP4A11, CYP4F2/3, CYP4F11 and CYP4F12, varied 1.3- to 4.3-fold, represented 11.2, 14.4, 8.0, 2.7 and 0.3% of total immunoquantified CYP1-4 proteins, respectively. 4. In small intestines, CYP2J2, CYP4F2/3, CYP4F11 and CYP4F12, varied 2.4- to 9.7-fold, represented 6.9, 36.4, 2.4 and 9.3% of total immunoquantified CYP1-4 proteins, respectively, making CYP4F the most abundant P450 subfamily in small intestines. CYP4A11 was under the detection limit in all of the samples analyzed. 5. Significant correlations were found in liver for CYP4A11 with lauric acid 11-/12-hydroxylation and for CYP4F2/3 and CYP4F11 with astemizole hydroxylation. 6. This study revealed the relatively abundant contents of cynomolgus CYP2J2, CYP4A11 and CYP4Fs in liver and/or small intestine, suggesting their potential roles for the metabolism of xenobitotics and endogenous substrates.