WorldWideScience

Sample records for acoel convolutriloba longifissura

  1. Acoel flatworms are not platyhelminthes: evidence from phylogenomics.

    Directory of Open Access Journals (Sweden)

    Hervé Philippe

    Full Text Available Acoel flatworms are small marine worms traditionally considered to belong to the phylum Platyhelminthes. However, molecular phylogenetic analyses suggest that acoels are not members of Platyhelminthes, but are rather extant members of the earliest diverging Bilateria. This result has been called into question, under suspicions of a long branch attraction (LBA artefact. Here we re-examine this problem through a phylogenomic approach using 68 different protein-coding genes from the acoel Convoluta pulchra and 51 metazoan species belonging to 15 different phyla. We employ a mixture model, named CAT, previously found to overcome LBA artefacts where classical models fail. Our results unequivocally show that acoels are not part of the classically defined Platyhelminthes, making the latter polyphyletic. Moreover, they indicate a deuterostome affinity for acoels, potentially as a sister group to all deuterostomes, to Xenoturbellida, to Ambulacraria, or even to chordates. However, the weak support found for most deuterostome nodes, together with the very fast evolutionary rate of the acoel Convoluta pulchra, call for more data from slowly evolving acoels (or from its sister-group, the Nemertodermatida to solve this challenging phylogenetic problem.

  2. Functional brain regeneration in the acoel worm Symsagittifera roscoffensis

    Directory of Open Access Journals (Sweden)

    Simon G. Sprecher

    2015-12-01

    Full Text Available The ability of some animals to regrow their head and brain after decapitation provides a striking example of the regenerative capacity within the animal kingdom. The acoel worm Symsagittifera roscoffensis can regrow its head, brain and sensory head organs within only a few weeks after decapitation. How rapidly and to what degree it also reacquires its functionality to control behavior however remains unknown. We provide here a neuroanatomical map of the brain neuropils of the adult S. roscoffensis and show that after decapitation a normal neuroanatomical organization of the brain is restored in the majority of animals. By testing different behaviors we further show that functionality of both sensory perception and the underlying brain architecture are restored within weeks after decapitation. Interestingly not all behaviors are restored at the same speed and to the same extent. While we find that phototaxis recovered rapidly, geotaxis is not restored within 7 weeks. Our findings show that regeneration of the head, sensory organs and brain result in the restoration of directed navigation behavior, suggesting a tight coordination in the regeneration of certain sensory organs with that of their underlying neural circuits. Thus, at least in S. roscoffensis, the regenerative capacity of different sensory modalities follows distinct paths.

  3. Functional brain regeneration in the acoel worm Symsagittifera roscoffensis.

    Science.gov (United States)

    Sprecher, Simon G; Bernardo-Garcia, F Javier; van Giesen, Lena; Hartenstein, Volker; Reichert, Heinrich; Neves, Ricardo; Bailly, Xavier; Martinez, Pedro; Brauchle, Michael

    2015-11-18

    The ability of some animals to regrow their head and brain after decapitation provides a striking example of the regenerative capacity within the animal kingdom. The acoel worm Symsagittifera roscoffensis can regrow its head, brain and sensory head organs within only a few weeks after decapitation. How rapidly and to what degree it also reacquires its functionality to control behavior however remains unknown. We provide here a neuroanatomical map of the brain neuropils of the adult S. roscoffensis and show that after decapitation a normal neuroanatomical organization of the brain is restored in the majority of animals. By testing different behaviors we further show that functionality of both sensory perception and the underlying brain architecture are restored within weeks after decapitation. Interestingly not all behaviors are restored at the same speed and to the same extent. While we find that phototaxis recovered rapidly, geotaxis is not restored within 7 weeks. Our findings show that regeneration of the head, sensory organs and brain result in the restoration of directed navigation behavior, suggesting a tight coordination in the regeneration of certain sensory organs with that of their underlying neural circuits. Thus, at least in S. roscoffensis, the regenerative capacity of different sensory modalities follows distinct paths. © 2015. Published by The Company of Biologists Ltd.

  4. To be or not to be a flatworm: the acoel controversy.

    Directory of Open Access Journals (Sweden)

    Bernhard Egger

    Full Text Available Since first described, acoels were considered members of the flatworms (Platyhelminthes. However, no clear synapomorphies among the three large flatworm taxa -- the Catenulida, the Acoelomorpha and the Rhabditophora -- have been characterized to date. Molecular phylogenies, on the other hand, commonly positioned acoels separate from other flatworms. Accordingly, our own multi-locus phylogenetic analysis using 43 genes and 23 animal species places the acoel flatworm Isodiametra pulchra at the base of all Bilateria, distant from other flatworms. By contrast, novel data on the distribution and proliferation of stem cells and the specific mode of epidermal replacement constitute a strong synapomorphy for the Acoela plus the major group of flatworms, the Rhabditophora. The expression of a piwi-like gene not only in gonadal, but also in adult somatic stem cells is another unique feature among bilaterians. These two independent stem-cell-related characters put the Acoela into the Platyhelminthes-Lophotrochozoa clade and account for the most parsimonious evolutionary explanation of epidermal cell renewal in the Bilateria. Most available multigene analyses produce conflicting results regarding the position of the acoels in the tree of life. Given these phylogenomic conflicts and the contradiction of developmental and morphological data with phylogenomic results, the monophyly of the phylum Platyhelminthes and the position of the Acoela remain unresolved. By these data, both the inclusion of Acoela within Platyhelminthes, and their separation from flatworms as basal bilaterians are well-supported alternatives.

  5. The chimerical and multifaceted marine acoel Symsagittifera roscoffensis: from photosymbiosis to brain regeneration

    Directory of Open Access Journals (Sweden)

    Xavier eBailly

    2014-10-01

    Full Text Available A remarkable example of biological engineering is the capability of some marine animals to take advantage of photosynthesis by hosting symbiotic algae. This capacity, referred to as photosymbiosis, is based on structural and functional complexes that involve two distantly unrelated organisms. These stable photosymbiotic associations between metazoans and photosynthetic protists play fundamental roles in marine ecology as exemplified by reef communities and their vulnerability to global changes threats. Here we introduce a photosymbiotic tidal acoel flatworm, Symsagittifera roscoffensis, and its obligatory green algal photosymbiont, Tetraselmis convolutae (Lack of the algal partner invariably results in acoel lethality emphasizing the mandatory nature of the photosymbiotic algae for the animal’s survival. Together they form a composite photosymbiotic unit, which can be reared in controlled conditions that provide easy access to key life-cycle events ranging from early embryogenesis through the induction of photosymbiosis in aposymbiotic juveniles to the emergence of a functional solar-powered mature stage. Since it is possible to grow both algae and host under precisely controlled culture conditions, it is now possible to design a range of new experimental protocols that address the mechanisms and evolution of photosymbiosis. S. roscoffensis thus represents an emerging model system with experimental advantages that complement those of other photosymbiotic species, in particular corals. The basal taxonomic position of S. roscoffensis (and acoels in general also makes it a relevant model for evolutionary studies of development, stem cell biology and regeneration. Finally, it’s autotrophic lifestyle and lack of calcification make S. roscoffensis a favorable system to study the role of symbiosis in the response of marine organisms to climate change (e.g. ocean warming and acidification. In this article we summarize the state of knowledge of the

  6. Mesodermal gene expression in the acoel Isodiametra pulchra indicates a low number of mesodermal cell types and the endomesodermal origin of the gonads.

    Directory of Open Access Journals (Sweden)

    Marta Chiodin

    Full Text Available Acoelomorphs are bilaterally symmetric small marine worms that lack a coelom and possess a digestive system with a single opening. Two alternative phylogenetic positions of this group within the animal tree are currently debated. In one view, Acoelomorpha is the sister group to all remaining Bilateria and as such, is a morphologically simple stepping stone in bilaterian evolution. In the other, the group is a lineage within the Deuterostomia, and therefore, has derived a simple morphology from a more complex ancestor. Acoels and the closely related Nemertodermatida and Xenoturbellida, which together form the Acoelomorpha, possess a very limited number of cell types. To further investigate the diversity and origin of mesodermal cell types we describe the expression pattern of 12 orthologs of bilaterian mesodermal markers including Six1/2, Twist, FoxC, GATA4/5/6, in the acoel Isodiametra pulchra. All the genes are expressed in stem cells (neoblasts, gonads, and at least subsets of the acoel musculature. Most are expressed in endomesodermal compartments of I. pulchra developing embryos similar to what has been described in cnidarians. Our molecular evidence indicates a very limited number of mesodermal cell types and suggests an endomesodermal origin of the gonads and the stem cell system. We discuss our results in light of the two prevailing phylogenetic positions of Acoelomorpha.

  7. Mesodermal Gene Expression in the Acoel Isodiametra pulchra Indicates a Low Number of Mesodermal Cell Types and the Endomesodermal Origin of the Gonads

    Science.gov (United States)

    Chiodin, Marta; Børve, Aina; Berezikov, Eugene; Ladurner, Peter; Martinez, Pedro; Hejnol, Andreas

    2013-01-01

    Acoelomorphs are bilaterally symmetric small marine worms that lack a coelom and possess a digestive system with a single opening. Two alternative phylogenetic positions of this group within the animal tree are currently debated. In one view, Acoelomorpha is the sister group to all remaining Bilateria and as such, is a morphologically simple stepping stone in bilaterian evolution. In the other, the group is a lineage within the Deuterostomia, and therefore, has derived a simple morphology from a more complex ancestor. Acoels and the closely related Nemertodermatida and Xenoturbellida, which together form the Acoelomorpha, possess a very limited number of cell types. To further investigate the diversity and origin of mesodermal cell types we describe the expression pattern of 12 orthologs of bilaterian mesodermal markers including Six1/2, Twist, FoxC, GATA4/5/6, in the acoel Isodiametra pulchra. All the genes are expressed in stem cells (neoblasts), gonads, and at least subsets of the acoel musculature. Most are expressed in endomesodermal compartments of I. pulchra developing embryos similar to what has been described in cnidarians. Our molecular evidence indicates a very limited number of mesodermal cell types and suggests an endomesodermal origin of the gonads and the stem cell system. We discuss our results in light of the two prevailing phylogenetic positions of Acoelomorpha. PMID:23405161

  8. Mesodermal gene expression in the acoel Isodiametra pulchra indicates a low number of mesodermal cell types and the endomesodermal origin of the gonads.

    Science.gov (United States)

    Chiodin, Marta; Børve, Aina; Berezikov, Eugene; Ladurner, Peter; Martinez, Pedro; Hejnol, Andreas

    2013-01-01

    Acoelomorphs are bilaterally symmetric small marine worms that lack a coelom and possess a digestive system with a single opening. Two alternative phylogenetic positions of this group within the animal tree are currently debated. In one view, Acoelomorpha is the sister group to all remaining Bilateria and as such, is a morphologically simple stepping stone in bilaterian evolution. In the other, the group is a lineage within the Deuterostomia, and therefore, has derived a simple morphology from a more complex ancestor. Acoels and the closely related Nemertodermatida and Xenoturbellida, which together form the Acoelomorpha, possess a very limited number of cell types. To further investigate the diversity and origin of mesodermal cell types we describe the expression pattern of 12 orthologs of bilaterian mesodermal markers including Six1/2, Twist, FoxC, GATA4/5/6, in the acoel Isodiametra pulchra. All the genes are expressed in stem cells (neoblasts), gonads, and at least subsets of the acoel musculature. Most are expressed in endomesodermal compartments of I. pulchra developing embryos similar to what has been described in cnidarians. Our molecular evidence indicates a very limited number of mesodermal cell types and suggests an endomesodermal origin of the gonads and the stem cell system. We discuss our results in light of the two prevailing phylogenetic positions of Acoelomorpha.

  9. Mesodermal gene expression in the acoel Isodiametra pulchra indicates a low number of mesodermal cell types and the endomesodermal origin of the gonads

    NARCIS (Netherlands)

    Chiodin, M.; Borve, A.; Berezikov, E.; Ladurner, P.; Martinez, P.; Hejnol, A.

    2013-01-01

    Acoelomorphs are bilaterally symmetric small marine worms that lack a coelom and possess a digestive system with a single opening. Two alternative phylogenetic positions of this group within the animal tree are currently debated. In one view, Acoelomorpha is the sister group to all remaining

  10. The mitochondrial genomes of the acoelomorph worms Paratomella rubra, Isodiametra pulchra and Archaphanostoma ylvae

    OpenAIRE

    Robertson, Helen E.; François Lapraz; Bernhard Egger; Telford, Maximilian J.; Schiffer, Philipp H.

    2017-01-01

    Acoels are small, ubiquitous - but understudied - marine worms with a very simple body plan. Their internal phylogeny is still not fully resolved, and the position of their proposed phylum Xenacoelomorpha remains debated. Here we describe mitochondrial genome sequences from the acoels Paratomella rubra and Isodiametra pulchra, and the complete mitochondrial genome of the acoel Archaphanostoma ylvae. The P. rubra and A. ylvae sequences are typical for metazoans in size and gene content. The la...

  11. Mitochondrial genome data support the basal position of acoelomorpha and the polyphyly of the platyhelminthes

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Trillo, Inaki; Riutort, Marta; Fourcade, H. Matthew; Baguna, Jaume; Boore, Jeffrey L.

    2004-05-01

    We determined 9.7, 5.2, and 6.8 kb, respectively, of the mitochondrial genomes of the acoel Paratomella rubra, the nemertodermatid Nemertoderma westbladi and the free-living rhabditophoran platyhelminth Microstomum lineare. The identified gene arrangements are unique among metazoans, including each other, sharing no more than one or two single gene boundaries with a few distantly related taxa. Phylogenetic analysis of the amino acid sequences inferred from the sequenced genes confirms that the acoelomorph flatworms (acoels + nemertodermatids) do not belong to the Platyhelminthes, but are, instead, the most basal extant bilaterian group. Therefore, the Platyhelminthes, as traditionally constituted, is a polyphyletic phylum.

  12. Hidden diversity of Acoelomorpha revealed through metabarcoding.

    Science.gov (United States)

    Arroyo, Alicia S; López-Escardó, David; de Vargas, Colomban; Ruiz-Trillo, Iñaki

    2016-09-01

    Animals with bilateral symmetry comprise the majority of the described species within Metazoa. However, the nature of the first bilaterian animal remains unknown. As most recent molecular phylogenies point to Xenacoelomorpha as the sister group to the rest of Bilateria, understanding their biology, ecology and diversity is key to reconstructing the nature of the last common bilaterian ancestor (Urbilateria). To date, sampling efforts have focused mainly on coastal areas, leaving potential gaps in our understanding of the full diversity of xenacoelomorphs. We therefore analysed 18S rDNA metabarcoding data from three marine projects covering benthic and pelagic habitats worldwide. Our results show that acoels have a greater richness in planktonic environments than previously described. Interestingly, we also identified a putative novel clade of acoels in the deep benthos that branches as sister group to the rest of Acoela, thus representing the earliest-branching acoel clade. Our data highlight deep-sea environments as an ideal habitat to sample acoels with key phylogenetic positions, which might be useful for reconstructing the early evolution of Bilateria. © 2016 The Authors.

  13. Xenacoelomorpha: a case of independent nervous system centralization?

    OpenAIRE

    Gavilán, Brenda; Perea-Atienza, Elena; Martínez, Pedro

    2016-01-01

    Centralized nervous systems (NSs) and complex brains are among the most important innovations in the history of life on our planet. In this context, two related questions have been formulated: How did complex NSs arise in evolution, and how many times did this occur? As a step towards finding an answer, we describe the NS of several representatives of the Xenacoelomorpha, a clade whose members show different degrees of NS complexity. This enigmatic clade is composed of three major taxa: acoel...

  14. The nervous system of Isodiametra pulchra (Acoela) with a discussion on the neuroanatomy of the Xenacoelomorpha and its evolutionary implications

    OpenAIRE

    Achatz Johannes; Martinez Pedro

    2012-01-01

    Abstract Introduction Acoels are microscopic marine worms that have become the focus of renewed debate and research due to their placement at the base of the Bilateria by molecular phylogenies. To date, Isodiametra pulchra is the most promising “model acoel” as it can be cultured and gene knockdown can be performed with double-stranded RNA. Despite its well-known morphology data on the nervous system are scarce. Therefore we examined this organ using various microscopic techniques, including ...

  15. The mitochondrial genomes of the acoelomorph worms Paratomella rubra, Isodiametra pulchra and Archaphanostoma ylvae.

    Science.gov (United States)

    Robertson, Helen E; Lapraz, François; Egger, Bernhard; Telford, Maximilian J; Schiffer, Philipp H

    2017-05-12

    Acoels are small, ubiquitous - but understudied - marine worms with a very simple body plan. Their internal phylogeny is still not fully resolved, and the position of their proposed phylum Xenacoelomorpha remains debated. Here we describe mitochondrial genome sequences from the acoels Paratomella rubra and Isodiametra pulchra, and the complete mitochondrial genome of the acoel Archaphanostoma ylvae. The P. rubra and A. ylvae sequences are typical for metazoans in size and gene content. The larger I. pulchra  mitochondrial genome contains both ribosomal genes, 21 tRNAs, but only 11 protein-coding genes. We find evidence suggesting a duplicated sequence in the I. pulchra mitochondrial genome. The P. rubra, I. pulchra and A. ylvae mitochondria have a unique genome organisation in comparison to other metazoan mitochondrial genomes. We found a large degree of protein-coding gene and tRNA overlap with little non-coding sequence in the compact P. rubra genome. Conversely, the A. ylvae and I. pulchra genomes have many long non-coding sequences between genes, likely driving genome size expansion in the latter. Phylogenetic trees inferred from mitochondrial genes retrieve Xenacoelomorpha as an early branching taxon in the deuterostomes. Sequence divergence analysis between P. rubra sampled in England and Spain indicates cryptic diversity.

  16. The significance of muscle cells for the origin of mesoderm in bilateria.

    Science.gov (United States)

    Rieger, Reinhard M; Ladurner, Peter

    2003-02-01

    Muscle tissue may have played a central role in the early evolution of mesoderm. The first function of myocytes could have been to control swimming and gliding motion in ciliated vermiform organisms, as it still is in such present-day basal Bilateria as the Nemertodermatida. The only mesodermal cells between epidermis and gastrodermis in Nemertodermatida are myocytes, and conceivably the myocyte was, in fact, the original mesodermal cell type. In Nemertodermatida as well as the Acoela, myocytes are subepithelial fiber-type muscle cells and appear to originate from the gastrodermal epithelium by emigration of single cells. Other mesodermal cells in the acoels are the peripheral parenchyma (connective tissue) and tunica cells of the gonads, and these also arise from the gastrodermis. Musculature in many of the coelomate protostomes and deuterostomes, on the other hand, is in the form of epitheliomuscular (myoepithelial) cells, and this cell type may also have been an early form of the mesodermal myocyte. The mesodermal bands in the small annelid Polygordius and in juvenile enteropneusts have cells intermediate between mesenchymal and epithelial in their histological organization as they develop into myoepithelia. If acoelomates were derived from coelomates by progenesis, then the fiber-type muscles of acoelomates could be products of foreshortened differentiation of such tissue. The precise serial patterning of circular muscle cells along the anterior-posterior axis during embryonic development in the acoel Convoluta pulchra provides a model for early steps in the gradual evolution of segmentation from iterated organ systems.

  17. Xenacoelomorpha: a case of independent nervous system centralization?

    Science.gov (United States)

    Gavilán, Brenda; Perea-Atienza, Elena; Martínez, Pedro

    2016-01-05

    Centralized nervous systems (NSs) and complex brains are among the most important innovations in the history of life on our planet. In this context, two related questions have been formulated: How did complex NSs arise in evolution, and how many times did this occur? As a step towards finding an answer, we describe the NS of several representatives of the Xenacoelomorpha, a clade whose members show different degrees of NS complexity. This enigmatic clade is composed of three major taxa: acoels, nemertodermatids and xenoturbellids. Interestingly, while the xenoturbellids seem to have a rather 'simple' NS (a nerve net), members of the most derived group of acoel worms clearly have ganglionic brains. This interesting diversity of NS architectures (with different degrees of compaction) provides a unique system with which to address outstanding questions regarding the evolution of brains and centralized NSs. The recent sequencing of xenacoelomorph genomes gives us a privileged vantage point from which to analyse neural evolution, especially through the study of key gene families involved in neurogenesis and NS function, such as G protein-coupled receptors, helix-loop-helix transcription factors and Wnts. We finish our manuscript proposing an adaptive scenario for the origin of centralized NSs (brains). © 2015 The Author(s).

  18. Acoelomorph flatworms are deuterostomes related to Xenoturbella.

    Science.gov (United States)

    Philippe, Hervé; Brinkmann, Henner; Copley, Richard R; Moroz, Leonid L; Nakano, Hiroaki; Poustka, Albert J; Wallberg, Andreas; Peterson, Kevin J; Telford, Maximilian J

    2011-02-10

    Xenoturbellida and Acoelomorpha are marine worms with contentious ancestry. Both were originally associated with the flatworms (Platyhelminthes), but molecular data have revised their phylogenetic positions, generally linking Xenoturbellida to the deuterostomes and positioning the Acoelomorpha as the most basally branching bilaterian group(s). Recent phylogenomic data suggested that Xenoturbellida and Acoelomorpha are sister taxa and together constitute an early branch of Bilateria. Here we assemble three independent data sets-mitochondrial genes, a phylogenomic data set of 38,330 amino-acid positions and new microRNA (miRNA) complements-and show that the position of Acoelomorpha is strongly affected by a long-branch attraction (LBA) artefact. When we minimize LBA we find consistent support for a position of both acoelomorphs and Xenoturbella within the deuterostomes. The most likely phylogeny links Xenoturbella and Acoelomorpha in a clade we call Xenacoelomorpha. The Xenacoelomorpha is the sister group of the Ambulacraria (hemichordates and echinoderms). We show that analyses of miRNA complements have been affected by character loss in the acoels and that both groups possess one miRNA and the gene Rsb66 otherwise specific to deuterostomes. In addition, Xenoturbella shares one miRNA with the ambulacrarians, and two with the acoels. This phylogeny makes sense of the shared characteristics of Xenoturbellida and Acoelomorpha, such as ciliary ultrastructure and diffuse nervous system, and implies the loss of various deuterostome characters in the Xenacoelomorpha including coelomic cavities, through gut and gill slits.

  19. The nervous system of Isodiametra pulchra (Acoela) with a discussion on the neuroanatomy of the Xenacoelomorpha and its evolutionary implications.

    Science.gov (United States)

    Achatz, Johannes Georg; Martinez, Pedro

    2012-10-16

    Acoels are microscopic marine worms that have become the focus of renewed debate and research due to their placement at the base of the Bilateria by molecular phylogenies. To date, Isodiametra pulchra is the most promising "model acoel" as it can be cultured and gene knockdown can be performed with double-stranded RNA. Despite its well-known morphology data on the nervous system are scarce. Therefore we examined this organ using various microscopic techniques, including histology, conventional histochemistry, electron microscopy, and immunocytochemistry in combination with CLSM and discuss our results in light of recently established phylogenies. The nervous system of Isodiametra pulchra consists of a bilobed brain with a dorsal posterior commissure, a frontal ring and tracts, four pairs of longitudinal neurite bundles, as well as a supramuscular and submuscular plexus. Serotonin-like immunoreactivity (SLI) is displayed in parts of the brain, the longitudinal neurite bundles and a large part of the supramuscular plexus, while FMRFamide-like immunoreactivity (RFLI) is displayed in parts of the brain and a distinct set of neurons, the longitudinal neurite bundles and the submuscular plexus. Despite this overlap SLI and RFLI are never colocalized. Most remarkable though is the presence of a distinct functional neuro-muscular system consisting of the statocyst, tracts, motor neurons and inner muscles, as well as the presence of various muscles that differ with regard to their ultrastructure and innervation. The nervous system of Isodiametra pulchra consists of an insunk, bilobed brain, a peripheral part for perception and innervation of the smooth body-wall musculature as well as tracts and motor neurons that together with pseudostriated inner muscles are responsible for steering and quick movements. The insunk, bilobed brains with two to three commissures found in numerous acoels are homologous and evolved from a ring-commissural brain that was present in the stem

  20. Electron microscopy of flatworms standard and cryo-preparation methods.

    Science.gov (United States)

    Salvenmoser, Willi; Egger, Bernhard; Achatz, Johannes G; Ladurner, Peter; Hess, Michael W

    2010-01-01

    Electron microscopy (EM) has long been indispensable for flatworm research, as most of these worms are microscopic in dimension and provide only a handful of characters recognizable by eye or light microscopy. Therefore, major progress in understanding the histology, systematics, and evolution of this animal group relied on methods capable of visualizing ultrastructure. The rise of molecular and cellular biology renewed interest in such ultrastructural research. In the light of recent developments, we offer a best-practice guide for users of transmission EM and provide a comparison of well-established chemical fixation protocols with cryo-processing methods (high-pressure freezing/freeze-substitution, HPF/FS). The organisms used in this study include the rhabditophorans Macrostomum lignano, Polycelis nigra and Dugesia gonocephala, as well as the acoel species Isodiametra pulchra. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. The nervous system of Isodiametra pulchra (Acoela with a discussion on the neuroanatomy of the Xenacoelomorpha and its evolutionary implications

    Directory of Open Access Journals (Sweden)

    Achatz Johannes

    2012-10-01

    Full Text Available Abstract Introduction Acoels are microscopic marine worms that have become the focus of renewed debate and research due to their placement at the base of the Bilateria by molecular phylogenies. To date, Isodiametra pulchra is the most promising “model acoel” as it can be cultured and gene knockdown can be performed with double-stranded RNA. Despite its well-known morphology data on the nervous system are scarce. Therefore we examined this organ using various microscopic techniques, including histology, conventional histochemistry, electron microscopy, and immunocytochemistry in combination with CLSM and discuss our results in light of recently established phylogenies. Results The nervous system of Isodiametra pulchra consists of a bilobed brain with a dorsal posterior commissure, a frontal ring and tracts, four pairs of longitudinal neurite bundles, as well as a supramuscular and submuscular plexus. Serotonin-like immunoreactivity (SLI is displayed in parts of the brain, the longitudinal neurite bundles and a large part of the supramuscular plexus, while FMRFamide-like immunoreactivity (RFLI is displayed in parts of the brain and a distinct set of neurons, the longitudinal neurite bundles and the submuscular plexus. Despite this overlap SLI and RFLI are never colocalized. Most remarkable though is the presence of a distinct functional neuro-muscular system consisting of the statocyst, tracts, motor neurons and inner muscles, as well as the presence of various muscles that differ with regard to their ultrastructure and innervation. Conclusions The nervous system of Isodiametra pulchra consists of an insunk, bilobed brain, a peripheral part for perception and innervation of the smooth body-wall musculature as well as tracts and motor neurons that together with pseudostriated inner muscles are responsible for steering and quick movements. The insunk, bilobed brains with two to three commissures found in numerous acoels are homologous and

  2. Expression pattern of Piwi-like genes in adult Myzostoma cirriferum (Annelida).

    Science.gov (United States)

    Weigert, Anne; Helm, Conrad; Hausen, Harald; Zakrzewski, Anne-C; Bleidorn, Christoph

    2013-09-01

    Piwi-like genes are a subgroup of Argonaute genes which participate as gene regulators by gene silencing. In most bilaterians, such as mouse, human, insects, and zebrafish, their expression is mostly limited to gonadal stem cells. But there are some striking exceptions to this pattern; flatworms and acoels also express Piwi-like genes in somatic stem cells, due to their unique replacement system. Annelid species like Capitella teleta and Platynereis dumerilii express these genes in cells of the posterior growth zone as well as in gonadal stem cells. To investigate the expression pattern of Piwi-like genes in another annelid, we established in situ hybridization for adult Myzostoma cirriferum. Piwi-like gene transcripts recovered in an mRNA-seq library of pooled adult stages of M. cirriferum were expanded using RACE PCR, cloned and sequenced. ML analysis confirmed the identity of both transcripts as part of the Piwi1-like or Piwi2-like subfamily of Argonaute proteins. The results of in situ hybridization studies show that the expression of both Piwi-like genes, Mc-Piwi1 and Mc-Piwi2, is clearly located only in gonadal stem cells, and as such we did not find any evidence for the existence of a posterior growth zone nor expression in somatic stem cells.

  3. A Stable Thoracic Hox Code and Epimorphosis Characterize Posterior Regeneration in Capitella teleta

    Science.gov (United States)

    de Jong, Danielle M.; Seaver, Elaine C.

    2016-01-01

    Regeneration, the ability to replace lost tissues and body parts following traumatic injury, occurs widely throughout the animal tree of life. Regeneration occurs either by remodeling of pre-existing tissues, through addition of new cells by cell division, or a combination of both. We describe a staging system for posterior regeneration in the annelid, Capitella teleta, and use the C. teleta Hox gene code as markers of regional identity for regenerating tissue along the anterior-posterior axis. Following amputation of different posterior regions of the animal, a blastema forms and by two days, proliferating cells are detected by EdU incorporation, demonstrating that epimorphosis occurs during posterior regeneration of C. teleta. Neurites rapidly extend into the blastema, and gradually become organized into discrete nerves before new ganglia appear approximately seven days after amputation. In situ hybridization shows that seven of the ten Hox genes examined are expressed in the blastema, suggesting roles in patterning the newly forming tissue, although neither spatial nor temporal co-linearity was detected. We hypothesized that following amputation, Hox gene expression in pre-existing segments would be re-organized to scale, and the remaining fragment would express the complete suite of Hox genes. Surprisingly, most Hox genes display stable expression patterns in the ganglia of pre-existing tissue following amputation at multiple axial positions, indicating general stability of segmental identity. However, the three Hox genes, CapI-lox4, CapI-lox2 and CapI-Post2, each shift its anterior expression boundary by one segment, and each shift includes a subset of cells in the ganglia. This expression shift depends upon the axial position of the amputation. In C. teleta, thoracic segments exhibit stable positional identity with limited morphallaxis, in contrast with the extensive body remodeling that occurs during regeneration of some other annelids, planarians and acoel

  4. The nervous system of Xenacoelomorpha: a genomic perspective.

    Science.gov (United States)

    Perea-Atienza, Elena; Gavilán, Brenda; Chiodin, Marta; Abril, Josep F; Hoff, Katharina J; Poustka, Albert J; Martinez, Pedro

    2015-02-15

    Xenacoelomorpha is, most probably, a monophyletic group that includes three clades: Acoela, Nemertodermatida and Xenoturbellida. The group still has contentious phylogenetic affinities; though most authors place it as the sister group of the remaining bilaterians, some would include it as a fourth phylum within the Deuterostomia. Over the past few years, our group, along with others, has undertaken a systematic study of the microscopic anatomy of these worms; our main aim is to understand the structure and development of the nervous system. This research plan has been aided by the use of molecular/developmental tools, the most important of which has been the sequencing of the complete genomes and transcriptomes of different members of the three clades. The data obtained has been used to analyse the evolutionary history of gene families and to study their expression patterns during development, in both space and time. A major focus of our research is the origin of 'cephalized' (centralized) nervous systems. How complex brains are assembled from simpler neuronal arrays has been a matter of intense debate for at least 100 years. We are now tackling this issue using Xenacoelomorpha models. These represent an ideal system for this work because the members of the three clades have nervous systems with different degrees of cephalization; from the relatively simple sub-epithelial net of Xenoturbella to the compact brain of acoels. How this process of 'progressive' cephalization is reflected in the genomes or transcriptomes of these three groups of animals is the subject of this paper. © 2015. Published by The Company of Biologists Ltd.

  5. The cell's view of animal body-plan evolution.

    Science.gov (United States)

    Lyons, Deirdre C; Martindale, Mark Q; Srivastava, Mansi

    2014-10-01

    An adult animal's form is shaped by the collective behavior of cells during embryonic development. To understand the forces that drove the divergence of animal body-plans, evolutionary developmental biology has focused largely on studying genetic networks operating during development. However, it is less well understood how these networks modulate characteristics at the cellular level, such as the shape, polarity, or migration of cells. We organized the "Cell's view of animal body plan evolution" symposium for the 2014 The Society for Integrative and Comparative Biology meeting with the explicit goal of bringing together researchers studying the cell biology of embryonic development in diverse animal taxa. Using a broad range of established and emerging technologies, including live imaging, single-cell analysis, and mathematical modeling, symposium participants revealed mechanisms underlying cells' behavior, a few of which we highlight here. Shape, adhesion, and movements of cells can be modulated over the course of evolution to alter adult body-plans and a major theme explored during the symposium was the role of actomyosin in coordinating diverse behaviors of cells underlying morphogenesis in a myriad of contexts. Uncovering whether conserved or divergent genetic mechanisms guide the contractility of actomyosin in these systems will be crucial to understanding the evolution of the body-plans of animals from a cellular perspective. Many speakers presented research describing developmental phenomena in which cell division and tissue growth can control the form of the adult, and other presenters shared work on studying cell-fate specification, an important source of novelty in animal body-plans. Participants also presented studies of regeneration in annelids, flatworms, acoels, and cnidarians, and provided a unifying view of the regulation of cellular behavior during different life-history stages. Additionally, several presentations highlighted technological

  6. Origin of the epidermis in parasitic platyhelminths.

    Science.gov (United States)

    Tyler, S; Tyler, M S

    1997-06-01

    the literature on rhabdocoel embryos. This process of replacement parallels the epidermal replacement that larval neodermatans undergo at metamorphosis. Ultrastructural study of developing acoel, polyclad and macrostomid embryos shows that they, too, have epidermal replacement and growth through immigration of deeper-lying cells, comparable to the processes seen in higher flatworms. Succession of distinct generations of epidermis in such animals as the proseriates, triclads and rhabdocoels is probably an adaptation to development of ectolecithal eggs, providing the means for the embryo to use yolk that resides in vitellocytes, outside its blastomeres. We propose that the Neodermata has taken advantage of this developmental mechanism, producing successive generations of epidermal cells even in its larval stages, to counter the defenses of hosts.

  7. Marine zooplankton studies in Brazil: a brief evaluation and perspectives

    Directory of Open Access Journals (Sweden)

    Rubens M. Lopes

    2007-09-01

    Full Text Available Marine zooplankton research in Brazil has been primarily descriptive, with most studies focusing on community structure analysis and related issues. The composition and spatial distribution of several taxonomic groups are currently well known, although less-abundant and small-sized taxa as well as initial stages of almost all species have received little attention. Some numerically important taxa such as heterotrophic protists, ctenophores, acoel turbellarians and ostracods remain virtually unstudied. Large sectors of the continental shelf have not been sampled in detail, particularly those areas influenced by the North Brazil Current (5ºN-15ºS. Zooplankton abundance and biomass in offshore waters have seldom been quantified, and information on the distribution and vertical migration of meso- and bathypelagic species are lacking. Additional faunistic assessments must target those less-studied taxa and geographical locations. However, priority in ecological studies should be given to process-oriented investigations aimed at understanding the mechanisms controlling zooplankton distribution, trophic interactions within pelagic food webs and production cycles in relation to the physical environment. An effort should be made to incorporate state-of-the-art sampling technology and analytical methods into future research projects.As pesquisas sobre o zooplâncton marinho no Brasil têm sido primariamente descritivas, com a maioria dos estudos enfocando a análise da estrutura da comunidade e assuntos relacionados. A composição e a distribuição espacial de muitos grupos taxonômicos encontram-se bem estudadas, embora os táxons menos abundantes e de menores dimensões, assimcomo os estágios iniciais do ciclo de vida da maioria das espécies, tenham recebido pouca atenção. Alguns táxons numericamenteimportantes encontram-se pouco estudados, como no caso dos protistas heterotróficos, ctenóforos, turbelários acelos e ostrácodes. Amplos