WorldWideScience

Sample records for acids improve cholinergic

  1. Alleviating effects of Bushen-Yizhi formula on ibotenic acid-induced cholinergic impairments in rat.

    Science.gov (United States)

    Hou, Xue-Qin; Zhang, Lei; Yang, Cong; Rong, Cui-Ping; He, Wen-Qing; Zhang, Chun-Xia; Li, Shi; Su, Ru-Yu; Chang, Xiang; Qin, Ji-Huan; Chen, Yun-Bo; Xian, Shao-Xiang; Wang, Qi

    2015-04-01

    This study explored the curative effect and underlying mechanisms of a traditional Chinese medicine compound prescription, Bushen-Yizhi formula (BSYZ), in ibotenic acid (IBO)-induced rats. Morris water maze and novel object recognition tests showed that BSYZ significantly improved spatial and object memory. Brain immunohistochemistry staining showed that BSYZ significantly up-regulated expression of choline acetyltransferase (ChAT) and nerve growth factor (NGF) in the hippocampus and cortex. The protein tyrosine kinase high-affinity receptor TrkA was slightly increased in the hippocampus and cortex, and significantly enhanced in the nucleus basalis of Meynert (NBM) after BSYZ intervention. The immunoreactivity of the p75 low-affinity receptor in BSYZ-treated rats was significantly strengthened in the cortex. Similar expression trends of nerve growth factor (NGF), TrkA, and p75 mRNA were observed in the hippocampus and cortex. Additionally, BSYZ reversed IBO-induced disorders of acetylcholine (ACh) levels, ChAT, and cholinesterase (ChE) in the cortex, which was consistent with the changes in mRNA levels of ChAT and acetylcholinesterase (AChE). Expression of ChAT and AChE proteins and mRNA in the hippocampus was up-regulated, whereas the apoptosis-relative protein cleaved caspase-3 was decreased after administration of BSYZ. Moreover, changes in cell death were confirmed by histological morphology. Thus, the results indicated that the BSYZ formula could ameliorate memory impairments in IBO-induced rats, and it exerted its therapeutic action probably by modulating cholinergic pathways, NGF signaling, and anti-apoptosis. Overall, it is suggested that the BSYZ formula might be a potential therapeutic approach for the treatment of Alzheimer's disease (AD) and other cholinergic impairment-related diseases.

  2. Houttuynia cordata Improves Cognitive Deficits in Cholinergic Dysfunction Alzheimer's Disease-Like Models.

    Science.gov (United States)

    Huh, Eugene; Kim, Hyo Geun; Park, Hanbyeol; Kang, Min Seo; Lee, Bongyong; Oh, Myung Sook

    2014-05-01

    Cognitive impairment is a result of dementia of diverse causes, such as cholinergic dysfunction and Alzheimer's disease (AD). Houttuynia cordata Thunb. (Saururaceae) has long been used as a traditional herbal medicine. It has biological activities including protective effects against amyloid beta (Aβ) toxicity, via regulation of calcium homeostasis, in rat hippocampal cells. To extend previous reports, we investigated the effects of water extracts of H. cordata herb (HCW) on tauopathies, also involving calcium influx. We then confirmed the effects of HCW in improving memory impairment and neuronal damage in mice with Aβ-induced neurotoxicity. We also investigated the effects of HCW against scopolamine-induced cholinergic dysfunction in mice. In primary neuronal cells, HCW inhibited the phosphorylation of tau by regulating p25/p35 expression in Aβ-induced neurotoxicity. In mice with Aβ-induced neurotoxicity, HCW improved cognitive impairment, as assessed with behavioral tasks, such as novel object recognition, Y-maze, and passive avoidance tasks. HCW also inhibited the degeneration of neurons in the CA3 region of the hippocampus in Aβ-induced neurotoxicity. Moreover, HCW, which had an IC50 value of 79.7 μg/ml for acetylcholinesterase inhibition, ameliorated scopolamine-induced cognitive impairment significantly in Y-maze and passive avoidance tasks. These results indicate that HCW improved cognitive impairment, due to cholinergic dysfunction, with inhibitory effects against tauopathies and cholinergic antagonists, suggesting that HCW may be an interesting candidate to investigate for the treatment of AD.

  3. Cholinergic stimulation with pyridostigmine improves autonomic function in infarcted rats.

    Science.gov (United States)

    de La Fuente, Raquel N; Rodrigues, Bruno; Moraes-Silva, Ivana C; Souza, Leandro E; Sirvente, Raquel; Mostarda, Cristiano; De Angelis, Kátia; Soares, Pedro P; Lacchini, Silvia; Consolim-Colombo, Fernanda; Irigoyen, Maria-Cláudia

    2013-09-01

    In the present study we evaluated the effects of short-term pyridostigmine bromide (0.14 mg/mL) treatment started early after myocardial infarction (MI) on left ventricular (LV) and autonomic functions in rats. Male Wistar rats were divided into control, pyridostigmine, infarcted and infarcted + pyridostigmine-treated groups. Pyridostigmine was administered in the drinking water, starting immediately after MI or sham operation, for 11 days. Left ventricular function was evaluated indirectly by echocardiography and directly by LV catheterization. Cardiovascular autonomic control was evaluated by baroreflex sensitivity (BRS), heart rate variability (HRV) and pharmacological blockade. All evaluations started after 7 days pyridostigmine treatment and were finalized after 11 days treatment. Pyridostigmine prevented the impairment of +dP/dT and reduced the MI area in infarcted + pyridostigmine compared with infarcted rats (7 ± 3% vs 17 ± 4%, respectively). Mean blood pressure was restored in infarcted + pyridostigmine compared with infarcted rats (103 ± 3 vs 94 ± 3 mmHg, respectively). In addition, compared with the infarcted group, pyridostigmine improved BRS, as evaluated by tachycardic (1.6 ± 0.2 vs 2.5 ± 0.2 b.p.m./mmHg, respectively) and bradycardic (-0.42 ± 0.01 vs -1.9 ± 0.1 b.p.m./mmHg) responses, and reduced the low frequency/high frequency ratio of HRV (0.81 ± 0.11 vs 0.24 ± 0.14, respectively). These improvements are probably associated with increased vagal tone and reduced sympathetic tone in infarcted + pyridostigmine compared with infarcted rats. In conclusion, the data suggest that short-term pyridostigmine treatment started early after MI can improve BRS, HRV and parasympathetic and sympathetic tone in experimental rats. These data may have potential clinical implications because autonomic markers have prognostic significance after MI.

  4. Altitude acclimatization improves submaximal cognitive performance in mice and involves an imbalance of the cholinergic system.

    Science.gov (United States)

    Guerra-Narbona, R; Delgado-García, J M; López-Ramos, J C

    2013-06-15

    The aim of this work was to reveal a hypothetical improvement of cognitive abilities in animals acclimatized to altitude and performing under ground level conditions, when looking at submaximal performance, once seen that it was not possible when looking at maximal scores. We modified contrasted cognitive tasks (object recognition, operant conditioning, eight-arm radial maze, and classical conditioning of the eyeblink reflex), increasing their complexity in an attempt to find performance differences in acclimatized animals vs. untrained controls. In addition, we studied, through immunohistochemical quantification, the expression of choline acetyltransferase and acetyl cholinesterase, enzymes involved in the synthesis and degradation of acetylcholine, in the septal area, piriform and visual cortexes, and the hippocampal CA1 area of animals submitted to acute hypobaric hypoxia, or acclimatized to this simulated altitude, to find a relationship between the cholinergic system and a cognitive improvement due to altitude acclimatization. Results showed subtle improvements of the cognitive capabilities of acclimatized animals in all of the tasks when performed under ground-level conditions (although not before 24 h), in the three tasks used to test explicit memory (object recognition, operant conditioning in the Skinner box, and eight-arm radial maze) and (from the first conditioning session) in the classical conditioning task used to evaluate implicit memory. An imbalance of choline acetyltransferase/acetyl cholinesterase expression was found in acclimatized animals, mainly 24 h after the acclimatization period. In conclusion, altitude acclimatization improves cognitive capabilities, in a process parallel to an imbalance of the cholinergic system.

  5. Mangifera indica Fruit Extract Improves Memory Impairment, Cholinergic Dysfunction, and Oxidative Stress Damage in Animal Model of Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Jintanaporn Wattanathorn

    2014-01-01

    Full Text Available To date, the effective preventive paradigm against mild cognitive impairment (MCI is required. Therefore, we aimed to determine whether Mangifera indica fruit extract, a substance possessing antioxidant and cognitive enhancing effects, could improve memory impairment, cholinergic dysfunction, and oxidative stress damage in animal model of mild cognitive impairment. Male Wistar rats, weighing 180–200 g, were orally given the extract at doses of 12.5, 50, and 200 mg·kg−1 BW for 2 weeks before and 1 week after the bilateral injection of AF64A (icv. At the end of study, spatial memory, cholinergic neurons density, MDA level, and the activities of SOD, CAT, and GSH-Px enzymes in hippocampus were determined. The results showed that all doses of extract could improve memory together with the decreased MDA level and the increased SOD and GSH-Px enzymes activities. The increased cholinergic neurons density in CA1 and CA3 of hippocampus was also observed in rats treated with the extract at doses of 50 and 200 mg·kg−1 BW. Therefore, our results suggested that M. indica, the potential protective agent against MCI, increased cholinergic function and the decreased oxidative stress which in turn enhanced memory. However, further researches are essential to elucidate the possible active ingredients and detail mechanism.

  6. Catecholaminergic and cholinergic systems of mouse brain are modulated by LMN diet, rich in theobromine, polyphenols and polyunsaturated fatty acids.

    Science.gov (United States)

    Fernández-Fernández, Laura; Esteban, Gerard; Giralt, Mercedes; Valente, Tony; Bolea, Irene; Solé, Montse; Sun, Ping; Benítez, Susana; Morelló, José Ramón; Reguant, Jordi; Ramírez, Bartolomé; Hidalgo, Juan; Unzeta, Mercedes

    2015-04-01

    The possible modulatory effect of the functional LMN diet, rich in theobromine, polyphenols and polyunsaturated fatty acids, on the catecholaminergic and cholinergic neurotransmission, affecting cognition decline during aging has been studied. 129S1/SvlmJ mice were fed for 10, 20, 30 and 40 days with either LMN or control diets. The enzymes involved in catecholaminergic and cholinergic metabolism were determined by both immunohistological and western blot analyses. Noradrenalin, dopamine and other metabolites were quantified by HPLC analysis. Theobromine, present in cocoa, the main LMN diet component, was analysed in parallel using SH-SY5Y and PC12 cell lines. An enhanced modulatory effect on both cholinergic and catecholaminergic transmissions was observed on 20 day fed mice. Similar effect was observed with theobromine, besides its antioxidant capacity inducing SOD-1 and GPx expression. The enhancing effect of the LMN diet and theobromine on the levels of acetylcholine-related enzymes, dopamine and specially noradrenalin confirms the beneficial role of this diet on the "cognitive reserve" and hence a possible reducing effect on cognitive decline underlying aging and Alzheimer's disease.

  7. PRO-CHOLINERGIC, HYPO-CHOLESTEROLEMIC AND MEMORY IMPROVING EFFECTS OF CLOVE

    Directory of Open Access Journals (Sweden)

    Parle Milind

    2011-04-01

    Full Text Available Clove is found to possess useful medicinal properties, such as anti-microbial, anti-inflammatory, anti-diabetic and anti-oxidant. The present study was undertaken to investigate the effects of Syzygium aromaticum (Clove on cognitive functions in mice. Clove powder was administered orally along with diet in three doses (400, 800, 1600mg/kg for seven successive days. 250 Swiss young mice divided in 50 groups and 100 aged mice divided in 20 groups were employed in the present study. The learning and memory parameters were assessed using elevated plus maze, passive avoidance apparatus and Hebb-Williams maze. Clove showed significant improvement in the memory of young and aged animals as reflected by decreased TL as well as TRC and increased SDL values. It also reversed the amnesia caused by ethanol (1.0 g/kg, i.p. and diazepam (1mg/kg, i.p.. Furthermore, Clove reduced significantly the brain cholinesterase activity in young mice by 50.5 % and aged mice by 21.25 % at the dose of 800 mg/kg. Clove also showed remarkable reduction to the extent of 33% and 66.32 % in the total cholesterol levels of young and aged mice at the dose of 800 mg/kg. Diminished cholinergic transmission and high cholesterol levels appear to be responsible for the development of dementia in Alzheimer patients. Since Clove powder enhanced Ach levels and lowered cholesterol levels in the present study; it appears to be a promising candidate for improving memory. Thus it would be worthwhile to explore the potential of this spice (Clove clinically in the management of Alzheimer’s disease.

  8. Hyperbaric Oxygen Prevents Cognitive Impairments in Mice Induced by D-Galactose by Improving Cholinergic and Anti-apoptotic Functions.

    Science.gov (United States)

    Chen, Chunxia; Huang, Luying; Nong, Zhihuan; Li, Yaoxuan; Chen, Wan; Huang, Jianping; Pan, Xiaorong; Wu, Guangwei; Lin, Yingzhong

    2017-01-11

    Our previous study demonstrated that hyperbaric oxygen (HBO) improved cognitive impairments mainly by regulating oxidative stress, inflammatory responses and aging-related gene expression. However, a method for preventing cognitive dysfunction has yet to be developed. In the present study, we explored the protective effects of HBO on the cholinergic system and apoptosis in D-galactose (D-gal)-treated mice. A model of aging was established via systemic intraperitoneal injection of D-gal daily for 8 weeks. HBO was administered during the last 2 weeks of D-gal injection. Our results showed that HBO in D-gal-treated mice significantly improved behavioral performance on the open field test and passive avoidance task. Studies on the potential mechanisms of this effect showed that HBO significantly reduced oxidative stress and blocked the nuclear factor-κB pathway. Moreover, HBO significantly increased the levels of choline acetyltransferase and acetylcholine and decreased the activity of acetylcholinesterase in the hippocampus. Furthermore, HBO markedly increased expression of the anti-apoptosis protein Bcl-2 and glial fibrillary acidic protein meanwhile decreased expression of the pro-apoptosis proteins Bax and caspase-3. Importantly, there was a significant reduction in expression of Aβ-related genes, such as amyloid precursor protein, β-site amyloid cleaving enzyme-1 and cathepsin B mRNA. These decreases were accompanied by significant increases in expression of neprilysin and insulin-degrading enzyme mRNA. Moreover, compared with the Vitamin E group, HBO combined with Vitamin E exhibited significant difference in part of the above mention parameters. These findings suggest that HBO may act as a neuroprotective agent in preventing cognitive impairments.

  9. INTRAHIPPOCAMPAL ADMINISTRATION OF IBOTENIC ACID INDUCED CHOLINERGIC DYSFUNCTION via NR2A/NR2B EXPRESSION: IMPLICATIONS OF RESVERATROL AGAINST ALZHEIMER DISEASE PATHOPHYSIOLOGY

    Directory of Open Access Journals (Sweden)

    Chennakesavan eKarthick

    2016-04-01

    Full Text Available Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression towards Alzheimer’s disease (AD pathology. Resveratrol (RSV, a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5µg/µl lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20mg/kg body weight, i.p significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the

  10. Intrahippocampal Administration of Ibotenic Acid Induced Cholinergic Dysfunction via NR2A/NR2B Expression: Implications of Resveratrol against Alzheimer Disease Pathophysiology.

    Science.gov (United States)

    Karthick, Chennakesavan; Periyasamy, Sabapathy; Jayachandran, Kesavan S; Anusuyadevi, Muthuswamy

    2016-01-01

    Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression toward Alzheimer's disease (AD) pathology. Resveratrol (RSV), a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO) in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5 μg/μl) lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20 mg/kg body weight, i.p.) significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility, and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the hippocampal

  11. Cholinergic dermographism.

    Science.gov (United States)

    Mayou, S C; Kobza Black, A; Eady, R A; Greaves, M W

    1986-09-01

    We report a patient with cholinergic urticaria in whom stroking the skin produced a band of erythema studded with the small weals characteristics of cholinergic urticaria. This response was suppressed by pre-treatment with topical scopolamine. Light and electron microscopy of the weal showed mast cell degranulation and a moderate mononuclear cell infiltrate.

  12. The quantitative evaluation of cholinergic markers in spatial memory improvement induced by nicotine-bucladesine combination in rats.

    Science.gov (United States)

    Azami, Kian; Etminani, Maryam; Tabrizian, Kaveh; Salar, Fatemeh; Belaran, Maryam; Hosseini, Asieh; Hosseini-Sharifabad, Ali; Sharifzadeh, Mohammad

    2010-06-25

    We previously showed that post-training intra-hippocampal infusion of nicotine-bucladesine combination enhanced spatial memory retention in the Morris water maze. Here we investigated the role of cholinergic markers in nicotine-bucladesine combination-induced memory improvement. We assessed the expression of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) in CA1 region of the hippocampus and medial septal area (MSA) of the brain. Post-training bilateral infusion of a low concentration of either nicotine or bucladesine into the CA1 region of the hippocampus did not affect spatial memory significantly. Quantitative immunostaining analysis of optical density in CA1 regions and evaluation of immunopositive neurons in medial septal area of brain sections from all combination groups revealed a significant increase (Pnicotine and in a concentration dependent manner. Also, increase in the optical density and amount of ChAT and VAChT immunostaining correlated with the decrease in escape latency and traveled distance in rats treated with nicotine and low dose of bucladesine. Taken together, these results suggest that significant increases of ChAT and VAChT protein expressions in the CA1 region and medial septal area are the possible mechanisms of spatial memory improvement induced by nicotine-bucladesine combination.

  13. Improvements in Memory after Medial Septum Stimulation Are Associated with Changes in Hippocampal Cholinergic Activity and Neurogenesis

    Directory of Open Access Journals (Sweden)

    Da Un Jeong

    2014-01-01

    Full Text Available Deep brain stimulation (DBS has been found to have therapeutic effects in patients with dementia, but DBS mechanisms remain elusive. To provide evidence for the effectiveness of DBS as a treatment for dementia, we performed DBS in a rat model of dementia with intracerebroventricular administration of 192 IgG-saporins. We utilized four groups of rats, group 1, unlesioned control; group 2, cholinergic lesion; group 3, cholinergic lesion plus medial septum (MS electrode implantation (sham stimulation; group 4, cholinergic lesions plus MS electrode implantation and stimulation. During the probe test in the water maze, performance of the lesion group decreased for measures of time spent and the number of swim crossings over the previous platform location. Interestingly, the stimulation group showed an equivalent performance to the normal group on all measures. And these are partially reversed by the electrode implantation. Acetylcholinesterase activity in the hippocampus was decreased in lesion and implantation groups, whereas activity in the stimulation group was not different from the normal group. Hippocampal neurogenesis was increased in the stimulation group. Our results revealed that DBS of MS restores spatial memory after damage to cholinergic neurons. This effect is associated with an increase in hippocampal cholinergic activity and neurogenesis.

  14. Cholinergic modulation of non-N-methyl-D-aspartic acid glutamatergic transmission in the chick ventral lateral geniculate nucleus.

    Science.gov (United States)

    Guo, J-Z; Sorenson, E M; Chiappinelli, V A

    2010-03-17

    Neurotransmission between glutamatergic terminals of retinal ganglion cells and principal neurons of the ventral lateral geniculate nucleus (LGNv) was examined with patch clamp recordings in chick brain slices during electrical stimulation of the optic tract. Since muscarinic and nicotinic receptors are present in high densities in LGNv, the present study examined possible roles of both receptors in modulating retinogeniculate transmission. During whole-cell recordings from LGNv neurons, acetylcholine (ACh, 100 microM) caused an initial increase in amplitudes of optic tract-evoked non-N-methyl-D-aspartic acid (NMDA) glutamatergic postsynaptic currents (PSCs). This increase was unchanged when 1 microM atropine was present, indicating that this initial enhancement of PSCs was due entirely to activation of nicotinic receptors. However, during washout of ACh the amplitudes of evoked PSCs became significantly decreased by 40.4+/-5.0% for several minutes before recovering to their original amplitudes, an effect blocked by 1 microM atropine. Exogenously applied muscarine (10 microM) markedly depressed optic tract-evoked PSCs, and this decrease in amplitude was blocked by atropine. In a second set of experiments, we examined effects of releasing endogenous ACh prior to optic tract stimulation. This was accomplished by stimulation of the lateral portion of LGNv via a separate conditioning electrode. Following a brief train of low intensity conditioning stimuli, non-NMDA glutamatergic PSCs evoked by optic tract stimulation were potentiated. However, at higher conditioning stimulus intensities the PSCs were markedly decreased compared with control, and this decrease was partially blocked by atropine (1 microM). Neither ACh nor muscarine altered amplitudes of PSCs elicited by exogenously applied glutamate. Muscarine significantly reduced the frequency but not the amplitudes of miniature PSCs, consistent with a presynaptic location for muscarinic receptors mediating these

  15. Nicotine increases impulsivity and decreases willingness to exert cognitive effort despite improving attention in "slacker" rats: insights into cholinergic regulation of cost/benefit decision making.

    Directory of Open Access Journals (Sweden)

    Jay G Hosking

    Full Text Available Successful decision making in our daily lives requires weighing an option's costs against its associated benefits. The neuromodulator acetylcholine underlies both the etiology and treatment of a number of illnesses in which decision making is perturbed, including Alzheimer's disease, attention-deficit/hyperactivity disorder, and schizophrenia. Nicotine acts on the cholinergic system and has been touted as a cognitive enhancer by both smokers and some researchers for its attention-boosting effects; however, it is unclear whether treatments that have a beneficial effect on attention would also have a beneficial effect on decision making. Here we utilize the rodent Cognitive Effort Task (rCET, wherein animals can choose to allocate greater visuospatial attention for a greater reward, to examine cholinergic contributions to both attentional performance and choice based on attentional demand. Following the establishment of baseline behavior, four drug challenges were administered: nicotine, mecamylamine, scopolamine, and oxotremorine (saline plus three doses for each. As per previous rCET studies, animals were divided by their baseline preferences, with "worker" rats choosing high-effort/high-reward options more than their "slacker" counterparts. Nicotine caused slackers to choose even fewer high-effort trials than at baseline, but had no effect on workers' choice. Despite slackers' decreased willingness to expend effort, nicotine improved their attentional performance on the task. Nicotine also increased measures of motor impulsivity in all animals. In contrast, scopolamine decreased animals' choice of high-effort trials, especially for workers, while oxotremorine decreased motor impulsivity for all animals. In sum, the cholinergic system appears to contribute to decision making, and in part these contributions can be understood as a function of individual differences. While nicotine has been considered as a cognitive enhancer, these data suggest

  16. Laser Acupuncture at HT7 Acupoint Improves Cognitive Deficit, Neuronal Loss, Oxidative Stress, and Functions of Cholinergic and Dopaminergic Systems in Animal Model of Parkinson's Disease.

    Science.gov (United States)

    Wattanathorn, Jintanaporn; Sutalangka, Chatchada

    2014-01-01

    To date, the therapeutic strategy against cognitive impairment in Parkinson's disease (PD) is still not in satisfaction level and requires novel effective intervention. Based the oxidative stress reduction and cognitive enhancement induced by laser acupuncture at HT7, the beneficial effect of laser acupuncture at HT7 against cognitive impairment in PD has been focused. In this study, we aimed to determine the effect of laser acupuncture at HT7 on memory impairment, oxidative stress status, and the functions of both cholinergic and dopaminergic systems in hippocampus of animal model of PD. Male Wistar rats, weighing 180-220 g, were induced unilateral lesion at right substantianigra by 6-OHDA and were treated with laser acupuncture continuously at a period of 14 days. The results showed that laser acupuncture at HT7 enhanced memory and neuron density in CA3 and dentate gyrus. The decreased AChE, MAO-B, and MDA together with increased GSH-Px in hippocampus of a 6-OHDA lesion rats were also observed. In conclusion, laser acupuncture at HT7 can improve neuron degeneration and memory impairment in animal model of PD partly via the decreased oxidative stress and the improved cholinergic and dopaminergic functions. More researches concerning effect of treatment duration are still required.

  17. Cholinergic Mechanisms in Spinal Locomotion - Potential Target for Rehabilitation Approaches

    Directory of Open Access Journals (Sweden)

    L M Jordan

    2014-11-01

    Full Text Available Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and to provide a basis for recovery of locomotor capability in the absence of descending pathways. Tests of these suggestions, however, reveal that the spinal cholinergic system plays little if any role in the induction of locomotion, because MLR-evoked locomotion in decerebrate cats is not prevented by cholinergic antagonists. Furthermore, it is not required for the development of stepping movements after spinal cord injury, because cholinergic agonists do not facilitate the appearance of locomotion after spinal cord injury, unlike the dramatic locomotion-promoting effects of clonidine, a noradrenergic α-2 agonist. Furthermore, cholinergic antagonists actually improve locomotor activity after spinal cord injury, suggesting that plastic changes in the spinal cholinergic system interfere with locomotion rather than facilitating it. Changes that have been observed in the cholinergic innervation of motoneurons after spinal cord injury do not decrease motoneuron excitability, as expected. Instead, the development of a hyper-cholinergic state after spinal cord injury appears to enhance motoneuron output and suppress locomotion. A cholinergic suppression of afferent input from the limb after spinal cord injury is also evident from our data, and this may contribute to the ability of cholinergic antagonists to improve locomotion. Not only is a role for the spinal cholinergic system in supressing locomotion after SCI suggested by our results, but an obligatory contribution of a brainstem cholinergic relay to reticulospinal locomotor command systems is not confirmed

  18. Activation of Muscarinic Acetylcholine Receptor Subtype 4 is Essential for Cholinergic Stimulation of Gastric Acid Secretion - Relation To D Cell/Somatostatin -

    Directory of Open Access Journals (Sweden)

    Koji Takeuchi

    2016-08-01

    Full Text Available AbstractBackground/Aim: Muscarinic acetylcholine receptors exist in five subtypes (M1~M5, and they are widely expressed in various tissues to mediate diverse autonomic functions, including gastric secretion. In the present study, we demonstrated, using M1~M5 KO mice, the importance of M4 receptors in carbachol (CCh stimulation of acid secretion and investigated how the secretion is modulated by the activation of M4 receptors. Methods: C57BL/6J mice of wild-type (WT and M1-M5 KO were used. Under urethane anesthesia, acid secretion was measured in the stomach equipped with an acute fistula. CCh (30 µg/kg was given s.c. to stimulate acid secretion. Atropine or octreotide (a somatostatin analogue was given s.c. 20 min before the administration of CCh. CYN154806 (a somatostatin SST2 receptor antagonist was given i.p. 20 min before the administration of octreotide or CCh. Results: CCh caused an increase of acid secretion in WT mice, and the effect was totally inhibited by prior administration of atropine. The effect of CCh was similarly observed in the animals lacking M1, M2 or M5 receptors but significantly decreased in M3 or M4 KO mice. CYN154806, the SST2 receptor antagonist, dose-dependently and significantly reversed the decreased acid response to CCh in M4 but not M3 KO mice. Octreotide, the somatostatin analogue, inhibited the secretion of acid under CCh-stimulated conditions in WT mice. The immunohistochemical study showed the localization of M4 receptors on D cells in the stomach. Serum somatostatin levels in M4 KO mice were higher than WT mice under basal conditions, while those in WT mice were significantly decreased in response to CCh. Conclusions: These results suggest that under cholinergic stimulation the acid secretion is directly mediated by M3 receptors and indirectly modified by M4 receptors. It is assumed that the activation of M4 receptors inhibits the release of somatostatin from D cells and minimizes the acid inhibitory effect

  19. Tiliacora triandra, an Anti-Intoxication Plant, Improves Memory Impairment, Neurodegeneration, Cholinergic Function, and Oxidative Stress in Hippocampus of Ethanol Dependence Rats

    Directory of Open Access Journals (Sweden)

    Nattaporn Phunchago

    2015-01-01

    Full Text Available Oxidative stress plays an important role in brain dysfunctions induced by alcohol. Since less therapeutic agent against cognitive deficit and brain damage induced by chronic alcohol consumption is less available, we aimed to assess the effect of Tiliacora triandra extract, a plant possessing antioxidant activity, on memory impairment, neuron density, cholinergic function, and oxidative stress in hippocampus of alcoholic rats. Male Wistar rats were induced ethanol dependence condition by semivoluntary intake of alcohol for 15 weeks. Alcoholic rats were orally given T. triandra at doses of 100, 200, and 400 mg·kg−1BW for 14 days. Memory assessment was performed every 7 days while neuron density, activities of AChE, SOD, CAT, and GSH-Px and, MDA level in hippocampus were assessed at the end of study. Interestingly, the extract mitigated the increased escape latency, AChE and MDA level. The extract also mitigated the decreased retention time, SOD, CAT, and GSH-Px activities, and neurons density in hippocampus induced by alcohol. These data suggested that the extract improved memory deficit in alcoholic rats partly via the decreased oxidative stress and the suppression of AChE. Therefore, T. triandra is the potential reagent for treating brain dysfunction induced by alcohol. However, further researches are necessary to understand the detail mechanism and possible active ingredient.

  20. Nematode cholinergic pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Segerberg, M.A.

    1989-01-01

    Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe ({sup 3}H)N-methylscopolamine (({sup 3}H)NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissural motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs.

  1. Cholinergic imaging in dementia spectrum disorders

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Roman; Niccolini, Flavia; Pagano, Gennaro; Politis, Marios [Institute of Psychiatry, Psychology and Neuroscience, King' s College London, Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, London (United Kingdom)

    2016-07-15

    The multifaceted nature of the pathology of dementia spectrum disorders has complicated their management and the development of effective treatments. This is despite the fact that they are far from uncommon, with Alzheimer's disease (AD) alone affecting 35 million people worldwide. The cholinergic system has been found to be crucially involved in cognitive function, with cholinergic dysfunction playing a pivotal role in the pathophysiology of dementia. The use of molecular imaging such as SPECT and PET for tagging targets within the cholinergic system has shown promise for elucidating key aspects of underlying pathology in dementia spectrum disorders, including AD or parkinsonian dementias. SPECT and PET studies using selective radioligands for cholinergic markers, such as [{sup 11}C]MP4A and [{sup 11}C]PMP PET for acetylcholinesterase (AChE), [{sup 123}I]5IA SPECT for the α{sub 4}β{sub 2} nicotinic acetylcholine receptor and [{sup 123}I]IBVM SPECT for the vesicular acetylcholine transporter, have been developed in an attempt to clarify those aspects of the diseases that remain unclear. This has led to a variety of findings, such as cortical AChE being significantly reduced in Parkinson's disease (PD), PD with dementia (PDD) and AD, as well as correlating with certain aspects of cognitive function such as attention and working memory. Thalamic AChE is significantly reduced in progressive supranuclear palsy (PSP) and multiple system atrophy, whilst it is not affected in PD. Some of these findings have brought about suggestions for the improvement of clinical practice, such as the use of a thalamic/cortical AChE ratio to differentiate between PD and PSP, two diseases that could overlap in terms of initial clinical presentation. Here, we review the findings from molecular imaging studies that have investigated the role of the cholinergic system in dementia spectrum disorders. (orig.)

  2. Erucic acid rapeseed: 1. Prospects of improvements

    Directory of Open Access Journals (Sweden)

    Sanyal Anushree

    2015-05-01

    Full Text Available In the current context of boosting production of high erucic acid rapeseed, because of the wide range of its industrial applications, this literature review is designed to provide a general overview of available varieties, current knowledge of plant improvement and paths of developing research to increase competitiveness of varieties with high erucic acid content. A limited market dominated by a few companies, cropping burdens of high erucic acid rapeseed varieties among the majority “00” varieties and the still low erucic acid content in rapeseed, explains the reduced and uncompetitive varietal offers. To improve this situation, new varieties could be developed, thanks to the classical methods of selection and biotechnology.

  3. The acid steatocrit: a much improved method.

    Science.gov (United States)

    Tran, M; Forget, P; Van den Neucker, A; Strik, J; van Kreel, B; Kuijten, R

    1994-10-01

    The steatocrit method has recently been introduced as a simple screening test for steatorrhea. As it seemed likely that separation of fecal homogenate by centrifugation into a lipid phase, a watery phase, and a solid phase would be pH-dependent, we evaluated the effect of fecal acidification on steatocrit results. We also compared classical and acid steatocrit results in healthy children and in patients with cystic fibrosis and studied the relationship between two steatocrit methods and fecal fat content as measured by a reference chemical method. Steatocrit results increased with the degree of fecal acidification, and maximal results were obtained at the lowest fecal pH values. Means and SEM for classical and acid steatocrit values were 1.1 +/- 0.4% (classical) versus 3.8 +/- 1% (acid) in controls (n = 6) and 5.4 +/- 1.9% (classical) versus 26.9 +/- 4.3% (acid) in cystic fibrosis patients (n = 9). The correlations between fecal fat content measured chemically and steatocrit results were 0.18 (p = 0.35) and 0.81 (p < 0.0001) for classical and acid steatocrit, respectively. We conclude that acidification of fecal homogenates leads to a marked improvement in the steatocrit method.

  4. [Cholinergic system of the heart].

    Science.gov (United States)

    Kučera, Matej; Hrabovská, Anna

    2015-12-01

    The cholinergic system of the heart can be either of neuronal or non-neuronal origin. The neuronal cholinergic system in the heart is represented by preganglionic parasympathetic pathways, intracardiac parasympathetic ganglia and postganglionic parasympathetic neurons projecting to the atria, SA node and AV node. The non-neuronal cholinergic system consists of cardiomyocytes that have complete equipment for synthesis and secretion of acetylcholine. Current knowledge suggests that the non-neuronal cholinergic system in the heart affects the regulation of the heart during sympathetic activation. The non-neuronal cholinergic system of the heart plays also a role in the energy metabolism of cardimyocites. Acetylcholine of both neuronal and non-neuronal origin acts in the heart through muscarinic and nicotinic receptors. The effect of acetylcholine in the heart is terminated by cholinesterases acetylcholinesterase and butyrylcholinesterase. Recently, papers suggest that the increased cholinergic tone in the heart by cholinesterase inhibitors has a positive effect on some cardiovascular disorders such as heart failure. For this reason, the cholinesterase inhibitors might be used in the treatment of certain cardiovascular disorders in the future.

  5. Physical urticarias and cholinergic urticaria.

    Science.gov (United States)

    Abajian, Marina; Schoepke, Nicole; Altrichter, Sabine; Zuberbier, Torsten; Zuberbier, H C Torsten; Maurer, Marcus

    2014-02-01

    Physical urticarias are a unique subgroup of chronic urticaria in which urticarial responses can be reproducibly induced by different specific physical stimuli acting on the skin. These conditions include urticaria factitia/symptomatic dermographism, delayed pressure urticaria, cold contact urticaria, heat contact urticaria, solar urticaria, and vibratory urticaria/angioedema. Physical urticarias and cholinergic urticarias are diagnosed based on the patients' history and provocation tests including trigger threshold testing where possible. Treatment is mainly symptomatic. Many patients benefit from avoiding eliciting triggers, and desensitization to these triggers can be helpful in some physical urticarias and in cholinergic urticaria.

  6. Cholinergic deficiency involved in vascular dementia:possible mechanism and strategy of treatment

    Institute of Scientific and Technical Information of China (English)

    Juan WANG; Hai-yan ZHANG; Xi-can TANG

    2009-01-01

    Vascular dementia (VaD) is a progressive neurodegenerative disease with a high prevalence.Several studies have recently reported that VaD patients present cholinergic deficits in the brain and cerebrospinal fluid (CSF) that may be closely related to the pathophysiology of cognitive impairment.Moreover,cholinergic therapies have shown promising effects on cognitive improvement in VaD patients.The precise mechanisms of these cholinergic agents are currently not fully understood;however,accumulating evidence indicates that these drugs may act through the cholinergic anti-inflammatory pathway,in which the efferent vagus nerve signals suppress pro-inflammatory cytokine release and inhibit inflammation,although regulation of oxidative stress and energy metabolism,alleviation of apoptosis may also be involved.In this paper,we provide a brief overview of the cholinergic treatment strategy for VaD and its relevant mechanisms of anti-inflammation.

  7. Glial response in the rat models of functionally distinct cholinergic neuronal denervations.

    Science.gov (United States)

    Bataveljic, Danijela; Petrovic, Jelena; Lazic, Katarina; Saponjic, Jasna; Andjus, Pavle

    2015-02-01

    Alzheimer's disease (AD) involves selective loss of basal forebrain cholinergic neurons, particularly in the nucleus basalis (NB). Similarly, Parkinson's disease (PD) might involve the selective loss of pedunculopontine tegmental nucleus (PPT) cholinergic neurons. Therefore, lesions of these functionally distinct cholinergic centers in rats might serve as models of AD and PD cholinergic neuropathologies. Our previous articles described dissimilar sleep/wake-state disorders in rat models of AD and PD cholinergic neuropathologies. This study further examines astroglial and microglial responses as underlying pathologies in these distinct sleep disorders. Unilateral lesions of the NB or the PPT were induced with rats under ketamine/diazepam anesthesia (50 mg/kg i.p.) by using stereotaxically guided microinfusion of the excitotoxin ibotenic acid (IBO). Twenty-one days after the lesion, loss of cholinergic neurons was quantified by nicotinamide adenine dinucleotide phosphate-diaphorase histochemistry, and the astroglial and microglial responses were quantified by glia fibrillary acidic protein/OX42 immunohistochemistry. This study demonstrates, for the first time, the anatomofunctionally related astroglial response following unilateral excitotoxic PPT cholinergic neuronal lesion. Whereas IBO NB and PPT lesions similarly enhanced local astroglial and microglial responses, astrogliosis in the PPT was followed by a remote astrogliosis within the ipslilateral NB. Conversely, there was no microglial response within the NB after PPT lesions. Our results reveal the rostrorostral PPT-NB astrogliosis after denervation of cholinergic neurons in the PPT. This hierarchically and anatomofunctionally guided PPT-NB astrogliosis emerged following cholinergic neuronal loss greater than 17% throughout the overall rostrocaudal PPT dimension.

  8. Development of cardiac parasympathetic neurons, glial cells, and regional cholinergic innervation of the mouse heart.

    Science.gov (United States)

    Fregoso, S P; Hoover, D B

    2012-09-27

    Very little is known about the development of cardiac parasympathetic ganglia and cholinergic innervation of the mouse heart. Accordingly, we evaluated the growth of cholinergic neurons and nerve fibers in mouse hearts from embryonic day 18.5 (E18.5) through postnatal day 21(P21). Cholinergic perikarya and varicose nerve fibers were identified in paraffin sections immunostained for the vesicular acetylcholine transporter (VAChT). Satellite cells and Schwann cells in adjacent sections were identified by immunostaining for S100β calcium binding protein (S100) and brain-fatty acid binding protein (B-FABP). We found that cardiac ganglia had formed in close association to the atria and cholinergic innervation of the atrioventricular junction had already begun by E18.5. However, most cholinergic innervation of the heart, including the sinoatrial node, developed postnatally (P0.5-P21) along with a doubling of the cross-sectional area of cholinergic perikarya. Satellite cells were present throughout neonatal cardiac ganglia and expressed primarily B-FABP. As they became more mature at P21, satellite cells stained strongly for both B-FABP and S100. Satellite cells appeared to surround most cardiac parasympathetic neurons, even in neonatal hearts. Mature Schwann cells, identified by morphology and strong staining for S100, were already present at E18.5 in atrial regions that receive cholinergic innervation at later developmental times. The abundance and distribution of S100-positive Schwann cells increased postnatally along with nerve density. While S100 staining of cardiac Schwann cells was maintained in P21 and older mice, Schwann cells did not show B-FABP staining at these times. Parallel development of satellite cells and cholinergic perikarya in the cardiac ganglia and the increase in abundance of Schwann cells and varicose cholinergic nerve fibers in the atria suggest that neuronal-glial interactions could be important for development of the parasympathetic nervous

  9. Huperzine A protects sepsis associated encephalopathy by promoting the deficient cholinergic nervous function.

    Science.gov (United States)

    Zhu, Sen-Zhi; Huang, Wei-Ping; Huang, Lin-Qiang; Han, Yong-Li; Han, Qian-Peng; Zhu, Gao-Feng; Wen, Miao-Yun; Deng, Yi-Yu; Zeng, Hong-Ke

    2016-09-19

    Neuroinflammatory deregulation in the brain plays a crucial role in the pathogenesis of sepsis associated encephalopathy (SAE). Given the mounting evidence of anti-inflammatory and neuroprotective effects of the cholinergic nervous system, it is surprising that there is little information about its changes in the brain during sepsis. To elucidate the role of the cholinergic nervous system in SAE, hippocampal choline acetyltransferase, muscarinic acetylcholine receptor-1, acetylcholinesterase and acetylcholine were evaluated in LPS-induced sepsis rats. Expression of pro-inflammatory cytokines, neuronal apoptosis, and animal cognitive performance were also assessed. Furthermore, therapeutic effects of the acetylcholinesterase inhibitor Huperzine A (HupA) on the hippocampal cholinergic nervous function and neuroinflammation were evaluated. A deficiency of the cholinergic nervous function was revealed in SAE, accompanied with over-expressed pro-inflammatory cytokines, increase in neuronal apoptosis and brain cognitive impairment. HupA remarkably promoted the deficient cholinergic nervous function and attenuated the abnormal neuroinflammation in SAE, paralleled with the recovery of brain function. We suggest that the deficiency of the cholinergic nervous function and the abnormal neuroinflammation are synergistically implicated in the pathogenesis of SAE. Thus, HupA is a potential therapeutic candidate for SAE, as it improves the deficient cholinergic nervous function and exerts anti-inflammatory action.

  10. Improved Processes to Remove Naphthenic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Aihua Zhang; Qisheng Ma; Kangshi Wang; Yongchun Tang; William A. Goddard

    2005-12-09

    In the past three years, we followed the work plan as we suggested in the proposal and made every efforts to fulfill the project objectives. Based on our large amount of creative and productive work, including both of experimental and theoretic aspects, we received important technical breakthrough on naphthenic acid removal process and obtained deep insight on catalytic decarboxylation chemistry. In detail, we established an integrated methodology to serve for all of the experimental and theoretical work. Our experimental investigation results in discovery of four type effective catalysts to the reaction of decarboxylation of model carboxylic acid compounds. The adsorption experiment revealed the effectiveness of several solid materials to naphthenic acid adsorption and acidity reduction of crude oil, which can be either natural minerals or synthesized materials. The test with crude oil also received promising results, which can be potentially developed into a practical process for oil industry. The theoretical work predicted several possible catalytic decarboxylation mechanisms that would govern the decarboxylation pathways depending on the type of catalysts being used. The calculation for reaction activation energy was in good agreement with our experimental measurements.

  11. Chronic treatment with taurine after intracerebroventricular streptozotocin injection improves cognitive dysfunction in rats by modulating oxidative stress, cholinergic functions and neuroinflammation.

    Science.gov (United States)

    Reeta, K H; Singh, Devendra; Gupta, Y K

    2017-03-08

    The present study investigated the neuroprotective effects of taurine, an essential amino acid for growth and development of central nervous system. Intracerebroventricular streptozotocin (ICV-STZ) model of cognitive impairment was used in male Wistar rats (270 ± 20 g). Morris water maze, elevated plus maze and passive avoidance paradigm were used to assess cognitive performance. Taurine (40, 60 and 120 mg/kg) was administered orally for 28 days following STZ administration on day 1. Oxidative stress parameters (malondialdehyde, glutathione, nitric oxide and superoxide dismutase) and cholinesterases (acetylcholinesterase and butyrylcholinesterase) activity were measured at end of the study in the cortex and hippocampus. Levels of TNF-α, IL-1β, expression of rho kinase-II (ROCK-II), glycogen synthase kinase-3β (GSK-3β) and choline acetyltransferase (ChAT) were studied in cortex and hippocampus. STZ caused significant cognitive impairment as compared to normal control. Chronic administration of taurine attenuated STZ-induced cognitive impairment. Increased oxidative stress and increased levels of TNF-α, IL-1β induced by STZ were also significantly attenuated by taurine. Taurine significantly (p < 0.05) decreased the STZ-induced increased expression of ROCK-II in cortex and hippocampus. Further, STZ-induced increased activity of cholinesterases was significantly (p < 0.001) mitigated by taurine. STZ decreased the expression of ChAT in hippocampus which was significantly (p < 0.05) reversed by taurine. However, GSK-3β expression was not altered by either STZ or taurine. The present study indicates that taurine exerts a neuroprotective role against STZ-induced cognitive impairment in rats. This effect is probably mediated by modulating oxidative stress, cholinesterases, inflammatory cytokines and expression of ROCK-II. Thus, this study suggests a potential of chronic taurine administration in cognitive impairment of Alzheimer's type.

  12. Transplantation of cholinergic neural stem cells in a mouse model of Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    WANG Qing-hua; XU Ru-xiang; Seigo Nagao

    2005-01-01

    @@ It is believed that the degeneration of cholinergic cells in the nucleus basalis of Meynert (NBM) and the loss of cortical cholinergic innervation cause dementia of Alzheimer's disease (AD).1 Currently available therapeutic interventions are mainly aimed at alleviating the cholinergic deficits. Unfortunately, these strategies do not prevent the disease, but instead offer limited symptomatic improvement.2 A recent study demonstrated that transplantation of in vitro expanded neural stem cells (NSCs) in an animal model of Parkinson's disease (PD) resulted in functional recovery of the animals to some extent,2 suggesting that such neural precursors might offer a useful future therapy for AD. In this study, we tried to find whether mouse embryonic stem (ES) cell derived cholinergic NSCs grafted in the prefrontal and parietal cortex have effects on the disruption of spatial memory following development of lesion in NBM.

  13. Evaluation of cholinergic markers in Alzheimer's disease and in a model of cholinergic deficit

    OpenAIRE

    2005-01-01

    Cognitive deficits in neuropsychiatric disorders, such as Alzheimer's disease (AD), have been closely related to cholinergic deficits. We have compared different markers of cholinergic function to assess the best biomarker of cognitive deficits associated to cholinergic hypoactivity. In post-mortem frontal cortex from AD patients, acetylcholine (ACh) levels, cholinacetyltransferase (ChAT) and acetylcholinesterase (AChE) activity were all reduced compared to controls. Both ChAT and AChE activi...

  14. Hormonal and cholinergic influences on pancreatic lysosomal and digestive enzymes in rats.

    Science.gov (United States)

    Evander, A; Ihse, I; Lundquist, I

    1983-01-01

    Hormonal and cholinergic influences on lysosomal and digestive enzyme activities in pancreatic tissue were studied in normal adult rats. Hormonal stimulation by the cholecystokinin analogue, caerulein, induced a marked enhancement of the activities of cathepsin D and N-acetyl-beta-D-glucosaminidase in pancreatic tissue, whereas the activities of amylase and lipase tended to decrease. Acid phosphatase activity was not affected. Further, caerulein was found to induce a significant increase of cathepsin D output in bile-pancreatic juice. This output largely parallelled that of amylase. Cholinergic stimulation by the muscarinic agonist carbachol, at a dose level giving the same output of amylase as caerulein, did not affect pancreatic activities of cathepsin D and N-acetyl-beta-D-glucosaminidase. Further, cholinergic stimulation induced an increase of amylase activity and a slight decrease of acid phosphatase activity in pancreatic tissue. Lipase activity was not affected. No apparent effect on cathepsin D output in bile-pancreatic juice was encountered after cholinergic stimulation. The activities of neither the digestive nor the lysosomal enzymes were influenced by the administration of secretin. The results suggest a possible lysosomal involvement in caerulein-induced secretion and/or inactivation of pancreatic digestive enzymes, whereas cholinergic stimulation seems to act through different mechanisms.

  15. Alpha-lipoic acid-mediated activation of muscarinic receptors improves hippocampus- and amygdala-dependent memory.

    Science.gov (United States)

    Mahboob, Aamra; Farhat, Syeda Mehpara; Iqbal, Ghazala; Babar, Mustafeez Mujtaba; Zaidi, Najam-us-Sahar Sadaf; Nabavi, Seyed Mohammad; Ahmed, Touqeer

    2016-04-01

    Aluminum (Al) is a neurotoxic agent which readily crosses the blood-brain-barrier (BBB) and accumulates in the brain leading to neurodegenerative disorders, characterised by cognitive impairment. Alpha-lipoic acid (ALA) is an antioxidant and has a potential to improve cognitive functions. This study aimed to evaluate the neuroprotective effect of ALA in AlCl3-induced neurotoxicity mouse model. Effect of ALA (25mg/kg/day) was evaluated in the AlCl3-induced neurotoxicity (AlCl3 150 mg/kg/day) mouse model on learning and memory using behaviour tests and on the expression of muscarinic receptor genes (using RT-PCR), in hippocampus and amygdala. Following ALA treatment, the expression of muscarinic receptor genes M1, M2 and choline acetyltransferase (ChaT) were significantly improved (pnovelty preference (p<0.001) comparative to the AlCl3-treated group. Fear extinction memory was remarkably restored (p<0.001) in ALA-treated group demonstrated by reduced freezing response as compared to the AlCl3-treated group which showed higher freezing. In-silico analysis showed that racemic mixture of ALA has higher binding affinity for M1 and M2 compared to acetylcholine. These novel findings highlight the potential role of ALA in cognitive functions and cholinergic system enhancement thus presenting it an enviable therapeutic candidate for the treatment of neurodegenerative disorders.

  16. Postlesion estradiol treatment increases cortical cholinergic innervations via estrogen receptor-α dependent nonclassical estrogen signaling in vivo.

    Science.gov (United States)

    Koszegi, Zsombor; Szego, Éva M; Cheong, Rachel Y; Tolod-Kemp, Emeline; Ábrahám, István M

    2011-09-01

    17β-Estradiol (E2) treatment exerts rapid, nonclassical actions via intracellular signal transduction system in basal forebrain cholinergic (BFC) neurons in vivo. Here we examined the effect of E2 treatment on lesioned BFC neurons in ovariectomized mice and the role of E2-induced nonclassical action in this treatment. Mice given an N-methyl-d-aspartic acid (NMDA) injection into the substantia innominata-nucleus basalis magnocellularis complex (SI-NBM) exhibited cholinergic cell loss in the SI-NBM and ipsilateral cholinergic fiber loss in the cortex. A single injection of E2 after NMDA lesion did not have an effect on cholinergic cell loss in the SI-NBM, but it restored the ipsilateral cholinergic fiber density in the cortex in a time- and dose-dependent manner. The most effective cholinergic fiber restoration was observed with 33 ng/g E2 treatment at 1 h after NMDA lesion. The E2-induced cholinergic fiber restoration was absent in neuron-specific estrogen receptor-α knockout mice in vivo. Selective activation of nonclassical estrogen signaling in vivo by estren induced E2-like restorative actions. Selective blockade of the MAPK or protein kinase A pathway in vivo prevented E2's ability to restore cholinergic fiber loss. Finally, studies in intact female mice revealed an E2-induced restorative effect that was similar to that of E2-treated ovariectomized mice. These observations demonstrate that a single E2 treatment restores the BFC fiber loss in the cortex, regardless of endogenous E2 levels. They also reveal the critical role of nonclassical estrogen signaling via estrogen receptor-α and protein kinase A-MAPK pathways in E2-induced restorative action in the cholinergic system in vivo.

  17. Quality Improvement of an Acid Treated Fuel Oil

    Directory of Open Access Journals (Sweden)

    Elizabeth Jumoke ETERIGHO

    2008-06-01

    Full Text Available The work on the quality improvement of fuel oil using acid treatment was carried out. The improvement of the fuel oil was done using sulphuric acid to remove contaminants. Sulphuric acid at different concentrations were mixed with the oil and kept at 45°C for four hours in the agitator vessel to allow reaction to take place. Acidic sludge was then drained off from the agitator and the oil was neutralized with sodium hydroxide. Centrifugation operation was used to extract the sulphonate dispersed in the oil. The treated and untreated oils were characterized for various properties and the results showed that the viscosity, total sulphur of fuel oil decreased from 6.0 to before 5.0 cst after acid treatment and 2.57 to 1.2225% w/w respectively while the flash point increased from 248 to 264°F. The water and sediment content increased from trace before to 0.6 after treatment. In addition, the calorific value increased from initial value of 44,368 to 44,805 and 44,715 kJ/kg at 50% and 75% conc. H2SO4 while decreasing with 85% and 90% conc. H2SO4. However, both carbon residue and ash content decreases with an increase in acid concentration.

  18. GABAERGIC MODULATION OF STRIATAL CHOLINERGIC INTERNEURONS - AN IN-VIVO MICRODIALYSIS STUDY

    NARCIS (Netherlands)

    DEBOER, P; WESTERINK, BHC

    1994-01-01

    Striatal cholinergic interneurons have been shown to receive input from striatal gamma-aminobutyric acid (GABA)-containing cell elements. GABA is known to act on two different types of receptors, the GABA(A) and the GABA(B) receptor. Using in vivo microdialysis, we have studied the effect of intrast

  19. Fish oil supplementation improves docosahexaenoic acid status of malnourished infants

    NARCIS (Netherlands)

    Smit, EN; Oelen, EA; Seerat, E; Boersma, ER; Muskiet, FAJ

    2000-01-01

    Aim-To investigate whether the low docosahexaenoic acid (DHA) status of malnourished, mostly breast fed, Pakistani children can be improved by fish oil (FO) supplementation. Methods-Ten malnourished children (aged 8-30 months) received 500 mg FO daily for nine weeks. The supplement contained 62.8 mo

  20. Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate.

    Science.gov (United States)

    Xie, Rui; Tu, Maobing; Wu, Yonnie; Adhikari, Sushil

    2011-04-01

    5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase. The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did.

  1. Improved simultaneous gas-chromatographic analysis for homovanillic acid and vanillylmandelic acid in urine.

    Science.gov (United States)

    Leiendecker-Foster, C; Freier, E F

    1981-12-01

    We describe an improved gas-chromatographic method for the simultaneous quantitation of the catecholamine metabolites, homovanillic acid (3-methoxy-4-hydroxyphenylacetic acid) and vanillylmandelic acid (3-methoxy-4-hydroxymandelic acid). Our improvements in the method of Muskiet et al. (Clin. Chem. 23: 863, 1977) include a shorter program time and a longer silylation interval. Recovery and precision data obtained by this improved technique are similar to those of Muskiet et al. Vanillylmandelic acid results (y) were compared with those by the method of Pisano et al. (Clin. Chim. Acta 7: 285, 1962). The relation is expressed by the equation y = 0.52 + 1.05x (Sy . x = 2.33 mg/24 h and r = 0.997). Results for homovanillic acid (y) were compared with those by the method of Knight and Haymond (Clin. Chem. 23: 2007, 1977); the equation was y = 0.84 + 0.90x (Sy . x = 2.04 and r = 0.97). Retention times are also reported for several phenolic acids and other related compounds found in urine.

  2. Cholinergic regulation of the vasopressin neuroendocrine system

    Energy Technology Data Exchange (ETDEWEB)

    Michels, K.M.

    1987-01-01

    To clarify the physical and functional relationship between the cholinergic system, and the neurodocrine cells of the supraoptic nucleus, a combination of experiments on receptor binding, localization and function were carried out. The putative nicotinic receptor probe (/sup 125/I)alpha bungarotoxin ((/sup 125/I)alpha BTX) bound with high affinity and specificity to the vasopressin and oxytocin magnocellular neurons of the supraoptic nucleus, nucleus circularis, and paraventricular nucleus. Binding of (/sup 125/I)alpha BTX within the neural lobe was very low. In contrast, the muscarinic cholinergic receptor probe (/sup 3/H)quinuclidinylbenzilate ((/sup 3/H)QNB) did not bind to magnocellular vasopressin and oxytocin cell groups. The median eminence, which contains the neurosecretory axons, and the neural lobe of the pituitary contain low levels of (/sup 3/H)QNB binding. The physiological significance of these cholinergic receptors in regulation of vasopressin release was tested using an in vitro preparation of the supraoptic - neural lobe system.

  3. Internal cholinergic regulation of learning and recall in a model of olfactory processing

    Directory of Open Access Journals (Sweden)

    Licurgo Benemann Almeida

    2016-11-01

    Full Text Available In the olfactory system, cholinergic modulation has been associated with contrast modulation and changes in receptive fields in the olfactory bulb, as well the learning of odor associations in olfactory cortex. Computational modeling and behavioral studies suggest that cholinergic modulation could improve sensory processing and learning while preventing pro-active interference when task demands are high. However, how sensory inputs and/or learning regulate incoming modulation has not yet been elucidated. We here use a computational model of the olfactory bulb, piriform cortex (PC and horizontal limb of the diagonal band of Broca (HDB to explore how olfactory learning could regulate cholinergic inputs to the system in a closed feedback loop. In our model, the novelty of an odor is reflected in firing rates and sparseness of cortical neurons in response to that odor and these firing rates can directly regulate learning in the system by modifying cholinergic inputs to the system. In the model, cholinergic neurons reduce their firing in response to familiar odors – reducing plasticity in the PC, but increase their firing in response to novel odor – increasing PC plasticity. Recordings from HDB neurons in awake behaving rats reflect predictions from the model by showing that a subset of neurons decrease their firing as an odor becomes familiar.

  4. Rabbit Forebrain cholinergic system : Morphological characterization of nuclei and distribution of cholinergic terminals in the cerebral cortex and hippocampus

    NARCIS (Netherlands)

    Varga, C; Hartig, W; Grosche, J; Luiten, PGM; Seeger, J; Brauer, K; Harkany, T; Härtig, Wolfgang; Keijser, Jan N.

    2003-01-01

    Although the rabbit brain, in particular the basal forebrain cholinergic system, has become a common model for neuropathological changes associated with Alzheimer's disease, detailed neuroanatomical studies on the morphological organization of basal forebrain cholinergic nuclei and on their output p

  5. The cholinergic system, circadian rhythmicity, and time memory

    NARCIS (Netherlands)

    Hut, R. A.; Van der Zee, E. A.

    2011-01-01

    This review provides an overview of the interaction between the mammalian cholinergic system and circadian system, and its possible role in time memory. Several studies made clear that circadian (daily) fluctuations in acetylcholine (ACh) release, cholinergic enzyme activity and cholinergic receptor

  6. Postnatal lead exposure and the cholinergic system: effects on cholinergically mediated behaviors and cholinergic development and plasticity in the hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Alfano, D.P.

    1982-01-01

    A review of previous evidence suggested the possibility of a functional association between the behavioral effect of early lead (Pb) exposure, hippocampal damage and cholinergic deficiency. To further assess this possibility, Long-Evans hooded rat pups were exposed to Pb for the first 25 postnatal days via the maternal milk. Beginning at 65 days of age, animals were tested on behavioral tasks sensitive to both Pb exposure and cholinergic deficiency. Exposure to both levels of Pb impaired passive avoidance acquisition and produced lower rates of spontaneous alternation. The anticholinergic scopolamine (0.4 mg/kg) impaired passive avoidance acquisition, lowered the rate of spontaneous alternation and decreased open field activity scores in control animals. At 30 days of age, the brains of High Pb and control animals were processed for acetylcholinesterase (AChE) histochemistry. Morphometric evaluation of the molecular layer of the hippocampal dentate gyrus indicated no effects of Pb on the development of the cholinergic innervation of this brain region. The results provide strong evidence for the involvement of deficient cholinergic functioning in the behavioral changes observed following postnatal Pb exposure. Further, these findings indicate that a decrease in neuroanatomical plasticity may be a critical brain mechanism underlying the learning deficits observed following exposure to Pb.

  7. Phytic acid reduction in soy protein improves zinc bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.R.; Wong, M.S.; Burns, R.A.; Erdman, J.W. Jr. (Univ. of Illinois, Urbana (United States) Mead Johnson Research Center, Evansville, IN (United States))

    1991-03-15

    The objective of this study was to confirm previous studies that have suggested that reduction of phytic acid in soy improved zinc bioavailability (BV). Two commercially-produced soybean isolates containing either a normal phytic acid level or a reduced level were formulated into diets so as to provide 6 or 9 ppm zinc. Control diets were egg white protein-based and contained 3, 6 or 9 ppm zinc from zinc carbonate. Weanling male rats were fed these diets for 21 days and food intake and weight gain monitored. Slope ratio analysis of total tibia zinc content compared to total zinc intake revealed that zinc BV from reduced phytic acid soy isolate-containing diets was indistinguishable from control egg white diets. In contrast, zinc BV from normal soy isolate diets was significantly reduced compared to reduced phytic acid and control diets. These results coupled with other results indicate that phytic acid is the inhibitory factor in soybean products that results in reduced zinc BV.

  8. Differential effects of selective lesions of cholinergic and dopaminergic neurons on serotonin-type 1 receptors in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Quirion, R.; Richard, J.

    1987-01-01

    Serotonin (5-HT)-type1 receptor binding sites are discretely distributed in rat brain. High densities of (3H)5-HT1 binding sites are especially located in areas enriched with cholinergic and dopaminergic innervation, such as the substantia innominata/ventral pallidum, striatum, septal nuclei, hippocampus and substantia nigra. The possible association of (3H)5-HT1 binding sites with cholinergic or dopaminergic cell bodies and/or nerve fiber terminals was investigated by selective lesions of the substantia innominata/ventral pallidum-cortical and septohippocampal cholinergic pathways and the nigrostriatal dopaminergic projection. (3H)5-HT1 receptor binding sites are possibly located on cholinergic cell bodies in the ventral pallidum-cortical pathway since (3H)5-HT1 binding in the substantia innominata/ventral pallidal area was markedly decreased following kainic acid lesions. Fimbriaectomies markedly decreased (3H)5-HT1 binding in the hippocampus, suggesting the presence of 5-HT1 binding sites on cholinergic nerve fiber terminals in the septohippocampal pathway. Lesions of the nigrostriatal dopaminergic projection did not modify (3H)5-HT1 binding in the substantia nigra and the striatum, suggesting that 5-HT1 receptors are not closely associated with dopaminergic cell bodies and nerve terminals in this pathway. These results demonstrate differential association between 5-HT1 receptors and cholinergic and dopaminergic innervation in rat brain.

  9. Muscarinic signaling influences the patterning and phenotype of cholinergic amacrine cells in the developing chick retina

    Directory of Open Access Journals (Sweden)

    Fischer Andy J

    2008-02-01

    Full Text Available Abstract Background Many studies in the vertebrate retina have characterized the differentiation of amacrine cells as a homogenous class of neurons, but little is known about the genes and factors that regulate the development of distinct types of amacrine cells. Accordingly, the purpose of this study was to characterize the development of the cholinergic amacrine cells and identify factors that influence their development. Cholinergic amacrine cells in the embryonic chick retina were identified by using antibodies to choline acetyltransferase (ChAT. Results We found that as ChAT-immunoreactive cells differentiate they expressed the homeodomain transcription factors Pax6 and Islet1, and the cell-cycle inhibitor p27kip1. As differentiation proceeds, type-II cholinergic cells, displaced to the ganglion cell layer, transiently expressed high levels of cellular retinoic acid binding protein (CRABP and neurofilament, while type-I cells in the inner nuclear layer did not. Although there is a 1:1 ratio of type-I to type-II cells in vivo, in dissociated cell cultures the type-I cells (ChAT-positive and CRABP-negative out-numbered the type-II cells (ChAT and CRABP-positive cells by 2:1. The relative abundance of type-I to type-II cells was not influenced by Sonic Hedgehog (Shh, but was affected by compounds that act at muscarinic acetylcholine receptors. In addition, the abundance and mosaic patterning of type-II cholinergic amacrine cells is disrupted by interfering with muscarinic signaling. Conclusion We conclude that: (1 during development type-I and type-II cholinergic amacrine cells are not homotypic, (2 the phenotypic differences between these subtypes of cells is controlled by the local microenvironment, and (3 appropriate levels of muscarinic signaling between the cholinergic amacrine cells are required for proper mosaic patterning.

  10. Rabbit forebrain cholinergic system: morphological characterization of nuclei and distribution of cholinergic terminals in the cerebral cortex and hippocampus.

    Science.gov (United States)

    Varga, Csaba; Härtig, Wolfgang; Grosche, Jens; Keijser, Jan; Luiten, Paul G M; Seeger, Johannes; Brauer, Kurt; Harkany, Tibor

    2003-06-09

    Although the rabbit brain, in particular the basal forebrain cholinergic system, has become a common model for neuropathological changes associated with Alzheimer's disease, detailed neuroanatomical studies on the morphological organization of basal forebrain cholinergic nuclei and on their output pathways are still awaited. Therefore, we performed quantitative choline acetyltransferase (ChAT) immunocytochemistry to localize major cholinergic nuclei and to determine the number of respective cholinergic neurons in the rabbit forebrain. The density of ChAT-immunoreactive terminals in layer V of distinct neocortical territories and in hippocampal subfields was also measured. Another cholinergic marker, the low-affinity neurotrophin receptor (p75(NTR)), was also employed to identify subsets of cholinergic neurons. Double-immunofluorescence labeling of ChAT and p75(NTR), calbindin D-28k (CB), parvalbumin, calretinin, neuronal nitric oxide synthase (nNOS), tyrosine hydroxylase, or substance P was used to elucidate the neuroanatomical borders of cholinergic nuclei and to analyze the neurochemical complexity of cholinergic cell populations. Cholinergic projection neurons with heterogeneous densities were found in the medial septum, vertical and horizontal diagonal bands of Broca, ventral pallidum, and magnocellular nucleus basalis (MBN)/substantia innominata (SI) complex; cholinergic interneurons were observed in the caudate nucleus, putamen, accumbens nucleus, and olfactory tubercule, whereas the globus pallidus was devoid of cholinergic nerve cells. Cholinergic interneurons were frequently present in the hippocampus and to a lesser extent in cerebral cortex. Cholinergic projection neurons, except those localized in SI, abundantly expressed p75(NTR), and a subset of cholinergic neurons in posterior MBN was immunoreactive for CB and nNOS. A strict laminar distribution pattern of cholinergic terminals was recorded both in the cerebral cortex and in CA1-CA3 and dentate gyrus

  11. Reducing cholinergic constriction: the major reversible mechanism in COPD

    Directory of Open Access Journals (Sweden)

    V. Brusasco

    2006-12-01

    Full Text Available The airway narrowing in chronic obstructive pulmonary disease (COPD has often been misunderstood as being irreversible. However, a large proportion of patients with COPD do respond to bronchodilator agents with significant changes in lung function. Unlike in asthma, abnormalities in airway smooth muscle structure or function are not believed to play a key role in COPD airway narrowing. Although there are only limited data suggesting that cholinergic tone may be increased in COPD, the well-documented efficacy of antimuscarinic agents in increasing airway calibre suggests that cholinergic tone represents the major reversible component of airflow obstruction in these patients. Airway wall thickening and loss of airway-to-parenchyma interdependence are nonreversible components of airflow obstruction in COPD that may amplify the effect of changes in airway smooth muscle tone. Thus, keeping airway smooth muscle tone to a minimum might offer patients long-lasting airway patency and protection against breathlessness, which is the major complaint of patients with COPD. Receptor antagonism by anticholinergic agents can achieve effective relaxation of airway smooth muscle in COPD. According to a classical view of cholinergic receptor function and distribution, the ideal anticholinergic bronchodilator would be one that blocks both M1 and M3 receptors, which mediate airway smooth muscle contraction, but not the M2 receptor, stimulation of which reduces acetylcholine release from vagus nerve endings and prevents the airway smooth muscle from contracting by excessive increments. Agents with such pharmacodynamic selectivity are not available, but effective and prolonged inhibition of airway smooth muscle tone has been obtained with tiotropium, which binds to all three major muscarinic receptor subtypes, but for much longer to M3 than to M2 receptors. Recent data show that long-term treatment with tiotropium for 1 yr helps sustain 24-h airway patency. This

  12. Functional and laminar dissociations between muscarinic and nicotinic cholinergic neuromodulation in the tree shrew primary visual cortex.

    Science.gov (United States)

    Bhattacharyya, Anwesha; Bießmann, Felix; Veit, Julia; Kretz, Robert; Rainer, Gregor

    2012-04-01

    Acetylcholine is an important neuromodulator involved in cognitive function. The impact of cholinergic neuromodulation on computations within the cortical microcircuit is not well understood. Here we investigate the effects of layer-specific cholinergic drug application in the tree shrew primary visual cortex during visual stimulation with drifting grating stimuli of varying contrast and orientation. We describe differences between muscarinic and nicotinic cholinergic effects in terms of both the layer of cortex and the attribute of visual representation. Nicotinic receptor activation enhanced the contrast response in the granular input layer of the cortex, while tending to reduce neural selectivity for orientation across all cortical layers. Muscarinic activation modestly enhanced the contrast response across cortical layers, and tended to improve orientation tuning. This resulted in highest orientation selectivity in the supra- and infragranular layers, where orientation selectivity was already greatest in the absence of pharmacological stimulation. Our results indicate that laminar position plays a crucial part in functional consequences of cholinergic stimulation, consistent with the differential distribution of cholinergic receptors. Nicotinic receptors function to enhance sensory representations arriving in the cortex, whereas muscarinic receptors act to boost the cortical computation of orientation tuning. Our findings suggest close homology between cholinergic mechanisms in tree shrew and primate visual cortices.

  13. Lead/acid batteries in systems to improve power quality

    Science.gov (United States)

    Taylor, P.; Butler, P.; Nerbun, W.

    Increasing dependence on computer technology is driving needs for extremely high-quality power to prevent loss of information, material, and workers' time that represent billions of dollars annually. This cost has motivated commercial and Federal research and development of energy storage systems that detect and respond to power-quality failures in milliseconds. Electrochemical batteries are among the storage media under investigation for these systems. Battery energy storage systems that employ either flooded lead/acid or valve-regulated lead/acid battery technologies are becoming commercially available to capture a share of this emerging market. Cooperative research and development between the US Department of Energy and private industry have led to installations of lead/acid-based battery energy storage systems to improve power quality at utility and industrial sites and commercial development of fully integrated, modular battery energy storage system products for power quality. One such system by AC Battery Corporation, called the PQ2000, is installed at a test site at Pacific Gas and Electric Company (San Ramon, CA, USA) and at a customer site at Oglethorpe Power Corporation (Tucker, GA, USA). The PQ2000 employs off-the-shelf power electronics in an integrated methodology to control the factors that affect the performance and service life of production-model, low-maintenance, flooded lead/acid batteries. This system, and other members of this first generation of lead/acid-based energy storage systems, will need to compete vigorously for a share of an expanding, yet very aggressive, power quality market.

  14. Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation.

    Science.gov (United States)

    Sasaki, Kazunori; El Omri, Abdelfatteh; Kondo, Shinji; Han, Junkyu; Isoda, Hiroko

    2013-02-01

    Rosmarinus officinalis (R. officinalis), a culinary aromatic and medicinal plant, is very rich in polyphenols and flavonoids with high antioxidant properties. This plant was reported to exert multiple benefits for neuronal system and alleviate mood disorder. In our previous study, we demonstrated that R. officinalis and its active compounds, luteolin (Lut), carnosic acid (CA), and rosmarinic acid (RA), exhibited neurotrophic effects and improved cholinergic functions in PC12 cells in correlation with mitogen-activated protein kinase (MAPK), ERK1/2 signaling pathway. The current study was conducted to evaluate and understand the anti-depressant effect of R. officinalis using tail suspension test (TST) in ICR mice and PC12 cells as in vitro neuronal model. Proteomics analysis of PC12 cells treated with R. officinalis polyphenols (ROP) Lut, CA, and RA revealed a significant upregulation of tyrosine hydroxylase (TH) and pyruvate carboxylase (PC) two major genes involved in dopaminergic, serotonergic and GABAergic pathway regulations. Moreover, ROP were demonstrated to protect neuronal cells against corticosterone-induced toxicity. These results were concordant with decreasing immobility time in TST and regulation of several neurotransmitters (dopamine, norepinephrine, serotonin and acetylcholine) and gene expression in mice brain like TH, PC and MAPK phosphatase (MKP-1). To the best of our knowledge this is the first evidence to contribute to the understanding of molecular mechanism behind the anti-depressant effect of R. officinalis and its major active compounds.

  15. Phosphonic Acid-Functionalized Polyurethane Dispersions with Improved Adhesion Properties.

    Science.gov (United States)

    Breucker, Laura; Landfester, Katharina; Taden, Andreas

    2015-11-11

    A facile route to phosphorus-functionalized polyurethane dispersions (P-PUDs) with improved adhesion properties is presented. (Bis)phosphonic acid moieties serve as adhesion promoting sites that are covalently attached via an end-capping reaction to isocyanate-reactive polyurethane particles under aqueous conditions. The synthetic approach circumvents solubility issues, offers great flexibility in terms of polyurethane composition, and allows for the synthesis of semicrystalline systems with thermomechanical response due to reversible physical cross-linking. Differential scanning calorimetry (DSC) is used to investigate the effect of functionalization on the semicrystallinity. The end-capping conversion was determined via inductively-coupled plasma optical emission spectroscopy (ICP-OES) and was surprisingly found to be almost independent of the stoichiometry of reaction, suggesting an adsorption-dominated process. Particle charge detection (PCD) experiments reveal that a dense surface coverage of phosphonic acid groups can be attained and that, at high functionalization degrees, the phosphonic adhesion moieties are partially dragged inside the colloidal P-PUD particle. Quartz crystal microbalance with dissipation (QCMD) investigations conducted with hydroxyapatite (HAP) and stainless steel sensors as model surfaces show a greatly enhanced affinity of the aqueous P-PUDs and furthermore indicate polymer chain rearrangements and autonomous film formation under wet conditions. Due to their facile synthesis, significantly improved adhesion, and variable film properties, P-PUD systems such as the one described here are believed to be of great interest for multiple applications, e.g., adhesives, paints, anticorrosion, or dentistry.

  16. Slagment Cement Improve the Cement Resistance Toward Acids Attack During Acidizing Treatment

    Directory of Open Access Journals (Sweden)

    Nik Khairul Irfan Bin Nik Ab. Lah.

    2013-05-01

    Full Text Available Acidizing treatment in past experience shows several zonal isolation problems after the treatment. This study presents the effect of the acid treatment toward class G cement and slagment cement as the improvement method to improve the cement resistance toward the acid. Lab experiments were conducted by immerge the respective cement cubes into 12% HCl/3% HF solution for 40 min before several analysis were conducted. Based on the result, the mass loss and compressive strength loss of the cement cubes decrease as the curing temperature and pressure increase due to more evenly distributed cement chemical composition crystal in high curing condition as shown in Scanning Electron Microscopy (SEM analysis. From X-Ray Diffraction (XRD and X-Ray Fluorescence (XRF analysis, only the first layer of the cement cubes shows chemical component change due to the reaction between the acid. This study found that, replacing class G cement to slagment cement can reduce the mass loss and compressive strength loss up to 72% and 82%, respectively.

  17. Central cholinergic regulation of respiration: nicotinic receptors

    Institute of Scientific and Technical Information of China (English)

    Xuesi M SHAO; Jack L FELDMAN

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed in brainstem and spinal cord regions involved in the control of breathing. These receptors mediate central cholinergic regulation of respiration and effects of the exogenous ligand nicotine on respiratory pattern. Activation of a4* nAChRs in the preBotzinger Complex (preBotC), an essential site for normal respiratory rhythm generation in mammals, modulates excitatory glutamatergic neurotransmission and depolarizes preBotC inspiratory neurons, leading to increases in respiratory frequency. nAChRs are also present in motor nuclei innervating respiratory muscles. Activation of post- and/or extra-synaptic a4* nAChRs on hypoglossal (XII) motoneurons depolarizes these neurons, potentiating tonic and respiratory-related rhythmic activity. As perinatal nicotine exposure may contribute to the pathogenesis of sudden infant death syndrome (SIDS), we discuss the effects of perinatal nicotine exposure on development of the cholinergic and other neurotransmitter systems involved in control of breathing. Advances in understanding of the mechanisms underlying central cholinergic/nicotinic modulation of respiration provide a pharmacological basis for exploiting nAChRs as therapeutic targets for neurological disorders related to neural control of breathing such as sleep apnea and SIDS.

  18. Improved texture of polycrystalline hexaferrites using gluconic acid dispersant

    Science.gov (United States)

    Obi, O.; Burns, L.; Andalib, P.; Chang, H.; Chen, Y.; Harris, V. G.

    2014-05-01

    In this work, gluconic acid (GA), a low molecular weight, inexpensive and environmentally friendly solvent, was systematically investigated to determine its viability in enhancing the orientation of ferrite particles. Submicron-scale barium hexaferrite (BaM) powders were thoroughly dispersed via sonication for 30 min in various concentrations of GA (0, 2, 2.5, 5, 10, and 25 vol. %) in deionized water. An increase of ˜18% in squareness (SQ) and ˜69% in energy product ((BH)max) was observed with increase in GA concentration from 0 to 5 vol. %. However, further increase in GA concentration led to a decrease in SQ and (BH)max confirming that the effect of GA stems from an improved viscosity of the dispersant, which balances the freely rotating and stationary particles under dynamic compaction within a magnetic field.

  19. Long-term effects of cholinergic basal forebrain lesions on neuropeptide Y and somatostatin immunoreactivity in rat neocortex

    NARCIS (Netherlands)

    Gaykema, R.P.A.; Compaan, J.C.; Nyakas, C.; Horvath, E.; Luiten, P.G.M.

    1989-01-01

    The effect of cholinergic basal forebrain lesions on immunoreactivity to somatostatin (SOM-i) and neuropeptide-Y (NPY-i) was investigated in the rat parietal cortex, 16-18 months after multiple bilateral ibotenic acid injections in the nucleus basalis complex. As a result of the lesion, the choliner

  20. Rabbit Forebrain cholinergic system: Morphological characterization of nuclei and distribution of cholinergic terminals in the cerebral cortex and hippocampus

    OpenAIRE

    C. Varga; Hartig, W.; Grosche, J.; Luiten, PGM; Seeger, J.; K. Brauer; Harkany, T.; Härtig, Wolfgang; Keijser, Jan N.

    2003-01-01

    Although the rabbit brain, in particular the basal forebrain cholinergic system, has become a common model for neuropathological changes associated with Alzheimer's disease, detailed neuroanatomical studies on the morphological organization of basal forebrain cholinergic nuclei and on their output pathways are still awaited. Therefore, we performed quantitative choline acetyltransferase (ChAT) immunocytochemistry to localize major cholinergic nuclei and to determine the number of respective c...

  1. Reduction of brain kynurenic acid improves cognitive function.

    Science.gov (United States)

    Kozak, Rouba; Campbell, Brian M; Strick, Christine A; Horner, Weldon; Hoffmann, William E; Kiss, Tamas; Chapin, Douglas S; McGinnis, Dina; Abbott, Amanda L; Roberts, Brooke M; Fonseca, Kari; Guanowsky, Victor; Young, Damon A; Seymour, Patricia A; Dounay, Amy; Hajos, Mihaly; Williams, Graham V; Castner, Stacy A

    2014-08-06

    The elevation of kynurenic acid (KYNA) observed in schizophrenic patients may contribute to core symptoms arising from glutamate hypofunction, including cognitive impairments. Although increased KYNA levels reduce excitatory neurotransmission, KYNA has been proposed to act as an endogenous antagonist at the glycine site of the glutamate NMDA receptor (NMDAR) and as a negative allosteric modulator at the α7 nicotinic acetylcholine receptor. Levels of KYNA are elevated in CSF and the postmortem brain of schizophrenia patients, and these elevated levels of KYNA could contribute to NMDAR hypofunction and the cognitive deficits and negative symptoms associated with this disease. However, the impact of endogenously produced KYNA on brain function and behavior is less well understood due to a paucity of pharmacological tools. To address this issue, we identified PF-04859989, a brain-penetrable inhibitor of kynurenine aminotransferase II (KAT II), the enzyme responsible for most brain KYNA synthesis. In rats, systemic administration of PF-04859989 dose-dependently reduced brain KYNA to as little as 28% of basal levels, and prevented amphetamine- and ketamine-induced disruption of auditory gating and improved performance in a sustained attention task. It also prevented ketamine-induced disruption of performance in a working memory task and a spatial memory task in rodents and nonhuman primates, respectively. Together, these findings support the hypotheses that endogenous KYNA impacts cognitive function and that inhibition of KAT II, and consequent lowering of endogenous brain KYNA levels, improves cognitive performance under conditions considered relevant for schizophrenia.

  2. Chlorogenic acid from honeysuckle improves hepatic lipid dysregulation and modulates hepatic fatty acid composition in rats with chronic endotoxin infusion.

    Science.gov (United States)

    Zhou, Yan; Ruan, Zheng; Wen, Yanmei; Yang, Yuhui; Mi, Shumei; Zhou, Lili; Wu, Xin; Ding, Sheng; Deng, Zeyuan; Wu, Guoyao; Yin, Yulong

    2016-03-01

    Chlorogenic acid as a natural hydroxycinnamic acid has protective effect for liver. Endotoxin induced metabolic disorder, such as lipid dysregulation and hyperlipidemia. In this study, we investigated the effect of chlorogenic acid in rats with chronic endotoxin infusion. The Sprague-Dawley rats with lipid metabolic disorder (LD group) were intraperitoneally injected endotoxin. And the rats of chlorogenic acid-LD group were daily received chlorogenic acid by intragastric administration. In chlorogenic acid-LD group, the area of visceral adipocyte was decreased and liver injury was ameliorated, as compared to LD group. In chlorogenic acid-LD group, serum triglycerides, free fatty acids, hepatic triglycerides and cholesterol were decreased, the proportion of C20:1, C24:1 and C18:3n-6, Δ9-18 and Δ6-desaturase activity index in the liver were decreased, and the proportion of C18:3n-3 acid was increased, compared to the LD group. Moreover, levels of phosphorylated AMP-activated protein kinase, carnitine palmitoyltransferase-I, and fatty acid β-oxidation were increased in chlorogenic acid-LD group compared to LD rats, whereas levels of fatty acid synthase and acetyl-CoA carboxylase were decreased. These findings demonstrate that chlorogenic acid effectively improves hepatic lipid dysregulation in rats by regulating fatty acid metabolism enzymes, stimulating AMP-activated protein kinase activation, and modulating levels of hepatic fatty acids.

  3. Utilisation of coal ash to improve acid soil

    Directory of Open Access Journals (Sweden)

    Shigeru Kato

    2004-09-01

    Full Text Available The study on utilization of coal ash to improve acid soil was carried out in a greenhouse at the Land Development Regional Office 1, Pathum Thani Province, Central Thailand, from January-May 2003. Fly ash mixture (fly ash plus gypsum and lime at the proportion 5:4:1 and clinker ash mixture (clinker ash plus gypsum and lime at the proportion 5:4:1 were used as soil amendments at varying rates i.e., 0, 6.25,12.5, 18.75 and 25 t/ha to improve the soil. The aim of this study was to determine the effect of application of coal ash on acid soil and the growth of a vegetable (Chinese kale. Chinese kale cultivars were planted in a randomized complete block design with three replications. Pak Chong soil series (Ultisols was used as the growth medium. Twenty-day-old seedlings were transplanted in 270 pots (two plants per pot containing acid soil with different treatments of coal ash mixture which were as follows: 1 control, 2 fly ash mixture 6.25 t/ha, 3 fly ash mixture 12.5 t/ha, 4 fly ash mixture 18.75 t/ha, 5 fly ash mixture 25 t/ha, 6 clinker ash mixture 6.25 t/ha, 7 clinker ash mixture 12.5 t/ha, 8 clinker ash mixture 18.75 t/ha and 9 clinker ash mixture 25 t/ha. Chemical fertilizers were applied at the rate of 250 kg/ha using a grade of 15-15-15 of N, P and K, respectively. Plants were harvested 40 days after transplanting. Among the treatments, application of fly ashmixture at a rate of 25t/ha (4t/rai substantially increased soil pH up to 5.7. Fly ash was found more effective than clinker ash in increasing soil pH. The highest yield of Chinese kale was also obtained when fly ash mixture was applied at a rate of 25 t/ha followed by fly ash mixture at 18.75 t/ha and clinker ash mixture at 18.75 t/ha with an average yield per plant of 4.980, 3.743 and 3.447 grams, respectively. It can be concluded that the application of coal ash mixture, either fly- or clinker ash, at 18.75-25 t/ha (3-4 t/rai was the most effective in terms of plant yield. The use of

  4. Improved physical stability of amorphous state through acid base interactions.

    Science.gov (United States)

    Telang, Chitra; Mujumdar, Siddharthya; Mathew, Michael

    2009-06-01

    To investigate role of specific interactions in aiding formation and stabilization of amorphous state in ternary and binary dispersions of a weakly acidic drug. Indomethacin (IMC), meglumine (MU), and polyvinyl pyrollidone (PVP) were the model drug, base, and polymer, respectively. Dispersions were prepared using solvent evaporation. Physical mixtures were cryogenically coground. XRPD, PLM, DSC, TGA, and FTIR were used for characterization. MU has a high crystallization tendency and is characterized by a low T(g) (17 degrees C). IMC crystallization was inhibited in ternary dispersion with MU compared to IMC/PVP alone. An amorphous state formed readily even in coground mixtures. Spectroscopic data are indicative of an IMC-MU amorphous salt and supports solid-state proton transfer. IMC-MU salt displays a low T(g) approximately 50 degrees C, but is more physically stable than IMC, which in molecular mixtures with MU, resisted crystallization even when present in stoichiometric excess of base. This is likely due to a disrupted local structure of amorphous IMC due to specific interactions. IMC showed improved physical stability on incorporating MU in polymer, in spite of low T(g) of the base indicating that chemical interactions play a dominant role in physical stabilization. Salt formation could be induced thermally and mechanically.

  5. Cholinergic interneurons control local circuit activity and cocaine conditioning.

    Science.gov (United States)

    Witten, Ilana B; Lin, Shih-Chun; Brodsky, Matthew; Prakash, Rohit; Diester, Ilka; Anikeeva, Polina; Gradinaru, Viviana; Ramakrishnan, Charu; Deisseroth, Karl

    2010-12-17

    Cholinergic neurons are widespread, and pharmacological modulation of acetylcholine receptors affects numerous brain processes, but such modulation entails side effects due to limitations in specificity for receptor type and target cell. As a result, causal roles of cholinergic neurons in circuits have been unclear. We integrated optogenetics, freely moving mammalian behavior, in vivo electrophysiology, and slice physiology to probe the cholinergic interneurons of the nucleus accumbens by direct excitation or inhibition. Despite representing less than 1% of local neurons, these cholinergic cells have dominant control roles, exerting powerful modulation of circuit activity. Furthermore, these neurons could be activated by cocaine, and silencing this drug-induced activity during cocaine exposure (despite the fact that the manipulation of the cholinergic interneurons was not aversive by itself) blocked cocaine conditioning in freely moving mammals.

  6. The basal forebrain cholinergic system in aging and dementia : Rescuing cholinergic neurons from neurotoxic amyloid-beta 42 with memantine

    NARCIS (Netherlands)

    Nyakas, Csaba; Granic, Ivica; Halmy, Laszlo G.; Banerjee, Pradeep; Luiten, Paul G. M.

    2011-01-01

    The dysfunction and loss of basal forebrain cholinergic neurons and their cortical projections are among the earliest pathological events in the pathogenesis of Alzheimer's disease (AD). The evidence pointing to cholinergic impairments come from studies that report a decline in the activity of choli

  7. [Modulation of the cholinergic system during inflammation].

    Science.gov (United States)

    Nezhinskaia, G I; Vladykin, A L; Sapronov, N S

    2008-01-01

    This review describes the effects of realization of the central and peripheral "cholinergic antiinflammatory pathway" in a model of endotoxic and anaphylactic shock. Under endotoxic shock conditions, a pharmacological correction by means of the central m-cholinomimetic action (electrical stimulation of the distal ends of nervus vagus after bilateral cervical vagotomy, surgical implantation of the stimulant devise, activation of efferent vagal neurons by means of muscarinic agonist) is directed toward the elimination of LPS-induced hypotension. During the anaphylaxis, peripheral effects of the cholinergic system induced by blocking m-AChR on the target cells (neuronal and non-neuronal lung cells) and acetylcholinesterase inhibition are related to suppression of the bronchoconstrictor response. The role of immune system in the pathogenesis of endotoxic shock is associated with the production of proinflammatory cytokines by macrophages, increase in IgM concentration, and complement activation, while the role in the pathogenesis of anaphylactic shock is associated with IgE, IgG1 augmentation. Effects of B cell stimulation may be important in hypoxia and in the prophylaxis of stress ulcers and other diseases. Plasma proteins can influence the effects of the muscarinic antagonist methacine: IgG enhance its action while albumin and CRP abolish it.

  8. Omega-3 fatty acids improve psychomotor performance via mechanism not related to nitric acid production

    Directory of Open Access Journals (Sweden)

    Marwan S. M. Al-Nimer

    2012-01-01

    Full Text Available Omega-3 fatty acids (ω-3FAs are essential polyunsaturated fats that protect the brain from cognitive impairment. It increases the activity of endothelial nitric oxide synthetase (eNOS and thereby increases the nitric acid (NO production. This study aimed to explore the effect of ω-3FAs on psychomotor performance and to relate this effect to the reactive nitrogen species. This study was conducted in Department of Pharmacology, College of Medicine, Al-Mustansiriya University in Baghdad, Iraq. Twenty healthy subjects, allocated randomly from medical college students, were participated in the single blind clinical trial. Participants were divided into two groups, each of ten subjects to receive either placebo or (ω-3FAs (750 mg single oral dose daily for 5 days. They were asked to perform psychomotor performance before and after 5 days of treatment, and venous blood was obtained for determination of serum nitric oxide (NO and peroxynitrite (ONOO. ω-3FAs treated group was significantly different from placebo-treated group in reducing choice and motor reaction times as well as the critical flicker frequency threshold. The serum levels of NO and ONOO in ω-3FAs-treated group did not significantly differ from placebo-treated group. Short term supplementation of ω-3FAs improves the psychomotor performance in young healthy subjects via a mechanism not related to the production of nitric oxide production. Inflorescence is a panicle few flowered and fruit is a capsule. The data of the results obtained were presented and discussed.

  9. Periconceptional folic acid use : Still room to improve

    NARCIS (Netherlands)

    Zetstra-van der Woude, P.A.; de Walle, H.E.; de Jong-van den Berg, L.T.

    2012-01-01

    BACKGROUND: Folic acid use before and during pregnancy prevents neural tube defects. Since 1995, six surveys have been carried out among pregnant women to measure their knowledge and use of folic acid. The results of the most recent survey in 2009 will be discussed and compared with earlier surveys.

  10. Improved synthesis of isostearic acid using zeolite catalysts

    Science.gov (United States)

    Isostearic acids are unique and important biobased products with superior properties. Unfortunately, they are not widely utilized in industry because they are produced as byproducts from a process called clay-catalyzed oligomerization of tall oil fatty acids. Generally, this clay method results in...

  11. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sugiyama, Minetaka; Akase, Shin-Pei; Nakanishi, Ryota; Kaneko, Yoshinobu; Harashima, Satoshi

    2016-10-01

    Polylactic acid plastics are receiving increasing attention for the control of atmospheric CO2 emissions. Lactic acid, the building block for polylactic acid, is produced by fermentation technology from renewable carbon sources. The yeast Saccharomyces cerevisiae, harboring the lactate dehydrogenases gene (LDH), produces lactic acid at a large scale due to its strong acid resistance, to its simple nutritional requirements and to its ease of genetic engineering. Since improvement of lactic acid resistance is correlated with an increase of lactic acid production under non-neutralizing condition, we isolated a novel gene that enhances lactic acid resistance using a multi-copy yeast genomic DNA library. In this study, we identified the ESBP6 gene, which increases lactic acid resistance when overexpressed and which encodes a protein with similarity to monocarboxylate permeases. Although ESBP6 was not induced in response to lactic acid stress, it caused weak but reproducible sensitivity to lactic acid when disrupted. Furthermore, intracellular pH in the ESBP6 overexpressing strain was higher than that in the wild-type strain under lactic acid stressed condition, suggesting that Esbp6 plays some roles in lactic acid adaptation response. The ESBP6 overexpressing strain carrying the LDH gene induced 20% increase in lactic acid production compared with the wild-type strain carrying the LDH gene under non-neutralizing conditions. These results indicate that overexpression of ESBP6 provides a novel and useful tool to improve lactic acid resistance and lactic acid production in yeast.

  12. Cholinergic systems mediate action from movement to higher consciousness.

    Science.gov (United States)

    Woolf, Nancy J; Butcher, Larry L

    2011-08-10

    There is a fundamental link between cholinergic neurotransmitter function and overt and covert actions. Major cholinergic systems include peripheral motor neurons organizing skeletal muscle movements into overt behaviors and cholinergic neurons in the basal forebrain and mesopontine regions that mediate covert actions realized as states of consciousness, arousal, selective attention, perception, and memory. Cholinergic interneurons in the striatum appear to integrate conscious and unconscious actions. Neural network models involving cholinergic neurons, as well as neurons using other neurotransmitters, emphasize connective circuitry as being responsible for both motor programs and neural correlates of higher consciousness. This, however, is only a partial description. At a more fundamental level lie intracellular mechanisms involving the cytoskeleton, which are common to both muscle contraction and neuroplastic responses in targets of central cholinergic cells attendant with higher cognition. Acetylcholine, acting through nicotinic receptors, triggers interactions between cytoskeletal proteins in skeletal muscle cells, as has been long known. There is also evidence that acetylcholine released at central sites acts through muscarinic and nicotinic receptors to initiate responses in actin and microtubule proteins. These effects and their implications for cholinergic involvement in higher cognition are explored in this review.

  13. Local cholinergic and non-cholinergic neural pathways to the rat supraoptic nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Meeker, M.L.

    1986-01-01

    An estimated two thirds of the input to the supraoptic nucleus of the rat hypothalamus (SON) including a functionally significant cholinergic innervation, arise from local sources of unknown origin. The sources of these inputs were identified utilizing Golgi-Cox, retrograde tracing, choline acetyltransferase immunocytochemistry and anterograde tracing methodologies. Multipolar Golgi impregnated neurons located dorsal and lateral to the SON extend spiney processes into the nucleus. Injections of the retrograde tracers, wheat germ agglutinin or wheat germ agglutinin-horseradish peroxidase, into the SON labeled cells bilaterally in the arcuate nucleus, and ipsilaterally in the lateral hypothalamus, anterior hypothalamus, nucleus of the diagonal band, subfornical organ, medial preoptic area, lateral preoptic area and in the region dorsolateral to the nucleus. Immunocytochemistry for choline acetyltransferase revealed cells within the ventro-caudal portion of cholinergic cell group, Ch4, which cluster dorsolateral to the SON, and extend axon- and dendrite-like processes into the SON. Cells double-labeled by choline acetyltransferase immunocytochemistry and retrograde tracer injections into the SON are localized within the same cholinergic cell group dorsolateral to the SON. Injections of the anterograde tracer, Phaseolus vulgaris-leucoagglutinin, deposited dorsolateral to the SON results in labeled pre-and post-synaptic processes within the SON. The identification and characterization of endogenous immunoglobulin within the SON and other neurons innervating areas lacking a blood-brain barrier established a novel and potentially important system for direct communication of the supraoptic cells with blood-borne constitutents.

  14. Origin of the slow afterhyperpolarization and slow rhythmic bursting in striatal cholinergic interneurons.

    Science.gov (United States)

    Wilson, Charles J; Goldberg, Joshua A

    2006-01-01

    Striatal cholinergic interneurons recorded in slices exhibit three different firing patterns: rhythmic single spiking, irregular bursting, and rhythmic bursting. The rhythmic single-spiking pattern is governed mainly by a prominent brief afterhyperpolarization (mAHP) that follows single spikes. The mAHP arises from an apamin-sensitive calcium-dependent potassium current. A slower AHP (sAHP), also present in these neurons, becomes prominent during rhythmic bursting or driven firing. Although not apamin sensitive, the sAHP is caused by a calcium-dependent potassium conductance. It is not present after blockade of calcium current with cadmium or after calcium is removed from the media or when intracellular calcium is buffered with bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. It reverses at the potassium equilibrium potential. It can be generated by subthreshold depolarizations and persists after blockade of sodium currents by tetrodotoxin. It is slow, being maximal approximately 1 s after depolarization onset, and takes several seconds to decay. It requires >300-ms depolarizations to become maximally activated. Its voltage sensitivity is sigmoidal, with a half activation voltage of -40 mV. We conclude the sAHP is a high-affinity apamin-insensitive calcium-dependent potassium conductance, triggered by calcium currents partly activated at subthreshold levels. In combination with those calcium currents, it accounts for the slow oscillations seen in a subset of cholinergic interneurons exhibiting rhythmic bursting. In all cholinergic interneurons, it contributes to the slowdown or pause in firing that follows driven activity or prolonged subthreshold depolarizations and is therefore a candidate mechanism for the pause response observed in cholinergic neurons in vivo.

  15. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Yaakov A Levine

    Full Text Available INTRODUCTION: The inflammatory reflex is a physiological mechanism through which the nervous system maintains immunologic homeostasis by modulating innate and adaptive immunity. We postulated that the reflex might be harnessed therapeutically to reduce pathological levels of inflammation in rheumatoid arthritis by activating its prototypical efferent arm, termed the cholinergic anti-inflammatory pathway. To explore this, we determined whether electrical neurostimulation of the cholinergic anti-inflammatory pathway reduced disease severity in the collagen-induced arthritis model. METHODS: Rats implanted with vagus nerve cuff electrodes had collagen-induced arthritis induced and were followed for 15 days. Animals underwent active or sham electrical stimulation once daily from day 9 through the conclusion of the study. Joint swelling, histology, and levels of cytokines and bone metabolism mediators were assessed. RESULTS: Compared with sham treatment, active neurostimulation of the cholinergic anti-inflammatory pathway resulted in a 52% reduction in ankle diameter (p = 0.02, a 57% reduction in ankle diameter (area under curve; p = 0.02 and 46% reduction overall histological arthritis score (p = 0.01 with significant improvements in inflammation, pannus formation, cartilage destruction, and bone erosion (p = 0.02, accompanied by numerical reductions in systemic cytokine levels, not reaching statistical significance. Bone erosion improvement was associated with a decrease in serum levels of receptor activator of NF-κB ligand (RANKL from 132±13 to 6±2 pg/mL (mean±SEM, p = 0.01. CONCLUSIONS: The severity of collagen-induced arthritis is reduced by neurostimulation of the cholinergic anti-inflammatory pathway delivered using an implanted electrical vagus nerve stimulation cuff electrode, and supports the rationale for testing this approach in human inflammatory disorders.

  16. GABAergic actions on cholinergic laterodorsal tegmental neurons

    DEFF Research Database (Denmark)

    Kohlmeier, K A; Kristiansen, Uffe

    2010-01-01

    (IRK) mediated this effect. Further, outward currents were never additive with those induced by application of carbachol, suggesting that they were mediated by activation of GABA(B) receptors linked to the same G(IRK) activated in these cells by muscarinic receptor stimulation. Activation of GABA(B) receptors....... Therefore, we studied the actions of GABA agonists and antagonists on cholinergic LDT cells by performing patch clamp recordings in mouse brain slices. Under conditions where detection of Cl(-) -mediated events was optimized, GABA induced gabazine (GZ)-sensitive inward currents in the majority of LDT...... neurons. Post-synaptic location of GABA(A) receptors was demonstrated by persistence of muscimol-induced inward currents in TTX and low Ca(2+) solutions. THIP, a selective GABA(A) receptor agonist with a preference for d-subunit containing GABA(A) receptors, induced inward currents, suggesting...

  17. Suppression of glucocorticoid secretion enhances cholinergic transmission in rat hippocampus.

    Science.gov (United States)

    Mizoguchi, Kazushige; Shoji, Hirotaka; Ikeda, Ryuji; Tanaka, Yayoi; Maruyama, Wakako; Tabira, Takeshi

    2008-08-15

    We previously demonstrated that suppression of glucocorticoid secretion by adrenalectomy (ADX) impaired prefrontal cortex-sensitive working memory, but not reference memory. Since the cholinergic system in the hippocampus is also involved in these memories, we examined the effects of glucocorticoid suppression on cholinergic transmission in the rat hippocampus. A microdialysis study revealed that ADX did not affect the basal acetylcholine release, but enhanced the KCl-evoked response. This enhanced response was reversed by the corticosterone replacement treatment. The extracellular choline concentrations increased under both basal and KCl-stimulated conditions in the ADX rats, and these increases were also reversed by the corticosterone replacement. These results indicate that suppression of glucocorticoid secretion enhances cholinergic transmission in the hippocampus in response to stimuli. It is possible that this enhanced cholinergic transmission may not contribute to the ADX-induced working memory impairment, but it may be involved in maintenance of reference memory.

  18. Disruption of cardiac cholinergic neurons enhances susceptibility to ventricular arrhythmias

    Science.gov (United States)

    Jungen, Christiane; Scherschel, Katharina; Eickholt, Christian; Kuklik, Pawel; Klatt, Niklas; Bork, Nadja; Salzbrunn, Tim; Alken, Fares; Angendohr, Stephan; Klene, Christiane; Mester, Janos; Klöcker, Nikolaj; Veldkamp, Marieke W.; Schumacher, Udo; Willems, Stephan; Nikolaev, Viacheslav O.; Meyer, Christian

    2017-01-01

    The parasympathetic nervous system plays an important role in the pathophysiology of atrial fibrillation. Catheter ablation, a minimally invasive procedure deactivating abnormal firing cardiac tissue, is increasingly becoming the therapy of choice for atrial fibrillation. This is inevitably associated with the obliteration of cardiac cholinergic neurons. However, the impact on ventricular electrophysiology is unclear. Here we show that cardiac cholinergic neurons modulate ventricular electrophysiology. Mechanical disruption or pharmacological blockade of parasympathetic innervation shortens ventricular refractory periods, increases the incidence of ventricular arrhythmia and decreases ventricular cAMP levels in murine hearts. Immunohistochemistry confirmed ventricular cholinergic innervation, revealing parasympathetic fibres running from the atria to the ventricles parallel to sympathetic fibres. In humans, catheter ablation of atrial fibrillation, which is accompanied by accidental parasympathetic and concomitant sympathetic denervation, raises the burden of premature ventricular complexes. In summary, our results demonstrate an influence of cardiac cholinergic neurons on the regulation of ventricular function and arrhythmogenesis. PMID:28128201

  19. Cholinergic drugs as diagnostic and therapeutic tools in affective disorders.

    Science.gov (United States)

    Berger, M; Riemann, D; Krieg, C

    1991-01-01

    The hypothesis of a significant involvement of the cholinergic system in the pathogenesis of affective disorders still lacks strong experimental support. This is mainly because of missing specific peripheral markers of the central nervous activity of the cholinergic system and the lack of specific cholinergic agonists and antagonists without severe peripheral side effects. As the direct cholinergic agonist RS 86 seems to be more suitable because of its minor side effects, long half-life and oral applicability, it was tested for its antimanic property and its effect on the hypothalamo-pituitary adrenal system and the rapid eye movement (REM) sleep-generating system. RS 86 exhibited antimanic and REM sleep-inducing properties, but failed to stimulate the cortisol system.

  20. Striatal cholinergic interneurons Drive GABA release from dopamine terminals.

    Science.gov (United States)

    Nelson, Alexandra B; Hammack, Nora; Yang, Cindy F; Shah, Nirao M; Seal, Rebecca P; Kreitzer, Anatol C

    2014-04-01

    Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically driven IPSCs were not affected by ablation of striatal fast-spiking interneurons but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons.

  1. Biotechnology for improving hydroxy fatty acid production in lesquerella

    Science.gov (United States)

    P Lesquerella [Physaria fendleri (A. Gray)], formerly Lesquerella fendleri, (Brassicaceae), being developed as a new industrial oilseed crop in the southwestern region of the United States, is valued for its unusual hydroxy fatty acid (HFA) in seed. The majority of HFA in lesquerella is lesquerolic...

  2. Improvement of ruthenium based decarboxylation of carboxylic acids

    Science.gov (United States)

    The removal of oxygen atoms from biobased carboxylic acids is an attractive route to provide the drop in replacement feedstocks that industry needs to continue to provide high performance products. Through the use of ruthenium catalysis, an efficient method where this process can be accomplished on ...

  3. Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling.

    Science.gov (United States)

    Ito, Yuma; Hirasawa, Takashi; Shimizu, Hiroshi

    2014-01-01

    We performed metabolic engineering on the budding yeast Saccharomyces cerevisiae for enhanced production of succinic acid. Aerobic succinic acid production in S. cerevisiae was achieved by disrupting the SDH1 and SDH2 genes, which encode the catalytic subunits of succinic acid dehydrogenase. Increased succinic acid production was achieved by eliminating the ethanol biosynthesis pathways. Metabolic profiling analysis revealed that succinic acid accumulated intracellularly following disruption of the SDH1 and SDH2 genes, which suggests that enhancing the export of intracellular succinic acid outside of cells increases succinic acid production in S. cerevisiae. The mae1 gene encoding the Schizosaccharomyces pombe malic acid transporter was introduced into S. cerevisiae, and as a result, succinic acid production was successfully improved. Metabolic profiling analysis is useful in producing chemicals for metabolic engineering of microorganisms.

  4. Cholinergic depletion and basal forebrain volume in primary progressive aphasia

    Directory of Open Access Journals (Sweden)

    Jolien Schaeverbeke

    2017-01-01

    In the PPA group, only LV cases showed decreases in AChE activity levels compared to controls. Surprisingly, a substantial number of SV cases showed significant AChE activity increases compared to controls. BF volume did not correlate with AChE activity levels in PPA. To conclude, in our sample of PPA patients, LV but not SV was associated with cholinergic depletion. BF atrophy in PPA does not imply cholinergic depletion.

  5. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Marta Navarrete

    2012-02-01

    Full Text Available Long-term potentiation (LTP of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca²⁺ in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR and metabotropic glutamate receptor (mGluR activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca²⁺ elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP also involves mGluR activation. Astrocyte Ca²⁺ elevations and LTP are absent in IP₃R2 knock-out mice. Downregulating astrocyte Ca²⁺ signal by loading astrocytes with BAPTA or GDPβS also prevents LTP, which is restored by simultaneous astrocyte Ca²⁺ uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca²⁺ elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca²⁺ signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca²⁺ signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.

  6. Personalized genetics of the cholinergic blockade of neuroinflammation.

    Science.gov (United States)

    Simchovitz, Alon; Heneka, Michael T; Soreq, Hermona

    2017-03-21

    Acetylcholine signaling is essential for cognitive functioning and blocks inflammation. To maintain homeostasis, cholinergic signaling is subjected to multi-leveled and bidirectional regulation by both proteins and non-coding microRNAs ('CholinomiRs'). CholinomiRs coordinate the cognitive and inflammatory aspects of cholinergic signaling by targeting major cholinergic transcripts including the acetylcholine hydrolyzing enzyme acetylcholinesterase (AChE). Notably, AChE inhibitors are the only currently approved line of treatment for Alzheimer's disease patients. Since cholinergic signaling blocks neuroinflammation which is inherent to Alzheimer's disease, genomic changes modifying AChE's properties and its susceptibility to inhibitors and/or to CholinomiRs regulation may affect the levels and properties of inflammasome components such as NLRP3. This calls for genomic-based medicine approaches based on genotyping of both coding and non-coding single nucleotide polymorphisms (SNPs) in the genes involved in cholinergic signaling. An example is a SNP in a recognition element for the primate-specific microRNA-608 within the 3' untranslated region of the AChE transcript. Carriers of the minor allele of that SNP present massively elevated brain AChE levels, increased trait anxiety and inflammation, accompanied by perturbed CholinomiR-608 regulatory networks and elevated prefrontal activity under exposure to stressful insults. Several additional SNPs in the AChE and other cholinergic genes await further studies, and might likewise involve different CholinomiRs and pathways including those modulating the initiation and progression of neurodegenerative diseases. CholinomiRs regulation of the cholinergic system thus merits in-depth interrogation and is likely to lead to personalized medicine approaches for achieving better homeostasis in health and disease. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.

  7. Effects of diazinon on the lymphocytic cholinergic system of Nile tilapia fish (Oreochromis niloticus).

    Science.gov (United States)

    Toledo-Ibarra, G A; Díaz-Resendiz, K J G; Pavón-Romero, L; Rojas-García, A E; Medina-Díaz, I M; Girón-Pérez, M I

    2016-08-01

    Fish rearing under intensive farming conditions can be easily disturbed by pesticides, substances that have immunotoxic properties and may predispose to infections. Organophosphorus pesticides (OPs) are widely used in agricultural activities; however, the mechanism of immunotoxicity of these substances is unclear. The aim of this study was to evaluate the effect of diazinon pesticides (OPs) on the cholinergic system of immune cells as a possible target of OP immunotoxicity. We evaluated ACh levels and cholinergic (nicotinic and muscarinic) receptor concentration. Additionally, AChE activity was evaluated in mononuclear cells of Nile tilapia (Oreochromis niloticus), a freshwater fish mostly cultivated in tropical regions around the world. The obtained results indicate that acute exposure to diazinon induces an increase in ACh concentration and a decrease in nAChR and mAChR concentrations and AChE activity in fish immune cells, This suggests that the non-neuronal lymphocytic cholinergic system may be the main target in the mechanism of OP immunotoxicity. This study contributes to the understanding of the mechanisms of immunotoxicity of pollutants and may help to take actions for animal health improvement.

  8. Amyloid-β depresses excitatory cholinergic synaptic transmission in Drosophila

    Institute of Scientific and Technical Information of China (English)

    Liqun Fang; Jingjing Duan; Dongzhi Ran; Zihao Fan; Ying Yan; Naya Huang; Huaiyu Gu; Yulan Zhu

    2012-01-01

    Objective Decline,disruption,or alterations of nicotinic cholinergic mechanisms contribute to cognitive dysfunctions like Alzheimer's disease (AD).Although amyloid-β (Aβ) aggregation is a pathological hallmark of AD,the mechanisms by which Aβ peptides modulate cholinergic synaptic transmission and memory loss remain obscure.This study was aimed to investigate the potential synaptic modulation by Aβ of the cholinergic synapses between olfactory receptor neurons and projection neurons (PNs) in the olfactory lobe of the fruit fly.Methods Cholinergic spontaneous and miniature excitatory postsynaptic current (mEPSC) were recorded with whole-cell patch clamp from PNs in Drosophila AD models expressing Aβ40,Aβ42,or Aβ42Arc peptides in neural tissue.Results In fly pupae (2 days before eclosion),overexpression of Aβ42 or Aβ42Arc,but not Aβ40,led to a significant decrease of mEPSC frequency,while overexpression of Aβ40,Aβ42,or Aβ42Arc had no significant effect on mEPSC amplitude.In contrast,Pavlovian olfactory associative learning and lifespan assays showed that both short-term memory and lifespan were decreased in the Drosophila models expressing Aβ40,Aβ42,or Aβ42Arc.Conclusion Both electrophysiological and behavioral results showed an effect of Aβ peptide on cholinergic synaptic transmission and suggest a possible mechanism by which Aβ peptides cause cholinergic neuron degeneration and the consequent memory loss.

  9. Improving gluten-free bread quality by enrichment with acidic food additives.

    Science.gov (United States)

    Blanco, Carlos A; Ronda, Felicidad; Pérez, Blanca; Pando, Valentín

    2011-08-01

    An experimental design has been developed to improve gluten-free bread formulation, on the basis of rice flour and hydroxypropylmethylcellulose (HPMC) as alternative baking ingredients. In order to improve the quality of gluten-free bread, several levels of acidic food additives (acetic acid, lactic acid, citric acid and monosodium phosphate) have been tested. The influence of these compounds on the dough and on bread properties has been determined, including a hedonic sensory test of appearance, odour, taste and texture of bread. Results suggest that monosodium phosphate yields bread producing better texture scores, associated with the highest volumes of the loaf. Discussions are made on the basis of CO2 transport pathway across the HPMC network and simultaneous interactions with acidic food additives present. Chemical properties of the acids justify the bread's alveolus size and the preservative effects of acetic acid in the dough.

  10. Improvement of productivity in acetic acid fermentation with Clostridium thermoaceticum

    Energy Technology Data Exchange (ETDEWEB)

    Shah, M.M.; Cheryan, M. [Univ. of Illinois, Urbana, IL (United States)

    1995-12-31

    Production of acetic acid by a mutant strain of Clostridium thermoaceticum was compared in three types of membrane cell-recycle bioreactors. A modified fed-batch bioreactor (where the product is partially removed at the end of fermentation, but the cells are retained), and a two-stage CSTR (with product being removed continuously and the cells being recycled from the second to the first stage) resulted in better performance than a one-stage CSTR or batch fermenter. The difference in performance was greater at higher acetate concentration. With 45 g/L of glucose in the feed, productivity was 0.75-1.12 g/L-h and acetic acid concentrations were 34-38 g/L. This is more than double the batch system. The nutrient supply rate also appeared to have a strong influence on productivity of the microorganism.

  11. Improved Detection of Domoic Acid Using Covalently Immobilised Antibody Fragments

    Directory of Open Access Journals (Sweden)

    J. Gerard Wall

    2013-03-01

    Full Text Available Antibody molecules, and antibody fragments in particular, have enormous potential in the development of biosensors for marine monitoring. Conventional immobilisation approaches used in immunoassays typically yield unstable and mostly incorrectly oriented antibodies, however, resulting in reduced detection sensitivities for already low concentration analytes. The 2H12 anti-domoic acid scFv antibody fragment was engineered with cysteine-containing linkers of two different lengths, distal to the antigen binding pocket, for covalent and correctly oriented immobilisation of the scFvs on functionalised solid supports. The Escherichia coli-produced, cysteine-engineered scFvs dimerised in solution and demonstrated similar efficiencies of covalent immobilisation on maleimide-activated plates and minimal non-covalent attachment. The covalently attached scFvs exhibited negligible leaching from the support under acidic conditions that removed almost 50% of the adsorbed wildtype fragment, and IC50s for domoic acid of 270 and 297 ng/mL compared with 1126 and 1482 ng/mL, respectively, for their non-covalently adsorbed counterparts. The expression and immobilisation approach will facilitate the development of stable, reusable biosensors with increased stability and detection sensitivity for marine neurotoxins.

  12. Ursodeoxycholic acid improves gastrointestinal motility defects in gallstone patients

    Institute of Scientific and Technical Information of China (English)

    A Colecchia; G Mazzella; L Sandri; F Azzaroli; M Magliuolo; P Simoni; ML Bacchi-Reggiani; E Roda; D Festi

    2006-01-01

    AIM: To simultaneously evaluate the presence of defects in gallbladder and gastric emptying, as well as in intestinal transit in gallstone patients (GS) and the effect of chronic ursodeoxycholic acid (UDCA) administration on these parameters and on serum bile acids and clinical outcome in GS and controls (CTR).METHODS: After a standard liquid test meal, gallbladder and gastric emptying (by ultrasound), oroileal transit time (OI∏) (by an immunoenzymatic technique)and serum bile acids (by HPLC) were evaluated before and after 3 mo of UDCA (12 mg/kg bw/d) or placebo administration in 10 symptomatic GS and 10 matched healthy CTR.RESULTS: OI∏ was longer in GS than in CTR (P <0.0001); UDCA significantly reduced OI∏ in GS (P <0.0001), but not in CTR. GS had longer gastric halfemptying time (t1/2) than CTR (P < 0.0044) at baseline;after UDCA, t1/2 significantly decreased (P < 0.006) in GS but not in CTR. Placebo administration had no effect on gastric emptying and intestinal transit in both GS and CTR.CONCLUSION: The gallstone patient has simultaneous multiple impairments of gallbladder and gastric emptying, as well as of intestinal transit. UDCA administration restores these defects in GS, without any effect in CTR. These results confirm the pathogenetic role of gastrointestinal motility in gallstone disease and suggest an additional mechanism of action for UDCA in reducing bile cholesterol supersaturation.

  13. Monitoring cholinergic activity during attentional performance in mice heterozygous for the choline transporter: a model of cholinergic capacity limits.

    Science.gov (United States)

    Paolone, Giovanna; Mallory, Caitlin S; Koshy Cherian, Ajeesh; Miller, Thomas R; Blakely, Randy D; Sarter, Martin

    2013-12-01

    Reductions in the capacity of the human choline transporter (SLC5A7, CHT) have been hypothesized to diminish cortical cholinergic neurotransmission, leading to risk for cognitive and mood disorders. To determine the acetylcholine (ACh) release capacity of cortical cholinergic projections in a mouse model of cholinergic hypofunction, the CHT+/- mouse, we assessed extracellular ACh levels while mice performed an operant sustained attention task (SAT). We found that whereas SAT-performance-associated increases in extracellular ACh levels of CHT+/- mice were significantly attenuated relative to wildtype littermates, performance on the SAT was normal. Tetrodotoxin-induced blockade of neuronal excitability reduced both dialysate ACh levels and SAT performance similarly in both genotypes. Likewise, lesions of cholinergic neurons abolished SAT performance in both genotypes. However, cholinergic activation remained more vulnerable to the reverse-dialyzed muscarinic antagonist atropine in CHT+/- mice. Additionally, CHT+/- mice displayed greater SAT-disrupting effects of reverse dialysis of the nAChR antagonist mecamylamine. Receptor binding assays revealed a higher density of α4β2* nAChRs in the cortex of CHT+/- mice compared to controls. These findings reveal compensatory mechanisms that, in the context of moderate cognitive challenges, can overcome the performance deficits expected from the significantly reduced ACh capacity of CHT+/- cholinergic terminals. Further analyses of molecular and functional compensations in the CHT+/- model may provide insights into both risk and resiliency factors involved in cognitive and mood disorders.

  14. Striatal cholinergic interneuron regulation and circuit effects

    Directory of Open Access Journals (Sweden)

    Sean Austin Lim

    2014-10-01

    Full Text Available The striatum plays a central role in motor control and motor learning. Appropriate responses to environmental stimuli, including pursuit of reward or avoidance of aversive experience all require functional striatal circuits. These pathways integrate synaptic inputs from limbic and cortical regions including sensory, motor and motivational information to ultimately connect intention to action. Although many neurotransmitters participate in striatal circuitry, one critically important player is acetylcholine (ACh. Relative to other brain areas, the striatum contains exceptionally high levels of ACh, the enzymes that catalyze its synthesis and breakdown, as well as both nicotinic and muscarinic receptor types that mediate its postsynaptic effects. The principal source of striatal ACh is the cholinergic interneuron (ChI, which comprises only about 1-2% of all striatal cells yet sends dense arbors of projections throughout the striatum. This review summarizes recent advances in our understanding of the factors affecting the excitability of these neurons through acute effects and long term changes in their synaptic inputs. In addition, we discuss the physiological effects of ACh in the striatum, and how changes in ACh levels may contribute to disease states during striatal dysfunction.

  15. Intrinsic cholinergic neurons in the hippocampus: fact or artefact?

    Directory of Open Access Journals (Sweden)

    Jan Krzysztof Blusztajn

    2016-03-01

    Full Text Available It is generally agreed that hippocampal acetylcholine (ACh is synthesized and released exclusively from the terminals of the long-axon afferents whose cell bodies reside in the medial septum and diagonal band. The search for intrinsic cholinergic neurons in the hippocampus has a long history; however evidence for the existence of these neurons has been inconsistent, with most investigators failing to detect them using in situ hybridization or immunohistochemical staining of the cholinergic markers, choline acetyltransferase (CHAT or vesicular acetylcholine transporter (VACHT. Advances in the use of bacterial artificial chromosome (BAC transgenic mice expressing a reporter protein under the control of the genomic elements of the Chat gene (Chat-BAC mice have facilitated studies of cholinergic neurons. Such mice show robust and faithful expression of the reporter proteins in all known cholinergic cell populations. The availability of the Chat-BAC mice re-ignited interest in hippocampal cholinergic interneurons, because a small number of such reporter-expressing cells is frequently observed in the hippocampus of these mice. However, to date, attempts to confirm that these neurons co-express the endogenous cholinergic markers CHAT or VACHT, or release ACh, have been unsuccessful. Without such confirmatory evidence it is best to conclude that there are no cholinergic neurons in the hippocampus. Similar considerations apply to other BAC transgenic lines, whose utility as a discovery tool for cell populations heretofore not known to express the genes of interest encoded by the BACs, must be validated by methods that detect expression of the endogenous genes.

  16. Engineering crassulacean acid metabolism to improve water-use efficiency.

    Science.gov (United States)

    Borland, Anne M; Hartwell, James; Weston, David J; Schlauch, Karen A; Tschaplinski, Timothy J; Tuskan, Gerald A; Yang, Xiaohan; Cushman, John C

    2014-05-01

    Climatic extremes threaten agricultural sustainability worldwide. One approach to increase plant water-use efficiency (WUE) is to introduce crassulacean acid metabolism (CAM) into C3 crops. Such a task requires comprehensive systems-level understanding of the enzymatic and regulatory pathways underpinning this temporal CO2 pump. Here we review the progress that has been made in achieving this goal. Given that CAM arose through multiple independent evolutionary origins, comparative transcriptomics and genomics of taxonomically diverse CAM species are being used to define the genetic 'parts list' required to operate the core CAM functional modules of nocturnal carboxylation, diurnal decarboxylation, and inverse stomatal regulation. Engineered CAM offers the potential to sustain plant productivity for food, feed, fiber, and biofuel production in hotter and drier climates.

  17. High dose folic acid supplementation improves arterial endothelial function of coronary patients independent of homocysteine level

    Institute of Scientific and Technical Information of China (English)

    KS Woo; P Chook; M Qiao; AKY Chan; LLT Chan; WWM Chan; DS Celermajer

    2003-01-01

    @@ Background Hyperhomocysteinemia (prevalent in rural northern China)is an emerging risk factor for arterial endothelial dysfunction in CAD, which can be improved with folic acid supplementation. Such homocysteine-lowerying dosage of folio acid ( < 1 mg/d ) can reduce restenosis after PTCA, but not the cardiovascular events.Folic acid has additional vascular protection in antixidation, NO synthase protection, angiogenesis-promotion and cytokines reduction.

  18. Improvement in ionic conductivities of poly-(2-vinylpyridine) by treatment with crotonic acid and vinyl acetic acid

    Indian Academy of Sciences (India)

    Anna Gogoi; Neelotpal Sen Sarma

    2015-06-01

    The synthesis, characterization and improved ionic conductivities of the salts of poly-(2-vinylpyridine) with crotonic acid and vinyl acetic acid are reported here. In this study, the alternating current conductivity measurements were carried out within the temperature range of 30–90° C and the frequency range of 1 Hz–100 kHz in solid state. A two- to three-fold increase in conductivity was observed for vinyl acetic acid salt whereas one- to twofold increase was observed for crotonic acid salt. The ionic transport numbers of the salts were measured with the help of the Wagner polarization technique which reveals that the percentage of ionic character of the salts are significantly higher compared with the polymer. The percentage of water uptake by the polymer and its salts were also observed.

  19. Ascorbic acid supplementation does not improve efficacy of meso-dimercaptosuccinic acid treatment in lead-exposed suckling rats.

    Science.gov (United States)

    Varnai, Veda Marija; Piasek, Martina; Blanusa, Maja; Juresa, Dijana; Sarić, Marija; Kostial, Krista

    2003-10-01

    It was suggested that ascorbic acid as a natural chelating agent can influence lead toxicokinetics and improve chelating properties of dimercaptosuccinic acid (DMSA) in adult rats. In this paper potential benefits of ascorbic acid supplementation, alone or combined with DMSA, in decreasing lead retention in suckling rats were evaluated. Such data in young mammals are not available. L-Ascorbic acid (daily dose 650 mg/kg b.wt.) and/or DMSA (daily dose 91 mg/kg b.wt.) were administered orally to suckling Wistar rats either during ongoing 8-day oral lead exposure (as acetate; daily dose 2 mg lead/kg b.wt.) or after 3-day lead exposure (total dose 12 mg lead/kg b.wt.). Lead concentrations were analysed in the carcass (skeleton), liver, kidneys and brain by atomic absorption spectrometry. By ascorbic acid supplementation lead retention was not reduced under either lead exposure condition. Lead concentration was even increased in the carcass. Treatment with DMSA under both exposure conditions significantly reduced lead in all analysed tissues. Combined treatment with ascorbic acid and DMSA during ongoing lead exposure was substantially less effective than DMSA treatment alone, and did not affect DMSA efficacy when administered after lead exposure. It was concluded that ascorbic acid administered either during or after lead exposure in suckling rats has no beneficial effect on either lead retention or DMSA chelation effectiveness.

  20. Endogenous cholinergic neurotransmission contributes to behavioral sensitization to morphine.

    Directory of Open Access Journals (Sweden)

    Dusica Bajic

    Full Text Available Neuroplasticity in the mesolimbic dopaminergic system is critical for behavioral adaptations associated with opioid reward and addiction. These processes may be influenced by cholinergic transmission arising from the laterodorsal tegmental nucleus (LDTg, a main source of acetylcholine to mesolimbic dopaminergic neurons. To examine this possibility we asked if chronic systemic morphine administration affects expression of genes in ventral and ventrolateral periaqueductal gray at the level of the LDTg using rtPCR. Specifically, we examined gene expression changes in the area of interest using Neurotransmitters and Receptors PCR array between chronic morphine and saline control groups. Analysis suggested that chronic morphine administration led to changes in expression of genes associated, in part, with cholinergic neurotransmission. Furthermore, using a quantitative immunofluorescent technique, we found that chronic morphine treatment produced a significant increase in immunolabeling of the cholinergic marker (vesicular acetylcholine transporter in neurons of the LDTg. Finally, systemic administration of the nonselective and noncompetitive neuronal nicotinic antagonist mecamylamine (0.5 or 2 mg/kg dose-dependently blocked the expression, and to a lesser extent the development, of locomotor sensitization. The same treatment had no effect on acute morphine antinociception, antinociceptive tolerance or dependence to chronic morphine. Taken together, the results suggest that endogenous nicotinic cholinergic neurotransmission selectively contributes to behavioral sensitization to morphine and this process may, in part, involve cholinergic neurons within the LDTg.

  1. Cholinergic and adrenergic influence on the teleost heart in vivo.

    Science.gov (United States)

    Axelsson, M; Ehrenström, F; Nilsson, S

    1987-01-01

    The tonical cholinergic and adrenergic influence on the heart rate was investigated in vivo in seven species of marine teleosts (pollack, Pollachius pollachius; cuckoo wrasse, Labrus mixtus; ballan wrasse, Labrus berggylta; five-bearded rockling, Ciliata mustela; tadpole fish, Raniceps raninus; eel-pout, Zoarces viviparus and short-spined sea scorpion, Myoxocephalus scor pius) during rest and, in two of the species (P. pollachius and L. mixtus), also during moderate swimming exercise in a Blazka-type swim tunnel. Ventral aortic blood pressure and heart rate were recorded via a catheter implanted in an afferent branchial artery, and the influence of the cholinergic and adrenergic tonus on the heart rate was assessed by injection of atropine and sotalol respectively. During rest the adrenergic tonus was higher than the cholinergic tonus in all species except L. berggylta, where the reverse was true. In P. pollachius and L. mixtus, exercise appeared to produce a lowering of the cholinergic tonus on the heart and, possibly, a slight increase of the adrenergic tonus. The nature of the adrenergic tonus (humoral or neural) is not clear, but the low plasma concentrations of catecholamines both during rest and exercise could be interpreted in favour of a mainly neural adrenergic tonus on the teleost heart. These experiments are compatible with the view that both a cholinergic inhibitory tonus and an adrenergic excitatory tonus are general features in the control of the teleost heart in vivo, both at rest and during moderate swimming exercise.

  2. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    Science.gov (United States)

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.

  3. Gallic acid improves glucose tolerance and triglyceride concentration in diet-induced obesity mice.

    Science.gov (United States)

    Bak, Eun-Jung; Kim, Jinmoon; Jang, Sungil; Woo, Gye-Hyeong; Yoon, Ho-Geun; Yoo, Yun-Jung; Cha, Jeong-Heon

    2013-12-01

    Gallic acid, a phenolic phytochemical, has been shown to exert a variety of effects, including anti-oxidative, anti- carcinogenic, anti-allergic, and anti-inflammatory effects. In this study, we attempted to determine whether gallic acid affects metabolic syndrome such as obesity and diabetes. Diet-induced obesity mice were treated intraperitoneally once per day with gallic acid (10 mg/kg/day). After 2 weeks of treatment, the mice were sacrificed to collect the blood for metabolic parameter assessments, and the adipose tissues and liver to weigh and analyze. The triglyceride concentrations were significantly improved in the gallic acid group relative to those measured in the control group. And most importantly, the blood glucose concentrations in the gallic acid group were significantly improved. In the epididymal white adipose tissue of the gallic acid group, adipocyte size was reduced, PPARγ expression was induced, and the Akt signaling pathway was activated. Our results demonstrate that gallic acid improves glucose tolerance and lipid metabolism in the obesity mice, thereby showing evidence of anti-hyperglycemic activity. The findings of an upregulation of PPARγ expression and Akt activation also contribute to our current understanding of the mechanisms underlying the effects of gallic acid on glucose metabolism.

  4. Administration of MPTP to the common marmoset does not alter cortical cholinergic function

    Energy Technology Data Exchange (ETDEWEB)

    Garvey, J.; Petersen, M.; Waters, C.M.; Rose, S.P.; Hunt, S.; Briggs, R.; Jenner, P.; Marsden, C.D.

    1986-01-01

    The administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to common marmosets induced persistent motor deficits and decreased concentrations of dopamine, homovanillic acid, and 3,4-dihydroxy-phenylacetic acid (DOPAC) and (TH)dopamine uptake in the caudate-putamen. There was an 80% reduction in tyrosine hydroxylase immunoreactive cells in substantia nigra. At 10 days following the start of MPTP administration, the activity of choline acetyltransferase in the thalamus and frontal cortex was unchanged compared with control animals. Similarly, specific (TH)QNB binding was unaltered. At 4-6 weeks following the start of MPTP treatment, choline acetyltransferase activity and (TH)QNB binding in the frontal cortex and thalamus remained unaffected. There was no evidence for cell loss in the nucleus basalis of Meynert or alteration in the intensity of staining for acetylcholinesterase. MPTP treatment of the common marmoset produces a nigrostriatal lesion. In contrast, MPTP did not alter cortical cholinergic function and was not neurotoxic to the cholinergic cells in the nucleus basalis of Meynert.

  5. Cholinergic basis of memory improving effect of Ocimum tenuiflorum linn

    Directory of Open Access Journals (Sweden)

    Joshi H

    2006-01-01

    Full Text Available Dementia is one of the age-related mental problems and a characteristic symptom of Alzheimer′s disease. Nootropic agents are used in situations where there is organic disorder in learning abilities. The present work was undertaken to assess the potential of Ocimum tenuiflorum Linn. as a nootropic and anticholinesterase agent in mice. Ethanol extract of dried whole plant of O. tenuiflorum Linn. ameliorated the amnesic effect of scopolamine (0.4 mg/kg and aging-induced memory deficits in mice. Passive avoidance paradigm served as the exteroceptive behavioural model. O. tenuiflorum extract increased step-down latency and acetyl cholinesterase inhibition significantly. Hence, O. tenuiflorum can be employed in the treatment of cognitive disorders such as dementia and Alzheimer′s disease.

  6. Morphine dependence and withdrawal induced changes in cholinergic signaling

    Science.gov (United States)

    Neugebauer, Nichole M.; Einstein, Emily B.; Lopez, Maria B.; McClure-Begley, Tristan D.; Mineur, Yann S.; Picciotto, Marina R.

    2013-01-01

    Cholinergic signaling is thought to be involved in morphine dependence and withdrawal, but the specific mechanisms involved remain unclear. The current study aimed to identify alterations in the cholinergic system that may contribute to the development of morphine dependence and withdrawal. Acetylcholinesterase (AChE) activity and [3H]-epibatidine binding were evaluated in order to determine if morphine dependence and withdrawal induces alterations in cholinergic signaling or expression of high affinity nicotinic acetylcholine receptors (nAChRs) in the midbrain (MB), medial habenula (MHb) and interpeduncular nucleus (IPN). The effect of cholinergic signaling through nAChRs on morphine-withdrawal induced jumping behavior was then determined. Lastly, the contribution of β4-containing nAChRs receptors in the MHb to morphine-withdrawal induced jumping behavior and neuronal activity as indicated by c-fos expression was assessed. Chronic morphine administration decreased AChE activity in MB and MHb, an effect that was no longer present following precipitated withdrawal. Morphine dependent mice showed increased nicotinic acetylcholine receptor (nAChR) levels in MB. Further, nicotine (0.4 mg/kg) and lobeline (3 mg/kg) decreased jumping behavior while mecamylamine (1 mg/kg) had no effect. Knock-down of β4 subunit-containing nAChRs in the MHb attenuated c-fos activation, but did not decrease morphine withdrawal-induced jumping. Thus, morphine withdrawal induces cholinergic signaling in the MHb, but this does not appear to be responsible for the effects of cholinergic drugs on somatic signs of opiate withdrawal, as measured by jumping behavior. PMID:23651795

  7. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning.

    Science.gov (United States)

    Brown, Matthew T C; Tan, Kelly R; O'Connor, Eoin C; Nikonenko, Irina; Muller, Dominique; Lüscher, Christian

    2012-12-20

    The ventral tegmental area (VTA) and nucleus accumbens (NAc) are essential for learning about environmental stimuli associated with motivationally relevant outcomes. The task of signalling such events, both rewarding and aversive, from the VTA to the NAc has largely been ascribed to dopamine neurons. The VTA also contains GABA (γ-aminobutyric acid)-releasing neurons, which provide local inhibition and also project to the NAc. However, the cellular targets and functional importance of this long-range inhibitory projection have not been ascertained. Here we show that GABA-releasing neurons of the VTA that project to the NAc (VTA GABA projection neurons) inhibit accumbal cholinergic interneurons (CINs) to enhance stimulus-outcome learning. Combining optogenetics with structural imaging and electrophysiology, we found that VTA GABA projection neurons selectively target NAc CINs, forming multiple symmetrical synaptic contacts that generated inhibitory postsynaptic currents. This is remarkable considering that CINs represent a very small population of all accumbal neurons, and provide the primary source of cholinergic tone in the NAc. Brief activation of this projection was sufficient to halt the spontaneous activity of NAc CINs, resembling the pause recorded in animals learning stimulus-outcome associations. Indeed, we found that forcing CINs to pause in behaving mice enhanced discrimination of a motivationally important stimulus that had been associated with an aversive outcome. Our results demonstrate that VTA GABA projection neurons, through their selective targeting of accumbal CINs, provide a novel route through which the VTA communicates saliency to the NAc. VTA GABA projection neurons thus emerge as orchestrators of dopaminergic and cholinergic modulation in the NAc.

  8. Interaction of nerve agent antidotes with cholinergic systems.

    Science.gov (United States)

    Soukup, O; Tobin, G; Kumar, U K; Binder, J; Proska, J; Jun, D; Fusek, J; Kuca, K

    2010-01-01

    The poisoning with organophosphorus compounds represents a life threatening danger especially in the time of terroristic menace. No universal antidote has been developed yet and other therapeutic approaches not related to reactivation of acetylcholinesterase are being investigated. This review describes the main features of the cholinergic system, cholinergic receptors, cholinesterases and their inhibitors. It also focuses on the organophosphorus nerve agents, their properties, effects and a large part describes various possibilities in treatments, mainly traditional oxime therapies based on reactivation of AChE. Furthermore, non-cholinesterase coupled antidotal effects of the oximes are thoroughly discussed. These antidotal effects principally include oxime interactions with muscarinic and nicotinic receptors.

  9. Basal Forebrain Cholinergic System and Orexin Neurons: Effects on Attention

    Science.gov (United States)

    Villano, Ines; Messina, Antonietta; Valenzano, Anna; Moscatelli, Fiorenzo; Esposito, Teresa; Monda, Vincenzo; Esposito, Maria; Precenzano, Francesco; Carotenuto, Marco; Viggiano, Andrea; Chieffi, Sergio; Cibelli, Giuseppe; Monda, Marcellino; Messina, Giovanni

    2017-01-01

    The basal forebrain (BF) cholinergic system has an important role in attentive functions. The cholinergic system can be activated by different inputs, and in particular, by orexin neurons, whose cell bodies are located within the postero-lateral hypothalamus. Recently the orexin-producing neurons have been proved to promote arousal and attention through their projections to the BF. The aim of this review article is to summarize the evidence showing that the orexin system contributes to attentional processing by an increase in cortical acetylcholine release and in cortical neurons activity. PMID:28197081

  10. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dong-mei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Lu, Jun, E-mail: lu-jun75@163.com [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Zhang, Yan-qiu [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zheng, Yuan-lin, E-mail: ylzheng@xznu.edu.cn [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Hu, Bin [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Cheng, Wei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zhang, Zi-feng; Li, Meng-qiu [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China)

    2013-09-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.

  11. Improved pretreatment of lignocellulosic biomass using enzymatically-generated peracetic acid.

    Science.gov (United States)

    Yin, DeLu Tyler; Jing, Qing; AlDajani, Waleed Wafa; Duncan, Shona; Tschirner, Ulrike; Schilling, Jonathan; Kazlauskas, Romas J

    2011-04-01

    Release of sugars from lignocellulosic biomass is inefficient because lignin, an aromatic polymer, blocks access of enzymes to the sugar polymers. Pretreatments remove lignin and disrupt its structure, thereby enhancing sugar release. In previous work, enzymatically generated peracetic acid was used to pretreat aspen wood. This pretreatment removed 45% of the lignin and the subsequent saccharification released 97% of the sugars remaining after pretreatment. In this paper, the amount of enzyme needed is reduced tenfold using first, an improved enzyme variant that makes twice as much peracetic acid and second, a two-phase reaction to generate the peracetic acid, which allows enzyme reuse. In addition, the eight pretreatment cycles are reduced to only one by increasing the volume of peracetic acid solution and increasing the temperature to 60 °C and the reaction time to 6h. For the pretreatment step, the weight ratio of peracetic acid to wood determines the amount of lignin removed.

  12. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family.

    Science.gov (United States)

    Haun, William; Coffman, Andrew; Clasen, Benjamin M; Demorest, Zachary L; Lowy, Anita; Ray, Erin; Retterath, Adam; Stoddard, Thomas; Juillerat, Alexandre; Cedrone, Frederic; Mathis, Luc; Voytas, Daniel F; Zhang, Feng

    2014-09-01

    Soybean oil is high in polyunsaturated fats and is often partially hydrogenated to increase its shelf life and improve oxidative stability. The trans-fatty acids produced through hydrogenation pose a health threat. Soybean lines that are low in polyunsaturated fats were generated by introducing mutations in two fatty acid desaturase 2 genes (FAD2-1A and FAD2-1B), which in the seed convert the monounsaturated fat, oleic acid, to the polyunsaturated fat, linoleic acid. Transcription activator-like effector nucleases (TALENs) were engineered to recognize and cleave conserved DNA sequences in both genes. In four of 19 transgenic soybean lines expressing the TALENs, mutations in FAD2-1A and FAD2-1B were observed in DNA extracted from leaf tissue; three of the four lines transmitted heritable FAD2-1 mutations to the next generation. The fatty acid profile of the seed was dramatically changed in plants homozygous for mutations in both FAD2-1A and FAD2-1B: oleic acid increased from 20% to 80% and linoleic acid decreased from 50% to under 4%. Further, mutant plants were identified that lacked the TALEN transgene and only carried the targeted mutations. The ability to create a valuable trait in a single generation through targeted modification of a gene family demonstrates the power of TALENs for genome engineering and crop improvement.

  13. The catecholaminergic-cholinergic balance hypothesis of bipolar disorder revisited.

    Science.gov (United States)

    van Enkhuizen, Jordy; Janowsky, David S; Olivier, Berend; Minassian, Arpi; Perry, William; Young, Jared W; Geyer, Mark A

    2015-04-15

    Bipolar disorder is a unique illness characterized by fluctuations between mood states of depression and mania. Originally, an adrenergic-cholinergic balance hypothesis was postulated to underlie these different affective states. In this review, we update this hypothesis with recent findings from human and animal studies, suggesting that a catecholaminergic-cholinergic hypothesis may be more relevant. Evidence from neuroimaging studies, neuropharmacological interventions, and genetic associations support the notion that increased cholinergic functioning underlies depression, whereas increased activations of the catecholamines (dopamine and norepinephrine) underlie mania. Elevated functional acetylcholine during depression may affect both muscarinic and nicotinic acetylcholine receptors in a compensatory fashion. Increased functional dopamine and norepinephrine during mania on the other hand may affect receptor expression and functioning of dopamine reuptake transporters. Despite increasing evidence supporting this hypothesis, a relationship between these two neurotransmitter systems that could explain cycling between states of depression and mania is missing. Future studies should focus on the influence of environmental stimuli and genetic susceptibilities that may affect the catecholaminergic-cholinergic balance underlying cycling between the affective states. Overall, observations from recent studies add important data to this revised balance theory of bipolar disorder, renewing interest in this field of research.

  14. The cholinergic system, sigma-1 receptors and cognition

    NARCIS (Netherlands)

    van Waarde, Aren; Ramakrishnan, Nisha K.; Rybczynska, Anna A.; Elsinga, Philip H.; Ishiwata, Kiichi; Nijholt, Ingrid M.; Luiten, Paul G. M.; Dierckx, Rudi A.

    2011-01-01

    This article provides an overview of present knowledge regarding the relationship between the cholinergic system and sigma-1 receptors, and discusses potential applications of sigma-1 receptor agonists in the treatment of memory deficits and cognitive disorders. Sigma-1 receptors, initially consider

  15. Cypermethrin Poisoning and Anti-cholinergic Medication- A Case Report

    Directory of Open Access Journals (Sweden)

    Dr Sudip Parajuli

    2006-07-01

    Full Text Available A 30 years old male was brought to emergency department of Manipal Teaching Hospital, Pokhara, Nepal with alleged history of consumption of pyrethroid compound ‘cypermethrin’. It was found to be newer insecticide poisoning reported in Nepal. We reported this case to show effectiveness of anti-cholinergic like hyosciane and chlorpheniramine maleate in the treatment of cypermethrin poisoning.

  16. Muscarinic and dopaminergic receptor subtypes on striatal cholinergic interneurons

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, V.L.; Dawson, T.M.; Wamsley, J.K. (Neuropsychiatric Research Institute, Fargo, ND (USA))

    1990-12-01

    Unilateral stereotaxic injection of small amounts of the cholinotoxin, AF64A, caused minimal nonselective tissue damage and resulted in a significant loss of the presynaptic cholinergic markers (3H)hemicholinium-3 (45% reduction) and choline acetyltransferase (27% reduction). No significant change from control was observed in tyrosine hydroxylase or tryptophan hydroxylase activity; presynaptic neuronal markers for dopamine- and serotonin-containing neurons, respectively. The AF64A lesion resulted in a significant reduction of dopamine D2 receptors as evidenced by a decrease in (3H)sulpiride binding (42% reduction) and decrease of muscarinic non-M1 receptors as shown by a reduction in (3H)QNB binding in the presence of 100 nM pirenzepine (36% reduction). Saturation studies revealed that the change in (3H)sulpiride and (3H)QNB binding was due to a change in Bmax not Kd. Intrastriatal injection of AF64A failed to alter dopamine D1 or muscarinic M1 receptors labeled with (3H)SCH23390 and (3H)pirenzepine, respectively. In addition, no change in (3H)forskolin-labeled adenylate cyclase was observed. These results demonstrate that a subpopulation of muscarinic receptors (non-M1) are presynaptic on cholinergic interneurons (hence, autoreceptors), and a subpopulation of dopamine D2 receptors are postsynaptic on cholinergic interneurons. Furthermore, dopamine D1, muscarinic M1 and (3H)forskolin-labeled adenylate cyclase are not localized to striatal cholinergic interneurons.

  17. Selective optogenetic stimulation of cholinergic axons in neocortex.

    Science.gov (United States)

    Kalmbach, Abigail; Hedrick, Tristan; Waters, Jack

    2012-04-01

    Acetylcholine profoundly affects neocortical function, being involved in arousal, attention, learning, memory, sensory and motor function, and plasticity. The majority of cholinergic afferents to neocortex are from neurons in nucleus basalis. Nucleus basalis also contains projecting neurons that release other transmitters, including GABA and possibly glutamate. Hence, electrical stimulation of nucleus basalis evokes the release of a mixture of neurotransmitters in neocortex, and this lack of selectivity has impeded research on cholinergic signaling in neocortex. We describe a method for the selective stimulation of cholinergic axons in neocortex. We used the Cre-lox system and a viral vector to express the light-activated protein channelrhodopsin-2 in cholinergic neurons in nucleus basalis and their axons in neocortex. Labeled neurons depolarized on illumination with blue light but were otherwise unchanged. In anesthetized mice, illumination of neocortex desynchronized the local field potential, indicating that light evoked release of ACh. This novel technique will enable many new studies of the cellular, network, and behavioral physiology of ACh in neocortex.

  18. Reduced cholinergic olfactory centrifugal inputs in patients with neurodegenerative disorders and MPTP-treated monkeys.

    Science.gov (United States)

    Mundiñano, Iñaki-Carril; Hernandez, Maria; Dicaudo, Carla; Ordoñez, Cristina; Marcilla, Irene; Tuñon, Maria-Teresa; Luquin, Maria-Rosario

    2013-09-01

    Olfactory impairment is a common feature of neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD) and dementia with Lewy bodies (DLB). Olfactory bulb (OB) pathology in these diseases shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. Since cholinergic denervation might be a common underlying pathophysiological feature, the objective of this study was to determine cholinergic innervation of the OB in 27 patients with histological diagnosis of PD (n = 5), AD (n = 14), DLB (n = 8) and 8 healthy control subjects. Cholinergic centrifugal inputs to the OB were clearly reduced in all patients, the most significant decrease being in the DLB group. We also studied cholinergic innervation of the OB in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys (n = 7) and 7 intact animals. In MPTP-monkeys, we found that cholinergic innervation of the OB was reduced compared to control animals (n = 7). Interestingly, in MPTP-monkeys, we also detected a loss of cholinergic neurons and decreased dopaminergic innervation in the horizontal limb of the diagonal band, which is the origin of the centrifugal cholinergic input to the OB. All these data suggest that cholinergic damage in the OB might contribute, at least in part, to the olfactory dysfunction usually exhibited by these patients. Moreover, decreased cholinergic input to the OB found in MPTP-monkeys suggests that dopamine depletion in itself might reduce the cholinergic tone of basal forebrain cholinergic neurons.

  19. Contribution of the Cholinergic System to Verbal Memory Performance in Mild Cognitive Impairment.

    Science.gov (United States)

    Peter, Jessica; Lahr, Jacob; Minkova, Lora; Lauer, Eliza; Grothe, Michel J; Teipel, Stefan; Köstering, Lena; Kaller, Christoph P; Heimbach, Bernhard; Hüll, Michael; Normann, Claus; Nissen, Christoph; Reis, Janine; Klöppel, Stefan

    2016-06-18

    Acetylcholine is critically involved in modulating learning and memory function, which both decline in neurodegeneration. It remains unclear to what extent structural and functional changes in the cholinergic system contribute to episodic memory dysfunction in mild cognitive impairment (MCI), in addition to hippocampal degeneration. A better understanding is critical, given that the cholinergic system is the main target of current symptomatic treatment in mild to moderate Alzheimer's disease. We simultaneously assessed the structural and functional integrity of the cholinergic system in 20 patients with MCI and 20 matched healthy controls and examined their effect on verbal episodic memory via multivariate regression analyses. Mediating effects of either cholinergic function or hippocampal volume on the relationship between cholinergic structure and episodic memory were computed. In MCI, a less intact structure and function of the cholinergic system was found. A smaller cholinergic structure was significantly correlated with a functionally more active cholinergic system in patients, but not in controls. This association was not modulated by age or disease severity, arguing against compensational processes. Further analyses indicated that neither functional nor structural changes in the cholinergic system influence verbal episodic memory at the MCI stage. In fact, those associations were fully mediated by hippocampal volume. Although the cholinergic system is structurally and functionally altered in MCI, episodic memory dysfunction results primarily from hippocampal neurodegeneration, which may explain the inefficiency of cholinergic treatment at this disease stage.

  20. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes.

    Science.gov (United States)

    Puddu, Alessandra; Sanguineti, Roberta; Montecucco, Fabrizio; Viviani, Giorgio Luciano

    2014-01-01

    In type 2 diabetes, hyperglycemia, insulin resistance, increased inflammation, and oxidative stress were shown to be associated with the progressive deterioration of beta-cell function and mass. Short-chain fatty acids (SCFAs) are organic fatty acids produced in the distal gut by bacterial fermentation of macrofibrous material that might improve type 2 diabetes features. Their main beneficial activities were identified in the decrease of serum levels of glucose, insulin resistance as well as inflammation, and increase in protective Glucagon-like peptide-1 (GLP-1) secretion. In this review, we updated evidence on the effects of SCFAs potentially improving metabolic control in type 2 diabetes.

  1. Evidence for the Gut Microbiota Short-Chain Fatty Acids as Key Pathophysiological Molecules Improving Diabetes

    Directory of Open Access Journals (Sweden)

    Alessandra Puddu

    2014-01-01

    Full Text Available In type 2 diabetes, hyperglycemia, insulin resistance, increased inflammation, and oxidative stress were shown to be associated with the progressive deterioration of beta-cell function and mass. Short-chain fatty acids (SCFAs are organic fatty acids produced in the distal gut by bacterial fermentation of macrofibrous material that might improve type 2 diabetes features. Their main beneficial activities were identified in the decrease of serum levels of glucose, insulin resistance as well as inflammation, and increase in protective Glucagon-like peptide-1 (GLP-1 secretion. In this review, we updated evidence on the effects of SCFAs potentially improving metabolic control in type 2 diabetes.

  2. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables.

    Science.gov (United States)

    Tan, Zaigao; Yoon, Jong Moon; Nielsen, David R; Shanks, Jacqueline V; Jarboe, Laura R

    2016-05-01

    Constructing microbial biocatalysts that produce biorenewables at economically viable yields and titers is often hampered by product toxicity. For production of short chain fatty acids, membrane damage is considered the primary mechanism of toxicity, particularly in regards to membrane integrity. Previous engineering efforts in Escherichia coli to increase membrane integrity, with the goal of increasing fatty acid tolerance and production, have had mixed results. Herein, a novel approach was used to reconstruct the E. coli membrane by enabling production of a novel membrane component. Specifically, trans unsaturated fatty acids (TUFA) were produced and incorporated into the membrane of E. coli MG1655 by expression of cis-trans isomerase (Cti) from Pseudomonas aeruginosa. While the engineered strain was found to have no increase in membrane integrity, a significant decrease in membrane fluidity was observed, meaning that membrane polarization and rigidity were increased by TUFA incorporation. As a result, tolerance to exogenously added octanoic acid and production of octanoic acid were both increased relative to the wild-type strain. This membrane engineering strategy to improve octanoic acid tolerance was found to require fine-tuning of TUFA abundance. Besides improving tolerance and production of carboxylic acids, TUFA production also enabled increased tolerance in E. coli to other bio-products, e.g. alcohols, organic acids, aromatic compounds, a variety of adverse industrial conditions, e.g. low pH, high temperature, and also elevated styrene production, another versatile bio-chemical product. TUFA permitted enhanced growth due to alleviation of bio-product toxicity, demonstrating the general effectiveness of this membrane engineering strategy towards improving strain robustness.

  3. Brainstem cholinergic modulation of muscle tone in infant rats.

    Science.gov (United States)

    Gall, Andrew J; Poremba, Amy; Blumberg, Mark S

    2007-06-01

    In week-old rats, lesions of the dorsolateral pontine tegmentum (DLPT) and nucleus pontis oralis (PnO) have opposing effects on nuchal muscle tone. Specifically, pups with DLPT lesions exhibit prolonged bouts of nuchal muscle atonia (indicative of sleep) and pups with PnO lesions exhibit prolonged bouts of high nuchal muscle tone (indicative of wakefulness). Here we test the hypothesis that nuchal muscle tone is modulated, at least in part, by cholinergically mediated interactions between these two regions. First, in unanesthetized pups, we found that chemical infusion of the cholinergic agonist carbachol (22 mm, 0.1 microL) within the DLPT produced high muscle tone. Next, chemical lesions of the PnO were used to produce a chronic state of high nuchal muscle tone, at which time the cholinergic antagonist scopolamine (10 mm, 0.1 microL) was infused into the DLPT. Scopolamine effectively decreased nuchal muscle tone, thus suggesting that lesions of the PnO increase muscle tone via cholinergic activation of the DLPT. Using 2-deoxyglucose autoradiography, metabolic activation throughout the DLPT was observed after PnO lesions. Finally, consistent with the hypothesis that PnO inactivation produces high muscle tone, infusion of the sodium channel blocker lidocaine (2%) into the PnO of unanesthetized pups produced rapid increases in muscle tone. We conclude that, even early in infancy, the DLPT is critically involved in the regulation of muscle tone and behavioral state, and that its activity is modulated by a cholinergic mechanism that is directly or indirectly controlled by the PnO.

  4. Coordination of glycerol utilization and clavulanic acid biosynthesis to improve clavulanic acid production in Streptomyces clavuligerus.

    Science.gov (United States)

    Guo, Dekun; Zhao, Youbao; Yang, Keqian

    2013-07-01

    The glycerol utilization (gyl) operon is involved in clavulanic acid (CA) production by Streptomyces clavuligerus, and possibly supplies the glyceraldehyde-3-phosphate (G3P) precursor for CA biosynthesis. The gyl operon is regulated by GylR and is induced by glycerol. To enhance CA production in S. clavuligerus, an extra copy of ccaR expressed from Pgyl (the gyl promoter) was integrated into the chromosome of S. clavuligerus NRRL 3585. This construct coordinated the transcription of CA biosynthetic pathway genes with expression of the gyl operon. In the transformants carrying the Pgyl-controlled regulatory gene ccaR, CA production was enhanced 3.19-fold in glycerol-enriched batch cultures, relative to the control strain carrying an extra copy of ccaR controlled by its own promoter (PccaR). Consistent with enhanced CA production, the transcription levels of ccaR, ceas2 and claR were significantly up-regulated in the transformants containing Pgyl-controlled ccaR.

  5. Valproic acid improves second-line regimen of small cell lung carcinoma in preclinical models

    Directory of Open Access Journals (Sweden)

    Roland Hubaux

    2015-10-01

    Full Text Available With 5-year survival rates below 5%, small cell lung carcinoma (SCLC has very poor prognosis and requires improved therapies. Despite an excellent overall response to first-line therapy, relapses are frequent and further treatments are disappointing. The goal of the study was to improve second-line therapy of SCLC. The effect of chemotherapeutic agents was evaluated in cell lines (apoptosis, reactive oxygen species, and RNA and protein expression and in mouse models (tumour development. We demonstrate here that valproic acid, a histone deacetylase inhibitor, improves the efficacy of a second-line regimen (vindesine, doxorubicin and cyclophosphamide in SCLC cells and in mouse models. Transcriptomic profiling integrating microRNA and mRNA data identifies key signalling pathways in the response of SCLC cells to valproic acid, opening new prospects for improved therapies.

  6. Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration

    DEFF Research Database (Denmark)

    Agrawal, Ashish Kumar; Harde, Harshad; Thanki, Kaushik;

    2014-01-01

    The present study reports the folic acid (FA) functionalized insulin loaded stable liposomes with improved bioavailability following oral administration. Liposomes were stabilized by alternating coating of negatively charged poly(acrylic acid) (PAA) and positively charged poly(allyl amine...

  7. Domoic Acid Improves the Competitive Ability of Pseudo-nitzschia delicatissima against the Diatom Skeletonema marinoi

    Directory of Open Access Journals (Sweden)

    Emily K. Prince

    2013-07-01

    Full Text Available Because domoic acid, a neurotoxic secondary metabolite produced by marine diatoms in the genus Pseudo-nitzschia, is hypothesized to be part of a high affinity iron uptake system, we investigated whether domoic acid could improve the competitive ability of Pseudo-nitzschia delicatissima, and whether the availability of iron changed the outcome of competition experiments. We found that domoic acid had a slight negative effect on growth of the diatom Skeletonema marinoi when it was grown in monocultures. However, when S. marinoi was cultured with P. delicatissima the presence of domoic acid resulted in a reduction of S. marinoi cells by up to 38% and an increase in P. delicatissima cell numbers by up to 17% under iron replete conditions. Similar effects were not observed in low iron treatments. Domoic acid was not taken up by P. delicatissima cells. Overall, our results indicate that domoic acid can improve the competitive ability of Pseudo-nitzschia spp. and that iron is likely to be involved. This study provides an unusual example of indirect inhibition of competitor growth mediated by a secondary metabolite.

  8. Applications for biotechnology: present and future improvements in lactic acid bacteria.

    Science.gov (United States)

    McKay, L L; Baldwin, K A

    1990-09-01

    The lactic acid bacteria are involved in the manufacture of fermented foods from raw agricultural materials such as milk, meat, vegetables, and cereals. These fermented foods are a significant part of the food processing industry and are often prepared using selected strains that have the ability to produce desired products or changes efficiently. The application of genetic engineering technology to improve existing strains or develop novel strains for these fermentations is an active research area world-wide. As knowledge about the genetics and physiology of lactic acid bacteria accumulates, it becomes possible to genetically construct strains with characteristics shaped for specific purposes. Examples of present and future applications of biotechnology to lactic acid bacteria to improve product quality are described. Studies of the basic biology of these bacteria are being actively conducted and must be continued, in order for the food fermentation industry to reap the benefits of biotechnology.

  9. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid.

    Science.gov (United States)

    Valerio, Francesca; Di Biase, Mariaelena; Lattanzio, Veronica M T; Lavermicocca, Paola

    2016-04-02

    The aim of the current study was to improve the antifungal activity of eight lactic acid bacterial (LAB) strains by the addition of phenylpyruvic acid (PPA), a precursor of the antifungal compound phenyllactic acid (PLA), to a defined growth medium (DM). The effect of PPA addition on the LABs antifungal activity related to the production of organic acids (PLA, d-lactic, l-lactic, acetic, citric, formic and 4-hydroxy-phenyllactic acids) and of other phenylpyruvic-derived molecules, was investigated. In the presence of PPA the inhibitory activity (expressed as growth inhibition percentage) against fungal bread contaminants Aspergillus niger and Penicillium roqueforti significantly increased and was, even if not completely, associated to PLA increase (from a mean value of 0.44 to 0.93 mM). While the inhibitory activity against Endomyces fibuliger was mainly correlated to the low pH and to lactic, acetic and p-OH-PLA acids. When the PCA analysis based on data of growth inhibition percentage and organic acid concentrations was performed, strains grown in DM+PPA separated from those grown in DM and the most active strains Lactobacillus plantarum 21B, Lactobacillus fermentum 18B and Lactobacillus brevis 18F grouped together. The antifungal activity resulted to be strain-related, based on a different mechanism of action for filamentous fungi and the yeast and was not exclusively associated to the increase of PLA. Therefore, a further investigation on the unique unidentified peak in HPLC-UV chromatograms, was performed by LC-MS/MS analysis. Actually, full scan mass spectra (negative ion mode) recorded at the retention time of the unknown compound, showed a main peak of m/z 291.0 which was consistent with the nominal mass of the molecular ion [M-H](-) of polyporic acid, a PPA derivative whose antifungal activity has been previously reported (Brewer et al., 1977). In conclusion, the addition of PPA to the growth medium contributed to improve the antifungal activity of LAB

  10. Designed Amino Acid Feed in Improvement of Production and Quality Targets of a Therapeutic Monoclonal Antibody.

    Directory of Open Access Journals (Sweden)

    Fatemeh Torkashvand

    Full Text Available Cell culture feeds optimization is a critical step in process development of pharmaceutical recombinant protein production. Amino acids are the basic supplements of mammalian cell culture feeds with known effect on their growth promotion and productivity. In this study, we reported the implementation of the Plackett-Burman (PB multifactorial design to screen the effects of amino acids on the growth promotion and productivity of a Chinese hamster ovary DG-44 (CHO-DG44 cell line producing bevacizumab. After this screening, the amino acid combinations were optimized by the response surface methodology (RSM to determine the most effective concentration in feeds. Through this strategy, the final monoclonal antibody (mAb titre was enhanced by 70%, compared to the control group. For this particular cell line, aspartic acid, glutamic acid, arginine and glycine had the highest positive effects on the final mAb titre. Simultaneously, the impact of the designed amino acid feed on some critical quality attributes of bevacizumab was examined in the group with highest productivity. The product was analysed for N-glycan profiles, charge variant distribution, and low molecular weight forms. The results showed that the target product quality has been improved using this feeding strategy. It was shown how this strategy could significantly diminish the time and number of experiments in identifying the most effective amino acids and related concentrations in target product enhancement. This model could be successfully applied to other components of culture media and feeds.

  11. Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants.

    Science.gov (United States)

    Rogalski, Marcelo; Carrer, Helaine

    2011-06-01

    The ability to manipulate plant fatty acid biosynthesis by using new biotechnological approaches has allowed the production of transgenic plants with unusual fatty acid profile and increased oil content. This review focuses on the production of very long chain polyunsaturated fatty acids (VLCPUFAs) and the increase in oil content in plants using molecular biology tools. Evidences suggest that regular consumption of food rich in VLCPUFAs has multiple positive health benefits. Alternative sources of these nutritional fatty acids are found in cold-water fishes. However, fish stocks are in severe decline because of decades of overfishing, and also fish oils can be contaminated by the accumulation of toxic compounds. Recently, there is also an increase in oilseed use for the production of biofuels. This tendency is partly associated with the rapidly rising costs of petroleum, increased concern about the environmental impact of fossil oil and the attractive need to develop renewable sources of fuel. In contrast to this scenario, oil derived from crop plants is normally contaminant free and less environmentally aggressive. Genetic engineering of the plastid genome (plastome) offers a number of attractive advantages, including high-level foreign protein expression, marker-gene excision and transgene containment because of maternal inheritance of plastid genome in most crops. Here, we describe the possibility to improve fatty acid biosynthesis in plastids, production of new fatty acids and increase their content in plants by genetic engineering of plastid fatty acid biosynthesis via plastid transformation.

  12. Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health

    Directory of Open Access Journals (Sweden)

    Luigi Fontana

    2016-07-01

    Full Text Available Protein-restricted (PR, high-carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Furthermore, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderate PR diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched-chain amino acids (BCAAs is sufficient to improve glucose tolerance and body composition equivalently to a PR diet via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino acids in the maintenance of metabolic health and suggest that diets specifically reduced in BCAAs, or pharmacological interventions in this pathway, may offer a translatable way to achieve many of the metabolic benefits of a PR diet.

  13. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells.

    Science.gov (United States)

    Li, Guoshi; Linster, Christiane; Cleland, Thomas A

    2015-12-01

    Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function.

  14. Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells

    Science.gov (United States)

    Linster, Christiane

    2015-01-01

    Olfactory bulb granule cells are modulated by both acetylcholine (ACh) and norepinephrine (NE), but the effects of these neuromodulators have not been clearly distinguished. We used detailed biophysical simulations of granule cells, both alone and embedded in a microcircuit with mitral cells, to measure and distinguish the effects of ACh and NE on cellular and microcircuit function. Cholinergic and noradrenergic modulatory effects on granule cells were based on data obtained from slice experiments; specifically, ACh reduced the conductance densities of the potassium M current and the calcium-dependent potassium current, whereas NE nonmonotonically regulated the conductance density of an ohmic potassium current. We report that the effects of ACh and NE on granule cell physiology are distinct and functionally complementary to one another. ACh strongly regulates granule cell firing rates and afterpotentials, whereas NE bidirectionally regulates subthreshold membrane potentials. When combined, NE can regulate the ACh-induced expression of afterdepolarizing potentials and persistent firing. In a microcircuit simulation developed to investigate the effects of granule cell neuromodulation on mitral cell firing properties, ACh increased spike synchronization among mitral cells, whereas NE modulated the signal-to-noise ratio. Coapplication of ACh and NE both functionally improved the signal-to-noise ratio and enhanced spike synchronization among mitral cells. In summary, our computational results support distinct and complementary roles for ACh and NE in modulating olfactory bulb circuitry and suggest that NE may play a role in the regulation of cholinergic function. PMID:26334007

  15. An amino acid substitution-selection model adjusts residue fitness to improve phylogenetic estimation.

    Science.gov (United States)

    Wang, Huai-Chun; Susko, Edward; Roger, Andrew J

    2014-04-01

    Standard protein phylogenetic models use fixed rate matrices of amino acid interchange derived from analyses of large databases. Differences between the stationary amino acid frequencies of these rate matrices from those of a data set of interest are typically adjusted for by matrix multiplication that converts the empirical rate matrix to an exchangeability matrix which is then postmultiplied by the amino acid frequencies in the alignment. The result is a time-reversible rate matrix with stationary amino acid frequencies equal to the data set frequencies. On the basis of population genetics principles, we develop an amino acid substitution-selection model that parameterizes the fitness of an amino acid as the logarithm of the ratio of the frequency of the amino acid to the frequency of the same amino acid under no selection. The model gives rise to a different sequence of matrix multiplications to convert an empirical rate matrix to one that has stationary amino acid frequencies equal to the data set frequencies. We incorporated the substitution-selection model with an improved amino acid class frequency mixture (cF) model to partially take into account site-specific amino acid frequencies in the phylogenetic models. We show that 1) the selection models fit data significantly better than corresponding models without selection for most of the 21 test data sets; 2) both cF and cF selection models favored the phylogenetic trees that were inferred under current sophisticated models and methods for three difficult phylogenetic problems (the positions of microsporidia and breviates in eukaryote phylogeny and the position of the root of the angiosperm tree); and 3) for data simulated under site-specific residue frequencies, the cF selection models estimated trees closer to the generating trees than a standard Г model or cF without selection. We also explored several ways of estimating amino acid frequencies under neutral evolution that are required for these selection

  16. Improvement of glucaric acid production in E. coli via dynamic control of metabolic fluxes

    Directory of Open Access Journals (Sweden)

    Irene M. Brockman Reizman

    2015-12-01

    Full Text Available D-glucaric acid can be used as a building block for biopolymers as well as in the formulation of detergents and corrosion inhibitors. A biosynthetic route for production in Escherichia coli has been developed (Moon et al., 2009, but previous work with the glucaric acid pathway has indicated that competition with endogenous metabolism may limit carbon flux into the pathway. Our group has recently developed an E. coli strain where phosphofructokinase (Pfk activity can be dynamically controlled and demonstrated its use for improving yields and titers of the glucaric acid precursor myo-inositol on glucose minimal medium. In this work, we have explored the further applicability of this strain for glucaric acid production in a supplemented medium more relevant for scale-up studies, both under batch conditions and with glucose feeding via in situ enzymatic starch hydrolysis. It was found that glucaric acid titers could be improved by up to 42% with appropriately timed knockdown of Pfk activity during glucose feeding. The glucose feeding protocol could also be used for reduction of acetate production in the wild type and modified E. coli strains.

  17. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering.

    Science.gov (United States)

    Chen, Yingying; Stabryla, Lisa; Wei, Na

    2016-01-29

    Development of acetic acid-resistant Saccharomyces cerevisiae is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge due to limited information on effective genetic perturbation targets for improving acetic acid resistance in the yeast. This study employed a genomic-library-based inverse metabolic engineering approach to successfully identify a novel gene target, WHI2 (encoding a cytoplasmatic globular scaffold protein), which elicited improved acetic acid resistance in S. cerevisiae. Overexpression of WHI2 significantly improved glucose and/or xylose fermentation under acetic acid stress in engineered yeast. The WHI2-overexpressing strain had 5-times-higher specific ethanol productivity than the control in glucose fermentation with acetic acid. Analysis of the expression of WHI2 gene products (including protein and transcript) determined that acetic acid induced endogenous expression of Whi2 in S. cerevisiae. Meanwhile, the whi2Δ mutant strain had substantially higher susceptibility to acetic acid than the wild type, suggesting the important role of Whi2 in the acetic acid response in S. cerevisiae. Additionally, overexpression of WHI2 and of a cognate phosphatase gene, PSR1, had a synergistic effect in improving acetic acid resistance, suggesting that Whi2 might function in combination with Psr1 to elicit the acetic acid resistance mechanism. These results improve our understanding of the yeast response to acetic acid stress and provide a new strategy to breed acetic acid-resistant yeast strains for renewable biofuel production.

  18. Emission control for precursors causing acid rain(V):Improvement of acid soil with the bio-briquette combustion ash

    Institute of Scientific and Technical Information of China (English)

    DONG Xu-hui; SAKAMOTO Kazuhiko; WANG Wei; GAO Shi-dong; ISOBE Yugo

    2004-01-01

    The bio-briquette technique which mixes coal, biomass and sulfur fixation agent and bio-briquettes under 3-5 t/cm2 line pressure has aroused people's attention in view of controlling the air pollution and the acid rain. In this paper, the physicochemical properties of bio-briquette and its ash were investigated. And the acid soil was improved by the bio-briquette combustion ash, which contained nutritive substances such as P, N, K and had the acid-neutralizing capacity(ANC). The pH, EC, effective nutrient elements(Ca, Mg, K, P and N), heavy metal elements(Al, Cu, Cd, Cr, Zn and Mn) and acid-neutralizing capacity change of ash-added soils within the range of 0%-10%, were also studied. Specially, when 5% bio-briquette combustion ash was added to the tested soil, the content of the effective elements such as Ca, Mg and K rose by 100 times, 7 times and twice, respectively. The total nitrogen also increased by about twice. The results showed the oxyanions such as that of Al, Cu, Cd, Cr, Zn and Mn were not potentially dangerous, because they were about the same as the averages of them in Chinese soil. It is shown that the ANC became stronger, though the ANC hardly increases in the ash-added soil. On the basis of the evaluation indices, it is concluded that the best mixture ratio is to add 2.5%-8% of the bio-briquette combustion ash to the tested soil.

  19. Improving evolutionary models for mitochondrial protein data with site-class specific amino acid exchangeability matrices.

    Directory of Open Access Journals (Sweden)

    Katherine A Dunn

    Full Text Available Adequate modeling of mitochondrial sequence evolution is an essential component of mitochondrial phylogenomics (comparative mitogenomics. There is wide recognition within the field that lineage-specific aspects of mitochondrial evolution should be accommodated through lineage-specific amino-acid exchangeability matrices (e.g., mtMam for mammalian data. However, such a matrix must be applied to all sites and this implies that all sites are subject to the same, or largely similar, evolutionary constraints. This assumption is unjustified. Indeed, substantial differences are expected to arise from three-dimensional structures that impose different physiochemical environments on individual amino acid residues. The objectives of this paper are (1 to investigate the extent to which amino acid evolution varies among sites of mitochondrial proteins, and (2 to assess the potential benefits of explicitly modeling such variability. To achieve this, we developed a novel method for partitioning sites based on amino acid physiochemical properties. We apply this method to two datasets derived from complete mitochondrial genomes of mammals and fish, and use maximum likelihood to estimate amino acid exchangeabilities for the different groups of sites. Using this approach we identified large groups of sites evolving under unique physiochemical constraints. Estimates of amino acid exchangeabilities differed significantly among such groups. Moreover, we found that joint estimates of amino acid exchangeabilities do not adequately represent the natural variability in evolutionary processes among sites of mitochondrial proteins. Significant improvements in likelihood are obtained when the new matrices are employed. We also find that maximum likelihood estimates of branch lengths can be strongly impacted. We provide sets of matrices suitable for groups of sites subject to similar physiochemical constraints, and discuss how they might be used to analyze real data. We

  20. Improvement of Physiological Characteristic of Selenium-Enriched Candida utilis with Amino Acids Addition

    Directory of Open Access Journals (Sweden)

    Ge Xiaoguang

    2011-01-01

    Full Text Available The effects of amino acids addition on cell growth, glutathione biosynthesis, glutathione distribution, and the intracellular oxidation-reduction environment of Candida utilis SZU 07-01 during selenium enrichment were investigated in this study. Most amino acids under appropriate concentrations have positive effects on cell growth of the yeast strain, except for phenylalanine and proline, compared with the control without amino acid addition. The bioconversion of selenite to organic selenium induced the reduction of glutathione synthesis and intracellular distribution of glutathione. However, amino acids including cysteine, glutamine, glutamic acid, isoleucine, leucine, and tyrosine could effectively promote the selenium-enriched yeast to elevate glutathione production, especially increasing the intracellular glutathione content. Moreover, addition of these six different amino acids apparently decreased malondialdehyde concentration and recovered the normal intracellular redox environment of the selenium-enriched C. utilis SZU 07-01. The improvement of physiological characteristic of the selenium-enriched yeast by increasing intracellular glutathione content and lowering malondialdehyde content will undoubtedly help to widen application of selenium-enriched yeast as food or feed additives.

  1. The response of GABAergic and cholinergic neurons to transient cerebral ischemia.

    Science.gov (United States)

    Francis, A; Pulsinelli, W

    1982-07-15

    The vulnerability of striatal and hippocampal neurons to ischemia was studied by measuring the activity of neurotransmitter-related enzymes after transient forebrain ischemia in rats. Activities of glutamic acid decarboxylase (GAD) and choline acetyltransferase (CAT) were measured 6 h to 8 days after 20, 30 or 40 min of forebrain ischemia, as markers for GABAergic and cholinergic neurons respectively. Transient forebrain ischemia resulted in depression of striatal GAD activity while striatal CAT and hippocampal GAD activities were unaffected. Striatal GAD activity progressively decreased during the first 24 h postischemia and remained depressed 5--8 days later, suggesting irreversible damage to this population of neurons. The stability of striatal CAT and hippocampal GAD activity indicates that these cells were resistant to the present ischemic conditions.

  2. Cholinergic signals in mouse barrel cortex during active whisker sensing.

    Science.gov (United States)

    Eggermann, Emmanuel; Kremer, Yves; Crochet, Sylvain; Petersen, Carl C H

    2014-12-11

    Internal brain states affect sensory perception, cognition, and learning. Many neocortical areas exhibit changes in the pattern and synchrony of neuronal activity during quiet versus active behaviors. Active behaviors are typically associated with desynchronized cortical dynamics. Increased thalamic firing contributes importantly to desynchronize mouse barrel cortex during active whisker sensing. However, a whisking-related cortical state change persists after thalamic inactivation, which is mediated at least in part by acetylcholine, as we show here by using whole-cell recordings, local pharmacology, axonal calcium imaging, and optogenetic stimulation. During whisking, we find prominent cholinergic signals in the barrel cortex, which suppress spontaneous cortical activity. The desynchronized state of barrel cortex during whisking is therefore driven by at least two distinct signals with opposing functions: increased thalamic activity driving glutamatergic excitation of the cortex and increased cholinergic input suppressing spontaneous cortical activity.

  3. Cholinergic Signals in Mouse Barrel Cortex during Active Whisker Sensing

    Directory of Open Access Journals (Sweden)

    Emmanuel Eggermann

    2014-12-01

    Full Text Available Internal brain states affect sensory perception, cognition, and learning. Many neocortical areas exhibit changes in the pattern and synchrony of neuronal activity during quiet versus active behaviors. Active behaviors are typically associated with desynchronized cortical dynamics. Increased thalamic firing contributes importantly to desynchronize mouse barrel cortex during active whisker sensing. However, a whisking-related cortical state change persists after thalamic inactivation, which is mediated at least in part by acetylcholine, as we show here by using whole-cell recordings, local pharmacology, axonal calcium imaging, and optogenetic stimulation. During whisking, we find prominent cholinergic signals in the barrel cortex, which suppress spontaneous cortical activity. The desynchronized state of barrel cortex during whisking is therefore driven by at least two distinct signals with opposing functions: increased thalamic activity driving glutamatergic excitation of the cortex and increased cholinergic input suppressing spontaneous cortical activity.

  4. Boswellic Acid Improves Cognitive Function in a Rat Model Through Its Antioxidant Activity - Neuroprotective effect of Boswellic acid -

    Directory of Open Access Journals (Sweden)

    Saeedeh Ebrahimpour

    2017-03-01

    Full Text Available Objectives: Boswellic acid (BA, a compound isolated from the gum-resin of Boswellia carterii, is a pentacyclic terpenoid that is active against many inflammatory diseases, including cancer, arthritis, chronic colitis, ulcerative colitis, Crohn's disease, and memory impairment, but the mechanism is poorly understood. This study investigated the effects of boswellic acid on spatial learning and memory impairment induced by trimethyltin (TMT in Wistar rats. Methods: Forty male Wistar rats were randomly divided into 5 groups: Normal group, TMT-administrated rats (8.0 mg/kg, Intraperitoneally, i.p. and TMT + BA (40, 80 and 160 mg/kg, i.p.-administrated rats. BA was used daily for 21 days. To evaluate the cognitive improving of BA, we performed the Morris water maze test. Moreover, to investigate the neuroprotective effect of BA, we determined the acetylcholinesterase (AchE activity, the malondialdehyde (MDA level as a marker of lipid peroxidation, and the glutathione (GSH content in the cerebral cortex. Results: Treatment with TMT impaired learning and memory, and treatment with BA at a dose of 160 mg/kg produced a significant improvement in learning and memory abilities in the water maze tasks. Consistent with behavioral data, the activity of AChE was significantly increased in the TMT-injected rats compared to the control group (P < 0.01 whereas all groups treated with BA presented a more significant inhibitory effect against AChE than the TMT-injected animals. In addition, TMT reduced the GSH content and increased the MDA level in the cerebral cortex as compared to the control group P < 0.01. On the other hand, treatment with BA at 160 mg/kg slightly increased the GSH content and reduced the MDA level in comparison to the TMT-administered group (P < 0.01. Conclusion: The above results suggest that the effect of BA in improving the cognitive function may be mediated through its antioxidant activity.

  5. BRAINSTEM CHOLINERGIC MODULATION OF MUSCLE TONE IN INFANT RATS

    OpenAIRE

    Gall, Andrew J.; Poremba, Amy; Blumberg, Mark S.

    2007-01-01

    In week-old rats, lesions of the dorsolateral pontine tegmentum (DLPT) and nucleus pontis oralis (PnO) have opposing effects on nuchal muscle tone. Specifically, pups with DLPT lesions exhibit prolonged bouts of nuchal muscle atonia (indicative of sleep) and pups with PnO lesions exhibit prolonged bouts of high nuchal muscle tone (indicative of wakefulness). Here we test the hypothesis that nuchal muscle tone is modulated, at least in part, by cholinergically mediated interactions between the...

  6. Modulation of the Cholinergic Mechanisms in the Bronchial Smooth Muscle.

    Science.gov (United States)

    1984-06-01

    Ginsborg and Hirst, 1q72; Sawynok and Jhamandas, 1976), although theopylline has not shown to be a specific adenosine receptor antagonist in all the tissues... theopylline and other cyclic nucletide phosphodiesterase inhibitors. Acta Pharmacol. Toxicol. 45, 336-344. Fredholm, B.B. and P. Hedqvist, 1980...51 mM) evoked release of [3H]-Ach from cholinergic nerves in the bronchial smooth muscle. The effect of theopylline (I mM) on the response to

  7. Dopaminergic and Cholinergic Modulation of Striatal Tyrosine Hydroxylase Interneurons

    OpenAIRE

    Ibáñez-Sandoval, Osvaldo; Xenias, Harry S.; Tepper, James M.; Koós, Tibor

    2015-01-01

    The recent electrophysiological characterization of TH-expressing GABAergic interneurons (THINs) in the neostriatum revealed an unexpected degree of diversity of interneurons in this brain area (Ibáñez-Sandoval et al., 2010, Unal et al., 2011, 2013). Despite being relatively few in number, THINs may play a significant role in transmitting and distributing extra- and intrastriatal neuromodulatory signals in the striatal circuitry. Here we investigated the dopaminergic and cholinergic regulatio...

  8. Basal forebrain cholinergic input is not essential for lesion-induced plasticity in mature auditory cortex.

    Science.gov (United States)

    Kamke, Marc R; Brown, Mel; Irvine, Dexter R F

    2005-11-23

    The putative role of the basal forebrain cholinergic system in mediating lesion-induced plasticity in topographic cortical representations was investigated. Cholinergic immunolesions were combined with unilateral restricted cochlear lesions in adult cats, demonstrating the consequence of cholinergic depletion on lesion-induced plasticity in primary auditory cortex (AI). Immunolesions almost eliminated the cholinergic input to AI, while cochlear lesions produced broad high-frequency hearing losses. The results demonstrate that the near elimination of cholinergic input does not disrupt reorganization of the tonotopic representation of the lesioned (contralateral) cochlea in AI and does not affect the normal representation of the unlesioned (ipsilateral) cochlea. It is concluded that cholinergic basal forebrain input to AI is not essential for the occurrence of lesion-induced plasticity in AI.

  9. Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits.

    Science.gov (United States)

    Dautan, Daniel; Souza, Albert S; Huerta-Ocampo, Icnelia; Valencia, Miguel; Assous, Maxime; Witten, Ilana B; Deisseroth, Karl; Tepper, James M; Bolam, J Paul; Gerdjikov, Todor V; Mena-Segovia, Juan

    2016-08-01

    Dopamine neurons in the ventral tegmental area (VTA) receive cholinergic innervation from brainstem structures that are associated with either movement or reward. Whereas cholinergic neurons of the pedunculopontine nucleus (PPN) carry an associative/motor signal, those of the laterodorsal tegmental nucleus (LDT) convey limbic information. We used optogenetics and in vivo juxtacellular recording and labeling to examine the influence of brainstem cholinergic innervation of distinct neuronal subpopulations in the VTA. We found that LDT cholinergic axons selectively enhanced the bursting activity of mesolimbic dopamine neurons that were excited by aversive stimulation. In contrast, PPN cholinergic axons activated and changed the discharge properties of VTA neurons that were integrated in distinct functional circuits and were inhibited by aversive stimulation. Although both structures conveyed a reinforcing signal, they had opposite roles in locomotion. Our results demonstrate that two modes of cholinergic transmission operate in the VTA and segregate the neurons involved in different reward circuits.

  10. Modulatory compartments in cortex and local regulation of cholinergic tone.

    Science.gov (United States)

    Coppola, Jennifer J; Ward, Nicholas J; Jadi, Monika P; Disney, Anita A

    2016-09-01

    Neuromodulatory signaling is generally considered broad in its impact across cortex. However, variations in the characteristics of cortical circuits may introduce regionally-specific responses to diffuse modulatory signals. Features such as patterns of axonal innervation, tissue tortuosity and molecular diffusion, effectiveness of degradation pathways, subcellular receptor localization, and patterns of receptor expression can lead to local modification of modulatory inputs. We propose that modulatory compartments exist in cortex and can be defined by variation in structural features of local circuits. Further, we argue that these compartments are responsible for local regulation of neuromodulatory tone. For the cholinergic system, these modulatory compartments are regions of cortical tissue within which signaling conditions for acetylcholine are relatively uniform, but between which signaling can vary profoundly. In the visual system, evidence for the existence of compartments indicates that cholinergic modulation likely differs across the visual pathway. We argue that the existence of these compartments calls for thinking about cholinergic modulation in terms of finer-grained control of local cortical circuits than is implied by the traditional view of this system as a diffuse modulator. Further, an understanding of modulatory compartments provides an opportunity to better understand and perhaps correct signal modifications that lead to pathological states.

  11. Animal model of vascular dementia and its cholinergic mechanism

    Institute of Scientific and Technical Information of China (English)

    FAN Wen-hui; LI Lu-si; LIU Zhi-rong; ZHU Hong-yan; CHEN Kang-ning

    2001-01-01

    Objective: To establish a model of vascular dementia (VD) in aging rats and study primarily the cholinergic mechanism of hypomnesia. Methods: Chronic hypoperfusion of cerebral blood flow (CBF) in the forebrain was performed in aging rats with permanent bilateral common carotid arteries occlusion (PBCCAO). Then the rats were tested with a computerized shuttle-training case. The changes of cerebrovascular system were observed with digital subtraction angiography (DSA). The brain tissues were studied with immunohistochemical method with cholinergic acetyltransferase (ChAT) as a marker. Results: The cognitive function of rats was obviously reduced in 2 months after chronic cerebral hypoperfusion and became worse 2 months later, showing a more marked decrease of ChAT positive neurons and fibers in CA1 of the hippocampus as compared with the rats of the control, which had a significant positive correlation with memory ability. Conclusion: This rat model is successfully established to imitate human VD induced with chronic cerebral hypoperfusion. The mechanism of the hypomnesia of VD might be the impairment of cholinergic neurons in frontal cortex and hippocampus.

  12. A cholinergic hypothesis of the unconscious in affective disorders.

    Directory of Open Access Journals (Sweden)

    Costa eVakalopoulos

    2013-11-01

    Full Text Available The interactions between distinct pharmacological systems are proposed as a key dynamic in the formation of unconscious memories underlying rumination and mood disorder, but also reflect the plastic capacity of neural networks that can aid recovery. An inverse and reciprocal relationship is postulated between cholinergic and monoaminergic receptor subtypes. M1-type muscarinic receptor transduction facilitates encoding of unconscious, prepotent behavioural repertoires at the core of affective disorders and ADHD. Behavioural adaptation to new contingencies is mediated by the classic prototype receptor: 5-HT1A (Gi/o and its modulation of m1-plasticity. Reversal of learning is dependent on increased phasic activation of midbrain monoaminergic nuclei and is a function of hippocampal theta. Acquired hippocampal dysfunction due to abnormal activation of the hypothalamic-pituitary-adrenal (HPA axis predicts deficits in hippocampal-dependent memory and executive function and further impairments to cognitive inhibition. Encoding of explicit memories is mediated by Gq/11 and Gs signalling of monoamines only. A role is proposed for the phasic activation of the basal forebrain cholinergic nucleus by cortical projections from the complex consisting of the insula and claustrum. Although controversial. recent studies suggest a common ontogenetic origin of the two structures and a functional coupling. Lesions of the region result in loss of motivational behaviour and familiarity based judgements. A major hypothesis of the paper is that these lost faculties result indirectly, from reduced cholinergic tone.

  13. Clonidine, moxonidine, folic acid, and mecobalamin improve baroreflex function in stroke-prone, spontaneously hypertensive rats

    Institute of Scientific and Technical Information of China (English)

    Xiu-juan MA; Fu-ming SHEN; Ai-jun LIU; Ke-yong SHI; Ying-liang WU; Ding-feng SU

    2007-01-01

    Aim: To investigate the effect of clonidine, moxonidine, folic acid, and mecobalamin on arterial baroreflex (ABR) function in stroke-prone spontaneously hypertensive rats (SHR-SP) and the possible mechanisms involved.Methods: Eighty-one SHR-SP were divided into 7 groups. Four groups weredesignated for the intragastric (ig) administration of clonidine (1.0 and 10.0 μg/kg), moxonidine (0.1 and 1.0 mg/kg), folic acid (1.0 mg/kg), and mecobalamin(1.0 mg/kg). Three groups were for the intracerebroventricular (icv) injection of clonidine (4 μg/4 μL), moxonidine (5 μg/4 μL), and mecobalamin (20 μg/4 μL).Blood pressure (BP) was recorded in the conscious state for 30 min and baroreflex sensitivity (BRS) was determined respectively before and after drug administration. Results: Clonidine and moxonidine significantly decreased BP,prolonged the heart period (HP), and increased BRS when administered as either ig or icv injections. Both BP and HP were unchanged by ig folic acid or mecobalamin injection. However, BRS was significantly increased by both.Conclusion: Clonidine, moxonidine, folic acid, and mecobalamin improved impaired ABR function in SHR-SP. The central mechanism was involved in this effect of either clonidine or moxonidine. Mecobalamin improved ABR function through the peripheral mechanism.

  14. Improved process for the production of cellulose sulfate using sulfuric acid/ethanol solution.

    Science.gov (United States)

    Chen, Guo; Zhang, Bin; Zhao, Jun; Chen, Hongwen

    2013-06-05

    An improved process for production of cellulose sulfate (CS) was developed by using sulfuric acid/ethanol solution as sulfonating agent and Na2SO4 as water absorbent. The FTIR, SEM and TG analysis were used to characterize the CS prepared. The total degree of substitution and viscosity of the product solution (2%, w/v) were ranging from 0.28 to 0.77 and from 115 to 907 mPa s, respectively, by changing the process parameters such as the amount of Na2SO4, the reaction time, the temperature, the sulfuric acid/alcohol ratio and liquid/solid ratio. The results indicated that the product with DS (0.28-0.77) and η2% (115-907) mPa s could be produced by using this improved process and more cellulose sulfate could be produced when cellulose was sulfonated for 3-4 h at -2 °C in sulfuric acid/ethanol (1.4-1.6) solution with addition of 0.8 g Na2SO4. The (13)C NMR indicated that the sulfate group of CS produced using sulfuric acid/ethanol solution was at C6 position.

  15. Stearidonic and γ-linolenic acids in echium oil improves glucose disposal in insulin resistant monkeys.

    Science.gov (United States)

    Kavanagh, K; Flynn, D M; Jenkins, K A; Wilson, M D; Chilton, F H

    2013-07-01

    Echium oil (EO) contains stearidonic acid (18:4), a n-3 polyunsaturated fatty acids (PUFAs), and gamma-linolenic acids (18:3), a n-6 PUFA that can be converted to long chain (LC)-PUFAs. We aimed to compare a safflower oil (SO)-enriched diet to EO- and fish oil (FO)-enriched diets on circulating and tissue PUFAs levels and glycemic, inflammatory, and cardiovascular health biomarkers in insulin resistant African green monkeys. In a Latin-square cross-over study, eight monkeys consumed matched diets for 6 weeks with 3-week washout periods. Monkeys consuming FO had significantly higher levels of n-3 LC-PUFAs and EO supplementation resulted in higher levels of circulating n-3 LC-PUFAs and a significant increase in dihomo-gamma linolenic acid (DGLA) in red blood cells and muscle. Glucose disposal was improved after EO consumption. These data suggest that PUFAs in EO supplementation have the capacity to alter circulating, RBC and muscle LC-PUFA levels and improve glucose tolerance in insulin-resistant monkeys.

  16. Acidic electrolyzed water efficiently improves the flavour of persimmon (Diospyros kaki L. cv. Mopan) wine.

    Science.gov (United States)

    Zhu, Wanqi; Zhu, Baoqing; Li, Yao; Zhang, Yanyan; Zhang, Bolin; Fan, Junfeng

    2016-04-15

    The ability of acidic (AcW) and alkaline electrolyzed waters (AlW) to improve the flavour of persimmon (Diospyros kaki L.) wine was evaluated. Wines made with AcW (WAcW) were significantly better than wines made with AlW or pure water (PW) in aroma, taste, and colour. Volatile analysis showed that WAcW has high alcohol and ester contents, including 2-phenylethanol, isopentanol, isobutanol, ethyl dodecanoate, phenethyl acetate, and butanedioic acid diethyl ester. The total amino acid content of persimmon slurry soaked with AcW reached 531.2 mg/l, which was much higher than those of the slurries soaked in AlW (381.3 mg/l) and PW (182.7 mg/l). The composition of major amino acids in the AcW-soaked slurry may contribute to the strong ester flavour of WAcW. This is the first report to suggest that electrolyzed functional water (EFW) can be used to improve wine flavour, leading to the possible use of EFW in food processing.

  17. High-Temperature Synthesis of Ordered Mesoporous Aluminosilicates from ZSM-5 Nanoseeds with Improved Acidic Properties

    Directory of Open Access Journals (Sweden)

    Xuan Hoan Vu

    2014-08-01

    Full Text Available Ordered mesoporous SBA-15 analogs with different Si/Al ratios were successfully prepared in a two-step process from self-assembly of ZSM-5 nanoseeds at high temperature in mildly acidic media (473 K, pH 3.5. The obtained products were characterized as SAXS, XRD, N2 sorption, FTIR, TEM, NH3-TPD, AAS and ICP. The results show that the initial Si/Al molar ratio of ZSM-5 precursors strongly affects the final materials’ properties. A highly condensed, well-ordered mesoporous SBA-15 analog with improved hydrothermal stability and acidic properties can be prepared from low aluminum containing ZSM-5 precursors (Si/Al ≥ 20. Reducing the initial Si/Al molar ratio to 10, however, leads to the formation of a disordered mesoporous SBA-15 type material accompanied by degraded textural and acidic properties. The gas phase cracking of cumene, carried out as probe reaction to evaluate Brønsted acidity, reveals that an increased density of Brønsted acid sites has been achieved over the SBA-15 analogs compared to conventional Al-SBA-15 due to the preservation of zeolite building units in the mesopore walls of the SBA-15 analogs.

  18. High-Temperature Synthesis of Ordered Mesoporous Aluminosilicates from ZSM-5 Nanoseeds with Improved Acidic Properties.

    Science.gov (United States)

    Vu, Xuan Hoan; Eckelt, Reinhard; Armbruster, Udo; Martin, Andreas

    2014-08-18

    Ordered mesoporous SBA-15 analogs with different Si/Al ratios were successfully prepared in a two-step process from self-assembly of ZSM-5 nanoseeds at high temperature in mildly acidic media (473 K, pH 3.5). The obtained products were characterized as SAXS, XRD, N₂ sorption, FTIR, TEM, NH₃-TPD, AAS and ICP. The results show that the initial Si/Al molar ratio of ZSM-5 precursors strongly affects the final materials' properties. A highly condensed, well-ordered mesoporous SBA-15 analog with improved hydrothermal stability and acidic properties can be prepared from low aluminum containing ZSM-5 precursors (Si/Al ≥ 20). Reducing the initial Si/Al molar ratio to 10, however, leads to the formation of a disordered mesoporous SBA-15 type material accompanied by degraded textural and acidic properties. The gas phase cracking of cumene, carried out as probe reaction to evaluate Brønsted acidity, reveals that an increased density of Brønsted acid sites has been achieved over the SBA-15 analogs compared to conventional Al-SBA-15 due to the preservation of zeolite building units in the mesopore walls of the SBA-15 analogs.

  19. Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents.

    Science.gov (United States)

    Kanazawa, Hideaki; Ieda, Masaki; Kimura, Kensuke; Arai, Takahide; Kawaguchi-Manabe, Haruko; Matsuhashi, Tomohiro; Endo, Jin; Sano, Motoaki; Kawakami, Takashi; Kimura, Tokuhiro; Monkawa, Toshiaki; Hayashi, Matsuhiko; Iwanami, Akio; Okano, Hideyuki; Okada, Yasunori; Ishibashi-Ueda, Hatsue; Ogawa, Satoshi; Fukuda, Keiichi

    2010-02-01

    Although several cytokines and neurotrophic factors induce sympathetic neurons to transdifferentiate into cholinergic neurons in vitro, the physiological and pathophysiological roles of this remain unknown. During congestive heart failure (CHF), sympathetic neural tone is upregulated, but there is a paradoxical reduction in norepinephrine synthesis and reuptake in the cardiac sympathetic nervous system (SNS). Here we examined whether cholinergic transdifferentiation can occur in the cardiac SNS in rodent models of CHF and investigated the underlying molecular mechanism(s) using genetically modified mice. We used Dahl salt-sensitive rats to model CHF and found that, upon CHF induction, the cardiac SNS clearly acquired cholinergic characteristics. Of the various cholinergic differentiation factors, leukemia inhibitory factor (LIF) and cardiotrophin-1 were strongly upregulated in the ventricles of rats with CHF. Further, LIF and cardiotrophin-1 secreted from cultured failing rat cardiomyocytes induced cholinergic transdifferentiation in cultured sympathetic neurons, and this process was reversed by siRNAs targeting Lif and cardiotrophin-1. Consistent with the data in rats, heart-specific overexpression of LIF in mice caused cholinergic transdifferentiation in the cardiac SNS. Further, SNS-specific targeting of the gene encoding the gp130 subunit of the receptor for LIF and cardiotrophin-1 in mice prevented CHF-induced cholinergic transdifferentiation. Cholinergic transdifferentiation was also observed in the cardiac SNS of autopsied patients with CHF. Thus, CHF causes target-dependent cholinergic transdifferentiation of the cardiac SNS via gp130-signaling cytokines secreted from the failing myocardium.

  20. Delirium Accompanied by Cholinergic Deficiency and Organ Failure in a 73-Year-Old Critically Ill Patient: Physostigmine as a Therapeutic Option

    Directory of Open Access Journals (Sweden)

    Benedikt Zujalovic

    2015-01-01

    Full Text Available Delirium is a common problem in ICU patients, resulting in prolonged ICU stay and increased mortality. A cholinergic deficiency in the central nervous system is supposed to be a relevant pathophysiologic process in delirium. Acetylcholine is a major transmitter of the parasympathetic nervous system influencing several organs (e.g., heart and kidneys and the inflammatory response too. This perception might explain that delirium is not an individual symptom, but rather a part of a symptom complex with various disorders of the whole organism. The cholinergic deficiency could not be quantified up to now. Using the possibility of bedside determination of the acetylcholinesterase activity (AChE activity, we assumed to objectify the cholinergic homeostasis within minutes. As reported here, the postoperative delirium was accompanied by a massive hemodynamic and renal deterioration of unclear genesis. We identified the altered AChE activity as a plausible pathophysiological mechanism. The pharmacological intervention with the indirect parasympathomimetic physostigmine led to a quick and lasting improvement of the patient’s cognitive, hemodynamic, and renal status. In summary, severe delirium is not always an attendant phenomenon of critical illness. It might be causal for multiple organ deterioration if it is based on cholinergic deficiency and has to be treated at his pathophysiological roots whenever possible.

  1. Application of 10% Ascorbic Acid Improves Resin Shear Bond Stregth in Bleached Dentin

    Directory of Open Access Journals (Sweden)

    Kamizar Kamizar

    2014-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Restoration of the teeth immediately after bleaching with H2O2 35% is contraindicated due to the remnants of free radical that will stay inside dentin for 2-3 weeks which will compromise the adhesiveness of composite resin. Objective: The aim of this study was to evaluate the influence of 10% ascorbic acid on shear bond strength of composite placed on bleached dentin. Methods:Twenty seven samples were divided equally into three groups. Group 1: dentin was etched with 35% phosphoric acid; Group 2: dentin was bleached with 35% H2O2 followed by etching with 35% phosphoric acid; Group 3: dentin was bleached with 35% H2O2, followed by application of 10% ascorbic acid and etched with 35% phosphoric acid. All samples were then stored at 370C for 24 hours. The Universal Testing Machine was used to measure shear bond strength and the results were analyzed with Kruskal Wallis and Mann Whitney test. Results: After nine independent experiments, 10% ascorbic acid application on bleached dentin resulted in highest increased in bond stregth (56.04±11.06MPa compared to Group 2 (29.09±7.63MPa and Group 1 (25.55±2.22MPa and the difference was statistically significant (p<0.05. Conclusion: Application of 10% ascorbic acid to the bleached dentin improved the shear bond strength of resin composite.

  2. Optimizing cellulase usage for improved mixing and rheological properties of acid-pretreated sugarcane bagasse.

    Science.gov (United States)

    Geddes, Claudia C; Peterson, James J; Mullinnix, Michael T; Svoronos, Spyros A; Shanmugam, K T; Ingram, Lonnie O

    2010-12-01

    Consolidation of bioprocessing steps with lignocellulose is limited by hydrolysate toxicity, the fibrous nature of suspensions, and low activity of cellulase enzymes. Combinations of enzyme dose and treatment conditions improved the flow properties and pumping of acid-pretreated sugarcane bagasse slurries (10% dry weight). Low levels of cellulase enzyme (0.1 and 0.5 FPU/g dry weight acid-pretreated bagasse) were found to reduce viscosities by 77-95% after 6 h, solubilizing 3.5% of the bagasse dry weight. Flow of slurries through small funnels was a useful predictor of success with centrifugal and diaphragm pumps. Equations were derived that describe viscosity and solubilized carbohydrates as a function of time and cellulase dosage. Blending of acid-pretreated bagasse (10% dry weight) with suspensions of acid-pretreated bagasse (10% dry weight) that had been previously digested with cellulase enzymes (low viscosity) did not increase viscosity in a linear fashion. Viscosity of these mixtures remained relatively constant until a threshold level of new fiber was reached, followed by a rapid increase with further additions. Up to 35% fresh acid-pretreated bagasse could be blended with enzyme-digested fiber (5.0 FPU/g dry weight acid-pretreated fiber; 6 h) with only a modest increase in viscosity. The smooth surfaces of enzyme-treated fiber are proposed to hinder the frequency and extent of interactions between fibrils of fresh fiber particles (acid-pretreated) until a threshold concentration is achieved, after which fiber interactions and viscosity increase dramatically. These results were used to model the viscosity in an ideal continuous stirred tank reactor (liquefaction) as a function of residence time and enzyme dosage.

  3. Coaxial electrospinning with acetic acid for preparing ferulic acid/zein composite fibers with improved drug release profiles.

    Science.gov (United States)

    Yang, Jian-Mao; Zha, Liu-sheng; Yu, Deng-Guang; Liu, Jianyun

    2013-02-01

    This study investigated drug/zein composite fibers prepared using a modified coaxial electrospinning process. With unspinnable acetic acid as sheath liquid and an electrospinnable co-dissolving solution of zein and ferulic acid (FA) as core fluid, the modified coaxial process could run smoothly and continuously without any clogging. Compared with those from the single-fluid electrospinning process, the FA-loaded zein fibers from the modified process were rounder and possessed higher quality in terms of diameter and distribution, as verified by scanning electron microscopic observations of their surface and cross-section. Differential scanning calorimetry and X-ray diffraction showed that fibers from both processes similarly formed a composite with the FA present in the zein matrix in an amorphous state. The driving force of encapsulation of FA into zein fibers was hydrogen bonding, as evidenced by the attenuated total reflectance Fourier transform infrared spectra. However, in vitro dissolution tests demonstrated that the fibers from the coaxial process exhibited better sustained-release profiles with a smaller initial burst effect and less tailing-off release compared with those from the single process. The modified coaxial electrospinning process is a useful tool for generating nanofibers with higher quality and improved functional performance.

  4. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance.

    Science.gov (United States)

    Ma, Cui; Wei, Xiaowen; Sun, Cuihuan; Zhang, Fei; Xu, Jianren; Zhao, Xinqing; Bai, Fengwu

    2015-03-01

    Acetic acid is present in cellulosic hydrolysate as a potent inhibitor, and the superior acetic acid tolerance of Saccharomyces cerevisiae ensures good cell viability and efficient ethanol production when cellulosic raw materials are used as substrates. In this study, a mutant strain of S. cerevisiae ATCC4126 (Sc4126-M01) with improved acetic acid tolerance was obtained through screening strains transformed with an artificial zinc finger protein transcription factor (ZFP-TF) library. Further analysis indicated that improved acetic acid tolerance was associated with improved catalase (CAT) activity. The ZFP coding sequence associated with the improved phenotype was identified, and real-time RT-PCR analysis revealed that three of the possible genes involved in the enhanced acetic acid tolerance regulated by this ZFP-TF, namely YFL040W, QDR3, and IKS1, showed decreased transcription levels in Sc4126-M01 in the presence of acetic acid, compared to those in the control strain. Sc4126-M01 mutants having QDR3 and IKS1 deletion (ΔQDR3 and ΔIKS1) exhibited higher acetic acid tolerance than the wild-type strain under acetic acid treatment. Glucose consumption rate and ethanol productivity in the presence of 5 g/L acetic acid were improved in the ΔQDR3 mutant compared to the wild-type strain. Our studies demonstrated that the synthetic ZFP-TF library can be used to improve acetic acid tolerance of S. cerevisiae and that the employment of an artificial transcription factor can facilitate the exploration of novel functional genes involved in stress tolerance of S. cerevisiae.

  5. Medial-to-lateral gradient of neostriatal NGF receptors: relationship to cholinergic neurons and NGF-like immunoreactivity.

    Science.gov (United States)

    Altar, C A; Dugich-Djordjevic, M; Armanini, M; Bakhit, C

    1991-03-01

    High-affinity binding sites for recombinant human NGF (rhNGF) were studied in the caudate-putamen of the adult rat and rabbit. Displaceable 125I-rhNGF binding sites were densely distributed throughout the caudate-putamen and were 2-3-fold more prevalant in the ventrolateral and lateral than in the medial caudate-putamen. The amount of nondisplaceable binding did not vary throughout the caudate-putamen. The medial-to-lateral receptor gradient was correlated (r = +0.99) with a 2-3-fold medial-to-lateral increase in ChAT activity. In contrast, NGF-like immunoreactivity (NGF-LI) was prevalent but uniformly distributed in the caudate-putamen. Lesions of intrinsic cholinergic neurons by quinolinic acid produced extensive gliosis in the medial, central, and lateral caudate-putamen, yet 125I-rhNGF binding was decreased in each of these regions. The activity of ChAT and 125I-rhNGF binding throughout the caudate-putamen were each decreased by 40% following quinolinic acid. Binding was not changed after 70-77% dopamine nerve terminal depletions induced by 6-hydroxydopamine, demonstrating a nonglial, nondopaminergic locus for striatal NGF binding sites. The cholinergiclike topography of NGF binding sites throughout the intact caudate-putamen, the parallel decreases of cholinergic neurons and NGF binding sites following intrinsic neuronal loss, and the uniform neostriatal gradient of NGF-LI are consistent with the trophic role of endogenous NGF for cholinergic interneurons of the caudate-putamen.

  6. Chlorogenic acid from honeysuckle improves hepatic lipid dysregulation and modulates hepatic fatty acid composition in rats with chronic endotoxin infusion

    OpenAIRE

    2016-01-01

    Chlorogenic acid as a natural hydroxycinnamic acid has protective effect for liver. Endotoxin induced metabolic disorder, such as lipid dysregulation and hyperlipidemia. In this study, we investigated the effect of chlorogenic acid in rats with chronic endotoxin infusion. The Sprague-Dawley rats with lipid metabolic disorder (LD group) were intraperitoneally injected endotoxin. And the rats of chlorogenic acid-LD group were daily received chlorogenic acid by intragastric administration. In ch...

  7. Collagen tissue treated with chitosan solutions in carbonic acid for improved biological prosthetic heart valves

    Energy Technology Data Exchange (ETDEWEB)

    Gallyamov, Marat O., E-mail: glm@spm.phys.msu.ru [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Chaschin, Ivan S. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Khokhlova, Marina A. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Grigorev, Timofey E. [Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation); Bakuleva, Natalia P.; Lyutova, Irina G.; Kondratenko, Janna E. [Bakulev Scientific Center for Cardiovascular Surgery of the Russian Academy of Medical Sciences, Roublyevskoe Sh. 135, Moscow 121552 (Russian Federation); Badun, Gennadii A.; Chernysheva, Maria G. [Radiochemistry Division, Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Khokhlov, Alexei R. [Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1–2, Moscow 119991 (Russian Federation); Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, Moscow 119991 (Russian Federation)

    2014-04-01

    Calcification of bovine pericardium dramatically shortens typical lifetimes of biological prosthetic heart valves and thus precludes their choice for younger patients. The aim of the present work is to demonstrate that the calcification is to be mitigated by means of treatment of bovine pericardium in solutions of chitosan in carbonic acid, i.e. water saturated with carbon dioxide at high pressure. This acidic aqueous fluid unusually combines antimicrobial properties with absolute biocompatibility as far as at normal pressure it decomposes spontaneously and completely into H{sub 2}O and CO{sub 2}. Yet, at high pressures it can protonate and dissolve chitosan materials with different degrees of acetylation (in the range of 16–33%, at least) without any further pretreatment. Even exposure of the bovine pericardium in pure carbonic acid solution without chitosan already favours certain reduction in calcification, somewhat improved mechanical properties, complete biocompatibility and evident antimicrobial activity of the treated collagen tissue. The reason may be due to high extraction ability of this peculiar compressed fluidic mixture. Moreover, exposure of the bovine pericardium in solutions of chitosan in carbonic acid introduces even better mechanical properties and highly pronounced antimicrobial activity of the modified collagen tissue against adherence and biofilm formation of relevant Gram-positive and Gram-negative strains. Yet, the most important achievement is the detected dramatic reduction in calcification for such modified collagen tissues in spite of the fact that the amount of the thus introduced chitosan is rather small (typically ca. 1 wt.%), which has been reliably detected using original tritium labelling method. We believe that these improved properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurised solutions in carbonic acid. - Highlights: • Treatment of GA

  8. Effects of superoxide generating systems on muscle tone, cholinergic and NANC responses in cat airway.

    Science.gov (United States)

    Bauer, V; Nakajima, T; Pucovsky, V; Onoue, H; Ito, Y

    2000-02-14

    To study the possible role of reactive oxygen species in airway hyperreactivity, we examined the effects of the superoxide anion radical (O(2)(-)) generating systems, pyrogallol and xanthine with xanthine oxidase, on muscle tone, excitatory and inhibitory neurotransmission in the cat airway. Smooth muscle contraction or non-adrenergic non-cholinergic (NANC) relaxation evoked by electrical field stimulation (EFS) were measured before or after O(2)(-) generating systems with or without diethydithiocarbamic acid (DEDTCA), an inhibitor of endogenous superoxide dismutase (SOD). Resting membrane potential or excitatory junction potential (EJP) were also measured in vitro. Both pyrogallol and xanthine/xanthine oxidase produced biphasic changes in basal and elevated (by 5-HT) muscle tone. After SOD pretreatment, both systems consistently produced a prolonged contraction, thereby indicating that O(2)(-) was converted to H(2)O(2) by the action of SOD and as a result the actions of O(2)(-) were lost but those of H(2)O(2) introduced. The O(2)(-) showed no significant effect on smooth muscle contraction or EJP evoked by EFS, however after DEDTCA pretreatment, it evoked initial enhancement followed by suppression of the contraction and EJP. DEDTCA pretreatment ameliorated the inhibitory action of pyrogallol and xanthine/xanthine oxidase on the NANC relaxation, probably because O(2)(-) could combine with endogenous NO to form peroxynitrite. These results indicate that the O(2)(-) generating systems have multiple actions, presumably due to the presence and simultaneous action of at least two different reactive oxygen species (O(2)(-) and H(2)O(2)). While H(2)O(2) seems to be responsible for elevation of muscle tone and augmentation of smooth muscle contraction by EFS, O(2)(-) inhibits muscle tone, cholinergic and NANC neurotransmission.

  9. Nicotine-Induced Modulation of the Cholinergic Twitch Response in the Ileum of Guinea Pig.

    Science.gov (United States)

    Donnerer, Josef; Liebmann, Ingrid

    2015-01-01

    In the present study, the direct drug effects of nicotine and its effects on the cholinergic twitch responses of the electrically stimulated longitudinal muscle-myenteric plexus strip from the ileum of guinea pig were investigated. Nicotine dose-dependently (0.3-10 µmol/l) evoked the well-known contractile responses on its own. Whereas the interposed twitch responses remained present without a change in height at 1 µmol/l nicotine, a nicotine concentration of 3 µmol/l slightly and a concentration of 10 µmol/l markedly diminished the twitch during their presence. After the washout of 1-10 µmol/l nicotine, the height of the twitch response was also temporarily and significantly reduced by 30-77%. The P2X purinoceptor agonist αβ-methylene ATP (1-10 µmol/l) dose-dependently induced contractions on its own and reduced the twitch response during its presence in the organ bath; however, it did not diminish the twitch responses after washout of the drug as nicotine did. The P2X antagonist pyridoxalphosphate-6-azophenyl-2'-4'-disulphonic acid, the NMDA channel blocker MK-801 and the inhibitor of small conductance Ca(2+)-activated K(+) (SK) channels apamin reduced the contractile effect of 1 µmol/l nicotine. Apamin also significantly prevented the 'post-nicotine inhibition of the twitch' following the washout of 1-3 µmol/l nicotine. As a conclusion, we provide evidence for a functional interaction between nicotinic receptors and the P2X receptors in the ileum of the guinea pig. The 'post-nicotine inhibition of the twitch' is not due to nicotinic acetylcholine receptor desensitization or transmitter depletion, but most probably the secondary effects of nicotine on SK channels determine the reduced cholinergic motor neuron excitability.

  10. VTA GABA neurons modulate specific learning behaviours through the control of dopamine and cholinergic systems

    Directory of Open Access Journals (Sweden)

    Meaghan C Creed

    2014-01-01

    Full Text Available The mesolimbic reward system is primarily comprised of the ventral tegmental area (VTA and the nucleus accumbens (NAc as well as their afferent and efferent connections. This circuitry is essential for learning about stimuli associated with motivationally-relevant outcomes. Moreover, addictive drugs affect and remodel this system, which may underlie their addictive properties. In addition to DA neurons, the VTA also contains approximately 30% ɣ-aminobutyric acid (GABA neurons. The task of signalling both rewarding and aversive events from the VTA to the NAc has mostly been ascribed to DA neurons and the role of GABA neurons has been largely neglected until recently. GABA neurons provide local inhibition of DA neurons and also long-range inhibition of projection regions, including the NAc. Here we review studies using a combination of in vivo and ex vivo electrophysiology, pharmacogenetic and optogenetic manipulations that have characterized the functional neuroanatomy of inhibitory circuits in the mesolimbic system, and describe how GABA neurons of the VTA regulate reward and aversion-related learning. We also discuss pharmacogenetic manipulation of this system with benzodiazepines (BDZs, a class of addictive drugs, which act directly on GABAA receptors located on GABA neurons of the VTA. The results gathered with each of these approaches suggest that VTA GABA neurons bi-directionally modulate activity of local DA neurons, underlying reward or aversion at the behavioural level. Conversely, long-range GABA projections from the VTA to the NAc selectively target cholinergic interneurons (CINs to pause their firing and temporarily reduce cholinergic tone in the NAc, which modulates associative learning. Further characterization of inhibitory circuit function within and beyond the VTA is needed in order to fully understand the function of the mesolimbic system under normal and pathological conditions.

  11. Improvement of β-TCP/PLLA biodegradable material by surface modification with stearic acid.

    Science.gov (United States)

    Ma, Fengcang; Chen, Sai; Liu, Ping; Geng, Fang; Li, Wei; Liu, Xinkuan; He, Daihua; Pan, Deng

    2016-05-01

    Poly-L-lactide (PLLA) is a biodegradable polymer and used widely. Incorporation of beta tricalcium phosphate (β-TCP) into PLLA can enhance its osteoinductive properties. But the interfacial layer between β-TCP particles with PLLA matrix is easy to be destroyed due to inferior interfacial compatibility of the organic/inorganic material. In this work, a method of β-TCP surface modification with stearic acid was investigated to improve the β-TCP/PLLA biomaterial. The effects of surface modification on the β-TCP were investigated by FTIR, XPS, TGA and CA. It was found that the stearic acid reacted with β-TCP and oxhydryl was formed during the surface modification. Hydrophilicity of untreated or modified β-TCP/PLLA composite was increased by the addition of 10 wt.% β-TCP, but it decreased as the addition amount increased from 10 wt.% to 20 wt.%. Two models were suggested to describe the effect of β-TCP concentration on CA of the composites. Mechanical properties of β-TCP/PLLA composites were tested by bending and tensile tests. Fractures of the composites after mechanical test were observed by SEM. It was found that surface modification with stearic acid improved bending and tensile strengths of the β-TCP/PLLA composites obviously. The SEM results indicated that surface modification decreased the probability of interface debonding between fillers and matrix under load.

  12. Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44

    Science.gov (United States)

    Zhang, Jian; Caiyin, Qinggele; Feng, Wenjing; Zhao, Xiuli; Qiao, Bin; Zhao, Guangrong; Qiao, Jianjun

    2016-01-01

    Traditionally, nisin was produced industrially by using Lactococcus lactis in the neutral fermentation process. However, nisin showed higher activity in the acidic environment. How to balance the pH value for bacterial normal growth and nisin activity might be the key problem. In this study, 17 acid-tolerant genes and 6 lactic acid synthetic genes were introduced in L. lactis F44, respectively. Comparing to the 2810 IU/mL nisin yield of the original strain F44, the nisin titer of the engineered strains over-expressing hdeAB, ldh and murG, increased to 3850, 3979 and 4377 IU/mL, respectively. These engineered strains showed more stable intracellular pH value during the fermentation process. Improvement of lactate production could partly provide the extra energy for the expression of acid tolerance genes during growth. Co-overexpression of hdeAB, murG, and ldh(Z) in strain F44 resulted in the nisin titer of 4913 IU/mL. The engineered strain (ABGL) could grow on plates with pH 4.2, comparing to the surviving pH 4.6 of strain F44. The fed-batch fermentation showed nisin titer of the co-expression L. lactis strain could reach 5563 IU/mL with lower pH condition and longer cultivation time. This work provides a novel strategy of constructing robust strains for use in industry process. PMID:27306587

  13. Improved pinocembrin production in Escherichia coli by engineering fatty acid synthesis.

    Science.gov (United States)

    Cao, Weijia; Ma, Weichao; Zhang, Bowen; Wang, Xin; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-04-01

    The development of efficient microbial processes for pinocembrin production has attracted considerable attention. However, pinocembrin biosynthetic efficiency is greatly limited by the low availability of the malonyl-CoA cofactor in Escherichia coli. Fatty acid biosynthesis is the only metabolic process in E. coli that consumes malonyl-CoA; therefore, we overexpressed the fatty acid biosynthetic pathway enzymes β-ketoacyl-ACP synthase III (FabH) and β-ketoacyl-ACP synthase II (FabF) alone and in combination, and investigated the effect on malonyl-CoA. Interestingly, overexpressing FabH, FabF or both enzymes in E. coli BL21 (DE3) decreased fatty acid synthesis and increased cellular malonyl-CoA levels 1.4-, 1.6-, and 1.2-fold, respectively. Furthermore, pinocembrin production was increased 10.6-, 31.8-, and 5.87-fold in recombinant strains overexpressing FabH, FabF and both enzymes, respectively. Overexpression of FabF, therefore, triggered the highest pinocembrin production and malonyl-CoA levels. The addition of cerulenin further increased pinocembrin production in the FabF-overexpressing strain, from 25.8 to 29.9 mg/L. These results demonstrated that overexpressing fatty acid synthases can increase malonyl-CoA availability and improve pinocembrin production in a recombinant E. coli host. This strategy may hold promise for the production of other important natural products in which cellular malonyl-CoA is rate limiting.

  14. Durability improvement assessment in different high strength bacterial structural concrete grades against different types of acids

    Indian Academy of Sciences (India)

    Ramin Andalib; M Zaimi Abd Majid; A Keyvanfar; Amirreza Talaiekhozan; Mohd Warid Hussin; A Shafaghat; Rosli Mohd Zin; Chew Tin Lee; Mohammad Ali Fulazzaky; Hasrul Haidar Ismail

    2014-12-01

    This paper provides an insight into a new biotechnological method based on calcite precipitation for achieving high strength bio-concrete durability. It is very clear that mineral precipitation has the potential to enhance construction material resistance towards degradation procedures. The appropriate microbial cell concentration (30 * 105 cells/ml) was introduced onto different structural concrete grades (40, 45 and 50 MPa) by mixing water. In order to study the durability of structural concrete against aggressive agents, specimens were immersed in different types of acids solution (5% H2SO4 and HCl) to compare their effects on 60th, 90th and 120th day. In general, sulphuric acid and hydrochloric acid are known to be the most aggressive natural threats from industrial waters which can penetrate concrete to transfer the soluble calcium salts away from the cement matrix. The experimental results demonstrated that bio-concrete has less weight and strength losses when compared to the ordinary Portland cement concrete without microorganism. It was also found that maximum compressive strength and weight loss occurred during H2SO4 acid immersion as compared to HCl immersion. The density and uniformity of bio-concrete were examined using ultrasonic pulse velocity (UPV) test. Microstructure chemical analysis was also quantified by energy dispersive spectrometer (EDS) to justify the durability improvement in bacterial concrete. It was observed that less sulphur and chloride were noticed in bacterial concrete against H2SO4 and HCl, respectively in comparison to the ordinary Portland cement concrete due to calcite deposition.

  15. Improvement of Physicochemical Characteristics of Monoepoxide Linoleic Acid Ring Opening for Biolubricant Base Oil

    Directory of Open Access Journals (Sweden)

    Jumat Salimon

    2011-01-01

    Full Text Available For environmental reasons, a new class of environmentally acceptable and renewable biolubricant based on vegetable oils is available. In this study, oxirane ring opening reaction of monoepoxide linoleic acid (MEOA was done by nucleophilic addition of oleic acid (OA with using p-toluene sulfonic acid (PTSA as a catalyst for synthesis of 9(12-hydroxy-10(13-oleoxy-12(9-octadecanoic acid (HYOOA and the physicochemical properties of the resulted HYOOA are reported to be used as biolubricant base oils. Optimum conditions of the experiment using D-optimal design to obtain high yield% of HYOOA and lowest OOC% were predicted at OA/MEOA ratio of 0.30 : 1 (w/w, PTSA/MEOA ratio of 0.50 : 1 (w/w, reaction temperature at 110∘C, and reaction time at 4.5 h. The results showed that an increase in the chain length of the midchain ester resulted in the decrease of pour point (PP −51∘C, increase of viscosity index (VI up to 153, and improvement in oxidative stability (OT to 180.94∘C.

  16. Improvement of physicochemical characteristics of monoepoxide linoleic acid ring opening for biolubricant base oil.

    Science.gov (United States)

    Salimon, Jumat; Salih, Nadia; Abdullah, Bashar Mudhaffar

    2011-01-01

    For environmental reasons, a new class of environmentally acceptable and renewable biolubricant based on vegetable oils is available. In this study, oxirane ring opening reaction of monoepoxide linoleic acid (MEOA) was done by nucleophilic addition of oleic acid (OA) with using p-toluene sulfonic acid (PTSA) as a catalyst for synthesis of 9(12)-hydroxy-10(13)-oleoxy-12(9)-octadecanoic acid (HYOOA) and the physicochemical properties of the resulted HYOOA are reported to be used as biolubricant base oils. Optimum conditions of the experiment using D-optimal design to obtain high yield% of HYOOA and lowest OOC% were predicted at OA/MEOA ratio of 0.30 : 1 (w/w), PTSA/MEOA ratio of 0.50 : 1 (w/w), reaction temperature at 110°C, and reaction time at 4.5 h. The results showed that an increase in the chain length of the midchain ester resulted in the decrease of pour point (PP) -51°C, increase of viscosity index (VI) up to 153, and improvement in oxidative stability (OT) to 180.94°C.

  17. Effects of chronic alcohol consumption, withdrawal and nerve growth factor on neuropeptide Y expression and cholinergic innervation of the rat dentate hilus.

    Science.gov (United States)

    Pereira, Pedro A; Rocha, João P; Cardoso, Armando; Vilela, Manuel; Sousa, Sérgio; Madeira, M Dulce

    2016-05-01

    Several studies have demonstrated the vulnerability of the hippocampal formation (HF) to chronic alcohol consumption and withdrawal. Among the brain systems that appear to be particularly vulnerable to the effects of these conditions are the neuropeptide Y (NPY)-ergic and the cholinergic systems. Because these two systems seem to closely interact in the HF, we sought to study the effects of chronic alcohol consumption (6months) and subsequent withdrawal (2months) on the expression of NPY and on the cholinergic innervation of the rat dentate hilus. As such, we have estimated the areal density and the somatic volume of NPY-immunoreactive neurons, and the density of the cholinergic varicosities. In addition, because alcohol consumption and withdrawal are associated with impaired nerve growth factor (NGF) trophic support and the administration of exogenous NGF alters the effects of those conditions on various cholinergic markers, we have also estimated the same morphological parameters in withdrawn rats infused intracerebroventricularly with NGF. NPY expression increased after withdrawal and returned to control values after NGF treatment. Conversely, the somatic volume of these neurons did not differ among all groups. On other hand, the expression of vesicular acetylcholine transporter (VAChT) was reduced by 24% in ethanol-treated rats and by 46% in withdrawn rats. The administration of NGF to withdrawn rats increased the VAChT expression to values above control levels. These results show that the effects of prolonged alcohol intake and protracted withdrawal on the hilar NPY expression differ from those induced by shorter exposures to ethanol and by abrupt withdrawal. They also suggest that the normalizing effect of NGF on NPY expression might rely on the NGF-induced improvement of cholinergic neurotransmission in the dentate hilus.

  18. Folic acid and polyunsaturated fatty acids improve cognitive function and prevent depression, dementia, and Alzheimer's disease--but how and why?

    Science.gov (United States)

    Das, Undurti N

    2008-01-01

    Low blood folate and raised homocysteine concentrations are associated with poor cognitive function. Folic acid supplementation improves cognitive function. Folic acid enhances the plasma concentrations of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). EPA, DHA, and arachidonic acid (AA) are of benefit in dementia and Alzheimer's disease by up-regulating gene expression concerned with neurogenesis, neurotransmission and connectivity, improving endothelial nitric oxide (eNO) generation, enhancing brain acetylcholine levels, and suppressing the production of pro-inflammatory cytokines. EPA, DHA, and AA also form precursors to anti-inflammatory compounds such as lipoxins, resolvins, and neuroprotectin D1 (NPD1) that protect neurons from the cytotoxic action of various noxious stimuli. Furthermore, various neurotrophins and statins enhance the formation of NPD1 and thus, protect neurons from oxidative stress and prevent neuronal apoptosis Folic acid improves eNO generation, enhances plasma levels of EPA/DHA and thus, could augment the formation of NPD1. These results suggest that a combination of EPA, DHA, AA and folic acid could be of significant benefit in dementia, depression, and Alzheimer's disease and improve cognitive function.

  19. Improved method for the analysis of the composition of polysaccharides by total acid hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mochtar, M.; Delavier, H.J.; Oei Ban Liang

    1985-06-20

    The analysis of the composition of polysaccharides, i.e. dextran, by total acid hydrolysis, in the presence or absence of oxygen, and by different methods of neutralization of the hydrolysate, is presented. It was found that hydrolysis of polysaccharides under nitrogen atmosphere, in the absence of oxygen, diminishes the possibility of a decomposition of monosaccharides formed during hydrolysis. The neutralization of the acid hydrolysate by passing it through a column of weak-base ion exchange resin. Amberlite IRA-94, instead of neutralizing the hydrolysate by Ba(OH)/sub 2/ diminishes the possibility of epimerization of glucose to other saccharides. This improved method gives more reliable results, even in the presence of readily decomposed polysaccharides.

  20. Linoleic acid derivative DCP-LA improves learning impairment in SAMP8.

    Science.gov (United States)

    Yaguchi, Takahiro; Nagata, Tetsu; Mukasa, Takeshi; Fujikawa, Hirokazu; Yamamoto, Hideyuki; Yamamoto, Satoshi; Iso, Hiroyuki; Tanaka, Akito; Nishizaki, Tomoyuki

    2006-01-23

    In the water-maze test, the linoleic acid derivative, 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) (1 mg/kg, intraperitoneally), significantly shortened the prolonged latency for accelerated-senescence-prone mice 8 (SAMP8), reaching a level similar to the latency for accelerated-senescence-resistant mice 1 (SAMR1) as control. In the open-field test to assess motor activity, it was confirmed that the DCP-LA effect is not due to increased motor activity. In the passive avoidance test to assess fear memory, DCP-LA had no effect on the latency of acquisition and retention for SAMP8. The results of the present study, thus, suggest that DCP-LA could improve age-related learning impairment by enhancing cognitive functions.

  1. Caffeic acid attenuates oxidative stress, learning and memory deficit in intra-cerebroventricular streptozotocin induced experimental dementia in rats.

    Science.gov (United States)

    Deshmukh, Rahul; Kaundal, Madhu; Bansal, Vikas; Samardeep

    2016-07-01

    Oxidative stress has been implicated in cognitive decline as seen during normal aging and in sporadic Alzheimer's disease (AD). Caffeic acid, a polyphenolic compound, has been reported to possess potent antioxidant and neuroprotective properties. The role of caffeic acid in experimental dementia is not fully understood. Thus the present study was designed to investigate the therapeutic potential of caffeic acid in streptozotocin (STZ)-induced experimental dementia of Alzheimer's type in rats. Streptozotocin (STZ) was administered intracerebroventrically (ICV) on day 1 and 3 (3mg/kg, ICV bilaterally) in Wistar rats. Caffeic acid was administered (10, 20 and 40mg/kg/day p.o.) 1h following STZ infusion upto 21st day. Morris water maze and object recognition task were used to assess learning and memory in rats. Terminally, acetylcholinesterase (AChE) activity and the levels of oxido-nitrosative stress markers were determined in cortical and hippocampal brain regions of rats. STZ produced significant (plearning and memory impairment, oxido-nitrosative stress and cholinergic deficit in rats. Whereas, caffeic acid treatment significantly (p<0.001) and dose dependently attenuated STZ induced behavioral and biochemical abnormalities in rats. The observed cognitive improvement following caffeic acid in STZ treated rats may be due to its antioxidant activity and restoration of cholinergic functions. Our results suggest the therapeutic potential of caffeic acid in cognitive disorders such as AD.

  2. Novel aspects of cholinergic regulation of colonic ion transport

    Science.gov (United States)

    Bader, Sandra; Diener, Martin

    2015-01-01

    Nicotinic receptors are not only expressed by excitable tissues, but have been identified in various epithelia. One aim of this study was to investigate the expression of nicotinic receptors and their involvement in the regulation of ion transport across colonic epithelium. Ussing chamber experiments with putative nicotinic agonists and antagonists were performed at rat colon combined with reverse transcription polymerase chain reaction (RT-PCR) detection of nicotinic receptor subunits within the epithelium. Dimethylphenylpiperazinium (DMPP) and nicotine induced a tetrodotoxin-resistant anion secretion leading to an increase in short-circuit current (Isc) across colonic mucosa. The response was suppressed by the nicotinic receptor antagonist hexamethonium. RT-PCR experiments revealed the expression of α2, α4, α5, α6, α7, α10, and β4 nicotinic receptor subunits in colonic epithelium. Choline, the product of acetylcholine hydrolysis, is known for its affinity to several nicotinic receptor subtypes. As a strong acetylcholinesterase activity was found in colonic epithelium, the effect of choline on Isc was examined. Choline induced a concentration-dependent, tetrodotoxin-resistant chloride secretion which was, however, resistant against hexamethonium, but was inhibited by atropine. Experiments with inhibitors of muscarinic M1 and M3 receptors revealed that choline-evoked secretion was mainly due to a stimulation of epithelial M3 receptors. Although choline proved to be only a partial agonist, it concentration-dependently desensitized the response to acetylcholine, suggesting that it might act as a modulator of cholinergically induced anion secretion. Thus the cholinergic regulation of colonic ion transport – up to now solely explained by cholinergic submucosal neurons stimulating epithelial muscarinic receptors – is more complex than previously assumed. PMID:26236483

  3. Effects of Ce3+ on improvement of spectral characteristics and function of chloroplasts damaged by linolenic acid in spinach

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaoqing; ZE Yuguan; LIU Chao; ZHOU Min; LI Na; DUAN Yanmei; YIN Sitao; HONG Fashui

    2009-01-01

    Linolenic acid has great effects on the structure and function of chloroplast. We studied the effects of Ce3+ on the improvement of chloroplast spectral characteristics and oxygen evolution damaged by linolenic acid in spinach. Results showed that Ce3+ could decrease the light absorption increased by linolenic acid and promote the distribution of excitation energy to PS Ⅱ and alleviate the decrease of PS Ⅱ fluo-rescence yield caused by linolenic acid. The linolenic acid treatments in various concentrations reduced the oxygen-evolving rate of chloro-plasts, but the rate was accelerated since adding Ce3+.

  4. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    2015-06-01

    Conclusion: DMH cholinergic neurons directly send efferent signals to sympathetic premotor neurons in the Rpa. Elevated cholinergic input to this area reduces BAT activity through activation of M2 mAChRs on serotonergic neurons. Therefore, the direct DMHACh–Rpa5-HT pathway may mediate physiological heat-defense responses to elevated environmental temperature.

  5. Ultrastructural localization of cholinergic muscarinic receptors in rat brain cortical capillaries

    NARCIS (Netherlands)

    Luiten, PGM; deJong, GI; VanderZee, EA; vanDijken, H; Dijken, H. van

    1996-01-01

    Cholinergic innervation of the cerebrovasculature is known to regulate vascular tone, perfusion rate and permeability of the microvascular wall. Notably the cholinergic innervation of cerebral capillaries is of interest since these capillaries form the blood-brain barrier. Although there is a genera

  6. Central cholinergic control of vasopressin release in conscious rats

    Energy Technology Data Exchange (ETDEWEB)

    Iitake, K.; Share, L.; Ouchi, Y.; Crofton, J.T.; Brooks, D.P.

    1986-08-01

    Intracerebroventricular (icv) administration of carbachol into conscious rats evoked a substantial increase in vasopressin secretion and blood pressure in a dose-dependent manner. These effects were blocked by pretreatment with the muscarinic blocker, atropine (10 g icv), but not by the nicotinic blocker, hexamethonium (10 g icv). Hexamethonium did, however, block the increase in blood pressure, the decrease in heart rate, and they very small elevation in the plasma vasopressin concentration induced by nicotine (10 g icv). These results indicate that stimulation of either central nicotinic or muscarinic receptors can affect the cardiovascular system and suggest that the cholinergic stimulation of vasopressin secretion may involve primarily muscarinic receptors in the conscious rat.

  7. Mechanisms mediating cholinergic antral circular smooth muscle contraction in rats

    Institute of Scientific and Technical Information of China (English)

    Helena F Wrzos; Tarun Tandon; Ann Ouyang

    2004-01-01

    AIM: To investigate the pathway (s) mediating rat antral circular smooth muscle contractile responses to the cholinomimetic agent, bethanechol and the subtypes of muscarinic receptors mediating the cholinergic contraction.METHODS: Circular smooth muscle strips from the antrum of Sprague-Dawley rats were mounted in muscle baths in Krebs buffer. Isometric tension was recorded. Cumulative concentration-response curves were obtained for (+)-cisdioxolane (cD), a nonspecific muscarinic agonist, at 10-8-10-4 mol/L, in the presence of tetrodotoxin (TTX, 10-7 mol/L).Results were normalized to cross sectional area. A repeat concentration-response curve was obtained after incubation of the muscle for 90 min with antagonists for M1 (pirenzepine),M2 (methoctramine) and M3 (darifenacin) muscarinic receptor subtypes. The sensitivity to PTX was tested by the ip injection of 100 mg/kg of PTX 5 d before the experiment. The antral circular smooth muscles were removed from PTX-treated and non-treated rats as strips and dispersed smooth muscle cells to identify whether PTX-linked pathway mediated the contractility to bethanechol.RESULTS: A dose-dependent contractile response observed with bethanechol, was not affected by TTX. The pretreatment of rats with pertussis toxin decreased the contraction induced by bethanechol. Lack of calcium as Well as the presence of the L-type calcium channel blocker, nifedipine, also inhibited the cholinergic contraction, with a reduction in response from 2.5±0.4 g/mm2 to 1.2±0.4 g/mm2 (P<0.05). The doseresponse curves were shifted to the right by muscarinic antagonists in the following order of affinity: darifenacin(M3)>methocramine (M2)>pirenzepine (M1).CONCLUSION: The muscarinic receptors-dependent contraction of rat antral circular smooth muscles was linked to the signal transduction pathway(s) involving pertussis-toxin sensitive GTP-binding proteins and to extracellular calcium via L-type voltage gated calcium channels. The presence of the

  8. Pathway engineering of Propionibacterium jensenii for improved production of propionic acid.

    Science.gov (United States)

    Liu, Long; Guan, Ningzi; Zhu, Gexin; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Chen, Jian

    2016-01-27

    Propionic acid (PA) is an important chemical building block widely used in the food, pharmaceutical, and chemical industries. In our previous study, a shuttle vector was developed as a useful tool for engineering Propionibacterium jensenii, and two key enzymes-glycerol dehydrogenase and malate dehydrogenase-were overexpressed to improve PA titer. Here, we aimed to improve PA production further via the pathway engineering of P. jensenii. First, the phosphoenolpyruvate carboxylase gene (ppc) from Klebsiella pneumoniae was overexpressed to access the one-step synthesis of oxaloacetate directly from phosphoenolpyruvate without pyruvate as intermediate. Next, genes encoding lactate dehydrogenase (ldh) and pyruvate oxidase (poxB) were deleted to block the synthesis of the by-products lactic acid and acetic acid, respectively. Overexpression of ppc and deleting ldh improved PA titer from 26.95 ± 1.21 g·L(-1) to 33.21 ± 1.92 g·L(-1) and 30.50 ± 1.63 g·L(-1), whereas poxB deletion decreased it. The influence of this pathway engineering on gene transcription, enzyme expression, NADH/NAD(+) ratio, and metabolite concentration was also investigated. Finally, PA production in P. jensenii with ppc overexpression as well as ldh deletion was investigated, which resulted in further increases in PA titer to 34.93 ± 2.99 g·L(-1) in a fed-batch culture.

  9. Eicosapentaenoic acid improves glycemic control in elderly bedridden patients with type 2 diabetes.

    Science.gov (United States)

    Ogawa, Susumu; Abe, Takaaki; Nako, Kazuhiro; Okamura, Masashi; Senda, Miho; Sakamoto, Takuya; Ito, Sadayoshi

    2013-01-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are ω3-polyunsaturated fatty acids mainly contained in the blue-backed fish oil, and are effective in decreasing the lipids disorder and the cardiovascular incidence among diabetic patients. Moreover, it has been suggested that EPA and DHA may improve the insulin resistance and glucose metabolism. However, the clinical effects of EPA and DHA on glucose metabolism remain unclear. We aimed to clarify the effects of EPA/DHA treatment on glycemic control in type 2 diabetes mellitus. This study was a multicenter prospective randomized controlled trial involving 30 elderly type 2 diabetic patients on a liquid diet. Their exercises were almost zero and the content of their meals was strictly managed and understood well. Therefore, the difference by the individual's life was a minimum. The subjects were divided into two groups: those receiving EPA/DHA-rich liquid diet [EPA/DHA (+)] or liquid diet lacking EPA/DHA [EPA/DHA (-)]. Changes in factors related to glucose and lipid metabolism were assessed after the three-month study. Serum concentrations of EPA rose in EPA/DHA (+), although the levels of DHA and fasting C-peptide remained unchanged in EPA/DHA (+). In addition, there was a significant decline in the fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), fasting remnant-like particles and apolipoprotein (apo) B in EPA/DHA (+), compared with the values in EPA/DHA (-). EPA/DHA-rich diet might improve glucose metabolism in elderly type 2 diabetic patients on a liquid diet. This phenomenon may be due to the improved insulin resistance mediated by the rise in serum EPA concentrations.

  10. Ethephon use and application timing of abscisic acid for improving color of 'Rubi' table grape

    Directory of Open Access Journals (Sweden)

    Sergio Ruffo Roberto

    2013-07-01

    Full Text Available The objective of this work was to evaluate the effect of ethephon and of abscisic acid (ABA application timing on the color of 'Rubi' Table grape. Eight treatments were evaluated: control, without application; ethephon 500 mg L‑1 applied seven days after veraison (7 DAV; and two concentrations of ABA (200 and 400 mg L‑1 arranged with three application timings at 7 DAV, at 15 days before harvest (DBH, and at 7 DAV + 15 DBH. ABA does not modify physical‑chemical characteristics of the cluster and improves the color of grapes, especially when applied twice (7 DAV + 15 DBH at the concentration of 400 mg L‑1.

  11. Acid etching and plasma sterilization fail to improve osseointegration of grit blasted titanium implants

    DEFF Research Database (Denmark)

    Mortensen, Mikkel Saksø; Jakobsen, Stig Storgaard; Saksø, Henrik;

    2012-01-01

    Interaction between implant surface and surrounding bone influences implant fixation. We attempted to improve the bone-implant interaction by 1) adding surface micro scale topography by acid etching, and 2) removing surface-adherent pro-inflammatory agents by plasma cleaning. Implant fixation...... was evaluated by implant osseointegration and biomechanical fixation.The study consisted of two paired animal sub-studies where 10 skeletally mature Labrador dogs were used. Grit blasted titanium alloy implants were inserted press fit in each proximal tibia. In the first study grit blasted implants were...

  12. A cellular and regulatory map of the cholinergic nervous system of C. elegans.

    Science.gov (United States)

    Pereira, Laura; Kratsios, Paschalis; Serrano-Saiz, Esther; Sheftel, Hila; Mayo, Avi E; Hall, David H; White, John G; LeBoeuf, Brigitte; Garcia, L Rene; Alon, Uri; Hobert, Oliver

    2015-12-25

    Nervous system maps are of critical importance for understanding how nervous systems develop and function. We systematically map here all cholinergic neuron types in the male and hermaphrodite C. elegans nervous system. We find that acetylcholine (ACh) is the most broadly used neurotransmitter and we analyze its usage relative to other neurotransmitters within the context of the entire connectome and within specific network motifs embedded in the connectome. We reveal several dynamic aspects of cholinergic neurotransmitter identity, including a sexually dimorphic glutamatergic to cholinergic neurotransmitter switch in a sex-shared interneuron. An expression pattern analysis of ACh-gated anion channels furthermore suggests that ACh may also operate very broadly as an inhibitory neurotransmitter. As a first application of this comprehensive neurotransmitter map, we identify transcriptional regulatory mechanisms that control cholinergic neurotransmitter identity and cholinergic circuit assembly.

  13. Phytic acid and myo-inositol support adipocyte differentiation and improve insulin sensitivity in 3T3-L1 cells.

    Science.gov (United States)

    Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2014-08-01

    Phytic acid, also known as myo-inositol hexaphosphate, has been shown to lower blood glucose levels and to improve insulin sensitivity in rodents. We investigated the effects of phytic acid and myo-inositol on differentiation, insulin-stimulated glucose uptake, and lipolysis of adipocytes to test the hypothesis that the antidiabetic properties of phytic acid and myo-inositol are mediated directly through adipocytes. 3T3-L1 cells were treated with 10, 50, or 200 μmol/L of phytic acid or myo-inositol. Oil Red O staining and an intracellular triacylglycerol assay were used to determine lipid accumulation during adipocyte differentiation. Immunoblotting and real-time polymerase chain reaction (PCR) were performed to evaluate expression of transcription factors, a target protein, and insulin signaling molecules. Phytic acid and myo-inositol exposures increased lipid accumulation in a dose-dependent manner (P acid synthase increased upon treatments with phytic acid and myo-inositol (P phytic acid and myo-inositol treatments (P phytic acid and myo-inositol treatments. In fully differentiated adipocytes, phytic acid and myo-inositol reduced basal lipolysis dose dependently (P phytic acid and myo-inositol increase insulin sensitivity in adipocytes by increasing lipid storage capacity, improving glucose uptake, and inhibiting lipolysis.

  14. Reciprocal cholinergic and GABAergic modulation of the small ventrolateral pacemaker neurons of Drosophila's circadian clock neuron network.

    Science.gov (United States)

    Lelito, Katherine R; Shafer, Orie T

    2012-04-01

    The relatively simple clock neuron network of Drosophila is a valuable model system for the neuronal basis of circadian timekeeping. Unfortunately, many key neuronal classes of this network are inaccessible to electrophysiological analysis. We have therefore adopted the use of genetically encoded sensors to address the physiology of the fly's circadian clock network. Using genetically encoded Ca(2+) and cAMP sensors, we have investigated the physiological responses of two specific classes of clock neuron, the large and small ventrolateral neurons (l- and s-LN(v)s), to two neurotransmitters implicated in their modulation: acetylcholine (ACh) and γ-aminobutyric acid (GABA). Live imaging of l-LN(v) cAMP and Ca(2+) dynamics in response to cholinergic agonist and GABA application were well aligned with published electrophysiological data, indicating that our sensors were capable of faithfully reporting acute physiological responses to these transmitters within single adult clock neuron soma. We extended these live imaging methods to s-LN(v)s, critical neuronal pacemakers whose physiological properties in the adult brain are largely unknown. Our s-LN(v) experiments revealed the predicted excitatory responses to bath-applied cholinergic agonists and the predicted inhibitory effects of GABA and established that the antagonism of ACh and GABA extends to their effects on cAMP signaling. These data support recently published but physiologically untested models of s-LN(v) modulation and lead to the prediction that cholinergic and GABAergic inputs to s-LN(v)s will have opposing effects on the phase and/or period of the molecular clock within these critical pacemaker neurons.

  15. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    Science.gov (United States)

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  16. Poly-Acrylic Acid Derivatives as Diesel Flow Improver for Paraffin-Based Daqing Diesel

    Institute of Scientific and Technical Information of China (English)

    Cuiyu Jiang; Ming Xu; Xiaoli Xi; Panlun Qi; Hongyan Shang

    2006-01-01

    Since the diesel products from paraffin-based Daqing crude oil showed low sensitivity to certain commercial diesel pour point depressant (PPDs) that resulted from the high content of paraffin, certain poly-acrylic acid derivatives (PADE) with-COOR,-COOH,-CONHR, and -COO-NH3+R groups by molecular design on the mechanics of diesel; PPDs were synthesized and evaluated as cold flow improver for Daqing 0# diesel in this paper. The pure PADE was superior to the commercial PPDs and displayed a substantial ability of wax crystals dispersion. There was a synergistic effect among the PADE and T1804 and secondary amine. The synergism clearly improved the low temperature performance of Daqing diesel products and could reduce the cold filter plugging point of 0# diesel by 6-7 ℃.

  17. Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis.

    Science.gov (United States)

    Siripong, Premjet; Duangporn, Premjet; Takata, Eri; Tsutsumi, Yuji

    2016-03-01

    Achyranthes aspera and Sida acuta, two types of weed biomass are abundant and waste in Thailand. We focus on them as novel feedstock for bio-ethanol production because they contain high-cellulose content (45.9% and 46.9%, respectively) and unutilized material. Phosphoric acid (70%, 75%, and 80%) was employed for the pretreatment to improve by enzymatic hydrolysis. The pretreatment process removed most of the xylan and a part of the lignin from the weeds, while most of the glucan remained. The cellulose conversion to glucose was greater for pretreated A. aspera (86.2 ± 0.3%) than that of the pretreated S. acuta (82.2 ± 1.1%). Thus, the removal of hemicellulose significantly affected the efficiency of the enzymatic hydrolysis. The scanning electron microscopy images showed the exposed fibrous cellulose on the cell wall surface, and this substantial change of the surface structure contributed to improving the enzyme accessibility.

  18. The cholinergic anti-inflammatory pathway delays TLR-induced skin allograft rejection in mice: cholinergic pathway modulates alloreactivity.

    Directory of Open Access Journals (Sweden)

    Claude Sadis

    Full Text Available Activation of innate immunity through Toll-like receptors (TLR can abrogate transplantation tolerance by revealing hidden T cell alloreactivity. Separately, the cholinergic anti-inflammatory pathway has the capacity to dampen macrophage activation and cytokine release during endotoxemia and ischemia reperfusion injury. However, the relevance of the α7 nicotinic acetylcholine receptor (α7nAChR-dependent anti-inflammatory pathway in the process of allograft rejection or maintenance of tolerance remains unknown. The aim of our study is to investigate whether the cholinergic pathway could impact T cell alloreactivity and transplant outcome in mice. For this purpose, we performed minor-mismatched skin allografts using donor/recipient combinations genetically deficient for the α7nAChR. Minor-mismatched skin grafts were not rejected unless the mice were housed in an environment with endogenous pathogen exposure or the graft was treated with direct application of imiquimod (a TLR7 ligand. The α7nAChR-deficient recipient mice showed accelerated rejection compared to wild type recipient mice under these conditions of TLR activation. The accelerated rejection was associated with enhanced IL-17 and IFN-γ production by alloreactive T cells. An α7nAChR-deficiency in the donor tissue facilitated allograft rejection but not in recipient mice. In addition, adoptive T cell transfer experiments in skin-grafted lymphopenic animals revealed a direct regulatory role for the α7nAChR on T cells. Taken together, our data demonstrate that the cholinergic pathway regulates alloreactivity and transplantation tolerance at multiple levels. One implication suggested by our work is that, in an organ transplant setting, deliberate α7nAChR stimulation of brain dead donors might be a valuable approach for preventing donor tissue inflammation prior to transplant.

  19. The cholinergic anti-inflammatory pathway delays TLR-induced skin allograft rejection in mice: cholinergic pathway modulates alloreactivity.

    Science.gov (United States)

    Sadis, Claude; Detienne, Sophie; Vokaer, Benoît; Charbonnier, Louis-Marie; Lemaître, Philippe; Spilleboudt, Chloé; Delbauve, Sandrine; Kubjak, Carole; Flamand, Véronique; Field, Kenneth A; Goldman, Michel; Benghiat, Fleur S; Le Moine, Alain

    2013-01-01

    Activation of innate immunity through Toll-like receptors (TLR) can abrogate transplantation tolerance by revealing hidden T cell alloreactivity. Separately, the cholinergic anti-inflammatory pathway has the capacity to dampen macrophage activation and cytokine release during endotoxemia and ischemia reperfusion injury. However, the relevance of the α7 nicotinic acetylcholine receptor (α7nAChR)-dependent anti-inflammatory pathway in the process of allograft rejection or maintenance of tolerance remains unknown. The aim of our study is to investigate whether the cholinergic pathway could impact T cell alloreactivity and transplant outcome in mice. For this purpose, we performed minor-mismatched skin allografts using donor/recipient combinations genetically deficient for the α7nAChR. Minor-mismatched skin grafts were not rejected unless the mice were housed in an environment with endogenous pathogen exposure or the graft was treated with direct application of imiquimod (a TLR7 ligand). The α7nAChR-deficient recipient mice showed accelerated rejection compared to wild type recipient mice under these conditions of TLR activation. The accelerated rejection was associated with enhanced IL-17 and IFN-γ production by alloreactive T cells. An α7nAChR-deficiency in the donor tissue facilitated allograft rejection but not in recipient mice. In addition, adoptive T cell transfer experiments in skin-grafted lymphopenic animals revealed a direct regulatory role for the α7nAChR on T cells. Taken together, our data demonstrate that the cholinergic pathway regulates alloreactivity and transplantation tolerance at multiple levels. One implication suggested by our work is that, in an organ transplant setting, deliberate α7nAChR stimulation of brain dead donors might be a valuable approach for preventing donor tissue inflammation prior to transplant.

  20. Long-term relationships between cholinergic tone, synchronous bursting and synaptic remodeling.

    Directory of Open Access Journals (Sweden)

    Maya Kaufman

    Full Text Available Cholinergic neuromodulation plays key roles in the regulation of neuronal excitability, network activity, arousal, and behavior. On longer time scales, cholinergic systems play essential roles in cortical development, maturation, and plasticity. Presumably, these processes are associated with substantial synaptic remodeling, yet to date, long-term relationships between cholinergic tone and synaptic remodeling remain largely unknown. Here we used automated microscopy combined with multielectrode array recordings to study long-term relationships between cholinergic tone, excitatory synapse remodeling, and network activity characteristics in networks of cortical neurons grown on multielectrode array substrates. Experimental elevations of cholinergic tone led to the abrupt suppression of episodic synchronous bursting activity (but not of general activity, followed by a gradual growth of excitatory synapses over hours. Subsequent blockage of cholinergic receptors led to an immediate restoration of synchronous bursting and the gradual reversal of synaptic growth. Neither synaptic growth nor downsizing was governed by multiplicative scaling rules. Instead, these occurred in a subset of synapses, irrespective of initial synaptic size. Synaptic growth seemed to depend on intrinsic network activity, but not on the degree to which bursting was suppressed. Intriguingly, sustained elevations of cholinergic tone were associated with a gradual recovery of synchronous bursting but not with a reversal of synaptic growth. These findings show that cholinergic tone can strongly affect synaptic remodeling and synchronous bursting activity, but do not support a strict coupling between the two. Finally, the reemergence of synchronous bursting in the presence of elevated cholinergic tone indicates that the capacity of cholinergic neuromodulation to indefinitely suppress synchronous bursting might be inherently limited.

  1. Cholinergic Signaling Exerts Protective Effects in Models of Sympathetic Hyperactivity-Induced Cardiac Dysfunction

    Science.gov (United States)

    Gavioli, Mariana; Lara, Aline; Almeida, Pedro W. M.; Lima, Augusto Martins; Damasceno, Denis D.; Rocha-Resende, Cibele; Ladeira, Marina; Resende, Rodrigo R.; Martinelli, Patricia M.; Melo, Marcos Barrouin; Brum, Patricia C.; Fontes, Marco Antonio Peliky; Souza Santos, Robson A.; Prado, Marco A. M.; Guatimosim, Silvia

    2014-01-01

    Cholinergic control of the heart is exerted by two distinct branches; the autonomic component represented by the parasympathetic nervous system, and the recently described non-neuronal cardiomyocyte cholinergic machinery. Previous evidence has shown that reduced cholinergic function leads to deleterious effects on the myocardium. Yet, whether conditions of increased cholinergic signaling can offset the pathological remodeling induced by sympathetic hyperactivity, and its consequences for these two cholinergic axes are unknown. Here, we investigated two models of sympathetic hyperactivity: i) the chronic beta-adrenergic receptor stimulation evoked by isoproterenol (ISO), and ii) the α2A/α2C-adrenergic receptor knockout (KO) mice that lack pre-synaptic adrenergic receptors. In both models, cholinergic signaling was increased by administration of the cholinesterase inhibitor, pyridostigmine. First, we observed that isoproterenol produces an autonomic imbalance characterized by increased sympathetic and reduced parasympathetic tone. Under this condition transcripts for cholinergic proteins were upregulated in ventricular myocytes, indicating that non-neuronal cholinergic machinery is activated during adrenergic overdrive. Pyridostigmine treatment prevented the effects of ISO on autonomic function and on the ventricular cholinergic machinery, and inhibited cardiac remodeling. α2A/α2C-KO mice presented reduced ventricular contraction when compared to wild-type mice, and this dysfunction was also reversed by cholinesterase inhibition. Thus, the cardiac parasympathetic system and non-neuronal cardiomyocyte cholinergic machinery are modulated in opposite directions under conditions of increased sympathetic drive or ACh availability. Moreover, our data support the idea that pyridostigmine by restoring ACh availability is beneficial in heart disease. PMID:24992197

  2. Cholinergic signaling exerts protective effects in models of sympathetic hyperactivity-induced cardiac dysfunction.

    Directory of Open Access Journals (Sweden)

    Mariana Gavioli

    Full Text Available Cholinergic control of the heart is exerted by two distinct branches; the autonomic component represented by the parasympathetic nervous system, and the recently described non-neuronal cardiomyocyte cholinergic machinery. Previous evidence has shown that reduced cholinergic function leads to deleterious effects on the myocardium. Yet, whether conditions of increased cholinergic signaling can offset the pathological remodeling induced by sympathetic hyperactivity, and its consequences for these two cholinergic axes are unknown. Here, we investigated two models of sympathetic hyperactivity: i the chronic beta-adrenergic receptor stimulation evoked by isoproterenol (ISO, and ii the α2A/α2C-adrenergic receptor knockout (KO mice that lack pre-synaptic adrenergic receptors. In both models, cholinergic signaling was increased by administration of the cholinesterase inhibitor, pyridostigmine. First, we observed that isoproterenol produces an autonomic imbalance characterized by increased sympathetic and reduced parasympathetic tone. Under this condition transcripts for cholinergic proteins were upregulated in ventricular myocytes, indicating that non-neuronal cholinergic machinery is activated during adrenergic overdrive. Pyridostigmine treatment prevented the effects of ISO on autonomic function and on the ventricular cholinergic machinery, and inhibited cardiac remodeling. α2A/α2C-KO mice presented reduced ventricular contraction when compared to wild-type mice, and this dysfunction was also reversed by cholinesterase inhibition. Thus, the cardiac parasympathetic system and non-neuronal cardiomyocyte cholinergic machinery are modulated in opposite directions under conditions of increased sympathetic drive or ACh availability. Moreover, our data support the idea that pyridostigmine by restoring ACh availability is beneficial in heart disease.

  3. GLUTAMIC ACID IMPROVES BODY WEIGHT GAIN AND INTESTINAL MORPHOLOGY OF BROILER CHICKENS SUBMITTED TO HEAT STRESS

    Directory of Open Access Journals (Sweden)

    ML Porto

    2015-09-01

    Full Text Available ABSTRACTThe objective of this study was to evaluate the effects of 1% dietary glutamic acid on the body weight, intestinal morphometry, and anti-Newcastle antibody titers of broiler chickens submitted to heat stress. One-d-old male broiler chicks (n=120 were distributed according to a 2 x 2 factorial design with two environmental temperatures (thermoneutral or heat stress and two diets (with 0 or 1% glutamic acid. Heat stress temperature was constantly maintained (24h/day 5 ºC higher than the thermoneutral temperature. Diets supplied the nutritional requirements of broilers in the pre-starter (1 to 7d and starter (8 to 21d phases. Birds were vaccinated against Newcastle disease on d 7 via eye drop. On days 5, 10, 15, and 20, individual body weight was determined, serum samples were collected from five birds, and duodenum samples were collected from four birds per treatment. Serum anti-Newcastle antibody titers were determined by enzyme immunoassay and transformed into log10. Villus height, crypt depth, and villus: crypt ratio were measured in the duodenum. Data were analyzed by ANOVA. Chronic heat stress negatively affected body weight and intestinal morphometry during the pre-starter and starter phases, but had no effect on antibody titers. Dietary glutamic acid supplementation (1% improved body weight and intestinal integrity of birds submitted to heat stress when compared with non-supplemented and heat-stressed birds.

  4. Microfluidic Preparation of Polymer-Nucleic Acid Nanocomplexes Improves Nonviral Gene Transfer

    Science.gov (United States)

    Grigsby, Christopher L.; Ho, Yi-Ping; Lin, Chao; Engbersen, Johan F. J.; Leong, Kam W.

    2013-11-01

    As the designs of polymer systems used to deliver nucleic acids continue to evolve, it is becoming increasingly apparent that the basic bulk manufacturing techniques of the past will be insufficient to produce polymer-nucleic acid nanocomplexes that possess the uniformity, stability, and potency required for their successful clinical translation and widespread commercialization. Traditional bulk-prepared products are often physicochemically heterogeneous and may vary significantly from one batch to the next. Here we show that preparation of bioreducible nanocomplexes with an emulsion-based droplet microfluidic system produces significantly improved nanoparticles that are up to fifty percent smaller, more uniform, and are less prone to aggregation. The intracellular integrity of nanocomplexes prepared with this microfluidic method is significantly prolonged, as detected using a high-throughput flow cytometric quantum dot Förster resonance energy transfer nanosensor system. These physical attributes conspire to consistently enhance the delivery of both plasmid DNA and messenger RNA payloads in stem cells, primary cells, and human cell lines. Innovation in processing is necessary to move the field toward the broader clinical implementation of safe and effective nonviral nucleic acid therapeutics, and preparation with droplet microfluidics represents a step forward in addressing the critical barrier of robust and reproducible nanocomplex production.

  5. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    Science.gov (United States)

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  6. SULFATION OF PACHYMAN WITH CHLOROSULFONIC ACID USING THE IMPROVED WOLFROM METHOD

    Institute of Scientific and Technical Information of China (English)

    Qun Chen; Ai-yun Wang; Tian-tong Li; Cheng-fu Li; Qing-cai Jiao

    2006-01-01

    High purity polysaccharide of pachyman was isolated from the powder of Poria cocos sclerotium with an yield of 77.8%. The intrinsic viscosity of polysaccharide was found to be 78.95 mL/g in DMSO solution at 25℃. The isolated polysaccharide was reacted with chlorosulfonic acid to obtain pachyman sulfate using the improved Wolfrom method. The results of the orthogonality experiment on the sulfation reaction identified that the effectiveness of the reaction conditions on the degree of sulfation and the value of intrinsic viscosity is in the following order: molar ratio of chlorosulfonic acid to glucoside (3-5) > reaction temperature (60-80℃) > reaction time (1-2 h). The kinetic studies of the pachyman sulfationindicated that the hydrolysis is accompanied with the sulfation process. The decrease in intrinsic viscosity of the sulfated pachyman is proportional to the increase in the degree of sulfation under the mild reaction conditions of < 80℃,chlorosulfonic acid/glucoside mole ratio < 5, and reaction time < 2 h. Beyond the above reaction conditions, excessive loss of -OH group occurs during hydrolysis. The NMR results indicated a complete sulfation on C-6 and a partial sulfation on the C-2 and C-4 of glucoside.

  7. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    Directory of Open Access Journals (Sweden)

    Huck Ywih Ch’ng

    2014-01-01

    Full Text Available In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp. to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus, and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  8. Biological Function of Acetic Acid-Improvement in Obesity and Glucose Tolerance by Acetic Acid in Type 2 Diabetic Rats.

    Science.gov (United States)

    Yamashita, Hiromi

    2016-07-29

    Fatty acids derived from adipose tissue are oxidized by β-oxidation to form ketone bodies as final products under the starving condition. Previously, we found that free acetic acid was formed concomitantly with the production of ketone bodies in isolated rat liver perfusion, and mitochondrial acetyl CoA hydrolase was appeared to be involved with the acetic acid production. It was revealed that acetic acid was formed as a final product of enhanced β-oxidation of fatty acids and utilized as a fuel in extrahepatic tissues under the starving condition. Under the fed condition, β-oxidation is suppressed and acetic acid production is decreased. When acetic acid was taken daily by obesity-linked type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats under the fed condition, it protected OLETF rats against obesity. Furthermore, acetic acid contributed to protect from the accumulation of lipid in the liver as well as abdominal fat in OLETF rats. Transcripts of lipogenic genes in the liver were decreased, while transcripts of myoglobin and Glut4 genes in abdominal muscles were increased in the acetic acid-administered OLETF rats. It is indicated that exogenously administered acetic acid would have effects on lipid metabolism in both the liver and the skeletal muscles, and have function that works against obesity and obesity-linked type 2 diabetes.

  9. Folic acid supplementation improves microvascular function in older adults through nitric oxide-dependent mechanisms.

    Science.gov (United States)

    Stanhewicz, Anna E; Alexander, Lacy M; Kenney, W Larry

    2015-07-01

    Older adults have reduced vascular endothelial function, evidenced by attenuated nitric oxide (NO)-dependent cutaneous vasodilatation. Folic acid and its metabolite, 5-methyltetrahydrofolate (5-MTHF), are reported to improve vessel function. We hypothesized that (i) local 5-MTHF administration and (ii) chronic folic acid supplementation would improve cutaneous microvascular function in ageing through NO-dependent mechanisms. There were two separate studies in which there were 11 young (Y: 22 ± 1 years) and 11 older (O: 71 ± 3 years) participants. In both studies, two intradermal microdialysis fibres were placed in the forearm skin for local delivery of lactated Ringer's solution with or without 5 mM 5-MTHF. Red cell flux was measured by laser-Doppler flowmetry. Cutaneous vascular conductance [CVC=red cell flux/mean arterial pressure] was normalized as percentage maximum CVC (%CVCmax) (28 mM sodium nitroprusside, local temperature 43°C). In study 1 after CVC plateaued during local heating, 20 mM NG-nitro-L-arginine methyl ester (L-NAME) was perfused at each site to quantify NO-dependent vasodilatation. The local heating plateau (%CVCmax: O = 82 ± 3 vs Y = 96 ± 1, P = 0.002) and NO-dependent vasodilatation (%CVCmax: O = 26 ± 6% vs Y = 49 ± 5, P = 0.03) were attenuated in older participants. 5-MTHF augmented the overall (%CVCmax = 91 ± 2, P = 0.03) and NO-dependent (%CVCmax = 43 ± 9%, P = 0.04) vasodilatation in older but not young participants. In study 2 the participants ingested folic acid (5 mg/day) or placebo for 6 weeks in a randomized, double-blind, crossover design. A rise in oral temperature of 1°C was induced using a water-perfused suit, body temperature was held and 20 mM L-NAME was perfused at each site. Older participants had attenuated reflex (%CVCmax: O = 31 ± 8 vs Y = 44 ± 5, P = 0.001) and NO-dependent (%CVCmax: O = 9 ± 2 vs Y = 21 ± 2, P = 0.003) vasodilatation. Folic acid increased CVC (%CVCmax = 47 ± 5%, P = 0.001) and NO

  10. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain

    DEFF Research Database (Denmark)

    Koppelhus, Uffe; Shiraishi, Takehiko; Zachar, Vladimir;

    2008-01-01

    Conjugation to cationic cell penetrating peptides (such as Tat, Penetratin, or oligo arginines) efficiently improves the cellular uptake of large hydrophilic molecules such as oligonucleotides and peptide nucleic acids, but the cellular uptake is predominantly via an unproductive endosomal pathwa...

  11. In Vitro bile acid binding of kale, mustard greens, broccoli, cabbage and green bell pepper improves with microwave cooking

    Science.gov (United States)

    Bile acid binding potential of foods and food fractions has been related to lowering the risk of heart disease and that of cancer. Sautéing or steam cooking has been observed to significantly improve bile acid binding of green/leafy vegetables. It was hypothesized that microwave cooking could impr...

  12. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    Science.gov (United States)

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA.

  13. Iron-rich drinking water and ascorbic acid supplementation improved hemolytic anemia in experimental Wistar rats.

    Science.gov (United States)

    Chaturvedi, Richa; Chattopadhyay, Pronobesh; Banerjee, Saumen; Bhattacharjee, Chira R; Raul, Prasanta; Borah, Kusum; Singh, Lokendra; Veer, Vijay

    2014-11-01

    Anemia is a frequent problem in both the primary and secondary health care programs. In contrast, most areas of northeast India are vulnerable to iron toxicity. In the present study, we documented the effect of administration of iron rich water on hemolytic anemia in a Wistar rats' animal model. Hemolytic anemia was induced by phenyl hydrazine through intraperitoneal route and diagnosed by the lowering of blood hemoglobin. After inducing the hemolytic anemia, 24 Wistar rats (n = 6 in four groups) were randomly assigned to 1 mg/l, 5 mg/l, and 10 mg/l ferric oxide iron along with 1 mg/ml ascorbic acid administered through drinking water; a control group was treated with iron-free water. The hematological and biochemical parameters, iron levels in liver, spleen, and kidney were estimated after 30 d of treatment. In the group treated with 5 mg/l iron and ascorbic acid, a significant increase of serum iron and ferritin, and a decrease of TIBC (total iron binding capacity) were observed without changes in other biochemical parameters and histopathological findings. However, in the group treated with 10 mg/l iron and ascorbic acid, hematological changes with significantly higher values for white blood cell count, serum glutamic phospho transaminase, serum glutamic oxaloacetic transaminase, alkaline phosphatase, glucose, splenic, and liver iron content, indicate potential toxicity at this supplementation level. Data suggest that the optimum concentration of iron (5 mg/l) and ascorbic acid solution may improve anemic conditions and may be therapeutically beneficial in the treatment of iron deficiency anemia without any negative impact, while 10 mg/l in drinking water seems to be the threshold for the initiation of toxicity.

  14. Acetylsalicylic acid and ascorbic acid combination improves cognition; via antioxidant effect or increased expression of NMDARs and nAChRs?

    Science.gov (United States)

    Kara, Yusuf; Doguc, Duygu Kumbul; Kulac, Esin; Gultekin, Fatih

    2014-05-01

    Chronic inflammation occurs systematically in the central nervous system during ageing, it has been shown that neuroinflammation plays an important role in the pathogenesis of many neurodegenerative disorders. Aspirin, a nonselective COX inhibitor, as well as ascorbic acid, has been purported to protect cerebral tissue. We investigated the effects of subchronic aspirin and ascorbic acid usage on spatial learning, oxidative stress and expressions of NR2A, NR2B, nAChRα7, α4 and β2. Forty male rats (16-18 months) were divided into 4 groups, namely, control, aspirin-treated, ascorbic acid-treated, aspirin+ascorbic acid-treated groups. Following 10-weeks administration period, rats were trained and tested in the Morris water maze. 8-Hydroxy-2-deoxyguanosine and malondialdehyde were evaluated by ELISA and HPLC, respectively. Receptor expressions were assessed by western blotting of hippocampi. Spatial learning performance improved partially in the aspirin group, but significant improvement was seen in the aspirin+ascorbic acid group (p acid group as compared to the control group (p acid in aged rats was shown to enhance cognitive performance and increase the expressions of several receptors related to learning and memory process.

  15. Effects of cholinergic and noradrenergic agents on locomotion in the mudpuppy (Necturus maculatus).

    Science.gov (United States)

    Fok, M; Stein, R B

    2002-08-01

    Some neurotransmitters act consistently on the central pattern generator (CPG) for locomotion in a wide range of vertebrates. In contrast, acetylcholine (ACh) and noradrenaline (NA) have various effects on locomotion in different preparations. The roles of ACh and NA have not been studied in amphibian walking, so we examined their effects in an isolated spinal cord preparation of the mudpuppy ( Necturus maculatus). This preparation contains a CPG that produces locomotor activity when N-methyl- D-aspartic acid (NMDA), an excitatory amino acid agonist, is added to the bath. The addition of carbachol, a long acting ACh agonist, to the bath disrupted the walking rhythm induced by NMDA, while not changing the level of activity in flexor and extensor motoneurons. Adding clonidine, an alpha(2)-noradrenergic agonist, had no effect on the NMDA-induced walking rhythm. Physostigmine, an ACh-esterase inhibitor, disrupted the walking rhythm, presumably by potentiating the effects of endogenously released ACh. Atropine, an ACh antagonist that binds to muscarinic ACh receptors, blocked the effects of carbachol, indicating that the action is mediated, at least in part, by muscarinic receptors. In the absence of carbachol, atropine had no effect. Locomotion was not induced by carbachol, atropine or clonidine in a resting spinal cord preparation. Cholinergic actions do not seem to be essential to the CPG for walking in the mudpuppy, but ACh may convert a rhythmic walking state to a more tonic state with occasional bursts of EMG activity for postural adjustments.

  16. The Gatekeepers in the Mouse Ophthalmic Artery: Endothelium-Dependent Mechanisms of Cholinergic Vasodilation.

    Science.gov (United States)

    Manicam, Caroline; Staubitz, Julia; Brochhausen, Christoph; Grus, Franz H; Pfeiffer, Norbert; Gericke, Adrian

    2016-02-02

    Cholinergic regulation of arterial luminal diameter involves intricate network of intercellular communication between the endothelial and smooth muscle cells that is highly dependent on the molecular mediators released by the endothelium. Albeit the well-recognized contribution of nitric oxide (NO) towards vasodilation, the identity of compensatory mechanisms that maintain vasomotor tone when NO synthesis is deranged remain largely unknown in the ophthalmic artery. This is the first study to identify the vasodilatory signalling mechanisms of the ophthalmic artery employing wild type mice. Acetylcholine (ACh)-induced vasodilation was only partially attenuated when NO synthesis was inhibited. Intriguingly, the combined blocking of cytochrome P450 oxygenase (CYP450) and lipoxygenase (LOX), as well as CYP450 and gap junctions, abolished vasodilation; demonstrating that the key compensatory mechanisms comprise arachidonic acid metabolites which, work in concert with gap junctions for downstream signal transmission. Furthermore, the voltage-gated potassium ion channel, Kv1.6, was functionally relevant in mediating vasodilation. Its localization was found exclusively in the smooth muscle. In conclusion, ACh-induced vasodilation of mouse ophthalmic artery is mediated in part by NO and predominantly via arachidonic acid metabolites, with active involvement of gap junctions. Particularly, the Kv1.6 channel represents an attractive therapeutic target in ophthalmopathologies when NO synthesis is compromised.

  17. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Patti, Mary-Elizabeth; Houten, Sander M; Bianco, Antonio C;

    2009-01-01

    .02) and peak glucagon-like peptide-1 (GLP-1) (r = 0.58, P lipid metabolism in patients......The multifactorial mechanisms promoting weight loss and improved metabolism following Roux-en-Y gastric bypass (GB) surgery remain incompletely understood. Recent rodent studies suggest that bile acids can mediate energy homeostasis by activating the G-protein coupled receptor TGR5 and the type 2...... thyroid hormone deiodinase. Altered gastrointestinal anatomy following GB could affect enterohepatic recirculation of bile acids. We assessed whether circulating bile acid concentrations differ in patients who previously underwent GB, which might then contribute to improved metabolic homeostasis. We...

  18. Inverse metabolic engineering based on transient acclimation of yeast improves acid-containing xylose fermentation and tolerance to formic and acetic acids.

    Science.gov (United States)

    Hasunuma, Tomohisa; Sakamoto, Takatoshi; Kondo, Akihiko

    2016-01-01

    Improving the production of ethanol from xylose is an important goal in metabolic engineering of Saccharomyces cerevisiae. Furthermore, S. cerevisiae must produce ethanol in the presence of weak acids (formate and acetate) generated during pre-treatment of lignocellulosic biomass. In this study, weak acid-containing xylose fermentation was significantly improved using cells that were acclimated to the weak acids during pre-cultivation. Transcriptome analyses showed that levels of transcripts for transcriptional/translational machinery-related genes (RTC3 and ANB1) were enhanced by formate and acetate acclimation. Recombinant yeast strains overexpressing RTC3 and ANB1 demonstrated improved ethanol production from xylose in the presence of the weak acids, along with improved tolerance to the acids. Novel metabolic engineering strategy based on the combination of short-term acclimation and system-wide analysis was developed, which can develop stress-tolerant strains in a short period of time, although conventional evolutionary engineering approach has required long periods of time to isolate inhibitor-adapted strains.

  19. A combined supplementation of vitamin B12 and omega-3 fatty acids across two generations improves cardiometabolic variables in rats.

    Science.gov (United States)

    Khaire, Amrita; Rathod, Richa; Randhir, Karuna; Kale, Anvita; Joshi, Sadhana

    2016-09-14

    Our earlier studies indicate that micronutrients (vitamin B12, folic acid) and omega-3 fatty acids especially docosahexaenoic acid (DHA) are interlinked in one carbon cycle. The present study examines the effects of a sustained vitamin B12 deficiency/supplementation in the presence of omega-3 fatty acids across two generations on the pregnancy outcome and cardiometabolic profile [blood pressure, plasma lipid profile (cholesterol and triglycerides), plasma/liver fatty acid profile and hepatic lipid metabolism] in the second generation adult Wistar rat offspring. Two generations of animals were fed the following diets: control; vitamin B12 deficient; vitamin B12 supplemented; vitamin B12 deficient diet supplemented with omega-3 fatty acids; vitamin B12 and omega-3 fatty acid supplemented diets. Male offspring were sacrificed at 3 months of age. Vitamin B12 deficiency lowered the weight gain (p B12 supplementation showed weight gain, blood pressure and the fatty acid profile similar to the control. However, it increased (p B12 deficient group lowered the weight gain although the levels of cardiometabolic variables were comparable to the control. Omega-3 fatty acid supplementation in the presence of vitamin B12 improved the pregnancy outcome and all cardio-metabolic variables. Our study highlights the adverse effects of sustained vitamin B12 deficiency across two generations on the pregnancy outcome, fatty acid profile and blood pressure while a combined supplementation of vitamin B12 and omega-3 fatty acids is beneficial.

  20. Omega-3 fatty acids plus rosuvastatin improves endothelial function in South Asians with dyslipidemia

    Directory of Open Access Journals (Sweden)

    Catalin Mindrescu

    2008-12-01

    Full Text Available Catalin Mindrescu1,2,3, Rakesh P Gupta1,3, Eileen V Hermance1, Mary C DeVoe1, Vikas R Soma1, John T Coppola1,2, Cezar S Staniloae1,21Comprehensive Cardiovascular Center, Saint Vincent’s Hospital Manhattan, New York, NY, USA; 2New York Medical College, Valhalla, NY, USA; 3Rakesh P Gupta and Catalin Mindrescu contributed equally to this article.Background: The present study was undertaken to investigate the effect of statins plus omega-3 polyunsaturated fatty acids (PUFAs on endothelial function and lipid profile in South Asians with dyslipidemia and endothelial dysfunction, a population at high risk for premature coronary artery disease.Methods: Thirty subjects were randomized to rosuvastatin 10 mg and omega-3-PUFAs 4 g or rosuvastatin 10 mg. After 4 weeks, omega-3-PUFAs were removed from the first group and added to subjects in the second group. All subjects underwent baseline, 4-, and 8-week assessment of endothelial function and lipid profile.Results: Compared to baseline, omega-3-PUFAs plus rosuvastatin improved endothelial-dependent vasodilation (EDV: −1.42% to 11.36%, p = 0.001, and endothelial-independent vasodilation (EIV: 3.4% to 17.37%, p = 0.002. These effects were lost when omega-3-PUFAs were removed (EDV: 11.36% to 0.59%, p = 0.003. In the second group, rosuvastatin alone failed to improve both EDV and EIV compared to baseline. However, adding omega-3-PUFAs to rosuvastatin, significantly improved EDV (−0.66% to 14.73%, p = 0.001 and EIV (11.02% to 24.5%, p = 0.001. Addition of omega-3-PUFAs further improved the lipid profile (triglycerides 139 to 91 mg/dl, p = 0.006, low-density lipoprotein cholesterol 116 to 88 mg/dl, p = 0.014.Conclusions: Combined therapy with omega-3-PUFAs and rosuvastatin improves endothelial function in South Asian subjects with dyslipidemia and endothelial dysfunction.Keywords: omega-3 fatty acids, endothelial function, South Asians, dyslipidemia, rosuvastatin

  1. Improving co-amorphous drug formulations by the addition of the highly water soluble amino acid proline

    DEFF Research Database (Denmark)

    Jensen, Katrine Birgitte Tarp; Löbmann, Korbinian; Rades, Thomas;

    2014-01-01

    by combining the model drug, naproxen (NAP), with an amino acid to physically stabilize the co-amorphous system (tryptophan, TRP, or arginine, ARG) and a second highly soluble amino acid (proline, PRO) for an additional improvement of the dissolution rate. Co-amorphous drug-amino acid blends were prepared......Co-amorphous drug amino acid mixtures were previously shown to be a promising approach to create physically stable amorphous systems with the improved dissolution properties of poorly water-soluble drugs. The aim of this work was to expand the co-amorphous drug amino acid mixture approach...... by ball milling and investigated for solid state characteristics, stability and the dissolution rate enhancement of NAP. All co-amorphous mixtures were stable at room temperature and 40 °C for a minimum of 84 days. PRO acted as a stabilizer for the co-amorphous system, including NAP–TRP, through enhancing...

  2. Evidence for activation of both adrenergic and cholinergic nervous pathways by yohimbine, an alpha 2-adrenoceptor antagonist.

    Science.gov (United States)

    Bagheri, H; Chale, J J; Guyen, L N; Tran, M A; Berlan, M; Montastruc, J L

    1995-01-01

    Adrenoceptors are involved in the control of the activity of the autonomic nervous system and especially the sympathetic nervous system. Activation of alpha 2-adrenoceptors decreases sympathetic tone whereas their blockade has an opposite effect. However, previous investigations have shown that yohimbine (a potent alpha 2-adrenoceptor antagonist) increases salivary secretion through activation of cholinergic pathways. The aim of the present experiment was to investigate the involvement of both the sympathetic and the parasympathetic system in several pharmacological effects of yohimbine. For this purpose, salivary secretion and various endocrino-metabolic parameters (noradrenaline and insulin secretions, lipomobilization) were evaluated in conscious fasting dogs before and after blockade of either the sympathetic (with the beta-adrenoceptor antagonist agent nadolol) or the parasympathetic (with the anticholinergic agent atropine) systems. Yohimbine alone (0.4 mg.kg-1, i.v.) increased within 5-15 minutes, plasma noradrenaline (600%), insulin levels (300%), free-fatty acids (79%) and salivary secretion (143%). Atropine (0.2 mg.kg-1, i.v.) suppressed yohimbine-induced salivary secretion (90%) but did not significantly modify the yohimbine induced changes in noradrenaline (312%), insulin (277%) and free-fatty acids (102%) plasma levels. Administration of nadolol (1 mg.kg-1, i.v.) did not change the magnitude of the increase in both noradrenaline plasma levels (550%) and salivary secretion (300%) induced by yohimbine. However, nadolol totally blunted the increase in insulin (15%) and free-fatty acids (4%) plasma levels. These results show that yohimbine-induced increase in salivary secretion is a cholinergic effect whereas the increase in insulin and free fatty acids can be explained by an increase in sympathetic tone.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Has Stewart approach improved our ability to diagnose acid-base disorders in critically ill patients?

    Science.gov (United States)

    Masevicius, Fabio D; Dubin, Arnaldo

    2015-02-04

    conventional methods. Although the introduction of the Stewart approach was a new insight into acid-base physiology, the method has not significantly improved our ability to understand, diagnose, and treat acid-base alterations in critically ill patients.

  4. Puerarin partly counteracts the inflammatory response after cerebral ischemia/reperfusion via activating the cholinergic anti-inflammatory pathway

    Institute of Scientific and Technical Information of China (English)

    Xiaojie Liu; Zhigang Mei; Jingping Qian; Yongbao Zeng; Mingzhi Wang

    2013-01-01

    Puerarin, a major isoflavonoid derived from the Chinese medical herb radix puerariae (Gegen), has been reported to inhibit neuronal apoptosis and play an anti-inflammatory role in focal cerebral ischemia model rats. Recent findings regarding stroke pathophysiology have recognized that an-ti-inflammation is an important target for the treatment of ischemic stroke. The cholinergic an-ti-inflammatory pathway is a highly robust neural-immune mechanism for inflammation control. This study was to investigate whether activating the cholinergic anti-inflammatory pathway can be in-volved in the mechanism of inhibiting the inflammatory response during puerarin-induced cerebral ischemia/reperfusion in rats. Results showed that puerarin pretreatment (intravenous injection) re-duced the ischemic infarct volume, improved neurological deficit after cerebral ischemia/reperfusion and decreased the levels of interleukin-1β, interleukin-6 and tumor necrosis factor-αin brain tissue. Pretreatment with puerarin (intravenous injection) attenuated the inflammatory response in rats, which was accompanied by janus-activated kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3) activation and nuclear factor kappa B (NF-κB) inhibition. These observa-tions were inhibited by the alpha7 nicotinic acetylcholine receptor (α7nAchR) antagonistα-bungarotoxin (α-BGT). In addition, puerarin pretreatment increased the expression of α7nAchR mRNA in ischemic cerebral tissue. These data demonstrate that puerarin pretreatment strongly protects the brain against cerebral ischemia/reperfusion injury and inhibits the inflammatory re-sponse. Our results also indicated that the anti-inflammatory effect of puerarin may partly be me-diated through the activation of the cholinergic anti-inflammatory pathway.

  5. Effect of voluntary running on adult hippocampal neurogenesis in cholinergic lesioned mice

    Directory of Open Access Journals (Sweden)

    Dawe Gavin S

    2009-06-01

    Full Text Available Abstract Background Cholinergic neuronal dysfunction of the basal forebrain is observed in patients with Alzheimer's disease and dementia, and has been linked to decreased neurogenesis in the hippocampus, a region involved in learning and memory. Running is a robust inducer of adult hippocampal neurogenesis. This study aims to address the effect of running on hippocampal neurogenesis in lesioned mice, where septohippocampal cholinergic neurones have been selectively eliminated in the medial septum and diagonal band of Broca of the basal forebrain by infusion of mu-p75-saporin immunotoxin. Results Running increased the number of newborn cells in the dentate gyrus of the hippocampus in cholinergic denervated mice compared to non-lesioned mice 24 hours after injection of bromodeoxyuridine (BrdU. Although similar levels of surviving cells were present in cholinergic depleted animals and their respective controls four weeks after injection of BrdU, the majority of progenitors that proliferate in response to the initial period of running were not able to survive beyond one month without cholinergic input. Despite this, the running-induced increase in the number of surviving neurones was not affected by cholinergic depletion. Conclusion The lesion paradigm used here models aspects of the cholinergic deficits associated with Alzheimer's Disease and aging. We showed that running still increased the number of newborn cells in the adult hippocampal dentate gyrus in this model of neurodegenerative disease.

  6. Cholinergic enhancement of visual attention and neural oscillations in the human brain.

    Science.gov (United States)

    Bauer, Markus; Kluge, Christian; Bach, Dominik; Bradbury, David; Heinze, Hans Jochen; Dolan, Raymond J; Driver, Jon

    2012-03-06

    Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex.

  7. Overnight fasting regulates inhibitory tone to cholinergic neurons of the dorsomedial nucleus of the hypothalamus.

    Directory of Open Access Journals (Sweden)

    Florian Groessl

    Full Text Available The dorsomedial nucleus of the hypothalamus (DMH contributes to the regulation of overall energy homeostasis by modulating energy intake as well as energy expenditure. Despite the importance of the DMH in the control of energy balance, DMH-specific genetic markers or neuronal subtypes are poorly defined. Here we demonstrate the presence of cholinergic neurons in the DMH using genetically modified mice that express enhanced green florescent protein (eGFP selectively in choline acetyltransferase (Chat-neurons. Overnight food deprivation increases the activity of DMH cholinergic neurons, as shown by induction of fos protein and a significant shift in the baseline resting membrane potential. DMH cholinergic neurons receive both glutamatergic and GABAergic synaptic input, but the activation of these neurons by an overnight fast is due entirely to decreased inhibitory tone. The decreased inhibition is associated with decreased frequency and amplitude of GABAergic synaptic currents in the cholinergic DMH neurons, while glutamatergic synaptic transmission is not altered. As neither the frequency nor amplitude of miniature GABAergic or glutamatergic postsynaptic currents is affected by overnight food deprivation, the fasting-induced decrease in inhibitory tone to cholinergic neurons is dependent on superthreshold activity of GABAergic inputs. This study reveals that cholinergic neurons in the DMH readily sense the availability of nutrients and respond to overnight fasting via decreased GABAergic inhibitory tone. As such, altered synaptic as well as neuronal activity of DMH cholinergic neurons may play a critical role in the regulation of overall energy homeostasis.

  8. Synaptic connectivity of the cholinergic axons in the olfactory bulb of the cynomolgus monkey

    Directory of Open Access Journals (Sweden)

    Teresa eLiberia

    2015-03-01

    Full Text Available The olfactory bulb of mammals receives cholinergic afferents from the horizontal limb of the diagonal band of Broca. At present, the synaptic connectivity of the cholinergic axons on the circuits of the olfactory bulb has only been investigated in the rat. In this report, we analyze the synaptic connectivity of the cholinergic axons in the olfactory bulb of the cynomolgus monkey (Macaca fascicularis. Our aim is to investigate whether the cholinergic innervation of the bulbar circuits is phylogenetically conserved between macrosmatic and microsmatic mammals. Our results demonstrate that the cholinergic axons form synaptic contacts on interneurons. In the glomerular layer, their main targets are the periglomerular cells, which receive axo-somatic and axo-dendritic synapses. In the inframitral region, their main targets are the granule cells, which receive synaptic contacts on their dendritic shafts and spines. Although the cholinergic boutons were frequently found in close vicinity of the dendrites of principal cells, we have not found synaptic contacts on them. From a comparative perspective, our data indicate that the synaptic connectivity of the cholinergic circuits is highly preserved in the olfactory bulb of macrosmatic and microsmatic mammals.

  9. Improved Proteomic Analysis Following Trichloroacetic Acid Extraction of Bacillus anthracis Spore Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Brooke LD; Wunschel, David S.; Sydor, Michael A.; Warner, Marvin G.; Wahl, Karen L.; Hutchison, Janine R.

    2015-08-07

    Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Proteomic analysis is dependent upon efficient extraction of proteins from bacterial samples without introducing bias toward extraction of particular protein classes. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrich for certain classes of proteins. The method presented here is technically simple and does not require specialized equipment such as a mechanical disrupter. Our data reveal that for particularly challenging samples, such as B. anthracis Sterne spores, trichloroacetic acid extraction improved the number of proteins identified within a sample compared to bead beating (714 vs 660, respectively). Further, TCA extraction enriched for 103 known spore specific proteins whereas bead beating resulted in 49 unique proteins. Analysis of C. botulinum samples grown to 5 days, composed of vegetative biomass and spores, showed a similar trend with improved protein yields and identification using our method compared to bead beating. Interestingly, easily lysed samples, such as B. anthracis vegetative cells, were equally as effectively processed via TCA and bead beating, but TCA extraction remains the easiest and most cost effective option. As with all assays, supplemental methods such as implementation of an alternative preparation method may provide additional insight to the protein biology of the bacteria being studied.

  10. Clavulanic acid production by Streptomyces clavuligerus: biogenesis, regulation and strain improvement.

    Science.gov (United States)

    Paradkar, Ashish

    2013-07-01

    Clavulanic acid (CA) is a potent β-lactamase inhibitor produced by Streptomyces clavuligerus and has been successfully used in combination with β-lactam antibiotics (for example, Augmentin) to treat infections caused by β-lactamase-producing pathogens. Since the discovery of CA in the late 1970s, significant information has accumulated on its biosynthesis, and regarding molecular mechanisms involved in the regulation of its production. Notably, the genes directing CA biosynthesis are clustered along with the genes responsible for the biosynthesis of the β-lactam antibiotic, cephamycin C, and co-regulated, which makes this organism unique in that the production of an antibiotic and production of a small molecule to protect the antibiotic from its enzymatic degradation are controlled by shared mechanisms. Traditionally, the industrial strain improvement programs have relied significantly on random mutagenesis and selection approach. However, the recent availability of the genome sequence of S. clavuligerus along with the capability to build metabolic models, and ability to engineer the organism by directed approaches, has created exciting opportunities to improve strain productivity more efficiently. This review will include focus mainly on the gene organization of the CA biosynthetic genes, regulatory mechanisms that affect its production, and will include perspectives on improving strain productivity.

  11. Improvement of Vegetative and Reproductive Growth of ‘Camarosa’ Strawberry: Role of Humic Acid, Zn, and B

    Directory of Open Access Journals (Sweden)

    Somaye Rafeii

    2015-03-01

    Full Text Available This experiment was conducted with the aim to improve vegetative and reproductive growth of strawberry (Fragaria × ananassa Duch. cv. ‘Camarosa’ using humic acid, zinc sulfate (ZnSO4, and boric acid. We evaluated applications of humic acid at 0, 20 and 40 mg·L-1, ZnSO4 at 0, 50 and 100 mg·L-1, and boric acid at 0, 50 and 100 mg·L-1 at 30 days after planting and blooming stage on growth of strawberry cv. ‘Camarosa’. Results indicated that humic acid, ZnSo4, and boric acid application improved reproductive and vegetative characteristics compared to control treatment. The results showed, that plants treated with humic acid, ZnSO4, and boric acid at higher their concentrations exhibited generally higher dry weight of roots and shoots, number of flowers and inflorescences, leaf area, length of roots and shoots, length of flowering period, yield, weight of primary and secondary fruits and number of their achenes. Total yield was significantly increased by all treatments compared to control treatment at both stages of application, especially at blooming stage. Moreover, conclusion showed that the mentioned materials could have impact on vegetative and reproductive growth of strawberry generally. In this study humic acid at 40 mg L-1 at blooming stage resulted in best effects on development of strawberry cv. ‘Camarosa’.

  12. Orexin receptor activation generates gamma band input to cholinergic and serotonergic arousal system neurons and drives an intrinsic Ca2+-dependent resonance in LDT and PPT cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Masaru eIshibashi

    2015-06-01

    Full Text Available A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT and pedunculopontine (PPT tegmental neurons and serotonergic dorsal raphe (DR neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4 - 14 Hz and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep and intracortical

  13. Significant improvement in the pore properties of SBA-15 brought about by carboxylic acids and hydrothermal treatment

    Indian Academy of Sciences (India)

    Milan Kanti Naskar; M Eswaramoorthy

    2008-01-01

    A comparative study of the pore properties of SBA-15 samples prepared under nonhydrothermal and hydrothermal conditions, in the absence and presence of carboxylic acids such as succinic, tartaric and citric acids has been carried out. In the absence of carboxylic acid, flake-like and spheroid particles were generally obtained irrespective of the preparative procedures. On the other hand, stirring of the pre-mix induces a rod-like morphology in presence of carboxylic acids. The samples prepared under non-hydrothermal conditions exhibit a higher degree of silicate condensation compared to those synthesized under hydrothermal conditions. SBA-15 samples prepared under hydrothermal conditions show higher values of the d (100) spacing independent of the presence of carboxylic acids. Presence of carboxylic acids as well as hydrothermal treatment improves the pore properties of SBA-15.

  14. Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality.

    Science.gov (United States)

    Mrvčić, Jasna; Stanzer, Damir; Solić, Ema; Stehlik-Tomas, Vesna

    2012-09-01

    Certain species of lactic acid bacteria (LAB), as well as other microorganisms, can bind metal ions to their cells surface or transport and store them inside the cell. Due to this fact, over the past few years interactions of metal ions with LAB have been intensively investigated in order to develop the usage of these bacteria in new biotechnology processes in addition to their health and probiotic aspects. Preliminary studies in model aqueous solutions yielded LAB with high absorption potential for toxic and essential metal ions, which can be used for improving food safety and quality. This paper provides an overview of results obtained by LAB application in toxic metal ions removing from drinking water, food and human body, as well as production of functional foods and nutraceutics. The biosorption abilities of LAB towards metal ions are emphasized. The binding mechanisms, as well as the parameters influencing the passive and active uptake are analyzed.

  15. Fuzzy approach for improved recognition of citric acid induced piglet coughing from continuous registration

    Science.gov (United States)

    Van Hirtum, A.; Berckmans, D.

    2003-09-01

    A natural acoustic indicator of animal welfare is the appearance (or absence) of coughing in the animal habitat. A sound-database of 5319 individual sounds including 2034 coughs was collected on six healthy piglets containing both animal vocalizations and background noises. Each of the test animals was repeatedly placed in a laboratory installation where coughing was induced by nebulization of citric acid. A two-class classification into 'cough' or 'other' was performed by the application of a distance function to a fast Fourier spectral sound analysis. This resulted in a positive cough recognition of 92%. For the whole sound-database however there was a misclassification of 21%. As spectral information up to 10000 Hz is available, an improved overall classification on the same database is obtained by applying the distance function to nine frequency ranges and combining the achieved distance-values in fuzzy rules. For each frequency range clustering threshold is determined by fuzzy c-means clustering.

  16. Improved production, characterization and flocculation properties of poly (-glutamic acid produced from Bacillus Subtilis

    Directory of Open Access Journals (Sweden)

    Bhunia B

    2012-04-01

    Full Text Available Bacillus subtilis 2063 produced extracellular biopolymer whichshowed excellent flocculation activity. The biopolymer wasconfirmed as poly (γ-glutamic acid (PGA by using productcharacterization. HPLC profile showed that molecular weight ofPGA was found to be 5.8×106 Da. Improved production,Characterization and flocculation properties of PGA produced byBacillus species were studied. PGA produced by B. subtilis wasdevoid of any polysaccharides. The flocculating activity wasmarkedly stimulated by the addition of cations. The pH of reaction mixture also influenced the flocculating activity. Glycerol and ammonium chloride were found to be most useful carbon and nitrogen sources. An overall 4.24-fold increase in protease production was achieved in the design medium composed with Glycerol and ammonium chloride as a carbon and nitrogen sources as compared with basal media. PGA production increased significantly with optimized medium (21.42 gl-1 when compared with basal medium (5.06 gl-1.

  17. Screening and Improving the Recombinant Nitrilases and Application in Biotransformation of Iminodiacetonitrile to Iminodiacetic Acid.

    Directory of Open Access Journals (Sweden)

    Zhi-Qiang Liu

    Full Text Available In this study, several nitrilase genes from phylogenetically distinct organisms were expressed and purified in E. coli in order to study their ability to mediate the biotransformation of nitriles. We identified three nitrilases: Acidovorax facilis nitrilase (AcN; Alcaligenes fecalis nitrilase (AkN; and Rhodococcus rhodochrous nitrilase (RkN, which catalyzed iminodiacetonitrile (IDAN to iminodiacetic acid (IDA. AcN demonstrated 8.8-fold higher activity for IDAN degradation as compared to AkN and RkN. Based on homology modeling and previously described 'hot spot' mutations, several AcN mutants were screened for improved activity. One mutant M3 (F168V/L201N/S192F was identified, which demonstrates a 41% enhancement in the conversion as well as a 2.4-fold higher catalytic efficiency towards IDAN as compared to wild-type AcN.

  18. Salicylic Acid and Calcium Treatments Improves Wheat Vigor, Lipids and Phenolics Under High Salinity.

    Science.gov (United States)

    Yücel Candan, Nilgün; Heybet Elif, Haklı

    2016-12-01

    Seed vigor is a complex physiological trait required to ensure the rapid and uniform emergence of plants in the field under different environmental conditions. Therefore, salicylic acid (SA, 0.5 mM) and calcium (Ca2+, 50 mM) priming were used as exogenous growth enhancers to stimulate wheat (Triticum durum Desf. cv. Yelken) seed vigor under high salinity. The main aim was to address whether priming of wheat with SA, Ca2+ and SA+Ca (SA, 0.5 mM + Ca2+, 50 mM; their combination) could bring about supplementary agronomic benefits particularly under stressful environments such as salinity. Exogenous application of SA or Ca2+ alone improved plant behavior in the presence of salinity stress. Nevertheless, the best results in terms of growth, seed vigor and total phenolic - flavonoids, chlorophyll - carotenoids contents and phenylalanine ammonia-lyase (PAL), ascorbic acide oxidase (AAO) activities and lipid peroxidation levels (LPO) were obtained in response to the combined SA+Ca treatment.

  19. Field experience and improvements with thin tubular-plate lead/acid technology

    Energy Technology Data Exchange (ETDEWEB)

    Merz, K.D. [CMP Batteries, Bolton (United Kingdom)

    1998-05-18

    The Classic 25 is the product name for a motive-power lead/acid cell using thin positive tubular plates. This cell was developed for use in electric vehicles and other applications where high specific energy and reliable cycle life is required. It would appear that the best approach is to provide a lead/acid battery that has the highest specific energy while still maintaining excellent cycle life. This technology was implemented by use of 6 V modules, followed by a 2-V design. Since this was first introduced in 1989, more than 20 000 cells and monoblocs have been delivered to various electric vehicle applications such as vans, trucks, and buses. The field experience with this product is therefore excellent, and development is continuing on the battery design and manufacturing techniques to improve performance and life even further. Today, a wide range of products using this technology is available, and the latest developments are a new 6 V monobloc and some maintenance-free cells. (orig.)

  20. Lecithin-Based Nano-emulsification Improves the Bioavailability of Conjugated Linoleic Acid.

    Science.gov (United States)

    Heo, Wan; Kim, Jun Ho; Pan, Jeong Hoon; Kim, Young Jun

    2016-02-17

    In this study, we investigated the effects of lecithin-based nano-emulsification on the heat stability and bioavailability of conjugated linoleic acid (CLA) in different free fatty acid (FFA) and triglyceride (TG) forms. CLA nano-emulsion in TG form exhibited a small droplet size (70-120 nm) compared to CLA nano-emulsion in FFA form (230-260 nm). Nano-emulsification protected CLA isomers in TG form, but not in free form, against thermal decomposition during the heat treatment. The in vitro bioavailability test using monolayers of Caco-2 human intestinal cells showed that nano-emulsification increased the cellular uptake of CLA in both FFA and TG forms. More importantly, a rat feeding study showed that CLA content in small intestinal tissues or plasma was higher when CLA was emulsified, indicating an enhanced oral bioavailability of CLA by nano-emulsification. These results provide important information for development of nano-emulsion-based delivery systems that improve thermal stability and bioavailability of CLA.

  1. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Kajimoto, Masaki; Ledee, Dolena R.; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G.; Portman, Michael A.

    2014-01-01

    Background: Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. We previously showed that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study was focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. Methods: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 hours) and wean: normal circulation (Group-C);transient coronary occlusion (10 minutes) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon labeled lactate, medium-chain and long-chain FAs were infused as oxidative substrates. Substrate fractional contribution to the citric acid cycle (FC) was analyzed by 13-Carbon nuclear magnetic resonance. Results: ECMO depressed circulating T3 levels to 40% baseline at 4 hours and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [ATP]/[ADP] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. Conclusions: T3 releases inhibition of lactate oxidation following ischemia-reperfusion injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.

  2. The involvement of cholinergic neurons in the spreading of tau pathology

    Directory of Open Access Journals (Sweden)

    Diana eSimon

    2013-06-01

    Full Text Available Long time ago, it was described the selective loss of cholinergic neurons during the development of Alzheimer disease. Recently, it has been suggested that tau protein may play a role in that loss of cholinergic neurons through a mechanism involving the interaction of extracellular tau with M1/M3 muscarinic receptors present in the cholinergic neurons. This interaction between tau and muscarinic receptors may be a way, although not the only one, to explain the spreading of tau pathology occurring in Alzheimer disease.

  3. Tolerance of nestin+ cholinergic neurons in the basal forebrain against colchicine-induced cytotoxicity

    Institute of Scientific and Technical Information of China (English)

    Jing Yu; Kaihua Guo; Dongpei Li; Jinhai Duan; Juntao Zou; Junhua Yang; Zhibin Yao

    2011-01-01

    In the present study we injected colchicine into the lateral ventricle of Sprague-Dawley rats to investigate the effects of colchicine on the number of different-type neurons in the basal forebrain and to search for neurons resistant to injury. After colchicine injection, the number of nestin+ cholinergic neurons was decreased at 1 day, but increased at 3 days and peaked at 14-28 days. The quantity of nestin- cholinergic neurons, parvalbumin-positive neurons and choline acetyl transferase-positive neurons decreased gradually. Our results indicate that nestin+ cholinergic neurons possess better tolerance to colchicine-induced neurotoxicity.

  4. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii:the impact of citric acid and tartaric acid

    Institute of Scientific and Technical Information of China (English)

    Ling-li LU; Sheng-ke TIAN; Xiao-e YANG; Hong-yun PENG; Ting-qiang LI

    2013-01-01

    The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils.Organic acid has been suggested to be involved in toxic metallic element tolerance,translocation,and accumulation in plants.The impact of exogenous organic acids on cadmium(Cd)uptake and translocation in the zinc(Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study.By the addition of organic acids,short-term(2 h)root uptake of 109Cd increased significantly,and higher 109Cd contents in roots and shoots were noted 24 h after uptake,when compared to controls.About 85% of the 109Cd taken up was distributed to the shoots in plants with citric acid(CA)treatments,as compared with 75% within controls.No such effect was observed for tartaric acid(TA).Reduced growth under Cd stress was significantly alleviated by low CA.Long-term application of the two organic acids both resulted in elevated Cd in plants,but the effects varied with exposure time and levels.The results imply that CA may be involved in the processes of Cd uptake,translocation and tolerance in S.alfredii,whereas the impact of TA is mainly on the root uptake of Cd.

  5. Improved mitochondrial function with diet-induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids.

    Directory of Open Access Journals (Sweden)

    Ramzi J Khairallah

    Full Text Available Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP. We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA docosahexaenoic acid (DHA; 22:6n3 and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6 in mitochondrial membranes is associated with a greater Ca(2+ load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6. Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca(2+-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca(2+ load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs.

  6. Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres.

    Science.gov (United States)

    Shen, Zheyu; Li, Yan; Kohama, Kazuhiro; Oneill, Brian; Bi, Jingxiu

    2011-01-01

    Folic acid-conjugated albumin nanospheres (FA-AN) have been developed to provide an actively targetable drug delivery system for improved drug targeting of cancer cells with reduced side effects. The nanospheres were prepared by conjugating folic acid onto the surface of albumin nanospheres using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as a catalyst. To test the efficacy of these nanospheres as a potential delivery platform, doxorubicin-loaded albumin nanospheres (DOX-AN) and doxorubicin-loaded FA-AN (FA-DOX-AN) were prepared by entrapping DOX (an anthracycline, antibiotic drug widely used in cancer chemotherapy that works by intercalating DNA) into AN and FA-AN nanoparticles. Cell uptake of the DOX was then measured. The results show that FA-AN was incorporated into HeLa cells (tumor cells) only after 2.0h incubation, whereas HeLa cells failed to incorporate albumin nanospheres without conjugated folic acid after 4.0h incubation. When HeLa cells were treated with the DOX-AN, FA-DOX-AN nanoparticles or free DOX, cell viability decreased with increasing culture time (i.e. cell death increases with time) over a 70h period. Cell viability was always the lowest for free DOX followed by FA-DOX-AN4 and then DOX-AN. In a second set of experiments, HeLa cells washed to remove excess DOX after an initial incubation for 2h were incubated for 70h. The corresponding cell viability was slightly higher when the cells were treated with FA-DOX-AN or free DOX whilst cells treated with DOX-AN nanoparticles remained viable. The above experiments were repeated for non-cancerous, aortic smooth muscle cells (AoSMC). As expected, cell viability of the HeLa cells (with FA receptor alpha, FRα) and AoSMC cells (without FRα) decreased rapidly with time in the presence of free DOX, but treatment with FA-DOX-AN resulted in selective killing of the tumor cells. These results indicated that FA-AN may be used as a promising actively targetable drug delivery system to improve drug

  7. Omega-3 fatty acids improve liver and pancreas function in postoperative cancer patients.

    Science.gov (United States)

    Heller, Axel R; Rössel, Thomas; Gottschlich, Birgit; Tiebel, Oliver; Menschikowski, Mario; Litz, Rainer J; Zimmermann, Thomas; Koch, Thea

    2004-09-10

    Epidemiologic studies have indicated that high intake of saturated fat and/or animal fat increases the risk of colon and breast cancer. Omega-3 PUFAs in fish oil (FO) can inhibit the growth of human cancer cells in vitro and in vivo. These effects are related to the uptake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) into the cellular substrate pool and their competitive metabolism with arachidonic acid (AA) at the cyclooxygenase and 5-lipoxygenase levels. The metabolites of EPA and DHA have less inflammatory and immunosuppressant potency than the substances derived from AA. Based on previous experimental data, we hypothesized that FO supplementation after major abdominal cancer surgery would improve hepatic and pancreatic function. Ours was a prospective, randomized, double-blinded clinical trial on 44 patients undergoing elective major abdominal surgery, randomly assigned to receive total parenteral nutrition (TPN) supplemented with either soybean oil (SO 1.0 g/kg body weight daily, n = 20) for 5 days or a combination of FO and SO (FO 0.2 + SO 0.8 g/kg body weight daily, n = 24). Compared to pure SO supplementation in the postoperative period, FO significantly reduced ASAT [0.8 +/- 0.1 vs. 0.5 +/- 0.1 mmol/(l. sec)], ALAT [0.9 +/- 0.1 vs. 0.6 +/- 0.1 mmol/(l. sec)], bilirubin (16.1 +/- 5.3 vs. 6.9 +/- 0.6 mmol/l), LDH (7.7 +/- 0.4 vs. 6.7 +/- 0.4 mmol/(l. sec) and lipase (0.6 +/- 0.1 vs. 0.4 +/- 0.1 micromol/(l. sec) in the postoperative course. Moreover, patients with increased risk of sepsis (IL-6/IL-10 ratio >8) showed a tendency to shorter ICU stay (18 hr) under omega-3 PUFA treatment. Weight loss as encountered after the SO emulsion of 1.1 +/- 2.2 kg was absent in the FO group. After major abdominal tumor surgery, FO supplementation improved liver and pancreas function, which might have contributed to the faster recovery of patients.

  8. Determination of organic acids evolution during apple cider fermentation using an improved HPLC analysis method

    NARCIS (Netherlands)

    Zhang, H.; Zhou, F.; Ji, B.; Nout, M.J.R.; Fang, Q.; Zhang, Z.

    2008-01-01

    An efficient method for analyzing ten organic acids in food, namely citric, pyruvic, malic, lactic, succinic, formic, acetic, adipic, propionic and butyric acids, using HPLC was developed. Boric acid was added into the mobile phase to separate lactic and succinic acids, and a post-column buffer solu

  9. Designing improved poly lactic-co-glycolic acid microspheres for a malarial vaccine: incorporation of alginate and polyinosinic-polycytidilic acid.

    Science.gov (United States)

    Salvador, Aiala; Igartua, Manoli; Hernández, Rosa María; Pedraz, José Luis

    2014-01-01

    Vaccination using proteins and peptides is currently gaining importance. One of the major drawbacks of this approach is the lack of an efficient immune response when the antigens are administered without adjuvants. In this study, we have taken the advantage of a combined adjuvant system in order to improve the immunogenicity of the SPf66 malarial antigen. For that purpose, we have combined poly (lactic-co-glycolic) acid microspheres, alginate, and polyinosinic polycytidilic acid. Our results show that microspheres can enhance the IgG production obtained with Freund's complete adjuvant. We have attributed this improvement to the presence of polyinosinic polycytidilic acid, since formulations comprising this adjuvant overcame the immune response from the others. In addition, our microspheres produced both IgG1 and IgG2a, leading to mixed Th1/Th2 activation, optimal for malaria vaccination. In conclusion, we have designed a preliminary formulation with a high potential for the treatment of malaria.

  10. Impact of basal forebrain cholinergic inputs on basolateral amygdala neurons.

    Science.gov (United States)

    Unal, Cagri T; Pare, Denis; Zaborszky, Laszlo

    2015-01-14

    In addition to innervating the cerebral cortex, basal forebrain cholinergic (BFc) neurons send a dense projection to the basolateral nucleus of the amygdala (BLA). In this study, we investigated the effect of near physiological acetylcholine release on BLA neurons using optogenetic tools and in vitro patch-clamp recordings. Adult transgenic mice expressing cre-recombinase under the choline acetyltransferase promoter were used to selectively transduce BFc neurons with channelrhodopsin-2 and a reporter through the injection of an adeno-associated virus. Light-induced stimulation of BFc axons produced different effects depending on the BLA cell type. In late-firing interneurons, BFc inputs elicited fast nicotinic EPSPs. In contrast, no response could be detected in fast-spiking interneurons. In principal BLA neurons, two different effects were elicited depending on their activity level. When principal BLA neurons were quiescent or made to fire at low rates by depolarizing current injection, light-induced activation of BFc axons elicited muscarinic IPSPs. In contrast, with stronger depolarizing currents, eliciting firing above ∼ 6-8 Hz, these muscarinic IPSPs lost their efficacy because stimulation of BFc inputs prolonged current-evoked afterdepolarizations. All the effects observed in principal neurons were dependent on muscarinic receptors type 1, engaging different intracellular mechanisms in a state-dependent manner. Overall, our results suggest that acetylcholine enhances the signal-to-noise ratio in principal BLA neurons. Moreover, the cholinergic engagement of afterdepolarizations may contribute to the formation of stimulus associations during fear-conditioning tasks where the timing of conditioned and unconditioned stimuli is not optimal for the induction of synaptic plasticity.

  11. Cholinergic urethral brush cells are widespread throughout placental mammals.

    Science.gov (United States)

    Deckmann, Klaus; Krasteva-Christ, Gabriela; Rafiq, Amir; Herden, Christine; Wichmann, Judy; Knauf, Sascha; Nassenstein, Christina; Grevelding, Christoph G; Dorresteijn, Adriaan; Chubanov, Vladimir; Gudermann, Thomas; Bschleipfer, Thomas; Kummer, Wolfgang

    2015-11-01

    We previously identified a population of cholinergic epithelial cells in murine, human and rat urethrae that exhibits a structural marker of brush cells (villin) and expresses components of the canonical taste transduction signaling cascade (α-gustducin, phospholipase Cβ2 (PLCβ2), transient receptor potential cation channel melanostatin 5 (TRPM5)). These cells serve as sentinels, monitoring the chemical composition of the luminal content for potentially hazardous compounds such as bacteria, and initiate protective reflexes counteracting further ingression. In order to elucidate cross-species conservation of the urethral chemosensory pathway we investigated the occurrence and molecular make-up of urethral brush cells in placental mammals. We screened 11 additional species, at least one in each of the five mammalian taxonomic units primates, carnivora, perissodactyla, artiodactyla and rodentia, for immunohistochemical labeling of the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT), villin, and taste cascade components (α-gustducin, PLCβ2, TRPM5). Corresponding to findings in previously investigated species, urethral epithelial cells with brush cell shape were immunolabeled in all 11 mammals. In 8 species, immunoreactivities against all marker proteins and ChAT were observed, and double-labeling immunofluorescence confirmed the cholinergic nature of villin-positive and chemosensory (TRPM5-positive) cells. In cat and horse, these cells were not labeled by the ChAT antiserum used in this study, and unspecific reactions of the secondary antiserum precluded conclusions about ChAT-expression in the bovine epithelium. These data indicate that urethral brush cells are widespread throughout the mammalian kingdom and evolved not later than about 64.5millionyears ago.

  12. Cholinergic and non-cholinergic projections from the pedunculopontine and laterodorsal tegmental nuclei to the medial geniculate body in guinea pigs

    Directory of Open Access Journals (Sweden)

    Susan D Motts

    2010-10-01

    Full Text Available The midbrain tegmentum is the source of cholinergic innervation of the thalamus and has been associated with arousal and control of the sleep/wake cycle. In general, the innervation arises bilaterally from the pedunculopontine tegmental nucleus (PPT and the laterodorsal tegmental nucleus (LDT. While this pattern has been observed for many thalamic nuclei, a projection from the LDT to the medial geniculate body (MG has been questioned in some species. We combined retrograde tracing with immunohistochemistry for choline acetyltransferase (ChAT to identify cholinergic projections from the brainstem to the MG in guinea pigs. Double-labeled cells (retrograde and immunoreactive for ChAT were found in both the PPT (74% and the LDT (26%. In both nuclei, double-labeled cells were more numerous on the ipsilateral side. About half of the retrogradely labeled cells were immunonegative, suggesting they are non-cholinergic. The distribution of these immunonegative cells was similar to that of the immunopositive ones: more were in the PPT than the LDT and more were on the ipsilateral than the contralateral side. The results indicate that both the PPT and the LDT project to the MG, and suggest that both cholinergic and non-cholinergic cells contribute substantially to these projections.

  13. Slight Fermentation with Lactobacillus fermentium Improves the Taste (Sugar:Acid Ratio) of Citrus (Citrus reticulata cv. chachiensis) Juice.

    Science.gov (United States)

    Yu, Yuanshan; Xiao, Gengsheng; Xu, Yujuan; Wu, Jijun; Fu, Manqin; Wen, Jing

    2015-11-01

    The aim of this study was to evaluate the hypothesis that fermentation with Lactobacillus fermentium, which can metabolize citric acid, could be applied in improving the taste (sugar:acid ratio) of citrus juice. During fermentation, the strain of L. fermentium can preferentially utilize citric acid of citrus (Citrus reticulata cv. Chachiensis) juice to support the growth without the consumption of sugar. After 6 h of fermentation with L. fermentium at 30 °C, the sugar:acid ratio of citrus juice increased to 22:1 from 12:1, which resulted in that the hedonic scores of sweetness, acidity and overall acceptability of fermented-pasteurized citrus juice were higher than the unfermented-pasteurized citrus juice. Compared with unfermented-pasteurized citrus juice, the ORAC value and total amino acid showed a reduction, and no significant change (P > 0.05) in the L*, a*, b*, total soluble phenolics and ascorbic acid (Vc) content in the fermented-pasteurized citrus juice was observed as compared with unfermented-pasteurized citrus juice. Hence, slight fermentation with L. fermentium can be used for improving the taste (sugar:acid ratio) of citrus juice with the well retaining of quality.

  14. Chilling Tolerance Improving of Watermelon Seedling by Salicylic Acid Seed and Foliar Application

    Directory of Open Access Journals (Sweden)

    Mohammad SAYYARI

    2013-02-01

    Full Text Available Chilling temperatures lead to numerous physiological disturbances in the cells of chilling-sensitive plants and result in chilling injury and death of tropical and subtropical plants such as watermelon. In this study, the possibility of cold stress tolerance enhancing of watermelon seedling (Citrullus lanatus by exogenous application of Salicylic acid (SA was investigated. SA was applied through seed soaking or foliar spray at 0, 0.5, 1 and 1.5 mM concentration. After SA treatment, the seedlings were subjected to chilling 5 h/day at 4°C for 5 days. Statistical analysis showed significant effects of the application methods and SA concentrations on plant growth parameters, photosynthetic pigments, electrolyte leakage, proline and chilling injury index. SA application improved growth parameters and increased chlorophyll content of watermelon seedling subjected to chilling stress and provided significant protection against chilling stress compared to non-SA-treated seedlings. Although two SA application methods improved chilling stress tolerance, seed soaking method provided better protection compared to foliar spray method. SA ameliorated the injury caused by chilling stress via inhibiting proline accumulation and leaf electrolyte leakage. The highest cold tolerance was obtained with 0.5 mM SA application. Results indicate that SA could be used effectively to protect watermelon seedling from damaging effects of chilling stress at the early stages of growth.

  15. Long-chain omega-3 fatty acids improve brain function and structure in older adults.

    Science.gov (United States)

    Witte, A Veronica; Kerti, Lucia; Hermannstädter, Henrike M; Fiebach, Jochen B; Schreiber, Stephan J; Schuchardt, Jan Philipp; Hahn, Andreas; Flöel, Agnes

    2014-11-01

    Higher intake of seafish or oil rich in long-chain omega-3 polyunsaturated fatty acids (LC-n3-FA) may be beneficial for the aging brain. We tested in a prospective interventional design whether high levels of supplementary LC-n3-FA would improve cognition, and addressed potential mechanisms underlying the effects. Sixty-five healthy subjects (50-75 years, 30 females) successfully completed 26 weeks of either fish oil (2.2 g/day LC-n3-FA) or placebo intake. Before and after the intervention period, cognitive performance, structural neuroimaging, vascular markers, and blood parameters were assayed. We found a significant increase in executive functions after LC-n3-FA compared with placebo (P = 0.023). In parallel, LC-n3-FA exerted beneficial effects on white matter microstructural integrity and gray matter volume in frontal, temporal, parietal, and limbic areas primarily of the left hemisphere, and on carotid intima media thickness and diastolic blood pressure. Improvements in executive functions correlated positively with changes in omega-3-index and peripheral brain-derived neurotrophic factor, and negatively with changes in peripheral fasting insulin. This double-blind randomized interventional study provides first-time evidence that LC-n3-FA exert positive effects on brain functions in healthy older adults, and elucidates underlying mechanisms. Our findings suggest novel strategies to maintain cognitive functions into old age.

  16. Improved microscopical detection of acid-fast bacilli by the modified bleach method in lymphnode aspirates

    Directory of Open Access Journals (Sweden)

    Annam Vamseedhar

    2009-07-01

    Full Text Available Objectives: To improve the smear microscopy for detection of acid-fast bacilli (AFB in fine needle aspiration cytology (FNAC of lymph node using the bleach method and also to compare this with cytological diagnosis and the conventional Ziehl-Neelsen (ZN method. Study Design: In 99 consecutive patients with clinical suspicion of tuberculosis (TB presenting with lymphadenopathy, FNACs were performed. Smears from the aspirates were processed for routine cytology and the conventional ZN method. The remaining material in the needle hub and/or the syringe was used for the bleach method. The significance of the bleach method over the conventional ZN method and cytology was analyzed using the χ2 test. Results: Of 99 aspirates, 93 were studied and the remaining six were excluded from the study due to diagnosis of malignancy in 4.04% (4/6 and inadequate aspiration in 2.02% (2/6. Among the 93 aspirates, 33.33% (31/93 were positive for AFB on conventional ZN method, 41.94% (39/93 were indicative of TB on cytology and the smear positivity increased to 63.44% (59/93 on bleach method. Conclusion: The bleach method is simple, inexpensive and potent disinfectant, also limiting the risk of laboratory-acquired infections. The implementation of the bleach method clearly improves microscopic detection and can be a useful contribution to routine cytology.

  17. Polylactic acid with improved heat deflection temperatures and self-healing properties for durable goods applications.

    Science.gov (United States)

    Wertz, J T; Mauldin, T C; Boday, D J

    2014-11-12

    A method to recover fracture toughness after failure and increase thermal properties of polylactic acid (PLA) for use within durable goods applications is presented. Microcapsules were incorporated into PLA to form a composite material in which the microcapsules served the dual purpose of (1) releasing self-healing additives to fracture regions and (2) serving as nucleating agents to improve the PLA composite's thermal tolerance. Self-healing was achieved though embedment of dicyclopentadiene-filled microcapsules and Grubbs' first generation ruthenium metathesis catalyst, the former being autonomically released into damage volumes and undergoing polymerization in the presence of the catalyst. This approach led to up to 84% recovery of the polymer composite's initial fracture toughness. Additionally, PLA's degree of crystallinity and heat deflection temperature were improved by ∼ 11% and ∼ 21 °C, respectively, relative to nonfilled virgin PLA, owing to microcapsule-induced nucleation. The self-healing system developed here overcomes many property limitations of PLA that can potentially lead to its incorporation into various durable goods.

  18. Improved proteomic analysis following trichloroacetic acid extraction of Bacillus anthracis spore proteins.

    Science.gov (United States)

    Deatherage Kaiser, Brooke L; Wunschel, David S; Sydor, Michael A; Warner, Marvin G; Wahl, Karen L; Hutchison, Janine R

    2015-11-01

    Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Analysis of cellular proteins is dependent upon efficient extraction from bacterial samples, which can be challenging with increasing complexity and refractory characteristics. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrichment for certain classes of proteins. The method presented here is technically simple, does not require specialized equipment such as a mechanical disrupter, and is effective for protein extraction of the particularly challenging sample type of Bacillus anthracis Sterne spores. The ability of Trichloroacetic acid (TCA) extraction to isolate proteins from spores and enrich for spore-specific proteins was compared to the traditional mechanical disruption method of bead beating. TCA extraction improved the total average number of proteins identified within a sample as compared to bead beating (547 vs 495, respectively). Further, TCA extraction enriched for 270 spore proteins, including those typically identified by first isolating the spore coat and exosporium layers. Bead beating enriched for 156 spore proteins more typically identified from whole spore proteome analyses. The total average number of proteins identified was equal using TCA or bead beating for easily lysed samples, such as B. anthracis vegetative cells. As with all assays, supplemental methods such as implementation of an alternative preparation method may simplify sample preparation and provide additional insight to the protein biology of the organism being studied.

  19. Partition dataset according to amino acid type improves the prediction of deleterious non-synonymous SNPs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jing; Li, Yuan-Yuan [School of Biotechnology, East China University of Science and Technology, Shanghai 200237 (China); Shanghai Center for Bioinformation Technology, Shanghai 200235 (China); Li, Yi-Xue, E-mail: yxli@sibs.ac.cn [School of Biotechnology, East China University of Science and Technology, Shanghai 200237 (China); Shanghai Center for Bioinformation Technology, Shanghai 200235 (China); Ye, Zhi-Qiang, E-mail: yezq@pkusz.edu.cn [Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055 (China); Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer Proper dataset partition can improve the prediction of deleterious nsSNPs. Black-Right-Pointing-Pointer Partition according to original residue type at nsSNP is a good criterion. Black-Right-Pointing-Pointer Similar strategy is supposed promising in other machine learning problems. -- Abstract: Many non-synonymous SNPs (nsSNPs) are associated with diseases, and numerous machine learning methods have been applied to train classifiers for sorting disease-associated nsSNPs from neutral ones. The continuously accumulated nsSNP data allows us to further explore better prediction approaches. In this work, we partitioned the training data into 20 subsets according to either original or substituted amino acid type at the nsSNP site. Using support vector machine (SVM), training classification models on each subset resulted in an overall accuracy of 76.3% or 74.9% depending on the two different partition criteria, while training on the whole dataset obtained an accuracy of only 72.6%. Moreover, the dataset was also randomly divided into 20 subsets, but the corresponding accuracy was only 73.2%. Our results demonstrated that partitioning the whole training dataset into subsets properly, i.e., according to the residue type at the nsSNP site, will improve the performance of the trained classifiers significantly, which should be valuable in developing better tools for predicting the disease-association of nsSNPs.

  20. Improving the physical and moisture barrier properties of Lepidium perfoliatum seed gum biodegradable film with stearic and palmitic acids.

    Science.gov (United States)

    Seyedi, Samira; Koocheki, Arash; Mohebbi, Mohebbat; Zahedi, Younes

    2015-01-01

    Stearic and palmitic fatty acids (10%, 20% and 30%, W/W gum) were used to improve the barrier properties of Lepidium perfoliatum seed gum (LPSG) film. The impact of the incorporation of fatty acids into the film matrix was studied by investigating the physical, mechanical, and barrier properties of the films. Addition of stearic and palmitic fatty acids to LPSG films reduced their water vapor permeability (WVP), moisture content, water solubility and water adsorption. Increasing fatty acid concentration from 10% to 30%, reduced the elongation at break (EB). Lower values of tensile strength (TS) and elastic modulus (EM) were obtained in the presence of higher fatty acids concentrations. Incorporation of fatty acids led to production of opaque films and the opacity increased as function of fatty acids concentration. Results showed that moisture content, water solubility and WVP decreased as the chain length of fatty acid increased. Therefore, LPSG-fatty acids composite film could be used for packaging in which a low affinity toward water is needed.

  1. Outcome of Patients with Cholinergic Insecticide Poisoning Treated with Gastric Lavage: A Prospective Observational Cohort Study

    Directory of Open Access Journals (Sweden)

    Mekkattukunnel Andrews

    2014-12-01

    Conclusion: Number or timing of GL does not show any association with mortality while multiple GL had protective effect against development of late RF and IMS. Hence, GL might be beneficial in cholinergic insecticide poisoning.

  2. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep.

    Science.gov (United States)

    Van Dort, Christa J; Zachs, Daniel P; Kenny, Jonathan D; Zheng, Shu; Goldblum, Rebecca R; Gelwan, Noah A; Ramos, Daniel M; Nolan, Michael A; Wang, Karen; Weng, Feng-Ju; Lin, Yingxi; Wilson, Matthew A; Brown, Emery N

    2015-01-13

    Rapid eye movement (REM) sleep is an important component of the natural sleep/wake cycle, yet the mechanisms that regulate REM sleep remain incompletely understood. Cholinergic neurons in the mesopontine tegmentum have been implicated in REM sleep regulation, but lesions of this area have had varying effects on REM sleep. Therefore, this study aimed to clarify the role of cholinergic neurons in the pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LDT) in REM sleep generation. Selective optogenetic activation of cholinergic neurons in the PPT or LDT during non-REM (NREM) sleep increased the number of REM sleep episodes and did not change REM sleep episode duration. Activation of cholinergic neurons in the PPT or LDT during NREM sleep was sufficient to induce REM sleep.

  3. Improved extraction of saturated fatty acids but not omega-3 fatty acids from sheep red blood cells using a one-step extraction procedure.

    Science.gov (United States)

    Clayton, Edward H; Gulliver, Catherine E; Piltz, John W; Taylor, Robert D; Blake, Robert J; Meyer, Richard G

    2012-07-01

    Several methods are available to extract total lipid and methylate fatty acids from a range of samples including red blood cells (RBC). Fatty acid analysis of human RBC can be undertaken using a two-step extraction and methylation or a combined one-step extraction and methylation procedure. The lipid composition of sheep RBC differs significantly from that of humans and may affect their extraction. The purpose of the current study was to examine the efficiency of extraction of lipid and detection of fatty acids from sheep RBC using a one-step procedure. Fatty acids were analysed using a one-step extraction and methylation procedure using methanol:toluene and acetyl chloride in comparison with a two-step procedure involving extraction of lipid using chloroform:methanol and separate methylation. Concentrations of saturated fatty acids including C16:0 and C18:0 were significantly higher (42.6 and 33.9 % respectively) following extraction using the one-step procedure compared with the two-step procedure. However, concentrations of some polyunsaturated fatty acids, including C20:5n-3 and C22:6n-3 were not significantly different between either procedure. The improved detection of fatty acids may be related to the ability of different solvents to extract different lipid fractions. The differential extraction of lipids and detection of fatty acids from sheep RBC may have important implications in studies examining the effect of dietary treatment on the possible health benefits of fatty acids.

  4. Improving Co-Amorphous Drug Formulations by the Addition of the Highly Water Soluble Amino Acid, Proline

    Directory of Open Access Journals (Sweden)

    Katrine Tarp Jensen

    2014-07-01

    Full Text Available Co-amorphous drug amino acid mixtures were previously shown to be a promising approach to create physically stable amorphous systems with the improved dissolution properties of poorly water-soluble drugs. The aim of this work was to expand the co-amorphous drug amino acid mixture approach by combining the model drug, naproxen (NAP, with an amino acid to physically stabilize the co-amorphous system (tryptophan, TRP, or arginine, ARG and a second highly soluble amino acid (proline, PRO for an additional improvement of the dissolution rate. Co-amorphous drug-amino acid blends were prepared by ball milling and investigated for solid state characteristics, stability and the dissolution rate enhancement of NAP. All co-amorphous mixtures were stable at room temperature and 40 °C for a minimum of 84 days. PRO acted as a stabilizer for the co-amorphous system, including NAP–TRP, through enhancing the molecular interactions in the form of hydrogen bonds between all three components in the mixture. A salt formation between the acidic drug, NAP, and the basic amino acid, ARG, was found in co-amorphous NAP–ARG. In comparison to crystalline NAP, binary NAP–TRP and NAP–ARG, it could be shown that the highly soluble amino acid, PRO, improved the dissolution rate of NAP from the ternary co-amorphous systems in combination with either TRP or ARG. In conclusion, both the solubility of the amino acid and potential interactions between the molecules are critical parameters to consider in the development of co-amorphous formulations.

  5. EEG sleep in depression and in remission and the REM sleep response to the cholinergic agonist RS 86.

    Science.gov (United States)

    Riemann, D; Berger, M

    1989-06-01

    A comparison of the sleep EEG patterns of patients with a major depressive disorder intraindividually between remitted and depressed state revealed an improvement of parameters of sleep continuity and a tendency for normalization of rapid eye movement (REM) latency and REM density in the former. Additional application of the cholinergic agonist RS 86 prior to sleep did not reveal a heightened sensitivity of the REM sleep system in the remitted sample. Whereas a group of presently ill depressives displayed a drastic reduction of REM latency, results of the remitted patients were comparable to healthy controls. Furthermore, RS 86 significantly reduced slow-wave sleep in all groups investigated and had a differential impact on the density of the first REM period and early morning awakening in actively ill patients as compared to remitted patients. The results do not favor the hypothesis of a trait specificity of REM sleep abnormalities for depressive disorders. Furthermore they support the model of a cholinergic supersensitivity, as measured by REM induction after RS 86, as a state but not a trait marker of affective illness. Generalization of the present study may, however, be limited by the fact that the remitted patients were free of symptomatology and psychoactive medication for a long period (mean 3 years), therefore constituting an untypical group of formerly depressed patients with a seemingly low risk of relapse.

  6. Minor amounts of plasma medium-chain fatty acids and no improved time trial performance after consuming lipids

    DEFF Research Database (Denmark)

    Vistisen, Bodil; Nybo, L.; Xu, Xuebing;

    2003-01-01

    % of maximum 02 uptake during which they ingested CHO or CHO plus specific structured triacylglycerols. Immediately after the constant-load cycling, the subjects performed a time trial of similar to50-min duration. Breath and blood samples were obtained regularly during the experiment. Fatty acid composition...... of plasma triacylglycerols, fatty acids, and phospholipids was determined. Performance was similar after administration of CHO plus specific structured triacylglycerol [medium-, long-, and medium-chain fatty acid (MLM)] compared with CHO (50.0 +/- 1.8 and 50.8 +/- 3.6 min, respectively). No plasma 8......:0 was detected in the plasma lipid classes, but the amount of phospholipid fatty acids was significantly higher after CHO+MLM compared with CHO intake. The lacking time trial improvement after intake of medium-chain fatty acids might be due to no available 8:0 in the systemic circulation. A higher level...

  7. Exposure to omega-3 fatty acids at early age accelerate bone growth and improve bone quality.

    Science.gov (United States)

    Koren, Netta; Simsa-Maziel, Stav; Shahar, Ron; Schwartz, Betty; Monsonego-Ornan, Efrat

    2014-06-01

    Omega-3 fatty acids (FAs) are essential nutritional components that must be obtained from foods. Increasing evidence validate that omega-3 FAs are beneficial for bone health, and several mechanisms have been suggested to mediate their effects on bone, including alterations in calcium absorption and urinary calcium loss, prostaglandin synthesis, lipid oxidation, osteoblast formation and inhibition of osteoclastogenesis. However, to date, there is scant information regarding the effect of omega-3 FAs on the developing skeleton during the rapid growth phase. In this study we aim to evaluate the effect of exposure to high levels of omega-3 FAs on bone development and quality during prenatal and early postnatal period. For this purpose, we used the fat-1 transgenic mice that have the ability to convert omega-6 to omega-3 fatty acids and the ATDC5 chondrogenic cell line as models. We show that exposure to high concentrations of omega-3 FAs at a young age accelerates bone growth through alterations of the growth plate, associated with increased chondrocyte proliferation and differentiation. We further propose that those effects are mediated by the receptors G-protein coupled receptor 120 (GPR120) and hepatic nuclear factor 4α, which are expressed by chondrocytes in culture. Additionally, using a combined study on the structural and mechanical bone parameters, we show that high omega-3 levels contribute to superior trabecular and cortical structure, as well as to stiffer bones and improved bone quality. Most interestingly, the fat-1 model allowed us to demonstrate the role of maternal high omega-3 concentration on bone growth during the gestation and postnatal period.

  8. Cholinergic axon length reduced by 300 meters in the brain of an Alzheimer mouse model

    DEFF Research Database (Denmark)

    Nikolajsen, Gitte; Jensen, Morten Skovgaard; West, Mark J.

    2011-01-01

    Modern stereological techniques have been used to show that the total length of the cholinergic fibers in the cerebral cortex of the APPswe/PS1deltaE9 mouse is reduced by almost 300 meters at 18 months of age and has a nonlinear relationship to the amount of transgenetically-induced amyloidosis. ....... These data provide rigorous quantitative morphological evidence that Alzheimer's-like amyloidosis affects the axons of the cholinergic enervation of the cerebral cortex....

  9. Designer laying hen diets to improve egg fatty acid profile and maintain sensory quality.

    Science.gov (United States)

    Goldberg, Erin M; Ryland, Donna; Gibson, Robert A; Aliani, Michel; House, James D

    2013-07-01

    The fatty acid composition of eggs is highly reflective of the diet of the laying hen; therefore, nutritionally important fatty acids can be increased in eggs in order to benefit human health. To explore the factors affecting the hen's metabolism and deposition of fatty acids of interest, the current research was divided into two studies. In Study 1, the fatty acid profile of eggs from Bovan White hens fed either 8%, 14%, 20%, or 28% of the omega-6 fatty acid, linoleic acid (LA) (expressed as a percentage of total fatty acids), and an additional treatment of 14% LA containing double the amount of saturated fat (SFA) was determined. Omega-6 fatty acids and docosapentaenoic acid (DPA) in the yolk were significantly (P hens fed either (1) 15% or 30% of the omega-3 fatty acid, alpha-linolenic acid (ALA) (of total fatty acids), and (2) low (0.5), medium (1), or high (2) ratios of SFA: LA+OA. Increasing this ratio resulted in marked increases in lauric acid, ALA, EPA, DPA, and docosahexaenoic acid (DHA), with decreases in LA and arachidonic acid. Increasing the dietary ALA content from 15% to 30% (of total fatty acids) did not overcome the DHA plateau observed in the yolk. No significant differences (P ≥ 0.05) in aroma or flavor between cooked eggs from the different dietary treatments were observed among trained panelists (n = 8). The results showed that increasing the ratio of SFA: LA+OA in layer diets has a more favorable effect on the yolk fatty acid profile compared to altering the LA content at the expense of OA, all while maintaining sensory quality.

  10. Glycolic acid chemical peeling improves inflammatory acne eruptions through its inhibitory and bactericidal effects on Propionibacterium acnes.

    Science.gov (United States)

    Takenaka, Yuko; Hayashi, Nobukazu; Takeda, Mikiko; Ashikaga, Sayaka; Kawashima, Makoto

    2012-04-01

    Glycolic acid chemical peeling is effective for treating comedones, and some clinical data show that it also improves inflammatory eruptions. The purpose of this study was to identify the mechanism of glycolic acid chemical peeling to improve inflammatory acne. To assess growth inhibitory and bactericidal effects of glycolic acid on Propionibacterium acnes in vitro, we used an agar diffusion method and a time-kill method. To reveal bactericidal effects in vivo, we established an agar-attached method which correlated well with the ordinary swab-wash method, and we used the agar-attached method to compare the numbers of propionibacteria on the cheek treated with glycolic acid chemical peeling. Our results show that 30% glycolic acid (at pH 1.5, 3.5 and 5.5) formed growth inhibitory circles in the agar diffusion method, but the diameters of those circles were smaller than with 1% nadifloxacin lotion or 1% clindamycin gel. In the time-kill method, 30% glycolic acid (at pH 1.5 and 3.5) or 1% nadifloxacin lotion reduced the number of P. acnes to less than 100 CFU/mL within 5 min. In contrast, in 30% glycolic acid (at pH 5.5) or in 1% clindamycin gel, P. acnes survived for more than 4 h. Chemical peeling with 35% glycolic acid (at pH 1.2) decreased the number of propionibacteria on the cheeks of patients compared with untreated controls (P glycolic acid has moderate growth inhibitory and bactericidal effects on P. acnes, and that chemical peeling with glycolic acid works on inflammatory acne via those effects.

  11. POSSIBLE RELATIONSHIP OF FOLIC ACID SUPPLEMENTATION AND IMPROVED FLOW-MEDIATED DILATION IN PREMENOPAUSAL, EUMENORRHEIC ATHLETIC WOMEN

    Directory of Open Access Journals (Sweden)

    Anne Z. Hoch

    2009-03-01

    Full Text Available The purpose of this study was to determine if six weeks of folic acid supplementation would improve brachial artery endothelial-dependent flow-mediated dilation in eumenorrheic female runners with previously normal serum folate levels. This was a prospective, double-blinded, randomized pilot study with convenience sampling. Sixteen eumenorrheic subjects who were not taking birth control pills and who ran at least 20 miles/week were randomly assigned to 10 mg/day of folic acid supplementation or placebo for at least 6 weeks. Serum folate levels and brachial artery measurements were made during the early follicular phase of the menstrual cycle, in a sedentary state, following an 8 hour fast; a standard ultrasound technique was used. The brachial artery vasodilator response to reactive hyperemia was similar between the folic acid (6.6% ± 0.8%, mean ± SE and placebo groups (6.5% ± 0.7% at baseline. After six weeks, there was a significantly higher change in flow-mediated dilation for the folic acid group (3.5% ± 0.6% compared to the placebo group (0.1% ± 0.2% (p = 0.01. Serum folate levels also increased significantly in the folic acid group following six weeks of folic acid supplementation. This study demonstrates that brachial artery flow-mediated dilation improves significantly in eumenorrheic female runners with previously normal serum folate levels after 6 weeks of supplementation with folic acid

  12. Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae.

    Science.gov (United States)

    Cheng, Cheng; Zhao, Xinqing; Zhang, Mingming; Bai, Fengwu

    2016-03-01

    RTT109 is a histone acetyltransferase for the acetylation of histone H3. It is still not clear whether RTT109 plays a role in regulation of gene expression under environmental stresses. In this study, the involvement of RTT109 in acetic acid stress tolerance of Saccharomyces cerevisiae was investigated. It was revealed that the absence of RTT109 enhanced resistance to 5.5 g L(-1) acetic acid, which was indicated by improved growth of RTT109Δ mutant compared with that of the wild-type BY4741 strain. Meanwhile, the lag phase was shortened for 48 h and glucose consumption completed 36 h in advance for RTT109Δ mutant compared to the wild-type strain, with ethanol production rate increased from 0.39 to 0.60 g L(-1) h(-1). Significantly, elevated transcription levels of HSP12, CTT1 and GSH1, as well as increased activities of antioxidant enzymes were observed in RTT109Δ under acetic acid stress. Improved flocculation of RTT109Δ compared to that of the control strain BY4741 under the acetic acid stress was also observed. These results suggest that the absence of RTT109 not only activates transcription of stress responsive genes, but also improves resistance to oxidative stress, which ultimately contributes to improved acetic acid tolerance in S. cerevisiae.

  13. Acupuncture Stimulation Alleviates Corticosterone-Induced Impairments of Spatial Memory and Cholinergic Neurons in Rats

    Directory of Open Access Journals (Sweden)

    Bombi Lee

    2012-01-01

    Full Text Available The purpose of this study was to examine whether acupuncture improves spatial cognitive impairment induced by repeated corticosterone (CORT administration in rats. The effect of acupuncture on the acetylcholinergic system was also investigated in the hippocampus. Male rats were subcutaneously injected with CORT (5 mg/kg once daily for 21 days. Acupuncture stimulation was performed at the HT7 (Sinmun acupoint for 5 min before CORT injection. HT7 acupoint is located at the end of transverse crease of ulnar wrist of forepaw. In CORT-treated rats, reduced spatial cognitive function was associated with significant increases in plasma CORT level (+36% and hippocampal CORT level (+204% compared with saline-treated rats. Acupuncture stimulation improved the escape latency for finding the platform in the Morris water maze. Consistently, the acupuncture significantly alleviated memory-associated decreases in cholinergic immunoreactivity and mRNA expression of BDNF and CREB in the hippocampus. These findings demonstrate that stimulation of HT7 acupoint produced significant neuroprotective activity against the neuronal impairment and memory dysfunction.

  14. Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation.

    Directory of Open Access Journals (Sweden)

    Adam S Hamlin

    Full Text Available Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer's disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer's disease patients perform poorly on both real space and computerized cued (allothetic or uncued (idiothetic recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze, and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer's disease.

  15. Cholinergic Depletion in Alzheimer’s Disease Shown by [18F]FEOBV Autoradiography

    Directory of Open Access Journals (Sweden)

    Maxime J. Parent

    2013-01-01

    Full Text Available Rationale. Alzheimer’s Disease (AD is a neurodegenerative condition characterized in part by deficits in cholinergic basalocortical and septohippocampal pathways. [18F]Fluoroethoxybenzovesamicol ([18F]FEOBV, a Positron Emission Tomography ligand for the vesicular acetylcholine transporter (VAChT, is a potential molecular agent to investigate brain diseases associated with presynaptic cholinergic losses. Purpose. To demonstrate this potential, we carried out an [18F]FEOBV autoradiography study to compare postmortem brain tissues from AD patients to those of age-matched controls. Methods. [18F]FEOBV autoradiography binding, defined as the ratio between regional grey and white matter, was estimated in the hippocampus (13 controls, 8 AD and prefrontal cortex (13 controls, 11 AD. Results. [18F]FEOBV binding was decreased by 33% in prefrontal cortex, 25% in CA3, and 20% in CA1. No changes were detected in the dentate gyrus of the hippocampus, possibly because of sprouting or upregulation toward the resilient glutamatergic neurons of the dentate gyrus. Conclusion. This is the first demonstration of [18F]FEOBV focal binding changes in cholinergic projections to the cortex and hippocampus in AD. Such cholinergic synaptic (and more specifically VAChT alterations, in line with the selective basalocortical and septohippocampal cholinergic losses documented in AD, indicate that [18F]FEOBV is indeed a promising ligand to explore cholinergic abnormalities in vivo.

  16. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits.

    Science.gov (United States)

    Ramanathan, Dhakshin S; Conner, James M; Anilkumar, Arjun A; Tuszynski, Mark H

    2015-03-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia.

  17. Evaluating the evidence surrounding pontine cholinergic involvement in REM sleep generation

    Directory of Open Access Journals (Sweden)

    Kevin P Grace

    2015-09-01

    Full Text Available Rapid eye movement (REM sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of rapid eye movement (REM sleep generation posited that induction of the state required activation of the ‘pontine REM sleep generator’ by cholinergic inputs. Here we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii loss-of-function studies show that endogenous cholinergic input to the PFT is not required for REM sleep generation, and (iv Cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail.

  18. Basal forebrain neurons suppress amygdala kindling via cortical but not hippocampal cholinergic projections in rats.

    Science.gov (United States)

    Ferencz, I; Leanza, G; Nanobashvili, A; Kokaia, M; Lindvall, O

    2000-06-01

    Intraventricular administration of the immunotoxin 192 IgG-saporin in rats has been shown to cause a selective loss of cholinergic afferents to the hippocampus and cortical areas, and to facilitate seizure development in hippocampal kindling. Here we demonstrate that this lesion also accelerates seizure progression when kindling is induced by electrical stimulations in the amygdala. However, whereas intraventricular 192 IgG-saporin facilitated the development of the initial stages of hippocampal kindling, the same lesion promoted the late stages of amygdala kindling. To explore the role of various parts of the basal forebrain cholinergic system in amygdala kindling, selective lesions of the cholinergic projections to either hippocampus or cortex were produced by intraparenchymal injections of 192 IgG-saporin into medial septum/vertical limb of the diagonal band or nucleus basalis, respectively. Cholinergic denervation of the cortical regions caused acceleration of amygdala kindling closely resembling that observed after the more widespread lesion induced by intraventricular 192 IgG-saporin. In contrast, removal of the cholinergic input to the hippocampus had no effect on the development of amygdala kindling. These data indicate that basal forebrain cholinergic neurons suppress kindling elicited from amygdala, and that this dampening effect is mediated via cortical but not hippocampal projections.

  19. Origin and immunolesioning of cholinergic basal forebrain innervation of cat primary auditory cortex.

    Science.gov (United States)

    Kamke, Marc R; Brown, Mel; Irvine, Dexter R F

    2005-08-01

    Numerous studies have implicated the cholinergic basal forebrain (cBF) in the modulation of auditory cortical responses. This study aimed to accurately define the sources of cBF input to primary auditory cortex (AI) and to assess the efficacy of a cholinergic immunotoxin in cat. Three anaesthetized cats received multiple injections of horseradish-peroxidase conjugated wheatgerm-agglutin into physiologically identified AI. Following one to two days survival, tetramethylbenzidine histochemistry revealed the greatest number of retrogradely labeled cells in ipsilateral putamen, globus pallidus and internal capsule, and smaller numbers in more medial nuclei of the basal forebrain (BF). Concurrent choline acetyltransferase immunohistochemistry showed that almost 80% of the retrogradely labeled cells in BF were cholinergic, with the vast majority of these cells arising from the more lateral BF nuclei identified above. In the second part of the study, unilateral intraparenchymal injections of the cholinergic immunotoxin ME20.4-SAP were made into the putamen/globus pallidus nuclei of six cats. Immuno- and histochemistry revealed a massive reduction in the number of cholinergic cells in and around the targeted area, and a corresponding reduction in the density of cholinergic fibers in auditory cortex. These results are discussed in terms of their implications for investigations of the role of the cBF in cortical plasticity.

  20. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation.

    Science.gov (United States)

    Grace, Kevin P; Horner, Richard L

    2015-01-01

    Rapid eye movement (REM) sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the "pontine REM sleep generator" by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail.

  1. Improvement of Physicochemical Characteristics of Monoepoxide Linoleic Acid Ring Opening for Biolubricant Base Oil

    OpenAIRE

    Jumat Salimon; Nadia Salih; Bashar Mudhaffar Abdullah

    2011-01-01

    For environmental reasons, a new class of environmentally acceptable and renewable biolubricant based on vegetable oils is available. In this study, oxirane ring opening reaction of monoepoxide linoleic acid (MEOA) was done by nucleophilic addition of oleic acid (OA) with using p-toluene sulfonic acid (PTSA) as a catalyst for synthesis of 9(12)-hydroxy-10(13)-oleoxy-12(9)-octadecanoic acid (HYOOA) and the physicochemical properties of the resulted HYOOA are reported to be used as biolubricant...

  2. Hippocampal cholinergic interneurons visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation

    OpenAIRE

    Feng eYi; Elizabeth eCatudio-Garrett; Robert eGabriel; Marta eWilhelm; Ferenc eErdelyi; Gabor eSzabo; Karl eDeisseroth; Josh eLawrence

    2015-01-01

    Release of acetylcholine (ACh) in the hippocampus (HC) occurs during exploration, arousal, and learning. Although the medial septum-diagonal band of Broca (MS-DBB) is the major extrinsic source of cholinergic input to the HC, cholinergic neurons intrinsic to the HC also exist but remain poorly understood. Here, ChAT-tauGFP and ChAT-CRE/Rosa26YFP (ChAT-Rosa) mice were examined in HC. The HC of ChAT-tauGFP mice was densely innervated with GFP-positive axons, often accompanied by large GFP-posit...

  3. Hippocampal “cholinergic interneurons” visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation

    OpenAIRE

    Yi, Feng; Catudio-Garrett, Elizabeth; Gábriel, Robert; Wilhelm, Marta; Erdelyi, Ferenc; Szabo, Gabor; Deisseroth, Karl; Lawrence, Josh

    2015-01-01

    Release of acetylcholine (ACh) in the hippocampus (HC) occurs during exploration, arousal, and learning. Although the medial septum-diagonal band of Broca (MS-DBB) is the major extrinsic source of cholinergic input to the HC, cholinergic neurons intrinsic to the HC also exist but remain poorly understood. Here, ChAT-tauGFP and ChAT-CRE/Rosa26YFP (ChAT-Rosa) mice were examined in HC. The HC of ChAT-tauGFP mice was densely innervated with GFP-positive axons, often accompanied by large GFP-posit...

  4. Maximized PUFA measurements improve insight in changes in fatty acid composition in response to temperature

    NARCIS (Netherlands)

    Dooremalen, van C.; Pel, R.; Ellers, J.

    2009-01-01

    A general mechanism underlying the response of ectotherms to environmental changes often involves changes in fatty acid composition. Theory predicts that a decrease in temperature causes an increase in unsaturation of fatty acids, with an important role for long-chain poly-unsaturated fatty acids (P

  5. Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger.

    NARCIS (Netherlands)

    Li, A.; Pfelzer, N.; Zuijderwijk, R.; Brickwedde, A.; Zeijl, C. van; Punt, P.

    2013-01-01

    Aspergillus niger has an extraordinary potential to produce organic acids as proven by its application in industrial citric acid production. Previously, it was shown that expression of the cis-aconitate decarboxylase gene (cadA) from Aspergillus terreus converted A. niger into an itaconic acid produ

  6. Summary of an International and a Regional Symposium: Acid-Related Diseases - Improving Treatment Options

    Directory of Open Access Journals (Sweden)

    ABR Thomson

    1992-01-01

    Full Text Available The author examines the clinical impact of findings from a key international workshop on acid peptic disorders, “Appropriate acid suppression for the healing of acid-related diseases,” and from an important meeting which summarized results of a cross-Canada study of the symptomatic treatment of dyspepsia due to esophagitis and duodenal ulcer disease.

  7. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids.

    Science.gov (United States)

    Zhang, Lizhi; Garneau, Matthew G; Majumdar, Rajtilak; Grant, Jan; Tegeder, Mechthild

    2015-01-01

    The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic-active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane-localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element-companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels.

  8. Use of tannins to improve fatty acids profile of meat and milk quality in ruminants: A review

    Directory of Open Access Journals (Sweden)

    Rodrigo Morales

    2015-06-01

    Full Text Available This paper reviews how tannins, through their effects on rumen lipid metabolism, can affect the composition of ruminants' meat and milk fat. Tannins are a heterogeneous group of plant secondary compounds known for both beneficial and detrimental effects on animals' digestive physiology. Tannins supplementation of ruminants' diets alters both in vivo and in vitro unsaturated fatty acids biohydrogenation and hence the profile of fatty acids outflowing the rumen, which can influence milk and meat content of beneficial fatty acids such as linolenic acid (c9,c12,c15-18:3, vaccenic acid (ti 1-18:1 and rumenic acid (c9,t11-18:2, among others. Published information indicates that tannins could inhibit biohydrogenation though affecting ruminal microorganisms. Some studies found increments in linolenic, rumenic and/or vaccenic acids in meat and milk fat using different sources of tannins; however, the effects of tannins supplementation on milk and meat fatty acid profile are not consistent, and there are contradictory results published in the literature. Effects of tannin supplementation on fatty acids biohydrogenation are affected by the chemical type of tannins, the complexity of their interactions with dietary components, and the potential microbial adaptation to tannins. In addition, the duration of the tannins-feeding period may also affect milk and meat fatty acid profile. Characterizing the effects of each specific tannic compound on different biohydrogenation steps and on the microbial species conducting them, as well as the interaction between specific tannin compounds and other dietary components can help to take greater advantage of tannins potential to contribute to improve human health through promoting beneficial fatty acids in ruminants products.

  9. Improved cellular response of ion modified poly(lactic acid-co-glycolic acid) substrates for mouse fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Adhikari, Ananta Raj, E-mail: aa8381@gmail.com [Department of Sciences, Wentworth Institute of Technology, Boston MA 02115 (United States); Geranpayeh, Tanya [Department of Biology and Biochemistry, University of Houston, Houston, TX 77204 (United States); Chu, Wei Kan [Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Department of Physics, University of Houston, Houston, TX 77204 (United States); Otteson, Deborah C. [Department of Biology and Biochemistry, University of Houston, Houston, TX 77204 (United States); Department of Basic and Vision Sciences, College of Optometry, University of Houston, Houston, TX 77204 (United States)

    2016-03-01

    In this report, the effects of argon (Ar) ion irradiation on poly(lactic acid-co-glycolic acid) (PLGA) substrates on biocompatibility were studied. PLGA scaffold substrates were prepared by spin coating glass surfaces with PLGA dissolved in anhydrous chloroform. Previously, we showed that surface modifications of PLGA films using ion irradiation modulate the inherent hydrophobicity of PLGA surface. Here we show that with increasing ion dose (1 × 10{sup 12} to 1 × 10{sup 14} ions/cm{sup 2}), hydrophobicity and surface roughness decreased. Biocompatibility for NIH3T3 mouse fibroblast cells was increased by argon irradiation of PLGA substrates. On unirradiated PLGA films, fibroblasts had a longer doubling time and cell densities were 52% lower than controls after 48 h in vitro. Argon irradiated PLGA substrates supported growth rates similar to control. Despite differences in cell cycle kinetics, there was no detectible cytotoxicity observed on any substrate. This demonstrates that argon ion irradiation can be used to tune the surface microstructure and generate substrates that are more compatible for the cell growth and proliferation. - Highlights: • Argon irradiation modifies surface chemistry and increases hydrophilicity of poly(lactic-glycolic) acid (PLGA) films. • Both native and irradiated PLGA films were not cytotoxic for mouse fibroblasts. • Fibroblast proliferation increased on PLGA substrates modified with higher doses of Argon irradiation. • Surface modification with Argon irradiation increases biocompatibility of PLGA films.

  10. Salvianolic Acids Attenuate Rat Hippocampal Injury after Acute CO Poisoning by Improving Blood Flow Properties

    Directory of Open Access Journals (Sweden)

    Li Guan

    2015-01-01

    Full Text Available Carbon monoxide (CO poisoning causes the major injury and death due to poisoning worldwide. The most severe damage via CO poisoning is brain injury and mortality. Delayed encephalopathy after acute CO poisoning (DEACMP occurs in forty percent of the survivors of acute CO exposure. But the pathological cause for DEACMP is not well understood. And the corresponding therapy is not well developed. In order to investigate the effects of salvianolic acid (SA on brain injury caused by CO exposure from the view point of hemorheology, we employed a rat model and studied the dynamic of blood changes in the hemorheological and coagulative properties over acute CO exposure. Compared with the groups of CO and 20% mannitol + CO treatments, the severe hippocampal injury caused by acute CO exposure was prevented by SA treatment. These protective effects were associated with the retaining level of hematocrit (Hct, plasma viscosity, fibrinogen, whole blood viscosities and malondialdehyde (MDA levels in red blood cells (RBCs. These results indicated that SA treatment could significantly improve the deformation of erythrocytes and prevent the damage caused by CO poisoning. Meanwhile, hemorheological indexes are good indicators for monitoring the pathological dynamic after acute CO poisoning.

  11. Improved Resin–Zirconia Bonding by Room Temperature Hydrofluoric Acid Etching

    Directory of Open Access Journals (Sweden)

    Mun-Hwan Lee

    2015-03-01

    Full Text Available This in vitro study was conducted to evaluate the shear bond strength of “non-self-adhesive” resin to dental zirconia etched with hydrofluoric acid (HF at room temperature and to compare it to that of air-abraded zirconia. Sintered zirconia plates were air-abraded (control or etched with 10%, 20%, or 30% HF for either 5 or 30 min. After cleaning, the surfaces were characterized using various analytical techniques. Three resin cylinders (Duo-Link were bonded to each treated plate. All bonded specimens were stored in water at 37 °C for 24 h, and then half of them were additionally thermocycled 5000 times prior to the shear bond-strength tests (n = 12. The formation of micro- and nano-porosities on the etched surfaces increased with increasing concentration and application time of the HF solution. The surface wettability of zirconia also increased with increasing surface roughness. Higher concentrations and longer application times of the HF solution produced higher bond-strength values. Infiltration of the resin into the micro- and nano-porosities was observed by scanning electron microscopy. This in vitro study suggests that HF slowly etches zirconia ceramic surfaces at room temperature, thereby improving the resin–zirconia bond strength by the formation of retentive sites.

  12. An improved HPLC-DAD method for clavulanic acid quantification in fermentation broths of Streptomyces clavuligerus.

    Science.gov (United States)

    Ramirez-Malule, Howard; Junne, Stefan; López, Carlos; Zapata, Julian; Sáez, Alex; Neubauer, Peter; Rios-Estepa, Rigoberto

    2016-02-20

    Clavulanic acid (CA) is an important secondary metabolite commercially produced by cultivation of Streptomyces clavuligerus (Sc). It is a potent inhibitor of bacterial β-lactamases. In this work, a specific and improved high performance liquid chromatography (HPLC) method, using a C-18 reversed phase column, diode array detector and gradient elution for CA quantification in fermentation broths of Sc, was developed and successfully validated. Samples were imidazole-derivatized for the purpose of creating a stable chromophore (clavulanate-imidazole). The calibration curve was linear over a typical range of CA concentration between 0.2 and 400mg/L. The detection and quantification limits were 0.01 and 0.02mg/L, respectively. The precision of the method was evaluated for CA spiked into production media and a recovery of 103.8%, on average, was obtained. The clavulanate-imidazole complex was not stable when the samples were not cooled during the analysis. The recovery rate was 39.3% on average. This assay was successfully tested for CA quantification in samples from Sc fermentation, using both, a chemically defined and a complex medium.

  13. Improved focal liver lesion detection by increasing flip angle during gadoxetic acid-enhancement in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se Jy [Dept. of Medical science Graduate school, Chonnam National University, Kwangju (Korea, Republic of); Kim, Young Keun [Dept. of Radiotechnology, Gwang-ju Health university, Gwangju (Korea, Republic of)

    2015-06-15

    To study the differences of focal liver lesion image detection at 3 minute, 10 minute and 15 minute time points on gadoxetic acid (GA)’s enhanced MR imaging with a flip angle (FA) of 30° compared with a 11°. The subjects were 69 patients evaluated with GA enhanced MR imaging with 3.0T MR scanner. The patients are total 35(23 men and 7 women at the mean age of 60.4 years), hepatocellular carcinoma(23) and metastsis(12) except for normal, cyst and hemangioma. After GA was injected, FA 11° and 30° images were obtained at 3 minute, 10 minute and 15 minute time points respectively. After quantitative and qualitative assessment of each image was done, statistical analysis was performed by using the independent sample T-test. From both quantitative and qualitative assessment of 3 minute and 10 minute MR images after the injection of GA, FA 30° images was found to be superior than FA 11°, but there were no statistical significance. However, at 15 minute time point, Statistically significant FA 30° image(p<0.05) was better than FA 11° therefore, the FA 30° improves the focal liver lesion detection. FA 30° of MR image can detect liver lesion more sensitively than the existing FA11° image after GA contrast enhancement at 15 minute time point.

  14. Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene.

    Science.gov (United States)

    An, Jieun; Kwon, Hyeji; Kim, Eunjung; Lee, Young Mi; Ko, Hyeok Jin; Park, Hongjae; Choi, In-Geol; Kim, Sooah; Kim, Kyoung Heon; Kim, Wankee; Choi, Wonja

    2015-03-01

    Screening a library of overexpressing mutant alleles of the TATA-binding gene SPT15 yielded two Saccharomyces cerevisiae strains (MRRC 3252 and 3253) with enhanced tolerance to acetic acid. They were also tolerant to propionic acid and hydrogen peroxide. Transcriptome profile analysis identified 58 upregulated genes and 106 downregulated genes in MRRC 3252. Stress- and protein synthesis-related transcription factors were predominantly enriched in the upregulated and downregulated genes respectively. Eight deletion mutants for some of the highly downregulated genes were acetic acid-tolerant. The level of intracellular reactive oxygen species was considerably lessened in MRRC 3252 and 3253 upon exposure to acetic acid. Metabolome profile analysis revealed that intracellular concentrations of 5 and 102 metabolites were increased and decreased, respectively, in MRRC 3252, featuring a large increase of urea and a significant decrease of amino acids. The dur1/2Δmutant, in which the urea degradation gene DUR1/2 is deleted, displayed enhanced tolerance to acetic acid. Enhanced tolerance to acetic acid was also observed on the medium containing a low concentration of amino acids. Taken together, this study identified two SPT15 alleles, nine gene deletions and low concentration of amino acids in the medium that confer enhanced tolerance to acetic acid.

  15. Pharmacological Mechanisms of Cortical Enhancement Induced by the Repetitive Pairing of Visual/Cholinergic Stimulation.

    Directory of Open Access Journals (Sweden)

    Jun-Il Kang

    Full Text Available Repetitive visual training paired with electrical activation of cholinergic projections to the primary visual cortex (V1 induces long-term enhancement of cortical processing in response to the visual training stimulus. To better determine the receptor subtypes mediating this effect the selective pharmacological blockade of V1 nicotinic (nAChR, M1 and M2 muscarinic (mAChR or GABAergic A (GABAAR receptors was performed during the training session and visual evoked potentials (VEPs were recorded before and after training. The training session consisted of the exposure of awake, adult rats to an orientation-specific 0.12 CPD grating paired with an electrical stimulation of the basal forebrain for a duration of 1 week for 10 minutes per day. Pharmacological agents were infused intracortically during this period. The post-training VEP amplitude was significantly increased compared to the pre-training values for the trained spatial frequency and to adjacent spatial frequencies up to 0.3 CPD, suggesting a long-term increase of V1 sensitivity. This increase was totally blocked by the nAChR antagonist as well as by an M2 mAChR subtype and GABAAR antagonist. Moreover, administration of the M2 mAChR antagonist also significantly decreased the amplitude of the control VEPs, suggesting a suppressive effect on cortical responsiveness. However, the M1 mAChR antagonist blocked the increase of the VEP amplitude only for the high spatial frequency (0.3 CPD, suggesting that M1 role was limited to the spread of the enhancement effect to a higher spatial frequency. More generally, all the drugs used did block the VEP increase at 0.3 CPD. Further, use of each of the aforementioned receptor antagonists blocked training-induced changes in gamma and beta band oscillations. These findings demonstrate that visual training coupled with cholinergic stimulation improved perceptual sensitivity by enhancing cortical responsiveness in V1. This enhancement is mainly mediated by n

  16. Effect of bilobalide B on cholinergic hippocampal neurons exposed to cholesterol and apoliprotein E4

    Institute of Scientific and Technical Information of China (English)

    Xijuan Jiang; Bin Lu; Yingchang Fan

    2008-01-01

    BACKGROUND: Extracts of ginkgo biloba leaves have been reported to improve nerve function and activity in Alzheimer's disease, which is associated with reduced secretion of cholinergic neurotransmitter in hippocampal neurons.OBJECTIVE: To validate the protective effect of bilobalide B against in vitro injury of cholinergic neurons of the hippocampus induced by combined cholesterol and apoE4DESIGN, TIME AND SETTING: This randomized, controlled animal experiment was performed in the Pathology Laboratory, Tianjin University of Traditional Chinese Medicine from July 2003 to July 2006.MATERIALS: Neonatal Wistar rats, 1-day-old, both male and female, and mean body mass of 5g were selected for this study. Cholesterol and apolipoprotein E4 (apoE4) were purchased from Sigma Company (USA), bilobalide B was purchased from Tianjin Zhongyi Pharmaceutical Factory, batch number 20050312.METHODS: Hippocampal neurons were divided into three groups; a normal control group (routinely added media), a model group (exposed to media containing 40mg/L cholesterol and 30mg/L apoE4 for 24 hours) and a bilobalide B group (exposed to media containing 160mg/L bilobalide B for 16 hours, and then with addition of 40mg/L cholesterol and 30mg/L apoE4 for an additional 24 hours).MAIN OUTCOME MEASURES: Levels of acetylcholine (ACh) and activity of acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) in hippocampal neurons were determined by microdosage hydroxylamine colorimetry, hydroxylamine colorimetry and radiological chemistry, respectively.RESULTS: The ACh level was significantly lower in the model group than that in the normal control group (P0.05). Activity of ChAT was significantly lower in the model group than in the normal control group (P<0.01), while the activity was significantly higher in the bilobalide B group than in the model group (P<0.05).CONCLUSION: Bilobalide B can enhance the ACh level of hippocampal neurons damaged by combined cholesterol and apoE4, by promoting

  17. Chemical and physical characteristics of a soybean beverage with improved flavor by addition of ethylenediaminetetraacetic acid

    Directory of Open Access Journals (Sweden)

    Guzmán, Carlos A.

    2000-10-01

    Full Text Available A new method to obtain a soybean (SB with improved flavor characteristics was developed by adding ethylenediaminetetraacetic acid (EDTA. The SB was evaluated for pH, viscosity and density, as well as for protein, oil and ash contents, fatty acid composition and lipoxygenase activity. A water/bean ratio of 4.5:1 was selected because it provided the best protein (4.22 g 100 ml-1 and total solids (8.80 g 100 ml-1 contents. Sensory ratings for flavor and aroma intensities were also determined and compared with those of a commercial soymilk and a soybean beverage without EDTA. Samples from SB had the lowest ratings for green/beany and rancid flavors. The results indicated that the addition of EDTA may reduce off-flavors in soybean products.Se ha desarrollado un nuevo método para obtener un alimento líquido de soja (ALS con mejores cualidades organolépticas mediante adición de ácido etilendiaminotetraacético (EDTA. En el producto obtenido se evaluaron el pH, la viscosidad y la densidad, así como también los contenidos de proteínas, grasas y cenizas, la composición en ácidos grasos y la actividad de lipoxigenasa. Se seleccionó una relación agua/haba de soja equivalente a 4.5:1 puesto que la misma produjo los más altos contenidos de proteínas (4.22 g 100 ml-1 y sólidos totales (8.80 g 100 ml-1. Se realizó una evaluación sensorial, mediante pruebas de aceptabilidad, del aroma y sabor del ALS y se compararon con los de una «leche de soja» comercial y un alimento líquido de soja sin agregado de EDTA. Las muestras de ALS presentaron las evaluaciones más bajas para sabores rancio y «afrijolado». Los resultados obtenidos indicaron que la adición de EDTA puede reducir sabores desagradables en productos de soja.

  18. Wetlands serve as natural sources for improvement of stream ecosystem health in regions affected by acid deposition

    Science.gov (United States)

    Pound, Katrina L; Lawrence, Gregory B.; Passy, Sophia I.

    2013-01-01

    For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through

  19. MyPyramid-omega-3 fatty acid nutrition education intervention may improve food groups and omega-3 fatty acid consumption in university middle-aged women.

    Science.gov (United States)

    Yen, Wan-Ju J; Lewis, Nancy M

    2013-02-01

    This study was conducted to assess the impact of a nutrition education intervention on food groups and omega-3 (n-3) fatty acid consumption in middle-aged women. We hypothesized that participants who received educational materials about n-3 fatty acids would have a higher consumption of foods rich in n-3 fatty acids than the MyPyramid group. The first phase of this study used the qualitative method to identify the beliefs and interests of middle-aged women about the topic of nutrition. Data were collected using semistructured individual interviews. Phase 2 was a quantitative study to assess the effectiveness of MyPyramid to improve dietary intake and self-efficacy after a 6-week online nutrition education intervention using a blog for university middle-aged female staff. The impact of n-3 fatty acid education on food consumption and self-efficacy was also assessed. Eight female staff (aged 45-65 years) in a Midwestern university participated in the interviews. Data were coded, and 3 themes emerged: "health," "lifestyle," and "availability." Eighty-eight middle-aged women participated in the intervention study and were randomized into either an intervention group or a control group. The overall consumption of the food groups was lower than the MyPyramid recommendation, except in the meat and beans group. There was a trend that participants were less certain to include n-3 fatty acids than whole grains in their diets. Using MyPyramid and supplementary information about n-3 fatty acids did not significantly affect participants' dietary consumption or self-efficacy to increase consumption from the food groups or to increase n-3 fatty acid consumption. Blog-based nutrition education is acceptable for this target population.

  20. Improvement of l-lactic acid productivity from sweet sorghum juice by repeated batch fermentation coupled with membrane separation.

    Science.gov (United States)

    Wang, Yong; Meng, Hongyu; Cai, Di; Wang, Bin; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-07-01

    In order to efficiently produce l-lactic acid from non-food feedstocks, sweet sorghum juice (SSJ), which is rich of fermentable sugars, was directly used for l-lactic acid fermentation by Lactobacillus rhamnosus LA-04-1. A membrane integrated repeated batch fermentation (MIRB) was developed for productivity improvement. High-cell-density fermentation was achieved with a final cell density (OD620) of 42.3, and the CCR effect was overcomed. When SSJ (6.77gL(-1) glucose, 4.51gL(-1) fructose and 50.46gL(-1) sucrose) was used as carbon source in MIRB process, l-lactic acid productivity was increased significantly from 1.45gL(-1)h(-1) (batch 1) to 17.55gL(-1)h(-1) (batch 6). This process introduces an effective way to produce l-lactic acid from SSJ.

  1. Improvement of Biodegradable Biocide’s Activity of Peroxyacetic Acid Basis Using Surfactants: Characterization and Stability

    Directory of Open Access Journals (Sweden)

    Esther Asensio

    2015-01-01

    Full Text Available This paper deals with the study of the kinetics decomposition reaction of the peroxyacetic acid under influence of surfactant additives. The peroxyacetic acid shows a decomposition rate of 1.70 × 10−3 h−1 and its activation energy is 66 kJ mol−1. The influence of temperature on the reaction of spontaneous decomposition of peroxyacetic acid was studied at two seasonal periods. Peroxyacetic acid standard and four prototypes of biocide samples with known concentration of peroxyacetic acid and hydrogen peroxide were studied. Finally, a factorial analysis ANOVA was carried out to establish significant differences (p<0.003 between the four biocide samples over time with respect to peroxyacetic acid and hydrogen peroxide concentration. From the study carried out, it can be concluded that the biocide with surfactant substances in its composition offers the best stability and its difference versus the other biocides may guarantee a better behaviour.

  2. Chronically Increased Amino Acids Improve Insulin Secretion, Pancreatic Vascularity, and Islet Size in Growth-Restricted Fetal Sheep.

    Science.gov (United States)

    Brown, Laura D; Davis, Melissa; Wai, Sandra; Wesolowski, Stephanie R; Hay, William W; Limesand, Sean W; Rozance, Paul J

    2016-10-01

    Placental insufficiency is associated with reduced supply of amino acids to the fetus and leads to intrauterine growth restriction (IUGR). IUGR fetuses are characterized by lower glucose-stimulated insulin secretion, smaller pancreatic islets with less β-cells, and impaired pancreatic vascularity. To test whether supplemental amino acids infused into the IUGR fetus could improve these complications of IUGR we used acute (hours) and chronic (11 d) direct fetal amino acid infusions into a sheep model of placental insufficiency and IUGR near the end of gestation. IUGR fetuses had attenuated acute amino acid-stimulated insulin secretion compared with control fetuses. These results were confirmed in isolated IUGR pancreatic islets. After the chronic fetal amino acid infusion, fetal glucose-stimulated insulin secretion and islet size were restored to control values. These changes were associated with normalization of fetal pancreatic vascularity and higher fetal pancreatic vascular endothelial growth factor A protein concentrations. These results demonstrate that decreased fetal amino acid supply contributes to the pathogenesis of pancreatic islet defects in IUGR. Moreover, the results show that pancreatic islets in IUGR fetuses retain their ability to respond to increased amino acids near the end of gestation after chronic fetal growth restriction.

  3. Folic acid and prevention of neural tube defects in 2000 improved awareness--low peri-conceptional uptake.

    Science.gov (United States)

    Oleary, M; Donnell, R M; Johnson, H

    2001-06-01

    Eight years have passed since recommendations were made by the Irish Department of Health on the importance of folic acid in the prevention of neural tube defects (NTD). There is currently no mandatory fortification of foodstuffs with folic acid in Ireland, with reliance placed on campaigns promoting increased dietary folate intake and supplements. We assessed knowledge and use of folic acid among 300 women attending ante-natal clinics in Dublin maternity hospitals in the year 2000 using an interviewer administered questionnaire. Qualitative information was obtained through means of a focus group. Ninety two percent of respondents had heard of folic acid and 67% knew it could prevent NTD. Thirty per cent were advised to take it peri-conceptionally but overall only 18% did so; 39% of women had planned their pregnancy. The focus group indicated that folic acid was not 'visible' enough and that fortification of food was more realistic. This study shows that improved folic acid awareness has not been accompanied by corresponding peri-conceptional uptake in 2000. Folic acid promotional campaigns should be continuous and targeted. Mandatory food fortification should be strongly considered.

  4. Improving Pharmacy Students' Understanding and Long-term Retention of Acid-Base Chemistry

    OpenAIRE

    Roche, Victoria F.

    2007-01-01

    Despite repeated exposure to the principles underlying the behavior of organic acids and bases in aqueous solution, some pharmacy students remain confused about the topic of acid-base chemistry. Since a majority of organic drug molecules have acid-base character, the ability to predict their reactivity and the extent to which they will ionize in a given medium is paramount to students' understanding of essentially all aspects of drug action in vivo and in vitro. This manuscript presents a med...

  5. INHIBITION OF BILE ACID ACCUMULATION DECREASED THE EXCESSIVE HEPATOCYTE APOPTOSIS AND IMPROVED THE LIVER SECRETION FUNCTIONS ON OBSTRUCTIVE JAUNDICE PATIENTS

    Directory of Open Access Journals (Sweden)

    Akmal Taher

    2011-06-01

    Full Text Available Excessive hepatocyte apoptosis induced by bile acid accumulation occurred in severe obstructive jaundice, and impair the liver secretion function. The objective of this study is to determine whether the inhibition of bile acid accumulation through bile duct decompression affect the excessive hepatocyte apoptosis and caused improvement the liver secretion functions on human model. In this study we use a before and after study on severe obstructive jaundice patients due to extra hepatic bile duct tumor was decompressed. Bile duct decompression was performed as a model of the role of inhibition of bile acid accumulation inhibition bile acid accumulation and excessive hepatocyte apoptosis. Bile acid and marker of liver secretion functions were serially measured. Liver biopsy pre and post decompression was performed for Hepatocyte apoptosis pathologic examination by TUNEL fluorescing, which measured by 2 people in double blinded system. Total bile acid, and liver secretion functions were measured by automated chemistry analyzer. The result of this study shows that twenty one severe obstructive jaundice patients were included. After decompression the hepatocyte apoptosis index decreased from an average of 53.1 (SD 105 to 11.7 (SD 13.6 (p < 0.05. Average of bile acid serum decreased from 96.4 (SD 53.8 to 19.9 (SD 39.5 until 13.0 (SD 12.6 μmol/L (p < 0.05 Total ilirubin decreased from 20.0 (SD 8.9 to 13.3 (SD 5.0 until 6.2 (SD 4.0 mg/dL (p < 0.05, while the phosphates alkaline (ALP and γ-glutamil transpeptidase (γ-GT activities also decreased ignificantly. In conclusion, bile acids accumulation and excessive hepatocyte poptosis through bile duct decompression improve the liver secretion functions by inhibition mechanism.

  6. Reduction of phytic acid in soybean products improves zinc bioavailability in rats.

    Science.gov (United States)

    Zhou, J R; Fordyce, E J; Raboy, V; Dickinson, D B; Wong, M S; Burns, R A; Erdman, J W

    1992-12-01

    The inhibitory effect of phytic acid in soybean products on zinc bioavailability was evaluated in two experiments in rats. In Experiment 1, soybean flours containing different natural phytic acid levels produced by sand culture techniques that limited phosphorus during growth of the soybean plants were formulated into diets. The rats fed a higher phytic acid level diet had lower food intake, depressed weight gain, and lower tibia zinc gain (P phytic acid level was found. In Experiment 2, two commercially produced soybean isolates containing either normal phytic acid level or a reduced level were formulated into diets. Slope ratio analysis revealed that relative zinc bioavailability from phytic acid-containing soybean isolate-based diets was significantly reduced (P phytic acid soybean isolate-containing diets resulted in a significant increase of zinc bioavailability compared with normal phytic acid diets (P phytic acid is the primary inhibitory factor in soybean products that results in reduced zinc bioavailability and that phytate reduction in soybean protein increases zinc bioavailability.

  7. Improving surface functional properties of tofu whey-derived peptides by chemical modification with fatty acids.

    Science.gov (United States)

    Matemu, Athanasia Oswald; Katayama, Shigeru; Kayahara, Hisataka; Murasawa, Hisashi; Nakamura, Soichiro

    2012-04-01

    Effect of acylation with saturated fatty acids on surface functional properties of tofu whey-derived peptides was investigated. Tofu whey (TW) and soy proteins (7S, 11S, and acid-precipitated soy protein [APP]) were hydrolyzed by Protease M 'Amano' G, and resulting peptide mixtures were acylated with esterified fatty acids of different chain length (6C to 18C) to form a covalent linkage between the carboxyl group of fatty acid and the free amino groups of peptide. Acylation significantly (P whey ultra filtered fraction (UFTW proteins.

  8. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence

    Directory of Open Access Journals (Sweden)

    Lingjun Zuo

    2016-11-01

    Full Text Available It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs play important roles in nicotine dependence (ND and influence the number of cigarettes smoked per day (CPD in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4. These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4, CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  9. Photocolorimetric Biosensor for Detection of Cholinergic Organophosphorus Compounds

    Directory of Open Access Journals (Sweden)

    Kamila Vymazalová

    2012-11-01

    Full Text Available To detect nerve agents in practice, the analytical methods such as gas, liquid and thin-layer chromatography, mass spectrometry or capillary electrophoresis are usually used. Apart from these analytical methods, we developed an analytical device (tape photocolorimetric biosensor based on the modified Ellman's cholinesterase biochemical reaction for multidetection of cholinergic organophosphorus compounds. Enzyme butyrylcholinesterase was used as a biorecognizing component and its activity was evaluated by red, blue, green (RGB sensor. This method eliminates errors in the evaluation and provides automatic data collection with their subsequent evaluation. The unique method of dosing allows appropriate dispensing of reagents in microlitres volumes and the whole system is simple to operate. Suitability of the constructed biosensors was evaluated using the six organophosphates (Tabun, sarin, Soman, cyclosin, VX and R33 compound. Biosensor showed the ability to measure substances at concentrations ranging between ~ 1×10-8 mg/l - 1×10-6 mg/l in the air, according to their inhibition effect.Defence Science Journal, 2012, 62(6, pp.399-403, DOI:http://dx.doi.org/10.14429/dsj.62.2589

  10. Cholinergic modulation of cognitive processing: insights drawn from computational models

    Directory of Open Access Journals (Sweden)

    Ehren L Newman

    2012-06-01

    Full Text Available Acetylcholine plays an important role in cognitive function, as shown by pharmacological manipulations that impact working memory, attention, episodic memory and spatial memory function. Acetylcholine also shows striking modulatory influences on the cellular physiology of hippocampal and cortical neurons. Modeling of neural circuits provides a framework for understanding how the cognitive functions may arise from the influence of acetylcholine on neural and network dynamics. We review the influences of cholinergic manipulations on behavioral performance in working memory, attention, episodic memory and spatial memory tasks, the physiological effects of acetylcholine on neural and circuit dynamics, and the computational models that provide insight into the functional relationships between the physiology and behavior. Specifically, we discuss the important role of acetylcholine in governing mechanisms of active maintenance in working memory tasks and in regulating network dynamics important for effective processing of stimuli in attention and episodic memory tasks. We also propose that theta rhythm play a crucial role as an intermediary between the physiological influences of acetylcholine and behavior in episodic and spatial memory tasks. We conclude with a synthesis of the existing modeling work and highlight future directions that are likely to be rewarding given the existing state of the literature for both empiricists and modelers.

  11. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence

    Science.gov (United States)

    Zuo, Lingjun; Garcia-Milian, Rolando; Guo, Xiaoyun; Zhong, Chunlong; Tan, Yunlong; Wang, Zhiren; Wang, Jijun; Wang, Xiaoping; Kang, Longli; Lu, Lu; Chen, Xiangning; Li, Chiang-Shan R.; Luo, Xingguang

    2016-01-01

    It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4, CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD. PMID:27827986

  12. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence.

    Science.gov (United States)

    Zuo, Lingjun; Garcia-Milian, Rolando; Guo, Xiaoyun; Zhong, Chunlong; Tan, Yunlong; Wang, Zhiren; Wang, Jijun; Wang, Xiaoping; Kang, Longli; Lu, Lu; Chen, Xiangning; Li, Chiang-Shan R; Luo, Xingguang

    2016-11-07

    It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4,CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  13. Therapeutic potential and limitations of cholinergic anti-inflammatory pathway in sepsis.

    Science.gov (United States)

    Kanashiro, Alexandre; Sônego, Fabiane; Ferreira, Raphael G; Castanheira, Fernanda V S; Leite, Caio A; Borges, Vanessa F; Nascimento, Daniele C; Cólon, David F; Alves-Filho, José Carlos; Ulloa, Luis; Cunha, Fernando Q

    2017-03-01

    Sepsis is one of the main causes of mortality in hospitalized patients. Despite the recent technical advances and the development of novel generation of antibiotics, severe sepsis remains a major clinical and scientific challenge in modern medicine. Unsuccessful efforts have been dedicated to the search of therapeutic options to treat the deleterious inflammatory components of sepsis. Recent findings on neuronal networks controlling immunity raised expectations for novel therapeutic strategies to promote the regulation of sterile inflammation, such as autoimmune diseases. Interesting studies have dissected the anatomical constituents of the so-called "cholinergic anti-inflammatory pathway", suggesting that electrical vagus nerve stimulation and pharmacological activation of beta-2 adrenergic and alpha-7 nicotinic receptors could be alternative strategies for improving inflammatory conditions. However, the literature on infectious diseases, such as sepsis, is still controversial and, therefore, the real therapeutic potential of this neuroimmune pathway is not well defined. In this review, we will discuss the beneficial and detrimental effects of neural manipulation in sepsis, which depend on the multiple variables of the immune system and the nature of the infection. These observations suggest future critical studies to validate the clinical implications of vagal parasympathetic signaling in sepsis treatment.

  14. Ameliorative Effect of Ginsenoside Rg1 on Lipopolysaccharide-Induced Cognitive Impairment: Role of Cholinergic System.

    Science.gov (United States)

    Jin, Yang; Peng, Jian; Wang, Xiaona; Zhang, Dong; Wang, Tianyin

    2017-01-11

    Bacterial endotoxin lipopolysaccharide (LPS) can induce systemic inflammation, and therefore disrupt learning and memory processes. Ginsenoside Rg1, a major bioactive component of ginseng, is shown to greatly improve cognitive function. The present study was designed to further investigate whether administration of ginsenoside Rg1 can ameliorate LPS-induced cognitive impairment in the Y-maze and Morris water maze (MWM) task, and to explore the underlying mechanisms. Results showed that exposure to LPS (500 μg/kg) significantly impaired working and spatial memory and that repeated treatment with ginsenoside Rg1 (200 mg/kg/day, for 30 days) could effectively alleviate the LPS-induced cognitive decline as indicated by increased working and spatial memory in the Y-maze and MWM tests. Furthermore, ginsenoside Rg1 treatment prevented LPS-induced decrease of acetylcholine (ACh) levels and increase of acetylcholinesterase (AChE) activity. Ginsenoside Rg1 treatment also reverted the decrease of alpha7 nicotinic acetylcholine receptor (α7 nAChR) protein expression in the prefrontal cortex (PFC) and hippocampus of LPS-treated rats. These findings suggest that ginsenoside Rg1 has protective effect against LPS-induced cognitive deficit and that prevention of LPS-induced changes in cholinergic system is crucial to this ameliorating effect.

  15. Positive effects of cholinergic stimulation favor young APOE epsilon4 carriers.

    Science.gov (United States)

    Marchant, Natalie L; King, Sarah L; Tabet, Naji; Rusted, Jennifer M

    2010-04-01

    The potential of putative cognitive-enhancing compounds to improve mental processing both in healthy and vulnerable populations is an area of growing interest to scientific and clinical communities. The possible influence of individual genetic differences on efficacy of these compounds has yet to be considered. We sought to investigate the profile of young-adult apolipoprotein E (APOE) varepsilon4 carriers across cognitive domains given that possession of this gene variant increases risk of developing dementia in later life. We also explored whether APOE genotype interacts with the cognitive enhancer, nicotine. A total of 1 mg of the cholinergic agonist nicotine was administered through nasal spray to healthy non-smoking young adults (aged 18-30) with either varepsilon3/varepsilon3 (N=29) or varepsilon4 (at least one varepsilon4 allele, N=27) genotype. Participants were matched on age, sex, and IQ in a placebo-controlled, double-blind 2 (drug: placebo, nicotine) x 2 (genotype: varepsilon3, varepsilon4) between subjects design. Here, we show that, paradoxically, possession of the varepsilon4 allele confers a cognitive advantage on tasks mediated by the frontal lobe, and that young carriers of the varepsilon4 allele show larger cognitive benefit from procholinergic nicotinic stimulation. These results are the first to show that genetic differences influence the efficacy of a cognitive enhancer.

  16. Illuminating the role of cholinergic signaling in circuits of attention and emotionally salient behaviors

    Directory of Open Access Journals (Sweden)

    Antonio eLuchicchi

    2014-10-01

    Full Text Available Acetylcholine (ACh signaling underlies specific aspects of cognitive functions and behaviors, including attention, learning, memory and motivation. Alterations in ACh signaling are involved in the pathophysiology of multiple neuropsychiatric disorders. In the central nervous system, ACh transmission is mainly guaranteed by dense innervation of select cortical and subcortical regions from disperse groups of cholinergic neurons within the basal forebrain (e.g. diagonal band, medial septal, nucleus basalis and the pontine-mesencephalic nuclei, respectively. Despite the fundamental role of cholinergic signaling in the CNS and the long standing knowledge of the organization of cholinergic circuitry, remarkably little is known about precisely how ACh release modulates cortical and subcortical neural activity and the behaviors these circuits subserve. Growing interest in cholinergic signaling in the CNS focuses on the mechanism(s of action by which endogenously released ACh regulates cognitive functions, acting as a neuromodulator and /or as a direct transmitter via nicotinic and muscarinic receptors. The development of optogenetic techniques has provided a valuable toolbox with which we can address these questions, as it allows the selective manipulation of the excitability of cholinergic inputs to the diverse array of cholinergic target fields within cortical and subcortical domains. Here, we review recent papers that use the light-sensitive opsins in the cholinergic system to elucidate the role of ACh in circuits related to attention and emotionally salient behaviors. In particular, we highlight recent optogenetic studies which have tried to disentangle the precise role of ACh in the modulation of cortical-, hippocampal- and striatal-dependent functions.

  17. Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum.

    Science.gov (United States)

    Guo, Qingchun; Wang, Daqing; He, Xiaobin; Feng, Qiru; Lin, Rui; Xu, Fuqiang; Fu, Ling; Luo, Minmin

    2015-01-01

    The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits.

  18. Neuroligin 2 is expressed in synapses established by cholinergic cells in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Virág T Takács

    Full Text Available Neuroligin 2 is a postsynaptic protein that plays a critical role in the maturation and proper function of GABAergic synapses. Previous studies demonstrated that deletion of neuroligin 2 impaired GABAergic synaptic transmission, whereas its overexpression caused increased inhibition, which suggest that its presence strongly influences synaptic function. Interestingly, the overexpressing transgenic mouse line showed increased anxiety-like behavior and other behavioral phenotypes, not easily explained by an otherwise strengthened GABAergic transmission. This suggested that other, non-GABAergic synapses may also express neuroligin 2. Here, we tested the presence of neuroligin 2 at synapses established by cholinergic neurons in the mouse brain using serial electron microscopic sections double labeled for neuroligin 2 and choline acetyltransferase. We found that besides GABAergic synapses, neuroligin 2 is also present in the postsynaptic membrane of cholinergic synapses in all investigated brain areas (including dorsal hippocampus, somatosensory and medial prefrontal cortices, caudate putamen, basolateral amygdala, centrolateral thalamic nucleus, medial septum, vertical- and horizontal limbs of the diagonal band of Broca, substantia innominata and ventral pallidum. In the hippocampus, the density of neuroligin 2 labeling was similar in GABAergic and cholinergic synapses. Moreover, several cholinergic contact sites that were strongly labeled with neuroligin 2 did not resemble typical synapses, suggesting that cholinergic axons form more synaptic connections than it was recognized previously. We showed that cholinergic cells themselves also express neuroligin 2 in a subset of their input synapses. These data indicate that mutations in human neuroligin 2 gene and genetic manipulations of neuroligin 2 levels in rodents will potentially cause alterations in the cholinergic system as well, which may also have a profound effect on the functional properties

  19. Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate

    Directory of Open Access Journals (Sweden)

    Khalaf Ali Fayez

    2014-01-01

    Full Text Available Growth and physiological activities of barley (Hordeum vulgare L. cv. Gustoe grown in soil cultures were evaluated to recognize the ameliorative role of salicylic acid (SA and KNO3 against the negative effects of salt and water deficit stresses. Barley plants were subjected to three levels of NaCl (50, 100 and 150 mM, three levels of water stress (80%, 70% and 50% of the soil water content (SWC and the combination of 150 mM NaCl + 50 μM SA, 150 mM NaCl + 10 mM KNO3, 50% SWC + 50 μM SA and 50% SWC + 10 mM KNO3 for two weeks. Salt and water deficit stresses reduced the shoot growth, leaf photosynthetic pigments, K+ contents and provoked oxidative stress in leaves confirmed by considerable changes in soluble carbohydrate, proline, malondialdehyde (MDA, total phenolic compounds, antioxidant activity and Na+ contents. Leaf soluble protein of salt and water deficit treated plants was unaffected. The Na+/K+ ratio increased with increasing salt and water deficit treated plants. Application of 50 μM SA or 10 mM KNO3 to150 mM NaCl and/or 50% SWC treated plants improved these attributes under salt and water stresses. Soluble carbohydrates in stressed plants may have a significant role in osmotic adjustment. It can be concluded that the addition of SA or KNO3 can ameliorate the oxidative stress in barley stressed plants. This ameliorative effect might be maintained through low MDA contents and decreased Na+/K+ ratio in leaves. This study also provided evidence for the ability of barley cultivation in salt and water deficit soils due to its capacity for osmotic adjustment.

  20. Particle size tailoring of ursolic acid nanosuspensions for improved anticancer activity by controlled antisolvent precipitation.

    Science.gov (United States)

    Wang, Yancai; Song, Ju; Chow, Shing Fung; Chow, Albert H L; Zheng, Ying

    2015-10-15

    The present study was aimed at tailoring the particle size of ursolic acid (UA) nanosuspension for improved anticancer activity. UA nanosuspensions were prepared by antisolvent precipitation using a four-stream multi-inlet vortex mixer (MIVM) under defined conditions of varying solvent composition, drug feeding concentration or stream flow rate. The resulting products were characterized for particle size and polydispersity. Two of the UA nanosuspensions with mean particle sizes of 100 and 300 nm were further assessed for their in-vitro activity against MCF-7 breast cancer cells using fluorescence microscopy with 4',6-diamidino-2-phenylindole (DAPI) staining, as well as flow cytometry with propidium (PI) staining and with double staining by fluorescein isothiocyanate. It was revealed that the solvent composition, drug feeding concentration and stream flow rate were critical parameters for particle size control of the UA nanosuspensions generated with the MIVM. Specifically, decreasing the UA feeding concentration or increasing the stream flow rate or ethanol content resulted in a reduction of particle size. Excellent reproducibility for nanosuspension production was demonstrated for the 100 and 300 nm UA preparations with a deviation of not more than 5% in particle size from the mean value of three independent batches. Fluorescence microscopy and flow cytometry revealed that these two different sized UA nanosuspensions, particularly the 300 nm sample, exhibited a higher anti-proliferation activity against the MCF-7 cells and afforded a larger population of these cells in both early and late apoptotic phases. In conclusion, MIVM is a robust and pragmatic tool for tailoring the particle size of the UA nanosuspension. Particle size appears to be a critical determinant of the anticancer activity of the UA nanoparticles.

  1. Valproic Acid Use During Radiation Therapy for Glioblastoma Associated With Improved Survival

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Christopher A., E-mail: barkerc@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Bishop, Andrew J.; Chang, Maria; Beal, Kathryn; Chan, Timothy A. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2013-07-01

    Purpose: Valproic acid (VA) is an antiepileptic drug (AED) and histone deacetylase (HDAC) inhibitor taken by patients with glioblastoma (GB) to manage seizures, and it can modulate the biologic effects of radiation therapy (RT). We investigated whether VA use during RT for GB was associated with overall survival (OS). Methods and Materials: Medical records of 544 adults with GB were retrospectively reviewed. Analyses were performed to determine the association of Radiation Therapy Oncology Group recursive partitioning analysis (RTOG RPA) class, seizure history, and concurrent temozolomide (TMZ) and AED use during RT with OS. Results: Seizures before the end of RT were noted in 217 (40%) patients, and 403 (74%) were taking an AED during RT; 29 (7%) were taking VA. Median OS in patients taking VA was 16.9 months (vs 13.6 months taking another AED, P=.16). Among patients taking an AED during RT, OS was associated with VA (P=.047; hazard ratio [HR], 0.67; 95% confidence interval [CI], 0.27-1.07), and RTOG RPA class (P<.0001; HR, 1.49; 95% CI, 1.37-1.61). Of the 5 most common AEDs, only VA was associated with OS. Median OS of patients receiving VA and TMZ during RT was 23.9 months (vs 15.2 months for patients taking another AED, P=.26). When the analysis was restricted to patients who received concurrent TMZ, VA use was marginally associated with OS (P=.057; HR, 0.54; 95% CI, −0.09 to 1.17), independently of RTOG RPA class and seizure history. Conclusions: VA use during RT for GB was associated with improved OS, independently of RTOG RPA, seizure history, and concurrent TMZ use. Further studies of treatment that combines HDAC inhibitors and RT are warranted.

  2. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid.

    Science.gov (United States)

    Lee, Ju Young; Kang, Chang Duk; Lee, Seung Hyun; Park, Young Kyoung; Cho, Kwang Myung

    2015-04-01

    Owing to the growing market for the biodegradable and renewable polymer, polylactic acid, world demand for lactic acid is rapidly increasing. However, the very high concentrations desired for industrial production of the free lactic acid create toxicity and low pH concerns for manufacturers. Saccharomyces cerevisiae is the most well characterized eukaryote, a preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust, commercially compatible workhorse to be exploited for the production of diverse chemicals. S. cerevisiae has also been explored as a host for lactic acid production because of its high acid tolerance. Here, we constructed an L-lactic acid-overproducing S. cerevisiae by redirecting cellular metabolic fluxes to the production of L-lactic acid. To this end, we deleted the S. cerevisiae genes encoding pyruvate decarboxylase 1 (PDC1), L-lactate cytochrome-c oxidoreductase (CYB2), and glycerol-3-phosphate dehydrogenase (GPD1), replacing them with a heterologous L-lactate dehydrogenase (LDH) gene. Two new target genes encoding isoenzymes of the external NADH dehydrogenase (NDE1 and NDE2), were also deleted from the genome to re-engineer the intracellular redox balance. The resulting strain was found to produce L-lactic acid more efficiently (32.6% increase in final L-lactic acid titer). When tested in a bioreactor in fed-batch mode, this engineered strain produced 117 g/L of L-lactic acid under low pH conditions. This result demonstrates that the redox balance engineering should be coupled with the metabolic engineering in the construction of L-lactic acid-overproducing S. cerevisiae.

  3. Fast pyrolysis of organic acid leached wood, straw, hay and bagasse: Improved oil and sugar yields

    NARCIS (Netherlands)

    Oudenhoven, S.R.G; Westerhof, R.J.M.; Kersten, S.R.A.

    2015-01-01

    Organic acid leaching of pine wood, straw, bagasse and hay effectively reduced the amount of catalytically active alkali and alkaline earth metals (AAEMs). Using the (acetic) acid produced by pyrolysis as leaching agent, the AAEMs content could be reduced to 90–600 mg/kg. Tests with AAEMs impregnate

  4. Maximized PUFA measurements improve insight in changes in fatty acid composition in response to temperature.

    Science.gov (United States)

    van Dooremalen, Coby; Pel, Roel; Ellers, Jacintha

    2009-10-01

    A general mechanism underlying the response of ectotherms to environmental changes often involves changes in fatty acid composition. Theory predicts that a decrease in temperature causes an increase in unsaturation of fatty acids, with an important role for long-chain poly-unsaturated fatty acids (PUFAs). However, PUFAs are particularly unstable and susceptible to peroxidation, hence subtle differences in fatty acid composition can be challenging to detect. We determined the fatty acid composition in springtail (Collembola) in response to two temperatures (5 degrees C and 25 degrees C). First, we tested different sample preparation methods to maximize PUFAs. Treatments consisted of different solvents for primary lipid extraction, mixing with antioxidant, flushing with inert gas, and using different temperature exposures during saponification. Especially slow saponification at low temperature (90 min at 70 degrees C) in combination with replacement of headspace air with nitrogen during saponification and methylation maximized PUFAs for GC analysis. Applying these methods to measure thermal responses in fatty acid composition, the data showed that the (maximized) proportion of C(20) PUFAs increased at low acclimation temperature. However, C(18) PUFAs increased at high acclimation temperature, which is contrary to expectations. Our study illustrates that PUFA levels in lipids may often be underestimated and this may hamper a correct interpretation of differential responses of fatty acid composition.

  5. Stability improvement of natural food colors: Impact of amino acid and peptide addition on anthocyanin stability in model beverages.

    Science.gov (United States)

    Chung, Cheryl; Rojanasasithara, Thananunt; Mutilangi, William; McClements, David Julian

    2017-03-01

    Anthocyanins are prone to chemical degradation and color fading in the presence of vitamin C. The potential of three amino acids (l-phenylalanine, l-tyrosine, l-tryptophan) and a polypeptide (ε-poly-l-lysine) in prolonging the color stability of purple carrot anthocyanins (0.025%) in model beverages (0.05% l-ascorbic acid, citric acid, pH 3.0) stored at elevated temperature (40°C/7 days) was examined. In the absence of amino acids or peptides, anthocyanin degraded at first-order reaction rate. Addition of amino acids or peptide (0.1%) increased the color stability of anthocyanins, with the most significant improvement observed for l-tryptophan. The average half-life of anthocyanin color increased from 2 days to 6 days with l-tryptophan addition. Fluorescence quenching measurements revealed that the l-tryptophan interacted with anthocyanins mainly through hydrogen bonding, although some hydrophobic interaction may also have been involved. Overall, this study suggests that amino acid or peptide addition may prolong the color stability of anthocyanin in beverage products.

  6. Upregulating Nonneuronal Cholinergic Activity Decreases TNF Release from Lipopolysaccharide-Stimulated RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    Yi Lv

    2014-01-01

    Full Text Available Nonneuronal cholinergic system plays a primary role in maintaining homeostasis. It has been proved that endogenous neuronal acetylcholine (ACh could play an anti-inflammatory role, and exogenous cholinergic agonists could weaken macrophages inflammatory response to lipopolysaccharide (LPS stimulation through activation of α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR. We assumed that nonneuronal cholinergic system existing in macrophages could modulate inflammation through autocrine ACh and expressed α7nAChR on the cells. Therefore, we explored whether LPS continuous stimulation could upregulate the nonneuronal cholinergic activity in macrophages and whether increasing autocrine ACh could decrease TNF release from the macrophages. The results showed that, in RAW264.7 cells incubated with LPS for 20 hours, the secretion of ACh was significantly decreased at 4 h and then gradually increased, accompanied with the enhancement of α7nAChR expression level. The release of TNF was greatly increased from RAW264.7 cells at 4 h and 8 h exposure to LPS; however, it was suppressed at 20 h. Upregulating choline acetyltransferase (ChAT expression through ChAT gene transfection could enhance ACh secretion and reduce TNF release from the infected RAW264. 7cells. The results indicated that LPS stimulation could modulate the activity of nonneuronal cholinergic system of RAW264.7 cells. Enhancing autocrine ACh production could attenuate TNF release from RAW264.7 cells.

  7. Caffeine elicits c-Fos expression in horizontal diagonal band cholinergic neurons.

    Science.gov (United States)

    Reznikov, Leah R; Pasumarthi, Ravi K; Fadel, Jim R

    2009-12-09

    Caffeine is a widely self-administered psychostimulant with purported neuroprotective and procognitive effects in rodent models of aging. The cholinergic basal forebrain is important for arousal and attention and is implicated in age-related cognitive decline. Accordingly, we determined the effects of caffeine on cholinergic neuron activation in the rat basal forebrain. Young adult (age 2 months) male rats were treated with caffeine (0, 10, or 50 mg/kg) and killed 2 h later. Caffeine significantly increased c-Fos expression in cholinergic neurons of the horizontal limb of the diagonal band of Broca but not other basal forebrain regions such as the medial septum or substantia innominata. The horizontal limb of the diagonal band of Broca provides cholinergic innervation to the olfactory bulb, suggesting that deficits in this structure may contribute to diminished olfactory function observed in Alzheimer's disease patients. These results suggest that part of the cognitive-enhancing effects of caffeine may be mediated through activation of this part of the cholinergic basal forebrain.

  8. Chronic Cerebral Ischaemia Forms New Cholinergic Mechanisms of Learning and Memory

    Directory of Open Access Journals (Sweden)

    E. I. Zakharova

    2010-01-01

    Full Text Available The purpose of this research was a comparative analysis of cholinergic synaptic organization following learning and memory in normal and chronic cerebral ischaemic rats in the Morris water maze model. Choline acetyltransferase and protein content were determined in subpopulations of presynapses of “light” and “heavy” synaptosomal fractions of the cortex and the hippocampus, and the cholinergic projective and intrinsic systems of the brain structures were taken into consideration. We found a strong involvement of cholinergic systems, both projective and intrinsic, in all forms of cognition. Each form of cognition had an individual cholinergic molecular profile and the cholinergic synaptic compositions in the ischaemic rat brains differed significantly from normal ones. Our data demonstrated that under ischaemic conditions, instead of damaged connections new key synaptic relationships, which were stable against pathological influences and able to restore damaged cognitive functions, arose. The plasticity of neurochemical links in the individual organization of certain types of cognition gave a new input into brain pathology and can be used in the future for alternative corrections of vascular and other degenerative dementias.

  9. The cholinergic REM induction test with RS 86 after scopolamine pretreatment in healthy subjects.

    Science.gov (United States)

    Riemann, D; Hohagen, F; Fleckenstein, P; Schredl, M; Berger, M

    1991-09-01

    A shortened latency of rapid eye movement (REM) sleep is one of the most stable biological abnormalities described in depressive patients. According to the reciprocal interaction model of non-REM and REM sleep regulation, REM sleep disinhibition at the beginning of the night in depression is a consequence of heightened central nervous system cholinergic transmitter activity in relation to aminergic transmitter activity. A recent study has indicated that muscarinic supersensitivity, rather than quantitatively enhanced cholinergic activity, may be the primary cause of REM sleep abnormalities in depression. The present study tested this hypothesis by treating healthy volunteers for 3 days with a cholinergic antagonist (scopolamine) in the morning, in an effort to induce muscarinic receptor supersensitivity. On the last day of scopolamine administration, RS 86, an orally active cholinergic agonist, was administered before bedtime to test whether this procedure would induce sleep onset REM periods. Whereas scopolamine treatment tended to advance REM sleep and to heighten REM density in healthy controls in comparison to NaCl administration, the additional cholinergic stimulation did not provoke further REM sleep disinhibition. This result underlines the need to take a hypofunction of aminergic transmitter systems into account in attempts to explain the pronounced advance of REM sleep typically seen in depressives.

  10. Optogenetic identification of an intrinsic cholinergically driven inhibitory oscillator sensitive to cannabinoids and opioids in hippocampal CA1.

    Science.gov (United States)

    Nagode, Daniel A; Tang, Ai-Hui; Yang, Kun; Alger, Bradley E

    2014-01-01

    Neuronal electrical oscillations in the theta (4-14 Hz) and gamma (30-80 Hz) ranges are necessary for the performance of certain animal behaviours and cognitive processes. Perisomatic GABAergic inhibition is prominently involved in cortical oscillations driven by ACh release from septal cholinergic afferents. In neocortex and hippocampal CA3 regions, parvalbumin (PV)-expressing basket cells, activated by ACh and glutamatergic agonists, largely mediate oscillations. However, in CA1 hippocampus in vitro, cholinergic agonists or the optogenetic release of endogenous ACh from septal afferents induces rhythmic, theta-frequency inhibitory postsynaptic currents (IPSCs) in pyramidal cells, even with glutamatergic transmission blocked. The IPSCs are regulated by exogenous and endogenous cannabinoids, suggesting that they arise from type 1 cannabinoid receptor-expressing (CB1R+) interneurons - mainly cholecystokinin (CCK)-expressing cells. Nevertheless, an occult contribution of PV-expressing interneurons to these rhythms remained conceivable. Here, we directly test this hypothesis by selectively silencing CA1 PV-expressing cells optogenetically with halorhodopsin or archaerhodopsin. However, this had no effect on theta-frequency IPSC rhythms induced by carbachol (CCh). In contrast, the silencing of glutamic acid decarboxylase 2-positive interneurons, which include the CCK-expressing basket cells, strongly suppressed inhibitory oscillations; PV-expressing interneurons appear to play no role. The low-frequency IPSC oscillations induced by CCh or optogenetically stimulated ACh release were also inhibited by a μ-opioid receptor (MOR) agonist, which was unexpected because MORs in CA1 are not usually associated with CCK-expressing cells. Our results reveal novel properties of an inhibitory oscillator circuit within CA1 that is activated by muscarinic agonists. The oscillations could contribute to behaviourally relevant, atropine-sensitive, theta rhythms and link cannabinoid and

  11. Improvement on stability of square planar rhodium (Ⅰ) complexes for carbonylation of methanol to acetic acid

    Institute of Scientific and Technical Information of China (English)

    蒋华; 潘平来; 袁国卿; 陈新滋

    1999-01-01

    A series of square planar cis-dicarbonyl polymer coordinated rhodium complexes with uncoordinated donors near the central rhodium atoms for carbonylation of methanol to acetic acid are reported. Data of IR, XPS and thermal analysis show that these complexes are very stable. The intramolecular substitution reaction is proposed for their high stability. These complexes show excellent catalytic activity, selectivity and less erosion to the equipment for the methanol carbonylation to acetic acid. The distillation process may be used instead of flash vaporization in the manufacture of acetic acid, which reduces the investment on the equipment.

  12. Compared with stearic acid, palmitic acid increased the yield of milk fat and improved feed efficiency across production level of cows.

    Science.gov (United States)

    Rico, J E; Allen, M S; Lock, A L

    2014-02-01

    -hydroxybutyrate were not altered by the treatments. Results demonstrate that palmitic acid is more effective than stearic acid in improving milk fat concentration and yield as well as efficiency of feed conversion to milk. Responses were independent of production level and without changes in body condition score or body weight. Further studies are required to test the consistency of these responses across different types of diets.

  13. Postnatal Development of Hippocampal and Neocortical Cholinergic and Serotonergic Innervation in Rat : Effects of Nitrite-Induced Prenatal Hypoxia and Nimodipine Treatment

    NARCIS (Netherlands)

    Nyakas, C.; Buwalda, B.; Kramers, R.J.K.; Traber, J.; Luiten, P.G.M.

    1994-01-01

    Postnatal development of ingrowing cholinergic and serotonergic fiber patterns were studied in the rat hippocampus and parietal cortex employing a histochemical procedure for acetylcholinesterase as a cholinergic fiber marker, and immunocytochemistry of serotonin for serotonergic fiber staining. The

  14. Development of an Acid-Resistant Salmonella Typhi Ty21a Attenuated Vector For Improved Oral Vaccine Delivery

    Science.gov (United States)

    Feuille, Catherine M.; Starke, Carly Elizabeth C.; Bhagwat, Arvind A.; Stibitz, Scott; Kopecko, Dennis J.

    2016-01-01

    The licensed oral, live-attenuated bacterial vaccine for typhoid fever, Salmonella enterica serovar Typhi strain Ty21a, has also been utilized as a vaccine delivery platform for expression of diverse foreign antigens that stimulate protection against shigellosis, anthrax, plague, or human papilloma virus. However, Ty21a is acid-labile and, for effective oral immunization, stomach acidity has to be either neutralized with buffer or by-passed with Ty21a in an enteric-coated capsule (ECC). Several studies have shown that efficacy is reduced when Ty21a is administered in an ECC versus as a buffered liquid formulation, the former limiting exposure to GI tract lymphoid tissues. However, the ECC was selected as a more practical delivery format for both packaging/shipping and vaccine administration ease. We have sought to increase Ty21a acid-resistance to allow for removal from the ECC and immune enhancement. To improve Ty21a acid-resistance, glutamate-dependent acid resistance genes (GAD; responsible for Shigella spp. survival at very low pH) were cloned on a multi-copy plasmid (pGad) under a controllable arabinose-inducible promoter. pGad enhanced acid survival of Ty21a by 5 logs after 3 hours at pH 2.5, when cells were pre-grown in arabinose and under conditions that promote an acid-tolerance response (ATR). For genetically 100% stable expression, we inserted the gad genes into the Ty21a chromosome, using a method that allowed for subsequent removal of a selectable antibiotic resistance marker. Further, both bacterial growth curves and survival assays in cultured human monocytes/macrophages suggest that neither the genetic methods employed nor the resulting acid-resistance conferred by expression of the Gad proteins in Ty21a had any effect on the existing attenuation of this vaccine strain. PMID:27673328

  15. Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Song, Ji-Yoon; Park, Joon-Song; Kang, Chang Duk; Cho, Hwa-Young; Yang, Dongsik; Lee, Seunghyun; Cho, Kwang Myung

    2016-05-01

    Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142g/L with production yield of 0.89g/g and productivity of 3.55gL(-1)h(-1) under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast.

  16. Improving the Keeping Quality and Vase Life of Cut Alstroemeria Flowers by Pre and Post-harvest Salicylic Acid Treatments

    Directory of Open Access Journals (Sweden)

    Elnaz SOLEIMANY-FARD

    2013-08-01

    Full Text Available Keeping quality and length of vase life are important factors for evaluation of cut flowers quality, for both domestic and export markets. Studding the effect of pre- and post-harvest salicylic acid applications on keeping quality and vase life of cut alstroemeria flowers during vase period is the approach taken. Aqueous solutions of salicylic acid at 0.0 (with distilled water, 1, 2 and 3 mM were sprayed to run-off (approximately 500 mL per plant, about two weeks before flowers harvest. The cut flowers were harvested in the early morning and both of cut flowers treated (sprayed and untreated were kept in vase solutions containing salicylic acid at 0.0 (with distilled water, 1, 2 and 3 mM. Sucrose at 4% was added to all treatments as a base solution. The changes in relative fresh weight, water uptake, water loss, water balance, total chlorophyll content and vase life were estimated during vase period. The results showed that the relative fresh weight, water uptake, water balance, total chlorophyll content and vase life decreased significantly while the water loss increased significantly during experiment for all treatments. A significant difference between salicylic acid and control treatments in all measured parameters is observed. During vase period, the salicylic acid treatments maintained significantly a more favourable relative fresh weight, water uptake, water balance, total chlorophyll content and supressed significantly water loss, as compared to control treatment. Also, the results showed that the using salicylic acid increased significantly the vase life cut alstroemeria flowers, over control. The highest values of measured parameters were found when plants were treated by pre + post-harvest application of salicylic acid at 3 mM. The result revealed that the quality attributes and vase life of cut alstroemeria flowers were improved by the use of salicylic acid treatment.

  17. The art of strain improvement of industrial lactic acid bacteria without the use of recombinant DNA technology.

    Science.gov (United States)

    Derkx, Patrick M F; Janzen, Thomas; Sørensen, Kim I; Christensen, Jeffrey E; Stuer-Lauridsen, Birgitte; Johansen, Eric

    2014-08-29

    The food industry is constantly striving to develop new products to fulfil the ever changing demands of consumers and the strict requirements of regulatory agencies. For foods based on microbial fermentation, this pushes the boundaries of microbial performance and requires the constant development of new starter cultures with novel properties. Since the use of ingredients in the food industry is tightly regulated and under close scrutiny by consumers, the use of recombinant DNA technology to improve microbial performance is currently not an option. As a result, the focus for improving strains for microbial fermentation is on classical strain improvement methods. Here we review the use of these techniques to improve the functionality of lactic acid bacteria starter cultures for application in industrial-scale food production. Methods will be described for improving the bacteriophage resistance of specific strains, improving their texture forming ability, increasing their tolerance to stress and modulating both the amount and identity of acids produced during fermentation. In addition, approaches to eliminating undesirable properties will be described. Techniques include random mutagenesis, directed evolution and dominant selection schemes.

  18. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    Directory of Open Access Journals (Sweden)

    Abdul Latif Khan

    Full Text Available Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%, Chaetomiaceae (17.6%, Incertae sadis (29.5%, Aureobasidiaceae (17.6%, Nectriaceae (5.9% and Sporomiaceae (17.6% from the phylloplane (leaf and caulosphere (stem of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33% than the stem (0.262%. The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583 than in the stem (0.416. Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL and cellulases (62.11±1.6 μM-1min-1mL, whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL and phosphatases (3.46±0.31μM-1min-1mL compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways. Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin

  19. Lactic acid bacteria in the quality improvement and depreciation of wine.

    Science.gov (United States)

    Lonvaud-Funel, A

    1999-01-01

    The winemaking process includes two main steps: lactic acid bacteria are responsible for the malolactic fermentation which follows the alcoholic fermentation by yeasts. Both types of microorganisms are present on grapes and on cellar equipment. Yeasts are better adapted to growth in grape must than lactic acid bacteria, so the alcoholic fermentation starts quickly. In must, up to ten lactic acid bacteria species can be identified. They belong to the Lactobacillus, Pediococcus, Leuconostoc and Oenococcus genera. Throughout alcoholic fermentation, a natural selection occurs and finally the dominant species is O. oeni, due to interactions between yeasts and bacteria and between bacteria themselves. After bacterial growth, when the population is over 10(6) CFU/ml, malolactic transformation is the obvious change in wine composition. However, many other substrates can be metabolized. Some like remaining sugars and citric acid are always assimilated by lactic acid bacteria, thus providing them with energy and carbon. Other substrates such as some amino acids may be used following pathways restricted to strains carrying the adequate enzymes. Some strains can also produce exopolysaccharides. All these transformations greatly influence the sensory and hygienic quality of wine. Malic acid transformation is encouraged because it induces deacidification. Diacetyl produced from citric acid is also helpful to some extent. Sensory analyses show that many other reactions change the aromas and make malolactic fermentation beneficial, but they are as yet unknown. On the contrary, an excess of acetic acid, the synthesis of glucane, biogenic amines and precursors of ethylcarbamate are undesirable. Fortunately, lactic acid bacteria normally multiply in dry wines; moreover some of these activities are not widespread. Moreover, the most striking trait of wine lactic acid bacteria is their capacity to adapt to a hostile environment. The mechanisms for this are not yet completely elucidated

  20. A poly(acrylic acid)-block-poly(L-glutamic acid) diblock copolymer with improved cell adhesion for surface modification.

    Science.gov (United States)

    Cao, Bin; Yan, Shifeng; Zhang, Kunxi; Song, Zhijiang; Cao, Tian; Chen, Xuesi; Cui, Lei; Yin, Jingbo

    2011-07-07

    A novel PAA-b-PLGA diblock copolymer is synthesized and characterized that has excellent cell adhesion and biocompatibility. Fluorescent DiO labeling is used to monitor the attachment and growth of hASCs on the film surface, and cell proliferation over time is studied. Results show that PLLA modified by a CS/PAA-b-PLGA multilayer film can promote the attachment of human hASCs and provide an advantageous environment for their proliferation. The multilayer film presents excellent biocompatibility and cell adhesive properties, which will provide a new choice for improving the cell attachment in surface modification for tissue engineering. Hydroxyl, carboxyl and amine groups in the CS/PAA-b-PLGA multilayer film may be combined with drugs and growth factors for therapy and differentiation.

  1. Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods.

    Science.gov (United States)

    Carvalho, Margarida; Roca, Christophe; Reis, Maria A M

    2016-10-01

    Carob pods are an inexpensive by-product of locust bean gum industry that can be used as renewable feedstock for bio-based succinic acid. Here, for the first time, unprocessed raw carob pods were used to extract a highly enriched sugar solution, afterwards used as substrate to produce succinic acid using Actinobacillus succinogenes. Batch fermentations containing 30g/L sugars resulted in a production rate of 1.67gSA/L.h and a yield of 0.39gSA/g sugars. Taking advantage of A. succinogenes' metabolism, uncoupling cell growth from succinic acid production, a fed-batch mode was implemented to increase succinic acid yield and reduce by-products formation. This strategy resulted in a succinic acid yield of 0.94gSA/g sugars, the highest yield reported in the literature for fed-batch and continuous experiments, while maintaining by-products at residual values. Results demonstrate that raw carob pods are a highly efficient feedstock for bio-based succinic acid production.

  2. An improved direct colorimetric method for the quantitative analysis of urinary hippuric acid as an index of toluene exposure

    Directory of Open Access Journals (Sweden)

    Ogata,Masana

    1977-08-01

    Full Text Available An improved direct colorimetric method for determining the concentration of urinary hippuric acid as an index of toluene exposure was described. One tenth ml of urine was diluted with 0.4 ml 0.01 M phosphate buffer H 6.9 and mixed with 0.5 ml pyridine. The mixture was layered on 0.2 ml benzenesulfonyl chloride. The reaction was started by mixing for one min with a mechanical shaker. The colored solution was allowed to stand for 30 min, diluted with 5 ml ethanol, and absorbance measured at 410 nm within 30 min after the dilution. The coefficient of variation of this method was 6% and the recovery 103% when urine contains about 0.2-0.5 mg hippuric acid per ml of urine. The concentration was linear up to 2.0 mg per ml hippuric acid in a specimen.

  3. Libidibia ferrea Mature Seeds Promote Antinociceptive Effect by Peripheral and Central Pathway: Possible Involvement of Opioid and Cholinergic Receptors

    Directory of Open Access Journals (Sweden)

    Luis Armando Sawada

    2014-01-01

    Full Text Available Libidibia ferrea (LF is a medicinal plant that holds many pharmacological properties. We evaluated the antinociceptive effect in the LF aqueous seed extract and Lipidic Portion of Libidibia ferrea (LPLF, partially elucidating their mechanisms. Histochemical tests and Gas chromatography of the LPLF were performed to characterize its fatty acids. Acetic acid-induced abdominal constriction, formalin-induced pain, and hot-plate test in mice were employed in the study. In all experiments, aqueous extract or LPLF was administered systemically at the doses of 1, 5, and 10 mg/kg. LF aqueous seed extract and LPLF demonstrated a dose-dependent antinociceptive effect in all tests indicating both peripheral anti-inflammatory and central analgesia properties. Also, the use of atropine (5 mg/kg, naloxone (5 mg/kg in the abdominal writhing test was able to reverse the antinociceptive effect of the LPLF, indicating that at least one of LF lipids components is responsible for the dose related antinociceptive action in chemical and thermal models of nociception in mice. Together, the present results suggested that Libidibia ferrea induced antinociceptive activity is possibly related to its ability to inhibit opioid, cholinergic receptors, and cyclooxygenase-2 pathway, since its main component, linoleic acid, has been demonstrated to produce such effect in previous studies.

  4. Cholinergic neuromuscular junctions in Brachionus calyciflorus and Lecane quadridentata (Rotifera:Monogononta)

    Institute of Scientific and Technical Information of China (English)

    Ignacio Alejandro Prez-Legaspi; Alma Lilin Guerrero-Barrera; Ivn Jos Galvn-Mendoza; Jos Luis Quintanar; Roberto Rico-Martnez

    2014-01-01

    Objective:To identify the presence of joint muscular and cholinergic systems in two freshwater rotifer species, Brachionus calyciflorus and Lecane quadridentata. Methods: The muscle actin fibers were stained with phalloidin-linked fluorescent dye, and acetylcholine was detected with Amplex Red Acetylcholine/Acetylcholinesterase Assay Kit, and then confocal scanning laser microscopy was used. Results:The musculature of Brachionus calyciflorus showed a pattern similar to other species of the same genus, while that of Lecane quadridentata was different from other rotifer genera described previously. The cholinergic system was determined by co-localization of both muscles and acetylcholine labels in the whole rotifer, suggesting the presence of neuromuscular junctions. Conclusions: The distribution pattern of muscular and acetylcholine systems showed considerable differences between the two species that might be related to different adaptations to particular ecological niches. The confirmation of a cholinergic system in rotifers contributes to the development of potential neuro-pharmacological and toxicological studies using rotifers as model organism.

  5. A model of cholinergic modulation in olfactory bulb and piriform cortex.

    Science.gov (United States)

    de Almeida, Licurgo; Idiart, Marco; Linster, Christiane

    2013-03-01

    In this work we investigate in a computational model how cholinergic inputs to the olfactory bulb (OB) and piriform cortex (PC) modulate odor representations. We use experimental data derived from different physiological studies of ACh modulation of the bulbar and cortical circuitry and the interaction between these two areas. The results presented here indicate that cholinergic modulation in the OB significantly increases contrast and synchronization in mitral cell output. Each of these effects is derived from distinct neuronal interactions, with different groups of interneurons playing different roles. Both bulbar modulation effects contribute to more stable learned representations in PC, with pyramidal networks trained with cholinergic-modulated inputs from the bulb exhibiting more robust learning than those trained with unmodulated bulbar inputs. This increased robustness is evidenced as better recovery of memories from corrupted patterns and lower-concentration inputs as well as increased memory capacity.

  6. Selective Activation of Cholinergic Interneurons Enhances Accumbal Phasic Dopamine Release: Setting the Tone for Reward Processing

    Directory of Open Access Journals (Sweden)

    Roger Cachope

    2012-07-01

    Full Text Available Dopamine plays a critical role in motor control, addiction, and reward-seeking behaviors, and its release dynamics have traditionally been linked to changes in midbrain dopamine neuron activity. Here, we report that selective endogenous cholinergic activation achieved via in vitro optogenetic stimulation of nucleus accumbens, a terminal field of dopaminergic neurons, elicits real-time dopamine release. This mechanism occurs via direct actions on dopamine terminals, does not require changes in neuron firing within the midbrain, and is dependent on glutamatergic receptor activity. More importantly, we demonstrate that in vivo selective activation of cholinergic interneurons is sufficient to elicit dopamine release in the nucleus accumbens. Therefore, the control of accumbal extracellular dopamine levels by endogenous cholinergic activity results from a complex convergence of neurotransmitter/neuromodulator systems that may ultimately synergize to drive motivated behavior.

  7. Cholinergic Neurons - Keeping Check on Amyloid beta in the Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Saak V. Ovsepian

    2013-12-01

    Full Text Available The physiological relevance of the uptake of ligands with no apparent trophic functions via the p75 neurotrophin receptor (p75NTR remains unclear. Herein, we propose a homeostatic role for this in clearance of amyloid β (Aβ in the brain. We hypothesize that uptake of Aβ in conjunction with p75NTR followed by its degradation in lysosomes endows cholinergic basalo-cortical projections enriched in this receptor a facility for maintaining physiological levels of Aβ in target areas. Thus, in addition to the diffuse modulator influence and channeling of extra-thalamic signals, cholinergic innervations could supply the cerebral cortex with an elaborate system for Aβ drainage. Interpreting the emerging relationship of new molecular data with established role of cholinergic modulator system in regulating cortical network dynamics should provide new insights into the brain physiology and mechanisms of neuro-degenerative diseases.

  8. Network-Guided GWAS Improves Identification of Genes Affecting Free Amino Acids1[OPEN

    Science.gov (United States)

    Deason, Nicholas; DellaPenna, Dean

    2017-01-01

    Amino acids are essential for proper growth and development in plants. Amino acids serve as building blocks for proteins but also are important for responses to stress and the biosynthesis of numerous essential compounds. In seed, the pool of free amino acids (FAAs) also contributes to alternative energy, desiccation, and seed vigor; thus, manipulating FAA levels can significantly impact a seed’s nutritional qualities. While genome-wide association studies (GWAS) on branched-chain amino acids have identified some regulatory genes controlling seed FAAs, the genetic regulation of FAA levels, composition, and homeostasis in seeds remains mostly unresolved. Hence, we performed GWAS on 18 FAAs from a 313-ecotype Arabidopsis (Arabidopsis thaliana) association panel. Specifically, GWAS was performed on 98 traits derived from known amino acid metabolic pathways (approach 1) and then on 92 traits generated from an unbiased correlation-based metabolic network analysis (approach 2), and the results were compared. The latter approach facilitated the discovery of additional novel metabolic interactions and single-nucleotide polymorphism-trait associations not identified by the former approach. The most prominent network-guided GWAS signal was for a histidine (His)-related trait in a region containing two genes: a cationic amino acid transporter (CAT4) and a polynucleotide phosphorylase resistant to inhibition with fosmidomycin. A reverse genetics approach confirmed CAT4 to be responsible for the natural variation of His-related traits across the association panel. Given that His is a semiessential amino acid and a potent metal chelator, CAT4 orthologs could be considered as candidate genes for seed quality biofortification in crop plants. PMID:27872244

  9. Cholinergic Enhancement of Brain Activation in Mild Cognitive Impairment (MCI during Episodic Memory Encoding

    Directory of Open Access Journals (Sweden)

    Shannon L Risacher

    2013-09-01

    Full Text Available Objective: To determine the physiological impact of treatment with donepezil (Aricept on neural circuitry supporting episodic memory encoding in patients with amnestic mild cognitive impairment (MCI using functional MRI (fMRI. Methods: 18 patients with MCI and 20 age-matched healthy controls (HC were scanned twice while performing an event-related verbal episodic encoding task. MCI participants were scanned before treatment and after approximately 3 months on donepezil; HC were untreated but rescanned at the same interval. Voxel-level analyses assessed treatment effects in activation profile relative to retest changes in non-treated HC. Changes in task-related connectivity in medial temporal circuitry were also evaluated, as were associations between brain activation pattern, task-related functional connectivity, task performance, and clinical measures of cognition.Results: At baseline, the MCI group showed reduced activation during encoding relative to HC in the right medial temporal lobe (MTL; hippocampal/parahippocampal and additional regions, as well as attenuated task-related deactivation, relative to rest, in a medial parietal lobe cluster. After treatment, the MCI group showed normalized MTL activation and improved parietal deactivation. These changes were associated with cognitive performance. After treatment, the MCI group also demonstrated increased task-related functional connectivity from the right MTL cluster seed region to a network of other sites including the basal nucleus/caudate and bilateral frontal lobes. Increased functional connectivity was associated with improved task performance.Conclusions: Pharmacologic enhancement of cholinergic function in amnestic MCI is associated with changes in brain activation pattern and functional connectivity during episodic memory processing which are in turn related to increased cognitive performance. fMRI is a promising biomarker for assessing treatment related changes in brain function.

  10. Improvement of mechanical properties of polylactic acid adhesion joints with bio-based adhesives by using air atmospheric plasma treatment

    OpenAIRE

    Jordá Vilaplana, Amparo; Sánchez Nacher, Lourdes; Fombuena Borrás, Vicent; García García, Daniel; Carbonell Verdú, Alfredo

    2015-01-01

    The packaging industry generates a high volume of wastes; so that, there is a high demand of biodegradable materials, which do not damage the environment. Nowadays, there is an interesting consumption of polylactic acid (PLA) due to its biodegradable features. This work focuses on the improvement of mechanical properties of PLA adhesion joints for uses in the packaging industry. In order to achieve that purpose, atmospheric plasma treatment is used to selectively modify PLA surface properties...

  11. Guanidinoacetic acid versus creatine for improved brain and muscle creatine levels: a superiority pilot trial in healthy men.

    Science.gov (United States)

    Ostojic, Sergej M; Ostojic, Jelena; Drid, Patrik; Vranes, Milan

    2016-09-01

    In this randomized, double-blind, crossover trial, we evaluated whether 4-week supplementation with guanidinoacetic acid (GAA) is superior to creatine in facilitating creatine levels in healthy men (n = 5). GAA (3.0 g/day) resulted in a more powerful rise (up to 16.2%) in tissue creatine levels in vastus medialis muscle, middle-cerebellar peduncle, and paracentral grey matter, as compared with creatine (P creatine for improved bioenergetics in energy-demanding tissues.

  12. Silymarin improves the behavioural, biochemical and histoarchitecture alterations in focal ischemic rats: a comparative evaluation with piracetam and protocatachuic acid.

    Science.gov (United States)

    Muley, Milind M; Thakare, Vishnu N; Patil, Rajesh R; Kshirsagar, Ajay D; Naik, Suresh R

    2012-08-01

    Comparative neuroprotective potential of silymarin, piracetam and protocatechuic acid ethyl ester (PCA) was evaluated in focal ischemic rats. Various pharmacological, biochemical (lipid peroxidation, reduced glutathione, catalase, nitrite content, brain water content) and behavioural (memory impairment, motor control, neurological score) including infarct size and histopathological alterations were evaluated. Silymarin (200mg/kg) and PCA treatment significantly improved behavioural, biochemical and histopathological changes, and reduced water content and infarct size. However, piracetam only improved behavioural and histopathological changes, reduced water content and infarct size. The findings indicate that silymarin exhibits neuroprotective activity better than PCA and piracetam in focal ischemia/reperfusion reflected by its better restoration of behavioural and antioxidant profile.

  13. Ventral tegmental area cholinergic mechanisms mediate behavioral responses in the forced swim test.

    Science.gov (United States)

    Addy, N A; Nunes, E J; Wickham, R J

    2015-07-15

    Recent studies revealed a causal link between ventral tegmental area (VTA) phasic dopamine (DA) activity and pro-depressive and antidepressant-like behavioral responses in rodent models of depression. Cholinergic activity in the VTA has been demonstrated to regulate phasic DA activity, but the role of VTA cholinergic mechanisms in depression-related behavior is unclear. The goal of this study was to determine whether pharmacological manipulation of VTA cholinergic activity altered behavioral responding in the forced swim test (FST) in rats. Here, male Sprague-Dawley rats received systemic or VTA-specific administration of the acetylcholinesterase inhibitor, physostigmine (systemic; 0.06 or 0.125mg/kg, intra-cranial; 1 or 2μg/side), the muscarinic acetylcholine receptor (AChR) antagonist scopolamine (2.4 or 24μg/side), or the nicotinic AChR antagonist mecamylamine (3 or 30μg/side), prior to the FST test session. In control experiments, locomotor activity was also examined following systemic and intra-cranial administration of cholinergic drugs. Physostigmine administration, either systemically or directly into the VTA, significantly increased immobility time in FST, whereas physostigmine infusion into a dorsal control site did not alter immobility time. In contrast, VTA infusion of either scopolamine or mecamylamine decreased immobility time, consistent with an antidepressant-like effect. Finally, the VTA physostigmine-induced increase in immobility was blocked by co-administration with scopolamine, but unaltered by co-administration with mecamylamine. These data show that enhancing VTA cholinergic tone and blocking VTA AChRs has opposing effects in FST. Together, the findings provide evidence for a role of VTA cholinergic mechanisms in behavioral responses in FST.

  14. Sox2 regulates cholinergic amacrine cell positioning and dendritic stratification in the retina.

    Science.gov (United States)

    Whitney, Irene E; Keeley, Patrick W; St John, Ace J; Kautzman, Amanda G; Kay, Jeremy N; Reese, Benjamin E

    2014-07-23

    The retina contains two populations of cholinergic amacrine cells, one positioned in the ganglion cell layer (GCL) and the other in the inner nuclear layer (INL), that together comprise ∼1/2 of a percent of all retinal neurons. The present study examined the genetic control of cholinergic amacrine cell number and distribution between these two layers. The total number of cholinergic amacrine cells was quantified in the C57BL/6J and A/J inbred mouse strains, and in 25 recombinant inbred strains derived from them, and variations in their number and ratio (GCL/INL) across these strains were mapped to genomic loci. The total cholinergic amacrine cell number was found to vary across the strains, from 27,000 to 40,000 cells, despite little variation within individual strains. The number of cells was always lower within the GCL relative to the INL, and the sizes of the two populations were strongly correlated, yet there was variation in their ratio between the strains. Approximately 1/3 of that variation in cell ratio was mapped to a locus on chromosome 3, where Sex determining region Y box 2 (Sox2) was identified as a candidate gene due to the presence of a 6-nucleotide insertion in the protein-coding sequence in C57BL/6J and because of robust and selective expression in cholinergic amacrine cells. Conditionally deleting Sox2 from the population of nascent cholinergic amacrine cells perturbed the normal ratio of cells situated in the GCL versus the INL and induced a bistratifying morphology, with dendrites distributed to both ON and OFF strata within the inner plexiform layer.

  15. Cholinergic dysfunction and amnesia in patients with Wernicke-Korsakoff syndrome: a transcranial magnetic stimulation study.

    Science.gov (United States)

    Nardone, Raffaele; Bergmann, Jürgen; De Blasi, Pierpaolo; Kronbichler, Martin; Kraus, Jörg; Caleri, Francesca; Tezzon, Frediano; Ladurner, Gunther; Golaszewski, Stefan

    2010-03-01

    The specific neurochemical substrate underlying the amnesia in patients with Wernicke-Korsakoff syndrome (WKS) is still poorly defined. Memory impairment has been linked to dysfunction of neurons in the cholinergic system. A transcranial magnetic stimulation (TMS) protocol, the short latency afferent inhibition (SAI), may give direct information about the function of some cholinergic pathways in the human motor cortex. In the present study, we measured SAI in eight alcoholics with WKS and compared the data with those from a group of age-matched healthy individuals; furthermore, we correlated the individual SAI values of the WKS patients with memory and other cognitive functions. Mean SAI was significantly reduced in WKS patients when compared with the controls. SAI was increased after administration of a single dose of donezepil in a subgroup of four patients. The low score obtained in the Rey Complex Figure delayed recall test, the Digit Span subtest of the Wechsler Adult Intelligence Scale-Revised (WAIS-R) and the Corsi's Block Span subtest of the WAIS-R documented a severe impairment in the anterograde memory and short-term memory. None of the correlations between SAI values and these neuropsychological tests reached significance. We provide physiological evidence of cholinergic involvement in WKS. However, this putative marker of central cholinergic activity did not significantly correlate with the memory deficit in our patients. These findings suggest that the cholinergic dysfunction does not account for the memory disorder and that damage to the cholinergic system is not sufficient to cause a persisting amnesic syndrome in WKS.

  16. Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic and Parvalbumin Neurons in mice

    Directory of Open Access Journals (Sweden)

    Chun eYang

    2013-06-01

    Full Text Available Coffee and tea contain the stimulants caffeine and theophylline. These compounds act as antagonists of adenosine receptors. Adenosine promotes sleep and its extracellular concentration rises in association with prolonged wakefulness, particularly in the basal forebrain (BF region involved in activating the cerebral cortex. However, the effect of adenosine on identified BF neurons, especially non-cholinergic neurons, is incompletely understood. Here we used whole-cell patch-clamp recordings in mouse brain slices prepared from two validated transgenic mouse lines with fluorescent proteins expressed in GABAergic or parvalbumin (PV neurons to determine the effect of adenosine. Whole-cell recordings were made BF cholinergic neurons and from BF GABAergic & PV neurons with the size (>20 µm and intrinsic membrane properties (prominent H-currents corresponding to cortically projecting neurons. A brief (2 min bath application of adenosine (100 μM decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents in all groups of BF cholinergic, GABAergic and PV neurons we recorded. In addition, adenosine decreased the frequency of miniature EPSCs in BF cholinergic neurons. Adenosine had no effect on the frequency of spontaneous inhibitory postsynaptic currents in cholinergic neurons or GABAergic neurons with large H-currents but reduced them in a group of GABAergic neurons with smaller H-currents. All effects of adenosine were blocked by a selective, adenosine A1 receptor antagonist, cyclopentyltheophylline (CPT, 1 μM. Adenosine had no postsynaptic effects. Taken together, our work suggests that adenosine promotes sleep by an A1-receptor mediated inhibition of glutamatergic inputs to cortically-projecting cholinergic and GABA/PV neurons. Conversely, caffeine and theophylline promote attentive wakefulness by inhibiting these A1 receptors in BF thereby promoting the high-frequency oscillations in the cortex required for

  17. Controlling methanogenesis and improving power production of microbial fuel cell by lauric acid dosing.

    Science.gov (United States)

    Rajesh, P P; Noori, Md T; Ghangrekar, M M

    2014-01-01

    Methanogens compete with anodophiles for substrate and thus reduce the power generation and coulombic efficiency (CE) of the microbial fuel cell (MFC). Performance of a baked clayware membrane MFC inoculated with mixed anaerobic sludge pretreated with lauric acid was investigated in order to enhance power recovery by controlling methanogenesis. In the presence of lauric acid pretreated inoculum, MFC produced maximum volumetric power density of 4.8 W/m(3) and the CE increased from 3.6% (for untreated inoculum) to 11.6%. Cyclic voltammetry (CV) and electro-kinetic evaluation indicated a higher bio-catalytic activity at the anode of the MFC inoculated with lauric acid pretreated sludge. With the lauric acid pretreated inoculum a higher catalytic current of 114 mA, exchange current density of 40.78 mA/m(2) and lower charge transfer resistance of 0.00016 Ωm(2) were observed during oxidation at the anode. Addition of lauric acid significantly achieved suppression of methanogenesis and enhanced the sustainable power generation of MFC by 3.9 times as compared with control MFC inoculated with sludge without any pretreatment.

  18. Ultrapure ajulemic acid has improved CB2 selectivity with reduced CB1 activity.

    Science.gov (United States)

    Tepper, Mark A; Zurier, Robert B; Burstein, Sumner H

    2014-07-01

    Ajulemic acid, a side-chain analog of Δ(8)-THC-11-oic acid, was designed as a potent therapeutic agent free of the psychotropic adverse effects typical of most cannabinoids. Subsequent studies of ajulemic acid have yielded widely divergent findings on the occurrence of these adverse effects. To help resolve these discrepancies, we have prepared highly purified ajulemic acid using a different synthetic method than previously reported in the literature and compared its cannabinoid receptor binding constants with those obtained using several other preparations from different sources. Whereas CB2 binding did not vary greatly among all of the samples, the CB1 binding showed a wide range of affinities. The highly purified product (JBT-101) reported here had the weakest affinity for CB1 while the original preparation (HU-239) showed the strongest affinity for CB1. The CB1/CB2 ratio of affinities was 12.3 for JBT-101 whereas that for HU-239 was 0.19, a 65-fold difference. Functional responses such as catalepsy and hypothermia using JBT-101 versus HU-239 displayed reduced CB1 activity in keeping with the receptor binding data. Thus, earlier conclusions on the limited therapeutic index for ajulemic acid need to be reconsidered in the light of the data now obtained using JBT-101.

  19. Pathway for interferon-gamma to promote the differentiation of cholinergic neurons in rat embryonic basal forebrain/septal nuclei

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: The supernatant of interferon-gamma (IFN γ ) co-cultured with neonatal rat cortical glia can promote the cells in embryonic basal forebrain/septal nuclei to differentiate into cholinergic neurons, but the mechanism is still unclear.OBJECTIVE: To analyze the pathways for IFN γ to promote the differentiation of primarily cultured cholinergic neurons in rat embryonic basal forebrain/septal nuclei through culture in different conditioned medium.DESIGN: A controlled experiment taking cells as the observational target.SETTINGS: Department of Biochemistry and Molecular Biology, Youjiang Medical College for Nationalities; Department of Cell Biology, Beijing University Health Science Center.MATERIALS: Sixty-four pregnant Wistar rats for 16 days (250 - 350 g) and 84 Wistar rats (either male or female, 5 - 7 g) of 0 - 1 day after birth were provided by the experimental animal department of Beijing University Health Science Center. Rat IFN γ were provided by Gibco Company; Glial fibrillary acidic protein by Huamei Company.METHODS: The experiments were carried out in the Department of Cell Biology, Beijing University Health Science Center and Daheng Image Company of Chinese Academy of Science from July 1995 to December 2002. ① Interventions: The nerve cells in the basal forebrain/septal nuclei of the pregnant Wistar rats for 16 days were primarily cultured, and then divided into four groups: Blank control group (not any supernatant and medium was added); Control group (added by mixed glial cell or astrocyte conditioned medium); IFN γ group (added by mixed glial cell or astrocyte conditioned medium+IFN γ ). Antibody group (added by mixed glial cell or astrocyte conditioned medium+IFN γ +Ab-IFN γ ). Mixed glial cell or astrocyte conditioned medium was prepared using cerebral cortex of Wistar rats of 0 - 1 day after birth. ② Evaluation: The immunohistochemical method was used to perform the choline acetyltransferase (ChAT) staining of cholinergic neurons

  20. Pluronic-poly (acrylic acid)-cysteine/Pluronic L121 mixed micelles improve the oral bioavailability of paclitaxel.

    Science.gov (United States)

    Zhao, Yanli; Li, Yanli; Ge, Jianjun; Li, Na; Li, Ling-Bing

    2014-11-01

    The aim of the study is to synthesize a thiolated Pluronic copolymer, Pluronic-poly (acrylic acid)-cysteine copolymer, to construct a mixed micelle system with the Pluronic-poly (acrylic acid)-cysteine copolymer and Pluronic L121 (PL121) and to evaluate the potential of these mixed micelles as an oral drug delivery system for paclitaxel. Compared with Pluronic-poly (acrylic acid)-cysteine micelles, drug-loading capacity of Pluronic-poly (acrylic acid)-cysteine/PL121 mixed micelles was increased from 0.4 to 2.87%. In vitro release test indicated that Pluronic-poly (acrylic acid)-cysteine/PL121 mixed micelles exhibited a pH sensitivity. The permeability of drug-loaded micelles in the intestinal tract was studied with an in situ perfusion method in rats. The presence of verapamil and Pluronic both improved the intestinal permeability of paclitaxel, which further certified the inhibition effect of thiolated Pluronic on P-gp. In pharmacokinetic study, the area under the plasma concentration-time curve (AUC0→∞) of paclitaxel-loaded mixed micelles was four times greater than that of the paclitaxel solution (p cysteine/PL121 micelles were proven to be a potential oral drug delivery system for paclitaxel.

  1. Sourdough fermentation or addition of organic acids or corresponding salts to bread improves nutritional properties of starch in healthy humans.

    Science.gov (United States)

    Liljeberg, H G; Lönner, C H; Björck, I M

    1995-06-01

    Postprandial blood glucose and insulin responses to barley bread containing organic acids or corresponding salts were evaluated in healthy human subjects. The satiety score and the rate and extent of in vitro starch digestion were also studied. Lactic acid was generated by use of a homofermentative starter culture or added to the dough. In addition, products were baked with Ca-lactate, or with Na-propionate at two different concentrations. Consumption of the product baked with a high concentration of Na-propionate significantly lowered the postprandial blood glucose and insulin responses, and significantly prolonged the duration of satiety compared with all other breads. When subjects consumed the breads baked with sourdough, lactic acid and Na-propionate, their glucose and insulin responses were reduced compared with the wholemeal bread alone. The rate of in vitro amylolysis was reduced only by ingestion of the breads containing lactic acid, suggesting that the beneficial impact of Na-propionate on metabolic responses and satiety was related to effects other than a reduced rate of starch hydrolysis. All bread products had a similar concentration of in vitro resistant starch of 1.3-2.1 g/100 g (starch basis). It is concluded that sourdough baking and other fermentation processes may improve the nutritional features of starch. The results also demonstrate that certain salts of organic acids may have metabolic effects.

  2. Contribution of the cholinergic basal forebrain to proactive interference from stored odor memories during associative learning in rats.

    Science.gov (United States)

    De Rosa, E; Hasselmo, M E; Baxter, M G

    2001-04-01

    E. De Rosa and M. E. Hasselmo (2000) demonstrated that 0.25 mg/kg scopolamine (SCOP) selectively increased proactive interference (PI) from stored odor memories during learning. In the present study, rats with bilateral cholinergic lesions limited to the horizontal limb of the diagonal band of Broca, made with 192 IgG-saporin, were not impaired in acquiring the same olfactory discrimination task relative to control rats. Rats with bilateral 192 IgG-saporin lesions to all basal forebrain cholinergic nuclei (BF) also showed no impairment in acquisition of this task. However, the BF-saporin rats were hypersensitive to oxotremorine-induced hypothermia and demonstrated an increased sensitivity to PI following a low dose of SCOP (0.125 mg/kg) relative to control rats. The results suggest that weaker cholinergic modulation after cholinergic BF lesions makes the system more sensitive to PI during blockade of the remaining cholinergic elements.

  3. Improvement in electrochemical capacitance of activated carbon from scrap tires by nitric acid treatment

    Science.gov (United States)

    Han, Yan; Zhao, Ping-Ping; Dong, Xiao-Ting; Zhang, Cui; Liu, Shuang-Xi

    2014-12-01

    Activated carbon (AC) obtained from the industrial pyrolytic tire char is treated by concentrated nitric acid (AC-HNO3) and then used as the electrode material for supercapacitors. Surface properties and electrochemical capacitances of AC and ACHNO3 are studied. It is found that the morphology and the porous texture for AC and AC-HNO3 have little difference, while the oxygen content increases and functional groups change after the acid treatment. Electrochemical results demonstrate that the AC-HNO3 electrode displays higher specific capacitance, better stability and cycling performance, and lower equivalent series resistance, indicating that AC obtained from the industrial pyrolytic tire char treated by concentrated nitric acid is applicable for supercapacitors.

  4. Improved method to obtain pfaffic acid as a marker for quality control

    Directory of Open Access Journals (Sweden)

    Marili Villa Nova Rodrigues

    2013-01-01

    Full Text Available Pfaffic acid, a marker of Hebanthe eriantha (Brazilian ginseng, was first isolated in 1983 but is not yet commercially available. This lack of availability compromises the quality control of this plant and its derivatives. This paper proposes a process for pfaffic acid isolation from roots of H. eriantha at a purity suitable for analytical purposes. The steps involved in this process included extraction, hydrolysis, fractionation and purification by preparative HPLC. This process led to isolation of pfaffic acid with a chromatographic purity of 98.5% in a 0.25% yield from dried roots of H. eriantha; this yield is more than forty times higher than that of the current method in the literature.

  5. Improved method to obtain pfaffic acid as a marker for quality control

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Marili Villa Nova; Vedovello, Amanda; Rodrigues, Rodney Alexandre Ferreira; Montanari Junior, Ilio; Rehder, Vera Lucia Garcia, E-mail: rodney@cpqba.unicamp.br [Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas, Universidade Estadual de Campinas, SP (Brazil)

    2013-09-01

    Pfaffic acid, a marker of Hebanthe eriantha (Brazilian ginseng), was first isolated in 1983 but is not yet commercially available. This lack of availability compromises the quality control of this plant and its derivatives. This paper proposes a process for pfaffic acid isolation from roots of H. eriantha at a purity suitable for analytical purposes. The steps involved in this process included extraction, hydrolysis, fractionation and purification by preparative HPLC. This process led to isolation of pfaffic acid with a chromatographic purity of 98.5% in a 0.25% yield from dried roots of H. eriantha; this yield is more than forty times higher than that of the current method in the literature. (author)

  6. Dichotomous Distribution of Putative Cholinergic Interneurons in Mouse Accessory Olfactory Bulb

    Science.gov (United States)

    Marking, Sarah; Krosnowski, Kurt; Ogura, Tatsuya; Lin, Weihong

    2017-01-01

    Sensory information processing in the olfactory bulb (OB) relies on diverse populations of bulbar interneurons. In rodents, the accessory OB (AOB) is divided into two bulbar regions, the anterior (aAOB) and posterior (pAOB), which differ substantially in their circuitry connections and associated behaviors. We previously identified and characterized a large number of morphologically diverse cholinergic interneurons in the main OB (MOB) using transgenic mice to visualize the cell bodies of choline acetyltransferase (ChAT-expressing neurons and immunolabeling (Krosnowski et al., 2012)). However, whether there are cholinergic neurons in the AOB is controversial and there is no detailed characterization of such neurons. Using the same line of ChAT(bacterial artificial chromosome, BAC)-enhanced green fluorescent protein (eGFP) transgenic mice, we investigated cholinergic neurons in the AOB. We found significant differences in the number and location of GFP-expressing (GFP+), putative cholinergic interneurons between the aAOB and pAOB. The highest numbers of GFP+ interneurons were found in the aAOB glomerular layer (aGL) and pAOB mitral/tufted cell layer (pMCL). We also noted a high density of GFP+ interneurons encircling the border region of the pMCL. Interestingly, a small subset of glomeruli in the middle of the GL receives strong MCL GFP+ nerve processes. These local putative cholinergic-innervated glomeruli are situated just outside the aGL, setting the boundary between the pGL and aGL. Many but not all GFP+ neurons in the AOB were weakly labeled with antibodies against ChAT and vesicular acetylcholine transporter (VAChT). We further determined if these GFP+ interneurons differ from other previously characterized interneuron populations in the AOB and found that AOB GFP+ interneurons express neither GABAergic nor dopaminergic markers and most also do not express the glutamatergic marker. Similar to the cholinergic interneurons of the MOB, some AOB GFP+ interneurons

  7. Developmental and neurochemical features of cholinergic neurons in the murine cerebral cortex

    Directory of Open Access Journals (Sweden)

    Becchetti Andrea

    2009-03-01

    Full Text Available Abstract Background The existence and role of intrinsic cholinergic cells in the cerebral cortex is controversial, because of their variable localization and morphology in different mammalian species. We have applied choline acetyltransferase (ChAT immunocytochemistry to study the distribution of cholinergic neurons in the murine cerebral cortex, in the adult and during postnatal development. For more precise neurochemical identification of these neurons, the possible colocalization of ChAT with different markers of cortical neuronal populations has been analyzed by confocal microscopy. This method was also used to verify the relationship between cholinergic cells and cortical microvessels. Results ChAT positive cells appeared at the end of the first postnatal week. Their density dramatically increased at the beginning of the second postnatal week, during which it remained higher than in perinatal and adult stages. In the adult neocortex, cholinergic neurons were particularly expressed in the somatosensory area, although their density was also significant in visual and auditory areas. ChAT positive cells tended to be scarce in other regions. They were mainly localized in the supragranular layers and displayed a fusiform/bipolar morphology. The colocalization of ChAT with pyramidal neuron markers was negligible. On the other hand, more than half of the cholinergic neurons contained calretinin, but none of them expressed parvalbumin or calbindin. However, only a fraction of the ChAT positive cells during development and very few in adulthood turned out to be GABAergic, as judged from expression of GABA and its biosynthetic enzymes GAD67/65. Consistently, ChAT showed no localization with interneurons expressing green fluorescent protein under control of the GAD67 promoter in the adult neocortex. Finally, the cortical cholinergic cells often showed close association with the microvessel walls, as identified with the gliovascular marker aquaporin 4

  8. Improvement of surface acidity and structural regularity of Zr-modified mesoporous MCM-41

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.F. [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-A, Av. San Pablo 180, Col. Reynosa-Tamaulipas, 02200 Mexico D.F. (Mexico)]. E-mail: chenlf2001@yahoo.com; Norena, L.E. [Departamento de Ciencias Basicas, Universidad Autonoma Metropolitana-A, Av. San Pablo 180, Col. Reynosa-Tamaulipas, 02200 Mexico D.F. (Mexico); Navarrete, J. [Grupo de Molecular Ingenieria, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, 07730 Mexico D.F. (Mexico); Wang, J.A. [Laboratorio de Catalisis y Materiales, SEPI-ESIQIE, Instituto Politecnico Nacional, Av. Politecnico S/N, Col. Zacatenco, 07738 Mexico D.F. (Mexico)

    2006-06-10

    This work reports the synthesis and surface characterization of a Zr-modified mesoporous MCM-41 solid with an ordered hexagonal arrangement, prepared through a templated synthesis route, using cetyltrimethylammonium chloride as the template. The surface features, crystalline structure, textural properties and surface acidity of the materials were characterized by in situ Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), N{sub 2} physisorption isotherms, {sup 29}Si MAS-NMR and in situ FT-IR of pyridine adsorption. It is evident that the surfactant cations inserted into the network of the solids during the preparation could be removed by calcination of the sample above 500 deg. C. The resultant material showed a large surface area of 680.6 m{sup 2} g{sup -1} with a uniform pore diameter distribution in a very narrow range centered at approximately 2.5 nm. Zirconium incorporation into the Si-MCM-41 framework, confirmed by {sup 29}Si MAS-NMR analysis, increased not only the wall thickness of the mesopores but also the long-range order of the periodically hexagonal structure. Both, Lewis and Broensted acid sites, were formed on the surface of the Zr-modified MCM-41 solid. Compared to Si-MCM-41 on which only very weak Lewis acid sites were formed, the densities of both Lewis and Broensted acid sites and the strength of the acidity on the Zr-modified sample were significantly increased, indicating that the incorporation of zirconium greatly enhances the acidity of the material.

  9. Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits.

    Science.gov (United States)

    Settanni, Luca; Moschetti, Giancarlo

    2010-09-01

    Non-starter lactic acid bacteria (NSLAB) dominate cheese microbiota during ripening. They tolerate the hostile environment well and strongly influence the biochemistry of curd maturation, contributing to the development of the final characteristics of cheese. Several NSLAB are selected on the basis of their health benefits (enhancement of intestinal probiosis, production of bioactive peptides, generation of gamma-aminobutyric acid and inactivation of antigenotoxins) and are employed in cheese-making. This review describes the ecology of NSLAB, and focuses on their application as adjunct cultures, in order to drive the ripening process and promote health advantages. The scopes of future directions of research are summarised.

  10. Improvement of the lactic acid fermentation of capers through an experimental factorial design (Capparis spinosa L

    Directory of Open Access Journals (Sweden)

    Errachidi, F.

    2010-12-01

    Full Text Available The study of the caper fermentation process through an experiment factorial plan allows us to determine a function ƒ such that (Y= ƒ(X1, X2, …, Xn existing between magnitude Y which is the decrease of pH (called response, and variables Xi , which are brine, lactic acid, citric acid and lactic ferment (called factors. A complete factorial plan 24 was made in order to determine the factors and the interactions among the factors which have a statistically significant influence on the studied response. Brine, lactic acid and citric acid have a significant effect on the fall of pH; by contrast, lactic ferment does not have a significant effect. On the other hand, the interactions between brine and lactic acid, between brine and lactic ferment , between lactic acid with citric acid and between lactic acid with lactic ferment have significant effects on the fall of pH (p El estudio del proceso de fermentación mediante un diseño factorial nos permitió determinar una función ƒ (Y= ƒ(X1, X2, …, Xn que existe entre la magnitud Y que es la disminución del pH (llamada respuesta, y las variables X, que son la salmuera, ácido láctico, ácido cítrico y los fermentos lácticos (llamados factores. Un completo plan factorial 24 fue hecho con objeto de determinar los factores y las interacciones entre los factores que tienen una influencia estadísticamente significativa en la respuesta estudiada. La salmuera, ácido láctico y ácido cítrico tienen un efecto significativo en la caída del pH; por el contrario, los fermentos lácticos no tienen efecto significativo. Por otra parte, las interacciones entre salmuera y ácido láctico, salmuera y fermentos lácticos, ácido láctico y ácido cítrico, y ácido láctico y fermentos lácticos tuvieron un efecto significativo en la caída del pH (p < 0.0001. La fermentación fue hecha en el laboratorio de investigación de la Sociedad Marocapres-Fez líder Internacional en la transformación de

  11. Combined Sewer Overflow pretreatment with chemical coagulation and a particle settler for improved peracetic acid disinfection

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Bonnerup, Arne; Andersen, Henrik Rasmus

    2016-01-01

    Full scale disinfection by peracetic acid (PAA) was achieved on Combined Sewer Overflow (CSO) water, which was pre-treated physically by a fast settling-filtration unit. Disinfection of untreated CSO water using PAA was compared to treatment using a particle separator (HydroSeparator®) and additi......Full scale disinfection by peracetic acid (PAA) was achieved on Combined Sewer Overflow (CSO) water, which was pre-treated physically by a fast settling-filtration unit. Disinfection of untreated CSO water using PAA was compared to treatment using a particle separator (Hydro...

  12. Review article: putting immediate-release proton-pump inhibitors into clinical practice--improving nocturnal acid control and avoiding the possible complications of excessive acid exposure.

    Science.gov (United States)

    Katz, P O

    2005-12-01

    Nocturnal gastro-oesphageal reflux is an under-appreciated clinical challenge. This condition may cause symptoms such as nocturnal heartburn, or it may be asymptomatic. In addition, patients may experience sleep disturbances that can potentially lead to complications such as erosive oesophagitis and Barrett's oesophagus, and may be a risk factor for development of oesophageal adenocarcinoma. Delayed-release proton-pump inhibitors (PPIs) have traditionally been effective in treating both daytime and night-time reflux symptoms, but are limited in control of nocturnal acidity by their pharmacodynamic characteristics. This narrative review addresses the prevalence, impact and pharmacologic approaches used to control nocturnal acidity. Methods to optimize nocturnal acid control include careful attention to dosing schedule, using higher doses of PPIs, adding an histamine H2-receptor antagonist at bedtime to once or twice daily delayed-release PPI, or using immediate-release omeprazole (Zegerid powder for oral suspension; Santarus, Inc., San Diego, CA, USA). This new formulation appears to provide sustained control of intragastric pH at steady state, and when dosed at bedtime, and may be effective in improving control of nocturnal pH and treating night-time GERD.

  13. Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics.

    Science.gov (United States)

    Linnes, J C; Rodriguez, N M; Liu, L; Klapperich, C M

    2016-04-01

    Devices based on rapid, paper-based, isothermal nucleic acid amplification techniques have recently emerged with the potential to fill a growing need for highly sensitive point-of-care diagnostics throughout the world. As this field develops, such devices will require optimized materials that promote amplification and sample preparation. Herein, we systematically investigated isothermal nucleic acid amplification in materials currently used in rapid diagnostics (cellulose paper, glass fiber, and nitrocellulose) and two additional porous membranes with upstream sample preparation capabilities (polyethersulfone and polycarbonate). We compared amplification efficiency from four separate DNA and RNA targets (Bordetella pertussis, Chlamydia trachomatis, Neisseria gonorrhoeae, and Influenza A H1N1) within these materials using two different isothermal amplification schemes, helicase dependent amplification (tHDA) and loop-mediated isothermal amplification (LAMP), and traditional PCR. We found that the current paper-based diagnostic membranes inhibited nucleic acid amplification when compared to membrane-free controls; however, polyethersulfone allowed for efficient amplification in both LAMP and tHDA reactions. Further, observing the performance of traditional PCR amplification within these membranes was not predicative of their effects on in situ LAMP and tHDA. Polyethersulfone is a new material for paper-based nucleic acid amplification, yet provides an optimal support for rapid molecular diagnostics for point-of-care applications.

  14. Biotransformation and improved enzymatic extraction of chlorogenic acid from coffee pulp by filamentous fungi.

    Science.gov (United States)

    Torres-Mancera, María Teresa; Baqueiro-Peña, Itzamná; Figueroa-Montero, Arturo; Rodríguez-Serrano, Gabriela; González-Zamora, Eduardo; Favela-Torres, Ernesto; Saucedo-Castañeda, Gerardo

    2013-01-01

    The highest enzymatic extraction of covalent linked chlorogenic (36.1%) and caffeic (CA) (33%) acids from coffee pulp (CP) was achieved by solid-state fermentation with a mixture of three enzymatic extracts produced by Aspergillus tamarii, Rhizomucor pusillus, and Trametes sp. Enzyme extracts were produced in a practical inexpensive way. Synergistic effects on the extraction yield were observed when more than one enzyme extract was used. In addition, biotransformation of chlorogenic acid (ChA) by Aspergillus niger C23308 was studied. Equimolar transformation of ChA into CA and quinic acids (QA) was observed during the first 36 h in submerged culture. Subsequently, after 36 h, equimolar transformation of CA into protocatechuic acid was observed; this pathway is being reported for the first time for A. niger. QA was used as a carbon source by A. niger C23308. This study presents the potential of using CP to produce enzymes and compounds such as ChA with biological activities.

  15. Chlorogenic acid supplementation improves multifocal electroretinography in patients with retinitis pigmentosa.

    Science.gov (United States)

    Shin, Joo Young; Yu, Hyeong Gon

    2014-01-01

    To evaluate the effect of chlorogenic acid supplementation in patients with retinitis pigmentosa, we evaluated objective change in visual function with multifocal electroretinography, along with visual acuity, visual field, standard electroretinography, and contrast sensitivity. Eighteen patients diagnosed with retinitis pigmentosa were enrolled in this prospective, non-comparative, single-arm study. Multifocal electroretinography, best-corrected visual acuity in Early Treatment Diabetic Retinopathy Study letters, total point score on visual field examination with Humphrey Field Analyzer II, electroretinography, and contrast sensitivity were measured and repeated after 3 months supplementation with chlorogenic acid. The amplitude of ring 5 was significantly higher on multifocal electroretinography after 3 months of chlorogenic acid supplementation (7.2 ± 9.5 vs 8.3 ± 10.8 nV/deg(2), mean ± standard deviation, P = 0.022). There were no significant changes in the best-corrected visual acuity, total point score on Humphrey Field Analyzer, 30 Hz flicker amplitude on standard electroretinography, or contrast sensitivity. Chlorogenic acid may have a beneficial effect on the peripheral area at the margins of retinal degeneration, and should be considered as an anti-oxidant for the management of retinitis pigmentosa.

  16. Ionic liquid-assisted solublization for improved enzymatic esterification of phenolic acids

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Guo, Zheng; Xu, Xuebing

    2012-01-01

    Phenolic acids are very difficult to dissolve in most of solvent, which lead to low yield and long reaction time for production of lipophilic phenolic derivatives according to previous studies.This work is focused on increasing production of lipophilic phenolic derivatives catalyzed by Novozym 43...

  17. Improvement of clavulanic acid production in Streptomyces clavuligerus by genetic manipulation of structural biosynthesis genes.

    Science.gov (United States)

    Jnawali, Hum Nath; Yoo, Jin Cheol; Sohng, Jae Kyung

    2011-06-01

    To enhance clavulanic acid production, four structural clavulanic acid biosynthesis genes, carboxyethylarginine synthase (ceas2), β-lactam synthetase (bls2), clavaminate synthase (cas2) and proclavaminate amidinohydrolase (pah2), were amplified from Streptomyces clavuligerus genomic DNA. They were cloned in the pSET152 integration and pIBR25 expression vectors containing the strong ermE* promoter to generate pHN18 and pHN19, respectively, and both plasmids were introduced into S. clavuligerus by protoplast transformation. Clavulanic acid production was increased by 8.7-fold (to ~310 mg/l) in integrative pHN18 transformants and by 5.1-fold in pHN19 transformants compared to controls. Transcriptional analyses showed that the expression levels of ceas2, bls2, cas2 and pah2 were markedly increased in both transformants as compared with wild-type. The elevation of the ceas2, bls2, cas2 and pah2 transcripts was consistent with the enhanced production of clavulanic acid.

  18. Amino Acid Prodrugs: An Approach to Improve the Absorption of HIV-1 Protease Inhibitor, Lopinavir

    Directory of Open Access Journals (Sweden)

    Mitesh Patel

    2014-04-01

    Full Text Available Poor systemic concentrations of lopinavir (LPV following oral administration occur due to high cellular efflux by P-glycoprotein (P-gp and multidrug resistance-associated proteins (MRPs and extensive metabolism by CYP3A4 enzymes. In this study, amino acid prodrugs of LPV were designed and investigated for their potential to circumvent efflux processes and first pass effects. Three amino acid prodrugs were synthesized by conjugating isoleucine, tryptophan and methionine to LPV. Prodrug formation was confirmed by the LCMS/MS and NMR technique. Interaction of LPV prodrugs with efflux proteins were carried out in P-gp (MDCK-MDR1 and MRP2 (MDCK-MRP2 transfected cells. Aqueous solubility studies demonstrated that prodrugs generate higher solubility relative to LPV. Prodrugs displayed higher stability under acidic conditions and degraded significantly with rise in pH. Uptake and transport data suggested that prodrugs carry significantly lower affinity towards P-gp and MRP2 relative to LPV. Moreover, prodrugs exhibited higher liver microsomal stability relative to LPV. Hence, amino acid prodrug modification might be a viable approach for enhancing LPV absorption across intestinal epithelial and brain endothelial cells which expresses high levels of P-gp and MRP2.

  19. Improving farm management by modeling the contamination of farm tank milk with butyric acid bacteria

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, te M.C.; Jong, de P.; Lankveld, J.M.G.

    2006-01-01

    Control of contamination of farm tank milk (FTM) with the spore-forming butyric acid bacteria (BAB) is important to prevent the late-blowing defect in semi-hard cheeses. The risk of late blowing can be decreased via control of the contamination level of FTM with BAB. A modeling approach was applied

  20. Systems biology and metabolic engineering of lactic acid bacteria for improved fermented foods

    NARCIS (Netherlands)

    Flahaut, N.A.L.; Vos, de W.M.

    2014-01-01

    Lactic acid bacteria have long been used in industrial dairy and other food fermentations that make use of their metabolic activities leading to products with specific organoleptic properties. Metabolic engineering is a rational approach to steer fermentations toward the production of desired compou

  1. Lewis base additives improve the zeolite ferrierite-catalyzed synthesis of isostearic acid

    Science.gov (United States)

    Isostearic acid (IA) is of interest for industrial purposes especially in the area of biolubricants, such as cosmetics and slip additives for polyolefin and related copolymer films. This study was designed to develop a zeolitic catalysis process for IA production through isomerization of fatty aci...

  2. Salicylic Acid Improved In Viro Meristem Regeneration and Salt Tolerance in Two Hibiscus Species

    Science.gov (United States)

    Salicylic acid (SA) has been reported to induce abiotic stress, including salt tolerance in plants. The objective of this study was to determine whether application of various exogenous SA concentrations to in vitro grown meristem shoots could induce salt tolerance in two Hibiscus species. The effec...

  3. Ascorbic acid improves impaired venous and arterial endothelium dependent dilation in smokers

    Institute of Scientific and Technical Information of China (English)

    Márcio Gon(c)alves de SOUSA; Juan Carlos YUGAR-TOLEDO; Marcelo RUBIRA; Sílvia Elaine FERREIRA-MELO; Rodrigo PLENTZ; Deise BARBIERI; Fernanda CONSOLIM-COLOMBO; Maria Cláudia IRIGOYEN; Heitor MORENO Jr

    2005-01-01

    Aim: To compare the acute effects of ascorbic acid on vasodilation of veins and arteries in vivo. Methods: Twenty-six healthy non-smokers and 23 healthy moderate smokers were recruited in this study. The dorsal hand vein compliance technique and flow-mediated dilation were used. Dose-response curves to bradykinin and sodium nitroprusside were constructed to test the endothelium-dependent and -independent relaxation before and after acute infusion of ascorbic acid. Results: Smokers had an impaired venodilation with bradykinin compared with non-smokers (68.3%±13.2% vs 93.7%±20.1%, respectively; P<0.05). Ascorbic acid administration in the dorsal hand vein significantly increased the venodilation with bradykinin in smokers (68.3%± 13.2% vs 89.5%±6.3% before and after infusion, respectively; P<0.05) but not in non-smokers (93.7%±20.1% vs 86.4%±12.4% before and after infusion, respectively). Similarly, the arterial response in smokers had an impaired endothelium-dependent dilation compared with that in non-smokers (8.8%±2.7% vs 15.2%±2.3%, respectively; P<0.05) and ascorbic acid restored this response in smokers (8.8%±2.7% vs 18.7%±6.5% before and after infusion, respectively; P<0.05), but no difference was seen in non-smokers (15.2%±2.3% vs 14.0%±4.4% before and after infusion, respectively). The endothelium-independent dilation did not differ in both the groups studied. No important hemodynamic change was detected using the Portapress device. Conclusion: Smokers had impaired endothelium-dependent vasodilation responsiveness in both arterial and venous systems. Ascorbic acid restores this responsiveness in smokers.

  4. Investigating the use of coupling agents to improve the interfacial properties between a resorbable phosphate glass and polylactic acid matrix.

    Science.gov (United States)

    Hasan, Muhammad Sami; Ahmed, Ifty; Parsons, Andrew J; Rudd, Chris D; Walker, Gavin S; Scotchford, Colin A

    2013-09-01

    Eight different chemicals were investigated as potential candidate coupling agents for phosphate glass fibre reinforced polylactic acid composites. Evidence of reaction of the coupling agents with phosphate glass and their effect on surface wettability and glass degradation were studied along with their principle role of improving the interface between glass reinforcement and polymer matrix. It was found that, with an optimal amount of coupling agent on the surface of the glass/polymer, interfacial shear strength improved by a factor of 5. Evidence of covalent bonding between agent and glass was found for three of the coupling agents investigated, namely: 3-aminopropyltriethoxysilane; etidronic acid and hexamethylene diisocyanate. These three coupling agents also improved the interfacial shear strength and increased the hydrophobicity of the glass surface. It is expected that this would provide an improvement in the macroscopic properties of full-scale composites fabricated from the same materials which may also help to retain these properties for the desired length of time by retarding the breakdown of the fibre/matrix interface within these composites.

  5. Improvement on the Nutritive Quality of Napier Grass Silage through Inoculation of Lactobacillus plantarum and Formic Acid

    Directory of Open Access Journals (Sweden)

    Saprilian Stya Hapsari

    2016-08-01

    Full Text Available The potential availability of forage feed is high, but in reality this potential has not been able to meet the requirement of feed both in sustainable quantity and quality. Silage made with the use of liquid fermentation additive (FA can be a solution for those problems. The use of  different levels of FA and addition of Lactobacillus plantarum bacteria as well as formic acid were expected to improve the nutritive quality of napier grass silage. The first experiment was designed to measure the fermentative quality of napier grass silage. The treatments used were the levels of FA, L. plantarum, and formic acid supplementations. The experiment used a completely randomized design with a 3x2x2 factorial arrangement with 3 replications. The first factor was the level of liquid FA (5%, 7.5%, and 10%, and the second factor was the inoculation of L. plantarum (without and with inoculation of the L. plantarum, and the third factor was the addition of formic acid (without and with the addition of 0.15% formic acid. The second experiment was aimed to evaluate chemical and microbiological characteristics, and in vitro digestibility of selected napier grass silage. The results showed that napier grass silage from all treatments showed good qualities. There were interactions between FA, L. plantarum, and formic acid on DM content (P<0.05 and ammonia production (P<0.01. The use of FA showed an interaction (P<0.01 with the addition of L. plantarum and formic acid in Fleigh point. Ammonia production in rumen (P<0.01, total VFA (P<0.05, and in vitro digestibility (P<0.01 were significantly affected by the treatments. The optimal level of liquid FA was 7.5%. Based on the nutritive quality of silage, L. plantarum addition was as effective as control treatment to improve nutritive quality of napier grass silage through the increased  of fermentation characteristics i.e., low pH, high DM product, high fermentation product (VFA, and digestible on rumen. Formic acid

  6. Targeted modification of storage protein content resulting in improved amino acid composition of barley grain

    DEFF Research Database (Denmark)

    Sikdar, Md. Shafiqul Islam; Bowra, S; Schmidt, Daiana;

    2016-01-01

    family members. Analysis of the AA composition of the transgenic lines showed that the level of essential amino acids increased with a concomitant reduction in proline and glutamine. Both the barley C-hordein and wheat ω-gliadin genes proved successful for RNAi-gene mediated suppression of barley C......C-hordein in barley and ω-gliadins in wheat are members of the prolamins protein families. Prolamins are the major component of cereal storage proteins and composed of non-essential amino acids (AA) such as proline and glutamine therefore have low nutritional value. Using double stranded RNAi...... silencing technology directed towards C-hordein we obtained transgenic barley lines with up to 94.7 % reduction in the levels of C-hordein protein relative to the parental line. The composition of the prolamin fraction of the barley parental line cv. Golden Promise was resolved using SDS...

  7. Improving oxidative stability of olive oil: Incorporation of Spirulina and evaluation of its synergism with citric acid

    Directory of Open Access Journals (Sweden)

    N. Alavi

    2017-03-01

    Full Text Available The effects of different Spirulina concentrations used alone and in combination with citric acid on the oxidative stability of olive oil were assessed. The amounts of primary and secondary oxidation products produced in Spirulina samples were lower than that of the control. The improved oxidative stability indices of Spirulina samples with and without citric acid were in the range of 85.20–94.47% and 258.10–260.21%, respectively. In comparison with the control, Spirulina samples manifested significantly higher carotenoid and chlorophyll contents at the beginning and end of the storage period. The presence of these bioactive compounds results from the presence of Spirulina in the medium and can thus retard the oxidation of olive oil. A higher oxidative stability was reached using BHT in comparison with Spirulina samples. Furthermore, no synergistic action was observed in possible connections between citric acid and Spirulina. In conclusion, Spirulina can enhance oxidative stability and improve the shelf life of olive oil.

  8. Hyaluronic acid dermal fillers: can adjunctive lidocaine improve patient satisfaction without decreasing efficacy or duration?

    OpenAIRE

    Lynnelle Smith; Kimberly Cockerham

    2011-01-01

    Lynnelle Smith1, Kimberly Cockerham21Ophthalmology Department, Loma Linda University, Loma Linda, CA, USA; 2Ophthalmology Department, Stanford University, Palo Alto, CA, USAAbstract: Hyaluronic acid (HA) dermal fillers are the most widely used injectables to augment facial volume without surgery. HA dermal fillers are popular because of their ease of administration, predictable effectiveness, good safety profile, and quick patient recovery. The most common patient complaint is pain. Our goal ...

  9. Chilling Tolerance Improving of Watermelon Seedling by Salicylic Acid Seed and Foliar Application

    OpenAIRE

    Mohammad SAYYARI; Fardin GHANBARI; Sajad FATAHI; Fatemeh BAVANDPOUR

    2013-01-01

    Chilling temperatures lead to numerous physiological disturbances in the cells of chilling-sensitive plants and result in chilling injury and death of tropical and subtropical plants such as watermelon. In this study, the possibility of cold stress tolerance enhancing of watermelon seedling (Citrullus lanatus) by exogenous application of Salicylic acid (SA) was investigated. SA was applied through seed soaking or foliar spray at 0, 0.5, 1 and 1.5 mM concentration. After SA treatment, the see...

  10. Anode modification with formic acid: A simple and effective method to improve the power generation of microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weifeng; Cheng, Shaoan, E-mail: shaoancheng@zju.edu.cn; Guo, Jian

    2014-11-30

    Highlights: • Carbon cloth anode is modified with formic acid by a simple and reliable approach. • The modification significantly enhances the power output of microbial fuel cells. • The modified anode surface favors the bacterial attachment and growth on anode. • The electron transfer rate of anode is promoted. - Abstract: The physicochemical properties of anode material directly affect the anodic biofilm formation and electron transfer, thus are critical for the power generation of microbial fuel cells (MFCs). In this work, carbon cloth anode was modified with formic acid to enhance the power production of MFCs. Formic acid modification of anode increased the maximum power density of a single-chamber air-cathode MFC by 38.1% (from 611.5 ± 6 mW/m{sup 2} to 877.9 ± 5 mW/m{sup 2}). The modification generated a cleaner electrode surface and a reduced content of oxygen and nitrogen groups on the anode. The surface changes facilitated bacterial growth on the anode and resulted in an optimized microbial community. Thus, the electron transfer rate on the modified anodes was enhanced remarkably, contributing to a higher power output of MFCs. Anode modification with formic acid could be an effective and simple method for improving the power generation of MFCs. The modification method holds a huge potential for large scale applications and is valuable for the scale-up and commercialization of microbial fuel cells.

  11. Thyroid hormone reverses aging-induced myocardial fatty acid oxidation defects and improves the response to acutely increased afterload.

    Directory of Open Access Journals (Sweden)

    Dolena Ledee

    Full Text Available BACKGROUND: Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to the development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone supplementation reverses these defects. METHODS: Studies were performed on young (Young, 4-6 months and aged (Old, 22-24 months C57/BL6 mice at standard (50 mmHg and high afterload (80 mmHg. Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only. Function was measured in isolated working hearts along with substrate fractional contributions (Fc to the citric acid cycle (CAC using perfusate with (13C labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin. RESULTS: Old mice maintained cardiac function under standard workload conditions, despite a marked decrease in unlabeled (presumably palmitate Fc and relatively similar individual carbohydrate contributions. However, old mice exhibited reduced palmitate oxidation with diastolic dysfunction exemplified by lower -dP/dT. Thyroid hormone abrogated the functional and substrate flux abnormalities in aged mice. CONCLUSION: The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardiac function potentially through restoration of fatty acid oxidation.

  12. Altered Preconception Fatty Acid Intake Is Associated with Improved Pregnancy Rates in Overweight and Obese Women Undertaking in Vitro Fertilisation

    Directory of Open Access Journals (Sweden)

    Lisa J. Moran

    2016-01-01

    Full Text Available Maternal preconception diet is proposed to affect fertility. Prior research assessing the effect of altering the fatty acid profile on female fertility is conflicting. The aim of this study was to assess the effect of preconception maternal diet, specifically fatty acid profile, on pregnancies and live births following in vitro fertilisation (IVF. Forty-six overweight and obese women undergoing IVF were randomised to a diet and physical activity intervention (intervention or standard care (control. Outcome measures included pregnancy, live birth and pre-study dietary intake from food frequency questionnaire. Twenty pregnancies (n = 12/18 vs. n = 8/20, p = 0.12 and 12 live births (n = 7/18 vs. n = 5/20, p = 0.48 occurred following the intervention with no differences between the treatment groups. On analysis adjusted for BMI and smoking status, women who became pregnant had higher levels of polyunsaturated fatty acid (PUFA intake (p = 0.03, specifically omega-6 PUFA and linoleic acid (LA (p = 0.045 with a trend for an elevated intake of omega-3 PUFA (p = 0.06. There were no dietary differences for women who did or did not have a live birth. Maternal preconception PUFA, and specifically omega-6 and LA intake, are associated with improved pregnancy rates in overweight and obese women undergoing IVF. This has implications for optimising fertility through preconception nutrition.

  13. The role of amino acids in improvement in salt tolerance of crop plants

    Directory of Open Access Journals (Sweden)

    Abd El-Samad H. M.

    2010-09-01

    Full Text Available The present work has been performed to study the growth and metabolic activities of maize and broad bean plants which are shown to have a degree of sensitivity to salinity and to determine the role of amino acids proline or phenylalanine in increasing the salt tolerance of theses plants. Dry mass, water content, leaf area and photosynthetic pigment of maize and broad bean plants decreased with increasing salinity. These changes were accompanied with a drop in the contents of soluble sugars, soluble proteins and amino acids. This was accompanied by a marked increase in the proline content. When maize and broad bean plants sprayed with proline or phenylalanine the opposite effect was occurred, saccharides as well as proteins progressively increased at all sanitization levels and proline concentration significantly declined. Salinity significantly increased the sodium content in both shoots and roots of maize and broad bean plants, while a decline in the accumulation of K+, Ca++, Mg++ and P was observed. Amino acids treatments markedlyaltered the selectivity of Na+, K+, Ca++ and P in both maize and broad bean plants. Spraying with any of either proline orphenylalanine restricted Na+ uptake and enhanced the uptake of K+, K+/Na+ ratio, Ca++ and P selectivity in maize and broad bean plants.

  14. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria.

    Science.gov (United States)

    Rizzello, Carlo Giuseppe; Lorusso, Anna; Russo, Vito; Pinto, Daniela; Marzani, Barbara; Gobbetti, Marco

    2017-01-16

    Lactic acid bacteria strains, previously isolated from the same matrix, were used to ferment quinoa flour aiming at exploiting the antioxidant potential. As in vitro determined on DPPH and ABTS radicals, the scavenging activity of water/salt-soluble extracts (WSE) from fermented doughs was significantly (Pquinoa dough fermented with Lactobacillus plantarum T0A10. The corresponding WSE was subjected to Reverse Phase Fast Protein Liquid Chromatography, and 32 fractions were collected and subjected to in vitro assays. The most active fraction was resistant to further hydrolysis by digestive enzymes. Five peptides, having sizes from 5 to 9 amino acid residues, were identified by nano-Liquid Chromatography-Electrospray Ionisation-Mass Spectra/Mass Spectra. The sequences shared compositional features which are typical of antioxidant peptides. As shown by determining cell viability and radical scavenging activity (MTT and DCFH-DA assays, respectively), the purified fraction showed antioxidant activity on human keratinocytes NCTC 2544 artificially subjected to oxidative stress. This study demonstrated the capacity of autochthonous lactic acid bacteria to release peptides with antioxidant activity through proteolysis of native quinoa proteins. Fermentation of the quinoa flour with a selected starter might be considered suitable for novel applications as functional food ingredient, dietary supplement or pharmaceutical preparations.

  15. Cognitive impairment as a central cholinergic deficit in patients with Myasthenia Gravis

    Directory of Open Access Journals (Sweden)

    Antonia Kaltsatou

    2015-06-01

    Conclusions: VCmax and ACmax are governed mainly by the action of the Parasympathetic Nervous System, through acetylcholine. The results of this study demonstrate that the CNS may be affected in MG and support the hypothesis that MG has central cholinergic effects manifested by cognitive dysfunction.

  16. Modulation of cholinergic airway reactivity and nitric oxide production by endogenous arginase activity

    NARCIS (Netherlands)

    Meurs, Herman; Hamer, M.A M; Pethe, S; Vadon-Le Goff, S; Boucher, J.-L; Zaagsma, Hans

    2000-01-01

    1 Cholinergic airway constriction is functionally antagonized by agonist-induced constitutive nitric oxide synthase (cNOS)-derived nitric oxide (NO). Since cNOS and arginase, which hydrolyzes L-arginine to L-ornithine and urea, use L-arginine as a common substrate, competition between both enzymes f

  17. Cholinergic excitation in mouse primary vs. associative cortex: region-specific magnitude and receptor balance.

    Science.gov (United States)

    Tian, Michael K; Bailey, Craig D C; Lambe, Evelyn K

    2014-08-01

    Cholinergic stimulation of the cerebral cortex is essential for tasks requiring attention; however, there is still some debate over which cortical regions are required for such tasks. There is extensive cholinergic innervation of both primary and associative cortices, and transient release of acetylcholine (ACh) is detected in deep layers of the relevant primary and/or associative cortex, depending on the nature of the attention task. Here, we investigated the electrophysiological effects of ACh in layer VI, the deepest layer, of the primary somatosensory cortex, the primary motor cortex, and the associative medial prefrontal cortex. Layer VI pyramidal neurons are a major source of top-down modulation of attention, and we found that the strength and homogeneity of their direct cholinergic excitation was region-specific. On average, neurons in the primary cortical regions showed weaker responses to ACh, mediated by a balance of contributions from both nicotinic and muscarinic ACh receptors. Conversely, neurons in the associative medial prefrontal cortex showed significantly stronger excitation by ACh, mediated predominantly by nicotinic receptors. The greatest diversity of responses to ACh was found in the primary somatosensory cortex, with only a subset of neurons showing nicotinic excitation. In a mouse model with attention deficits only under demanding conditions, cholinergic excitation was preserved in primary cortical regions but not in the associative medial prefrontal cortex. These findings demonstrate that the effect of ACh is not uniform throughout the cortex, and suggest that its ability to enhance attention performance may involve different cellular mechanisms across cortical regions.

  18. Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons

    Science.gov (United States)

    Görlich, Andreas; Antolin-Fontes, Beatriz; Ables, Jessica L.; Frahm, Silke; Ślimak, Marta A.; Dougherty, Joseph D.; Ibañez-Tallon, Inés

    2013-01-01

    The discovery of genetic variants in the cholinergic receptor nicotinic CHRNA5-CHRNA3-CHRNB4 gene cluster associated with heavy smoking and higher relapse risk has led to the identification of the midbrain habenula–interpeduncular axis as a critical relay circuit in the control of nicotine dependence. Although clear roles for α3, β4, and α5 receptors in nicotine aversion and withdrawal have been established, the cellular and molecular mechanisms that participate in signaling nicotine use and contribute to relapse have not been identified. Here, using translating ribosome affinity purification (TRAP) profiling, electrophysiology, and behavior, we demonstrate that cholinergic neurons, but not peptidergic neurons, of the medial habenula (MHb) display spontaneous tonic firing of 2–10 Hz generated by hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels and that infusion of the HCN pacemaker antagonist ZD7288 in the habenula precipitates somatic and affective signs of withdrawal. Further, we show that a strong, α3β4-dependent increase in firing frequency is observed in these pacemaker neurons upon acute exposure to nicotine. No change in the basal or nicotine-induced firing was observed in cholinergic MHb neurons from mice chronically treated with nicotine. We observe, however, that, during withdrawal, reexposure to nicotine doubles the frequency of pacemaking activity in these neurons. These findings demonstrate that the pacemaking mechanism of cholinergic MHb neurons controls withdrawal, suggesting that the heightened nicotine sensitivity of these neurons during withdrawal may contribute to smoking relapse. PMID:24082085

  19. Effects of Chemical Agents on the Cholinergic Neurotransmitter System: Mechanisms of Adaptation.

    Science.gov (United States)

    1984-06-20

    changes in cholinergic neurochemistry (31). The former was observed in such symptoms as salivation, lacrimation and tremor and in measures of hypothermia...to the belladonna drugs occurs in man to a limited extent, e.g., patients with Parkinsonism may eventually receive daily doses of atropine or

  20. Cholinergic profiles in the Goettingen miniature pig (Sus scrofa domesticus) brain.

    Science.gov (United States)

    Mahady, Laura J; Perez, Sylvia E; Emerich, Dwaine F; Wahlberg, Lars U; Mufson, Elliott J

    2017-02-15

    Central cholinergic structures within the brain of the even-toed hoofed Goettingen miniature domestic pig (Sus scrofa domesticus) were evaluated by immunohistochemical visualization of choline acetyltransferase (ChAT) and the low-affinity neurotrophin receptor, p75(NTR) . ChAT-immunoreactive (-ir) perikarya were seen in the olfactory tubercle, striatum, medial septal nucleus, vertical and horizontal limbs of the diagonal band of Broca, and the nucleus basalis of Meynert, medial habenular nucleus, zona incerta, neurosecretory arcuate nucleus, cranial motor nuclei III and IV, Edinger-Westphal nucleus, parabigeminal nucleus, pedunculopontine nucleus, and laterodorsal tegmental nucleus. Cholinergic ChAT-ir neurons were also found within transitional cortical areas (insular, cingulate, and piriform cortices) and hippocampus proper. ChAT-ir fibers were seen throughout the dentate gyrus and hippocampus, in the mediodorsal, laterodorsal, anteroventral, and parateanial thalamic nuclei, the fasciculus retroflexus of Meynert, basolateral and basomedial amygdaloid nuclei, anterior pretectal and interpeduncular nuclei, as well as select laminae of the superior colliculus. Double immunofluorescence demonstrated that virtually all ChAT-ir basal forebrain neurons were also p75(NTR) -positive. The present findings indicate that the central cholinergic system in the miniature pig is similar to other mammalian species. Therefore, the miniature pig may be an appropriate animal model for preclinical studies of neurodegenerative diseases where the cholinergic system is compromised. J. Comp. Neurol. 525:553-573, 2017. © 2016 Wiley Periodicals, Inc.

  1. Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis.

    Science.gov (United States)

    Ji, H; Rabbi, M F; Labis, B; Pavlov, V A; Tracey, K J; Ghia, J E

    2014-03-01

    The cholinergic anti-inflammatory pathway is an efferent vagus nerve-based mechanism that regulates immune responses and cytokine production through α7 nicotinic acetylcholine receptor (α7nAChR) signaling. Decreased efferent vagus nerve activity is observed in inflammatory bowel disease. We determined whether central activation of this pathway alters inflammation in mice with colitis and the mediating role of a vagus nerve-to-spleen circuit and α7nAChR signaling. Two experimental models of colitis were used in C57BL/6 mice. Central cholinergic activation induced by the acetylcholinesterase inhibitor galantamine or a muscarinic acetylcholine receptor agonist treatments resulted in reduced mucosal inflammation associated with decreased major histocompatibility complex II level and pro-inflammatory cytokine secretion by splenic CD11c⁺ cells mediated by α7nAChR signaling. The cholinergic anti-inflammatory efficacy was abolished in mice with vagotomy, splenic neurectomy, or splenectomy. In conclusion, central cholinergic activation of a vagus nerve-to-spleen circuit controls intestinal inflammation and this regulation can be explored to develop novel therapeutic strategies.

  2. Dysautonomia due to reduced cholinergic neurotransmission causes cardiac remodeling and heart failure.

    Science.gov (United States)

    Lara, Aline; Damasceno, Denis D; Pires, Rita; Gros, Robert; Gomes, Enéas R; Gavioli, Mariana; Lima, Ricardo F; Guimarães, Diogo; Lima, Patricia; Bueno, Carlos Roberto; Vasconcelos, Anilton; Roman-Campos, Danilo; Menezes, Cristiane A S; Sirvente, Raquel A; Salemi, Vera M; Mady, Charles; Caron, Marc G; Ferreira, Anderson J; Brum, Patricia C; Resende, Rodrigo R; Cruz, Jader S; Gomez, Marcus Vinicius; Prado, Vania F; de Almeida, Alvair P; Prado, Marco A M; Guatimosim, Silvia

    2010-04-01

    Overwhelming evidence supports the importance of the sympathetic nervous system in heart failure. In contrast, much less is known about the role of failing cholinergic neurotransmission in cardiac disease. By using a unique genetically modified mouse line with reduced expression of the vesicular acetylcholine transporter (VAChT) and consequently decreased release of acetylcholine, we investigated the consequences of altered cholinergic tone for cardiac function. M-mode echocardiography, hemodynamic experiments, analysis of isolated perfused hearts, and measurements of cardiomyocyte contraction indicated that VAChT mutant mice have decreased left ventricle function associated with altered calcium handling. Gene expression was analyzed by quantitative reverse transcriptase PCR and Western blotting, and the results indicated that VAChT mutant mice have profound cardiac remodeling and reactivation of the fetal gene program. This phenotype was attributable to reduced cholinergic tone, since administration of the cholinesterase inhibitor pyridostigmine for 2 weeks reversed the cardiac phenotype in mutant mice. Our findings provide direct evidence that decreased cholinergic neurotransmission and underlying autonomic imbalance cause plastic alterations that contribute to heart dysfunction.

  3. Cholinergic Septo-Hippocampal Innervation Is Required for Trace Eyeblink Classical Conditioning

    Science.gov (United States)

    Fontan-Lozano, Angela; Troncoso, Julieta; Munera, Alejandro; Carrion, Angel Manuel; Delgado-Garcia, Jose Maria

    2005-01-01

    We studied the effects of a selective lesion in rats, with 192-IgG-saporin, of the cholinergic neurons located in the medial septum/diagonal band (MSDB) complex on the acquisition of classical and instrumental conditioning paradigms. The MSDB lesion induced a marked deficit in the acquisition, but not in the retrieval, of eyeblink classical…

  4. A Computational Model of How Cholinergic Interneurons Protect Striatal-Dependent Learning

    Science.gov (United States)

    Ashby, F. Gregory; Crossley, Matthew J.

    2011-01-01

    An essential component of skill acquisition is learning the environmental conditions in which that skill is relevant. This article proposes and tests a neurobiologically detailed theory of how such learning is mediated. The theory assumes that a key component of this learning is provided by the cholinergic interneurons in the striatum known as…

  5. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome.

    Science.gov (United States)

    Kataoka, Yuko; Kalanithi, Paul S A; Grantz, Heidi; Schwartz, Michael L; Saper, Clifford; Leckman, James F; Vaccarino, Flora M

    2010-02-01

    Corticobasal ganglia neuronal ensembles bring automatic motor skills into voluntary control and integrate them into ongoing motor behavior. A 5% decrease in caudate (Cd) nucleus volume is the most consistent structural finding in the brain of patients with Tourette syndrome (TS), but the cellular abnormalities that underlie this decrease in volume are unclear. In this study the density of different types of interneurons and medium spiny neurons (MSNs) in the striatum was assessed in the postmortem brains of 5 TS subjects as compared with normal controls (NC) by unbiased stereological analyses. TS patients demonstrated a 50%-60% decrease of both parvalbumin (PV)+ and choline acetyltransferase (ChAT)+ cholinergic interneurons in the Cd and the putamen (Pt). Cholinergic interneurons were decreased in TS patients in the associative and sensorimotor regions but not in the limbic regions of the striatum, such that the normal gradient in density of cholinergic cells (highest in associative regions, intermediate in sensorimotor and lowest in limbic regions) was abolished. No significant difference was present in the densities of medium-sized calretinin (CR)+ interneurons, MSNs, and total neurons. The selective deficit of PV+ and cholinergic striatal interneurons in TS subjects may result in an impaired cortico/thalamic control of striatal neuron firing in TS.

  6. Red Dermographism in Autism Spectrum Disorders: A Clinical Sign of Cholinergic Dysfunction?

    Science.gov (United States)

    Lemonnier, E.; Grandgeorge, M.; Jacobzone-Leveque, C.; Bessaguet, C.; Peudenier, S.; Misery, L.

    2013-01-01

    The authors hypothesised that red dermographism--a skin reaction involving the cholinergic system--is more frequent in children with autism spectrum disorders (ASDs) than in children exhibiting typical development. We used a dermatological examination to study red dermographism in this transverse study, which compared forty six children with ASDs…

  7. Cholinergic involvement in vascular and glucoregulatory actions of insulin in rats.

    Science.gov (United States)

    Lévesque, Martin; Santuré, Marta; Pitre, Maryse; Nadeau, André; Bachelard, Hélène

    2006-02-01

    This study was designed to test the glucose metabolic and vasodilator actions of insulin in rats and its relation to cholinergic system-dependent mechanisms. The first group of rats had pulsed Doppler flow probes and intravascular catheters implanted to determine blood pressure, heart rate, and regional blood flows. Insulin sensitivity was assessed by the euglycemic-hyperinsulinemic clamp technique carried out in the absence or presence of atropine. The second group of rats was used to determine the cholinergic contribution to in vivo insulin-mediated glucose utilization in individual muscles. Glucose uptake was examined by using [(3)H]2-deoxy-D-glucose. Muscarinic cholinergic blockade was found to significantly (P = 0.002) reduce insulin sensitivity and to completely abrogate the renal (P = 0.008) and hindquarter (P = 0.02) vasodilator responses to euglycemic infusion of insulin. A significant reduction in insulin-stimulated in vivo glucose uptake was also noted in soleus (P = 0.006), quadriceps (P = 0.03), gastrocnemius (P = 0.02), and extensor digitorum longus (EDL) (P = 0.001) muscles, when insulin was infused at a rate of 4 mU . kg(-1) . min(-1), whereas at the rate of 16 mU . kg(-1) . min(-1), a significant reduction in glucose uptake was only observed in EDL (P = 0.03) and quadriceps (P = 0.01) muscles. Together, these results demonstrate a potential role for cholinergic involvement with physiological insulin actions in glucose clearance and blood flow regulation in rats.

  8. Hippocampal cholinergic interneurons visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation

    Directory of Open Access Journals (Sweden)

    Feng eYi

    2015-03-01

    Full Text Available Release of acetylcholine (ACh in the hippocampus (HC occurs during exploration, arousal, and learning. Although the medial septum-diagonal band of Broca (MS-DBB is the major extrinsic source of cholinergic input to the HC, cholinergic neurons intrinsic to the HC also exist but remain poorly understood. Here, ChAT-tauGFP and ChAT-CRE/Rosa26YFP (ChAT-Rosa mice were examined in HC. The HC of ChAT-tauGFP mice was densely innervated with GFP-positive axons, often accompanied by large GFP-positive structures, some of which were Neurotrace/DAPI-negative and likely represent large axon terminals. In the HC of ChAT-Rosa mice, ChAT-YFP cells were Neurotrace-positive and more abundant in CA3 and dentate gyrus than CA1 with partial overlapping with calretinin/VIP. Moreover, an anti-ChAT antibody consistently showed ChAT immunoreactivity in ChAT-YFP cells from MS-DBB but rarely from HC. Furthermore, ChAT-YFP cells from CA1 stratum radiatum/stratum lacunosum moleculare (SR/SLM exhibited a stuttering firing phenotype but a delayed firing phenotype in stratum pyramidale (SP of CA3. Input resistance and capacitance were also different between CA1 SR/LM and CA3 SP ChAT-YFP cells. Bath application of ACh increased firing frequency in all ChAT-YFP cells; however, cholinergic modulation was larger in CA1 SR/SLM than CA3 SP ChAT-YFP cells. Finally, CA3 SP ChAT-YFP cells exhibited a wider AP half-width and weaker cholinergic modulation than YFP-negative CA3 pyramidal cells. Consistent with CRE expression in a subpopulation of principal cells, optogenetic stimulation evoked glutamatergic postsynaptic currents in CA1 SR/SLM interneurons. In conclusion, the presence of fluorescently labeled hippocampal cells common to both ChAT-Rosa and ChAT-tauGFP mice are in good agreement with previous reports on the existence of cholinergic interneurons, but both transgenic mouse lines exhibited unexpected anatomical features that departed considerably from earlier observations.

  9. Hippocampal "cholinergic interneurons" visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation.

    Science.gov (United States)

    Yi, Feng; Catudio-Garrett, Elizabeth; Gábriel, Robert; Wilhelm, Marta; Erdelyi, Ferenc; Szabo, Gabor; Deisseroth, Karl; Lawrence, Josh

    2015-01-01

    Release of acetylcholine (ACh) in the hippocampus (HC) occurs during exploration, arousal, and learning. Although the medial septum-diagonal band of Broca (MS-DBB) is the major extrinsic source of cholinergic input to the HC, cholinergic neurons intrinsic to the HC also exist but remain poorly understood. Here, ChAT-tauGFP and ChAT-CRE/Rosa26YFP (ChAT-Rosa) mice were examined in HC. The HC of ChAT-tauGFP mice was densely innervated with GFP-positive axons, often accompanied by large GFP-positive structures, some of which were Neurotrace/DAPI-negative and likely represent large axon terminals. In the HC of ChAT-Rosa mice, ChAT-YFP cells were Neurotrace-positive and more abundant in CA3 and dentate gyrus than CA1 with partial overlap with calretinin/VIP. Moreover, an anti-ChAT antibody consistently showed ChAT immunoreactivity in ChAT-YFP cells from MS-DBB but rarely from HC. Furthermore, ChAT-YFP cells from CA1 stratum radiatum/stratum lacunosum moleculare (SR/SLM) exhibited a stuttering firing phenotype but a delayed firing phenotype in stratum pyramidale (SP) of CA3. Input resistance and capacitance were also different between CA1 SR/LM and CA3 SP ChAT-YFP cells. Bath application of ACh increased firing frequency in all ChAT-YFP cells; however, cholinergic modulation was larger in CA1 SR/SLM than CA3 SP ChAT-YFP cells. Finally, CA3 SP ChAT-YFP cells exhibited a wider AP half-width and weaker cholinergic modulation than YFP-negative CA3 pyramidal cells. Consistent with CRE expression in a subpopulation of principal cells, optogenetic stimulation evoked glutamatergic postsynaptic currents in CA1 SR/SLM interneurons. In conclusion, the presence of fluorescently labeled hippocampal cells common to both ChAT-tauGFP and ChAT-Rosa mice are in good agreement with previous reports on the existence of cholinergic interneurons, but both transgenic mouse lines exhibited unexpected anatomical features that departed considerably from earlier observations.

  10. Cerebrolysin modulates pronerve growth factor/nerve growth factor ratio and ameliorates the cholinergic deficit in a transgenic model of Alzheimer's disease.

    Science.gov (United States)

    Ubhi, Kiren; Rockenstein, Edward; Vazquez-Roque, Ruben; Mante, Michael; Inglis, Chandra; Patrick, Christina; Adame, Anthony; Fahnestock, Margaret; Doppler, Edith; Novak, Philip; Moessler, Herbert; Masliah, Eliezer

    2013-02-01

    Alzheimer's disease (AD) is characterized by degeneration of neocortex, limbic system, and basal forebrain, accompanied by accumulation of amyloid-β and tangle formation. Cerebrolysin (CBL), a peptide mixture with neurotrophic-like effects, is reported to improve cognition and activities of daily living in patients with AD. Likewise, CBL reduces synaptic and behavioral deficits in transgenic (tg) mice overexpressing the human amyloid precursor protein (hAPP). The neuroprotective effects of CBL may involve multiple mechanisms, including signaling regulation, control of APP metabolism, and expression of neurotrophic factors. We investigate the effects of CBL in the hAPP tg model of AD on levels of neurotrophic factors, including pro-nerve growth factor (NGF), NGF, brain-derived neurotrophic factor (BDNF), neurotropin (NT)-3, NT4, and ciliary neurotrophic factor (CNTF). Immunoblot analysis demonstrated that levels of pro-NGF were increased in saline-treated hAPP tg mice. In contrast, CBL-treated hAPP tg mice showed levels of pro-NGF comparable to control and increased levels of mature NGF. Consistently with these results, immunohistochemical analysis demonstrated increased NGF immunoreactivity in the hippocampus of CBL-treated hAPP tg mice. Protein levels of other neurotrophic factors, including BDNF, NT3, NT4, and CNTF, were unchanged. mRNA levels of NGF and other neurotrophins were also unchanged. Analysis of neurotrophin receptors showed preservation of the levels of TrKA and p75(NTR) immunoreactivity per cell in the nucleus basalis. Cholinergic cells in the nucleus basalis were reduced in the saline-treated hAPP tg mice, and treatment with CBL reduced these cholinergic deficits. These results suggest that the neurotrophic effects of CBL might involve modulation of the pro-NGF/NGF balance and a concomitant protection of cholinergic neurons.

  11. Expression and localization of pChAT as a novel method to study cholinergic innervation of rat adrenal gland.

    Science.gov (United States)

    Elnasharty, Mohamed A; Sayed-Ahmed, Ahmed

    2014-10-01

    Cholinergic innervation of the rat adrenal gland has been analyzed previously using cholinergic markers including acetylcholinesterase (AChE), choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT). In the present study, we demonstrate putative cholinergic neurons in the rat adrenal gland using an antibody to pChAT, which is the product of a splice variant of ChAT mRNA that is preferentially localized in peripheral cholinergic nerves. Most of the ganglionic neurons as well as small single sporadic neurons in the adrenal gland were stained intensely for pChAT. The density of pChAT-immunoreactive (IR) fibers was distinct in the adrenal cortex and medulla. AChE-, cChAT- and VAChT-immunoreactivities were also observed in some cells and fibers of the adrenal medulla, while the cortex had few positive nerve fibers. These results indicate that ganglionic neurons of the adrenal medulla and nerve fibers heterogeneously express cholinergic markers, especially pChAT. Furthermore, the innervation of the adrenal gland, cortex and medulla, by some cholinergic fibers provides additional morphological evidence for a significant role of cholinergic mechanisms in adrenal gland functions.

  12. THYROID HORMONE REVERSES AGING-INDUCED MYOCARDIAL FATTY ACID OXIDATION DEFECTS AND IMPROVES THE RESPONSE TO ACUTELY INCREASED AFTERLOAD

    Energy Technology Data Exchange (ETDEWEB)

    Ledee, Dolena; Portman, Michael A.; Kajimoto, Masaki; Isern, Nancy G.; Olson, Aaron

    2013-06-07

    Background: Subclinical hypothyroidism occurs during aging in humans and mice and may contribute to development of heart failure. Aging also impairs myocardial fatty acid oxidation, causing increased reliance on flux through pyruvate dehydrogenase (PDH) to maintain function. We hypothesize that the metabolic changes in aged hearts make them less tolerant to acutely increased work and that thyroid hormone reverses these defects. Methods: Studies were performed on young (Young, 4-6 months) and aged (Old, 22-24 months) C57/BL6 mice at standard (50 mmHg) and high afterload (80 mmHg). Another aged group received thyroid hormone for 3 weeks (Old-TH, high afterload only). Function was measured in isolated working hearts along with substrate fractional contributions (Fc) to the citric acid cycle (CAC) using perfusate with 13C labeled lactate, pyruvate, glucose and unlabeled palmitate and insulin. Results: Cardiac function was similar between Young and Old mice at standard afterload. Palmitate Fc was reduced but no individual carbohydrate contributions differed. CAC and individual substrate fluxes decreased in aged. At high afterload, -dP/dT was decreased in Old versus Young. Similar to low afterload, palmitate Fc was decreased in Old. Thyroid hormone reversed aging-induced changes in palmitate Fc and flux while significantly improving cardiac function. Conclusion: The aged heart shows diminished ability to increase cardiac work due to substrate limitations, primarily impaired fatty acid oxidation. The heart accommodates slightly by increasing efficiency through oxidation of carbohydrate substrates. Thyroid hormone supplementation in aged mice significantly improves cardiac function potentially through restoration of fatty acid oxidation.

  13. Response of acid mobilization of iron-containing mineral dust to improvement of air quality projected in the future

    Directory of Open Access Journals (Sweden)

    A. Ito

    2013-10-01

    Full Text Available Acidification of dust aerosols may increase aerosol iron (Fe solubility, which is linked to mineral properties. Combustion aerosols can also elevate aerosol iron solubility when aerosol loading is low. Here, we use an atmospheric chemical transport model to investigate the deposition of filterable iron and its response to changes in anthropogenic emissions of both combustion aerosols and precursor gases. By introducing three classes of iron-containing minerals into the detailed aerosol chemistry model, we provide a theoretical examination of the effects of different dissolution behaviors on the acid mobilization of iron. Comparisons of modeled Fe dissolution curves with the measured dissolution rates for African (Tibesti and Asian (Beijing dust samples show overall good agreement under acidic conditions. The improved treatment of Fe in mineral dust and its dissolution scheme results in reasonable predictive capability for iron solubility over the oceans in the Northern Hemisphere. Our model results suggest that the improvement of air quality projected in the future will lead to a decrease of the filterable iron deposition from iron-containing mineral dust to the northeastern Pacific due to less acidification in Asian dust, which is mainly associated with the reduction of nitrogen oxides (NOx emissions. These results could have important implications for iron fertilization of phytoplankton growth, and highlight the necessity of improving the process-based quantitative understanding of the response of the chemical modification in iron-containing minerals to environmental changes.

  14. Using quantum mechanics to improve estimates of amino acid side chain rotamer energies.

    Science.gov (United States)

    Renfrew, P Douglas; Butterfoss, Glenn L; Kuhlman, Brian

    2008-06-01

    Amino acid side chains adopt a discrete set of favorable conformations typically referred to as rotamers. The relative energies of rotamers partially determine which side chain conformations are more often observed in protein structures and accurate estimates of these energies are important for predicting protein structure and designing new proteins. Protein modelers typically calculate side chain rotamer energies by using molecular mechanics (MM) potentials or by converting rotamer probabilities from the protein database (PDB) into relative free energies. One limitation of the knowledge-based energies is that rotamer preferences observed in the PDB can reflect internal side chain energies as well as longer-range interactions with the rest of the protein. Here, we test an alternative approach for calculating rotamer energies. We use three different quantum mechanics (QM) methods (second order Møller-Plesset (MP2), density functional theory (DFT) energy calculation using the B3LYP functional, and Hartree-Fock) to calculate the energy of amino acid rotamers in a dipeptide model system, and then use these pre-calculated values in side chain placement simulations. Energies were calculated for over 36,000 different conformations of leucine, isoleucine, and valine dipeptides with backbone torsion angles from the helical and strand regions of the Ramachandran plot. In a subset of cases these energies differ significantly from those calculated with standard molecular mechanics potentials or those derived from PDB statistics. We find that in these cases the energies from the QM methods result in more accurate placement of amino acid side chains in structure prediction tests.

  15. Weigners fixative-an alternative to formalin fixation for histology with improved preservation of nucleic acids.

    Science.gov (United States)

    Klopfleisch, R; von Deetzen, M; Weiss, A Th; Weigner, J; Weigner, F; Plendl, J; Gruber, A D

    2013-01-01

    Formalin fixation and paraffin embedding (FFPE) is the standard method for tissue storage in histopathology. However, FFPE has disadvantages in terms of user health, environment, and nucleic acid integrity. Weigners fixative has been suggested as an alternative for embalming cadavers in human and veterinary anatomy. The present study tested the applicability of Weigners for histology and immunohistochemistry and the preservation of nucleic acids. To this end, a set of organs was fixed for 2 days and up to 6 months in Weigners (WFPE) or formalin. WFPE tissues from the skin, brain, lymphatic tissues, liver, and muscle had good morphologic preservation, comparable to formalin fixation. The quality of kidney and lung samples was inferior to FFPE material due to less accentuated nuclear staining and retention of proteinaceous interstitial fluids. Azan, Turnbull blue, toluidin, and immunohistochemical stainings for CD79a, cytokeratin, vimentin, and von Willebrand factor led to comparable results with both fixates. Of note, immunohistochemical detection of CD3 was possible after 6 months in WFPE but not in FFPE tissues. mRNA, miRNA, and DNA from WFPE tissues had superior quality and allowed for amplification of miRNA, 400-bp-long mRNA, and 1000-bp-long DNA fragments after 6 months of fixation in WFPE. In summary, Weigners fixative is a nonhazardous alternative to formalin, which provides a good morphologic preservation of most organs, a similar sensitivity for protein detection, and a superior preservation of nucleic acids. Weigners may therefore be a promising alternative to cryopreservation and may be embraced by people affected by formalin allergies.

  16. Improving aqueous solubility and antitumor effects by nanosized gambogic acid-mPEG2000 micelles

    Directory of Open Access Journals (Sweden)

    Cai LL

    2013-12-01

    Full Text Available Lulu Cai,1,* Neng Qiu,2,* Mingli Xiang,3,* Rongsheng Tong,1 Junfeng Yan,1 Lin He,1 Jianyou Shi,1 Tao Chen,4 Jiaolin Wen,3 Wenwen Wang,3 Lijuan Chen31Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, 2College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 3State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China; 4Faculty of Pharmacy, University of Montreal, Montreal, QC, Canada *These authors contributed equally to this paperAbstract: The clinical application of gambogic acid, a natural component with promising antitumor activity, is limited due to its extremely poor aqueous solubility, short half-life in blood, and severe systemic toxicity. To solve these problems, an amphiphilic polymer-drug conjugate was prepared by attachment of low molecular weight (ie, 2 kDa methoxy poly(ethylene glycol methyl ether (mPEG to gambogic acid (GA-mPEG2000 through an ester linkage and characterized by 1H nuclear magnetic resonance. The GA-mPEG2000 conjugates self-assembled to form nanosized micelles, with mean diameters of less than 50 nm, and a very narrow particle size distribution. The properties of the GA-mPEG2000 micelles, including morphology, stability, molecular modeling, and drug release profile, were evaluated. MTT (3-(4,5-dimethylthiazol-2-yl-2,5 diphenyl tetrazolium bromide tests demonstrated that the GA-mPEG2000 micelle formulation had obvious cytotoxicity to tumor cells and human umbilical vein endothelial cells. Further, GA-mPEG2000 micelles were effective in inhibiting tumor growth and prolonged survival in subcutaneous B16-F10 and C26 tumor models. Our findings suggest that GA-mPEG2000 micelles may have promising applications in tumor therapy.Keywords: gambogic acid, poly(ethylene glycol-drug conjugate, micelle, antitumor, toxicity

  17. Dexmedetomidine controls systemic cytokine levels through the cholinergic anti-inflammatory pathway.

    Science.gov (United States)

    Xiang, Hui; Hu, Bo; Li, Zhifeng; Li, Jianguo

    2014-10-01

    %, Pdexmedetomidine significantly attenuated the cytokine response after lipopolysaccharide (LPS) induced endotoxemia (TNF-alpha, IL-1beta, IL-6, Pdexmedetomidine failed to suppress cytokine response in α-bungarotoxin group and vagotomy group (TNF-alpha, IL-1beta, IL-6, P>0.05, respectively). Furthermore, preemptive administration of dexmedetomidine significantly increased the discharge frequency of cervical vagus nerves in comparison with sterile saline treatment (Pdexmedetomidine increases the activity of cervical vagus nerve and have the ability to successfully improve survival in experimental endotoxemia by inhibiting the inflammatory cytokines release. However, administration of dexmedetomidine to vagotomy or α7 nAChR antagonist pretreatment mice failed to suppress TNF levels, indicating that the vagus nerve and α7nAChR-mediated cholinergic anti-inflammatory pathway is required for the anti-inflammatory effect of dexmedetomidine. These findings show that central alpha-2 agonist dexmedetomidine suppresses systemic inflammation through vagal- and α7nAChR-dependent mechanism.

  18. Improved Inhibition of Telomerase by Short Twisted Intercalating Nucleic Acids under Molecular Crowding Conditions

    DEFF Research Database (Denmark)

    Agarwal, Tani; Pradhan, Devranjan; Géci, Imrich;

    2012-01-01

    crowding conditions mimicking physiological milieu, stabilization of the telomeric G-quadruplex is often lost. We attempted to demonstrate the enhanced G-quadruplex stabilizing ability under molecular conditions by using twisted intercalating nucleic acids (TINA)-modified oligonucleotides. We have shown......-based telomerase repeat amplification assay (TRAP) assay as well as nondenaturing polyacrylamide gel electrophoresis-based TRAP, we demonstrate remarkable enhancement in their anti-telomerase activity even under molecular crowding conditions. This is the first time in which a G-quadruplex stabilizing agent has...... demonstrated enhanced activity even under molecular crowding conditions....

  19. Low-phytic acid barley improves calcium and phosphorus utilization and growth performance in growing pigs.

    Science.gov (United States)

    Veum, T L; Ledoux, D R; Bollinger, D W; Raboy, V; Cook, A

    2002-10-01

    Thirty-five crossbred barrows averaging 13.5 kg starting BW were used in a 35-d experiment to compare the availability of P and the nutritional value of two near-isogenic progeny of the barley cultivar 'Harrington'. Low-phytic acid barley (LPB, 0.35% total P, 0.14% phytic acid P) was homozygous for the low-phytic acid 1-1 allele, and the normal barley (NB, 0.35% total P, 0.24% phytic acid P) was homozygous for the normal allele of that gene. Pigs were fed individually twice daily in metabolism pens. Barley was the only source of phytate in semipurified diets, 1 to 3. Diet 1 contained 75% NB, 0.14% estimated available P (aP), and 0.50% Ca. Diet 2 contained 75% LPB, 0.22% aP, and 0.50% Ca. No inorganic P (iP) was added to Diets 1 and 2 in order to measure the animal response to the different concentrations of aP in these cultivars. Diet 3 was NB Diet 1 supplemented with iP to equal the concentration of aP in LPB Diet 2. Practical barley-soybean meal (SBM)-type diets, NB Diet 4 and LPB Diet 5, were formulated to meet all minimum nutrient requirements, and contained 0.30% aP and 0.65% Ca. For the semipurified diets, pigs fed LPB Diet 2 had higher (P or = 0.3) in growth performance, fresh bone weight, fat-free dry bone weight, bone ash, bone breaking strength, or N utilization. This indicates that LPB and NB were equal in nutritional value after supplementation of NB with iP to equal the estimated aP in LPB. For the practical barley-SBM diets, there were no differences (P > or = 0.4) between pigs fed NB Diet 4 or LPB Diet 5 for growth performance, fresh bone weight, bone breaking strength, the percentages of P and Ca utilization, or N, DE, and ME utilization. The use of LPB in pig diets reduced P excretion in swine waste by 55% and 16% in our semipurified and practical diets, respectively, compared with NB. Using our in vitro procedure designed to mimic the digestive system of the pig, the availability of P for pigs was estimated at 52% for LPB and 32% for NB.

  20. Supplementation with Silk Amino Acids improves physiological parameters defining stamina in elite fin-swimmers

    OpenAIRE

    Zubrzycki, Igor Z; Ossowski, Zbigniew; Przybylski, Stanislaw; Wiacek, Magdalena; Clarke, Anna; Trabka, Bartosz

    2014-01-01

    Background Previous animal study has shown that supplementation with silk amino acid hydrolysate (SAA) increases stamina in mice. The presented study was the first formal evaluation of the influence of SAA supplementation on parameters defining physiological fitness level in humans. Methods It was a randomized controlled trial with a parallel-group design on elite male fin-swimmers. The experimental group was supplemented with 500 mg of SAA per kg of body mass, dissolved in 250 ml of a Carbor...

  1. Total salvianolic acid improves ischemia-reperfusion-induced microcirculatory disturbance in rat mesentery

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To investigate the effect of total salvianolic acid(TSA) on ischemia-reperfusion(I/R)-induced rat mesenteric microcirculatory dysfunctions.METHODS:Male Wistar rats were randomly distributed into 5 groups(n = 6 each):Sham group and I/R group(infused with saline),TSA group,TSA + I/R group and I/R + TSA group(infused with TSA,5 mg/kg per hour).Mesenteric I/R were conducted by a ligation of the mesenteric artery and vein(10 min) and subsequent release of the occlusion.TSA was continuously infused either sta...

  2. Modification and improvement of proton-exchange membrane fuel cells via treatment using peracetic acid

    Science.gov (United States)

    Xu, Zhiqiang; Qi, Zhigang; Kaufman, Arthur

    Electrodes and catalyst-coated membranes (CCMs) were treated using peracetic acid. After such a treatment, the properties and performance of these electrodes and CCMs were changed in several aspects. First, their catalytic activity was increased compared to the untreated counterparts. Second, their ability to hold water within the catalyst layers was increased so that the cathode did not need to be humidified. Third, if the cathode was humidified together with the anode, some of the electrodes were more readily to be flooded than the untreated counterparts.

  3. Improvement of enamel bond strengths for conventional and resin-modified glass ionomers: acid-etching vs. conditioning*

    Science.gov (United States)

    Zhang, Ling; Tang, Tian; Zhang, Zhen-liang; Liang, Bing; Wang, Xiao-miao; Fu, Bai-ping

    2013-01-01

    Objective: This study deals with the effect of phosphoric acid etching and conditioning on enamel micro-tensile bond strengths (μTBSs) of conventional and resin-modified glass ionomer cements (GICs/RMGICs). Methods: Forty-eight bovine incisors were prepared into rectangular blocks. Highly-polished labial enamel surfaces were either acid-etched, conditioned with liquids of cements, or not further treated (control). Subsequently, two matching pre-treated enamel surfaces were cemented together with one of four cements [two GICs: Fuji I (GC), Ketac Cem Easymix (3M ESPE); two RMGICs: Fuji Plus (GC), RelyX Luting (3M ESPE)] in preparation for μTBS tests. Pre-treated enamel surfaces and cement-enamel interfaces were analyzed by scanning electron microscopy (SEM). Results: Phosphoric acid etching significantly increased the enamel μTBS of GICs/RMGICs. Conditioning with the liquids of the cements produced significantly weaker or equivalent enamel μTBS compared to the control. Regardless of etching, RMGICs yielded stronger enamel μTBS than GICs. A visible hybrid layer was found at certain enamel-cement interfaces of the etched enamels. Conclusions: Phosphoric acid etching significantly increased the enamel μTBSs of GICs/RMGICs. Phosphoric acid etching should be recommended to etch the enamel margins before the cementation of the prostheses such as inlays and onlays, using GICs/RMGICs to improve the bond strengths. RMGICs provided stronger enamel bond strength than GICs and conditioning did not increase enamel bond strength. PMID:24190447

  4. Improved assay for differential diagnosis between Pompe disease and acid α-glucosidase pseudodeficiency on dried blood spots.

    Science.gov (United States)

    Shigeto, Shohei; Katafuchi, Tatsuya; Okada, Yuya; Nakamura, Kimitoshi; Endo, Fumio; Okuyama, Torayuki; Takeuchi, Hiroaki; Kroos, Marian A; Verheijen, Frans W; Reuser, Arnold J J; Okumiya, Toshika

    2011-05-01

    The high frequency (3.3-3.9%) of acid α-glucosidase pseudodeficiency, c.[1726G>A; 2065G>A] homozygote (AA homozygote), in Asian populations complicates newborn screening for Pompe disease (glycogen storage disease type II or acid maltase deficiency) on dried blood spots, since AA homozygotes have a considerably low enzyme activity. We observed that hemoglobin in the enzyme reaction solution strongly interferes with the fluorescence of 4-methylumbelliferone released from 4-methylumbelliferyl α-D-glucopyranoside (4MU-αGlc) by acid α-glucosidase. Therefore, we have searched for a method to effectively eliminate hemoglobin in the reaction solution. Hemoglobin precipitation with barium hydroxide and zinc sulfate (Ba/Zn method) carried out after the enzyme reaction considerably enhances the fluorescence intensity while it does not reduce the intensity to any extent as can occur with conventional deproteinization agents like trichloroacetic acid. The Ba/Zn method greatly improved the separation between 18 Japanese patients with Pompe disease and 70 unaffected AA homozygotes in a population of Japanese newborns in the assay with 4MU-αGlc on dried blood spots. No overlap was observed between both groups. We further examined acid α-glucosidase activity in fibroblasts from 11 Japanese patients and 57 Japanese unaffected individuals including 31 c.[1726G; 2065G] homozygotes, 18 c.[1726G; 2065G]/[1726A; 2065A] heterozygotes and 8 AA homozygotes to confirm that fibroblasts can be used for definitive diagnosis. The patients were reliably distinguished from three control groups. These data provide advanced information for the development of a simple and reliable newborn screening program with dried blood spots for Pompe disease in Asian populations.

  5. Endogenous cholinergic input to the pontine REM sleep generator is not required for REM sleep to occur.

    Science.gov (United States)

    Grace, Kevin P; Vanstone, Lindsay E; Horner, Richard L

    2014-10-22

    Initial theories of rapid eye movement (REM) sleep generation posited that induction of the state required activation of the pontine subceruleus (SubC) by cholinergic inputs. Although the capacity of cholinergic neurotransmission to contribute to REM sleep generation has been established, the role of cholinergic inputs in the generation of REM sleep is ultimately undetermined as the critical test of this hypothesis (local blockade of SubC acetylcholine receptors) has not been rigorously performed. We used bilateral microdialysis in freely behaving rats (n = 32), instrumented for electroencephalographic and electromyographic recording, to locally manipulate neurotransmission in the SubC with select drugs. As predicted, combined microperfusion of D-AP5 (glutamate receptor antagonist) and muscimol (GABAA receptor agonist) in the SubC virtually eliminated REM sleep. However, REM sleep was not reduced by scopolamine microperfusion in this same region, at a concentration capable of blocking the effects of cholinergic receptor stimulation. This result suggests that transmission of REM sleep drive to the SubC is acetylcholine-independent. Although SubC cholinergic inputs are not majorly involved in REM sleep generation, they may perform a minor function in the reinforcement of transitions into REM sleep, as evidenced by increases in non-REM-to-REM sleep transition duration and failure rate during cholinergic receptor blockade. Cholinergic receptor antagonism also attenuated the normal increase in hippocampal θ oscillations that characterize REM sleep. Using computational modeling, we show that our in vivo results are consistent with a mutually excitatory interaction between the SubC and cholinergic neurons where, importantly, cholinergic neuron activation is gated by SubC activity.

  6. The selective 5-HT6 receptor antagonist Ro4368554 restores memory performance in cholinergic and serotonergic models of memory deficiency in the rat.

    Science.gov (United States)

    Lieben, Cindy K J; Blokland, Arjan; Sik, Ayhan; Sung, Eric; van Nieuwenhuizen, Petra; Schreiber, Rudy

    2005-12-01

    Antagonists at serotonin type 6 (5-HT(6)) receptors show activity in models of learning and memory. Although the underlying mechanism(s) are not well understood, these effects may involve an increase in acetylcholine (ACh) levels. The present study sought to characterize the cognitive-enhancing effects of the 5-HT(6) antagonist Ro4368554 (3-benzenesulfonyl-7-(4-methyl-piperazin-1-yl)1H-indole) in a rat object recognition task employing a cholinergic (scopolamine pretreatment) and a serotonergic- (tryptophan (TRP) depletion) deficient model, and compared its pattern of action with that of the acetylcholinesterase inhibitor metrifonate. Initial testing in a time-dependent forgetting task employing a 24-h delay between training and testing showed that metrifonate improved object recognition (at 10 and 30 mg/kg, p.o.), whereas Ro4368554 was inactive. Both, Ro4368554 (3 and 10 mg/kg, intraperitoneally (i.p.)) and metrifonate (10 mg/kg, p.o., respectively) reversed memory deficits induced by scopolamine and TRP depletion (10 mg/kg, i.p., and 3 mg/kg, p.o., respectively). In conclusion, although Ro4368554 did not improve a time-related retention deficit, it reversed a cholinergic and a serotonergic memory deficit, suggesting that both mechanisms may be involved in the facilitation of object memory by Ro4368554 and, possibly, other 5-HT(6) receptor antagonists.

  7. Measurement of functional cholinergic innervation in rat heart with a novel vesamicol receptor ligand

    Energy Technology Data Exchange (ETDEWEB)

    Coffeen, Paul R.; Efange, S.M.N.; Haidet, George C.; McKnite, Scott; Langason, Rosemary B.; Khare, A.B.; Pennington, Jennifer; Lurie, Keith G

    1996-10-01

    Regional differences in cholinergic activity in the cardiac conduction system have been difficult to study. We tested the utility of (+)-m-[{sup 125}I]iodobenzyl)trozamicol(+)-[{sup 125}I]MIBT), a novel radioligand that binds to the vesamicol receptor located on the synaptic vesicle in presynaptic cholinergic neurons, as a functional marker of cholinergic activity in the conduction system. The (+)-[{sup 125}I]MIBT was injected intravenously into four rats. Three hours later, the rats were killed and their hearts were frozen. Quantitative autoradiography was performed on 20-micron-thick sections that were subsequently stained for acetylcholinesterase to identify specific conduction-system elements. Marked similarities existed between (+)-[{sup 125}I]MIBT uptake and acetylcholinesterase-positive regions. Optical densitometric analysis of regional (+)-[{sup 125}I]MIBT uptake revealed significantly greater (+)-[{sup 125}I]MIBT binding (nCi/mg) in the atrioventricular node (AVN) and His bundle regions compared with other conduction and contractile elements (AVN: 3.43 {+-} 0.37; His bundle: 2.16 {+-} 0.30; right bundle branch: 0.95 {+-} 0.13; right atrium: 0.68 {+-} 0.05; right ventricle: 0.57 {+-} 0.03; and left ventricle: 0.57 {+-} 0.03; p < 0.05 comparing conduction elements with ventricular muscle). This study demonstrates that (+)-[{sup 125}I]MIBT binds avidly to cholinergic nerve tissue innervating specific conduction-system elements. Thus, (+)-[{sup 125}I]MIBT may be a useful functional marker in studies on cholinergic innervation in the cardiac conduction system.

  8. An unusual abscisic acid and gibberellic acid synergism increases somatic embryogenesis, facilitates its genetic analysis and improves transformation in Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Kim E Nolan

    Full Text Available Somatic embryogenesis (SE can be readily induced in leaf explants of the Jemalong 2HA genotype of the model legume Medicago truncatula by auxin and cytokinin, but rarely in wild-type Jemalong. Gibberellic acid (GA, a hormone not included in the medium, appears to act in Arabidopsis as a repressor of the embryonic state such that low ABA (abscisic acid: GA ratios will inhibit SE. It was important to evaluate the GA effect in M. truncatula in order to formulate generic SE mechanisms, given the Arabidopsis information. It was surprising to find that low ABA:GA ratios in M. truncatula acted synergistically to stimulate SE. The unusual synergism between GA and ABA in inducing SE has utility in improving SE for regeneration and transformation in M. truncatula. Expression of genes previously shown to be important in M. truncatula SE was not increased. In investigating genes previously studied in GA investigations of Arabidopsis SE, there was increased expression of GA2ox and decreased expression of PICKLE, a negative regulator of SE in Arabidopsis. We suggest that in M. truncatula there are different ABA:GA ratios required for down-regulating the PICKLE gene, a repressor of the embryonic state. In M. truncatula it is a low ABA:GA ratio while in Arabidopsis it is a high ABA:GA ratio. In different species the expression of key genes is probably related to differences in how the hormone networks optimise their expression.

  9. Combination of phenylpyruvic acid (PPA) pathway engineering and molecular engineering of L-amino acid deaminase improves PPA production with an Escherichia coli whole-cell biocatalyst.

    Science.gov (United States)

    Hou, Ying; Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long

    2016-03-01

    In our previous study, we produced phenylpyruvic acid (PPA) in one step from L-phenylalanine by using an Escherichia coli whole-cell biocatalyst expressing an L-amino acid deaminase (L-AAD) from Proteus mirabilis KCTC2566. However, the PPA titer was low due to the degradation of PPA and low substrate specificity of L-AAD. In this study, metabolic engineering of the L-phenylalanine degradation pathway in E. coli and protein engineering of L-AAD from P. mirabilis were performed to improve the PPA titer. First, three aminotransferase genes were knocked out to block PPA degradation, which increased the PPA titer from 3.3 ± 0.2 to 3.9 ± 0.1 g/L and the substrate conversion ratio to 97.5 %. Next, L-AAD was engineered via error-prone polymerase chain reaction, followed by site-saturation mutation to improve its catalytic performance. The triple mutant D165K/F263M/L336M produced the highest PPA titer of 10.0 ± 0.4 g/L, with a substrate conversion ratio of 100 %, which was 3.0 times that of wild-type L-AAD. Comparative kinetics analysis showed that compared with wild-type L-AAD, the triple mutant had higher substrate-binding affinity and catalytic efficiency. Finally, an optimal fed-batch biotransformation process was developed to achieve a maximal PPA titer of 21 ± 1.8 g/L within 8 h. This study developed a robust whole-cell E. coli biocatalyst for PPA production by integrating metabolic and protein engineering, strategies that may be useful for the construction of other biotransformation biocatalysts.

  10. Butter blend containing fish oil improves the level of n-3 fatty acids in biological tissues of hamster

    DEFF Research Database (Denmark)

    Porsgaard, Trine; Overgaard, Jesper; Krogh, Anne Louise

    2007-01-01

    , erythrocytes, and liver. The incorporation of n-3 PUFA was significantly higher in phospholipids than in triacylglycerols. The results suggest that enriching butter blends with small amounts of fish oil can be used as an alternative method for improving the level of n-3 PUFA in biological tissues....... Syrian hamsters received hamster feed blended with one of the three butter products. After 6 weeks of feeding, the fatty acid compositions of plasma, erythrocytes, liver, brain, and visceral fat were determined. The intake of butter product with fish oil resulted in a higher level of n-3 PUFA in plasma...

  11. Improved Performance of Lipase Immobilized on Tannic Acid-Templated Mesoporous Silica Nanoparticles.

    Science.gov (United States)

    Jiang, Yanjun; Sun, Wenya; Zhou, Liya; Ma, Li; He, Ying; Gao, Jing

    2016-08-01

    Mesoporous silica nanoparticles were synthesized by using tannic acid as a pore-forming agent, which is an environmentally friendly, cheap, and non-surfactant template. SEM and TEM images indicated that the tannic acid-templated mesoporous silica nanoparticles (TA-MSNs) are monodisperse spherical-like particles with an average diameter of 195 ± 16 nm. The Brunauer-Emmett-Teller (BET) results showed that the TA-MSNs had a relatively high surface area (447 m(2)/g) and large pore volume (0.91 cm(3)/g), and the mean pore size was ca. 10.1 nm. Burkholderia cepacia lipase was immobilized on the TA-MSNs by physical adsorption for the first time, and the properties of immobilized lipase (BCL@TA-MSNs) were investigated. The BCL@TA-MSNs exhibited satisfactory thermal stability; strong tolerance to organic solvents such as methanol, ethanol, isooctane, n-hexane, and tetrahydrofuran; and high operational reusability when BCL@TA-MSNs were applied in esterification and transesterification reactions. After recycling 15 times in the transesterification reaction for biodiesel production, over 85 % of biodiesel yield can be maintained. With these desired characteristics, the TA-MSNs may provide excellent candidates for enzyme immobilization.

  12. Microbial production of amino acid-modified spider dragline silk protein with intensively improved mechanical properties.

    Science.gov (United States)

    Zhang, Haibo; Zhou, Fengli; Jiang, Xinglin; Cao, Mingle; Wang, Shilu; Zou, Huibin; Cao, Yujin; Xian, Mo; Liu, Huizhou

    2016-08-17

    Spider dragline silk is a remarkably strong fiber with impressive mechanical properties, which were thought to result from the specific structures of the underlying proteins and their molecular size. In this study, silk protein 11R26 from the dragline silk protein of Nephila clavipes was used to analyze the potential effects of the special amino acids on the function of 11R26. Three protein derivatives, ZF4, ZF5, and ZF6, were obtained by site-directed mutagenesis, based on the sequence of 11R26, and among these derivatives, serine was replaced with cysteine, isoleucine, and arginine, respectively. After these were expressed and purified, the mechanical performance of the fibers derived from the four proteins was tested. Both hardness and average elastic modulus of ZF4 fiber increased 2.2 times compared with those of 11R26. The number of disulfide bonds in ZF4 protein was 4.67 times that of 11R26, which implied that disulfide bonds outside the poly-Ala region affect the mechanical properties of spider silk more efficiently. The results indicated that the mechanical performances of spider silk proteins with small molecular size can be enhanced by modification of the amino acids residues. Our research not only has shown the feasibility of large-scale production of spider silk proteins but also provides valuable information for protein rational design.

  13. Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017.

    Science.gov (United States)

    Shan, Y; Man, C X; Han, X; Li, L; Guo, Y; Deng, Y; Li, T; Zhang, L W; Jiang, Y J

    2015-04-01

    Most γ-aminobutyric acid (GABA)-producing microorganisms are lactic acid bacteria (LAB), but the yield of GABA is limited in most of these GABA-producing strains. In this study, the production of GABA was carried out by using Lactobacillus plantarum NDC75017, a strain screened from traditional fermented dairy products in China. Concentrations of substrate (l-monosodium glutamate, L-MSG) and coenzyme (pyridoxal-5-phosphate, PLP) of glutamate decarboxylase (GAD) and culture temperature were investigated to evaluate their effects on GABA yield of Lb. plantarum NDC75017. The results indicated that GABA production was related to GAD activity and biomass of Lb. plantarum NDC75017. Response surface methodology was used to optimize conditions of GABA production. The optimal factors for GABA production were L-MSG at 80 mM, PLP at 18 μM, and a culture temperature of 36 °C. Under these conditions, production of GABA was maximized at 314.56 mg/100 g. Addition of Lb. plantarum NDC75017 to a commercial starter culture led to higher GABA production in fermented yogurt. Flavor and texture of the prepared yogurt and the control yogurt did not differ significantly. Thus, Lb. plantarum NDC75017 has good potential for manufacture of GABA-enriched fermented milk products.

  14. Hyaluronic acid dermal fillers: can adjunctive lidocaine improve patient satisfaction without decreasing efficacy or duration?

    Directory of Open Access Journals (Sweden)

    Lynnelle Smith

    2011-03-01

    Full Text Available Lynnelle Smith1, Kimberly Cockerham21Ophthalmology Department, Loma Linda University, Loma Linda, CA, USA; 2Ophthalmology Department, Stanford University, Palo Alto, CA, USAAbstract: Hyaluronic acid (HA dermal fillers are the most widely used injectables to augment facial volume without surgery. HA dermal fillers are popular because of their ease of administration, predictable effectiveness, good safety profile, and quick patient recovery. The most common patient complaint is pain. Our goal is to review the current literature on HA fillers and compare outcomes with and without lidocaine. We found adjunctive lidocaine significantly decreases pain during injection and postinjection with corresponding increased patient satisfaction. The efficacy and safety profile appears unchanged. Rare complications with HA fillers and those associated with constituents of the product, contaminants, and lidocaine are reviewed. The corrective effects of HA fillers are temporary; repeat treatment is required to maintain results. Minimizing pain is crucial to optimize patient satisfaction.Keywords: hyaluronic acid, lidocaine, drug toxicity, hypersensitivity, collagen, herpes simplex

  15. Folic Acid-Chitosan Conjugated Nanoparticles for Improving Tumor-Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huijuan Song

    2013-01-01

    Full Text Available Objective. To prepare folic acid-chitosan conjugated nanoparticles (FA-CS NPs and evaluate their targeting specificity on tumor cells. Methods. Chitosan (CS NPs were prepared by ionic cross linking method, and folic acid (FA was conjugated with CS NPs by electrostatic interaction. The properties of NPs were investigated, and doxorubicin hydrochloride (Dox as a model drug was encapsulated for investigating drug release pattern in vitro. The cytotoxicity and cellular uptake of FA-CS NPs were also investigated. Results. The results reveal that the obtained FA-CS NPs were monodisperse nanoparticles with suitable average size and positive surface charge. Dox was easily loaded into FA-CS NPs, and the release pattern showed a long and biphasic drug release. Noticeable phagocytosis effect was observed in the presence of rhodamine B-labeled FA-CSNPs when incubating with the folate receptor-positive SMMC-7221 cells. Conclusion. Compared with the unmodified CS NPs, FA-CS NPs showed much higher cell uptaking ability due to the known folate-receptor mediated endocytosis. FA-CS NPs provide a potential way to enhance the using efficiency of antitumor drug by folate receptor mediated targeting delivery.

  16. Improving the Bioavailability of Seed Phosphorous in Low Phytic Acid Soybean Mutants

    Directory of Open Access Journals (Sweden)

    Ashok Badigannavar and J. G. Manjaya

    2012-03-01

    Full Text Available Phytic acid, the heat stable anti-nutritional factor forms 75% of the total Phosphorous (P in soybean seeds. It acts as strong chelatingagent binding to metal ions reducing the bioavailability of Fe, Zn, Mg and Ca in human and non-ruminant livestock. In the presentstudy, 106 soybean germplasm lines were screened to estimate the seed phytate. It ranged from 0.16 to 4.741mg per g soy flour. Highyielding, low phytate cultivar were selected and subjected to 250 Gy gamma ray irradiation. In M3 generation, mutants having phyticacid content ranged from 0.075 to 2.58 mg/g of soy flour were identified. These mutants have shown as much as 50% or morereduction in seed phytate compared to control. Although low phytic acid line had much higher inorganic ‘P’ concentrations than seedof the normal lines, the balance between protein and oil content was not altered. Since, corn-soy and soymeal are commonly fed tolivestock; reducing phytate content would contribute to increased bioavailability of ‘P’ in these livestock feeds.

  17. An improved extraction chromatographic resin for the separation of uranium from acidic nitrate media

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, M.L.; Horwitz, E.P.; Sajdak, L.R.; Chiarizia, R. [Chemistry Division, Argonne National Laboratory, 60439 Argonne, IL (United States)

    2001-07-06

    The preparation and characterization of a new extraction chromatographic resin exhibiting extraordinarily strong retention of hexavalent uranyl ion over a wide range of nitric acid concentrations and very high selectivity for U(VI) over Fe(III) and numerous other cations is described. This new material (designated U/TEVA-2) comprises a novel liquid stationary phase consisting of an equimolar mixture of diamyl amylphosphonate (DA[AP]) and Cyanex 923{sup registered} (a commercially available trialkyl-phosphine oxide, TRPO) sorbed on silanized silica or Amberchrom CG-71. Cyanex 923 is shown to be preferable to a related TRPO, Cyanex 925{sup registered}, due to its lower viscosity and higher selectivity for U(VI) over Fe(III). The retention of uranyl nitrate by the U/TEVA-2 resin, as measured by the k' values (number of free column values to peak maximum) is >5000 from approximately 0.1 to 8 M HNO{sub 3}. The ability of the new resin to strongly and selectively retain U(VI) from such a wide range of acid concentrations, along with its favorable physical properties, make it a good candidate for application in the separation and preconcentration of U(VI) from complex environmental, biological, and nuclear waste samples for subsequent determination.

  18. An improved extraction chromatographic resin for the separation of uranium from acidic nitrate media.

    Science.gov (United States)

    Dietz, M L; Horwitz, E P; Sajdak, L R; Chiarizia, R

    2001-07-01

    The preparation and characterization of a new extraction chromatographic resin exhibiting extraordinarily strong retention of hexavalent uranyl ion over a wide range of nitric acid concentrations and very high selectivity for U(VI) over Fe(III) and numerous other cations is described. This new material (designated U/TEVA-2) comprises a novel liquid stationary phase consisting of an equimolar mixture of diamyl amylphosphonate (DA[AP]) and Cyanex 923((R)) (a commercially available trialkyl-phosphine oxide, TRPO) sorbed on silanized silica or Amberchrom CG-71. Cyanex 923 is shown to be preferable to a related TRPO, Cyanex 925((R)), due to its lower viscosity and higher selectivity for U(VI) over Fe(III). The retention of uranyl nitrate by the U/TEVA-2 resin, as measured by the k' values (number of free column values to peak maximum) is >5000 from approximately 0.1 to 8 M HNO(3). The ability of the new resin to strongly and selectively retain U(VI) from such a wide range of acid concentrations, along with its favorable physical properties, make it a good candidate for application in the separation and preconcentration of U(VI) from complex environmental, biological, and nuclear waste samples for subsequent determination.

  19. Phenolic compounds in juice of “Isabel” grape treated with abscisic acid for color improvement

    Directory of Open Access Journals (Sweden)

    Yamamoto Lilian Yukari

    2015-01-01

    Full Text Available Isabel grape is the main cultivar used to produce juice in Brazil, which has rusticity and high productivity, but it is deficient in anthocyanins, a pigment responsible for the color. Thus, an alternative is the application of abscisic acid (S-ABA, which is responsible to promote the synthesis of anthocyanins. The aim of this work was to evaluate the phenolic compounds composition in “Isabel” grape juice treated with S-ABA, by HPLC-DAD–ESI-MS/MS technique. The results showed the increasing in total anthocyanin concentration in juices, with S-ABA treatments, as well as the proportion of B-ring tri-substituted anthocyanidins. Regarding total flavonols, differences were only significant in juices obtained in 2012 season. S-ABA treatments did not significantly affect the hydroxycinnamic acid derivatives, flavan-3-ols, resveratrol and antioxidant capacity of juices. Juice from “Isabel” grapes treated with S-ABA provides an enhancement of total anthocyanin concentration, mainly when grapes are treated before or at the onset of véraison.

  20. Exogenous tocopherol and ascorbic acid improve in vitro recovery of cryopreserved Rubus shoot tips

    Science.gov (United States)

    Oxidative processes involved in stresses such as cold temperatures can decrease the viability of plant tissues. Antioxidants that counteract these oxidative reactions could improve plant viability following the stresses involved in cryopreservation. We studied the effects of exogenous vitamin E (V...

  1. Cognitive disorder and changes in cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury

    Institute of Scientific and Technical Information of China (English)

    Weiliang Zhao; Dezhi Kang; Yuanxiang Lin

    2008-01-01

    BACKGROUND: Learning and memory damage is one of the most permanent and the severest symptoms of traumatic brain injury; it can seriously influence the normal life and work of patients. Some research has demonstrated that cognitive disorder is closely related to nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor. OBJECTIVE: To summarize the cognitive disorder and changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury. RETRIEVAL STRATEGY: A computer-based online search was conducted in PUBMED for English language publications containing the key words "brain injured, cognitive handicap, acetylcholine, N-methyl-D aspartate receptors, neural cell adhesion molecule, brain-derived neurotrophic factor" from January 2000 to December 2007. There were 44 papers in total. Inclusion criteria: ① articles about changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury; ② articles in the same researching circle published in authoritative journals or recently published. Exclusion criteria: duplicated articles.LITERATURE EVALUATION: References were mainly derived from research on changes in these four factors following brain injury. The 20 included papers were clinical or basic experimental studies. DATA SYNTHESIS: After craniocerebral injury, changes in these four factors in brain were similar to those during recovery from cognitive disorder, to a certain degree. Some data have indicated that activation of nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor could greatly improve cognitive disorder following brain injury. However, there are still a lot of questions remaining; for example, how do these

  2. Hybrid poly(lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistance

    DEFF Research Database (Denmark)

    Trifol Guzman, Jon; Plackett, David; Sillard, Cecile

    2016-01-01

    Poly(lactic acid) (PLA)‐based hybrid nanocomposites (PLA, nanoclay and nanocellulose) were prepared by reinforcing neat PLA with commercially available nanoclay (Cloisite C30B) and nanocellulose, in the form of either partially acetylated cellulose nanofibres (CNFs) or nanocrystalline cellulose....... Composites with 1 or 5 wt% of nanocellulose, in combination with 1, 3 and 5 wt% of nanoclay, were prepared, and their barrier properties were investigated. It was found that the combination of clay and nanocellulose clearly resulted in synergistic behaviour in terms of the oxygen transmission rate (OTR......) through a reduction of up to 90% in OTR and a further reduction in the water vapour transmission rate of up to 76%. In addition, the nanocomposite films showed improved thermomechanical resistance and improved crystallisation kinetics while maintaining high film transparency. This makes the hybrid PLA...

  3. Improvement of Intestinal Immune Cell Function by Lactic Acid Bacteria for Dairy Products

    Science.gov (United States)

    Kamiya, Tomonori; Watanabe, Yohei; Makino, Seiya; Kano, Hiroshi; Tsuji, Noriko M

    2016-01-01

    Lactic acid bacteria (LAB) form a major component of gut microbiota and are often used as probiotics for fermented foods, such as yoghurt. In this study, we aimed to evaluate immunomodulatory activity of LAB, especially that of Lactobacillus bulgaricus ME-552 (ME552) and Streptococcus thermophilus ME-553 (ME553). In vivo/in vitro assay was performed in order to investigate their effects on T cell function. After oral administration of ME553 to C57BL/6 mice, the amount of both interferon γ (IFN-γ) and interleukin 17 (IL-17) produced by cluster of differentiation (CD) 4+ T cells from Peyer’s patches (PPs) were significantly enhanced. On the other hand, ME552 only up-regulated the production of IL-17 from PP cells. The extent of induction for IFN-γ production differed between ME552 and ME553. These results suggest that LAB modulate T cell effector functions and mucosal immunity. PMID:28025548

  4. Compound amino acids added in media improved Solanum nigrum L. phytoremediating CD-PAHS contaminated soil.

    Science.gov (United States)

    Wei, Shuhe; Bai, Jiayi; Yang, Chuanjie; Zhang, Qianru; Knorrm, Klaus-Holger; Zhan, Jie; Gao, Qianhui

    2016-01-01

    Cd hyperaccumulator Solanum nigrum L. was a promising plant used to simultaneously remediate Cd-PAHs combined pollution soil through its extra accumulation capacity and rhizosphere degradation. This article compared the strengthening remediation role of cysteine (Cys), glycine (Gly) and glutamic acid (Glu) with EDTA and TW80. The results showed that the addition of 0.03 mmol L(-1) Cys, Gly, and Glu didn't significantly impact (p Cd concentration. Therefore, Cd capacity (µg pot(-1)) in shoots of S. nigrum was significantly increased (p Cd might lie in the addition of Cys, Gly, and Glu which reduced pH and increased extractable Cd concentration in rhizosphere and phytochelatines (PCs) concentration in leaves. As for the degradation of PAHs in rhizosphere, increased microorganism number might be play important role.

  5. Improved sensitivity of nucleic acid amplification for rapid diagnosis of tuberculous meningitis

    DEFF Research Database (Denmark)

    Johansen, Isik Somuncu; Lundgren, Bettina; Tabak, Fehmi;

    2004-01-01

    ) for the detection of Mycobacterium tuberculosis complex organisms in parallel with the ProbeTec method with a modified pretreatment procedure with 101 prospectively collected cerebrospinal fluid specimens from 94 patients with suspected TBM. By the modified method, the sample-washing step was omitted. A definitive...... diagnosis was attained by culture. Thirteen specimens from 12 patients were culture positive for M. tuberculosis complex organisms; three specimens (23%) were microscopy positive for acid-fast bacilli. Among the culture-positive specimens, the standard ProbeTec method was positive for 8 (61...... was adjusted from the recommended value of 3,400 to 1,000, the sensitivity of the modified procedure increased to 84.7%, with unchanged specificity. Results were obtained in 3 to 4 h. The new pretreatment procedure with the ProbeTec assay described here provides a rapid, simple, and sensitive tool...

  6. Hyaluronic acid dermal fillers: can adjunctive lidocaine improve patient satisfaction without decreasing efficacy or duration?

    Science.gov (United States)

    Smith, Lynnelle; Cockerham, Kimberly

    2011-03-14

    Hyaluronic acid (HA) dermal fillers are the most widely used injectables to augment facial volume without surgery. HA dermal fillers are popular because of their ease of administration, predictable effectiveness, good safety profile, and quick patient recovery. The most common patient complaint is pain. Our goal is to review the current literature on HA fillers and compare outcomes with and without lidocaine. We found adjunctive lidocaine significantly decreases pain during injection and postinjection with corresponding increased patient satisfaction. The efficacy and safety profile appears unchanged. Rare complications with HA fillers and those associated with constituents of the product, contaminants, and lidocaine are reviewed. The corrective effects of HA fillers are temporary; repeat treatment is required to maintain results. Minimizing pain is crucial to optimize patient satisfaction.

  7. Using protein-fatty acid complexes to improve vitamin D stability

    DEFF Research Database (Denmark)

    Pedersen, Jannik Nedergaard; Frislev, Henriette Kristina Søster; Pedersen, Jan Skov;

    2016-01-01

    and evaluated their ability to protect vitD upon exposure to heating or intense UV light. Additionally, the stability of liprotides toward pH, Ca(2+), and BSA was determined. The best results were obtained with liprotides made from α-lactalbumin and oleate. These liprotides were able to completely solubilize...... to those made at 20°C. Nevertheless, the fatty acid binding protein BSA reduced the ability of both liprotides to protect vitD; the amount of vitD left after 20 d at 20°C fell from 79 ± 3% in the absence of BSA to 49 ± 4 and 23 ± 3% in the presence of BSA for liprotides made at 80 and 20°C, respectively...

  8. Improvement of Intestinal Immune Cell Function by Lactic Acid Bacteria for Dairy Products

    Directory of Open Access Journals (Sweden)

    Tomonori Kamiya

    2016-12-01

    Full Text Available Lactic acid bacteria (LAB form a major component of gut microbiota and are often used as probiotics for fermented foods, such as yoghurt. In this study, we aimed to evaluate immunomodulatory activity of LAB, especially that of Lactobacillus bulgaricus ME-552 (ME552 and Streptococcus thermophilus ME-553 (ME553. In vivo/in vitro assay was performed in order to investigate their effects on T cell function. After oral administration of ME553 to C57BL/6 mice, the amount of both interferon γ (IFN-γ and interleukin 17 (IL-17 produced by cluster of differentiation (CD 4+ T cells from Peyer’s patches (PPs were significantly enhanced. On the other hand, ME552 only up-regulated the production of IL-17 from PP cells. The extent of induction for IFN-γ production differed between ME552 and ME553. These results suggest that LAB modulate T cell effector functions and mucosal immunity.

  9. GASTROENTEROPATHIES ASSOCIATED WITH ACETYLSALICYLIC ACID: HOW TO IMPROVE SAFETY OF THERAPY

    Directory of Open Access Journals (Sweden)

    A. L. Komarov

    2016-01-01

    Full Text Available Lesion of gastrointestinal mucous coat is the main factor limited acetylsalicylic acid (ASA use in patients with atherothrombosis. Up to date the mostly comprehensible way to decrease gastrointestinal complications is taking ASA in the lowest effective dose, which is not higher than 75-81 mg daily. It is necessary if possible to avoid ASK usage in combination with other antiaggregants, anticoagulants, non-steroid and steroid anti-inflammatory drugs. Routine antiulcer therapy is not indicated for patients treated with ASA because there is a lack of clinical research data about efficacy of this approach. In high risk of dangerous gastrointestinal complications H. pylori eradication is recommended in combination with long term preventive therapy with gastric secretion inhibitors. Proton pump inhibitors are more preferred.

  10. GASTROENTEROPATHIES ASSOCIATED WITH ACETYLSALICYLIC ACID: HOW TO IMPROVE SAFETY OF THERAPY

    Directory of Open Access Journals (Sweden)

    A. L. Komarov

    2009-01-01

    Full Text Available Lesion of gastrointestinal mucous coat is the main factor limited acetylsalicylic acid (ASA use in patients with atherothrombosis. Up to date the mostly comprehensible way to decrease gastrointestinal complications is taking ASA in the lowest effective dose, which is not higher than 75-81 mg daily. It is necessary if possible to avoid ASK usage in combination with other antiaggregants, anticoagulants, non-steroid and steroid anti-inflammatory drugs. Routine antiulcer therapy is not indicated for patients treated with ASA because there is a lack of clinical research data about efficacy of this approach. In high risk of dangerous gastrointestinal complications H. pylori eradication is recommended in combination with long term preventive therapy with gastric secretion inhibitors. Proton pump inhibitors are more preferred.

  11. Exogenous abscisic acid application during grain filling in winter wheat improves cold tolerance of offspring's seedlings

    DEFF Research Database (Denmark)

    Li, X.; Cai, J.; Liu, Fulai

    2014-01-01

    Low temperature seriously depresses seed germination and seedling growth in winter wheat (Triticum aestivum L.). In this study, wheat plants were sprayed with abscisic acid (ABA) and fluridone (inhibitor of ABA biosynthesis) at 19 days after anthesis (DAA) and repeated at 26 DAA. The seeds of those...... plants were harvested, and seed germination and offspring's seedling growth under low temperature were evaluated. The results showed that exogenous ABA application decreased seed weight and slightly reduced seed set and seed number per spike. Under low temperature, seeds from ABA-treated plants showed...... reduced germination rate, germination index, growth of radicle and coleoptile, amylase activity and depressed starch degradation as compared with seeds from non-ABA-treated plants; however, activities of the antioxidant enzymes in both germinating seeds and seedling were enhanced from those exposed...

  12. Improvement of identification methods for honeybee specific Lactic Acid Bacteria; future approaches

    Science.gov (United States)

    Hu, Yue O. O.; Olofsson, Tobias C.; Andersson, Anders F.; Forsgren, Eva; Vásquez, Alejandra

    2017-01-01

    Honeybees face many parasites and pathogens and consequently rely on a diverse set of individual and group-level defenses to prevent disease. The crop microbiota of Apis mellifera, composed of 13 Lactic Acid Bacterial (LAB) species within the genera Lactobacillus and Bifidobacterium, form a beneficial symbiotic relationship with each other and the honeybee to protect their niche and their host. Possibly playing a vital role in honeybee health, it is important that these honeybee specific Lactic Acid Bacterial (hbs-LAB) symbionts can be correctly identified, isolated and cultured, to further investigate their health promoting properties. We have previously reported successful identification to the strain level by culture-dependent methods and we recently sequenced and annotated the genomes of the 13 hbs-LAB. However, the hitherto applied techniques are unfortunately very time consuming, expensive and not ideal when analyzing a vast quantity of samples. In addition, other researchers have constantly failed to identify the 13 hbs-LAB from honeybee samples by using inadequate media and/or molecular techniques based on 16S rRNA gene sequencing with insufficient discriminatory power. The aim of this study was to develop better and more suitable methods for the identification and cultivation of hbs-LAB. We compared currently used bacterial cultivation media and could for the first time demonstrate a significant variation in the hbs-LAB basic requirements for optimal growth. We also present a new bacterial identification approach based on amplicon sequencing of a region of the 16S rRNA gene using the Illumina platform and an error correction software that can be used to successfully differentiate and rapidly identify the 13 hbs-LAB to the strain level. PMID:28346815

  13. Salicylic acid and methyl jasmonate improve chilling tolerance in cold-stored lemon fruit (Citrus limon).

    Science.gov (United States)

    Siboza, Xolani Irvin; Bertling, Isa; Odindo, Alfred Oduor

    2014-11-15

    Chilling injury (CI) is associated with the degradation of membrane integrity which can be aligned to phenolic oxidation activated by polyphenol oxidase (PPO) and peroxidase (POD), enzymes responsible for tissue browning. Phenylalanine ammonia-lyase (PAL) is a further enzyme prominent in the phenolic metabolism that is involved in acclimation against chilling stress. It was hypothesized that treatment with methyl jasmonate (MJ) and salicylic acid (SA) may enhance chilling tolerance in lemon fruit by increasing the synthesis of total phenolics and PAL by activating the key enzyme regulating the shikimic acid pathway whilst inhibiting the activity of POD and PPO. Lemon fruit were treated with 10μM MJ, 2mM SA or 10μM MJ plus 2mM SA, waxed, stored at -0.5, 2 or 4.5°C for up to 28 days plus 7 days at 23°C. Membrane integrity was studied by investigating membrane permeability and the degree of membrane lipid peroxidation in lemon flavedo following cold storage. The 10μM MJ plus 2mM SA treatment was most effective in enhancing chilling tolerance of lemon fruit, significantly reducing chilling-induced membrane permeability and membrane lipid peroxidation of lemon flavedo tissue. This treatment also increased total phenolics and PAL activity in such tissue while inhibiting POD activity, the latter possibly contributing to the delay of CI manifestation. PPO activity was found to be a poor biochemical marker of CI. Treatment with 10μM MJ plus 2mM SA resulted in an alteration of the phenolic metabolism, enhancing chilling tolerance, possibly through increased production of total phenolics and the activation of PAL and inhibition of POD.

  14. Ellagic acid improved arrhythmias induced by CaCL2 in the rat stress model

    Directory of Open Access Journals (Sweden)

    Mahin Dianat

    2015-02-01

    Full Text Available Objective: In ventricular arrhythmias, due to their free radical scavenging action, antioxidant agents are usually used in the treatment of cardiovascular disease. Since stress is considered as risk factor for increased mortality by causing malignant arrhythmias, the study was designed to evaluate the cardioprotective effects of ellagic acid (EA on CaCl2-induced arrhythmias in rat stress model. Materials and Methods: Male Sprague-Dawley rats (200-250 g were divided into four groups: Group I: Control rats (2 ml of saline by gavage, Group II: Rats treated with EA (15 mg/kg, gavage, Group III: stress group, Group IV: received EA plus stress. Stress was applied in a restrainer box (6 hour/day, 21 days. After induction of anesthesia, lead II electrocardiogram was recorded for calculating heart rate and QRS complex. The arrhythmia was produced by injection of CaCl2 solution (140 mg/kg, iv and incidences of Ventricular fibrillation, Ventricular premature beats and Ventricular tachycardia were recorded. Results were analyzed by using one-way ANOVA and Fisher`s exact test. pResults: The results showed a positive inotropic effect and negative chronotropic effect for the EA group in comparison with the control group. Incidence rates (% of premature beats, ventricular fibrillation and ventricular tachycardia in stress group and all the arrhythmia parameters decreased in groups which received EA. Conclusions:  By decreasing the incidence rates of premature beats, fibrillation and ventricular tachycardia in groups which received EA, ellagic acid probably acted as an anti-arrhythmic agent which showed to have aprotective functionin heart.

  15. Mice lacking neutral amino acid transporter B0AT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control

    OpenAIRE

    Yang Jiang; Adam J. Rose; Sijmonsma, Tjeerd P.; Angelika Bröer; Anja Pfenninger; Stephan Herzig; Dieter Schmoll; Stefan Bröer

    2015-01-01

    Objective: Type 2 diabetes arises from insulin resistance of peripheral tissues followed by dysfunction of β-cells in the pancreas due to metabolic stress. Both depletion and supplementation of neutral amino acids have been discussed as strategies to improve insulin sensitivity. Here we characterise mice lacking the intestinal and renal neutral amino acid transporter B0AT1 (Slc6a19) as a model to study the consequences of selective depletion of neutral amino acids. Methods: Metabolic tests...

  16. Improvement of Semen Quality in Holstein Bulls during Heat Stress by Dietary Supplementation of Omega-3 Fatty Acids

    Directory of Open Access Journals (Sweden)

    Hamid Gholami

    2011-01-01

    Full Text Available Background: Long-chain polyunsaturated fatty acids (PUFAs of the omega-3 family are importantfor sperm membrane integrity, sperm motility and viability. There are evidences to suggest thatdietary supplementation with omega-3 fatty acids affects reproduction in men and males ofdifferent animal species. Therefore, the aim of current study was to investigate changes in thequality parameters of Holstein bull semen during heat stress and the effect of feeding a source ofomega-3 fatty acids during this period.Materials and Methods: Samples were obtained from 19 Holstein bulls during the expected time ofheat stress in Iran (June to September 2009. Control group (n=10 were fed a standard concentratefeed while the treatment group (n=9 had this feed top dressed with 100 g of an omega-3 enrichednutriceutical. Semen volume, sperm concentration and total sperm production were evaluated onejaculates collected after 1, 5, 9 and 12 weeks of supplementation. Moreover, computer-assistedassessment of sperm motility, viability (eosin-nigrosin and hypo-osmotic swelling test (HOSTwere conducted.Results: Heat stress affected sperm quality parameters by weeks five and nine of the study (p<0.05.Supplementation significantly increased total motility, progressive motility, HOST-positivespermatozoa and average path velocity in the fresh semen of bulls (p<0.05.Conclusion: Dietary omega-3 supplementation improved in vitro quality and motility parametersof fresh semen in Holstein bulls. However, this effect was not evident in frozen-thawed semen.

  17. Improvement of L(+)-Lactic Acid Production of Rhizopus Oryzae by Low-Energy Ions and Analysis of Its Mechanism

    Science.gov (United States)

    Ge, Chunmei; Yang, Yingge; Fan, Yonghong; Li, Wen; Pan, Renrui; Zheng, Zhiming; Yu, Zengliang

    2008-02-01

    The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8 × 1014 ~ 2.08 × 1015 ions/cm2) to find an industrial strain with a higher L(+)-lactic acid yield, and two mutants RE3303 and RF9052 were isolated. In order to discuss the mechanism primarily, Lactate Dehydrogenase of Rhizopus oryzae was studied. While the two mutants produced L(+)-lactic acid by 75% more than the wild strain did, their specific activity of Lactate Dehydrogenase was found to be higher than that in the wild strain. The optimum temperature of Lactate Dehydrogenase in Rhizopus oryzae RF9052 was higher. Compared to the wild strain, the Michaelis constant (Km) value of Lactate Dehydrogenase in the mutants was changed. All these changes show that L(+)-lactic acid production has a correlation with the specific activity of Lactate Dehydrogenase. The low-energy ions, implanted into the strain, may improve the specific activity of Lactate Dehydrogenase by influencing its gene structure and protein structure.

  18. Improvement of L(+)-Lactic Acid Production of Rhizopus Oryzae by Low-Energy Ions and Analysis of Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    GE Chunmei; YANG Yingge; FAN Yonghong; LI Wen; PAN Renrui; ZHENG Zhiming; YU Zengliang

    2008-01-01

    The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8 × 104 ~ 2.08 × 105 ions/cm2) to find an industrial strain with a higher L(+)-lactic acid yield, and two mutants RE3303 and RF9052 were isolated. In order to discuss the mechanism primarily,Lactate Dehydrogenase of Rhizopus oryzae was studied. While the two mutants produced L(+)-lactic acid by 75% more than the wild strain did, their specific activity of Lactate Dehydrogenase was found to be higher than that in the wild strain. The optimum temperature of Lactate Dehydrogenase in Rhizopus oryzae RF9052 was higher. Compared to the wild strain, the Michaelis constant (Km) value of Lactate Dehydrogenase in the mutants was Changed. All these changes show that L(+)-lactic acid production has a correlation with the specific activity of Lactate Dehydrogenase. The low-energy ions, implanted into the strain, may improve the specific activity of Lactate Dehydrogenase by influencing its gene structure and protein structure.

  19. Metabolic Control in Mammalian Fed-Batch Cell Cultures for Reduced Lactic Acid Accumulation and Improved Process Robustness

    Directory of Open Access Journals (Sweden)

    Viktor Konakovsky

    2016-01-01

    Full Text Available Biomass and cell-specific metabolic rates usually change dynamically over time, making the “feed according to need” strategy difficult to realize in a commercial fed-batch process. We here demonstrate a novel feeding strategy which is designed to hold a particular metabolic state in a fed-batch process by adaptive feeding in real time. The feed rate is calculated with a transferable biomass model based on capacitance, which changes the nutrient flow stoichiometrically in real time. A limited glucose environment was used to confine the cell in a particular metabolic state. In order to cope with uncertainty, two strategies were tested to change the adaptive feed rate and prevent starvation while in limitation: (i inline pH and online glucose concentration measurement or (ii inline pH alone, which was shown to be sufficient for the problem statement. In this contribution, we achieved metabolic control within a defined target range. The direct benefit was two-fold: the lactic acid profile was improved and pH could be kept stable. Multivariate Data Analysis (MVDA has shown that pH influenced lactic acid production or consumption in historical data sets. We demonstrate that a low pH (around 6.8 is not required for our strategy, as glucose availability is already limiting the flux. On the contrary, we boosted glycolytic flux in glucose limitation by setting the pH to 7.4. This new approach led to a yield of lactic acid/glucose (Y L/G around zero for the whole process time and high titers in our labs. We hypothesize that a higher carbon flux, resulting from a higher pH, may lead to more cells which produce more product. The relevance of this work aims at feeding mammalian cell cultures safely in limitation with a desired metabolic flux range. This resulted in extremely stable, low glucose levels, very robust pH profiles without acid/base interventions and a metabolic state in which lactic acid was consumed instead of being produced from day 1. With

  20. Improvements in glucose metabolism early after gastric bypass surgery are not explained by increases in total bile acids and fibroblast growth factor 19 concentrations

    DEFF Research Database (Denmark)

    Jørgensen, Nils B; Dirksen, Carsten; Bojsen-Møller, Kirstine N;

    2015-01-01

    Context: Bile acids and fibroblast growth factor 19 (FGF19) have been suggested as key mediators of the improvements in glucose metabolism after Roux-en-Y gastric bypass (RYGB). Objective: To describe fasting and postprandial state total bile acid (TBA) and FGF19 concentrations before and after...

  1. The anticoagulant ability of ferulic acid and its applications for improving the blood compatibility of silk fibroin

    Energy Technology Data Exchange (ETDEWEB)

    Wang Song; Gao Zhen; Chen Xiaomeng; Lian Xiaojie; Zhu Hesun [School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zheng Jun; Sun Lizhong [Department of Cardiac Surgery, Cardiovascular Institute and Fu Wai Hospital, CAMS and PUMC, Beijing 100037 (China)], E-mail: wangsongbit@hotmail.com

    2008-12-15

    The hemocompatibility of silk fibroin (SF) was improved with ferulic acid (FA) by graft polymerization. Ferulic acid is an active ingredient of many Chinese herbal medicines, such as Chuanxiong (Rhizoma ligustici wallichii), Danggui (Angelica sinensis) and Awei (Asafoetida giantfennel), which have been used to treat cardiovascular diseases by Chinese physicians for thousands of years. The inhibitory functions of FA on blood coagulation and erythrocyte agglutination were first characterized by a Lee-White test tube method and a micropipette technique, respectively. Then, FA was immobilized on SF by graft polymerization and the surface composition of modified SF was characterized by attenuated total reflectance Fourier-transform infrared (ATR-FTIR), x-ray photoelectron spectroscopy (XPS) and optical microscopy. The anticoagulant activity of modified SF was assessed, respectively, by in vitro clotting time measurements on a photo-optical clot detection instrument and with the Lee-White test tube method. The test results indicated that in comparison to untreated SF, the anticoagulant activity of modified SF has been improved significantly. Moreover, the SF surface composition is altered by FA but its {beta}-sheet conformation is not disturbed.

  2. Surface colonization by Azospirillum brasilense SM in the indole-3-acetic acid dependent growth improvement of sorghum.

    Science.gov (United States)

    Kochar, Mandira; Srivastava, Sheela

    2012-04-01

    The key to improving plant productivity is successful bacterial-plant interaction in the rhizosphere that can be maintained in the environment. The results presented here confirm Azospirillum brasilense strain SM as a competent plant growth promoting bacterium over mid- and long-term associations with sorghum. This study establishes that plant growth can be directly correlated with the associated bacterium's indole-3-acetic acid (IAA) production capability as IAA over-expressing variants, SMp30 and SMΔi3-6 fared better than the wild type strain. The auxin antagonist, p-chlorophenoxy isobutyric acid confirmed the role of bacterial IAA in plant growth promotion and verified the presence of larger amount of IAA available to the seeds on inoculation with IAA over-expressing mutants. Microscopic analysis identified the bacterial association at root tips, root-shoot junction and elongation zone and their surface colonizing nature. Scanning electron microscopy identified larger number of root hairs and extensive exopolysaccharide covering in comparison to untreated ones. In addition, vibroid-shaped Azospirilla attached by means of fibrillar material were dispersed along the elongation zone. The notable difference with IAA over-expressing variants was enhanced number of root hairs. Thus, the variant strains may be more efficient surface colonizers of the sorghum root and used as superior bio-inoculants for improving plant productivity.

  3. A new process to improve short-chain fatty acids and bio-methane generation from waste activated sludge.

    Science.gov (United States)

    Dong, Bin; Gao, Peng; Zhang, Dong; Chen, Yinguang; Dai, Lingling; Dai, Xiaohu

    2016-05-01

    As an important intermediate product, short-chain fatty acids (SCFAs) can be generated after hydrolysis and acidification from waste activated sludge, and then can be transformed to methane during anaerobic digestion process. In order to obtain more SCFA and methane, most studies in literatures were centered on enhancing the hydrolysis of sludge anaerobic digestion which was proved as un-efficient. Though the alkaline pretreatment in our previous study increased both the hydrolysis and acidification processes, it had a vast chemical cost which was considered uneconomical. In this paper, a low energy consumption pretreatment method, i.e. enhanced the whole three stages of the anaerobic fermentation processes at the same time, was reported, by which hydrolysis and acidification were both enhanced, and the SCFA and methane generation can be significantly improved with a small quantity of chemical input. Firstly, the effect of different pretreated temperatures and pretreatment time on sludge hydrolyzation was compared. It was found that sludge pretreated at 100°C for 60min can achieve the maximal hydrolyzation. Further, effects of different initial pHs on acidification of the thermal pretreated sludge were investigated and the highest SCFA was observed at initial pH9.0 with fermentation time of 6d, the production of which was 348.63mg COD/gVSS (6.8 times higher than the blank test) and the acetic acid was dominant acid. Then, the mechanisms for this new pretreatment significantly improving SCFA production were discussed. Finally, the effect of this low energy consumption pretreatment on methane generation was investigated.

  4. A novel approach to improve poly-γ-glutamic acid production by NADPH Regeneration in Bacillus licheniformis WX-02

    Science.gov (United States)

    Cai, Dongbo; He, Penghui; Lu, Xingcheng; Zhu, Chengjun; Zhu, Jiang; Zhan, Yangyang; Wang, Qin; Wen, Zhiyou; Chen, Shouwen

    2017-01-01

    Poly-γ-glutamic acid (γ-PGA) is an important biochemical product with a variety of applications. This work reports a novel approach to improve γ-PGA through over expression of key enzymes in cofactor NADPH generating process for NADPH pool. Six genes encoding the key enzymes in NADPH generation were over-expressed in the γ-PGA producing strain B. licheniformis WX-02. Among various recombinants, the strain over-expressing zwf gene (coding for glucose-6-phosphate dehydrogenase), WX-zwf, produced the highest γ-PGA concentration (9.13 g/L), 35% improvement compared to the control strain WX-pHY300. However, the growth rates and glucose uptake rates of the mutant WX-zwf were decreased. The transcriptional levels of the genes pgsB and pgsC responsible for γ-PGA biosynthesis were increased by 8.21- and 5.26-fold, respectively. The Zwf activity of the zwf over expression strain increased by 9.28-fold, which led to the improvement of the NADPH generation, and decrease of accumulation of by-products acetoin and 2,3-butanediol. Collectively, these results demonstrated that NADPH generation via over-expression of Zwf is as an effective strategy to improve the γ-PGA production in B. licheniformis. PMID:28230096

  5. A class frequency mixture model that adjusts for site-specific amino acid frequencies and improves inference of protein phylogeny

    Directory of Open Access Journals (Sweden)

    Li Karen

    2008-12-01

    Full Text Available Abstract Background Widely used substitution models for proteins, such as the Jones-Taylor-Thornton (JTT or Whelan and Goldman (WAG models, are based on empirical amino acid interchange matrices estimated from databases of protein alignments that incorporate the average amino acid frequencies of the data set under examination (e.g JTT + F. Variation in the evolutionary process between sites is typically modelled by a rates-across-sites distribution such as the gamma (Γ distribution. However, sites in proteins also vary in the kinds of amino acid interchanges that are favoured, a feature that is ignored by standard empirical substitution matrices. Here we examine the degree to which the pattern of evolution at sites differs from that expected based on empirical amino acid substitution models and evaluate the impact of these deviations on phylogenetic estimation. Results We analyzed 21 large protein alignments with two statistical tests designed to detect deviation of site-specific amino acid distributions from data simulated under the standard empirical substitution model: JTT+ F + Γ. We found that the number of states at a given site is, on average, smaller and the frequencies of these states are less uniform than expected based on a JTT + F + Γ substitution model. With a four-taxon example, we show that phylogenetic estimation under the JTT + F + Γ model is seriously biased by a long-branch attraction artefact if the data are simulated under a model utilizing the observed site-specific amino acid frequencies from an alignment. Principal components analyses indicate the existence of at least four major site-specific frequency classes in these 21 protein alignments. Using a mixture model with these four separate classes of site-specific state frequencies plus a fifth class of global frequencies (the JTT + cF + Γ model, significant improvements in model fit for real data sets can be achieved. This simple mixture model also reduces the long

  6. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism.

    Science.gov (United States)

    Al-Amin, Md Mamun; Rahman, Md Mahbubur; Khan, Fazlur Rahman; Zaman, Fahmida; Mahmud Reza, Hasan

    2015-06-01

    Prenatal exposure to valproic acid on gestational day 12.5 may lead to the impaired behavior in the offspring, which is similar to the human autistic symptoms. To the contrary, astaxanthin shows neuroprotective effect by its antioxidant mechanism. We aimed to (i) develop mice model of autism and (ii) investigate the effect of astaxanthin on such model animals. Valproic acid (600 mg/kg) was administered intraperitoneally to the pregnant mice on gestational day 12.5. Prenatal valproic acid-exposed mice were divided into 2 groups on postnatal day 25 and astaxanthin (2mg/kg) was given to the experimental group (VPA_AST, n=10) while saline was given to the control group (VPA, n=10) for 4 weeks. Behavioral test including social interaction, open field and hot-plate were conducted on postnatal day 25 and oxidative stress markers such as lipid peroxidation, advanced protein oxidation product, nitric oxide, glutathione, and activity of superoxide dismutase and catalase were estimated on postnatal day 26 to confirm mice model of autism and on postnatal day 56 to assess the effect of astaxanthin. On postnatal day 25, prenatal valproic acid-exposed mice exhibited (i) delayed eye opening (ii) longer latency to respond painful stimuli, (iii) poor sociability and social novelty and (iv) high level of anxiety. In addition, an increased level of oxidative stress was found by determining different oxidative stress markers. Treatment with astaxanthin significantly (pAstaxanthin improves the impaired behavior in animal model of autism presumably by its antioxidant activity.

  7. Low-phytic acid corn improves nutrient utilization for growing pigs.

    Science.gov (United States)

    Veum, T L; Ledoux, D R; Raboy, V; Ertl, D S

    2001-11-01

    Thirty-five crossbred barrows averaging 14.5 kg initial BW were used in a 5-wk experiment to compare the P availability and nutritional value of a low-phytate hybrid corn (LPC, 0.26% total P, 0.08% phytic acid P) homozygous for the lpa 1-1 allele with a nearly isogenic normal hybrid corn (NC, 0.25% total P, 0.20% phytic acid P). The pigs were fed individually twice daily in metabolism pens. Three semipurified diets were created in which corn was the only source of phytate. Diet 1 contained 72% NC, 0.15% estimated available P (aP) and 0.55% Ca. Diet 2 contained 72% LPC, 0.24% aP, and 0.55% Ca. The only differences between Diets 1 and 2 were the source of corn and the levels of aP. No inorganic P (iP) was added to these diets in order to measure the animal response to the different levels of aP in the corn hybrids. Diet 3 was NC Diet 1 supplemented with iP to equal the level of aP in LPC Diet 2. Diets 4 and 5 were practical corn-soybean meal diets formulated with each corn to meet all minimum nutrient requirements and contained 0.30% aP and 0.65% Ca. For the semipurified diets, pigs fed LPC Diet 2 had higher (P or = 0.2), indicating an equal nutritional value for both corn hybrids after adjusting for phytate level. The only treatment difference, other than P excretion, between the practical corn diets supplemented with soybean meal was a higher (P < 0.05) bone breaking strength for pigs fed LPC Diet 5 compared with NC Diet 4. The use of LPC in pig diets reduced P excretion in swine waste by 50 and 18.4% in the semipurified and practical diets, respectively, compared with NC. Using our in vitro procedure designed to simulate the digestive system of the pig, the availability of P for pigs was estimated at 56% for LPC and 11% for NC.

  8. Ascorbic acid improves brachial artery vasodilation during progressive handgrip exercise in the elderly through a nitric oxide-mediated mechanism.

    Science.gov (United States)

    Trinity, Joel D; Wray, D Walter; Witman, Melissa A H; Layec, Gwenael; Barrett-O'Keefe, Zachary; Ives, Stephen J; Conklin, Jamie D; Reese, Van; Zhao, Jia; Richardson, Russell S

    2016-03-15

    The proposed mechanistic link between the age-related attenuation in vascular function and free radicals is an attractive hypothesis; however, direct evidence of free radical attenuation and a concomitant improvement in vascular function in the elderly is lacking. Therefore, this study sought to test the hypothesis that ascorbic acid (AA), administered intra-arterially during progressive handgrip exercise, improves brachial artery (BA) vasodilation in a nitric oxide (NO)-dependent manner, by mitigating free radical production. BA vasodilation (Doppler ultrasound) and free radical outflow [electron paramagnetic resonance (EPR) spectroscopy] were measured in seven healthy older adults (69 ± 2 yr) during handgrip exercise at 3, 6, 9, and 12 kg (∼13-52% of maximal voluntary contraction) during the control condition and nitric oxide synthase (NOS) inhibition via N(G)-monomethyl-L-arginine (L-NMMA), AA, and coinfusion of l-NMMA + AA. Baseline BA diameter was not altered by any of the treatments, while L-NMMA and L-NMMA + AA diminished baseline BA blood flow and shear rate. AA improved BA dilation compared with control at 9 kg (control: 6.5 ± 2.2%, AA: 10.9 ± 2.5%, P = 0.01) and 12 kg (control: 9.5 ± 2.7%, AA: 15.9 ± 3.7%, P vasodilation compared with control and when combined with AA eliminated the AA-induced improvement in BA vasodilation. Free radical outflow increased with exercise intensity but, interestingly, was not attenuated by AA. Collectively, these results indicate that AA improves BA vasodilation in the elderly during handgrip exercise through an NO-dependent mechanism; however, this improvement appears not to be the direct consequence of attenuated free radical outflow from the forearm.

  9. Acetic Acid Catalyzed Steam Explosion for Improving the Sugar Recovery of Wheat Straw

    Directory of Open Access Journals (Sweden)

    Mengru Liu

    2014-06-01

    Full Text Available Acetic acid-catalyzed steam explosion pretreatment was applied to wheat straw at temperatures of 190 and 210 °C for 2, 6, and 10 min of residence time. The effects of pretreatment conditions on the total gravimetric recovery, hemicellulose sugars, glucose content, and yield of the enzymatic hydrolysis of cellulose were studied. The results indicated that the total gravimetric recovery decreases while the solubility of hemicellulose and the yield of cellulose enzymatic hydrolysis increase as the pretreatment severity increases. Pretreatment at 190 °C with a 2-min residence time resulted in the highest total gravimetric recovery, 58.9%. The optimum defiberation, glucose content, and enzymatic hydrolysis yields of 70.4 and 79.6%, respectively, occurred following pretreatment at 210 °C with a 10-min residence time. The optimal pretreatment condition was determined to be 190 °C for 10 min. Under the optimum conditions, the recovery yield of all sugars reached 42.7%. This pretreatment resulted in the highest recovery yield of all sugars.

  10. Gallic acid isolated from Spirogyra sp. improves cardiovascular disease through a vasorelaxant and antihypertensive effect.

    Science.gov (United States)

    Kang, Nalae; Lee, Ji-Hyeok; Lee, WonWoo; Ko, Ju-Young; Kim, Eun-A; Kim, Jin-Soo; Heu, Min-Soo; Kim, Gwang Hoon; Jeon, You-Jin

    2015-03-01

    In this study, we investigated the vasorelaxant and antihypertensive effects of gallic acid (GA), a polyphenol isolated from the green alga Spirogyra sp., to assess its suitability as a therapeutic for cardiovascular diseases (CVDs). We examined the effect of GA on endothelium-dependent vasorelaxation in human umbilical vein endothelial cells (HUVECs). GA increased nitric oxide (NO) levels by increasing phosphorylation of endothelial nitric oxide synthase (eNOS), and its effect on NO production was attenuated by pretreatment with the eNOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). We also investigated its antihypertensive effect by examining GA-mediated inhibition of angiotensin-I converting enzyme (ACE). GA inhibited ACE with a half-maximal inhibitory concentration (IC50) value of 37.38 ± 0.39 μg/ml. In silico simulations revealed that GA binds to the active site of ACE (PDB: 1O86) with a binding energy of -270.487 kcal/mol. Furthermore, GA clearly reduced blood pressure in spontaneously hypertensive rats (SHR) to an extent comparable to captopril. These results suggest that GA isolated from Spirogyra sp. exerts multiple therapeutic effects and has potential as a CVD treatment.

  11. β-Cyclodextrin Inclusion Complex to Improve Physicochemical Properties of Pipemidic Acid: Characterization and Bioactivity Evaluation

    Directory of Open Access Journals (Sweden)

    Gaetano Malgieri

    2013-06-01

    Full Text Available The aptitude of cyclodextrins (CDs to form host-guest complexes has prompted an increase in the development of new drug formulations. In this study, the inclusion complexes of pipemidic acid (HPPA, a therapeutic agent for urinary tract infections, with native β-CD were prepared in solid state by kneading method and confirmed by FT-IR and 1H NMR. The inclusion complex formation was also characterized in aqueous solution at different pH via UV-Vis titration and phase solubility studies obtaining the stability constant. The 1:1 stoichiometry was established by a Job plot and the inclusion mechanism was clarified using docking experiments. Finally, the antibacterial activity of HPPA and its inclusion complex was tested on P. aeruginosa, E. coli and S. aureus to determine the respective EC50s and EC90s. The results showed that the antibacterial activity of HPPA:β-CD against E. coli and S. aureus is higher than that of HPPA. Furthermore, HPPA and HPPA:β-CD, tested on human hepatoblastoma HepG2 and MCF-7 cell lines by MTT assay, exhibited, for the first time, antitumor activities, and the complex revealed a higher activity than that of HPPA. The use of β-CD allows an increase in the aqueous solubility of the drug, its bioavailability and then its bioactivity.

  12. Improved sensitivity of nucleic acid amplification for rapid diagnosis of tuberculous meningitis

    DEFF Research Database (Denmark)

    Johansen, Isik Somuncu; Lundgren, Bettina; Tabak, Fehmi

    2004-01-01

    Early diagnosis of tuberculous meningitis (TBM) is essential for a positive outcome; but present microbiological diagnostic techniques are insensitive, slow, or laborious. We evaluated the standard BDProbeTec ET strand displacement amplification method (the standard ProbeTec method) for the detec......Early diagnosis of tuberculous meningitis (TBM) is essential for a positive outcome; but present microbiological diagnostic techniques are insensitive, slow, or laborious. We evaluated the standard BDProbeTec ET strand displacement amplification method (the standard ProbeTec method......) for the detection of Mycobacterium tuberculosis complex organisms in parallel with the ProbeTec method with a modified pretreatment procedure with 101 prospectively collected cerebrospinal fluid specimens from 94 patients with suspected TBM. By the modified method, the sample-washing step was omitted. A definitive...... diagnosis was attained by culture. Thirteen specimens from 12 patients were culture positive for M. tuberculosis complex organisms; three specimens (23%) were microscopy positive for acid-fast bacilli. Among the culture-positive specimens, the standard ProbeTec method was positive for 8 (61...

  13. Improving arachidonic acid fermentation by Mortierella alpina through multistage temperature and aeration rate control in bioreactor.

    Science.gov (United States)

    Gao, Min-Jie; Wang, Cheng; Zheng, Zhi-Yong; Zhu, Li; Zhan, Xiao-Bei; Lin, Chi-Chung

    2016-05-18

    Effective production of arachidonic acid (ARA) using Mortierella alpina was conducted in a 30-L airlift bioreactor. Varying the aeration rate and temperature significantly influenced cell morphology, cell growth, and ARA production, while the optimal aeration rate and temperature for cell growth and product formation were quite different. As a result, a two-stage aeration rate control strategy was constructed based on monitoring of cell morphology and ARA production under various aeration rate control levels (0.6-1.8 vvm). Using this strategy, ARA yield reached 4.7 g/L, an increase of 38.2% compared with the control (constant aeration rate control at 1.0 vvm). Dynamic temperature-control strategy was implemented based on the fermentation performance at various temperatures (13-28°C), with ARA level in total cellular lipid increased by 37.1% comparing to a constant-temperature control (25°C). On that basis, the combinatorial fermentation strategy of two-stage aeration rate control and dynamic temperature control was applied and ARA production achieved the highest level of 5.8 g/L.

  14. Cholinergic neuronal lesions in the medial septum and vertical limb of the diagonal bands of Broca induce contextual fear memory generalization and impair acquisition of fear extinction.

    Science.gov (United States)

    Kn