WorldWideScience

Sample records for acido docosahexaenoico dha

  1. Enfermedad acido-peptica

    OpenAIRE

    Echavarría, Hector Raúl; Fundación Valle de Lili; Mendoza, Alfredo

    1999-01-01

    ¿En qué consisten las enfermedades que se denominan con el término genérico de enfermedad acido-péptica?/ ¿Cuáles son sus síntomas?/ ¿Cómo se comporta la enfermedad acido-péptica y cuáles son sus causas?/ ¿Cómo se evitan estas enfermedades y como se tratan?

  2. Azione citodifferenziante ed antitumorale dell'acido ellagico

    OpenAIRE

    Vanella, Luca

    2011-01-01

    Il lavoro ha lo scopo di valutare l'effetto citodifferenziante ed antitumorale dell'acido ellagico in tre diverse linee cellulari prostatiche a diverso grado di invasivita' (DU145, LnCap, BPH1). I risultati della Cromogranina A e della P75 NGRF, ottenuti mediante immunofluorescenza, evidenziano un'azione citodifferenziante dell'acido ellagico in maniera dose dipendente. Inoltre i risultati dimostrano come l'acido ellagico abbia la capacita' di ridurre, in maniera dose dipendente, sia l'espres...

  3. Docosahexaenoic acid (DHA, essentiality and requirements: why and how to provide supplementation

    Directory of Open Access Journals (Sweden)

    Nieto, Susana

    2006-06-01

    cido docosahexaenoico (C22:6, DHA es el ácido graso poliinsaturado de cadena larga de los fosfolípidos del cerebro más importante, siendo el 25% del total de los ácidos grasos. La mayor parte del DHA presente en el cerebro se incorpora durante el desarrollo de este, el que comienza a la 26ava semana gestacional, generando una alta demanda por el ácido graso hasta los dos años de edad. El DHA se requiere en el desarrollo cerebral durante la diferenciación neuronal y glial, y durante la mielinización y la sinaptogénesis neuronal El ácido graso debe ser incorporado a los lípidos del cerebro preformado ya que menos de un 5% de su precursor, el ácido alfa linolénico (LNA, se convierte a DHA. El feto humano tiene una capacidad muy limitada para sintetizar DHA a partir de LNA, por lo cual debe ser aportado por fuentes de origen materno. El DHA puede ser aportado por la madre a partir de tres fuentes principales; desde el tejido adiposo, cual es el principal reservorio del ácido graso, a partir de la biosíntesis desde el precursor LNA, la que ocurre principalmente en el hígado, o como ácido graso preformado proveniente de la dieta. Durante el período postnatal, el DHA es aportado por la madre al recién nacido a través de la leche. La nutrición occidental aporta baja cantidad de LNA y de DHA, y los Comités de Expertos en Nutrición sugieren que la madre debe recibir una suplementación con DHA durante el embarazo y la lactancia. Actualmente, la suplementación con DHA puede ser aportada a partir de diferentes fuentes; como DHA puro, como un etil éster, como aceite obtenido de microalgas, a partir de los fosfolípidos de la yema de huevo, o en la forma de un sn-2 monoacilglicerol. En esta revisión se discute sobre la evidencia que apoya la suplementación del recién nacido con DHA, la necesidad de la suplementación de la madre durante el embarazo y la lactancia, y sobre cuales son al presente las alternativas para proveer la suplementación con DHA.

  4. Supplementing female rats with DHA-lysophosphatidylcholine increases docosahexaenoic acid and acetylcholine contents in the brain and improves the memory and learning capabilities of the pups.

    Directory of Open Access Journals (Sweden)

    Rojas, I.

    2010-03-01

    Full Text Available Docosahexaenoic acid (DHA is supplied to the foetus and newborn through the mother from their own reserves and their diet. No consensus about the best form to supplement DHA has been established. We propose that DHAcontaining lysophosphatidylcholine (DHA-LPC, obtained from DHA-rich eggs may be a suitable form of DHA and choline (the precursor of acetylcholine supplementation. We evaluated the effectiveness of DHA-LPC to increase DHA and acetylcholine concentration in the brain of pups born from female rats supplemented with DHA-LPC before and during pregnancy. We also evaluated the effect of DHA supplementation on learning and memory capabilities of pups through the Skinner test for operant conditioning. Female Wistar rats received 40-day supplementation of DHA-LPC (8 mg DHA/kg b.w/daily., before and during pregnancy. After delivery, plasma, erythrocyte, liver, and adipose tissue DHA and plasma choline were analyzed. Brains from 60 day-old pups separated into frontal cortex, cerebellum, striatum, hippocampus, and occipital cortex, were assessed for DHA, acetylcholine, and acetylcholine transferase (CAT activity. Pups were subjected to the Skinner box test. DHA-LPC supplementation produces higher choline and liver DHA contents in the mother’s plasma and increases the pups’ DHA and acetylcholine in the cerebellum and hippocampus. CAT was not modified by supplementation. The Skinner test shows that pups born from DHA-LPC supplemented mothers exhibit better scores of learning and memory than the controls. Conclusion: DHA-LPC may be an adequate form for DHA supplementation during the perinatal period.El ácido docosahexaenoico (DHA que requiere el feto y el recién nacido lo aporta la madre desde sus reservas y la dieta, por lo cual se sugiere suplementar a la madre con DHA. No hay consenso sobre la mejor forma de suplementación. Proponemos que un lisofosfolípido que contiene DHA y colina (DHA-LPC obtenido de huevos con alto contenido de DHA es

  5. Docosahexaenoic acid (DHA, an essential fatty acid for the proper functioning of neuronal cells: their role in mood disorders

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available The brain and the nervous system are tissues with high contents of two polyunsaturated fatty acids: arachidonic acid (20:4, omega-6, AA and docosahexaenoic acid (22:6, omega-3, DHA. Despite their abundance in these tissues, AA and DHA cannot be re-synthesized in mammals. However, the concentration of these fatty acids can be modulated by dietary intake. AA and DHA must be provided by the diet as such (preformed or through the respective omega-6 and omega-3 precursors from vegetable origin. Linoleic acid, the precursor of AA is very abundant in the western diet and therefore the formation of AA from linoleic acid is not restrictive. On the other hand, alpha linolenic acid, the precursor of DHA is less available in our diet and preformed DHA is highly restrictive in some populations. During the last period of gestation and during the early post natal period, neurodevelopment occurs exceptionally quickly, and significant amounts of omega-6 and omega-3 polyunsaturated fatty acids, especially DHA, are critical to allow neurite outgrowth and the proper brain and retina development and function. In this review various functions of DHA in the nervous system, its metabolism into phospholipids, and its involvement in different neurological and mood disorders, such as Alzheimer’s disease, depression, and others are revised.

    El cerebro y el sistema nervioso son tejidos con un alto contenido de dos ácidos grasos poliinsaturados: el ácido araquidónico (20:4, omega-6, AA y el ácido docosahexaenoico (22:6, omega-3, DHA. A pesar de la abundancia de estos ácidos grasos en dichos tejidos los mamíferos no los pueden sintetizar de novo. Sin embargo, la concentración de estos ácidos grasos puede ser modificada por la dieta. El AA y el DHA pueden ser aportados por la dieta como tales (preformados o a partir de los respectivos precursores de origen vegetal. El ácido linoleico, precursor del AA es muy abundante en la dieta occidental, por lo cual la

  6. Atomic resolution studies of haloalkane dehalogenases DhaA04, DhaA14 and DhaA15 with engineered access tunnels.

    Science.gov (United States)

    Stsiapanava, A; Dohnalek, J; Gavira, J A; Kuty, M; Koudelakova, T; Damborsky, J; Kuta Smatanova, I

    2010-09-01

    The haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 is a bacterial enzyme that shows catalytic activity for the hydrolytic degradation of the highly toxic industrial pollutant 1,2,3-trichloropropane (TCP). Mutagenesis focused on the access tunnels of DhaA produced protein variants with significantly improved activity towards TCP. Three mutants of DhaA named DhaA04 (C176Y), DhaA14 (I135F) and DhaA15 (C176Y + I135F) were constructed in order to study the functional relevance of the tunnels connecting the buried active site of the protein with the surrounding solvent. All three protein variants were crystallized using the sitting-drop vapour-diffusion technique. The crystals of DhaA04 belonged to the orthorhombic space group P2(1)2(1)2(1), while the crystals of DhaA14 and DhaA15 had triclinic symmetry in space group P1. The crystal structures of DhaA04, DhaA14 and DhaA15 with ligands present in the active site were solved and refined using diffraction data to 1.23, 0.95 and 1.22 A, resolution, respectively. Structural comparisons of the wild type and the three mutants suggest that the tunnels play a key role in the processes of ligand exchange between the buried active site and the surrounding solvent.

  7. Comparative analyses of DHA-Phosphatidylcholine and recombination of DHA-Triglyceride with Egg-Phosphatidylcholine or Glycerylphosphorylcholine on DHA repletion in n-3 deficient mice

    OpenAIRE

    Wu, Fang; Wang, Dan-dan; Wen, Min; Che, Hong-xia; Xue, Chang-hu; Yanagita, Teruyoshi; Zhang, Tian-tian; Wang, Yu-ming

    2017-01-01

    Background Docosahexaenoic acid (DHA) is important for optimal neurodevelopment and brain function during the childhood when the brain is still under development. Methods The effects of DHA-Phosphatidylcholine (DHA-PC) and the recombination of DHA-Triglyceride with egg PC (DHA-TG + PC) or α-Glycerylphosphorylcholine (DHA-TG + α-GPC) were comparatively analyzed on DHA recovery and the DHA accumulation kinetics in tissues including cerebral cortex, erythrocyte, liver, and testis were evaluated ...

  8. Effect of dietary docosahexaenoic acid (DHA) in phospholipids or triglycerides on brain DHA uptake and accretion.

    Science.gov (United States)

    Kitson, Alex P; Metherel, Adam H; Chen, Chuck T; Domenichiello, Anthony F; Trépanier, Marc-Olivier; Berger, Alvin; Bazinet, Richard P

    2016-07-01

    Tracer studies suggest that phospholipid DHA (PL-DHA) more effectively targets the brain than triglyceride DHA (TAG-DHA), although the mechanism and whether this translates into higher brain DHA concentrations are not clear. Rats were gavaged with [U-(3)H]PL-DHA and [U-(3)H]TAG-DHA and blood sampled over 6h prior to collection of brain regions and other tissues. In another experiment, rats were supplemented for 4weeks with TAG-DHA (fish oil), PL-DHA (roe PL) or a mixture of both for comparison to a low-omega-3 diet. Brain regions and other tissues were collected, and blood was sampled weekly. DHA accretion rates were estimated using the balance method. [U-(3)H]PL-DHA rats had higher radioactivity in cerebellum, hippocampus and remainder of brain, with no differences in other tissues despite higher serum lipid radioactivity in [U-(3)H]TAG-DHA rats. TAG-DHA, PL-DHA or a mixture were equally effective at increasing brain DHA. There were no differences between DHA-supplemented groups in brain region, whole-body, or tissue DHA accretion rates except heart and serum TAG where the PL-DHA/TAG-DHA blend was higher than TAG-DHA. Apparent DHA β-oxidation was not different between DHA-supplemented groups. This indicates that more labeled DHA enters the brain when consumed as PL; however, this may not translate into higher brain DHA concentrations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The Efficacy of MAG-DHA for Correcting AA/DHA Imbalance of Cystic Fibrosis Patients

    Directory of Open Access Journals (Sweden)

    Caroline Morin

    2018-05-01

    Full Text Available Omega-3 polyunsaturated fatty acid (n-3 PUFA supplementations are thought to improve essential fatty acid deficiency (EFAD as well as reduce inflammation in Cystic Fibrosis (CF, but their effectiveness in clinical studies remains unknown. The aim of the study was to determine how the medical food containing docosahexaenoic acid monoglyceride (MAG-DHA influenced erythrocyte fatty acid profiles and the expression levels of inflammatory circulating mediators. We conducted a randomized, double blind, pilot trial including fifteen outpatients with Cystic Fibrosis, ages 18–48. The patients were divided into 2 groups and received MAG-DHA or a placebo (sunflower oil for 60 days. Patients took 8 × 625 mg MAG-DHA softgels or 8 × 625 mg placebo softgels every day at bedtime for 60 days. Lipid analyses revealed that MAG-DHA increased docosahexaenoic acid (DHA levels and decrease arachidonic acid (AA ratio (AA/DHA in erythrocytes of CF patients following 1 month of daily supplementation. Data also revealed a reduction in plasma human leukocyte elastase (pHLE complexes and interleukin-6 (IL-6 expression levels in blood samples of MAG-DHA supplemented CF patients. This pilot study indicates that MAG-DHA supplementation corrects erythrocyte AA/DHA imbalance and may exert anti-inflammatory properties through the reduction of pHLE complexes and IL6 in blood samples of CF patients. Trial registration: Pro-resolving Effect of MAG-DHA in Cystic Fibrosis (PREMDIC, NCT02518672.

  10. Effects of Low Phytanic Acid-Concentrated DHA on Activated Microglial Cells: Comparison with a Standard Phytanic Acid-Concentrated DHA.

    Science.gov (United States)

    Ruiz-Roso, María Belén; Olivares-Álvaro, Elena; Quintela, José Carlos; Ballesteros, Sandra; Espinosa-Parrilla, Juan F; Ruiz-Roso, Baltasar; Lahera, Vicente; de Las Heras, Natalia; Martín-Fernández, Beatriz

    2018-05-30

    Docosahexaenoic acid (DHA, 22:6 n-3) is an essential omega-3 (ω-3) long chain polyunsaturated fatty acid of neuronal membranes involved in normal growth, development, and function. DHA has been proposed to reduce deleterious effects in neurodegenerative processes. Even though, some inconsistencies in findings from clinical and pre-clinical studies with DHA could be attributed to the presence of phytanic acid (PhA) in standard DHA treatments. Thus, the aim of our study was to analyze and compare the effects of a low PhA-concentrated DHA with a standard PhA-concentrated DHA under different neurotoxic conditions in BV-2 activated microglial cells. To this end, mouse microglial BV-2 cells were stimulated with either lipopolysaccharide (LPS) or hydrogen peroxide (H 2 O 2 ) and co-incubated with DHA 50 ppm of PhA (DHA (PhA:50)) or DHA 500 ppm of PhA (DHA (PhA:500)). Cell viability, superoxide anion (O 2 - ) production, Interleukin 6 (L-6), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), glutathione peroxidase (GtPx), glutathione reductase (GtRd), Caspase-3, and the brain-derived neurotrophic factor (BDNF) protein expression were explored. Low PhA-concentrated DHA protected against LPS or H 2 O 2 -induced cell viability reduction in BV-2 activated cells and O 2 - production reduction compared to DHA (PhA:500). Low PhA-concentrated DHA also decreased COX-2, IL-6, iNOS, GtPx, GtRd, and SOD-1 protein expression when compared to DHA (PhA:500). Furthermore, low PhA-concentrated DHA increased BDNF protein expression in comparison to DHA (PhA:500). The study provides data supporting the beneficial effect of low PhA-concentrated DHA in neurotoxic injury when compared to a standard PhA-concentrated DHA in activated microglia.

  11. Maternal liver docosahexaenoic acid (DHA) stores are increased via higher serum unesterified DHA uptake in pregnant long Evans rats.

    Science.gov (United States)

    Metherel, Adam H; Kitson, Alex P; Domenichiello, Anthony F; Lacombe, R J Scott; Hopperton, Kathryn E; Trépanier, Marc-Olivier; Alashmali, Shoug M; Lin, Lin; Bazinet, Richard P

    2017-08-01

    Maternal docosahexaenoic acid (DHA, 22:6n-3) supplies the developing fetus during pregnancy; however, the mechanisms are unclear. We utilized pregnant rats to determine rates of DHA accretion, tissue unesterified DHA uptake and whole-body DHA synthesis-secretion. Female rats maintained on a DHA-free, 2% α-linolenic acid diet were either:1) sacrificed at 56 days for baseline measures, 2) mated and sacrificed at 14-18 days of pregnancy or 3) or sacrificed at 14-18 days as age-matched virgin controls. Maternal brain, adipose, liver and whole body fatty acid concentrations was determined for balance analysis, and kinetic modeling was used to determine brain and liver plasma unesterified DHA uptake and whole-body DHA synthesis-secretion rates. Total liver DHA was significantly higher in pregnant (95±5 μmol) versus non-pregnant (49±5) rats with no differences in whole-body DHA synthesis-secretion rates. However, liver uptake of plasma unesterified DHA was 3.8-fold higher in pregnant animals compared to non-pregnant controls, and periuterine adipose DHA was lower in pregnant (0.89±0.09 μmol/g) versus non-pregnant (1.26±0.06) rats. In conclusion, higher liver DHA accretion during pregnancy appears to be driven by higher unesterified DHA uptake, potentially via DHA mobilization from periuterine adipose for delivery to the fetus during the brain growth spurt. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Evaluation of the hepatic bioconversion of α-linolenic acid (ALA to eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA in rats fed with oils from chia (Salvia hispánica or rosa mosqueta (Rosa rubiginosa

    Directory of Open Access Journals (Sweden)

    Tapia O., G.

    2012-03-01

    Full Text Available The high dietary intake of n-6 fatty acids in relation to n-3 fatty acids generates health disorders, such as cardiovascular diseases, inflammatory diseases and other chronic diseases. The consumption of fish, which is rich in n-3 fatty acids, is low in Latin America and it is necessary to seek other alternatives, such as chia oil (CO or rosa mosqueta oil (RMO, which are rich in α-linolenic acid (ALA, the precursor of the n -3 fatty acids, eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. This study evaluates the hepatic bioconversion of ALA to EPA and DHA and the damage to the liver (histology and transaminase in Sprague- Dawley rats fed different vegetable oils. Four experimental groups (n = 9 animals each group were fed the following dietary supplements for 21 days: a sunflower oil (SFO, b RMO, c CO d olive oil with fish oil added (EPA and DHA (OO/FO. RMO and CO increased the hepatic levels of ALA, EPA and DHA and decreased the n-6/n-3 ratio compared to SFO (p El elevado aporte en la dieta de ácidos grasos omega- 6, en relación a los ácidos grasos omega-3, genera alteraciones de la salud cardiovascular, inflamación y otras patologías crónicas no transmisibles. Por otro lado, el pescado rico en ácidos grasos omega-3 es de bajo consumo en Latinoamérica, siendo necesario buscar otras alternativas de aporte de ácidos grasos omega-3, como lo son el aceite de chía (CO o el de rosa mosqueta (RMO, ricos en ácido α-linolénico (ALA, que es el precursor de los ácidos grasos omega-3, eicosapentaenoico (EPA y docosahexaenoico (DHA. Este trabajo evaluó en forma preliminar la bioconversión hepática del ALA en EPA y DHA y el daño hepático (histología y transaminasas en ratas Sprague-Dawley alimentadas con diferentes aceites vegetales. Se conformaron cuatro grupos experimentales (n = 9 animales por grupo que recibieron durante 21 días: a aceite de girasol (SFO; b RMO, c CO y d aceite de oliva adicionado de aceite de pescado (EPA

  13. Dihydroazulene/Vinylheptafulvene (DHA/VHF)

    DEFF Research Database (Denmark)

    Vlasceanu, Alexandru

    A theoretical and experimental investigation of conformational modifications on the thermodynamic, optical, and switching properties of dihydroazulene/vinylheptafulvene (DHA/VHF) photoswitches, in the context of molecular solar thermal (MOST) systems, is described herein. The optical properties...... of monomeric DHA/VHF systems are found to be strongly dependent on structural changes which can be tuned via steric modifications. This correlation is then used to infer structural features of more complex, macrocyclic DHA/VHF systems based on their optical properties. The introduction of macrocyclic ring...... strain is furthermore found to significantly influence the switching behavior of DHA/VHF moieties compared to non-cyclized systems. The thermal ring closure of macrocyclic VHF-VHF systems is found to occur in a stepwise manner, enabling the release of the energy on both a fast and slow timescale...

  14. Docosahexaenoic acid (DHA) supplementation in pregnancy differentially modulates arachidonic acid and DHA status across FADS genotypes in pregnancy.

    Science.gov (United States)

    Scholtz, S A; Kerling, E H; Shaddy, D J; Li, S; Thodosoff, J M; Colombo, J; Carlson, S E

    2015-03-01

    Some FADS alleles are associated with lower DHA and ARA status assessed by the relative amount of arachidonic acid (ARA) and docosahexaenoic acid (DHA) in plasma and red blood cell (RBC) phospholipids (PL). We determined two FADS single nucleotide polymorphisms (SNPs) in a cohort of pregnant women and examined the relationship of FADS1rs174533 and FADS2rs174575 to DHA and ARA status before and after supplementation with 600mg per day of DHA. The 205 pregnant women studied were randomly assigned to placebo (mixed soy and corn oil) (n=96) or 600mg algal DHA (n=109) in 3 capsules per day for the last two trimesters of pregnancy. Women homozygous for the minor allele of FADS1rs174533 (but not FADS2rs174575) had lower DHA and ARA status at baseline. At delivery, minor allele homozygotes of FADS1rs174533 in the placebo group had lower RBC-DHA compared to major-allele carriers (P=0.031), while in the DHA-supplemented group, all genotypes had higher DHA status compared to baseline (P=0.001) and status did not differ by genotype (P=0.941). Surprisingly, DHA but not the placebo decreased ARA status of minor allele homozygotes of both FADS SNPs but not major allele homozygotes at delivery. Any physiological effects of changing the DHA to ARA ratio by increasing DHA intake appears to be greater in minor allele homozygotes of some FADS SNPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. DHA Effects in Brain Development and Function

    Directory of Open Access Journals (Sweden)

    Lotte Lauritzen

    2016-01-01

    Full Text Available Docosahexaenoic acid (DHA is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders.

  16. DHA Effects in Brain Development and Function

    Science.gov (United States)

    Lauritzen, Lotte; Brambilla, Paolo; Mazzocchi, Alessandra; Harsløf, Laurine B. S.; Ciappolino, Valentina; Agostoni, Carlo

    2016-01-01

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders. PMID:26742060

  17. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats.

    Science.gov (United States)

    Domenichiello, Anthony F; Chen, Chuck T; Trepanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain.

  18. DHA effects in brain development and function

    DEFF Research Database (Denmark)

    Lauritzen, Lotte; Brambilla, Paola; Mazzocchi, Allesandra

    2016-01-01

    the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies...... justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects...

  19. DHA-fluorescent probe is sensitive to membrane order and reveals molecular adaptation of DHA in ordered lipid microdomains☆

    Science.gov (United States)

    Teague, Heather; Ross, Ron; Harris, Mitchel; Mitchell, Drake C.; Shaikh, Saame Raza

    2012-01-01

    Docosahexaenoic acid (DHA) disrupts the size and order of plasma membrane lipid microdomains in vitro and in vivo. However, it is unknown how the highly disordered structure of DHA mechanistically adapts to increase the order of tightly packed lipid microdomains. Therefore, we studied a novel DHA-Bodipy fluorescent probe to address this issue. We first determined if the DHA-Bodipy probe localized to the plasma membrane of primary B and immortal EL4 cells. Image analysis revealed that DHA-Bodipy localized into the plasma membrane of primary B cells more efficiently than EL4 cells. We then determined if the probe detected changes in plasma membrane order. Quantitative analysis of time-lapse movies established that DHA-Bodipy was sensitive to membrane molecular order. This allowed us to investigate how DHA-Bodipy physically adapted to ordered lipid microdomains. To accomplish this, we employed steady-state and time-resolved fluorescence anisotropy measurements in lipid vesicles of varying composition. Similar to cell culture studies, the probe was highly sensitive to membrane order in lipid vesicles. Moreover, these experiments revealed, relative to controls, that upon incorporation into highly ordered microdomains, DHA-Bodipy underwent an increase in its fluorescence lifetime and molecular order. In addition, the probe displayed a significant reduction in its rotational diffusion compared to controls. Altogether, DHA-Bodipy was highly sensitive to membrane order and revealed for the first time that DHA, despite its flexibility, could become ordered with less rotational motion inside ordered lipid microdomains. Mechanistically, this explains how DHA acyl chains can increase order upon formation of lipid microdomains in vivo. PMID:22841541

  20. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    Science.gov (United States)

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain. PMID:24212299

  1. Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice

    OpenAIRE

    Sugasini, Dhavamani; Thomas, Riya; Yalagala, Poorna C. R.; Tai, Leon M.; Subbaiah, Papasani V.

    2017-01-01

    Docosahexaenoic acid (DHA) is uniquely concentrated in the brain, and is essential for its function, but must be mostly acquired from diet. Most of the current supplements of DHA, including fish oil and krill oil, do not significantly increase brain DHA, because they are hydrolyzed to free DHA and are absorbed as triacylglycerol, whereas the transporter at blood brain barrier is specific for phospholipid form of DHA. Here we show that oral administration of DHA to normal adult mice as lysopho...

  2. Reevaluation of the DHA requirement for the premature infant.

    Science.gov (United States)

    Lapillonne, Alexandre; Jensen, Craig L

    2009-01-01

    The long-chain polyunsaturated fatty acid (LC-PUFA) intake in preterm infants is crucial for normal central nervous system development and has the potential for long-lasting effects that extend beyond the period of dietary insufficiency. While much attention has focused on improving their nutritional intake, many premature infants do not receive an adequate DHA supply. We demonstrate that enterally fed premature infants exhibit daily DHA deficit of 20mg/kg.d, representing 44% of the DHA that should have been accumulated. Furthermore, the DHA content of human milk and current preterm formulas cannot compensate for an early DHA deficit which may occur during the first month of life. We recommend breast-feeding, which supplies preformed LC-PUFA, as the preferred method of feeding for preterm infants. However, to fulfill the specific DHA requirement of these infants, we recommend increasing the DHA content of human milk either by providing the mothers with a DHA supplement or by adding DHA directly to the milk. Increasing the DHA content above 1% total fatty acids appears to be safe and may enhance neurological development particularly that of infants with a birth weight below 1250 g. We estimate that human milk and preterm formula should contain approximately 1.5% of fatty acid as DHA to prevent the appearance of a DHA deficit and to compensate for the early DHA deficit.

  3. Aprovechamiento de residuos pesqueros para la obtención de ácidos grasos (omega 3) en el procesamiento de productos alimenticios

    OpenAIRE

    Robalino Jaime, Johanna Jessenia

    2008-01-01

    Ecuador cuenta con una significativa riqueza pesquera que comprende gran variedad de especies de alto valor comercial que permite importantes niveles de procesamiento y exportación de productos pesqueros entre los que se pueden citar la harina y el aceite de pescado. El aceite de pescado es la principal fuente de ácidos grasos omega 3, ácido eicosapentaenoico (EPA) y ácido docosahexaenoico (DHA) siendo las especies piscícolas ecuatorianas muy ricas en estos componentes. El objetivo principal ...

  4. Docosahexaenoic acid (DHA) accretion in the placenta but not the fetus is matched by plasma unesterified DHA uptake rates in pregnant Long Evans rats.

    Science.gov (United States)

    Metherel, Adam H; Kitson, Alex P; Domenichiello, Anthony F; Lacombe, R J Scott; Hopperton, Kathryn E; Trépanier, Marc-Olivier; Alashmali, Shoug M; Lin, Lin; Bazinet, Richard P

    2017-10-01

    Maternal delivery of docosahexaenoic acid (DHA, 22:6n-3) to the developing fetus via the placenta is required for fetal neurodevelopment, and is the only mechanism by which DHA can be accreted in the fetus. The aim of the current study was to utilize a balance model of DHA accretion combined with kinetic measures of serum unesterified DHA uptake to better understand the mechanism by which maternal DHA is delivered to the fetus via the placenta. Female rats maintained on a 2% α-linolenic acid diet free of DHA for 56 days were mated, and for balance analysis, sacrificed at 18 days of pregnancy, and fetus, placenta and maternal carcass fatty acid concentration were determined. For tissue DHA uptake, pregnant dams (14-18 days) were infused for 5 min with radiolabeled 14 C-DHA and kinetic modeling was used to determine fetal and placental serum unesterified DHA uptake rates. DHA accretion rates in the fetus were determined to be 38 ± 2 nmol/d/g, 859 ± 100 nmol/d/litter and 74 ± 3 nmol/d/pup, which are all higher (P  0.05) in placental DHA accretion rates versus serum unesterified DHA uptake rates were observed as values varied only 6-35% between studies. No differences in placental accretion and uptake rates suggests that serum unesterified DHA is a significant pool for the maternal-placental transfer of DHA, and lower fetal DHA uptake compared to accretion supports remodeling of placental DHA for delivery to the fetus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Maternal DHA levels and toddler free-play attention.

    Science.gov (United States)

    Kannass, Kathleen N; Colombo, John; Carlson, Susan E

    2009-01-01

    We investigated the relationship between maternal docosahexaenoic acid (DHA) levels at birth and toddler free-play attention in the second year. Toddler free-play attention was assessed at 12 and 18 months, and maternal erythrocyte (red-blood cell; RBC) phospholipid DHA (percentage of total fatty acids) was measured from mothers at delivery. Overall, higher maternal DHA status at birth was associated with enhanced attentional functioning during the second year. Toddlers whose mothers had high DHA at birth exhibited more total looking and fewer episodes of inattention during free-play than did toddlers whose mothers had low DHA at birth. Analyses also provided further information on changes in attention during toddlerhood. These findings are consistent with evidence suggesting a link between DHA and cognitive development in infancy and early childhood.

  6. Effect of Oral Docosahexaenoic Acid (DHA) Supplementation on DHA Levels and Omega-3 Index in Red Blood Cell Membranes of Breast Cancer Patients.

    Science.gov (United States)

    Molfino, Alessio; Amabile, Maria I; Mazzucco, Sara; Biolo, Gianni; Farcomeni, Alessio; Ramaccini, Cesarina; Antonaroli, Simonetta; Monti, Massimo; Muscaritoli, Maurizio

    2017-01-01

    Rationale: Docosahexaenoic acid (DHA) in cell membrane may influence breast cancer (BC) patients' prognosis, affecting tumor cells sensitivity to chemo- and radio-therapy and likely modulating inflammation. The possibility of identifying BC patients presenting with low DHA levels and/or low ability of DHA incorporation into cell membrane might help to treat this condition. Methods: We enrolled BC patients and healthy controls, recording their seafood dietary intake. DHA in form of algal oil was administered for 10 consecutive days (2 g/day). Blood samples were collected at baseline (T0) and after 10 days of supplementation (T1) to assess DHA, omega-3 index, as the sum of DHA + eicosapentaenoic acid (EPA), in red blood cells (RBC) membranes and plasma tumor necrosis factor-alpha and interleukin-6 levels. Pre- and post-treatment fatty acid profiles were obtained by gas-chromatography. Parametric and non-parametric tests were performed, as appropriate, and P -value DHA and omega-3 index increased from T0 to T1 in the 3 groups of BC patients and in controls ( P DHA incorporation between each group of BC patients and between patients and controls, except for M group, which incorporated higher DHA levels with respect to controls (β = 0.42; P = 0.03). No association was documented between cytokines levels and DHA and omega-3 index at baseline and after DHA supplementation. Independent of the presence of BC, women considered as "good seafood consumers" showed at baseline DHA and omega-3 index higher with respect to "low seafood consumers" ( P = 0.04; P = 0.007, respectively). After supplementation, the increase in DHA levels was greater in "low seafood consumers" with respect to "good seafood consumers" ( P DHA supplementation was associated with increased DHA levels and omega-3 index in RBC membranes of BC cancer patients, independent of the type of BC presentation, and in controls. BRCA1/2 mutation, as well as low seafood consuming habits in both BC patients and healthy

  7. Effect of Oral Docosahexaenoic Acid (DHA Supplementation on DHA Levels and Omega-3 Index in Red Blood Cell Membranes of Breast Cancer Patients

    Directory of Open Access Journals (Sweden)

    Alessio Molfino

    2017-07-01

    Full Text Available Rationale: Docosahexaenoic acid (DHA in cell membrane may influence breast cancer (BC patients' prognosis, affecting tumor cells sensitivity to chemo- and radio-therapy and likely modulating inflammation. The possibility of identifying BC patients presenting with low DHA levels and/or low ability of DHA incorporation into cell membrane might help to treat this condition.Methods: We enrolled BC patients and healthy controls, recording their seafood dietary intake. DHA in form of algal oil was administered for 10 consecutive days (2 g/day. Blood samples were collected at baseline (T0 and after 10 days of supplementation (T1 to assess DHA, omega-3 index, as the sum of DHA + eicosapentaenoic acid (EPA, in red blood cells (RBC membranes and plasma tumor necrosis factor-alpha and interleukin-6 levels. Pre- and post-treatment fatty acid profiles were obtained by gas-chromatography. Parametric and non-parametric tests were performed, as appropriate, and P-value < 0.05 was considered statistically significant.Results: Forty-three women were studied, divided into 4 groups: 11 patients with BRCA1/2 gene mutation (M group, 12 patients with familiar positive history for BC (F group, 10 patients with sporadic BC (S group, and 10 healthy controls (C group. DHA and omega-3 index increased from T0 to T1 in the 3 groups of BC patients and in controls (P < 0.001. No difference was found in DHA incorporation between each group of BC patients and between patients and controls, except for M group, which incorporated higher DHA levels with respect to controls (β = 0.42; P = 0.03. No association was documented between cytokines levels and DHA and omega-3 index at baseline and after DHA supplementation. Independent of the presence of BC, women considered as “good seafood consumers” showed at baseline DHA and omega-3 index higher with respect to “low seafood consumers” (P = 0.04; P = 0.007, respectively. After supplementation, the increase in DHA levels was

  8. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    OpenAIRE

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing...

  9. Docosahexaenoic acid (DHA) and arachidonic acid (ARA) balance in developmental outcomes.

    Science.gov (United States)

    Colombo, John; Jill Shaddy, D; Kerling, Elizabeth H; Gustafson, Kathleen M; Carlson, Susan E

    2017-06-01

    The DHA Intake and Measurement of Neural Development (DIAMOND) trial represents one of only a few studies of the long-term dose-response effects of LCPUFA-supplemented formula feeding during infancy. The trial contrasted the effects of four formulations: 0.00% docosahexaenoic acid (DHA)/0.00% arachidonic acid (ARA), 0.32% DHA/0.64% ARA, 0.64% DHA/0.64% ARA, and 0.96% DHA/0.64% ARA against a control condition (0.00% DHA/0.00% ARA). The results of this trial have been published elsewhere, and show improved cognitive outcomes for infants fed supplemented formulas, but a common finding among many of the outcomes show a reduction of benefit for the highest DHA dose (i.e., 0.96%DHA/0.64% ARA, that is, a DHA: ARA ratio 1.5:1.0). The current paper gathers and summarizes the evidence for the reduction of benefit at this dose, and in an attempt to account for this reduced benefit, presents for the first time data from infants' red blood cell (RBC) assays taken at 4 and 12 months of age. Those assays indicate that blood DHA levels generally rose with increased DHA supplementation, although those levels tended to plateau as the DHA-supplemented level exceeded 0.64%. Perhaps more importantly, ARA levels showed a strong inverted-U function in response to increased DHA supplementation; indeed, infants assigned to the formula with the highest dose of DHA (and highest DHA/ARA ratio) showed a reduction in blood ARA relative to more intermediate DHA doses. This finding raises the possibility that reduced ARA may be responsible for the reduction in benefit on cognitive outcomes seen at this dose. The findings implicate the DHA/ARA balance as an important variable in the contribution of LCPUFAs to cognitive and behavioral development in infancy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. DHA in Pregnant and Lactating Women from Coastland, Lakeland, and Inland Areas of China: Results of a DHA Evaluation in Women (DEW) Study

    Science.gov (United States)

    Li, You; Li, Hong-tian; Trasande, Leonardo; Ge, Hua; Yu, Li-xia; Xu, Gao-sheng; Bai, Man-xi; Liu, Jian-meng

    2015-01-01

    Few studies have examined docosahexaenoic acid (DHA) in pregnant and lactating women in developing countries like China, where DHA-enriched supplements are increasingly popular. We aimed to assess the DHA status among Chinese pregnant and lactating women residing areas differing in the availability of aquatic products. In total, 1211 women in mid-pregnancy (17 ± 2 weeks), late pregnancy (39 ± 2 weeks), or lactation (42 ± 7 days) were enrolled from Weihai (coastland), Yueyang (lakeland), and Baotou (inland) city, with approximately 135 women in each participant group by region. DHA concentrations were measured using capillary gas chromatography, and are reported as weight percent of total fatty acids. Mean plasma DHA concentrations were higher in coastland (mid-pregnancy 3.19%, late pregnancy 2.54%, lactation 2.24%) and lakeland women (2.45%, 1.95%, 2.26%) than inland women (2.25%, 1.67%, 1.68%) (p values DHA. We conclude that DHA concentrations of Chinese pregnant and lactating women are higher in coastland and lakeland regions than in inland areas. DHA status in the study population appears to be stronger than populations from other countries studied to date. PMID:26506380

  11. A Correlation Study of DHA Dietary Intake and Plasma, Erythrocyte and Breast Milk DHA Concentrations in Lactating Women from Coastland, Lakeland, and Inland Areas of China

    Science.gov (United States)

    Liu, Meng-Jiao; Li, Hong-Tian; Yu, Li-Xia; Xu, Gao-Sheng; Ge, Hua; Wang, Lin-Lin; Zhang, Ya-Li; Zhou, Yu-Bo; Li, You; Bai, Man-Xi; Liu, Jian-Meng

    2016-01-01

    We aimed to assess the correlation between docosahexaenoic acid (DHA) dietary intake and the plasma, erythrocyte and breast milk DHA concentrations in lactating women residing in the coastland, lakeland and inland areas of China. A total of 408 healthy lactating women (42 ± 7 days postpartum) were recruited from four hospitals located in Weihai (coastland), Yueyang (lakeland) and Baotou (inland) city. The categories of food containing DHA, the average amount consumed per time and the frequency of consumption in the past month were assessed by a tailored DHA food frequency questionnaire, the DHA Intake Evaluation Tool (DIET). DHA dietary intake (mg/day) was calculated according to the Chinese Food Composition Table (Version 2009). In addition, fasting venous blood (5 mL) and breast milk (10 mL) were collected from lactating women. DHA concentrations in plasma, erythrocyte and breast milk were measured using capillary gas chromatography, and were reported as absolute concentration (μg/mL) and relative concentration (weight percent of total fatty acids, wt. %). Spearman correlation coefficients were used to assess the correlation between intakes of DHA and its concentrations in biological specimens. The study showed that the breast milk, plasma and erythrocyte DHA concentrations were positively correlated with DHA dietary intake; corresponding correlation coefficients were 0.36, 0.36 and 0.24 for relative concentration and 0.33, 0.32, and 0.18 for absolute concentration (p DHA dietary intake varied significantly across areas (p DHA concentrations in breast milk were 0.36% ± 0.23% and 141.49 ± 107.41 μg/mL; the concentrations were significantly lower in inland women than those from coastland and lakeland. We conclude that DHA dietary intake is positively correlated with DHA concentrations in blood and breast milk in Chinese lactating women, suggesting that the tailored DHA food frequency questionnaire, DIET, is a valid tool for the assessment of DHA dietary intake

  12. Safety of docosahexaenoic acid (DHA) administered as DHA ethyl ester in a 9-month toxicity study in dogs.

    Science.gov (United States)

    Dahms, Irina; Beilstein, Paul; Bonnette, Kimberly; Salem, Norman

    2016-06-01

    DHA Ethyl Ester (DHA-EE) is a 90% concentrated ethyl ester of docosahexaenoic acid manufactured from the microalgal oil. The objective of the 9-month study was to evaluate safety of DHA-EE administered to beagle dogs at dose levels 150, 1000 and 2000 mg/kg bw/day by oral gavage and to determine reversibility of any findings after a 2-month recovery period. DHA-EE was well tolerated at all doses. There were observations of dry flaky skin with occasional reddened areas at doses ≥1000 mg/kg bw/day. These findings lacked any microscopic correlate and were no longer present after the recovery period. There were no toxicologically relevant findings in body weights, body weight gains, food consumption, ophthalmological examinations, and ECG measurements. Test article-related changes in hematology parameters were limited to decreases in reticulocyte count in the high-dose males and considered non-adverse. In clinical chemistry parameters, dose-related decreases in cholesterol and triglycerides levels were observed at all doses in males and females and attributed to the known lipid-lowering effects of DHA. There were no effects on other clinical chemistry, urinalysis or coagulation parameters. There were no abnormal histopathology findings attributed to test article. The No-Observable-Adverse-Effect Level of DHA-EE was established at 2000 mg/kg bw/day for both genders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Distinct Analgesic Actions of DHA and DHA-Derived Specialized Pro-Resolving Mediators on Post-operative Pain After Bone Fracture in Mice.

    Science.gov (United States)

    Zhang, Linlin; Terrando, Niccolò; Xu, Zhen-Zhong; Bang, Sangsu; Jordt, Sven-Eric; Maixner, William; Serhan, Charles N; Ji, Ru-Rong

    2018-01-01

    Mechanisms of pain resolution are largely unclear. Increasing evidence suggests that specialized pro-resolving mediators (SPMs), derived from fish oil docosahexaenoic acid (DHA), promote the resolution of acute inflammation and potently inhibit inflammatory and neuropathic pain. In this study, we examined the analgesic impact of DHA and DHA-derived SPMs in a mouse model of post-operative pain induced by tibial bone fracture (fPOP). Intravenous perioperative treatment with DHA (500 μg), resolvin D1 (RvD1, 500 ng) and maresin 1 (MaR1, 500 ng), 10 min and 24 h after the surgery, delayed the development of fPOP (mechanical allodynia and cold allodynia). In contrast, post-operative intrathecal (IT) administration of DHA (500 μg) 2 weeks after the surgery had no effects on established mechanical and cold allodynia. However, by direct comparison, IT post-operative treatment (500 ng) with neuroprotectin D1 (NPD1), MaR1, and D-resolvins, RvD1 and RvD5, but not RvD3 and RvD4, effectively reduced mechanical and cold allodynia. ELISA analysis showed that perioperative DHA treatment increased RvD1 levels in serum and spinal cord samples after bone fracture. Interestingly, sham surgery resulted in transient allodynia and increased RvD1 levels, suggesting a correlation of enhanced SPM levels with acute pain resolution after sham surgery. Our findings suggest that (1) perioperative treatment with DHA is effective in preventing and delaying the development of fPOP and (2) post-treatment with some SPMs can attenuate established fPOP. Our data also indicate that orthopedic surgery impairs SPM production. Thus, DHA and DHA-derived SPMs should be differentially supplemented for treating fPOP and improving recovery.

  14. Distinct Analgesic Actions of DHA and DHA-Derived Specialized Pro-Resolving Mediators on Post-operative Pain After Bone Fracture in Mice

    Directory of Open Access Journals (Sweden)

    Linlin Zhang

    2018-05-01

    Full Text Available Mechanisms of pain resolution are largely unclear. Increasing evidence suggests that specialized pro-resolving mediators (SPMs, derived from fish oil docosahexaenoic acid (DHA, promote the resolution of acute inflammation and potently inhibit inflammatory and neuropathic pain. In this study, we examined the analgesic impact of DHA and DHA-derived SPMs in a mouse model of post-operative pain induced by tibial bone fracture (fPOP. Intravenous perioperative treatment with DHA (500 μg, resolvin D1 (RvD1, 500 ng and maresin 1 (MaR1, 500 ng, 10 min and 24 h after the surgery, delayed the development of fPOP (mechanical allodynia and cold allodynia. In contrast, post-operative intrathecal (IT administration of DHA (500 μg 2 weeks after the surgery had no effects on established mechanical and cold allodynia. However, by direct comparison, IT post-operative treatment (500 ng with neuroprotectin D1 (NPD1, MaR1, and D-resolvins, RvD1 and RvD5, but not RvD3 and RvD4, effectively reduced mechanical and cold allodynia. ELISA analysis showed that perioperative DHA treatment increased RvD1 levels in serum and spinal cord samples after bone fracture. Interestingly, sham surgery resulted in transient allodynia and increased RvD1 levels, suggesting a correlation of enhanced SPM levels with acute pain resolution after sham surgery. Our findings suggest that (1 perioperative treatment with DHA is effective in preventing and delaying the development of fPOP and (2 post-treatment with some SPMs can attenuate established fPOP. Our data also indicate that orthopedic surgery impairs SPM production. Thus, DHA and DHA-derived SPMs should be differentially supplemented for treating fPOP and improving recovery.

  15. El ácido estearidónico: un ácido graso omega-3 de origen vegetal con gran potencialidad en salud y nutrición

    OpenAIRE

    Rincón, Miguel Ángel; Valenzuela, Rodrigo; Valenzuela, Alfonso

    2015-01-01

    Los beneficios para la salud de los ácidos grasos poliinsaturados omega-3 eicosapentaenoico (20:5,EPA) y docosahexaenoico (22:6, DHA) son ampliamente conocidos y están disponibles principalmente en alimentos de origen marino como el pescado. Sin embargo, en función de las recomendaciones internacionales acerca del consumo de pescado, éste es muy reducido en muchos países, incluido Chile. Por ello, la industria de alimentos está mostrando un interés creciente por el ácido estearidónico (18:4, ...

  16. Metabolismo, oxidação e implicações biológicas do ácido docosahexaenoico em doenças neurodegenerativas

    Directory of Open Access Journals (Sweden)

    Patricia Postilione Appolinário

    2011-01-01

    Full Text Available Docosahexaenoic acid (C22:6, n-3, DHA is a polyunsaturated fatty acid (PUFA present in large concentrations in the brain and, due to the presence of six double bonds in its structure, is highly susceptible to oxidation by enzymes and reactive oxygen/nitrogen species. The peroxidation of PUFAs has been implicated in an increasing number of human disorders, including neurodegenerative diseases. Hence, a better understanding of the metabolism pathways of DHA should provide new insights about its role in neurodegenerative diseases. Here we review the main aspects related to DHA metabolism, as well as, the recent findings showing its association with neurodegenerative diseases.

  17. Crystallization and crystallographic analysis of the Rhodococcus rhodochrous NCIMB 13064 DhaA mutant DhaA31 and its complex with 1,2,3-trichloropropane

    International Nuclear Information System (INIS)

    Lahoda, Maryna; Chaloupkova, Radka; Stsiapanava, Alena; Damborsky, Jiri; Kuta Smatanova, Ivana

    2011-01-01

    A mutant of the haloalkane dehalogenase DhaA (DhaA31) from R. rhodochrous NCIMB 13064 and its complex with 1,2,3-trichloropropane were crystallized and the crystals diffracted to high resolution. Haloalkane dehalogenases hydrolyze carbon–halogen bonds in a wide range of halogenated aliphatic compounds. The potential use of haloalkane dehalogenases in bioremediation applications has stimulated intensive investigation of these enzymes and their engineering. The mutant DhaA31 was constructed to degrade the anthropogenic compound 1,2,3-trichloropropane (TCP) using a new strategy. This strategy enhances activity towards TCP by decreasing the accessibility of the active site to water molecules, thereby promoting formation of the activated complex. The structure of DhaA31 will help in understanding the structure–function relationships involved in the improved dehalogenation of TCP. The mutant protein DhaA31 was crystallized by the sitting-drop vapour-diffusion technique and crystals of DhaA31 in complex with TCP were obtained using soaking experiments. Both crystals belonged to the triclinic space group P1. Diffraction data were collected to high resolution: to 1.31 Å for DhaA31 and to 1.26 Å for DhaA31 complexed with TCP

  18. DHA involvement in neurotransmission process

    OpenAIRE

    Vancassel Sylvie; Aïd Sabah; Denis Isabelle; Guesnet Philippe; Lavialle Monique

    2007-01-01

    The very high enrichment of the nervous system in the polyunsaturated fatty acids, arachidonic (AA, 20: 4n-6) and docosahexaenoic acids (DHA, 22: 6n-3), is dependant of the dietary availability of their respective precursors, linoleic (18: 2n-6) and_-linolenic acids (18: 3n-3). Inadequate amounts of DHA in brain membranes have been linked to a wide variety of abnormalities ranging from visual acuity and learning irregularities, to psychopathologies. However, the molecular mechanisms involved ...

  19. Maternal DHA levels and Toddler Free-Play Attention

    OpenAIRE

    Kannass, Kathleen N.; Colombo, John; Carlson, Susan E.

    2009-01-01

    We investigated the relationship between maternal docosahexaenoic acid (DHA) levels at birth and toddler free-play attention in the second year. Toddler free-play attention was assessed at 12 and 18 months, and maternal erythrocyte (red-blood cell; RBC) phospholipid DHA (percentage of total fatty acids) was measured from mothers at delivery. Overall, higher maternal DHA status at birth was associated with enhanced attentional functioning during the second year. Toddlers whose mothers had high...

  20. Crystallization and preliminary X-ray diffraction analysis of the wild-type haloalkane dehalogenase DhaA and its variant DhaA13 complexed with different ligands

    International Nuclear Information System (INIS)

    Stsiapanava, Alena; Chaloupkova, Radka; Fortova, Andrea; Brynda, Jiri; Weiss, Manfred S.; Damborsky, Jiri; Kuta Smatanova, Ivana

    2011-01-01

    Crystals of the wild-type haloalkane dehalogenase DhaA derived from R. rhodochrous NCIMB 13064 and of its catalytically inactive variant DhaA13 were grown in the presence of various ligands and diffraction data were collected to high and atomic resolution. Haloalkane dehalogenases make up an important class of hydrolytic enzymes which catalyse the cleavage of carbon–halogen bonds in halogenated aliphatic compounds. There is growing interest in these enzymes owing to their potential use in environmental and industrial applications. The haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 can slowly detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Structural analysis of this enzyme complexed with target ligands was conducted in order to obtain detailed information about the structural limitations of its catalytic properties. In this study, the crystallization and preliminary X-ray analysis of complexes of wild-type DhaA with 2-propanol and with TCP and of complexes of the catalytically inactive variant DhaA13 with the dye coumarin and with TCP are described. The crystals of wild-type DhaA were plate-shaped and belonged to the triclinic space group P1, while the variant DhaA13 can form prism-shaped crystals belonging to the orthorhombic space group P2 1 2 1 2 1 as well as plate-shaped crystals belonging to the triclinic space group P1. Diffraction data for crystals of wild-type DhaA grown from crystallization solutions with different concentrations of 2-propanol were collected to 1.70 and 1.26 Å resolution, respectively. A prism-shaped crystal of DhaA13 complexed with TCP and a plate-shaped crystal of the same variant complexed with the dye coumarin diffracted X-rays to 1.60 and 1.33 Å resolution, respectively. A crystal of wild-type DhaA and a plate-shaped crystal of DhaA13, both complexed with TCP, diffracted to atomic resolutions of 1.04 and 0.97 Å, respectively

  1. Use of a novel docosahexaenoic acid (DHA) formulation versus control in a neonatal porcine model of short bowel syndrome leads to greater intestinal absorption and higher systemic levels of DHA

    Science.gov (United States)

    Martin, Camilia R.; Stoll, Barbara; Cluette-Brown, Joanne; Akinkuotu, Adesola C.; Olutoye, Oluyinka O.; Gura, Kathleen M.; Singh, Pratibha; Zaman, Munir M.; Perillo, Michael C.; Puder, Mark; Freedman, Steven D.; Burrin, Doug

    2017-01-01

    Infants with short bowel syndrome (SBS) are at high risk for malabsorption, malnutrition, and failure to thrive. The objective of this study was to evaluate in a porcine model of SBS, the systemic absorption of a novel enteral Docosahexaenoic acid (DHA) formulation that forms micelles independent of bile salts (DHA-ALT®). We hypothesized that enteral delivery of DHA-ALT® would result in higher blood levels of DHA compared to a control DHA preparation due to improved intestinal absorption. SBS was induced in term piglets through a 75% mid-jejunoileal resection and the piglets randomized to either DHA-ALT® or control DHA formulation (N=5 per group) for 4 postoperative days. The median ± IQR difference in final versus starting weight was 696 ± 425g in the DHA-ALT® group compared to 132 ± 278g in the controls (p=.08). Within 12 hours, median ± IQR DHA and eicosapentaenoic acid plasma levels (mol%) were significantly higher in the DHA-ALT® vs. control group (4.1 ± 0.3 vs 2.5 ± 0.5, p=0.009; 0.7 ± 0.3 vs 0.2 ± 0.005, p=0.009, respectively). There were lower fecal losses of DHA and greater ileal tissue incorporation with DHA-ALT® versus the control. Morphometric analyses demonstrated an increase in proximal jejunum and distal ileum villus height in the DHA-ALT® group compared to controls (p=0.01). In a neonatal porcine model of SBS, enteral administration of a novel DHA preparation that forms micelles independent of bile salts resulted in increased fatty acid absorption, increased ileal tissue incorporation, and increased systemic levels of DHA. PMID:28385289

  2. A maternal erythrocyte DHA content of approximately 6 g% is the DHA status at which intrauterine DHA biomagnifications turns into bioattenuation and postnatal infant DHA equilibrium isreached

    NARCIS (Netherlands)

    Luxwolda, Martine F.; Kuipers, Remko S.; Sango, Wicklif S.; Kwesigabo, Gideon; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    Higher long-chain polyunsaturated fatty acids (LCP) in infant compared with maternal lipids at delivery is named biomagnification. The decline of infant and maternal docosahexaenoic acid (DHA) status during lactation in Western countries suggests maternal depletion. We investigated whether

  3. Crystallization and crystallographic analysis of the Rhodococcus rhodochrous NCIMB 13064 DhaA mutant DhaA31 and its complex with 1,2,3-trichloropropane.

    Science.gov (United States)

    Lahoda, Maryna; Chaloupkova, Radka; Stsiapanava, Alena; Damborsky, Jiri; Kuta Smatanova, Ivana

    2011-03-01

    Haloalkane dehalogenases hydrolyze carbon-halogen bonds in a wide range of halogenated aliphatic compounds. The potential use of haloalkane dehalogenases in bioremediation applications has stimulated intensive investigation of these enzymes and their engineering. The mutant DhaA31 was constructed to degrade the anthropogenic compound 1,2,3-trichloropropane (TCP) using a new strategy. This strategy enhances activity towards TCP by decreasing the accessibility of the active site to water molecules, thereby promoting formation of the activated complex. The structure of DhaA31 will help in understanding the structure-function relationships involved in the improved dehalogenation of TCP. The mutant protein DhaA31 was crystallized by the sitting-drop vapour-diffusion technique and crystals of DhaA31 in complex with TCP were obtained using soaking experiments. Both crystals belonged to the triclinic space group P1. Diffraction data were collected to high resolution: to 1.31 Å for DhaA31 and to 1.26 Å for DhaA31 complexed with TCP.

  4. Metabolic engineering Camelina sativa with fish oil-like levels of DHA.

    Directory of Open Access Journals (Sweden)

    James R Petrie

    Full Text Available BACKGROUND: Omega-3 long-chain (≥C20 polyunsaturated fatty acids (ω3 LC-PUFA such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are critical for human health and development [corrected].. Numerous studies have indicated that deficiencies in these fatty acids can increase the risk or severity of cardiovascular, inflammatory and other diseases or disorders. EPA and DHA are predominantly sourced from marine fish although the primary producers are microalgae. Much work has been done to engineer a sustainable land-based source of EPA and DHA to reduce pressure on fish stocks in meeting future demand, with previous studies describing the production of fish oil-like levels of DHA in the model plant species, Arabidopsis thaliana. PRINCIPAL FINDINGS: In this study we describe the production of fish oil-like levels (>12% of DHA in the oilseed crop species Camelina sativa achieving a high ω3/ω6 ratio. The construct previously transformed in Arabidopsis as well as two modified construct versions designed to increase DHA production were used. DHA was found to be stable to at least the T5 generation and the EPA and DHA were found to be predominantly at the sn-1,3 positions of triacylglycerols. Transgenic and parental lines did not have different germination or seedling establishment rates. CONCLUSIONS: DHA can be produced at fish oil-like levels in industrially-relevant oilseed crop species using multi-gene construct designs which are stable over multiple generations. This study has implications for the future of sustainable EPA and DHA production from land-based sources.

  5. Docosahexaenoic acid (DHA) at the sn-2 position of triacylglycerols increases DHA incorporation in brown, but not in white adipose tissue, of hamsters.

    Science.gov (United States)

    Lopes, Paula A; Bandarra, Narcisa M; Martins, Susana V; Madeira, Marta S; Ferreira, Júlia; Guil-Guerrero, José L; Prates, José A M

    2018-06-01

    We hypothesised that the incorporation of docosahexaenoic acid (DHA) across adipose tissues will be higher when it is ingested as triacylglycerols (TAG) structured at the sn-2 position. Ten-week old male hamsters were allocated to 4 dietary treatments (n = 10): linseed oil (LSO-control group), fish oil (FO), fish oil ethyl esters (FO-EE) and structured DHA at the sn-2 position of TAG (DHA-SL) during 12 weeks. In opposition to the large variations found for fatty acid composition in retroperitoneal white adipose tissue (WAT), brown adipose tissue (BAT) was less responsive to diets. DHA was not found in subcutaneous and retroperitoneal WAT depots but it was successfully incorporated in BAT reaching the highest percentage in DHA-SL. The PCA on plasma hormones (insulin, leptin, adiponectin) and fatty acids discriminated BAT from WATs pointing towards an individual signature on fatty acid deposition, but did not allow for full discrimination of dietary treatments within each adipose tissue.

  6. Cross linkage studies with the membranes of the vesicular stomatitis virus using radioactive 4-acido and 5-acido palmitic acid

    International Nuclear Information System (INIS)

    Verfondern, M.

    1983-01-01

    In the study described here the spatial arrangement of lipids and proteins in the VS virus was investigated on the basis of the covalent cross linkage technique. The formation of such cross linkages is brought about by the action of photosensitive acidosubstituted lipids, which permit acido functions to be introduced into a membrane in a previously defined position. Subsequently, photolysis helps to trigger the generation of radioactive nitrenes that react with the proteins and lipids in their immediate vicinity in a direct and non-selective way. The findings revealed by this study have raised questions as to the possibility of lipid-protein and lipid-lipid interactions, which is also discussed. (orig./MG) [de

  7. Crystallization and preliminary X-ray diffraction analysis of the wild-type haloalkane dehalogenase DhaA and its variant DhaA13 complexed with different ligands.

    Science.gov (United States)

    Stsiapanava, Alena; Chaloupkova, Radka; Fortova, Andrea; Brynda, Jiri; Weiss, Manfred S; Damborsky, Jiri; Smatanova, Ivana Kuta

    2011-02-01

    Haloalkane dehalogenases make up an important class of hydrolytic enzymes which catalyse the cleavage of carbon-halogen bonds in halogenated aliphatic compounds. There is growing interest in these enzymes owing to their potential use in environmental and industrial applications. The haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 can slowly detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Structural analysis of this enzyme complexed with target ligands was conducted in order to obtain detailed information about the structural limitations of its catalytic properties. In this study, the crystallization and preliminary X-ray analysis of complexes of wild-type DhaA with 2-propanol and with TCP and of complexes of the catalytically inactive variant DhaA13 with the dye coumarin and with TCP are described. The crystals of wild-type DhaA were plate-shaped and belonged to the triclinic space group P1, while the variant DhaA13 can form prism-shaped crystals belonging to the orthorhombic space group P2(1)2(1)2(1) as well as plate-shaped crystals belonging to the triclinic space group P1. Diffraction data for crystals of wild-type DhaA grown from crystallization solutions with different concentrations of 2-propanol were collected to 1.70 and 1.26 Å resolution, respectively. A prism-shaped crystal of DhaA13 complexed with TCP and a plate-shaped crystal of the same variant complexed with the dye coumarin diffracted X-rays to 1.60 and 1.33 Å resolution, respectively. A crystal of wild-type DhaA and a plate-shaped crystal of DhaA13, both complexed with TCP, diffracted to atomic resolutions of 1.04 and 0.97 Å, respectively.

  8. DHA involvement in neurotransmission process

    Directory of Open Access Journals (Sweden)

    Vancassel Sylvie

    2007-05-01

    Full Text Available The very high enrichment of the nervous system in the polyunsaturated fatty acids, arachidonic (AA, 20: 4n-6 and docosahexaenoic acids (DHA, 22: 6n-3, is dependant of the dietary availability of their respective precursors, linoleic (18: 2n-6 and_-linolenic acids (18: 3n-3. Inadequate amounts of DHA in brain membranes have been linked to a wide variety of abnormalities ranging from visual acuity and learning irregularities, to psychopathologies. However, the molecular mechanisms involved remain unknown. Several years ago, we hypothesized that a modification of DHA contents of neuronal membranes by dietary modulation could change the neurotransmission function and then underlie inappropriate behavioural response. We showed that, in parallel to a severe loss of brain DHA concomitant to a compensatory substitution by 22:5n-6, the dietary lack of α-linolenic acid during development induced important changes in the release of neurotransmitters (dopamine, serotonin, acetylcholine in cerebral areas specifically involved in learning, memory and reward processes. Data suggested alteration of presynaptic storage process and dysregulations of reciprocal functional interactions between monoaminergic and cholinergic pathways. Moreover, we showed that recovery of these neurochemical changes was possible when the deficient diet was switched to a diet balanced in n-3 and n-6 PUFA before weaning. The next step is to understand the mechanism involved. Particularly, we focus on the study of the metabolic cooperation between the endothelial cell, the astrocyte and the neuron which regulate synaptic transmission.These works could contribute to the understanding of the link between some neuropsychiatric disorders and the metabolism of n-3 PUFA, through their action on neurotransmission.

  9. One-generation reproductive toxicity study of DHA-rich oil in rats

    NARCIS (Netherlands)

    Blum, R.; Kiy, T.; Waalkens-Berendsen, I.; Wong, A.W.; Roberts, A.

    2007-01-01

    Polyunsaturated fatty acids, including docosahexaenoic acid (DHA), are natural constituents of the human diet. DHA-algal oil is produced through the use of the marine protist, Ulkenia sp. The reproductive toxicity of DHA-algal oil was assessed in a one-generation study. Rats were provided diets

  10. Intrauterine, postpartum and adult relationships between arachidonic acid (AA) and docosahexaenoic acid (DHA)

    NARCIS (Netherlands)

    Kuipers, Remko S.; Luxwolda, Martine F.; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    Erythrocyte (RBC) fatty acid compositions from populations with stable dietary habits but large variations in RBC-arachidonic (AA) and RBC-docosahexaenoic acid (DHA) provided us with insight into relationships between DHA and AA. It also enabled us to estimate the maternal RBC-DHA (mRBC-DHA) status

  11. Docosahexaenoic Acid (DHA: An Ancient Nutrient for the Modern Human Brain

    Directory of Open Access Journals (Sweden)

    Joanne Bradbury

    2011-05-01

    Full Text Available Modern humans have evolved with a staple source of preformed docosahexaenoic acid (DHA in the diet. An important turning point in human evolution was the discovery of high-quality, easily digested nutrients from coastal seafood and inland freshwater sources. Multi-generational exploitation of seafood by shore-based dwellers coincided with the rapid expansion of grey matter in the cerebral cortex, which characterizes the modern human brain. The DHA molecule has unique structural properties that appear to provide optimal conditions for a wide range of cell membrane functions. This has particular implications for grey matter, which is membrane-rich tissue. An important metabolic role for DHA has recently been identified as the precursor for resolvins and protectins. The rudimentary source of DHA is marine algae; therefore it is found concentrated in fish and marine oils. Unlike the photosynthetic cells in algae and higher plants, mammalian cells lack the specific enzymes required for the de novo synthesis of alpha-linolenic acid (ALA, the precursor for all omega-3 fatty acid syntheses. Endogenous synthesis of DHA from ALA in humans is much lower and more limited than previously assumed. The excessive consumption of omega-6 fatty acids in the modern Western diet further displaces DHA from membrane phospholipids. An emerging body of research is exploring a unique role for DHA in neurodevelopment and the prevention of neuropsychiatric and neurodegenerative disorders. DHA is increasingly being added back into the food supply as fish oil or algal oil supplementation.

  12. Docosahexaenoic acid (DHA): an ancient nutrient for the modern human brain.

    Science.gov (United States)

    Bradbury, Joanne

    2011-05-01

    Modern humans have evolved with a staple source of preformed docosahexaenoic acid (DHA) in the diet. An important turning point in human evolution was the discovery of high-quality, easily digested nutrients from coastal seafood and inland freshwater sources. Multi-generational exploitation of seafood by shore-based dwellers coincided with the rapid expansion of grey matter in the cerebral cortex, which characterizes the modern human brain. The DHA molecule has unique structural properties that appear to provide optimal conditions for a wide range of cell membrane functions. This has particular implications for grey matter, which is membrane-rich tissue. An important metabolic role for DHA has recently been identified as the precursor for resolvins and protectins. The rudimentary source of DHA is marine algae; therefore it is found concentrated in fish and marine oils. Unlike the photosynthetic cells in algae and higher plants, mammalian cells lack the specific enzymes required for the de novo synthesis of alpha-linolenic acid (ALA), the precursor for all omega-3 fatty acid syntheses. Endogenous synthesis of DHA from ALA in humans is much lower and more limited than previously assumed. The excessive consumption of omega-6 fatty acids in the modern Western diet further displaces DHA from membrane phospholipids. An emerging body of research is exploring a unique role for DHA in neurodevelopment and the prevention of neuropsychiatric and neurodegenerative disorders. DHA is increasingly being added back into the food supply as fish oil or algal oil supplementation.

  13. The relation between the omega-3 index and arachidonic acid is bell shaped : Synergistic at low EPA plus DHA status and antagonistic at high EPA plus DHA status

    NARCIS (Netherlands)

    Luxwolda, Martine F.; Kuipers, Remko S.; Smit, Ella N.; Velzing-Aarts, Francien V.; Dijck-Brouwer, D. A. Janneke; Muskiet, Frits A. J.

    2011-01-01

    Introduction: The relation between docosahexaenoic (DHA) and eicosapentaenoic (EPA) vs. arachidonic acid (AA) seems characterized by both synergism and antagonism. Materials and methods: Investigate the relation between EPA + DHA and AA in populations with a wide range of EPA + DHA status and across

  14. Lipidomic analysis of Arabidopsis seed genetically engineered to contain DHA

    Directory of Open Access Journals (Sweden)

    Xue-Rong eZhou

    2014-09-01

    Full Text Available Metabolic engineering of omega-3 long-chain (≥C20 polyunsaturated fatty acids (ω3 LC-PUFA in oilseeds has been one of the key metabolic engineering targets in recent years. By expressing a transgenic pathway for enhancing the synthesis of the ω3 LC-PUFA docosahexaenoic acid (DHA from endogenous -linolenic acid (ALA, we obtained the production of fish oil-like proportions of DHA in Arabidopsis seed oil. Liquid chromatography-mass spectrometry (LC-MS was used to characterize the triacylglycerol (TAG, diacylglycerol (DAG and phospholipid (PL lipid classes in the transgenic and wild type Arabidopsis seeds at both developing and mature stages. The analysis identified the appearance of several abundant DHA-containing phosphatidylcholine (PC, DAG and TAG molecular species in mature seeds. The relative abundances of PL, DAG and TAG species showed a preferred combination of LC-PUFA with ALA in the transgenic seeds, where LC-PUFA were esterified in positions usually occupied by 20:1ω9. Trace amounts of di-DHA PC and tri-DHA TAG were identified, and confirmed by high resolution MS/MS. Studying the lipidome in transgenic seeds provides insights into where DHA accumulated and composed with other fatty acids of neutral and phospholipids from the developing and mature seeds.

  15. Specific uptake of DHA by the brain from a structured phospholipid, AceDoPC®

    Directory of Open Access Journals (Sweden)

    Bernoud-Hubac Nathalie

    2017-03-01

    Full Text Available Docosahexaenoic acid (DHA; 22:6 ω-3 is highly enriched in the brain and is required for proper brain development and function. Its deficiency has been shown to be linked with the emergence of neurological diseases. Dietary ω-3 fatty acid supplements including DHA have been suggested to improve neuronal development and enhance cognitive functions. Findings suggested that DHA is better incorporated into the brain when esterified at the sn-2 position of a lysophosphatidylcholine (LysoPC-DHA. AceDoPC® is a structured phospholipid or acetyl-LysoPC-DHA. As previously shown for LysoPC-DHA, AceDoPC® is a specific and preferred carrier of DHA to the brain. When AceDoPC® was injected to rats that were subjected to an ischemic stroke, it prevents the extension of brain lesions. Regarding the essential role of DHA for cerebral functions, targeting the brain with specific carriers of DHA might provide novel therapeutic approaches to neurodegenerative diseases.

  16. Effect of DHA supplementation on digestible starch utilization by rainbow trout.

    Science.gov (United States)

    Tapia-Salazar, M; Bureau, W; Panserat, S; Corraze, G; Bureau, D P

    2006-01-01

    Rainbow trout has a limited ability to utilize digestible carbohydrates efficiently. Trout feeds generally contain high levels of DHA, a fatty acid known to inhibit a number of glycolytic and lipogenic enzymes in animals. A study was conducted to determine whether carbohydrate utilization by rainbow trout might be affected by dietary DHA level. Two low-carbohydrate (digestible carbohydrate) basal diets were formulated to contain 1 (adequate) or 4 (excess) g/100 g DHA diet respectively. The two basal diets were diluted with increasing levels of digestible starch (0 %, 10 %, 20 % and 30 %, respectively) to produce eight diets. These diets were fed to fish for 12 weeks at 15 degrees C according to a pair-fed protocol that consisted of feeding the same amount of basal diet but different amounts of starch. Live weight, N and lipid gains, hepatic glycogen and plasma glucose values significantly increased, whereas feed efficiency (gain:feed) significantly decreased, with increasing starch intake (Pdigestible N intake) improved with starch supplementation but was not affected by DHA level (P>0.05). Starch increased the activity of glucokinase, pyruvate kinase, glucose 6-phosphate dehydrogenase and fatty acid synthase (P<0.05) but did not affect hexokinase and malic enzyme activity. DHA had no effect on growth but increased plasma glucose and reduced carcass lipid and liver glycogen contents (P<0.05). Glycolytic and lipogenic enzymes were not affected by DHA level, except for pyruvate kinase, which was reduced by increasing DHA level. These results suggest only a marginal effect of dietary DHA on the ability of fish to utilize carbohydrate.

  17. Breast milk docosahexaenoic acid (DHA) correlates with DHA status of malnourished infants

    NARCIS (Netherlands)

    Smit, EN; Oelen, EA; Seerat, E; Muskiet, FAJ; Boersma, ER

    Aim-To investigate whether low docosahexaenoic acid (22:6 omega 3; DHA) status of malnourished, mostly breast fed infants is a result of low omega 3 fatty acid intake via breast milk. Methods-Fatty acid composition of breast milk of eight Pakistani mothers, and of the erythrocytes of their

  18. Interchange reaction of disulfides and denaturation of oxytocin by copper(II)/ascorbic acid/O2 system.

    Science.gov (United States)

    Inoue, H; Hirobe, M

    1987-05-29

    The interchange reaction of disulfides was caused by the copper(II)/ascorbic acid/O2 system. The incubation of two symmetric disulfides, L-cystinyl-bis-L-phenylalanine (PP) and L-cystinyl-bis-L-tyrosine (TT), with L-ascorbic acid and CuSO4 in potassium phosphate buffer (pH 7.2, 50 mM) resulted in the formation of an asymmetric disulfide, L-cystinyl-L-phenylalanine-L-tyrosine (PT), and the final ratio of PP:PT:TT was 1:2:1. As the reaction was inhibited by catalase and DMSO only at the initial time, hydroxyl radical generated by the copper(II)/ascorbic acid/O2 system seemed to be responsible for the initiation of the reaction. Oxytocin and insulin were denatured by this system, and catalase and DMSO similarly inhibited these denaturations. As the composition of amino acids was unchanged after the reaction, hydroxyl radical was thought to cause the cleavage and/or interchange reaction of disulfides to denature the peptides.

  19. Sources connues et potentielles de DHA pour les besoins de l’homme

    Directory of Open Access Journals (Sweden)

    Barnathan Gilles

    2007-01-01

    Full Text Available This paper focuses on the production of docosahexaenoic acid (DHA; 22:6 n-3, a major ω3 polyunsaturated fatty acid (PUFA with applications in foods and pharmaceuticals. Fish oils are currently the main source of PUFA including EPA and DHA. Growing interest in PUFA properties in various fields coupled with their significance in health and dietary requirements has encouraged searching for more suitable sources of these compounds, specially DHA. Some methods in lipid extracting process now allow to get a better industrial use for fish by-products. An important objective is to find cultivated microbiological sources that delivered DHA but no EPA. Potentialities of marine bacteria, microalgae and marine protists are described. The dinoflagellate Crypthecodinium cohnii seems the most efficient microrganism for the large-scale production of DHA devoid of EPA. The marine protists Thraustochytrids offer promising possibilities for DHA and other major PUFA production. C. cohnii as well as Thraustochytrium and Schizochytrium are able to produce large biomass and lipid amounts, and DHA at levels up to 60%. The first results in the production of n-3 long-chain PUFA in transgenic plants are given.

  20. A dose response randomised controlled trial of docosahexaenoic acid (DHA) in preterm infants.

    Science.gov (United States)

    Collins, C T; Sullivan, T R; McPhee, A J; Stark, M J; Makrides, M; Gibson, R A

    2015-08-01

    Thirty one infants born less than 30 weeks׳ gestational age were randomised to receive either 40 (n=11), 80 (n=9) or 120 (n=11) mg/kg/day of docosahexaenoic acid (DHA) respectively as an emulsion, via the feeding tube, commenced within 4 days of the first enteral feed. Twenty three infants were enroled in non-randomised reference groups; n=11 who had no supplementary DHA and n=12 who had maternal DHA supplementation. All levels of DHA in the emulsion were well tolerated with no effect on number of days of interrupted feeds or days to full enteral feeds. DHA levels in diets were directly related to blood DHA levels but were unrelated to arachidonic acid (AA) levels. All randomised groups and the maternal supplementation reference group prevented the drop in DHA levels at study end that was evident in infants not receiving supplementation. Australian New Zealand Clinical Trials Registry: ACTRN12610000382077. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Screening of new British thraustochytrids isolates for docosahexaenoic acid (DHA) production.

    Science.gov (United States)

    Marchan, Loris Fossier; Lee Chang, Kim J; Nichols, Peter D; Polglase, Jane L; Mitchell, Wilfrid J; Gutierrez, Tony

    2017-01-01

    Thraustochytrids isolated from hot tropical and sub-tropical waters have been well studied for DHA and biodiesel production in the last decades. However, little research has been performed on the oils of cold water thraustochytrids, in particular from the North Sea region. In this study, thraustochytrid strains from British waters showed high relative levels of omega-3 long-chain (≥C 20 ) polyunsaturated fatty acids (LC-PUFA), including docosahexaenoic acid (DHA, 22:6ω3). The relative levels of DHA (as % of total fatty acids, TFA) in the different British strains are hitherto amongst the highest recorded from any thraustochytrid screening study, with strain TL18 reaching up to 67% DHA in modified Glucose-Yeast Extract-Peptone (GYP) medium. At this screening stage, low final biomass and fatty acid yield were observed in modified GYP and MarChiquita-Brain Heart Broth (MCBHB), while PUFA profiles (as % of PUFA) remained unaltered regardless of the culture medium used. Hence, optimizing the medium and culture conditions to improve growth and lipid content, without impacting the relative percentage of DHA, has the potential to increase the final DHA concentration. With this in mind, three strains were identified as promising organisms for the production of DHA. In the context of possible future industrial exploitation involving a winterization step, we investigated the recycling of the residual oil for biodiesel use. To do this, a mathematical model was used to assess the intrinsic properties of the by-product oil. The results showed the feasibility of producing primary DHA-rich oil, assuming optimized conditions, while using the by-product oil for biodiesel use.

  2. Randomized Controlled Trial of DHA Supplementation during Pregnancy: Child Adiposity Outcomes

    Science.gov (United States)

    Foster, Byron A.; Escaname, Elia; Powell, Theresa L.; Larsen, Benjamin; Siddiqui, Sartaj K.; Menchaca, John; Aquino, Christian; Ramamurthy, Rajam; Hale, Daniel E.

    2017-01-01

    Investigating safe and effective interventions in pregnancy that lower offspring adiposity is important given the burden of obesity and subsequent metabolic derangements. Our objective was to determine if docosahexaenoic acid (DHA) given during pregnancy to obese mothers results in lower offspring adiposity. This study was a long-term follow-up of a randomized trial of mothers with gestational diabetes or obesity who were randomized to receive DHA supplementation at 800 mg/day or placebo (corn/soy oil) starting at 25–29 weeks gestation. Anthropometric measures were collected at birth and maternal erythrocyte DHA and arachidonic (AA) levels were measured at 26 and 36 weeks gestation. At two- and four-year follow-up time points, offspring adiposity measures along with a diet recall were assessed. A significant increase in erythrocyte DHA levels was observed at 36 weeks gestation in the supplemented group (p < 0.001). While no significant differences by measures of adiposity were noted at birth, two or four years by randomization group, duration of breastfeeding (p < 0.001), and DHA level at 36 weeks (p = 0.002) were associated with body mass index z-score. Our data suggest that DHA supplementation during pregnancy in obese mothers may have long-lasting effects on offspring measures of adiposity. PMID:28574453

  3. Inactivation of dhaD and dhaK abolishes by-product accumulation during 1,3-propanediol production in Klebsiella pneumoniae.

    Science.gov (United States)

    Horng, Yu-Tze; Chang, Kai-Chih; Chou, Ta-Chung; Yu, Chung-Jen; Chien, Chih-Ching; Wei, Yu-Hong; Soo, Po-Chi

    2010-07-01

    1,3-Propanediol (1,3-PD) can be used for the industrial synthesis of a variety of compounds, including polyesters, polyethers, and polyurethanes. 1,3-PD is generated from petrochemical and microbial sources. 1,3-Propanediol is a typical product of glycerol fermentation, while acetate, lactate, 2,3-butanediol, and ethanol also accumulate during the process. Substrate and product inhibition limit the final concentration of 1,3-propanediol in the fermentation broth. It is impossible to increase the yield of 1,3-propanediol by using the traditional whole-cell fermentation process. In this study, dhaD and dhaK, the genes for glycerol dehydrogenase and dihydroxyacetone kinase, respectively, were inactivated by homologous recombination in Klebsiella pneumoniae. The dhaD/dhaK double mutant (designated TC100), selected from 5,000 single or double cross homologous recombination mutants, was confirmed as a double cross by using polymerase chain reaction. Analysis of the cell-free supernatant with high-performance liquid chromatography revealed elimination of lactate and 2,3-butanediol, as well as ethanol accumulation in TC100, compared with the wild-type strain. Furthermore, 1,3-propanediol productivity was increased in the TC100 strain expressing glycerol dehydratase and 1,3-PDO dehydrogenase regulated by the arabinose P(BAD) promoter. The genetic engineering and medium formulation approaches used here should aid in the separation of 1,3-propanediol from lactate, 2,3-butanediol, and ethanol and lead to increased production of 1,3-propanediol in Klebsiella pneumoniae.

  4. Efficient production of triacylglycerols rich in docosahexaenoic acid (DHA) by osmo-heterotrophic marine protists.

    Science.gov (United States)

    Liu, Ying; Tang, Jie; Li, Jingjing; Daroch, Maurycy; Cheng, Jay J

    2014-12-01

    Thraustochytrids have recently emerged as a promising source for docosahexaenoic acid (DHA) production due to their high growth rate and oil content. In this study, two thraustochytrid isolates, Aurantiochytrium sp. PKU#SW7 and Thraustochytriidae sp. PKU#Mn16 were used for DHA production. Following growth parameters were optimized to maximize DHA production: temperature, pH, salinity, and glucose concentration. Both isolates achieved the highest DHA yield at the cultivation temperature of 28 °C, pH 6, 100 % seawater, and 2 % glucose. A DHA yield of 1.395 g/l and 1.426 g/l was achieved under the optimized culture conditions. Further investigation revealed that both isolates possess simple fatty acids profiles with palmitic acid and DHA as their dominant constituents, accounting for ∼79 % of total fatty acids. To date, very few studies have focused on the DHA distribution in various lipid fractions which is an important factor for identifying strains with a potential for industrial DHA production. In the present study, the lipids profiles of each strain both revealed that the majority of DHA was distributed in neutral lipids (NLs), and the DHA distribution in NLs of PKU#SW7 was exclusively in the form of triacylglycerols (TAGs) which suggest that PKU#SW7 could be utilized as an alternative source of DHA for dietary supplements. The fermentation process established for both strains also indicating that Aurantiochytrium sp. PKU#SW7 was more suitable for cultivation in fermenter. In addition, the high percentage of saturated fatty acids produced by the two thraustochytrids indicates their potential application in biodiesel production. Overall, our findings suggest that two thraustochytrid isolates are suitable candidates for biotechnological applications.

  5. Production of lipids and docosahexasaenoic acid (DHA) by a native Thraustochytrium strain

    DEFF Research Database (Denmark)

    Shene, Carolina; Leyton, Allison; Rubilar, Mónica

    2013-01-01

    /w. Under this growth condition lipids and DHA productivities were 50 and 23 mg/(L h), respectively. Practical applications: Consumption of long chain‐polyunsaturated fatty acids (LC‐PUFA) belonging to the omega‐3 family such as DHA has several positive effects on human and animal health. However, natural...... sources are restricted to cold‐water fish and their oils. Marine protists are also good candidates for the production of microbial DHA. For evaluating the potential of new strains the effect of the growth medium composition, growth conditions, and cultivation mode on DHA productivity has to be determined...

  6. The Relationship of Docosahexaenoic Acid (DHA) with Learning and Behavior in Healthy Children: A Review

    Science.gov (United States)

    Kuratko, Connye N.; Barrett, Erin Cernkovich; Nelson, Edward B.; Norman, Salem

    2013-01-01

    Childhood is a period of brain growth and maturation. The long chain omega-3 fatty acid, docosahexaenoic acid (DHA), is a major lipid in the brain recognized as essential for normal brain function. In animals, low brain DHA results in impaired learning and behavior. In infants, DHA is important for optimal visual and cognitive development. The usual intake of DHA among toddlers and children is low and some studies show improvements in cognition and behavior as the result of supplementation with polyunsaturated fatty acids including DHA. The purpose of this review was to identify and evaluate current knowledge regarding the relationship of DHA with measures of learning and behavior in healthy school-age children. A systematic search of the literature identified 15 relevant publications for review. The search found studies which were diverse in purpose and design and without consistent conclusions regarding the treatment effect of DHA intake or biomarker status on specific cognitive tests. However, studies of brain activity reported benefits of DHA supplementation and over half of the studies reported a favorable role for DHA or long chain omega-3 fatty acids in at least one area of cognition or behavior. Studies also suggested an important role for DHA in school performance. PMID:23877090

  7. The Relationship of Docosahexaenoic Acid (DHA with Learning and Behavior in Healthy Children: A Review

    Directory of Open Access Journals (Sweden)

    Norman Salem

    2013-07-01

    Full Text Available Childhood is a period of brain growth and maturation. The long chain omega-3 fatty acid, docosahexaenoic acid (DHA, is a major lipid in the brain recognized as essential for normal brain function. In animals, low brain DHA results in impaired learning and behavior. In infants, DHA is important for optimal visual and cognitive development. The usual intake of DHA among toddlers and children is low and some studies show improvements in cognition and behavior as the result of supplementation with polyunsaturated fatty acids including DHA. The purpose of this review was to identify and evaluate current knowledge regarding the relationship of DHA with measures of learning and behavior in healthy school-age children. A systematic search of the literature identified 15 relevant publications for review. The search found studies which were diverse in purpose and design and without consistent conclusions regarding the treatment effect of DHA intake or biomarker status on specific cognitive tests. However, studies of brain activity reported benefits of DHA supplementation and over half of the studies reported a favorable role for DHA or long chain omega-3 fatty acids in at least one area of cognition or behavior. Studies also suggested an important role for DHA in school performance.

  8. Docosahexaenoic acid (DHA) effects on proliferation and steroidogenesis of bovine granulosa cells.

    Science.gov (United States)

    Maillard, Virginie; Desmarchais, Alice; Durcin, Maeva; Uzbekova, Svetlana; Elis, Sebastien

    2018-04-26

    Docosahexaenoic acid (DHA) is a n-3 polyunsaturated fatty acid (PUFA) belonging to a family of biologically active fatty acids (FA), which are known to have numerous health benefits. N-3 PUFAs affect reproduction in cattle, and notably directly affect follicular cells. In terms of reproduction in cattle, n-3 PUFA-enriched diets lead to increased follicle size or numbers. The objective of the present study was to analyze the effects of DHA (1, 10, 20 and 50 μM) on proliferation and steroidogenesis (parametric and/or non parametric (permutational) ANOVA) of bovine granulosa cells in vitro and mechanisms of action through protein expression (Kruskal-Wallis) and signaling pathways (non parametric ANOVA) and to investigate whether DHA could exert part of its action through the free fatty acid receptor 4 (FFAR4). DHA (10 and 50 μM) increased granulosa cell proliferation and DHA 10 μM led to a corresponding increase in proliferating cell nuclear antigen (PCNA) expression level. DHA also increased progesterone secretion at 1, 20 and 50 μM, and estradiol secretion at 1, 10 and 20 μM. Consistent increases in protein levels were also reported for the steroidogenic enzymes, cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 1 (HSD3B1), and of the cholesterol transporter steroidogenic acute regulatory protein (StAR), which are necessary for production of progesterone or androstenedione. FFAR4 was expressed in all cellular types of bovine ovarian follicles, and in granulosa cells it was localized close to the cellular membrane. TUG-891 treatment (1 and 50 μM), a FFAR4 agonist, increased granulosa cell proliferation and MAPK14 phosphorylation in a similar way to that observed with DHA treatment. However, TUG-891 treatment (1, 10 and 50 μM) showed no effect on progesterone or estradiol secretion. These data show that DHA stimulated proliferation and steroidogenesis of bovine

  9. Impact of DHA on Metabolic Diseases from Womb to Tomb

    NARCIS (Netherlands)

    Arnoldussen, I.A.C.; Kiliaan, A.J.

    2014-01-01

    Long chain polyunsaturated fatty acids (LC-PUFAs) are important mediators in improving and maintaining human health over the total lifespan. One topic we especially focus on in this review is omega-3 LC-PUFA docosahexaenoic acid (DHA). Adequate DHA levels are essential during neurodevelopment and,

  10. DHA but Not EPA Emulsions Preserve Neurological and Mitochondrial Function after Brain Hypoxia-Ischemia in Neonatal Mice.

    Science.gov (United States)

    Mayurasakorn, Korapat; Niatsetskaya, Zoya V; Sosunov, Sergey A; Williams, Jill J; Zirpoli, Hylde; Vlasakov, Iliyan; Deckelbaum, Richard J; Ten, Vadim S

    2016-01-01

    Treatment with triglyceride emulsions of docosahexaenoic acid (tri-DHA) protected neonatal mice against hypoxia-ischemia (HI) brain injury. The mechanism of this neuroprotection remains unclear. We hypothesized that administration of tri-DHA enriches HI-brains with DHA/DHA metabolites. This reduces Ca2+-induced mitochondrial membrane permeabilization and attenuates brain injury. 10-day-old C57BL/6J mice following HI-brain injury received tri-DHA, tri-EPA or vehicle. At 4-5 hours of reperfusion, mitochondrial fatty acid composition and Ca2+ buffering capacity were analyzed. At 24 hours and at 8-9 weeks of recovery, oxidative injury, neurofunctional and neuropathological outcomes were evaluated. In vitro, hyperoxia-induced mitochondrial generation of reactive oxygen species (ROS) and Ca2+ buffering capacity were measured in the presence or absence of DHA or EPA. Only post-treatment with tri-DHA reduced oxidative damage and improved short- and long-term neurological outcomes. This was associated with increased content of DHA in brain mitochondria and DHA-derived bioactive metabolites in cerebral tissue. After tri-DHA administration HI mitochondria were resistant to Ca2+-induced membrane permeabilization. In vitro, hyperoxia increased mitochondrial ROS production and reduced Ca2+ buffering capacity; DHA, but not EPA, significantly attenuated these effects of hyperoxia. Post-treatment with tri-DHA resulted in significant accumulation of DHA and DHA derived bioactive metabolites in the HI-brain. This was associated with improved mitochondrial tolerance to Ca2+-induced permeabilization, reduced oxidative brain injury and permanent neuroprotection. Interaction of DHA with mitochondria alters ROS release and improves Ca2+ buffering capacity. This may account for neuroprotective action of post-HI administration of tri-DHA.

  11. DHA but Not EPA Emulsions Preserve Neurological and Mitochondrial Function after Brain Hypoxia-Ischemia in Neonatal Mice.

    Directory of Open Access Journals (Sweden)

    Korapat Mayurasakorn

    Full Text Available Treatment with triglyceride emulsions of docosahexaenoic acid (tri-DHA protected neonatal mice against hypoxia-ischemia (HI brain injury. The mechanism of this neuroprotection remains unclear. We hypothesized that administration of tri-DHA enriches HI-brains with DHA/DHA metabolites. This reduces Ca2+-induced mitochondrial membrane permeabilization and attenuates brain injury.10-day-old C57BL/6J mice following HI-brain injury received tri-DHA, tri-EPA or vehicle. At 4-5 hours of reperfusion, mitochondrial fatty acid composition and Ca2+ buffering capacity were analyzed. At 24 hours and at 8-9 weeks of recovery, oxidative injury, neurofunctional and neuropathological outcomes were evaluated. In vitro, hyperoxia-induced mitochondrial generation of reactive oxygen species (ROS and Ca2+ buffering capacity were measured in the presence or absence of DHA or EPA.Only post-treatment with tri-DHA reduced oxidative damage and improved short- and long-term neurological outcomes. This was associated with increased content of DHA in brain mitochondria and DHA-derived bioactive metabolites in cerebral tissue. After tri-DHA administration HI mitochondria were resistant to Ca2+-induced membrane permeabilization. In vitro, hyperoxia increased mitochondrial ROS production and reduced Ca2+ buffering capacity; DHA, but not EPA, significantly attenuated these effects of hyperoxia.Post-treatment with tri-DHA resulted in significant accumulation of DHA and DHA derived bioactive metabolites in the HI-brain. This was associated with improved mitochondrial tolerance to Ca2+-induced permeabilization, reduced oxidative brain injury and permanent neuroprotection. Interaction of DHA with mitochondria alters ROS release and improves Ca2+ buffering capacity. This may account for neuroprotective action of post-HI administration of tri-DHA.

  12. DHA but Not EPA Emulsions Preserve Neurological and Mitochondrial Function after Brain Hypoxia-Ischemia in Neonatal Mice

    Science.gov (United States)

    Sosunov, Sergey A.; Williams, Jill J.; Zirpoli, Hylde; Vlasakov, Iliyan; Deckelbaum, Richard J.; Ten, Vadim S.

    2016-01-01

    Background and Purpose Treatment with triglyceride emulsions of docosahexaenoic acid (tri-DHA) protected neonatal mice against hypoxia-ischemia (HI) brain injury. The mechanism of this neuroprotection remains unclear. We hypothesized that administration of tri-DHA enriches HI-brains with DHA/DHA metabolites. This reduces Ca2+-induced mitochondrial membrane permeabilization and attenuates brain injury. Methods 10-day-old C57BL/6J mice following HI-brain injury received tri-DHA, tri-EPA or vehicle. At 4–5 hours of reperfusion, mitochondrial fatty acid composition and Ca2+ buffering capacity were analyzed. At 24 hours and at 8–9 weeks of recovery, oxidative injury, neurofunctional and neuropathological outcomes were evaluated. In vitro, hyperoxia-induced mitochondrial generation of reactive oxygen species (ROS) and Ca2+ buffering capacity were measured in the presence or absence of DHA or EPA. Results Only post-treatment with tri-DHA reduced oxidative damage and improved short- and long-term neurological outcomes. This was associated with increased content of DHA in brain mitochondria and DHA-derived bioactive metabolites in cerebral tissue. After tri-DHA administration HI mitochondria were resistant to Ca2+-induced membrane permeabilization. In vitro, hyperoxia increased mitochondrial ROS production and reduced Ca2+ buffering capacity; DHA, but not EPA, significantly attenuated these effects of hyperoxia. Conclusions Post-treatment with tri-DHA resulted in significant accumulation of DHA and DHA derived bioactive metabolites in the HI-brain. This was associated with improved mitochondrial tolerance to Ca2+-induced permeabilization, reduced oxidative brain injury and permanent neuroprotection. Interaction of DHA with mitochondria alters ROS release and improves Ca2+ buffering capacity. This may account for neuroprotective action of post-HI administration of tri-DHA. PMID:27513579

  13. Docosahexaenoic Acid (DHA) Provides Neuroprotection in Traumatic Brain Injury Models via Activating Nrf2-ARE Signaling.

    Science.gov (United States)

    Zhu, Wei; Ding, Yuexia; Kong, Wei; Li, Tuo; Chen, Hongguang

    2018-04-16

    In this study, we explored the neuroprotective effects of docosahexaenoic acid (DHA) in traumatic brain injury (TBI) models. In this study, we first confirmed that DHA was neuroprotective against TBI via the NSS test and Morris water maze experiment. Western blot was conducted to identify the expression of Bax, caspase-3, and Bcl-2. And the cell apoptosis of the TBI models was validated by TUNEL staining. Relationships between nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) pathway-related genes and DHA were explored by RT-PCR and Western blot. Rats of the DHA group performed remarkably better than those of the TBI group in both NSS test and water maze experiment. DHA conspicuously promoted the expression of Bcl-2 and diminished that of cleaved caspase-3 and Bax, indicating the anti-apoptotic role of DHA. Superoxide dismutase (SOD) activity and cortical malondialdehyde content, glutathione peroxidase (GPx) activity were renovated in rats receiving DHA treatment, implying that the neuroprotective influence of DHA was derived from lightening the oxidative stress caused by TBI. Moreover, immunofluorescence and Western blot experiments revealed that DHA facilitated the translocation of Nrf2 to the nucleus. DHA administration also notably increased the expression of the downstream factors NAD(P)H:quinone oxidoreductase (NQO-1) and heme oxygenase 1(HO-1). DHA exerted neuroprotective influence on the TBI models, potentially through activating the Nrf2- ARE pathway.

  14. Functional metabolomics reveals novel active products in the DHA metabolome

    Directory of Open Access Journals (Sweden)

    Masakazu eShinohara

    2012-04-01

    Full Text Available Endogenous mechanisms for successful resolution of an acute inflammatory response and the local return to homeostasis are of interest because excessive inflammation underlies many human diseases. In this review, we provide an update and overview of functional metabolomics that identified a new bioactive metabolome of docosahexaenoic acid (DHA. Systematic studies revealed that DHA was converted to DHEA-derived novel bioactive products as well as aspirin-triggered (AT forms of protectins. The new oxygenated DHEA derived products blocked PMN chemotaxis, reduced P-selectin expression and platelet-leukocyte adhesion, and showed organ protection in ischemia/reperfusion injury. These products activated cannabinoid receptor (CB2 receptor and not CB1 receptors. The AT-PD1 reduced neutrophil (PMN recruitment in murine peritonitis. With human cells, AT-PD1 decreased transendothelial PMN migration as well as enhanced efferocytosis of apoptotic human PMN by macrophages. The recent findings reviewed here indicate that DHEA oxidative metabolism and aspirin-triggered conversion of DHA produce potent novel molecules with anti-inflammatory and organ-protective properties, opening the DHA metabolome functional roles.

  15. Different dietary omega-3 sources during pregnancy and DHA in the developing rat brain

    Directory of Open Access Journals (Sweden)

    Childs Caroline E.

    2011-09-01

    Full Text Available The essential n-3 fatty acid α-linolenic acid (ALA can be converted into eicosapentaenoic acid (EPA, docosapentaenoic acid (DPA and docosahexaenoic acid (DHA under the action of desaturase and elongase enzymes. Human studies have demonstrated that females convert a higher proportion of ALA into EPA and DHA than males. We have demonstrated that when fed upon an ALA rich diet, female rats have a significantly higher EPA content of plasma and liver lipids than males. When fetal tissues were collected, it was observed that pups from dams fed the ALA rich diet had a comparable brain DHA status to those from dams fed on a salmon-oil based diet, indicating that conversion of ALA to DHA during pregnancy was efficient, and that DHA accumulated in a tissue-specific manner. Similar efficacy of dietary ALA in women during pregnancy would mean that plant n-3 fatty acids would be useful alternatives to preformed EPA and DHA.

  16. EPA and DHA in blood cell membranes from acute coronary syndrome patients and controls.

    Science.gov (United States)

    Block, Robert C; Harris, William S; Reid, Kimberly J; Sands, Scott A; Spertus, John A

    2008-04-01

    Increased blood levels of the omega-3 fatty acids (FA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been inversely associated with risk for sudden cardiac death, but their relationship with acute coronary syndromes (ACS) is unclear. We hypothesized that the EPA+DHA content of blood cell membranes, as a percent of total FAs, is reduced in ACS patients relative to matched controls. We measured the content of EPA+DHA in 768 ACS patients and 768 age-, sex- and race-matched controls. The association with ACS case status of blood cell EPA+DHA [both by a 1 unit change and by category (low, or =8%)] was assessed using multivariate conditional logistic regression models adjusting for matching variables and smoking status, alcohol use, diabetes, body mass index, serum lipids, education, family history of coronary artery disease, personal histories of myocardial infarction and hypertension, and statin, aspirin, and other antiplatelet drug use. The combined groups had a mean age of 61+/-12 years, 66% were male, and 92% were Caucasian. The EPA+DHA content was 20% lower in cases than controls (3.4+/-1.6 vs. 4.25+/-2.0%, pACS event was 0.58 (95% CI 0.42-0.80), in the intermediate EPA+DHA group and was 0.31 (95% CI 0.14-0.67; p for trend ACS case status increased incrementally as the EPA+DHA content decreased suggesting that low EPA+DHA may be associated with increased risk for ACS.

  17. Enhancement of Schizochytrium DHA synthesis by plasma mutagenesis aided with malonic acid and zeocin screening.

    Science.gov (United States)

    Zhao, Ben; Li, Yafei; Li, Changling; Yang, Hailin; Wang, Wu

    2018-03-01

    Schizochytrium sp. accumulates valuable polyunsaturated fatty acid (PUFA), such as docosahexaenoic acid (DHA). In order to increase DHA synthesis in this microorganism, physical or chemical mutagenesis aided with powerful screening methods are still preferable, as its DHA synthetic pathway has not yet been clearly defined for gene manipulation. To breed this agglomerate microorganism of thick cell wall and rather large genome for increasing lipid content and DHA percentage, a novel strategy of atmospheric and room temperature plasma (ARTP) mutagenesis coupled with stepped malonic acid (MA) and zeocin resistance screening was developed. The final resulted mutant strain mz-17 was selected with 1.8-fold increased DHA production. Accompanied with supplementation of Fe 2+ in shake flask cultivation, DHA production of 14.0 g/L on average was achieved. This work suggests that ARTP mutation combined with stepped MA and zeocin resistance screening is an efficient method of breeding Schizochytrium sp. of high DHA production, and might be applied on other microorganisms for obtaining higher desired PUFA products.

  18. Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: New dietary sources.

    Science.gov (United States)

    Echeverría, Francisca; Valenzuela, Rodrigo; Catalina Hernandez-Rodas, María; Valenzuela, Alfonso

    2017-09-01

    Docosahexaenoic acid (C22: 6n-3, DHA) is a long-chain polyunsaturated fatty acid of marine origin fundamental for the formation and function of the nervous system, particularly the brain and the retina of humans. It has been proposed a remarkable role of DHA during human evolution, mainly on the growth and development of the brain. Currently, DHA is considered a critical nutrient during pregnancy and breastfeeding due their active participation in the development of the nervous system in early life. DHA and specifically one of its derivatives known as neuroprotectin D-1 (NPD-1), has neuroprotective properties against brain aging, neurodegenerative diseases and injury caused after brain ischemia-reperfusion episodes. This paper discusses the importance of DHA in the human brain given its relevance in the development of the tissue and as neuroprotective agent. It is also included a critical view about the ways to supply this noble fatty acid to the population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. DHA suppresses Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages.

    Science.gov (United States)

    Choi, Eun-Young; Jin, Ji-Young; Choi, Jeom-Il; Choi, In Soon; Kim, Sung-Jo

    2014-04-14

    Several reports have indicated that dietary intake of DHA is associated with lower prevalence of periodontitis. In the present study, we investigated the effect of DHA on the production of proinflammatory mediators in murine macrophage-like RAW264.7 cells stimulated with lipopolysaccharide (LPS) isolated from Prevotella intermedia, a pathogen implicated in inflammatory periodontal disease, and its mechanisms of action. LPS was isolated from lyophilised P. intermedia ATCC 25,611 cells using the standard hot-phenol-water protocol. Culture supernatants were collected and assayed for NO, IL-1β and IL-6. Real-time PCR analysis was carried out to detect the expression of inducible NO synthase (iNOS), IL-1β, IL-6 and haeme oxygenase-1 (HO-1) mRNA. Immunoblot analysis was carried out to quantify the expression of iNOS and HO-1 protein and concentrations of signalling proteins. DNA-binding activities of NF-κB subunits were determined using an ELISA-based assay kit. DHA significantly attenuated the production of NO, IL-1β and IL-6 at both gene transcription and translation levels in P. intermedia LPS-activated RAW264.7 cells. DHA induced the expression of HO-1 in cells treated with P. intermedia LPS. Selective inhibition of HO-1 activity by tin protoporphyrin IX significantly mitigated the inhibitory effects of DHA on LPS-induced NO production. DHA significantly attenuated the phosphorylation of c-Jun N-terminal kinase induced by LPS. In addition, DHA suppressed the transcriptional activity of NF-κB by regulating the nuclear translocation and DNA-binding activity of NF-κB p50 subunit and inhibited the phosphorylation of signal transducer and activator of transcription 1. Further in vivo studies are needed to better evaluate the potential of DHA in humans as a therapeutic agent to treat periodontal disease.

  20. Evidence of a DHA Signature in the Lipidome and Metabolome of Human Hepatocytes

    Directory of Open Access Journals (Sweden)

    Veronica Ghini

    2017-02-01

    Full Text Available Cell supplementation with bioactive molecules often causes a perturbation in the whole intracellular environment. Omics techniques can be applied for the assessment of this perturbation. In this study, the overall effect of docosahexaenoic acid (DHA supplementation on cultured human hepatocyte lipidome and metabolome has been investigated using nuclear magnetic resonance (NMR in combination with traditional techniques. The effect of two additional bioactives sharing with DHA the lipid-lowering effect—propionic acid (PRO and protocatechuic acid (PCA—has also been evaluated in the context of possible synergism. NMR analysis of the cell lipid extracts showed that DHA supplementation, alone or in combination with PCA or PRO, strongly altered the cell lipid profile. The perfect discrimination between cells receiving DHA (alone or in combination and the other cells reinforced the idea of a global rearrangement of the lipid environment induced by DHA. Notably, gas chromatography and fluorimetric analyses confirmed the strong discrimination obtained by NMR. The DHA signature was evidenced not only in the cell lipidome, but also in the metabolome. Results reported herein indicate that NMR, combined with other techniques, represents a fundamental approach to studying the effect of bioactive supplementation, particularly in the case of molecules with a broad spectrum of mechanisms of action.

  1. Effect of albumin-bound DHA on phosphoinositide phosphorylation in collagen stimulated human platelets

    International Nuclear Information System (INIS)

    Gaudette, D.C.; Holub, B.J.

    1990-01-01

    The effect of exogenous albumin-bound docosahexaenoic acid (22:6n-3) (DHA), arachidonic acid (20:4n-6) (AA), and eicosapendaenoic acid (20:5n-3) (EPA) on phosphoinositide metabolism following collagen stimulation was studied using [3H]inositol prelabelled platelets. Collagen stimulation (3 min, 1.8 micrograms/ml) increased the labelling of both phosphatidylinositol 4-monophosphate (PIP), and phosphatidylinositol 4,5-biphosphate (PIP2). Of the fatty acids tested, only pre-incubation (2 min) with DHA (20 microM) significantly attenuated the collagen-induced increased PIP and PIP2 labelling; EPA was without effect, while AA enhanced PIP labelling. Forty microM DHA was less effective at attenuating the increased PIP and PIP2 labelling even though this concentration of DHA resulted in greater inhibition of platelet aggregation. Neither concentration of DHA attenuated the increased polyphosphoinositide labelling resulting from stimulation by the endoperoxide analogue U46619, or the phorbol ester, PMA. These data suggest that the effect of DHA on attenuating the increased PIP and PIP2 labelling following collagen stimulation likely occurs before thromboxane receptor occupancy, may not occur at the level of protein kinase C activation, and could be mediated in part via a lessened synthesis of thromboxane A2

  2. Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome.

    Science.gov (United States)

    Sidhu, Vishaldeep K; Huang, Bill X; Desai, Abhishek; Kevala, Karl; Kim, Hee-Yong

    2016-05-01

    Aging has been related to diminished cognitive function, which could be a result of ineffective synaptic function. We have previously shown that synaptic plasma membrane proteins supporting synaptic integrity and neurotransmission were downregulated in docosahexaenoic acid (DHA)-deprived brains, suggesting an important role of DHA in synaptic function. In this study, we demonstrate aging-induced synaptic proteome changes and DHA-dependent mitigation of such changes using mass spectrometry-based protein quantitation combined with western blot or messenger RNA analysis. We found significant reduction of 15 synaptic plasma membrane proteins in aging brains including fodrin-α, synaptopodin, postsynaptic density protein 95, synaptic vesicle glycoprotein 2B, synaptosomal-associated protein 25, synaptosomal-associated protein-α, N-methyl-D-aspartate receptor subunit epsilon-2 precursor, AMPA2, AP2, VGluT1, munc18-1, dynamin-1, vesicle-associated membrane protein 2, rab3A, and EAAT1, most of which are involved in synaptic transmission. Notably, the first 9 proteins were further reduced when brain DHA was depleted by diet, indicating that DHA plays an important role in sustaining these synaptic proteins downregulated during aging. Reduction of 2 of these proteins was reversed by raising the brain DHA level by supplementing aged animals with an omega-3 fatty acid sufficient diet for 2 months. The recognition memory compromised in DHA-depleted animals was also improved. Our results suggest a potential role of DHA in alleviating aging-associated cognitive decline by offsetting the loss of neurotransmission-regulating synaptic proteins involved in synaptic function. Published by Elsevier Inc.

  3. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids.

    Science.gov (United States)

    Aasen, Inga Marie; Ertesvåg, Helga; Heggeset, Tonje Marita Bjerkan; Liu, Bin; Brautaset, Trygve; Vadstein, Olav; Ellingsen, Trond E

    2016-05-01

    Thraustochytrids have been applied for industrial production of the omega-3 fatty acid docosahexaenoic (DHA) since the 1990s. During more than 20 years of research on this group of marine, heterotrophic microorganisms, considerable increases in DHA productivities have been obtained by process and medium optimization. Strains of thraustochytrids also produce high levels of squalene and carotenoids, two other commercially interesting compounds with a rapidly growing market potential, but where yet few studies on process optimization have been reported. Thraustochytrids use two pathways for fatty acid synthesis. The saturated fatty acids are produced by the standard fatty acid synthesis, while DHA is synthesized by a polyketide synthase. However, fundamental knowledge about the relationship between the two pathways is still lacking. In the present review, we extract main findings from the high number of reports on process optimization for DHA production and interpret these in the light of the current knowledge of DHA synthesis in thraustochytrids and lipid accumulation in oleaginous microorganisms in general. We also summarize published reports on squalene and carotenoid production and review the current status on strain improvement, which has been hampered by the yet very few published genome sequences and the lack of tools for gene transfer to the organisms. As more sequences now are becoming available, targets for strain improvement can be identified and open for a system-level metabolic engineering for improved productivities.

  4. Crystals of DhaA mutants from Rhodococcus rhodochrous NCIMB 13064 diffracted to ultrahigh resolution: crystallization and preliminary diffraction analysis

    International Nuclear Information System (INIS)

    Stsiapanava, Alena; Koudelakova, Tana; Lapkouski, Mikalai; Pavlova, Martina; Damborsky, Jiri; Kuta Smatanova, Ivana

    2008-01-01

    Three mutants of the haloalkane dehalogenase DhaA derived from R. rhodochrous NCIMB 13064 were crystallized and diffracted to ultrahigh resolution. The enzyme DhaA from Rhodococcus rhodochrous NCIMB 13064 belongs to the haloalkane dehalogenases, which catalyze the hydrolysis of haloalkanes to the corresponding alcohols. The haloalkane dehalogenase DhaA and its variants can be used to detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Three mutants named DhaA04, DhaA14 and DhaA15 were constructed in order to study the importance of tunnels connecting the buried active site with the surrounding solvent to the enzymatic activity. All protein mutants were crystallized using the sitting-drop vapour-diffusion method. The crystals of DhaA04 belonged to the orthorhombic space group P2 1 2 1 2 1 , while the crystals of the other two mutants DhaA14 and DhaA15 belonged to the triclinic space group P1. Native data sets were collected for the DhaA04, DhaA14 and DhaA15 mutants at beamline X11 of EMBL, DESY, Hamburg to the high resolutions of 1.30, 0.95 and 1.15 Å, respectively

  5. DHA supplementation during pregnancy does not reduce BMI or body fat mass in children: follow-up of the DHA to Optimize Mother Infant Outcome randomized controlled trial.

    Science.gov (United States)

    Muhlhausler, Beverly S; Yelland, Lisa N; McDermott, Robyn; Tapsell, Linda; McPhee, Andrew; Gibson, Robert A; Makrides, Maria

    2016-06-01

    The omega-3 (n-3) long-chain polyunsaturated fatty acid (LCPUFA) docosahexaenoic acid (DHA) has proven effective at reducing fat storage in animal studies. However, a systematic review of human trials showed a lack of quality data to support or refute this hypothesis. We sought to determine whether maternal DHA supplementation during the second half of pregnancy results in a lower body mass index (BMI) and percentage of body fat in children. We conducted a follow-up at 3 and 5 y of age of children who were born to mothers enrolled in the DOMInO (DHA to Optimize Mother Infant Outcome) double-blind, randomized controlled trial, in which women with a singleton pregnancy were provided with DHA-rich fish-oil capsules (800 mg DHA/d) or vegetable-oil capsules (control group) in the second half of pregnancy. Primary outcomes were the BMI z score and percentage of body fat at 3 and 5 y of age. Potential interactions between prenatal DHA and the peroxisome proliferator-activated receptor-γ (PPARγ) genotype as a measure of the genetic predisposition to obesity were investigated. A total of 1614 children were eligible for the follow-up. Parent or caregiver consent was obtained for 1531 children (95%), and these children were included in the analysis. BMI z scores and percentages of body fat of children in the DHA group did not differ from those of children in the control group at either 3 y of age [BMI z score adjusted mean difference: 0.03 (95% CI: -0.07, 0.13; P = 0.61); percentage of body fat adjusted mean difference: -0.26 (95% CI: -0.99, 0.46; P = 0.47)] or 5 y of age [BMI z score adjusted mean difference: 0.02 (95% CI: -0.08, 0.12; P = 0.66); percentage of body fat adjusted mean difference: 0.11 (95% CI: -0.60, 0.82; P = 0.75)]. No treatment effects were modified by the PPARγ genotype of the child. Independent of a genetic predisposition to obesity, maternal intake of DHA-rich fish oil during the second half of pregnancy does not affect the growth or body composition

  6. Engineering of EPA/DHA omega-3 fatty acid production by Lactococcus lactis subsp. cremoris MG1363.

    Science.gov (United States)

    Amiri-Jami, Mitra; Lapointe, Gisele; Griffiths, Mansel W

    2014-04-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to be of major importance in human health. Therefore, these essential polyunsaturated fatty acids have received considerable attention in both human and farm animal nutrition. Currently, fish and fish oils are the main dietary sources of EPA/DHA. To generate sustainable novel sources for EPA and DHA, the 35-kb EPA/DHA synthesis gene cluster was isolated from a marine bacterium, Shewanella baltica MAC1. To streamline the introduction of the genes into food-grade microorganisms such as lactic acid bacteria, unnecessary genes located upstream and downstream of the EPA/DHA gene cluster were deleted. Recombinant Escherichia coli harboring the 20-kb gene cluster produced 3.5- to 6.1-fold more EPA than those carrying the 35-kb DNA fragment coding for EPA/DHA synthesis. The 20-kb EPA/DHA gene cluster was cloned into a modified broad-host-range low copy number vector, pIL252m (4.7 kb, Ery) and expressed in Lactococcus lactis subsp. cremoris MG1363. Recombinant L. lactis produced DHA (1.35 ± 0.5 mg g(-1) cell dry weight) and EPA (0.12 ± 0.04 mg g(-1) cell dry weight). This is believed to be the first successful cloning and expression of EPA/DHA synthesis gene cluster in lactic acid bacteria. Our findings advance the future use of EPA/DHA-producing lactic acid bacteria in such applications as dairy starters, silage adjuncts, and animal feed supplements.

  7. Crystals of DhaA mutants from Rhodococcus rhodochrous NCIMB 13064 diffracted to ultrahigh resolution: crystallization and preliminary diffraction analysis.

    Science.gov (United States)

    Stsiapanava, Alena; Koudelakova, Tana; Lapkouski, Mikalai; Pavlova, Martina; Damborsky, Jiri; Smatanova, Ivana Kuta

    2008-02-01

    The enzyme DhaA from Rhodococcus rhodochrous NCIMB 13064 belongs to the haloalkane dehalogenases, which catalyze the hydrolysis of haloalkanes to the corresponding alcohols. The haloalkane dehalogenase DhaA and its variants can be used to detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Three mutants named DhaA04, DhaA14 and DhaA15 were constructed in order to study the importance of tunnels connecting the buried active site with the surrounding solvent to the enzymatic activity. All protein mutants were crystallized using the sitting-drop vapour-diffusion method. The crystals of DhaA04 belonged to the orthorhombic space group P2(1)2(1)2(1), while the crystals of the other two mutants DhaA14 and DhaA15 belonged to the triclinic space group P1. Native data sets were collected for the DhaA04, DhaA14 and DhaA15 mutants at beamline X11 of EMBL, DESY, Hamburg to the high resolutions of 1.30, 0.95 and 1.15 A, respectively.

  8. Mechanism by which DHA inhibits the aggregation of KLVFFA peptides: A molecular dynamics study

    Science.gov (United States)

    Zhou, Hong; Liu, Shengtang; Shao, Qiwen; Ma, Dongfang; Yang, Zaixing; Zhou, Ruhong

    2018-03-01

    Docosahexaenoic acid (DHA) is one of the omega-3 polyunsaturated fatty acids, which has shown promising applications in lowering Aβ peptide neurotoxicity in vitro by preventing aggregation of Aβ peptides and relieving accumulation of Aβ fibrils. Unfortunately, the underlying molecular mechanisms of how DHA interferes with the aggregation of Aβ peptides remain largely enigmatic. Herein, aggregation behaviors of amyloid-β(Aβ)16-21 peptides (KLVFFA) with or without the presence of a DHA molecule were comparatively studied using extensive all-atom molecular dynamics simulations. We found that DHA could effectively suppress the aggregation of KLVFFA peptides by redirecting peptides to unstructured oligomers. The highly hydrophobic and flexible nature of DHA made it randomly but tightly entangled with Leu-17, Phe-19, and Phe-20 residues to form unstructured but stable complexes. These lower-ordered unstructured oligomers could eventually pass through energy barriers to form ordered β-sheet structures through large conformational fluctuations. This study depicts a microscopic picture for understanding the role and mechanism of DHA in inhibition of aggregation of Aβ peptides, which is generally believed as one of the important pathogenic mechanisms of Alzheimer's disease.

  9. Regulation of the Docosapentaenoic Acid/Docosahexaenoic Acid Ratio (DPA/DHA Ratio) in Schizochytrium limacinum B4D1.

    Science.gov (United States)

    Zhang, Ke; Li, Huidong; Chen, Wuxi; Zhao, Minli; Cui, Haiyang; Min, Qingsong; Wang, Haijun; Chen, Shulin; Li, Demao

    2017-05-01

    Docosapentaenoic acid/docosahexaenoic acid ratio (DPA/DHA ratio) in Schizochytrium was relatively stable. But ideally the ratio of DPA/DHA will vary according to the desired end use. This study reports several ways of modulating the DPA/DHA ratio. Incubation times changed the DPA/DHA ratio, and changes in this ratio were associated with the variations in the saturated fatty acid (SFAs) content. Propionic acid sharply increased the SFAs content in lipids, dramatically decreased the even-chain SFAs content, and reduced the DPA/DHA ratio. Pentanoic acid (C5:0) and heptanoic acid (C7:0) had similar effects as propionic acid, whereas butyric acid (C4:0), hexanoic acid (C6:0), and octanoic acid (C8:0) did not change the fatty acid profile and the DPA/DHA ratio. Transcription analyses show that β-oxidation might be responsible for this phenomenon. Iodoacetamide upregulated polyunsaturated fatty acid (PUFA) synthase genes, reduced the DHA content, and improved the DPA content, causing the DPA/DHA ratio to increase. These results present new insights into the regulation of the DPA/DHA ratio.

  10. Antibacterial and antibiofilm activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against periodontopathic bacteria.

    Science.gov (United States)

    Sun, Mengjun; Zhou, Zichao; Dong, Jiachen; Zhang, Jichun; Xia, Yiru; Shu, Rong

    2016-10-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two major omega-3 polyunsaturated fatty acids (n-3 PUFAs) with antimicrobial properties. In this study, we evaluated the potential antibacterial and antibiofilm activities of DHA and EPA against two periodontal pathogens, Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum). MTT assay showed that DHA and EPA still exhibited no cytotoxicity to human oral tissue cells when the concentration came to 100 μM and 200 μM, respectively. Against P. gingivalis, DHA and EPA showed the same minimum inhibitory concentration (MIC) of 12.5 μM, and a respective minimum bactericidal concentration (MBC) of 12.5 μM and 25 μM. However, the MIC and MBC values of DHA or EPA against F. nucleatum were both greater than 100 μM. For early-stage bacteria, DHA or EPA displayed complete inhibition on the planktonic growth and biofilm formation of P. gingivalis from the lowest concentration of 12.5 μM. And the planktonic growth of F. nucleatum was slightly but not completely inhibited by DHA or EPA even at the concentration of 100 μM, however, the biofilm formation of F. nucleatum at 24 h was significantly restrained by 100 μM EPA. For exponential-phase bacteria, 100 μM DHA or EPA completely killed P. gingivalis and significantly decreased the viable counts of F. nucleatum. Meanwhile, the morphology of P. gingivalis was apparently damaged, and the virulence factor gene expression of P. gingivalis and F. nucleatum was strongly downregulated. Besides, the viability and the thickness of mature P. gingivalis biofilm, together with the viability of mature F. nucleatum biofilm were both significantly decreased in the presence of 100 μM DHA or EPA. In conclusion, DHA and EPA possessed antibacterial activities against planktonic and biofilm forms of periodontal pathogens, which suggested that DHA and EPA might be potentially supplementary therapeutic agents for prevention

  11. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation.

    Science.gov (United States)

    Martínez-Soto, Juan Carlos; Domingo, Joan Carles; Cordobilla, Begoña; Nicolás, María; Fernández, Laura; Albero, Pilar; Gadea, Joaquín; Landeras, José

    2016-12-01

    The purpose of this study was to evaluate the effect of docosahexaenoic acid (DHA) dietary supplementation on semen quality, fatty acid composition, antioxidant capacity, and DNA fragmentation. In this randomized, double blind, placebo-controlled, parallel-group study, 74 subjects were recruited and randomly assigned to either the placebo group (n=32) or to the DHA group (n=42) to consume three 500-mg capsules of oil per day over 10 weeks. The placebo group received 1,500 mg/day of sunflower oil and the DHA group 1,500 mg/day of DHA-enriched oil. Seminal parameters (semen volume, sperm concentration, motility, morphology, and vitality), total antioxidant capacity, deoxyribonucleic acid fragmentation, and lipid composition were evaluated prior to the treatment and after 10 weeks. Finally, 57 subjects were included in the study with 25 in the placebo group and 32 in the DHA group. No differences were found in traditional sperm parameters or lipid composition of the sperm membrane after treatment. However, an increase in DHA and Omega-3 fatty acid content in seminal plasma, an improvement in antioxidant status, and a reduction in the percentage of spermatozoa with deoxyribonucleic acid damage were observed in the DHA group after 10 weeks of treatment.

  12. DHA Mitigates Autistic Behaviors Accompanied by Dopaminergic Change in a Gene/Prenatal Stress Mouse Model.

    Science.gov (United States)

    Matsui, Fumihiro; Hecht, Patrick; Yoshimoto, Kanji; Watanabe, Yoshihisa; Morimoto, Masafumi; Fritsche, Kevin; Will, Matthew; Beversdorf, David

    2018-02-10

    Autism Spectrum Disorder (ASD) is characterized by impairments in social interaction, social communication, and repetitive and stereotyped behaviors. Recent work has begun to explore gene × environmental interactions in the etiology of ASD. We previously reported that prenatal stress exposure in stress-susceptible heterozygous serotonin transporter (SERT) KO pregnant dams in a mouse model resulted in autism-like behavior in the offspring (SERT/S mice). The association between prenatal stress and ASD appears to be affected by maternal SERT genotype in clinical populations as well. Using the mouse model, we examined autistic-like behaviors in greater detail, and additionally explored whether diet supplementation with docosahexaenoic acid (DHA) may mitigate the behavioral changes. Only male SERT/S mice showed social impairment and stereotyped behavior, and DHA supplementation ameliorated some of these behaviors. We also measured monoamine levels in the SERT/S mice after three treatment paradigms: DHA-rich diet continuously from breeding (DHA diet), DHA-rich diet only after weaning (CTL/DHA diet) and control diet only (CTL diet). The dopamine (DA) content in the striatum was significantly increased in the SERT/S mice compared with wild-type (WT) mice, whereas no difference was observed with noradrenaline and serotonin content. Moreover, DA content in the striatum was significantly reduced in the SERT/S mice with the DHA-rich diet provided continuously from breeding. The results indicate that autism-associated behaviors and changes in the dopaminergic system in this setting can be mitigated with DHA supplementation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Intraperitoneal administration of docosahexaenoic acid for 14days increases serum unesterified DHA and seizure latency in the maximal pentylenetetrazol model.

    Science.gov (United States)

    Trépanier, Marc-Olivier; Lim, Joonbum; Lai, Terence K Y; Cho, Hye Jin; Domenichiello, Anthony F; Chen, Chuck T; Taha, Ameer Y; Bazinet, Richard P; Burnham, W M

    2014-04-01

    Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (n-3 PUFA) which has been shown to raise seizure thresholds following acute administration in rats. The aims of the present experiment were the following: 1) to test whether subchronic DHA administration raises seizure threshold in the maximal pentylenetetrazol (PTZ) model 24h following the last injection and 2) to determine whether the increase in seizure threshold is correlated with an increase in serum and/or brain DHA. Animals received daily intraperitoneal (i.p.) injections of 50mg/kg of DHA, DHA ethyl ester (DHA EE), or volume-matched vehicle (albumin/saline) for 14days. On day 15, one subset of animals was seizure tested in the maximal PTZ model (Experiment 1). In a separate (non-seizure tested) subset of animals, blood was collected, and brains were excised following high-energy, head-focused microwave fixation. Lipid analysis was performed on serum and brain (Experiment 2). For data analysis, the DHA and DHA EE groups were combined since they did not differ significantly from each other. In the maximal PTZ model, DHA significantly increased seizure latency by approximately 3-fold as compared to vehicle-injected animals. This increase in seizure latency was associated with an increase in serum unesterified DHA. Total brain DHA and brain unesterified DHA concentrations, however, did not differ significantly in the treatment and control groups. An increase in serum unesterified DHA concentration reflecting increased flux of DHA to the brain appears to explain changes in seizure threshold, independent of changes in brain DHA concentrations. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Crystallographic analysis of 1,2,3-trichloropropane biodegradation by the haloalkane dehalogenase DhaA31.

    Science.gov (United States)

    Lahoda, Maryna; Mesters, Jeroen R; Stsiapanava, Alena; Chaloupkova, Radka; Kuty, Michal; Damborsky, Jiri; Kuta Smatanova, Ivana

    2014-02-01

    Haloalkane dehalogenases catalyze the hydrolytic cleavage of carbon-halogen bonds, which is a key step in the aerobic mineralization of many environmental pollutants. One important pollutant is the toxic and anthropogenic compound 1,2,3-trichloropropane (TCP). Rational design was combined with saturation mutagenesis to obtain the haloalkane dehalogenase variant DhaA31, which displays an increased catalytic activity towards TCP. Here, the 1.31 Å resolution crystal structure of substrate-free DhaA31, the 1.26 Å resolution structure of DhaA31 in complex with TCP and the 1.95 Å resolution structure of wild-type DhaA are reported. Crystals of the enzyme-substrate complex were successfully obtained by adding volatile TCP to the reservoir after crystallization at pH 6.5 and room temperature. Comparison of the substrate-free structure with that of the DhaA31 enzyme-substrate complex reveals that the nucleophilic Asp106 changes its conformation from an inactive to an active state during the catalytic cycle. The positions of three chloride ions found inside the active site of the enzyme indicate a possible pathway for halide release from the active site through the main tunnel. Comparison of the DhaA31 variant with wild-type DhaA revealed that the introduced substitutions reduce the volume and the solvent-accessibility of the active-site pocket.

  15. N-3 polyunsaturated fatty acid DHA during IVM affected oocyte developmental competence in cattle.

    Science.gov (United States)

    Oseikria, Mouhamad; Elis, Sébastien; Maillard, Virginie; Corbin, Emilie; Uzbekova, Svetlana

    2016-06-01

    The positive effect of n-3 polyunsaturated fatty acids (FAs) on fertility in ruminants seems to be partly mediated through direct effects on the oocyte developmental potential. We aimed to investigate whether supplementation with physiological levels of docosahexaenoic acid (DHA, C22:6 n-3 polyunsaturated fatty acids) during IVM has an effect on oocyte maturation and in vitro embryo development in cattle. We reported that DHA (0, 1, 10, or 100 μM) had no effect on oocyte viability or maturation rate after 22-hour IVM. Incubation of oocyte-cumulus complexes with 1-μM DHA during IVM significantly increased (P DHA during IVM also induced a significant increase in the blastocyst rate at Day 7 after IVF as compared with control (30.6% vs. 17.6%, respectively) and tended to increase the number of cells in the blastocysts (97.1 ± 4.9 vs. 81.2 ± 5.3, respectively; P = 0.08). On the contrary, 10-μM DHA had no effects, whereas 100-μM DHA significantly decreased the cleavage rate compared with control (69.5% vs.78.8%, respectively) and the greater than 4-cell embryo rate at Day 2 after parthenogenetic activation (19.5% vs. 29.7%). As was shown by real-time polymerase chain reaction, negative effects of 100-μM DHA were associated with significant increase of progesterone synthesis by oocyte-cumulus complexes, a three-fold increase in expression level of FA transporter CD36 and a two-fold decrease of FA synthase FASN genes in cumulus cells (CCs) of corresponding oocytes. Docosahexaenoic acid at 1 and 10 μM had no effect on expression of those and other key lipid metabolism-related genes in CC. In conclusion, administration of a low physiological dose of DHA (1 μM) during IVM may have beneficial effects on oocyte developmental competence in vitro without affecting lipid metabolism gene expression in surrounding CCs, contrarily to 100 μM DHA which diminished oocyte quality associated with perturbation of lipid and steroid metabolism in CC. Copyright © 2016

  16. Two-Stage Enzymatic Preparation of Eicosapentaenoic Acid (EPA) And Docosahexaenoic Acid (DHA) Enriched Fish Oil Triacylglycerols.

    Science.gov (United States)

    Zhang, Zhen; Liu, Fang; Ma, Xiang; Huang, Huihua; Wang, Yong

    2018-01-10

    Fish oil products in the form of triacylglycerols generally have relatively low contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and so it is of potential research and industrial interest to enrich the related contents in commercial products. Thereby an economical and efficient two-stage preparation of EPA and DHA enriched fish oil triacylglycerols is proposed in this study. The first stage was the partial hydrolysis of fish oil by only 0.2 wt.‰ AY "Amano" 400SD which led to increases of EPA and DHA contents in acylglycerols from 19.30 and 13.09 wt % to 25.95 and 22.06 wt %, respectively. Subsequently, products of the first stage were subjected to transesterification with EPA and DHA enriched fatty acid ethyl esters (EDEE) as the second stage to afford EPA and DHA enriched fish oil triacylglycerols by using as low as 2 wt % Novozyme 435. EDEEs prepared from fish oil ethyl ester, and recycled DHA and EPA, respectively, were applied in this stage. Final products prepared with two different sources of EDEEs were composed of 97.62 and 95.92 wt % of triacylglycerols, respectively, with EPA and DHA contents of 28.20 and 21.41 wt % for the former and 25.61 and 17.40 wt % for the latter. Results not only demonstrate this two-stage process's capability and industrial value for enriching EPA and DHA in fish oil products, but also offer new opportunities for the development of fortified fish oil products.

  17. Changes in Bioavailability of Omega-3 (DHA through Alpha-Tocopheryl Phosphate Mixture (TPM after Oral Administration in Rats

    Directory of Open Access Journals (Sweden)

    Roksan Libinaki

    2017-09-01

    Full Text Available Benefits of Omega-3 Docosahexaenoic acid (DHA supplements are hindered by their poor solubility and bioavailability. This study investigated the bioavailability of various formulations of Omega-3 and tocopheryl phosphate mixture (TPM, following oral administration in rats, and assessed whether TPM could improve the oral absorption of DHA. The rats were administered with a high (265.7 mg/kg or low dose (88.6 mg/kg of DHA. TPM was examined at 1:0.1 w/w (low TPM dose and 1:0.5 w/w (high TPM dose. Over 24 h, the DHA plasma concentration followed a TPM dose-dependent relationship, reflected in the higher mean Cmax values (78.39 and 91.95 μg/mL and AUC values (1396.60 and 1560.60 for the low and high TPM, respectively. The biggest difference between the low dose DHA control (LDCont and TPM formulations was at 4 h after supplementation, where the low and high TPM showed a mean 20% (ns and 50% (p < 0.05 increase in DHA plasma concentrations versus the control formulation. After correcting for baseline endogenous DHA, the mean plasma DHA at 4 h produced by the LD-HTPM was nearly double (90% the LDC control (p = 0.057. This study demonstrated that co-administering omega-3 with TPM significantly increases the bioavailability of DHA in the plasma, suggesting potential use for commercially available TPM + DHA fortified products.

  18. HUBUNGAN KECUKUPAN ASAM EIKOSAPENTANOAT (EPA, ASAM DOKOSAHEKSANOAT (DHA IKAN DAN STATUS GIZI DENGAN PRESTASI BELAJAR SISWA

    Directory of Open Access Journals (Sweden)

    Siti Zulaihah

    2012-04-01

    Full Text Available ABSTRACT   Background: Fish contain of high protein, EPA, DHA needed for the formation of brain cell and improving intelligence. Consuming fish and other sea food make healthy and improve the brain ability to reach optimum study achievement. In 2003, fish consumption in Indonesia is still low 24,67kg/capita/year. Based on BPS 2002, fish consumption in Semarang is 5,38%. The fish consumption has a big influence on nutrition sufficiency especially EPA and DHA, nutrition status and attaining healthy and smart Indonesian human resources. Goal: To analyze the relationship between fish meal frequency, fish EPA and DHA recommended and nutrition status with student's study achievement. Method: The research used survey method, analytical research, and cross -sectional time approach. This research was conducted on September-October 2004. Sample was 100 subject of SD Taqwiyatui Wathon (grade IV are 54 person, grade V are 46 person by using Stratified Random Sampling method. The data preparation used NUTRISOFT. Result: Fish frequently consumed by responden was bandeng (Chanos chanos 5%, tongkol (Euthynnus allitteratus rafmescue 4%, kembung (Scomber kanoguria russei 1% and mujair (Tilapia mossambica 1 %. EPA, DHA % RDA defisit 62%, normal nutritional status 93% and average category of study achievement 55%. There was relation between fish meal frequency and fish EPA, DHA % RDA (ρ=0,000, there was no relation between fish meal frequency and nutritional status (ρ=0,213, there was relation between fish meal frequency and study achievement (ρ=0,000, there was relation between fish EPA, DHA recommendation and study achievement (ρ=0,000, and there was no relation between nutrition status and study achievement (ρ=0.378. Based on Pearson correlation test, there was no relation between fish EPA, DHA recommendation and nutritional status (ρ=0,000. Conclution: Students with frequent fish consumption and high RDA of EPA, DHA % RDA showed better study achievement

  19. Effects of a 12-week high-α-linolenic acid intervention on EPA and DHA concentrations in red blood cells and plasma oxylipin pattern in subjects with a low EPA and DHA status.

    Science.gov (United States)

    Greupner, Theresa; Kutzner, Laura; Nolte, Fabian; Strangmann, Alena; Kohrs, Heike; Hahn, Andreas; Schebb, Nils Helge; Schuchardt, Jan Philipp

    2018-03-01

    The essential omega-3 fatty acid alpha-linolenic acid (ALA, 18:3n3) can be converted into EPA and DHA. The aim of the present study was to determine the effect of a high-ALA diet on EPA and DHA levels in red blood cells (RBCs) and their oxylipins in the plasma of subjects with a low EPA and DHA status. Fatty acid concentrations [μg mL -1 ] and relative amounts [% of total fatty acids] in the RBCs of 19 healthy men (mean age 26.4 ± 4.6 years) were analyzed by means of GC-FID. Free plasma oxylipin concentrations were determined by LC-MS based targeted metabolomics. Samples were collected and analyzed at baseline (week 0) and after 1 (week 1), 3 (week 3), 6 (week 6), and 12 (week 12) weeks of high dietary ALA intake (14.0 ± 0.45 g day -1 ). ALA concentrations significantly (p DHA concentrations unexpectedly decreased from 41.0 ± 1.93 (week 0) to 37.0 ± 1.32 (week 1), 36.1 ± 1.37 (week 3), 35.1 ± 1.06 (p = 0.010, week 6), and 30.4 ± 1.09 (p DHA amounts were unchanged during the intervention (week 0: 4.63 ± 0.19, week 1: 4.67 ± 0.16, week 3: 4.61 ± 0.13, week 6: 4.73 ± 0.15, week 12: 4.52 ± 0.11). ALA- and EPA-derived hydroxy- and dihydroxy-PUFA increased similarly to their PUFA precursors, although in the case of ALA-derived oxylipins, the concentrations increased less rapidly and to a lesser extent compared to the concentrations of their precursor FA. LA-derived oxylipins remained unchanged and arachidonic acid and DHA oxylipin concentrations were not significantly changed. Our results confirm that the intake of ALA is not a sufficient source for the increase of EPA + DHA in subjects on a Western diet. Specifically, a high-ALA diet results in increased EPA and declined DHA concentrations. However, the changes effectively balance each other out so that ΣEPA + DHA in RBCs - which is an established marker for health protective effects of omega-3-PUFA - remains constant. The PUFA levels in RBCs reflect the concentration and its changes in plasma hydroxy- and

  20. DHA Concentration and Purification from the Marine Heterotrophic Microalga Crypthecodinium cohnii CCMP 316 by Winterization and Urea Complexation

    Directory of Open Access Journals (Sweden)

    Ana Mendes

    2007-01-01

    Full Text Available A simple and inexpensive procedure involving saponification and methylation in wet biomass, winterization and urea complexation in a sequential way has been developed in order to concentrate docosahexaenoic acid (DHA from Crypthecodinium cohnii CCMP 316 biomass. Different urea/fatty acid ratios and crystallization temperatures were tested in the urea complexation method. ANOVA test revealed that, in the studied range, the temperature had the most significant effect on the DHA concentration. The highest DHA fraction (99.2 % of total fatty acids was found at the urea/fatty acid ratio of 3.5 at the crystallization temperatures of 4 and 8 °C. The highest DHA recovery (49.9 % was observed at 24 °C at the urea/fatty acid ratio of 4.0, corresponding to 89.4 % DHA of total fatty acids. Considering the high proportions of DHA obtained in the non-urea complexing fractions, the current procedure was an appropriate way to concentrate and purify DHA from C. cohnii.

  1. Relative levels of dietary EPA and DHA impact gastric oxidation and essential fatty acid uptake.

    Science.gov (United States)

    Dasilva, Gabriel; Boller, Matthew; Medina, Isabel; Storch, Judith

    2018-05-01

    Previous research showed that increasing the proportion of docosahexaenoic acid (DHA) in marine lipid supplements significantly reduces associated health benefits compared with balanced eicosapentaenoic acid (EPA):DHA supplementation Dasilva et al., 2015 [1]. It was therefore hypothesized that the EPA and DHA molecules might have differential resistance to oxidation during gastric digestion and that the oxidation level achieved could be inversely correlated with intestinal absorption and, hence, with the resultant health benefits. Accordingly, we tested this proposed mechanism of action by investigating the degree of oxidation in the stomach, and the levels of bioaccessible lipids, of varying molar proportions of DHA and EPA (2:1, 1:1 and 1:2) using the dynamic gastrointestinal tract model TIM-1. In addition, small intestine enterocyte absorption and metabolism were simulated by Caco-2 cell monolayers that were incubated with these same varying proportions of DHA and EPA, and comparing oxidized and nonoxidized polyunsaturated fatty acids (PUFAs). The results show an inverse correlation between lipid oxidation products in the stomach and the levels of bioaccessible lipids. The balanced 1:1 EPA:DHA diet resulted in lower oxidation of PUFAs during stomach digestion relative to the other ratios tested. Finally, cell-based studies showed significantly lower assimilation of oxidized EPA and DHA substrates compared to nonoxidized PUFAs, as well as significant differences between the net uptake of EPA and DHA. Overall, the present work suggests that the correct design of diets and/or supplements containing marine lipids can strongly influence the stability and bioaccessibility of PUFAs during gastrointestinal digestion and subsequent absorption. This could modulate their health benefits related with inflammation, oxidative stress and metabolic disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. A Critical Review on the Effect of Docosahexaenoic Acid (DHA) on Cancer Cell Cycle Progression.

    Science.gov (United States)

    Newell, Marnie; Baker, Kristi; Postovit, Lynne M; Field, Catherine J

    2017-08-17

    Globally, there were 14.1 million new cancer diagnoses and 8.2 million cancer deaths in 2012. For many cancers, conventional therapies are limited in their successes and an improved understanding of disease progression is needed in conjunction with exploration of alternative therapies. The long chain polyunsaturated fatty acid, docosahexaenoic acid (DHA), has been shown to enhance many cellular responses that reduce cancer cell viability and decrease proliferation both in vitro and in vivo. A small number of studies suggest that DHA improves chemotherapy outcomes in cancer patients. It is readily incorporated into cancer cell membranes and, as a result there has been considerable research regarding cell membrane initiated events. For example, DHA has been shown to mediate the induction of apoptosis/reduction of proliferation in vitro and in vivo. However, there is limited research into the effect of DHA on cell cycle regulation in cancer cells and the mechanism(s) by which DHA acts are not fully understood. The purpose of the current review is to provide a critical examination of the literature investigating the ability of DHA to stall progression during different cell cycle phases in cancer cells, as well as the consequences that these changes may have on tumour growth, independently and in conjunction with chemotherapy.

  3. High-fat meals rich in EPA plus DHA compared with DHA only have differential effects on postprandial lipemia and plasma 8-isoprostane F2α concentrations relative to a control high-oleic acid meal: a randomized controlled trial.

    Science.gov (United States)

    Purcell, Robert; Latham, Sally H; Botham, Kathleen M; Hall, Wendy L; Wheeler-Jones, Caroline P D

    2014-10-01

    Eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) supplementation has beneficial cardiovascular effects, but postprandial influences of these individual fatty acids are unclear. The primary objective was to determine the vascular effects of EPA + DHA compared with DHA only during postprandial lipemia relative to control high-oleic acid meals; the secondary objective was to characterize the effects of linoleic acid-enriched high-fat meals relative to the control meal. We conducted a randomized, controlled, double-blind crossover trial of 4 high-fat (75-g) meals containing 1) high-oleic acid sunflower oil (HOS; control), 2) HOS + fish oil (FO; 5 g EPA and DHA), 3) HOS + algal oil (AO; 5 g DHA), and 4) high-linoleic acid sunflower oil (HLS) in 16 healthy men (aged 35-70 y) with higher than optimal fasting triacylglycerol concentrations (mean ± SD triacylglycerol, 1.9 ± 0.5 mmol/L). Elevations in triacylglycerol concentration relative to baseline were slightly reduced after FO and HLS compared with the HOS control (P acids after a mixed meal was inhibited after AO (Δ 0-3 h, P DHA-rich fish oil compared with DHA-rich AO, but these differences were not associated with consistent effects on postprandial vascular function or lipemia. More detailed analyses of polyunsaturated fatty acid-derived lipid mediators are required to determine possible divergent functional effects of single meals rich in either DHA or EPA. This trial was registered at clinicaltrials.gov as NCT01618071.

  4. Determinants of DHA levels in early infancy: differential effects of breast milk and direct fish oil supplementation.

    Science.gov (United States)

    Meldrum, S J; D'Vaz, N; Casadio, Y; Dunstan, J A; Niels Krogsgaard-Larsen, N; Simmer, K; Prescott, S L

    2012-06-01

    Although omega (n)-3 long-chain polyunsaturated fatty acids (LCPUFA), particularly docosahexaenoic acid (DHA), intakes are important during infancy, the optimal method of increasing infant status remains unclear. We hypothesized that high-dose infant fish oil supplementation would have greater relative effects upon n-3 LCPUFA status at six months of age than breast milk fatty acids. Infants (n=420) were supplemented daily from birth to six months with fish oil or placebo. In a subset of infants, LCPUFA levels were measured in cord blood, breast milk and in infant blood at 6 months. DHA levels increased in the fish oil group relative to placebo (p<05). Breast milk DHA was the strongest predictor of infant erythrocyte DHA levels (p=<001). This remained significant after adjustment for cord blood DHA, supplementation group and adherence. In this cohort, breast milk DHA was a greater determinant of infant erythrocyte n-3 LCPUFA status, than direct supplementation with fish oil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Identification of DHA-23, a Novel Plasmid-mediated and Inducible AmpC beta-Lactamase from Enterobacteriaceae in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Shyang eHsieh

    2015-05-01

    Full Text Available Objectives: AmpC β-lactamases are classified as Amber Class C and Bush Group 1. AmpC β-lactamases can hydrolyze broad and extended-spectrum cephalosporins, and are not inhibited by β-lactamase inhibitors such as clavulanic acid. This study was conducted to identify DHA-23, a novel plasmid-mediated and inducible AmpC β-lactamase obtained from Enterobacteriaceae. Methods: A total of 210 carbapenem-resistant Enterobacteriaceae isolates were collected from a medical center (comprising 2 branches in Northern Taiwan during 2009–2012. AmpC β-lactamase genes were analyzed through a polymerase chain reaction using plasmid DNA templates and gene sequencing. The genetic relationships of the isolates were typed using pulsed-field gel electrophoresis following the digestion of intact genomic DNA by using XbaI. Results: Three enterobacterial isolates (one Escherichia coli and 2 Klebsiella pneumoniae were obtained from 3 hospitalized patients. All 3 isolates were resistant or intermediately susceptible to all β-lactams, and exhibited reduced susceptibility to carbapenems. These 3 isolates expressed a novel AmpC β-lactamase, designated DHA-23, approved by the curators of the Lahey website. DHA-23 differs from DHA-1 and DHA-6 by one amino acid substitution (Ser245Ala, exhibiting 2 amino acid changes compared with DHA-7 and DHA-Morganella morganii; 3 amino acid changes compared with DHA-3; 4 amino acid changes compared with DHA-5; and 8 amino acid changes compared with DHA-2 (> 97% identity. This AmpC β-lactamase is inducible using a system involving ampR. Conclusion: This is the first report to address DHA-23, a novel AmpC β-lactamase. DHA-type β-lactamases are continuous threat in Taiwan.

  6. Evidence for the Initial Steps of DHA Biohydrogenation by Mixed Ruminal Microorganisms from Sheep Involves Formation of Conjugated Fatty Acids.

    Science.gov (United States)

    Aldai, Noelia; Delmonte, Pierluigi; Alves, Susana P; Bessa, Rui J B; Kramer, John K G

    2018-01-31

    Incubation of DHA with sheep rumen fluid resulted in 80% disappearance in 6 h. The products were analyzed as their fatty acid (FA) methyl esters by GC-FID on SP-2560 and SLB-IL111 columns. The GC-online reduction × GC and GC-MS techniques demonstrated that all DHA metabolites retained the C22 structure (no evidence of chain-shortening). Two new transient DHA products were identified: mono-trans methylene interrupted-DHA and monoconjugated DHA (MC-DHA) isomers. Identification of MC-DHA was confirmed by their predicted elution using equivalent chain length differences from C18 FA, their molecular ions, and the 22:5 products formed which were the most abundant at 6 h. The 22:5 structures were established by fragmentation of their 4,4-dimethyloxazoline derivatives, and all 22:5 products contained an isolated double bond, suggesting formation via MC-DHA. The most abundant c4,c7,c10,t14,c19-22:5 appeared to be formed by unknown isomerases. Results suggest that the initial biohydrogenation of DHA was analogous to that of C18 FA.

  7. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases.

    Science.gov (United States)

    Sun, Grace Y; Simonyi, Agnes; Fritsche, Kevin L; Chuang, Dennis Y; Hannink, Mark; Gu, Zezong; Greenlief, C Michael; Yao, Jeffrey K; Lee, James C; Beversdorf, David Q

    2017-03-10

    Docosahexaenoic acid (DHA), a polyunsaturated fatty acid (PUFA) enriched in phospholipids in the brain and retina, is known to play multi-functional roles in brain health and diseases. While arachidonic acid (AA) is released from membrane phospholipids by cytosolic phospholipase A 2 (cPLA 2 ), DHA is linked to action of the Ca 2+ -independent iPLA2. DHA undergoes enzymatic conversion by 15-lipoxygenase (Alox 15) to form oxylipins including resolvins and neuroprotectins, which are powerful lipid mediators. DHA can also undergo non-enzymatic conversion by reacting with oxygen free radicals (ROS), which cause the production of 4-hydoxyhexenal (4-HHE), an aldehyde derivative which can form adducts with DNA, proteins and lipids. In studies with both animal models and humans, there is evidence that inadequate intake of maternal n-3 PUFA may lead to aberrant development and function of the central nervous system (CNS). What is less certain is whether consumption of n-3 PUFA is important in maintaining brain health throughout one's life span. Evidence mostly from non-human studies suggests that DHA intake above normal nutritional requirements might modify the risk/course of a number of diseases of the brain. This concept has fueled much of the present interest in DHA research, in particular, in attempts to delineate mechanisms whereby DHA may serve as a nutraceutical and confer neuroprotective effects. Current studies have revealed ability for the oxylipins to regulation of cell redox homeostasis through the Nuclear factor (erythroid-derived 2)-like 2/Antioxidant response element (Nrf2/ARE) anti-oxidant pathway, and impact signaling pathways associated with neurotransmitters, and modulation of neuronal functions involving brain-derived neurotropic factor (BDNF). This review is aimed at describing recent studies elaborating these mechanisms with special regard to aging and Alzheimer's disease, autism spectrum disorder, schizophrenia, traumatic brain injury, and stroke

  8. Clinical effects of diet supplementation with DHA in pediatric patients suffering from cystic fibrosis.

    Science.gov (United States)

    Leggieri, E; De Biase, R V; Savi, D; Zullo, S; Halili, I; Quattrucci, S

    2013-08-01

    Cystic fibrosis (CF) patients present an altered fatty acid (FA) metabolism characterized by imbalance in the arachidonic/docosohexasenoic acid (AA/DHA) ratio in favour of the former which can contribute to the increase in pulmonary inflammation. The present study aims to assess respiratory, nutritional, clinical and laboratory parameters, and inflammatory markers after six months of DHA supplementation in paediatric patients suffering from CF. A dose of 1 g/10 kg/die was administered to ten CF patients of paediatric age for the first month and 250 mg/10 kg/die for the remaining 5 months. We carried out follow-ups at T0 (baseline), T6 (after six months of the diet) and T12 (six months after supplementation was interrupted) during which respiratory, nutritional, clinical and laboratory parameters were assessed. After six months of DHA supplementation inflammatory marker levels had diminished: interleukin 8 (IL-8) and Tumour Necrosis Factor Alfa (TNF-α) in serum, and calprotectin in stools. In addition, auxometric parameters were improved as was the clinical condition of patients, who tolerated DHA well. Dietetic integration with DHA seems to improve clinical condition and the inflammatory pulmonary and intestinal state of pediatric patients suffering from CF.

  9. Physicochemical Properties and Storage Stability of Microencapsulated DHA-Rich Oil with Different Wall Materials.

    Science.gov (United States)

    Chen, Wuxi; Wang, Haijun; Zhang, Ke; Gao, Feng; Chen, Shulin; Li, Demao

    2016-08-01

    This study aimed to evaluate the physicochemical properties and storage stability of microencapsulated DHA-rich oil spray dried with different wall materials: model 1 (modified starch, gum arabic, and maltodextrin), model 2 (soy protein isolate, gum arabic, and maltodextrin), and model 3 (casein, glucose, and lactose). The results indicated that model 3 exhibited the highest microencapsulation efficiency (98.66 %) and emulsion stability (>99 %), with a moisture content and mean particle size of 1.663 % and 14.173 μm, respectively. Differential scanning calorimetry analysis indicated that the Tm of DHA-rich oil microcapsules was high, suggesting that the entire structure of the microcapsules remained stable during thermal processing. A thermogravimetric analysis curve showed that the product lost 5 % of its weight at 172 °C and the wall material started to degrade at 236 °C. The peroxide value of microencapsulated DHA-rich oil remained at one ninth after accelerated oxidation at 45 °C for 8 weeks to that of the unencapsulated DHA-rich oil, thus revealing the promising oxidation stability of DHA-rich oil in microcapsules.

  10. EPA, DHA, and Lipoic Acid Differentially Modulate the n-3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes.

    Science.gov (United States)

    Bou, Marta; Østbye, Tone-Kari; Berge, Gerd M; Ruyter, Bente

    2017-03-01

    The aim of the present study was to investigate how EPA, DHA, and lipoic acid (LA) influence the different metabolic steps in the n-3 fatty acid (FA) biosynthetic pathway in hepatocytes from Atlantic salmon fed four dietary levels (0, 0.5, 1.0 and 2.0%) of EPA, DHA or a 1:1 mixture of these FA. The hepatocytes were incubated with [1- 14 C] 18:3n-3 in the presence or absence of LA (0.2 mM). Increased endogenous levels of EPA and/or DHA and LA exposure both led to similar responses in cells with reduced desaturation and elongation of [1- 14 C] 18:3n-3 to 18:4n-3, 20:4n-3, and EPA, in agreement with reduced expression of the Δ6 desaturase gene involved in the first step of conversion. DHA production, on the other hand, was maintained even in groups with high endogenous levels of DHA, possibly due to a more complex regulation of this last step in the n-3 metabolic pathway. Inhibition of the Δ6 desaturase pathway led to increased direct elongation to 20:3n-3 by both DHA and LA. Possibly the route by 20:3n-3 and then Δ8 desaturation to 20:4n-3, bypassing the first Δ6 desaturase step, can partly explain the maintained or even increased levels of DHA production. LA increased DHA production in the phospholipid fraction of hepatocytes isolated from fish fed 0 and 0.5% EPA and/or DHA, indicating that LA has the potential to further increase the production of this health-beneficial FA in fish fed diets with low levels of EPA and/or DHA.

  11. Chemopreventive and renal protective effects for docosahexaenoic acid (DHA: implications of CRP and lipid peroxides

    Directory of Open Access Journals (Sweden)

    Darweish MM

    2009-04-01

    Full Text Available Abstract Background The fish oil-derived ω-3 fatty acids, like docosahexanoic (DHA, claim a plethora of health benefits. We currently evaluated the antitumor effects of DHA, alone or in combination with cisplatin (CP in the EAC solid tumor mice model, and monitored concomitant changes in serum levels of C-reactive protein (CRP, lipid peroxidation (measured as malondialdehyde; MDA and leukocytic count (LC. Further, we verified the capacity of DHA to ameliorate the lethal, CP-induced nephrotoxicity in rats and the molecular mechanisms involved therein. Results EAC-bearing mice exhibited markedly elevated LC (2-fold, CRP (11-fold and MDA levels (2.7-fold. DHA (125, 250 mg/kg elicited significant, dose-dependent reductions in tumor size (38%, 79%; respectively, as well as in LC, CRP and MDA levels. These effects for CP were appreciably lower than those of DHA (250 mg/kg. Interestingly, DHA (125 mg/kg markedly enhanced the chemopreventive effects of CP and boosted its ability to reduce serum CRP and MDA levels. Correlation studies revealed a high degree of positive association between tumor growth and each of CRP (r = 0.85 and leukocytosis (r = 0.89, thus attesting to a diagnostic/prognostic role for CRP. On the other hand, a single CP dose (10 mg/kg induced nephrotoxicity in rats that was evidenced by proteinuria, deterioration of glomerular filtration rate (GFR, -4-fold, a rise in serum creatinine/urea levels (2–5-fold after 4 days, and globally-induced animal fatalities after 7 days. Kidney-homogenates from CP-treated rats displayed significantly elevated MDA- and TNF-α-, but reduced GSH-, levels. Rats treated with DHA (250 mg/kg, but not 125 mg/kg survived the lethal effects of CP, and showed a significant recovery of GFR; while their homogenates had markedly-reduced MDA- and TNF-α-, but -increased GSH-levels. Significant association was detected between creatinine level and those of MDA (r = 0.81, TNF-α r = 0.92 and GSH (r = -0

  12. A Correlation Study of DHA Intake Estimated by a FFQ and Concentrations in Plasma and Erythrocytes in Mid- and Late Pregnancy

    Science.gov (United States)

    Zhou, Yu-Bo; Li, Hong-Tian; Trasande, Leonardo; Wang, Lin-Lin; Zhang, Ya-Li; Si, Ke-Yi; Bai, Man-Xi; Liu, Jian-Meng

    2017-01-01

    Adequate docosahexaenoic acid (DHA) is essential for the optimal growth and development of the fetus. Maternal DHA content fluctuates during pregnancy. The correlation of DHA content with dietary intake might be varied over the course of pregnancy. We aimed to compare the dietary DHA intake, estimated by a DHA-specific semiquantitative food frequency questionnaire (FFQ) against its blood content, among mid- and late-term pregnant women. A total of 804 Chinese pregnant women completed the tailored FFQ and provided fasting venous blood samples. Dietary DHA intake (mg/day) in the previous month was calculated from the FFQ using Chinese Food Composition Table. DHA concentrations (weight percent of total fatty acids) in plasma and erythrocytes were measured by capillary gas chromatography. Spearman correlation coefficients (rs) between DHA intake and its relative concentrations were calculated. After adjustment for maternal age, pre-pregnancy body mass index, stage of pregnancy, parity, education level, ethnicity, and annual family income per capita, the correlation coefficients of DHA intake with its concentrations in plasma and erythrocytes were 0.35 and 0.33, respectively (p DHA intake and its plasma or erythrocytes concentrations (p DHA intake, estimated by the FFQ, was positively correlated with its concentrations in plasma and erythrocytes in Chinese pregnant women, especially for women in late pregnancy, with the exception of the erythrocytes of those living in a coastland area. PMID:29144430

  13. Exogenous modification of platelet membranes with the omega-3 fatty acids EPA and DHA reduces platelet procoagulant activity and thrombus formation.

    Science.gov (United States)

    Larson, Mark K; Tormoen, Garth W; Weaver, Lucinda J; Luepke, Kristen J; Patel, Ishan A; Hjelmen, Carl E; Ensz, Nicole M; McComas, Leah S; McCarty, Owen J T

    2013-02-01

    Several studies have implicated the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in inhibition of normal platelet function, suggesting a role for platelets in EPA- and DHA-mediated cardioprotection. However, it is unclear whether the cardioprotective mechanisms arise from alterations to platelet-platelet, platelet-matrix, or platelet-coagulation factor interactions. Our previous results led us to hypothesize that EPA and DHA alter the ability of platelets to catalyze the generation of thrombin. We tested this hypothesis by exogenously modifying platelet membranes with EPA and DHA, which resulted in compositional changes analogous to increased dietary EPA and DHA intake. Platelets treated with EPA and DHA showed reductions in the rate of thrombin generation and exposure of platelet phosphatidylserine. In addition, treatment of platelets with EPA and DHA decreased thrombus formation and altered the processing of thrombin precursor proteins. Furthermore, treatment of whole blood with EPA and DHA resulted in increased occlusion time and a sharply reduced accumulation of fibrin under flow conditions. These results demonstrate that EPA and DHA inhibit, but do not eliminate, the ability of platelets to catalyze thrombin generation in vitro. The ability of EPA and DHA to reduce the procoagulant function of platelets provides a possible mechanism behind the cardioprotective phenotype in individuals consuming high levels of EPA and DHA.

  14. A Mini-Review on the Effect of Docosahexaenoic Acid (DHA on Cerulein-Induced and Hypertriglyceridemic Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Yoo Kyung Jeong

    2017-10-01

    Full Text Available Acute pancreatitis refers to the sudden inflammation of the pancreas. It is associated with premature activation and release of digestive enzymes into the pancreatic interstitium and systemic circulation, resulting in pancreatic tissue autodigestion and multiple organ dysfunction, as well as with increased cytokine production, ultimately leading to deleterious local and systemic effects. Although mechanisms involved in pathogenesis of acute pancreatitis have not been completely elucidated, oxidative stress is regarded as a major risk factor. In human acute pancreatitis, lipid peroxide levels in pancreatic tissues increase. Docosahexaenoic acid (DHA, an omega-3 polyunsaturated fatty acid (C22:6n-3, exerts anti-inflammatory and antioxidant effects on various cells. Previous studies have shown that DHA activates peroxisome proliferator-activated receptor-γ and induces catalase, which inhibits oxidative stress-mediated inflammatory signaling required for cytokine expression in experimental acute pancreatitis using cerulein. Cerulein, a cholecystokinin analog, induces intra-acinar activation of trypsinogen in the pancreas, which results in human acute pancreatitis-like symptoms. Therefore, DHA supplementation may be beneficial for preventing or inhibiting acute pancreatitis development. Since DHA reduces serum triglyceride levels, addition of DHA to lipid-lowering drugs like statins has been investigated to reduce hypertriglyceridemic acute pancreatitis. However, high DHA concentrations increase cytosolic Ca2+, which activates protein kinase C and may induce hyperlipidemic acute pancreatitis. In this review, effect of DHA on cerulein-induced and hypertriglyceridemic acute pancreatitis has been discussed. The relation of high concentration of DHA to hyperlipidemic acute pancreatitis has been included.

  15. Maternal DHA Status during Pregnancy Has a Positive Impact on Infant Problem Solving: A Norwegian Prospective Observation Study

    Directory of Open Access Journals (Sweden)

    Hanne Cecilie Braarud

    2018-04-01

    Full Text Available Docosahexaenoic acid (DHA, 22:6, n-3 is a long-chain polyunsaturated fatty acid necessary for normal brain growth and cognitive development. Seafood and dietary supplements are the primary dietary sources of DHA. This study addresses the associations between DHA status in pregnant women and healthy, term-born infant problem-solving skills assessed using the Ages and Stages Questionnaire. The fatty acid status of maternal red blood cells (RBCs was assessed in the 28th week of gestation and at three months postpartum. The infants’ fatty acid status (RBC was assessed at three, six, and twelve months, and problem-solving skills were assessed at six and twelve months. Maternal DHA status in pregnancy was found to be positively associated with infants’ problem-solving skills at 12 months. This association remained significant even after controlling for the level of maternal education, a surrogate for socio-economic status. The infants’ DHA status at three months was associated with the infants’ problem solving at 12 months. The results accentuate the importance for pregnant and lactating women to have a satisfactory DHA status from dietary intake of seafood or other sources rich in DHA.

  16. Maternal DHA Status during Pregnancy Has a Positive Impact on Infant Problem Solving: A Norwegian Prospective Observation Study.

    Science.gov (United States)

    Braarud, Hanne Cecilie; Markhus, Maria Wik; Skotheim, Siv; Stormark, Kjell Morten; Frøyland, Livar; Graff, Ingvild Eide; Kjellevold, Marian

    2018-04-24

    Docosahexaenoic acid (DHA, 22:6, n -3) is a long-chain polyunsaturated fatty acid necessary for normal brain growth and cognitive development. Seafood and dietary supplements are the primary dietary sources of DHA. This study addresses the associations between DHA status in pregnant women and healthy, term-born infant problem-solving skills assessed using the Ages and Stages Questionnaire. The fatty acid status of maternal red blood cells (RBCs) was assessed in the 28th week of gestation and at three months postpartum. The infants’ fatty acid status (RBC) was assessed at three, six, and twelve months, and problem-solving skills were assessed at six and twelve months. Maternal DHA status in pregnancy was found to be positively associated with infants’ problem-solving skills at 12 months. This association remained significant even after controlling for the level of maternal education, a surrogate for socio-economic status. The infants’ DHA status at three months was associated with the infants’ problem solving at 12 months. The results accentuate the importance for pregnant and lactating women to have a satisfactory DHA status from dietary intake of seafood or other sources rich in DHA.

  17. Supplementing female rats with DHA-lysophosphatidylcholine increases docosahexaenoic acid and acetylcholine contents in the brain and improves the memory and learning capabilities of the pups

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, A.; Nieto, S.; Sanhueza, J.; Morgado, N.; Rojas, I.; Zanartu, P.

    2010-07-01

    Docosahexaenoic acid (Dha) is supplied to the foetus and newborn through the mother from their own reserves and their diet. No consensus about the best form to supplement DHA has been established. We propose that DHA containing lysophosphatidylcholine (DHA-LPC), obtained from DHA-rich eggs may be a suitable form of DHA and choline (the precursor of acetylcholine) supplementation. We evaluated the effectiveness of DHA-LPC to increase DHA and acetylcholine concentration in the brain of pups born from female rats supplemented with DHA-LPC before and during pregnancy. We also evaluated the effect of DHA supplementation on learning and memory capabilities of pups through the Skinner test for operant conditioning. Female Wistar rats received 40-day supplementation of DHA-LPC (8 mg DHA/kg b.w/daily.), before and during pregnancy. After delivery, plasma, erythrocyte, liver, and adipose tissue DHA and plasma choline were analyzed. Brains from 60 day-old pups separated into frontal cortex, cerebellum, striatum, hippocampus, and occipital cortex, were assessed for DHA, acetylcholine, and acetylcholine transferase (CAT) activity. Pups were subjected to the Skinner box test. DHA-LPC supplementation produces higher choline and liver DHA contents in the mothers plasma and increases the pups DHA and acetylcholine in the cerebellum and hippocampus. CAT was not modified by supplementation. The Skinner test shows that pups born from DHA-LPC supplemented mothers exhibit better scores of learning and memory than the controls. Conclusion: DHA-LPC may be an adequate form for DHA supplementation during the perinatal period. (Author) 66 refs.

  18. The effects of aspirin on platelet function and lysophosphatidic acids depend on plasma concentrations of EPA and DHA.

    Science.gov (United States)

    Block, Robert C; Abdolahi, Amir; Tu, Xin; Georas, Steve N; Brenna, J Thomas; Phipps, Richard P; Lawrence, Peter; Mousa, Shaker A

    2015-05-01

    Aspirin's prevention of cardiovascular disease (CVD) events in individuals with type 2 diabetes mellitus is controversial. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and aspirin all affect the cyclooxygenase enzyme. The relationship between plasma EPA and DHA and aspirin's effects has not been determined. Thirty adults with type 2 diabetes mellitus ingested aspirin (81 mg/day) for 7 days, then EPA+DHA (2.6g/day) for 28 days, then both for another 7 days. Lysophosphatidic acid (LPA) species and more classic platelet function outcomes were determined. Plasma concentrations of total EPA+DHA were associated with 7-day aspirin reduction effects on these outcomes in a "V"-shaped manner for all 11 LPA species and ADP-induced platelet aggregation. This EPA+DHA concentration was quite consistent for each of the LPA species and ADP. These results support aspirin effects on lysolipid metabolism and platelet aggregation depending on plasma EPA+DHA concentrations in individuals with a disturbed lipid milieu. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Enhancement of docosahexaenoic acid (DHA) production from Schizochytrium sp. S31 using different growth medium conditions.

    Science.gov (United States)

    Sahin, Deniz; Tas, Ezgi; Altindag, Ulkü Hüma

    2018-01-24

    Schizochytrium species is one of the most studied microalgae for production of docosahexaenoic acid (DHA) which is an omega-3 fatty acid with positive effects for human health. However, high cost and low yield in production phase makes optimization of cultivation process inevitable. We focus on the optimization of DHA production using Schizochytrium sp. using different media supplements; glucose, fructose and glycerol as carbon variants, proteose peptone and tryptone as nitrogen variants. The highest biomass (5.61 g/L) and total fatty acid yield (1.74 g/L) were obtained in proteose peptone medium which was used as the alternative nitrogen source instead of yeast extract. The highest DHA yield (0.40 g/L) was achieved with glycerol as the carbon source although it had the second lowest biomass production after ethanol containing medium. Ethanol, as an alternative carbon source and a precursor for acetyl-CoA, increased DHA percentage in total lipid content from 29.94 to 40.04% but decreasing the biomass drastically. Considering different carbon and nitrogen sources during cultivation of Schizochytrium sp. will improve DHA production. Combination of proteose peptone and glycerol as nitrogen and carbon sources, respectively, and addition of ethanol with a proper timing will be useful to have higher DHA yield.

  20. (n-3) fatty acids and cardiovascular health: are effects of EPA and DHA shared or complementary?

    Science.gov (United States)

    Mozaffarian, Dariush; Wu, Jason H Y

    2012-03-01

    Considerable research supports cardiovascular benefits of consuming omega-3 PUFA, also known as (n-3) PUFA, from fish or fish oil. Whether individual long-chain (n-3) PUFA have shared or complementary effects is not well established. We reviewed evidence for dietary and endogenous sources and cardiovascular effects on biologic pathways, physiologic risk factors, and clinical endpoints of EPA [20:5(n-3)], docosapentaenoic acid [DPA, 22:5(n-3)], and DHA [22:6(n-3)]. DHA requires direct dietary consumption, with little synthesis from or retroconversion to DPA or EPA. Whereas EPA is also largely derived from direct consumption, EPA can also be synthesized in small amounts from plant (n-3) precursors, especially stearidonic acid. In contrast, DPA appears principally derived from endogenous elongation from EPA, and DPA can also undergo retroconversion back to EPA. In experimental and animal models, both EPA and DHA modulate several relevant biologic pathways, with evidence for some differential benefits. In humans, both fatty acids lower TG levels and, based on more limited studies, favorably affect cardiac diastolic filling, arterial compliance, and some metrics of inflammation and oxidative stress. All three (n-3) PUFA reduce ex vivo platelet aggregation and DHA also modestly increases LDL and HDL particle size; the clinical relevance of such findings is uncertain. Combined EPA+DHA or DPA+DHA levels are associated with lower risk of fatal cardiac events and DHA with lower risk of atrial fibrillation, suggesting direct or indirect benefits of DHA for cardiac arrhythmias (although not excluding similar benefits of EPA or DPA). Conversely, EPA and DPA, but not DHA, are associated with lower risk of nonfatal cardiovascular endpoints in some studies, and purified EPA reduced risk of nonfatal coronary syndromes in one large clinical trial. Overall, for many cardiovascular pathways and outcomes, identified studies of individual (n-3) PUFA were relatively limited, especially

  1. The roles of different salts and a novel osmotic pressure control strategy for improvement of DHA production by Schizochytrium sp.

    Science.gov (United States)

    Hu, Xue-Chao; Ren, Lu-Jing; Chen, Sheng-Lan; Zhang, Li; Ji, Xiao-Jun; Huang, He

    2015-11-01

    The effects of different osmotic pressure, changed by six salts (NaCl, Na2SO4, (NH4)2SO4, KH2PO4 and MSG), on cell growth and DHA synthesis by Schizochytrium sp. were investigated. Six optimal mediums were obtained to study different osmotic pressure combinations at cell growth stage and DHA synthesis stage. Results showed that cultivated cell in higher osmotic pressure condition and fermented in lower osmotic pressure condition was benefit to enhance DHA synthesis. Combination 17-6 could get the maximum cell dry weight of 56.95 g/L and the highest DHA percentage in total fatty acids of 55.21%, while combination 17-B could get the highest lipid yield of 33.47 g/L with 42.10% DHA in total fatty acids. This was the first report about the enhancement of DHA production by osmotic regulation and this work provided two novel osmotic control processes for high lipid yield and high DHA percentage in total fatty acids.

  2. STUDY ON THE THERMAL STABILITY OF EPA AND DHA IN MUJAHIR (Oreochromis mossambicus FISH OIL

    Directory of Open Access Journals (Sweden)

    Ngatidjo Hadipranoto

    2010-06-01

    Full Text Available EPA (Eicosapentaenoic acid and DHA (Docosahexaenoic acid content in common fresh water fish : mujahir (Oreochromis mossambicus after indirect heating were analysed. The aims of this study were to determine the effect of indirect heating process and α-tocopherol additions on both fatty acid stability.Lipids content in the mujahir fillets were extracted by Folch method using chloroform-metanol (2:1 mixture. Fatty acids in fish oil were converted to fatty acid methyl esters and then injected into gas chromatography to determine the EPA and DHA concentration. Operating condition of gas chromatography were programmed as follows: injection port temperature at 270 oC, detector at 280 oC, initial column temperature at 200 oC, and the final at 280 oC, the carrier gas was helium with flow rate of 10 ml per minute and temperature of column was increased gradually at 10 oC per minute. The effect of α-tocopherol addition on the stability of EPA and DHA was studied by adding α-tocopherol at 50 to 200 mg per kilogram sample before indirect heating process was carried out.The analysis of mujahir fish oil showed that the content of EPA and DHA in 100 grams fresh sample was 105 and 406,5 mg respectivelly. Indirect heating caused the EPA and DHA content decreased significantly. The addition of α-tocopherol results in a positive corelation between α-tocopherol concentration added and the decrease of EPA and DHA content during the heating process.   Keywords: fatty acid, eicosapentaenoic acid, docosahexaenoic acid

  3. On the potential application of polar and temperate marine microalgae for EPA and DHA production

    NARCIS (Netherlands)

    Boelen, P.; van Dijk, R.; Sinninghe Damsté, J.S.; Rijpstra, W.I.C.; Buma, A.G.J.

    2013-01-01

    Long chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are considered essential omega-3 fatty acids in human nutrition. In marine microalgae EPA and/or DHA are allegedly involved in the regulation of membrane fluidity and thylakoid

  4. Dietary DHA supplementation in an APP/PS1 transgenic rat model of AD reduces behavioral and Aβ pathology and modulates Aβ oligomerization.

    Science.gov (United States)

    Teng, Edmond; Taylor, Karen; Bilousova, Tina; Weiland, David; Pham, Thaidan; Zuo, Xiaohong; Yang, Fusheng; Chen, Ping-Ping; Glabe, Charles G; Takacs, Alison; Hoffman, Dennis R; Frautschy, Sally A; Cole, Gregory M

    2015-10-01

    Increased dietary consumption of docosahexaenoic acid (DHA) is associated with decreased risk for Alzheimer's disease (AD). These effects have been postulated to arise from DHA's pleiotropic effects on AD pathophysiology, including its effects on β-amyloid (Aβ) production, aggregation, and toxicity. While in vitro studies suggest that DHA may inhibit and reverse the formation of toxic Aβ oligomers, it remains uncertain whether these mechanisms operate in vivo at the physiological concentrations of DHA attainable through dietary supplementation. We sought to clarify the effects of dietary DHA supplementation on Aβ indices in a transgenic APP/PS1 rat model of AD. Animals maintained on a DHA-supplemented diet exhibited reductions in hippocampal Aβ plaque density and modest improvements on behavioral testing relative to those maintained on a DHA-depleted diet. However, DHA supplementation also increased overall soluble Aβ oligomer levels in the hippocampus. Further quantification of specific conformational populations of Aβ oligomers indicated that DHA supplementation increased fibrillar (i.e. putatively less toxic) Aβ oligomers and decreased prefibrillar (i.e. putatively more toxic) Aβ oligomers. These results provide in vivo evidence suggesting that DHA can modulate Aβ aggregation by stabilizing soluble fibrillar Aβ oligomers and thus reduce the formation of both Aβ plaques and prefibrillar Aβ oligomers. However, since fibrillar Aβ oligomers still retain inherent neurotoxicity, DHA may need to be combined with other interventions that can additionally reduce fibrillar Aβ oligomer levels for more effective prevention of AD in clinical settings. Published by Elsevier Inc.

  5. (n-3) Fatty Acids and Cardiovascular Health: Are Effects of EPA and DHA Shared or Complementary?123

    Science.gov (United States)

    Mozaffarian, Dariush; Wu, Jason H. Y.

    2012-01-01

    Considerable research supports cardiovascular benefits of consuming omega-3 PUFA, also known as (n-3) PUFA, from fish or fish oil. Whether individual long-chain (n-3) PUFA have shared or complementary effects is not well established. We reviewed evidence for dietary and endogenous sources and cardiovascular effects on biologic pathways, physiologic risk factors, and clinical endpoints of EPA [20:5(n-3)], docosapentaenoic acid [DPA, 22:5(n-3)], and DHA [22:6(n-3)]. DHA requires direct dietary consumption, with little synthesis from or retroconversion to DPA or EPA. Whereas EPA is also largely derived from direct consumption, EPA can also be synthesized in small amounts from plant (n-3) precursors, especially stearidonic acid. In contrast, DPA appears principally derived from endogenous elongation from EPA, and DPA can also undergo retroconversion back to EPA. In experimental and animal models, both EPA and DHA modulate several relevant biologic pathways, with evidence for some differential benefits. In humans, both fatty acids lower TG levels and, based on more limited studies, favorably affect cardiac diastolic filling, arterial compliance, and some metrics of inflammation and oxidative stress. All three (n-3) PUFA reduce ex vivo platelet aggregation and DHA also modestly increases LDL and HDL particle size; the clinical relevance of such findings is uncertain. Combined EPA+DHA or DPA+DHA levels are associated with lower risk of fatal cardiac events and DHA with lower risk of atrial fibrillation, suggesting direct or indirect benefits of DHA for cardiac arrhythmias (although not excluding similar benefits of EPA or DPA). Conversely, EPA and DPA, but not DHA, are associated with lower risk of nonfatal cardiovascular endpoints in some studies, and purified EPA reduced risk of nonfatal coronary syndromes in one large clinical trial. Overall, for many cardiovascular pathways and outcomes, identified studies of individual (n-3) PUFA were relatively limited, especially

  6. Crystallographic analysis of 1,2,3-trichloropropane biodegradation by the haloalkane dehalogenase DhaA31

    Czech Academy of Sciences Publication Activity Database

    Lahoda, M.; Mesters, J. R.; Stsiapanava, A.; Chaloupková, R.; Kutý, Michal; Damborský, J.; Kutá-Smatanová, Ivana

    2014-01-01

    Roč. 70, FEB 2014 (2014), s. 209-217 ISSN 0907-4449 Institutional support: RVO:67179843 Keywords : DhaA31 * substrate-free * 3rk4 * complex with TCP * 4fwb * wild-type DhaA * 4hzg Subject RIV: CE - Biochemistry Impact factor: 7.232, year: 2013

  7. The effect of diet and DHA addition on the sensory quality of goat kid meat.

    Science.gov (United States)

    Moreno-Indias, Isabel; Sánchez-Macías, Davinia; Martínez-de la Puente, Josué; Morales-Delanuez, Antonio; Hernández-Castellano, Lorenzo Enrique; Castro, Noemí; Argüello, Anastasio

    2012-02-01

    To enhance the nutritional quality of meat, dietary strategies have been developed to manipulate the fatty acid profiles of muscle tissue. Fatty acids affect meat attributes, including hardness, colour and lipid stability, and flavour. Little research has been done, however, on the effects of dietary omega-3 polyunsaturated fatty acid (PUFA) supplementation on the sensory characteristics of meat. To address this issue, six diets were fed to goat kids: goat's milk, powdered whole cow's milk, powdered whole cow's milk plus docosahexaenoic acid (DHA) (low dose), milk replacer, milk replacer plus DHA (low dose), and milk replacer plus DHA (high dose). A descriptive, semi-trained sensory evaluation and a consumer triangular test were performed to analyse the resulting meat. High doses of omega-3 PUFA produced meat with unusual odours, unpleasant flavours, and low overall appreciation scores. Low doses of DHA maintained a positive sensory perception. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm growing Streptococcus mutans.

    Science.gov (United States)

    Sun, Mengjun; Dong, Jiachen; Xia, Yiru; Shu, Rong

    2017-06-01

    The aim of this study was to evaluate the potential antibacterial activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against planktonic and biofilm modes of Streptococcus mutans (S. mutans). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The effects on planktonic growth and biofilm metabolic activity were evaluated by growth curve determination and MTT assay, respectively. Then, colony forming unit (CFU) counting, scanning electron microscopy (SEM) and real-time PCR were performed to further investigate the actions of DHA and EPA on exponential phase-S. mutans. Confocal laser scanning microscopy (CLSM) was used to detect the influences on mature biofilms. The MICs of DHA and EPA against S. mutans were 100 μM and 50 μM, respectively; the MBC of both compounds was 100 μM. In the presence of 12.5 μM-100 μM DHA or EPA, the planktonic growth and biofilm metabolic activity were reduced in varying degrees. For exponential-phase S. mutans, the viable counts, the bacterial membranes and the biofilm-associated gene expression were damaged by 100 μM DHA or EPA treatment. For 1-day-old biofilms, the thickness was decreased and the proportion of membrane-damaged bacteria was increased in the presence of 100 μM DHA or EPA. These results indicated that, DHA and EPA possessed antibacterial activities against planktonic and biofilm growing S. mutans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effect of DHA on plasma fatty acid availability and oxidative stress during training season and football exercise.

    Science.gov (United States)

    Martorell, Miquel; Capó, Xavier; Sureda, Antoni; Batle, Joan M; Llompart, Isabel; Argelich, Emma; Tur, Josep A; Pons, Antoni

    2014-08-01

    The aim was to determine the effects of a diet supplemented with 1.14 g per day of docosahexaenoic acid (DHA) for eight weeks on the plasma oxidative balance and anti-inflammatory markers after training and acute exercise. Fifteen volunteer male football players were randomly assigned to placebo or experimental and supplemented groups. Blood samples were taken under resting conditions at the beginning and after eight weeks of training under resting and post-exercise conditions. The experimental beverage increased the plasma DHA availability in non-esterified fatty acids (NEFAs) and triglyceride fatty acids (TGFAs) and increased the polyunsaturated fatty acid (PUFA) fraction of NEFAs but had no effects on the biomarkers for oxidative balance in plasma. During training, plasma protein markers of oxidative damage, the haemolysis degree and the antioxidant enzyme activities increased, but did not affect lipid oxidative damage. Training season and DHA influenced the circulating levels of prostaglandin E2 (PGE2). Acute exercise did not alter the basal levels of plasma markers for oxidative and nitrosative damage of proteins and lipids, and the antioxidant enzyme activities, although DHA-diet supplementation significantly increased the PGE2 in plasma after acute exercise. In conclusion, the training season and acute exercise, but not the DHA diet supplementation, altered the pattern of plasma oxidative damage, as the antioxidant system proved sufficient to prevent the oxidative damage induced by the acute exercise in well-trained footballers. The DHA-diet supplementation increased the prostaglandin PGE2 plasma evidencing anti-inflammatory effects of DHA to control inflammation after acute exercise.

  10. Impact of carbon and nitrogen feeding strategy on high production of biomass and docosahexaenoic acid (DHA) by Schizochytrium sp. LU310.

    Science.gov (United States)

    Ling, Xueping; Guo, Jing; Liu, Xiaoting; Zhang, Xia; Wang, Nan; Lu, Yinghua; Ng, I-Son

    2015-05-01

    A new isolated Schizochytrium sp. LU310 from the mangrove forest of Wenzhou, China, was found as a high producing microalga of docosahexaenoic acid (DHA). In this study, the significant improvements for DHA fermentation by the batch mode in the baffled flasks (i.e. higher oxygen supply) were achieved. By applied the nitrogen-feeding strategy in 1000 mL baffled flasks, the biomass, DHA concentration and DHA productivity were increased by 110.4%, 117.9% and 110.4%, respectively. Moreover, DHA concentration of 21.06 g/L was obtained by feeding 15 g/L of glucose intermittently, which was an increase of 41.25% over that of the batch mode. Finally, an innovative strategy was carried out by intermittent feeding carbon and simultaneously feeding nitrogen. The maximum DHA concentration and DHA productivity in the fed-batch cultivation reached to 24.74 g/L and 241.5 mg/L/h, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Prenatal supplementation with DHA improves attention at 5 y of age: a randomized controlled trial.

    Science.gov (United States)

    Ramakrishnan, Usha; Gonzalez-Casanova, Ines; Schnaas, Lourdes; DiGirolamo, Ann; Quezada, Amado D; Pallo, Beth C; Hao, Wei; Neufeld, Lynnette M; Rivera, Juan A; Stein, Aryeh D; Martorell, Reynaldo

    2016-10-01

    Docosahexanoic acid (DHA) is an important constituent of the brain. Evidence from well-designed intervention trials of the long-term benefits of increasing DHA intake during pregnancy has been sparse. We evaluated global cognition, behavior, and attention at age 5 y in the offspring of Mexican women who participated in a randomized controlled trial of prenatal DHA supplementation. A total of 1094 women were randomly assigned to receive 400 mg of either DHA or placebo/d from 18 to 22 wk of pregnancy until delivery. We assessed cognitive development and behavioral and executive functioning, including attention, in 797 offspring at age 5 y (82% of 973 live births) with the use of the McCarthy Scales of Children's Abilities (MSCA), the parental scale of the Behavioral Assessment System for Children, Second Edition (BASC-2), and the Conners' Kiddie Continuous Performance Test (K-CPT). We compared the groups on raw scores, T-scores, and standardized scores, as appropriate. We examined heterogeneity by the quality of the home environment, maternal intelligence, and socioeconomic status. There were no group differences for MSCA scores (P > 0.05), but the positive effect of the home environment at 12 mo on general cognitive abilities was attenuated in the DHA group compared with in the placebo group (P-interaction 0.05) for the other K-CPT scores or of the proportion who were clinically at risk of attention deficit hyperactivity disorders after Bonferroni correction for multiple comparisons. Prenatal exposure to DHA may contribute to improved sustained attention in preschool children. This trial was registered at clinicaltrials.gov as NCT00646360. © 2016 American Society for Nutrition.

  12. Lipid structure does not modify incorporation of EPA and DHA into blood lipids in healthy adults: a randomised-controlled trial.

    Science.gov (United States)

    West, Annette L; Burdge, Graham C; Calder, Philip C

    2016-09-01

    Dietary supplementation is an effective means to improve EPA and DHA status. However, it is unclear whether lipid structure affects EPA+DHA bioavailability. We determined the effect of consuming different EPA and DHA lipid structures on their concentrations in blood during the postprandial period and during dietary supplementation compared with unmodified fish oil TAG (uTAG). In a postprandial cross-over study, healthy men (n 9) consumed in random order test meals containing 1·1 g EPA+0·37 g DHA as either uTAG, re-esterified TAG, free fatty acids (FFA) or ethyl esters (EE). In a parallel design supplementation study, healthy men and women (n 10/sex per supplement) consumed one supplement type for 12 weeks. Fatty acid composition was determined by GC. EPA incorporation over 6 h into TAG or phosphatidylcholine (PC) did not differ between lipid structures. EPA enrichment in NEFA was lower from EE than from uTAG (P=0·01). Plasma TAG, PC or NEFA DHA incorporation did not differ between lipid structures. Lipid structure did not affect TAG or NEFA EPA incorporation and PC or NEFA DHA incorporation following dietary supplementation. Plasma TAG peak DHA incorporation was greater (P=0·02) and time to peak shorter (P=0·02) from FFA than from uTAG in men. In both studies, the order of EPA and DHA incorporation was PC>TAG>NEFA. In conclusion, EPA and DHA lipid structure may not be an important consideration in dietary interventions.

  13. Application of the Response Surface Methodology to Optimize the Fermentation Parameters for Enhanced Docosahexaenoic Acid (DHA) Production by Thraustochytrium sp. ATCC 26185.

    Science.gov (United States)

    Wu, Kang; Ding, Lijian; Zhu, Peng; Li, Shuang; He, Shan

    2018-04-22

    The aim of this study was to determine the cumulative effect of fermentation parameters and enhance the production of docosahexaenoic acid (DHA) by Thraustochytrium sp. ATCC 26185 using response surface methodology (RSM). Among the eight variables screened for effects of fermentation parameters on DHA production by Plackett-Burman design (PBD), the initial pH, inoculum volume, and fermentation volume were found to be most significant. The Box-Behnken design was applied to derive a statistical model for optimizing these three fermentation parameters for DHA production. The optimal parameters for maximum DHA production were initial pH: 6.89, inoculum volume: 4.16%, and fermentation volume: 140.47 mL, respectively. The maximum yield of DHA production was 1.68 g/L, which was in agreement with predicted values. An increase in DHA production was achieved by optimizing the initial pH, fermentation, and inoculum volume parameters. This optimization strategy led to a significant increase in the amount of DHA produced, from 1.16 g/L to 1.68 g/L. Thraustochytrium sp. ATCC 26185 is a promising resource for microbial DHA production due to the high-level yield of DHA that it produces, and the capacity for large-scale fermentation of this organism.

  14. Marine Cryptophytes Are Great Sources of EPA and DHA

    Directory of Open Access Journals (Sweden)

    Elina Peltomaa

    2017-12-01

    Full Text Available Microalgae have the ability to synthetize many compounds, some of which have been recognized as a source of functional ingredients for nutraceuticals with positive health effects. One well-known example is the long-chain polyunsaturated fatty acids (PUFAs, which are essential for human nutrition. Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are the two most important long-chain omega-3 (ω-3 PUFAs involved in human physiology, and both industries are almost exclusively based on microalgae. In addition, algae produce phytosterols that reduce serum cholesterol. Here we determined the growth rates, biomass yields, PUFA and sterol content, and daily gain of eight strains of marine cryptophytes. The maximal growth rates of the cryptophytes varied between 0.34–0.70 divisions day−1, which is relatively good in relation to previously screened algal taxa. The studied cryptophytes were extremely rich in ω-3 PUFAs, especially in EPA and DHA (range 5.8–12.5 and 0.8–6.1 µg mg dry weight−1, respectively, but their sterol concentrations were low. Among the studied strains, Storeatula major was superior in PUFA production, and it also produces all PUFAs, i.e., α-linolenic acid (ALA, stearidonic acid (SDA, EPA, and DHA, which is rare in phytoplankton in general. We conclude that marine cryptophytes are a good alternative for the ecologically sustainable and profitable production of health-promoting lipids.

  15. Prenatal DHA Status and Neurological Outcome in Children at Age 5.5 Years Are Positively Associated

    NARCIS (Netherlands)

    Victoria Escolano-Margarit, M.; Ramos, Rosa; Beyer, Jeannette; Csabi, Gyoergyi; Parrilla-Roure, Montserrat; Cruz, Francisco; Perez-Garcia, Miguel; Hadders-Algra, Mijna; Gil, Angel; Decsi, Tamas; Koletzko, Berthold V.; Campoy, Cristina

    Beneficial effects of perinatal DHA supply on later neurological development have been reported. We assessed the effects of maternal DHA supplementation on the neurological development of their children. Healthy pregnant women from Spain, Germany, and Hungary were randomly assigned to a dietary

  16. Dietary intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in children - a workshop report

    NARCIS (Netherlands)

    Koletzko, B.; Uauy, R.; Palou, A.; Kok, F.J.; Hornstra, G.; Eilander, A.; Moretti, D.; Osendarp, S.J.M.; Zock, P.L.; Innis, S.

    2010-01-01

    There is controversy whether children should have a dietary supply of preformed long-chain polyunsaturated n-3 fatty acids EPA and DHA. The aims of the workshop were to review evidence for a possible benefit of a preformed EPA and/or DHA supply, of data required to set desirable intakes for children

  17. Differential response to an algae supplement high in DHA mediated by maternal periconceptional diet: intergenerational effects of n-6 fatty acids.

    Science.gov (United States)

    Clayton, Edward H; Lamb, Tracy A; Refshauge, Gordon; Kerr, Matthew J; Bailes, Kristy L; Ponnampalam, Eric N; Friend, Michael A; Hopkins, David L

    2014-08-01

    Algae high in docosahexaenoic acid (DHA) may provide a source of long-chain omega-3 polyunsaturated fatty acids (LCn-3PUFA) for inclusion in the diet of lambs to improve the LCn-3PUFA status of meat. The effect of background LCn-3PUFA status on the metabolism of high DHA algae is, however, unknown. The aim of the current study was to determine whether the response to a high in DHA algae supplement fed to lambs for six weeks prior to slaughter was mediated by a maternal periconceptional diet. Forty Poll Dorset × Border Leicester × Merino weaner lambs were allocated to receive either a ration based on oat grain, lupin grain, and chopped lucerne (control) or the control ration with DHA-Gold™ algae included at 1.92 % DM (Algae) based on whether the dams of lambs had previously been fed a diet high in n-3 or n-6 around conception. LCn-3PUFA concentration was determined in plasma and red blood cells (RBC) prior to and following feeding. The concentrations of EPA and DHA in the plasma and RBC of lambs receiving the control ration were significantly (p DHA were also significantly (p DHA was, however, significantly (p DHA.

  18. Comparison of the Incorporation of DHA in Circulatory and Neural Tissue When Provided as Triacylglycerol (TAG), Monoacylglycerol (MAG) or Phospholipids (PL) Provides New Insight into Fatty Acid Bioavailability.

    Science.gov (United States)

    Destaillats, Frédéric; Oliveira, Manuel; Bastic Schmid, Viktoria; Masserey-Elmelegy, Isabelle; Giuffrida, Francesca; Thakkar, Sagar K; Dupuis, Lénaïck; Gosoniu, Maria Laura; Cruz-Hernandez, Cristina

    2018-05-15

    Phospholipids (PL) or partial acylglycerols such as sn -1(3)-monoacylglycerol (MAG) are potent dietary carriers of long-chain polyunsaturated fatty acids (LC-PUFA) and have been reported to provide superior bioavailability when compared to conventional triacylglycerol (TAG). The main objective of the present study was to compare the incorporation of docosahexaenoic acid (DHA) in plasma, erythrocytes, retina and brain tissues in adult rats when provided as PL (PL-DHA) and MAG (MAG-DHA). Conventional dietary DHA oil containing TAG (TAG-DHA) as well as control chow diet were used to evaluate the potency of the two alternative DHA carriers over a 60-day feeding period. Fatty acid profiles were determined in erythrocytes and plasma lipids at time 0, 7, 14, 28, 35 and 49 days of the experimental period and in retina, cortex, hypothalamus, and hippocampus at 60 days. The assessment of the longitudinal evolution of DHA in erythrocyte and plasma lipids suggest that PL-DHA and MAG-DHA are efficient carriers of dietary DHA when compared to conventional DHA oil (TAG-DHA). Under these experimental conditions, both PL-DHA and MAG-DHA led to higher incorporations of DHA erythrocytes lipids compared to TAG-DHA group. After 60 days of supplementation, statistically significant increase in DHA level incorporated in neural tissues analyzed were observed in the DHA groups compared with the control. The mechanism explaining hypothetically the difference observed in circulatory lipids is discussed.

  19. Supplementation of DHA but not DHA with arachidonic acid during pregnancy and lactation influences general movement quality in 12-week-old term infants

    NARCIS (Netherlands)

    van Goor, Saskia A.; Dijck-Brouwer, D. A. Janneke; Doornbos, Bennard; Erwich, Jan Jaap H. M.; Schaafsma, Anne; Muskiet, Frits A. J.; Hadders-Algra, Mijna

    2010-01-01

    DHA and arachidonic acid (AA) are important for neurodevelopment. A traditional neonatal neurological examination and the evaluation of general movement quality are sensitive techniques for assessing neurodevelopment in young infants. Mildly abnormal general movement,,; at 3 months have been

  20. FADS genotype and diet are important determinants of DHA status: a cross-sectional study in Danish infants1-3

    DEFF Research Database (Denmark)

    Harsløf, Laurine Bente Schram; Larsen, Lesli Hingstrup; Ritz, Christian

    2013-01-01

    Background: Infant docosahexaenoic acid (DHA) status is supported by the DHA content of breast milk and thus can decrease once complementary feeding begins. Furthermore, it is unclear to what extent endogenous DHA synthesis contributes to status. Objective: We investigated several determinants, i...

  1. Impact of Genotype on EPA and DHA Status and Responsiveness to Increased Intakes

    Directory of Open Access Journals (Sweden)

    Anne Marie Minihane

    2016-03-01

    Full Text Available At a population level, cardioprotective and cognitive actions of the fish oil (FO derived long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA have been extensively demonstrated. In addition to dietary intake, which is limited for many individuals, EPA and DHA status is dependent on the efficiency of their biosynthesis from α-linolenic acid. Gender and common gene variants have been identified as influencing the rate-limiting desaturase and elongase enzymes. Response to a particular intake or status is also highly heterogeneous and likely influenced by genetic variants which impact on EPA and DHA metabolism and tissue partitioning, transcription factor activity, or physiological end-point regulation. Here, available literature relating genotype to tissue LC n-3 PUFA status and response to FO intervention is considered. It is concluded that the available evidence is relatively limited, with much of the variability unexplained, though APOE and FADS genotypes are emerging as being important. Although genotype × LC n-3 PUFA interactions have been described for a number of phenotypes, few have been confirmed in independent studies. A more comprehensive understanding of the genetic, physiological and behavioural modulators of EPA and DHA status and response to intervention is needed to allow refinement of current dietary LC n-3 PUFA recommendations and stratification of advice to “vulnerable” and responsive subgroups.

  2. Eicosapentaenoic acid (EPA) vs. Docosahexaenoic acid (DHA): Effects in epididymal white adipose tissue of mice fed a high-fructose diet.

    Science.gov (United States)

    Bargut, Thereza Cristina Lonzetti; Santos, Larissa Pereira; Machado, Daiana Guimarães Lopes; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos Alberto

    2017-08-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to be beneficial for many diseases, including those associated with the metabolic syndrome (e.g. insulin resistance and hypertension). Nevertheless, not only their actions are not entirely understood, but also their only effects were not yet elucidated. Therefore, we aimed to compare the effects of EPA and DHA, alone or in combination, on the epididymal white adipose tissue (WAT) metabolism in mice fed a high-fructose diet. 3-mo-old C57Bl/6 mice were fed a control diet (C) or a high-fructose diet (HFru). After three weeks on the diets, the HFru group was subdivided into four new groups for another five weeks: HFru, HFru+EPA, HFru+DHA, and HFru-EPA+DHA (n=10/group). Besides evaluating biometric and metabolic parameters of the animals, we measured the adipocyte area and performed molecular analyses (inflammation and lipolysis) in the epididymal WAT. The HFru group showed adipocyte hypertrophy, inflammation, and uncontrolled lipolysis. The treated animals showed a reversion of adipocyte hypertrophy, inhibition of inflammation with activation of anti-inflammatory mediators, and regularization of lipolysis. Overall, the beneficial effects were more marked with DHA than EPA. Although the whole-body metabolic effects were similar between EPA and DHA, DHA appeared to be the central actor in WAT metabolism, modulating pro and anti-inflammatory pathways and alleviating adipocytes abnormalities. Therefore, when considering fructose-induced adverse effects in WAT, the most prominent actions were observed with DHA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Sex-specific effects of docosahexaenoic acid (DHA) on the microbiome and behavior of socially-isolated mice.

    Science.gov (United States)

    Davis, Daniel J; Hecht, Patrick M; Jasarevic, Eldin; Beversdorf, David Q; Will, Matthew J; Fritsche, Kevin; Gillespie, Catherine H

    2017-01-01

    Dietary supplementation with the long-chain omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) has been shown to have a beneficial effect on reducing the symptoms associated with several neuropsychiatric conditions including anxiety and depression. However, the mechanisms underlying this effect remain largely unknown. Increasing evidence suggests that the vast repertoire of commensal bacteria within the gut plays a critical role in regulating various biological processes in the brain and may contribute to neuropsychiatric disease risk. The present study determined the contribution of DHA on anxiety and depressive-like behaviors through modulation of the gut microbiota in a paradigm of social isolation. Adult male and female mice were subjected to social isolation for 28days and then placed either on a control diet or a diet supplemented with 0.1% or 1.0% DHA. Fecal pellets were collected both 24h and 7days following the introduction of the new diets. Behavioral testing revealed that male mice fed a DHA diet, regardless of dose, exhibited reduced anxiety and depressive-like behaviors compared to control fed mice while no differences were observed in female mice. As the microbiota-brain-axis has been recently implicated in behavior, composition of microbial communities were analyzed to examine if these sex-specific effects of DHA may be associated with changes in the gut microbiota (GM). Clear sex differences were observed with males and females showing distinct microbial compositions prior to DHA supplementation. The introduction of DHA into the diet also induced sex-specific interactions on the GM with the fatty acid producing a significant effect on the microbial profiles in males but not in females. Interestingly, levels of Allobaculum and Ruminococcus were found to significantly correlate with the behavioral changes observed in the male mice. Predictive metagenome analysis using PICRUSt was performed on the fecal samples collected from males and

  4. Acido-basic control of the thermoelectric properties of poly(3,4-ethylenedioxythiophene)tosylate (PEDOT-Tos) thin films

    DEFF Research Database (Denmark)

    Khan, Zia Ullah; Bubnova, Olga; Jafari, Mohammad Javad

    2015-01-01

    study the variation in the thermoelectric properties by a simple acido-basic treatment. The emphasis of this study is to elucidate the chemical changes induced by acid (HCl) or base (NaOH) treatment in PEDOT-Tos thin films using various spectroscopic and structural techniques. We could identify changes...... in the nanoscale morphology due to anion exchange between tosylate and Cl- or OH-. But, we identified that changing the pH leads to a tuning of the oxidation level of the polymer, which can explain the changes in thermoelectric properties. Hence, a simple acid-base treatment allows finding the optimum...

  5. DHA and EPA Content and Fatty Acid Profile of 39 Food Fishes from India

    Directory of Open Access Journals (Sweden)

    Bimal Prasanna Mohanty

    2016-01-01

    Full Text Available Docosahexaenoic acid (DHA is the principal constituent of a variety of cells especially the brain neurons and retinal cells and plays important role in fetal brain development, development of motor skills, and visual acuity in infants, lipid metabolism, and cognitive support and along with eicosapentaenoic acid (EPA it plays important role in preventing atherosclerosis, dementia, rheumatoid arthritis, Alzheimer’s disease, and so forth. Being an essential nutrient, it is to be obtained through diet and therefore searching for affordable sources of these ω-3 polyunsaturated fatty acids (PUFA is important for consumer guidance and dietary counseling. Fish is an important source of PUFA and has unique advantage that there are many food fish species available and consumers have a wide choice owing to availability and affordability. The Indian subcontinent harbors a rich fish biodiversity which markedly varies in their nutrient composition. Here we report the DHA and EPA content and fatty acid profile of 39 important food fishes (including finfishes, shellfishes, and edible molluscs from both marine water and freshwater from India. The study showed that fishes Tenualosa ilisha, Sardinella longiceps, Nemipterus japonicus, and Anabas testudineus are rich sources of DHA and EPA. Promotion of these species as DHA rich species would enhance their utility in public health nutrition.

  6. Maternal DHA supplementation protects rat offspring against impairment of learning and memory following prenatal exposure to valproic acid.

    Science.gov (United States)

    Gao, Jingquan; Wu, Hongmei; Cao, Yonggang; Liang, Shuang; Sun, Caihong; Wang, Peng; Wang, Ji; Sun, Hongli; Wu, Lijie

    2016-09-01

    Docosahexaenoic acid (22:6n-3; DHA) is known to play a critical role in postnatal brain development. However, there have been no studies investigating the preventive effect of DHA on prenatal valproic acid (VPA)-induced behavioral and molecular alterations in offspring. The present study was to evaluate the neuroprotective effects in offspring using maternal feeding of DHA to rats exposed to VPA in pregnancy. In the present study, rats were exposed to VPA on day 12.5 of pregnancy; DHA was administered at the dosages of 100, 300 and 500 mg/kg/day for 3 weeks from day 1 to 21 of pregnancy. The results showed that maternal feeding of DHA to the prenatal exposed to VPA (1) prevented VPA-induced learning and memory impairment but did not change social-related behavior, (2) increased total DHA content in offspring plasma and hippocampus, (3) rescued VPA-induced neuronal loss and apoptosis of pyramidal cells in hippocampal CA1, (4) influenced the content of malondialdehyde and glutathione and the activities of superoxide dismutase and glutathione in the hippocampus, (5) altered levels of apoptosis-related proteins (Bcl-2, Bax and caspase-3) and inhibited the activity of caspase-3 in offspring hippocampus and (6) enhanced relative levels of p-CaMKII and p-CREB proteins in the hippocampus. These findings suggest that maternal feeding with DHA may prevent prenatal VPA-induced impairment of learning and memory, normalize several different molecules associated with oxidative stress and apoptosis in the hippocampus of offspring, and exert preventive effects on prenatal VPA-induced brain dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Effect of Docosahexaenoic Acid (DHA) Supplementation on Inflammatory Cytokine Levels in Infants at High Genetic Risk for Type 1 Diabetes

    Science.gov (United States)

    Chase, H. Peter; Boulware, David; Rodriguez, Henry; Donaldson, David; Chritton, Sonia; Rafkin-Mervis, Lisa; Krischer, Jeffrey; Skyler, Jay S.; Clare-Salzler, Michael

    2014-01-01

    OBJECTIVE Type 1 diabetes (T1D) results from the inflammatory destruction of pancreatic β-cells. In the present study, we investigated the effect of docosahexaenoic acid (DHA) supplementation on stimulated inflammatory cytokine production in white blood cells (WBC) from infants with a high genetic risk for T1D. RESEARCH DESIGN AND METHODS This was a multicenter, two-arm, randomized, double blind pilot trial of DHA supplementation, beginning either in the last trimester of pregnancy (41 infants) or in the first five months after birth (57 infants). Levels of DHA in infant and maternal red blood cell (RBC) membranes and in breast milk were analyzed by gas chromatography/mass spectrometry. Inflammatory cytokines were assayed from whole blood culture supernatants using the Luminex Multiplex assay after stimulation with high dose lipopolysaccharide (LPS), 1μg/mL. RESULTS The levels of RBC DHA were increased by 61–100% in treated compared to control infants at ages 6 to 36 months. There were no statistically significant reductions in production of the inflammatory cytokines, IL-1β, TNFα or IL-12p40 at any of the 6 time points measured. The inflammatory marker, hsCRP, was significantly lower in breast-fed DHA-treated infants compared to all formula-fed infants at age 12 months. Three infants (two received DHA) were removed from the study as a result of developing ≥ two persistently positive biochemical islet autoantibodies. CONCLUSIONS This pilot trial showed that supplementation of infant diets with DHA is safe and fulfilled the pre-study goal of increasing infant RBC DHA levels by at least 20%. Inflammatory cytokine production was not consistently reduced. PMID:25039804

  8. Enhancing physicochemical properties of emulsions by heteroaggregation of oppositely charged lactoferrin coated lutein droplets and whey protein isolate coated DHA droplets.

    Science.gov (United States)

    Li, Xin; Wang, Xu; Xu, Duoxia; Cao, Yanping; Wang, Shaojia; Wang, Bei; Sun, Baoguo; Yuan, Fang; Gao, Yanxiang

    2018-01-15

    The formation and physicochemical stability of mixed functional components (lutein & DHA) emulsions through heteroaggregation were studied. It was formed by controlled heteroaggregation of oppositely charged lutein and DHA droplets coated by cationic lactoferrin (LF) and anionic whey protein isolate (WPI), respectively. Heteroaggregation was induced by mixing the oppositely charged LF-lutein and WPI-DHA emulsions together at pH 6.0. Droplet size, zeta-potential, transmission-physical stability, microrheological behavior and microstructure of the heteroaggregates formed were measured as a function of LF-lutein to WPI-DHA droplet ratio. Lutein degradation and DHA oxidation by measurement of lipid hydroperoxides and thiobarbituric acid reactive substances were determined. Upon mixing the two types of bioactive compounds droplets together, it was found that the largest aggregates and highest physical stability occurred at a droplet ratio of 40% LF-lutein droplets to 60% WPI-DHA droplets. Heteroaggregates formation altered the microrheological properties of the mixed emulsions mainly by the special network structure of the droplets. When LF-coated lutein droplets ratios were more than 30% and less than 60%, the mixed emulsions exhibited distinct decreases in the Mean Square Displacement, which indicated that their limited scope of Brownian motion and stable structure. Mixed emulsions with LF-lutein/WPI-DHA droplets ratio of 4:6 exhibited Macroscopic Viscosity Index with 13 times and Elasticity Index with 3 times of magnitudes higher than the individual emulsions from which they were prepared. Compared with the WPI-DHA emulsion or LF-lutein emulsion, the oxidative stability of the heteroaggregate of LF-lutein/WPI-DHA emulsions was improved. Heteroaggregates formed by oppositely charged bioactive compounds droplets may be useful for creating specific food structures that lead to desirable physicochemical properties, such as microrheological property, physical and chemical

  9. Docosahexaenoic (DHA modulates phospholipid-hydroperoxide glutathione peroxidase (Gpx4 gene expression to ensure self-protection from oxidative damage in hippocampal cells

    Directory of Open Access Journals (Sweden)

    Veronica eCasañas-Sanchez

    2015-07-01

    Full Text Available Docosahexaenoic acid (DHA, 22:6n-3 is a unique polyunsaturated fatty acid particularly abundant in nerve cell membrane phospholipids. DHA is a pleiotropic molecule that, not only modulates the physicochemical properties and architecture of neuronal plasma membrane, but it is also involved in multiple facets of neuronal biology, from regulation of synaptic function to neuroprotection and modulation of gene expression. As a highly unsaturated fatty acid due to the presence of six double bonds, DHA is susceptible for oxidation, especially in the highly pro-oxidant environment of brain parenchyma. We have recently reported the ability of DHA to regulate the transcriptional program controlling neuronal antioxidant defenses in a hippocampal cell line, especially the glutathione/glutaredoxin system. Within this antioxidant system, DHA was particularly efficient in triggering the upregulation of Gpx4 gene, which encodes for the nuclear, cytosolic and mitochondrial isoforms of phospholipid-hydroperoxide glutathione peroxidase (PH-GPx/GPx4, the main enzyme protecting cell membranes against lipid peroxidation and capable to reduce oxidized phospholipids in situ. We show here that this novel property of DHA is also significant in the hippocampus of wild-type mice and APP/PS1 transgenic mice, a familial model of Alzheimer’s disease. By doing this, DHA stimulates a mechanism to self-protect from oxidative damage even in the neuronal scenario of high aerobic metabolism and in the presence of elevated levels of transition metals, which inevitably favor the generation of reactive oxygen species. Noticeably, DHA also upregulated a novel Gpx4 splicing variant, harboring part of the first intronic region, which according to the ‘sentinel RNA hypothesis’ would expand the ability of Gpx4 (and DHA to provide neuronal antioxidant defense independently of conventional nuclear splicing in cellular compartments, like dendritic zones, located away from nuclear

  10. Comparative Analysis of EPA/DHA-PL Forage and Liposomes in Orotic Acid-Induced Nonalcoholic Fatty Liver Rats and Their Related Mechanisms.

    Science.gov (United States)

    Chang, Mengru; Zhang, Tiantian; Han, Xiuqing; Tang, Qingjuan; Yanagita, Teruyoshi; Xu, Jie; Xue, Changhu; Wang, Yuming

    2018-02-14

    Nonalcoholic fatty liver disease (NAFLD) has become one predictive factor of death from various illnesses. The present study was to comparatively investigate the effects of eicosapentaenoic acid-enriched and docosahexaenoic acid-enriched phospholipids forage (EPA-PL and DHA-PL) and liposomes (lipo-EPA and lipo-DHA) on NAFLD and demonstrate the possible protective mechanisms involved. The additive doses of EPA-PL and DHA-PL in all treatment groups were 1% of total diets, respectively. The results showed that Lipo-EPA could significantly improve hepatic function by down-regulating orotic acid-induced serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels by 55.6% and 34.2%, respectively (p DHA could also significantly suppress hepatic lipid accumulation mainly by enhancement of hepatic lipolysis and cholesterol efflux. Furthermore, DHA-PL played a certain role in inhibiting hepatic lipogenesis and accelerating cholesterol efflux. The results obtained in this work might contribute to the understanding of the biological activities of EPA/DHA-PL and liposomes and further investigation on its potential application values for food supplements.

  11. DHA-rich n-3 fatty acid supplementation decreases DNA methylation in blood leukocytes: the OmegAD study.

    Science.gov (United States)

    Karimi, Mohsen; Vedin, Inger; Freund Levi, Yvonne; Basun, Hans; Faxén Irving, Gerd; Eriksdotter, Maria; Wahlund, Lars-Olof; Schultzberg, Marianne; Hjorth, Erik; Cederholm, Tommy; Palmblad, Jan

    2017-10-01

    Background: Dietary fish oils, rich in long-chain n-3 (ω-3) fatty acids (FAs) [e.g., docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3)], modulate inflammatory reactions through various mechanisms, including gene expression, which is measured as messenger RNA concentration. However, the effects of long-term treatment of humans with DHA and EPA on various epigenetic factors-such as DNA methylation, which controls messenger RNA generation-are poorly described. Objective: We wanted to determine the effects of 6 mo of dietary supplementation with an n-3 FA preparation rich in DHA on global DNA methylation of peripheral blood leukocytes (PBLs) and the relation to plasma EPA and DHA concentrations in Alzheimer disease (AD) patients. Design: In the present study, DNA methylation in four 5'-cytosine-phosphate-guanine-3' (CpG) sites of long interspersed nuclear element-1 repetitive sequences was assessed in a group of 63 patients (30 given the n-3 FA preparation and 33 given placebo) as an estimation of the global DNA methylation in blood cells. Patients originated from the randomized, double-blind, placebo-controlled OmegAD study, in which 174 AD patients received either 1.7 g DHA and 0.6 g EPA (the n-3 FA group) or placebo daily for 6 mo. Results: At 6 mo, the n-3 FA group displayed marked increases in DHA and EPA plasma concentrations (2.6- and 3.5-fold), as well as decreased methylation in 2 out of 4 CpG sites ( P DHA concentration, and were not related to apolipoprotein E-4 allele frequency. Conclusion: Supplementation with n-3 FA for 6 mo was associated with global DNA hypomethylation in PBLs. Our data may be of importance in measuring various effects of marine oils, including gene expression, in patients with AD and in other patients taking n-3 FA supplements. This trial was registered at clinicaltrials.gov as NCT00211159. © 2017 American Society for Nutrition.

  12. The Effect of Omega-3 Fatty Acids, EPA, and/or DHA on Male Infertility: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Hosseini, Banafshe; Nourmohamadi, Mahdieh; Hajipour, Shima; Taghizadeh, Mohsen; Asemi, Zatollah; Keshavarz, Seyed Ali; Jafarnejad, Sadegh

    2018-02-16

    The objective was to evaluate the effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on sperm parameters including total sperm concentration, sperm motility, sperm DHA, and seminal plasma DHA concentration in infertile men. The literature search was conducted in PubMed, Google Scholar, and Scopus from January 1, 1990 to December 20, 2017. The systematic review and meta-analysis were based on randomized controlled trials in infertile men with DHA or EPA treatments, either alone or in combination with other micronutrients. Three studies met the inclusion criteria: 147 patients in the intervention group and 143 patients in the control group. The analysis showed that omega-3 treatments significantly increased the sperm motility (RR 5.82, 95% CI [2.91, 8.72], p DHA concentration (RR 1.61, 95% CI [0.15, 3.07], p =. 03, I 2 = 98%). Compared with the controls, the interventions did not affect the sperm concentration (RR 0.31, 95% CI [-8.13, 8.76], p =. 94, I 2 = 95%) or sperm DHA (RR 0.50, 95% CI [-4.17, 5.16], p =. 83, I 2 = 99%). The observed heterogeneity may be due to administration period and dosage of omega-3 fatty acids across the studies. Funnel plot shows no evidence of publication bias. This meta-analysis indicates that supplementing infertile men with omega-3 fatty acids resulted in a significant improvement in sperm motility and concentration of DHA in seminal plasma.

  13. DHA-Mediated Regulation of Lung Cancer Cell Migration Is Not Directly Associated with Gelsolin or Vimentin Expression

    Science.gov (United States)

    Ali, Mehboob; Heyob, Kathryn; Rogers, Lynette K.

    2016-01-01

    AIMS Deaths associated with cancer metastasis have steadily increased making the need for newer, anti-metastatic therapeutics imparative. Gelsolin and vimentin, actin binding proteins expressed in metastatic tumors, participate in actin remodelling and regulate cell migration. Docosahexaenoic acid (DHA) limits cancer cell proliferation and adhesion but the mechanisms involved in reducing metastatic phenotypes are unknown. We aimed to investigate the effects of DHA on gelsolin and vimentin expression, and ultimately cell migration and proliferation, in this context. MAIN METHODS Non-invasive lung epithelial cells (MLE12) and invasive lung cancer cells (A549) were treated with DHA (30 μmol/ml) or/and 8 bromo-cyclic adenosine monophosphate (8 Br-cAMP) (300 μmol/ml) for 6 or 24 h either before (pre-treatment) or after (post-treatment) plating in transwells. Migration was assessed by the number of cells that progressed through the transwell. Gelsolin and vimentin expression were measured by western blot and confocal microscopy in cells, and by immunohistochemistry in human lung cancer biospy samples. KEY FINDINGS A significant decrease in cell migration was detected for A549 cells treated with DHA verses control but this same decrease was not seen in MLE12 cells. DHA and 8 Br-cAMP altered gelsolin and vimentin expression but no clear pattern of change was observed. Immunoflorescence staining indicated slightly higher vimentin expression in human lung tissue that was malignant compared to control. SIGNIFICANCE Collectively, our data indicate that DHA inhibits cancer cell migration and further suggests that vimentin and gelsolin may play secondary roles in cancer cell migration and proliferation, but are not the primary regulators. PMID:27157519

  14. Food Sources of EPA and DHA in the Diets of American Children, NHANES 2003-2010

    OpenAIRE

    Kranz, Sibylle; Huss, Lyndsey R.; Dobbs-Oates, Jennifer

    2015-01-01

    Objective Dietary eicosapentaenoicacid (EPA) and docosahexaenoic acid (DHA) are found in the highest concentrations in fish and seafood. As important nutrients for brain and eye development and function, their consumption levels are of public health interest, especially in children. This study was conducted toexamine children’sreported consumption of fish and shellfish as well as EPA and DHA intake.Methods Secondary analysis of dietary intake (24-hour recall) and Food Frequency Questionnaire ...

  15. Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Fetal Pulmonary Circulation: An Experimental Study in Fetal Lambs.

    Science.gov (United States)

    Sharma, Dyuti; Aubry, Estelle; Ouk, Thavarak; Houeijeh, Ali; Houfflin-Debarge, Véronique; Besson, Rémi; Deruelle, Philippe; Storme, Laurent

    2017-07-16

    Background: Persistent pulmonary hypertension of the newborn (PPHN) causes significant morbidity and mortality in neonates. n -3 Poly-unsaturated fatty acids have vasodilatory properties in the perinatal lung. We studied the circulatory effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in fetal sheep and in fetal pulmonary arterial rings. Methods: At 128 days of gestation, catheters were placed surgically in fetal systemic and pulmonary circulation, and a Doppler probe around the left pulmonary artery (LPA). Pulmonary arterial pressure and LPA flow were measured while infusing EPA or DHA for 120 min to the fetus, to compute pulmonary vascular resistance (PVR). The dose effects of EPA or DHA were studied in vascular rings pre-constricted with serotonin. Rings treated with EPA were separated into three groups: E+ (intact endothelium), E- (endothelium stripped) and LNA E+ (pretreatment of E+ rings with l-nitro-arginine). Results: EPA, but not DHA, induced a significant and prolonged 25% drop in PVR ( n = 8, p DHA resulted in only a mild relaxation at the highest concentration of DHA (300 µM) compared to E+. Conclusions: EPA induces a sustained pulmonary vasodilatation in fetal lambs. This effect is endothelium- and dose-dependent and involves nitric oxide (NO) production. We speculate that EPA supplementation may improve pulmonary circulation in clinical conditions with PPHN.

  16. The Role of Docosahexaenoic Acid (DHA) in the Control of Obesity and Metabolic Derangements in Breast Cancer.

    Science.gov (United States)

    Molfino, Alessio; Amabile, Maria Ida; Monti, Massimo; Arcieri, Stefano; Rossi Fanelli, Filippo; Muscaritoli, Maurizio

    2016-04-05

    Obesity represents a major under-recognized preventable risk factor for cancer development and recurrence, including breast cancer (BC). Healthy diet and correct lifestyle play crucial role for the treatment of obesity and for the prevention of BC. Obesity is significantly prevalent in western countries and it contributes to almost 50% of BC in older women. Mechanisms underlying obesity, such as inflammation and insulin resistance, are also involved in BC development. Fatty acids are among the most extensively studied dietary factors, whose changes appear to be closely related with BC risk. Alterations of specific ω-3 polyunsaturated fatty acids (PUFAs), particularly low basal docosahexaenoic acid (DHA) levels, appear to be important in increasing cancer risk and its relapse, influencing its progression and prognosis and affecting the response to treatments. On the other hand, DHA supplementation increases the response to anticancer therapies and reduces the undesired side effects of anticancer therapies. Experimental and clinical evidence shows that higher fish consumption or intake of DHA reduces BC cell growth and its relapse risk. Controversy exists on the potential anticancer effects of marine ω-3 PUFAs and especially DHA, and larger clinical trials appear mandatory to clarify these aspects. The present review article is aimed at exploring the capacity of DHA in controlling obesity-related inflammation and in reducing insulin resistance in BC development, progression, and response to therapies.

  17. Apports en DHA (acide gras oméga-3 par les poissons et les fruits de mer consommés en France

    Directory of Open Access Journals (Sweden)

    Bourre Jean-Marie

    2007-01-01

    Full Text Available This present work measures the contributions of seafood (finfish and shellfish, wild and farmed to the intakes of DHA in France, year 2005, and consequently to the French recommended daily intakes (RDA of DHA. For this purpose, we measured the concentrations of DHA in each individual seafood by analysis of many published data. We also determined the exact consumption of the main products of seafood (fishing and farming in France (year 2005 using the modified method of the dietary intake measurement defined by the FAO. For year 2005, the 34 species of finfish and shellfish whose DHA contents are known account for 150% of the RDA of this omega-3 fatty acid. Taking all the species individually and extrapolating to include those whose DHA contents are not known, gives 156% of the RDA. The 10 greatest contributors to the DHA intake in the present diet are: salmon (47.6 mg/day/person, sardine (28.4, tuna (20.5, mackerel (15.7, herring (12.4, Alaskan pollock (8.9, cod (6.9, trout (6.5, hake (4.7, saithe (4.6. The 5 species of oily fish (salmon, sardine, tuna, mackerel and herring provide 63% of the DHA intake, and thus approx 95% of the French RDA. Besides DHA, seafood contains low amounts of ALA, but it can very high in farmed fish fed on rapeseed or linseed products. Omega-3 fatty acids (including EPA and DHA have an important role in human diet, both for prevention and the therapy of different pathologies. Data from many epidemiological studies has shown an inverse association between fish consumption, generally oily fish, and reductions in certain diseases. Although number of people do not lack dietary DHA, others, mainly pregnant women and nursing mothers and those people whose life styles or socio-economic positions restrict their seafood intakes, would benefit greatly from an increased intake of this omega-3 fatty acid.

  18. Mechanism of the modulation of BK potassium channel complexes with different auxiliary subunit compositions by the omega-3 fatty acid DHA.

    Science.gov (United States)

    Hoshi, Toshinori; Tian, Yutao; Xu, Rong; Heinemann, Stefan H; Hou, Shangwei

    2013-03-19

    Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels are well known for their functional versatility, which is bestowed in part by their rich modulatory repertoire. We recently showed that long-chain omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) found in oily fish lower blood pressure by activating vascular BK channels made of Slo1+β1 subunits. Here we examined the action of DHA on BK channels with different auxiliary subunit compositions. Neuronal Slo1+β4 channels were just as well activated by DHA as vascular Slo1+β1 channels. In contrast, the stimulatory effect of DHA was much smaller in Slo1+β2, Slo1+LRRC26 (γ1), and Slo1 channels without auxiliary subunits. Mutagenesis of β1, β2, and β4 showed that the large effect of DHA in Slo1+β1 and Slo1+β4 is conferred by the presence of two residues, one in the N terminus and the other in the first transmembrane segment of the β1 and β4 subunits. Transfer of this amino acid pair from β1 or β4 to β2 introduces a large response to DHA in Slo1+β2. The presence of a pair of oppositely charged residues at the aforementioned positions in β subunits is associated with a large response to DHA. The Slo1 auxiliary subunits are expressed in a highly tissue-dependent fashion. Thus, the subunit composition-dependent stimulation by DHA demonstrates that BK channels are effectors of omega-3 fatty acids with marked tissue specificity.

  19. Aggregation of Aß(25-35 on DOPC and DOPC/DHA bilayers: an atomic force microscopy study.

    Directory of Open Access Journals (Sweden)

    Matilde Sublimi Saponetti

    Full Text Available β amyloid peptide plays an important role in both the manifestation and progression of Alzheimer disease. It has a tendency to aggregate, forming low-molecular weight soluble oligomers, higher-molecular weight protofibrillar oligomers and insoluble fibrils. The relative importance of these single oligomeric-polymeric species, in relation to the morbidity of the disease, is currently being debated. Here we present an Atomic Force Microscopy (AFM study of Aβ(25-35 aggregation on hydrophobic dioleoylphosphatidylcholine (DOPC and DOPC/docosahexaenoic 22∶6 acid (DHA lipid bilayers. Aβ(25-35 is the smallest fragment retaining the biological activity of the full-length peptide, whereas DOPC and DOPC/DHA lipid bilayers were selected as models of cell-membrane environments characterized by different fluidity. Our results provide evidence that in hydrophobic DOPC and DOPC/DHA lipid bilayers, Aβ(25-35 forms layered aggregates composed of mainly annular structures. The mutual interaction between annular structures and lipid surfaces end-results into a membrane solubilization. The presence of DHA as a membrane-fluidizing agent is essential to protect the membrane from damage caused by interactions with peptide aggregates; to reduces the bilayer defects where the delipidation process starts.

  20. Genome-wide association meta-analysis of fish and EPA+DHA consumption in 17 US and European cohorts.

    Directory of Open Access Journals (Sweden)

    Dariush Mozaffarian

    Full Text Available Regular fish and omega-3 consumption may have several health benefits and are recommended by major dietary guidelines. Yet, their intakes remain remarkably variable both within and across populations, which could partly owe to genetic influences.To identify common genetic variants that influence fish and dietary eicosapentaenoic acid plus docosahexaenoic acid (EPA+DHA consumption.We conducted genome-wide association (GWA meta-analysis of fish (n = 86,467 and EPA+DHA (n = 62,265 consumption in 17 cohorts of European descent from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium Nutrition Working Group. Results from cohort-specific GWA analyses (additive model for fish and EPA+DHA consumption were adjusted for age, sex, energy intake, and population stratification, and meta-analyzed separately using fixed-effect meta-analysis with inverse variance weights (METAL software. Additionally, heritability was estimated in 2 cohorts.Heritability estimates for fish and EPA+DHA consumption ranged from 0.13-0.24 and 0.12-0.22, respectively. A significant GWA for fish intake was observed for rs9502823 on chromosome 6: each copy of the minor allele (FreqA = 0.015 was associated with 0.029 servings/day (~1 serving/month lower fish consumption (P = 1.96x10-8. No significant association was observed for EPA+DHA, although rs7206790 in the obesity-associated FTO gene was among top hits (P = 8.18x10-7. Post-hoc calculations demonstrated 95% statistical power to detect a genetic variant associated with effect size of 0.05% for fish and 0.08% for EPA+DHA.These novel findings suggest that non-genetic personal and environmental factors are principal determinants of the remarkable variation in fish consumption, representing modifiable targets for increasing intakes among all individuals. Genes underlying the signal at rs72838923 and mechanisms for the association warrant further investigation.

  1. Whole-body DHA synthesis-secretion kinetics from plasma eicosapentaenoic acid and alpha-linolenic acid in the free-living rat.

    Science.gov (United States)

    Metherel, Adam H; Domenichiello, Anthony F; Kitson, Alex P; Hopperton, Kathryn E; Bazinet, Richard P

    2016-09-01

    Whole body docosahexaenoic acid (DHA, 22:6n-3) synthesis from α-linolenic acid (ALA, 18:3n-3) is considered to be very low, however, the daily synthesis-secretion of DHA may be sufficient to supply the adult brain. The current study aims to assess whether whole body DHA synthesis-secretion kinetics are different when comparing plasma ALA versus eicosapentaenoic acid (EPA, 20:5n-3) as the precursor. Male Long Evans rats (n=6) were fed a 2% ALA in total fat diet for eight weeks, followed by surgery to implant a catheter into each of the jugular vein and carotid artery and 3h of steady-state infusion with a known amount of (2)H-ALA and (13)C-eicosapentaenoic acid (EPA, 20:5n3). Blood samples were collected at thirty-minute intervals and plasma enrichment of (2)H- and (13)C EPA, n-3 docosapentaenoic acid (DPAn-3, 22:5n-3) and DHA were determined for assessment of synthesis-secretion kinetic parameters. Results indicate a 13-fold higher synthesis-secretion coefficient for DHA from EPA as compared to ALA. However, after correcting for the 6.6 fold higher endogenous plasma ALA concentration, no significant differences in daily synthesis-secretion (nmol/day) of DHA (97.6±28.2 and 172±62), DPAn-3 (853±279 and 1139±484) or EPA (1587±592 and 1628±366) were observed from plasma unesterified ALA and EPA sources, respectively. These results suggest that typical diets which are significantly higher in ALA compared to EPA yield similar daily DHA synthesis-secretion despite a significantly higher synthesis-secretion coefficient from EPA. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Effect of α-linolenic acid and DHA intake on lipogenesis and gene expression involved in fatty acid metabolism in growing-finishing pigs.

    Science.gov (United States)

    De Tonnac, A; Labussière, E; Vincent, A; Mourot, J

    2016-07-01

    The regulation of lipogenesis mechanisms related to consumption of n-3 PUFA is poorly understood. The aim of the present study was to find out whether α-linolenic acid (ALA) or DHA uptake can have an effect on activities and gene expressions of enzymes involved in lipid metabolism in the liver, subcutaneous adipose tissue and longissimus dorsi (LD) muscle of growing-finishing pigs. Six groups of ten pigs received one of six experimental diets supplemented with rapeseed oil in the control diet, extruded linseed, microalgae or a mixture of both to implement different levels of ALA and DHA with the same content in total n-3. Results were analysed for linear and quadratic effects of DHA intake. The results showed that activities of malic enzyme (ME) and fatty acid synthase (FAS) decreased linearly in the liver with dietary DHA. Although the expression of the genes of these enzymes and their activities were poorly correlated, ME and FAS expressions also decreased linearly with DHA intake. The intake of DHA down-regulates the expressions of other genes involved in fatty acid (FA) metabolism in some tissues of pigs, such as fatty acid desaturase 2 and sterol-regulatory element binding transcription factor 1 in the liver and 2,4-dienoyl CoA reductase 2 in the LD muscle. FA oxidation in the LD muscle and FA synthesis decreased in the liver with increasing amount of dietary DHA, whereas a retroconversion of DHA into EPA seems to be set up in this last tissue.

  3. Use of a novel docosahexaenoic acid formulation vs control in a neonatal porcine model of short bowel syndrome leads to greater intestinal absorption and higher systemic levels of DHA.

    Science.gov (United States)

    Martin, Camilia R; Stoll, Barbara; Cluette-Brown, Joanne; Akinkuotu, Adesola C; Olutoye, Oluyinka O; Gura, Kathleen M; Singh, Pratibha; Zaman, Munir M; Perillo, Michael C; Puder, Mark; Freedman, Steven D; Burrin, Doug

    2017-03-01

    Infants with short bowel syndrome (SBS) are at high risk for malabsorption, malnutrition, and failure to thrive. The objective of this study was to evaluate in a porcine model of SBS, the systemic absorption of a novel enteral Docosahexaenoic acid (DHA) formulation that forms micelles independent of bile salts (DHA-ALT®). We hypothesized that enteral delivery of DHA-ALT® would result in higher blood levels of DHA compared to a control DHA preparation due to improved intestinal absorption. SBS was induced in term piglets through a 75% mid-jejunoileal resection and the piglets randomized to either DHA-ALT® or control DHA formulation (N=5 per group) for 4 postoperative days. The median±IQR difference in final vs starting weight was 696±425 g in the DHA-ALT® group compared to 132±278 g in the controls (P=.08). Within 12 hours, median±IQR DHA and eicosapentaenoic acid plasma levels (mol%) were significantly higher in the DHA-ALT® vs control group (4.1±0.3 vs 2.5±0.5, P=.009; 0.7±0.3 vs 0.2±0.005, P=.009, respectively). There were lower fecal losses of DHA and greater ileal tissue incorporation with DHA-ALT® vs the control. Morphometric analyses demonstrated an increase in proximal jejunum and distal ileum villus height in the DHA-ALT® group compared to controls (P=.01). In a neonatal porcine model of SBS, enteral administration of a novel DHA preparation that forms micelles independent of bile salts resulted in increased fatty acid absorption, increased ileal tissue incorporation, and increased systemic levels of DHA. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Biodegradace environmentálních polutantů - charakterizace mutantní halogenalkandehalogenasy DhaA31 z Rhodococcus rhodochrous NCIMB 13064

    OpenAIRE

    MALCHER, Pavel

    2013-01-01

    The project was focused on using of protein crystallography practically and mainly on preparation of crystals of model protein Thermolysin and haloalkan dehalogenase mutant variant DhaA31 with the use of standard and advanced crystallization methods. Later the DhaA31 structure was solved and graphically visualized using the molecular modeling programs as well as the structure of Thermolysin. Obtaining the crystals of both studied proteins and description of the DhaA31 structure, active site a...

  5. Effects of the polyunsaturated fatty acids, EPA and DHA, on hematological malignancies: a systematic review.

    Science.gov (United States)

    Moloudizargari, Milad; Mortaz, Esmaeil; Asghari, Mohammad Hossein; Adcock, Ian M; Redegeld, Frank A; Garssen, Johan

    2018-02-20

    Omega-3 polyunsaturated fatty acids (PUFAs) have well established anti-cancer properties. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are among this biologically active family of macromolecules for which various anti-cancer effects have been explained. These PUFAs have a high safety profile and can induce apoptosis and inhibit growth of cancer cells both in vitro and in vivo , following a partially selective manner. They also increase the efficacy of chemotherapeutic agents by increasing the sensitivity of different cell lines to specific anti-neoplastic drugs. Various mechanisms have been proposed for the anti-cancer effects of these omega-3 PUFAs; however, the exact mechanisms still remain unknown. While numerous studies have investigated the effects of DHA and EPA on solid tumors and the responsible mechanisms, there is no consensus regarding the effects and mechanisms of action of these two FAs in hematological malignancies. Here, we performed a systematic review of the beneficial effects of EPA and DHA on hematological cell lines as well as the findings of related in vivo studies and clinical trials. We summarize the key underlying mechanisms and the therapeutic potential of these PUFAs in the treatment of hematological cancers. Differential expression of apoptosis-regulating genes and Glutathione peroxidase 4 (Gp-x4), varying abilities of different cancerous and healthy cells to metabolize EPA into its more active metabolites and to uptake PUFAS are among the major factors that determine the sensitivity of cells to DHA and EPA. Considering the abundance of data on the safety of these FAs and their proven anti-cancer effects in hematological cell lines and the lack of related human studies, further research is warranted to find ways of exploiting the anticancer effects of DHA and EPA in clinical settings both in isolation and in combination with other therapeutic regimens.

  6. Continuous gradient temperature Raman spectroscopy of n-6 DPA and DHA from -100 C to 20°C

    Science.gov (United States)

    One of the great unanswered questions with respect to biological science in general is the absolute necessity of DHA in fast signal processing tissues. N-6 DPA, with just one less diene, group, is fairly abundant in terrestrial food chains yet cannot substitute for DHA. Gradient Temperature Raman sp...

  7. Addition of DHA synergistically enhances the efficacy of regorafenib for kidney cancer therapy

    Science.gov (United States)

    Kim, Jeffrey; Ulu, Arzu; Wan, Debin; Yang, Jun; Hammock, Bruce D; Weiss, Robert H.

    2016-01-01

    Kidney cancer is the 6th most common cancer in the US and its incidence is increasing. The treatment of this malignancy took a major step forward with the recent introduction of targeted therapeutics such as the kinase inhibitors. Unfortunately, kinase inhibition is associated with the onset of resistance after 1–2 years of treatment. Regorafenib, like many multi-kinase inhibitors, was designed to block the activities of several key kinase pathways involved in oncogenesis (Ras/Raf/MEK/ERK) and tumor angiogenesis (VEGF-receptors), and we have recently shown that it also possesses soluble epoxide hydrolase (sEH) inhibitory activity which may be contributing to its salutary effects in patients. Since sEH inhibition results in increases in the DHA-derived epoxydocosapentaenoic acids (EDPs) which we have previously described to possess anti-cancer properties, we asked whether the addition of DHA to a therapeutic regimen in the presence of regorafenib would enhance its beneficial effects in vivo. We now show that the combination of regorafenib and DHA results in a synergistic effect upon tumor invasiveness as well as p-VEGFR attenuation. In addition, this combination showed a reduction in tumor weights, greater than each agent alone, in a mouse xenograft model of human RCC, yielding the expected oxylipin profiles; this data was supported in several RCC cell lines which showed similar results in vitro. Since DHA is the predominant component of fish oil, our data suggest that this non-toxic dietary supplement could be administered with regorafenib during therapy for advanced RCC and could be the basis of a clinical trial. PMID:26921392

  8. Optimization of supercritical carbon dioxide (CO2 extraction of sardine (Sardinella lemuru Bleeker oil using response surface methodology (RSM

    Directory of Open Access Journals (Sweden)

    Gedi, M. A.

    2015-06-01

    Full Text Available Oil was extracted from freeze-dried sardine (Sardinella lemur fillets using supercritical carbon dioxide (SC-CO2 and a few milliliters of ethanol were optimized with response surface methodology (RSM. The impact of extraction pressure (200–400 bars and temperature (40–70 °C were studied on the total extraction yields, ratios of Eicosapentaenoic acid (EPA and Docosahexaenoic acid (DHA. The results were compared with those of Soxhlet and modified Kinsella methods (MKM. The oils obtained using the SC-CO2 and MKM methods were significantly (P El aceite se extrae de filetes de sardinas (Sardinella lemur liofilizando, mediante dióxido de carbono supercrítico (SC-CO2 y unos mililitros de etanol, optimizándose mediante la metodología de superficie de respuesta (RSM. Se ha estudiado la influencia de la presión de extracción (200–400 bars y la temperatura (40–70 °C sobre los rendimientos de extracción total, y sobre las relaciones de ácido eicosapentaenoico (EPA y ácido docosahexaenoico (DHA. Los resultados se compararon con los obtenidos mediante extracción con Soxhlet y el método de Kinsella modificado (MKM. Los aceites obtenidos mediante SC-CO2 y métodos MKM fueron significativamente (P < 0.05 superiores en rendimientos de aceite (8,04% y 6,83%, EPA (5,43% y 5,45% y DHA (18,76% y 18,54%, respectivamente, en comparación con rendimientos mediante Soxhlet (5,10%, EPA (2,17% y DHA (06,46%. De las dos variables independientes, la presión tuvo un efecto crítico sobre el rendimiento, mientras que los porcentajes de EPA y DHA estuvieron notablemente influenciados por la temperatura. Los valores óptimos fueron para una presión de 328 bar y una temperatura de 40 °C, y sus correspondientes respuestas fueron 7,20%, 5,68% y 20,09% para el rendimiento, EPA y DHA, respectivamente. Los valores experimentales de este estudio fueron los previstos y son comparables razonablemente con sus homólogos.

  9. DHA supplementation for late onset Stargardt disease: NAT-3 study

    Directory of Open Access Journals (Sweden)

    Giuseppe Querques

    2010-06-01

    Full Text Available Giuseppe Querques1, Pascale Benlian1, Bernard Chanu2, Nicolas Leveziel1, Gabriel Coscas1, Gisele Soubrane1, Eric H Souied11Department of Ophthalmology, University of Paris XII, Centre Hospitalier Intercommunal de Creteil, 2Department of Nutrition, University of Paris XII, Hopital Henry Mondor, Creteil, FranceBackground: We analyzed the effects of a docosahexaenoic acid (DHA supplementation in patients affected with late onset Stargardt disease (STGD.Methods: DHA (840 mg/day was given to 20 STGD patients for six months. A complete ophthalmologic examination, including best-corrected visual acuity (BCVA and multifocal electroretinogram (mfERG, was performed at inclusion day 0 (D0 and at month 6 (M6.Results: Overall, no statistical differences have been observed at M6 vs D0 as regards BCVA and mfERG (P > 0.05. Mild Improvement of BCVA and improvement of mfERG was noted in seven/40 eyes of four/20 patients. In the first patient, the peak of the a wave increased from 66 nV/deg² to 75.4 nV/deg² in the right eye (RE and 24.5 nV/deg² to 49.1 nV/deg² in the left eye (LE. The peak of the b wave improved from 122 nV/deg² to 157 nV/deg² in the RE, and 102 nV/deg² to 149 nV/deg² in the LE. In the second patient peaks of the a and b waves respectively increased from 11.8 nV/deg² to 72.1 nV/deg² and 53 nV/deg² to 185 nV/deg² in the RE. In the third patient the peak of the a wave increased from 37 nV/deg² to 43 nV/deg² in the RE, and from 31 nV/deg² to 45 nV/deg² in the LE; the peak of the b wave improved from 70 nV/deg² to 89 nV/deg² in the RE, and from 101 nV/deg² to 108 nV/deg² in the LE. In the fourth patient, the peak of the a wave increased from 39 nV/deg² to 42 nV/deg² in the RE, and from 40 nV/deg² to 43 nV/deg² in the LE; the peak of the b wave improved from 86 nV/deg² to 94 nV/deg² in the RE, and from 87 nV/deg² to 107 nV/deg² in the LE.Conclusion: DHA seems to influence some functional parameters in patients affected with

  10. The hydroxylated form of docosahexaenoic acid (DHA-H) modifies the brain lipid composition in a model of Alzheimer's disease, improving behavioral motor function and survival.

    Science.gov (United States)

    Mohaibes, Raheem J; Fiol-deRoque, María A; Torres, Manuel; Ordinas, Margarita; López, David J; Castro, José A; Escribá, Pablo V; Busquets, Xavier

    2017-09-01

    We have compared the effect of the commonly used ω-3 fatty acid, docosahexaenoic acid ethyl ester (DHA-EE), and of its 2-hydroxylated DHA form (DHA-H), on brain lipid composition, behavior and lifespan in a new human transgenic Drosophila melanogaster model of Alzheimer's disease (AD). The transgenic flies expressed human Aβ42 and tau, and the overexpression of these human transgenes in the CNS of these flies produced progressive defects in motor function (antigeotaxic behavior) while reducing the animal's lifespan. Here, we demonstrate that both DHA-EE and DHA-H increase the longer chain fatty acids (≥18C) species in the heads of the flies, although only DHA-H produced an unknown chromatographic peak that corresponded to a non-hydroxylated lipid. In addition, only treatment with DHA-H prevented the abnormal climbing behavior and enhanced the lifespan of these transgenic flies. These benefits of DHA-H were confirmed in the well characterized transgenic PS1/APP mouse model of familial AD (5xFAD mice), mice that develop defects in spatial learning and in memory, as well as behavioral deficits. Hence, it appears that the modulation of brain lipid composition by DHA-H could have remedial effects on AD associated neurodegeneration. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017. Published by Elsevier B.V.

  11. Analysing the dhaT gene in Colombian Clostridium sp. (Clostridia 1,3-propanediol-producing strains

    Directory of Open Access Journals (Sweden)

    Diana Milena Quilaguy-Ayure

    2010-04-01

    Full Text Available To analyze the dhaT gene, one of the genes responsible for the 1,3-propanediol (1,3-PD production, in two native Clostridiumstrains. Materials and methods: The dhaT gene was amplified by Polimerase Chain Reaction with specific primers designed fromClostridium butyricum VPI1718 operon. Bioinformatics tools like BLASTN, ORF finder, BLASTP and ClustalW were used to determinethe identity of the sequence and to assign a function. Results: DNA amplification products were obtained from Colombian Clostridium sp.native strains (IBUN 13A and IBUN 158B and the Clostridium butyricum DSM 2478 strain, which were sequenced. According to thebioinformatics analysis of the above sequences, a high degree of similarity was found with the dhaT gene of different bacterial species. Thehighest percentage of identity was obtained with the Clostridium butyricum VPI 1718 strain. Conclusion: knowledge of the physicalstructure of the 1,3-PD operon in native strains opens the way for developing genetic and metabolic engineering strategies for improvingprocesses productivity.

  12. Production of Structured Phosphatidylcholine with High Content of DHA/EPA by Immobilized Phospholipase A1-Catalyzed Transesterification

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2014-08-01

    Full Text Available This paper presents the synthesis of structured phosphatidylcholine (PC enriched with docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA by transesterification of DHA/EPA-rich ethyl esters with PC using immobilized phospholipsase A1 (PLA1 in solvent-free medium. Firstly, liquid PLA1 was immobilized on resin D380, and it was found that a pH of 5 and a support/PLA1 ratio (w/v of 1:3 were the best conditions for the adsorption. Secondly, the immobilized PLA1 was used to catalyze transesterification of PC and DHA/EPA-rich ethyl esters. The maximal incorporation of DHA and EPA achieved was 30.7% for 24 h of reaction at 55 °C using a substrate mass ratio (PC/ethyl esters of 1:6, an immobilized PLA1 loading of 15% and water dosage of 1.25%. Then the reaction mixture was analyzed by 31P nuclear magnetic resonance (NMR. The composition of reaction product included 16.5% PC, 26.3% 2-diacyl-sn-glycero-3-lysophosphatidylcholine (1-LPC, 31.4% 1-diacyl-sn-glycero-3-lysophosphatidylcholine (2-LPC, and 25.8% sn-glycerol-3-phosphatidylcholine (GPC.

  13. Effects of DHA-enriched hen egg yolk and L-cysteine supplementation on quality of cryopreserved boar semen.

    Science.gov (United States)

    Chanapiwat, Panida; Kaeoket, Kampon; Tummaruk, Padet

    2009-09-01

    The objective of the present study was to determine the effects of docosahexaenoic acid (DHA)-enriched hen egg yolks and L-cysteine supplementation on the qualities of the cryopreserved boar semen. A total of 15 ejaculates from 5 Pietrain boars were divided into 4 groups according to the compositions of the freezing extenders used, that is, normal hen egg yolk (group I), DHA-enriched hen egg yolk (group II), normal hen egg yolk with 5 mmol L(-1) of cysteine supplementation (group III) and DHA-enriched hen egg yolk with 5 mmol L(-1) of cysteine supplementation (group IV). The semen was cryopreserved using controlled rate freezer and was thawed at 50 degrees C for 12 s. Progressive motility, sperm viability, acrosome integrity and functional integrity of sperm plasma membrane of the post-thawed semen were evaluated. The supplementation of L-cysteine in the freezing extender alone (group III) improved progressive motility (P semen qualities (P > 0.05). In conclusion, the supplementation of antioxidant L-cysteine alone or in combination with DHA-enriched hen egg yolk significantly improved the post-thawed semen qualities, especially progressive motility and acrosome integrity.

  14. PEMANFAATAN MIKROALGA LAUT Chlorella vulgaris SUMBER DHA DAN EPA

    OpenAIRE

    Anggraeni, Peni

    2016-01-01

    Penelitian tentang mikroalga laut jenis Chlorella vulgaris telah dilakukan. Chlorella vulgaris dipilih sebagai bahan penambah gizi untuk di fortifikasi kedalam makanan . Penelitian ini bertujuan untuk mengetahui kandungan gizi dengan menganalisis kandungan DHA dan EPA. Penelitian ini dilakukan dengan mengkultur fitoplankton Chlorella vulgaris dan dipanen setelah media kultur mencapai fase Stasioner. Kemudian, dikeringkan dengan menggunakan freeze dryer, biomassa kering dianalisis kandungan DH...

  15. The Pattern of Fatty Acids Displaced by EPA and DHA Following 12 Months Supplementation Varies between Blood Cell and Plasma Fractions

    OpenAIRE

    Walker, Celia G.; West, Annette L.; Browning, Lucy M.; Madden, Jackie; Gambell, Joanna M.; Jebb, Susan A.; Calder, Philip C.

    2015-01-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are increased in plasma lipids and blood cell membranes in response to supplementation. Whilst arachidonic acid (AA) is correspondingly decreased, the effect on other fatty acids (FA) is less well described and there may be site-specific differences. In response to 12 months EPA + DHA supplementation in doses equivalent to 0–4 portions of oily fish/week (1 portion: 3.27 g EPA+DHA) multinomial regression analysis was used to identify...

  16. Characterization of docosahexaenoic acid (DHA)-induced heme oxygenase-1 (HO-1) expression in human cancer cells: the importance of enhanced BTB and CNC homology 1 (Bach1) degradation.

    Science.gov (United States)

    Wang, Shuai; Hannafon, Bethany N; Wolf, Roman F; Zhou, Jundong; Avery, Jori E; Wu, Jinchang; Lind, Stuart E; Ding, Wei-Qun

    2014-05-01

    The effect of docosahexaenoic acid (DHA) on heme oxygenase-1 (HO-1) expression in cancer cells has never been characterized. This study examines DHA-induced HO-1 expression in human cancer cell model systems. DHA enhanced HO-1 gene expression in a time- and concentration-dependent manner, with maximal induction at 21 h of treatment. This induction of HO-1 expression was confirmed in vivo using a xenograft nude mouse model fed a fish-oil-enriched diet. The increase in HO-1 gene transcription induced by DHA was significantly attenuated by the antioxidant N-acetyl cysteine, suggesting the involvement of oxidative stress. This was supported by direct measurement of lipid peroxide levels after DHA treatment. Using a human HO-1 gene promoter reporter construct, we identified two antioxidant response elements (AREs) that mediate the DHA-induced increase in HO-1 gene transcription. Knockdown of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression compromised the DHA-induced increase in HO-1 gene transcription, indicating the importance of the Nrf2 pathway in this event. However, the nuclear protein levels of Nrf2 remained unchanged upon DHA treatment. Further studies demonstrated that DHA reduces nuclear Bach1 protein expression by promoting its degradation and attenuates Bach1 binding to the AREs in the HO-1 gene promoter. In contrast, DHA enhanced Nrf2 binding to the AREs without affecting nuclear Nrf2 expression levels, indicating a new cellular mechanism that mediates DHA's induction of HO-1 gene transcription. To our knowledge, this is the first characterization of DHA-induced HO-1 expression in human malignant cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA.

    Science.gov (United States)

    Dyall, Simon C

    2015-01-01

    Omega-3 polyunsaturated fatty acids (PUFAs) exhibit neuroprotective properties and represent a potential treatment for a variety of neurodegenerative and neurological disorders. However, traditionally there has been a lack of discrimination between the different omega-3 PUFAs and effects have been broadly accredited to the series as a whole. Evidence for unique effects of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and more recently docosapentaenoic acid (DPA) is growing. For example, beneficial effects in mood disorders have more consistently been reported in clinical trials using EPA; whereas, with neurodegenerative conditions such as Alzheimer's disease, the focus has been on DHA. DHA is quantitatively the most important omega-3 PUFA in the brain, and consequently the most studied, whereas the availability of high purity DPA preparations has been extremely limited until recently, limiting research into its effects. However, there is now a growing body of evidence indicating both independent and shared effects of EPA, DPA and DHA. The purpose of this review is to highlight how a detailed understanding of these effects is essential to improving understanding of their therapeutic potential. The review begins with an overview of omega-3 PUFA biochemistry and metabolism, with particular focus on the central nervous system (CNS), where DHA has unique and indispensable roles in neuronal membranes with levels preserved by multiple mechanisms. This is followed by a review of the different enzyme-derived anti-inflammatory mediators produced from EPA, DPA and DHA. Lastly, the relative protective effects of EPA, DPA and DHA in normal brain aging and the most common neurodegenerative disorders are discussed. With a greater understanding of the individual roles of EPA, DPA and DHA in brain health and repair it is hoped that appropriate dietary recommendations can be established and therapeutic interventions can be more targeted and refined.

  18. Estudio teórico de la reactividad de las conformaciones y configuraciones de los ácidos grasos omega-3 a través de descriptores moleculares de reactividad utilizando la Teoría del Funcional de la Densidad (DFT

    Directory of Open Access Journals (Sweden)

    Jhon Zapata.

    2009-04-01

    Full Text Available La reactividad y estabilidad estructural de los ácidos omega-3, alfa-linolénico (ALA, estearidónico (SDA, eicosapentaenoico (EPA y docosahexaenoico (DHA, fue estudiada desde el punto de vista teórico haciendo uso de una serie de cálculos mecánico-cuánticos tipo DFT, usando la funcional B3LYP junto con la base de cálculo 6-31G. A través de descriptores de la reactividad química tales como, el potencial electrostático molecular (MEP, la función de Fukui, la dureza global, la suavidad global y local, energía de los orbitales HOMO-LUMO, se estudiaron algunas propiedades moleculares de los ácidos grasos omega-3, que permitió obtener información molecular valiosa acerca de los sitios reactivos y de la estabilidad estructural de este tipo de ácidos grasos.

  19. Soy-based infant formula supplemented with DHA and ARA supports growth and increases circulating levels of these fatty acids in infants.

    Science.gov (United States)

    Hoffman, Dennis; Ziegler, Ekhard; Mitmesser, Susan H; Harris, Cheryl L; Diersen-Schade, Deborah A

    2008-01-01

    Healthy term infants (n = 244) were randomized to receive: (1) control, soy-based formula without supplementation or (2) docosahexaenoic acid-arachidonic acid (DHA + ARA), soy-based formula supplemented with at least 17 mg DHA/100 kcal (from algal oil) and 34 mg ARA/100 kcal (from fungal oil) in a double-blind, parallel group trial to evaluate safety, benefits, and growth from 14 to 120 days of age. Anthropometric measurements were taken at 14, 30, 60, 90, and 120 days of age and 24-h dietary and tolerance recall were recorded at 30, 60, 90, and 120 days of age. Adverse events were recorded throughout the study. Blood samples were drawn from subsets of 25 infants in each group. Capillary column gas chromatography was used to analyze the percentages of fatty acids in red blood cell (RBC) lipids and plasma phospholipids. Compared with the control group, percentages of fatty acids such as DHA and ARA in total RBC and plasma phospholipids were significantly higher in infants in the DHA + ARA group at 120 days of age (P soy-based formula supplemented with DHA and ARA from single cell oil sources at concentrations similar to human milk significantly increased circulating levels of DHA and ARA when compared with the control group. Both formulas supported normal growth and were well tolerated.

  20. Complete assessment of whole-body n-3 and n-6 PUFA synthesis-secretion kinetics and DHA turnover in a rodent model.

    Science.gov (United States)

    Metherel, Adam H; Lacombe, R J Scott; Chouinard-Watkins, Raphaël; Hopperton, Kathryn E; Bazinet, Richard P

    2018-02-01

    Previous assessments of the PUFA biosynthesis pathway have focused on DHA and arachidonic acid synthesis. Here, we determined whole-body synthesis-secretion kinetics for all downstream products of PUFA metabolism, including direct measurements of DHA and n-6 docosapentaenoic acid (DPAn-6, 22:5n-6) turnover, and compared n-6 and n-3 homolog kinetics. We infused labeled α-linolenic acid (ALA, 18:3n-3), linoleic acid (LNA, 18:2n-6), DHA, and DPAn-6 as 2 H 5 -ALA, 13 C 18 -LNA, 13 C 22 -DHA, and 13 C 22 -DPAn-6. Eight 11-week-old Long Evans rats fed a 10% fat diet were infused with the labeled PUFAs over 3 h, and plasma enrichment of labeled products was measured every 30 min. The DHA synthesis-secretion rate (94 ± 34 nmol/day) did not differ from other PUFA products (range, 21.8 ± 4.3 nmol/day to 408 ± 116 nmol/day). Synthesis-secretion rates of n-6 and n-3 PUFA homologs were similar, except 22:4n-6 and DPAn-6 had lower synthesis rates. However, daily turnover from newly synthesized DHA (0.067 ± 0.023%) was 56-fold to 556-fold slower than all other PUFA turnover and was 130-fold slower than that determined directly from the total plasma unesterified DHA pool. In conclusion, n-6 and n-3 PUFA synthesis-secretion kinetics suggest that differences in turnover, not in synthesis-secretion rates, primarily determine PUFA plasma levels. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  1. Omega-3 fatty acids, EPA and DHA induce apoptosis and enhance drug sensitivity in multiple myeloma cells but not in normal peripheral mononuclear cells.

    Science.gov (United States)

    Abdi, J; Garssen, J; Faber, J; Redegeld, F A

    2014-12-01

    The n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been shown to enhance the effect of chemotherapeutic drugs in clinical studies in cancer patients and to induce apoptotic tumor cell death in vitro. Until now, EPA and DHA have never been investigated in multiple myeloma (MM). Human myeloma cells (L363, OPM-1, OPM-2 and U266) and normal peripheral blood mononuclear cells were exposed to EPA and DHA, and effects on mitochondrial function and apoptosis, caspase-3 activation, gene expression and drug toxicity were measured. Exposure to EPA and DHA induced apoptosis and increased sensitivity to bortezomib in MM cells. Importantly, they did not affect viability of normal human peripheral mononuclear cells. Messenger RNA expression arrays showed that EPA and DHA modulated genes involved in multiple signaling pathways including nuclear factor (NF) κB, Notch, Hedgehog, oxidative stress and Wnt. EPA and DHA inhibited NFκB activity and induced apoptosis through mitochondrial perturbation and caspase-3 activation. Our study suggests that EPA and DHA induce selective cytotoxic effects in MM and increase sensitivity to bortezomib and calls for further exploration into a potential application of these n-3 polyunsaturated fatty acids in the therapy of MM. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. DHA down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes by attenuating CAR translocation

    International Nuclear Information System (INIS)

    Li, C.-C.; Lii, C.-K.; Liu, K.-L.; Yang, J.-J.; Chen, H.-W.

    2007-01-01

    The constitutive androstane receptor (CAR) plays an important role in regulating the expression of detoxifying enzymes, including cytochrome P450 2B (CYP 2B). Phenobarbital (PB) induction of human CYP 2B6 and mouse CYP 2b10 has been shown to be mediated by CAR. Our previous study showed that PB-induced CYP 2B1 expression in rat primary hepatocytes is down-regulated by both n-6 and n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA); however, the mechanism for this down-regulation by DHA was previously unknown. The objective of the present study was to determine whether change in CAR translocation is involved in the down-regulation by n-6 and n-3 PUFAs of PB-induced CYP 2B1 expression in rat primary hepatocytes. We used 100 μM arachidonic acid, linoleic acid, eicosapentaenoic acid, and DHA to test this hypothesis. PB triggered the translocation of CAR from the cytosol into the nucleus in a dose-dependent and time-dependent manner in our hepatocyte system, and the CAR distribution in rat primary hepatocytes was significantly affected by DHA. DHA treatment decreased PB-inducible accumulation of CAR in the nuclear fraction and increased it in the cytosolic fraction in a dose-dependent manner. The down-regulation of CYP 2B1 expression by DHA occurred in a dose-dependent manner, and a similar pattern was found for the nuclear accumulation of CAR. The results of immunoprecipitation showed a CAR/RXR heterodimer bound to nuclear receptor binding site 1 (NR-1) of the PB-responsive enhancer module (PBREM) of the CYP 2B1gene. The EMSA results showed that PB-induced CAR binding to NR-1 was attenuated by DHA. Taken together, these results suggest that attenuation of CAR translocation and decreased subsequent binding to NR-1 are involved in DHA's down-regulation of PB-induced CYP 2B1 expression

  3. Chronic dietary n-6 PUFA deprivation leads to conservation of arachidonic acid and more rapid loss of DHA in rat brain phospholipids.

    Science.gov (United States)

    Lin, Lauren E; Chen, Chuck T; Hildebrand, Kayla D; Liu, Zhen; Hopperton, Kathryn E; Bazinet, Richard P

    2015-02-01

    To determine how the level of dietary n-6 PUFA affects the rate of loss of arachidonic acid (ARA) and DHA in brain phospholipids, male rats were fed either a deprived or adequate n-6 PUFA diet for 15 weeks postweaning, and then subjected to an intracerebroventricular infusion of (3)H-ARA or (3)H-DHA. Brains were collected at fixed times over 128 days to determine half-lives and the rates of loss from brain phospholipids (J out). Compared with the adequate n-6 PUFA rats, the deprived n-6-PUFA rats had a 15% lower concentration of ARA and an 18% higher concentration of DHA in their brain total phospholipids. Loss half-lives of ARA in brain total phospholipids and fractions (except phosphatidylserine) were longer in the deprived n-6 PUFA rats, whereas the J out was decreased. In the deprived versus adequate n-6 PUFA rats, the J out of DHA was higher. In conclusion, chronic n-6 PUFA deprivation decreases the rate of loss of ARA and increases the rate of loss of DHA in brain phospholipids. Thus, a low n-6 PUFA diet can be used to target brain ARA and DHA metabolism. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  4. Composicao quimica, perfil de acidos graxos e quantificacao dos acidos ƒ¿-linolenico, eicosapentaenoico e docosahexaenoico em visceras de tilapias (Oreochromis niloticus = Percentual composition, fatty acids and quantification of the LNA (Alfa-Linolenic, EPA (Eicosapentaenoic and DHA (Docosahexaenoic acids in visceras of Nile Tilapia (Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Nilson Evelázio de Souza

    2005-01-01

    Full Text Available Foi avaliada a composição química de vísceras de tilápias (Oreochromis niloticus criadas em cativeiro Os teores de umidade, cinza, proteína bruta e lipídios totais foram de 64,4%; 1,3%; 6,3% e 18,0%, respectivamente, caracterizando alta concentração de lipídiostotais em relação a outros resíduos de peixes. Foram identificados 49 ácidos graxos, sendo majoritários os ácidos: oléico, (32,8%, seguido do palmítico, (19,9% e linoléico, (18,2%. As razões entre n-6/n-3 e ácidos poliinsaturados/saturados foram de 5,5 e 0,9, respectivamente. As quantificações dos ácidos graxos alfa-linolênico, eicosapentaenóico e docosahexaenóico, em mg/g de lipídios totais, foram de 10,4, 1,4 e 9,3, respectivamente. O elevado teor de lipídios totais das vísceras contribuiu significativamente para as quantidadesde ácidos graxos n-3. Todos os parâmetros analisados foram satisfatórios sob o ponto de vista nutricional e neste sentido as vísceras de tilápias poderão ser utilizadaa para alimentar peixes ou outros animais.The chemical composition was evaluated in visceras of tilapias raised in captivity. The moisture, ash, crude protein and total lipids contents were 64.4%; 1.3%; 6.3% and 18.0%, respectively, characterizing high total lipids concentration in relation other residues of fish. Forty nine fatty acids were detected, the major fatty acids were oleic (32.8%, palmitic (19.9% and linoleic-1 (18.2% and oleic (9.4%. The ratio n-6/n-3 and polyunsaturated/saturated fatty acids, showed the values 5.5 and 0.9, respectively. The quantifications of alfa-linolenic, eicosapentaenoic and docosahexaenoic acids (in mg/g of total lipids, were 10.4, 1.4 and 0.3, respectively. The higher contents of total lipids in visceras contributed significantly for amounts of n-3 fatty acids. All the parameters analyzed were shown nutritional value satisfactory in this sense visceras of tilapias can be used in the feed of fish and other animal.

  5. Crystallization and crystallographic analysis of the Rhodococcus rhodochrous NCIMB 13064 DhaA mutant DhaA31 and its complex with 1,2,3-trichloropropane

    Czech Academy of Sciences Publication Activity Database

    Lahoda, M.; Chaloupková, R.; Stsiapanava, A.; Damborský, J.; Kutá-Smatanová, Ivana

    2011-01-01

    Roč. 67, Part 3 (2011), s. 397-400 ISSN 1744-3091 R&D Projects: GA MŠk(CZ) LC06010; GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : haloalkane dehalogenases * DhaA * Rhodococcus rhodochrous Subject RIV: CE - Biochemistry Impact factor: 0.506, year: 2011

  6. Determination of Partial Molar Volumes of EPA and DHA Ethyl Esters in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The use of supercritical-fluid chromatography for determining partial molar volumes of ethyl esters of cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and cis -4,7,10,13,16,19- docosa-hexaenoic acid (DHA) in supercritical carbon dioxide is presented and discussed. Partial molar volumes of EPA and DHA esters are obtained from the variation of the retention properties with the density of mobile phase at 313.15 K, 323.15 K, 333.15 K and in the pressure range from 9 MPa to 21 MPa.

  7. Deptermination of Partial Molar Volumes of EPA and DHA Ethyl Esters in Supercritical Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    MeiHUANG; XianDaWANG; 等

    2002-01-01

    The use of supercritical-fluid shromatogrphy for determining partial molar volumes of ethyl esters of cis-5,8,11,14,17-eicosapentaenoic acid (EPA) and cis-4,7,10,13,16,19-docosa-hexaenoic acid(DHA) in supercritical carbon dioxide is presented and discussed. Partial molar volumes of EPA and DHA esters are obtained from the variation of the retention properties with the density of mobile phase at 313.15K,323.15K,333.15K and in the pressure range from 9 MPa to 21 MPa.

  8. Effects of aspirin in combination with EPA and DHA on HDL-C cholesterol and ApoA1 exchange in individuals with type 2 diabetes mellitus.

    Science.gov (United States)

    Block, Robert C; Holub, Ashley; Abdolahi, Amir; Tu, Xin M; Mousa, Shaker A; Oda, Michael N

    2017-11-01

    Low-dose aspirin is an effective drug for the prevention of cardiovascular disease (CVD) events but individuals with diabetes mellitus can be subject to 'aspirin resistance'. Thus, aspirin's effect in these individuals is controversial. Higher blood levels of seafood-derived omega-3 polyunsaturated fatty acids (ω3) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) also have beneficial effects in reducing risk of CVD events but few studies have examined the interaction of plasma EPA and DHA with aspirin ingestion. Our study examined the combinatory effects of EPA, DHA, and aspirin ingestion on HDL-cholesterol (HDL-C) and apoA-I exchange (shown to be associated with CVD event risk). 30 adults with Type 2 diabetes mellitus ingested aspirin (81mg/day) for 7 consecutive days, EPA+DHA (2.6g/day) for 28 days, then both for 7 days. Plasma was collected at baseline and at 5 subsequent visits including 4h after each aspirin ingestion. Mixed model methods were used to determine HDL-C-concentrations and apoA-I exchange compared to the baseline visit values. LOWESS curves were used for non-linear analyses of outcomes to help discern change patterns, which was followed by piecewise linear functions for formal testing of curvilinear relationships. Significant changes (p aspirin-only ingestion, apoA-I exchange was significantly modified by increasing levels of DHA concentration, with increased apoA-I exchange observed up until log(DHA) of 4.6 and decreased exchange thereafter (p = 0.03). These LOWESS curve effects were not observed for EPA or HDL-C (p > 0.05). Aspirin's effects on apoA-I exchange were the greatest when EPA or DHA concentrations were moderate compared to high or low. Comparison of EPA, DHA, and EPA+DHA LOWESS curves, demonstrated that the majority of the effect is due to DHA. Our results strongly suggest that plasma concentrations of EPA and DHA influence aspirin effects on lipid mediators of CVD event risk where their concentrations are most beneficial

  9. Concentration of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA of Asian catfish oil by urea complexation: optimization of reaction conditions

    Directory of Open Access Journals (Sweden)

    Pornpisanu Thammapat

    2016-04-01

    Full Text Available Optimization of the concentrating conditions of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA extracted from Asian catfish oil was studied to obtain a maximum concentration. The crude fish oil was extracted from the belly flap and adipose tissue of Asian catfish, and the extracted oil was used as fresh crude oil. The EPA and DHA were concentrated by the urea complexation method. A hexagonal rotatable design was applied to examine the effects of crystallization temperature and urea-to-fatty acid ratio on the total content of EPA and DHA (Y1 and the liquid recovery yield (Y2 . The second order polynomial regression models for Y1 and Y2 were employed to generate the response surfaces. Under the optimum conditions of -20 °C and a urea-to-fatty acid ratio of 4 (w/w, the total concentration of EPA and DHA could be increased by up to 88%, while a liquid recovery yield of 26% was obtained.

  10. The significance of fructose and MSG in affecting lipid and docosahexaenoic acid (DHA) production of Aurantiochytrium sp. SW1

    Science.gov (United States)

    Rahman, Shariffah Nurhidayah Syed Abdul; Kalil, Mohd Sahaid; Hamid, Aidil Abdul

    2018-04-01

    Optimization of fermentation medium for the production of docosahexaenoic acid (DHA) by Aurantiochytrium sp. SW1 was carried out. In this study, levels of fructose, monosodium glutamate (MSG) and sea salt were optimized for enhanced lipid and DHA production using response surface methodology (RSM). The design contains a total of 20 runs with 6 central points replication. Cultivation was carried out in 500 mL flasks containing 100 mL nitrogen limited medium at 30°C for 96h. Sequential model sum of squares (SS) revealed that the system was adequately represented by a quadratic model (p<0.0001). ANOVA results showed that fructose and MSG as a single factor has significant positive effect on the DHA content of SW1. The estimated optimal levels of the factors were 100 g/L fructose, 8 g/L MSG and 47% sea salt. Subsequent cultivation employing the suggested values confirmed that the predicted response values were experimentally achievable and reproducible, where 8.82 g/L DHA (51.34% g/g lipid) was achieved.

  11. Mildly abnormal general movement quality in infants is associated with higher Mead acid and lower arachidonic acid and shows a U-shaped relation with the DHA/AA ratio.

    Science.gov (United States)

    van Goor, S A; Schaafsma, A; Erwich, J J H M; Dijck-Brouwer, D A J; Muskiet, F A J

    2010-01-01

    We showed that docosahexaenoic acid (DHA) supplementation during pregnancy and lactation was associated with more mildly abnormal (MA) general movements (GMs) in the infants. Since this finding was unexpected and inter-individual DHA intakes are highly variable, we explored the relationship between GM quality and erythrocyte DHA, arachidonic acid (AA), DHA/AA and Mead acid in 57 infants of this trial. MA GMs were inversely related to AA, associated with Mead acid, and associated with DHA/AA in a U-shaped manner. These relationships may indicate dependence of newborn AA status on synthesis from linoleic acid. This becomes restricted during the intrauterine period by abundant de novo synthesis of oleic and Mead acids from glucose, consistent with reduced insulin sensitivity during the third trimester. The descending part of the U-shaped relation between MA GMs and DHA/AA probably indicates DHA shortage next to AA shortage. The ascending part may reflect a different developmental trajectory that is not necessarily unfavorable. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Liver conversion of docosahexaenoic and arachidonic acids from their 18-carbon precursors in rats on a DHA-free but α-LNA-containing n-3 PUFA adequate diet.

    Science.gov (United States)

    Gao, Fei; Kim, Hyung-Wook; Igarashi, Miki; Kiesewetter, Dale; Chang, Lisa; Ma, Kaizong; Rapoport, Stanley I

    2011-01-01

    The long-chain polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachidonic acid (AA, 20:4n-6), are critical for health. These PUFAs can be synthesized in liver from their plant-derived precursors, α-linolenic acid (α-LNA, 18:3n-3) and linoleic acid (LA, 18:2n-6). Vegetarians and vegans may have suboptimal long-chain n-3 PUFA status, and the extent of the conversion of α-LNA to EPA and DHA by the liver is debatable. We quantified liver conversion of DHA and other n-3 PUFAs from α-LNA in rats fed a DHA-free but α-LNA (n-3 PUFA) adequate diet, and compared results to conversion of LA to AA. [U-(13)C]LA or [U-(13)C]α-LNA was infused intravenously for 2h at a constant rate into unanesthetized rats fed a DHA-free α-LNA adequate diet, and published equations were used to calculate kinetic parameters. The conversion coefficient k(⁎) of DHA from α-LNA was much higher than for AA from LA (97.2×10(-3) vs. 10.6×10(-3)min(-1)), suggesting that liver elongation-desaturation is more selective for n-3 PUFA biosynthesis on a per molecule basis. The net daily secretion rate of DHA, 20.3μmol/day, exceeded the reported brain DHA consumption rate by 50-fold, suggesting that the liver can maintain brain DHA metabolism with an adequate dietary supply solely of α-LNA. This infusion method could be used in vegetarians or vegans to determine minimal daily requirements of EPA and DHA in humans. Published by Elsevier B.V.

  13. Growth phase significantly decreases the DHA-to-EPA ratio in marine microalgae

    NARCIS (Netherlands)

    Boelen, Peter; Van Mastrigt, Audrey; Van De Bovenkamp, Henk H.; Heeres, Hero J.; Buma, Anita G. J.

    Microalgae are the principal producers of long-chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in marine ecosystems. Algae are used in aquaculture systems as direct or indirect feed for zooplankton, filter-feeding mollusks and larval

  14. DHA-Containing Oilseed: A Timely Solution for the Sustainability Issues Surrounding Fish Oil Sources of the Health-Benefitting Long-Chain Omega-3 Oils

    Directory of Open Access Journals (Sweden)

    Soressa M. Kitessa

    2014-05-01

    Full Text Available Benefits of long-chain (≥C20 omega-3 oils (LC omega-3 oils for reduction of the risk of a range of disorders are well documented. The benefits result from eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA; optimal intake levels of these bioactive fatty acids for maintenance of normal health and prevention of diseases have been developed and adopted by national and international health agencies and science bodies. These developments have led to increased consumer demand for LC omega-3 oils and, coupled with increasing global population, will impact on future sustainable supply of fish. Seafood supply from aquaculture has risen over the past decades and it relies on harvest of wild catch fisheries also for its fish oil needs. Alternate sources of LC omega-3 oils are being pursued, including genetically modified soybean rich in shorter-chain stearidonic acid (SDA, 18:4ω3. However, neither oils from traditional oilseeds such as linseed, nor the SDA soybean oil have shown efficient conversion to DHA. A recent breakthrough has seen the demonstration of a land plant-based oil enriched in DHA, and with omega-6 PUFA levels close to that occurring in marine sources of EPA and DHA. We review alternative sources of DHA supply with emphasis on the need for land plant oils containing EPA and DHA.

  15. DHA-Containing Oilseed: A Timely Solution for the Sustainability Issues Surrounding Fish Oil Sources of the Health-Benefitting Long-Chain Omega-3 Oils

    Science.gov (United States)

    Kitessa, Soressa M.; Abeywardena, Mahinda; Wijesundera, Chakra; Nichols, Peter D.

    2014-01-01

    Benefits of long-chain (≥C20) omega-3 oils (LC omega-3 oils) for reduction of the risk of a range of disorders are well documented. The benefits result from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA); optimal intake levels of these bioactive fatty acids for maintenance of normal health and prevention of diseases have been developed and adopted by national and international health agencies and science bodies. These developments have led to increased consumer demand for LC omega-3 oils and, coupled with increasing global population, will impact on future sustainable supply of fish. Seafood supply from aquaculture has risen over the past decades and it relies on harvest of wild catch fisheries also for its fish oil needs. Alternate sources of LC omega-3 oils are being pursued, including genetically modified soybean rich in shorter-chain stearidonic acid (SDA, 18:4ω3). However, neither oils from traditional oilseeds such as linseed, nor the SDA soybean oil have shown efficient conversion to DHA. A recent breakthrough has seen the demonstration of a land plant-based oil enriched in DHA, and with omega-6 PUFA levels close to that occurring in marine sources of EPA and DHA. We review alternative sources of DHA supply with emphasis on the need for land plant oils containing EPA and DHA. PMID:24858407

  16. DHA-containing oilseed: a timely solution for the sustainability issues surrounding fish oil sources of the health-benefitting long-chain omega-3 oils.

    Science.gov (United States)

    Kitessa, Soressa M; Abeywardena, Mahinda; Wijesundera, Chakra; Nichols, Peter D

    2014-05-22

    Benefits of long-chain (≥C20) omega-3 oils (LC omega-3 oils) for reduction of the risk of a range of disorders are well documented. The benefits result from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA); optimal intake levels of these bioactive fatty acids for maintenance of normal health and prevention of diseases have been developed and adopted by national and international health agencies and science bodies. These developments have led to increased consumer demand for LC omega-3 oils and, coupled with increasing global population, will impact on future sustainable supply of fish. Seafood supply from aquaculture has risen over the past decades and it relies on harvest of wild catch fisheries also for its fish oil needs. Alternate sources of LC omega-3 oils are being pursued, including genetically modified soybean rich in shorter-chain stearidonic acid (SDA, 18:4ω3). However, neither oils from traditional oilseeds such as linseed, nor the SDA soybean oil have shown efficient conversion to DHA. A recent breakthrough has seen the demonstration of a land plant-based oil enriched in DHA, and with omega-6 PUFA levels close to that occurring in marine sources of EPA and DHA. We review alternative sources of DHA supply with emphasis on the need for land plant oils containing EPA and DHA.

  17. Effect of DHA and CoenzymeQ10 Against Aβ- and Zinc-Induced Mitochondrial Dysfunction in Human Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Nadia Sadli

    2013-07-01

    Full Text Available Background: Beta-amyloid (Aβ protein is a key factor in the pathogenesis of Alzheimer's disease (AD and it has been reported that mitochondria is involved in the biochemical pathway by which Aβ can lead to neuronal dysfunction. Coenzyme Q10 (CoQ10 is an essential cofactor involved in the mitochondrial electron transport chain and has been suggested as a potential therapeutic agent in AD. Zinc toxicity also affects cellular energy production by decreasing oxygen consumption rate (OCR and ATP turnover in human neuronal cells, which can be restored by the neuroprotective effect of docosahexaenoic acid (DHA. Method: In the present study, using Seahorse XF-24 Metabolic Flux Analysis we investigated the effect of DHA and CoQ10 alone and in combination against Aβ- and zinc-mediated changes in the mitochondrial function of M17 neuroblastoma cell line. Results: Here, we observed that DHA is specifically neuroprotective against zinc-triggered mitochondrial dysfunction, but does not directly affect Aβ neurotoxicity. CoQ10 has shown to be protective against both Aβ- and zinc-induced alterations in mitochondrial function. Conclusion: Our results indicate that DHA and CoQ10 may be useful for the prevention, treatment and management of neurodegenerative diseases such as AD.

  18. Lipid remodeling and an altered membrane-associated proteome may drive the differential effects of EPA and DHA treatment on skeletal muscle glucose uptake and protein accretion.

    Science.gov (United States)

    Jeromson, Stewart; Mackenzie, Ivor; Doherty, Mary K; Whitfield, Phillip D; Bell, Gordon; Dick, James; Shaw, Andy; Rao, Francesco V; Ashcroft, Stephen P; Philp, Andrew; Galloway, Stuart D R; Gallagher, Iain; Hamilton, D Lee

    2018-06-01

    In striated muscle, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have differential effects on the metabolism of glucose and differential effects on the metabolism of protein. We have shown that, despite similar incorporation, treatment of C 2 C 12 myotubes (CM) with EPA but not DHA improves glucose uptake and protein accretion. We hypothesized that these differential effects of EPA and DHA may be due to divergent shifts in lipidomic profiles leading to altered proteomic profiles. We therefore carried out an assessment of the impact of treating CM with EPA and DHA on lipidomic and proteomic profiles. Fatty acid methyl esters (FAME) analysis revealed that both EPA and DHA led to similar but substantials changes in fatty acid profiles with the exception of arachidonic acid, which was decreased only by DHA, and docosapentanoic acid (DPA), which was increased only by EPA treatment. Global lipidomic analysis showed that EPA and DHA induced large alterations in the cellular lipid profiles and in particular, the phospholipid classes. Subsequent targeted analysis confirmed that the most differentially regulated species were phosphatidylcholines and phosphatidylethanolamines containing long-chain fatty acids with five (EPA treatment) or six (DHA treatment) double bonds. As these are typically membrane-associated lipid species we hypothesized that these treatments differentially altered the membrane-associated proteome. Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics of the membrane fraction revealed significant divergence in the effects of EPA and DHA on the membrane-associated proteome. We conclude that the EPA-specific increase in polyunsaturated long-chain fatty acids in the phospholipid fraction is associated with an altered membrane-associated proteome and these may be critical events in the metabolic remodeling induced by EPA treatment.

  19. Omega-3 polyunsaturated fatty acid blood biomarkers increase linearly in men and women after tightly controlled intakes of 0.25, 0.5, and 1 g/d of EPA + DHA.

    Science.gov (United States)

    Patterson, Ashley C; Chalil, Alan; Aristizabal Henao, Juan J; Streit, Isaac T; Stark, Ken D

    2015-12-01

    Blood levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been related to coronary heart disease risk. Understanding the response of EPA + DHA in blood to dietary intake of EPA + DHA would facilitate the use of blood measures as markers of adherence and enable the development of dietary recommendations. The objective of this study is examine the blood response to intakes of EPA + DHA ≤1 g/d with an intervention designed for dietary adherence. It was hypothesized this relationship would be linear and that intakes of EPA + DHA DHA intake of men and women (n = 20) was determined by food frequency questionnaire and adherence was monitored by weekly fingertip blood sampling for fatty acid determinations. Participants consumed nutraceuticals to achieve intakes of 0.25 g/d and 0.5 g/d EPA + DHA for successive four-week periods. A subgroup (n = 5) had intakes of 1.0 g/d EPA + DHA for an additional 4 weeks. Fatty acid composition of whole blood, erythrocytes, and plasma phospholipids were determined at each time point. Blood levels of EPA and DHA increased linearly in these pools. A comprehensive review of the literature was used to verify the blood-intake relationship. Blood levels of long chain omega-3 polyunsaturated fatty acids reached blood levels associated with the highest levels of primary cardiac arrest reduction and sudden cardiac death risk only with intakes of 1.0 g/d of EPA + DHA. The blood biomarker response to intakes of EPA + DHA ≤1 g/d is linear in a small but highly adherent study sample and this information can assist in determining adherence in clinical studies and help identify dietary intake targets from associations between blood and disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Maternal and fetal brain contents of docosahexaenoic acid (DHA) and arachidonic acid (AA) at various essential fatty acid (EFA), DHA and AA dietary intakes during pregnancy in mice

    NARCIS (Netherlands)

    van Goor, Saskia A; Dijck-Brouwer, D A Janneke; Fokkema, M Rebecca; van der Iest, Theo Hans; Muskiet, Frits A J

    We investigated essential fatty acids (EFA) and long-chain polyunsaturated fatty acids (LCP) in maternal and fetal brain as a function of EFA/LCP availability to the feto-maternal unit in mice. Diets varying in parent EFA, arachidonic acid (AA), and docosahexaenoic acid (DHA) were administered from

  1. Mathematical modeling of fed-batch fermentation of Schizochytrium sp. FJU-512 growth and DHA production using a shift control strategy.

    Science.gov (United States)

    Zhang, Mingliang; Wu, Weibin; Guo, Xiaolei; Weichen, You; Qi, Feng; Jiang, Xianzhang; Huang, Jianzhong

    2018-03-01

    To obtain high-cell-density cultures of Schizochytrium sp. FJU-512 for DHA production, two stages of fermentation strategy were used and carbon/nitrogen ratio, DO and temperature were controlled at different levels. The final dry cell weight, total lipid production and DHA yield in 15 l bioreactor reached 103.9, 37.2 and 16.0 g/l, respectively. For the further study of microbial growth and DHA production dynamics, we established a set of kinetic models for the fed-batch production of DHA by Schizochytrium sp. FJU-512 in 15 and 100 l fermenters and a compensatory parameter n was integrated into the model in order to find the optimal mathematical equations. A modified Logistic model was proposed to fit the cell growth data and the following kinetic parameters were obtained: µ m  = 0.0525/h, X m  = 100 g/l and n  = 4.1717 for the 15 l bioreactor, as well as µ m  = 0.0382/h, X m  = 107.4371 g/l and n  = 10 for the 100 l bioreactor. The Luedeking-Piret equations were utilized to model DHA production, yielding values of α  = 0.0648 g/g and β  = 0.0014 g/g/h for the 15 l bioreactor, while the values of α and β obtained for the 100 l fermentation were 0.0209 g/g and 0.0030 g/g/h. The predicted results compared with experimental data showed that the established models had a good fitting precision and were able to exactly depict the dynamic features of the DHA production process.

  2. Effect of cerulenin on fatty acid composition and gene expression pattern of DHA-producing strain Colwellia psychrerythraea strain 34H.

    Science.gov (United States)

    Wan, Xia; Peng, Yun-Feng; Zhou, Xue-Rong; Gong, Yang-Min; Huang, Feng-Hong; Moncalián, Gabriel

    2016-02-06

    Colwellia psychrerythraea 34H is a psychrophilic bacterium able to produce docosahexaenoic acid (DHA). Polyketide synthase pathway is assumed to be responsible for DHA production in marine bacteria. Five pfa genes from strain 34H were confirmed to be responsible for DHA formation by heterogeneous expression in Escherichia coli. The complexity of fatty acid profile of this strain was revealed by GC and GC-MS. Treatment of cells with cerulenin resulted in significantly reduced level of C16 monounsaturated fatty acid (C16:1(Δ9t), C16:1(Δ7)). In contrast, the amount of saturated fatty acids (C10:0, C12:0, C14:0), hydroxyl fatty acids (3-OH C10:0 and 3-OH C12:0), as well as C20:4ω3, C20:5ω3 and C22:6ω3 were increased. RNA sequencing (RNA-Seq) revealed the altered gene expression pattern when C. psychrerythraea cells were treated with cerulenin. Genes involved in polyketide synthase pathway and fatty acid biosynthesis pathway were not obviously affected by cerulenin treatment. In contrast, several genes involved in fatty acid degradation or β-oxidation pathway were dramatically reduced at the transcriptional level. Genes responsible for DHA formation in C. psychrerythraea was first cloned and characterized. We revealed the complexity of fatty acid profile in this DHA-producing strain. Cerulenin could substantially change the fatty acid composition by affecting the fatty acid degradation at transcriptional level. Acyl-CoA dehydrogenase gene family involved in the first step of β-oxidation pathway may be important to the selectivity of degraded fatty acids. In addition, inhibition of FabB protein by cerulenin may lead to the accumulation of malonyl-CoA, which is the substrate for DHA formation.

  3. Lipid profiling following intake of the omega 3 fatty acid DHA identifies the peroxidized metabolites F4-neuroprostanes as the best predictors of atherosclerosis prevention.

    Science.gov (United States)

    Gladine, Cécile; Newman, John W; Durand, Thierry; Pedersen, Theresa L; Galano, Jean-Marie; Demougeot, Céline; Berdeaux, Olivier; Pujos-Guillot, Estelle; Mazur, Andrzej; Comte, Blandine

    2014-01-01

    The anti-atherogenic effects of omega 3 fatty acids, namely eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) are well recognized but the impact of dietary intake on bioactive lipid mediator profiles remains unclear. Such a profiling effort may offer novel targets for future studies into the mechanism of action of omega 3 fatty acids. The present study aimed to determine the impact of DHA supplementation on the profiles of polyunsaturated fatty acids (PUFA) oxygenated metabolites and to investigate their contribution to atherosclerosis prevention. A special emphasis was given to the non-enzymatic metabolites knowing the high susceptibility of DHA to free radical-mediated peroxidation and the increased oxidative stress associated with plaque formation. Atherosclerosis prone mice (LDLR(-/-)) received increasing doses of DHA (0, 0.1, 1 or 2% of energy) during 20 weeks leading to a dose-dependent reduction of atherosclerosis (R(2) = 0.97, p = 0.02), triglyceridemia (R(2) = 0.97, p = 0.01) and cholesterolemia (R(2) = 0.96, pF4-neuroprostanes, a specific class of DHA peroxidized metabolites, was strongly correlated with the hepatic DHA level. Moreover, unbiased statistical analysis including correlation analyses, hierarchical cluster and projection to latent structure discriminate analysis revealed that the hepatic level of F4-neuroprostanes was the variable most negatively correlated with the plaque extent (pF4-neuroprostanes in particular, are potential biomarkers of DHA-associated atherosclerosis prevention. While these may contribute to the anti-atherogenic effects of DHA, further in vitro investigations are needed to confirm such a contention and to decipher the molecular mechanisms of action.

  4. Dietary Intakes of EPA and DHA Omega-3 Fatty Acids among US Childbearing-Age and Pregnant Women: An Analysis of NHANES 2001-2014.

    Science.gov (United States)

    Zhang, Zhiying; Fulgoni, Victor L; Kris-Etherton, Penny M; Mitmesser, Susan Hazels

    2018-03-28

    The 2015–2020 Dietary Guidelines for Americans (DGA) recommend that the general population should consume about 8 ounces (oz.) per week of a variety of seafood, providing approximately 250 mg per day of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and that pregnant and lactating women should consume 8–12 oz. per week of seafood. We determined the usual intakes, percentage not meeting recommendations, and trends in EPA and DHA intakes among childbearing-age and pregnant women (15–44 years of age) using the NHANES cycles 2001–2002 through 2013–2014. For the childbearing-age women, the mean usual intake of seafood was 0.44 ± 0.02 oz. equivalent per day and 100% of the population was below the DGA recommendation. Mean usual intakes of EPA, DHA, and combined EPA and DHA from foods and dietary supplements combined were 26.8 ± 1.4, 62.2 ± 1.9, and 88.1 ± 3.0 mg per day, respectively. Over 95% of the sample did not meet the daily intakes of 250 mg EPA and DHA. Similar results were observed for pregnant women. After controlling for covariates, there were slight but significant increases in EPA and DHA intakes from foods and dietary supplements over the 14-year span among childbearing-age ( p = 0.005) and pregnant women ( p = 0.002). It was estimated that a majority of U.S. childbearing-age and pregnant women consumed significantly lower amounts of seafood than what the DGA recommends, which subsequently leads to low intakes of EPA and DHA; in addition, dietary supplement use has not eliminated the nutrient shortfall.

  5. Role of β-catenin signaling in the anti-invasive effect of the omega-3 fatty acid DHA in human melanoma cells.

    Science.gov (United States)

    Serini, Simona; Zinzi, Antonio; Ottes Vasconcelos, Renata; Fasano, Elena; Riillo, Maria Greca; Celleno, Leonardo; Trombino, Sonia; Cassano, Roberta; Calviello, Gabriella

    2016-11-01

    We previously found that docosahexaenoic acid (DHA), a dietary polyunsaturated fatty acid present at high level in fatty fish, inhibited cell growth and induced differentiation of melanoma cells in vitro by increasing nuclear β-catenin content. An anti-neoplastic role of nuclear β-catenin was suggested in melanoma, and related to the presence in the melanocyte lineage of the microphtalmia transcription factor (MITF), which interferes with the transcription of β-catenin/TCF/LEF pro-invasive target genes. In the present work we investigated if DHA could inhibit the invasive potential of melanoma cells, and if this effect could be related to DHA-induced alterations of the Wnt/β-catenin signaling, including changes in MITF expression. WM115 and WM266-4 human melanoma, and B16-F10 murine melanoma cell lines were used. Cell invasion was evaluated by Wound Healing and Matrigel transwell assays. Protein expression was analyzed by Western Blotting and β-catenin phosphorylation by immunoprecipitation. The role of MITF in the anti-invasive effect of DHA was analyzed by siRNA gene silencing. We found that DHA inhibited anchorage-independent cell growth, reduced their migration/invasion in vitro and down-regulated several Matrix Metalloproteinases (MMP: MMP-2, MT1-MMP and MMP-13), known to be involved in melanoma invasion. We related these effects to the β-catenin increased nuclear expression and PKA-dependent phosphorylation, as well as to the increased expression of MITF. The data obtained further support the potential role of dietary DHA as suppressor of melanoma progression to invasive malignancy through its ability to enhance MITF expression and PKA-dependent nuclear β-catenin phosphorylation. Copyright © 2016. Published by Elsevier Ireland Ltd.

  6. Effects of dietary supplementation with docosahexaenoic acid (DHA on hippocampal gene expression in streptozotocin induced diabetic C57Bl/6 mice

    Directory of Open Access Journals (Sweden)

    Jency Thomas

    2015-08-01

    Full Text Available A body of evidence has accumulated indicating diabetes is associated with cognitive impairments. Effective strategies are therefore needed that will delay or prevent the onset of these diabetes-related deficits. In this regard, dietary modification with the naturally occurring compound, docosahexaenoic acid (DHA, holds significant promise as it has been shown to have anti-inflammatory, anti-oxidant, and anti-apoptotic properties. The hippocampus, a limbic structure involved in cognitive functions such as memory formation, is particularly vulnerable to the neurotoxic effects related to diabetes, and we have previously shown that streptozotocin-induced diabetes alters hippocampal gene expression, including genes involved in synaptic plasticity and neurogenesis. In the present study, we explored the effects of dietary supplementation with DHA on hippocampal gene expression in C57Bl/6 diabetic mice. Diabetes was established using streptozotocin (STZ and once stable, the dietary intervention group received AIN93G diet supplemented with DHA (50 mg/kg/day for 6 weeks. Microarray based genome-wide expression analysis was carried out on the hippocampus of DHA supplemented diabetic mice and confirmed by real time polymerase chain reaction (RT-qPCR. Genome-wide analysis identified 353 differentially expressed genes compared to non-supplemented diabetic mice. For example, six weeks of dietary DHA supplementation resulted in increased hippocampal expression of Igf II and Sirt1 and decreased expression of Tnf-α, Il6, Mapkapk2 and ApoE, compared to non-supplemented diabetic mice. Overall, DHA supplementation appears to alter hippocampal gene expression in a way that is consistent with it being neuroprotective in the context of the metabolic and inflammatory insults associated with diabetes.

  7. Possible evidence that dehydroepiandrosterone sulfate (DHA-S) stimulates cervical ripening by a membrane-mediated process: Specific binding-sites in plasma membrane from human uterine cervix

    International Nuclear Information System (INIS)

    Ohno, T.; Imai, A.; Tamaya, T.

    1991-01-01

    Fetal adrenal steroid, dehydroepiandrosterone sulfate (DHA-S) is well known to promote cervical ripening in late pregnancy. The presence of sites specifically binding the DHA-S in plasma membrane was studied in human cervical fibroblasts prepared from pregnant uterus. The fibroblasts were incubated with 3 H DHA-S and then fractionated into plasma membranes, cytosol, nuclei, and other organella debris. The specific activity of 3H-count in the plasma membrane fraction was enriched ∼ 7-fold compared with the whole homogenate. When the isolated plasma membrane preparations from the fibroblasts were exposed to 3 H DHA-S, the binding showed saturation kinetics; an apparent equilibrium dissociation constant (Kd) of 12 nM, and the binding capacity (Bmax) of 1.25 pmol/mg protein. The present results suggest that DHA is bound to and recognized by components in plasma membrane, and may exert its action on cervical ripening through the membrane-mediated processes

  8. Determinants of DHA status and functional effects on metabolic markers and immune modulation in early life

    DEFF Research Database (Denmark)

    Harsløf, Laurine Bente Schram

    Optimal intake of n-3 long chain polyunsaturated fatty acids (LCPUFA) during infancy and early childhood is not known and only a few studies have examined to what extend docosahexaenoic acid (DHA) status is affected by endogenous synthesis from α-linolenic acid relative to the influence of dietary...... intake and other potential determinants in infancy and childhood. The first part of the PhD thesis describes several potential determinants of infant and young child DHA status including genetic variation in FADS, breastfeeding and fish intake. Results can be found in Paper 1. Evidence for effects of n-3...

  9. The Pattern of Fatty Acids Displaced by EPA and DHA Following 12 Months Supplementation Varies between Blood Cell and Plasma Fractions

    Directory of Open Access Journals (Sweden)

    Celia G. Walker

    2015-08-01

    Full Text Available Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are increased in plasma lipids and blood cell membranes in response to supplementation. Whilst arachidonic acid (AA is correspondingly decreased, the effect on other fatty acids (FA is less well described and there may be site-specific differences. In response to 12 months EPA + DHA supplementation in doses equivalent to 0–4 portions of oily fish/week (1 portion: 3.27 g EPA+DHA multinomial regression analysis was used to identify important FA changes for plasma phosphatidylcholine (PC, cholesteryl ester (CE and triglyceride (TAG and for blood mononuclear cells (MNC, red blood cells (RBC and platelets (PLAT. Dose-dependent increases in EPA + DHA were matched by decreases in several n-6 polyunsaturated fatty acids (PUFA in PC, CE, RBC and PLAT, but were predominantly compensated for by oleic acid in TAG. Changes were observed for all FA classes in MNC. Consequently the n-6:n-3 PUFA ratio was reduced in a dose-dependent manner in all pools after 12 months (37%–64% of placebo in the four portions group. We conclude that the profile of the FA decreased in exchange for the increase in EPA + DHA following supplementation differs by FA pool with implications for understanding the impact of n-3 PUFA on blood lipid and blood cell biology.

  10. The Pattern of Fatty Acids Displaced by EPA and DHA Following 12 Months Supplementation Varies between Blood Cell and Plasma Fractions.

    Science.gov (United States)

    Walker, Celia G; West, Annette L; Browning, Lucy M; Madden, Jackie; Gambell, Joanna M; Jebb, Susan A; Calder, Philip C

    2015-08-03

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are increased in plasma lipids and blood cell membranes in response to supplementation. Whilst arachidonic acid (AA) is correspondingly decreased, the effect on other fatty acids (FA) is less well described and there may be site-specific differences. In response to 12 months EPA + DHA supplementation in doses equivalent to 0-4 portions of oily fish/week (1 portion: 3.27 g EPA+DHA) multinomial regression analysis was used to identify important FA changes for plasma phosphatidylcholine (PC), cholesteryl ester (CE) and triglyceride (TAG) and for blood mononuclear cells (MNC), red blood cells (RBC) and platelets (PLAT). Dose-dependent increases in EPA + DHA were matched by decreases in several n-6 polyunsaturated fatty acids (PUFA) in PC, CE, RBC and PLAT, but were predominantly compensated for by oleic acid in TAG. Changes were observed for all FA classes in MNC. Consequently the n-6:n-3 PUFA ratio was reduced in a dose-dependent manner in all pools after 12 months (37%-64% of placebo in the four portions group). We conclude that the profile of the FA decreased in exchange for the increase in EPA + DHA following supplementation differs by FA pool with implications for understanding the impact of n-3 PUFA on blood lipid and blood cell biology.

  11. Effects of different dietary DHA:EPA ratios on gonadal steroidogenesis in the marine teleost, tongue sole (Cynoglossus semilaevis).

    Science.gov (United States)

    Xu, Houguo; Cao, Lin; Wei, Yuliang; Zhang, Yuanqin; Liang, Mengqing

    2017-08-01

    The present study was conducted to investigate the effects of dietary DHA and EPA on gonadal steroidogenesis in mature females and males, with a feeding trial on tongue sole, a typical marine teleost with sexual dimorphism. Three experimental diets differing basically in DHA:EPA ratio, that is, 0·68 (diet D:E-0·68), 1·09 (D:E-1·09) and 2·05 (D:E-2·05), were randomly assigned to nine tanks of 3-year-old tongue sole (ten females and fifteen males in each tank). The feeding trail lasted for 90 d before and during the spawning season. Fish were reared in a flowing seawater system and fed to apparent satiation twice daily. Compared with diet D:E-0·68, diet D:E-1·09 significantly enhanced the oestradiol production in females, whereas diet D:E-2·05 significantly enhanced the testosterone production in males. In ovaries, diet D:E-1·09 induced highest mRNA expression of follicle-stimulating hormone receptor (FSHR), steroidogenic acute regulatory protein, 17α-hydroxylase (P450c17) and 3β-hydroxysteroid dehydrogenase (3β-HSD). In testes, diet 2·05 resulted in highest mRNA expression of FSHR, cholesterol side-chain cleavage enzyme, P450c17 and 3β-HSD. Fatty acid profiles in fish tissues reflected closely those of diets. Female fish had more gonadal EPA content but less DHA content than male fish, whereas there was a reverse observation in liver. In conclusion, the dietary DHA:EPA ratio, possibly combined with the dietary EPA:arachidonic acid ratio, differentially regulated sex steroid hormone synthesis in mature female and male tongue soles. Females seemed to require more EPA but less DHA for the gonadal steroidogenesis than males. The results are beneficial to sex-specific nutritive strategies in domestic teleost.

  12. Arachidonic acid and DHA status in pregnant women is not associated with cognitive performance of their children at 4 or 6-7 years.

    Science.gov (United States)

    Crozier, Sarah R; Sibbons, Charlene M; Fisk, Helena L; Godfrey, Keith M; Calder, Philip C; Gale, Catharine R; Robinson, Sian M; Inskip, Hazel M; Baird, Janis; Harvey, Nicholas C; Cooper, Cyrus; Burdge, Graham C

    2018-06-01

    Arachidonic acid (ARA) and DHA, supplied primarily from the mother, are required for early development of the central nervous system. Thus, variations in maternal ARA or DHA status may modify neurocognitive development. We investigated the relationship between maternal ARA and DHA status in early (11·7 weeks) or late (34·5 weeks) pregnancy on neurocognitive function at the age of 4 years or 6-7 years in 724 mother-child pairs from the Southampton Women's Survey cohort. Plasma phosphatidylcholine fatty acid composition was measured in early and late pregnancy. ARA concentration in early pregnancy predicted 13 % of the variation in ARA concentration in late pregnancy (β=0·36, PDHA concentration in early pregnancy predicted 21 % of the variation in DHA concentration in late pregnancy (β=0·46, PDHA nor ARA concentrations in early or late pregnancy were associated significantly with neurocognitive function in children at the age of 4 years or the age of 6-7 years. These findings suggest that ARA and DHA status during pregnancy in the range found in this cohort are unlikely to have major influences on neurocognitive function in healthy children.

  13. A Study of the Differential Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Gene Expression Profiles of Stimulated Thp-1 Macrophages.

    Science.gov (United States)

    Allam-Ndoul, Bénédicte; Guénard, Frédéric; Barbier, Olivier; Vohl, Marie-Claude

    2017-04-25

    Background: An appropriate intake of omega-3 ( n -3) fatty acids (FAs) such as eicosapentaenoic and docosahexaenoic acid (EPA/DHA) from marine sources is known to have anti-inflammatory effects. However, molecular mechanisms underlying their beneficial effects on health are not fully understood. The aim of the present study was to characterize gene expression profiles of THP-1 macrophages, incubated in either EPA or DHA and stimulated with lipopolysaccharide (LPS), a pro-inflammatory agent. Methods: THP-1 macrophages were incubated into 10, 50 and 75 µM of EPA or DHA for 24 h, and 100 nM of LPS was added to the culture media for 18 h. Total mRNA was extracted and gene expression examined by microarray analysis using Illumina Human HT-12 expression beadchips (Illumina). Results: Pathway analysis revealed that EPA and DHA regulate genes involved in cell cycle regulation, apoptosis, immune response and inflammation, oxidative stress and cancer pathways in a differential and dose-dependent manner. Conclusions: EPA and DHA appear to exert differential effects on gene expression in THP-1 macrophages. Specific effects of n -3 FAs on gene expression levels are also dose-dependent.

  14. Modificación estructural de Poli(Acido Láctico) (PLA) mediante extrusión reactiva: estudio preliminar en mezclador interno escala laboratorio

    OpenAIRE

    Espejo, Lucas

    2011-01-01

    Doble titulació Este proyecto, realizado en Centro Catalá del Plástico y por lo tanto implicado en el dominio de los polímeros, pretende preparar y caracterizar sistemas de Acido Poli(Láctico) (PLA) con extensores de cadena (CE) que serían adecuados y eficientes para el sector de los envases. Los procesos tal la Inyección y/o Extrusión empleando el PLA en este campo se enfrentan a la pérdida de las propiedades termo-mecánicas. Es el resultado de la degradación térmica y h...

  15. Forms of n-3 (ALA, C18:3n-3 or DHA, C22:6n-3) Fatty Acids Affect Carcass Yield, Blood Lipids, Muscle n-3 Fatty Acids and Liver Gene Expression in Lambs.

    Science.gov (United States)

    Ponnampalam, Eric N; Lewandowski, Paul A; Fahri, Fahri T; Burnett, Viv F; Dunshea, Frank R; Plozza, Tim; Jacobs, Joe L

    2015-11-01

    The effects of supplementing diets with n-3 alpha-linolenic acid (ALA) and docosahexaenoic acid (DHA) on plasma metabolites, carcass yield, muscle n-3 fatty acids and liver messenger RNA (mRNA) in lambs were investigated. Lambs (n = 120) were stratified to 12 groups based on body weight (35 ± 3.1 kg), and within groups randomly allocated to four dietary treatments: basal diet (BAS), BAS with 10.7 % flaxseed supplement (Flax), BAS with 1.8 % algae supplement (DHA), BAS with Flax and DHA (FlaxDHA). Lambs were fed for 56 days. Blood samples were collected on day 0 and day 56, and plasma analysed for insulin and lipids. Lambs were slaughtered, and carcass traits measured. At 30 min and 24 h, liver and muscle samples, respectively, were collected for determination of mRNA (FADS1, FADS2, CPT1A, ACOX1) and fatty acid composition. Lambs fed Flax had higher plasma triacylglycerol, body weight, body fat and carcass yield compared with the BAS group (P DHA supplementation increased carcass yield and muscle DHA while lowering plasma insulin compared with the BAS diet (P DHA treatment increased (P DHA concentration. Liver mRNA FADS2 was higher and CPT1A lower in the DHA group (P DHA diet. In summary, supplementation with ALA or DHA modulated plasma metabolites, muscle DHA, body fat and liver gene expression differently.

  16. A study of associations between early DHA status and fatty acid desaturase (FADS) SNP and developmental outcomes in children of obese mothers.

    Science.gov (United States)

    Andersen, Karina R; Harsløf, Laurine B S; Schnurr, Theresia M; Hansen, Torben; Hellgren, Lars I; Michaelsen, Kim F; Lauritzen, Lotte

    2017-01-01

    DHA from diet or endogenous synthesis has been proposed to affect infant development, however, results are inconclusive. In this study, we aim to verify previously observed fatty acid desaturase gene cluster (FADS) SNP-specific associations with erythrocyte DHA status in 9-month-old children and sex-specific association with developmental outcomes. The study was performed in 166 children (55 % boys) of obese mothers. Erythrocyte fatty acid composition was analysed in blood-samples obtained at 9 months of age, and developmental outcomes assessed by the Ages and Stages Questionnaire at 3 years. Erythrocyte DHA level ranged from 4·4 to 9·9 % of fatty acids, but did not show any association with FADS SNP or other potential determinants. Regression analysis showed associations between erythrocyte DHA and scores for personal-social skills (β 1·8 (95 % CI 0·3, 3·3), P=0·019) and problem solving (β 3·4 (95 % CI 1·2, 5·6), P=0·003). A tendency was observed for an association in opposite direction between minor alleles (G-variant) of rs1535 and rs174575 and personal-social skills (P=0·062 and 0·068, respectively), which became significant when the SNP were combined based on their previously observed effect on erythrocyte DHA at 9 months of age (β 2·6 (95 % CI 0·01, 5·1), P=0·011). Sex-SNP interaction was indicated for rs174575 genotype on fine motor scores (P=0·016), due to higher scores among minor allele carrying girls (P=0·043), whereas no effect was seen among boys. In conclusion, DHA-increasing FADS SNP and erythrocyte DHA status were consistently associated with improved personal-social skills in this small cohort of children of obese mothers irrespective of sex, but the sample was too small to verify potential sex-specific effects.

  17. Continuous gradient temperature Raman spectroscopy and differential scanning calorimetry of N-3DPA and DHA from -100 to 10°C

    Science.gov (United States)

    Docosahexaenoic acid (DHA, 22:6n-3) is exclusively utilized in fast signal processing tissues such as retinal, neural and cardiac. N-3 docosapentaenoic acid (n-3DPA, 22:5n-3), with just one less double bond, is also found in the marine food chain yet cannot substitute for DHA. Gradient Temperature R...

  18. Crystallization and preliminary X-ray diffraction analysis of the wild-type haloalkane dehalogenase DhaA and its variant DhaA13 complexed with different ligands

    Czech Academy of Sciences Publication Activity Database

    Stsiapanava, A.; Chaloupková, R.; Fořtová, A.; Brynda, Jiří; Weiss, M.S.; Damborský, J.; Kutá-Smatanová, Ivana

    2011-01-01

    Roč. 67, - (2011), s. 253-257 ISSN 1744-3091 R&D Projects: GA MŠk(CZ) LC06010 Grant - others:GA ČR(CZ) GA310/09/1407 Program:GA Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z60870520 Keywords : haloalkane dehalogenases * DhaA * Rhodococcus rhodochrous * microseeding * atomic resolution Subject RIV: EB - Genetics ; Molecular Biology; CD - Macromolecular Chemistry (UEK-B) Impact factor: 0.506, year: 2011

  19. Acidos grasos omega-3 en la nutrición ¿como aportarlos?

    OpenAIRE

    Valenzuela B, Alfonso; Valenzuela B, Rodrigo

    2014-01-01

    Los beneficios derivados del consumo de ácidos grasos omega-3 EPA y DHA de origen marino están sólidamente documentados, por lo cual existen recomendaciones para su consumo. La recomendación es consumir productos del mar, específicamente pescado. Sin embargo la disponibilidad de este recurso es cada vez menor. Los aceites marinos, ricos en ácidos grasos omega-3 son también cada vez más escasos y de mayor costo. El aceite de pescado, altamente inestable a la oxidación, se puede encapsular, mic...

  20. Characterization of Oilseed Lipids from “DHA-Producing Camelina sativa”: A New Transformed Land Plant Containing Long-Chain Omega-3 Oils

    Directory of Open Access Journals (Sweden)

    Maged P. Mansour

    2014-02-01

    Full Text Available New and sustainable sources of long-chain (LC, ≥C20 omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3 are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG as the major lipid class in hexane extracts (96% of total lipid. Subsequent chloroform-methanol (CM extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3 in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C16–C22 fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols.

  1. Interaction of fructose with other medium components to affect bioproduction of docosahexaenoic acid (DHA) by Aurantiochytrium sp. SW1

    Science.gov (United States)

    Manikan, Vidyah; Kalil, Mohd. Sahaid; Shuib, Shuwahida; Hamid, Aidil Abdul

    2018-04-01

    Thraustochytrids are a group of marine fungus-like microheterotrophs of which some can accumulate considerable amounts of the high valued omega-3 oil, docosahexaenoic acid (DHA). In this study, a local thraustochytrid isolate, Aurantiochytrium sp. SW1, was cultivated in a medium containing fructose as the major carbon source. The effects of this carbon source in interaction with yeast extract, monosodium glutamate (MSG) and sea salt were studied using a software-based two level full factorial design. Results showed that fructose as a single factor, has significant positive effect on the volumetric DHA content of SW1. Similarly, its interaction with yeast extract has profound positive effect. However, interactions of fructose with MSG and sea salt were significant negative effects. These results indicate that manipulation of the concentration of fructose in the culture medium may serve as a simple and useful strategy to help achieve preferred amount of DHA.

  2. Dietary ALA, EPA and DHA have distinct effects on oxylipin profiles in female and male rat kidney, liver and serum.

    Science.gov (United States)

    Leng, Shan; Winter, Tanja; Aukema, Harold M

    2018-04-18

    There is much data on the effects of dietary n-3 fatty acids on tissue fatty acid compositions, but comparable comprehensive data on their oxygenated metabolites (oxylipins) is limited. The effects of providing female and male rats with diets high in α-linolenic acid (ALA), EPA or DHA for 6 weeks on oxylipins and fatty acids in kidney, liver and serum were therefore examined. The oxylipin profile generally reflected fatty acids, but it also revealed unique effects of individual n-3 fatty acids that were not apparent from fatty acid data alone. Dietary ALA increased renal and serum DHA oxylipins even though DHA itself did not increase, while dietary EPA did not increase DHA oxylipins in kidney or liver, suggesting that high EPA may inhibit this conversion. Oxylipin data generally corroborated fatty acid data that indicated that DHA can be retroconverted to EPA and that further retroconversion to ALA is limited. Dietary n-3 fatty acids decreased n-6 fatty acids and their oxylipins (except linoleic acid and its oxylipins), in order of effectiveness of DHA > EPA > ALA, with some exceptions: several arachidonic acid oxylipins modified at carbon 15 were not lower in all three sites, and EPA had a greater effect on 12-hydroxy-eicosatetraenoic acid and its metabolites in the liver. Oxylipins were predominantly higher in males, which was not reflective of fatty acids. Tissue-specific oxylipin profiles, therefore, provide further information on individual dietary n-3 fatty acid and sex effects that may help explain their unique physiological effects and have implications for dietary recommendations. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Effect of different mulch materials on the soil dehydrogenase activity (DHA) in an organic pepper crop

    Science.gov (United States)

    Moreno, Marta M.; Peco, Jesús; Campos, Juan; Villena, Jaime; González, Sara; Moreno, Carmen

    2016-04-01

    The use biodegradable materials (biopolymers of different composition and papers) as an alternative to conventional mulches has increased considerably during the last years mainly for environmental reason. In order to assess the effect of these materials on the soil microbial activity during the season of a pepper crop organically grown in Central Spain, the soil dehydrogenase activity (DHA) was measured in laboratory. The mulch materials tested were: 1) black polyethylene (PE, 15 μm); black biopolymers (15 μm): 2) Mater-Bi® (corn starch based), 3) Sphere 4® (potato starch based), 4) Sphere 6® (potato starch based), 5) Bioflex® (polylactic acid based), 6) Ecovio® (polylactic acid based), 7) Mimgreen® (black paper, 85 g/m2). A randomized complete block design with four replications was adopted. The crop was drip irrigated following the water demand of each treatment. Soil samples (5-10 cm depth) under the different mulches were taken at different dates (at the beginning of the crop cycle and at different dates throughout the crop season). Additionally, samples of bare soil in a manual weeding and in an untreated control were taken. The results obtained show the negative effect of black PE on the DHA activity, mainly as result of the higher temperature reached under the mulch and the reduction in the gas interchange between the soil and the atmosphere. The values corresponding to the biodegradable materials were variable, although highlighting the low DHA activity observed under Bioflex®. In general, the uncovered treatments showed higher values than those reached under mulches, especially in the untreated control. Keywords: mulch, biodegradable, biopolymer, paper, dehydrogenase activity (DHA). Acknowledgements: the research was funded by Project RTA2011-00104-C04-03 from the INIA (Spanish Ministry of Economy and Competitiveness).

  4. Dietary DHA/EPA ratio affected tissue fatty acid profiles, antioxidant capacity, hematological characteristics and expression of lipid-related genes but not growth in juvenile black seabream (Acanthopagrus schlegelii).

    Science.gov (United States)

    Jin, Min; Monroig, Óscar; Lu, You; Yuan, Ye; Li, Yi; Ding, Liyun; Tocher, Douglas R; Zhou, Qicun

    2017-01-01

    An 8-week feeding trial was conducted to investigate the effects of dietary docosahexaenoic to eicosapentaenoic acid ratio (DHA/EPA) on growth performance, fatty acid profiles, antioxidant capacity, hematological characteristics and expression of some lipid metabolism related genes of juvenile black seabream (Acanthopagrus schlegelii) of initial weight 9.47 ± 0.03 g. Five isonitrogenous and isolipidic diets (45% crude protein and 14% crude lipid) were formulated to contain graded DHA/EPA ratios of 0.65, 1.16, 1.60, 2.03 and 2.67. There were no differences in growth performance and feed utilization among treatments. Fish fed higher DHA/EPA ratios had higher malondialdehyde (MDA) contents in serum than lower ratios. Serum triacylglycerol (TAG) content was significantly higher in fish fed the lowest DHA/EPA ratio. Tissue fatty acid profiles reflected the diets despite down-regulation of LC-PUFA biosynthesis genes, fatty acyl desaturase 2 (fads2) and elongase of very long-chain fatty acids 5 (elovl5), by high DHA/EPA ratios. Expression of acetyl-CoA carboxylase alpha (accα) and carnitine palmitoyl transferase 1A (cpt1a) were up-regulated by high DHA/EPA ratio, whereas sterol regulatory element-binding protein-1 (srebp-1) and hormone-sensitive lipase (hsl) were down-regulated. Fatty acid synthase (fas), 6-phosphogluconate dehydrogenase (6pgd) and peroxisome proliferator-activated receptor alpha (pparα) showed highest expression in fish fed intermediate (1.16) DHA/EPA ratio. Overall, this study indicated that dietary DHA/EPA ratio affected fatty acid profiles and significantly influenced lipid metabolism including LC-PUFA biosynthesis and other anabolic and catabolic pathways, and also had impacts on antioxidant capacity and hematological characteristics.

  5. Mfsd2a Is a Transporter for the Essential ω-3 Fatty Acid Docosahexaenoic Acid (DHA) in Eye and Is Important for Photoreceptor Cell Development.

    Science.gov (United States)

    Wong, Bernice H; Chan, Jia Pei; Cazenave-Gassiot, Amaury; Poh, Rebecca W; Foo, Juat Chin; Galam, Dwight L A; Ghosh, Sujoy; Nguyen, Long N; Barathi, Veluchamy A; Yeo, Sia W; Luu, Chi D; Wenk, Markus R; Silver, David L

    2016-05-13

    Eye photoreceptor membrane discs in outer rod segments are highly enriched in the visual pigment rhodopsin and the ω-3 fatty acid docosahexaenoic acid (DHA). The eye acquires DHA from blood, but transporters for DHA uptake across the blood-retinal barrier or retinal pigment epithelium have not been identified. Mfsd2a is a newly described sodium-dependent lysophosphatidylcholine (LPC) symporter expressed at the blood-brain barrier that transports LPCs containing DHA and other long-chain fatty acids. LPC transport via Mfsd2a has been shown to be necessary for human brain growth. Here we demonstrate that Mfsd2a is highly expressed in retinal pigment epithelium in embryonic eye, before the development of photoreceptors, and is the primary site of Mfsd2a expression in the eye. Eyes from whole body Mfsd2a-deficient (KO) mice, but not endothelium-specific Mfsd2a-deficient mice, were DHA-deficient and had significantly reduced LPC/DHA transport in vivo Fluorescein angiography indicated normal blood-retinal barrier function. Histological and electron microscopic analysis indicated that Mfsd2a KO mice exhibited a specific reduction in outer rod segment length, disorganized outer rod segment discs, and mislocalization of and reduction in rhodopsin early in postnatal development without loss of photoreceptors. Minor photoreceptor cell loss occurred in adult Mfsd2a KO mice, but electroretinography indicated visual function was normal. The developing eyes of Mfsd2a KO mice had activated microglia and up-regulation of lipogenic and cholesterogenic genes, likely adaptations to loss of LPC transport. These findings identify LPC transport via Mfsd2a as an important pathway for DHA uptake in eye and for development of photoreceptor membrane discs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Continuous gradient temperature Raman spectroscopy and differential scanning calorimetry of N-3DPA and DHA from -100 to 10°C.

    Science.gov (United States)

    Broadhurst, C Leigh; Schmidt, Walter F; Nguyen, Julie K; Qin, Jianwei; Chao, Kuanglin; Aubuchon, Steven R; Kim, Moon S

    2017-04-01

    Docosahexaenoic acid (DHA, 22:6n-3) is exclusively utilized in fast signal processing tissues such as retinal, neural and cardiac. N-3 docosapentaenoic acid (n-3DPA, 22:5n-3), with just one less double bond, is also found in the marine food chain yet cannot substitute for DHA. Gradient temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and both conventional and modulated DSC to n-3DPA and DHA from -100 to 20°C. Three-dimensional data arrays with 0.2°C increments and first derivatives allowed complete assignment of solid, liquid and transition state vibrational modes. Melting temperatures n-3DPA (-45°C) and DHA (-46°C) are similar and show evidence for solid-state phase transitions not seen in n-6DPA (-27°C melt). The C6H2 site is an elastic marker for temperature perturbation of all three lipids, each of which has a distinct three dimensional structure. N-3 DPA shows the spectroscopic signature of saturated fatty acids from C1 to C6. DHA does not have three aliphatic carbons in sequence; n-6DPA does but they occur at the methyl end, and do not yield the characteristic signal. DHA appears to have uniform twisting from C6H2 to C12H2 to C18H2 whereas n-6DPA bends from C12 to C18, centered at C15H2. For n-3DPA, twisting is centered at C6H2 adjacent to the C2-C3-C4-C5 aliphatic moiety. These molecular sites are the most elastic in the solid phase and during premelting. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Preparation of triacylglycerols rich in omega-3 fatty acids from sardine oil using a Rhizomucor miehei lipase: focus in the EPA/DHA ratio.

    Science.gov (United States)

    Bispo, Paulo; Batista, Irineu; Bernardino, Raul J; Bandarra, Narcisa Maria

    2014-02-01

    The increasing evidence on the differential biochemical effects of eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) raises the need of n-3 highly unsaturated fatty acid concentrates with different amounts of these fatty acids. In the present work, physicochemical and enzymatic techniques were combined to obtain acylglycerols, mainly triacylglycerols (TAG), rich in n-3 fatty acids. Sardine oil was obtained by washing sardine (Sardina pilchardus) mince with a NaHCO3 solution, hydrolyzed in a KOH-ethanol solution, and concentrated with urea. The esterification reaction was performed in the stoichiometric proportion of substrates for re-esterification to TAG, with 10 % level of Rhizomucor miehei lipase based on the weight of substrates, without any solvent, during 48 h. This procedure led to approximately 88 % of acylglycerols, where more than 66 % were TAG and the concentration of n-3 fatty acids was higher than 60 %, the EPA and DHA ratio (EPA/DHA) was 4:1. The content of DHA in the unesterifed fraction (free fatty acids) increased from 20 to 54 %, while the EPA level in the same fraction decreased from 33 to 12.5 % (EPA/DHA ratio ≈1:4). Computational methods (density functional theory calculations) have been carried out at the B3LYP/6-31G(d,p) level to explain some of the experimental results.

  8. Predicting the effect of maternal docosahexaenoic acid (DHA) supplementation to reduce early preterm birth in Australia and the United States using results of within country randomized controlled trials

    Science.gov (United States)

    Yelland, LN; Gajewski, BJ; Colombo, J; Gibson, RA; Makrides, M; Carlson, SE

    2016-01-01

    SUMMARY The DHA to Optimize Mother Infant Outcome (DOMInO) and Kansas DHA Outcomes Study (KUDOS) were randomized controlled trials that supplemented mothers with 800 and 600 mg DHA/day, respectively, or a placebo during pregnancy. DOMInO was conducted in Australia and KUDOS in the United States. Both trials found an unanticipated and statistically significant reduction in early preterm birth (ePTB; i.e., birth before 34 weeks gestation). However, in each trial, the number of ePTBs were small. We used a novel Bayesian approach and an arbitrary sample of 120,000 pregnancies to estimate statistically derived low, moderate or high risk for ePTB, and to test for differences between the DHA and placebo groups. In both trials, the model predicted DHA would significantly reduce the expected proportion of deliveries in the high risk group under the trial conditions of the parent studies. From these proportions we estimated the number of ePTB that could be prevented. PMID:27637340

  9. Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6-month randomised controlled trial.

    Science.gov (United States)

    Sinn, Natalie; Milte, Catherine M; Street, Steven J; Buckley, Jonathan D; Coates, Alison M; Petkov, John; Howe, Peter R C

    2012-06-01

    Depressive symptoms may increase the risk of progressing from mild cognitive impairment (MCI) to dementia. Consumption of n-3 PUFA may alleviate both cognitive decline and depression. The aim of the present study was to investigate the benefits of supplementing a diet with n-3 PUFA, DHA and EPA, for depressive symptoms, quality of life (QOL) and cognition in elderly people with MCI. We conducted a 6-month double-blind, randomised controlled trial. A total of fifty people aged >65 years with MCI were allocated to receive a supplement rich in EPA (1·67 g EPA + 0·16 g DHA/d; n 17), DHA (1·55 g DHA + 0·40 g EPA/d; n 18) or the n-6 PUFA linoleic acid (LA; 2·2 g/d; n 15). Treatment allocation was by minimisation based on age, sex and depressive symptoms (Geriatric Depression Scale, GDS). Physiological and cognitive assessments, questionnaires and fatty acid composition of erythrocytes were obtained at baseline and 6 months (completers: n 40; EPA n 13, DHA n 16, LA n 11). Compared with the LA group, GDS scores improved in the EPA (P=0·04) and DHA (P=0·01) groups and verbal fluency (Initial Letter Fluency) in the DHA group (P=0·04). Improved GDS scores were correlated with increased DHA plus EPA (r 0·39, P=0·02). Improved self-reported physical health was associated with increased DHA. There were no treatment effects on other cognitive or QOL parameters. Increased intakes of DHA and EPA benefited mental health in older people with MCI. Increasing n-3 PUFA intakes may reduce depressive symptoms and the risk of progressing to dementia. This needs to be investigated in larger, depressed samples with MCI.

  10. Recovery of Corneal Sensitivity and Increase in Nerve Density and Wound Healing in Diabetic Mice After PEDF Plus DHA Treatment.

    Science.gov (United States)

    He, Jiucheng; Pham, Thang Luong; Kakazu, Azucena; Bazan, Haydee E P

    2017-09-01

    Diabetic keratopathy decreases corneal sensation and tear secretion and delays wound healing after injury. In the current study, we tested the effect of treatment with pigment epithelium-derived factor (PEDF) in combination with docosahexaenoic acid (DHA) on corneal nerve regeneration in a mouse model of diabetes with or without corneal injury. The study was performed in streptozotocin-induced diabetic mice (C57BL/6). Ten weeks after streptozotocin injection, diabetic mice showed significant decreases of corneal sensitivity, tear production, and epithelial subbasal nerve density when compared with age-matched normal mice. After diabetic mice were wounded in the right eye and treated in both eyes with PEDF+DHA for 2 weeks, there was a significant increase in corneal epithelial nerve regeneration and substance P-positive nerve density in both wounded and unwounded eyes compared with vehicle-treated corneas. There also was elevated corneal sensitivity and tear production in the treated corneas compared with vehicle. In addition, PEDF+DHA accelerated corneal wound healing, selectively recruited type 2 macrophages, and prevented neutrophil infiltration in diabetic wounded corneas. These results suggest that topical treatment with PEDF+DHA promotes corneal nerve regeneration and wound healing in diabetic mice and could potentially be exploited as a therapeutic option for the treatment of diabetic keratopathy. © 2017 by the American Diabetes Association.

  11. Lutein accumulates in subcellular membranes of brain regions in adult rhesus macaques: Relationship to DHA oxidation products.

    Directory of Open Access Journals (Sweden)

    Emily S Mohn

    Full Text Available Lutein, a carotenoid with anti-oxidant functions, preferentially accumulates in primate brain and is positively related to cognition in humans. Docosahexaenoic acid (DHA, an omega-3 polyunsaturated fatty acid (PUFA, is also beneficial for cognition, but is susceptible to oxidation. The present study characterized the membrane distribution of lutein in brain regions important for different domains of cognitive function and determined whether membrane lutein was associated with brain PUFA oxidation.Adult rhesus monkeys were fed a stock diet (~2 mg/day lutein or ~0.5 μmol/kg body weight/day (n = 9 or the stock diet plus a daily supplement of lutein (~4.5 mg/day or~1 μmol/kg body weight/day and zeaxanthin (~0.5 mg/day or 0.1 μmol/kg body weight/day for 6-12 months (n = 4. Nuclear, myelin, mitochondrial, and neuronal plasma membranes were isolated using a Ficoll density gradient from prefrontal cortex (PFC, cerebellum (CER, striatum (ST, and hippocampus (HC. Carotenoids, PUFAs, and PUFA oxidation products were measured using HPLC, GC, and LC-GC/MS, respectively.All-trans-lutein (ng/mg protein was detected in all regions and membranes and was highly variable among monkeys. Lutein/zeaxanthin supplementation significantly increased total concentrations of lutein in serum, PFC and CER, as well as lutein in mitochondrial membranes and total DHA concentrations in PFC only (P<0.05. In PFC and ST, mitochondrial lutein was inversely related to DHA oxidation products, but not those from arachidonic acid (P <0.05.This study provides novel data on subcellular lutein accumulation and its relationship to DHA oxidation in primate brain. These findings support the hypothesis that lutein may be associated with antioxidant functions in the brain.

  12. A study of associations between early DHA status and fatty acid desaturase (FADS) SNP and developmental outcomes in children of obese mothers

    DEFF Research Database (Denmark)

    Andersen, Karina R; Harsløf, Laurine B S; Schnurr, Theresia M

    2017-01-01

    DHA from diet or endogenous synthesis has been proposed to affect infant development, however, results are inconclusive. In this study, we aim to verify previously observed fatty acid desaturase gene cluster (FADS) SNP-specific associations with erythrocyte DHA status in 9-month-old children...... and sex-specific association with developmental outcomes. The study was performed in 166 children (55 % boys) of obese mothers. Erythrocyte fatty acid composition was analysed in blood-samples obtained at 9 months of age, and developmental outcomes assessed by the Ages and Stages Questionnaire at 3 years......-increasing FADS SNP and erythrocyte DHA status were consistently associated with improved personal-social skills in this small cohort of children of obese mothers irrespective of sex, but the sample was too small to verify potential sex-specific effects....

  13. Effects of an open-label pilot study with high-dose EPA/DHA concentrates on plasma phospholipids and behavior in children with attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Hutchins Heather L

    2007-07-01

    Full Text Available Abstract Background Attention deficit hyperactivity disorder (ADHD is the most common neurological condition in children. This pilot study evaluated the effects of high-dose eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA supplementation on the isolated plasma phospholipids and behavior in children with ADHD (primarily inattentive subtype and combined subtype. Methods Nine children were initially supplemented with 16.2 g EPA/DHA concentrates per day. The dosage was adjusted dependent on the ratio of arachidonic acid (AA to EPA in the isolated plasma phospholipids at four weeks to reach a level normally found in the Japanese population. Results At the end of the eight-week study, supplementation resulted in significant increases in EPA and DHA, as well as a significant reduction in the AA:EPA ratio (20.78 ± 5.26 to 5.95 ± 7.35, p Conclusion The findings of this small pilot study suggest supplementation with high-dose EPA/DHA concentrates may improve behavior in children with ADHD.

  14. A novel self-micro-emulsifying delivery system (SMEDS) formulation significantly improves the fasting absorption of EPA and DHA from a single dose of an omega-3 ethyl ester concentrate.

    Science.gov (United States)

    Qin, Yan; Nyheim, Hilde; Haram, Else Marie; Moritz, Joseph M; Hustvedt, Svein Olaf

    2017-10-16

    Absorption of EPA and DHA from Omega-3-acid ethyl ester (EE) concentrate supplements occurs most efficiently when taken in context of a fatty meal; adequate fat intake is required to release bile salts that emulsify and pancreatic enzymes that digest omega-3-containing lipids in the intestine. Current guidelines recommend reduction in fat intake and therefore there is a need to optimize the absorption of Omega-3 in those consuming low-fat or no-fat meals. To this end, BASF has developed an Absorption Acceleration Technology, a novel self-micro-emulsifying delivery system (SMEDS) formulation of highly concentrated Omega-3-acid EE which enables rapid emulsification and microdroplet formation upon entering the aqueous environment of the gut therefore enhances the absorption. Two separate single dose, crossover studies were conducted to determine the relative bioavailability of omega-3-acid EE concentrate, either as a novel SMEDS formulation (PRF-021) or as control, in healthy fasted male and female adults at two dose levels (Study 1 "low dose": 630 mg EPA + DHA in PRF-021 vs. 840 mg EPA + DHA in control; Study 2 "high dose": 1680 mg EPA + DHA in PRF-021 vs. 3360 mg EPA + DHA in control). Blood samples were collected immediately before supplementation and at defined time intervals for 48 h. Plasma concentration of total EPA and DHA were determined for pharmacokinetic analysis, area under the curve (AUC) and maximum observed concentration (C max ) was determined. Total EPA plus DHA absorption from SMEDS formulation PRF-021 were 6.4 and 11.5 times higher compared to control in low- and high-dose studies respectively, determined as the ratio of baseline corrected, dose normalized AUC 0-24h of PRF-021 over that of control. EPA and DHA individually showed differing levels of enhancement: the AUC 0-24h ratio for EPA was 23.8 and 25.7 in low and high dose studies, respectively, and the AUC 0-24h ratio for DHA was 3.6 and 5.6 in low and high dose studies

  15. Supplementation of docosahexaenoic acid (DHA) / Eicosapentaenoic acid (EPA) in a ratio of 1/1.3 during the last trimester of pregnancy results in EPA accumulation in cord blood.

    Science.gov (United States)

    Büyükuslu, Nihal; Ovalı, Sema; Altuntaş, Şükriye Leyla; Batırel, Saime; Yiğit, Pakize; Garipağaoğlu, Muazzez

    2017-10-01

    Omega-3 fatty acids (n-3 FA), specifically DHA, are associated with fetal growth and development. We aimed to determine the levels of DHA and EPA in cord serum after n-3 FA supplementation during the last trimester of pregnancy. Among 55 women, 23 were administered daily one capsule of n-3 FA supplement, involving DHA/EPA in a ratio of 1/1.3. Twenty nine women were enrolled as control group. Blood samples were collected at 22-24 weeks of gestation and at delivery. Fatty acids were analyzed with the method of GC-MS. Cord DHA level increased and EPA level decreased in both groups between the days of 22-24 and delivery. However, decrease in cord EPA level was significant in control group (p 0.05). Supplementation of DHA/EPA in a ratio of 1/1.3 during the last trimester of pregnancy caused higher cord EPA level compared to control group indicating an accumulation in umbilical cord. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Proposal to neutralize acid fluids from wells in the Los Humeros, Pue., geothermal field; Propuesta para la neutralizacion de fluidos acidos provenientes de pozos del campo geotermico de Los Humeros, Pue.

    Energy Technology Data Exchange (ETDEWEB)

    Flores Armenta, Magaly del Carmen; Ramirez Montes, Miguel; Garcia Cuevas, Juan Manuel [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: magaly.flores@cfe.gob.mx

    2009-07-15

    Neutralizing an acidic fluid consists of adding a sodium hydroxide solution to neutralize the H group of acids, therefore increasing the pH. The injection of sodium hydroxide has to be continuous and at a proper depth inside the well to protect against the corrosion of casing and surface equipment. Neutralization is a common practice used in geothermal fields, such as at The Geysers in the US and Miravalles in Costa Rica-places where aggressive fluids cause problems for extracting and using geothermal fluids commercially. A zone surrounding wells H-4, H-16 and H-29 in the northern section of the Los Humeros, Pue., geothermal field, known as the Colapso Central, has shown evidence of aggressively acidic fluids. Several wells drilled in the area had to be repaired, thus plugging and isolating the deepest production zones. Well H-43 was drilled two years ago in the northern zone of the field, and even though it is not located in the aggressive-fluid zone, the well presents mineralogical features possibly indicating the presence of acidic fluids. Therefore, before producing this well it has been proposed we install a neutralization system with general characteristics presented in this paper. The system will prevent corrosion that up to now has prevented exploitation of the deep portion of Colapso Central, helping to develop the field in a more profitable way. [Spanish] Neutralizar un fluido acido consiste en agregarle una solucion de hidroxido de sodio. Esto neutraliza el grupo de acidos H y en consecuencia aumenta el pH. La inyeccion de hidroxido de sodio se realiza de manera continua y a una profundidad adecuada dentro del pozo para proteger a la tuberia y a todo el equipo superficial contra la corrosion. La neutralizacion es una practica comun que se viene realizando en campos como Los Geysers en Estados Unidos y en Miravalles, Costa Rica, donde la presencia de fluidos agresivos causa problemas en la extraccion y aprovechamiento del fluido geotermico con fines

  17. A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: the Comparing EPA to DHA (ComparED) Study.

    Science.gov (United States)

    Allaire, Janie; Couture, Patrick; Leclerc, Myriam; Charest, Amélie; Marin, Johanne; Lépine, Marie-Claude; Talbot, Denis; Tchernof, André; Lamarche, Benoît

    2016-08-01

    To date, most studies on the anti-inflammatory effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in humans have used a mixture of the 2 fatty acids in various forms and proportions. We compared the effects of EPA supplementation with those of DHA supplementation (re-esterified triacylglycerol; 90% pure) on inflammation markers (primary outcome) and blood lipids (secondary outcome) in men and women at risk of cardiovascular disease. In a double-blind, randomized, crossover, controlled study, healthy men (n = 48) and women (n = 106) with abdominal obesity and low-grade systemic inflammation consumed 3 g/d of the following supplements for periods of 10 wk: 1) EPA (2.7 g/d), 2) DHA (2.7 g/d), and 3) corn oil as a control with each supplementation separated by a 9-wk washout period. Primary analyses assessed the difference in cardiometabolic outcomes between EPA and DHA. Supplementation with DHA compared with supplementation with EPA led to a greater reduction in interleukin-18 (IL-18) (-7.0% ± 2.8% compared with -0.5% ± 3.0%, respectively; P = 0.01) and a greater increase in adiponectin (3.1% ± 1.6% compared with -1.2% ± 1.7%, respectively; P DHA and EPA, changes in CRP (-7.9% ± 5.0% compared with -1.8% ± 6.5%, respectively; P = 0.25), IL-6 (-12.0% ± 7.0% compared with -13.4% ± 7.0%, respectively; P = 0.86), and tumor necrosis factor-α (-14.8% ± 5.1% compared with -7.6% ± 10.2%, respectively; P = 0.63) were NS. DHA compared with EPA led to more pronounced reductions in triglycerides (-13.3% ± 2.3% compared with -11.9% ± 2.2%, respectively; P = 0.005) and the cholesterol:HDL-cholesterol ratio (-2.5% ± 1.3% compared with 0.3% ± 1.1%, respectively; P = 0.006) and greater increases in HDL cholesterol (7.6% ± 1.4% compared with -0.7% ± 1.1%, respectively; P DHA compared with EPA was significant in men but not in women (P-treatment × sex interaction = 0.046). DHA is more effective than EPA in modulating specific markers of inflammation

  18. Prevention and Reversal of Obesity and Glucose Intolerance in Mice by DHA Derivatives

    Czech Academy of Sciences Publication Activity Database

    Rossmeisl, Martin; Jeleník, Tomáš; Jílková, Zuzana; Slámová, Kristýna; Kůs, Vladimír; Hensler, Michal; Medříková, Daša; Povýšil, C.; Flachs, Pavel; Mohamed-Ali, V.; Bryhn, M.; Berge, K.; Holmeide, A.K.; Kopecký, Jan

    2009-01-01

    Roč. 17, č. 5 (2009), s. 1023-1031 ISSN 1930-7381 R&D Projects: GA ČR(CZ) GA303/08/0664; GA ČR(CZ) GA303/07/0708 Grant - others:EC(XE) MITOFOOD COST FA0602 Institutional research plan: CEZ:AV0Z50110509 Keywords : DHA * obesity Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.366, year: 2009

  19. Dietary Intake of DHA and EPA in a Group of Pregnant Women in the Moncton Area.

    Science.gov (United States)

    Bishop, Nicole Arsenault; Leblanc, Caroline P

    2017-06-01

    To compare docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and fish intake of pregnant women at 30 weeks of gestation to current recommendations and to determine the factors associated with omega-3 (ω-3) intake. A food frequency questionnaire was completed by 54 women (54/131 = 41%) at 30 ± 0.8 weeks gestation. Supplement intake, sociodemographic characteristics, and ω-3 food habits were evaluated. Among this high socioeconomic status (SES) group, 66.7% and 64.8% met the Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO) recommendation of 200 mg/d DHA and 300 mg/d DHA + EPA, respectively, and only 48.1% met the Academy of Nutrition and Dietetics (Academy) recommendation of 500 mg/d DHA + EPA. Eighteen of the 54 women took a ω-3 supplement during the third trimester. This significantly improved their total intake to meet the FAO/WHO (88.9% ≥200 mg/d DHA and 94.4% ≥300 mg/d DHA + EPA) and the Academy (77.8% ≥500 mg/d DHA + EPA) recommendations. Among nonsupplement users (36/54), 50% met the FAO/WHO recommendations and only 33.3% met the Academy recommendations. Results suggest that the majority of high SES women did not meet ω-3 recommendations from food alone. Continued prenatal education on the importance of fish intake and on the addition of ω-3 prenatal supplement is essential.

  20. Effect of eicosapentaenoic acid/docosahexaenoic acid on coronary high-intensity plaques detected with non-contrast T1-weighted imaging (the AQUAMARINE EPA/DHA study): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Nakao, Kazuhiro; Noguchi, Teruo; Asaumi, Yasuhide; Morita, Yoshiaki; Kanaya, Tomoaki; Fujino, Masashi; Hosoda, Hayato; Yoneda, Shuichi; Kawakami, Shoji; Nagai, Toshiyuki; Nishihira, Kensaku; Nakashima, Takahiro; Kumasaka, Reon; Arakawa, Tetsuo; Otsuka, Fumiyuki; Nakanishi, Michio; Kataoka, Yu; Tahara, Yoshio; Goto, Yoichi; Yamamoto, Haruko; Hamasaki, Toshimitsu; Yasuda, Satoshi

    2018-01-08

    Despite the success of HMG-CoA reductase inhibitor (statin) therapy in reducing atherosclerotic cardiovascular events, a residual risk for cardiovascular events in patients with coronary artery disease (CAD) remains. Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are promising anti-atherosclerosis agents that might reduce the residual CAD risk. Non-contrast T1-weighted imaging (T1WI) with cardiac magnetic resonance (CMR) less invasively identifies high-risk coronary plaques as high-intensity signals. These high-intensity plaques (HIPs) are quantitatively assessed using the plaque-to-myocardium signal intensity ratio (PMR). Our goal is to assess the effect of EPA/DHA on coronary HIPs detected with T1WI in patients with CAD on statin treatment. This prospective, controlled, randomized, open-label study examines the effect of 12 months of EPA/DHA therapy and statin treatment on PMR of HIPs detected with CMR and computed tomography angiography (CTA) in patients with CAD. The primary endpoint is the change in PMR after EPA/DHA treatment. Secondary endpoints include changes in Hounsfield units, plaque volume, vessel area, and plaque area measured using CTA. Subjects are randomly assigned to either of three groups: the 2 g/day EPA/DHA group, the 4 g/day EPA/DHA group, or the no-treatment group. This trial will help assess whether EPA/DHA has an anti-atherosclerotic effect using PMR of HIPs detected by CMR. The trial outcomes will provide novel insights into the effect of EPA/DHA on high-risk coronary plaques and may provide new strategies for lowering the residual risk in patients with CAD on statin therapy. The University Hospital Medical Information Network (UMIN) Clinical Trials Registry, ID: UMIN000015316 . Registered on 2 October 2014.

  1. Decreased arachidonic acid content and metabolism in tissues of NZB/W F1 females fed a diet containing 0.45% dehydroisoandrosterone (DHA)

    International Nuclear Information System (INIS)

    Matsunaga, A.; Cottam, G.L.

    1987-01-01

    A diet containing 0.45% DHA fed to NZB/W mice, a model of systemic lupus erythematosus, delays the time of onset, improves survival and decreases the formation of antibodies to ds-DNA. Essential fatty acid-deficient diets or inclusion of eicosapentaenoic acid have similar beneficial effects and led them to investigate arachidonic acid metabolism in response to feeding DHA. The arachidonic acid content of plasma cholesteryl ester decreased from 37.4 +/- 2.2 to 28.2 +/- 1.3 mg%. In total liver phospholipid the value decreased from 18.1 +/- 0.52 to 13.7 +/- 1.3 mg%, in total kidney phospholipid the value decreased from 24.10 +/- 0.87 to 20.7 +/- 0.32 mg% and in resident peritoneal macrophages the value decreased from 15.4 +/- 4.6 to 3.6 +/- 1.4 mg%. The metabolism of exogenous [1- 14 C]arachidonic acid by resident peritoneal macrophages in response to Zymosan stimulation for 2 hr was examined by extraction of metabolites and separation by HPLC. Cells isolated from DHA-fed animals produced less PGE2 than controls, yet similar amounts of 6-keto PGF1α were produced. Arachidonic acid metabolites have significant effects on the immune system and may be a mechanism involved in the benefits obtained by inclusion of DHA in the diet

  2. DHA-enriched high–oleic acid canola oil improves lipid profile and lowers predicted cardiovascular disease risk in the canola oil multicenter randomized controlled trial123

    Science.gov (United States)

    Jones, Peter JH; Senanayake, Vijitha K; Pu, Shuaihua; Jenkins, David JA; Connelly, Philip W; Lamarche, Benoît; Couture, Patrick; Charest, Amélie; Baril-Gravel, Lisa; West, Sheila G; Liu, Xiaoran; Fleming, Jennifer A; McCrea, Cindy E; Kris-Etherton, Penny M

    2014-01-01

    Background: It is well recognized that amounts of trans and saturated fats should be minimized in Western diets; however, considerable debate remains regarding optimal amounts of dietary n−9, n−6, and n−3 fatty acids. Objective: The objective was to examine the effects of varying n−9, n−6, and longer-chain n−3 fatty acid composition on markers of coronary heart disease (CHD) risk. Design: A randomized, double-blind, 5-period, crossover design was used. Each 4-wk treatment period was separated by 4-wk washout intervals. Volunteers with abdominal obesity consumed each of 5 identical weight-maintaining, fixed-composition diets with one of the following treatment oils (60 g/3000 kcal) in beverages: 1) conventional canola oil (Canola; n−9 rich), 2) high–oleic acid canola oil with docosahexaenoic acid (CanolaDHA; n−9 and n−3 rich), 3) a blend of corn and safflower oil (25:75) (CornSaff; n−6 rich), 4) a blend of flax and safflower oils (60:40) (FlaxSaff; n−6 and short-chain n−3 rich), or 5) high–oleic acid canola oil (CanolaOleic; highest in n−9). Results: One hundred thirty individuals completed the trial. At endpoint, total cholesterol (TC) was lowest after the FlaxSaff phase (P < 0.05 compared with Canola and CanolaDHA) and highest after the CanolaDHA phase (P < 0.05 compared with CornSaff, FlaxSaff, and CanolaOleic). Low-density lipoprotein (LDL) cholesterol and high-density lipoprotein (HDL) cholesterol were highest, and triglycerides were lowest, after CanolaDHA (P < 0.05 compared with the other diets). All diets decreased TC and LDL cholesterol from baseline to treatment endpoint (P < 0.05). CanolaDHA was the only diet that increased HDL cholesterol from baseline (3.5 ± 1.8%; P < 0.05) and produced the greatest reduction in triglycerides (−20.7 ± 3.8%; P < 0.001) and in systolic blood pressure (−3.3 ± 0.8%; P < 0.001) compared with the other diets (P < 0.05). Percentage reductions in Framingham 10-y CHD risk scores (FRS) from

  3. Adjunctive low-dose docosahexaenoic acid (DHA) for major depression: An open-label pilot trial.

    Science.gov (United States)

    Smith, Deidre J; Sarris, Jerome; Dowling, Nathan; O'Connor, Manjula; Ng, Chee H

    2018-04-01

    Whilst the majority of evidence supports the adjunctive use of eicosapentaenoic acid (EPA) in improving mood, to date no study exists using low-dose docosahexaenoic acid (DHA) alone as an adjunctive treatment in patients with mild to moderate major depressive disorder (MDD). A naturalistic 8-week open-label pilot trial of low-dose DHA, (260 mg or 520 mg/day) in 28 patients with MDD who were non-responsive to medication or psychotherapy, with a Hamilton Depression Rating Scale (HAM-D) score of greater than 17, was conducted. Primary outcomes of depression, clinical severity, and daytime sleepiness were measured. After 8 weeks, 54% of patients had a ≥50% reduction on the HAM-D, and 45% were in remission (HAM-D ≤ 7). The eta-squared statistic (0.59) indicated a large effect size for the reduction of depression (equivalent to Cohen's d of 2.4). However confidence in this effect size is tempered due to the lack of a placebo. The mean score for the Clinical Global Impression Severity Scale was significantly improved by 1.28 points (P depression.

  4. Mildly abnormal general movement quality in infants is associated with higher Mead acid and lower arachidonic acid and shows a U-shaped relation with the DHA/AA ratio

    NARCIS (Netherlands)

    van Goor, S. A.; Schaafsma, A.; Erwich, J. J. H. M.; Dijck-Brouwer, D. A. J.; Muskiet, F. A. J.

    We showed that docosahexaenoic acid (DHA) supplementation during pregnancy and lactation was associated with more mildly abnormal (MA) general movements (GMs) in the infants. Since this finding was unexpected and inter-individual DHA intakes are highly variable, we explored the relationship between

  5. Healthy reduced-fat Bologna sausages enriched in ALA and DHA and stabilized with Melissa officinalis extract.

    Science.gov (United States)

    Berasategi, Izaskun; Navarro-Blasco, Iñigo; Calvo, Maria Isabel; Cavero, Rita Yolanda; Astiasarán, Iciar; Ansorena, Diana

    2014-03-01

    Reduced-energy and reduced-fat Bologna products enriched with ω-3 polyunsaturated fatty acids were formulated by replacing the pork back-fat by an oil-in-water emulsion containing a mixture of linseed-algae oil stabilized with a lyophilized Melissa officinalis extract. Healthier composition and lipid profile was obtained: 85 kcal/100 g, 3.6% fat, 0.6 g ALA and 0.44 g DHA per 100 g of product and ω-6/ω-3 ratio of 0.4. Technological and sensory problems were not detected in the new formulations. Reformulation did not cause oxidation problems during 32 days of storage under refrigeration. The results suggest that it is possible to obtain reduced-fat Bologna-type sausages rich in ALA and DHA and stabilized with natural antioxidants, applying the appropriate technology without significant effects on the sensory quality, yielding interesting products from a nutritional point of view. © 2013.

  6. EPA:DHA 6:1 prevents angiotensin II-induced hypertension and endothelial dysfunction in rats: role of NADPH oxidase- and COX-derived oxidative stress.

    Science.gov (United States)

    Niazi, Zahid Rasul; Silva, Grazielle C; Ribeiro, Thais Porto; León-González, Antonio J; Kassem, Mohamad; Mirajkar, Abdur; Alvi, Azhar; Abbas, Malak; Zgheel, Faraj; Schini-Kerth, Valérie B; Auger, Cyril

    2017-12-01

    Eicosapentaenoic acid:docosahexaenoic acid (EPA:DHA) 6:1, an omega-3 polyunsaturated fatty acid formulation, has been shown to induce a sustained formation of endothelial nitric oxide (NO) synthase-derived NO, a major vasoprotective factor. This study examined whether chronic intake of EPA:DHA 6:1 prevents hypertension and endothelial dysfunction induced by angiotensin II (Ang II) in rats. Male Wister rats received orally corn oil or EPA:DHA 6:1 (500 mg kg -1 per day) before chronic infusion of Ang II (0.4 mg kg -1 per day). Systolic blood pressure was determined by tail cuff sphingomanometry, vascular reactivity using a myograph, oxidative stress using dihydroethidium and protein expression by immunofluorescence and western blot analysis. Ang II-induced hypertension was associated with reduced acetylcholine-induced relaxations of secondary branch mesenteric artery rings affecting the endothelium-dependent hyperpolarization (EDH)- and the NO-mediated relaxations, both of which were improved by the NADPH oxidase inhibitor VAS-2870. The Ang II treatment induced also endothelium-dependent contractile responses (EDCFs), which were abolished by the cyclooxygenase (COX) inhibitor indomethacin. An increased level of vascular oxidative stress and expression of NADPH oxidase subunits (p47 phox and p22 phox ), COX-1 and COX-2, endothelial NO synthase and Ang II type 1 receptors were observed in the Ang II group, whereas SK Ca and connexin 37 were downregulated. Intake of EPA:DHA 6:1 prevented the Ang II-induced hypertension and endothelial dysfunction by improving both the NO- and EDH-mediated relaxations, and by reducing EDCFs and the expression of target proteins. The present findings indicate that chronic intake of EPA:DHA 6:1 prevented the Ang II-induced hypertension and endothelial dysfunction in rats, most likely by preventing NADPH oxidase- and COX-derived oxidative stress.

  7. Continuous gradient temperature Raman spectroscopy of the long chain polyunsaturated fatty acids docosapentaenoic (DPA, 22:5n-6) and docosahexaenoic (DHA; 22:6n-3) from -100 to 20° C

    Science.gov (United States)

    Broadhurst, C. Leigh; Schmidt, Walter F.; Kim, Moon S.; Nguyen, Julie K.; Qin, Jianwei; Chao, Kuanglin; Bauchan, Gary L.; Shelton, Daniel R.

    2016-05-01

    The structural, cognitive and visual development of the human brain and retina strictly require long-chain polyunsaturated fatty acids (LC-PUFA). Excluding water, the mammalian brain is about 60% lipid. One of the great unanswered questions with respect to biological science in general is the absolute necessity of the LC-PUFA docosahexaenoic acid (DHA; 22:6n-3) in these fast signal processing tissues. A lipid of the same chain length with just one less diene group, docosapentaenoic acid (DPA; 22:5n-6) is fairly abundant in terrestrial food chains yet cannot substitute for DHA. Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS to DPA, and DHA from -100 to 20°C. 20 Mb three-dimensional data arrays with 1°C increments and first/second derivatives allows complete assignment of solid, liquid and transition state vibrational modes, including low intensity/frequency vibrations that cannot be readily analyzed with conventional Raman. DPA and DHA show significant spectral changes with premelting (-33 and -60°C, respectively) and melting (-27 and -44°C, respectively). The CH2-(HC=CH)-CH2 moieties are not identical in the second half of the DHA and DPA structures. The DHA molecule contains major CH2 twisting (1265 cm-1) with no noticeable CH2 bending, consistent with a flat helical structure with small pitch. Further modeling of neuronal membrane phospholipids must take into account this structure for DHA, which would be configured parallel to the hydrophilic head group line.

  8. Dairy fat blends high in α-linolenic acid are superior to n-3 fatty-acid-enriched palm oil blends for increasing DHA levels in the brains of young rats.

    Science.gov (United States)

    Du, Qin; Martin, Jean-Charles; Agnani, Genevieve; Pages, Nicole; Leruyet, Pascale; Carayon, Pierre; Delplanque, Bernadette

    2012-12-01

    Achieving an appropriate docosahexaenoic acid (DHA) status in the neonatal brain is an important goal of neonatal nutrition. We evaluated how different dietary fat matrices improved DHA content in the brains of both male and female rats. Forty rats of each gender were born from dams fed over gestation and lactation with a low α-linolenic acid (ALA) diet (0.4% of fatty acids) and subjected for 6 weeks after weaning to a palm oil blend-based diet (10% by weight) that provided either 1.5% ALA or 1.5% ALA and 0.12% DHA with 0.4% arachidonic acid or to an anhydrous dairy fat blend that provided 1.5% or 2.3% ALA. Fatty acids in the plasma, red blood cells (RBCs) and whole brain were determined by gas chromatography. The 1.5% ALA dairy fat was superior to both the 1.5% ALA palm oil blends for increasing brain DHA (14.4% increase, PDHA due to a gender-to-diet interaction, with dairy fats attenuating the gender effect. Brain DHA was predicted with a better accuracy by some plasma and RBC fatty acids when used in combination (R(2) of 0.6) than when used individually (R(2)=0.47 for RBC n-3 docosapentaenoic acid at best). In conclusion, dairy fat blends enriched with ALA appear to be an interesting strategy for achieving optimal DHA levels in the brain of postweaning rats. Human applications are worth considering. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Lipidomics and H218O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio embryos

    Directory of Open Access Journals (Sweden)

    Melissa Q. McDougall

    2016-08-01

    Full Text Available We hypothesized that vitamin E (α-tocopherol is required by the developing embryonic brain to prevent depletion of highly polyunsaturated fatty acids, especially docosahexaenoic acid (DHA, 22:6, the loss of which we predicted would underlie abnormal morphological and behavioral outcomes. Therefore, we fed adult 5D zebrafish (Danio rerio defined diets without (E− or with added α-tocopherol (E+, 500 mg RRR-α-tocopheryl acetate/kg diet for a minimum of 80 days, and then spawned them to obtain E− and E+ embryos. The E− compared with E+ embryos were 82% less responsive (p<0.01 to a light/dark stimulus at 96 h post-fertilization (hpf, demonstrating impaired locomotor behavior, even in the absence of gross morphological defects. Evaluation of phospholipid (PL and lysophospholipid (lyso-PL composition using untargeted lipidomics in E− compared with E+ embryos at 24, 48, 72, and 120 hpf showed that four PLs and three lyso-PLs containing docosahexaenoic acid (DHA, including lysophosphatidylcholine (LPC 22:6, required for transport of DHA into the brain, p<0.001, were at lower concentrations in E− at all time-points. Additionally, H218O labeling experiments revealed enhanced turnover of LPC 22:6 (p<0.001 and three other DHA-containing PLs in the E− compared with the E+ embryos, suggesting that increased membrane remodeling is a result of PL depletion. Together, these data indicate that α-tocopherol deficiency in the zebrafish embryo causes the specific depletion and increased turnover of DHA-containing PL and lyso-PLs, which may compromise DHA delivery to the brain and thereby contribute to the functional impairments observed in E− embryos.

  10. PENGARUH DOCOSAHEXAENOIC ACID (DHA PADA TUMBUH KEMBANG ANAK BALITA GIZI BURUK YANG DIRAWAT JALAN [The effect of DocosaHexaenoic Acid (DHA on growth and development of outpatient rehabilitation of children under-five with severe malnutrition

    Directory of Open Access Journals (Sweden)

    Astuti Lamid1, , , , dan

    2002-12-01

    Full Text Available The study examined the effect of DocosaHexaenoic Acid (DHA on growth and development of outpatient rehabilitation of children under five with severe malnutrition. Sample was children whose age from 6 to 24 months suffering from severe malnutrition with weight /age index of WHO standard of Z score 0,05.

  11. Effect of flaxseed oil and microalgae DHA on the production performance, fatty acids and total lipids of egg yolk and plasma in laying hens.

    Science.gov (United States)

    Neijat, M; Ojekudo, O; House, J D

    2016-12-01

    The incorporation of omega-3 polyunsaturated fatty acids (PUFA) in the egg is dependent on both the transfer efficiency of preformed dietary omega-3 fatty acids to the eggs as well as endogenous PUFA metabolism and deposition. Employing an experimental design consisting of 70 Lohmann LSL-Classic hens (n=10/treatment) in a 6-week feeding trial, we examined the impact of graded levels of either flaxseed oil (alpha-linolenic acid, ALA) or algal DHA (preformed docosahexaenoic acid, DHA), each supplying 0.20%, 0.40% and 0.60% total omega-3s. The control diet was practically low in omega-3s. Study parameters included monitoring the changes of fatty acid contents in yolk, measures of hen performance, eggshell quality, total lipids and fatty acid contents of plasma. Data were analysed as a complete randomized design using Proc Mixed procedure of SAS. No significant differences were observed between treatments with respect to hen performance, eggshell quality and cholesterol content in plasma and egg yolk. Individual and total omega-3 PUFA in the yolk and plasma increased (PDHA-fed hens incorporated 3-fold more DHA in eggs compared with ALA-fed hens (179±5.55 vs. 66.7±2.25mg/yolk, respectively). In both treatment groups, maximal enrichment of total n-3 PUFA was observed by week-2, declined by week-4 and leveled thereafter. In addition, accumulation of DHA in egg yolk showed linear (PDHA (R 2 =0.95). The current data, based on defined level of total omega-3s in the background diet, provides evidence to suggest that exogenous as well as endogenous synthesis of DHA may be subject to a similar basis of regulation, and serve to highlight potential regulatory aspects explaining the limitations in the deposition of endogenously produced omega-3 LCPUFA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Genome Sequence of Klebsiella pneumoniae KpQ3, a DHA-1 β-Lactamase-Producing Nosocomial Isolate

    Science.gov (United States)

    Tobes, Raquel; Codoñer, Francisco M.; López-Camacho, Elena; Salanueva, Iñigo J.; Manrique, Marina; Brozynska, Marta; Gómez-Gil, Rosa; Martínez-Blanch, Juan F.; Álvarez-Tejado, Miguel; Pareja, Eduardo

    2013-01-01

    Klebsiella pneumoniae KpQ3 is a multidrug-resistant isolate obtained from a blood culture of a patient in a burn unit in the Hospital Universitario La Paz (Madrid, Spain) in 2008. The genome contains multiple antibiotic resistance genes, including a plasmid-mediated DHA-1 cephalosporinase gene. PMID:23469341

  13. Reduction of n-3 PUFAs, specifically DHA and EPA, and enhancement of peroxisomal beta-oxidation in type 2 diabetic rat heart

    Directory of Open Access Journals (Sweden)

    Hou Lianguo

    2012-10-01

    Full Text Available Abstract Background There is overwhelming evidence that dietary supplementation with n-3 polyunsaturated fatty acids (PUFAs, mainly EPA (C20:5n-3 and DHA (C22:6n-3, has cardiovascular protective effects on patients with type 2 diabetes mellitus (T2DM but not on healthy people. Because the T2DM heart increases fatty acid oxidation (FAO to compensate for the diminished utilization of glucose, we hypothesize that T2DM hearts consume more n-3 PUFAs and, therefore, need more n-3 PUFAs. In the present study, we investigated the changes in cardiac n-3 PUFAs and peroxisomal beta-oxidation, which are responsible for the degradation of PUFAs in a high-fat diet (HFD and low-dose streptozotocin- (STZ induced type 2 diabetic rat model. Methods and results The capillary gas chromatography results showed that all the n-3 (or omega-3 PUFAs, especially DHA (~50% and EPA (~100%, were significantly decreased, and the n-6/n-3 ratio (~115% was significantly increased in the hearts of diabetic rats. The activity of peroxisomal beta-oxidation, which is crucial to very-long-chain and unsaturated FA metabolism (including DHA, was significantly elevated in DM hearts. Additionally, the real-time PCR results showed that the mRNA expression of most peroxisomal beta-oxidation key enzymes were up-regulated in T2DM rat hearts, which might contribute to the reduction of n-3 (or omega-3 PUFAs. Conclusion In conclusion, our results indicate that T2DM hearts consume more n-3 PUFAs, especially DHA and EPA, due to exaggerated peroxisomal beta-oxidation.

  14. Influencia de EPA y DHA dietarios sobre el perfil de àcidos grasos de leche de cerda

    DEFF Research Database (Denmark)

    Grez, Mariola; Gandarillas, Mónica; González, Fernando

    2016-01-01

    Supplementation with eicosapentaenoic and docosahexaenoic acids (EPA and DHA) through the addition of fish oils to mammal diets during lactation benefits milk production, litter growth and the litter immune system, but there is little evidence supporting the use of oils that have been dried using...

  15. Gene expression of fatty acid transport and binding proteins in the blood-brain barrier and the cerebral cortex of the rat: differences across development and with different DHA brain status.

    Science.gov (United States)

    Pélerin, Hélène; Jouin, Mélanie; Lallemand, Marie-Sylvie; Alessandri, Jean-Marc; Cunnane, Stephen C; Langelier, Bénédicte; Guesnet, Philippe

    2014-11-01

    Specific mechanisms for maintaining docosahexaenoic acid (DHA) concentration in brain cells but also transporting DHA from the blood across the blood-brain barrier (BBB) are not agreed upon. Our main objective was therefore to evaluate the level of gene expression of fatty acid transport and fatty acid binding proteins in the cerebral cortex and at the BBB level during the perinatal period of active brain DHA accretion, at weaning, and until the adult age. We measured by real time RT-PCR the mRNA expression of different isoforms of fatty acid transport proteins (FATPs), long-chain acyl-CoA synthetases (ACSLs), fatty acid binding proteins (FABPs) and the fatty acid transporter (FAT)/CD36 in cerebral cortex and isolated microvessels at embryonic day 18 (E18) and postnatal days 14, 21 and 60 (P14, P21 and P60, respectively) in rats receiving different n-3 PUFA dietary supplies (control, totally deficient or DHA-supplemented). In control rats, all the genes were expressed at the BBB level (P14 to P60), the mRNA levels of FABP5 and ACSL3 having the highest values. Age-dependent differences included a systematic decrease in the mRNA expressions between P14-P21 and P60 (2 to 3-fold), with FABP7 mRNA abundance being the most affected (10-fold). In the cerebral cortex, mRNA levels varied differently since FATP4, ACSL3 and ACSL6 and the three FABPs genes were highly expressed. There were no significant differences in the expression of the 10 genes studied in n-3 deficient or DHA-supplemented rats despite significant differences in their brain DHA content, suggesting that brain DHA uptake from the blood does not necessarily require specific transporters within cerebral endothelial cells and could, under these experimental conditions, be a simple passive diffusion process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Plasma phospholipid pentadecanoic acid, EPA, and DHA, and the frequency of dairy and fish product intake in young children

    Directory of Open Access Journals (Sweden)

    Nicolai A. Lund-Blix

    2016-08-01

    Full Text Available Background: There is a lack of studies comparing dietary assessment methods with the biomarkers of fatty acids in children. Objective: The objective was to evaluate the suitability of a food frequency questionnaire (FFQ to rank young children according to their intake of dairy and fish products by comparing food frequency estimates to the plasma phospholipid fatty acids pentadecanoic acid, eicosapentaenoic acid (EPA, and docosahexaenoic acid (DHA. Design: Cross-sectional data for the present study were derived from the prospective cohort ‘Environmental Triggers of Type 1 Diabetes Study’. Infants were recruited from the Norwegian general population during 2001–2007. One hundred and ten (age 3–10 years children had sufficient volumes of plasma and FFQ filled in within 2 months from blood sampling and were included in this evaluation study. The quantitative determination of plasma phospholipid fatty acids was done by fatty acid methyl ester analysis. The association between the frequency of dairy and fish product intake and the plasma phospholipid fatty acids was assessed by a Spearman correlation analysis and by investigating whether participants were classified into the same quartiles of distribution. Results: Significant correlations were found between pentadecanoic acid and the intake frequency of total dairy products (r=0.29, total fat dairy products (r=0.39, and cheese products (r=0.36. EPA and DHA were significantly correlated with the intake frequency of oily fish (r=0.26 and 0.37, respectively and cod liver/fish oil supplements (r=0.47 for EPA and r=0.50 DHA. To a large extent, the FFQ was able to classify individuals into the same quartile as the relevant fatty acid biomarker. Conclusions: The present study suggests that, when using the plasma phospholipid fatty acids pentadecanoic acid, EPA, and DHA as biomarkers, the FFQ used in young children showed a moderate capability to rank the intake frequency of dairy products with a

  17. Plasma phospholipid pentadecanoic acid, EPA, and DHA, and the frequency of dairy and fish product intake in young children.

    Science.gov (United States)

    Lund-Blix, Nicolai A; Rønningen, Kjersti S; Bøås, Håkon; Tapia, German; Andersen, Lene F

    2016-01-01

    There is a lack of studies comparing dietary assessment methods with the biomarkers of fatty acids in children. The objective was to evaluate the suitability of a food frequency questionnaire (FFQ) to rank young children according to their intake of dairy and fish products by comparing food frequency estimates to the plasma phospholipid fatty acids pentadecanoic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Cross-sectional data for the present study were derived from the prospective cohort 'Environmental Triggers of Type 1 Diabetes Study'. Infants were recruited from the Norwegian general population during 2001-2007. One hundred and ten (age 3-10 years) children had sufficient volumes of plasma and FFQ filled in within 2 months from blood sampling and were included in this evaluation study. The quantitative determination of plasma phospholipid fatty acids was done by fatty acid methyl ester analysis. The association between the frequency of dairy and fish product intake and the plasma phospholipid fatty acids was assessed by a Spearman correlation analysis and by investigating whether participants were classified into the same quartiles of distribution. Significant correlations were found between pentadecanoic acid and the intake frequency of total dairy products (r=0.29), total fat dairy products (r=0.39), and cheese products (r=0.36). EPA and DHA were significantly correlated with the intake frequency of oily fish (r=0.26 and 0.37, respectively) and cod liver/fish oil supplements (r=0.47 for EPA and r=0.50 DHA). To a large extent, the FFQ was able to classify individuals into the same quartile as the relevant fatty acid biomarker. The present study suggests that, when using the plasma phospholipid fatty acids pentadecanoic acid, EPA, and DHA as biomarkers, the FFQ used in young children showed a moderate capability to rank the intake frequency of dairy products with a high-fat content and cod liver/fish oil supplements.

  18. Alterative Expression and Localization of Profilin 1/VASPpS157 and Cofilin 1/VASPpS239 Regulates Metastatic Growth and is Modified by DHA Supplementation

    Science.gov (United States)

    Ali, Mehboob; Heyob, Kathryn; Jacob, Naduparambil K.; Rogers, Lynette K.

    2016-01-01

    Profilin 1, cofilin 1, and vasodialator stimulated phosphoprotein (VASP) are actin binding proteins (ABP) which regulate actin remodelling and facilitate cancer cell metastases. MiR~17–92 is highly expressed in metastatic tumors and profilin1 and cofilin1 are predicted targets. Docosahexaenoic acid (DHA) inhibits cancer cell proliferation and adhesion. These studies tested the hypothesis that the metastatic phenotype is driven by changes in ABPs including alternative phosphorylation and/or changes in subcellular localization. Additionally, we tested the efficacy of DHA supplementation to attenuate or inhibit these changes. Human lung cancer tissue sections were analyzed for F-actin content and expression and cellular localization of profilin1, cofilin1 and VASP (S157 or S239 phosphorylation). The metastatic phenotype was investigated in A549 and MLE12 cells lines using 8 Br-cAMP as a metastasis inducer and DHA as a therapeutic agent. Migration was assessed by wound assay and expression measured by western blot and confocal analysis. MiR~17–92 expression was measured by qRT-PCR. Results indicated increased expression and altered cellular distribution of profilin1/VASPpS157 but no changes in cofilin1/VASPpS239 in the human malignant tissues compared to normal tissues. In A549 and MLE12 cells, the expression patterns of profilin1/VASPpS157 or cofilin1/VASPpS239 suggested an interaction in regulation of actin dynamics. Furthermore, DHA inhibited cancer cell migration and viability, ABP expression and cellular localization, and modulated expression of miR~17–92 in A549 cells with minimal effects in MLE12 cells. Further investigations are warranted to understand ABP interactions, changes in cellular localization, regulation by miR~17–92, and DHA as a novel therapeutic. PMID:27496138

  19. The Increasing of Papua People Intelegency in Papua Through DHA Intake With Natural Ingredients

    Directory of Open Access Journals (Sweden)

    Audi Satriyanto

    2017-09-01

    Full Text Available In the era of globalization and free markets in 2010-2020, all societies are needed to be able to compete with other nations which had already advanced, including the readiness of Indonesian human resources who excel in order to process natural resources plentiful for the welfare of society. Currently there are no government programs through health centers to improve the quality of human resources through the development of the Maternal and Child Health. The method of the health center program in Papua can be done through two programs such as supplementary feeding program for pregnant women, nursing mothers and early age children, regularly. In addition, family education program by feeding natural foods such as chicken eggs in mountainous areas and deep sea fishing to coastal areas in Papua are also important. DHA-rich food sources such as eggs and fish in the sea is a natural substance that is easily obtained and developed in almost all areas of Papua. Both of these programs are expected to provide a brief understanding intake of DHA is important for brain growth and development of infants and toddlers in the future of the family in preparing excellent generation of the Papuan, especially in rural societies.

  20. The effect of fish oil supplementation on brain DHA and EPA content and fatty acid profile in mice.

    Science.gov (United States)

    Valentini, Kelly J; Pickens, C Austin; Wiesinger, Jason A; Fenton, Jenifer I

    2017-12-18

    Supplementation with omega-3 (n-3) fatty acids may improve cognitive performance and protect against cognitive decline. However, changes in brain phospholipid fatty acid composition after supplementation with n-3 fatty acids are poorly described. The purpose of this study was to feed increasing n-3 fatty acids and characterise the changes in brain phospholipid fatty acid composition and correlate the changes with red blood cells (RBCs) and plasma in mice. Increasing dietary docosahexaenoic (DHA) and eicosapentaenoic acid (EPA) did not alter brain DHA. Brain EPA increased and total n-6 polyunsaturated fatty acids decreased across treatment groups, and correlated with fatty acid changes in the RBC (r > 0.7). Brain cis-monounsaturated fatty acids oleic and nervonic acid (p acids arachidic, behenic, and lignoceric acid (p acid changes upon increasing n-3 intake should be further investigated to determine their effects on cognition and neurodegenerative disease.

  1. DHA Supplementation Alone or in Combination with Other Nutrients Does not Modulate Cerebral Hemodynamics or Cognitive Function in Healthy Older Adults

    Directory of Open Access Journals (Sweden)

    Philippa A. Jackson

    2016-02-01

    Full Text Available A number of recent trials have demonstrated positive effects of dietary supplementation with the omega-3 polyunsaturated fatty acids (n-3 PUFAs, docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA on measures of cognitive function in healthy young and older adults. One potential mechanism by which EPA, and DHA in particular, may exert these effects is via modulation of cerebral hemodynamics. In order to investigate the effects of DHA alone or provided as one component of a multinutrient supplement (also including Gingko biloba, phosphatidylserine and vitamins B9 and B12 on measures of cerebral hemodynamics and cognitive function, 86 healthy older adults aged 50–70 years who reported subjective memory deficits were recruited to take part in a six month daily dietary supplementation trial. Relative changes in the concentration of oxygenated hemoglobin and deoxygenated hemoglobin were assessed using Near Infrared Spectroscopy (NIRS during the performance of cognitive tasks prior to and following the intervention period. Performance on the cognitive tasks was also assessed. No effect of either active treatment was found for any of the NIRS measures or on the cognitive performance tasks, although the study was limited by a number of factors. Further work should continue to evaluate more holistic approaches to cognitive aging.

  2. Portuguese preschool children: Benefit (EPA+DHA and Se) and risk (MeHg) assessment through the consumption of selected fish species.

    Science.gov (United States)

    Cardoso, C; Bernardo, I; Bandarra, N M; Louro Martins, L; Afonso, C

    2018-05-01

    This study aimed to assess the risk-benefit balance associated to fish consumption by Portuguese preschool children. For this purpose, databases (from IPMA and literature) were mined and mathematically processed by a model based on the Extreme Value Theory assuming consumption scenarios. Eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) and selenium (Se) and methylmercury (MeHg) were selected as critical components of fish, given their health impact and significant contents in some fish species. Assessment also took into account that Se may protect against MeHg toxicity. With exception of blue shark, Se Health Benefit Value (Se-HBV), was always positive (ranging between 3.3 and 14.9) and Se:MeHg ratio was always higher than one (3.8 to 32.3). It was also estimated that the deleterious effects of MeHg on children IQ were offset by the beneficial impact of EPA+DHA in fish except for grilled black scabbardfish consumed every day. Blue shark, regardless of the culinary treatment, yielded very high probabilities of exceeding MeHg TWI (higher than 84 % with a single weekly meal), thus raising serious concerns. EPA+DHA benefits were high in salmon regardless of culinary treatment (> 84 %). Fish consumption by children is advisable with exception of blue shark and boiled and grilled tuna. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The induction of apoptosis in pre-malignant keratinocytes by omega-3 polyunsaturated fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) is inhibited by albumin.

    Science.gov (United States)

    Nikolakopoulou, Zacharoula; Shaikh, Mushfiq Hassan; Dehlawi, Hebah; Michael-Titus, Adina Teodora; Parkinson, Eric Kenneth

    2013-04-12

    The long chain omega-3 polyunsaturated fatty acids (PUFA) have been reported to exert anti-cancer effects. At this study we tested the effect of the omega-3 PUFA, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), on pre-malignant keratinocytes growth in the well-characterised human pre-malignant epidermal cell line, HaCaT and attempted to identify a PUFA serum antagonist. Both EPA and DHA inhibited HaCaT growth and induced apoptosis. At the 10% (v/v) foetal bovine serum (FBS) medium, limited growth inhibition (3-20% for 50μM DHA and EPA respectively) and negligible apoptosis were observed with PUFA use. However, at 3% (v/v) FBS medium, 30-50μM of PUFA caused impressive levels of growth inhibition (82-83% for 50μM DHA and EPA respectively) and increase of apoptosis (8-19% increase in 72h). None of the numerous serum growth factors present in FBS or the antioxidant n-tert-butyl-α-phenylnitrone could inhibit the PUFA-induced cytotoxicity. In contrast, bovine and human albumin (0.1-0.3%, w/v) significantly antagonized the growth inhibitory and apoptosis-inducing effects of PUFA. In conclusion, we have shown for the first time that omega-3 PUFA inhibit the growth and induce apoptosis of pre-malignant keratinocytes and identified albumin as a major antagonistic factor in serum that could limit their effectiveness at pharmacologically-achievable doses. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Peracetic acid as disinfectant of municipal wastewaters; L'acido peracetico nella disinfezione dei reflui urbani

    Energy Technology Data Exchange (ETDEWEB)

    Funari, E. [Istituto Superiore di Sanita' , Laboratorio di Igiene Ambientale, Reparto di Medicina Ambientale, Rome (Italy); Lopez, A. [Consiglio Nazionale delle Ricerche, Istituto di Ricerca sulle Acque, Reparto di Chimica e Tecnologia delle Acque, Bari (Italy)

    2000-09-01

    Based on the currently available literature, this paper is aimed at providing a sort of the <> on the use of peracetic acid (C{sub 3}COOOH{identical_to} Paa) as disinfectant of biologically treated municipal wastewater: the growing interest for this substance, used since many years in other sectors (e.g., food-industry, breweries, etc.) is mainly due to the claimed limited formation, if any, of harmful disinfecting by-products (Dbp) with consequent lack of toxicity in Paa treated wastewaters. Such features are just the opposite of those of chlorine, i.e. the most used disinfectant for municipal wastewater. During chlorine-disinfecting, in fact, numerous harmful organo-chlorinated Dbp are formed and, accordingly, the toxicity of chlorinated effluents results very high. In spite of the above reported <> properties of Paa, its use at large scale facilities is still restricted and this not only because of its costs but even for the limited knowledge concerning: the actual disinfecting effectiveness towards different pathogens, the nature and the toxicological properties of its potential Dbp, and the disinfecting performances at large scale facilities. The present paper, besides reporting an extensive and useful collection of references concerning Paa, provides a critical review on the current knowledge regarding specific Paa features such as: its disinfecting effectiveness towards different pathogenic micro-organisms, the nature and the toxicity of its disinfecting by-products, the environmental impact of Paa treated effluents, and the operative conditions used at large scale wastewater treatment plants. [Italian] Il presente lavoro, basandosi sui dati disponibili in letteratura, si propone di fare il punto sull'impiego dell'acido peracetico (CH{sub 3}COOOH{identical_to} PAA) come disinfettante di reflui urbani depurati. Il crescente interesse nei confronti di questa sostenza, gia' nota come disinfettante in

  5. DHA- RICH FISH OIL IMPROVES COMPLEX REACTION TIME IN FEMALE ELITE SOCCER PLAYERS

    Directory of Open Access Journals (Sweden)

    José F. Guzmán

    2011-06-01

    Full Text Available Omega-3 fatty acids (n-3 has shown to improve neuromotor function. This study examined the effects of docosahexaenoic acid (DHA on complex reaction time, precision and efficiency, in female elite soccer players. 24 players from two Spanish female soccer Super League teams were randomly selected and assigned to two experimental groups, then administered, in a double-blind manner, 3.5 g·day-1 of either DHA-rich fish oil (FO =12 or olive oil (OO = 12 over 4 weeks of training. Two measurements (pre- and post-treatment of complex reaction time and precision were taken. Participants had to press different buttons and pedals with left and right hands and feet, or stop responding, according to visual and auditory stimuli. Multivariate analysis of variance displayed an interaction between supplement administration (pre/post and experimental group (FO/OO on complex reaction time (FO pre = 0.713 ± 0.142 ms, FO post = 0.623 ± 0.109 ms, OO pre = 0.682 ± 1.132 ms, OO post = 0.715 ± 0.159 ms; p = 0.004 and efficiency (FO pre = 40.88 ± 17.41, FO post = 57.12 ± 11.05, OO pre = 49.52 ± 14.63, OO post = 49. 50 ± 11.01; p = 0.003. It was concluded that after 4 weeks of supplementation with FO, there was a significant improvement in the neuromotor function of female elite soccer players

  6. Les microalgues marines : source alternative d’acide eicosapentaènoïque (EPA et d’acide docosahexaènoïque (DHA

    Directory of Open Access Journals (Sweden)

    Pencreac’h Gaëlle

    2004-03-01

    Full Text Available Les lipides de microalgues marines sont riches en acide eicosapentaènoïque (EPA, C20 :5 et en acide docosahexaènoïque (DHA, C22 :6, deux acides gras hautement insaturés de la série ω3 (AGHI-ω3, et représentent aujourd’hui une source alternative potentielle face aux huiles de poissons. Les microalgues synthétisent de l’EPA et\\\\ou du DHA dans des proportions relatives variables selon leur classe taxonomique. D’autre part, pour une même espèce, les teneurs en ces acides gras dépendent fortement des conditions de culture. De part leur métabolisme photoautotrophe, la production de biomasse microalgale à grande échelle nécessite la conception de bioréacteurs spécifiques, les photobioréacteurs, qui représentent encore aujourd’hui un défi technologique. La poursuite de travaux de recherche, dans des domaines très divers, reste nécessaire pour confirmer la viabilité économique des procédés industriels de production d’EPA et de DHA par les microalgues.

  7. ANALISIS DEL CO-TRATAMIENTO PASIVO DE AGUAS RESIDUALES MUNICIPALES Y DRENAJE ACIDO DE MINAS EN CERRO RICO DE POTOSÍ, BOLIVIA

    Directory of Open Access Journals (Sweden)

    William H.J. Strosnider

    2015-01-01

    Full Text Available El drenaje acido de minas (DAM es un problema a nivel mundial. El co-tratamiento pasivo de DAM con aguas residuales municipales (ARM es una manera efectiva y de bajo costo que utiliza los nutrientes de ARM para tratar las concentraciones de metales y sulfato en DAM. Cerro Rico de Potosí, Bolivia es una de las grandes ciudades mineras en el mundo que tiene muchos problemas con el DAM. El objetivo de este estudio fue determinar velocidades de reacción de Al, Fe, Mn, Zn, y otros metales en DAM provenientes de un flujo de agua en Cerro Rico usando un sistema reactor de tres etapas. El DAM tenía un pH de 3.58, acidez de 1080 mg/L equivalente a CaCO3 conteniendo concentraciones de 12, 68, 17, y 550 mg/L de Al, Fe, Mn y Zn respectivamente. Las velocidades de reacción de Al, Fe, Mn y Zn fueron de 1.43, 2.09, 0.01 y 0.10 d-1, respectivamente.

  8. ESTUDIO DE LA ADSORCIÓN DE PROTEÍNAS SOBRE SUPERFICIES DE ACIDO POLILÁCTICO MEDIANTE TÉCNICAS GRAVIMÉTRICAS Y ELECTROQUÍMICAS

    Directory of Open Access Journals (Sweden)

    HUGO ARMANDO ESTUPIÑAN DURAN

    2011-01-01

    Full Text Available Metodos electroquimicos fueron utilizados para promover y evaluar la adsorcion orientada de albumina y colageno sobre superficies polimericas de acido polilactico (PLA mediante la aplicacion de un sobrepotencial anodico en un rango de 0 V a 0,45 V. La adsorcion fueestudiada usando mediciones simultaneas de espectroscopia de impedancia electroquimica (EIE y microbalanza de cristal de cuarzo (QCM, en un rango de temperaturas de 25°C a 45°C, con variaciones en proteina entre 5 y 20 ¿Êg/ml en solucion buffer de fosfato de pH 7,4. Con el aumento de la concentracion de proteinas en el electrolito, disminuye la resistencia a la transferencia de carga, exhibiendo asi una mayor adsorcion sobre la superficie, ademas de aumentar la magnitud de los cambios de masa. Se mejoro la hidrofilicidad del recubrimiento, mostrando una mayor afinidad con las soluciones de colageno y por lo tanto un aumento en la biocompatibilidad debido a la activacion superficial.

  9. The effect of insulin, TNFα and DHA on the proliferation, differentiation and lipolysis of preadipocytes isolated from large yellow croaker (Pseudosciaena Crocea R.).

    Science.gov (United States)

    Wang, Xinxia; Huang, Ming; Wang, Yizhen

    2012-01-01

    Fish final product can be affected by excessive lipid accumulation. Therefore, it is important to develop strategies to control obesity in cultivated fish to strengthen the sustainability of the aquaculture industry. As in mammals, the development of adiposity in fish depends on hormonal, cytokine and dietary factors. In this study, we investigated the proliferation and differentiation of preadipocytes isolated from the large yellow croaker and examined the effects of critical factors such as insulin, TNFα and DHA on the proliferation, differentiation and lipolysis of adipocytes. Preadipocytes were isolated by collagenase digestion, after which their proliferation was evaluated. The differentiation process was optimized by assaying glycerol-3-phosphate dehydrogenase (GPDH) activity. Oil red O staining and electron microscopy were performed to visualize the accumulated triacylglycerol. Gene transcript levels were measured using SYBR green quantitative real-time PCR. Insulin promoted preadipocytes proliferation, stimulated cell differentiation and decreased lipolysis of mature adipocytes. TNFα and DHA inhibited cell proliferation and differentiation. While TNFα stimulated mature adipocyte lipolysis, DHA showed no lipolytic effect on adipocytes. The expressions of adipose triglyceride lipase (ATGL), fatty acid synthase (FAS), lipoprotein lipase (LPL) and peroxisome proliferator-activated receptor α, γ (PPARα, PPARγ) were quantified during preadipocytes differentiation and adipocytes lipolysis to partly explain the regulation mechanisms. In summary, the results of this study indicated that although preadipocytes proliferation and the differentiation process in large yellow croaker are similar to these processes in mammals, the effects of critical factors such as insulin, TNFα and DHA on fish adipocytes development are not exactly the same. Our findings fill in the gaps in the basic data regarding the effects of critical factors on adiposity development in fish

  10. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on the extension of use for DHA and EPA-rich algal oil from Schizochytrium sp. as a Novel Food ingredient

    DEFF Research Database (Denmark)

    Tetens, Inge; Poulsen, Morten

    2014-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver a scientific opinion on an extension of use for docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)-rich algal oil from Schizochytrium sp. as a novel food...... population, excluding pregnant and lactating women. In a previous opinion on the Tolerable Upper Intake Level of EPA, DHA and docosapentaenoic acid (DPA), the Panel concluded that supplemental intake of EPA and DHA combined at doses up to 5 g/day, does not give rise to safety concerns for adults. Based...... ingredient (NFI) in the context of Regulation (EC) No 258/97. The NFI is already authorised for use in a range of foodstuffs at specified maximum levels. The applicant requests an extension of use of the NFI in food supplements up to a maximum DHA and EPA content of 3 g per daily dose for the adult...

  11. Determinación espectrofluorimétrica de fitohormonas derivadas del indol y del naftaleno

    OpenAIRE

    Blanc García, María del Rosario

    2014-01-01

    Se realiza el estudio de las propiedades fluorescentes y la puesta a punto de metodología espectrofluorimétrica en disolución y en fase sólida para la determinación en aguas, suelos y formulaciones comerciales de las fitohormonas derivadas del indol: acido indol-3-acetico. acido indol-3-butirico, acido indol-3-propinoico y acido 5-hidroxiindol-3-acetico; y del naftaleno: acido 1-naftilacetico y 1-naftilacetamida. se lleva a cabo la determinación individual de cada una de las fitohormonas as...

  12. Carbapenem and cefoxitin resistance of Klebsiella pneumoniae strains associated with porin OmpK36 loss and DHA-1 β-lactamase production

    Directory of Open Access Journals (Sweden)

    Weifeng Shi

    2013-01-01

    Full Text Available Clinical isolates of carbapenem-resistant Klebsiella pneumoniae (K. pneumoniae strains are being increased worldwide. Five pan-resistant K. pneumoniae strains have been isolated from respiratory and ICU wards in a Chinese hospital, and reveal strong resistance to all β-lactams, fluoroquinolones and aminoglycosides. Totally 27 β-lactamase genes and 2 membrane pore protein (porin genes in 5 K. pneumoniae strains were screened by polymerase chain reaction (PCR. The results indicated that all of 5 K. pneumoniae strains carried blaTEM-1 and blaDHA-1 genes, as well as base deletion and mutation of OmpK35 or OmpK36 genes. Compared with carbapenem-sensitive isolates by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, the resistant isolates markedly lacked the protein band of 34-40 kDa, which might be the outer membrane proteins of OmpK36 according to the electrophoresis mobility. In addition, the conjugation test was confirmed that blaDHA-1 mediated by plasmids could be transferred between resistant and sensitive strains. When reserpine (30 µg/mL and carbonyl cyanide m-chlorophenylhydrazone (CCCP (50 µg/mL were added in imipenem and meropenem, the MICs had no change against K. pneumoniae strains. These results suggest that both DHA-1 β-lactamase and loss or deficiency of porin OmpK36 may be the main reason for the cefoxitin and carbapenem resistance in K. pneumoniae strains in our hospital.

  13. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion related to the Tolerable Upper Intake Level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA)

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies was asked to deliver a scientific opinion on the Tolerable Upper Intake Level (UL) of the n-3 LCPUFAs eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA......). Available data are insufficient to establish a UL for n-3 LCPUFA (individually or combined) for any population group. At observed intake levels, consumption of n-3 LCPUFA has not been associated with adverse effects in healthy children or adults. Long-term supplemental intakes of EPA and DHA combined up...... to about 5 g/day do not appear to increase the risk of spontaneous bleeding episodes or bleeding complications, or affect glucose homeostasis immune function or lipid peroxidation, provided the oxidative stability of the n-3 LCPUFAs is guaranteed. Supplemental intakes of EPA and DHA combined at doses of 2...

  14. CLA isomer t10,c12 induce oxidation and apoptosis in 3t3 adipocyte cells in a similar effect as omega-3 linolenic acid and DHA.

    Directory of Open Access Journals (Sweden)

    Jon Meadus

    2017-02-01

    Full Text Available Background: Commercial conjugated linoleic acid (CLA dietary supplements contain an equal mixture of the C18:2 isomers, cis-9trans-11 and trans-10cis-12. Predominantly, CLA-c9t11 occurs naturally in meat and dairy products at ~ 0.5% of total fat , whereas CLA-t10c12 occurs at >0.1%. Recent studies show that CLA-c9t11 generally promotes lipid accumulation but CLA-t10c12 may inhibit lipid accumulation and may also promote inflammation. The omega-3 fatty acids α-linolenic acid (C18:3n-3 and docosahexaenoic acid (DHA have also been observed to inhibit lipid accumulation and effect inflammation; therefore we examined the effects of the two main isomersof CLA and omega -3 fatty acids C18:3n-3 and DHA at the molecular levelto determine if they are causing similar oxidative stresses.Methods:Purified CLA-c9t11 and CLA-t10c12 were added to 3T3 cells induced into mature adipocyte cultures at 100uM concentrations and compared with 100uM C18:3n-3(α-linolenic acid and 50uM docosahexaenoic acid (DHA to observe their effect on growth, gene transcription and general oxidation. The results of multiple separate trials were averaged and compared for significance at levels of P< 0.05, using one way ANOVA and Student’s t-test.Results:C18:3n-3, DHA and CLA-t10c12inhibited 3T3 adipose cell growth and caused a significant increase in lipid hydro peroxide activity. CLA-t10c12 and c9t11 increased AFABP, FAS and ACOX1 mRNA gene expression but DHA and C18:3n-3decreased the same mRNAs. CLA-c9t11 but not the t10c12 stimulated adipoQ expression even though; CLA-c9t11 had only a slightly greater affinity for PPARγ than CLA-t10c12, according to TR-FRET assays. The expression of the xenobiotic metabolism genes, aldo-keto reduct as 1c1 (akr1c1, superoxide dismutase (SODand inflammation chemokine secretions of eotaxin (CCL11, Rantes (CCL5, MIG (CCL9 and MCP-1 were increased by DHA, C18:3n-3and CLA-t10c12 but not CLA-c9t11. This correlated with an increase in apoptosis factors

  15. Preliminary Validation of a High Docosahexaenoic Acid (DHA) and -Linolenic Acid (ALA) Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar) Smolts.

    Science.gov (United States)

    Nuez-Ortín, Waldo G; Carter, Chris G; Wilson, Richard; Cooke, Ira; Nichols, Peter D

    2016-01-01

    Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA), a key omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA) content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX) with high DHA and ALA content using tuna oil (TO) high in DHA and the flaxseed oil (FX) high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO) and a commercial-like oil blend diet (fish oil + poultry oil, FOPO) over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend.

  16. Preliminary Validation of a High Docosahexaenoic Acid (DHA and -Linolenic Acid (ALA Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar Smolts.

    Directory of Open Access Journals (Sweden)

    Waldo G Nuez-Ortín

    Full Text Available Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA, a key omega-3 long-chain (≥C20 polyunsaturated fatty acid (n-3 LC-PUFA that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX with high DHA and ALA content using tuna oil (TO high in DHA and the flaxseed oil (FX high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO and a commercial-like oil blend diet (fish oil + poultry oil, FOPO over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend.

  17. l aceite de atún como fuente de ácidos grasos ω-3 en el huevo de gallina

    Directory of Open Access Journals (Sweden)

    Vázquez-Valladolid, J. L.

    2005-06-01

    Full Text Available Fish oils are a source of polyunsaturated omega 3 fatty acids (AG ω3, mainly eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, which supply many benefits to human health. Tuna oil was used as a source of marine 3ω FA to enrich eggs by supplementing the diet of egg-laying hens with tuna oil. One hundred and twenty White Leghorn hens of 90 weeks old were allocated on three treatments with four replicates each, on a completely random design. Treatments consisted of adding 1 % and 2 % of tuna oil to the diets. The total lipids and ω3FA of the eggs were determined. The egg-laying hen dietary tuna oil supplement (1 and 2 % enriched eggs with 300 % more EPA (0.40, 1.37, 1.54 mg/g lipids and DHA (7.90, 24.67, 24.50 mg/g lipids versus the control egg . The ω6:ω3 ratio decreased ( 11.4:1, 3.8:1, 3.0:1 as dietary tuna oil increased. There were no differences (p>0.05 among treatments in productive performance and egg quality, except egg weight which decreased with the tuna oil.Los aceites de pescado son una fuente de lípidos poliinsaturados de origen animal, principalmente de los ácidos grasos omega-3 (AG ω-3, eicosapentaenoico (EPA y docosahexaenoico (DHA, beneficiosos para la salud. En este trabajo se utilizó el aceite de atún como fuente de estos nutrientes en el huevo para consumo. Se utilizaron 120 gallinas blancas Leghorn Isa-Babcock B-300 de 90 semanas de edad, distribuidas al azar en tres tratamientos, con cuatro réplicas cada uno. Los tratamientos consistieron en adicionar 1% y 2% de aceite de atún en la dieta de las gallinas ponedoras. Se determinaron los lípidos totales y AG ω-3 en el huevo, obteniéndose 300 % más de EPA (0,40, 1,37, 1,54 mg/g lípidos y DHA (7,90, 24,67, 24,50 mg/g lípidos al adicionar 1 y 2% de aceite de atún en la dieta de las aves, que en el grupo testigo. La relación ω-6: ω-3 en el huevo disminuyó con el suplemento dietético de aceite de atún (11,4:1, 3,8:1, 3:1, lo mismo ocurri

  18. Fatty acids and astaxanthin composition of two edible native Mexican crayfish Cambarellus (C.) montezumae and Procambarus (M.) bouvieri; Composición de ácidos grasos y astaxantina de dos especies comestibles de acociles nativos de México, Cambarellus (C.) montezumae y Procambarus.

    Energy Technology Data Exchange (ETDEWEB)

    Coral-Hinostroza, G.; Diaz-Martinez, M.; Huberman, A.; Silencio-Barrita, J.L.

    2016-07-01

    The content and composition of the fatty acids (F As) and astaxanthin (AST) in the edible forms of crayfish: the whole animal of Cambarellus (C.) montezumae, and the tail meat (TM) of Procambarus (M.) bouvieri were determined by GC and HPLC. The exoskeleton (EXK) of P. (M.) bouvieri was also studied. Unsaturated FAs, and mostly oleic acid (C18:1 n-9), were predominant in both edible forms. The contents of the polyunsaturated eicosapentaenoic (C20:5 n-3, EPA), arachidonic (C20:4 n-6, ARA) and docosahexaenoic acid (C22:6 n-3, DHA), were higher in the TM of P. (M.) bouvieri than in the complete C. (C.) montezumae (p<0.05). Total carotenoids ranged between 2.31 ± 0.33 μg·g−1 and 66.3 ± 3.91 μg·g−1, and were composed mainly of AST (>79.50%). AST esters were enriched with saturated FAs in C. (C.) montezumae and with PUFAs in EXK of P. (M.) bouvieri. We conclude that both C. (C.) montezumae and the TM of P. (M.) bouvieri are traditional foods rich in n-3 PUFAs and C. (C.) montezumae in AST. The EXK of P. (M.) bouvieri is a rich potential source of AST, n-3 PUFAs, and the combination AST-DHA. [Spanish] Se determinó por GC y HPLC el contenido y composición de ácidos grasos (AGs) y astaxantina (AST), en dos formas comestibles de acocil: el animal completo de Cambarellus (C.) montezumae, y el músculo de la cola (MC) de Procambarus (M.) bouvieri. Adicionalmente, se estudió el exosqueleto (EXK) de P. (M.) bouvieri. En ambas formas comestibles predominaron los AGs insaturados. Los contenidos de ácido eicosapentaenoico (C20:5 n-3, EPA), araquidónico (C20:4 n-6, ARA) y docosahexaenoico (C22: 6 n-3, DHA), fueron mayores en el MC que en C. (C) montezumae (p<0,05). Los carotenoides totales oscilaron de 2.3 ± 0.3 μg·g−1 a 66.3 ± 3.9 μg·g−1, con predominancia de AST (>79.50%). Los ésteres de AST en C. (C.) montezumae fueron enriquecidos con AGs saturados mientras que los del EXK de P. (M.) bouvieri con AGs poliinsaturados. Se concluyó que tanto C. (C

  19. Gastrointestinal tolerance and plasma status of carotenoids, EPA and DHA with a fiber-enriched tube feed in hospitalized patients initiated on tube nutrition: Randomized controlled trial.

    Science.gov (United States)

    Jakobsen, L H; Wirth, R; Smoliner, C; Klebach, M; Hofman, Z; Kondrup, J

    2017-04-01

    During the first days of tube feeding (TF) gastrointestinal (GI) complications are common and administration of sufficient nutrition is a challenge. Not all standard nutritionally complete formulas contain dietary fiber, fish oil or carotenoids, key dietary nutrients for health and wellbeing. The aim of this study was to investigate the effects of a fiber, fish oil and carotenoid enriched TF formula on diarrhea, constipation and nutrient bioavailability. A multi-center randomized, double-blind, controlled, parallel trial compared the effects of a dietary fiber, fish oil and carotenoid-enriched TF formula (test) with an isocaloric non-enriched formula (control) in 51 patients requiring initiation of TF. Incidence of diarrhea and constipation (based on stool frequency and consistency) was recorded daily. Plasma status of EPA, DHA and carotenoids was measured after 7 days. The incidence of diarrhea was lower in patients receiving the test formula compared with the control group (19% vs. 48%, p = 0.034). EPA and DHA status (% of total plasma phospholipids) was higher after 7 days in test compared with control group (EPA: p = 0.002, DHA: p = 0.082). Plasma carotenoid levels were higher after 7 days in the test group compared with control group (lutein: p = 0.024, α-carotene: p = 0.005, lycopene: p = 0.020, β-carotene: p = 0.054). This study suggests that the nutrient-enriched TF formula tested might have a positive effect on GI tolerance with less diarrhea incidence and significantly improved EPA, DHA and carotenoid plasma levels during the initiation of TF in hospitalized patients who are at risk of diarrhea and low nutrient status. This trial was registered at trialregister.nl; registration number 2924. Copyright © 2016. Published by Elsevier Ltd.

  20. Stability of RNA and DNA in Bone Marrow Cells, Demonstrated with Tritiated Cytidine and Thymidine; Emploi de la Cytidine et de la Thymidine Tritiees pour Demontrer la Stabilite de l'ARN et l'ADN dans les Cellules de la Moelle Osseuse; 0421 0442 0430 0414 ; Estudio de la Estabilidad de los Acidos Ribonucleico y Desoxirribonucleico de las Celulas de la Medula Osea, Utilizando Citidina y Timidina Tritiadas

    Energy Technology Data Exchange (ETDEWEB)

    Bond, V. P.; Feinendegen, L. E.; Cronkite, E. P. [Medical Research Centre, Brookhaven National Laboratory, Upton, Long Island, NY (United States)

    1962-02-15

    maniere que l'ADN. L'ARN et l'ADN de formation recente ne se diluent dans les cellules qu'a la faveur de la division cellulaire. (author) [Spanish] Los autores han estudiado el metabolismo de los acidos desoxirribonucleico y ribonucleico utilizando timidina tritiada (timidina-{sup 3}H), un precursor especifico del acido desoxirribonucleico, y citidina tritiada (citidina-{sup 3}H), un precursor comun de los acidos ribonucleico y desoxirribonucleico. Empleando citidina-{sup 3}H se determino autorradiograficamente la incorporacion diferencial por celula en los acidos ribonucleico y desoxirribonucleico, asi como en el espacio soluble. La misma determinacion se efectuo empleando metodos autorradiograficos y quimicos en el caso de poblaciones celulares, mediante extraccion diferencial aplicando un tratamiento apropiado con acido perclorico. Los estudios preliminares sobre renovacion realizados en celulas de HeLa con citidina-{sup 3}H pusieron de manifiesto la funcion precursora del acido ribonucleico nuclear respecto del acido ribonucleico citoplasmatico. La conservacion y distribucion del indicador en la fraccion acido ribonucleico es compatible con una mayor estabilidad de las macromoleculas de dicho acido. Asimismo, la incorporacion continua del indicador en la fraccion acido desoxirribonucleico es compatible con la presencia de un precursor de dicho acido en las ultimas fases de la sintesis. Fenomenos analogos se observaron en las celulas no maduras de la medula osea de la tata, estudiadas durante los dias consecutivos a la administracion de citidina-{sup 3}H por via intravenosa. La actividad del tritio en la fraccion soluble en acido y en las fracciones ARN y ADN se evaluo por metodos quimicos y autorradiograficos. Se comprobo que las tres curvas son paralelas desde el dia que sigue al de inyeccion y paralelas asimismo a las curvas de actividad del tritio en el acido desoxirribonucleico, cuando este se marca con timidina- {sup 3}H. La velocidad de disminucion de la

  1. Exploring the association between whole blood Omega-3 Index, DHA, EPA, DHA, AA and n-6 DPA, and depression and self-esteem in adolescents of lower general secondary education.

    Science.gov (United States)

    van der Wurff, I S M; von Schacky, C; Bergeland, T; Leontjevas, R; Zeegers, M P; Kirschner, P A; de Groot, R H M

    2018-03-16

    Depression is common in adolescents and long-chain polyunsaturated fatty acids (LCPUFA) are suggested to be associated with depression. However, research in adolescents is limited. Furthermore, self-esteem has never been studied in relation to LCPUFA. The objective here was to determine associations of depression and self-esteem with eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), Omega-3 Index (O3I), n-6 docosapentaenoic acid (n-6 DPA, also called Osbond acid, ObA), n-3 docosapentaenoic acid (DPA), and arachidonic acid (AA) concentrations in blood of adolescents attending lower general secondary education (LGSE). Baseline cross-sectional data from a krill oil supplementation trial in adolescents attending LGSE with an O3I ≤ 5% were analysed using regression models built with the BayesFactor package in R. Fatty acids and O3I were determined in blood. Participants filled out the Centre for Epidemiologic Studies Depression (CES-D) scale and the Rosenberg Self-Esteem scale (RSE). Scores indicative of depression (CES-D ≥ 16) were found in 29.4% of the respondents. Of all fatty acids, we found extreme evidence [Bayes factor (BF) > 100] for a weak negative association between ObA and depression score [- 0.16; 95% credible interval (CI) - 0.28 to - 0.04; BF 10  = 245], and substantial evidence for a weak positive association between ObA and self-esteem score (0.09; 95% CI, - 0.03 to 0.20; BF 10  = 4). When all fatty acids were put in one model as predictors of CES-D or RSE, all of the 95% CI contained 0, i.e., no significant association. No evidence was found for associations of DHA, EPA and O3I with depression or self-esteem scores in LGSE adolescents with O3I ≤ 5%. The associations of higher ObA status with lower depression and higher self-esteem scores warrant more research.

  2. The Impact of Cholesterol, DHA, and Sphingolipids on Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Marcus O. W. Grimm

    2013-01-01

    Full Text Available Alzheimer’s disease (AD is a devastating neurodegenerative disorder currently affecting over 35 million people worldwide. Pathological hallmarks of AD are massive amyloidosis, extracellular senile plaques, and intracellular neurofibrillary tangles accompanied by an excessive loss of synapses. Major constituents of senile plaques are 40–42 amino acid long peptides termed β-amyloid (Aβ. Aβ is produced by sequential proteolytic processing of the amyloid precursor protein (APP. APP processing and Aβ production have been one of the central scopes in AD research in the past. In the last years, lipids and lipid-related issues are more frequently discussed to contribute to the AD pathogenesis. This review summarizes lipid alterations found in AD postmortem brains, AD transgenic mouse models, and the current understanding of how lipids influence the molecular mechanisms leading to AD and Aβ generation, focusing especially on cholesterol, docosahexaenoic acid (DHA, and sphingolipids/glycosphingolipids.

  3. Nutritional Evaluation of an EPA-DHA Oil from Transgenic Camelina sativa in Feeds for Post-Smolt Atlantic Salmon (Salmo salar L..

    Directory of Open Access Journals (Sweden)

    Mónica B Betancor

    Full Text Available Vegetable oils (VO are possible substitutes for fish oil in aquafeeds but their use is limited by their lack of omega-3 (n-3 long-chain polyunsaturated fatty acids (LC-PUFA. However, oilseed crops can be modified to produce n-3 LC-PUFA such as eicosapentaenoic (EPA and docosahexaenoic (DHA acids, representing a potential option to fill the gap between supply and demand of these important nutrients. Camelina sativa was metabolically engineered to produce a seed oil with around 15% total n-3 LC-PUFA to potentially substitute for fish oil in salmon feeds. Post-smolt Atlantic salmon (Salmo salar were fed for 11-weeks with one of three experimental diets containing either fish oil (FO, wild-type Camelina oil (WCO or transgenic Camelina oil (DCO as added lipid source to evaluate fish performance, nutrient digestibility, tissue n-3 LC-PUFA, and metabolic impact determined by liver transcriptome analysis. The DCO diet did not affect any of the performance or health parameters studied and enhanced apparent digestibility of EPA and DHA compared to the WCO diet. The level of total n-3 LC-PUFA was higher in all the tissues of DCO-fed fish than in WCO-fed fish with levels in liver similar to those in fish fed FO. Endogenous LC-PUFA biosynthetic activity was observed in fish fed both the Camelina oil diets as indicated by the liver transcriptome and levels of intermediate metabolites such as docosapentaenoic acid, with data suggesting that the dietary combination of EPA and DHA inhibited desaturation and elongation activities. Expression of genes involved in phospholipid and triacylglycerol metabolism followed a similar pattern in fish fed DCO and WCO despite the difference in n-3 LC-PUFA contents.

  4. Nutritional Evaluation of an EPA-DHA Oil from Transgenic Camelina sativa in Feeds for Post-Smolt Atlantic Salmon (Salmo salar L.).

    Science.gov (United States)

    Betancor, Mónica B; Sprague, Matthew; Sayanova, Olga; Usher, Sarah; Metochis, Christoforos; Campbell, Patrick J; Napier, Johnathan A; Tocher, Douglas R

    2016-01-01

    Vegetable oils (VO) are possible substitutes for fish oil in aquafeeds but their use is limited by their lack of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA). However, oilseed crops can be modified to produce n-3 LC-PUFA such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, representing a potential option to fill the gap between supply and demand of these important nutrients. Camelina sativa was metabolically engineered to produce a seed oil with around 15% total n-3 LC-PUFA to potentially substitute for fish oil in salmon feeds. Post-smolt Atlantic salmon (Salmo salar) were fed for 11-weeks with one of three experimental diets containing either fish oil (FO), wild-type Camelina oil (WCO) or transgenic Camelina oil (DCO) as added lipid source to evaluate fish performance, nutrient digestibility, tissue n-3 LC-PUFA, and metabolic impact determined by liver transcriptome analysis. The DCO diet did not affect any of the performance or health parameters studied and enhanced apparent digestibility of EPA and DHA compared to the WCO diet. The level of total n-3 LC-PUFA was higher in all the tissues of DCO-fed fish than in WCO-fed fish with levels in liver similar to those in fish fed FO. Endogenous LC-PUFA biosynthetic activity was observed in fish fed both the Camelina oil diets as indicated by the liver transcriptome and levels of intermediate metabolites such as docosapentaenoic acid, with data suggesting that the dietary combination of EPA and DHA inhibited desaturation and elongation activities. Expression of genes involved in phospholipid and triacylglycerol metabolism followed a similar pattern in fish fed DCO and WCO despite the difference in n-3 LC-PUFA contents.

  5. The omega-3 fatty acid DHA dose-dependently reduces atherosclerosis: a putative role for F4-neuroprostanes a specific class of peroxidized metabolites

    Science.gov (United States)

    Objective. Consumption of long chain omega-3 polyunsaturated fatty acids is associated with reduced risks of cardiovascular disease but the role of their oxygenated metabolites remains unclear. We hypothesized that peroxidized metabolites of docosahexaenoic acid (DHA, 22:6 n-3) could play a role in ...

  6. Phosphategypsum wastes in Venice lagoon. Radiological impact; Le discariche di fosfogessi nella laguna di Venezia. Valutazioni preliminari dell'impatto radiologico

    Energy Technology Data Exchange (ETDEWEB)

    Belli, M; Blasi, M; Guogang, J.; Rosamilia, S.; Sansone, U. [Agenzia Nazionale per la Protezione dell' Ambiente, Rome (Italy); Biancotto, R.; Bidoli, P.; Sepulcri, D. [Agenzia Regionale di Prevenzione e Protezione del Veneto, Venice (Italy). Dipt. provinciale di Venezia; Cavolo, F. [Smilax, Mira, VE (Italy)

    2000-07-01

    The phosphoric minerals utilized in phosphoric acid production, presents high concentrations of radioactive materials: U238, Th 232, K 40. The phosphogypsum is the waste material obtained in the phosphoric acid production in wet process. This type of production method is employed for many years in Venice lagoon (Porto Marghera chemical plants). In this paper are reported evaluations of radiological impact on aquatic environment of lagoon. [Italian] Con il termine di fosfogessi si intende comunemente il materiale di risulta che si ottiene nella produzione di acido fosforico attraverso la via umida (attacco acido). Questa tipologia di produzione che ha operato per diversi decenni a Porto Marghera, e' finalizzata allo scopo di ottenere acido fosforico principalmente per l'industria dei fertilizzanti e quindi come prodotto intermedio per la chimica e per le preparazioni alimentari. Il fosforo, elemento principale della reazione, era ricavato da rocce fosfatiche di origine sedimentaria marina provenienti per lo piu' dall'Africa settentrionale. Il sistema produttivo utilizzato negli impianti di Porto Marghera era basato su una reazione principale, che partendo dal minerale attraverso un attacco acido, produceva acido fosforico: Ca{sub 3}(PO{sub 4}){sub 2} (Minerale Fosforico) + 3H{sub 2}SO{sub 4} (Acido Solforico) + 3H{sub 2}O (Acqua) {yields} 2H{sub 3}PO{sub 4} (Acido fosforico) + 3CaSO{sub 4}H{sub 2}O (Solfato di calcio (gesso)). In particolare il minerale era preventivamente macinato e vagliato, quindi si procedeva alla sua miscelazione con l'acido fosforico ed alla successiva reazione del composto ottenuto.

  7. Spread of ISCR1 Elements Containing blaDHA-1 and Multiple Antimicrobial Resistance Genes Leading to Increase of Flomoxef Resistance in Extended-Spectrum-β-Lactamase-Producing Klebsiella pneumoniae▿

    Science.gov (United States)

    Lee, Chen-Hsiang; Liu, Jien-Wei; Li, Chia-Chin; Chien, Chun-Chih; Tang, Ya-Fen; Su, Lin-Hui

    2011-01-01

    Increasing resistance to quinolones, aminoglycosides, and/or cephamycins in extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae exacerbates the already limited antibiotic treatment options for infections due to these microbes. In this study, the presence of resistance determinants for these antimicrobial agents was examined by PCR among ESBL-producing Klebsiella pneumoniae (ESBL-KP) isolates that caused bacteremia. Pulsed-field gel electrophoresis was used to differentiate the clonal relationship among the isolates studied. Transferability and the location of the resistance genes were analyzed by conjugation experiments, followed by DNA-DNA hybridization. Among the 94 ESBL-KP isolates studied, 20 isolates of flomoxef-resistant ESBL-KP were identified. They all carried a DHA-1 gene and were genetically diverse. CTX-M genes were found in 18 of the isolates. Among these DHA-1/CTX-M-producing K. pneumoniae isolates, ISCR1 was detected in 13 (72%) isolates, qnr genes (1 qnrA and 17 qnrB genes) were detected in 18 (100%), aac(6′)-Ib-cr was detected in 11 (61%), and 16S rRNA methylase (all armA genes) was detected in 14 (78%). Four transconjugants were available for further analysis, and qnrB4, aac(6′)-Ib-cr, armA, and blaDHA-1 were all identified on these self-transferable blaCTX-M-carrying plasmids. The genetic environments of ISCR1 associated with armA, blaDHA-1, and qnrB4 genes in the four transconjugants were identical. Replicon-type analysis revealed a FIIA plasmid among the four self-transferable plasmids, although the other three were nontypeable. The cotransfer of multiple resistance genes with the ISCR1 element-carrying plasmids has a clinical impact and warrants close monitoring and further study. PMID:21746945

  8. Spread of ISCR1 elements containing blaDHA-₁ and multiple antimicrobial resistance genes leading to increase of flomoxef resistance in extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae.

    Science.gov (United States)

    Lee, Chen-Hsiang; Liu, Jien-Wei; Li, Chia-Chin; Chien, Chun-Chih; Tang, Ya-Fen; Su, Lin-Hui

    2011-09-01

    Increasing resistance to quinolones, aminoglycosides, and/or cephamycins in extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae exacerbates the already limited antibiotic treatment options for infections due to these microbes. In this study, the presence of resistance determinants for these antimicrobial agents was examined by PCR among ESBL-producing Klebsiella pneumoniae (ESBL-KP) isolates that caused bacteremia. Pulsed-field gel electrophoresis was used to differentiate the clonal relationship among the isolates studied. Transferability and the location of the resistance genes were analyzed by conjugation experiments, followed by DNA-DNA hybridization. Among the 94 ESBL-KP isolates studied, 20 isolates of flomoxef-resistant ESBL-KP were identified. They all carried a DHA-1 gene and were genetically diverse. CTX-M genes were found in 18 of the isolates. Among these DHA-1/CTX-M-producing K. pneumoniae isolates, ISCR1 was detected in 13 (72%) isolates, qnr genes (1 qnrA and 17 qnrB genes) were detected in 18 (100%), aac(6')-Ib-cr was detected in 11 (61%), and 16S rRNA methylase (all armA genes) was detected in 14 (78%). Four transconjugants were available for further analysis, and qnrB4, aac(6')-Ib-cr, armA, and bla(DHA-1) were all identified on these self-transferable bla(CTX-M)-carrying plasmids. The genetic environments of ISCR1 associated with armA, bla(DHA-1), and qnrB4 genes in the four transconjugants were identical. Replicon-type analysis revealed a FIIA plasmid among the four self-transferable plasmids, although the other three were nontypeable. The cotransfer of multiple resistance genes with the ISCR1 element-carrying plasmids has a clinical impact and warrants close monitoring and further study.

  9. A novel liquid chromatography/tandem mass spectrometry (LC-MS/MS) based bioanalytical method for quantification of ethyl esters of Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA) and its application in pharmacokinetic study.

    Science.gov (United States)

    Viswanathan, Sekarbabu; Verma, P R P; Ganesan, Muniyandithevar; Manivannan, Jeganathan

    2017-07-15

    Omega-3 fatty acids are clinically useful and the two marine omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are prevalent in fish and fish oils. Omega-3 fatty acid formulations should undergo a rigorous regulatory step in order to obtain United States Food and Drug Administration (USFDA) approval as prescription drug. In connection with that, despite quantifying EPA and DHA fatty acids, there is a need for quantifying the level of ethyl esters of them in biological samples. In this study, we make use of reverse phase high performance liquid chromatography coupled with mass spectrometry (RP-HPLC-MS)technique for the method development. Here, we have developed a novel multiple reaction monitoring method along with optimized parameters for quantification of EPA and DHA as ethyl esters. Additionally, we attempted to validate the bio-analytical method by conducting the sensitivity, selectivity, precision accuracy batch, carryover test and matrix stability experiments. Furthermore, we also implemented our validated method for evaluation of pharmacokinetics of omega fatty acid ethyl ester formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Maternal single nucleotide polymorphisms in the fatty acid desaturase 1 and 2 coding regions modify the impact of prenatal supplementation with DHA on birth weight.

    Science.gov (United States)

    Gonzalez-Casanova, Ines; Rzehak, Peter; Stein, Aryeh D; Garcia Feregrino, Raquel; Rivera Dommarco, Juan A; Barraza-Villarreal, Albino; Demmelmair, Hans; Romieu, Isabelle; Villalpando, Salvador; Martorell, Reynaldo; Koletzko, Berthold; Ramakrishnan, Usha

    2016-04-01

    Specific single nucleotide polymorphisms (SNPs) in the fatty acid desaturase (FADS) gene affect the activity and efficiency of enzymes that are responsible for the conversion of polyunsaturated fatty acids (PUFAs) into their long-chain active form. A high prevalence of SNPs that are associated with slow PUFA conversion has been described in Hispanic populations. We assessed the heterogeneity of the effect of prenatal supplementation with docosahexaenoic acid (DHA) on birth weight across selected FADS SNPs in a sample of Mexican women and their offspring. We obtained information on the maternal genotype from stored blood samples of 654 women who received supplementation with 400 mg DHA/d or a placebo from weeks 18 to 22 of gestation through delivery as part of a randomized controlled trial conducted in Cuernavaca, Mexico. We selected 4 tag SNPs (rs174455, rs174556, rs174602, and rs498793) in the FADS region for analysis. We used an ANOVA to test for the heterogeneity of the effect on birth weight across each of the 4 SNPs. The mean ± SD birth weight was 3210 ± 470 g, and the weight-for-age z score (WAZ) was -0.24 ± 1.00. There were no intention-to-treat differences in birth weights. We showed significant heterogeneity by SNP rs174602 (P= 0.02); offspring of carriers of alleles TT and TC in the intervention group were heavier than those in the placebo group (WAZ: -0.13 ± 0.14 and -0.20 ± 0.08 compared with -0.55 ± 0.15 and -0.39 ± 0.09, respectively); there were no significant differences in offspring of rs174602 CC homozygotes (WAZ: -0.26 ± 0.09 in the intervention group compared with -0.04 ± 0.09 in the placebo group). We showed no significant heterogeneity across the other 3 FADS SNPs. Differential responses to prenatal DHA supplementation on the basis of the genetic makeup of target populations could explain the mixed evidence of the impact of DHA supplementation on birth weight. This trial was registered at clinicaltrials.gov as NCT00646360. © 2016

  11. Effects of a DHA-rich unextracted microalgae as a dietary supplement on performance, carcass traits and meat fatty acid profile in growing-finishing pigs.

    Science.gov (United States)

    Moran, C A; Morlacchini, M; Keegan, J D; Delles, R; Fusconi, G

    2018-04-19

    Two 125-day experiments of the same design were conducted to evaluate the effects of a heterotrophically grown microalgae (AURA) containing docosahexaenoic acid (DHA) on pig performance, carcass traits and the fatty acid composition of lean and adipose tissue. In each experiment, 144 Hypor pigs were blocked by sex, allocated to three treatment groups, and fed 0, 0.25% or 0.50% AURA in isonutritive, isocaloric diets. Pigs were weighed on days 0, 28, 56, 84 and 112. Feed and water intakes were measured every 28 days. Pigs were slaughtered on day 125. Data from the two studies were analysed as a single data set. Performance and carcass traits did not differ between treatments. Both microalgae treatment levels enriched (p < .05) Longissimus lumborum (LL) and backfat in DHA and improved (p < .05) their ratios of n-6 to n-3 fatty acids. © 2018 The Authors. Journal of Animal Physiology and Animal Nutrition Published by Blackwell Verlag GmbH.

  12. Utilisation of chlorine-dioxide and peracetic acid as disinfectants of effluents from Bologna waste water treatment plant; Sperimentazione di tecniche di disinfezione mediante biossido di cloro e acido peracetico applicate alle acque reflue dell'impianto di trattamento della citta' di Bologna

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, M.L. [Bologna Univ., Bologna (Italy). Dipt. di Ingegneria delle Strutture, dei Trasporti, delle Acque, del Rilevamento e del Territorio; Sorrentino, M.

    2000-01-01

    The necessity to optimize the disinfection phase in the treatment plant of waste water of Bologna made possible an experimental survey about the efficacy of two disinfectant agents utilized: chlorine-dioxide and peracetic acid. Object of the survey is to verify the possibility of utilize, full scale, also peracetic acid as disinfection agent. The experimentation regarded the reals flows adduced and discharged from the plant and it may be an useful reference to verify performance of post-treatment constructed wetlands. Particularly it has been possible to assay the efficacy of the different treatment in waste water with residual concentrations of suspended solids. [Italian] La necessita' di ottimizzare la fase di disinfezione nell'impianto di trattamento acque reflue della citta' di Bologna, sia per il miglioramento delle rese di inattivazione, sia per la riduzione dei costi di esercizio, ha reso necessaria un'indagine sperimentale sull'efficacia di due agenti disinfettanti utilizzati: il biossido di cloro e l'acido peracetico. Scopo dell'indagine e' quello di verificare la possibilita' di impiegare, a scala reale, per il refluo tipico dell'impianto di Bologna, anche l'acido peracetico quale agente di disinfezione. La sperimentazione, condotta ha interessato le portate reali addotte e scaricate dall'impianto e puo' costituire un riferimento utile verificare la fattibilita' igienico-sanitaria di post-trattamenti di lagunaggio o fertirrigazione. In particolare si e' potuta saggiare l'efficacia dei diversi sistemi di trattamento sui reflui aventi concentrazioni residue non trascurabili di solidi sospesi.

  13. Eicosahexanoic Acid (EPA and Docosahexanoic Acid (DHA in Muscle Damage and Function

    Directory of Open Access Journals (Sweden)

    Eisuke Ochi

    2018-04-01

    Full Text Available Nutritional supplementation not only helps in improving and maintaining performance in sports and exercise, but also contributes in reducing exercise fatigue and in recovery from exhaustion. Fish oil contains large amounts of omega-3 fatty acids, eicosapentaenoic acid (EPA; 20:5 n-3 and docosahexaenoic acid (DHA; 22:6 n-3. It is widely known that omega-3 fatty acids are effective for improving cardiac function, depression, cognitive function, and blood as well as lowering blood pressure. In the relationship between omega-3 fatty acids and exercise performance, previous studies have been predicted improved endurance performance, antioxidant and anti-inflammatory responses, and effectivity against delayed-onset muscle soreness. However, the optimal dose, duration, and timing remain unclear. This review focuses on the effects of omega-3 fatty acid on muscle damage and function as evaluated by human and animal studies and summarizes its effects on muscle and nerve damage, and muscle mass and strength.

  14. Kajian Peningkatan Asam Lemak Omega-3 Epa dan Dha pada Minyak Ikan Lele yang Diberi Pakan Minyak Kacang Kedelai

    OpenAIRE

    Salasah, Rosmawati

    2016-01-01

    The experiment purpose to find out fatty acid profil in catfish oil were used soybean oil with different level and to detect soybean oil concentrate in dietary hight produce catfish oil contens omega-3 fatty acid EPA and DHA. This research uses experimental methods and experimental design used completely randomized design (CRD) with five treatments , the percentage giving linolenic acid in the feed catfish at A = 0 % , B = 5 % , C = 10 % , D = 15 % , and E 20 % with each of the three replicat...

  15. Progressive retinal degeneration and glial activation in the CLN6 (nclf mouse model of neuronal ceroid lipofuscinosis: a beneficial effect of DHA and curcumin supplementation.

    Directory of Open Access Journals (Sweden)

    Myriam Mirza

    Full Text Available Neuronal ceroid lipofuscinosis (NCL is a group of neurodegenerative lysosomal storage disorders characterized by vision loss, mental and motor deficits, and spontaneous seizures. Neuropathological analyses of autopsy material from NCL patients and animal models revealed brain atrophy closely associated with glial activity. Earlier reports also noticed loss of retinal cells and reactive gliosis in some forms of NCL. To study this phenomenon in detail, we analyzed the ocular phenotype of CLN6 (nclf mice, an established mouse model for variant-late infantile NCL. Retinal morphometry, immunohistochemistry, optokinetic tracking, electroretinography, and mRNA expression were used to characterize retinal morphology and function as well as the responses of Müller cells and microglia. Our histological data showed a severe and progressive degeneration in the CLN6 (nclf retina co-inciding with reactive Müller glia. Furthermore, a prominent phenotypic transformation of ramified microglia to phagocytic, bloated, and mislocalized microglial cells was identified in CLN6 (nclf retinas. These events overlapped with a rapid loss of visual perception and retinal function. Based on the strong microglia reactivity we hypothesized that dietary supplementation with immuno-regulatory compounds, curcumin and docosahexaenoic acid (DHA, could ameliorate microgliosis and reduce retinal degeneration. Our analyses showed that treatment of three-week-old CLN6 (nclf mice with either 5% DHA or 0.6% curcumin for 30 weeks resulted in a reduced number of amoeboid reactive microglia and partially improved retinal function. DHA-treatment also improved the morphology of CLN6 (nclf retinas with a preserved thickness of the photoreceptor layer in most regions of the retina. Our results suggest that microglial reactivity closely accompanies disease progression in the CLN6 (nclf retina and both processes can be attenuated with dietary supplemented immuno-modulating compounds.

  16. Vitamina C, carotenoides, fenólicos totais e atividade antioxidante de goiaba, manga e mamão procedentes da Ceasa do Estado de Minas Gerais = Vitamin C, carotenoids, phenolic compounds and antioxidant activity of guava, mango and papaya from Ceasa of Minas Gerais State

    Directory of Open Access Journals (Sweden)

    Daniela da Silva Oliveira

    2011-01-01

    Full Text Available Este estudo teve como objetivo analisar o conteudo de compostos antioxidantes (acido ascorbico - AA, acido desidroascorbico - ADA, vitamina C total, licopeno, £]-caroteno, £]-criptoxantina e estimativa de compostos fenolicos e avaliar a atividade antioxidante, em goiaba, manga e mamao. A analise de carotenoides e vitamina C foi realizada por Cromatografia Liquida de Alta Eficiencia (CLAE. O teor de fenolicos totais foi determinado utilizando o reagente de Folin-Ciocalteu e leitura espectrofotometrica. A atividade antioxidante foi avaliada pelo Teste do 2,2-diphenil-2-picril-hidrazil (DPPH¡E e do Poder Redutor. A Anova (ƒÑ = 0,05 foi utilizada para a analise dos dados. Os teores dos constituintes antioxidantes diferiram entre as tres frutas, mas a goiaba foi a fruta que apresentou teores mais elevados de compostos fenolicos, vitamina C total, ADA e licopeno, alem dos maiores valores para atividade antioxidante. Foi constatada forte correlacao entre os testes que avaliaram a atividade antioxidante e o teor de fenolicos totais, demonstrando serem estes os principais compostos antioxidantes a contribuirem para a atividade antioxidante das frutas analisadas, em ambos os testes. E importante incentivar a utilizacao das frutas avaliadas neste estudo, tanto em nivel domestico quanto em estabelecimentos de alimentacao coletiva para aumentar o consumo de antioxidantes naturais pela populacao.This study aimed to analyze the content of antioxidant compounds (ascorbic acid - AA, dehydroascorbic acid - DHA, total vitamin C, lycopene, £]-carotene, £]-cryptoxanthin and phenolic compounds and to evaluate the antioxidant activity in guava, mango and papaya.The analysis of carotenoids and vitamin C was performed by high performance liquid chromatography (HPLC. The content of phenolic compounds was determined using the Folin-Ciocalteu reagent and spectrophotometric reading. Antioxidant activity was evaluated by testing the 2.2-diphenyl-2-picryl

  17. Lower levels of Persistent Organic Pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar)

    International Nuclear Information System (INIS)

    Lundebye, Anne-Katrine; Lock, Erik-Jan; Rasinger, Josef D.; Nøstbakken, Ole Jakob; Hannisdal, Rita; Karlsbakk, Egil; Wennevik, Vidar; Madhun, Abdullah S.; Madsen, Lise; Graff, Ingvild Eide; Ørnsrud, Robin

    2017-01-01

    Contaminants and fatty acid levels in farmed- versus wild Atlantic salmon have been a hot topic of debate in terms of food safety. The present study determined dioxins (polychlorinated dibenzo-p-dioxin and dibenzofuran), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), metals and fatty acids in wild and farmed Atlantic salmon. Contaminant levels of dioxins, PCBs, OCPs (DDT, dieldrin, lindane, chlordane, Mirex, and toxaphene), and mercury were higher in wild salmon than in farmed salmon, as were the concentrations of the essential elements selenium, copper, zinc and iron, and the marine omega-3 fatty acid docosahexaenoic acid (DHA). PBDE, endosulfan, pentachlorobenzene, hexachlorobenzene, cadmium and lead levels were low and comparable in both wild and farmed fish, and there was no significant difference in the marine omega-3 fatty acid eicosapentaenoic acid (EPA) concentration. The total fat content was significantly higher in farmed than wild salmon due to a higher content of both saturated and monounsaturated fatty acids, as well as a higher content of omega-6 fatty acids. The omega-3 to omega-6 fatty acid ratio was considerably lower in farmed than wild salmon due to the high level of omega-6 fatty acids. Contaminant concentrations in Atlantic salmon were well below maximum levels applicable in the European Union. Atlantic salmon, both farmed and wild, is a good source of EPA and DHA with a 200 g portion per week contributing 3.2 g or 2.8 g respectively, being almost twice the intake considered adequate for adults by the European Food Safety Authority (i.e. 250 mg/day or 1.75 g/week). - Highlights: • A comprehensive study of contaminants and nutrients in farmed- and wild Atlantic salmon. • Wild salmon had higher levels of persistent organic pollutants and mercury than farmed salmon. • Farmed salmon had higher levels of omega-6 fatty acids than wild salmon. • Farmed- and wild salmon had comparable

  18. Lower levels of Persistent Organic Pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar)

    Energy Technology Data Exchange (ETDEWEB)

    Lundebye, Anne-Katrine, E-mail: aha@nifes.no [National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen (Norway); Lock, Erik-Jan; Rasinger, Josef D.; Nøstbakken, Ole Jakob; Hannisdal, Rita [National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen (Norway); Karlsbakk, Egil; Wennevik, Vidar; Madhun, Abdullah S. [Institute of Marine Research,, P.O. Box 1870 Nordnes, 5817 Bergen (Norway); Madsen, Lise; Graff, Ingvild Eide; Ørnsrud, Robin [National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029, Nordnes, 5817 Bergen (Norway)

    2017-05-15

    Contaminants and fatty acid levels in farmed- versus wild Atlantic salmon have been a hot topic of debate in terms of food safety. The present study determined dioxins (polychlorinated dibenzo-p-dioxin and dibenzofuran), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), metals and fatty acids in wild and farmed Atlantic salmon. Contaminant levels of dioxins, PCBs, OCPs (DDT, dieldrin, lindane, chlordane, Mirex, and toxaphene), and mercury were higher in wild salmon than in farmed salmon, as were the concentrations of the essential elements selenium, copper, zinc and iron, and the marine omega-3 fatty acid docosahexaenoic acid (DHA). PBDE, endosulfan, pentachlorobenzene, hexachlorobenzene, cadmium and lead levels were low and comparable in both wild and farmed fish, and there was no significant difference in the marine omega-3 fatty acid eicosapentaenoic acid (EPA) concentration. The total fat content was significantly higher in farmed than wild salmon due to a higher content of both saturated and monounsaturated fatty acids, as well as a higher content of omega-6 fatty acids. The omega-3 to omega-6 fatty acid ratio was considerably lower in farmed than wild salmon due to the high level of omega-6 fatty acids. Contaminant concentrations in Atlantic salmon were well below maximum levels applicable in the European Union. Atlantic salmon, both farmed and wild, is a good source of EPA and DHA with a 200 g portion per week contributing 3.2 g or 2.8 g respectively, being almost twice the intake considered adequate for adults by the European Food Safety Authority (i.e. 250 mg/day or 1.75 g/week). - Highlights: • A comprehensive study of contaminants and nutrients in farmed- and wild Atlantic salmon. • Wild salmon had higher levels of persistent organic pollutants and mercury than farmed salmon. • Farmed salmon had higher levels of omega-6 fatty acids than wild salmon. • Farmed- and wild salmon had comparable

  19. Backbone and sidechain 1H, 13C and 15N resonance assignments of the human brain-type fatty acid binding protein (FABP7) in its apo form and the holo forms binding to DHA, oleic acid, linoleic acid and elaidic acid

    DEFF Research Database (Denmark)

    Oeemig, Jesper S; Jørgensen, Mathilde L; Hansen, Mikka S

    2009-01-01

    In this manuscript, we present the backbone and side chain assignments of human brain-type fatty acid binding protein, also known as FABP7, in its apo form and in four different holo forms, bound to DHA, oleic acid, linoleic acid and elaidic acid.......In this manuscript, we present the backbone and side chain assignments of human brain-type fatty acid binding protein, also known as FABP7, in its apo form and in four different holo forms, bound to DHA, oleic acid, linoleic acid and elaidic acid....

  20. Obtención de concentrados de ácidos grasos poliinsaturados por el método de los compuestos de inclusión de urea

    Directory of Open Access Journals (Sweden)

    Robles Medina, A.

    1995-06-01

    Full Text Available A concentration process for polyunsaturated fatty acids (PUFAs n-3 stearidonic (18:4 n-3, eicosapentaenoic (20:5 n-3 and docosahexaenoic (22:6 n-3 from cod liver oil using urea method has been thoroughly studied. The influence of urea/fatty acid ratio and crystallization temperature have been studied on both fatty acids recovery yield and fatty acid concentration. Methanol and ethanol have been used as urea solvent. The use of methanol and an urea/fatty acid ratio of 4:1, and 4°C were found to be the best conditions for SA (concentration 8,5%, yield 71,6 and DHA (59,8% and 100%, respectively. However, 28ºC was found to be the best temperature for EPA (28,7% and 75,6%, respectively. At temperatures below -12ºC, PUFAs also developed adducts compounds, mainly adducts derived from EPA. A variance analysis showed the urea/fatty acid ratio as the main factor affecting fatty acid concentration. At the same time, high urea/fatty acid ratios resulted in increased influence of the solvent used, being more favorable for methanol.

    En este trabajo se estudia la influencia de la relación urea/ácidos grasos y de la temperatura de cristalización (con metanol y etanol como disolventes de la urea sobre las concentraciones y rendimientos en los ácidos grasos estearidónico (SA, 18:4n-3, eicosapentaenoico (EPA, 20:5n-3 y docosahexaenoico (DHA, 22:6n-3, utilizando ácidos grasos de aceite de hígado de bacalao. Las máximas concentraciones y rendimientos en SA (8,5% y 71,6%, respectivamente y en DHA (59,8% y 100% se han obtenido con metanol, una relación urea/ácidos grasos 4:1 p/p y 4°C; sin embargo, si se desean obtener altas concentraciones y rendimientos en EPA es preferible cristalizar a 28ºC (rendimiento 76%, concentración 29%. A temperaturas por debajo de -12°C también los PUFAs forman compuestos de inclusión en un porcentaje elevado, sobre todo el EPA. Mediante un análisis de la varianza se ha puesto de manifiesto que la variable con

  1. The Use of Tritium-Labelled Thymidine in Studies on the Synthesis of Deoxyribonucleic Acids; Emploi de la Thymidine Tritiee Dans L'etude de la Synthese de l'Acide Desoxyribonucleique; 0418 0441 043f 043e 0414 ; Empleo de Timidina Tritiada para Estudiar la Sintesis de los Acidos Desoxirtibonucleicos

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, P. A.; Crathorn, A. R.; Shooter, K. V. [Chester Beatty Research Institute, Institute of Cancer Research, London (United Kingdom)

    1962-02-15

    balayage continu. Les deux methodes de mesure ont donne des resultats sensiblement differents. Pour chaque cellule, l'activite due au tritium, calculee d'apres les autoradiographies, a toujours paru superieure a celle de l'ADN isole. En mesurant ensuite a l'aide du compteur a balayage continu l'activite de cellules entieres, apres lavage et homogeneisation, on a obtenu des chiffres qui concordaient avec les resultats de l'autoradiographie. Il semble donc, en l'occurrence, que l'autoradiographie ne permette pas de mesurer de maniere satisfaisante la synthese de l'ADN. On a etudie l'activite associee, autre que celle de l'ADN, et entrepris sur d'autres types de cellules des etudes analogues de l'activite totale due au tritium et de l'activite de l'ADN isole; des effets similaires ont ete observes. A partir de ces donnees, on a pu distinguer plusieurs phases dans le processus de synthese : 1 Degree-Sign incorporation initiale de la thymidine a la cellule; 2 Degree-Sign phosphorylation en deux etapes au moins; 3 Degree-Sign formation d'ADN par polymerisation de la thymidine phosphorylee. Ainsi, on simplifierait a l'exces en supposant que l'incorporation de thymidine a la cellule permette de mesurer la synthese de l'ADN; il semble cependant qu'en utilisant cet indicateur on puisse obtenir des indications utiles sur les etapes preliminaires du processus. (author) [Spanish] En el curso de estudios sobre la biosintesis del acido desoxirribonucleico se han realizado algunos experimentos, utilizando celulas asciticas de Ehrlich, para investigar la fijacion e incorporacion de timidina-{sup 3}H. Despues de incubar in vitro las celulas marcadas con este compuesto, se han tomado autorradiografias de las mismas; tambien se ha aislado el acido desoxirribonucleico y se ha medido la actividad del {sup 3}H utilizando un contador de flujo. Al comparar los dos metodos de medicion, se advierte una marcada discrepancia; la actividad del {sup 3}H por celula, calculada a base de las

  2. Hydrogen sulfide corrosion of weld regions in API X52 steel; Corrosion por acido sulfhidrico de las regiones de soldadura en acero API X52

    Energy Technology Data Exchange (ETDEWEB)

    Arenas-Martinez, L.F [Universidad Autonoma de Coahuila, Coahuila (Mexico)]. E-mail: fernando.arenas@uadec.edu.mx; Garcia-Cerecero, G. [Corporacion Mexicana de Investigacion en Materiales S.A. de C.V., Saltillo, Coahuila (Mexico)

    2012-10-15

    The corrosion behavior of gas metal arc welding (GMAW) regions has been studied using potentiodynamic polarization and polarization resistance (LPR) techniques. Experiments were conducted in hydrogen sulfide (H{sub 2}S)-containing brine and in H{sub 2}S-free brine. Welds were made on API 5L X52 steel. Due to differences in their microstructure, chemical composition and residual stress level, weld regions exhibited different responses under H{sub 2}S corrosion. Base metal exhibited the highest corrosion rate (CR) and the most cathodic corrosion potential. [Spanish] Se estudio el comportamiento ante la corrosion de las regiones de soldadura de un cordon realizado por arco metalico con gas (GMAW) sobre un acero grado API X52 mediante las tecnicas de polarizacion potencio dinamica y resistencia a la polarizacion (LPR). Los experimentos se realizaron utilizando salmuera con 300 ppm de acido sulfhidrico (H{sub 2}S) y salmuera libre de H{sub 2}S como electrolitos. Debido a las diferencias en su microestructura, composicion quimica y el nivel de esfuerzos residuales, las regiones de soldadura mostraron diferentes respuestas a la corrosion por H{sub 2}S. El metal base exhibio la velocidad de corrosion (VC) mas alta y el potencial de corrosion mas catodico.

  3. Nutritional enrichment of vegetable oils with long-chain n-3 fatty acids through enzymatic interesterification with a new vegetable lipase

    Directory of Open Access Journals (Sweden)

    Sousa, J. S.

    2015-06-01

    diferentes fuentes mediante catálisis enzimática. Tras la reacción de interesterificación, que también fue catalizada por la VLP, el contenido de PUFA en el aceite de coco aumentó casi diez veces de 1,8% a 17,7%. En el aceite de palma, el contenido de PUFA aumentó dos veces desde 10,5% a 21,8%, mientras que en el aceite de oliva el nivel de PUFA incrementó de 8,6% a 21,3%. La mezcla de ácido eicosapentaenoico (EPA y ácido docosahexaenoico (DHA (3,7% a 3,9% fué incorporada a la fracción de triacilgliceroles de cada uno de los aceites, coco, palma y oliva. Mediante hidroesterificación (hidrólisis seguido de interesterificación todos los aceites vegetales interesterificados ensayados contienen en una cucharada suficientes niveles de EPA y DHA para cubrir los niveles recomendados de ingesta de humanos adultos.

  4. EFECTO NEFROPROTECTOR DEL ÁCIDO ASCÓRBICO EN UN MODELO DE DAÑO RENAL INDUCIDO POR GENTAMICINA EN CONEJOS

    Directory of Open Access Journals (Sweden)

    Javier Antonio Padilla Funes

    2013-08-01

    Full Text Available Objetivo. Uno de los efectos secundarios mas notables de la Gentamicina es su nefrotoxicidad. En este estudio se propone el posible efecto nefroprotector del acido ascorbico como barredor de radicales libres de oxigeno. Metodología. Se ejecuto un estudio experimental en 24 conejos machos, raza Nueva Zelanda, cuyo peso fue de 1,5 +/- 0,5 Kg. Los sujetos experimentales fueron distribuidos en tres grupos. El grupo Control se manejo con Gentamicina a dosis de 80 mg/Kg/dia por via IM. El grupo Acido Ascorbico se trato a dosis de 200 mg/kg/dia via IP y Gentamicina 80mg/Kg/dia IM. El grupo Sham se manejo con SSN 0,9% por via IP e IM, durante cinco dias consecutivos, para cada grupo. Se determinaron los siguientes parametros: creatinina serica, N-Acetil s-D glucosaminidasa urinaria (NAG-U, diuresis e histopatologia de las muestras renales. Resultados. La creatinina serica fue significativamente mayor para el grupo Control respecto al grupo Acido Ascorbico (p<0,05. Respecto a la diuresis, se observo una tendencia a la poliuria en el grupo Control. En cuanto a NAG-U, se observo inhibicion completa de la actividad enzimatica en el grupo Acido Ascorbico. El analisis histopatologico demuestra hallazgos de necrosis tubular aguda en el 100% del grupo control, mientras que en el grupo Acido Ascorbico se obtuvo en un 50% de los sujetos unicamente detritos intraluminales. Conclusiones. La administracion concomitante de Acido Ascorbico con Gentamicina, disminuye significativamente el dano tubular renal, evidenciado en los valores de creatinina serica, NAG, diuresis e histopatologia renal.

  5. Personalized medicine enrichment design for DHA supplementation clinical trial

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2017-03-01

    Full Text Available Personalized medicine aims to match patient subpopulation to the most beneficial treatment. The purpose of this study is to design a prospective clinical trial in which we hope to achieve the highest level of confirmation in identifying and making treatment recommendations for subgroups, when the risk levels in the control arm can be ordered. This study was motivated by our goal to identify subgroups in a DHA (docosahexaenoic acid supplementation trial to reduce preterm birth (gestational age<37 weeks rate. We performed a meta-analysis to obtain informative prior distributions and simulated operating characteristics to ensure that overall Type I error rate was close to 0.05 in designs with three different models: independent, hierarchical, and dynamic linear models. We performed simulations and sensitivity analysis to examine the subgroup power of models and compared results to a chi-square test. We performed simulations under two hypotheses: a large overall treatment effect and a small overall treatment effect. Within each hypothesis, we designed three different subgroup effects scenarios where resulting subgroup rates are linear, flat, or nonlinear. When the resulting subgroup rates are linear or flat, dynamic linear model appeared to be the most powerful method to identify the subgroups with a treatment effect. It also outperformed other methods when resulting subgroup rates are nonlinear and the overall treatment effect is big. When the resulting subgroup rates are nonlinear and the overall treatment effect is small, hierarchical model and chi-square test did better. Compared to independent and hierarchical models, dynamic linear model tends to be relatively robust and powerful when the control arm has ordinal risk subgroups.

  6. Personalized Medicine Enrichment Design for DHA Supplementation Clinical Trial.

    Science.gov (United States)

    Lei, Yang; Mayo, Matthew S; Carlson, Susan E; Gajewski, Byron J

    2017-03-01

    Personalized medicine aims to match patient subpopulation to the most beneficial treatment. The purpose of this study is to design a prospective clinical trial in which we hope to achieve the highest level of confirmation in identifying and making treatment recommendations for subgroups, when the risk levels in the control arm can be ordered. This study was motivated by our goal to identify subgroups in a DHA (docosahexaenoic acid) supplementation trial to reduce preterm birth (gestational agerate. We performed a meta-analysis to obtain informative prior distributions and simulated operating characteristics to ensure that overall Type I error rate was close to 0.05 in designs with three different models: independent, hierarchical, and dynamic linear models. We performed simulations and sensitivity analysis to examine the subgroup power of models and compared results to a chi-square test. We performed simulations under two hypotheses: a large overall treatment effect and a small overall treatment effect. Within each hypothesis, we designed three different subgroup effects scenarios where resulting subgroup rates are linear, flat, or nonlinear. When the resulting subgroup rates are linear or flat, dynamic linear model appeared to be the most powerful method to identify the subgroups with a treatment effect. It also outperformed other methods when resulting subgroup rates are nonlinear and the overall treatment effect is big. When the resulting subgroup rates are nonlinear and the overall treatment effect is small, hierarchical model and chi-square test did better. Compared to independent and hierarchical models, dynamic linear model tends to be relatively robust and powerful when the control arm has ordinal risk subgroups.

  7. DESARROLLO Y OPTIMIZACION TECNOLOGICA DE ACEITES MARINOS PARA INCREMENTAR EL.e-CONTENIDO DE ACIDOS GRASOS OMEGA 3 DE CADENA LARGA EN CARNES DE A VES Y CERDOS

    OpenAIRE

    Bórquez Lagos, Fernando

    2013-01-01

    • Origen (problema que resuelve u oportunidad que aprovecha)Investigaciones desarrolladas en los últimos años han permitido conocer la función y efecto que tienen los ácidos grasos poli-insaturados de cadena larga (AGPICL) omega 3, particularmente el Ácido Eicosapentaenoico (EPA) y el Ácido Docohexaenoico (DHA), en la prevención de enfemedades cardiovasculares, en el desarrollo del tejido nervioso, del órgano de la visión, de mecanismos que mejoran la inmunidad, etc. Su consumo esta aso...

  8. Moderate intake of myristic acid in sn-2 position has beneficial lipidic effects and enhances DHA of cholesteryl esters in an interventional study.

    Science.gov (United States)

    Dabadie, Henry; Peuchant, Evelyne; Bernard, Mireille; LeRuyet, Pascale; Mendy, François

    2005-06-01

    Among the saturated fatty acids (SFA), myristic acid is known to be one of the most atherogenic when consumed at high levels. Our purpose was to compare the effects of two moderate intakes of myristic acid on plasma lipids in an interventional study. Twenty-five male monks without dyslipidemia were given two isocaloric diets for 5 weeks each. In diet 1, 30% of the calories came from fat (8% SFA, 0.6% myristic acid) and provided 200 mg cholesterol/day. Calories of diet 2 were 34% fat (11% SFA, 1.2% myristic acid) with the same levels of oleate, linoleate, alpha-linolenate and cholesterol. A baseline diet was provided before each diet. In comparison with baseline, diets 1 and 2 induced a decrease in total cholesterol, LDL-cholesterol and triglycerides (Pdiet 2 than after diet 1 whereas HDL-cholesterol was higher (Pdiet 2 vs. baseline (Pdiet 1 (Pdiets were associated with an increase in alpha-linolenate of cholesteryl esters (Pdiet 2 was associated with an increase in DHA of cholesteryl esters (Pdiet 2, myristic acid intake was positively correlated with myristic acid of phospholipids, and alpha-linolenic acid intake was correlated with alpha-linolenic acid of cholesteryl esters. Moderate intake (1.2% of total calories) of myristic acid has beneficial lipidic effects and enhances DHA of cholesteryl esters.

  9. Impact of dietary precursor ALA versus preformed DHA on fatty acid profiles of eggs, liver and adipose tissue and expression of genes associated with hepatic lipid metabolism in laying hens.

    Science.gov (United States)

    Neijat, M; Eck, P; House, J D

    2017-04-01

    Dietary omega-3 polyunsaturated fatty acids (n-3 PUFA), including alpha-linolenic acid (ALA) and preformed longer chain PUFA (LCPUFA, particularly docosahexaenoic acid, DHA) differ in their egg LCPUFA enrichment efficiency. However, mechanisms leading to these differences are unclear. To this end, omega-3 PUFA contents in different lipid classes, including triacylglycerol (TAG) and total phospholipid (PL) in yolk, liver and adipose, as well as the expression of key hepatic enzymes in lipid metabolism were evaluated in laying hens in response to changes in dietary supply. Seventy Lohmann hens (n=10/treatment) consumed either a control diet (0.03% total omega-3 PUFA), or the control with supplementation (0.20%, 0.40% and 0.60% total omega-3 PUFA) from either flaxseed oil or algal product, as sources of ALA (precursor) or DHA (preformed), respectively. The study was arranged in a completely randomized design, and data were analyzed using the Proc Mixed procedure of SAS. ALA accumulated as a function of intake (PDHA-fed hens. Unlike flaxseed oil, preformed-DHA contributed to greater (P<0.0001) accumulation of LCPUFA in yolk total PL and TAG pool, as well as adipose TAG. This may relate to elevated (P<0.0001) expression of acyl-CoA synthetase (ACSL1). No difference in hepatic EPA level in total lipids was noted between both treatment groups; EPA liver =2.1493x-0.0064; R 2 =0.70, P<0.0001 (x=dietary omega-3 PUFA). The latter result may highlight the role of hepatic EPA in the regulation of LCPUFA metabolism in laying hens. Copyright © 2017. Published by Elsevier Ltd.

  10. New approach to modulate retinal cellular toxic effects of high glucose using marine epa and dha

    Directory of Open Access Journals (Sweden)

    Fagon Roxane

    2011-06-01

    Full Text Available Abstract Background Protective effects of omega-3 fatty acids against cellular damages of high glucose were studied on retinal pigmented epithelial (RPE cells. Methods Retinal epithelial cells were incubated with omega-3 marine oils rich in EPA and DHA and then with high glucose (25 mM for 48 hours. Cellular responses were compared to normal glucose (5 mM: intracellular redox status, reactive oxygen species (ROS, mitochondrial succinate deshydrogenase activity, inflammatory cytokines release and caveolin-1 expression were evaluated using microplate cytometry, ELISA and flow cytometry techniques. Fatty acids incorporation in retinal cell membranes was analysed using chromatography. Results Preincubation of the cells with fish oil decreased ROS overproduction, mitochondrial alterations and TNFα release. These protective effects could be attributed to an increase in caveolin-1 expression induced by marine oil. Conclusion Marine formulations rich in omega-3 fatty acids represent a promising therapeutic approach for diabetic retinopathy.

  11. A comparison of exogenous and endogenous CEST MRI methods for evaluating in vivo pH.

    Science.gov (United States)

    Lindeman, Leila R; Randtke, Edward A; High, Rachel A; Jones, Kyle M; Howison, Christine M; Pagel, Mark D

    2018-05-01

    Extracellular pH (pHe) is an important biomarker for cancer cell metabolism. Acido-chemical exchange saturation transfer (CEST) MRI uses the contrast agent iopamidol to create spatial maps of pHe. Measurements of amide proton transfer exchange rates (k ex ) from endogenous CEST MRI were compared to pHe measurements by exogenous acido-CEST MRI to determine whether endogenous k ex could be used as a proxy for pHe measurements. Spatial maps of pHe and k ex were obtained using exogenous acidoCEST MRI and an endogenous CEST MRI analyzed with the omega plot method, respectively, to evaluate mouse kidney, a flank tumor model, and a spontaneous lung tumor model. The pHe and k ex results were evaluated using pixelwise comparisons. The k ex values obtained from endogenous CEST measurements did not correlate with the pHe results from exogenous CEST measurements. The k ex measurements were limited to fewer pixels and had a limited dynamic range relative to pHe measurements. Measurements of k ex with endogenous CEST MRI cannot substitute for pHe measurements with acidoCEST MRI. Whereas endogenous CEST MRI may still have good utility for evaluating some specific pathologies, exogenous acido-CEST MRI is more appropriate when evaluating pathologies based on pHe values. Magn Reson Med 79:2766-2772, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Effects of DHA Supplementation on Vascular Function, Telomerase Activity in PBMC, Expression of Inflammatory Cytokines, and PPARγ-LXRα-ABCA1 Pathway in Patients With Type 2 Diabetes Mellitus: Study Protocol for Randomized Controlled Clinical Trial

    Directory of Open Access Journals (Sweden)

    Omid Toupchian

    2016-07-01

    Full Text Available Docosahexaenoic acid (DHA, as an omega-3 fatty acid, in a natural ligand of peroxisome proliferator-activated receptors (PPARs. Regarding the combinative effects of Nutrigenomics and Nutrigenetics and due to the lack of in vivo studies conducted using natural ligands of PPARs, we aimed to evaluate the effects of DHA supplementation on vascular function, telomerase activity, and PPARγ-LXRα-ABCA1 pathway, in patients with type 2 diabetes mellitus (T2DM, based on the Pro12Ala polymorphism in PPARγ encoding gene. 72 T2DM patients (36 dominant and 36 recessive allele carriers, aged 30-70, with body mass index of 18.5 to 35 kg/m2, will be participated in this double blind randomized controlled trial. In each group, stratification will be performed based on sex and age and participants will be randomly assigned to receive 2.4 g/day DHA or placebo (paraffin for 8 weeks. PPARγ genotyping will be carried out using PCR-RFLP method; Telomerase activity will be estimated by PCR-ELISA TRAP assay; mRNA expression levels of target genes will be assessed using real time PCR. Serum levels of ADMA, sCD163 and adiponectin, will be measured using ELISA commercial kits. The present study is designed in order to help T2DM patients to modify their health conditions based on their genetic backgrounds, and to recommend the proper food ingredients as the natural agonists for PPARs in order to prevent and treat metabolic abnormalities of the disease.

  13. Enhanced down regulation of cortical ±-propranolol sensitive [3H]-DHA binding sites by co-administration of DMI and 5-HT1A partial agonist gepirone

    International Nuclear Information System (INIS)

    Geissler, M.A.; Yocca, F.D.

    1990-01-01

    The putative interrelationship between the noradrenergic and serotonergic systems has been supported by numerous studies. Recently, Dudley et al. (1989) demonstrated significant down regulation of cortical β-adrenergic receptors by co-administration of desipramine (DMI), a norepinephrine uptake inhibitor, and the full 5-HT 1A agonist 8-OH-DPAT. To this end, the effects of acute and chronic (4 and 14 day) administration of DMI, gepirone, a selective 5-HT 1A post-synaptic partial agonist, as well as a combination of the two, on cortical (±)-propranolol sensitive [ 3 H]-DHA binding sites were examined in rats. Down regulation was apparent after 4 and 14 day treatment with DMI. However, this was not the case with gepirone. Of particular importance is the demonstration of a greater magnitude of down regulation with co-administration of a greater magnitude of down regulation with co-administration of DMI and gepirone. These results suggests that alteration in rat cortical (±)-propranolol sensitive [ 3 H]-DHA binding sites by noradrenergic uptake inhibitors can be further modulated by selective partial agonist activity at central 5-HT 1A postsynaptic receptors. Further data on the co-administration of DMI and BMY 7378 (7,9-dioxo-8-[2-(4-o-methoxyphenylpiperazinyl)ethyl]-8-azaspiro[4,5]decane dihydrochloride), a weak partial agonist at postsynaptic 5-HT 1A receptors, are also presented

  14. A method for the determination of ascorbic acid using the iron(II)-pyridine-dimethylglyoxime complex

    Energy Technology Data Exchange (ETDEWEB)

    Arya, S. P.; Mahajan, M. [Haryana, Kurukshetra Univ. (India). Dept. of Chemistry

    1998-05-01

    A simple and rapid spectrophotometric method for the determination of ascorbic acid is proposed. Ascorbic acid reduces iron (III) to iron (II) which forms a red colored complex with dimethylglyoxime in the presence of pyridine. The absorbance of the resulting solution is measured at 514 nm and a linear relationship between absorbance and concentration of ascorbic acid is observed up to 14 {mu}g ml{sup -1}. Studies on the interference of substances usually associated with ascorbic acid have been carried out and the applicability of the method has been tested by analysing pharmaceutical preparations of vitamin C. [Italiano] Si propone un rapido e semplice metodo spettrofotometrico per la determinazione dell`acido ascorbico. L`acido ascorbico riduce il ferro(III) a ferro(II) che forma con la dimetilgliossima, in presenza di piridina, un complesso colorato in rosso. L`assorbanza della soluzione risultante e` misurata a 514 nm e si ottiene una relazione lineare tra assorbanza e concentrazione dell`acido ascorbico fino a 14 {mu}g ml{sup -1}. Si sono condotti studi sugli interferenti usualmente associati all`acido ascorbico ed e` stata valutata l`applicabilita` del metodo all`analisi di preparati farmaceutici di vitamina C.

  15. Changes of arterial blood pressure, heart rate, internal body temperature, and blood acido-basic balance in the unanaesthetized rabbit following whole-body gamma irradiation at a mean absorbed dose of 250 rads

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, R.; Court, L.

    1973-09-01

    The general effects of whole-body gamma -irradiation at a mean absorbed dose of 250 rads were studied simultaneously in the unanaesthetized rabbit for 48 hours. They occurred early, with the following characteristics: arterial blood pressure decreased steadily as early as the 2nd hour and reached its minimum value on the 5th hour with a decrease of about 14%; it remained low during the following two days. Heart rate increased during the first hour, was the highest by the end of the second hour, and resumed normal value on the 24th hour. Internal body temperature increased during the 1st hour and was maximum by the end of the 2nd hour, with a mean increase of 1.2 deg C; hyperthermia steadily decreased between the 4th and the 6th hours and had completely disappeared by the 24th hour. Respiratory alkalosis is shown in the acido-basic balance by a raise of pH, a decrease of PCO/sub 2/ and arterial blood bicarbonates. These various changes seem to indicate a double origin, both central and peripheral. (FR)

  16. Synthesis and characterization of PdAg as a catalyst for oxygen reduction reaction in acid medium; Sintesis y caracterizacion de PdAg como catalizador para la reaccion de reduccion de oxigeno en medio acido

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Casillas, D. C.; Vazquez-Huerta, G.; Solorza-Feria, O. [Centro de Investigacion y de Estudios Avanzados del IPN, Mexico D.F. (Mexico)]. E-mail: dcmartinez@cinvestav.mx

    2009-09-15

    This work presents the synthesis of the binary compound PdAg and the electrochemical characterization for oxygen reduction reaction (ORR) in acid medium. The catalyst is obtained from the reduction of Pd(NO{sub 3}){sub 2}·2H{sub 2}O and AgNO{sub 3} with NaBH{sub 4} in THF. The synthesized compound was physically characterized with transmission electron microscopy (TEM), sweep electron microscopy (SEM) and x-ray diffraction (XRD) of powder. Electrochemical studies were conducted to determine the catalytic activity and intrinsic properties of the PdAg material for the ORR in acid medium using cyclic voltamperometry (CV), rotary disc electrode (RDE) and electrochemical impedance spectroscopy (EIS) in a solution of H{sub 2}SO{sub 4} 0.5 M at 25 degrees Celsius. The electrochemical current-potential responses were compared to those of palladium and platinum. The kinetic results showed an increase in the performance of the bimetallic electrocatalyst containing Ag as compared to pure Pd, but less than that obtained with nanometric Pt. The Tafel slopes obtained are roughly120 mV dec-1, similar to that reported for Pt and Pd and for other Ru-based electrocatalysts. [Spanish] En este trabajo se presentan la sintesis del compuesto binario PdAg y su caracterizacion electroquimica para la reaccion de reduccion de oxigeno (RRO) en medio acido. El catalizador se obtuvo a partir de la reduccion de Pd(NO{sub 3}){sub 2}·2H{sub 2}O y AgNO{sub 3} con NaBH{sub 4} en THF. El compuesto sintetizado se caracterizo fisicamente por microscopia electronica de transmision (MET), microscopia electronica de barrido (MEB) y difraccion de rayos X (DRX) de polvos. Se realizaron estudios electroquimicos para determinar la actividad catalitica y las propiedades intrinsecas del material de PdAg para la reaccion de reduccion de oxigeno (RRO) en medio acido, utilizando las tecnicas de voltamperometria ciclica (VC), electrodo disco rotatorio (EDR) y espectroscopia de impedancia electroquimica (EIE), en

  17. Dietary omega-3 polyunsaturated fatty acids improve the neurolipidome and restore the DHA status while promoting functional recovery after experimental spinal cord injury.

    Science.gov (United States)

    Figueroa, Johnny D; Cordero, Kathia; Llán, Miguel S; De Leon, Marino

    2013-05-15

    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. Rats were fed with either control chow or chow enriched with ω-3 PUFAs (750 mg/kg/day) for 8 weeks before being subjected to a sham or a contusion SCI operation. We report new evidence showing that rats subjected to SCI after being pre-treated with a diet enriched with ω-3 PUFAs exhibit significantly better functional outcomes. Pre-treated animals exhibited lower sensory deficits, autonomic bladder recovery, and early improvements in locomotion that persisted for at least 8 weeks after trauma. We found that SCI triggers a robust alteration in the cord PUFA neurolipidome, which was characterized by a marked docosahexaenoic acid (DHA) deficiency. This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome.

  18. Dietary Omega-3 Polyunsaturated Fatty Acids Improve the Neurolipidome and Restore the DHA Status while Promoting Functional Recovery after Experimental Spinal Cord Injury

    Science.gov (United States)

    Figueroa, Johnny D.; Cordero, Kathia; llán, Miguel S.

    2013-01-01

    Abstract Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. Rats were fed with either control chow or chow enriched with ω-3 PUFAs (750 mg/kg/day) for 8 weeks before being subjected to a sham or a contusion SCI operation. We report new evidence showing that rats subjected to SCI after being pre-treated with a diet enriched with ω-3 PUFAs exhibit significantly better functional outcomes. Pre-treated animals exhibited lower sensory deficits, autonomic bladder recovery, and early improvements in locomotion that persisted for at least 8 weeks after trauma. We found that SCI triggers a robust alteration in the cord PUFA neurolipidome, which was characterized by a marked docosahexaenoic acid (DHA) deficiency. This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome. PMID:23294084

  19. Lower levels of Persistent Organic Pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Lundebye, Anne-Katrine; Lock, Erik-Jan; Rasinger, Josef D; Nøstbakken, Ole Jakob; Hannisdal, Rita; Karlsbakk, Egil; Wennevik, Vidar; Madhun, Abdullah S; Madsen, Lise; Graff, Ingvild Eide; Ørnsrud, Robin

    2017-05-01

    Contaminants and fatty acid levels in farmed- versus wild Atlantic salmon have been a hot topic of debate in terms of food safety. The present study determined dioxins (polychlorinated dibenzo-p-dioxin and dibenzofuran), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), metals and fatty acids in wild and farmed Atlantic salmon. Contaminant levels of dioxins, PCBs, OCPs (DDT, dieldrin, lindane, chlordane, Mirex, and toxaphene), and mercury were higher in wild salmon than in farmed salmon, as were the concentrations of the essential elements selenium, copper, zinc and iron, and the marine omega-3 fatty acid docosahexaenoic acid (DHA). PBDE, endosulfan, pentachlorobenzene, hexachlorobenzene, cadmium and lead levels were low and comparable in both wild and farmed fish, and there was no significant difference in the marine omega-3 fatty acid eicosapentaenoic acid (EPA) concentration. The total fat content was significantly higher in farmed than wild salmon due to a higher content of both saturated and monounsaturated fatty acids, as well as a higher content of omega-6 fatty acids. The omega-3 to omega-6 fatty acid ratio was considerably lower in farmed than wild salmon due to the high level of omega-6 fatty acids. Contaminant concentrations in Atlantic salmon were well below maximum levels applicable in the European Union. Atlantic salmon, both farmed and wild, is a good source of EPA and DHA with a 200g portion per week contributing 3.2g or 2.8g respectively, being almost twice the intake considered adequate for adults by the European Food Safety Authority (i.e. 250mg/day or 1.75g/week). Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Whole-genome single-nucleotide polymorphism (SNP marker discovery and association analysis with the eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA content in Larimichthys crocea

    Directory of Open Access Journals (Sweden)

    Shijun Xiao

    2016-12-01

    Full Text Available Whole-genome single-nucleotide polymorphism (SNP markers are valuable genetic resources for the association and conservation studies. Genome-wide SNP development in many teleost species are still challenging because of the genome complexity and the cost of re-sequencing. Genotyping-By-Sequencing (GBS provided an efficient reduced representative method to squeeze cost for SNP detection; however, most of recent GBS applications were reported on plant organisms. In this work, we used an EcoRI-NlaIII based GBS protocol to teleost large yellow croaker, an important commercial fish in China and East-Asia, and reported the first whole-genome SNP development for the species. 69,845 high quality SNP markers that evenly distributed along genome were detected in at least 80% of 500 individuals. Nearly 95% randomly selected genotypes were successfully validated by Sequenom MassARRAY assay. The association studies with the muscle eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA content discovered 39 significant SNP markers, contributing as high up to ∼63% genetic variance that explained by all markers. Functional genes that involved in fat digestion and absorption pathway were identified, such as APOB, CRAT and OSBPL10. Notably, PPT2 Gene, previously identified in the association study of the plasma n-3 and n-6 polyunsaturated fatty acid level in human, was re-discovered in large yellow croaker. Our study verified that EcoRI-NlaIII based GBS could produce quality SNP markers in a cost-efficient manner in teleost genome. The developed SNP markers and the EPA and DHA associated SNP loci provided invaluable resources for the population structure, conservation genetics and genomic selection of large yellow croaker and other fish organisms.

  1. In vitro response to EPA, DPA, and DHA: Comparison of effects on ruminal fermentation and biohydrogenation of 18-carbon fatty acids in cows and ewes.

    Science.gov (United States)

    Toral, P G; Hervás, G; Carreño, D; Leskinen, H; Belenguer, A; Shingfield, K J; Frutos, P

    2017-08-01

    The modulation of milk fat nutritional quality through fish oil supplementation seems to be largely explained by the action of n-3 very long chain polyunsaturated fatty acids (PUFA) on ruminal biohydrogenation (BH) of C18 fatty acids (FA). However, relationships among this action, disappearance of those PUFA in the rumen, and potential detrimental consequences on ruminal fermentation remain uncertain. This study compared the effect of 20:5n-3 (eicosapentaenoic acid; EPA), 22:5n-3 (docosapentaenoic acid; DPA), and 22:6n-3 (docosahexaenoic acid; DHA) on rumen fermentation and BH of C18 FA and was conducted simultaneously in cows and sheep to provide novel insights into interspecies differences. The trial was performed in vitro using batch cultures of rumen microorganisms with inocula collected from cannulated cows and ewes. The PUFA were added at a dose of 2% incubated dry matter, and treatment effects on ruminal C18 FA concentrations, PUFA disappearances, and fermentation parameters (gas production, ammonia and volatile FA concentrations, and dry matter and neutral detergent fiber disappearances) were examined after 24 h of incubation. A principal component analysis suggested that responses to PUFA treatments explained most of the variability; those of ruminant species were of lower relevance. Overall, EPA and DHA were equally effective for inhibiting the saturation of trans-11 18:1 to 18:0 and had a similar influence on ruminal fermentation in cows and sheep (e.g., reductions in gas production and acetate:propionate ratio). Nevertheless, DHA further promoted alternative BH pathways that lead to trans-10 18:1 accumulation, and EPA seemed to have specific effects on 18:3n-3 metabolism. Only minor variations attributable to DPA were observed in the studied parameters, suggesting a low contribution of this FA to the action of marine lipids. Although most changes due to the added PUFA were comparable in bovine and ovine, there were also relevant specificities, such as a

  2. Replacement of fish oil with a DHA-rich algal meal derived from Schizochytrium sp. on the fatty acid and persistent organic pollutant levels in diets and flesh of Atlantic salmon (Salmo salar, L.) post-smolts.

    Science.gov (United States)

    Sprague, M; Walton, J; Campbell, P J; Strachan, F; Dick, J R; Bell, J G

    2015-10-15

    The replacement of fish oil (FO) with a DHA-rich Schizochytrium sp. algal meal (AM) at two inclusion levels (11% and 5.5% of diet) was tested in Atlantic salmon post-smolts compared to fish fed a FO diet of northern (NFO) or southern hemisphere (SFO) origin. Fish were preconditioned prior to the 19-week experimental feeding period to reduce long-chain polyunsaturated fatty acid (LC-PUFA) and persistent organic pollutant levels (POPs). Dietary POP levels differed significantly between treatments in the order of NFO>SFO>11 AM/5.5 AM and were subsequently reflected in the flesh. Fish fed the 11 AM diet contained similar DHA levels (g 100 g(-1) flesh) to FO-fed fish, despite percentage differences. However, the low levels of EPA in the diets and flesh of algal-fed fish compromised the overall nutritional value to the final consumer. Nevertheless, further developments in microalgae culture offer a promising alternative lipid source of LC-PUFA to FO in salmon feeds that warrants further investigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) and contribution to normal cognitive function (ID 532) and maintenance

    DEFF Research Database (Denmark)

    Tetens, Inge

    claims in relation to docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) and contribution to normal cognitive function and maintenance of normal bone. The scientific substantiation is based on the information provided by the Member States in the consolidated list...... and fish oil”. From the references provided, the Panel assumes that the food constituents that are the subject of the claims are the n-6 fatty acid gamma-linolenic acid (GLA) in evening primrose oil and the n-3 long-chain polyunsaturated fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA...... of Article 13 health claims and references that EFSA has received from Member States or directly from stakeholders. The food constituents that are the subjects of the health claims are “omega-3 and omega-6 fatty acids (GLA)”, “gamma-linolenic acid + eicosapentaenoic acid (GLA+EPA)”, and “evening primrose oil...

  4. Results of test of acid fluids neutralization in the well H-43, Los Humeros geothermal field, Puebla; Resultados de la prueba de neutralizacion de fluidos acidos en el pozo H-43, campo geotermico de Los Humeros, Puebla

    Energy Technology Data Exchange (ETDEWEB)

    Flores Armenta, Magaly del Carmen; Ramirez Montes, Miguel; Sandoval Medina, Fernando; Rosales Lopez, Cesar [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: magaly.flores@cfe.gob.mx

    2011-07-15

    The well H-43 was drilled in Los Humeros Geothermal Field, Pue., in 2007 and 2008. When well production was measured, it was found the well produced acid fluids with high corrosion potential. Then it was decided to try to neutralize the acidity of the H-43 fluids by adding a solution of sodium hydroxide. This is a basic substance used to neutralize mainly the acid groups H+, and the goal was to raise the pH of the fluids to minimize its corrosive features. First sodium hydroxide was injected into the well to protect the casing of 244.4 mm (9 5/8 in) against corrosion and then all the surface installations. It was possible to increase the pH of the well fluid from 5.2 up to 6.8 without altering the steam production, thus demonstrating the neutralization procedure is feasible. The approximate costs of the neutralization tests performed, including equipment for the proposed neutralization system, the neutralizer (NaOH), and drilling the well are about 71.4 million pesos (around 5.5 million USD). We estimate a benefit/cost ratio of 1.5 and a return on investment in five years, considering the income from energy sales at present value. [Spanish] El pozo H-43 fue perforado en el campo de Los Humeros, Pue., en 2007-2008, y al evaluar su produccion se encontro que producia fluidos acidos de alto potencial corrosivo. Se decidio por tanto realizar una prueba para neutralizar la acidez de los fluidos de este pozo, que consistio en agregarle una solucion de hidroxido de sodio. Esta es una sustancia basica que neutraliza principalmente los grupos acidos H+, con lo que se buscaba aumentar el pH del fluido lo necesario para reducir al maximo su caracter corrosivo. La inyeccion del hidroxido de sodio se realizo dentro del pozo a fin de proteger de la corrosion a la tuberia de revestimiento de 244.4 mm (9 5/8 pulgadas), y posteriormente a todos los equipos superficiales. Como resultado de la prueba, se logro aumentar el pH del fluido producido por el pozo de 5.2 a un maximo de 6

  5. Collateral damage of flomoxef therapy: in vivo development of porin deficiency and acquisition of blaDHA-1 leading to ertapenem resistance in a clinical isolate of Klebsiella pneumoniae producing CTX-M-3 and SHV-5 beta-lactamases.

    Science.gov (United States)

    Lee, Chen-Hsiang; Chu, Chishih; Liu, Jien-Wei; Chen, Yi-Shung; Chiu, Chiung-Jung; Su, Lin-Hui

    2007-08-01

    The study aimed to characterize the genetic basis of flomoxef and collateral ertapenem resistance in a clinical isolate of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae (ESBL-KP) after flomoxef exposure. Four ESBL-KP isolates (Lkp11-14) were recovered sequentially from four episodes of bacteraemia in an elderly patient. Laboratory investigations included genotyping by PFGE, resistance gene analysis by PCR and sequencing, and outer membrane protein analysis by SDS-PAGE. Plasmid analysis by DNA-DNA hybridization, electroporation and conjugation was also performed. Lkp14 was recovered after 21 days of flomoxef therapy. It demonstrated an indistinguishable PFGE pattern when compared with those produced by Lkp11-13. However, resistance to both flomoxef and ertapenem emerged in Lkp14. Molecular characterization revealed that, in addition to the pre-existing ESBL production (CTX-M-3 and SHV-5) and OmpK35 deficiency found in Lkp11-13, Lkp14 had acquired an extra plasmid-mediated AmpC beta-lactamase gene (blaDHA-1) and failed to express OmpK36, because of insertional inactivation by an insertion sequence IS5. Other resistance mechanisms, such as production of carbapenem-hydrolysing enzymes or expression of chromosomal efflux, were apparently not involved. Conjugational transfer of the plasmid-mediated blaDHA-1 gene into Lkp11 resulted in a significant increase in the MICs of cephamycins and beta-lactamase inhibitors, but not in those of carbapenems. Lkp14 was apparently derived from the previously flomoxef-susceptible isolates, Lkp11-13. After flomoxef exposure, the in vivo acquisition of the plasmid-mediated blaDHA-1 gene has led to flomoxef resistance in Lkp14, and the concomitant depletion of OmpK36 expression has resulted in a collateral effect of ertapenem resistance and diminished susceptibilities to imipenem and meropenem.

  6. FOOD SAFETY AND QUALITY IN DEVELOPING COUNTRIES: THE ROLE OF LACTIC ACID BACTERIA

    OpenAIRE

    ANGRI, MATTEO

    2016-01-01

    La sicurezza e la qualità degli alimenti sono tutt’ora un problema critico per i paesi in via di sviluppo. Le diete a basso contenuto di acido folico, per esempio, possono causare gravi problemi di salute, soprattutto nei bambini. Gravi disturbi legati al tubo neurale (DTN) nei neonati possono derivare infatti da madri che hanno insufficiente apporto di acido folico (400-600 g / giorno) durante il periodo di gravidanza. Inoltre, se non adeguatamente protetti o trattati, I prodotti alimentari ...

  7. The use of peracetic acid in drinking water systems: flow tests; L'acido peracetico in potabilizzazione: prove in flusso

    Energy Technology Data Exchange (ETDEWEB)

    Ragazzo, P. [Consorzio per l' Acquedotto del Basso Piave, San Dona' di Piave, VE (Italy); Navazio, G. [Padua Univ., Padua (Italy). Dipt. dei Processi Chimici dell' Ingegneria; Cavadone, A. [Solvay Chimica Italia S.p.A., Milan (Italy)

    2000-09-01

    In a previous research, a preliminary study was carried out on the disinfection efficiency of peracetic acid (PAA), comparing it to that of other disinfectants that are typically used, in batch tests with dosage values ranging from 0.5 to 5 ppm. The study was carried out on samples of water collected from several significant points of the treatment process at the main water treatment plant in Jesolo (Venice, Italy). On the basis of results (basically positive at that time) obtained from these tests, a 400 litre/hour pilot plant was built, as a lower scale reproduction of the drink water treatment system mentioned earlier, in order to study the characteristics of PAA even in tests that could more realistically simulate the flow of water along the process. These tests essentially confirmed the kinetics of the spontaneous hydrolysis to CH{sub 3} COOH+H{sub 2}O{sub 2} and those of dismutation to CH{sub 3}COOH+O{sub 2}, with half-life time values ranging from 3 to 12 hours, depending on the characteristics of the water (especially the pH factor) and the PAA concentration values. [Italian] In un precedente lavoro e' stato effettuato un preventivo studio sull'efficienza disinfettiva dell'acido peracetico, anche in confronto con gli altri piu' usuali disinfettanti, in prove condotte in batch, con dosaggi compresi tra 0.5 e 5 ppm, su campioni di acqua prelevati dai diversi punti significativi della linea di trattamento della centrale di Jesolo (Torre Caligo), gestita dal Consorzio Acquedottistico del Basso Piave di S. Dona' di Piave (Venezia). Sulla base dei risultati, sostanzialmente positivi, e' stato costruito un impianto pilota da 400l/h, riproducente, in scala, la linea di potabilizzazione su ricordata, per studiare le caratteristiche del PAA anche in prove piu' probanti condotte in flusso. In tali prove sono state sostanzialmente riconfermate le cinetiche delle reazioni spontanee di dirolisi a CH{sub 3}COOH+H{sub 2}O{sub 2} e di

  8. Folate and vitamin B12 concentrations are associated with plasma DHA and EPA fatty acids in European adolescents: the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study.

    Science.gov (United States)

    Iglesia, I; Huybrechts, I; González-Gross, M; Mouratidou, T; Santabárbara, J; Chajès, V; González-Gil, E M; Park, J Y; Bel-Serrat, S; Cuenca-García, M; Castillo, M; Kersting, M; Widhalm, K; De Henauw, S; Sjöström, M; Gottrand, F; Molnár, D; Manios, Y; Kafatos, A; Ferrari, M; Stehle, P; Marcos, A; Sánchez-Muniz, F J; Moreno, L A

    2017-01-01

    This study aimed to examine the association between vitamin B6, folate and vitamin B12 biomarkers and plasma fatty acids in European adolescents. A subsample from the Healthy Lifestyle in Europe by Nutrition in Adolescence study with valid data on B-vitamins and fatty acid blood parameters, and all the other covariates used in the analyses such as BMI, Diet Quality Index, education of the mother and physical activity assessed by a questionnaire, was selected resulting in 674 cases (43 % males). B-vitamin biomarkers were measured by chromatography and immunoassay and fatty acids by enzymatic analyses. Linear mixed models elucidated the association between B-vitamins and fatty acid blood parameters (changes in fatty acid profiles according to change in 10 units of vitamin B biomarkers). DHA, EPA) and n-3 fatty acids showed positive associations with B-vitamin biomarkers, mainly with those corresponding to folate and vitamin B12. Contrarily, negative associations were found with n-6:n-3 ratio, trans-fatty acids and oleic:stearic ratio. With total homocysteine (tHcy), all the associations found with these parameters were opposite (for instance, an increase of 10 nmol/l in red blood cell folate or holotranscobalamin in females produces an increase of 15·85 µmol/l of EPA (P value DHA (P value acids might suggest underlying mechanisms between B-vitamins and CVD and it is worth the attention of public health policies.

  9. Rapid expression of transgenes driven by seed-specific constructs in leaf tissue: DHA production

    Directory of Open Access Journals (Sweden)

    Zhou Xue-Rong

    2010-03-01

    Full Text Available Abstract Background Metabolic engineering of seed biosynthetic pathways to diversify and improve crop product quality is a highly active research area. The validation of genes driven by seed-specific promoters is time-consuming since the transformed plants must be grown to maturity before the gene function can be analysed. Results In this study we demonstrate that genes driven by seed-specific promoters contained within complex constructs can be transiently-expressed in the Nicotiana benthamiana leaf-assay system by co-infiltrating the Arabidopsis thaliana LEAFY COTYLEDON2 (LEC2 gene. A real-world case study is described in which we first assembled an efficient transgenic DHA synthesis pathway using a traditional N. benthamiana Cauliflower Mosaic Virus (CaMV 35S-driven leaf assay before using the LEC2-extended assay to rapidly validate a complex seed-specific construct containing the same genes before stable transformation in Arabidopsis. Conclusions The LEC2-extended N. benthamiana assay allows the transient activation of seed-specific promoters in leaf tissue. In this study we have used the assay as a rapid preliminary screen of a complex seed-specific transgenic construct prior to stable transformation, a feature that will become increasingly useful as genetic engineering moves from the manipulation of single genes to the engineering of complex pathways. We propose that the assay will prove useful for other applications wherein rapid expression of transgenes driven by seed-specific constructs in leaf tissue are sought.

  10. Identificación de defensas inducibles a áfidos en cebadas pre-comerciales

    OpenAIRE

    Caridad, Alejandro; Saldúa, Vilma Luciana; Castro, Ana María

    2018-01-01

    Las plantas tienen la capacidad de adaptarse a situaciones de estrés mediante la expresión de genes implicados en mecanismos de defensa, que pueden ser constitutivos o inducibles, dependiendo si se expresan permanentemente o no. Detrás de la regulación de estos mecanismos se encuentran las hormonas, moléculas señalizadoras que comunican los distintos tejidos de la planta entre sí. Ante el ataque de insectos, el Acido Jasmónico (AJ) y el Acido Salicílico (AS) juegan un papel preponderante en l...

  11. POLYETHYLENEIMINE (PEI ON SILICA AS CATALYST IN KNOEVENAGEL AND MICHAEL REACTIONS

    Directory of Open Access Journals (Sweden)

    FATIHA ZAOUI

    2017-03-01

    Full Text Available After the synthesis of polyethylenimine supported on silica, it has been used as a new and efficient catalyst in Knoevenagel and Michael condensations. The presence of the polyethylenimine in the catalytic system together with silica displays an acido-basic character allows a better catalytic activity in the condensations. Carried out under microwave irradiation, without organic solvent and during short time, the syntheses are respectful towards green chemistry. The solid catalyst can be easily reused. This catalyst has the acido-basic character at the same time.

  12. Protectin DX, a double lipoxygenase product of DHA, inhibits both ROS production in human neutrophils and cyclooxygenase activities

    Science.gov (United States)

    Liu, Miao; Boussetta, Tarek; Makni-Maalej, Karama; Fay, Michèle; Driss, Fathi; El-Benna, Jamel; Lagarde, Michel; Guichardant, Michel

    2014-01-01

    Neutrophils play a major role in inflammation by releasing large amounts of reactive oxygen species (ROS) produced by NADPH oxidase (NOX) and myeloperoxidase (MPO). This ROS overproduction is mediated by phosphorylation of the NOX subunits with an uncontrolled manner. Therefore, targeting neutrophil subunits would represent a promising strategy to moderate NOX activity, lower ROS, and other inflammatory agents, such as cytokines and leukotrienes, produced by neutrophils. For this purpose, we investigated the effects of protectin DX (PDX) - a docosahexaenoic acid (DHA) di-hydroxylated product which inhibits blood platelet aggregation - on neutrophil activation in vitro. We found that PDX decreases ROS production, inhibits NOX activation and MPO release from neutrophils. We also confirm, that PDX is an anti-aggregatory and anti-inflammatory agent by inhibiting both cyclooxygenase-1 and -2 (COX-1 and COX-2, E.C. 1.14.99.1) as well as COX-2 in lipopolysaccharides (LPS)-treated human neutrophils. However, PDX has no effect on the 5-lipoxygenase pathway that produces the chemotactic agent leukotriene B4 (LTB4). Taken together, our results suggest that PDX could be a protective agent against neutrophil invasion in chronic inflammatory diseases. PMID:24254970

  13. Light enhanced the accumulation of total fatty acids (TFA) and docosahexaenoic acid (DHA) in a newly isolated heterotrophic microalga Crypthecodinium sp. SUN.

    Science.gov (United States)

    Sun, Dongzhe; Zhang, Zhao; Mao, Xuemei; Wu, Tao; Jiang, Yue; Liu, Jin; Chen, Feng

    2017-03-01

    In the present study, light illumination was found to be efficient in elevating the total fatty acid content in a newly isolated heterotrophic microalga, Crypthecodinium sp. SUN. Under light illumination, the highest total fatty acid and DHA contents were achieved at 96h as 24.9% of dry weight and 82.8mgg -1 dry weight, respectively, which were equivalent to 1.46-fold and 1.68-fold of those under the dark conditions. The elevation of total fatty acid content was mainly contributed by an increase of neutral lipids at the expense of starches. Moreover, light was found to alter the cell metabolism and led to a higher specific growth rate, higher glucose consumption rate and lower non-motile cell percentage. This is the first report that light can promote the total fatty acids accumulation in Crypthecodinium without growth inhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Composição de ácidos graxos do leite materno em mulheres residentes em área distante da costa litorânea brasileira

    Directory of Open Access Journals (Sweden)

    Renata Y. Nishimura

    2013-06-01

    Full Text Available OBJETIVOS: Avaliar a composição de ácidos graxos do leite humano maduro de mulheres residentes em área distante da costa litorânea brasileira. MÉTODOS: Amostras de leite materno maduro foram obtidas de 47 mulheres lactantes com idade entre 18 e 35 anos, que tiveram partos a termo e em aleitamento exclusivo ou predominante. A coleta de leite se deu a partir da 5ª semana pós-parto, por meio de ordenha manual. A composição de ácidos graxos do leite foi determinada por cromatografia gasosa. RESULTADOS: Verificou-se que a concentração de eicosapentaenoico (0,08% foi superior ao observado em estudos brasileiros prévios. Entretanto, o teor de docosahexaenoico (0,09% encontrado no leite humano foi um dos menores já verificados no mundo. O teor de ácidos graxos trans (2,05% foi similar ao relatado em estudos nacionais prévios à obrigatoriedade de declaração do teor deste em rótulos de alimentos, sugerindo que esta medida não surtiu efeito na redução de seu teor na dieta habitual das mulheres. CONCLUSÕES: Baixo teor de docosahexaenoico e elevada concentração de ácidos graxos trans foram verificados no leite materno maduro de mulheres residentes em área distante da costa litorânea brasileira.

  15. Effect of refrigeration time on the lipid oxidation and fatty acid profiles of catfish (Arius maculatus) commercialized in Cameroon; Efecto del tiempo de refrigeración en la oxidación de lípidos y perfil de ácidos grasos del pez gato (Arius maculatus) comercializado en el Camerún

    Energy Technology Data Exchange (ETDEWEB)

    Tenyang, N.; Womeni, H.M.; Tiencheu, B.; Villeneuve, P.; Linder, M.

    2017-07-01

    The effects of refrigeration at 4 °C during 9 days on the quality and stability of catfish oil were evaluated using a change in fatty acid composition by gas chromatography (GC), commonly used analytical indexes (acid and peroxide values), and analysis by Fourier transform infrared (FTIR) spectroscopy. The results revealed that lipid deterioration, hydrolysis and oxidation occurred throughout the cold storage (4 °C). Refrigeration induced the lipolysis of triglycerides by lipases and phospholipases. It also affected the fatty acids composition of the catfish. The progressive loss of unsaturation was monitored by the decrease in the absorbance band at 3012 cm−1on FTIR spectra and the lowest value was observed in the catfish muscle at 9 days of refrigeration. Eicosapentaenoic C20:5ω3 (EPA) and docosahexaenoic C22:6ω3 (DHA) acids were the polyunsaturated fatty acids most affected during refrigeration. Refrigeration for less than 5 days was found to be the best conditions for the preservation of the catfish. [Spanish] El efecto de la refrigeración a 4 °C durante 9 días sobre la calidad y estabilidad del aceite de pez gato se evaluó mediante el cambio en la composición de ácidos grasos por cromatografía de gases (CG), los índices analíticos comúnmente utilizados (acidez y peróxidos) así como mediante análisis por espectroscopia de infrarrojo por transformada de Fourier (FTIR). Los resultados mostraron que el deterioro de los lípidos, la hidrólisis y la oxidación ocurrieron durante el almacenamiento en frío (4 °C). La refrigeración indujo a lipolisis de triglicéridos por lipasas y fosfolipasas. También se vio afectada la composición de ácidos grasos, la pérdida progresiva de insaturación se controló mediante la disminución de la banda de absorbancia a 301cm−1 en los espectros FTIR y el valor más bajo se observó en el músculo a los 9 días de refrigeración. Los ácidos eicosapentaenoico C20:5ω3 (EPA) y docosahexaenoico C22:6ω3 (DHA

  16. In vitro activity of 2-pyridinecarboxylic acid against trypanosomes of the subgenus Schizotrypanum isolated from the bat Phyllostomus hastatus = Atividade in vitro do ácido 2-piridinocarboxílico em tripanossoma do subgênero Schizotrypanum isolado do morcego Phyllostomus hastatus

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Ceridóreo Corrêa

    2011-09-01

    Full Text Available The effect of 2-pyridinecarboxylic acid (picolinic acid on trypanosomes of the subgenus Schizotrypanum isolated from the bat Phyllostomus hastatus was determined in this study. Picolinic acid, at 50 ƒÊg mL-1, inhibited epimastigote growth by 99% after 12 days incubation. In addition, trypomastigote motility decreased by 50% after 6h and completely after 24h in the presence of 50 ƒÊg mL-1 picolinic acid. The 50% cytotoxic concentration on HEp-2 cell line was275 ƒÊg mL-1 after 4 days incubation. Altogether, these results indicate higher toxicity against trypanosomes. The inhibitory effect of picolinic acid on epimastigote growth can be partially reversed by nicotinic acid and L-tryptophan, suggesting a competitive inhibition. Furthermore, two anti-Trypanosoma (Schizotrypanum cruzi drugs were also evaluated with regard to bat trypanosome growth. Benznidazole, at 50 ƒÊg mL-1, inhibited epimastigote growth by 90% after 12 days incubation. Nifurtimox, at the same concentration, caused 96% growth inhibition after four days incubation. Corroborating a previous study, bat trypanosomes are a good model for screening new trypanocidal compounds. Moreover, they can be used to study many biological processes common to human pathogenic trypanosomatids.O efeito do acido 2- piridinocarboxilico (acido picolinico sobre um tripanossoma do subgenero Schizotrypanum isolado do morcego Phyllostomus hastatus foi determinado neste estudo. O acido picolinico, na concentracao de 50 ƒÊg mL-1, inibiu 99% do crescimento de epimastigotas apos 12 dias de incubacao. Alem disso, houve um decrescimo de 50 e 100% na mobilidade dos tripomastigotas apos 6 e 24h, respectivamente, em presenca de acido picolinico na concentracao de 50 ƒÊg mL-1. A concentracao citotoxica 50% para celulas HEp-2 foi de 275 ƒÊg mL-1 apos quatro dias de incubacao. Esses resultados indicam maior toxicidade contra os tripanossomas. O efeito inibitoriodo acido picolinico sobre o crescimento de

  17. An oil containing EPA and DHA from transgenic Camelina sativa to replace marine fish oil in feeds for Atlantic salmon (Salmo salar L.: Effects on intestinal transcriptome, histology, tissue fatty acid profiles and plasma biochemistry.

    Directory of Open Access Journals (Sweden)

    Mónica B Betancor

    Full Text Available New de novo sources of omega 3 (n-3 long chain polyunsaturated fatty acids (LC-PUFA are required as alternatives to fish oil in aquafeeds in order to maintain adequate levels of the beneficial fatty acids, eicosapentaenoic and docosahexaenoic (EPA and DHA, respectively. The present study investigated the use of an EPA+DHA oil derived from transgenic Camelina sativa in Atlantic salmon (Salmo salar feeds containing low levels of fishmeal (35% and fish oil (10%, reflecting current commercial formulations, to determine the impacts on tissue fatty acid profile, intestinal transcriptome, and health of farmed salmon. Post-smolt Atlantic salmon were fed for 12-weeks with one of three experimental diets containing either a blend of fish oil/rapeseed oil (FO, wild-type camelina oil (WCO or transgenic camelina oil (DCO as added lipid source. The DCO diet did not affect any of the fish performance or health parameters studied. Analyses of the mid and hindgut transcriptomes showed only mild effects on metabolism. Flesh of fish fed the DCO diet accumulated almost double the amount of n-3 LC-PUFA than fish fed the FO or WCO diets, indicating that these oils from transgenic oilseeds offer the opportunity to increase the n-3 LC-PUFA in farmed fish to levels comparable to those found a decade ago.

  18. Wastewater disinfection with peracetic acid and UV; La disinfezione di acque reflue con acido peracetico e raggi ultravioletti

    Energy Technology Data Exchange (ETDEWEB)

    Caretti, C.; Lubello, C. [Florence Univ., Florence (Italy). Dipt. di Ingegneria Civile

    2001-06-01

    Was investigated the synergy between UV and peracetic acid (PAA) through a five months on-site experimental study in a pilot plant fed by the secondary effluent of the central wastewater treatment plant of Pistoia, Italy. This experiment is a part of a larger research project on advanced treatment for municipal wastewater reuse in agriculture. Because of Italy's strict limits on unrestricted wastewater reuse in agriculture (2 CFU total coliform/100 ml), a very high degree of disinfection is necessary. In the investigated experimental conditions, it has been impossible to meet such values through an exclusive use of UV irradiation (the UV unit reaches at most 4 Log inactivation). Low levels of PAA greatly enhance the decline of indicator levels, but higher unsustainable doses are required to hit the Italian limit. Through a poor amount of information on the subject was available in literature, it was tried to find out how the disinfection efficiency could improve by simultaneously using UV and PAA. It was found out that a combined treatment is satisfactory and that it is more advantage of the hydroxyl radicals formation due to the PAA photo lysis. The application of 2 ppm of PAA with an UV dose of 192 mWscm{sup -}2 is enough to meet the Italian limit. [Italian] Nel presente articolo si riportano i risultati di uno studio sulla sinergia tra acido peracetico (PAA) e raggi ultravioletti nella disinfezione delle acque reflue secondarie; le prove sono state effettuate su scala pilota, presso l'impianto centrale di Pistoia. Tale sperimentazione fa parte di un piu' ampio progetto di ricerca sulla possibilita' di riutilizzare le acque reflue a scopo irriguo; per rispettare i limiti estremamente stringenti imposti dalla normativa italiana per l'irrigazione (2 CFU Coliformi totali/100 ml, nel caso di irrigazione illimitata), e' necessario garantire efficienze di disinfezione molto elevate. Nelle condizioni sperimentali considerate, non e

  19. Ensamble, diseño y ensayo de un potenciometro computarizado

    Directory of Open Access Journals (Sweden)

    Rocio Bojacá B.

    2010-05-01

    Full Text Available Se ha ensamblado una unidad potenciométrica (U.P. para mediciones de pH y fuerza electromotriz en procesos estáticos y de titulación. La reproducibilidad en mediciones de pH es de 0.013 unidades de pH y 0.01 mi en volumen. El potenciómetro consta de un acoplador de impedancias, un amplificador de ganancia variable y una interfase (convertidor análogico/Digital. El computador utilizado es un Kaypro II y et graficador es Phillips 8154. El software desarrollado incluye tos programas calibra (estandarización de la U.P. en dos pH diferentes, titula, tit140 y Tit1400 (titulaciones ácido-base y Redox y Ajus (cálculos de volimen como función de pH o potencial. En los ensayos de la U.P. se insiste en las diferencias que se observan en las gráficas cuando se titula un Acido Fuerte o un Acido Débil. En el primer caso se propone la denominación Zona Estabilizadora y en et segundo Zona Buffer o amortiguadora, donde se forma el típico sistema Acido/Sal.

  20. Long-Term Effects of Docosahexaenoic Acid-Bound Phospholipids and the Combination of Docosahexaenoic Acid-Bound Triglyceride and Egg Yolk Phospholipid on Lipid Metabolism in Mice

    Science.gov (United States)

    Che, Hongxia; Cui, Jie; Wen, Min; Xu, Jie; Yanagita, Teruyoshi; Wang, Qi; Xue, Changhu; Wang, Yuming

    2018-04-01

    The bioavailability of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) depends on their chemical forms. This study investigated the long-term effects of DHA-bound triglyceride (TG-DHA), DHA-bound phospholipid (PL-DHA), and the combination of TG-DHA and egg yolk phospholipid (Egg-PL) on lipid metabolism in mice fed with a high-fat diet (fat levels of 22.5%). Male C57BL/6J mice were fed with different formulations containing 0.5% DHA, including TG-DHA, PL-DHA, and the combination of TG-DHA and Egg-PL, for 6 weeks. Serum, hepatic, and cerebral lipid concentrations and the fatty acid compositions of the liver and brain were determined. The concentrations of serum total triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), and hepatic TG in the PL-DHA group and the combination group were significantly lower than those in the high-fat (HF) group ( P Egg-PL in decreasing the AI. Long-term dietary supplementation with low amount of DHA (0.5%) may improve hepatic DHA levels, although cerebral DHA levels may not be enhanced.

  1. In Vitro Activity of Imipenem and Colistin against a Carbapenem-Resistant Klebsiella pneumoniae Isolate Coproducing SHV-31, CMY-2, and DHA-1

    Directory of Open Access Journals (Sweden)

    Hung-Jen Tang

    2015-01-01

    Full Text Available We investigated the synergism of colistin and imipenem against a multidrug-resistant K. pneumoniae isolate which was recovered from a severe hip infection. PCR and DNA sequencing were used to characterize the outer membrane porin genes and the resistance genes mediating the common β-lactamases and carbapenemases. Synergism was evaluated by time-kill studies. The blaSHV-31, blaCMY-2, and blaDHA-1 were detected. Outer membrane porin genes analysis revealed loss of ompK36 and frame-shift mutation of ompK35. The common carbapenemase genes were not found. Time-kill studies demonstrated that a combination of 1x MIC of colistin (2 mg/L and 1x MIC of imipenem (8 mg/L was synergistic and bactericidal but with inoculum effect. Bactericidal activity without inoculum effect was observed by concentration of 2x MIC of colistin alone or plus 2x MIC of imipenem. In conclusion, colistin plus imipenem could be an alternative option to treat carbapenem-resistant K. pneumoniae infections.

  2. Efecto del aceite esencial de orégano sobre el desempeño productivo de ponedoras y la estabilidad oxidativa de huevos enriquecidos con ácidos grasos poliinsaturados

    Directory of Open Access Journals (Sweden)

    R. E. Ortiz

    2017-01-01

    Full Text Available Este estudio evaluó la inclusión de aceite esencial de orégano (AEO, Lippia origanoides Kunth en dietas enriquecidas con ácidos grasos poliinsaturados (AGPI sobre el desempeño productivo de ponedoras, el perfil lipídico y la estabilidad oxidativa de huevos en almacenamiento. Se distribuyeron 144 ponedoras en uno de cuatro tratamientos con seis replicas, con el objetivo de de evaluar el efecto del tipo de aceite usado en la dieta (palma o pescado y la inclusión de AEO sobre las variables de producción, junto con el extracto etéreo, perfil de lípidos y concentración de malonaldehído (MDA, usando un diseño completamente al azar con arreglo factorial y medidas repetidas en el tiempo por los días de almacenamiento (0, 30 y 60 días a 4°C. Los resultados mostraron que el tipo de aceite y el AEO no afectaron el desempeño productivo de las ponedoras (P > 0,05. La concentración de AGPI se incrementó en 16,8% en dietas con aceite de pescado en las que el DHA (ácido docosahexaenoico también aumentó en un 1,4% (P < 0,05, incrementando la concentración de MDA (malonaldehído en el huevo (41,6 ng MDA/g d yema, mientras que la suplementación de AEO con 100 g/ton mejoró la estabilidad oxidativa durante el almacenamiento (31.1 ng MDA/g de yema. Durante el almacenamiento la concentración de MDA en la yema incremento con el tiempo alcanzando los 38 ng MDA/g de yema a los 60 días. El AEO mostró potencial como antioxidante natural en la dieta de las ponedoras mejorando la estabilidad oxidativa de los huevos almacenados a 4°C hasta por 60 días.

  3. Is docosahexaenoic acid synthesis from α-linolenic acid sufficient to supply the adult brain?

    Science.gov (United States)

    Domenichiello, Anthony F; Kitson, Alex P; Bazinet, Richard P

    2015-07-01

    Docosahexaenoic acid (DHA) is important for brain function, and can be obtained directly from the diet or synthesized in the body from α-linolenic acid (ALA). Debate exists as to whether DHA synthesized from ALA can provide sufficient DHA for the adult brain, as measures of DHA synthesis from ingested ALA are typically <1% of the oral ALA dose. However, the primary fate of orally administered ALA is β-oxidation and long-term storage in adipose tissue, suggesting that DHA synthesis measures involving oral ALA tracer ingestion may underestimate total DHA synthesis. There is also evidence that DHA synthesized from ALA can meet brain DHA requirements, as animals fed ALA-only diets have brain DHA concentrations similar to DHA-fed animals, and the brain DHA requirement is estimated to be only 2.4-3.8 mg/day in humans. This review summarizes evidence that DHA synthesis from ALA can provide sufficient DHA for the adult brain by examining work in humans and animals involving estimates of DHA synthesis and brain DHA requirements. Also, an update on methods to measure DHA synthesis in humans is presented highlighting a novel approach involving steady-state infusion of stable isotope-labeled ALA that bypasses several limitations of oral tracer ingestion. It is shown that this method produces estimates of DHA synthesis that are at least 3-fold higher than brain uptake rates in rats. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Human milk arachidonic acid and docosahexaenoic acid contents increase following supplementation during pregnancy and lactation

    NARCIS (Netherlands)

    van Goor, Saskia A.; Dijick-Brouwer, D. A. Janneke; Hadders-Algra, Mijna; Doornbos, Bennard; Erwich, Jan Jaap H. M.; Schaafsma, Anne; Muskiet, Frits A. J.; Djick-Brouwer, D.A.J.

    Introduction: Docosahexaenoic acid (DHA) and arachidonic acid (AA) are important for neurodevelopment. Maternal diet influences milk DHA, whereas milk AA seems rather constant. We investigated milk AA, DHA and DHA/AA after supplementation of AA plus DHA, or DHA alone during pregnancy and lactation.

  5. Mechanisms regulating brain docosahexaenoic acid uptake: what is the recent evidence?

    Science.gov (United States)

    Chouinard-Watkins, Raphaël; Lacombe, R J Scott; Bazinet, Richard P

    2018-03-01

    To summarize recent advances pertaining to the mechanisms regulating brain docosahexaenoic acid (DHA) uptake. DHA is an omega-3 polyunsaturated fatty acid highly enriched in neuronal membranes and it is implicated in several important neurological processes. However, DHA synthesis is extremely limited within the brain. There are two main plasma pools that supply the brain with DHA: the nonesterified pool and the lysophosphatidylcholine (lysoPtdCho) pool. Quantitatively, plasma nonesterified-DHA (NE-DHA) is the main contributor to brain DHA. Fatty acid transport protein 1 (FATP1) in addition to fatty acid-binding protein 5 (FABP5) are key players that regulate brain uptake of NE-DHA. However, the plasma half-life of lysoPtdCho-DHA and its brain partition coefficient are higher than those of NE-DHA after intravenous administration. The mechanisms regulating brain DHA uptake are more complicated than once believed, but recent advances provide some clarity notably by suggesting that FATP1 and FABP5 are key contributors to cellular uptake of DHA at the blood-brain barrier. Elucidating how DHA enters the brain is important as we might be able to identify methods to better deliver DHA to the brain as a potential therapeutic.

  6. Effect of dietary docosahexaenoic acid connecting phospholipids on the lipid peroxidation of the brain in mice.

    Science.gov (United States)

    Hiratsuka, Seiichi; Ishihara, Kenji; Kitagawa, Tomoko; Wada, Shun; Yokogoshi, Hidehiko

    2008-12-01

    The effect of dietary docosahexaenoic acid (DHA, C22:6n-3) with two lipid types on lipid peroxidation of the brain was investigated in streptozotocin (STZ)-induced diabetic mice. Each group of female Balb/c mice was fed a diet containing DHA-connecting phospholipids (DHA-PL) or DHA-connecting triacylglycerols (DHA-TG) for 5 wk. Safflower oil was fed as the control. The lipid peroxide level of the brain was significantly lower in the mice fed the DHA-PL diet when compared to those fed the DHA-TG and safflower oil diets, while the alpha-tocopherol level was significantly higher in the mice fed the DHA-PL diet than in those fed the DHA-TG and safflower oil diets. The DHA level of phosphatidylethanolamine in the brain was significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil diet. The dimethylacetal levels were significantly higher in the mice fed the DHA-PL diet than in those fed the safflower oil and DHA-TG diets. These results suggest that the dietary DHA-connecting phospholipids have an antioxidant activity on the brain lipids in mice, and the effect may be related to the brain plasmalogen.

  7. Phospholipid class-specific brain enrichment in response to lysophosphatidylcholine docosahexaenoic acid infusion.

    Science.gov (United States)

    Chouinard-Watkins, Raphaël; Chen, Chuck T; Metherel, Adam H; Lacombe, R J Scott; Thies, Frank; Masoodi, Mojgan; Bazinet, Richard P

    2017-10-01

    Recent studies suggest that at least two pools of plasma docosahexaenoic acid (DHA) can supply the brain: non-esterified DHA (NE-DHA) and lysophosphatidylcholine (lysoPtdCho)-DHA. In contrast to NE-DHA, brain uptake of lysoPtdCho-DHA appears to be mediated by a specific transporter, but whether both forms of DHA supply undergo the same metabolic fate, particularly with regards to enrichment of specific phospholipid (PL) subclasses, remains to be determined. This study aimed to evaluate brain uptake of NE-DHA and lysoPtdCho-DHA into brain PL classes. Fifteen-week-old rats were infused intravenously with radiolabelled NE- 14 C-DHA or lysoPtdCho- 14 C-DHA (n=4/group) over five mins to achieve a steady-state plasma level. PLs were extracted from the brain and separated by thin layer chromatography and radioactivity was quantified by liquid scintillation counting. The net rate of entry of lysoPtdCho-DHA into the brain was between 59% and 86% lower than the net rate of entry of NE-DHA, depending on the PL class. The proportion of total PL radioactivity in the lysoPtdCho- 14 C-DHA group compared to the NE- 14 C-DHA group was significantly higher in choline glycerophospholipids (ChoGpl) (48% vs 28%, respectively) but lower in ethanolamine glycerophospholipids (EtnGpl) (32% vs 46%, respectively). In both groups, radioactivity was disproportionally high in phosphatidylinositol and ChoGpl but low in phosphatidylserine and EtnGpl compared to the corresponding DHA pool size. This suggests that DHA undergoes extensive PL remodeling after entry into the brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Plasma non-esterified docosahexaenoic acid is the major pool supplying the brain.

    Science.gov (United States)

    Chen, Chuck T; Kitson, Alex P; Hopperton, Kathryn E; Domenichiello, Anthony F; Trépanier, Marc-Olivier; Lin, Lauren E; Ermini, Leonardo; Post, Martin; Thies, Frank; Bazinet, Richard P

    2015-10-29

    Despite being critical for normal brain function, the pools that supply docosahexaenoic acid (DHA) to the brain are not agreed upon. Using multiple kinetic models in free-living adult rats, we first demonstrate that DHA uptake from the plasma non-esterified fatty acid (NEFA) pool predicts brain uptake of DHA upon oral administration, which enters the plasma NEFA pool as well as multiple plasma esterified pools. The rate of DHA loss by the brain is similar to the uptake from the plasma NEFA pool. Furthermore, upon acute iv administration, although more radiolabeled lysophosphatidylcholine (LPC)-DHA enters the brain than NEFA-DHA, this is due to the longer plasma half-life and exposure to the brain. Direct comparison of the uptake rate of LPC-DHA and NEFA-DHA demonstrates that uptake of NEFA-DHA into the brain is 10-fold greater than LPC-DHA. In conclusion, plasma NEFA-DHA is the major plasma pool supplying the brain.

  9. Forskolin- and dihydroalprenolol (DHA) binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    International Nuclear Information System (INIS)

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1987-01-01

    The purpose of the present investigation was to determine if dietary lipids can induce changes in the adenylate cyclase system in rat heart. Three groups of male young Sprague-Dawley rats were fed for 6 weeks diets containing 10% corn oil (I), 8% coconut oil + 2% corn oil (II) or 10% menhaden oil (III). Adenylate cyclase activity (basal, fluoride-, isoproterenol-, and forskolin-stimulated) was higher in heart homogenates of rats in group III than in the other two groups. Concentration of the [ 3 H]-forskolin binding sites in the cardiac membranes were significantly higher in rats fed menhaden oil. The values (pmol/mg protein) were 4.8 +/- 0.2 (I), 4.5 +/- 0.7 (II) and 8.4 +/- 0.5 (III). There was no significant difference in the affinity of the forskolin binding sites among the 3 dietary groups. When measured at different concentrations of forskolin, the adenylate cyclase activity in cardiac membranes of rats fed menhaden oil was higher than in the other 2 groups. Concentrations of the [ 3 H]DHA binding sites were slightly higher but their affinity was lower in cardiac membranes of rats fed menhaden oil. The results suggest that diets containing fish oil increase the concentration of the forskolin binding sites and may also affect the characteristics of the β-adrenergic receptor in rat heart

  10. Brain docosahexaenoic acid uptake and metabolism.

    Science.gov (United States)

    Lacombe, R J Scott; Chouinard-Watkins, Raphaël; Bazinet, Richard P

    2018-02-08

    Docosahexaenoic acid (DHA) is the most abundant n-3 polyunsaturated fatty acid in the brain where it serves to regulate several important processes and, in addition, serves as a precursor to bioactive mediators. Given that the capacity of the brain to synthesize DHA locally is appreciably low, the uptake of DHA from circulating lipid pools is essential to maintaining homeostatic levels. Although, several plasma pools have been proposed to supply the brain with DHA, recent evidence suggests non-esterified-DHA and lysophosphatidylcholine-DHA are the primary sources. The uptake of DHA into the brain appears to be regulated by a number of complementary pathways associated with the activation and metabolism of DHA, and may provide mechanisms for enrichment of DHA within the brain. Following entry into the brain, DHA is esterified into and recycled amongst membrane phospholipids contributing the distribution of DHA in brain phospholipids. During neurotransmission and following brain injury, DHA is released from membrane phospholipids and converted to bioactive mediators which regulate signaling pathways important to synaptogenesis, cell survival, and neuroinflammation, and may be relevant to treating neurological diseases. In the present review, we provide a comprehensive overview of brain DHA metabolism, encompassing many of the pathways and key enzymatic regulators governing brain DHA uptake and metabolism. In addition, we focus on the release of non-esterified DHA and subsequent production of bioactive mediators and the evidence of their proposed activity within the brain. We also provide a brief review of the evidence from post-mortem brain analyses investigating DHA levels in the context of neurological disease and mood disorder, highlighting the current disparities within the field. Copyright © 2017. Published by Elsevier Ltd.

  11. Growth and survival of Hippocampus erectus (Perry, 1810 juveniles fed on Artemia with different HUFA levels

    Directory of Open Access Journals (Sweden)

    Nicolás Vite-Garcia

    2014-03-01

    Full Text Available Survival during first months after birth is one of the bottlenecks for consolidating the seahorse farming industry. In this work, Artemia metanauplii enriched with two highly unsaturated fatty acids (HUFA rich commercial emulsions with different docosahexaenoic acid (DHA levels (63% and 14% of total lipids, a vegetable oil with no DHA, and non-enriched Artemia as control, were used to feed 5-day-old juvenile Hippocampus erectus for 60 days. Enriched Artemia had similar levels of DHA (13% and 9%, despite great differences of DHA in the emulsions, with traces of DHA in non-enriched and vegetable oil enriched Artemia. More than 20% of DHA was found in 24 h starved juveniles fed both DHA-enriched treatments, similar to values in newly born juveniles, but those fed vegetable oil enriched Artemia or non-enriched Artemia had 5% of DHA. Total lipid and protein levels were similar in juveniles from the four treatments. The n-3/n-6 ratio was almost four-fold higher in seahorses fed DHA-enriched treatments compared to juveniles fed the non-enriched treatments. Survival of seahorses only partially reflected the DHA levels: it was lower in the vegetable oil treatment, similar in the seahorses fed Artemia with higher DHA and in the control treatment, and higher in seahorses fed the HUFA-enriched Artemia with lower DHA levels, although growth was similar in the two DHA-enriched Artemia treatments. Juvenile H. erectus seahorses perform better when they have at least 20% of DHA in their tissues, and these levels can be attained with no more than 14% of DHA in emulsions, eliminating the need for more expensive emulsions with higher DHA levels.

  12. Long-Term Effect of Docosahexaenoic Acid Feeding on Lipid Composition and Brain Fatty Acid-Binding Protein Expression in Rats

    Directory of Open Access Journals (Sweden)

    Marwa E. Elsherbiny

    2015-10-01

    Full Text Available Arachidonic (AA and docosahexaenoic acid (DHA brain accretion is essential for brain development. The impact of DHA-rich maternal diets on offspring brain fatty acid composition has previously been studied up to the weanling stage; however, there has been no follow-up at later stages. Here, we examine the impact of DHA-rich maternal and weaning diets on brain fatty acid composition at weaning and three weeks post-weaning. We report that DHA supplementation during lactation maintains high DHA levels in the brains of pups even when they are fed a DHA-deficient diet for three weeks after weaning. We show that boosting dietary DHA levels for three weeks after weaning compensates for a maternal DHA-deficient diet during lactation. Finally, our data indicate that brain fatty acid binding protein (FABP7, a marker of neural stem cells, is down-regulated in the brains of six-week pups with a high DHA:AA ratio. We propose that elevated levels of DHA in developing brain accelerate brain maturation relative to DHA-deficient brains.

  13. AceDoPC, a structured phospholipid to target the brain with docosahexaenoic acid

    Directory of Open Access Journals (Sweden)

    Lagarde Michel

    2016-01-01

    Full Text Available AceDoPC® is a structured phospholipid or acetyl-LysoPC-DHA made to prevent docosahexaenoic acyl migrating from the sn-2 to sn-1 position of the phospholipid, however keeping the main physical-chemical properties of LysoPC-DHA. As previously shown for LysoPC-DHA, AceDoPC® allows DHA crossing a re-constituted blood-brain barrier with higher efficiency than non-esterified DHA or PC-DHA. When injected to blood of rats, AceDoPC® is processed within the brain to deliver DHA to phosphatidyl-choline and -ethanolamine. When injected to rats following the induction of an ischemic stroke, AceDoPC® prevents the extension of brain lesions more efficiently than DHA. Overall, these properties make AceDoPC® a promising phospholipid carrier of DHA to the brain.

  14. Novel lysophospholipid acyltransferase PLAT1 of Aurantiochytrium limacinum F26-b responsible for generation of palmitate-docosahexaenoate-phosphatidylcholine and phosphatidylethanolamine.

    Directory of Open Access Journals (Sweden)

    Eriko Abe

    Full Text Available N-3 polyunsaturated fatty acids (PUFA, such as docosahexaenoic acid (DHA, 22:6n-3, have been reported to play roles in preventing cardiovascular diseases. The major source of DHA is fish oils but a recent increase in the global demand of DHA and decrease in fish stocks require a substitute. Thraustochytrids, unicellular marine protists belonging to the Chromista kingdom, can synthesize large amounts of DHA, and, thus, are expected to be an alternative to fish oils. DHA is found in the acyl chain(s of phospholipids as well as triacylglycerols in thraustochytrids; however, how thraustochytrids incorporate DHA into phospholipids remains unknown. We report here a novel lysophospholipid acyltransferase (PLAT1, which is responsible for the generation of DHA-containing phosphatidylcholine and phosphatidylethanolamine in thraustochytrids. The PLAT1 gene, which was isolated from the genomic DNA of Aurantiochytrium limacinum F26-b, was expressed in Saccharomyces cerevisiae, and the FLAG-tagged recombinant enzyme was characterized after purification with anti-FLAG affinity gel. PLAT1 shows wide specificity for donor substrates as well as acceptor substrates in vitro, i.e, the enzyme can adopt lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylserine and lysophosphatidylinositol as acceptor substrates, and 15:0/16:0-CoA and DHA-CoA as donor substrates. In contrast to the in vitro experiment, only lysophosphatidylcholine acyltransferase and lysophosphatidylethanolamine acyltransferase activities were decreased in plat1-knockout mutants, resulting in a decrease of 16:0-DHA-phosphatidylcholine (PC [PC(38:6] and 16:0-DHA-phosphatidylethanolamine (PE [PE(38:6], which are two major DHA-containing phospholipids in A. limacinum F26-b. However, the amounts of other phospholipid species including DHA-DHA-PC [PC(44:12] and DHA-DHA-PE [PE(44:12] were almost the same in plat-knockout mutants and the wild-type. These results indicate that PLAT1 is the

  15. Dietary Crude Lecithin Increases Systemic Availability of Dietary Docosahexaenoic Acid with Combined Intake in Rats.

    Science.gov (United States)

    van Wijk, Nick; Balvers, Martin; Cansev, Mehmet; Maher, Timothy J; Sijben, John W C; Broersen, Laus M

    2016-07-01

    Crude lecithin, a mixture of mainly phospholipids, potentially helps to increase the systemic availability of dietary omega-3 polyunsaturated fatty acids (n-3 PUFA), such as docosahexaenoic acid (DHA). Nevertheless, no clear data exist on the effects of prolonged combined dietary supplementation of DHA and lecithin on RBC and plasma PUFA levels. In the current experiments, levels of DHA and choline, two dietary ingredients that enhance neuronal membrane formation and function, were determined in plasma and red blood cells (RBC) from rats after dietary supplementation of DHA-containing oils with and without concomitant dietary supplementation of crude lecithin for 2-3 weeks. The aim was to provide experimental evidence for the hypothesized additive effects of dietary lecithin (not containing any DHA) on top of dietary DHA on PUFA levels in plasma and RBC. Dietary supplementation of DHA-containing oils, either as vegetable algae oil or as fish oil, increased DHA, eicosapentaenoic acid (EPA), and total n-3 PUFA, and decreased total omega-6 PUFA levels in plasma and RBC, while dietary lecithin supplementation alone did not affect these levels. However, combined dietary supplementation of DHA and lecithin increased the changes induced by DHA supplementation alone. Animals receiving a lecithin-containing diet also had a higher plasma free choline concentration as compared to controls. In conclusion, dietary DHA-containing oils and crude lecithin have synergistic effects on increasing plasma and RBC n-3 PUFA levels, including DHA and EPA. By increasing the systemic availability of dietary DHA, dietary lecithin may increase the efficacy of DHA supplementation when their intake is combined.

  16. The Differential Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Cardiometabolic Risk Factors: A Systematic Review

    Science.gov (United States)

    Innes, Jacqueline K.; Calder, Philip C.

    2018-01-01

    A large body of evidence supports the cardioprotective effects of the long-chain omega-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). There is increasing interest in the independent effects of EPA and DHA in the modulation of cardiometabolic risk factors. This systematic review aims to appraise the latest available evidence of the differential effects of EPA and DHA on such risk factors. A systematic literature review was conducted up to May 2017. Randomised controlled trials were included if they met strict eligibility criteria, including EPA or DHA > 2 g/day and purity ≥ 90%. Eighteen identified articles were included, corresponding to six unique studies involving 527 participants. Both EPA and DHA lowered triglyceride concentration, with DHA having a greater triglyceride-lowering effect. Whilst total cholesterol levels were largely unchanged by EPA and DHA, DHA increased high-density lipoprotein (HDL) cholesterol concentration, particularly HDL2, and increased low-density lipoprotein (LDL) cholesterol concentration and LDL particle size. Both EPA and DHA inhibited platelet activity, whilst DHA improved vascular function and lowered heart rate and blood pressure to a greater extent than EPA. The effects of EPA and DHA on inflammatory markers and glycaemic control were inconclusive; however both lowered oxidative stress. Thus, EPA and DHA appear to have differential effects on cardiometabolic risk factors, but these need to be confirmed by larger clinical studies. PMID:29425187

  17. Eicosapentaenoic acid improves glycemic control in elderly bedridden patients with type 2 diabetes.

    Science.gov (United States)

    Ogawa, Susumu; Abe, Takaaki; Nako, Kazuhiro; Okamura, Masashi; Senda, Miho; Sakamoto, Takuya; Ito, Sadayoshi

    2013-01-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are ω3-polyunsaturated fatty acids mainly contained in the blue-backed fish oil, and are effective in decreasing the lipids disorder and the cardiovascular incidence among diabetic patients. Moreover, it has been suggested that EPA and DHA may improve the insulin resistance and glucose metabolism. However, the clinical effects of EPA and DHA on glucose metabolism remain unclear. We aimed to clarify the effects of EPA/DHA treatment on glycemic control in type 2 diabetes mellitus. This study was a multicenter prospective randomized controlled trial involving 30 elderly type 2 diabetic patients on a liquid diet. Their exercises were almost zero and the content of their meals was strictly managed and understood well. Therefore, the difference by the individual's life was a minimum. The subjects were divided into two groups: those receiving EPA/DHA-rich liquid diet [EPA/DHA (+)] or liquid diet lacking EPA/DHA [EPA/DHA (-)]. Changes in factors related to glucose and lipid metabolism were assessed after the three-month study. Serum concentrations of EPA rose in EPA/DHA (+), although the levels of DHA and fasting C-peptide remained unchanged in EPA/DHA (+). In addition, there was a significant decline in the fasting plasma glucose (FPG), hemoglobin A1c (HbA1c), fasting remnant-like particles and apolipoprotein (apo) B in EPA/DHA (+), compared with the values in EPA/DHA (-). EPA/DHA-rich diet might improve glucose metabolism in elderly type 2 diabetic patients on a liquid diet. This phenomenon may be due to the improved insulin resistance mediated by the rise in serum EPA concentrations.

  18. Enhanced Amelioration of High-Fat Diet-Induced Fatty Liver by Docosahexaenoic Acid and Lysine Supplementations

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Lin

    2014-01-01

    Full Text Available Fatty liver disease is the most common pathological condition in the liver. Here, we generated high-fat diet-(HFD- induced nonalcoholic fatty liver disease (NAFLD in mice and tested the effects of docosahexaenoic acid (DHA and lysine during a four-week regular chow (RCfeeding. Our results showed that 1% lysine and the combination of 1% lysine + 1% DHA reduced body weight. Moreover, serum triglyceride levels were reduced by 1% DHA and 1% lysine, whereas serum alanine transaminase activity was reduced by 1% DHA and 1% DHA + 0.5% lysine. Switching to RC reduced hepatic lipid droplet accumulation, which was further reduced by the addition of DHA or lysine. Furthermore, the mRNA expressions of hepatic proinflammatory cytokines were suppressed by DHA and combinations of DHA + lysine, whereas the mRNA for the lipogenic gene, acetyl-CoA carboxylase 1 (ACC1, was suppressed by DHA. In the gonadal adipose tissues, combinations of DHA and lysine inhibited mRNA expression of lipid metabolism-associated genes, including ACC1, fatty acid synthase, lipoprotein lipase, and perilipin. In conclusion, the present study demonstrated that, in conjunction with RC-induced benefits, supplementation with DHA or lysine further ameliorated the high-fat diet-induced NAFLD and provided an alternative strategy to treat, and potentially prevent, NAFLD.

  19. Randomized controlled trial of docosahexaenoic acid supplementation in midwestern U.S. human milk donors.

    Science.gov (United States)

    Valentine, Christina J; Morrow, Georgia; Pennell, Michael; Morrow, Ardythe L; Hodge, Amanda; Haban-Bartz, Annette; Collins, Kristin; Rogers, Lynette K

    2013-02-01

    Docosahexaenoic acid (DHA) is a long-chain polyunsaturated fatty acid important for neonatal neurodevelopment and immune homeostasis. Preterm infants fed donor milk from a Midwestern source receive only 20% of the intrauterine accretion of DHA. We tested the hypothesis that DHA supplementation of donor mothers would provide preterm infants with DHA intake equivalent to fetal accretion. After Institutional Review Board approval and informed consent, human milk donors to the Mother's Milk Bank of Ohio were randomized to receive 1 g of DHA (Martek(®) [now DSM Nutritional Lipids, Columbia, MD]) or placebo soy oil. Dietary intake data were collected and analyzed by a registered dietitian. Fatty acids were measured by gas chromatography/flame ionization detection. Statistical analysis used linear mixed models. Twenty-one mothers were randomly assigned to either the DHA group (n=10) or the placebo group (n=11). Donor age was a median of 31 years in both groups with a mean lactational stage of 19 weeks. Dietary intake of DHA at baseline in both groups was a median of 23 mg/day (range, 0-194 mg), significantly (p<0.0001) less than the minimum recommended intake of 200 mg/day. The DHA content of milk increased in the DHA-supplemented group (p<0.05). The women enrolled in this study had low dietary DHA intake. Supplementation with preformed DHA at 1 g/day resulted in increased DHA concentrations in the donor milk with no adverse outcomes. Infants fed donor milk from supplemented women receive dietary DHA levels that closely mimic normal intrauterine accretion during the third trimester.

  20. Dihydroptychantol A, a macrocyclic bisbibenzyl derivative, induces autophagy and following apoptosis associated with p53 pathway in human osteosarcoma U2OS cells

    International Nuclear Information System (INIS)

    Li Xia; Wu, William K.K.; Sun Bin; Cui Min; Liu Shanshan; Gao Jian; Lou Hongxiang

    2011-01-01

    Dihydroptychantol A (DHA), a novel macrocyclic bisbibenzyl compound extracted from liverwort Asterella angusta, has antifungal and multi-drug resistance reversal properties. Here, the chemically synthesized DHA was employed to test its anti-cancer activities in human osteosarcoma U2OS cells. Our results demonstrated that DHA induced autophagy followed by apoptotic cell death accompanied with G 2 /M-phase cell cycle arrest in U2OS cells. DHA-induced autophagy was morphologically characterized by the formation of double membrane-bound autophagic vacuoles recognizable at the ultrastructural level. DHA also increased the levels of LC3-II, a marker of autophagy. Surprisingly, DHA-mediated apoptotic cell death was potentiated by the autophagy inhibitor 3-methyladenine, suggesting that autophagy may play a protective role that impedes the eventual cell death. Furthermore, p53 was shown to be involved in DHA-meditated autophagy and apoptosis. In this connection, DHA increased nuclear expression of p53, induced p53 phosphorylation, and upregulated p53 target gene p21 Waf1/Cip1 . In contrast, cytoplasmic p53 was reduced by DHA, which contributed to the stimulation of autophagy. In relation to the cell cycle, DHA decreased the expression of cyclin B 1 , a cyclin required for progression through the G 2 /M phase. Taken together, DHA induces G 2 /M-phase cell cycle arrest and apoptosis in U2OS cells. DHA-induced apoptosis was preceded by the induction of protective autophagy. DHA-mediated autophagy and apoptosis are associated with the cytoplasmic and nuclear functions of p53.

  1. Plasma incorporation, apparent retroconversion and β-oxidation of 13C-docosahexaenoic acid in the elderly

    Directory of Open Access Journals (Sweden)

    Brenna J Thomas

    2011-01-01

    Full Text Available Abstract Background Higher fish or higher docosahexaenoic acid (DHA intake normally correlates positively with higher plasma DHA level, but recent evidence suggests that the positive relationship between intake and plasma levels of DHA is less clear in the elderly. Methods We compared the metabolism of 13C-DHA in six healthy elderly (mean - 77 y old and six young adults (mean - 27 y old. All participants were given a single oral dose of 50 mg of uniformly labelled 13C-DHA. Tracer incorporation into fatty acids of plasma triglycerides, free fatty acids, cholesteryl esters and phospholipids, as well as apparent retroconversion and β-oxidation of 13C-DHA were evaluated 4 h, 24 h, 7d and 28d later. Results Plasma incorporation and β-oxidation of 13C-DHA reached a maximum within 4 h in both groups, but 13C-DHA was transiently higher in all plasma lipids of the elderly 4 h to 28d later. At 4 h post-dose, 13C-DHA β-oxidation was 1.9 times higher in the elderly, but over 7d, cumulative β-oxidation of 13C-DHA was not different in the two groups (35% in the elderly and 38% in the young. Apparent retroconversion of 13C-DHA was well below 10% of 13C-DHA recovered in plasma at all time points, and was 2.1 times higher in the elderly 24 h and 7d after tracer intake. Conclusions We conclude that 13C-DHA metabolism changes significantly during healthy aging. Since DHA is a potentially important molecule in neuro-protection, these changes may be relevant to the higher vulnerability of the elderly to cognitive decline.

  2. Dihydroartemisinin protects against alcoholic liver injury through alleviating hepatocyte steatosis in a farnesoid X receptor-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenxuan; Lu, Chunfeng; Yao, Lu; Zhang, Feng; Shao, Jiangjuan [Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province (China); Zheng, Shizhong, E-mail: nytws@163.com [Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province (China); Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province (China)

    2017-01-15

    Alcoholic liver disease (ALD) is a common etiology of liver diseases, characterized by hepatic steatosis. We previously identified farnesoid X receptor (FXR) as a potential therapeutic target for ALD. Dihydroartemisinin (DHA) has been recently identified to possess potent pharmacological activities on liver diseases. This study was aimed to explore the impact of DHA on ALD and further elaborate the underlying mechanisms. Gain- or loss-of-function analyses of FXR were applied in both in vivo and in vitro studies. Results demonstrated that DHA rescued FXR expression and activity in alcoholic rat livers. DHA also reduced serodiagnostic markers of liver injury, including aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase. DHA improved alcohol-induced liver histological lesions, expression of inflammation genes, and inflammatory cell infiltration. In addition, DHA not only attenuated hyperlipidemia but also reduced hepatic steatosis through regulating lipogenesis and lipolysis genes. In vitro experiments further consolidated the concept that DHA ameliorated ethanol-caused hepatocyte injury and steatosis. Noteworthily, DHA effects were reinforced by FXR agonist obeticholic acid or FXR expression plasmids but abrogated by FXR antagonist Z-guggulsterone or FXR siRNA. In summary, DHA significantly improved alcoholic liver injury by inhibiting hepatic steatosis, which was dependent on its activation of FXR in hepatocytes. - Highlights: • DHA rescues FXR expression in alcoholic livers. • DHA improves alcoholic liver inflammation and steatosis in a FXR-dependent way. • DHA alleviates ethanol-induced hepatocyte steatosis by activation of FXR.

  3. Dihydroartemisinin protects against alcoholic liver injury through alleviating hepatocyte steatosis in a farnesoid X receptor-dependent manner

    International Nuclear Information System (INIS)

    Xu, Wenxuan; Lu, Chunfeng; Yao, Lu; Zhang, Feng; Shao, Jiangjuan; Zheng, Shizhong

    2017-01-01

    Alcoholic liver disease (ALD) is a common etiology of liver diseases, characterized by hepatic steatosis. We previously identified farnesoid X receptor (FXR) as a potential therapeutic target for ALD. Dihydroartemisinin (DHA) has been recently identified to possess potent pharmacological activities on liver diseases. This study was aimed to explore the impact of DHA on ALD and further elaborate the underlying mechanisms. Gain- or loss-of-function analyses of FXR were applied in both in vivo and in vitro studies. Results demonstrated that DHA rescued FXR expression and activity in alcoholic rat livers. DHA also reduced serodiagnostic markers of liver injury, including aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase. DHA improved alcohol-induced liver histological lesions, expression of inflammation genes, and inflammatory cell infiltration. In addition, DHA not only attenuated hyperlipidemia but also reduced hepatic steatosis through regulating lipogenesis and lipolysis genes. In vitro experiments further consolidated the concept that DHA ameliorated ethanol-caused hepatocyte injury and steatosis. Noteworthily, DHA effects were reinforced by FXR agonist obeticholic acid or FXR expression plasmids but abrogated by FXR antagonist Z-guggulsterone or FXR siRNA. In summary, DHA significantly improved alcoholic liver injury by inhibiting hepatic steatosis, which was dependent on its activation of FXR in hepatocytes. - Highlights: • DHA rescues FXR expression in alcoholic livers. • DHA improves alcoholic liver inflammation and steatosis in a FXR-dependent way. • DHA alleviates ethanol-induced hepatocyte steatosis by activation of FXR.

  4. Should there be a target level of docosahexaenoic acid in breast milk?

    Science.gov (United States)

    Jackson, Kristina Harris; Harris, William S

    2016-03-01

    This article examines the evidence for and against establishing a target level of docosahexaenoic acid (DHA) in breast milk. Two target levels for milk DHA have been recently proposed. One (∼0.3% of milk fatty acids) was based on milk DHA levels achieved in women consuming the amount of DHA recommended by the American Academy of Pediatrics for pregnant and lactating women (at least 200 mg DHA/day). Another (∼1.0%) was based on biomarker studies of populations with differing lifelong intakes of fish. Populations or research cohorts with milk DHA levels of 1.0% are associated with intakes that allow both the mother and infant to maintain relatively high DHA levels throughout lactation. Lower milk DHA levels may signal suboptimal maternal stores and possibly suboptimal infant intakes. Based on the current data, a reasonable milk DHA target appears to be approximately 0.3%, which is about the worldwide average. Although this may not be the 'optimal' level (which remains to be defined), it is clearly an improvement over the currently low milk DHA levels (∼0.2%) seen in many Western populations.

  5. Bacteria obtained from a sequencing batch reactor that are capable of growth on dehydroabietic acid.

    OpenAIRE

    Mohn, W W

    1995-01-01

    Eleven isolates capable of growth on the resin acid dehydroabietic acid (DhA) were obtained from a sequencing batch reactor designed to treat a high-strength process stream from a paper mill. The isolates belonged to two groups, represented by strains DhA-33 and DhA-35, which were characterized. In the bioreactor, bacteria like DhA-35 were more abundant than those like DhA-33. The population in the bioreactor of organisms capable of growth on DhA was estimated to be 1.1 x 10(6) propagules per...

  6. The effect of linoleic acid on the whole body synthesis rates of polyunsaturated fatty acids from α-linolenic acid and linoleic acid in free-living rats.

    Science.gov (United States)

    Domenichiello, Anthony F; Kitson, Alex P; Chen, Chuck T; Trépanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2016-04-01

    Docosahexaenoic acid (DHA) is thought to be important for brain function. The main dietary source of DHA is fish, however, DHA can also be synthesized from precursor omega-3 polyunsaturated fatty acids (n-3 PUFA), the most abundantly consumed being α-linolenic acid (ALA). The enzymes required to synthesize DHA from ALA are also used to synthesize longer chain omega-6 (n-6) PUFA from linoleic acid (LNA). The large increase in LNA consumption that has occurred over the last century has led to concern that LNA and other n-6 PUFA outcompete n-3 PUFA for enzymes involved in DHA synthesis, and therefore, decrease overall DHA synthesis. To assess this, rats were fed diets containing LNA at 53 (high LNA diet), 11 (medium LNA diet) or 1.5% (low LNA diet) of the fatty acids with ALA being constant across all diets (approximately 4% of the fatty acids). Rats were maintained on these diets from weaning for 8 weeks, at which point they were subjected to a steady-state infusion of labeled ALA and LNA to measure DHA and arachidonic acid (ARA) synthesis rates. DHA and ARA synthesis rates were generally highest in rats fed the medium and high LNA diets, while the plasma half-life of DHA was longer in rats fed the low LNA diet. Therefore, increasing dietary LNA, in rats, did not impair DHA synthesis; however, low dietary LNA led to a decrease in DHA synthesis with tissue concentrations of DHA possibly being maintained by a longer DHA half-life. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Combined effects of dissolved humic acids and tourmaline on the accumulation of 2, 2', 4, 4', 5, 5'- hexabrominated diphenyl ether (BDE-153) in Lactuca sativa.

    Science.gov (United States)

    Wang, Cuiping; Ma, Chuanxin; Jia, Weili; Wang, Dong; Sun, Hongwen; Xing, Baoshan

    2017-12-01

    In order to investigate the effects of dissolved humic acid (DHA) and tourmaline on uptake of 2, 2', 4, 4', 5, 5'- hexabrominated diphenyl ether (BDE-153) by Lactuca sativa, different fractions of DHA, including DHA 1 and DHA 4 , as well as different doses of tourmaline were introduced into BDE-153 contaminated solutions for plant growth. The levels of BDE-153 in L. sativa tissues were positively correlated with the Fe levels (R 2  = 0.9264) in seedings of the treatments with different doses of tourmaline. However, when adding DHA 1 and DHA 4 into the system, the correlation coefficients (R 2 ) decreased to 0.6976 and 0.5451 from 0.9264, respectively. In contrast with the Fe contents, the presence of DHAs didn't affect the R 2 between the levels of BDE-153 and the lipid contents in plant tissues. Our results indicated that both DHA 1 and DHA 4 could severely alter the BDE-153 uptake by L. sativa through reducing the Fe uptake instead of the lipid contents. Additionally, DHA 4 exhibited much stronger abilities to alter the BDE-153 accumulation than DHA 1 . Transmission electron microscopy (TEM) observations indicated that either DHA 1 or tourmaline or co-treatment with DHA and tourmaline had no negative impact on L. sativa at the cellular level. The present study provides important information for the impacts of different fractions of DHA extracted from soil on the BDE-153 migration in plant systems. Moreover, we elucidated the importance of the iron in tourmaline for migration of the polybrominated diphenyl ethers (PBDEs) in plant systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Compound-specific isotope analysis resolves the dietary origin of docosahexaenoic acid in the mouse brain.

    Science.gov (United States)

    Lacombe, R J Scott; Giuliano, Vanessa; Colombo, Stefanie M; Arts, Michael T; Bazinet, Richard P

    2017-10-01

    DHA (22:6n-3) may be derived from two dietary sources, preformed dietary DHA or through synthesis from α-linolenic acid (ALA; 18:3n-3). However, conventional methods cannot distinguish between DHA derived from either source without the use of costly labeled tracers. In the present study, we demonstrate the proof-of-concept that compound-specific isotope analysis (CSIA) by GC-isotope ratio mass spectrometry (IRMS) can differentiate between sources of brain DHA based on differences in natural 13 C enrichment. Mice were fed diets containing either purified ALA or DHA as the sole n-3 PUFA. Extracted lipids were analyzed by CSIA for natural abundance 13 C enrichment. Brain DHA from DHA-fed mice was significantly more enriched (-23.32‰ to -21.92‰) compared with mice on the ALA diet (-28.25‰ to -27.49‰). The measured 13 C enrichment of brain DHA closely resembled the dietary n-3 PUFA source, -21.86‰ and -28.22‰ for DHA and ALA, respectively. The dietary effect on DHA 13 C enrichment was similar in liver and blood fractions. Our results demonstrate the effectiveness of CSIA, at natural 13 C enrichment, to differentiate between the incorporation of preformed or synthesized DHA into the brain and other tissues without the need for tracers. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  9. Does docosahexaenoic acid supplementation in term infants enhance neurocognitive functioning in infancy?

    Science.gov (United States)

    Heaton, Alexandra E; Meldrum, Suzanne J; Foster, Jonathan K; Prescott, Susan L; Simmer, Karen

    2013-11-20

    The proposal that dietary docosahexaenoic acid (DHA) enhances neurocognitive functioning in term infants is controversial. Theoretical evidence, laboratory research and human epidemiological studies have convincingly demonstrated that DHA deficiency can negatively impact neurocognitive development. However, the results from randomized controlled trials (RCTs) of DHA supplementation in human term-born infants have been inconsistent. This article will (i) discuss the role of DHA in the human diet, (ii) explore the physiological mechanisms by which DHA plausibly influences neurocognitive capacity, and (iii) seek to characterize the optimal intake of DHA during infancy for neurocognitive functioning, based on existing research that has been undertaken in developed countries (specifically, within Australia). The major observational studies and RCTs that have examined dietary DHA in human infants and animals are presented, and we consider suggestions that DHA requirements vary across individuals according to genetic profile. It is important that the current evidence concerning DHA supplementation is carefully evaluated so that appropriate recommendations can be made and future directions of research can be strategically planned.

  10. Does docosahexaenoic acid supplementation in term infants enhance neurocognitive functioning in infancy?

    Directory of Open Access Journals (Sweden)

    Alexandra Elizabeth Heaton

    2013-11-01

    Full Text Available The proposal that dietary docosahexaenoic acid (DHA enhances neurocognitive functioning in term infants is controversial. Theoretical evidence, laboratory research and human epidemiological studies have convincingly demonstrated that DHA deficiency can negatively impact neurocognitive development. However, the results from randomized controlled trials (RCTs of DHA supplementation in human term-born infants have been inconsistent. This article will i discuss the role of DHA in the human diet, ii explore the physiological mechanisms by which DHA plausibly influences neurocognitive capacity and iii seek to characterize the optimal intake of DHA during infancy for neurocognitive functioning, based on existing research that has been undertaken in developed countries (specifically, within Australia. The major observational studies and RCTs that have examined dietary DHA in human infants and animals are presented, and we consider suggestions that DHA requirements vary across individuals according to genetic profile. It is important that the current evidence concerning DHA supplementation is carefully evaluated so that appropriate recommendations can be made and future directions of research can be strategically planned.

  11. A novel 2,6-diisopropylphenyl-docosahexaenoamide conjugate induces apoptosis in T cell acute lymphoblastic leukemia cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Altenburg, Jeffrey D.; Harvey, Kevin A.; McCray, Sharon; Xu, Zhidong [Cellular Biochemistry Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Siddiqui, Rafat A., E-mail: rsiddiqu@iuhealth.org [Cellular Biochemistry Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Department of Biology, Indiana University-Purdue University, Indianapolis, IN (United States); Department of Medicine, Indiana University School of Medicine, Indianapolis, IN (United States)

    2011-07-29

    Highlights: {yields} 2,6-Diisopropylphenyl-docosahexaenoamide conjugates (DIP-DHA) inhibits the proliferation of T-cell leukemic cell lines. {yields} DIP-DHA resulted in increased activation of caspase-3, and caspase-7. {yields} DIP-DHA significantly downregulated CXCR4 surface expression. -- Abstract: We have previously characterized the effects of 2,6-diisopropylphenyl-docosahexaenoamide (DIP-DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP-DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP-DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP-DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP-DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP-DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP-DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.

  12. A novel 2,6-diisopropylphenyl-docosahexaenoamide conjugate induces apoptosis in T cell acute lymphoblastic leukemia cell lines

    International Nuclear Information System (INIS)

    Altenburg, Jeffrey D.; Harvey, Kevin A.; McCray, Sharon; Xu, Zhidong; Siddiqui, Rafat A.

    2011-01-01

    Highlights: → 2,6-Diisopropylphenyl-docosahexaenoamide conjugates (DIP-DHA) inhibits the proliferation of T-cell leukemic cell lines. → DIP-DHA resulted in increased activation of caspase-3, and caspase-7. → DIP-DHA significantly downregulated CXCR4 surface expression. -- Abstract: We have previously characterized the effects of 2,6-diisopropylphenyl-docosahexaenoamide (DIP-DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP-DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP-DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP-DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP-DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP-DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP-DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.

  13. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury.

    Science.gov (United States)

    Schober, Michelle E; Requena, Daniela F; Abdullah, Osama M; Casper, T Charles; Beachy, Joanna; Malleske, Daniel; Pauly, James R

    2016-02-15

    Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimental TBI are unknown. We hypothesized that DHA would decrease early inflammatory markers and oxidative stress, and improve cognitive, imaging and histologic outcomes in rat pups after controlled cortical impact (CCI). CCI or sham surgery was delivered to 17 d old male rat pups exposed to DHA or standard diet for the duration of the experiments. DHA was introduced into the dam diet the day before CCI to allow timely DHA delivery to the pre-weanling pups. Inflammatory cytokines and nitrates/nitrites were measured in the injured brains at post-injury Day (PID) 1 and PID2. Morris water maze (MWM) testing was performed at PID41-PID47. T2-weighted and diffusion tensor imaging studies were obtained at PID12 and PID28. Tissue sparing was calculated histologically at PID3 and PID50. DHA did not adversely affect rat survival or weight gain. DHA acutely decreased oxidative stress and increased anti-inflammatory interleukin 10 in CCI brains. DHA improved MWM performance and lesion volume late after injury. At PID12, DHA decreased T2-imaging measures of cerebral edema and decreased radial diffusivity, an index of white matter injury. DHA improved short- and long-term neurologic outcomes after CCI in the rat pup. Given its favorable safety profile, DHA is a promising candidate therapy for pediatric TBI. Further studies are needed to explore neuroprotective mechanisms of DHA after developmental TBI.

  14. The tissue residues of sodium dehydroacetate used as feed preservative in swine.

    Science.gov (United States)

    Liu, Hao; Han, Lingling; Xie, Jiayu; Wu, Yingchao; Xie, Yang; Zhang, Yumei

    2018-01-01

    Sodium dehydroacetate (Na-DHA) is a food and feed additive with antimicrobial effects. There is little information on Na-DHA residue levels in foods derived from animals. In this study, Na-DHA residue levels in swine tissues were determined by HLPC, and the pharmacokinetics of Na-DHA in tissues were determined. The Na-DHA residue levels in swine tissues were liver > muscle > fat. The pharmacokinetics of Na-DHA followed a binomial regression model, and the half-time of Na-DHA in swine tissues was 9.07 days for kidney, 7.19 days for liver, 6.66 days for muscle, and 5.39 days for fat tissue. The accuracy of the HPLC method for Na-DHA determination ranged from 80.18% to 91.33% recovery, with coefficients of variation swine diet is a safe feed additive based on residue elimination and ADI values reported. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Polymorphism in the fatty acid desaturase genes and diet are important determinants of infant n-3 fatty acid status

    DEFF Research Database (Denmark)

    Harsløf, L.B.S.; Larsen, L.H.; Ritz, C.

    and polymorphism in the genes that encodes the fatty acid desaturases (FADS) has little effect on DHA-status in adults. It is however unclear to what extent endogenous DHA-synthesis contributes to infant DHA-status. Aim: To investigate the role of diet and FADS polymorphism on DHA-status at 9 months and 3 years...... breastfeeding was obtained by questionnaires and fish intake was assessed by 7-day pre-coded food diaries. Results: FADS-genotype, breastfeeding, and fish intake were found to explain 25% of the variation in infant RBC DHA-status (mean±SD: 6.6±1.9% of the fatty acids (FA%)). Breastfeeding was the most important......Background and objectives: Tissue docosahexaenoic acid (DHA) accretion in early infancy has been shown to be supported by the DHA-content of breast-milk and thus may decrease once complementary feeding takes over. Endogenous synthesis of DHA from alpha-linolenic acid has been shown to be very low...

  16. Omega-3 fatty acid supplementation delays the progression of neuroblastoma in vivo.

    Science.gov (United States)

    Gleissman, Helena; Segerström, Lova; Hamberg, Mats; Ponthan, Frida; Lindskog, Magnus; Johnsen, John Inge; Kogner, Per

    2011-04-01

    Epidemiological and preclinical studies have revealed that omega-3 fatty acids have anticancer properties. We have previously shown that the omega-3 fatty acid docosahexaenoic acid (DHA) induces apoptosis of neuroblastoma cells in vitro by mechanisms involving intracellular peroxidation of DHA by means of 15-lipoxygenase or autoxidation. In our study, the effects of DHA supplementation on neuroblastoma tumor growth in vivo were investigated using two complementary approaches. For the purpose of prevention, DHA as a dietary supplement was fed to athymic rats before the rats were xenografted with human neuroblastoma cells. For therapeutic purposes, athymic rats with established neuroblastoma xenografts were given DHA daily by gavage and tumor growth was monitored. DHA levels in plasma and tumor tissue were analyzed by gas liquid chromatography. DHA delayed neuroblastoma xenograft development and inhibited the growth of established neuroblastoma xenografts in athymic rats. A revised version of the Pediatric Preclinical Testing Program evaluation scheme used as a measurement of treatment response showed that untreated control animals developed progressive disease, whereas treatment with DHA resulted in stable disease or partial response, depending on the DHA concentration. In conclusion, prophylactic treatment with DHA delayed neuroblastoma development, suggesting that DHA could be a potential agent in the treatment of minimal residual disease and should be considered for prevention in selected cases. Treatment results on established aggressive neuroblastoma tumors suggest further studies aiming at a clinical application in children with high-risk neuroblastoma. Copyright © 2010 UICC.

  17. Determination of the load state of lead-acid batteries using neural networks; Determinacion del estado de carga de baterias plomo-acido utilizando redes neuronales

    Energy Technology Data Exchange (ETDEWEB)

    Cristin V, Miguel A; Ortega S, Cesar A [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2005-07-01

    The charge of lead-acid batteries (LAB), as in any other type of batteries, consists of replacing the energy consumed during the discharge. Nevertheless, as no physical or chemical process is good enough to totality recharge a battery, it is necessary to supply to it more than the 100% of the energy demanded during its discharge. A critical factor to make a suitable load control of the batteries is to determine its own state of load. That is to say, to have an efficient load control, it is necessary to count on means that allow to accurately determining the residual capacity of the battery to deliver load. This one is the one of the aspects of greater interest in the research centers around world. For this reason, in this work it was pretended to develop a calculation algorithm of the state of load of batteries based on a fuzzy-neural network that could calculate the state of load without using the battery current as an input. This is because one of the main problems for the designers of battery load controllers is the correct supervision of the current that circulates around the system in all the rank of operation of the same one because the sensors do not have a linear behavior. [Spanish] La recarga de baterias plomo-acido (BPA), como cualquier otro tipo de baterias, consiste en reponer la energia consumida durante la descarga. Sin embargo, como ningun proceso fisico o quimico es lo bastante eficiente para recargar a totalidad una bateria, es necesario suministrarle mas del 100% de la energia demandada durante su descarga. Un factor critico para realizar un adecuado control de carga de las baterias, es determinar su propio estado de carga. Es decir, para tener un control de carga eficiente, es necesario contar con un medio que permita determinar con precision la capacidad remanente de la bateria para entregar carga. Este es uno de los aspectos de mayor interes en los centros de investigacion alrededor el mundo. Por tal razon, en este trabajo se propuso

  18. Docosahexaenoic acid modifies the clustering and size of lipid rafts and the lateral organization and surface expression of MHC class I of EL4 cells.

    Science.gov (United States)

    Shaikh, Saame Raza; Rockett, Benjamin Drew; Salameh, Muhammad; Carraway, Kristen

    2009-09-01

    An emerging molecular mechanism by which docosahexaenoic acid (DHA) exerts its effects is modification of lipid raft organization. The biophysical model, based on studies with liposomes, shows that DHA avoids lipid rafts because of steric incompatibility between DHA and cholesterol. The model predicts that DHA does not directly modify rafts; rather, it incorporates into nonrafts to modify the lateral organization and/or conformation of membrane proteins, such as the major histocompatibility complex (MHC) class I. Here, we tested predictions of the model at a cellular level by incorporating oleic acid, eicosapentaenoic acid (EPA), and DHA, compared with a bovine serum albumin (BSA) control, into the membranes of EL4 cells. Quantitative microscopy showed that DHA, but not EPA, treatment, relative to the BSA control diminished lipid raft clustering and increased their size. Approximately 30% of DHA was incorporated directly into rafts without changing the distribution of cholesterol between rafts and nonrafts. Quantification of fluorescence colocalization images showed that DHA selectively altered MHC class I lateral organization by increasing the fraction of the nonraft protein into rafts compared with BSA. Both DHA and EPA treatments increased antibody binding to MHC class I compared with BSA. Antibody titration showed that DHA and EPA did not change MHC I conformation but increased total surface levels relative to BSA. Taken together, our findings are not in agreement with the biophysical model. Therefore, we propose a model that reconciles contradictory viewpoints from biophysical and cellular studies to explain how DHA modifies lipid rafts on several length scales. Our study supports the notion that rafts are an important target of DHA's mode of action.

  19. Docosahexaenoic Acid and Cognition throughout the Lifespan

    Directory of Open Access Journals (Sweden)

    Michael J. Weiser

    2016-02-01

    Full Text Available Docosahexaenoic acid (DHA is the predominant omega-3 (n-3 polyunsaturated fatty acid (PUFA found in the brain and can affect neurological function by modulating signal transduction pathways, neurotransmission, neurogenesis, myelination, membrane receptor function, synaptic plasticity, neuroinflammation, membrane integrity and membrane organization. DHA is rapidly accumulated in the brain during gestation and early infancy, and the availability of DHA via transfer from maternal stores impacts the degree of DHA incorporation into neural tissues. The consumption of DHA leads to many positive physiological and behavioral effects, including those on cognition. Advanced cognitive function is uniquely human, and the optimal development and aging of cognitive abilities has profound impacts on quality of life, productivity, and advancement of society in general. However, the modern diet typically lacks appreciable amounts of DHA. Therefore, in modern populations, maintaining optimal levels of DHA in the brain throughout the lifespan likely requires obtaining preformed DHA via dietary or supplemental sources. In this review, we examine the role of DHA in optimal cognition during development, adulthood, and aging with a focus on human evidence and putative mechanisms of action.

  20. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy.

    Directory of Open Access Journals (Sweden)

    Yolanda Williams-Bey

    Full Text Available The omega-3 (ω3 fatty acid docosahexaenoic acid (DHA can suppress inflammation, specifically IL-1β production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1β production by limiting inflammasome activation. Exposure to DHA reduced IL-1β production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Free Fatty Acid Receptor (FFAR 4 (also known as GPR120, a G-protein coupled receptor (GPR known to bind DHA. The exposure of cells to DHA recruited the adapter protein β-arrestin1/2 to FFAR4, but not to a related lipid receptor. DHA treatment reduced the initial inflammasome priming step by suppressing the nuclear translocation of NF-κB. DHA also reduced IL-1β levels by enhancing autophagy in the cells. As a consequence macrophages derived from mice lacking the essential autophagy protein ATG7 were partially resistant to suppressive effects of DHA. Thus, DHA suppresses inflammasome activation by two distinct mechanisms, inhibiting the initial priming step and by augmenting autophagy, which limits inflammasome activity.

  1. Effect of fish oil supplementation on the n-3 fatty acid content of red blood cell membranes in preterm infants.

    Science.gov (United States)

    Carlson, S E; Rhodes, P G; Rao, V S; Goldgar, D E

    1987-05-01

    Very low birth weight infants demonstrate significant reductions in red blood cell membrane docosahexaenoic acid (DHA, 22:6n-3) following delivery unless fed human milk. The purpose of the present study was to determine if a dietary source of DHA (MaxEPA, R. P. Scherer Corporation, Troy, MI) could prevent the decline in red blood cell phospholipid DHA in very low birth weight infants whose enteral feeding consisted of a preterm formula without DHA. Longitudinal data were obtained on membrane phospholipid DHA in both unsupplemented and MaxEPA-supplemented infants by a combination of thin-layer and gas chromatography. These infants (n = 39) ranged in age from 10 to 53 days at enrollment (0 time). At enrollment, phospholipid DHA and arachidonic acid (20:4n-6) were inversely correlated with age in days. During the study, mean red blood cell phospholipid DHA declined without supplementary DHA as determined by biweekly measurement, but infants supplemented with MaxEPA maintained the same weight percent of phospholipid (phosphatidylethanolamine, phosphatidylcholine, and phosphatidylserine) DHA as at enrollment. The pattern of red blood cell phospholipid fatty acids in supplemented infants was similar to that reported for preterm infants fed human milk.

  2. The influence of supplemental docosahexaenoic and arachidonic acids during pregnancy and lactation on neurodevelopment at eighteen months

    NARCIS (Netherlands)

    van Goor, Saskia A.; Dijck-Brouwer, D. A. Janneke; Erwich, Jan Jaap H. M.; Schaafsma, Anne; Hadders-Algra, Mijna

    2011-01-01

    Docosahexaenoic acid (DHA) and arachidonic acid (AA) are important for neurodevelopment. The effects of DHA (220 mg/day, n=41), DHA+AA (220 mg/day, n=39) or placebo (n=34) during pregnancy and lactation on neurodevelopment at 18 months, and the relations between umbilical cord DHA, AA and Mead acid

  3. Feeding nitrate and docosahexaenoic acid affects enteric methane production and milk fatty acid composition in lactating dairy cows.

    Science.gov (United States)

    Klop, G; Hatew, B; Bannink, A; Dijkstra, J

    2016-02-01

    An experiment was conducted to study potential interaction between the effects of feeding nitrate and docosahexaenoic acid (DHA; C22:6 n-3) on enteric CH4 production and performance of lactating dairy cows. Twenty-eight lactating Holstein dairy cows were grouped into 7 blocks of 4 cows. Within blocks, cows were randomly assigned to 1 of 4 treatments: control (CON; urea as alternative nonprotein N source to nitrate), NO3 [21 g of nitrate/kg of dry matter (DM)], DHA (3 g of DHA/kg of DM and urea as alternative nonprotein N source to nitrate), or NO3 + DHA (21 g of nitrate/kg of DM and 3 g of DHA/kg of DM, respectively). Cows were fed a total mixed ration consisting of 21% grass silage, 49% corn silage, and 30% concentrates on a DM basis. Feed additives were included in the concentrates. Cows assigned to a treatment including nitrate were gradually adapted to the treatment dose of nitrate over a period of 21 d during which no DHA was fed. The experimental period lasted 17 d, and CH4 production was measured during the last 5d in climate respiration chambers. Cows produced on average 363, 263, 369, and 298 g of CH4/d on CON, NO3, DHA, and NO3 + DHA treatments, respectively, and a tendency for a nitrate × DHA interaction effect was found where the CH4-mitigating effect of nitrate decreased when combined with DHA. This tendency was not obtained for CH4 production relative to dry matter intake (DMI) or to fat- and protein corrected milk (FPCM). The NO3 treatment decreased CH4 production irrespective of the unit in which it was expressed, whereas DHA did not affect CH4 production per kilogram of DMI, but resulted in a higher CH4 production per kilogram of fat- and protein-corrected milk (FPCM) production. The FPCM production (27.9, 24.7, 24.2, and 23. 8 kg/d for CON, NO3, DHA, and NO3 + DHA, respectively) was lower for DHA-fed cows because of decreased milk fat concentration. The proportion of saturated fatty acids in milk fat was decreased by DHA, and the proportion of

  4. Dihydroartemisinin induces apoptosis preferentially via a Bim-mediated intrinsic pathway in hepatocarcinoma cells.

    Science.gov (United States)

    Qin, Guiqi; Zhao, ChuBiao; Zhang, Lili; Liu, Hongyu; Quan, Yingyao; Chai, Liuying; Wu, Shengnan; Wang, Xiaoping; Chen, Tongsheng

    2015-08-01

    This report is designed to dissect the detail molecular mechanism by which dihydroartemisinin (DHA), a derivative of artemisinin, induces apoptosis in human hepatocellular carcinoma (HCC) cells. DHA induced a loss of the mitochondrial transmemberane potential (ΔΨm), release of cytochrome c, activation of caspases, and externalization of phosphatidylserine indicative of apoptosis induction. Compared with the modest inhibitory effects of silencing Bax, silencing Bak largely prevented DHA-induced ΔΨm collapse and apoptosis though DHA induced a commensurable activation of Bax and Bak, demonstrating a key role of the Bak-mediated intrinsic apoptosis pathway. DHA did not induce Bid cleavage and translocation from cytoplasm to mitochondria and had little effects on the expressions of Puma and Noxa, but did increase Bim and Bak expressions and decrease Mcl-1 expression. Furthermore, the cytotoxicity of DHA was remarkably reduced by silencing Bim, and modestly but significantly reduced by silencing Puma or Noxa. Silencing Bim or Noxa preferentially reduced DHA-induced Bak activation, while silencing Puma preferentially reduced DHA-induced Bax activation, demonstrating that Bim and to a lesser extent Noxa act as upstream mediators to trigger the Bak-mediated intrinsic apoptosis pathway. In addition, silencing Mcl-1 enhanced DHA-induced Bak activation and apoptosis. Taken together, our data demonstrate a crucial role of Bim in preferentially regulating the Bak/Mcl-1 rheostat to mediate DHA-induced apoptosis in HCC cells.

  5. The Effect of Omega-3 Docosahexaenoic Acid Supplementation on Gestational Length: Randomized Trial of Supplementation Compared to Nutrition Education for Increasing n-3 Intake from Foods

    Directory of Open Access Journals (Sweden)

    Mary A. Harris

    2015-01-01

    Full Text Available Objective. DHA supplementation was compared to nutrition education to increase DHA consumption from fish and DHA fortified foods. Design. This two-part intervention included a randomized double-blind placebo controlled DHA supplementation arm and a nutrition education arm designed to increase intake of DHA from dietary sources by 300 mg per day. Setting. Denver Health Hospitals and Clinics, Denver, Colorado, USA. Population. 871 pregnant women aged 18–40 were recruited between16 and 20 weeks of gestation of whom 564 completed the study and complete delivery data was available in 505 women and infants. Methods. Subjects received either 300 or 600 mg DHA or olive oil placebo or nutrition education. Main Outcome Variable. Gestational length. Results. Gestational length was significantly increased by 4.0–4.5 days in women supplemented with 600 mg DHA per day or provided with nutrition education. Each 1% increase in RBC DHA at delivery was associated with a 1.6-day increase in gestational length. No significant effects on birth weight, birth length, or head circumference were demonstrated. The rate of early preterm birth (1.7% in those supplemented with DHA (combined 300 and 600 mg/day was significantly lower than in controls. Conclusion. Nutrition education or supplementation with DHA can be effective in increasing gestational length.

  6. Docosahexaenoic acid loaded lipid nanoparticles with bactericidal activity against Helicobacter pylori.

    Science.gov (United States)

    Seabra, Catarina Leal; Nunes, Cláudia; Gomez-Lazaro, Maria; Correia, Marta; Machado, José Carlos; Gonçalves, Inês C; Reis, Celso A; Reis, Salette; Martins, M Cristina L

    2017-03-15

    Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid present in fish oil, has been described as a promising molecule to the treatment of Helicobacter pylori gastric infection. However, due to its highly unsaturated structure, DHA can be easily oxidized loosing part of its bioactivity. This work aims the nanoencapsulation of DHA to improve its bactericidal efficacy against H. pylori. DHA was loaded into nanostructured lipid carriers (NLC) produced by hot homogenization and ultrasonication using a blend of lipids (Precirol ATO5 ® , Miglyol-812 ® ) and a surfactant (Tween 60 ® ). Homogeneous NLC with 302±14nm diameter, -28±3mV surface charge (dynamic and electrophoretic light scattering) and containing 66±7% DHA (UV/VIS spectroscopy) were successfully produced. Bacterial growth curves, performed over 24h in the presence of different DHA concentrations (free or loaded into NLC), demonstrated that nanoencapsulation enhanced DHA bactericidal effect, since DHA-loaded NLC were able to inhibit H. pylori growth in a much lower concentrations (25μM) than free DHA (>100μM). Bioimaging studies, using scanning and transmission electron microscopy and also imaging flow cytometry, demonstrated that DHA-loaded NLC interact with H. pylori membrane, increasing their periplasmic space and disrupting membrane and allowing the leakage of cytoplasmic content. Furthermore, the developed nanoparticles are not cytotoxic to human gastric adenocarcinoma cells at bactericidal concentrations. DHA-loaded NLC should, therefore, be envisaged as an alternative to the current treatments for H. pylori infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The intramolecular position of docosahexaenoic acid in the triacylglycerol sources used for pediatric nutrition has a minimal effect on its metabolic use.

    Science.gov (United States)

    Sala-Vila, Aleix; Castellote, Ana I; López-Sabater, M Carmen

    2008-03-01

    Docosahexaenoic acid (DHA) plays an important role in normal development of the brain and retina in the human. In utero, DHA is incorporated in the fetus, and its accretion continues throughout early postnatal life. Although human breast milk contains this fatty acid, several organizations recommend supplementing infant formulas with DHA for infants and premature infants. Traditionally, certain types of fish oil have been used for fortifying some infant formulas, but with the decline in world fisheries, the search for alternative sources of DHA continues. Among the viable ingredient sources of DHA is oil derived from single-cell organisms (marine microorganisms); however, these oil sources display different positional specificity of DHA in the glycerol lipids compared with that found in human breast milk lipids. In the latter, the DHA is mainly esterified in the central position of the glycerol backbone. Because of these differences in human milk and oils derived from single-cell organisms, recent research in biotechnology has focused on developing new structured triacylglycerols with an intramolecular structure resembling that found in human milk lipids. This research is justified by the potential differences in metabolism of DHA based on the hypothetical bioavailability and benefits in DHA found in human milk lipids. Presented herein is a review of the published research on the metabolism of DHA from different triacylglycerol sources including in vitro studies and animal studies. Despite small differences observed in digestion, the current data reveal a minimal effect on the parameters of development studied for the intramolecular position in which DHA is esterified.

  8. Docosahexaenoic acid signaling modulates cell survival in experimental ischemic stroke penumbra and initiates long-term repair in young and aged rats.

    Directory of Open Access Journals (Sweden)

    Tiffany N Eady

    Full Text Available Docosahexaenoic acid, a major omega-3 essential fatty acid family member, improves behavioral deficit and reduces infarct volume and edema after experimental focal cerebral ischemia. We hypothesize that DHA elicits neuroprotection by inducing AKT/p70S6K phosphorylation, which in turn leads to cell survival and protects against ischemic stroke in young and aged rats.Rats underwent 2 h of middle cerebral artery occlusion (MCAo. DHA, neuroprotectin D1 (NPD1 or vehicle (saline was administered 3 h after onset of stroke. Neurological function was evaluated on days 1, 2, 3, and 7. DHA treatment improved functional recovery and reduced cortical, subcortical and total infarct volumes 7 days after stroke. DHA also reduced microglia infiltration and increased the number of astrocytes and neurons when compared to vehicle on days 1 and 7. Increases in p473 AKT and p308 AKT phosphorylation/activation were observed in animals treated with DHA 4 h after MCAo. Activation of other members of the AKT signaling pathway were also observed in DHA treated animals including increases in pS6 at 4 h and pGSK at 24 h. DHA or NPD1 remarkably reduced total and cortical infarct in aged rats. Moreover, we show that in young and aged rats DHA treatment after MCAo potentiates NPD1 biosynthesis. The phosphorylation of p308 AKT or pGSK was not different between groups in aged rats. However, pS6 expression was increased with DHA or NPD1 treatment when compared to vehicle.We suggest that DHA induces cell survival, modulates the neuroinflammatory response and triggers long term restoration of synaptic circuits. Both DHA and NPD1 elicited remarkable protection in aged animals. Accordingly, activation of DHA signaling might provide benefits in the management of ischemic stroke both acutely as well as long term to limit ensuing disabilities.

  9. Effects of purified eicosapentaenoic and docosahexaenoic acids in nonalcoholic fatty liver disease: results from the Welcome* study.

    Science.gov (United States)

    Scorletti, Eleonora; Bhatia, Lokpal; McCormick, Keith G; Clough, Geraldine F; Nash, Kathryn; Hodson, Leanne; Moyses, Helen E; Calder, Philip C; Byrne, Christopher D

    2014-10-01

    There is no licensed treatment for non-alcoholic fatty liver disease (NAFLD), a condition that increases risk of chronic liver disease, type 2 diabetes and cardiovascular disease. We tested whether 15-18 months treatment with docosahexaenoic acid (DHA) plus eicosapentaenoic acid (EPA) (Omacor/Lovaza) (4 g/day) decreased liver fat and improved two histologically-validated liver fibrosis biomarker scores (primary outcomes). Patients with NAFLD were randomised in a double blind placebo-controlled trial [DHA+EPA(n=51), placebo(n=52)]. We quantified liver fat percentage (%) by magnetic resonance spectroscopy in three liver zones. We measured liver fibrosis using two validated scores. We tested adherence to the intervention (Omacor group) and contamination (with DHA and EPA) (placebo group) by measuring erythrocyte percentage DHA and EPA enrichment (gas chromatography). We undertook multivariable linear regression to test effects of: a) DHA+EPA treatment (ITT analyses) and b) erythrocyte DHA and EPA enrichment (secondary analysis). Median (IQR) baseline and end of study liver fat% were 21.7 (19.3) and 19.7 (18.0) (placebo), and 23.0 (36.2) and 16.3 (22.0), (DHA+EPA). In the fully adjusted regression model there was a trend towards improvement in liver fat% with DHA+EPA treatment (β=-3.64 (95%CI -8.0,0.8); p=0.1) but there was evidence of contamination in the placebo group and variable adherence to the intervention in the Omacor group. Further regression analysis showed that DHA enrichment was independently associated with a decrease in liver fat% (for each 1% enrichment, β=-1.70 (95%CI -2.9,-0.5); p=0.007). No improvement in the fibrosis scores occurred. Conclusion. Erythrocyte DHA enrichment with DHA+EPA treatment is linearly associated with decreased liver fat%. Substantial decreases in liver fat% can be achieved with high percentage erythrocyte DHA enrichment in NAFLD. (Hepatology 2014;).

  10. CHARACTERIZATION OF THE NUTRITIONAL QUALITY OF THE MEAT IN SOME SPECIES OF CATFISH: A REVIEW REVISIÓN: CARACTERIZACIÓN DE LA CALIDAD NUTRICIONAL DE LA CARNE EN ALGUNAS ESPECIES DE BAGRE

    Directory of Open Access Journals (Sweden)

    Nubia Estella Cruz Casallas

    2012-06-01

    se encuentra dentro de lo establecido por la Organización Mundial de la Salud (OMS para muchas de estas especies de bagre. De igual forma, el contenido de los ácidos eicosapentaenoico (EPA y docosahexaenoico (DHA, así como el de aminoácidos, minerales y vitaminas, revelan una alta variabilidad individual y entre especies, asociada con el tipo de cultivo y los hábitos alimenticios, así como también con la edad y peso al momento del sacrificio. Asimismo, se han definido algunos parámetros de calidad relacionados con la susceptibilidad a la autolisis, oxidación e hidrólisis de las grasas y con las alteraciones causadas por microorganismos que generan cambios determinantes en las características fisicoquímicas, microbiológicas y sensoriales. Esta revisión recopila la información actual relacionada sobre la composición nutricional de la carne de bagre y los parámetros de calidad.

  11. Deficiencia de ácidos grasos esenciales en el feto y en el recién nacido pretérmino

    Directory of Open Access Journals (Sweden)

    Virginia Díaz-Argüelles Ramírez-Corría

    2001-03-01

    Full Text Available Se informa que los ácidos grasos poliinsaturados de cadena larga son esenciales en la nutrición del feto y el recién nacido (RN. Tanto la familia omega 3(omega-3 como la omega 6(omega-6, tienen 2 actividades biológicas importantes que son la integridad de las membranas celulares y la formación de prostaglandinas y tromboxanos. El cerebro fetal se desarrolla precozmente y el 60 % de su material estructural son los lípidos, por lo tanto existe una relación entre el estado nutricional de la madre y la acreción de nutrientes durante el embarazo. El 70 % del número total de neuronas se divide antes del nacimiento a término y los ácidos grasos esenciales desempeñan un papel determinante. La placenta tiene un transporte preferencial a finales del tercer trimestre, de ácido araquidónico (AA y docosahexaenoico (DHA, pues los mecanismos de desaturación y elongación son inmaduros en el RN a término. La deficiencia de ácidos grasos poliinsaturados de cadena larga en el RN pretérmino afecta fundamentalmente el desarrollo cerebral y de la retina a largo plazo y se manifiesta con trastornos hematológicos, dermatitis, hipotonía, entre otros, de forma precoz. Se exponen las recomendaciones de la FAO/OMS y de la ESPGAN en relación con el aporte dietético de ácidos grasos esenciales en las formulaciones de leches artificiales y las ventajas de la leche materna biológica para los RN de este grupo de peso.It is reported that the long chain polyunsaturated fatty acids are essential in the nutrition of the fetus and of the newborn infant. Both, the omega 3 family 3(W-3 and the omega 3(W-6 have 2 important biological activities, which are the integrity of the cellular membranes and the formation of prostaglandins and thromboxanes. The fetal brain develops early and 60 % of its structrural material are lipids, therefore, there is a relationship between the nutritional status of the mother and the decreasing of nutrients during pregnancy. 70 % of

  12. Docosahexaenoic Acid and Neurodevelopmental Outcomes of Term Infants.

    Science.gov (United States)

    Meldrum, Suzanne; Simmer, Karen

    2016-01-01

    Docosahexaenoic acid (DHA), a long-chain polyunsaturated fatty acid, is essential for normal brain development. DHA is found predominantly in seafood, fish oil, breastmilk and supplemented formula. DHA intake in Western countries is often below recommendations. Observational studies have demonstrated an association between DHA intake in pregnancy and neurodevelopment of offspring but cannot fully adjust for confounding factors that influence child development. Randomised clinical trials of DHA supplementation during pregnancy and/or lactation, and of term infants, have not shown a consistent benefit nor harm on neurodevelopment of healthy children born at term. The evidence does not support DHA supplementation of healthy pregnant and lactating women, nor healthy infants. © 2016 S. Karger AG, Basel.

  13. Whole-Body Docosahexaenoic Acid Synthesis-Secretion Rates in Rats Are Constant across a Large Range of Dietary α-Linolenic Acid Intakes.

    Science.gov (United States)

    Domenichiello, Anthony F; Kitson, Alex P; Metherel, Adam H; Chen, Chuck T; Hopperton, Kathryn E; Stavro, P Mark; Bazinet, Richard P

    2017-01-01

    Docosahexaenoic acid (DHA) is an ω-3 (n-3) polyunsaturated fatty acid (PUFA) thought to be important for brain function. Although the main dietary source of DHA is fish, DHA can also be synthesized from α-linolenic acid (ALA), which is derived from plants. Enzymes involved in DHA synthesis are also active toward ω-6 (n-6) PUFAs to synthesize docosapentaenoic acid n-6 (DPAn-6). It is unclear whether DHA synthesis from ALA is sufficient to maintain brain DHA. The objective of this study was to determine how different amounts of dietary ALA would affect whole-body DHA and DPAn-6 synthesis rates. Male Long-Evans rats were fed an ALA-deficient diet (ALA-D), an ALA-adequate (ALA-A) diet, or a high-ALA (ALA-H) diet for 8 wk from weaning. Dietary ALA concentrations were 0.07%, 3%, and 10% of the fatty acids, and ALA was the only dietary PUFA that differed between the diets. After 8 wk, steady-state stable isotope infusion of labeled ALA and linoleic acid (LA) was performed to determine the in vivo synthesis-secretion rates of DHA and DPAn-6. Rats fed the ALA-A diet had an ∼2-fold greater capacity to synthesize DHA than did rats fed the ALA-H and ALA-D diets, and a DHA synthesis rate that was similar to that of rats fed the ALA-H diet. However, rats fed the ALA-D diet had a 750% lower DHA synthesis rate than rats fed the ALA-A and ALA-H diets. Despite enrichment into arachidonic acid, we did not detect any labeled LA appearing as DPAn-6. Increasing dietary ALA from 3% to 10% of fatty acids did not increase DHA synthesis rates, because of a decreased capacity to synthesize DHA in rats fed the ALA-H diet. Tissue concentrations of DPAn-6 may be explained at least in part by longer plasma half-lives. © 2017 American Society for Nutrition.

  14. Effect of Docosahexaenoic Acid on Apoptosis and Proliferation in the Placenta: Preliminary Report

    Directory of Open Access Journals (Sweden)

    Ewa Wietrak

    2015-01-01

    Full Text Available Introduction. Observational studies confirm a higher incidence of preeclampsia in patients with low erythrocyte concentrations of omega-3 fatty acids. Observations point to an association of disorders of pregnancy, such as intrauterine growth restriction (IUGR and preeclampsia, with excessive apoptosis. One potential mechanism of action of docosahexaenoic acid (DHA promoting a reduction in the risk of pathological pregnancy may be by influencing these processes in the placenta. Materials and Methods. We investigated 28 pregnant women supplemented with a fish oil product containing 300 mg DHA starting from pregnancy week 20 until delivery (DHA group. The control group consisted of 50 women who did not receive such supplementation (control group. We determined the expression of Ki-67 and p21 as markers of proliferation and caspase 3 activity as a marker of apoptosis and DHA levels in umbilical cord blood. Results. Caspase 3 activity was significantly lower in the DHA group in comparison to the control group. Umbilical cord blood DHA concentration was higher in the DHA group. The expression of the proteins p21 and Ki-67 did not differ significantly between the groups. Conclusions. We observed an association between DHA supplementation and inhibition of placental apoptosis. We did not find an association between DHA and proliferation process in the placenta.

  15. Single-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniques

    Science.gov (United States)

    Lu, Ying-Ying; Chen, Tong-Sheng; Wang, Xiao-Ping; Li, Li

    2010-07-01

    Dihydroartemisinin (DHA), a front-line antimalarial herbal compound, has been shown to possess promising anticancer activity with low toxicity. We have previously reported that DHA induced caspase-3-dependent apoptosis in human lung adenocarcinoma cells. However, the cellular target and molecular mechanism of DHA-induced apoptosis is still poorly defined. We use confocal fluorescence microscopy imaging, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching techniques to explore the roles of DHA-elicited reactive oxygen species (ROS) in the DHA-induced Bcl-2 family proteins activation, mitochondrial dysfunction, caspase cascade, and cell death. Cell Counting Kit-8 assay and flow cytometry analysis showed that DHA induced ROS-mediated apoptosis. Confocal imaging analysis in a single living cell and Western blot assay showed that DHA triggered ROS-dependent Bax translocation, mitochondrial membrane depolarization, alteration of mitochondrial morphology, cytochrome c release, caspase-9, caspase-8, and caspase-3 activation, indicating the coexistence of ROS-mediated mitochondrial and death receptor pathway. Collectively, our findings demonstrate for the first time that DHA induces cell apoptosis by triggering ROS-mediated caspase-8/Bid activation and the mitochondrial pathway, which provides some novel insights into the application of DHA as a potential anticancer drug and a new therapeutic strategy by targeting ROS signaling in lung adenocarcinoma therapy in the future.

  16. Improved mitochondrial function with diet-induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids.

    Directory of Open Access Journals (Sweden)

    Ramzi J Khairallah

    Full Text Available Mitochondria can depolarize and trigger cell death through the opening of the mitochondrial permeability transition pore (MPTP. We recently showed that an increase in the long chain n3 polyunsaturated fatty acids (PUFA docosahexaenoic acid (DHA; 22:6n3 and depletion of the n6 PUFA arachidonic acid (ARA; 20:4n6 in mitochondrial membranes is associated with a greater Ca(2+ load required to induce MPTP opening. Here we manipulated mitochondrial phospholipid composition by supplementing the diet with DHA, ARA or combined DHA+ARA in rats for 10 weeks. There were no effects on cardiac function, or respiration of isolated mitochondria. Analysis of mitochondrial phospholipids showed DHA supplementation increased DHA and displaced ARA in mitochondrial membranes, while supplementation with ARA or DHA+ARA increased ARA and depleted linoleic acid (18:2n6. Phospholipid analysis revealed a similar pattern, particularly in cardiolipin. Tetralinoleoyl cardiolipin was depleted by 80% with ARA or DHA+ARA supplementation, with linoleic acid side chains replaced by ARA. Both the DHA and ARA groups had delayed Ca(2+-induced MPTP opening, but the DHA+ARA group was similar to the control diet. In conclusion, alterations in mitochondria membrane phospholipid fatty acid composition caused by dietary DHA or ARA was associated with a greater cumulative Ca(2+ load required to induced MPTP opening. Further, high levels of tetralinoleoyl cardiolipin were not essential for normal mitochondrial function if replaced with very-long chain n3 or n6 PUFAs.

  17. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Soyeon; Shin, Soyeon; Lim, Kyu [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of); Heo, Jun Young, E-mail: junyoung3@gmail.com [Brainscience Institute, Chungnam National University, Daejeon (Korea, Republic of); Kweon, Gi Ryang, E-mail: mitochondria@cnu.ac.kr [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-30

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  18. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    International Nuclear Information System (INIS)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-01

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis

  19. A randomised controlled trial comparing the effect of adjuvant ...

    African Journals Online (AJOL)

    Results: The duration of effective analgesia was longer in the midazolam group ... There was no significant difference (P 0.4047). ... events, peripheral vasoconstriction, and metabolic acido- .... determined and recorded every hour. ..... scriptions of chronic pain syndromes and definitions of ... Long-term intrathecal adminis-.

  20. Nucleic Acids and Protein Metabolism of Bone Marrow Cells Studied by Means of Tritiumlabelled Precursors; Etude du Metabolisme des Acides Nucleiques et des Proteines dans les Cellules de la Moelle Osseuse, a l'Aide de Precurseurs Trities; 0418 0437 0443 0414 ; Estudio con Ayuda de Precursores Tritiados del Metabolismo de los acidos Nucleicos y de las Proteinas en las Celulas de la Medula Osea;

    Energy Technology Data Exchange (ETDEWEB)

    Gavosto, F. [Istituto di Clinica Medica Generale e Centro di Studi Fisico-Biologici, Universita de Turin, Turin (Italy)

    1962-02-15

    . L'auteur examine ensuite la diminution et la dissociation du metabolisme de l'ARN et des proteines, dans les cellules de sujets atteints de leucemie aiguee, par rapport aux anomalies bien connues que presente le processus de maturation de ces cellules. (author) [Spanish] El autor examina las ventajas que presenta el empleo de los compuestos marcados con tritio en la tecnica autorradiografica. En efecto, los electrones emitidos por el tritio tienen una energia maxima de 0,018 MeV, que corresponde, aproximadamente, a un alcance de 1 miera en una emulsion fotografica y permiten, por lo tanto, lograr el maximo poder de resolucion al nivel celular y subcelular. Ello es particularmente util para estudiar fenomenos metabolicos en tejidos que se componen, como en el caso de la medula osea, de celulas de varios tipos en diversos estados de diferenciacion. Esta tecnica se ha aplicado al estudio del metabolismo de los acidos nucleicos y de las proteinas en las celulas normales y leucemicas de la medula osea. El metabolismo del acido desoxirribonucleico se ha estudiado utilizando un precursor especifico, la timidina-{sup 3}H. Comparando los elementos normales y leucemicos que han alcanzado un grado de madurez analogo, se han observado diferencias significativas en el porcentaje de celulas marcadas. Especialmente, en los casos de leucemia aguda, se ha comprobado que la incorporacion de timidina en las celulas leucemicas disminuye muy notablemente. Se estima que estos resultados constituyen una prueba de que la capacidad de proliferacion de estas celulas disminuye en comparacion con la de los mieloblastos normales. Por este mismo procedimiento, se ha estudiado el metabolismo del acido ribonucleico y de las proteinas, utilizando como precursores uridina-{sup 3}H, leucina-{sup 3}H y fenilalanina-{sup 3}H. Actualmente, en biologia celular se admite sin reservas la existencia de una estrecha relacion entre el metabolismo del acido ribonucleico y el de las proteinas. Ademas, se ha

  1. DHAid™ – The vegetarian source

    Directory of Open Access Journals (Sweden)

    Freitas Ulla

    2008-07-01

    Full Text Available In humans, DHA occurs naturally as a cell membrane fatty acid in the brain, retina, testes and sperm, and has been reported to be essential in the development of these organs and cells. There it is crucial for the functioning of embedded proteins, i.e. rhodopsin for vision and postsynaptic receptors for neurotransmission. In phospholipids in general, DHA contributes to membrane properties such as fluidity, flexibility and permeability. A deficiency in DHA can lead to memory loss, learning disabilities and impaired visual acuity. Limited storage of DHA in adipose tissue suggests that a continuous supply is needed. These facts clearly demonstrate the physiological importance of DHA for humans and have resulted, for example, in the recommendation of increasing dietary intake of DHA during pregnancy and lactation. Also in the maintenance of cardiovascular health, DHA plays an important role. DHAid™ is a pure vegetarian source of omega-3 docosahexaenoic acid (DHA. It is produced from microalgae in a controlled process in fermentation vessels by the Swiss life-science company Lonza. Due to its renewable sources, DHAid™ is environmentally friendly. DHAid™ is allergen free and is free of potential contaminants that are discussed for seafood.

  2. Effect of docosahexaenoic acid and ascorbate on peroxidation of retinal membranes of ODS rats.

    Science.gov (United States)

    Wang, Jin-Ye; Sekine, Seiji; Saito, Morio

    2003-04-01

    Mutant male osteogenic disorder Shionogi (ODS) rats, unable to synthesize ascorbic acid, were fed diets containing a high content of docosahexaenoic acid (DHA) and different amounts of ascorbic acid, to study the effect of DHA on peroxidative susceptibility of the retina and possible antioxidant action of ascorbic acid. ODS rats were fed from 7 weeks of age with diets containing high DHA (6.4% of total energy). A control group received a diet high in linoleic acid. The diets also contained varying amounts of ascorbic acid. Fatty acid compositions and phospholipid hydroperoxides in rod outer segment (ROS) membranes, and retinal ascorbic acid were analyzed. DHA in ROS membranes was significantly increased in rats fed high DHA, compared with the linoleic acid diet. Levels of phospholipid hydroperoxides in the DHA-fed rats were significantly higher than the linoleic acid-fed rats. Ascorbic acid supplementation did not suppress the phospholipid hydroperoxide levels after a high DHA diet, even when the supplement increased the content of retinal ascorbic acid. In conclusion, high DHA feeding induced a marked increase of phospholipid hydroperoxides in ROS membranes of ODS rats. Supplementation of ascorbic acid did not reverse this increase.

  3. Docosahexaenoic Acid Reduces Amyloid β Production via Multiple Pleiotropic Mechanisms*

    Science.gov (United States)

    Grimm, Marcus O. W.; Kuchenbecker, Johanna; Grösgen, Sven; Burg, Verena K.; Hundsdörfer, Benjamin; Rothhaar, Tatjana L.; Friess, Petra; de Wilde, Martijn C.; Broersen, Laus M.; Penke, Botond; Péter, Mária; Vígh, László; Grimm, Heike S.; Hartmann, Tobias

    2011-01-01

    Alzheimer disease is characterized by accumulation of the β-amyloid peptide (Aβ) generated by β- and γ-secretase processing of the amyloid precursor protein (APP). The intake of the polyunsaturated fatty acid docosahexaenoic acid (DHA) has been associated with decreased amyloid deposition and a reduced risk in Alzheimer disease in several epidemiological trials; however, the exact underlying molecular mechanism remains to be elucidated. Here, we systematically investigate the effect of DHA on amyloidogenic and nonamyloidogenic APP processing and the potential cross-links to cholesterol metabolism in vivo and in vitro. DHA reduces amyloidogenic processing by decreasing β- and γ-secretase activity, whereas the expression and protein levels of BACE1 and presenilin1 remain unchanged. In addition, DHA increases protein stability of α-secretase resulting in increased nonamyloidogenic processing. Besides the known effect of DHA to decrease cholesterol de novo synthesis, we found cholesterol distribution in plasma membrane to be altered. In the presence of DHA, cholesterol shifts from raft to non-raft domains, and this is accompanied by a shift in γ-secretase activity and presenilin1 protein levels. Taken together, DHA directs amyloidogenic processing of APP toward nonamyloidogenic processing, effectively reducing Aβ release. DHA has a typical pleiotropic effect; DHA-mediated Aβ reduction is not the consequence of a single major mechanism but is the result of combined multiple effects. PMID:21324907

  4. Natural Docosahexaenoic Acid in the Triglyceride Form Attenuates In Vitro Microglial Activation and Ameliorates Autoimmune Encephalomyelitis in Mice

    Directory of Open Access Journals (Sweden)

    Pilar Mancera

    2017-06-01

    Full Text Available Many neurodegenerative diseases are associated, at least in part, to an inflammatory process in which microglia plays a major role. The effect of the triglyceride form of the omega-3 polyunsaturated fatty acid docosahexaenoic acid (TG-DHA was assayed in vitro and in vivo to assess the protective and anti-inflammatory activity of this compound. In the in vitro study, BV-2 microglia cells were previously treated with TG-DHA and then activated with Lipopolysaccharide (LPS and Interferon-gamma (IFN-γ. TG-DHA treatment protected BV-2 microglia cells from oxidative stress toxicity attenuating NO production and suppressing the induction of inflammatory cytokines. When compared with DHA in the ethyl-ester form, a significant difference in the ability to inhibit NO production in favor of TG-DHA was observed. TG-DHA inhibited significantly splenocyte proliferation but isolated CD4+ lymphocyte proliferation was unaffected. In a mice model of autoimmune encephalomyelitis (EAE, 250 mg/kg/day oral TG-DHA treatment was associated with a significant amelioration of the course and severity of the disease as compared to untreated animals. TG-DHA-treated EAE mice showed a better weight profile, which is a symptom related to a better course of encephalomyelitis. TG-DHA may be a promising therapeutic agent in neuroinflammatory processes and merit to be more extensively studied in human neurodegenerative disorders.

  5. Dietary arachidonic acid in perinatal nutrition: a commentary.

    Science.gov (United States)

    Lauritzen, Lotte; Fewtrell, Mary; Agostoni, Carlo

    2015-01-01

    Arachidonic acid (AA) is supplied together with docosahexaenoic acid (DHA) in infant formulas, but we have limited knowledge about the effects of supplementation with either of these long-chain polyunsaturated fatty acids (LCPUFA) on growth and developmental outcomes. AA is present in similar levels in breast milk throughout the world, whereas the level of DHA is highly diet dependent. Autopsy studies show similar diet-dependent variation in brain DHA, whereas AA is little affected by intake. Early intake of DHA has been shown to affect visual development, but the effect of LCPUFA on neurodevelopment remains to be established. Few studies have found any functional difference between infants supplemented with DHA alone compared to DHA+AA, but some studies show neurodevelopmental advantages in breast-fed infants of mothers supplemented with n-3 LCPUFA alone. It also remains to be established whether the AA/DHA balance could affect allergic and inflammatory outcomes later in life. Disentangling effects of genetic variability and dietary intake on AA and DHA-status and on functional outcomes may be an important step in the process of determining whether AA-intake is of any physiological or clinical importance. However, based on the current evidence we hypothesize that dietary AA plays a minor role on growth and development relative to the impact of dietary DHA.

  6. Docosahexaenoic acid inhibits monocrotaline-induced pulmonary hypertension via attenuating endoplasmic reticulum stress and inflammation.

    Science.gov (United States)

    Chen, Rui; Zhong, Wei; Shao, Chen; Liu, Peijing; Wang, Cuiping; Wang, Zhongqun; Jiang, Meiping; Lu, Yi; Yan, Jinchuan

    2018-02-01

    Endoplasmic reticulum (ER) stress and inflammation contribute to pulmonary hypertension (PH) pathogenesis. Previously, we confirmed that docosahexaenoic acid (DHA) could improve hypoxia-induced PH. However, little is known about the link between DHA and monocrotaline (MCT)-induced PH. Our aims were, therefore, to evaluate the effects and molecular mechanisms of DHA on MCT-induced PH in rats. Rat PH was induced by MCT. Rats were treated with DHA daily in the prevention group (following MCT injection) and the reversal group (after MCT injection for 2 wk) by gavage. After 4 wk, mean pulmonary arterial pressure (mPAP), right ventricular (RV) hypertrophy index, and morphological and immunohistochemical analyses were evaluated. Rat pulmonary artery smooth muscle cells (PASMCs) were used to investigate the effects of DHA on cell proliferation stimulated by platelet-derived growth factor (PDGF)-BB. DHA decreased mPAP and attenuated pulmonary vascular remodeling and RV hypertrophy, which were associated with suppressed ER stress. DHA blocked the mitogenic effect of PDGF-BB on PASMCs and arrested the cell cycle via inhibiting nuclear factor of activated T cells-1 (NFATc1) expression and activation and regulating cell cycle-related proteins. Moreover, DHA ameliorated inflammation in lung and suppressed macrophage and T lymphocyte accumulation in lung and adventitia of resistance pulmonary arteries. These findings suggest that DHA could protect against MCT-induced PH by reducing ER stress, suppressing cell proliferation and inflammation.

  7. Long-chain n-3 PUFA in vegetarian women: a metabolic perspective.

    Science.gov (United States)

    Burdge, Graham C; Tan, Sze-Yen; Henry, Christiani Jeyakumar

    2017-01-01

    Vegetarian diets have been associated with health benefits, but paradoxically are low in EPA and DHA which are important for development, particularly of the central nervous system, and for health. Humans have limited capacity for synthesis of EPA and DHA from α-linolenic acid, although this is greater in women than men. Oily fish and, to a lesser extent, dairy foods and meat are the primary sources of EPA and DHA in the diet. Exclusion of these foods from the diet by vegetarians is associated consistently with lower EPA and DHA status in vegetarian women compared with omnivores. The purpose of the present review was to assess the impact of low EPA and DHA status in vegetarian pregnancies on the development and health of children. EPA and DHA status was lower in breast milk and in infants of vegetarian mothers than those born to omnivore mothers, which suggests that in the absence of pre-formed dietary EPA and DHA, synthesis from α-linolenic acid is an important process in determining maternal EPA and DHA status in pregnancy. However, there have been no studies that have investigated the effect of low maternal DHA status in vegetarians on cognitive function in children. It is important to address this gap in knowledge in order to be confident that vegetarian and vegan diets during pregnancy are safe in the context of child development.

  8. Photoswitchable Dihydroazulene Macrocycles for Solar Energy Storage: The Effects of Ring Strain.

    Science.gov (United States)

    Vlasceanu, Alexandru; Frandsen, Benjamin N; Skov, Anders B; Hansen, Anne Schou; Rasmussen, Mads Georg; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2017-10-06

    Efficient energy storage and release are two major challenges of solar energy harvesting technologies. The development of molecular solar thermal systems presents one approach to address these issues by tuning the isomerization reactions of photo/thermoswitches. Here we show that the incorporation of photoswitches into macrocyclic structures is a particularly attractive solution for increasing the storage time. We present the synthesis and properties of a series of macrocycles incorporating two dihydroazulene (DHA) photoswitching subunits, bridged by linkers of varying chain length. Independent of ring size, all macrocycles exhibit stepwise, light-induced, ring-opening reactions (DHA-DHA to DHA-VHF to VHF-VHF; VHF = vinylheptafulvene) with the first DHA undergoing isomerization with a similar efficiency as the uncyclized parent system while the second (DHA-VHF to VHF-VHF) is significantly slower. The energy-releasing, VHF-to-DHA, ring closures also occur in a stepwise manner and are systematically found to proceed slower in the more strained (smaller) cycles, but in all cases with a remarkably slow conversion of the second VHF to DHA. We managed to increase the half-life of the second VHF-to-DHA conversion from 65 to 202 h at room temperature by simply decreasing the ring size. A computational study reveals the smallest macrocycle to have the most energetic VHF-VHF state and hence highest energy density.

  9. Down-regulation of lipid raft-associated onco-proteins via cholesterol-dependent lipid raft internalization in docosahexaenoic acid-induced apoptosis.

    Science.gov (United States)

    Lee, Eun Jeong; Yun, Un-Jung; Koo, Kyung Hee; Sung, Jee Young; Shim, Jaegal; Ye, Sang-Kyu; Hong, Kyeong-Man; Kim, Yong-Nyun

    2014-01-01

    Lipid rafts, plasma membrane microdomains, are important for cell survival signaling and cholesterol is a critical lipid component for lipid raft integrity and function. DHA is known to have poor affinity for cholesterol and it influences lipid rafts. Here, we investigated a mechanism underlying the anti-cancer effects of DHA using a human breast cancer cell line, MDA-MB-231. We found that DHA decreased cell surface levels of lipid rafts via their internalization, which was partially reversed by cholesterol addition. With DHA treatment, caveolin-1, a marker for rafts, and EGFR were colocalized with LAMP-1, a lysosomal marker, in a cholesterol-dependent manner, indicating that DHA induces raft fusion with lysosomes. DHA not only displaced several raft-associated onco-proteins, including EGFR, Hsp90, Akt, and Src, from the rafts but also decreased total levels of those proteins via multiple pathways, including the proteasomal and lysosomal pathways, thereby decreasing their activities. Hsp90 overexpression maintained its client proteins, EGFR and Akt, and attenuated DHA-induced cell death. In addition, overexpression of Akt or constitutively active Akt attenuated DHA-induced apoptosis. All these data indicate that the anti-proliferative effect of DHA is mediated by targeting of lipid rafts via decreasing cell surface lipid rafts by their internalization, thereby decreasing raft-associated onco-proteins via proteasomal and lysosomal pathways and decreasing Hsp90 chaperone function. © 2013.

  10. Metabotyping of docosahexaenoic acid - treated Alzheimer's disease cell model.

    Directory of Open Access Journals (Sweden)

    Priti Bahety

    Full Text Available BACKGROUND: Despite the significant amount of work being carried out to investigate the therapeutic potential of docosahexaenoic acid (DHA in Alzheimer's disease (AD, the mechanism by which DHA affects amyloid-β precursor protein (AβPP-induced metabolic changes has not been studied. OBJECTIVE: To elucidate the metabolic phenotypes (metabotypes associated with DHA therapy via metabonomic profiling of an AD cell model using gas chromatography time-of-flight mass spectrometry (GC/TOFMS. METHODS: The lysate and supernatant samples of CHO-wt and CHO-AβPP695 cells treated with DHA and vehicle control were collected and prepared for GC/TOFMS metabonomics profiling. The metabolic profiles were analyzed by multivariate data analysis techniques using SIMCA-P+ software. RESULTS: Both principal component analysis and subsequent partial least squares discriminant analysis revealed distinct metabolites associated with the DHA-treated and control groups. A list of statistically significant marker metabolites that characterized the metabotypes associated with DHA treatment was further identified. Increased levels of succinic acid, citric acid, malic acid and glycine and decreased levels of zymosterol, cholestadiene and arachidonic acid correlated with DHA treatment effect. DHA levels were also found to be increased upon treatment. CONCLUSION: Our study shows that DHA plays a role in mitigating AβPP-induced impairment in energy metabolism and inflammation by acting on tricarboxylic acid cycle, cholesterol biosynthesis pathway and fatty acid metabolism. The perturbations of these metabolic pathways by DHA in CHO-wt and CHO-AβPP695 cells shed further mechanistic insights on its neuroprotective actions.

  11. Docosahexaenoic acid alters Gsα localization in lipid raft and potentiates adenylate cyclase.

    Science.gov (United States)

    Zhu, Zhuoran; Tan, Zhoubin; Li, Yan; Luo, Hongyan; Hu, Xinwu; Tang, Ming; Hescheler, Jürgen; Mu, Yangling; Zhang, Lanqiu

    2015-01-01

    Supplementation with docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid (PUFA), recently has become popular for the amelioration of depression; however the molecular mechanism of DHA action remains unclear. The aim of this study was to investigate the mechanism underlying the antidepressant effect of DHA by evaluating Gsα localization in lipid raft and the activity of adenylate cyclase in an in vitro glioma cell model. Lipid raft fractions from C6 glioma cells treated chronically with DHA were isolated by sucrose gradient ultracentrifugation. The content of Gsα in lipid raft was analyzed by immunoblotting and colocalization of Gsα with lipid raft was subjected to confocal microscopic analysis. The intracellular cyclic adenosine monophosphate (cAMP) level was determined by cAMP immunoassay kit. DHA decreased the amount of Gsα in lipid raft, whereas whole cell lysate Gsα was not changed. Confocal microscopic analysis demonstrated that colocalization of Gsα with lipid raft was decreased, whereas DHA increased intracellular cAMP accumulation in a dose-dependent manner. Interestingly, we found that DHA increased the lipid raft level, instead of disrupting it. The results of this study suggest that DHA may exert its antidepressant effect by translocating Gsα from lipid raft and potentiating the activity of adenylate cyclase. Importantly, the reduced Gsα in lipid raft by DHA is independent of disruption of lipid raft. Overall, the study provides partial preclinical evidence supporting a safe and effective therapy using DHA for depression. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Lewis acid enhanced switching of the 1,1-dicyanodihydroazulene/vinylheptafulvene photo/thermoswitch

    DEFF Research Database (Denmark)

    Parker, Christian Richard; Tortzen, Christian Gregers; Broman, Søren Lindbæk

    2011-01-01

    Mild Lewis acids enhance the rate of the thermal conversion of vinylheptafulvene (VHF) to dihydroazulene (DHA). In the absence of light, stronger Lewis acids promote the otherwise photoinduced DHA to VHF conversion.......Mild Lewis acids enhance the rate of the thermal conversion of vinylheptafulvene (VHF) to dihydroazulene (DHA). In the absence of light, stronger Lewis acids promote the otherwise photoinduced DHA to VHF conversion....

  13. The blood-brain barrier fatty acid transport protein 1 (FATP1/SLC27A1) supplies docosahexaenoic acid to the brain, and insulin facilitates transport.

    Science.gov (United States)

    Ochiai, Yusuke; Uchida, Yasuo; Ohtsuki, Sumio; Tachikawa, Masanori; Aizawa, Sanshiro; Terasaki, Tetsuya

    2017-05-01

    We purposed to clarify the contribution of fatty acid transport protein 1 (FATP1/SLC 27A1) to the supply of docosahexaenoic acid (DHA) to the brain across the blood-brain barrier in this study. Transport experiments showed that the uptake rate of [ 14 C]-DHA in human FATP1-expressing HEK293 cells was significantly greater than that in empty vector-transfected (mock) HEK293 cells. The steady-state intracellular DHA concentration was nearly 2-fold smaller in FATP1-expressing than in mock cells, suggesting that FATP1 works as not only an influx, but also an efflux transporter for DHA. [ 14 C]-DHA uptake by a human cerebral microvascular endothelial cell line (hCMEC/D3) increased in a time-dependent manner, and was inhibited by unlabeled DHA and a known FATP1 substrate, oleic acid. Knock-down of FATP1 in hCMEC/D3 cells with specific siRNA showed that FATP1-mediated uptake accounts for 59.2-73.0% of total [ 14 C]-DHA uptake by the cells. Insulin treatment for 30 min induced translocation of FATP1 protein to the plasma membrane in hCMEC/D3 cells and enhanced [ 14 C]-DHA uptake. Immunohistochemical analysis of mouse brain sections showed that FATP1 protein is preferentially localized at the basal membrane of brain microvessel endothelial cells. We found that two neuroprotective substances, taurine and biotin, in addition to DHA, undergo FATP1-mediated efflux. Overall, our results suggest that FATP1 localized at the basal membrane of brain microvessels contributes to the transport of DHA, taurine and biotin into the brain, and insulin rapidly increases DHA supply to the brain by promoting translocation of FATP1 to the membrane. Read the Editorial Comment for this article on page 324. © 2016 International Society for Neurochemistry.

  14. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls

    International Nuclear Information System (INIS)

    Majkova, Zuzana; Layne, Joseph; Sunkara, Manjula; Morris, Andrew J.; Toborek, Michal; Hennig, Bernhard

    2011-01-01

    Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6ω-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-κB (NF-κB). A 4 /J 4 -neuroprostanes (NPs) were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH 4 ), which concurrently abrogated A 4 /J 4 -NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1) by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A 4 /J 4 NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5ω-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2) and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A 4 /J 4 -NPs as mediators of omega-3 fatty acid-mediated protection against the endothelial toxicity of coplanar PCBs.

  15. Kinetics of oxidation of acidic amino acids by sodium N

    Indian Academy of Sciences (India)

    Asp)) by sodium N-bromobenzenesulphonamide (bromamine-B or BAB) has been carried out in aqueous HClO4 medium at 30°C. The rate shows firstorder dependence each on [BAB]o and [amino acid]o and inverse first-order on [H+]. At [H+] > ...

  16. SINTESIS FOSFOLIPID MENGANDUNG ASAM LEMAK w-3 DARI FOSFOLIPID KEDELAI DAN MINYAK KAYA ASAM LEMAK w-3 DARI HASIL SAMPING PENGALENGAN TUNA

    Directory of Open Access Journals (Sweden)

    Teti Estiasih

    2013-03-01

    Full Text Available Synthesis of Phospholipid Containing w-3 Fatty Acids from Soy Phospholipidsand Fish Oil Enriched with w-3 Fatty Acids from Tuna Canning Processing Teti Estiasih, Moch. Nur, Jaya Mahar Maligan, Satrio Maulana ABSTRAK Keunggulan fosfolipid dapat ditingkatkan dengan menggabungkan asam lemak w-3, terutama EPA (eicosapentaenoicacid, C20:5w-3 dan DHA (docosahexaenoic acid, C22:6w-3, pada struktur fosfolipid sehingga diperoleh fosfolipidterstruktur. Strukturisasi fosfolipid kedelai komersial dilakukan dengan cara mengganti asam lemak dari fosfolipidkedelai dengan asam lemak w-3 dari minyak kaya asam lemak w-3 dari hasil samping pengalengan tuna. Sintesisfosfolipid terstruktur dilakukan secara asidolisis enzimatis dengan menggunakan lipase dari R. miehei. Faktor yangdikaji pada proses sintesis ini adalah konsentrasi enzim dan lama sintesis. Tingkat inkorporasi EPA dan DHA padastruktur fosfolipid dipengaruhi oleh konsentrasi enzim. Pada konsentrasi enzim yang rendah, peningkatan lama reaksisetelah tingkat inkoporasi optimum tercapai cenderung menyebabkan penurunan tingkat inkorporasi EPA+DHA. Padakonsentrasi enzim yang tinggi, lama reaksi tampaknya tidak mempengaruhi tingkat inkorporasi. Tingkat inkorporasiDHA lebih tinggi dari EPA sehingga fosfolipid terstruktur yang dihasilkan sangat sesuai digunakan untuk produk panganyang memerlukan kadar DHA tinggi. Ada preferensi inkorporasi EPA+DHA pada fosfatidiletanolamin dibandingkanjenis fosfolipid yang lain.Kata kunci: Fosfolipid terstruktur, asam lemak w-3, EPA, DHA, asidolisis enzimatis ABSTRACT The superiority of soy phospholipids could be obtained by incorporation of w-3 fatty acids into phospholipids structure,especially EPA (eicosapentaenoic acid, C20:5w-3 and DHA docosahexaenoic acid, C22:6w-3. Structurization ofcommercial soy phospholipids was conducted by replacement of natural fatty acids in soy phospholipids by w-3 fattyacids from w-3 fatty acids enriched Þ sh oil from tuna canning processing

  17. Inhibitory effects of omega-3 fatty acids on injury-induced epidermal growth factor receptor transactivation contribute to delayed wound healing

    OpenAIRE

    Turk, Harmony F.; Monk, Jennifer M.; Fan, Yang-Yi; Callaway, Evelyn S.; Weeks, Brad; Chapkin, Robert S.

    2013-01-01

    Epidermal growth factor receptor (EGFR)-mediated signaling is required for optimal intestinal wound healing. Since n-3 polyunsaturated fatty acids (PUFA), specifically docosahexaenoic acid (DHA), alter EGFR signaling and suppress downstream activation of key signaling pathways, we hypothesized that DHA would be detrimental to the process of intestinal wound healing. Using a mouse immortalized colonocyte model, DHA uniquely reduced EGFR ligand-induced receptor activation, whereas DHA and its m...

  18. Effects of Docosahexaenoic Acid on Neurotransmission

    OpenAIRE

    Tanaka, Kazuhiro; Farooqui, Akhlaq A.; Siddiqi, Nikhat J.; Alhomida, Abdullah S.; Ong, Wei-Yi

    2012-01-01

    Docosahexaenoic acid (DHA) is the major polyunsaturated fatty acid (PUFA) in the brain and a structural component of neuronal membranes. Changes in DHA content of neuronal membranes lead to functional changes in the activity of receptors and other proteins which might be associated with synaptic function. Accumulating evidence suggests the beneficial effects of dietary DHA supplementation on neurotransmission. This article reviews the beneficial effects of DHA on the brain; uptake, incorporat...

  19. Prenatal docosahexaenoic acid supplementation and infant morbidity: randomized controlled trial.

    Science.gov (United States)

    Imhoff-Kunsch, Beth; Stein, Aryeh D; Martorell, Reynaldo; Parra-Cabrera, Socorro; Romieu, Isabelle; Ramakrishnan, Usha

    2011-09-01

    Long-chain polyunsaturated fatty acids such as docosahexaenoic acid (DHA) influence immune function and inflammation; however, the influence of maternal DHA supplementation on infant morbidity is unknown. We investigated the effects of prenatal DHA supplementation on infant morbidity. In a double-blind randomized controlled trial conducted in Mexico, pregnant women received daily supplementation with 400 mg of DHA or placebo from 18 to 22 weeks' gestation through parturition. In infants aged 1, 3, and 6 months, caregivers reported the occurrence of common illness symptoms in the preceding 15 days. Data were available at 1, 3, and 6 months for 849, 834, and 834 infants, respectively. The occurrence of specific illness symptoms did not differ between groups; however, the occurrence of a combined measure of cold symptoms was lower in the DHA group at 1 month (OR: 0.76; 95% CI: 0.58-1.00). At 1 month, the DHA group experienced 26%, 15%, and 30% shorter duration of cough, phlegm, and wheezing, respectively, but 22% longer duration of rash (all P ≤ .01). At 3 months, infants in the DHA group spent 14% less time ill (P DHA group experienced 20%, 13%, 54%, 23%, and 25% shorter duration of fever, nasal secretion, difficulty breathing, rash, and "other illness," respectively, but 74% longer duration of vomiting (all P DHA supplementation during pregnancy decreased the occurrence of colds in children at 1 month and influenced illness symptom duration at 1, 3, and 6 months.

  20. Study on the Use of Microbial Cellulose as a Biocarrier for 1,3-Dihydroxy-2-Propanone and Its Potential Application in Industry

    Directory of Open Access Journals (Sweden)

    Lidia Stasiak-Różańska

    2018-04-01

    Full Text Available Can microbial cellulose (MC be used as a bio-carrier for 1,3-dihydroxy-2-propanone (DHA? The aim of this study was to examine the possibility of using MC as a biomaterial for DHA transferring into the stratum corneum and inducing changes in skin color. The MC patches were obtained from Gluconacetobacter xylinus strain and incubated in solutions with various concentrations of DHA (g·L−1: 20; 50; 80; 110 at 22 °C for 24 h. Afterwards; the patches were applied onto the skin for 15, 30, or 60 min. Skin color changes were assessed visually compared to a control patches without DHA. The intensity of skin color was increasing with the increase of DHA concentration and time of patches application. Application of MC patches with DHA (50 g·L−1 for 30 min ensured the color which was considered the closest to the desired natural tan effect. MC patches containing DHA can be biocarriers enabling DHA transport into the stratum corneum and causing skin color changes. Study results indicate a new possibility for industrial applications of MC; e.g., as a biocarrier in masking the symptoms of vitiligo or production of self-tanning agents in the form of masks.

  1. High-dose docosahexaenoic acid supplementation of preterm infants: respiratory and allergy outcomes.

    Science.gov (United States)

    Manley, Brett J; Makrides, Maria; Collins, Carmel T; McPhee, Andrew J; Gibson, Robert A; Ryan, Philip; Sullivan, Thomas R; Davis, Peter G

    2011-07-01

    Docosahexaenoic acid (DHA) has been associated with downregulation of inflammatory responses. To report the effect of DHA supplementation on long-term atopic and respiratory outcomes in preterm infants. This study is a multicenter, randomized controlled trial comparing the outcomes for preterm infants DHA diet) or soy oil (standard-DHA) capsules. Data collected included incidence of bronchopulmonary dysplasia (BPD) and parental reporting of atopic conditions over the first 18 months of life. Six hundred fifty-seven infants were enrolled (322 to high-DHA diet, 335 to standard), and 93.5% completed the 18-month follow-up. There was a reduction in BPD in boys (relative risk [RR]: 0.67 [95% confidence interval (CI): 0.47-0.96]; P=.03) and in all infants with a birth weight of DHA group at either 12 or 18 months (RR: 0.41 [95% CI: 0.18-0.91]; P=.03) and at either 12 or 18 months in boys (RR: 0.15 [0.03-0.64]; P=.01). There was no effect on asthma, eczema, or food allergy. DHA supplementation for infants of Pediatrics.

  2. Docosahexaenoic acid inhibits the growth of hormone-dependent prostate cancer cells by promoting the degradation of the androgen receptor.

    Science.gov (United States)

    Hu, Zhimei; Qi, Haixia; Zhang, Ruixue; Zhang, Kun; Shi, Zhemin; Chang, Yanan; Chen, Linfeng; Esmaeili, Mohsen; Baniahmad, Aria; Hong, Wei

    2015-09-01

    Epidemiological and preclinical data have demonstrated the preventative effects of ω-3 polyunsaturated fatty acids, including docosahexaenoic acid (DHA), on prostate cancer. However, there are inconsistencies in these previous studies and the underlying mechanisms remain to be elucidated. In the present study, the androgen receptor (AR), which is a transcription factor involved in cell proliferation and prostate carcinogenesis, was identified as a target of DHA. It was revealed that DHA inhibited hormone‑dependent growth of LNCaP prostate cancer cells. Reverse transcription-quantitative polymerase chain reaction analysis revealed that treatment with DHA caused no alteration in the transcribed mRNA expression levels of the AR gene. However, immunoblotting revealed that this treatment reduces the protein expression level of the AR. The androgen‑induced genes were subsequently repressed by treatment with DHA. It was demonstrated that DHA exhibits no effect on the translation process of the AR, however, it promotes the proteasome‑mediated degradation of the AR. Therefore, the present study provided a novel mechanism by which DHA exhibits an inhibitory effect on growth of prostate cancer cells.

  3. The oxidized form of vitamin C, dehydroascorbic acid, regulates neuronal energy metabolism.

    Science.gov (United States)

    Cisternas, Pedro; Silva-Alvarez, Carmen; Martínez, Fernando; Fernandez, Emilio; Ferrada, Luciano; Oyarce, Karina; Salazar, Katterine; Bolaños, Juan P; Nualart, Francisco

    2014-05-01

    Vitamin C is an essential factor for neuronal function and survival, existing in two redox states, ascorbic acid (AA), and its oxidized form, dehydroascorbic acid (DHA). Here, we show uptake of both AA and DHA by primary cultures of rat brain cortical neurons. Moreover, we show that most intracellular AA was rapidly oxidized to DHA. Intracellular DHA induced a rapid and dramatic decrease in reduced glutathione that was immediately followed by a spontaneous recovery. This transient decrease in glutathione oxidation was preceded by an increase in the rate of glucose oxidation through the pentose phosphate pathway (PPP), and a concomitant decrease in glucose oxidation through glycolysis. DHA stimulated the activity of glucose-6-phosphate dehydrogenase, the rate-limiting enzyme of the PPP. Furthermore, we found that DHA stimulated the rate of lactate uptake by neurons in a time- and dose-dependent manner. Thus, DHA is a novel modulator of neuronal energy metabolism by facilitating the utilization of glucose through the PPP for antioxidant purposes. © 2014 International Society for Neurochemistry.

  4. Inhibition of fructan-fermenting equine fecal bacteria and Streptococcus bovis by hops (Humulus lupulus L.) ß-acid

    Science.gov (United States)

    Aims: The goals were to determine if the '-acid from hops (Humulus lupulus L.) could be used to control fructan fermentation by equine hindgut microorganisms, and to verify the antimicrobial mode of action on the Streptococcus bovis, which has been implicated in fructan fermentation, hindgut acidos...

  5. Intravenous infusion of docosahexaenoic acid increases serum concentrations in a dose-dependent manner and increases seizure latency in the maximal PTZ model.

    Science.gov (United States)

    Trépanier, Marc-Olivier; Kwong, Kei-Man; Domenichiello, Anthony F; Chen, Chuck T; Bazinet, Richard P; Burnham, W M

    2015-09-01

    Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (n-3 PUFA) that has been shown to raise seizure thresholds in the maximal pentylenetetrazole model following acute subcutaneous (s.c.) administration in rats. Following s.c. administration, however, the dose-response relationship for DHA has shown an inverted U-pattern. The purposes of the present experiment were as follows: (1) to determine the pattern of serum unesterified concentrations resulting from the intravenous (i.v.) infusions of various doses of DHA, (2) to determine the time course of these concentrations following the discontinuation of the infusions, and (3) to determine whether seizure protection in the maximal PTZ model would correlate with serum unesterified DHA levels. Animals received 5-minute i.v. infusions of saline or 25, 50, 100, or 200mg/kg of DHA via a cannula inserted into one of the tail veins. Blood was collected during and after the infusions by means of a second cannula inserted into the other tail vein (Experiment 1). A separate group of animals received saline or 12.5-, 25-, 50-, 100-, or 200 mg/kg DHA i.v. via a cannula inserted into one of the tail veins and were then seizure-tested in the maximal PTZ model either during infusion or after the discontinuation of the infusions. Slow infusions of DHA increased serum unesterified DHA concentrations in a dose-dependent manner, with the 200-mg/kg dose increasing the concentration approximately 260-fold compared with saline-infused animals. Following discontinuation of the infusions, serum concentrations rapidly dropped toward baseline, with half-lives of approximately 40 and 11s for the 25-mg/kg dose and 100-mg/kg dose, respectively. In the seizure-tested animals, DHA significantly increased latency to seizure onset in a dose-dependent manner. Following the discontinuation of infusion, seizure latency rapidly decreased toward baseline. Overall, our study suggests that i.v. infusion of unesterified DHA results in

  6. Synthesis, Characterization, and In Vitro and In Vivo Evaluations of 4-(N-Docosahexaenoyl 2′, 2′-Difluorodeoxycytidine with Potent and Broad-Spectrum Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Youssef W. Naguib

    2016-01-01

    Full Text Available In this study, a new compound, 4-(N-docosahexaenoyl 2′, 2′-difluorodeoxycytidine (DHA-dFdC, was synthesized and characterized. Its antitumor activity was evaluated in cell culture and in mouse models of pancreatic cancer. DHA-dFdC is a poorly soluble, pale yellow waxy solid, with a molecular mass of 573.3 Da and a melting point of about 96°C. The activation energy for the degradation of DHA-dFdC in an aqueous Tween 80–based solution is 12.86 kcal/mol, whereas its stability is significantly higher in the presence of vitamin E. NCI-60 DTP Human Tumor Cell Line Screening revealed that DHA-dFdC has potent and broad-spectrum antitumor activity, especially in leukemia, renal, and central nervous system cancer cell lines. In human and murine pancreatic cancer cell lines, the IC50 value of DHA-dFdC was up to 105-fold lower than that of dFdC. The elimination of DHA-dFdC in mouse plasma appeared to follow a biexponential model, with a terminal phase t1/2 of about 58 minutes. DHA-dFdC significantly extended the survival of genetically engineered mice that spontaneously develop pancreatic ductal adenocarcinoma. In nude mice with subcutaneously implanted human Panc-1 pancreatic tumors, the antitumor activity of DHA-dFdC was significantly stronger than the molar equivalent of dFdC alone, DHA alone, or the physical mixture of them (1:1, molar ratio. DHA-dFdC also significantly inhibited the growth of Panc-1 tumors orthotopically implanted in the pancreas of nude mice, whereas the molar equivalent dose of dFdC alone did not show any significant activity. DHA-dFdC is a promising compound for the potential treatment of cancers in organs such as the pancreas.

  7. Enteral and parenteral lipid requirements of preterm infants.

    Science.gov (United States)

    Lapillonne, Alexandre

    2014-01-01

    Lipids provide infants with most of their energy needs. The major portion of the fat in human milk is found in the form of triglycerides, the phospholipids and cholesterol contributing for only a small proportion of the total fat. Long-chain polyunsaturated fatty acids (LC-PUFAs) are crucial for normal development of the central nervous system and have potential for long-lasting effects that extend beyond the period of dietary insufficiency. Given the limited and highly variable formation of docosahexaenoic acid (DHA) from α-linolenic acid, and because DHA is critical for normal retinal and brain development in the human, DHA should be considered to be conditionally essential during early development. In early enteral studies, the amount of LC-PUFAs administered in formula was chosen to produce the same concentration of arachidonic acid and DHA as in term breast milk. Recent studies report outcome data in preterm infants fed formula with DHA content 2-3 times higher than the current concentration. Overall, these studies show that providing larger amounts of DHA supplements is associated with better neurological outcomes and may provide other health benefits. One study further suggests that the smallest babies are the most vulnerable to DHA deficiency and likely to reap the greatest benefit from high-dose DHA supplementation. Current nutritional management may not provide sufficient amounts of preformed DHA during the parenteral and enteral nutrition periods and in very preterm/very low birth weight infants until due date and higher amounts than those routinely used are likely to be necessary to compensate for intestinal malabsorption, DHA oxidation, and early deficit. Recommendations for the healthcare provider are made in order to prevent lipid and more specifically LC-PUFA deficit. Research should be continued to fill the gaps in knowledge and to further refine the adequate intake for each group of preterm infants. © 2014 S. Karger AG, Basel.

  8. Serum n-3 Tetracosapentaenoic Acid and Tetracosahexaenoic Acid Increase Following Higher Dietary α-Linolenic Acid but not Docosahexaenoic Acid.

    Science.gov (United States)

    Metherel, Adam H; Domenichiello, Anthony F; Kitson, Alex P; Lin, Yu-Hong; Bazinet, Richard P

    2017-02-01

    n-3 Tetracosapentaenoic acid (24:5n-3, TPAn-3) and tetracosahexaenoic acid (24:6n-3, THA) are believed to be important intermediates to docosahexaenoic acid (DHA, 22:6n-3) synthesis. The purpose of this study is to report for the first time serum concentrations of TPAn-3 and THA and their response to changing dietary α-linolenic acid (18:3n-3, ALA) and DHA. The responses will then be used in an attempt to predict the location of these fatty acids in relation to DHA in the biosynthetic pathway. Male Long Evans rats (n = 6 per group) were fed either a low (0.1% of total fatty acids), medium (3%) or high (10%) ALA diet with no added DHA, or a low (0%), medium (0.2%) or high (2%) DHA diet with a background of 2% ALA for 8 weeks post-weaning. Serum n-3 and n-6 polyunsaturated fatty acid (PUFA) concentrations (nmol/mL ± SEM) were determined by gas chromatography-mass spectrometry. Serum THA increases from low (0.3 ± 0.1) to medium (5.8 ± 0.7) but not from medium to high (4.6 ± 0.9) dietary ALA, while serum TPAn-3 increases with increasing dietary ALA from 0.09 ± 0.04 to 0.70 ± 0.09 to 1.23 ± 0.14 nmol/mL. Following DHA feeding, neither TPAn-3 or THA change across all dietary DHA intake levels. Serum TPAn-3 demonstrates a similar response to dietary DHA. In conclusion, this is the first study to demonstrate that increases in dietary ALA but not DHA increase serum TPAn-3 and THA in rats, suggesting that both fatty acids are precursors to DHA in the biosynthetic pathway.

  9. 17β-estradiol increases liver and serum docosahexaenoic acid in mice fed varying levels of α-linolenic acid.

    Science.gov (United States)

    Mason, Julie K; Kharotia, Shikhil; Wiggins, Ashleigh K A; Kitson, Alex P; Chen, Jianmin; Bazinet, Richard P; Thompson, Lilian U

    2014-08-01

    Docosahexaenoic acid (DHA) is considered to be important for cardiac and brain function, and 17β-estradiol (E2) appears to increase the conversion of α-linolenic acid (ALA) into DHA. However, the effect of varying ALA intake on the positive effect of E2 on DHA synthesis is not known. Therefore, the objective of this study was to investigate the effects of E2 supplementation on tissue and serum fatty acids in mice fed a low-ALA corn oil-based diet (CO, providing 0.6 % fatty acids as ALA) or a high ALA flaxseed meal-based diet (FS, providing 11.2 % ALA). Ovariectomized mice were implanted with a slow-release E2 pellet at 3 weeks of age and half the mice had the pellet removed at 7 weeks of age. Mice were then randomized onto either the CO or FS diet. After 4 weeks, the DHA concentration was measured in serum, liver and brain. A significant main effect of E2 was found for liver and serum DHA, corresponding to 25 and 15 % higher DHA in livers of CO and FS rats, respectively, and 19 and 13 % in serum of CO and FS rats, respectively, compared to unsupplemented mice. There was no effect of E2 on brain DHA. E2 results in higher DHA in serum and liver, at both levels of dietary ALA investigated presently, suggesting that higher ALA intake may result in higher DHA in individuals with higher E2 status.

  10. Effects of early maternal docosahexaenoic acid intake on neuropsychological status and visual acuity at five years of age of breast-fed term infants.

    Science.gov (United States)

    Jensen, Craig L; Voigt, Robert G; Llorente, Antolin M; Peters, Sarika U; Prager, Thomas C; Zou, Yali L; Rozelle, Judith C; Turcich, Marie R; Fraley, J Kennard; Anderson, Robert E; Heird, William C

    2010-12-01

    We previously reported better psychomotor development at 30 months of age in infants whose mothers received a docosahexaenoic acid (DHA) (22:6n-3) supplement for the first 4 months of lactation. We now assess neuropsychological and visual function of the same children at 5 years of age. Breastfeeding women were assigned to receive identical capsules containing either a high-DHA algal oil (∼200 mg/d of DHA) or a vegetable oil (containing no DHA) from delivery until 4 months postpartum. Primary outcome variables at 5 years of age were measures of gross and fine motor function, perceptual/visual-motor function, attention, executive function, verbal skills, and visual function of the recipient children at 5 years of age. There were no differences in visual function as assessed by the Bailey-Lovie acuity chart, transient visual evoked potential or sweep visual evoked potential testing between children whose mothers received DHA versus placebo. Children whose mothers received DHA versus placebo performed significantly better on the Sustained Attention Subscale of the Leiter International Performance Scale (46.5 ± 8.9 vs 41.9 ± 9.3, P DHA supplementation versus placebo for the first 4 months of breastfeeding performed better on a test of sustained attention. This, along with the previously reported better performance of the children of DHA-supplemented mothers on a test of psychomotor development at 30 months of age, suggests that DHA intake during early infancy confers long-term benefits on specific aspects of neurodevelopment. Copyright © 2010 Mosby, Inc. All rights reserved.

  11. Regulation of Ecto-5´-Nucleotidase by Docosahexaenoic Acid in Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Vu Thi Thom

    2013-08-01

    Full Text Available Background/Aims: Modulation of extracellular adenine nucleotide and adenosine concentrations is one potential mechanism by which docosahexaenoic acid (DHA may exert beneficial effects in critically ill patients. This study assessed DHA effects on extracellular adenine purines. Methods: Experiments used human pulmonary endothelial cells (HPMEC and umbilical vein endothelial cells (HUVEC treated with DHA (48 h. mRNA level (real-time PCR, expression (western blot, flow cytometry and activities (hydrolysis of etheno(ε-purines and fluorescence HPLC of CD73 (ecto-5´-nucleotidase and CD39 (ecto-NTPDase-1 were quantified. Results: DHA elevated total CD73 membrane protein expression concentration-dependently but CD73 mRNA level did not change. Increased expression was paralleled by increased enzyme activity. Effects observed on membrane level were reversed in intact cells, in which ε-AMP hydrolysis decreased after DHA. In intact endothelial cells ATP release was enhanced and CD39 activity blunted following DHA treatment. Hence, extracellular ATP and ADP concentrations increased and this inhibited ε-AMP hydrolysis. Conclusion: In human endothelial cells DHA caused 1 up-regulation of CD73 protein content and increased AMP hydrolysis at the cell membrane level, 2 increased cellular ATP release, and 3 decreased extracellular ATP/ADP hydrolysis. Thus, reorganization of the extracellular adenine-nucleotide-adenosine axis in response to DHA resulted in an increased extracellular ATP/adenosine ratio.

  12. Fabrication of dopamine-modified hyaluronic acid/chitosan multilayers on titanium alloy by layer-by-layer self-assembly for promoting osteoblast growth

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinming, E-mail: xmzhang@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Li, Zhaoyang, E-mail: zyli@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Yuan, Xubo [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Cui, Zhenduo; Yang, Xianjin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2013-11-01

    The bare inert surface of titanium (Ti) alloy typically causes early failures in implants. Layer-by-layer self-assembly is one of the simple methods for fabricating bioactive multilayer coatings on titanium implants. In this study, a dopamine-modified hyaluronic acid/chitosan (DHA/CHI) bioactive multilayer was built on the surface of Ti–24Nb–2Zr (TNZ) alloy. Zeta potential oscillated between −2 and 17 mV for DHA- and CHI-ending layers during the assembly process, respectively. The DHA/CHI multilayer considerably decreased the contact angle and dramatically improved the wettability of TNZ alloy. Atomic force microscopy results revealed a rough surface on the original TNZ alloy, while the surface became smoother and more homogeneous after the deposition of approximately 5 bilayers (TNZ/(DHA/CHI){sub 5}). X-ray photoelectron spectroscopy analysis indicated that the TNZ/(DHA/CHI){sub 5} sample was completely covered by polyelectrolytes. Pre-osteoblast MC3T3-E1 cells were cultured on the original TNZ alloy and TNZ/(DHA/CHI){sub 5} to evaluate the effects of DHA/CHI multilayer on osteoblast proliferation in vitro. The proliferation of osteoblasts on TNZ/(DHA/CHI){sub 5} was significantly higher than that on the original TNZ alloy. The results of this study indicate that the proposed technique improves the biocompatibility of TNZ alloy and can serve as a potential modification method in orthopedic applications.

  13. Fabrication of dopamine-modified hyaluronic acid/chitosan multilayers on titanium alloy by layer-by-layer self-assembly for promoting osteoblast growth

    International Nuclear Information System (INIS)

    Zhang, Xinming; Li, Zhaoyang; Yuan, Xubo; Cui, Zhenduo; Yang, Xianjin

    2013-01-01

    The bare inert surface of titanium (Ti) alloy typically causes early failures in implants. Layer-by-layer self-assembly is one of the simple methods for fabricating bioactive multilayer coatings on titanium implants. In this study, a dopamine-modified hyaluronic acid/chitosan (DHA/CHI) bioactive multilayer was built on the surface of Ti–24Nb–2Zr (TNZ) alloy. Zeta potential oscillated between −2 and 17 mV for DHA- and CHI-ending layers during the assembly process, respectively. The DHA/CHI multilayer considerably decreased the contact angle and dramatically improved the wettability of TNZ alloy. Atomic force microscopy results revealed a rough surface on the original TNZ alloy, while the surface became smoother and more homogeneous after the deposition of approximately 5 bilayers (TNZ/(DHA/CHI) 5 ). X-ray photoelectron spectroscopy analysis indicated that the TNZ/(DHA/CHI) 5 sample was completely covered by polyelectrolytes. Pre-osteoblast MC3T3-E1 cells were cultured on the original TNZ alloy and TNZ/(DHA/CHI) 5 to evaluate the effects of DHA/CHI multilayer on osteoblast proliferation in vitro. The proliferation of osteoblasts on TNZ/(DHA/CHI) 5 was significantly higher than that on the original TNZ alloy. The results of this study indicate that the proposed technique improves the biocompatibility of TNZ alloy and can serve as a potential modification method in orthopedic applications.

  14. The pleiotropic effects of omega-3 docosahexaenoic acid on the hallmarks of Alzheimer's disease.

    Science.gov (United States)

    Belkouch, Mounir; Hachem, Mayssa; Elgot, Abdeljalil; Lo Van, Amanda; Picq, Madeleine; Guichardant, Michel; Lagarde, Michel; Bernoud-Hubac, Nathalie

    2016-12-01

    Among omega-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA, 22:6n-3) is important for adequate brain development and cognition. DHA is highly concentrated in the brain and plays an essential role in brain functioning. DHA, one of the major constituents in fish fats, readily crosses the blood-brain barrier from blood to the brain. Its critical role was further supported by its reduced levels in the brain of Alzheimer's disease (AD) patients. This agrees with a potential role of DHA in memory, learning and cognitive processes. Since there is yet no cure for dementia such as AD, there is growing interest in the role of DHA-supplemented diet in the prevention of AD pathogenesis. Accordingly, animal, epidemiological, preclinical and clinical studies indicated that DHA has neuroprotective effects in a number of neurodegenerative conditions including AD. The beneficial effects of this key omega-3 fatty acid supplementation may depend on the stage of disease progression, other dietary mediators and the apolipoprotein ApoE genotype. Herein, our review investigates, from animal and cell culture studies, the molecular mechanisms involved in the neuroprotective potential of DHA with emphasis on AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Alcohol abuse and docosahexaenoic acid: Effects on cerebral circulation and neurosurvival

    Directory of Open Access Journals (Sweden)

    Michael A Collins

    2015-01-01

    Full Text Available Alcohol abuse and alcoholism are major and yet surprisingly unacknowledged worldwide causes of brain damage, cognitive impairment, and dementia. Chronic abuse of alcohol is likely to elicit significant changes in essential polyenoic fatty acids and the membrane phospholipids (PLs that covalently contain them in brain membranes. Among the fatty acids of the omega-3 polyenoic class, docosahexaenoic acid (DHA, which is relatively concentrated in mammalian brain, has proven particularly important for proper brain development as well as neurosurvival and protection. DHA losses in brains of chronic alcohol-treated animals may contribute to alcohol′s neuroinflammatory and neuropathological sequelae; indeed, DHA supplementation has beneficial effects, including the possibility that its documented augmenting effects on cerebral circulation could be important. The neurochemical mechanisms by which DHA exerts its effects encompass several signaling routes involving both the membrane PLs in which DHA is esterified as well as unique neuroactive metabolites of the free fatty acid itself. In view of indications that brain DHA deficits are a deleterious outcome of human alcoholism, increasing brain DHA via supplementation during detoxification of alcoholics could potentially fortify against dependence-related neuroinjury.

  16. Etude du passage d’un phospholipide structuré « AceDoPC » à travers une barrière hémato-encéphalique reconstituée in vitro et de sa biodisponibilité cérébrale in vivo chez le rat

    OpenAIRE

    Hachem , Mayssa

    2015-01-01

    Docosahexaenoic acid (DHA, 22:6n-3) is the main essential omega-3 fatty acid in brain tissues required for normal brain development and function. A decrease in the cerebral concentration of DHA is observed in patients suffering from neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Targeted intake of DHA to the brain could compensate for these deficiencies. Blood DHA is transported across the blood-brain barrier (BBB) more efficiently when esterified at the sn-2 position of lyso...

  17. Polymorphisms in the fatty acid desaturase genes and diet are important determinants of infant docosahexaenoic acid status

    DEFF Research Database (Denmark)

    Lauritzen, L.; Harsløf, L.; Larsen, L.H.

    2013-01-01

    Tissue docosahexaenoic acid (DHA) accretion in early infancy is supported by DHA in breast-milk and may thus decrease once complementary feeding takes over. Endogenous synthesis of DHA from alphalinolenic acid is low and polymorphisms in the genes that encodes the fatty acid desaturases (FADS) ha...

  18. A randomized, placebo-controlled, double-blind trial of supplemental docosahexaenoic acid on cognitive processing speed and executive function in females of reproductive age with phenylketonuria: A pilot study☆, ☆☆

    Science.gov (United States)

    Yi, S.H.L.; Kable, J.A.; Evatt, M.L.; Singh, R.H.

    2014-01-01

    Low blood docosahexaenoic acid (DHA) is reported in patients with phenylketonuria (PKU); however, the functional implications in adolescents and adults are unknown. This pilot study investigated the effect of supplemental DHA on cognitive performance in 33 females with PKU ages 12–47 years. Participants were randomly assigned to receive DHA (10 mg/kg/day) or placebo for 4.5 months. Performance on cognitive processing speed and executive functioning tasks was evaluated at baseline and follow up. Intention-to-treat and per protocol analyses were performed. At follow up, biomarkers of DHA status were significantly higher in the DHA-supplemented group. Performance on the cognitive tasks and reported treatment-related adverse events did not differ. While no evidence of cognitive effect was seen, a larger sample size is needed to be conclusive, which may not be feasible in this population. Supplementation was a safe and effective way to increase biomarkers of DHA status (www.clinicaltrials.gov; Identifier: NCT00892554). PMID:22000478

  19. Dietary LC-PUFA deficiency early in ontogeny induces behavioural changes in pike perch (Sander lucioperca) larvae and fry

    DEFF Research Database (Denmark)

    Lund, Ivar; Höglund, Erik; Ebbesson, Lars O.E.

    2014-01-01

    enriched with either refined olive oil high in oleic acid (A); refined olive oil supplemented with a low (B) or a high (C) level of DHA; or refined olive oil acid supplemented with fish oil with a high content of phospholipids (PL) and DHA (D). The enriched live diets were provided until 28days post hatch...... (dph), at which time larval behavioural responses to visual and mechano-sensory stimuli were assessed. All dietary groups were subsequently fed an identical enriched live feed (diet D) and gradually weaned to an extruded dry feed, on which they were maintained for 112days. At the end of this period...... that was not observed for larvae on diets low in DHA content. Independent of the predator simulation, larvae deficient or low in DHA exhibited significantly more time swimming along the edge of a test arena and had overall higher locomotor activities compared to larvae fed a diet with a high DHA content. Larvae on DHA...

  20. Effects of Docosahexaenoic Acid Supplementation on Blood Pressure, Heart Rate, and Serum Lipids in Scottish Men with Hypertension and Hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Miki Sagara

    2011-01-01

    Full Text Available To investigate the effects of daily supplementation with docosahexaenoic acid (DHA on coronary heart disease risks in 38 middle-aged men with hypertension and/or hypercholesterolemia in Scotland, a five-week double-blind placebo-controlled dietary supplementation with either 2 g of DHA or active placebo (1 g of olive oil was conducted. Percent composition of DHA in plasma phospholipids increased significantly in DHA group. Systolic and diastolic blood pressure and heart rate decreased significantly in DHA group, but not in placebo group. High-density lipoprotein cholesterol (HDL-C increased significantly, and total cholesterol (TC/HDL-C and non-HDL-C/HDL-C ratios decreased significantly in both groups. There was no change in TC and non-HDL-C. We conclude that 2 g/day of DHA supplementation reduced coronary heart disease risk factor level improving blood pressure, heart rate, and lipid profiles in hypertensive, hypercholesterolemic Scottish men who do not eat fish on a regular basis.

  1. The composition of polyunsaturated fatty acids in erythrocytes of lactating mothers and their infants

    DEFF Research Database (Denmark)

    Jørgensen, M.H.; Nielsen, P.K.; Michaelsen, K.F.

    2006-01-01

    Long-chain polyunsaturated fatty acids (LCPUFA) in breastmilk, specifically docosahexaenoic acid (DHA), are important for infant brain development. Accretion of DHA in the infant brain is dependent on DHA-status, intake and metabolism. The aim of this study was to describe changes in maternal...... and infant erythrocyte (RBC) DHA-status during the first four months of lactation. We examined 17 mothers and their term infants at 1, 2 and 4 months of age. Milk samples and RBC from the mothers and infants were obtained and analysed for fatty acid composition. Comparative analysis of the results showed...... that the content of DHA in maternal RBC-phosphatidylcholine (PE) decreased over the four month period and this