WorldWideScience

Sample records for acidic ph-evoked currents

  1. Hypotonic stimuli enhance proton-gated currents of acid-sensing ion channel-1b

    International Nuclear Information System (INIS)

    Ugawa, Shinya; Ishida, Yusuke; Ueda, Takashi; Yu, Yong; Shimada, Shoichi

    2008-01-01

    Acid-sensing ion channels (ASICs) are strong candidates for mammalian mechanoreceptors. We investigated whether mouse acid-sensing ion channel-1b (ASIC1b) is sensitive to mechanical stimuli using oocyte electrophysiology, because ASIC1b is located in the mechanosensory stereocilia of cochlear hair cells. Hypotonic stimuli that induced membrane stretch of oocytes evoked no significant current in ASIC1b-expressing oocytes at pH 7.5. However, acid (pH 4.0 or 5.0)-evoked currents in the oocytes were substantially enhanced by the hypotonicity, showing mechanosensitivity of ASIC1b and possible mechanogating of the channel in the presence of other components. Interestingly, the ASIC1b channel was permeable to K + (a principal charge carrier for cochlear sensory transduction) and the affinity of the channel for amiloride (IC 50 (inhibition constant) = approximately 48.3 μM) was quite similar to that described for the mouse hair cell mechanotransducer current. Taken together, these data raise the possibility that ASIC1b participates in cochlear mechanoelectrical transduction

  2. Extracellular pH modulates GABAergic neurotransmission in rat hypothalamus.

    Science.gov (United States)

    Chen, Z L; Huang, R Q

    2014-06-20

    Changes in extracellular pH have a modulatory effect on GABAA receptor function. It has been reported that pH sensitivity of the GABA receptor is dependent on subunit composition and GABA concentration. Most of previous investigations focused on GABA-evoked currents, which only reflect the postsynaptic receptors. The physiological relevance of pH modulation of GABAergic neurotransmission is not fully elucidated. In the present studies, we examined the influence of extracellular pH on the GABAA receptor-mediated inhibitory neurotransmission in rat hypothalamic neurons. The inhibitory postsynaptic currents (IPSCs), tonic currents, and the GABA-evoked currents were recorded with whole-cell patch techniques on the hypothalamic slices from Sprague-Dawley rats at 15-26 postnatal days. The amplitude and frequency of spontaneous GABA IPSCs were significantly increased while the external pH was changed from 7.3 to 8.4. In the acidic pH (6.4), the spontaneous GABA IPSCs were reduced in amplitude and frequency. The pH induced changes in miniature GABA IPSCs (mIPSCs) similar to that in spontaneous IPSCs. The pH effect on the postsynaptic GABA receptors was assessed with exogenously applied varying concentrations of GABA. The tonic currents and the currents evoked by sub-saturating concentration of GABA ([GABA]) (10 μM) were inhibited by acidic pH and potentiated by alkaline pH. In contrast, the currents evoked by saturating [GABA] (1mM) were not affected by pH changes. We also investigated the influence of pH buffers and buffering capacity on pH sensitivity of GABAA receptors on human recombinant α1β2γ2 GABAA receptors stably expressed in HEK 293 cells. The pH influence on GABAA receptors was similar in HEPES- and MES-buffered media, and not dependent on protonated buffers, suggesting that the observed pH effect on GABA response is a specific consequence of changes in extracellular protons. Our data suggest that the hydrogen ions suppress the GABAergic neurotransmission

  3. Endomorphins potentiate acid-sensing ion channel currents and enhance the lactic acid-mediated increase in arterial blood pressure: effects amplified in hindlimb ischaemia.

    Science.gov (United States)

    Farrag, Mohamed; Drobish, Julie K; Puhl, Henry L; Kim, Joyce S; Herold, Paul B; Kaufman, Marc P; Ruiz-Velasco, Victor

    2017-12-01

    Chronic limb ischaemia, characterized by inflammatory mediator release and a low extracellular pH, leads to acid-sensing ion channel (ASIC) activation and reflexively increases mean arterial pressure; endomorphin release is also increased under inflammatory conditions. We examined the modulation of ASIC currents by endomorphins in sensory neurons from rats with freely perfused and ligated femoral arteries: peripheral artery disease (PAD) model. Endomorphins potentiated sustained ASIC currents in both groups of dorsal root ganglion neurons, independent of mu opioid receptor stimulation or G protein activation. Intra-arterial administration of lactic acid (to simulate exercising muscle and evoke a pressor reflex), endomorphin-2 and naloxone resulted in a significantly greater pressor response than lactic acid alone, while administration of APETx2 inhibited endomorphin's enhancing effect in both groups. These results suggest a novel role for endomorphins in modulating ASIC function to effect lactic acid-mediated reflex increase in arterial pressure in patients with PAD. Chronic muscle ischaemia leads to accumulation of lactic acid and other inflammatory mediators with a subsequent drop in interstitial pH. Acid-sensing ion channels (ASICs), expressed in thin muscle afferents, sense the decrease in pH and evoke a pressor reflex known to increase mean arterial pressure. The naturally occurring endomorphins are also released by primary afferents under ischaemic conditions. We examined whether high affinity mu opioid receptor (MOR) agonists, endomorphin-1 (E-1) and -2 (E-2), modulate ASIC currents and the lactic acid-mediated pressor reflex. In rat dorsal root ganglion (DRG) neurons, exposure to E-2 in acidic solutions significantly potentiated ASIC currents when compared to acidic solutions alone. The potentiation was significantly greater in DRG neurons isolated from rats whose femoral arteries were ligated for 72 h. Sustained ASIC current potentiation was also observed

  4. Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache.

    Science.gov (United States)

    Yan, Jin; Edelmayer, Rebecca M; Wei, Xiaomei; De Felice, Milena; Porreca, Frank; Dussor, Gregory

    2011-01-01

    Migraine headache is one of the most common neurological disorders. The pathological conditions that directly initiate afferent pain signaling are poorly understood. In trigeminal neurons retrogradely labeled from the cranial meninges, we have recorded pH-evoked currents using whole-cell patch-clamp electrophysiology. Approximately 80% of dural-afferent neurons responded to a pH 6.0 application with a rapidly activating and rapidly desensitizing ASIC-like current that often exceeded 20nA in amplitude. Inward currents were observed in response to a wide range of pH values and 30% of the neurons exhibited inward currents at pH 7.1. These currents led to action potentials in 53%, 30% and 7% of the dural afferents at pH 6.8, 6.9 and 7.0, respectively. Small decreases in extracellular pH were also able to generate sustained window currents and sustained membrane depolarizations. Amiloride, a non-specific blocker of ASIC channels, inhibited the peak currents evoked upon application of decreased pH while no inhibition was observed upon application of TRPV1 antagonists. The desensitization time constant of pH 6.0-evoked currents in the majority of dural afferents was less than 500ms which is consistent with that reported for ASIC3 homomeric or heteromeric channels. Finally, application of pH 5.0 synthetic-interstitial fluid to the dura produced significant decreases in facial and hind-paw withdrawal threshold, an effect blocked by amiloride but not TRPV1 antagonists, suggesting that ASIC activation produces migraine-related behavior in vivo. These data provide a cellular mechanism by which decreased pH in the meninges following ischemic or inflammatory events directly excites afferent pain-sensing neurons potentially contributing to migraine headache. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  5. Acid Rain, pH & Acidity: A Common Misinterpretation.

    Science.gov (United States)

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  6. Music-Evoked Emotions—Current Studies

    Science.gov (United States)

    Schaefer, Hans-Eckhardt

    2017-01-01

    The present study is focused on a review of the current state of investigating music-evoked emotions experimentally, theoretically and with respect to their therapeutic potentials. After a concise historical overview and a schematic of the hearing mechanisms, experimental studies on music listeners and on music performers are discussed, starting with the presentation of characteristic musical stimuli and the basic features of tomographic imaging of emotional activation in the brain, such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), which offer high spatial resolution in the millimeter range. The progress in correlating activation imaging in the brain to the psychological understanding of music-evoked emotion is demonstrated and some prospects for future research are outlined. Research in psychoneuroendocrinology and molecular markers is reviewed in the context of music-evoked emotions and the results indicate that the research in this area should be intensified. An assessment of studies involving measuring techniques with high temporal resolution down to the 10 ms range, as, e.g., electroencephalography (EEG), event-related brain potentials (ERP), magnetoencephalography (MEG), skin conductance response (SCR), finger temperature, and goose bump development (piloerection) can yield information on the dynamics and kinetics of emotion. Genetic investigations reviewed suggest the heredity transmission of a predilection for music. Theoretical approaches to musical emotion are directed to a unified model for experimental neurological evidence and aesthetic judgment. Finally, the reports on musical therapy are briefly outlined. The study concludes with an outlook on emerging technologies and future research fields. PMID:29225563

  7. Acid loading test (pH)

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003615.htm Acid loading test (pH) To use the sharing features on this page, please enable JavaScript. The acid loading test (pH) measures the ability of the ...

  8. Role played by acid-sensitive ion channels in evoking the exercise pressor reflex.

    Science.gov (United States)

    Hayes, Shawn G; McCord, Jennifer L; Rainier, Jon; Liu, Zhuqing; Kaufman, Marc P

    2008-10-01

    The exercise pressor reflex arises from contracting skeletal muscle and is believed to play a role in evoking the cardiovascular responses to static exercise, effects that include increases in arterial pressure and heart rate. This reflex is believed to be evoked by the metabolic and mechanical stimulation of thin fiber muscle afferents. Lactic acid is known to be an important metabolic stimulus evoking the reflex. Until recently, the only antagonist for acid-sensitive ion channels (ASICs), the receptors to lactic acid, was amiloride, a substance that is also a potent antagonist for both epithelial sodium channels as well as voltage-gated sodium channels. Recently, a second compound, A-317567, has been shown to be an effective and selective antagonist to ASICs in vitro. Consequently, we measured the pressor responses to the static contraction of the triceps surae muscles in decerebrate cats before and after a popliteal arterial injection of A-317567 (10 mM solution; 0.5 ml). We found that this ASIC antagonist significantly attenuated by half (Pacid injection into the popliteal artery. In contrast, A-317567 had no effect on the pressor responses to tendon stretch, a pure mechanical stimulus, and to a popliteal arterial injection of capsaicin, which stimulated transient receptor potential vanilloid type 1 channels. We conclude that ASICs on thin fiber muscle afferents play a substantial role in evoking the metabolic component of the exercise pressor reflex.

  9. pH manipulation as a novel strategy for treating mucormycosis.

    Science.gov (United States)

    Trzaska, Wioleta J; Correia, Joao N; Villegas, Maria T; May, Robin C; Voelz, Kerstin

    2015-11-01

    Mucormycosis is a fatal fungal disease caused by several organisms within the order Mucorales. In recent years, traumatic injury has emerged as a novel risk factor for mucormycosis. Current antifungal therapy is ineffective, expensive, and typically requires extensive surgical debridement. There is thus a pressing need for safe prophylactic treatment that can be rapidly and easily applied to high-risk patients, such as those with major trauma injuries. Acetic acid has been used as a topical treatment for burn wounds for centuries and has proven activity against Gram-negative bacteria. Here, we demonstrate that acetic acid is also highly effective against major pathogenic groups of Mucorales, even at very low concentrations (0.3%). This antifungal effect is not seen with other acids, such as hydrochloric and lactic acid, suggesting that acetic acid activity against Mucorales spores is not solely evoked by low environmental pH. In agreement with this, we demonstrate that the antifungal activity of acetic acid arises from a combination of its ability to potently lower intracellular pH and from pH-independent toxicity. Thus, dilute acetic acid may offer a low-cost, safe, prophylactic treatment for patients at risk of invasive mucormycosis following traumatic injury. Copyright © 2015, Trzaska et al.

  10. Visual evoked potentials in patients after methanol poisoning.

    Science.gov (United States)

    Urban, Pavel; Zakharov, Sergey; Diblík, Pavel; Pelclová, Daniela; Ridzoň, Petr

    2016-01-01

    We report the results of the visual evoked potentials (VEP) examination in patients after severe poisoning by methanol. The group of 47 patients (38 males and 9 females) was assembled out of persons who survived an outbreak of poisoning by the methanol adulterated alcohol beverages, which happened in the Czech Republic in 2012-2013. The visual evoked potentials examination was performed using monocular checkerboard pattern-reversal stimulation. Two criteria of abnormality were chosen: missing evoked response, and wave P1 latency > 117 ms. Non-parametric statistical methods (median, range, and the median test) were used to analyze factors influencing the VEP abnormality. The visual evoked potential was abnormal in 20 patients (43%), 5 of them had normal visual acuity on the Snellen chart. The VEP abnormality did not correlate significantly with initial serum concentrations of methanol, formic acid or lactate; however, it showed statistically significant inverse relation to the initial serum pH: the subgroup with the abnormal VEP had significantly lower median pH in comparison with the subgroup with the normal VEP (7.16 vs. 7.34, p = 0.04). The abnormality was not related to chronic alcohol abuse. The visual evoked potentials examination appeared sensitive enough to detected even subclinical impairment of the optic system. Metabolic acidosis is likely to be the key factor related to the development of visual damage induced by methanol. The examination performed with a delay of 1-9 months after the poisoning documented the situation relatively early after the event. It is considered as a baseline for the planned long-term follow-up of the patients, which will make it possible to assess the dynamics of the observed changes, their reversibility, and the occurrence of potential late sequelae. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  11. Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

    Directory of Open Access Journals (Sweden)

    Dougherty Patrick M

    2009-07-01

    Full Text Available Abstract Background Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characterize glutamate transporter function in astrocytes of the spinal cord dorsal horn in real time by recording synaptically evoked glutamate transporter currents. Results Whole-cell patch clamp recordings were obtained from astrocytes in the spinal substantia gelatinosa (SG area in spinal slices of young adult rats. Glutamate transporter currents were evoked in these cells by electrical stimulation at the spinal dorsal root entry zone in the presence of bicuculline, strychnine, DNQX and D-AP5. Transporter currents were abolished when synaptic transmission was blocked by TTX or Cd2+. Pharmacological studies identified two subtypes of glutamate transporters in spinal astrocytes, GLAST and GLT-1. Glutamate transporter currents were graded with stimulus intensity, reaching peak responses at 4 to 5 times activation threshold, but were reduced following low-frequency (0.1 – 1 Hz repetitive stimulation. Conclusion These results suggest that glutamate transporters of spinal astrocytes could be activated by synaptic activation, and recording glutamate transporter currents may provide a means of examining the real time physiological responses of glial cells in spinal sensory processing, sensitization, hyperalgesia and chronic pain.

  12. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome.

    Directory of Open Access Journals (Sweden)

    Edward V LaBelle

    Full Text Available Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (∼ 5. Hydrogen production by biocathodes poised at -600 mV vs. SHE increased >100-fold and acetate production ceased at acidic pH, but ∼ 5-15 mM (catholyte volume/day acetate and >1,000 mM/day hydrogen were attained at pH ∼ 6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV by the Acetobacterium-dominated community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈ 2.6 gallons gasoline equivalent, 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured.

  13. Dendritic Zinc Growth in Acid Electrolyte: Effect of the pH

    Science.gov (United States)

    Bengoa, Leandro N.; Pary, Paola; Seré, Pablo R.; Conconi, M. Susana; Egli, Walter A.

    2018-03-01

    In this paper, dendritic growth at the edges of electrogalvanized steel strip has been studied using a specially designed rotating washer electrode which simulates the fluid dynamic conditions and the current density distribution at the steel strip edge found in a production line. The effect of electrolyte pH and current density on dendritic growth in an acidic zinc plating bath (ZnSO4 and H2SO4) was addressed. The temperature was kept constant at 60 °C. Solution pH was adjusted to 1, 2 or 3 using different amounts of H2SO4. In addition, the influence of temperature on the pH of the solution was determined. The current density was set at 40 or 60 A/dm2, similar to that used in the industry. Deposits were characterized using SEM and XRD. The results showed that pH strongly affects dendrites shape, length and texture. Furthermore, the morphology of dendrites at the washer edge and of deposits on the flat portion of the washer changed considerably as solution pH was increased from 1 to 3. It was found that the morphology of dendrites at the washer edge stems from the morphology of the deposit on its flat portion, which in turn determines their shape.

  14. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage.

    Science.gov (United States)

    Johanningsmeier, Suzanne D; Franco, Wendy; Perez-Diaz, Ilenys; McFeeters, Roger F

    2012-07-01

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial instability. Objectives of this study were to determine the combined effects of NaCl and pH on fermented cucumber spoilage and to determine the ability of lactic acid bacteria (LAB) spoilage isolates to initiate lactic acid degradation in fermented cucumbers. Cucumbers fermented with 0%, 2%, 4%, and 6% NaCl were blended into slurries (FCS) and adjusted to pH 3.2, 3.8, 4.3, and 5.0 prior to centrifugation, sterile-filtration, and inoculation with spoilage organisms. Organic acids and pH were measured initially and after 3 wk, 2, 6, 12, and 18 mo anaerobic incubation at 25 °C. Anaerobic lactic acid degradation occurred in FCS at pH 3.8, 4.3, and 5.0 regardless of NaCl concentration. At pH 3.2, reduced NaCl concentrations resulted in increased susceptibility to spoilage, indicating that the pH limit for lactic acid utilization in reduced NaCl fermented cucumbers is 3.2 or lower. Over 18 mo incubation, only cucumbers fermented with 6% NaCl to pH 3.2 prevented anaerobic lactic acid degradation by spoilage bacteria. Among several LAB species isolated from fermented cucumber spoilage, Lactobacillus buchneri was unique in its ability to metabolize lactic acid in FCS with concurrent increases in acetic acid and 1,2-propanediol. Therefore, L. buchneri may be one of multiple organisms that contribute to development of fermented cucumber spoilage. Microbial spoilage of fermented cucumbers during bulk storage causes economic losses for producers. Current knowledge is insufficient to predict or control these losses. This study demonstrated that in the absence of oxygen, cucumbers fermented with 6% sodium chloride to pH 3.2 were not subject to spoilage. However, lactic acid was degraded

  15. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota.

    Science.gov (United States)

    O'Hanlon, Deirdre E; Moench, Thomas R; Cone, Richard A

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid.

  16. Titratable acidity of beverages influences salivary pH recovery.

    Science.gov (United States)

    Tenuta, Livia Maria Andaló; Fernández, Constanza Estefany; Brandão, Ana Carolina Siqueira; Cury, Jaime Aparecido

    2015-01-01

    A low pH and a high titratable acidity of juices and cola-based beverages are relevant factors that contribute to dental erosion, but the relative importance of these properties to maintain salivary pH at demineralizing levels for long periods of time after drinking is unknown. In this crossover study conducted in vivo, orange juice, a cola-based soft drink, and a 10% sucrose solution (negative control) were tested. These drinks differ in terms of their pH (3.5 ± 0.04, 2.5 ± 0.05, and 5.9 ± 0.1, respectively) and titratable acidity (3.17 ± 0.06, 0.57 ± 0.04 and pH 5.5, respectively). Eight volunteers with a normal salivary flow rate and buffering capacity kept 15 mL of each beverage in their mouth for 10 s, expectorated it, and their saliva was collected after 15, 30, 45, 60, 90, and 120 s. The salivary pH, determined using a mini pH electrode, returned to the baseline value at 30 s after expectoration of the cola-based soft drink, but only at 90 s after expectoration of the orange juice. The salivary pH increased to greater than 5.5 at 15 s after expectoration of the cola drink and at 30 s after expectoration of the orange juice. These findings suggest that the titratable acidity of a beverage influences salivary pH values after drinking acidic beverages more than the beverage pH.

  17. Titratable acidity of beverages influences salivary pH recovery

    Directory of Open Access Journals (Sweden)

    Livia Maria Andaló TENUTA

    2015-01-01

    Full Text Available A low pH and a high titratable acidity of juices and cola-based beverages are relevant factors that contribute to dental erosion, but the relative importance of these properties to maintain salivary pH at demineralizing levels for long periods of time after drinking is unknown. In this crossover study conducted in vivo, orange juice, a cola-based soft drink, and a 10% sucrose solution (negative control were tested. These drinks differ in terms of their pH (3.5 ± 0.04, 2.5 ± 0.05, and 5.9 ± 0.1, respectively and titratable acidity (3.17 ± 0.06, 0.57 ± 0.04 and < 0.005 mmols OH- to reach pH 5.5, respectively. Eight volunteers with a normal salivary flow rate and buffering capacity kept 15 mL of each beverage in their mouth for 10 s, expectorated it, and their saliva was collected after 15, 30, 45, 60, 90, and 120 s. The salivary pH, determined using a mini pH electrode, returned to the baseline value at 30 s after expectoration of the cola-based soft drink, but only at 90 s after expectoration of the orange juice. The salivary pH increased to greater than 5.5 at 15 s after expectoration of the cola drink and at 30 s after expectoration of the orange juice. These findings suggest that the titratable acidity of a beverage influences salivary pH values after drinking acidic beverages more than the beverage pH.

  18. Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target.

    Science.gov (United States)

    Gilbert, Hamish T J; Hodson, Nathan; Baird, Pauline; Richardson, Stephen M; Hoyland, Judith A

    2016-11-17

    The aetiology of intervertebral disc (IVD) degeneration remains poorly understood. Painful IVD degeneration is associated with an acidic intradiscal pH but the response of NP cells to this aberrant microenvironmental factor remains to be fully characterised. The aim here was to address the hypothesis that acidic pH, similar to that found in degenerate IVDs, leads to the altered cell/functional phenotype observed during IVD degeneration, and to investigate the involvement of acid-sensing ion channel (ASIC) -3 in the response. Human NP cells were treated with a range of pH, from that of a non-degenerate (pH 7.4 and 7.1) through to mildly degenerate (pH 6.8) and severely degenerate IVD (pH 6.5 and 6.2). Increasing acidity of pH caused a decrease in cell proliferation and viability, a shift towards matrix catabolism and increased expression of proinflammatory cytokines and pain-related factors. Acidic pH resulted in an increase in ASIC-3 expression. Importantly, inhibition of ASIC-3 prevented the acidic pH induced proinflammatory and pain-related phenotype in NP cells. Acidic pH causes a catabolic and degenerate phenotype in NP cells which is inhibited by blocking ASIC-3 activity, suggesting that this may be a useful therapeutic target for treatment of IVD degeneration.

  19. Neutralizing salivary pH by mouthwashes after an acidic challenge.

    Science.gov (United States)

    Dehghan, Mojdeh; Tantbirojn, Daranee; Kymer-Davis, Emily; Stewart, Colette W; Zhang, Yanhui H; Versluis, Antheunis; Garcia-Godoy, Franklin

    2017-05-01

    The aim of the present study was to test the neutralizing effect of mouthwashes on salivary pH after an acidic challenge. Twelve participants were recruited for three visits, one morning per week. Resting saliva was collected at baseline and after 2-min swishing with 20 mL orange juice as an acidic challenge. Participants then rinsed their mouth for 30 s with 20 mL water (control), an over-the-counter mouthwash (Listerine), or a two-step mouthwash, randomly assigned for each visit. Saliva was collected immediately, 15, and 45 min after rinsing. The pH values of the collected saliva were measured and analyzed with anova, followed by Student-Newman-Keuls post-hoc test (significance level: 0.05). Orange juice significantly lowered salivary pH. Immediately after rinsing, Listerine and water brought pH back to baseline values, with the pH significantly higher in the Listerine group. The two-step mouthwash raised pH significantly higher than Listerine and water, and higher than the baseline value. Salivary pH returned to baseline and was not significantly different among groups at 15 and 45 min post-rinsing. Mouth rinsing after an acidic challenge increased salivary pH. The tested mouthwashes raised pH higher than water. Mouthwashes with a neutralizing effect can potentially reduce tooth erosion from acid exposure. © 2015 Wiley Publishing Asia Pty Ltd.

  20. Organic acid excretion in Penicillium ochrochloron increases with ambient pH

    Directory of Open Access Journals (Sweden)

    Pamela eVrabl

    2012-04-01

    Full Text Available Despite being of high biotechnological relevance, many aspects of organic acid excretion in filamentous fungi like the influence of ambient pH are still insufficiently understood. While the excretion of an individual organic acid may peak at a certain pH value, the few available studies investigating a broader range of organic acids indicate that total organic acid excretion rises with increasing external pH.We hypothesized that this phenomenon might be a general response of filamentous fungi to increased ambient pH. If this is the case, the observation should be widely independent of the organism, growth conditions or experimental design and might therefore be a crucial key point in understanding the function and mechanisms of organic acid excretion in filamentous fungi.In this study we explored this hypothesis using ammonium limited chemostat cultivations (pH 2-7, and ammonium or phosphate limited bioreactor batch cultivations (pH 5 and 7. Two strains of Penicillium ochrochloron were investigated differing in the spectrum of excreted organic acids.Confirming our hypothesis, the main result demonstrated that organic acid excretion in P. ochrochloron was enhanced at high external pH levels compared to low pH levels independent of the tested strain, nutrient limitation and cultivation method. We discuss these findings against the background of three hypotheses explaining organic acid excretion in filamentous fungi, i.e. overflow metabolism, charge balance and aggressive acidification hypothesis.

  1. Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH.

    Science.gov (United States)

    Mastronicolis, Sofia K; Berberi, Anita; Diakogiannis, Ioannis; Petrova, Evanthia; Kiaki, Irene; Baltzi, Triantafillia; Xenikakis, Polydoros

    2010-10-01

    This study provides a first approach to observe the effects on Listeria monocytogenes of cellular exposure to acid stress at low or neutral pH, notably how phospho- or neutral lipids are involved in this mechanism, besides the fatty acid profile alteration. A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown at pH 5.5 in presence of hydrochloric, acetic and lactic acids, or at neutral pH 7.3 in presence of benzoic acid, is described relative to cells grown in acid-free medium. The results showed that only low pH values enhance the antimicrobial activity of an acid. We suggest that, irrespective of pH, the acid adaptation response will lead to a similar alteration in fatty acid composition [decreasing the ratio of branched chain/saturated straight fatty acids of total lipids], mainly originating from the neutral lipid class of adapted cultures. Acid adaptation in L. monocytogenes was correlated with a decrease in total lipid phosphorus and, with the exception of cells adapted to benzoic acid, this change in the amount of phosphorus reflected a higher content of the neutral lipid class. Upon acetic or benzoic acid stress the lipid phosphorus proportion was analysed in the main phospholipids present: cardiolipin, phosphatidylglycerol, phosphoaminolipid and phosphatidylinositol. Interestingly only benzoic acid had a dramatic effect on the relative quantities of these four phospholipids.

  2. A novel acidic pH fluorescent probe based on a benzothiazole derivative

    Science.gov (United States)

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-01

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  3. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists.

    Science.gov (United States)

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun; Ezawa, Tatsuhiro

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0-7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils.

  4. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists

    Science.gov (United States)

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0–7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils. PMID

  5. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH?

    Directory of Open Access Journals (Sweden)

    Bernhardt Harold S

    2012-01-01

    Full Text Available Abstract Background The RNA world concept has wide, though certainly not unanimous, support within the origin-of-life scientific community. One view is that life may have emerged as early as the Hadean Eon 4.3-3.8 billion years ago with an atmosphere of high CO2 producing an acidic ocean of the order of pH 3.5-6. Compatible with this scenario is the intriguing proposal that life arose within alkaline (pH 9-11 deep-sea hydrothermal vents like those of the 'Lost City', with the interface with the acidic ocean creating a proton gradient sufficient to drive the first metabolism. However, RNA is most stable at pH 4-5 and is unstable at alkaline pH, raising the possibility that RNA may have first arisen in the acidic ocean itself (possibly near an acidic hydrothermal vent, acidic volcanic lake or comet pond. As the Hadean Eon progressed, the ocean pH is inferred to have gradually risen to near neutral as atmospheric CO2 levels decreased. Presentation of the hypothesis We propose that RNA is well suited for a world evolving at acidic pH. This is supported by the enhanced stability at acidic pH of not only the RNA phosphodiester bond but also of the aminoacyl-(tRNA and peptide bonds. Examples of in vitro-selected ribozymes with activities at acid pH have recently been documented. The subsequent transition to a DNA genome could have been partly driven by the gradual rise in ocean pH, since DNA has greater stability than RNA at alkaline pH, but not at acidic pH. Testing the hypothesis We have proposed mechanisms for two key RNA world activities that are compatible with an acidic milieu: (i non-enzymatic RNA replication of a hemi-protonated cytosine-rich oligonucleotide, and (ii specific aminoacylation of tRNA/hairpins through triple helix interactions between the helical aminoacyl stem and a single-stranded aminoacylating ribozyme. Implications of the hypothesis Our hypothesis casts doubt on the hypothesis that RNA evolved in the vicinity of alkaline

  6. Survey on the Labour Market Position of PhD Graduates: Competence comparison and relation between PhD and current employment

    Energy Technology Data Exchange (ETDEWEB)

    Heuritsch, J.; Waaijer, C.J.F.; Van der Weijden, I.C.M.

    2016-07-01

    We compared the skills PhD graduates acquired during their PhDs to the ones they need in their current job. We also studied the relation between PhD topic and content of the current job of recent PhD graduates. Data was collected in a survey of 1,133 respondents with a PhD from five Dutch universities between early 2008 and mid-2012. We show that scientific skills and independence are developed sufficiently during the PhD education, whereas PhDs are lacking in management and communication skills. These competence discrepancies were compared to the educational level required for the PhD holder’s current job and the relatedness of the current job to the PhD topic. (Author)

  7. A new fluorescent pH probe for extremely acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Jiang, Zheng [School of Life Science, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Xiao, Yu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Bi, Fu-Zhen [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Miao, Jun-Ying, E-mail: miaojy@sdu.edu.cn [School of Life Science, Shandong University, Jinan 250100 (China); Zhao, Bao-Xiang, E-mail: bxzhao@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-04-01

    A new coumarin-based fluorescent probe can detect highly acidic conditions in both solution and bacteria with high selectivity and sensitivity. Highlights: • A new fluorescence probe for very low pH was synthesized and characterized. • The probe can monitor pH in solution and bacteria. • The two-step protonation of N atoms of the probe leads to fluorescence quenching. Abstract: A novel turn-off fluorescent probe based on coumarin and imidazole moiety for extremely acidic conditions was designed and developed. The probe with pKa = 2.1 is able to respond to very low pH value (below 3.5) with high sensitivity relying on fluorescence quenching at 460 nm in fluorescence spectra or the ratios of absorbance maximum at 380 nm to that at 450 nm in UV–vis spectra. It can quantitatively detect pH value based on equilibrium equation, pH = pKa -log[(Ix - Ib)/(Ia - Ix)]. It had very short response time that was less than 1 min, good reversibility and nearly no interference from common metal ions. Moreover, using ¹H NMR analysis and theoretical calculation of molecular orbital, we verified that a two-step protonation process of two N atoms of the probe leaded to photoinduced electron transfer (PET), which was actually the mechanism of the fluorescence quenching phenomenon under strongly acidic conditions. Furthermore, the probe was also applied to imaging strong acidity in bacteria, E.coli and had good effect. This work illustrates that the new probe could be a practical and ideal pH indicator for strongly acidic conditions with good biological significance.

  8. Acidic pH sensing in the bacterial cytoplasm is required for Salmonella virulence.

    Science.gov (United States)

    Choi, Jeongjoon; Groisman, Eduardo A

    2016-09-01

    pH regulates gene expression, biochemical activities and cellular behaviors. A mildly acidic pH activates the master virulence regulatory system PhoP/PhoQ in the facultative intracellular pathogen Salmonella enterica serovar Typhimurium. The sensor PhoQ harbors an extracytoplasmic domain implicated in signal sensing, and a cytoplasmic domain controlling activation of the regulator PhoP. We now report that, surprisingly, a decrease in Salmonella's own cytoplasmic pH induces transcription of PhoP-activated genes even when the extracytoplasmic pH remains neutral. Amino acid substitutions in PhoQ's cytoplasmic domain hindered activation by acidic pH and attenuated virulence in mice, but did not abolish activation by low Mg(2+) or the antimicrobial peptide C18G. Conversely, removal of PhoQ's extracytoplasmic domains prevented the response to the latter PhoQ-activating signals but not to acidic pH. PhoP-dependent genes were minimally induced by acidic pH in the non-pathogenic species Salmonella bongori but were activated by low Mg(2+) and C18G as in pathogenic S. enterica. Our findings indicate that the sensor PhoQ enables S. enterica to respond to both host- and bacterial-derived signals that alter its cytoplasmic pH. © 2016 John Wiley & Sons Ltd.

  9. Average rainwater pH, concepts of atmospheric acidity, and buffering in open systems

    Energy Technology Data Exchange (ETDEWEB)

    Liljestrand, H.M.

    1985-01-01

    The system of water equilibrated with a constant partial pressure of CO/sub 2/, as a reference point for pH acidity-alkalinity relationships, has nonvolatile acidity and alkalinity components as conservative quantities, but not (H/sup +/). Simple algorithms are presented for the determination of the average pH for combinations of samples both above and below pH 5.6. Averaging the nonconservative quantity (H/sup +/) yields erroneously low mean pH values. To extend the open CO/sub 2/ system to include other volatile atmospheric acids and bases distributed among the gas, liquid and particulate matter phases, a theoretical framework for atmospheric acidity is presented. Within certain oxidation-reduction limitations, the total atmospheric acidity (but not free acidity) is a conservative quantity. The concept of atmospheric acidity is applied to air-water systems approximating aerosols, fogwater, cloudwater and rainwater. The buffer intensity in hydrometers is described as a function of net strong acidity, partial pressures of acid and base gases and the water to air ratio. For high liquid to air volume ratios, the equilibrium partial pressures of trace acid and base gases are set by the pH or net acidity controlled by the nonvolatile acid and base concentrations. For low water to air volume ratios as well as stationary state systems such as precipitation scavenging with continuous emissions, the partial pressures of trace gases (NH/sub 3/, HCl, NHO/sub 3/, SO/sub 2/, and CH/sub 3/COOH) appear to be of greater or equal importance as carbonate species as buffers in the aqueous phase.

  10. Average rainwater pH, concepts of atmospheric acidity, and buffering in open systems

    Science.gov (United States)

    Liljestrand, Howard M.

    The system of water equilibrated with a constant partial pressure of CO 2, as a reference point for pH acidity-alkalinity relationships, has nonvolatile acidity and alkalinity components as conservative quantities, but not [H +]. Simple algorithms are presented for the determination of the average pH for combinations of samples both above and below pH 5.6. Averaging the nonconservative quantity [H +] yields erroneously low mean pH values. To extend the open CO 2 system to include other volatile atmospheric acids and bases distributed among the gas, liquid and particulate matter phases, a theoretical framework for atmospheric acidity is presented. Within certain oxidation-reduction limitations, the total atmospheric acidity (but not free acidity) is a conservative quantity. The concept of atmospheric acidity is applied to air-water systems approximating aerosols, fogwater, cloudwater and rainwater. The buffer intensity in hydrometeors is described as a function of net strong acidity, partial pressures of acid and base gases and the water to air ratio. For high liquid to air volume ratios, the equilibrium partial pressures of trace acid and base gases are set by the pH or net acidity controlled by the nonvolatile acid and base concentrations. For low water to air volume ratios as well as stationary state systems such as precipitation scavenging with continuous emissions, the partial pressures of trace gases (NH 3, HCl, HNO 3, SO 2 and CH 3COOH) appear to be of greater or equal importance as carbonate species as buffers in the aqueous phase.

  11. Towards control of aggregational behaviour of alpha-lactalbumin at acidic pH.

    Science.gov (United States)

    Pedersen, Jane B; Fojan, Peter; Sorensen, John; Petersen, Steffen B

    2006-07-01

    alpha-Lactalbumin (alpha-La) undergoes considerable structural changes upon loss of bound Ca2+ at acidic pH, leaving alpha-La in a molten globule structure. Using fluorescence the present work provides more insight into the structural transition of alpha-La at acidic pH leading to protein aggregation, most likely caused by a combination of hydrophobic and electrostatic interactions. The rate of aggregation is determined by the protein concentration and temperature applied. Availability of Ca2+ stabilises the protein, and thus prevent aggregation at pH values as low as pH 2.9. In contrast, presence of Cu2+ induces a destabilisation of the protein, which can be explained by a binding to the Zn2+ binding site in alpha-La, possibly resulting in structural alterations of the protein. In general, presence of anions destabilize alpha-La at pH values below pI, with SO4(2-) exhibiting the strongest effect on the protein stability, thus correlating well with the Hofmeister series. At more acidic pH values far from pI, alpha-La becomes more stable towards ion induced aggregation, since higher ion activity is required to efficiently screen the charges on the protein surface. The results presented in this paper provide detailed knowledge on the external parameters leading to aggregation of alpha-La at acidic pH, thus permitting rational design of the aggregation process.

  12. Contributions of Cell Metabolism and H+ Diffusion to the Acidic pH of Tumors

    Directory of Open Access Journals (Sweden)

    Paul A. Schornack

    2003-03-01

    Full Text Available The tumor microenvironment is hypoxic and acidic. These conditions have a significant impact on tumor progression and response to therapies. There is strong evidence that tumor hypoxia results from inefficient perfusion due to a chaotic vasculature. Consequently, some tumor regions are well oxygenated and others are hypoxic. It is commonly believed that hypoxic regions are acidic due to a stimulation of glycolysis through hypoxia, yet this is not yet demonstrated. The current study investigates the causes of tumor acidity by determining acid production rates and the mechanism of diffusion for H+ equivalents through model systems. Two breast cancer cell lines were investigated with divergent metabolic profiles: nonmetastatic MCF-7/s and highly metastatic MDA-mb-435 cells. Glycolysis and acid production are inhibited by oxygen in MCF-7/s cells, but not in MDA-mb-435 cells. Tumors of MDAmb-435 cells are significantly more acidic than are tumors of MCF-7/s cells, suggesting that tumor acidity is primarily caused by endogenous metabolism, not the lack of oxygen. Metabolically produced protons are shown to diffuse in association with mobile buffers, in concordance with previous studies. The metabolic and diffusion data were analyzed using a reaction-diffusion model to demonstrate that the consequent pH profiles conform well to measured pH values for tumors of these two cell lines.

  13. Aerosol pH buffering in the southeastern US: Fine particles remain highly acidic despite large reductions in sulfate

    Science.gov (United States)

    Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A.

    2015-12-01

    pH is a critical aerosol property that impacts many atmospheric processes, including biogenic secondary organic aerosol formation, gas-particle phase partitioning, and mineral dust or redox metal mobilization. Particle pH has also been linked to adverse health effects. Using a comprehensive data set from the Southern Oxidant and Aerosol Study (SOAS) as the basis for thermodynamic modeling, we have shown that particles are currently highly acidic in the southeastern US, with pH between 0 and 2. Sulfate and ammonium are the main acid-base components that determine particle pH in this region, however they have different sources and their concentrations are changing. Over 15 years of network data show that sulfur dioxide emission reductions have resulted in a roughly 70 percent decrease in sulfate, whereas ammonia emissions, mainly link to agricultural activities, have been largely steady, as have gas phase ammonia concentrations. This has led to the view that particles are becoming more neutralized. However, sensitivity analysis, based on thermodynamic modeling, to changing sulfate concentrations indicates that particles have remained highly acidic over the past decade, despite the large reductions in sulfate. Furthermore, anticipated continued reductions of sulfate and relatively constant ammonia emissions into the future will not significantly change particle pH until sulfate drops to clean continental background levels. The result reshapes our expectation of future particle pH and implies that atmospheric processes and adverse health effects linked to particle acidity will remain unchanged for some time into the future.

  14. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress

    International Nuclear Information System (INIS)

    Zeng Fanrong; Chen Song; Miao Ying; Wu Feibo; Zhang Guoping

    2008-01-01

    The effect of chromium (Cr) stress on the changes of rhizosphere pH, organic acid exudation, and Cr accumulation in plants was studied using two rice genotypes differing in grain Cr accumulation. The results showed that rhizosphere pH increased with increasing level of Cr in the culture solution and with an extended time of Cr exposure. Among the six organic acids examined in this experiment, oxalic and malic acid contents were relatively higher, and had a significant positive correlation with the rhizosphere pH, indicating that they play an important role in changing rhizosphere pH. The Cr content in roots was significantly higher than that in stems and leaves. Cr accumulation in plants was significantly and positively correlated with rhizosphere pH, and the exudation of oxalic, malic and citric acids, suggesting that an increase in rhizosphere pH, and exudation of oxalic, malic and citric acid enhances Cr accumulation in rice plants. - Rhizosphere pH and organic acid exudation of rice roots are markedly affected by chromium level in culture solution

  15. Oxidation in fish oil enriched mayonnaise : Ascorbic acid and low pH increase oxidative deterioration

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Timm Heinrich, Maike; Meyer, Anne S.

    2001-01-01

    The effect of ascorbic acid (0-4000 ppm) and pH (3.8-6.2) on oxidation and levels of iron and copper in various fractions of mayonnaise enriched with 16% fish oil was investigated. Ascorbic acid induced release of iron from the assumed oil- water interface into the aqueous phase at all pH levels......, but this effect of ascorbic acid was strongest at low pH (pH 3.8- 4.2). Ascorbic acid generally promoted formation of volatile oxidation compounds and reduced the peroxide value in mayonnaises. Peroxide values and total volatiles generally increased with decreasing pH values, suggesting that low pH promoted...... oxidation. It is proposed that iron bridges between the egg yolk proteins low-density lipoproteins, lipovitellin, and phosvitin at the oil-water interface are broken at low pH values, whereby iron ions become accessible as oxidation initiators. In the presence of ascorbic acid, oxidation is further enhanced...

  16. Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules

    Directory of Open Access Journals (Sweden)

    Christian Hundshammer

    2018-02-01

    Full Text Available pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (pKa. Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the pKa of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1-13C]serine amide and [1-13C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei (13C, 15N, 31P with high sensitivity up to 4.8 ppm/pH and we show that 13C spins can be hyperpolarized with dissolution dynamic polarization (DNP. Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.

  17. Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules.

    Science.gov (United States)

    Hundshammer, Christian; Düwel, Stephan; Ruseckas, David; Topping, Geoffrey; Dzien, Piotr; Müller, Christoph; Feuerecker, Benedikt; Hövener, Jan B; Haase, Axel; Schwaiger, Markus; Glaser, Steffen J; Schilling, Franz

    2018-02-15

    pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP) magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (p K a ). Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the p K a of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1- 13 C]serine amide and [1- 13 C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei ( 13 C, 15 N, 31 P) with high sensitivity up to 4.8 ppm/pH and we show that 13 C spins can be hyperpolarized with dissolution dynamic polarization (DNP). Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.

  18. Monascus ruber as cell factory for lactic acid production at low pH.

    Science.gov (United States)

    Weusthuis, Ruud A; Mars, Astrid E; Springer, Jan; Wolbert, Emil Jh; van der Wal, Hetty; de Vrije, Truus G; Levisson, Mark; Leprince, Audrey; Houweling-Tan, G Bwee; Pha Moers, Antoine; Hendriks, Sjon Na; Mendes, Odette; Griekspoor, Yvonne; Werten, Marc Wt; Schaap, Peter J; van der Oost, John; Eggink, Gerrit

    2017-07-01

    A Monascus ruber strain was isolated that was able to grow on mineral medium at high sugar concentrations and 175g/l lactic acid at pH 2.8. Its genome and transcriptomes were sequenced and annotated. Genes encoding lactate dehydrogenase (LDH) were introduced to accomplish lactic acid production and two genes encoding pyruvate decarboxylase (PDC) were knocked out to subdue ethanol formation. The strain preferred lactic acid to glucose as carbon source, which hampered glucose consumption and therefore also lactic acid production. Lactic acid consumption was stopped by knocking out 4 cytochrome-dependent LDH (CLDH) genes, and evolutionary engineering was used to increase the glucose consumption rate. Application of this strain in a fed-batch fermentation resulted in a maximum lactic acid titer of 190g/l at pH 3.8 and 129g/l at pH 2.8, respectively 1.7 and 2.2 times higher than reported in literature before. Yield and productivity were on par with the best strains described in literature for lactic acid production at low pH. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Influence of pH on organic acid production by Clostridium sporogenes in test tube and fermentor cultures.

    Science.gov (United States)

    Montville, T J; Parris, N; Conway, L K

    1985-01-01

    The influence of pH on the growth parameters of and the organic acids produced by Clostridium sporogenes 3121 cultured in test tubes and fermentors at 35 degrees C was examined. Specific growth rates in the fermentor maintained at a constant pH ranged from 0.20 h-1 at pH 5.00 to 0.86 h-1 at pH 6.50. Acetic acid was the primary organic acid in supernatants of 24-h cultures; total organic acid levels were 2.0 to 22.0 mumol/ml. Supernatants from pH 5.00 and 5.50 cultures had total organic acid levels less than one-third of those found at pH 6.00 to 7.00. The specific growth rates of the test tube cultures ranged from 0.51 h-1 at pH 5.00 to 0.95 h-1 at pH 6.50. The pH of the medium did not affect the average total organic acid content (51.5 mumol/ml) but did affect the distribution of the organic acids, which included formic, acetic, propionic, butyric, 3-(p-hydroxyphenyl)propionic, and 3-phenylpropionic acids. Butyric acid levels were lower, but formic and propionic acid levels were higher, at pH 5.00 than at other pHs. PMID:4004207

  20. Influence of polysorbate 80 and cyclopropane fatty acid synthase activity on lactic acid production by Lactobacillus casei ATCC 334 at low pH.

    Science.gov (United States)

    Broadbent, J R; Oberg, T S; Hughes, J E; Ward, R E; Brighton, C; Welker, D L; Steele, J L

    2014-03-01

    Lactic acid is an important industrial chemical commonly produced through microbial fermentation. The efficiency of acid extraction is increased at or below the acid's pKa (pH 3.86), so there is interest in factors that allow for a reduced fermentation pH. We explored the role of cyclopropane synthase (Cfa) and polysorbate (Tween) 80 on acid production and membrane lipid composition in Lactobacillus casei ATCC 334 at low pH. Cells from wild-type and an ATCC 334 cfa knockout mutant were incubated in APT broth medium containing 3 % glucose plus 0.02 or 0.2 % Tween 80. The cultures were allowed to acidify the medium until it reached a target pH (4.5, 4.0, or 3.8), and then the pH was maintained by automatic addition of NH₄OH. Cells were collected at the midpoint of the fermentation for membrane lipid analysis, and media samples were analyzed for lactic and acetic acids when acid production had ceased. There were no significant differences in the quantity of lactic acid produced at different pH values by wild-type or mutant cells grown in APT, but the rate of acid production was reduced as pH declined. APT supplementation with 0.2 % Tween 80 significantly increased the amount of lactic acid produced by wild-type cells at pH 3.8, and the rate of acid production was modestly improved. This effect was not observed with the cfa mutant, which indicated Cfa activity and Tween 80 supplementation were each involved in the significant increase in lactic acid yield observed with wild-type L. casei at pH 3.8.

  1. Intracellular pH Response to Weak Acid Stress in Individual Vegetative Bacillus subtilis Cells.

    Science.gov (United States)

    Pandey, Rachna; Vischer, Norbert O E; Smelt, Jan P P M; van Beilen, Johan W A; Ter Beek, Alexander; De Vos, Winnok H; Brul, Stanley; Manders, Erik M M

    2016-11-01

    Intracellular pH (pH i ) critically affects bacterial cell physiology. Hence, a variety of food preservation strategies are aimed at perturbing pH i homeostasis. Unfortunately, accurate pH i quantification with existing methods is suboptimal, since measurements are averages across populations of cells, not taking into account interindividual heterogeneity. Yet, physiological heterogeneity in isogenic populations is well known to be responsible for differences in growth and division kinetics of cells in response to external stressors. To assess in this context the behavior of intracellular acidity, we have developed a robust method to quantify pH i at single-cell levels in Bacillus subtilis Bacilli spoil food, cause disease, and are well known for their ability to form highly stress-resistant spores. Using an improved version of the genetically encoded ratiometric pHluorin (IpHluorin), we have quantified pH i in individual B. subtilis cells, cultured at an external pH of 6.4, in the absence or presence of weak acid stresses. In the presence of 3 mM potassium sorbate, a decrease in pH i and an increase in the generation time of growing cells were observed. Similar effects were observed when cells were stressed with 25 mM potassium acetate. Time-resolved analysis of individual bacteria in growing colonies shows that after a transient pH decrease, long-term pH evolution is highly cell dependent. The heterogeneity at the single-cell level shows the existence of subpopulations that might be more resistant and contribute to population survival. Our approach contributes to an understanding of pH i regulation in individual bacteria and may help scrutinizing effects of existing and novel food preservation strategies. This study shows how the physiological response to commonly used weak organic acid food preservatives, such as sorbic and acetic acids, can be measured at the single-cell level. These data are key to coupling often-observed single-cell heterogeneous growth

  2. Environmental responsiveness of polygalacturonic acid-based multilayers to variation of pH.

    Science.gov (United States)

    Westwood, Marta; Noel, Timothy R; Parker, Roger

    2011-02-14

    The effect of pH on the stability of layer-by-layer deposited polygalacturonic acid (PGalA)-based multilayer films prepared with the polycations poly-L-lysine, chitosan, and lysozyme is studied. The response was characterized using a quartz crystal microbalance, dual polarization interferometry, and Fourier transform infrared spectroscopy which probe multilayer thickness, density, polymer mass (composition and speciation), and hydration. All multilayers showed irreversible changes in response to pH change becoming thinner due to the partial disassembly. Preferential loss of the polycation (50-80% w/w) and relative small losses of PGaLA (10-35% w/w) occurred. The charge density on the polycation has a strong influence on the response to the acid cycle. Most of the disassembly takes place at the pH lower that pK(a) of PGaLA, indicating that this factor was crucial in determining the stability of the films. The pH challenge also revealed a polycation-dependent shift to acid pH in the PGaLA pK(a).

  3. Is Your Drinking Water Acidic? A Comparison of the Varied pH of Popular Bottled Waters.

    Science.gov (United States)

    Wright, Kellie F

    2015-06-01

    Dental professionals continually educate patients on the dangers of consuming acidic foods and beverages due to their potential to contribute to dental erosion and tooth decay. Excess acid in the diet can also lead to acidosis, which causes negative systemic side effects. However, water is not typically categorized as acidic. The purpose of this in-vitro study was to investigate the pH levels of several popular brands of bottled water and compare them to various other acidic beverages. Two different brands of marketed alkaline water (with a pH of 8.8 or higher) were also studied, tested for acidity and described. A pilot in-vitro study was conducted to determine the pH levels of a convenience sample of popular brands of bottled water, tap water and other known acidic beverages in comparison with the pH values reported on the respective manufacturers' website. Each beverage was tested in a laboratory using a calibrated Corning pH meter model 240, and waters were compared to the corresponding company's testified pH value. Waters were also compared and contrasted based on their process of purification. The data was then compiled and analyzed descriptively. The pH values for the tested beverages and bottled waters were found to be predominantly acidic. Ten out of the 14 beverages tested were acidic (pHwaters were neutral (pH=7) and 2 bottled waters were alkaline (pH>7). The majority of waters tested had a more acidic pH when tested in the lab than the value listed in their water quality reports. It is beneficial for the health care provider to be aware of the potential acidity of popular bottled drinking waters and educate patients accordingly. Copyright © 2015 The American Dental Hygienists’ Association.

  4. Microenvironmental pH measurement during sodium naproxenate dissolution in acidic medium by UV/vis imaging

    DEFF Research Database (Denmark)

    Ostergaard, Jesper; Jensen, Henrik; Larsen, Susan W

    2014-01-01

    Variable dissolution from sodium salts of drugs containing a carboxylic acid group after passing the acidic environment of the stomach may affect oral bioavailability. The aim of the present proof of concept study was to investigate pH effects in relation to the dissolution of sodium naproxenate...... in 0.01M hydrochloric acid. For this purpose a UV/vis imaging-based approach capable of measuring microenvironmental pH in the vicinity of the solid drug compact as well as monitoring drug dissolution was developed. Using a pH indicating dye real-time spatially resolved measurement of pH was achieved....... Sodium naproxenate, can significantly alter the local pH of the dissolution medium, is eventually neutralized and precipitates as the acidic species naproxen. The developed approach is considered useful for detailed studies of pH dependent dissolution phenomena in dissolution testing....

  5. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    Science.gov (United States)

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. Published by Elsevier B.V.

  6. Use of cation selective membrane and acid addition for PH control in two-dimensional electrokinetic remediation of copper

    Energy Technology Data Exchange (ETDEWEB)

    Chan, M.S.M.; Lynch, R.J. [Cambridge Univ., Engineering Dept. (United Kingdom); Ilett, D.J. [AEA Technology, Harwell, Oxfordshire (United Kingdom)

    2001-07-01

    The feasibility of using a combination of a cation selective membrane and acid addition for pH control in electrokinetic remediation to toxic and heavy metals from low-permeability soil has been investigated. The high pH generated during the remediation process, as a result of surplus OH{sup -} ions, may cause metal ions to precipitate as hydroxides at or near the cathodes. This region of high pH is known to be associated with high electrical resistance, which limits the remediation efficiency by inhibiting current flow through the soil. One way to control pH is by adding acid to neutralize the OH{sup -} ions. However, preliminary work showed that addition of acid to the cathodic region was not effective in preventing the spread of the alkaline zone from cathodes toward anodes. Precipitates were formed before metal ions reached the cathodic region. Therefore, another method of pH control was investigated, using a cation selective membrane to enhance the electrokinetic process. The membrane was placed in front of the cathodes to contain the OH{sup -} ions generated, and confine the precipitates of metal hydroxide to a small cathodic region. The clean-up of a contaminated site was modelled in a rectangular tank, using silt as the low permeability soul and copper to simulate the contamination. The objective was to redistribute the contaminant so as to concentrate it into a small area. Three experiments were performed with the following methods of pH control: (1) acid addition, (2) use of a cation selective membrane and (3) a combination of acid addition and a cation selective membrane. Using the combined approach, it was found that 75% of the target clean-up section (bounded by the cation selective membrane and the anodes) had more than 40% of the initial copper removed. The general efficiency of remediation increased in the following order. (orig.)

  7. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor

    Science.gov (United States)

    Kazmierczak, Marcin; Zhang, Xiaofei; Chen, Bihan; Mulkey, Daniel K.; Shi, Yingtang; Wagner, Paul G.; Pivaroff-Ward, Kendra; Sassic, Jessica K.; Bayliss, Douglas A.

    2013-01-01

    The Ether-a-go-go (EAG) superfamily of voltage-gated K+ channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K+ currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K+ channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance–voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn2+. Low pH similarly reduces Mg2+ sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca2+. Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K+ currents observed in vivo. PMID:23712551

  8. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor.

    Science.gov (United States)

    Kazmierczak, Marcin; Zhang, Xiaofei; Chen, Bihan; Mulkey, Daniel K; Shi, Yingtang; Wagner, Paul G; Pivaroff-Ward, Kendra; Sassic, Jessica K; Bayliss, Douglas A; Jegla, Timothy

    2013-06-01

    The Ether-a-go-go (EAG) superfamily of voltage-gated K(+) channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K(+) currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K(+) channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance-voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn(2+). Low pH similarly reduces Mg(2+) sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca(2+). Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K(+) currents observed in vivo.

  9. pH and its frequency distribution patterns of Acid Precipitation in Japan

    International Nuclear Information System (INIS)

    Kitamura, Moritsugu; Katou, Takunori; Sekiguchi, Kyoichi

    1991-01-01

    The pH data was collected at the 29 stations in Phase-I study of Acid Precipitation Survey over Japan by Japan Environment Agency in terms of frequency distribution patterns. This study was undertaken from April 1984 to March 1988, which was the first survey of acid precipitation over Japan with identical sampling procedures and subsequent chemical analyses. While the annual mean pH at each station ranged from 4.4 to 5.5, the monthly mean varied more widely, from 4.0 to 7.1. Its frequency distribution pattern was obtained for each station, and further grouped into four classes: class I; a mode at the rank of pH 4.5∼4.9, class II; bimodes above and below this pH region, class III; a mode at a higher pH region, class IV; a mode at a lower pH region. The bimodal pattern was suggestive of precipitation with and without incorporation of significant amounts of basic aerosol of anthropogenic origin during descent of rain droplet. The patterns of the stations were also classified on a basis of summer-winter difference into another four classes. Winter pH values were appreciably lower than summer pHs in western parts of Japan and on Japan Sea coast, we attribute the winter pH to probable contribution of acidic pollutants transported by strong winter monsoon from Eurasian Continent. At most stations in northern and eastern Japan, the pH was higher in winter months reflecting more incorporation of basic materials, e.g., NH 4 + and Ca 2+ . (author)

  10. Infectious pancreatic necrosis virus in fish by-products is inactivated with inorganic acid (pH 1) and base (pH 12).

    Science.gov (United States)

    Myrmel, M; Modahl, I; Nygaard, H; Lie, K M

    2014-04-01

    The aquaculture industry needs a simple, inexpensive and safe method for the treatment of fish waste without heat. Microbial inactivation by inorganic acid (HCl) or base (KOH) was determined using infectious pancreatic necrosis virus (IPNV) as a model organism for fish pathogens. Salmonella and spores of Clostridium perfringens were general hygiene indicators in supplementary examinations. IPNV, which is considered to be among the most chemical- and heat-resistant fish pathogens, was reduced by more than 3 log in 4 h at pH 1.0 and pH 12.0. Salmonella was rapidly inactivated by the same treatment, whereas spores of C. perfringens were hardly affected. The results indicate that low and high pH treatment could be particularly suitable for fish waste destined for biogas production. pH treatment at aquaculture production sites could reduce the spread of fish pathogens during storage and transportation without disturbing the anaerobic digestion process. The treatment could also be an alternative to the current energy-intensive steam pressure sterilization of fish waste to be used by the bioenergy, fertilizer and soil improver industries. © 2013 John Wiley & Sons Ltd.

  11. The effect of pH on the erosion of dentine and enamel by dietary acids in vitro.

    Science.gov (United States)

    West, N X; Hughes, J A; Addy, M

    2001-09-01

    The reported incidence of tooth erosion caused by acidic soft drinks has been increasingly documented. Citric and phosphoric acids are the two main dietary acids present in these soft drinks. Many variables need to be determined in order to assess risk factors for dental erosion caused by beverage consumption including pH, titratable acidity, pKa, buffering capacity, hence the aim of these in vitro investigations. Methodologies included profiling flat enamel and dentine samples (acidic solutions adjusted with alkali over the available pH range; citric, phosphoric and hydrochloric acid were adjusted with sodium hydroxide and citric acid with trisodium citrate. Tissue loss was calculated by profilometry. Results showed that under these conditions citric acid caused far more erosion over the pH range employed than phosphoric acid for both tissue types. Citric acid compared with hydrochloric acid highlighted dissolution and chelation effects. Phosphoric acid caused minimal erosion over pH 3 for enamel and pH 4 for dentine. These factors could be considered in order to reduce the erosivity of acidic soft drinks.

  12. Development and characterization of a voltammetric carbon-fiber microelectrode pH sensor.

    Science.gov (United States)

    Makos, Monique A; Omiatek, Donna M; Ewing, Andrew G; Heien, Michael L

    2010-06-15

    This work describes the development and characterization of a modified carbon-fiber microelectrode sensor capable of measuring real-time physiological pH changes in biological microenvironments. The reagentless sensor was fabricated under ambient conditions from voltammetric reduction of the diazonium salt Fast Blue RR onto a carbon-fiber surface in aprotic media. Fast-scan cyclic voltammetry was used to probe redox activity of the p-quinone moiety of the surface-bound molecule as a function of pH. In vitro calibration of the sensor in solutions ranging from pH 6.5 to 8.0 resulted in a pH-dependent anodic peak potential response. Flow-injection analysis was used to characterize the modified microelectrode, revealing sensitivity to acidic and basic changes discernible to 0.005 pH units. Furthermore, the modified electrode was used to measure dynamic in vivo pH changes evoked during neurotransmitter release in the central nervous system of the microanalytical model organism Drosophila melanogaster.

  13. Differential gene expression in tomato fruit and Colletotrichum gloeosporioides during colonization of the RNAi-SlPH tomato line with reduced fruit acidity and higher pH.

    Science.gov (United States)

    Barad, Shiri; Sela, Noa; Dubey, Amit K; Kumar, Dilip; Luria, Neta; Ment, Dana; Cohen, Shahar; Schaffer, Arthur A; Prusky, Dov

    2017-08-04

    The destructive phytopathogen Colletotrichum gloeosporioides causes anthracnose disease in fruit. During host colonization, it secretes ammonia, which modulates environmental pH and regulates gene expression, contributing to pathogenicity. However, the effect of host pH environment on pathogen colonization has never been evaluated. Development of an isogenic tomato line with reduced expression of the gene for acidity, SlPH (Solyc10g074790.1.1), enabled this analysis. Total RNA from C. gloeosporioides colonizing wild-type (WT) and RNAi-SlPH tomato lines was sequenced and gene-expression patterns were compared. C. gloeosporioides inoculation of the RNAi-SlPH line with pH 5.96 compared to the WT line with pH 4.2 showed 30% higher colonization and reduced ammonia accumulation. Large-scale comparative transcriptome analysis of the colonized RNAi-SlPH and WT lines revealed their different mechanisms of colonization-pattern activation: whereas the WT tomato upregulated 13-LOX (lipoxygenase), jasmonic acid and glutamate biosynthesis pathways, it downregulated processes related to chlorogenic acid biosynthesis II, phenylpropanoid biosynthesis and hydroxycinnamic acid tyramine amide biosynthesis; the RNAi-SlPH line upregulated UDP-D-galacturonate biosynthesis I and free phenylpropanoid acid biosynthesis, but mainly downregulated pathways related to sugar metabolism, such as the glyoxylate cycle and L-arabinose degradation II. Comparison of C. gloeosporioides gene expression during colonization of the WT and RNAi-SlPH lines showed that the fungus upregulates ammonia and nitrogen transport and the gamma-aminobutyric acid metabolic process during colonization of the WT, while on the RNAi-SlPH tomato, it mainly upregulates the nitrate metabolic process. Modulation of tomato acidity and pH had significant phenotypic effects on C. gloeosporioides development. The fungus showed increased colonization on the neutral RNAi-SlPH fruit, and limited colonization on the WT acidic fruit

  14. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    Science.gov (United States)

    Viala, Julie P M; Méresse, Stéphane; Pocachard, Bérengère; Guilhon, Aude-Agnès; Aussel, Laurent; Barras, Frédéric

    2011-01-01

    During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i) to survive an extreme acid shock, (ii) to grow at mild acidic pH and (iii) to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  15. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    Directory of Open Access Journals (Sweden)

    Julie P M Viala

    Full Text Available During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i to survive an extreme acid shock, (ii to grow at mild acidic pH and (iii to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  16. Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation.

    Science.gov (United States)

    Andersen, Stephen J; Candry, Pieter; Basadre, Thais; Khor, Way Cern; Roume, Hugo; Hernandez-Sanabria, Emma; Coma, Marta; Rabaey, Korneel

    2015-01-01

    Volatile fatty acids (VFA) are building blocks for the chemical industry. Sustainable, biological production is constrained by production and recovery costs, including the need for intensive pH correction. Membrane electrolysis has been developed as an in situ extraction technology tailored to the direct recovery of VFA from fermentation while stabilizing acidogenesis without caustic addition. A current applied across an anion exchange membrane reduces the fermentation broth (catholyte, water reduction: H2O + e(-) → ½ H2 + OH(-)) and drives carboxylate ions into a clean, concentrated VFA stream (anolyte, water oxidation: H2O → 2e(-) + 2 H(+) + O2). In this study, we fermented thin stillage to generate a mixed VFA extract without chemical pH control. Membrane electrolysis (0.1 A, 3.22 ± 0.60 V) extracted 28 ± 6 % of carboxylates generated per day (on a carbon basis) and completely replaced caustic control of pH, with no impact on the total carboxylate production amount or rate. Hydrogen generated from the applied current shifted the fermentation outcome from predominantly C2 and C3 VFA (64 ± 3 % of the total VFA present in the control) to majority of C4 to C6 (70 ± 12 % in the experiment), with identical proportions in the VFA acid extract. A strain related to Megasphaera elsdenii (maximum abundance of 57 %), a bacteria capable of producing mid-chain VFA at a high rate, was enriched by the applied current, alongside a stable community of Lactobacillus spp. (10 %), enabling chain elongation of VFA through lactic acid. A conversion of 30 ± 5 % VFA produced per sCOD fed (60 ± 10 % of the reactive fraction) was achieved, with a 50 ± 6 % reduction in suspended solids likely by electro-coagulation. VFA can be extracted directly from a fermentation broth by membrane electrolysis. The electrolytic water reduction products are utilized in the fermentation: OH(-) is used for pH control without added chemicals, and H2 is

  17. Ellagic acid radiosensitizes tumor cells by evoking apoptotic pathway

    International Nuclear Information System (INIS)

    Ahire, Vidhula R.; Mishra, K.P.

    2016-01-01

    Cancer causes millions of deaths each year globally. In most patients, the cause of treatment failure is found associated with the resistance to chemotherapy and radiotherapy. The development of tumor cell resistance evokes multiple intracellular molecular pathways. In addition, the limitation in treatment outcome arises due to unintended cytotoxic effects of the synthetic anticancer drugs to normal cells and tissues. Considerable focus of research is, therefore, devoted to examine plant-based herbal compounds which may prove potential anticancer drug for developing effective cancer therapy. Research results from our laboratory have shown that ellagic acid (EA), a natural flavonoid displays enhanced tumor toxicity in combination with gamma radiation to many types of cancers in vitro as well as in vivo. Studies on the underlying mechanisms of toxicity suggest that EA employs the cellular signaling pathways in producing the observed effects. This paper gives an account of molecular mechanisms of EA-induced apoptosis process in tumor cytotoxicity. It is suggested that EA acts as a novel radiosensitizer for tumors and a radioprotector for normal cells which may offer a novel protocol for cancer treatment. (author)

  18. Modulation of ASIC channels in rat cerebellar purkinje neurons by ischaemia-related signals

    Science.gov (United States)

    Allen, Nicola J; Attwell, David

    2002-01-01

    Acid-sensing ion channels (ASICs), activated by a decrease of extracellular pH, are found in neurons throughout the nervous system. They have an amino acid sequence similar to that of ion channels activated by membrane stretch, and have been implicated in touch sensation. Here we characterize the pH-dependent activation of ASICs in cerebellar Purkinje cells and investigate how they are modulated by factors released in ischaemia. Lowering the external pH from 7.4 activated an inward current at −66 mV, carried largely by Na+ ions, which was half-maximal for a step to pH 6.4 and was blocked by amiloride and gadolinium. The H+-gated current desensitized within a few seconds, but approximately 30% of cells showed a sustained inward current (11% of the peak current) in response to the maintained presence of pH 6 solution. The peak H+-evoked current was potentiated by membrane stretch (which occurs in ischaemia when [K+]o rises) and by arachidonic acid (which is released when [Ca2+]i rises in ischaemia). Arachidonic acid increased to 77% the fraction of cells showing a sustained current evoked by acid pH. The ASIC currents were also potentiated by lactate (which is released when metabolism becomes anaerobic in ischaemia) and by FMRFamide (which may mimic the action of related mammalian RFamide transmitters). These data reinforce suggestions of a mechanosensory aspect to ASIC channel function, and show that the activation of ASICs reflects the integration of multiple signals which are present during ischaemia. PMID:12205186

  19. Effect of systemic pH on pHi and lactic acid generation in exhaustive forearm exercise

    International Nuclear Information System (INIS)

    Hood, V.L.; Schubert, C.; Keller, U.; Mueller, S.

    1988-01-01

    To investigate whether changes in systemic pH affect intracellular pH (pH i ), energy-rich phosphates, and lactic acid generation in muscle, eight normal volunteers performed exhaustive forearm exercise with arterial blood flow occluded for 2 min on three occasions. Subjects ingested 4 mmol/kg NH 4 Cl (acidosis; A) or NaHCO 3 (alkalosis; B) or nothing (control; C) 3 h before the exercise. Muscle pH i and phosphocreatine (PCr) content were measured with 31 P-nuclear magnetic resonance ( 31 P-NMR) spectroscopy during exercise and recovery. Lactate output during 0.5-7 min of recovery was calculated as deep venous-arterial concentration differences times forearm blood flow. Before exercise, blood pH and bicarbonate were lower in acidosis than alkalosis and intermediate in control. Lactic acid output during recovery was less with A than B and intermediate in C. PCr utilization and resynthesis were not affected by extracellular pH changes. pH i did not differ before exercise or at its end. Hence systemic acidosis inhibited and alkalosis stimulated lactic acid output. These findings suggest that systemic pH regulates cellular acid production, protecting muscle pH, at the expense of energy availability

  20. Current status of acid fog research. Sanseimu kenkyu no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Murano, K. (National Inst. for Environmental Studies, Tsukuba (Japan))

    1993-07-10

    Acid fog research was behind in comparison with acid rain research. In case of acid fog, it is because the place generating sufficiently thick fog to collect is limited, the generating place is mountainous, its survey needs a lot of works, its collector is not convenient like in acid rain, or its sampling is difficult on its automation. Since the 1980s, an extensive survey on acid fog had been carried out centering the west coast of California, USA, and low pH fog (minimum pH 2.2) was observed. In the course of these researches, string type active fogwater collectors became a major sampling method, and the simulation of acidification of fog droplet in the atmosphere was extensively conducted. In Japan, already in the 1960s, field surveys on acid fog were conducted, in 1984 acid fog survey started on Mt. Akagi under a viewpoint of ecological impact, and there was a report that low pH fog (pH 3 to 4) continued more than 10 hours. It was pointed out that there were plant damage by acid fog in several locations, especially the tree mortality mechanism in Tomakomai was clarified. 50 refs., 10 figs., 6 tabs.

  1. Lower pH values of weakly acidic refluxes as determinants of heartburn perception in gastroesophageal reflux disease patients with normal esophageal acid exposure.

    Science.gov (United States)

    de Bortoli, N; Martinucci, I; Savarino, E; Franchi, R; Bertani, L; Russo, S; Ceccarelli, L; Costa, F; Bellini, M; Blandizzi, C; Savarino, V; Marchi, S

    2016-01-01

    Multichannel impedance pH monitoring has shown that weakly acidic refluxes are able to generate heartburn. However, data on the role of different pH values, ranging between 4 and 7, in the generation of them are lacking. The aim of this study was to evaluate whether different pH values of weakly acidic refluxes play a differential role in provoking reflux symptoms in endoscopy-negative patients with physiological esophageal acid exposure time and positive symptom index and symptom association probability for weakly acidic refluxes. One hundred and forty-three consecutive patients with gastroesophageal reflux disease, nonresponders to proton pump inhibitors (PPIs), were allowed a washout from PPIs before undergoing: upper endoscopy, esophageal manometry, and multichannel impedance pH monitoring. In patients with both symptom index and symptom association probability positive for weakly acidic reflux, each weakly acidic reflux was evaluated considering exact pH value, extension, physical characteristics, and correlation with heartburn. Forty-five patients with normal acid exposure time and positive symptom association probability for weakly acidic reflux were identified. The number of refluxes not heartburn related was higher than those heartburn related. In all distal and proximal liquid refluxes, as well as in distal mixed refluxes, the mean pH value of reflux events associated with heartburn was significantly lower than that not associated. This condition was not confirmed for proximal mixed refluxes. Overall, a low pH of weakly acidic reflux represents a determinant factor in provoking heartburn. This observation contributes to better understand the pathophysiology of symptoms generated by weakly acidic refluxes, paving the way toward the search for different therapeutic approaches to this peculiar condition of esophageal hypersensitivity. © 2014 International Society for Diseases of the Esophagus.

  2. Current evidence demonstrates similar effects of kilohertz-frequency and low-frequency current on quadriceps evoked torque and discomfort in healthy individuals: a systematic review with meta-analysis.

    Science.gov (United States)

    da Silva, Vinicius Zacarias Maldaner; Durigan, João Luiz Quaglioti; Arena, Ross; de Noronha, Marcos; Gurney, Burke; Cipriano, Gerson

    2015-01-01

    Neuromuscular electrical stimulation (NMES) is widely utilized to enhance muscle performance. However, the optimal NMES waveform with respect to treatment effect has not been established. To investigate the effects of kilohertz-frequency alternating current (KFAC) and low-frequency pulsed current (PC) on quadriceps evoked torque and self-reported discomfort. PubMed, The Cochrane Library, EMBASE, MEDLINE, Physiotherapy Evidence Database (PEDro), SinoMed, ISI Web of Knowledge, and CINAHL were searched for randomized controlled trials (RCTs) and quasi-randomized controlled trials (QRCTs). Two reviewers independently selected potential studies according to the inclusion criteria, extracted data, and assessed methodological quality. Studies were eligible if they compared KFAC versus PC interventions. Studies that included outcome measures for percentage of maximal isometric voluntary contraction (%MIVC) torque and self-reported discomfort level were eligible for evaluation. Seven studies involving 127 individuals were included. The methodological quality of eligible trials was moderate, with a mean of 5 on the 10-point PEDro scale. Overall, PC was no better than KFAC in terms of evoked torque and there was no difference in self-reported discomfort level. KFAC and PC have similar effects on quadriceps evoked torque and self-reported discomfort level in healthy individuals. The small number and overall methodological quality of currently available studies included in this meta-analysis indicate that new RCTs are needed to better determine optimal NMES treatment parameters.

  3. Acidic Food pH Increases Palatability and Consumption and Extends Drosophila Lifespan.

    Science.gov (United States)

    Deshpande, Sonali A; Yamada, Ryuichi; Mak, Christine M; Hunter, Brooke; Soto Obando, Alina; Hoxha, Sany; Ja, William W

    2015-12-01

    Despite the prevalent use of Drosophila as a model in studies of nutrition, the effects of fundamental food properties, such as pH, on animal health and behavior are not well known. We examined the effect of food pH on adult Drosophila lifespan, feeding behavior, and microbiota composition and tested the hypothesis that pH-mediated changes in palatability and total consumption are required for modulating longevity. We measured the effect of buffered food (pH 5, 7, or 9) on male gustatory responses (proboscis extension), total food intake, and male and female lifespan. The effect of food pH on germfree male lifespan was also assessed. Changes in fly-associated microbial composition as a result of food pH were determined by 16S ribosomal RNA gene sequencing. Male gustatory responses, total consumption, and male and female longevity were additionally measured in the taste-defective Pox neuro (Poxn) mutant and its transgenic rescue control. An acidic diet increased Drosophila gustatory responses (40-230%) and food intake (5-50%) and extended survival (10-160% longer median lifespan) compared with flies on either neutral or alkaline pH food. Alkaline food pH shifted the composition of fly-associated bacteria and resulted in greater lifespan extension (260% longer median survival) after microbes were eliminated compared with flies on an acidic (50%) or neutral (130%) diet. However, germfree flies lived longer on an acidic diet (5-20% longer median lifespan) compared with those on either neutral or alkaline pH food. Gustatory responses, total consumption, and longevity were unaffected by food pH in Poxn mutant flies. Food pH can directly influence palatability and feeding behavior and affect parameters such as microbial growth to ultimately affect Drosophila lifespan. Fundamental food properties altered by dietary or drug interventions may therefore contribute to changes in animal physiology, metabolism, and survival. © 2015 American Society for Nutrition.

  4. Measurement of pH, alkalinity and acidity in ultra-soft waters

    African Journals Online (AJOL)

    drinie

    2001-10-04

    Oct 4, 2001 ... A blend composed of the raw water, sodium chloride (to increase conductivity), and standard bicarbonate (to increase buffering capacity) was titrated with standard strong acid in two pH regions: 6.3 pH < 4.0. In both methods, total alkalinity was determined using the latter set of points, ...

  5. The effects of extracellular pH and hydroxycinnamic acids influence the intracellular pH of Brettanomyces bruxellensis DSM 7001

    DEFF Research Database (Denmark)

    Campolongo, Simona; Siegumfeldt, Henrik; Aabo, Thomas Ask

    2014-01-01

    and intracellular pH changes in B. bruxellensis DSM 7001, in response to extracellular pH, as well as to the presence of an energy source and hydroxycinnamic acids, have been investigated in this paper by means of Fluorescent Ratio Imaging Microscopy (FRIM). The results show that B. bruxellensis DSM 7001 is able...

  6. Acid skim milk gels: The gelation process as affected by preheated pH

    NARCIS (Netherlands)

    Lakemond, C.M.M.; Vliet, van T.

    2008-01-01

    The effect of preheating milk (10 min 80 [degree sign]C) at pH values from 6.20 to 6.90 on formation of acid skim milk gels was studied by dynamic oscillation measurements. Up to pH 6.65 a higher pH of heating (pHheating) resulted in a higher G'. Since below pH 4.9 the development of

  7. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites

    International Nuclear Information System (INIS)

    Louisse, Jochem; Bai Yanqing; Verwei, Miriam; Sandt, Johannes J.M. van de; Blaauboer, Bas J.; Rietjens, Ivonne M.C.M.

    2010-01-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabolites using the methoxyacetic acid (MAA) metabolite of ethylene glycol monomethyl ether as the model compound. The results obtained demonstrate an MAA-induced decrease of the intracellular pH (pH i ) of embryonic BALB/c-3T3 cells as well as of embryonic stem (ES)-D3 cells, at concentrations that affect ES-D3 cell differentiation. These results suggest a mechanism for MAA-mediated embryotoxicity similar to the mechanism of embryotoxicity of the drugs valproic acid and acetazolamide (ACZ), known to decrease the pH i in vivo, and therefore used as positive controls. The embryotoxic alkoxyacetic acid metabolites ethoxyacetic acid, butoxyacetic acid and phenoxyacetic acid also caused an intracellular acidification of BALB/c-3T3 cells at concentrations that are known to inhibit ES-D3 cell differentiation. Two other embryotoxic compounds, all-trans-retinoic acid and 5-fluorouracil, did not decrease the pH i of embryonic cells at concentrations that affect ES-D3 cell differentiation, pointing at a different mechanism of embryotoxicity of these compounds. MAA and ACZ induced a concentration-dependent inhibition of ES-D3 cell differentiation, which was enhanced by amiloride, an inhibitor of the Na + /H + -antiporter, corroborating an important role of the pH i in the embryotoxic mechanism of both compounds. Together, the results presented indicate that a decrease of the pH i may be the mechanism of embryotoxicity of the alkoxyacetic acid metabolites of the glycol ethers.

  8. Mode of de-esterification of alkaline and acidic pectin methyl esterases at different pH conditions.

    Science.gov (United States)

    Duvetter, Thomas; Fraeye, Ilse; Sila, Daniel N; Verlent, Isabel; Smout, Chantal; Hendrickx, Marc; Van Loey, Ann

    2006-10-04

    Highly esterified citrus pectin was de-esterified at pH 4.5 and 8.0 by a fungal pectin methyl esterase (PME) that was shown to have an acidic isoelectric pH (pI) and an acidic pH optimum and by a plant PME that was characterized by an alkaline pI and an alkaline pH optimum. Interchain and intrachain de-esterification patterns were studied by digestion of the pectin products with endo-polygalacturonase and subsequent analysis using size exclusion and anion-exchange chromatography. No effect of pH was observed on the de-esterification mode of either of the two enzymes. Acidic, fungal PME converted pectin according to a multiple-chain mechanism, with a limited degree of multiple attack at the intrachain level, both at pH 4.5 and at pH 8.0. A multiple-attack mechanism, with a high degree of multiple attack, was more appropriate to describe the action mode of alkaline, plant PME, both at pH 4.5 and at pH 8.0.

  9. The "high solubility" definition of the current FDA Guidance on Biopharmaceutical Classification System may be too strict for acidic drugs.

    Science.gov (United States)

    Yazdanian, Mehran; Briggs, Katherine; Jankovsky, Corinne; Hawi, Amale

    2004-02-01

    The purpose of this study was to assess if the definition of high solubility as proposed in the FDA Guidance on Biopharmaceutical Classification System (BCS) is too strict for highly permeable acidic drugs. The solubility and permeability values of 20 (18 acidic and 2 non-acidic) nonsteroidal anti-inflammatory drugs (NSAID) were determined. The NSAIDs were grouped into three different sets having acetic acid, propionic acid, or other acidic moieties such as fenamate, oxicam, and salicylate. Two nonacidic NSAIDs (celecoxib and rofecoxib) were also included for comparison purposes. Equilibrium solubility values were determined at pH 1.2, 5.0, 7.4, and in biorelevant media simulating fed intestinal fluid at pH 5.0. For a select number of acids, we also measured solubility values in media simulating gastric and fasted intestinal fluids. Permeability classification was established relative to that of reference drugs in the Caco-2 cell permeability model. Permeability coefficients for all drugs were measured at concentrations corresponding to the lowest and highest marketed dose strengths dissolved in 250 ml volume, and their potential interaction with cellular efflux pumps was investigated. All NSAIDs with different acidic functional groups were classified as highly permeable based on their Caco-2 cell permeability. Only ketorolac appeared to have a potential for interaction with cellular efflux pumps. Solubility classification was based on comparison of equilibrium solubility at pH 1.2, 5.0. and 7.4 relative to marketed dose strengths in 250 ml. The pKa values for the acidic NSAIDs studied were between 3.5 and 5.1. and, as expected, their solubility increased dramatically at pH 7.4 compared to pH 1.2. Only three NSAIDs, ketorolac, ketoprofen. and acetyl salicylic acid, meet the current criteria for high solubility over the entire pH range. However, with the exception of ibuprofen, oxaprozin, and mefenamic acid, the remaining compounds can be classified as Class I drugs

  10. [Effects of simulated acid rain on respiration rate of cropland system with different soil pH].

    Science.gov (United States)

    Zhu, Xue-zhu; Zhang, Gao-chuan; Li, Hui

    2009-10-15

    To evaluate the effects of acid rain on the respiration rate of cropland system, an outdoor pot experiment was conducted with paddy soils of pH 5.48 (S1), pH 6.70 (S1) and pH 8.18 (S3) during the 2005-2007 wheat-growing seasons. The cropland system was exposed to acid rain by spraying the wheat foliage and irrigating the soil with simulated rainwater of T1 (pH 6.0), T2 (pH 6.0, ionic concentration was twice as rainwater T1), and T3 (pH 4.4, ionic concentration was twice as rainwater T1), respectively. The static opaque chamber-gas chromatograph method was used to measure CO2 fluxes from cropland system. The results showed that acid rain affected the respiration rate of cropland system through crop plant, and the cropland system could adapt to acid rain. Acid rainwater significantly increased the average respiration rate in alkaline soil (S3) cropland system, while it had no significant effects on the average respiration rate in neutral soil (S2) and acidic soil (S1) cropland systems. During 2005-2006, after the alkaline soil cropland system was treated with rainwater T3, the average respiration rate was 23.6% and 27.6% higher than that of alkaline soil cropland system treated with rainwater T1 and T2, respectively. During March to April, the respiration rate was enhanced with the increase of rainwater ionic concentration, while it was dropped with the decrease of rainwater pH value in acidic soil cropland system. It was demonstrated that soil pH and crop plant played important roles on the respiration rate of cropland system.

  11. Isoelectric focusing of dansylated amino acids in immobilized pH gradients

    Science.gov (United States)

    Bianchi-Bosisio, Adriana; Righetti, Pier Giorgio; Egen, Ned B.; Bier, Milan

    1986-01-01

    The 21 free amino acids commonly encountered in proteins have been transformed into 'carrier ampholyte' species by reacting their primary amino groups with dansyl chloride. These derivatives can thus be focused in an immobilized pH gradient covering the pH interval 3.1 to 4.1, except for arginine, which still retains a pI of 8.8. Due to their inherent fluorescence, the dansyl derivatives are revealed in UV light, with a sensitivity of the order of 2-4 ng/sq mm. All nearest neighbors are separated except for the following couples: Asn-Gln, Gly-Thr, Val-Ile and Cys-Cys2, with a resolving power, in a Delta(pI) scale, of the order of 0.0018 pH units. Except for a few cases (notably the aromatic amino acids), the order of pI values is well correlated with the pK values of carboxyl groups, suggesting that the latter are not altered by dansylation. From the set of pK(COOH)-pI values of the different amino acids, the pK of the tertiary amino group in the dansyl label has been calculated to be 5.11 + or - 0.06. Knowing the pK of the amino-dansyl and the pI of the excess, free dansyl label (pI = 3.34), a pK of 1.57 is derived for its sulfonic acid group.

  12. Initial pH of medium affects organic acids production but do not affect phosphate solubilization.

    Science.gov (United States)

    Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S

    2015-06-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization.

  13. A single pH fluorescent probe for biosensing and imaging of extreme acidity and extreme alkalinity.

    Science.gov (United States)

    Chao, Jian-Bin; Wang, Hui-Juan; Zhang, Yong-Bin; Li, Zhi-Qing; Liu, Yu-Hong; Huo, Fang-Jun; Yin, Cai-Xia; Shi, Ya-Wei; Wang, Juan-Juan

    2017-07-04

    A simple tailor-made pH fluorescent probe 2-benzothiazole (N-ethylcarbazole-3-yl) hydrazone (Probe) is facilely synthesized by the condensation reaction of 2-hydrazinobenzothiazole with N-ethylcarbazole-3-formaldehyde, which is a useful fluorescent probe for monitoring extremely acidic and alkaline pH, quantitatively. The pH titrations indicate that Probe displays a remarkable emission enhancement with a pK a of 2.73 and responds linearly to minor pH fluctuations within the extremely acidic range of 2.21-3.30. Interestingly, Probe also exhibits strong pH-dependent characteristics with pK a 11.28 and linear response to extreme-alkalinity range of 10.41-12.43. In addition, Probe shows a large Stokes shift of 84 nm under extremely acidic and alkaline conditions, high selectivity, excellent sensitivity, good water-solubility and fine stability, all of which are favorable for intracellular pH imaging. The probe is further successfully applied to image extremely acidic and alkaline pH values fluctuations in E. coli cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Polyamine/salt-assembled microspheres coated with hyaluronic acid for targeting and pH sensing.

    Science.gov (United States)

    Zhang, Pan; Yang, Hui; Wang, Guojun; Tong, Weijun; Gao, Changyou

    2016-06-01

    The poly(allylamine hydrochloride)/trisodium citrate aggregates were fabricated and further covalently crosslinked via the coupling reaction of carboxylic sites on trisodium citrate with the amine groups on polyamine, onto which poly-L-lysine and hyaluronic acid were sequentially assembled, forming stable microspheres. The pH sensitive dye and pH insensitive dye were further labeled to enable the microspheres with pH sensing property. Moreover, these microspheres could be specifically targeted to HeLa tumor cells, since hyaluronic acid can specifically recognize and bind to CD44, a receptor overexpressed on many tumor cells. Quantitative pH measurement by confocal laser scanning microscopy demonstrated that the microspheres were internalized into HeLa cells, and accumulated in acidic compartments. By contrast, only a few microspheres were adhered on the NIH 3T3 cells surface. The microspheres with combined pH sensing property and targeting ability can enhance the insight understanding of the targeted drug vehicles trafficking after cellular internalization. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Genetically encoded proton sensors reveal activity-dependent pH changes in neurons

    Directory of Open Access Journals (Sweden)

    Joseph Valentino Raimondo

    2012-05-01

    Full Text Available The regulation of hydrogen ion concentration (pH is fundamental to cell viability, metabolism and enzymatic function. Within the nervous system, the control of pH is also involved in diverse and dynamic processes including development, synaptic transmission and the control of network excitability. As pH affects neuronal activity, and can also itself be altered by neuronal activity, the existence of tools to accurately measure hydrogen ion fluctuations is important for understanding the role pH plays under physiological and pathological conditions. Outside of their use as a marker of synaptic release, genetically encoded pH sensors have not been utilised to study hydrogen ion fluxes associated with network activity. By combining whole-cell patch clamp with simultaneous two-photon or confocal imaging, we quantified the amplitude and time course of neuronal, intracellular, acidic transients evoked by epileptiform activity in two separate in vitro models of temporal lobe epilepsy. In doing so, we demonstrate the suitability of three genetically encoded pH sensors: deGFP4, E2GFP and Cl-sensor for investigating activity-dependent pH changes at the level of single neurons.

  16. Genetically encoded proton sensors reveal activity-dependent pH changes in neurons.

    Science.gov (United States)

    Raimondo, Joseph V; Irkle, Agnese; Wefelmeyer, Winnie; Newey, Sarah E; Akerman, Colin J

    2012-01-01

    The regulation of hydrogen ion concentration (pH) is fundamental to cell viability, metabolism, and enzymatic function. Within the nervous system, the control of pH is also involved in diverse and dynamic processes including development, synaptic transmission, and the control of network excitability. As pH affects neuronal activity, and can also itself be altered by neuronal activity, the existence of tools to accurately measure hydrogen ion fluctuations is important for understanding the role pH plays under physiological and pathological conditions. Outside of their use as a marker of synaptic release, genetically encoded pH sensors have not been utilized to study hydrogen ion fluxes associated with network activity. By combining whole-cell patch clamp with simultaneous two-photon or confocal imaging, we quantified the amplitude and time course of neuronal, intracellular, acidic transients evoked by epileptiform activity in two separate in vitro models of temporal lobe epilepsy. In doing so, we demonstrate the suitability of three genetically encoded pH sensors: deGFP4, E(2)GFP, and Cl-sensor for investigating activity-dependent pH changes at the level of single neurons.

  17. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Russell, J.B. (Cornell Univ., Ithaca, NY (USA))

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y{sub ATP} (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up ({sup 14}C)acetate and ({sup 14}C)benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation.

  18. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    International Nuclear Information System (INIS)

    Russell, J.B.

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y ATP (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up [ 14 C]acetate and [ 14 C]benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation

  19. Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells.

    Directory of Open Access Journals (Sweden)

    Gabriel C Baltazar

    Full Text Available Lysosomal enzymes function optimally in acidic environments, and elevation of lysosomal pH can impede their ability to degrade material delivered to lysosomes through autophagy or phagocytosis. We hypothesize that abnormal lysosomal pH is a key aspect in diseases of accumulation and that restoring lysosomal pH will improve cell function. The propensity of nanoparticles to end up in the lysosome makes them an ideal method of delivering drugs to lysosomes. This study asked whether acidic nanoparticles could traffic to lysosomes, lower lysosomal pH and enhance lysosomal degradation by the cultured human retinal pigmented epithelial cell line ARPE-19. Acidic nanoparticles composed of poly (DL-lactide-co-glycolide (PLGA 502 H, PLGA 503 H and poly (DL-lactide (PLA colocalized to lysosomes of ARPE-19 cells within 60 min. PLGA 503 H and PLA lowered lysosomal pH in cells compromised by the alkalinizing agent chloroquine when measured 1 hr. after treatment, with acidification still observed 12 days later. PLA enhanced binding of Bodipy-pepstatin-A to the active site of cathepsin D in compromised cells. PLA also reduced the cellular levels of opsin and the lipofuscin-like autofluorescence associated with photoreceptor outer segments. These observations suggest the acidification produced by the nanoparticles was functionally effective. In summary, acid nanoparticles lead to a rapid and sustained lowering of lysosomal pH and improved degradative activity.

  20. pH and Titratable Acidity of different Cough Syrups in Nigeria ...

    African Journals Online (AJOL)

    Background: Cough linctuses are liquid oral medicines widely used in children to treat cough and related conditions. Some of their constituents are acidic and dental erosive. Objectives: This in vitro study aimed to evaluate the endogenous pH and titratable acidity of Nigerian cough syrups and also determine their erosive ...

  1. Acid and stretch, but not capsaicin, are effective stimuli for ATP release in the porcine bladder mucosa: Are ASIC and TRPV1 receptors involved?

    Science.gov (United States)

    Sadananda, Prajni; Kao, Felicity C L; Liu, Lu; Mansfield, Kylie J; Burcher, Elizabeth

    2012-05-15

    Stretch-evoked ATP release from the bladder mucosa is a key event in signaling bladder fullness. Our aim was to examine whether acid and capsaicin can also release ATP and to determine the receptors involved, using agonists and antagonists at TRPV1 and acid-sensing ion channels (ASICs). Strips of porcine bladder mucosa were exposed to acid, capsaicin or stretch. Strip tension was monitored. Bath fluid was collected for ATP measurement. Gene expression of ASICs and TRPV1 in porcine bladders was quantified using quantitative real-time PCR (qRT-PCR). Stretch stimulus (150% of original length) repeatedly and significantly increased ATP release to approximately 45 times basal release. Acid (pH 6.5, 6.0, 5.6) contracted mucosal strips and also increased ATP release up to 30-fold, without evidence of desensitization. Amiloride (0.3 μM) reduced the acid-evoked ATP release by approximately 70%, while capsazepine (10 μM) reduced acid-evoked ATP release at pH 6.0 and pH 5.6 (by 68% and 61%, respectively). Capsaicin (0.1-10 μM) was ineffective in causing ATP release, and also failed to contract porcine mucosal or detrusor strips. Gene expression for ASIC1, ASIC2, ASIC3 and TRPV1 was seen in the lateral wall, dome, trigone and neck of both detrusor and mucosa. In conclusion, stretch and acid induce ATP release in the porcine bladder mucosa, but capsaicin is ineffective. The pig bladder is a well-known model for the human bladder, however these data suggest that it should be used with caution, particularly for TRPV1 related studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. ESTIMATION OF pH, TOTAL ACID AND ETHANOL CONTENT OF COMMERCIALLY AVAILABLE ALCOHOL-CONTAINING MOUTHWASHES AND ITS EFFECT ON SALIVARY pH

    OpenAIRE

    Rafi Shaik; Sharath Pocha Reddy; Sameeulla Shaik; Sarah Emerald Sheela Nemalladinne; Dandu Sivasai Prasad Reddy; Kotu Nagavenkata Sai Praveen

    2017-01-01

    BACKGROUND Use of mouthwash has become widespread as a part of routine oral hygiene. Mouthwashes may have deleterious effects on oral tissues because of its low pH, high acid content and use of ethanol as an antiseptic agent. MATERIALS AND METHODS A cross-sectional experimental study was conducted among 48 undergraduate dental students. Eight commercially available alcohol-containing mouthwashes, which are available in Indian market were selected for which the pH, total acid an...

  3. Differential effects of temperature on acid-activated currents mediated by TRPV1 and ASIC channels in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Neelands, Torben R; Zhang, Xu-Feng; McDonald, Heath; Puttfarcken, Pamela

    2010-05-06

    Elevated temperature and decreased extracellular pH are hallmarks of inflammatory pain states. Dorsal root ganglia (DRG) neurons are integral in transferring painful stimuli from the periphery to central sites. This study investigated the effect of elevated temperatures on the response of DRG neurons to acute application of acidic solutions. At room temperature (22 degrees C), in response to pH 5.5, there were a variety of kinetic responses consistent with differential expression of TRPV1 and ASIC channels. Increasing the temperature resulted in a significant increase in the peak and total current mediated by TRPV1 in response to an acidic solution. In contrast, the amplitude of a fast activating, rapidly inactivating ASIC1-like current was not affected by increasing the temperature but did result in an increased rate of desensitization that reduced the total current level. This effect on the rate of desensitization was temperature-dependent and could be reversed by returning to 22 degrees C. Likewise, cells exhibiting slowly inactivating ASIC2-like responses also had temperature-dependent increase in the rate of desensitization. The ASIC2-like responses and the TRPV1 responses tended to decrease in amplitude with repetitive application of pH 5.5 even at 22 degrees C. The rate of desensitization of ASIC-like currents activated by less acidic solutions (pH 6.8) was also increased in a temperature-dependent manner. Finally, acidic pH reduced threshold to trigger action potentials, however, the pattern of action potential firing was shaped by the distribution of ASIC and TRPV1 channels. These results indicate that the ambient temperature at which acidosis occurs has a profound effect on the contribution of ASIC and TRPV1 channels, therefore, altering the neuronal excitability. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Sensitive detection of strong acidic condition by a novel rhodamine-based fluorescent pH chemosensor.

    Science.gov (United States)

    Tan, Jia-Lian; Yang, Ting-Ting; Liu, Yu; Zhang, Xue; Cheng, Shu-Jin; Zuo, Hua; He, Huawei

    2016-05-01

    A novel rhodamine-based fluorescent pH probe responding to extremely low pH values has been synthesized and characterized. This probe showed an excellent photophysical response to pH on the basis that the colorless spirocyclic structure under basic conditions opened to a colored and highly fluorescent form under extreme acidity. The quantitative relationship between fluorescence intensity and pH value (1.75-2.62) was consistent with the equilibrium equation pH = pKa + log[(Imax - I)/(I - Imin)]. This sensitive pH probe was also characterized with good reversibility and no interaction with interfering metal ions, and was successfully applied to image Escherichia coli under strong acidity. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Covalent modification of mutant rat P2X2 receptors with a thiol-reactive fluorophore allows channel activation by zinc or acidic pH without ATP.

    Directory of Open Access Journals (Sweden)

    Shlomo S Dellal

    Full Text Available Rat P2X2 receptors open at an undetectably low rate in the absence of ATP. Furthermore, two allosteric modulators, zinc and acidic pH, cannot by themselves open these channels. We describe here the properties of a mutant receptor, K69C, before and after treatment with the thiol-reactive fluorophore Alexa Fluor 546 C(5-maleimide (AM546. Xenopus oocytes expressing unmodified K69C were not activated under basal conditions nor by 1,000 µM ATP. AM546 treatment caused a small increase in the inward holding current which persisted on washout and control experiments demonstrated this current was due to ATP independent opening of the channels. Following AM546 treatment, zinc (100 µM or acidic external solution (pH 6.5 elicited inward currents when applied without any exogenous ATP. In the double mutant K69C/H319K, zinc elicited much larger inward currents, while acidic pH generated outward currents. Suramin, which is an antagonist of wild type receptors, behaved as an agonist at AM546-treated K69C receptors. Several other cysteine-reactive fluorophores tested on K69C did not cause these changes. These modified receptors show promise as a tool for studying the mechanisms of P2X receptor activation.

  6. Effecf of pH and some cations on activity of acid phosphatase secreted from Ustilago sp. isolated from acid sulphate soil

    Directory of Open Access Journals (Sweden)

    Chairatana Nilnond

    2007-03-01

    Full Text Available Acid phosphatase secreted from Ustilago sp. is able to hydrolyze organic phosphorus. These soil yeast microorganisms were isolated from rice roots grown in acid sulphate soil that generally contains highamount of aluminum (Al, iron (Fe and manganese (Mn ions. Therefore, the objectives of this study were to examine the effect of pH and some cations on acid phosphatase activity. Two isolates of Ustilago sp., AR101and AR102, were cultured in 100 mL of modified Pikovskaya's broth containing Na-phytate, pH 4, and acid phosphatase activity was determined at pH 2.0-7.0. Effect of Al, Fe, and Mn, including calcium (Ca ions,on growth of AR101 and AR102, secreted acid phosphatase activity, and the ability of acid phosphatase on the phosphorus release from Na-phytate by Ustilago sp. were investigated. It was found that the optimum pH for acid phosphatase activity was 3.5-4.5. The activity of acid phosphatase secreted from AR101 (3,690nmol min-1 mL-1 was remarkably higher than that from AR102 (956 nmol min-1 mL-1. Aluminum, iron, manganese and calcium ions in the medium did not affect the growth of either isolate. The activity of secretedacid phosphatase of AR101 was inhibited by Al and Ca ion, and synthesis of acid phosphatase of Ustilago sp. AR102 was possibly stimulated by Fe ion. Both AR101 and AR102 solubilized Na-phytate, resulting in therelease of P. However, some amount of released P was then precipitated with Al and Fe ions as the highly insoluble Fe- or Al- phosphate.

  7. Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence.

    Science.gov (United States)

    Hicks, Kevin G; Delbecq, Scott P; Sancho-Vaello, Enea; Blanc, Marie-Pierre; Dove, Katja K; Prost, Lynne R; Daley, Margaret E; Zeth, Kornelius; Klevit, Rachel E; Miller, Samuel I

    2015-05-23

    Salmonella PhoQ is a histidine kinase with a periplasmic sensor domain (PD) that promotes virulence by detecting the macrophage phagosome. PhoQ activity is repressed by divalent cations and induced in environments of acidic pH, limited divalent cations, and cationic antimicrobial peptides (CAMP). Previously, it was unclear which signals are sensed by salmonellae to promote PhoQ-mediated virulence. We defined conformational changes produced in the PhoQ PD on exposure to acidic pH that indicate structural flexibility is induced in α-helices 4 and 5, suggesting this region contributes to pH sensing. Therefore, we engineered a disulfide bond between W104C and A128C in the PhoQ PD that restrains conformational flexibility in α-helices 4 and 5. PhoQ(W104C-A128C) is responsive to CAMP, but is inhibited for activation by acidic pH and divalent cation limitation. phoQ(W104C-A128C) Salmonella enterica Typhimurium is virulent in mice, indicating that acidic pH and divalent cation sensing by PhoQ are dispensable for virulence.

  8. Modified cytoplasmic Ca2+ sequestration contributes to spinal cord injury-induced augmentation of nerve-evoked contractions in the rat tail artery.

    Directory of Open Access Journals (Sweden)

    Hussain Al Dera

    Full Text Available In rat tail artery (RTA, spinal cord injury (SCI increases nerve-evoked contractions and the contribution of L-type Ca2+ channels to these responses. In RTAs from unoperated rats, these channels play a minor role in contractions and Bay K8644 (L-type channel agonist mimics the effects of SCI. Here we investigated the mechanisms underlying the facilitatory actions of SCI and Bay K8644 on nerve-evoked contractions of RTAs and the hypothesis that Ca2+ entering via L-type Ca2+ channels is rapidly sequestered by the sarcoplasmic reticulum (SR limiting its role in contraction. In situ electrochemical detection of noradrenaline was used to assess if Bay K8644 increased noradrenaline release. Perforated patch recordings were used to assess if SCI changed the Ca2+ current recorded in RTA myocytes. Wire myography was used to assess if SCI modified the effects of Bay K8644 and of interrupting SR Ca2+ uptake on nerve-evoked contractions. Bay K8644 did not change noradrenaline-induced oxidation currents. Neither the size nor gating of Ca2+ currents differed between myocytes from sham-operated (control and SCI rats. Bay K8644 increased nerve-evoked contractions in RTAs from both control and SCI rats, but the magnitude of this effect was reduced by SCI. By contrast, depleting SR Ca2+ stores with ryanodine or cyclopiazonic acid selectively increased nerve-evoked contractions in control RTAs. Cyclopiazonic acid also selectively increased the blockade of these responses by nifedipine (L-type channel blocker in control RTAs, whereas ryanodine increased the blockade produced by nifedipine in both groups of RTAs. These findings suggest that Ca2+ entering via L-type channels is normally rapidly sequestered limiting its access to the contractile mechanism. Furthermore, the findings suggest SCI reduces the role of this mechanism.

  9. A wireless pH sensor using magnetoelasticity for measurement of body fluid acidity.

    Science.gov (United States)

    Pang, Pengfei; Gao, Xianjuan; Xiao, Xilin; Yang, Wenyue; Cai, Qingyun; Yao, Shouzhuo

    2007-04-01

    The determination of body fluid acidity using a wireless magnetoelastic pH-sensitive sensor is described. The sensor was fabricated by casting a layer of pH-sensitive polymer on a magnetoelastic ribbon. In response to an externally applied time-varying magnetic field, the magnetoelastic sensor mechanically vibrates at a characteristic frequency that is inversely dependent upon the mass of the pH polymer film, which varies as the film swells and shrinks in response to pH. As the magnetoelastic sensor is magnetostrictive, the mechanical vibrations of the sensor launch magnetic flux that can be detected remotely using a pickup coil. The sensor can be used for direct measurements of body fluid acidity without a pretreatment of the sample by using a filtration membrane. A reversible and linear response was obtained between pH 5.0 and 8.0 with a measurement resolution of pH 0.1 and a slope of 0.2 kHz pH(-1). Since there are no physical connections between the sensor and the instrument, the sensor can be applied to in vivo and in situ monitoring of the physiological pH and its fluctuations.

  10. Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: Is there a "pH memory" effect?

    Science.gov (United States)

    Vetráková, Ľubica; Vykoukal, Vít; Heger, Dominik

    2017-09-15

    The concept of "pH memory" has been established in the literature for the correlation between the pH of a pre-lyophilization solution and the ionization state of freeze-dried powder (lyophile). In this paper, the concept of "pH memory" is explored for the system of an aqueous solution, a frozen solution, and a lyophile. Sodium and potassium phosphate buffers in the pH range of 5-9 were frozen and lyophilized with sulfonephthalein indicators as acidity probes, and their Hammett acidity functions were compared to the initial pH of the aqueous solution. The results show that the acidities of the lyophiles are somewhat changed compared to the initial pHs, but the acidities in the frozen state differ more substantially. The Hammett acidity functions of the frozen buffers were found to be markedly dissimilar from the initial pH, especially in the sodium phosphate frozen at 233K, where an increase in the initial pH led to a decrease in the Hammett acidity function of the frozen state at a certain pH range. The large acidification observed after freezing the sodium phosphate buffer was not detected in the lyophiles after the sample had been dried; the phenomenon is explained considering the formed crystals analyzed by X-ray powder diffraction. The results suggest that monitoring the final acidity of a lyophile is not sufficient to predict all the acidity changes throughout the whole lyophilization process. The importance of well-controlled freezing and lyophilization conditions follows from the results of the research. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. THE IMPACT OF CONJUGATED LINOLEIC ACID ADDITION ON PH VALUE OF LONGISSIMUS DORSI MUSCLE

    Directory of Open Access Journals (Sweden)

    Przemysław WASILEWSKI

    2009-08-01

    Full Text Available The subject of research was 60 crossbred gilts, divided into 6 groups, fed the fodder with addition of conjugated linoleic acid (CLA or sunflower oil (SFO in amount: 0.5; 1.0; and 2.0 %, respectively. Animals were slaughtered with the body weight ca. 95 kg. The aim of research was to determine pH value of loin meat tissue (Longissimus dorsi of right half-carcass in 45 minutes, 2, 3, 4, 5, 6 hours and 24 hours after slaughter. Results were statistically elaborated using one-way variance analysis. Longissimus dorsi muscle pH values measured 45 minutes after slaughter in case of all groups of pigs were in range from 6.34 up to 6.47, what shows good meat quality. The lowest pH1 (measured 45 minutes after slaughter had meat of fatteners where addition of 2 % sunflower oil was given into fodder and the highest value of this trait was in group of individuals where also was given sunflower oil in 1 % amount. Statistical significant differences in pH value measured in different time after slaughter i.e. after 45 minutes, 2, 3, 4, 6 and 24 hours between tested groups of pigs were not stated. The exception is the result of pH measurement 5 hours after slaughter. Statistical significant differences were between group of pigs getting 0.5 % addition of conjugated linoleic acid characterized by the highest pH value of meat and group of animals fed the fodder with 1 % addition of conjugated linoleic acid (P≤0.01. On the basis of the results obtained in presented paper may be stated that feeding pigs with addition of conjugated linoleic acid in amounts 0.5; 1.0 and 2.0 % did not impact negatively on meat quality defined by pH value.

  12. Acidic pH retards the fibrillization of human islet amyloid polypeptide due to electrostatic repulsion of histidines

    Science.gov (United States)

    Li, Yang; Xu, Weixin; Mu, Yuguang; Zhang, John Z. H.

    2013-08-01

    The human Islet Amyloid Polypeptide (hIAPP) is the major constituent of amyloid deposits in pancreatic islets of type-II diabetes. IAPP is secreted together with insulin from the acidic secretory granules at a low pH of approximately 5.5 to the extracellular environment at a neutral pH. The increased accumulation of extracellular hIAPP in diabetes indicates that changes in pH may promote amyloid formation. To gain insights and underlying mechanisms of the pH effect on hIAPP fibrillogenesis, all-atom molecular dynamics simulations in explicit solvent model were performed to study the structural properties of five hIAPP protofibrillar oligomers, under acidic and neutral pH, respectively. In consistent with experimental findings, simulation results show that acidic pH is not conducive to the structural stability of these oligomers. This provides a direct evidence for a recent experiment [L. Khemtemourian, E. Domenech, J. P. F. Doux, M. C. Koorengevel, and J. A. Killian, J. Am. Chem. Soc. 133, 15598 (2011)], 10.1021/ja205007j, which suggests that acidic pH inhibits the fibril formation of hIAPP. In addition, a complementary coarse-grained simulation shows the repulsive electrostatic interactions among charged His18 residues slow down the dimerization process of hIAPP by twofold. Besides, our all-atom simulations reveal acidic pH mainly affects the local structure around residue His18 by destroying the surrounding hydrogen-bonding network, due to the repulsive interactions between protonated interchain His18 residues at acidic pH. It is also disclosed that the local interactions nearby His18 operating between adjacent β-strands trigger the structural transition, which gives hints to the experimental findings that the rate of hIAPP fibril formation and the morphologies of the fibrillar structures are strongly pH-dependent.

  13. Growth of Avena Coleoptiles and pH Drop of Protoplast Suspensions Induced by Chlorinated Indoleacetic Acids

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen; Doll, Hans; Böttger, M.

    1978-01-01

    -auxins. Some of the derivatives were compared for their effect on pH decline in stem protoplast suspensions of Helianthus annuus L. and Pisum sativum L. The change of pH occurs without a lag period or with only a very short one. Derivatives which are very active in the Avena straight growth assay cause......Several indoleacetic acids, substituted in the benzene ring, were compared in the Avena straight growth bioassay. 4-Chloroindoleacetic acid, a naturally occurring plant hormone, is one of the strongest hormones in this bioassay. With an optimum at 10-6 mol l-1, it is more active than indoleacetic...... a larger pH decline than indoleacetic acid, while inactive derivatives cause effectively no pH decline....

  14. Ionoregulatory and toxicological responses of stonefly nymphs (Plecoptera) to acidic and alkaline pH

    Energy Technology Data Exchange (ETDEWEB)

    Lechleitner, R.A.; Cherry, D.S.; Cairns, J. Jr.; Stetler, D.A.

    1985-03-01

    The acute toxicities of acidic and alkaline pH to nymphs of the stoneflies Pteronarcys dorsata, P. proteus, and Tallaperla maria were determined in 96-hr static bioassays. The acidic and alkaline 96-hr LC/sub 50/ values were 2.8 to 3.3 and 12.1 to 10.3, respectively. Exposure to pH 3.0 for 72 hr or longer caused a significant loss of sodium from nymphs of P. proteus. Morphological changes, including distension of cuticular disk and increased number of vesicles, were observed in gill tissue from nymphs of P. dorsata exposed to pH 2.5 for 9 hr while minor changes were observed in nymphs exposed to pH 4.0 for 96 hr. Changes in gill tissue ultrastructure included an increase in number of vesicles and a decrease in number and size of mitochondria in nymphs exposed to alkaline pH of 11.75.

  15. The pH ruler: a Java applet for developing interactive exercises on acids and bases.

    Science.gov (United States)

    Barrette-Ng, Isabelle H

    2011-07-01

    In introductory biochemistry courses, it is often a struggle to teach the basic concepts of acid-base chemistry in a manner that is relevant to biological systems. To help students gain a more intuitive and visual understanding of abstract acid-base concepts, a simple graphical construct called the pH ruler Java applet was developed. The applet allows students to visualize the abundance of different protonation states of diprotic and triprotic amino acids at different pH values. Using the applet, the student can drag a widget on a slider bar to change the pH and observe in real time changes in the abundance of different ionization states of this amino acid. This tool provides a means for developing more complex inquiry-based, active-learning exercises to teach more advanced topics of biochemistry, such as protein purification, protein structure and enzyme mechanism.

  16. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation.

    Science.gov (United States)

    Kitadai, Norio

    2017-03-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg 2+ ) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu 2+ ) are therefore not beneficial places for peptide bond formation on the primitive

  17. Kinetics of salivary pH after acidic beverage intake by patients undergoing orthodontic treatment.

    Science.gov (United States)

    Turssi, Cecilia P; Silva, Carolina S; Bridi, Enrico C; Amaral, Flavia Lb; Franca, Fabiana Mg; Basting, Roberta T

    2015-01-01

    The saliva of patients undergoing orthodontic treatment with fixed appliances can potentially present a delay in the diluting, clearing, and buffering of dietary acids due to an increased number of retention areas. The aim of this clinical trial was to compare salivary pH kinetics of patients with and without orthodontic treatment, following the intake of an acidic beverage. Twenty participants undergoing orthodontic treatment and 20 control counterparts had their saliva assessed for flow rate, pH, and buffering capacity. There was no significant difference between salivary parameters in participants with or without an orthodontic appliance. Salivary pH recovery following acidic beverage intake was slower in the orthodontic subjects compared to controls. Patients with fixed orthodontic appliances, therefore, seem to be at higher risk of dental erosion, suggesting that dietary advice and preventive care need to be implemented during orthodontic treatment.

  18. Effects of acetic acid and arginine on pH elevation and growth of Bacillus licheniformis in an acidified cucumber juice medium.

    Science.gov (United States)

    Yang, Zhenquan; Meng, Xia; Breidt, Frederick; Dean, Lisa L; Arritt, Fletcher M

    2015-04-01

    Bacillus licheniformis has been shown to cause pH elevation in tomato products having an initial pH below 4.6 and metabiotic effects that can lead to the growth of pathogenic bacteria. Because of this, the organism poses a potential risk to acidified vegetable products; however, little is known about the growth and metabolism of this organism in these products. To clarify the mechanisms of pH change and growth of B. licheniformis in vegetable broth under acidic conditions, a cucumber juice medium representative of a noninhibitory vegetable broth was used to monitor changes in pH, cell growth, and catabolism of sugars and amino acids. For initial pH values between pH 4.1 to 6.0, pH changes resulted from both fermentation of sugar (lowering pH) and ammonia production (raising pH). An initial pH elevation occurred, with starting pH values of pH 4.1 to 4.9 under both aerobic and anaerobic conditions, and was apparently mediated by the arginine deiminase reaction of B. licheniformis. This initial pH elevation was prevented if 5 mM or greater acetic acid was present in the brine at the same pH. In laboratory media, under favorable conditions for growth, data indicated that growth of the organism was inhibited at pH 4.6 with protonated acetic acid concentrations of 10 to 20 mM, corresponding to 25 to 50 mM total acetic acid; however, growth inhibition required greater than 300 mM citric acid (10-fold excess of the amount in processed tomato products) products under similar conditions. The data indicate that growth and pH increase by B. licheniformis may be inhibited by the acetic acid present in most commercial acidified vegetable products but not by the citric acid in many tomato products.

  19. Nitric oxide-related species inhibit evoked neurotransmission but enhance spontaneous miniature synaptic currents in central neuronal cultures

    OpenAIRE

    Pan, Zhuo-Hua; Segal, Michael M.; Lipton, Stuart A.

    1996-01-01

    Nitric oxide (NO·) does not react significantly with thiol groups under physiological conditions, whereas a variety of endogenous NO donor molecules facilitate rapid transfer to thiol of nitrosonium ion (NO+, with one less electron than NO·). Here, nitrosonium donors are shown to decrease the efficacy of evoked neurotransmission while increasing the frequency of spontaneous miniature excitatory postsynaptic currents (mEPSCs). In contrast, pure NO· donors have littl...

  20. Estimated net acid excretion inversely correlates with urine pH in vegans, lacto-ovo vegetarians, and omnivores.

    Science.gov (United States)

    Ausman, Lynne M; Oliver, Lauren M; Goldin, Barry R; Woods, Margo N; Gorbach, Sherwood L; Dwyer, Johanna T

    2008-09-01

    Diet affects urine pH and acid-base balance. Both excess acid/alkaline ash (EAA) and estimated net acid excretion (NAE) calculations have been used to estimate the effects of diet on urine pH. This study's goal was to determine if free-living vegans, lacto-ovo vegetarians, and omnivores have increasingly acidic urine, and to assess the ability of EAA and estimated NAE calculations to predict urine pH. This study used a cross-sectional design. This study assessed urine samples of 10 vegan, 16 lacto-ovo vegetarian, and 16 healthy omnivorous women in the Boston metropolitan area. Six 3-day food records from each dietary group were analyzed for EAA content and estimated NAE, and correlations with measured urine pH were calculated. The mean (+/- SD) urine pH was 6.15 +/- 0.40 for vegans, 5.90 +/- 0.36 for lacto-ovo vegetarians, and 5.74 +/- 0.21 for omnivores (analysis of variance, P = .013). Calculated EAA values were not significantly different among the three groups, whereas mean estimated NAE values were significantly different: 17.3 +/- 14.5 mEq/day for vegans, 31.3 +/- 8.5 mEq/day for lacto-ovo vegetarians, and 42.6 +/- 13.2 mEq/day for omnivores (analysis of variance, P = .01). The average deattenuated correlation between urine pH and EAA was 0.333; this value was -0.768 for estimated NAE and urine pH, with a regression equation of pH = 6.33 - 0.014 NAE (P = .02, r = -0.54). Habitual diet and estimated NAE calculations indicate the probable ranking of urine pH by dietary groups, and may be used to determine the likely acid-base status of an individual; EAA calculations were not predictive of urine pH.

  1. Putrescine biosynthesis in Lactococcus lactis is transcriptionally activated at acidic pH and counteracts acidification of the cytosol.

    Science.gov (United States)

    Del Rio, Beatriz; Linares, Daniel; Ladero, Victor; Redruello, Begoña; Fernandez, Maria; Martin, Maria Cruz; Alvarez, Miguel A

    2016-11-07

    Lactococcus lactis subsp. cremoris CECT 8666 is a lactic acid bacterium that synthesizes the biogenic amine putrescine from agmatine via the agmatine deiminase (AGDI) pathway. The AGDI genes cluster includes aguR. This encodes a transmembrane protein that functions as a one-component signal transduction system, the job of which is to sense the agmatine concentration of the medium and accordingly regulate the transcription of the catabolic operon aguBDAC. The latter encodes the proteins necessary for agmatine uptake and its conversion into putrescine. This work reports the effect of extracellular pH on putrescine biosynthesis and on the genetic regulation of the AGDI pathway. Increased putrescine biosynthesis was detected at acidic pH (pH5) compared to neutral pH. Acidic pH induced the transcription of the catabolic operon via the activation of the aguBDAC promoter PaguB. However, the external pH had no significant effect on the activity of the aguR promoter PaguR, or on the transcription of the aguR gene. The transcriptional activation of the AGDI pathway was also found to require a lower agmatine concentration at pH5 than at neutral pH. Finally, the following of the AGDI pathway counteracted the acidification of the cytoplasm under acidic external conditions, suggesting it to provide protection against acid stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Anti-biofilm potential of phenolic acids: the influence of environmental pH and intrinsic physico-chemical properties.

    Science.gov (United States)

    Silva, Sara; Costa, Eduardo M; Horta, Bruno; Calhau, Conceição; Morais, Rui M; Pintado, M Manuela

    2016-09-13

    Phenolic acids are a particular group of small phenolic compounds which have exhibited some anti-biofilm activity, although the link between their activity and their intrinsic pH is not clear. Therefore, the present work examined the anti-biofilm activity (inhibition of biomass and metabolic activity) of phenolic acids in relation to the environmental pH, as well as other physico-chemical properties. The results indicate that, while Escherichia coli was not inhibited by the phenolic acids, both methicillin resistant Staphylococcus aureus and methicillin resistant Staphylococcus epidermidis were susceptible to the action of all phenolic acids, with the pH playing a relevant role in the activity: a neutral pH favored MRSE inhibition, while acidic conditions favored MRSA inhibition. Some links between molecular polarity and size were associated only with their potential as metabolic inhibitors, with the overall interactions hinting at a membrane-based mechanism for MRSA and a cytoplasmic effect for MRSE.

  3. Optical ph sensing material prepared from doped sol-gel film for use in acid-base titration

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2017-11-01

    Full Text Available An optical pH sensing material has been prepared in this study by using sol-gel technique. Bromothymol blue, bromophenol blue and thymol blue were chosen in this study as acidbase indicators for strong acid-strong base, strong acid-weak base and weak acid-strong base titration, respectively. The results show that these indicators could be successfully entrapped inside the sol-gel film and still maintain its chemical behaviour as in solution. The entrapped acid-base indicators respond well to any pH changes and could be used to determine the end-point of the acid-base titration.

  4. pH studies in the synthesis of amino acid coated hydrophilic MNPs

    Science.gov (United States)

    Saxena, Namita; Dube, Charu Lata

    2018-04-01

    Magnetic iron oxide nanoparticles magnetite and maghemite (MNPs) are specially useful in various fields like biomedical, waste disposal, catalysis etc. because of their biocompatibility and magnetic properties. They can be manipulated by applying magnetic field and hence their easier separation, wider applications and unending scope in the field of research. They are inherently hydrophobic, and aggregate easily mainly due to magnetic and nanosize effects. The present work reports the synthesis of hydrophilic, stably dispersed MNPs coated by different amino acids at different pH values. Lower concentration of amino acids, 1/3 (moles by moles) of Iron salts concentration was used in the study. Crystallites were found to be approximately 6-7 nm in size, as determined by XRD and also found to have good magnetization values in VSM studies. The effects of coating are mainly studied by FTIR and TG. Higher/lower pH values have been studied for better coating, and it is observed that higher pH is more helpful in getting better results, on bare MNPs synthesized under a pH of approximately 13.3. The effects of net charge on coating efficiency were also studied.

  5. Sulfate Reduction at Low Ph To Remediate Acid Mine Drainage

    NARCIS (Netherlands)

    Sánchez-Andrea, I.; Sanz, J.L.; Bijmans, M.F.M.; Stams, A.J.M.

    2014-01-01

    Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities,

  6. Behaviour of lactose with the presence of lactic acid and Ca as affected by pH.

    Science.gov (United States)

    Chandrapala, Jayani; Gauthier, Claire; Vasiljevic, Todor

    2017-11-01

    Contradictory statements about the effects of pH change on crystallisation behaviour of lactose exist in the literature. Considering the importance of addressing the processability issue of acid whey, a systematic study is required to establish lactose crystallisation behaviour in the presence of LA and Ca at concentrations present in real acid whey waste streams emphasising impact of pH. Structural modifications of lactose were evident at elevated, more neutral pH in the presence of 1% w/w LA and 0·12% w/w Ca. These structural changes led to changes in the anomeric equilibrium of lactose, which manipulated the water-lactose behaviour and increased the crystallinity. Therefore, altering pH to 6·5 may be the solution to proper industrial processing of acid whey, enhancing the ability of lactose to crystallise properly.

  7. Deletion of the pH sensor GPR4 decreases renal acid excretion.

    Science.gov (United States)

    Sun, Xuming; Yang, Li V; Tiegs, Brian C; Arend, Lois J; McGraw, Dennis W; Penn, Raymond B; Petrovic, Snezana

    2010-10-01

    Proton receptors are G protein-coupled receptors that accept protons as ligands and function as pH sensors. One of the proton receptors, GPR4, is relatively abundant in the kidney, but its potential role in acid-base homeostasis is unknown. In this study, we examined the distribution of GPR4 in the kidney, its function in kidney epithelial cells, and the effects of its deletion on acid-base homeostasis. We observed GPR4 expression in the kidney cortex, in the outer and inner medulla, in isolated kidney collecting ducts, and in cultured outer and inner medullary collecting duct cells (mOMCD1 and mIMCD3). Cultured mOMCD1 cells exhibited pH-dependent accumulation of intracellular cAMP, characteristic of GPR4 activation; GPR4 knockdown attenuated this accumulation. In vivo, deletion of GPR4 decreased net acid secretion by the kidney and resulted in a nongap metabolic acidosis, indicating that GPR4 is required to maintain acid-base homeostasis. Collectively, these findings suggest that GPR4 is a pH sensor with an important role in regulating acid secretion in the kidney collecting duct.

  8. Benthic fauna of extremely acidic lakes (pH 2-3)

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, G G

    2001-07-01

    The structure of the benthic invertebrate communities were investigated in terms of composition, abundance, and biomass from extremely acidic lakes with pH values from 2 to 3 in areas where coal was intensively mined in the Lusatian region in the eastern region of Germany. Benthic invertebrates colonisation on leaves and the breakdown rate processing of the three deciduous leaf: Betula pendula (birch), Fraxinus excelsior (ash), and Juglans regia (walnut) were investigated. Also, the main key-species of these acidic environments were investigated, in terms of description of pupal exuviae of Chironomus crassimanus and the feeding habit of this acid-resistant species through analysis of their gut content. The benthic food web in extremely acidic mining Lusatian lakes is very short in terms of species richness, trophic relationship, guilds and functional feeding groups. Collector-filters and scraper-grazers were absent in extremely acidic mining lakes (AML 107, AML 111 and AML 117). Shredders as Limnophyes minimus (Diptera, Chironomidae, Orthocladiinae) and Hydrozetes lacustris (Acari, Hydrozetidae) occurred in low abundance in AML 107 and AML 111, and it may be in response to slow leaf breakdown process in these ecosystems, except in AML 117 where the H. lacustris contributed most to ecosystems functioning via the processing of litter. Aquatic insects as Sialis lutaria (Megaloptera, Sialidae), Orectochilus villosus (Coleoptera, Gyrinidae), Coenagrion mercuriale (Odonata, Coenagrionidae), and Phryganeidae (Trichoptera) are the top-predators of these ecosystems. They did not depend on the level of pH in the lakes, but on the availability of food resources. (orig.)

  9. Algal and bacterial activities in acidic (pH 3) strip mine lakes

    International Nuclear Information System (INIS)

    Gyure, R.A.; Konopka, A.; Brooks, A.; Doemel, W.

    1987-01-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H 2 S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H 2 S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by [ 14 C]glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake

  10. Skinfold thickness affects the isometric knee extension torque evoked by Neuromuscular Electrical Stimulation.

    Science.gov (United States)

    Medeiros, Flávia V A; Vieira, Amilton; Carregaro, Rodrigo L; Bottaro, Martim; Maffiuletti, Nicola A; Durigan, João L Q

    2015-01-01

    Subcutaneous adipose tissue may influence the transmission of electrical stimuli through to the skin, thus affecting both evoked torque and comfort perception associated with neuromuscular electrical stimulation (NMES). This could seriously affect the effectiveness of NMES for either rehabilitation or sports purposes. To investigate the effects of skinfold thickness (SFT) on maximal NMES current intensity, NMES-evoked torque, and NMES-induced discomfort. First, we compared NMES current intensity, NMES-induced discomfort, and NMES-evoked torque between two subgroups of subjects with thicker (n=10; 20.7 mm) vs. thinner (n=10; 29.4 mm) SFT. Second, we correlated SFT to NMES current intensity, NMES-induced discomfort, and NMES-evoked knee extension torque in 20 healthy women. The NMES-evoked torque was normalized to the maximal voluntary contraction (MVC) torque. The discomfort induced by NMES was assessed with a visual analog scale (VAS). NMES-evoked torque was 27.5% lower in subjects with thicker SFT (p=0.01) while maximal current intensity was 24.2% lower in subjects with thinner SFT (p=0.01). A positive correlation was found between current intensity and SFT (r=0.540, p=0.017). A negative correlation was found between NMES-evoked torque and SFT (r=-0.563, p=0.012). No significant correlation was observed between discomfort scores and SFT (rs=0.15, p=0.53). These results suggest that the amount of subcutaneous adipose tissue (as reflected by skinfold thickness) affected NMES current intensity and NMES-evoked torque, but had no effect on discomfort perception. Our findings may help physical therapists to better understand the impact of SFT on NMES and to design more rational stimulation strategies.

  11. Concentration of total protein and degree of acidity (pH of saliva when fasting and after breakfasting

    Directory of Open Access Journals (Sweden)

    Gemella Nur Illahi

    2016-04-01

    Full Text Available Background: While fasting, the mouth does not work to eat and drink so that the salivary glands become less active so saliva production decreased and there was a change in eating timewhich is relation to the mastication process that impact on changes in the degree of acidity (pH Objectives: To determine the concentration of total protein and the degree of acidity (pH of saliva when fasting and after breakfasting. Materials and Methods: The study was observational analytic design with longitudinal (follow up study conducted in the Hj. Halima Dg. Sikati Dental Hospital inKandea in July 2015, the sampling method was purposive sampling. Population was 35 clinical students at the Department of Dental Public Health, Faculty of Dentistry Hasanuddin University with a total sample of 16 students who fit the criteria of the study subjects. To calculate the total protein of saliva concentration using Kyltecautoanalyzerand pH meter to measure the acidity of saliva. Data was analyzed was using SPSS version 17.0 (paired t-test, p <0.05. Results: The mean of total protein (% while fasting by 0135% ± 0.026 and the mean total protein (% after breakfasting at 0.179% ± 0.035, while the average degree of acidity (pH during fasting at 7.26 ± 0:24 and the average degree of acidity (pH after breakfasting at 7.66 ± 0.23 with p-value (0.000. Conclusions: An increase in the total protein concentration and acidity (pH after breakfasting.

  12. Evoked emotions predict food choice.

    Science.gov (United States)

    Dalenberg, Jelle R; Gutjar, Swetlana; Ter Horst, Gert J; de Graaf, Kees; Renken, Remco J; Jager, Gerry

    2014-01-01

    In the current study we show that non-verbal food-evoked emotion scores significantly improve food choice prediction over merely liking scores. Previous research has shown that liking measures correlate with choice. However, liking is no strong predictor for food choice in real life environments. Therefore, the focus within recent studies shifted towards using emotion-profiling methods that successfully can discriminate between products that are equally liked. However, it is unclear how well scores from emotion-profiling methods predict actual food choice and/or consumption. To test this, we proposed to decompose emotion scores into valence and arousal scores using Principal Component Analysis (PCA) and apply Multinomial Logit Models (MLM) to estimate food choice using liking, valence, and arousal as possible predictors. For this analysis, we used an existing data set comprised of liking and food-evoked emotions scores from 123 participants, who rated 7 unlabeled breakfast drinks. Liking scores were measured using a 100-mm visual analogue scale, while food-evoked emotions were measured using 2 existing emotion-profiling methods: a verbal and a non-verbal method (EsSense Profile and PrEmo, respectively). After 7 days, participants were asked to choose 1 breakfast drink from the experiment to consume during breakfast in a simulated restaurant environment. Cross validation showed that we were able to correctly predict individualized food choice (1 out of 7 products) for over 50% of the participants. This number increased to nearly 80% when looking at the top 2 candidates. Model comparisons showed that evoked emotions better predict food choice than perceived liking alone. However, the strongest predictive strength was achieved by the combination of evoked emotions and liking. Furthermore we showed that non-verbal food-evoked emotion scores more accurately predict food choice than verbal food-evoked emotions scores.

  13. Effects Of pH, Temperature And Salinity In Growth And Organic Acid Production Of Lactic Acid Bacteria Isolated From Penaeid Shrimp Intestine

    Directory of Open Access Journals (Sweden)

    Subagiyo Subagiyo

    2015-12-01

    Full Text Available Bakteri asam laktat telah lama dikembangkan sebagai probiotik. Penentuan kondisi lingkungan yang optimum untuk pertumbuhan sel serta asam organik memberikan gambaran aktivitas optimum untuk kinerja probiotik baik dalam sistem fisiologi inang maupun dalam sistem bioproses untuk produksi sel dan metabolit. Penelitian ini bertujuan untuk mengetahui pengaruh faktor lingkungan (pH, suhu dan salinitas terhadap pertumbuhan dan produksi total asam organik tiga isolat bakteri asam laktat yang telah diseleksi dari intestinum udang penaeid. Eksperimen menggunakan  medium deMan, Rogosa and Sharpe (MRS cair. Perlakuan pH awal meliputi  nilai pH 4, 5 dan 6. Perlakuan suhu meliputi suhu 25, 30 dan 35OC serta perlakuan salinitas  meliputi salinitas 0,75 %, 1,5 % dan 3 %.  Setiap interval 6 jam dilakukan pengambilan sampel kultur bakteri dan penghitungan pertumbuhan berdasarkan perubahan optical density (pada panjang gelombang 600 nm sedangkan produksi asam laktat dianalisis dengan metode titrimetrik menggunakan NaOH 1 N sebagai larutan titrasinya. Berdasarkan hasil penelitian disimpulkan bahwa suhu, pH awal dan salinitas berpengaruh terhadap pertumbuhan dan produksi asam organik. Nilai kondisi lingkungan terbaik untuk pertumbuhan dapat berbeda dengan nilai terbaik untuk produksi asam organic. Hal ini ditunjukan oleh nilai laju pertumbuhan dan produksi asam laktat tertinggi dari tiga isolat uji terjadi pada suhu, pH awal dan salinitas yang berbeda.  Isolat L12 tumbuh optimum pada suhu 30oC, pH awal 6 dan salinitas 0,75%. Isolat L14 tumbuh optimum pada suhu 30oC, pH awal 6 dan salinitas 1.5%. Isolat L 21 tumbuh optimum pada suhu 30 oC, pH awal 6 dan salinitas 1.5%. Kata kunci: bakteri asam laktat, suhu, pH, salinitas, asamorganik, pertumbuhan, Lactic acid bacteria are widely distributed in intestinal tracts of various animals where they live as normal flora.Strains of lactic acid bacteria are the most common microbes employed as probiotics, The optimum

  14. pH-, Lactic Acid-, and Non-Lactic Acid-Dependent Activities of Probiotic Lactobacilli against Salmonella enterica Serovar Typhimurium

    OpenAIRE

    Fayol-Messaoudi, Domitille; Berger, Cédric N.; Coconnier-Polter, Marie-Hélène; Liévin-Le Moal, Vanessa; Servin, Alain L.

    2005-01-01

    The mechanism(s) underlying the antibacterial activity of probiotic Lactobacillus strains appears to be multifactorial and includes lowering of the pH and the production of lactic acid and of antibacterial compounds, including bacteriocins and nonbacteriocin, non-lactic acid molecules. Addition of Dulbecco's modified Eagle's minimum essential medium to the incubating medium delays the killing activity of lactic acid. We found that the probiotic strains Lactobacillus johnsonii La1, Lactobacill...

  15. Recovery of carboxylic acids at pH greater than pKa

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Lisa A. [Univ. of California, Berkeley, CA (United States)

    1993-08-01

    Economics of producing carboxylic acids by fermentation is often dominated, not by the fermentation cost, but by the cost of recovering and purifying the acids from dilute aqueous solutions. Experiments were performed to measure uptakes of lactic and succinic acids as functions of pH by basic polymeric sorbents; sorbent regeneration was also tested. Performance at pH > pKa and regenerability depend on sorbent basicity; apparent pKa and monomer pK{sub a} can be used to predict sorbent performance. Two basic amine extractants, Alamine 336 and Amberlite LA-2, in were also studied; they are able to sustain capacity to higher pH in diluents that stabilize the acid-amine complex through H bonding. Secondary amines perform better than tert-amines in diluents that solvate the additional proton. Competitive sulfate and phosphate, an interference in fermentation, are taken up by sorbents more strongly than by extractants. The third step in the proposed fermentation process, the cracking of the trimethylammonium (TMA) carboxylate, was also examined. Because lactic acid is more soluble and tends to self-esterify, simple thermal cracking does not remove all TMA; a more promising approach is to esterify the TMA lactate by reaction with an alcohol.

  16. Determination of critical pH and Al concentration of acidic Ultisols for wheat and canola crops

    Science.gov (United States)

    Abdulaha-Al Baquy, M.; Li, Jiu-Yu; Xu, Chen-Yang; Mehmood, Khalid; Xu, Ren-Kou

    2017-02-01

    Soil acidity has become a principal constraint in dry land crop production systems of acidic Ultisols in tropical and subtropical regions of southern China, where winter wheat and canola are cultivated as important rotational crops. There is little information on the determination of critical soil pH as well as aluminium (Al) concentration for wheat and canola crops. The objective of this study is to determine the critical soil pH and exchangeable aluminium concentration (AlKCl) for wheat and canola production. Two pot cultures with two Ultisols from Hunan and Anhui (SE China) were conducted for wheat and canola crops in a controlled growth chamber. Aluminium sulfate (Al2(SO4)3) and hydrated lime (Ca(OH)2) were used to obtain the target soil pH levels from 3.7 (Hunan) and 3.97 (Anhui) to 6.5. Plant height, shoot dry weight, root dry weight, and chlorophyll content (SPAD value) of wheat and canola were adversely affected by soil acidity in both locations. The critical soil pH and AlKCl of the Ultisol from Hunan for wheat were 5.29 and 0.56 cmol kg-1, respectively. At Anhui, the threshold soil pH and AlKCl for wheat were 4.66 and 1.72 cmol kg-1, respectively. On the other hand, the critical soil pH for canola was 5.65 and 4.87 for the Ultisols from Hunan and Anhui, respectively. The critical soil exchangeable Al for canola cannot be determined from the experiment of this study. The results suggested that the critical soil pH and AlKCl varied between different locations for the same variety of crop, due to the different soil types and their other soil chemical properties. The critical soil pH for canola was higher than that for wheat for both Ultisols, and thus canola was more sensitive to soil acidity. Therefore, we recommend that liming should be undertaken to increase soil pH if it falls below these critical soil pH levels for wheat and canola production.

  17. Intracellular product recycling in high succinic acid producing yeast at low pH

    NARCIS (Netherlands)

    Wahl, S.A.; Bernal Martinez, C.; Zhao, Zheng; van Gulik, W.M.; Jansen, Mickel L.A.

    2017-01-01

    Background: The metabolic engineering of Saccharomyces cerevisiae for the production of succinic acid has progressed dramatically, and a series of high-producing hosts are available. At low cultivation pH and high titers, the product transport can become bidirectional, i.e. the acid is reentering

  18. Viability of Lactic Acid Bacteria Isolated from Kombucha Tea Against Low pH and Bile Salt

    Directory of Open Access Journals (Sweden)

    Ni Nyoman Puspawati

    2016-03-01

    Full Text Available Kombucha tea is a functional drink fermented by various types of microbes. Kombucha tea is also a source of lactic acid bacteria that can maintain the balance of the microflora of the digestive tract which can improve the health of the human body. Lactic acid bacteria can act as a probiotic if it is able to survive to the human gastrointestinal tract, where in order to reach the digestive tract, lactic acid bacteria has to be resistant to the low pH in the stomach and bile salts. The purpose of this study was to determine the level of resistance of lactic acid bacteria in kombucha tea against low pH and bile salts. This study uses 20 isolates, each of these isolates were tested to the resistance of low pH 2.0 and 0.5 % bile salts with incubation time of 4 hours. The results indicated that from 20 isolates of lactic acid bacteria that were obtained from kombucha tea, 15 isolates were resistant to low pH and 13 isolates were resistant to bile salts. The isolates have a huge potential to be developed as a probiotic candidate that can contribute greatly to the health of the digestive tract.

  19. Protein Complexation and pH Dependent Release Using Boronic Acid Containing PEG-Polypeptide Copolymers.

    Science.gov (United States)

    Negri, Graciela E; Deming, Timothy J

    2017-01-01

    New poly(L-lysine)-b-poly(ethylene glycol) copolypeptides have been prepared, where the side-chain amine groups of lysine residues are modified to contain ortho-amine substituted phenylboronic acid, i.e., Wulff-type phenylboronic acid (WBA), groups to improve their pH responsive, carbohydrate binding properties. These block copolymers form nanoscale complexes with glycosylated proteins that are stable at physiological pH, yet dissociate and release the glycoproteins under acidic conditions, similar to those found in endosomal and lysosomal compartments within cells. These results suggest that WBA modified polypeptide copolymers are promising for further development as degradable carriers for intracellular protein delivery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The pH profile for acid-induced elongation of coleoptile and epicotyl sections is consistent with the acid-growth theory

    Science.gov (United States)

    Cleland, R. E.; Buckley, G.; Nowbar, S.; Lew, N. M.; Stinemetz, C.; Evans, M. L.; Rayle, D. L.

    1991-01-01

    The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxin-treated tissues (4.5.-5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5-6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.

  1. Thermal resistance parameters of acid-adapted and unadapted Escherichia coli O157:H7 in apple-carrot juice blends: effect of organic acids and pH.

    Science.gov (United States)

    Usaga, Jessie; Worobo, Randy W; Padilla-Zakour, Olga I

    2014-04-01

    Numerous outbreaks involving fresh juices contaminated with Escherichia coli O157:H7 have occurred in the United States and around the world, raising concern for the safety of these products. Until now, only a few studies regarding the thermal tolerance of this pathogen in acidic juices over a wide range of pH values have been published. Therefore, the effect of varying the pH with different organic acids on the thermal inactivation of non-acid-adapted and acid-adapted E. coli O157:H7 (strain C7927) was determined. The decimal reduction times (D-values) and the change in temperature required for the thermal destruction curve to traverse 1 log cycle (z-values) were calculated for non-acid-adapted E. coli in an apple-carrot juice blend (80:20) adjusted to three pH values (3.3, 3.5, and 3.7) by the addition of lactic, malic, or acetic acid and at a pH of 4.5 adjusted with NaOH. Thermal parameters were also determined for acid-adapted cells in juices acidified with malic acid. The effect of the soluble solids content on the thermal tolerance was studied in samples with a pH of 3.7 at 9.4 to 11.5 °Brix. The D-values were determined at 54, 56, and 58 °C, and trials were conducted in triplicate. Non-acid-adapted E. coli exhibited the highest thermal tolerance at pH 4.5 (D-value at 54 °C [D54 °C] of 20 ± 4 min and z-value of 6.2 °C), although on average, the D-values increased significantly (P 0.01). The data from this study will be useful for establishing critical limits for safe thermal processing of pH-controlled juices and similar products.

  2. Heart failure induces changes in acid-sensing ion channels in sensory neurons innervating skeletal muscle.

    Science.gov (United States)

    Gibbons, David D; Kutschke, William J; Weiss, Robert M; Benson, Christopher J

    2015-10-15

    Heart failure is associated with diminished exercise capacity, which is driven, in part, by alterations in exercise-induced autonomic reflexes triggered by skeletal muscle sensory neurons (afferents). These overactive reflexes may also contribute to the chronic state of sympathetic excitation, which is a major contributor to the morbidity and mortality of heart failure. Acid-sensing ion channels (ASICs) are highly expressed in muscle afferents where they sense metabolic changes associated with ischaemia and exercise, and contribute to the metabolic component of these reflexes. Therefore, we tested if ASICs within muscle afferents are altered in heart failure. We used whole-cell patch clamp to study the electrophysiological properties of acid-evoked currents in isolated, labelled muscle afferent neurons from control and heart failure (induced by myocardial infarction) mice. We found that the percentage of muscle afferents that displayed ASIC-like currents, the current amplitudes, and the pH dose-response relationships were not altered in mice with heart failure. On the other hand, the biophysical properties of ASIC-like currents were significantly different in a subpopulation of cells (40%) from heart failure mice. This population displayed diminished pH sensitivity, altered desensitization kinetics, and very fast recovery from desensitization. These unique properties define these channels within this subpopulation of muscle afferents as being heteromeric channels composed of ASIC2a and -3 subunits. Heart failure induced a shift in the subunit composition of ASICs within muscle afferents, which significantly altered their pH sensing characteristics. These results might, in part, contribute to the changes in exercise-mediated reflexes that are associated with heart failure. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  3. Elevated vaginal pH in the absence of current vaginal infection, still a challenging obstetrical problem.

    Science.gov (United States)

    Hantoushzadeh, Sedigheh; Sheikh, Mahdi; Javadian, Pouya; Shariat, Mamak; Amini, Elaheh; Abdollahi, Alireza; Kashanian, Maryam

    2014-04-01

    To assess the association of vaginal pH ≥ 5 in the absence of vaginal infection with systemic inflammation and adverse pregnancy outcome. Four-hundred sixty pregnant women completed the study, upon enrollment Vaginal pH was measured for all women, maternal and umbilical sera were obtained for determining C-reactive protein (CRP) and uric acid levels. Umbilical blood was tested for gas parameters, 1 and 5 min Apgar scores, the need for neonatal resuscitation and neonatal intensive care unit (NICU) admission were recorded. Elevated vaginal pH was significantly associated with preterm birth (odds ratio (OR), 2.23; 95% confidence interval (CI), 1.04-4.76), emergency cesarean section (OR 2.57; 95% CI 1.32-5), neonatal resuscitation in the delivery room (OR 2.85; 95% CI 1.1-7.38), elevated cord base deficit (OR 8.01; 95% CI 1.61-39.81), low cord bicarbonate (OR 4.16, 95% CI 1.33-12.92) and NICU admission (OR 2.02; 95% CI 1.12-3.66). Increased vaginal pH was also significantly associated with maternal leukocytosis, hyperuricemia and elevated CRP levels in maternal and umbilical sera. Elevated vaginal pH in the absence of current vaginal infection still constitutes a risk for adverse pregnancy outcome which is mediated by systemic inflammatory response.

  4. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil.

    Science.gov (United States)

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Liu, Zhao-Peng; Jin, Fei

    2014-04-30

    Cement stabilization is a practical approach to remediate soils contaminated with high levels of lead. However, the potential for leaching of lead out of these stabilized soils under variable acid rain pH conditions is a major environmental concern. This study investigates the effects of acid rain on the leaching characteristics of cement stabilized lead contaminated soil under different pH conditions. Clean kaolin clay and the same soil spiked with 2% lead contamination are stabilized with cement contents of 12 and 18% and then cured for 28 days. The soil samples are then subjected to a series of accelerated leaching tests (or semi-dynamic leaching tests) using a simulated acid rain leachant prepared at pH 2.0, 4.0 or 7.0. The results show that the strongly acidic leachant (pH ∼2.0) significantly altered the leaching behavior of lead as well as calcium present in the soil. However, the differences in the leaching behavior of the soil when the leachant was mildly acidic (pH ∼4.0) and neutral (pH ∼7.0) prove to be minor. In addition, it is observed that the lead contamination and cement content levels can have a considerable impact on the leaching behavior of the soils. Overall, the leachability of lead and calcium is attributed to the stability of the hydration products and their consequent influence on the soil buffering capacity and structure. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Acclimation of rainbow trout (Oncorhynchus mykiss) to low environmental pH does not involve an activation of the pituitary-interrenal axis, but evokes adjustments in branchial ultrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Balm, P.H.M. (Nijmegen Univ. (Niger)); Pottinger, T.G. (Inst. of Freshwater Ecology, Ambleside, Cumbria (United Kingdom))

    1993-01-01

    Two strains of rainbow trout were exposed to soft water at pH 4.0 for 14 d, after ambient pH was reduced gradually. Several parameters, either indicators of acid stress or reportedly involved in the adaptive response to low pH, were monitored. No mortality occurred during the exposure period; feeding behaviour, haematocrit, and plasma protein levels were not affected. A transient depression of leucocrit was observed. A minor, but significant, hypochloremia and perturbations in plasma glucose levels occurred in acid-exposed fish from one strain only. There was no evidence of activation of the pituitary-interrenal axis in acid-exposed fish. Baseline plasma ACTH and cortisol levels were indistinguishable from those of control fish, and there was no evidence of sensitization to additional stress in acid-exposed fish. In vitro baseline and ACTH-stimulated cortisol secretion was not significantly different in the two groups. Ultrastructural evidence indicated an increased turnover rate of chloride cells and leucocyte infiltration in gills of acid-exposed fish. These results suggest that interrenal activation and catastrophic ion loss are not inevitable consequences of exposure of rainbow trout to pH 4.0 and that ultrastructural changes in the gills indicate locally regulated adaptive mechanisms. 53 refs., 4 figs., 2 tabs.

  6. The acid tolerance response and pH adaptation of Enterococcus faecalis in extract of lime Citrus aurantiifolia from Aceh Indonesia.

    Science.gov (United States)

    Mubarak, Zaki; Soraya, Cut

    2018-01-01

    Background:  The objective of the present study was to evaluate the acid tolerance response and pH adaptation when Enterococcus faecalis interacted with extract of lime ( Citrus aurant iifolia ). Methods : We used E. faecalis ATCC 29212 and lime extract from Aceh, Indonesia. The microbe was analyzed for its pH adaptation, acid tolerance response, and adhesion assay using a light microscope with a magnification of x1000. Further, statistical tests were performed to analyze both correlation and significance of the acid tolerance and pH adaptation as well as the interaction activity. Results : E. faecalis was able to adapt to a very acidic environment (pH 2.9), which was characterized by an increase in its pH (reaching 4.2) at all concentrations of the lime extract (p lime extract based on spectrophotometric data (595 nm) (p lime extract was relatively stable within 6 up to 12 hours (p 0.05) based on the mass profiles of its interaction activity. Conclusions : E. faecalis can adapt to acidic environments (pH 2.9-4.2); it is also able to tolerate acid generated by Citrus auranti ifolia extract, revealing a stable interaction in the first 6-12 hours.

  7. Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution

    Science.gov (United States)

    Szewczyk-Nykiel, Aneta; Kazior, Jan

    2017-07-01

    The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.

  8. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    Science.gov (United States)

    Bellanger, G.; Rameau, J. J.

    1996-02-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive -transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique.

  9. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    Energy Technology Data Exchange (ETDEWEB)

    Bellanger, G. [CEA Centre d`Etudes de Valduc, 21 - Is-sur-Tille (France); Rameau, J.J. [Ecole Nationale Superieure d`Electrochimie et d`Electrometallurgie, 38 - Saint-Martin-d`Heres (France)

    1996-02-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive-transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique. (orig.).

  10. Effect of slightly acid pH with or without chloride in radioactive water on the corrosion of maraging steel

    International Nuclear Information System (INIS)

    Bellanger, G.; Rameau, J.J.

    1996-01-01

    This study was carried out to ascertain the behavior of maraging steel used in the tanks of French plants for reprocessing radioactive water which may contain chloride ions at pH 3. The rest or corrosion potentials can be either in the transpassive or active regions due to the presence of radiolytic species. The corrosion current and potential depend on the pH and intermediates formed on the surface in the active region; therefore, maraging steel behavior was studied by cyclic voltammetry without and with electrode rotation and different acid pH which provide an indication of mechanisms, modification of local pH and transient formation. In the passive-transpassive region, breakdown and porosity in the oxide appear with or without chloride, according to electrochemical impedance spectroscopy. In presence of chloride, the corrosion kinetics were obtained by cyclic voltammetry and electrochemical impedance spectroscopy. The anodic and cathodic areas of maraging steel corroded by pitting were shown using the Scanning Reference Electrode Technique. (orig.)

  11. Growth of aspergillus terreus and the production of itaconic acid in batch and continuous cultures. The influence of pH

    Energy Technology Data Exchange (ETDEWEB)

    Rychtera, M.; Wase, J.D.A.

    1981-01-01

    Aspergillus terreus (NRRL 1960) was cultivated in batch and in continuous single-stage culture. The influence of pH on the growth of the organism, on the formation of itaconic acid and on the kinetics of fermentation was studied under phosphate limitation, both at controlled ph values and also when the pH was allowed to decrease in a natural way. In the pH range 1.7-3.5, the ratio of undissociated:half-dissociated acid varied from 190:1 to 1.5:1. The amount of completely dissociated acid may be regarded as negligible. In batch systems operated without pH control, an initial pH of 3.1 proved to be the most effective. Product formation under such conditions started at a point where the exponential growth phase commenced and was described by a zero-order equation. The maximum itaconic acid production rate was shifted behind maximum growth rate. The continuous single-stage system was first order with respect to product formation. At pH greater than 3.1, a number of aberrant and pellet forms of the mould occurred, resulting in decreased acid production. (Refs. 41).

  12. Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide.

    Science.gov (United States)

    Reza, M Toufiq; Rottler, Erwin; Herklotz, Laureen; Wirth, Benjamin

    2015-04-01

    In this study, influence of feedwater pH (2-12) was studied for hydrothermal carbonization (HTC) of wheat straw at 200 and 260°C. Acetic acid and KOH were used as acidic and basic medium, respectively. Hydrochars were characterized by elemental and fiber analyses, SEM, surface area, pore volume and size, and ATR-FTIR, while HTC process liquids were analyzed by HPLC and GC. Both hydrochar and HTC process liquid qualities vary with feedwater pH. At acidic pH, cellulose and elemental carbon increase in hydrochar, while hemicellulose and pseudo-lignin decrease. Hydrochars produced at pH 2 feedwater has 2.7 times larger surface area than that produced at pH 12. It also has the largest pore volume (1.1 × 10(-1) ml g(-1)) and pore size (20.2 nm). Organic acids were increasing, while sugars were decreasing in case of basic feedwater, however, phenolic compounds were present only at 260°C and their concentrations were increasing in basic feedwater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Sulfate reduction at low pH to remediate acid mine drainage

    International Nuclear Information System (INIS)

    Sánchez-Andrea, Irene; Sanz, Jose Luis; Bijmans, Martijn F.M.; Stams, Alfons J.M.

    2014-01-01

    Highlights: • Acid mine drainage (AMD) is an important environmental concern. • Remediation through biological sulfate reduction and metal recovery can be applied for AMD. • Microbial community composition has a major impact on the performance of bioreactors to treat AMD. • Acidophilic SRB are strongly influenced by proton, sulfide and organic acids concentration. - Abstract: Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed

  14. Sulfate reduction at low pH to remediate acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Andrea, Irene, E-mail: irene.sanchezandrea@wur.nl [Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); Sanz, Jose Luis [Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Bijmans, Martijn F.M. [Wetsus, Centre of Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden (Netherlands); Stams, Alfons J.M. [Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); IBB – Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, 4710-057 Braga (Portugal)

    2014-03-01

    Highlights: • Acid mine drainage (AMD) is an important environmental concern. • Remediation through biological sulfate reduction and metal recovery can be applied for AMD. • Microbial community composition has a major impact on the performance of bioreactors to treat AMD. • Acidophilic SRB are strongly influenced by proton, sulfide and organic acids concentration. - Abstract: Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed.

  15. Conformational changes in human serum albumin studied by fluorescence and absorption spectroscopy. Distance measurements as a function of pH and fatty acids

    DEFF Research Database (Denmark)

    Honoré, B; Pedersen, A O

    1989-01-01

    pH- and fatty acid-induced conformational changes in human serum albumin were investigated by fluorescence-energy transfer, determining the distance between Trp-214 and bound bilirubin at 25 degrees C. This distance changes significantly with the pH, being 2.52 +/- 0.01 nm at pH 6, 2.31 +/- 0.04 nm...... at pH 9, 2.13 +/- 0.07 nm at pH 11.0 and 2.77 nm at pH 11.9. The influence of different fatty acids on the distance was also determined. At pH 7.4 medium-chain fatty acids seem to increase this distance, whereas long-chain fatty acids, at low concentrations, decrease the distance between the two...... chromophores. The contraction of the protein carrying long-chain saturated fatty acids is even more pronounced at pH 9. Udgivelsesdato: 1989-Feb-15...

  16. New Amino-Acid-Based β-Phosphorylated Nitroxides for Probing Acidic pH in Biological Systems by EPR Spectroscopy.

    Science.gov (United States)

    Thétiot-Laurent, Sophie; Gosset, Gaëlle; Clément, Jean-Louis; Cassien, Mathieu; Mercier, Anne; Siri, Didier; Gaudel-Siri, Anouk; Rockenbauer, Antal; Culcasi, Marcel; Pietri, Sylvia

    2017-02-01

    There is increasing interest in measuring pH in biological samples by using nitroxides with pH-dependent electron paramagnetic resonance (EPR) spectra. Aiming to improve the spectral sensitivity (Δa X ) of these probes (i.e., the difference between the EPR hyperfine splitting (hfs) in their protonated and unprotonated forms), we characterized a series of novel linear α-carboxy, α'-diethoxyphosphoryl nitroxides constructed on an amino acid core and featuring an (α or α')-C-H bond. In buffer, the three main hfs (a N , a H , and a P ) of their EPR spectra vary reversibly with pH and, from a P or a H titration curves, a two- to fourfold increase in sensitivity was achieved compared to reference imidazoline or imidazolidine nitroxides. The crystallized carboxylate 10 b (pK a ≈3.6), which demonstrated low cytotoxicity and good resistance to bioreduction, was applied to probe stomach acidity in rats. The results pave the way to a novel generation of highly sensitive EPR pH markers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Change of physical and chemical parameters of fulvic acids at different pH of the system

    Science.gov (United States)

    Dinu, Marina; Kremleva, Tatyana

    2017-04-01

    Organic substances of humic nature significantly change physicochemical properties at different pH of natural waters. As a consequence, a large number of consecutive and parallel reactions in the structure of organic polymers, and reacting with inorganic anions. The main indicators of changes in the properties of organic acids in natural systems are changes in their IR spectra, changes in the colloid stability (the zeta potential) as well as in the molecular weight and emission spectra (fluorescence emission spectra). The aim of our study was to evaluate of changing in physical and chemical properties of the fulvic acid from soil/water samples in the natural areas of European Russia and Western Siberia (the steppe and the northern taiga zones) at different pH (from 8 to 1.5). Changes in absorption bands of fulvic acid caused by both COOH groups and amino groups with varying degrees of protonation were found. Consequently, we can assume that in an electric field fulvic acid change the sign of their charge at depending on pH. During the lowering of the pH intensity of C-O bands generally decreases, while in the region 1590 cm-1 disappears. In turn, the band at 1700 cm-1 is the most intense; it could mean a complete protonation of the carboxyl groups. According to our data, the values of zeta potential changes depending on pH of the system. The zeta potential becomes more negative with increasing pH and it may be due to ionization of oxygen groups of fulvic acid. For the colloidal polymer systems the value of the zeta potential is strongly negative (less than -20 mV) and strongly positive (over 20 mV) characterize the system as the most stable. Our experimental data for the study of the zeta potential of fulvic acids extracted from the soils and waters of different climatic zones show zonal influence of the qualitative characteristics of organic substances on the surface charge of the high-molecular micelle of fulvic acids. It was found that fulvic acids extracted

  18. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats

    International Nuclear Information System (INIS)

    Krueger, Katharina; Repges, Hendrik; Hippler, Joerg; Hartmann, Louise M.; Hirner, Alfred V.; Straub, Heidrun; Binding, Norbert; Musshoff, Ulrich

    2007-01-01

    In this study, the effects of pentavalent dimethylarsinic acid ((CH 3 ) 2 AsO(OH); DMA V ) and trivalent dimethylarsinous acid ((CH 3 ) 2 As(OH); DMA III ) on synaptic transmission generated by the excitatory Schaffer collateral-CA1 synapse were tested in hippocampal slices of young (14-21 day-old) and adult (2-4 month-old) rats. Both compounds were applied in concentrations of 1 to 100 μmol/l. DMA V had no effect on the amplitudes of evoked fEPSPs or the induction of LTP recorded from the CA1 dendritic region either in adult or in young rats. However, application of DMA III significantly reduced the amplitudes of evoked fEPSPs in a concentration-dependent manner with a total depression following application of 100 μmol/l DMA III in adult and 10 μmol/l DMA III in young rats. Moreover, DMA III significantly affected the LTP-induction. Application of 10 μmol/l DMA III resulted in a complete failure of the postsynaptic potentiation of the fEPSP amplitudes in slices taken both from adult and young rats. The depressant effect was not reversible after a 30-min washout of the DMA III . In slices of young rats, the depressant effects of DMA III were more pronounced than in those taken from adult ones. Compared to the (absent) effect of DMA V on synaptic transmission, the trivalent compound possesses a considerably higher neurotoxic potential

  19. Development of melamine modified urea formaldehyde resins based o nstrong acidic pH catalyzed urea formaldehyde polymer

    Science.gov (United States)

    Chung-Yun Hse

    2009-01-01

    To upgrade the performance of urea-formaldehyde (UF) resin bonded particleboards, melamine modified urea-formaldehyde (MUF) resins based on strong acidic pH catalyzed UF polymers were investigated. The study was conducted in a series of two experiments: 1) formulation of MUF resins based on a UF polymer catalyzed with strong acidic pH and 2) determination of the...

  20. pH Regulatory Transporters in Pancreatic Ductal Adenocarcinoma

    DEFF Research Database (Denmark)

    Kong, Su Chii

    The abnormal features of hypoxia and altered metabolisms in solid tumours lead to an increased glycolysis that is uncoupled from oxidative phosphorylation in the TCA cycle. Tumoural cells often exhibit dysregulated expressions and activities of various membrane pH regulatory transporters to cope...... with the elevated acid production from this glycolysis, as well as from cellular ATP hydrolysis, sequentially creating a favourable intracellular pH and hostile acidic tumour microenvironment, fortify the tumour cells with highly invasive, metastatic and drug resistant phenotype. In current work, we study...... proliferation was found to be decreased while apoptosis was increased with concanamycin A treatment, indicative of V-ATPases being involved in PDAC cell survival mechanisms as well. Comprehending pH regulation in tumour cells might provide insights in preventing tumourigenesis by pH disruptions. Data presented...

  1. Dynamics of fatty acid vesicles in response to pH stimuli

    DEFF Research Database (Denmark)

    Ikari, Keita; Sakuma, Yuka; Jimbo, Takehiro

    2015-01-01

    We investigate the dynamics of decanoic acid/decanoate (DA) vesicles in response to pH stimuli. Two types of dynamic processes induced by the micro injection of NaOH solutions are sequentially observed: deformations and topological transitions. In the deformation stage, DA vesicles show a series...

  2. Inhibition of acid-sensing ion channels by levo-tetrahydropalmatine in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Liu, Ting-Ting; Qu, Zu-Wei; Qiu, Chun-Yu; Qiu, Fang; Ren, Cuixia; Gan, Xiong; Peng, Fang; Hu, Wang-Ping

    2015-02-01

    Levo-tetrahydropalmatine (l-THP), a main bioactive Chinese herbal constituent from the genera Stephania and Corydalis, has been in use in clinical practice for years in China as a traditional analgesic agent. However, the mechanism underlying the analgesic action of l-THP is poorly understood. This study shows that l-THP can exert an inhibitory effect on the functional activity of native acid-sensing ion channels (ASICs), which are believed to mediate pain caused by extracellular acidification. l-THP dose dependently decreased the amplitude of proton-gated currents mediated by ASICs in rat dorsal root ganglion (DRG) neurons. l-THP shifted the proton concentration-response curve downward, with a decrease of 40.93% ± 8.45% in the maximum current response to protons, with no significant change in the pH0.5 value. Moreover, l-THP can alter the membrane excitability of rat DRG neurons to acid stimuli. It significantly decreased the number of action potentials and the amplitude of the depolarization induced by an extracellular pH drop. Finally, peripherally administered l-THP inhibited the nociceptive response to intraplantar injection of acetic acid in rats. These results indicate that l-THP can inhibit the functional activity of ASICs in dissociated primary sensory neurons and relieve acidosis-evoked pain in vivo, which for the first time provides a novel peripheral mechanism underlying the analgesic action of l-THP. © 2014 Wiley Periodicals, Inc.

  3. Determination of the titratable acidity and the pH of wine based on potentiometric flow injection analysis.

    Science.gov (United States)

    Vahl, Katja; Kahlert, Heike; von Mühlen, Lisandro; Albrecht, Anja; Meyer, Gabriele; Behnert, Jürgen

    2013-07-15

    A FIA system using a pH-sensitive detector based on a graphite/quinhydrone/silicone composite electrode was applied to determine sequentially the titratable acidity and the pH of wine, as well as the sum of calcium and magnesium ions. For all measurements the same FIA configuration was used employing different carrier solutions. The results for the determination of acidity and pH are in good agreement with those obtained by classical potentiometric titrations and by pH measurements using a conventional glass electrode. The standard deviation was less than 1.5% for both kinds of measurements and the sample volume was 150 μL. The method allows about 40 determinations of titratable acidity per hour and 30 pH measurements per hour. The titration method can be adjusted to the legal requirements in USA and Europe. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Evoked Emotions Predict Food Choice

    NARCIS (Netherlands)

    Dalenberg, Jelle R.; Gutjar, Swetlana; ter Horst, Gert J.; de Graaf, Kees; Renken, Remco J.; Jager, Gerry

    2014-01-01

    In the current study we show that non-verbal food-evoked emotion scores significantly improve food choice prediction over merely liking scores. Previous research has shown that liking measures correlate with choice. However, liking is no strong predictor for food choice in real life environments.

  5. Scent-evoked nostalgia.

    Science.gov (United States)

    Reid, Chelsea A; Green, Jeffrey D; Wildschut, Tim; Sedikides, Constantine

    2015-01-01

    Can scents evoke nostalgia; what might be the psychological implications of such an evocation? Participants sampled 12 scents and rated the extent to which each scent was familiar, arousing and autobiographically relevant, as well as the extent to which each scent elicited nostalgia. Participants who were high (compared to low) in nostalgia proneness reported more scent-evoked nostalgia, and scents elicited greater nostalgia to the extent that they were arousing, familiar and autobiographically relevant. Scent-evoked nostalgia predicted higher levels of positive affect, self-esteem, self-continuity, optimism, social connectedness and meaning in life. In addition, scent-evoked nostalgia was characterised by more positive emotions than either non-nostalgic autobiographical memories or non-nostalgic non-autobiographical memories. Finally, scent-evoked nostalgia predicted in-the-moment feelings of personal (general or object-specific) nostalgia. The findings represent a foray into understanding the triggers and affective signature of scent-evoked nostalgia.

  6. Cation effects on phosphatidic acid monolayers at various pH conditions.

    Science.gov (United States)

    Zhang, Ting; Cathcart, Matthew G; Vidalis, Andrew S; Allen, Heather C

    2016-10-01

    The impact of pH and cations on phase behavior, stability, and surface morphology for dipalmitoylphosphatidic acid (DPPA) monolayers was investigated. At pHCations are found to expand and stabilize the monolayer in the following order of increasing magnitude at pH 5.6: Na + >K + ∼Mg 2+ >Ca 2+ . Additionally, cation complexation is tied to the pH and protonation state of DPPA, which are the primary factors controlling the monolayer surface behavior. The binding affinity of cations to the headgroup and thus deprotonation capability of the cation, ranked in the order of Ca 2+ >Mg 2+ >Na + >K + , is found to be well explained by the law of matching water affinities. Nucleation of surface 3D lipid structures is observed from Ca 2+ , Mg 2+ , and Na + , but not from K + , consistent with the lowest binding affinity of K + . Unraveling cation and pH effects on DPPA monolayers is useful in further understanding the surface properties of complex systems such as organic-coated marine aerosols where organic films are directly influenced by the pH and ionic composition of the underlying aqueous phase. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren-kou; Zhao, An-zhen; Yuan, Jin-hua; Jiang, Jun [Academy of Sciences, Nanjing (China). State Key Lab. of Soil and Sustainable Agriculture

    2012-04-15

    Purpose: The key factors influencing pH buffering capacity of acid soils from tropical and subtropical regions, and effects of soil evolution and incorporation of biochars on pH buffering capacity were investigated to develop suitable methods to increase pH buffering capacity of acid soils. Materials and methods: A total of 24 acid soils collected from southern China were used. The pH buffering capacity was determined using acid-base titration. The values of pH buffering capacity were obtained from the slope of titration curves of acid or alkali additions plotted against pH in the pH range 4.0-7.0. Two biochars were prepared from straws of peanut and canola using a low temperature pyrolysis method. After incubation of three acid soils, pH buffering capacity was then determined. Results and discussion: pH buffering capacity had a range of 9.1-32.1 mmol kg{sup -1} pH{sup -1} for 18 acid soils from tropical and subtropical regions of China. The pH buffering capacity was highly correlated (R{sup 2} = 0.707) with soil cation exchange capacity (CEC) measured with ammonium acetate method at pH 7.0 and decreased with soil evolution due to the decreased CEC. Incorporation of biochars at rates equivalent to 72 and 120 t ha{sup -1} increased soil pH buffering capacity due to the CEC contained in the biochars. Incorporation of peanut straw char which itself contained more CEC and alkalinity induced more increase in soil CEC, and thus greater increase in pH buffering capacity compared with canola straw char. At 5% of peanut straw char added, soil CEC increased by 80.2%, 51.3%, and 82.8% for Ultisol from Liuzhou, Oxisol from Chengmai and Ultisol from Kunlun, respectively, and by 19.8%, 19.6%, and 32.8% with 5% of canola straw char added, respectively; and correspondingly for these soils, the pH buffering capacity increased by 73.6%, 92.0%, and 123.2% with peanut straw char added; and by 31.3%, 25.6%, and 52.3% with canola straw char added, respectively. Protonation

  8. Acid solution is a suitable medium for introducing QX-314 into nociceptors through TRPV1 channels to produce sensory-specific analgesic effects.

    Directory of Open Access Journals (Sweden)

    He Liu

    Full Text Available BACKGROUND: Previous studies have demonstrated that QX-314, an intracellular sodium channel blocker, can enter into nociceptors through capsaicin-activated TRPV1 or permeation of the membrane by chemical enhancers to produce a sensory-selective blockade. However, the obvious side effects of these combinations limit the application of QX-314. A new strategy for targeting delivery of QX-314 into nociceptors needs further investigation. The aim of this study is to test whether acidic QX-314, when dissolves in acidic solution directly, can enter into nociceptors through acid-activated TRPV1 and block sodium channels from the intracellular side to produce a sensory-specific analgesic effect. METHODOLOGY/PRINCIPAL FINDINGS: Acidic solution or noradrenaline was injected intraplantarly to induce acute pain behavior in mice. A chronic constrictive injury model was performed to induce chronic neuropathic pain. A sciatic nerve blockade model was used to evaluate the sensory-specific analgesic effects of acidic QX-314. Thermal and mechanical hyperalgesia were measured by using radiant heat and electronic von Frey filaments test. Spinal Fos protein expression was determined by immunohistochemistry. The expression of p-ERK was detected by western blot assay. Whole cell clamp recording was performed to measure action potentials and total sodium current in rats DRG neurons. We found that pH 5.0 PBS solution induced behavioral hyperalgesia accompanied with the increased expression of spinal Fos protein and p-ERK. Pretreatment with pH 5.0 QX-314, and not pH 7.4 QX-314, alleviated pain behavior, inhibited the increased spinal Fos protein and p-ERK expression induced by pH 5.0 PBS or norepinephrine, blocked sodium currents and abolished the production of action potentials evoked by current injection. The above effects were prevented by TRPV1 channel inhibitor SB366791, but not by ASIC channel inhibitor amiloride. Furthermore, acidic QX-314 employed adjacent to the

  9. Spring flood pH decline in northern Sweden: Towards an operational model separating natural acidity from anthropogenic acidification

    Energy Technology Data Exchange (ETDEWEB)

    Laudon, H.

    1999-10-01

    anthropogenic acidity. But the results from this study so far also indicate that the current deposition levels of SO{sub 4}{sup 2-} and NO{sub 3}{sup -} give rise to rather few cases where the anthropogenic impact on pH decline is even as large as the natural factors leading to pH decline during spring flood 89 refs, 5 figs, 2 tabs

  10. Methodologic aspects of acetylcholine-evoked relaxation of rabbit aorta

    DEFF Research Database (Denmark)

    Larsen, Kirsten Vendelbo; Nedergaard, Ove A.

    1999-01-01

    The acetylcholine-evoked relaxation of rabbit isolated thoracic aorta precontracted by phenylephrine was studied. Phenylephrine caused a steady contraction that was maintained for 6 h. In the presence of calcium disodium ethylenediaminetetraacetate (EDTA) and ascorbic acid the contraction decreased...

  11. Effects of pH, titratable acidity and calcium concentration of non ...

    African Journals Online (AJOL)

    It has also been reported that experimental addition of calcium in beverages can reduce the progression of erosion. This study was carried out to investigate effects the of pH, titratable acidity and calcium concentration of non alcoholic carbonated beverages on enamel erosion of extracted human premolar teeth. Method: ...

  12. Esophageal pH monitoring

    Science.gov (United States)

    pH monitoring - esophageal; Esophageal acidity test ... Esophageal pH monitoring is used to check how much stomach acid is entering the esophagus. It also checks how well the acid is cleared downward into the ...

  13. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations

    Science.gov (United States)

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values ( 4 and 11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH 14 and brown at pH 2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms ;C;, ;H; and ;Dprot; at pH 14 and Forms ;A;, ;D;, and ;P; at pH 2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH 2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450 cm- 1, 616 to 632 cm- 1, 1332 to 1343 cm- 1 etc. Again, the most enhanced peak at 1548 cm- 1 in NRS while in the SERS window this appears at 1580 cm- 1. Similar observation was also made for CZA at pH 14. For example, the 423 cm- 1 band in the NRS profile experience a blue shift and appears at 447 cm- 1 in the SERS spectrum as well as other bands at 850, 1067 and 1214 cm- 1 in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH 2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH 14). The DFT calculations for these

  14. Use of D(acid)-, D(bile)-, z(acid)-, and z(bile)-values in evaluating Bifidobacteria with regard to stomach pH and bile salt sensitivity.

    Science.gov (United States)

    Jia, Li; Shigwedha, Nditange; Mwandemele, Osmund D

    2010-01-01

    The survival of bifidobacteria in simulated conditions of the gastrointestinal (GI) tract was studied based on the D- and z-value concept. Some Bifidobacterium spp. are probiotics that improve microbial balance in the human GI tract. Because they are sensitive to low pH and bile salt concentrations, their viability in the GI tract is limited. The D- and z-value approach was therefore adopted as a result of observing constant log-cell reduction (90%) when Bifidobacterium spp. were exposed to these 2 different stressing factors. Survivals of one strain each or 4 species of Bifidobacterium was studied at pH between 3.0 and 4.5 and in ox-bile between 0.15% and 0.60% for times up to 41 h. From the D(acid)- and D(bile)-values, the order of resistance to acid and bile was B. bifidum > B. infantis > B. longum > B. adolescentis. While the former 3 strains retained high cell viability at pH 3.5 (>5.5 log CFU/mL after 5 h) and at elevated bile salt concentration of 0.6% (>4.5 log CFU/mL after 3 h), B. adolescentis was less resistant (pH units and 0.40% to 0.49%, respectively. The results suggest that the D(acid)-, D(bile)-, z(acid)-, and z(bile)-value approach could be more appropriate than the screening and selection method in evaluating survival of probiotic bacteria, and in measuring their tolerance or resistance to gastric acidity and the associated bile salt concentration in the small intestine. The evaluation of the tolerance of bifidobacteria to bile salts and low pH has been made possible by use of D- and z-value concept. The calculated z(acid)- and z(bile)-values were all fairly similar for the strains used and suggest the effect of increasing the bile salt concentration or decreasing the pH on the D(acid)- and D(bile)-values. This approach would be useful for predicting the suitability of bifidobacteria and other lactic acid bacteria (LAB) as probiotics for use in real-life situations.

  15. A proposed relationship between pH and ascorbic acid content of ...

    African Journals Online (AJOL)

    A relationship between the ascorbic acid content of fresh squeezed juice of orange, lemon, grape and lime and the pH was presented. The relationship established were statistically compared with those obtained by the 2,6 dichlorophenol indophenol titration method. It was shown that they do not differ significantly (p≥0.05) ...

  16. Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: Acid-base equilibria and pH buffers.

    Science.gov (United States)

    Persat, Alexandre; Chambers, Robert D; Santiago, Juan G

    2009-09-07

    We review fundamental and applied acid-base equilibrium chemistry useful to microfluidic electrokinetics. We present elements of acid-base equilibrium reactions and derive rules for pH calculation for simple buffers. We also present a general formulation to calculate pH of more complex, arbitrary mixtures of electrolytes, and discuss the effects of ionic strength and temperature on pH calculation. More practically, we offer advice on buffer preparation and on buffer reporting. We also discuss "real world" buffers and likely contamination sources. In particular, we discuss the effects of atmospheric carbon dioxide on buffer systems, namely, the increase in ionic strength and acidification of typical electrokinetic device buffers. In Part II of this two-paper series, we discuss the coupling of acid-base equilibria with electrolyte dynamics and electrochemistry in typical microfluidic electrokinetic systems.

  17. Copper availability and bioavailability are controlled by rhizosphere pH in rape grown in an acidic Cu-contaminated soil

    International Nuclear Information System (INIS)

    Chaignon, Valerie; Quesnoit, Marie; Hinsinger, Philippe

    2009-01-01

    We evaluated how root-induced changes in rhizosphere pH varied and interacted with Cu availability and bioavailability in an acidic soil. Rape was grown on a Cu-contaminated acidic soil, which had been limed at 10 rates. Soil Cu bioavailability was not influenced by liming. However, liming significantly decreased CaCl 2 -extracted Cu for pH between 3.7 and 5.1. Little effect was found for pH above 5.1. For soil pH 2 -Cu contents were smaller in rhizosphere than uncropped soil. Rhizosphere alkalisation occurred at pH 2 -Cu in the rhizosphere at low pH and the absence of pH dependency of Cu bioavailability to rape. In addition, apoplastic Cu in roots increased with increasing soil pH, most probably as a result of increased dissociation and affinity of cell wall compounds for Cu. - Root-induced increase in pH reduces Cu availability in the rhizosphere and Cu bioavailability to rape.

  18. Determination of free acid in high level liquid wastes by means of fixed pH value

    International Nuclear Information System (INIS)

    Li Jifu; Duan Shirong; Wu Xi; Yu Xueren

    1991-01-01

    For the determination of free acid in high level liquid wastes, 8% potassium oxalate solution with pH 6.50 as a complex agent of hydrolizable ion is added to 1 AW and the solution is titrated with standard sodium hydroxide to reach the original pH value. The quantity of free acid is calculated by standard sodium hydroxide consumed. This method is simple, rapid and accurate. The relative error of analysis is less than ±4%. The average percentage of recovery is 99.6-101.0%

  19. Copper availability and bioavailability are controlled by rhizosphere pH in rape grown in an acidic Cu-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Chaignon, Valerie; Quesnoit, Marie [INRA, UMR 1222 Eco and Sols Ecologie fonctionnelle and Biogeochimie des Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France); Hinsinger, Philippe, E-mail: philippe.hinsinger@supagro.inra.f [INRA, UMR 1222 Eco and Sols Ecologie fonctionnelle and Biogeochimie des Sols (INRA-IRD-SupAgro), Place Viala, F-34060 Montpellier (France)

    2009-12-15

    We evaluated how root-induced changes in rhizosphere pH varied and interacted with Cu availability and bioavailability in an acidic soil. Rape was grown on a Cu-contaminated acidic soil, which had been limed at 10 rates. Soil Cu bioavailability was not influenced by liming. However, liming significantly decreased CaCl{sub 2}-extracted Cu for pH between 3.7 and 5.1. Little effect was found for pH above 5.1. For soil pH < 4.4, CaCl{sub 2}-Cu contents were smaller in rhizosphere than uncropped soil. Rhizosphere alkalisation occurred at pH < 4.8, while acidification occurred at greater pH. This explained the changes of CaCl{sub 2}-Cu in the rhizosphere at low pH and the absence of pH dependency of Cu bioavailability to rape. In addition, apoplastic Cu in roots increased with increasing soil pH, most probably as a result of increased dissociation and affinity of cell wall compounds for Cu. - Root-induced increase in pH reduces Cu availability in the rhizosphere and Cu bioavailability to rape.

  20. [Current situation and impact factors of acid deposition in main cites of Shandong Province].

    Science.gov (United States)

    Jia, Hong-yu; Zhang, Qiao-xian; Deng, Hong-bing; Zhao, Jing-zhu; Mu, Jin-bo; Zhang, De-zhi

    2006-12-01

    Based on the monitoring data for years in Shandong Province, current situation of acid rain in every city was assessed, and the temporal distribution of the dry, wet and total sulfur deposition in Jinan and Qingdao were studied. The results showed that Qingdao which had the largest precipitation acidity was the single city whose annul average precipitation pH was below 5. 60. The precipitation acidities in the main cities of Shandong Province were in a descent tendency. The total sulfur desposition in Jinan and Qingdao was basically stable or in a descent tendency, but also reached 10 t/(km(2)x a) or so. Among the total sulfur deposition flux, the dry deposition of sulfur had the greater contribution, and the contribution of SO2 dry deposition was higher than that of SO42- dry deposition. By analyzing the relation between the precipitation acidity and the SO2 discharge intensity, soil acidity and meteorological condition, the impact factors of acid precipitation in the cities of Shandong Province were revealed.

  1. Direct Measurement of pH in Individual Particles via Raman Microspectroscopy and Variation in Acidity with Relative Humidity.

    Science.gov (United States)

    Rindelaub, Joel D; Craig, Rebecca L; Nandy, Lucy; Bondy, Amy L; Dutcher, Cari S; Shepson, Paul B; Ault, Andrew P

    2016-02-18

    Atmospheric aerosol acidity is an important characteristic of aqueous particles, which has been linked to the formation of secondary organic aerosol by catalyzing reactions of oxidized organic compounds that have partitioned to the particle phase. However, aerosol acidity is difficult to measure and traditionally estimated using indirect methods or assumptions based on composition. Ongoing disagreements between experiments and thermodynamic models of particle acidity necessitate improved fundamental understanding of pH and ion behavior in high ionic strength atmospheric particles. Herein, Raman microspectroscopy was used to determine the pH of individual particles (H2SO4+MgSO4) based on sulfate and bisulfate concentrations determined from νs(SO4(2-)) and νs(HSO4(-)), the acid dissociation constant, and activity coefficients from extended Debye-Hückel calculations. Shifts in pH and peak positions of νs(SO4(2-)) and νs(HSO4(-)) were observed as a function of relative humidity. These results indicate the potential for direct spectroscopic determination of pH in individual particles and the need to improve fundamental understanding of ion behavior in atmospheric particles.

  2. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH.

    Science.gov (United States)

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-05

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (K(a)=3582.88 M(-1)) and selectivity for fructose over glucose at pH=7.4. The sensor 1 showed a linear response toward d-fructose in the concentrations ranging from 2.5×10(-5) to 4×10(-4) mol L(-1) with the detection limit of 1.3×10(-5) mol L(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Embedded micro-sensor for monitoring pH in concrete structures

    Science.gov (United States)

    Srinivasan, Rengaswamy; Phillips, Terry E.; Bargeron, C. Brent; Carlson, Micah A.; Schemm, Elizabeth R.; Saffarian, Hassan M.

    2000-04-01

    Three major causes of corrosion of steel in concrete are chloride ions (Cl-), temperature (T) and acidity (pH). Under normal operating temperatures and with pH above 13, steel does not undergo pitting corrosion. In presence of Cl-, if the pH decreases below 12, the probability of pitting increases. Acid rain and atmospheric carbon dioxide cause the pH to drop in concrete, often leading to corrosion of the structure with the concomitant cost of repair or replacement. Currently, the pH level in concrete is estimated through destructive testing of the structures. Glass ISFET, and other pH sensors that need maintenance and calibration cannot be embedded in concrete. In this paper, we describe an inexpensive solid state pH sensor that can be embedded in concrete, to detect pH changes at the early stages. It employs a chemical reagent, trinitrobenzenesulfonic acid (TNBS) that exhibits changes in optical properties in the 12 - 14 pH range, and is held in a film of a sol-gel/TNBS composite on an optically transparent surface. A simple LED/filter/photodiode transducer monitors pH-induced changes in TNBS. Such a device needs no periodic calibration or maintenance. The optical window, the light-source and sensor can be easily housed and encapsulated in a chemically inert structure, and embedded in concrete.

  4. Removal of arsenic from synthetic acid mine drainage by electrochemical pH adjustment and coprecipitation with iron hydroxide.

    Science.gov (United States)

    Wang, Jenny Weijun; Bejan, Dorin; Bunce, Nigel J

    2003-10-01

    Acid mine drainage (AMD), which is caused by the biological oxidation of sulfidic materials, frequently contains arsenic in the form of arsenite, As(III), and/or arsenate, As(V), along with much higher concentrations of dissolved iron. The present work is directed toward the removal of arsenic from synthetic AMD by raising the pH of the solution by electrochemical reduction of H+ to elemental hydrogen and coprecipitation of arsenic with iron(III) hydroxide, following aeration of the catholyte. Electrolysis was carried out at constant current using two-compartment cells separated with a cation exchange membrane. Four different AMD model systems were studied: Fe(III)/As(V), Fe(III)/As(III), Fe(II)/As(V), and Fe(II)/As(III) with the initial concentrations for Fe(III) 260 mg/L, Fe(II) 300 mg/L, As(V), and As(III) 8 mg/L. Essentially quantitative removal of arsenic and iron was achieved in all four systems, and the results were independent of whether the pH was adjusted electrochemically or by the addition of NaOH. Current efficiencies were approximately 85% when the pH of the effluent was 4-7. Residual concentrations of arsenic were close to the drinking water standard proposed by the World Health Organization (10 microg/L), far below the mine waste effluent standard (500 microg/L).

  5. Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery.

    Science.gov (United States)

    Sajeesh, S; Sharma, Chandra P

    2006-02-01

    In present study, novel pH sensitive polymethacrylic acid-chitosan-polyethylene glycol (PCP) nanoparticles were prepared under mild aqueous conditions via polyelectrolyte complexation. Free radical polymerization of methacrylic acid (MAA) was carried out in presence of chitosan (CS) and polyethylene glycol (PEG) using a water-soluble initiator and particles were obtained spontaneously during polymerization without using organic solvents or surfactants/steric stabilizers. Dried particles were analyzed by scanning electron microscopy (SEM) and particles dispersed in phosphate buffer (pH 7.0) were visualized under transmission electron microscope (TEM). SEM studies indicated that PCP particles have an aggregated and irregular morphology, however, TEM revealed that these aggregated particles were composed of smaller fragments with size less than 1 micron. Insulin and bovine serum albumin (BSA) as model proteins were incorporated into the nanoparticles by diffusion filling method and their in vitro release characteristics were evaluated at pH 1.2 and 7.4. PCP nanoparticles exhibited good protein encapsulation efficiency and pH responsive release profile was observed under in vitro conditions. Trypsin inhibitory effect of these PCP nanoparticles was studied using casein substrate and these particles displayed lesser inhibitory effect than reference polymer carbopol. Preliminary investigation suggests that these particles can serve as good candidate for oral peptide delivery. Copyright 2005 Wiley Periodicals, Inc.

  6. Expression and activity of acid-sensing ion channels in the mouse anterior pituitary.

    Directory of Open Access Journals (Sweden)

    Jianyang Du

    Full Text Available Acid sensing ion channels (ASICs are proton-gated cation channels that are expressed in the nervous system and play an important role in fear learning and memory. The function of ASICs in the pituitary, an endocrine gland that contributes to emotions, is unknown. We sought to investigate which ASIC subunits were present in the pituitary and found mRNA expression for all ASIC isoforms, including ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4. We also observed acid-evoked ASIC-like currents in isolated anterior pituitary cells that were absent in mice lacking ASIC1a. The biophysical properties and the responses to PcTx1, amiloride, Ca2+ and Zn2+ suggested that ASIC currents were mediated predominantly by heteromultimeric channels that contained ASIC1a and ASIC2a or ASIC2b. ASIC currents were also sensitive to FMRFamide (Phe-Met-Arg-Phe amide, suggesting that FMRFamide-like compounds might endogenously regulate pituitary ASICs. To determine whether ASICs might regulate pituitary cell function, we applied low pH and found that it increased the intracellular Ca2+ concentration. These data suggest that ASIC channels are present and functionally active in anterior pituitary cells and may therefore influence their function.

  7. Stability of poly(N-isopropylacrylamide-co-acrylic acid polymer microgels under various conditions of temperature, pH and salt concentration

    Directory of Open Access Journals (Sweden)

    Zahoor H. Farooqi

    2017-03-01

    Full Text Available This research article describes the colloidal stability of poly(N-isopropylacrylamide-co-acrylic acid [P(NIPAM-co-AAc] polymer microgels with different acrylic acid contents in aqueous medium under various conditions of temperature, pH and sodium chloride concentrations. Three samples of multi-responsive P(NIPAM-co-AAc polymer microgels were synthesized using different amounts of acrylic acid by free radical emulsion polymerization. Dynamic laser light scattering was used to investigate the responsive behavior and stability of the prepared microgels under various conditions of pH, temperature and ionic strength. The microgels were found to be stable at all pH values above the pKa value of acrylic acid moiety in the temperature range from 15 to 60 °C in the presence and absence of sodium chloride. Increase in temperature, salt concentration and decrease in pH causes aggregation and decreases the stability of microgels due to the decrease in hydrophilicity.

  8. A mathematical model of pH, based on the total stoichiometric concentration of acids, bases and ampholytes dissolved in water.

    Science.gov (United States)

    Mioni, Roberto; Mioni, Giuseppe

    2015-10-01

    In chemistry and in acid-base physiology, the Henderson-Hasselbalch equation plays a pivotal role in studying the behaviour of the buffer solutions. However, it seems that the general function to calculate the valence of acids, bases and ampholytes, N = f(pH), at any pH, has only been provided by Kildeberg. This equation can be applied to strong acids and bases, pluriprotic weak acids, bases and ampholytes, with an arbitrary number of acid strength constants, pKA, including water. By differentiating this function with respect to pH, we obtain the general equation for the buffer value. In addition, by integrating the titration curve, TA, proposed by Kildeberg, and calculating its Legendre transform, we obtain the Gibbs free energy of pH (or pOH)-dependent titratable acid. Starting from the law of electroneutrality and applying suitable simplifications, it is possible to calculate the pH of the buffer solutions by numerical methods, available in software packages such as Excel. The concept of buffer capacity has also been clarified by Urbansky, but, at variance with our approach, not in an organic manner. In fact, for each set of monobasic, dibasic, tribasic acids, etc., various equations are presented which independently fit each individual acid-base category. Consequently, with the increase in acid groups (pKA), the equations become more and more difficult, both in practice and in theory. Some examples are proposed to highlight the boundary that exists between acid-base physiology and the thermodynamic concepts of energy, chemical potential, amount of substance and acid resistance.

  9. Acidez potencial pelo método do pH SMP no Estado do Amazonas Potential acidity by pH SMP method in Amazonas State, Brazil

    Directory of Open Access Journals (Sweden)

    Adônis Moreira

    2004-01-01

    Full Text Available O objetivo deste trabalho foi definir um modelo matemático que estime o H+Al a partir do pH SMP medido em água e em solução de CaCl2 0,01 mol L-1 nas condições edafoclimáticas locais. Foram utilizadas 246 amostras de solo provenientes de diversas localidades. Mesmo apresentando menor coeficiente da correlação (r = 0,89*, a equação H+Al = 30,646 - 3,848pH SMP obtida em H2O foi mais eficiente que a obtida em solução CaCl2 (H+Al = 30,155 - 3,834pH SMP, r = 0,91*, a qual subestima os valores da acidez potencial.The objective of this work was to determine a mathematic model that estimates the potential acidity with pH SMP measured in water and in solution of CaCl2 0.01 mol L-1. Two hundred and forty six soil samples from several localities were utilized. Despite presenting a lower correlation coefficient (r = 0.89*, the equation H+Al = 30.646 - 3.848pH SMP, obtained in H2O, was more efficient than in the CaCl2 solution (H+Al = 30.155 -3.834pH SMP, r = 0.91*, since this last one underestimates the values of the potential acidity.

  10. Thermodynamic Solubility Profile of Carbamazepine-Cinnamic Acid Cocrystal at Different pH.

    Science.gov (United States)

    Keramatnia, Fatemeh; Shayanfar, Ali; Jouyban, Abolghasem

    2015-08-01

    Pharmaceutical cocrystal formation is a direct way to dramatically influence physicochemical properties of drug substances, especially their solubility and dissolution rate. Because of their instability in the solution, thermodynamic solubility of cocrystals could not be determined in the common way like other compounds; therefore, the thermodynamic solubility is calculated through concentration of their components in the eutectic point. The objective of this study is to investigate the effect of an ionizable coformer in cocrystal with a nonionizable drug at different pH. Carbamazepine (CBZ), a nonionizable drug with cinnamic acid (CIN), which is an acidic coformer, was selected to prepare CBZ-CIN cocrystal and its thermodynamic solubility was studied in pH range 2-7. Instead of HPLC that is a costly and time-consuming method, a chemometric-based approach, net analyte signal standard addition method, was selected for simultaneous determination of CBZ and CIN in solution. The result showed that, as pH increases, CIN ionization leads to change in CBZ-CIN cocrystal solubility and stability in solution. In addition, the results of this study indicated that there is no significant difference between intrinsic solubility of CBZ and cocrystal despite the higher ideal solubility of cocrystal. This verifies that ideal solubility is not good parameter to predict cocrystal solubility. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Mechanisms of intragastric pH sensing.

    Science.gov (United States)

    Goo, Tyralee; Akiba, Yasutada; Kaunitz, Jonathan D

    2010-12-01

    Luminal amino acids and lack of luminal acidity as a result of acid neutralization by intragastric foodstuffs are powerful signals for acid secretion. Although the hormonal and neural pathways underlying this regulatory mechanism are well understood, the nature of the gastric luminal pH sensor has been enigmatic. In clinical studies, high pH, tryptic peptides, and luminal divalent metals (Ca(2+) and Mg(2+)) increase gastrin release and acid production. The calcium-sensing receptor (CaSR), first described in the parathyroid gland but expressed on gastric G cells, is a logical candidate for the gastric acid sensor. Because CaSR ligands include amino acids and divalent metals, and because extracellular pH affects ligand binding in the pH range of the gastric content, its pH, metal, and nutrient-sensing functions are consistent with physiologic observations. The CaSR is thus an attractive candidate for the gastric luminal sensor that is part of the neuroendocrine negative regulatory loop for acid secretion.

  12. Inhibitors of acid secretion can benefit gastric wound repair independent of luminal pH effects on the site of damage

    Science.gov (United States)

    Demitrack, Elise S; Aihara, Eitaro; Kenny, Susan; Varro, Andrea; Montrose, Marshall H

    2012-01-01

    Background and aims The authors’ goal was to measure pH at the gastric surface (pHo) to understand how acid secretion affects the repair of microscopic injury to the gastric epithelium. Methods Microscopic gastric damage was induced by laser light, during confocal/two-photon imaging of pH-sensitive dyes (Cl-NERF, BCECF) that were superfused over the mucosal surface of the exposed gastric corpus of anaesthetised mice. The progression of repair was measured in parallel with pHo. Experimental conditions included varying pH of luminal superfusates, and using omeprazole (60 mg/kg ip) or famotidine (30 mg/kg ip) to inhibit acid secretion. Results Similar rates of epithelial repair and resting pHo values (~pH 4) were reported in the presence of luminal pH 3 or pH 5. Epithelial repair was unreliable at luminal pH 2 and pHo was lower (2.5±0.2, P pH 3). Epithelial repair was slower at luminal pH 7 and pHo was higher (6.4±0.1, PpH 3 or pH 7, omeprazole reduced maximal damage size and accelerated epithelial repair, although only at pH 3 did omeprazole further increase surface pH above the level caused by imposed damage. At luminal pH 7, famotidine also reduced maximal damage size and accelerated epithelial repair. Neither famotidine nor omeprazole raised plasma gastrin levels during the time course of the experiments. Conclusions Epithelial repair in vivo is affected by luminal pH variation, but the beneficial effects of acutely blocking acid secretion extend beyond simply raising luminal and/or surface pH. PMID:21997560

  13. [Effects of soil pH on the competitive uptake of amino acids by maize and microorganisms].

    Science.gov (United States)

    Ma, Qing Xu; Wang, Jun; Cao, Xiao Chuang; Sun, Yan; Sun, Tao; Wu, Liang Huan

    2017-07-18

    Organic nitrogen can play an important role in plant growth, and soil pH changed greatly due to the over-use of chemical fertilizers, but the effects of soil pH on the competitive uptake of amino acids by plants and rhizosphere microorganisms are lack of detailed research. To study the effects of soil pH on the uptake of amino acids by maize and soil microorganisms, two soils from Hangzhou and Tieling were selected, and the soil pH was changed by the electrokinesis, then the 15 N-labeled glycine was injected to the centrifuge tube with a short-term uptake of 4 h. Soil pH had a significant effect on the shoot and root biomass, and the optimal pH for maize shoot growth was 6.48 for Hangzhou red soil, while it was 7.65 for Tieling brown soil. For Hangzhou soil, the 15 N abundance of maize shoots under pH=6.48 was significantly higher than under other treatments, and the uptake amount of 15 N-glycine was also much higher. However, the 15 N abundance of maize shoots and roots under pH=7.65 Tieling soil was significantly lower than it under pH=5.78, but the uptake amount of 15 N-glycine under pH=7.65 was much higher. The microbial biomass C was much higher in pH=6.48 Hangzhou soil, while it was much lower in pH=7.65 Tieling soil. According to the results of root uptake, root to shoot transportation, and the competition with microorganisms, we suggested that although facing the fierce competition with microorganisms, the maize grown in pH=6.48 Hangzhou soil increased the uptake of glycine by increasing its root uptake and root to shoot transportation. While in pH=7.65 Tieling soil, the activity of microorganisms was decreased, which decreased the competition with maize for glycine, and increased the uptake of glycine by maize.

  14. Acidic pH reduces VEGF-mediated endothelial cell responses by downregulation of VEGFR-2; relevance for anti-angiogenic therapies.

    Science.gov (United States)

    Faes, Seraina; Uldry, Emilie; Planche, Anne; Santoro, Tania; Pythoud, Catherine; Demartines, Nicolas; Dormond, Olivier

    2016-12-27

    Anti-angiogenic treatments targeting the vascular endothelial growth factor or its receptors have shown clinical benefits. However, impact on long-term survival remains limited. Solid tumors display an acidic microenvironment that profoundly influences their biology. Consequences of acidity on endothelial cells and anti-angiogenic therapies remain poorly characterized and hence are the focus of this study. We found that exposing endothelial cells to acidic extracellular pH resulted in reduced cell proliferation and migration. Also, whereas VEGF increased endothelial cell proliferation and survival at pH 7.4, it had no effect at pH 6.4. Furthermore, in acidic conditions, stimulation of endothelial cells with VEGF did not result in activation of downstream signaling pathways such as AKT. At a molecular level, acidity significantly decreased the expression of VEGFR-2 by endothelial cells. Consequently, anti-angiogenic therapies that target VEGFR-2 such as sunitinib and sorafenib failed to block endothelial cell proliferation in acidic conditions. In vivo, neutralizing tumor acidity with sodium bicarbonate increased the percentage of endothelial cells expressing VEGFR-2 in tumor xenografts. Furthermore, combining sodium bicarbonate with sunitinib provided stronger anti-cancer activity than either treatment alone. Histological analysis showed that sunitinib had a stronger anti-angiogenic effect when combined with sodium bicarbonate. Overall, our results show that endothelial cells prosper independently of VEGF in acidic conditions partly as a consequence of decreased VEGFR-2 expression. They further suggest that strategies aiming to raise intratumoral pH can improve the efficacy of anti-VEGF treatments.

  15. TRPM5 mediates acidic extracellular pH signaling and TRPM5 inhibition reduces spontaneous metastasis in mouse B16-BL6 melanoma cells.

    Science.gov (United States)

    Maeda, Toyonobu; Suzuki, Atsuko; Koga, Kaori; Miyamoto, Chihiro; Maehata, Yojiro; Ozawa, Shigeyuki; Hata, Ryu-Ichiro; Nagashima, Yoji; Nabeshima, Kazuki; Miyazaki, Kaoru; Kato, Yasumasa

    2017-10-03

    Extracellular acidity is a hallmark of solid tumors and is associated with metastasis in the tumor microenvironment. Acidic extracellular pH (pH e ) has been found to increase intracellular Ca 2+ and matrix metalloproteinase-9 (MMP-9) expression by activating NF-κB in the mouse B16 melanoma model. The present study assessed whether TRPM5, an intracellular Ca 2+ -dependent monovalent cation channel, is associated with acidic pH e signaling and induction of MMP-9 expression in this mouse melanoma model. Treatment of B16 cells with Trpm5 siRNA reduced acidic pH e -induced MMP-9 expression. Enforced expression of Trpm5 increased the rate of acidic pH e -induced MMP-9 expression, as well as increasing experimental lung metastasis. This genetic manipulation did not alter the pH e critical for MMP-9 induction but simply amplified the percentage of inducible MMP-9 at each pH e . Treatment of tumor bearing mice with triphenylphosphine oxide (TPPO), an inhibitor of TRPM5, significantly reduced spontaneous lung metastasis. In silico analysis of clinical samples showed that high TRPM5 mRNA expression correlated with poor overall survival rate in patients with melanoma and gastric cancer but not in patients with cancers of the ovary, lung, breast, and rectum. These results showed that TRPM5 amplifies acidic pH e signaling and may be a promising target for preventing metastasis of some types of tumor.

  16. A mathematical model for the generation and control of a pH gradient in an immobilized enzyme system involving acid generation.

    Science.gov (United States)

    Chen, G; Fournier, R L; Varanasi, S

    1998-02-20

    An optimal pH control technique has been developed for multistep enzymatic synthesis reactions where the optimal pH differs by several units for each step. This technique separates an acidic environment from a basic environment by the hydrolysis of urea within a thin layer of immobilized urease. With this technique, a two-step enzymatic reaction can take place simultaneously, in proximity to each other, and at their respective optimal pH. Because a reaction system involving an acid generation represents a more challenging test of this pH control technique, a number of factors that affect the generation of such a pH gradient are considered in this study. The mathematical model proposed is based on several simplifying assumptions and represents a first attempt to provide an analysis of this complex problem. The results show that, by choosing appropriate parameters, the pH control technique still can generate the desired pH gradient even if there is an acid-generating reaction in the system. Copyright 1998 John Wiley & Sons, Inc.

  17. Measurement of pH, alkalinity and acidity in ultra-soft waters | Lahav ...

    African Journals Online (AJOL)

    In the "blend" method, equilibrium chemistry data were used to calculate total acidity for each point based on the known total alkalinity, pH reading, temperature and ionic strength. The two methods gave excellent results (in terms of both repetition and accuracy) as compared to characterisation based on total alkalinity and ...

  18. Effect of pH, ionic strength and humic acid on the sorption of uranium(VI) to attapulgite

    Energy Technology Data Exchange (ETDEWEB)

    Niu Zhiwei [Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, Gansu (China); Fan Qiaohui [Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, Gansu (China)], E-mail: fanqiaohui@gmail.com; Wang Wenhua; Xu Junzheng [Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, Gansu (China); Chen Lei [School of Chemical Engineering, Shandong University of Technology, 255049 Zibo, Shandong (China); Wu Wangsuo [Radiochemistry Laboratory, Lanzhou University, Lanzhou 730000, Gansu (China)], E-mail: wuws@lzu.edu.cn

    2009-09-15

    Attapulgite was investigated to remove UO{sub 2}{sup 2+} from aqueous solutions because of its strong sorption capacity. Herein, the attapulgite sample was characterized by Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD) and acid-base titration in detail. Sorption of UO{sub 2}{sup 2+} on attapulgite was strongly dependent on pH values and ionic strength. The presence of humic acid enhanced the sorption of UO{sub 2}{sup 2+} on attapulgite obviously because of the strong complexation of humic acid (HA) with UO{sub 2}{sup 2+} on attapulgite surface. Sorption of UO{sub 2}{sup 2+} on attapulgite was mainly dominated by ion-exchange or outer-sphere complexation at low pH values, and by inner-sphere complexation at high pH values. The results indicated that attapulgite was a suitable material for the preconcentration and solidification of UO{sub 2}{sup 2+} from large volume of solutions because of its negative surface charge and large surface areas.

  19. International Evoked Potentials Symposium

    CERN Document Server

    1980-01-01

    The past decade has seen great progress in the measurement of evoked potentials in man; a steady increase in our understanding of their charac­ teristics, their origins and their usefulness; and a growing application in the field of clinical diagnosis. The topic is a truly multidisciplinary one. Important research contributions have been made by workers of many different backgrounds and clinical applications span the specialities. This book represents a revised and updated version of the work originally presented at the international evoked potential symposium held in Nottingham 4-6 1978. The Nottingham Symposium provided a forum for a state-of-the-art discussion amongst workers from many different disciplines and from many different countries. For each major topic in the field an expert review set the scene for discussion of current research presentations. This format is retained in the book: the chapters in Part A provide the context in which the research presented in Part B is set. The task of selecting m...

  20. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH

    Science.gov (United States)

    Mayanna, Sathish; Peacock, Caroline L.; Schäffner, Franziska; Grawunder, Anja; Merten, Dirk; Kothe, Erika; Büchel, Georg

    2014-05-01

    The precipitation of biogenic Mn oxides at acidic pH is rarely reported and poorly understood, compared to biogenic Mn oxide precipitation at near neutral conditions. Here we identified and investigated the precipitation of biogenic Mn oxides in acidic soil, and studied their role in the retention of heavy metals, at the former uranium mining site of Ronneburg, Germany. The site is characterized by acidic pH, low carbon content and high heavy metal loads including rare earth elements. Specifically, the Mn oxides were present in layers identified by detailed soil profiling and within these layers pH varied from 4.7 to 5.1, Eh varied from 640 to 660 mV and there were enriched total metal contents for Ba, Ni, Co, Cd and Zn in addition to high Mn levels. Using electron microprobe analysis, synchrotron X-ray diffraction and X-ray absorption spectroscopy, we identified poorly crystalline birnessite (δ-MnO2) as the dominant Mn oxide in the Mn layers, present as coatings covering and cementing quartz grains. With geochemical modelling we found that the environmental conditions at the site were not favourable for chemical oxidation of Mn(II), and thus we performed 16S rDNA sequencing to isolate the bacterial strains present in the Mn layers. Bacterial phyla present in the Mn layers belonged to Firmicutes, Actinobacteria and Proteobacteria, and from these phyla we isolated six strains of Mn(II) oxidizing bacteria and confirmed their ability to oxidise Mn(II) in the laboratory. The biogenic Mn oxide layers act as a sink for metals and the bioavailability of these metals was much lower in the Mn layers than in adjacent layers, reflecting their preferential sorption to the biogenic Mn oxide. In this presentation we will report our findings, concluding that the formation of natural biogenic poorly crystalline birnessite can occur at acidic pH, resulting in the formation of a biogeochemical barrier which, in turn, can control the mobility and bioavailability of heavy metals in

  1. Influence of pH of acid irrigation water on the transfer of elements into rice plant from soils

    International Nuclear Information System (INIS)

    Maeno, Tomokazu; Tanizaki, Yoshiyuki

    1996-01-01

    Rice plant samples were grown in 14 cultivative pots under six different pH conditions of acid irrigation water (pH: 6.5, 6.0, 4.5, 3.5, 3.0. 2.5) and ion exchange water (pH: 7.5), in order to study an influence of pH of irrigation water on the transfer of elements into rice plant from soils. The acid irrigation water was prepared by adding mixed solution of 1N H 2 SO 4 and 1N HNO 3 (1:1) to ion exchange water. The rice grain yielded was separated into three parts, i.e., polished rice, bran and chaff and they were powdered one by one. The contents of twenty five elements in the three parts of grain (14 samples each) were determined by a neutron activation analysis. It was clarified that the contents of Cu, Zn, Fe, Cr, Mg, Rb, Mo, Ni, and Cs in the polished rice increased with decreasing pH of the acid irrigation water. The contents of Se and Br, on the contrary, decreased. Significant changes of the contents were not observed for Na, Al, Sc, Mn, Cl, Ca, V and Co. The relationships between the contents of elements in the bran or chaff and pH of the acid irrigation water were not so clear as the case of polished rice. The enrichment factor of trace elements from soils was calculated for the polished rice, bran and chaff The high enrichment of Cl, Mo, Zn, Se and Cu was observed in the polished rice. Manganese and Cr were concentrated more in the bran than in the polished rice. (author)

  2. Controlling the pH of acid cheese whey in a two-stage anaerobic digester with sodium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ghaly, A.E.; Ramkumar, D.R.

    1999-07-01

    Anaerobic digestion of cheese whey offers a two-fold benefit: pollution potential reduction and biogas production. The biogas, as an energy source, could be used to reduce the consumption of traditional fuels in the cheese plant. However, as a result of little or no buffering capacity of whey, the pH of the anaerobic digester drops drastically and the process is inhibited. In this study, the effect of controlling the pH of the second chamber of a two-stage, 150 L anaerobic digester operating on cheese whey on the quality and quantity of biogas and the pollution potential reduction, was investigated using sodium hydroxide. The digester was operated at a temperature of 35 C and a hydraulic retention time of 15 days for three runs (no pH control, pH control with no reseeding, and pH control with reseeding) each lasting 50 days. The results indicated that operating the digester without pH control resulted in a low pH (3.3) which inhibited the methanogenic bacteria. The inhibition was irreversible and the digester did not recover (no methane production) when the pH was restored to 7.0 without reseeding, as the observed increased gas production was a false indication of recovery because the gas was mainly carbon dioxide. The addition of base resulted in a total alkalinity of 12,000 mg L as CaCO{sub 3}. When the system was reseeded and the pH controlled, the total volatile acid concentration was 15,100 mg L (as acetic acid), with acetic (28 %), propionic (21%), butyric (25%), valeric (8%), and caproic (15%) acids as the major constituents. The biogas production was 62.6 L d (0.84m{sup 3}m{sup 3} d) and the methane content was 60.7%. Reductions of 27.3, 30.4 and 23.3 % in the total solids, chemical oxygen demand and total Kjeldahl nitrogen were obtained, respectively. The ammonium nitrogen content increased significantly (140%). (author)

  3. Changes in composition and enamel demineralization inhibition activities of gallic acid at different pH values

    NARCIS (Netherlands)

    Zhang, J.; Huang, X.; Huang, S.; Deng, M.; Xie, X.; Liu, M.; Liu, H.; Zhou, X.; Li, J.; ten Cate, J.M.

    2015-01-01

    Background. Gallic acid (GA) has been shown to inhibit demineralization and enhance remineralization of enamel; however, GA solution is highly acidic. This study was to investigate the stability of GA solutions at various pH and to examine the resultant effects on enamel demineralization. Methods.

  4. ORP and pH measurements to detect redox and acid-base anomalies from hydrothermal activity

    Science.gov (United States)

    Santana-Casiano, J. M.; González-Dávila, M.; Fraile-Nuez, E.

    2017-12-01

    The Tagoro submarine volcano is located 1.8 km south of the Island of El Hierro at 350 m depth and rises up to 88 m below sea level. It was erupting melting material for five months, from October 2011 to March 2012, changing drastically the physical-chemical properties of the water column in the area. After this eruption, the system evolved to a hydrothermal system. The character of both reduced and acid of the hydrothermal emissions in the Tagoro submarine volcano allowed us to detect anomalies related with changes in the chemical potential and the proton concentration using ORP and pH sensors, respectively. Tow-yos using a CTD-rosette with these two sensors provided the locations of the emissions plotting δ(ORP)/δt and ΔpH versus the latitude or longitude. The ORP sensor responds very quickly to the presence of reduced chemicals in the water column. Changes in potential are proportional to the amount of reduced chemical species present in the water. The magnitude of these changes are examined by the time derivative of ORP, δ(ORP)/δt. To detect changes in the pH, the mean pH for each depth at a reference station in an area not affected by the vent emission is subtracted from each point measured near the volcanic edifice, defining in this way ΔpH. Detailed surveys of the volcanic edifice were carried out between 2014 and 2016 using several CTD-pH-ORP tow-yo studies, localizing the ORP and pH changes, which were used to obtain surface maps of anomalies. Moreover, meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d-1 which increases the acidity above the volcano by 20%. Sites like the Tagoro submarine volcano, in its degasification stage, provide an excellent opportunity to study the carbonate system in a high CO2 world, the volcanic contribution to the global

  5. Indications of 24-h esophageal pH monitoring, capsule pH monitoring, combined pH monitoring with multichannel impedance, esophageal manometry, radiology and scintigraphy in gastroesophageal reflux disease?

    Science.gov (United States)

    Vardar, Rukiye; Keskin, Muharrem

    2017-12-01

    Ambulatory esophageal pH monitoring is an essential method in patients exhibiting signs of non-erosive reflux disease (NERD) to make an objective diagnosis. Intra-esophageal pH monitoring is important in patients who are non-responsive to medications and in those with extraesophageal symptoms, particularly in NERD, before surgical interventions. With the help of the wireless capsule pH monitoring, measurements can be made under more physiological conditions as well as longer recordings can be performed because the investigation can be better tolerated by patients. Ambulatory esophageal pH monitoring can be detected within normal limits in 17%-31.4% of the patients with endoscopic esophagitis; therefore, normal pH monitoring cannot exclude the diagnosis of gastroesophageal reflux disease (GERD). Multi-channel intraluminal impedance pH (MII-pH) technology have been developed and currently the most sensitive tool to evaluate patients with both typical and atypical reflux symptoms. The sensitivity of a pH catheter test is 58% for the detection of acid reflux compared with MII-pH monitoring; further, its sensitivity is 28% for the detection of weak acid reflux compared with MII-pH monitoring. By adding impedance to pH catheter in patients with reflux symptoms, particularly in those receiving PPIs, it has been demonstrated that higher rates of diagnoses and symptom analyses can be obtained than those using only pH catheter. Esophageal manometry is used in the evaluation of patients with functional dysphagia and unexplained noncardiac chest pain and prior to antireflux surgery. The use of esophageal manometry is suitable for the detection of esophageal motor patterns and extreme motor abnormalities (e.g., achalasia and extreme hypomotility). Esophageal manometry and ambulatory pH monitoring are often used in assessments prior to laparoscopic antireflux surgery and in patients with reflux symptoms refractory to medical treatment. Although the esophageal motility is

  6. Removal of Radium-226 from Radium-Contaminated Soil using Distilled Water and Humic Acid: Effect of pH

    International Nuclear Information System (INIS)

    Phillips, E.; Muhammad Samudi Yasir; Muhamat Omar

    2011-01-01

    Effect of washing solutions' pH removal of radium-226 from radium-contaminated soil using distilled water and humic acid extracted from Malaysian peat soil was studied by batch washing method. The study encompassed the extraction of humic acid and the washing of radium-contaminated soil using distilled water and humic acid solutions of 100 ppm, both with varying pHs in the range of 3 to 11. The radioactivity concentration of radium-226 was determined by gamma spectrometer.The removal of radium-226 was greater when humic acid solutions were used compared to distilled water at the pH range studied and both washing solutions showed greater removal of radium-226 when basic solutions were used. Nevertheless, comparable removal efficiencies were observed when neutral and highly basic humic acid solutions were used. (author)

  7. pH modulation of glial glutamate transporters regulates synaptic transmission in the nucleus of the solitary tract

    Science.gov (United States)

    McCrimmon, Donald R.; Martina, Marco

    2013-01-01

    The nucleus of the solitary tract (NTS) is the major site for termination of visceral sensory afferents contributing to homeostatic regulation of, for example, arterial pressure, gastric motility, and breathing. Whereas much is known about how different neuronal populations influence these functions, information about the role of glia remains scant. In this article, we propose that glia may contribute to NTS functions by modulating excitatory neurotransmission. We found that acidification (pH 7.0) depolarizes NTS glia by inhibiting K+-selective membrane currents. NTS glia also showed functional expression of voltage-sensitive glutamate transporters, suggesting that extracellular acidification regulates synaptic transmission by compromising glial glutamate uptake. To test this hypothesis, we evoked glutamatergic slow excitatory potentials (SEPs) in NTS neurons with repetitive stimulation (20 pulses at 10 Hz) of the solitary tract. This SEP depends on accumulation of glutamate following repetitive stimulation, since it was potentiated by blocking glutamate uptake with dl-threo-β-benzyloxyaspartic acid (TBOA) or a glia-specific glutamate transport blocker, dihydrokainate (DHK). Importantly, extracellular acidification (pH 7.0) also potentiated the SEP. This effect appeared to be mediated through a depolarization-induced inhibition of glial transporter activity, because it was occluded by TBOA and DHK. In agreement, pH 7.0 did not directly alter d-aspartate-induced responses in NTS glia or properties of presynaptic glutamate release. Thus acidification-dependent regulation of glial function affects synaptic transmission within the NTS. These results suggest that glia play a modulatory role in the NTS by integrating local tissue signals (such as pH) with synaptic inputs from peripheral afferents. PMID:23615553

  8. Effect of a temperature increase in the non-noxious range on proton-evoked ASIC and TRPV1 activity.

    Science.gov (United States)

    Blanchard, Maxime G; Kellenberger, Stephan

    2011-01-01

    Acid-sensing ion channels (ASICs) are neuronal H(+)-gated cation channels, and the transient receptor potential vanilloid 1 channel (TRPV1) is a multimodal cation channel activated by low pH, noxious heat, capsaicin, and voltage. ASICs and TRPV1 are present in sensory neurons. It has been shown that raising the temperature increases TRPV1 and decreases ASIC H(+)-gated current amplitudes. To understand the underlying mechanisms, we have analyzed ASIC and TRPV1 function in a recombinant expression system and in dorsal root ganglion (DRG) neurons at room and physiological temperature. We show that temperature in the range studied does not affect the pH dependence of ASIC and TRPV1 activation. A temperature increase induces, however, a small alkaline shift of the pH dependence of steady-state inactivation of ASIC1a, ASIC1b, and ASIC2a. The decrease in ASIC peak current amplitudes at higher temperatures is likely in part due to the observed accelerated open channel inactivation kinetics and for some ASIC types to the changed pH dependence of steady-state inactivation. The increase in H(+)-activated TRPV1 current at the higher temperature is at least in part due to a hyperpolarizing shift in its voltage dependence. The contribution of TRPV1 relative to ASICs to H(+)-gated currents in DRG neurons increases with higher temperature and acidity. Still, ASICs remain the principal pH sensors of DRG neurons at 35°C in the pH range ≥6.

  9. Differences in functional traits between invasive and native Amaranthus species under simulated acid deposition with a gradient of pH levels

    Science.gov (United States)

    Wang, Congyan; Wu, Bingde; Jiang, Kun; Zhou, Jiawei

    2018-05-01

    Co-occurring invasive plant species (invaders hereafter) and natives receive similar or even the same environmental selection pressures. Thus, the differences in functional traits between natives and invaders have become widely recognized as a major driving force of the success of plant invasion. Meanwhile, increasing amounts of acid are deposited into ecosystems. Thus, it is important to elucidate the potential effects of acid deposition on the functional traits of invaders in order to better understand the potential mechanisms for the successful invasion. This study aims to address the differences in functional traits between native red amaranth (Amaranthus tricolor L.; amaranth hereafter) and invasive redroot pigweed (A. retroflexus L.; pigweed hereafter) under simulated acid deposition with a gradient of pH levels. Pigweed was significantly taller than amaranth under most treatments. The greater height of pigweed can lead to greater competitive ability for resource acquisition, particularly for sunlight. Leaf shape index of pigweed was also significantly greater than that of amaranth under all treatments. The greater leaf shape index of pigweed can enhance the efficiency of resource capture (especially sunlight capture) via adjustments to leaf shape and size. Thus, the greater height and leaf shape index of pigweed can significantly enhance its competitive ability, especially under acid deposition. Acid deposition of pH 5.6 significantly increased amaranth leaf width in the co-cultivation due to added nutrients. The pH 4.5 acid deposition treatment significantly increased the specific leaf area of amaranth in the monoculture compared with the pH 5.6 acid deposition treatment and the control. The main mechanism explaining this pattern may be due to acid deposition mediating a hormesis effect on plants, promoting plant growth. The values of the relative competition intensity between amaranth and pigweed for most functional traits were lower than zero under most

  10. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Lee, Kyoung-Ho; Kim, Dong-Jin; Lee, Beom-Jin

    2010-05-01

    Although the solid dispersion method has been known to increase the dissolution rate of poorly water-soluble drugs by dispersing them in hydrophilic carriers, one obstacle of the solid dispersion method is its limited solubilization capacity, especially for pH-dependent soluble drugs. pH-modified solid dispersion, in which pH modifiers are incorporated, may be a useful method for increasing the dissolution rate of weakly acidic or basic drugs. Sufficient research, including the most recent reports, was undertaken in this review. How could the inclusion of the pH the pH modifiers in the solid dispersion system change drug structural behaviors, molecular interactions, microenvironmental pH, and/or release rate of pH modifiers, relating with the enhanced dissolution of weakly acidic or weakly basic drugs with poor water solubility? These questions have been investigated to determine the dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs. It is believed that step-by-step mechanistic approaches could provide the ultimate solution for solubilizing several poorly water-soluble drugs with pH-dependent solubility from a solid dispersion system, as well as provide ideas for developing future dosage systems.

  11. Evaluation of Salivary Uric Acid and pH in Human Immunodeficiency Virus Infected Patients: A Historical Cohort Study.

    Science.gov (United States)

    Ahmadi-Motamayel, Fatemeh; Amjad, Samaneh Vaziri; Goodarzi, Mohammad Taghi; Poorolajal, Jalal

    2018-01-01

    Antioxidants protect the body against cellular damage. Saliva has immunological, enzymatic and antioxidant defense systems. Uric acid is the main and predominant salivary antioxidant. The aim of this study was to evaluate salivary uric acid levels and pH in HIV-infected patients in the west of Iran. HIV-infected patients were selected from behavioral advisory centers of Hamadan and Kermanshah Provinces, west of Iran. Saliva was collected between 8 and10 in the morning. Five mL of whole unstimulated saliva was collected in 5 minutes by spitting into sterilized Falcon tubes based on Navazesh method; pH was measured with a pH meter and uric acid was assessed with spectrophotometric method. Data were analyzed with STATA 12. Salivary pH in the HIV-positive group was lower (6.99±0.46) than the healthy controls (7.14±1.03) but the difference was not statistically significant (P=380). Uric acid concentrations in HIV-infected patients (2.94±2.14) were significantly lower in comparison to the healthy controls (5.21±2.30). The results showed a statistically significant decrease in the case group (P=0.001). Mean age and DMFT index of the case group were higher than the control group. Uric acid, the main antioxidant of saliva, was significantly lower in HIVinfected individuals; pH also was lower in these patients. HIV can alter salivary antioxidant status, which can influence patients' oral health status. Diet with antioxidant properties might be helpful in these patients. More research is necessary to discover true antioxidant and salivary changes and their relation with HIV consequences in future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Pd(II)/PhI(OAc)2 promoted direct cross coupling of glucals with aromatic acids.

    Science.gov (United States)

    Begum, Zubeda; Shankar, G; Sirisha, K; Reddy, B V Subba

    2018-05-22

    A highly efficient oxidative C2-aroyloxylation of D-glucal with aromatic carboxylic acids has been achieved for the first time using 5 mol% Pd(OAc) 2 and 1 equiv of PhI(OAc) 2 to produce C2-aroyloxyglycals in good yields. The use of excess of PhI(OAc) 2 (2 equiv) provides C2-acyloxyglycal exclusively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Identification and modulation of the key amino acid residue responsible for the pH sensitivity of neoculin, a taste-modifying protein.

    Directory of Open Access Journals (Sweden)

    Ken-ichiro Nakajima

    Full Text Available Neoculin occurring in the tropical fruit of Curculigo latifolia is currently the only protein that possesses both a sweet taste and a taste-modifying activity of converting sourness into sweetness. Structurally, this protein is a heterodimer consisting of a neoculin acidic subunit (NAS and a neoculin basic subunit (NBS. Recently, we found that a neoculin variant in which all five histidine residues are replaced with alanine elicits intense sweetness at both neutral and acidic pH but has no taste-modifying activity. To identify the critical histidine residue(s responsible for this activity, we produced a series of His-to-Ala neoculin variants and evaluated their sweetness levels using cell-based calcium imaging and a human sensory test. Our results suggest that NBS His11 functions as a primary pH sensor for neoculin to elicit taste modification. Neoculin variants with substitutions other than His-to-Ala were further analyzed to clarify the role of the NBS position 11 in the taste-modifying activity. We found that the aromatic character of the amino acid side chain is necessary to elicit the pH-dependent sweetness. Interestingly, since the His-to-Tyr variant is a novel taste-modifying protein with alternative pH sensitivity, the position 11 in NBS can be critical to modulate the pH-dependent activity of neoculin. These findings are important for understanding the pH-sensitive functional changes in proteinaceous ligands in general and the interaction of taste receptor-taste substance in particular.

  14. The effects of pH on N-methacryloyl glycine primer on bond strength to acid-etched dentin.

    Science.gov (United States)

    Nishiyama, N; Suzuki, K; Asakura, T; Nakai, H; Yasuda, S; Nemoto, K

    1996-07-01

    To develop a more effective adhesive primer, it is imperative to understand the adhesion mechanisms of the resin to the demineralized dentin through a dentin primer. When the bonding agent was directly applied to the dentin etched by 40 wt % phosphoric acid without a primer pretreatment, the bond strength of the resin to the dentin was 5 MPa. Conversely, when the demineralized dentin was pretreated with the N-methacryloyl glycine (NM alpha A) primer solution with a pH value of 1.5, the bond strength increased considerably to 15 MPa. However, the bond strength dropped dramatically from 15 to 3 MPa when the sodium salt of NM alpha A was added, thereby increasing the pH value of the NM alpha A primer solution from 3.2 to 5.0. When the pH value was increased above 3.5 (pKa value), the number of ionized NM alpha A species increased in the solution. As a result, the bond strength of the resin fell to approximately 3 MPa. This result was obtained despite the 5-micron-thick hybrid layer that was created in the subsurface of the intertubular dentin. The number of unionized NM alpha A species increased by lowering the pH value below 3.5. As a result, the NM alpha A primer provided a higher bond strength of the resin to the demineralized dentin. In contrast, when 10 wt % citric acid containing 3 wt % ferric chloride was applied to the dentin, maximum bond strength was obtained when the pH value of the NM alpha A primer solution was 3.5. The pH dependency of the bond strength obtained following 10 wt % citric acid containing 3 wt % ferric chloride etching is different from the results obtained from 40 wt % phosphoric acid etching. This can be attributed to the difference in the characteristics of the demineralized collageous layer.

  15. Evaluation of citric acid and GDL in the recovery at different pH levels of Clostridium sporogenes PA 3679 spores subjected to HTST treatment conditions.

    Science.gov (United States)

    Silla Santos, M H; Torres Zarzo, J

    1996-04-01

    Spores of Clostridium sporogenes PA 3679 were treated at different temperatures (121, 126, 130 and 135 degrees C) in white asparagus purée (pH 5.8) and acidified with glucono-delta-lactone (GDL) and citric acid to pH levels of 5.5, 5.0 and 4.5. Afterwards, the spores were recovered in MPA3679 medium in various conditions: unacidified (pH 7.5), acidified with GDL (500 ppm) and acidified with citric acid (500 and 250 ppm) to pH levels of 6.5, 6.0 and 5.0. The results indicated that the pH levels, concentration and type of acid used act synergistically rather than independently. Citric acid has a stronger inhibiting effect than GDL on the recovery of C. sporogenes PA 3679 spores. At the higher heat treatments (130 and 135 degrees C) the major injury on the spores sensitize more than against the acids and low pH values.

  16. Formation of M-Like Intermediates in Proteorhodopsin in Alkali Solutions (pH ≥ ∼8.5) Where the Proton Release Occurs First in Contrast to the Sequence at Lower pH.

    Science.gov (United States)

    Tamogami, Jun; Sato, Keitaro; Kurokawa, Sukuna; Yamada, Takumi; Nara, Toshifumi; Demura, Makoto; Miyauchi, Seiji; Kikukawa, Takashi; Muneyuki, Eiro; Kamo, Naoki

    2016-02-23

    Proteorhodopsin (PR) is an outward light-driven proton pump observed in marine eubacteria. Despite many structural and functional similarities to bacteriorhodopsin (BR) in archaea, which also acts as an outward proton pump, the mechanism of the photoinduced proton release and uptake is different between two H(+)-pumps. In this study, we investigated the pH dependence of the photocycle and proton transfer in PR reconstituted with the phospholipid membrane under alkaline conditions. Under these conditions, as the medium pH increased, a blue-shifted photoproduct (defined as Ma), which is different from M, with a pKa of ca. 9.2 was produced. The sequence of the photoinduced proton uptake and release during the photocycle was inverted with the increase in pH. A pKa value of ca. 9.5 was estimated for this inversion and was in good agreement with the pKa value of the formation of Ma (∼ 9.2). In addition, we measured the photoelectric current generated by PRs attached to a thin polymer film at varying pH. Interestingly, increases in the medium pH evoked bidirectional photocurrents, which may imply a possible reversal of the direction of the proton movement at alkaline pH. On the basis of these findings, a putative photocycle and proton transfer scheme in PR under alkaline pH conditions was proposed.

  17. DEPRESSION OF THE PHOTIC AFTER DISCHARGE OF FLASH EVOKED POTENTIALS BY PHYSOSTIGMINE, CARBARYL AND PROPOXUR AND THE RELATIONSHIP TO INHIBITION OF BRAIN CHOLINESTERASE

    Science.gov (United States)

    The effects of N-methyl carbamate pesticides on the photic after discharge (PhAD) of flash evoked potentials (FEPs) and the relationship between inhibition of brain cholinesterase (ChE) activity and the PhAD were evaluated. FEPs were recorded in Long Evans rats treated with physo...

  18. Optical ph sensing material prepared from doped sol-gel film for use in acid-base titration

    OpenAIRE

    Musa Ahmad; T.W. Tan

    2017-01-01

    An optical pH sensing material has been prepared in this study by using sol-gel technique. Bromothymol blue, bromophenol blue and thymol blue were chosen in this study as acidbase indicators for strong acid-strong base, strong acid-weak base and weak acid-strong base titration, respectively. The results show that these indicators could be successfully entrapped inside the sol-gel film and still maintain its chemical behaviour as in solution. The entrapped acid-base indicators respond well to ...

  19. Monomeric banana lectin at acidic pH overrules conformational stability of its native dimeric form.

    Directory of Open Access Journals (Sweden)

    Javed M Khan

    Full Text Available Banana lectin (BL is a homodimeric protein categorized among jacalin-related family of lectins. The effect of acidic pH was examined on conformational stability of BL by using circular dichroism, intrinsic fluorescence, 1-anilino-8-napthalene sulfonate (ANS binding, size exclusion chromatography (SEC and dynamic light scattering (DLS. During acid denaturation of BL, the monomerization of native dimeric protein was found at pH 2.0. The elution profile from SEC showed two different peaks (59.65 ml & 87.98 ml at pH 2.0 while single peak (61.45 ml at pH 7.4. The hydrodynamic radii (R h of native BL was 2.9 nm while at pH 2.0 two species were found with R h of 1.7 and 3.7 nm. Furthermore at, pH 2.0 the secondary structures of BL remained unaltered while tertiary structure was significantly disrupted with the exposure of hydrophobic clusters confirming the existence of molten globule like state. The unfolding of BL with different subunit status was further evaluated by urea and temperature mediated denaturation to check their stability. As inferred from high Cm and ΔG values, the monomeric form of BL offers more resistance towards chemical denaturation than the native dimeric form. Besides, dimeric BL exhibited a Tm of 77°C while no loss in secondary structures was observed in monomers even up to 95°C. To the best of our knowledge, this is the first report on monomeric subunit of lectins showing more stability against denaturants than its native dimeric state.

  20. The effect of antacid on salivary pH in patients with and without dental erosion after multiple acid challenges.

    Science.gov (United States)

    Dhuhair, Sarah; Dennison, Joseph B; Yaman, Peter; Neiva, Gisele F

    2015-04-01

    To evaluate the effect of antacid swish in the salivary pH values and to monitor the pH changes in subjects with and without dental erosion after multiple acid challenge tests. 20 subjects with tooth erosion were matched in age and gender with 20 healthy controls according to specific inclusion/exclusion criteria. Baseline measures were taken of salivary pH, buffering capacity and salivary flow rate using the Saliva Check System. Subjects swished with Diet Pepsi three times at 10-minute intervals. Changes in pH were monitored using a digital pH meter at 0-, 5-, and 10- minute intervals and at every 5 minutes after the third swish until pH resumed baseline value or 45 minutes relapse. Swishing regimen was repeated on a second visit, followed by swishing with sugar-free liquid antacid (Mylanta Supreme). Recovery times were also recorded. Data was analyzed using independent t-tests, repeated measures ANOVA, and Fisher's exact test (α= 0.05). Baseline buffering capacity and flow rate were not significantly different between groups (P= 0.542; P= 0.2831, respectively). Baseline salivary pH values were similar between groups (P= 0.721). No significant differences in salivary pH values were found between erosion and non-erosion groups in response to multiple acid challenges (P= 0.695) or antacid neutralization (P= 0.861). Analysis of salivary pH recovery time revealed no significant differences between groups after acid challenges (P= 0.091) or after the use of antacid (P= 0.118). There was a highly significant difference in the survival curves of the two groups on Day 2, with the non-erosion group resolving significantly faster than the erosion group (P= 0.0086).

  1. Adverse Weather Evokes Nostalgia.

    Science.gov (United States)

    van Tilburg, Wijnand A P; Sedikides, Constantine; Wildschut, Tim

    2018-03-01

    Four studies examined the link between adverse weather and the palliative role of nostalgia. We proposed and tested that (a) adverse weather evokes nostalgia (Hypothesis 1); (b) adverse weather causes distress, which predicts elevated nostalgia (Hypothesis 2); (c) preventing nostalgia exacerbates weather-induced distress (Hypothesis 3); and (d) weather-evoked nostalgia confers psychological benefits (Hypothesis 4). In Study 1, participants listened to recordings of wind, thunder, rain, and neutral sounds. Adverse weather evoked nostalgia. In Study 2, participants kept a 10-day diary recording weather conditions, distress, and nostalgia. We also obtained meteorological data. Adverse weather perceptions were positively correlated with distress, which predicted higher nostalgia. Also, adverse natural weather was associated with corresponding weather perceptions, which predicted elevated nostalgia. (Results were mixed for rain.) In Study 3, preventing nostalgia (via cognitive load) increased weather-evoked distress. In Study 4, weather-evoked nostalgia was positively associated with psychological benefits. The findings pioneer the relevance of nostalgia as source of comfort in adverse weather.

  2. pH effects of the addition of three biochars to acidic Indonesian mineral soils

    DEFF Research Database (Denmark)

    Martinsen, V; Alling, V; Nurida, N L

    2015-01-01

    of increasing amounts (0–30%; weight:weight) of three types of field-produced BCs (from cacao (Theobroma cacao. L.) shell, oil palm (Elaeis guineensis. Jacq.) shell and rice (Oryza sativa. L.) husk) on soil pH and CEC. Soils were sampled from croplands at Java, Sumatra and Kalimantan, Indonesia. All BCs caused...... a significant increase in mean soil pH with a stronger response and a greater maximum increase for the cacao shell BC addition, due to a greater acid neutralizing capacity (ANC) and larger amounts of extractable base cations. At 1% BC addition, corresponding to about 30 tons ha−1, the estimated increase in soil...... pH from the initial mean pH of 4.7 was about 0.5 units for the cacao shell BC, whereas this was only 0.05 and 0.04 units for the oil palm shell and rice husk BC, respectively. Besides depending on BC type, the increase in soil pH upon the addition of each of the three BCs was mainly dependent...

  3. Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges.

    Science.gov (United States)

    Shartau, Ryan B; Crossley, Dane A; Kohl, Zachary F; Brauner, Colin J

    2016-07-01

    The nests of embryonic turtles naturally experience elevated CO2 (hypercarbia), which leads to increased blood PCO2  and a respiratory acidosis, resulting in reduced blood pH [extracellular pH (pHe)]. Some fishes preferentially regulate tissue pH [intracellular pH (pHi)] against changes in pHe; this has been proposed to be associated with exceptional CO2 tolerance and has never been identified in amniotes. As embryonic turtles may be CO2 tolerant based on nesting strategy, we hypothesized that they preferentially regulate pHi, conferring tolerance to severe acute acid-base challenges. This hypothesis was tested by investigating pH regulation in common snapping turtles (Chelydra serpentina) reared in normoxia then exposed to hypercarbia (13 kPa PCO2 ) for 1 h at three developmental ages: 70% and 90% of incubation, and yearlings. Hypercarbia reduced pHe but not pHi, at all developmental ages. At 70% of incubation, pHe was depressed by 0.324 pH units while pHi of brain, white muscle and lung increased; heart, liver and kidney pHi remained unchanged. At 90% of incubation, pHe was depressed by 0.352 pH units but heart pHi increased with no change in pHi of other tissues. Yearlings exhibited a pHe reduction of 0.235 pH units but had no changes in pHi of any tissues. The results indicate common snapping turtles preferentially regulate pHi during development, but the degree of response is reduced throughout development. This is the first time preferential pHi regulation has been identified in an amniote. These findings may provide insight into the evolution of acid-base homeostasis during development of amniotes, and vertebrates in general. © 2016. Published by The Company of Biologists Ltd.

  4. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils.

    Science.gov (United States)

    Liang, Cuiyue; Piñeros, Miguel A; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V; Liao, Hong

    2013-03-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function.

  5. Crystallogenesis of bacteriophage P22 tail accessory factor gp26 at acidic and neutral pH

    Energy Technology Data Exchange (ETDEWEB)

    Cingolani, Gino, E-mail: cingolag@upstate.edu; Andrews, Dewan [Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 (United States); Casjens, Sherwood [Department of Pathology, Division of Cell Biology and Immunology, University of Utah Medical School, Salt Lake City, UT 84112 (United States); Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 (United States)

    2006-05-01

    The crystallogenesis of bacteriophage P22 tail-fiber gp26 is described. To study possible pH-induced conformational changes in gp26 structure, native trimeric gp26 has been crystallized at acidic pH (4.6) and a chimera of gp26 fused to maltose-binding protein (MBP-gp26) has been crystallized at neutral and alkaline pH (7-10). Gp26 is one of three phage P22-encoded tail accessory factors essential for stabilization of viral DNA within the mature capsid. In solution, gp26 exists as an extended triple-stranded coiled-coil protein which shares profound structural similarities with class I viral membrane-fusion protein. In the cryo-EM reconstruction of P22 tail extracted from mature virions, gp26 forms an ∼220 Å extended needle structure emanating from the neck of the tail, which is likely to be brought into contact with the cell’s outer membrane when the viral DNA-injection process is initiated. To shed light on the potential role of gp26 in cell-wall penetration and DNA injection, gp26 has been crystallized at acidic, neutral and alkaline pH. Crystals of native gp26 grown at pH 4.6 diffract X-rays to 2.0 Å resolution and belong to space group P2{sub 1}, with a dimer of trimeric gp26 molecules in the asymmetric unit. To study potential pH-induced conformational changes in the gp26 structure, a chimera of gp26 fused to maltose-binding protein (MBP-gp26) was generated. Hexagonal crystals of MBP-gp26 were obtained at neutral and alkaline pH using the high-throughput crystallization robot at the Hauptman–Woodward Medical Research Institute, Buffalo, NY, USA. These crystals diffract X-rays to beyond 2.0 Å resolution. Structural analysis of gp26 crystallized at acidic, neutral and alkaline pH is in progress.

  6. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    International Nuclear Information System (INIS)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-01-01

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier

  7. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat [Faculty of Science and Technology, University Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor (Malaysia); Amin, Mohd. Cairul Iqbal Mohd [Faculty of Pharmacy, University Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia)

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  8. The geochemistry during management of lake acidification caused by the rewetting of sulfuric (pH < 4) acid sulfate soils

    International Nuclear Information System (INIS)

    Mosley, Luke M.; Shand, Paul; Self, Peter; Fitzpatrick, Rob

    2014-01-01

    Highlights: • The dynamic geochemistry of a lake acidification event and its management was assessed. • Sulfate complexes dominated the aqueous metal speciation at low pH. • Iron oxydroxysulfate minerals (schwertmannite, jarosite) were identified. • Aerial additions of limestone to the acidic water slowly returned the pH to near neutral. • Coating of the limestone with gypsum and metal precipitates limited its neutralisation efficiency. - Abstract: Understanding the geochemistry and kinetics of acidification events arising from acid sulfate soils is important to enable effective management and risk assessment. Large-scale exposure and oxidation of acid sulfate soils occurred during a drought in the Lower Lakes (Murray–Darling Basin) of South Australia. We examined the geochemical changes that occurred in one region (Boggy Lake) that experienced surface water acidification and was subsequently neutralised via aerial limestone (CaCO 3 ) dosing and dilution via natural lake refill. Very low pH (< 3) and high concentrations (≈10–1000 mg/L Fe, Al, Mn) of dissolved metals were initially found in surface water. The water chemistry exhibited pH-dependent enhancement of constituents typically associated with acid sulfate soils (SO 4 , Al and Fe). Geochemical speciation calculations indicated that most (60–80%) of the acidity was present as dissolved metal-sulfate complexes at low pH. X-ray diffraction (XRD) analyses showed that the orange-brown precipitates present after an initial limestone dosing were secondary oxyhydroxysulfate minerals (schwertmannite, jarosite). Further limestone dosing resulted in neutralisation of the pH, reduction in dissolved metal concentrations, dissolution of jarosite and schwertmannite precipitates, and formation of other metal oxyhydroxide phases. The results were consistent with a pE-pH diagram constructed for metal-sulfur geochemistry. Assessment of the measured and simulated (using PHREEQC) pH and Ca/Cl ratio during

  9. Music evokes vivid autobiographical memories.

    Science.gov (United States)

    Belfi, Amy M; Karlan, Brett; Tranel, Daniel

    2016-08-01

    Music is strongly intertwined with memories-for example, hearing a song from the past can transport you back in time, triggering the sights, sounds, and feelings of a specific event. This association between music and vivid autobiographical memory is intuitively apparent, but the idea that music is intimately tied with memories, seemingly more so than other potent memory cues (e.g., familiar faces), has not been empirically tested. Here, we compared memories evoked by music to those evoked by famous faces, predicting that music-evoked autobiographical memories (MEAMs) would be more vivid. Participants listened to 30 songs, viewed 30 faces, and reported on memories that were evoked. Memories were transcribed and coded for vividness as in Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M. [2002. Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677-689]. In support of our hypothesis, MEAMs were more vivid than autobiographical memories evoked by faces. MEAMs contained a greater proportion of internal details and a greater number of perceptual details, while face-evoked memories contained a greater number of external details. Additionally, we identified sex differences in memory vividness: for both stimulus categories, women retrieved more vivid memories than men. The results show that music not only effectively evokes autobiographical memories, but that these memories are more vivid than those evoked by famous faces.

  10. Effect of urine pH changed by dietary intervention on uric acid clearance mechanism of pH-dependent excretion of urinary uric acid

    Directory of Open Access Journals (Sweden)

    Kanbara Aya

    2012-06-01

    Full Text Available Abstract Background The finding reported in a previous paper - alkalization of urine facilitates uric acid excretion - is contradictory to what one might expect to occur: because food materials for the alkalization of urine contain fewer purine bodies than those for acidification, less uric acid in alkaline urine should have been excreted than in acid urine. To make clear what component of uric acid excretion mechanisms is responsible for this unexpected finding, we simultaneously collected data for the concentration of both creatinine and uric acid in serum as well as in urine, in order to calculate both uric acid and creatinine clearances. Methods Within the framework of the Japanese government’s health promotion program, we made recipes which consisted of protein-rich and less vegetable-fruit food materials for H + -load (acidic diet and others composed of less protein and more vegetable-fruit rich food materials (alkaline diet. This is a crossover study within some limitations. Healthy female students, who had no medical problems at the regular physical examination provided by the university, were enrolled in this consecutive 5-day study for each test. From whole-day collected urine, total volume, pH, organic acid, creatinine, uric acid, titratable acid and all cations (Na+,K+,Ca2+,Mg2+,NH4+ and anions (Cl−,SO42−,PO4− necessary for the estimation of acid–base balance were measured. In the early morning before breakfast of the 1st, 3rd and 5th experimental day, we sampled 5 mL of blood to estimate the creatinine and uric acid concentration in serum. Results and discussion Urine pH reached a steady state 3 days after switching from ordinary daily diets to specified regimens. The amount of acid generated ([SO42−] + organic acid − gut alkaliwas linearly related with the excretion of acid (titratable acid + [NH4+] − [HCO3−], indicating that H + in urine is generated by the metabolic degradation of

  11. Intracellular pH regulation by acid-base transporters in mammalian neurons

    Science.gov (United States)

    Ruffin, Vernon A.; Salameh, Ahlam I.; Boron, Walter F.; Parker, Mark D.

    2014-01-01

    Intracellular pH (pHi) regulation in the brain is important in both physiological and physiopathological conditions because changes in pHi generally result in altered neuronal excitability. In this review, we will cover 4 major areas: (1) The effect of pHi on cellular processes in the brain, including channel activity and neuronal excitability. (2) pHi homeostasis and how it is determined by the balance between rates of acid loading (JL) and extrusion (JE). The balance between JE and JL determine steady-state pHi, as well as the ability of the cell to defend pHi in the face of extracellular acid-base disturbances (e.g., metabolic acidosis). (3) The properties and importance of members of the SLC4 and SLC9 families of acid-base transporters expressed in the brain that contribute to JL (namely the Cl-HCO3 exchanger AE3) and JE (the Na-H exchangers NHE1, NHE3, and NHE5 as well as the Na+- coupled HCO3− transporters NBCe1, NBCn1, NDCBE, and NBCn2). (4) The effect of acid-base disturbances on neuronal function and the roles of acid-base transporters in defending neuronal pHi under physiopathologic conditions. PMID:24592239

  12. Spontaneous aggregation of humic acid observed with AFM at different pH.

    Science.gov (United States)

    Colombo, Claudio; Palumbo, Giuseppe; Angelico, Ruggero; Cho, Hyen Goo; Francioso, Ornella; Ertani, Andrea; Nardi, Serenella

    2015-11-01

    Atomic force microscopy in contact (AFM-C) mode was used to investigate the molecular dynamics of leonardite humic acid (HA) aggregate formed at different pH values. HA nanoparticles dispersed at pH values ranging from 2 to 12 were observed on a mica surface under dry conditions. The most clearly resolved and well-resulted AFM images of single particle were obtained at pH 5, where HA appeared as supramolecular particles with a conic shape and a hole in the centre. Those observations suggested that HA formed under these conditions exhibited a pseudo-amphiphilic nature, with secluded hydrophobic domains and polar subunits in direct contact with hydrophilic mica surface. Based on molecular simulation methods, a lignin-carbohydrate complex (LCC) model was proposed to explain the HA ring-like morphology. The LCC model optimized the parameters of β-O-4 linkages between 14 units of 1-4 phenyl propanoid, and resulted in an optimized structure comprising 45-50 linear helical molecules looped spirally around a central cavity. Those results added new insights on the adsorption mechanism of HA on polar surfaces as a function of pH, which was relevant from the point of view of natural aggregation in soil environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. cPLA2a-evoked formation of arachidonic acid and lysophospholipids is required for exocytosis in mouse pancreatic ß-cells

    DEFF Research Database (Denmark)

    Juhl, Kirstine; Høy, Marianne; Olsen, Hervør L.

    2003-01-01

    Using capacitance measurements, we investigated the effects of intracellularly applied recombinant human cytosolic phospholipase A2 (cPLA2 ) and its lipolytic products arachidonic acid and lysophosphatidylcholine on Ca2+-dependent exocytosis in single mouse pancreatic -cells. cPLA2 dose dependently......–80 to 280–300. cPLA2 -stimulated exocytosis was antagonized by the specific cPLA2 inhibitor AACOCF3. Ca2+-evoked exocytosis was reduced by 40% in cells treated with AACOCF3 or an antisense oligonucleotide against cPLA2 . The action of cPLA2 was mimicked by a combination of arachidonic acid...... and lysophosphatidylcholine (470% stimulation) in which each compound alone doubled the exocytotic response. Priming of insulin-containing secretory granules has been reported to involve Cl- uptake through ClC-3 Cl- channels. Accordingly, the stimulatory action of cPLA2 was inhibited by the Cl- channel inhibitor DIDS...

  14. cPLA2alpha-evoked formation of arachidonic acid and lysophospholipids is required for exocytosis in mouse pancreatic beta-cells

    DEFF Research Database (Denmark)

    Juhl, Kirstine; Høy, Marianne; Olsen, Hervør L

    2003-01-01

    Using capacitance measurements, we investigated the effects of intracellularly applied recombinant human cytosolic phospholipase A2 (cPLA2alpha) and its lipolytic products arachidonic acid and lysophosphatidylcholine on Ca2+-dependent exocytosis in single mouse pancreatic beta-cells. cPLA2alpha...... from 70-80 to 280-300. cPLA2alpha-stimulated exocytosis was antagonized by the specific cPLA2 inhibitor AACOCF3. Ca2+-evoked exocytosis was reduced by 40% in cells treated with AACOCF3 or an antisense oligonucleotide against cPLA2alpha. The action of cPLA2alpha was mimicked by a combination...... of arachidonic acid and lysophosphatidylcholine (470% stimulation) in which each compound alone doubled the exocytotic response. Priming of insulin-containing secretory granules has been reported to involve Cl- uptake through ClC-3 Cl- channels. Accordingly, the stimulatory action of cPLA2alpha was inhibited...

  15. ASIC-like, proton-activated currents in rat hippocampal neurons.

    Science.gov (United States)

    Baron, Anne; Waldmann, Rainer; Lazdunski, Michel

    2002-03-01

    The expression of mRNA for acid sensing ion channels (ASIC) subunits ASIC1a, ASIC2a and ASIC2b has been reported in hippocampal neurons, but the presence of functional hippocampal ASIC channels was never assessed. We report here the first characterization of ASIC-like currents in rat hippocampal neurons in primary culture. An extracellular pH drop induces a transient Na(+) current followed by a sustained non-selective cation current. This current is highly sensitive to pH with an activation threshold around pH 6.9 and a pH(0.5) of 6.2. About half of the total peak current is inhibited by the spider toxin PcTX1, which is specific for homomeric ASIC1a channels. The remaining PcTX1-resistant ASIC-like current is increased by 300 microM Zn(2+) and, whereas not fully activated at pH 5, it shows a pH(0.5) of 6.0 between pH 7.4 and 5. We have previously shown that Zn(2+) is a co-activator of ASIC2a-containing channels. Thus, the hippocampal transient ASIC-like current appears to be generated by a mixture of homomeric ASIC1a channels and ASIC2a-containing channels, probably heteromeric ASIC1a+2a channels. The sustained non-selective current suggests the involvement of ASIC2b-containing heteromeric channels. Activation of the hippocampal ASIC-like current by a pH drop to 6.9 or 6.6 induces a transient depolarization which itself triggers an initial action potential (AP) followed by a sustained depolarization and trains of APs. Zn(2+) increases the acid sensitivity of ASIC channels, and consequently neuronal excitability. It is probably an important co-activator of ASIC channels in the central nervous system.

  16. Cation-anion imbalance: Effect on PWR steam generator crevice pH - an acidic case study

    International Nuclear Information System (INIS)

    Paine, J.P.N.; Shoemaker, C.E.

    1990-01-01

    Ion exchange resins remove cations more efficiently than anions from feedwater to nuclear steam generators. The resulting imbalance is made up in the feedwater train by ammonia additions. In the steam generator, the ammonia is quickly flashed off leaving acid ions for an ionic balance. The almost pure water concentrates by boiling in heated crevices, in theory, to levels permitted by the available superheat (difference between primary and secondary temperatures). The concentrations may reach an ionic strength of greater than 20 molal on the hot leg, depending on bulk water concentration, time of steady state operation, fouling of crevice locations, and solubilities of the various salts, i.e., kinetic as well as thermodynamic considerations. While some of the acid species distill out of the crevices, more may be trapped by corrosive reactions. In the paper, theoretical crevice pH is calculated by MULTEQ. An attempt is made to relate pH to steady state operation time and crevice fouling. The data are normalized to be independent of bulk water concentration. Neutralization of the acid is explored

  17. Acidic pH shock induces the expressions of a wide range of stress-response genes

    Directory of Open Access Journals (Sweden)

    Hong Soon-Kwang

    2008-12-01

    Full Text Available Abstract Background Environmental signals usually enhance secondary metabolite production in Streptomycetes by initiating complex signal transduction system. It is known that different sigma factors respond to different types of stresses, respectively in Streptomyces strains, which have a number of unique signal transduction mechanisms depending on the types of environmental shock. In this study, we wanted to know how a pH shock would affect the expression of various sigma factors and shock-related proteins in S. coelicolor A3(2. Results According to the results of transcriptional and proteomic analyses, the major number of sigma factor genes were upregulated by an acidic pH shock. Well-studied sigma factor genes of sigH (heat shock, sigR (oxidative stress, sigB (osmotic shock, and hrdD that play a major role in the secondary metabolism, were all strongly upregulated by the pH shock. A number of heat shock proteins including the DnaK family and chaperones such as GroEL2 were also observed to be upregulated by the pH shock, while their repressor of hspR was strongly downregulated. Oxidative stress-related proteins such as thioredoxin, catalase, superoxide dismutase, peroxidase, and osmotic shock-related protein such as vesicle synthases were also upregulated in overall. Conclusion From these observations, an acidic pH shock was considered to be one of the strongest stresses to influence a wide range of sigma factors and shock-related proteins including general stress response proteins. The upregulation of the sigma factors and shock proteins already found to be related to actinorhodin biosynthesis was considered to have contributed to enhanced actinorhodin productivity by mediating the pH shock signal to regulators or biosynthesis genes for actinorhodin production.

  18. Effect of pH and chloroauric acid concentration on the geometry of gold nanoparticles obtained by photochemical synthesis

    Science.gov (United States)

    Conde Rodríguez, G. R.; Gauthier, G. H.; Ladeira, L. O.; Sanabria Cala, J. A.; Laverde Cataño, D.

    2017-12-01

    Due to their excellent surface properties, gold nanoparticles have been used in a wide range of applications from optics and catalysis to biology and cancer treatment by thermal therapy. Gold nanoparticles can absorb a large amount of radiation according to their geometry, such as nanospheres and nanorods. The importance of gold nanoparticles geometry is based on the electromagnetic spectrum wavelength where exists a greater absorption of radiation, which belongs to the visible region for nanospheres and ranges between visible and near infrared regions for nanorods, conferring greater biomedical applicability to the latter. When using photochemical synthesis method, which consists of reducing gold atoms to their metallic state with UV radiation, the geometry of gold nanoparticles depends on different variables such as: 1) pH, 2) concentration of chloroauric acid, 3) the surfactant, 4) concentration of silver nitrate, 5) temperature and 6) irradiation time. Therefore, in this study the geometry of the gold nanoparticles obtained by photochemical synthesis was determined as a function of solution pH and chloroauric acid concentration, using Spectrophotometry in the Ultraviolet Visible region (UV-vis) as characterization technique. From the analysis of the UV-vis spectra, it was determined that at an acidic pH the particles have two absorption bands corresponding to nanorods geometry, while at a basic pH only nanospheres are found and at a neutral pH the lower relative intensity of the second band indicates the simultaneous existence of the two geometries. The increase in the concentration of chloroauric acid produces a decrease in the amount of synthesized nanorods, seen as a decrease of the relative intensity of the second absorption band. Therefore, obtaining gold nanoparticles with nanorods geometry favours fields such as biomedicine, because they are capable of absorbing infrared radiation and can be used as photosensitive agents in localized thermal therapy

  19. Evoked Emotions Predict Food Choice

    OpenAIRE

    Dalenberg, Jelle R.; Gutjar, Swetlana; ter Horst, Gert J.; de Graaf, Kees; Renken, Remco J.; Jager, Gerry

    2014-01-01

    In the current study we show that non-verbal food-evoked emotion scores significantly improve food choice prediction over merely liking scores. Previous research has shown that liking measures correlate with choice. However, liking is no strong predictor for food choice in real life environments. Therefore, the focus within recent studies shifted towards using emotion-profiling methods that successfully can discriminate between products that are equally liked. However, it is unclear how well ...

  20. Low urine pH and acid excretion do not predict bone fractures or the loss of bone mineral density: a prospective cohort study

    Directory of Open Access Journals (Sweden)

    Lyon Andrew W

    2010-05-01

    Full Text Available Abstract Background The acid-ash hypothesis, the alkaline diet, and related products are marketed to the general public. Websites, lay literature, and direct mail marketing encourage people to measure their urine pH to assess their health status and their risk of osteoporosis. The objectives of this study were to determine whether 1 low urine pH, or 2 acid excretion in urine [sulfate + chloride + 1.8x phosphate + organic acids] minus [sodium + potassium + 2x calcium + 2x magnesium mEq] in fasting morning urine predict: a fragility fractures; and b five-year change of bone mineral density (BMD in adults. Methods Design: Cohort study: the prospective population-based Canadian Multicentre Osteoporosis Study. Multiple logistic regression was used to examine associations between acid excretion (urine pH and urine acid excretion in fasting morning with the incidence of fractures (6804 person years. Multiple linear regression was used to examine associations between acid excretion with changes in BMD over 5-years at three sites: lumbar spine, femoral neck, and total hip (n = 651. Potential confounders controlled included: age, gender, family history of osteoporosis, physical activity, smoking, calcium intake, vitamin D status, estrogen status, medications, renal function, urine creatinine, body mass index, and change of body mass index. Results There were no associations between either urine pH or acid excretion and either the incidence of fractures or change of BMD after adjustment for confounders. Conclusion Urine pH and urine acid excretion do not predict osteoporosis risk.

  1. Modeling of acetate-type fermentation of sugar-containing wastewater under acidic pH conditions.

    Science.gov (United States)

    Huang, Liang; Pan, Xin-Rong; Wang, Ya-Zhou; Li, Chen-Xuan; Chen, Chang-Bin; Zhao, Quan-Bao; Mu, Yang; Yu, Han-Qing; Li, Wen-Wei

    2018-01-01

    In this study, a kinetic model was developed based on Anaerobic Digestion Model No. 1 to provide insights into the directed production of acetate and methane from sugar-containing wastewater under low pH conditions. The model sufficiently described the dynamics of liquid-phase and gaseous products in an anaerobic membrane bioreactor by comprehensively considering the syntrophic bioconversion steps of sucrose hydrolysis, acidogenesis, acetogenesis and methanogenesis under acidic pH conditions. The modeling results revealed a significant pH-dependency of hydrogenotrophic methanogenesis and ethanol-producing processes that govern the sucrose fermentative pathway through changing the hydrogen yield. The reaction thermodynamics of such acetate-type fermentation were evaluated, and the implications for process optimization by adjusting the hydraulic retention time were discussed. This work sheds light on the acid-stimulated acetate-type fermentation process and may lay a foundation for optimization of resource-oriented processes for treatment of food wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Pharmacology of Bradykinin-Evoked Coughing in Guinea Pigs.

    Science.gov (United States)

    Hewitt, Matthew M; Adams, Gregory; Mazzone, Stuart B; Mori, Nanako; Yu, Li; Canning, Brendan J

    2016-06-01

    Bradykinin has been implicated as a mediator of the acute pathophysiological and inflammatory consequences of respiratory tract infections and in exacerbations of chronic diseases such as asthma. Bradykinin may also be a trigger for the coughing associated with these and other conditions. We have thus set out to evaluate the pharmacology of bradykinin-evoked coughing in guinea pigs. When inhaled, bradykinin induced paroxysmal coughing that was abolished by the bradykinin B2 receptor antagonist HOE 140. These cough responses rapidly desensitized, consistent with reports of B2 receptor desensitization. Bradykinin-evoked cough was potentiated by inhibition of both neutral endopeptidase and angiotensin-converting enzyme (with thiorphan and captopril, respectively), but was largely unaffected by muscarinic or thromboxane receptor blockade (atropine and ICI 192605), cyclooxygenase, or nitric oxide synthase inhibition (meclofenamic acid and N(G)-nitro-L-arginine). Calcium influx studies in bronchopulmonary vagal afferent neurons dissociated from vagal sensory ganglia indicated that the tachykinin-containing C-fibers arising from the jugular ganglia mediate bradykinin-evoked coughing. Also implicating the jugular C-fibers was the observation that simultaneous blockade of neurokinin2 (NK2; SR48968) and NK3 (SR142801 or SB223412) receptors nearly abolished the bradykinin-evoked cough responses. The data suggest that bradykinin induces coughing in guinea pigs by activating B2 receptors on bronchopulmonary C-fibers. We speculate that therapeutics targeting the actions of bradykinin may prove useful in the treatment of cough. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.

    Science.gov (United States)

    Cao, Li-Hui; Yang, Dong; Wu, Wei; Zeng, Xiankun; Jing, Bi-Yang; Li, Meng-Tong; Qin, Shanshan; Tang, Chao; Tu, Yuhai; Luo, Dong-Gen

    2017-11-07

    Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.

  4. PhAST: pharmacophore alignment search tool.

    Science.gov (United States)

    Hähnke, Volker; Hofmann, Bettina; Grgat, Tomislav; Proschak, Ewgenij; Steinhilber, Dieter; Schneider, Gisbert

    2009-04-15

    We present a ligand-based virtual screening technique (PhAST) for rapid hit and lead structure searching in large compound databases. Molecules are represented as strings encoding the distribution of pharmacophoric features on the molecular graph. In contrast to other text-based methods using SMILES strings, we introduce a new form of text representation that describes the pharmacophore of molecules. This string representation opens the opportunity for revealing functional similarity between molecules by sequence alignment techniques in analogy to homology searching in protein or nucleic acid sequence databases. We favorably compared PhAST with other current ligand-based virtual screening methods in a retrospective analysis using the BEDROC metric. In a prospective application, PhAST identified two novel inhibitors of 5-lipoxygenase product formation with minimal experimental effort. This outcome demonstrates the applicability of PhAST to drug discovery projects and provides an innovative concept of sequence-based compound screening with substantial scaffold hopping potential. 2008 Wiley Periodicals, Inc.

  5. Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats

    International Nuclear Information System (INIS)

    Krueger, Katharina; Straub, Heidrun; Hirner, Alfred V.; Hippler, Joerg; Binding, Norbert; Musshoff, Ulrich

    2009-01-01

    Arsenite and its metabolites, dimethylarsinic or dimethylarsinous acid, have previously been shown to disturb synaptic transmission in hippocampal slices of rats (Krueger, K., Gruner, J., Madeja, M., Hartmann, L.M., Hirner, A.V., Binding, N., Muβhoff, U., 2006a. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals. Arch. Toxicol. 80, 492-501, Krueger, K., Straub, H., Binding, N., Muβhoff, U., 2006b. Effects of arsenite on long-term potentiation in hippocampal slices from adult and young rats. Toxicol. Lett. 165, 167-173, Krueger, K., Repges, H., Hippler, J., Hartmann, L.M., Hirner, A.V., Straub, H., Binding, N., Muβhoff, U., 2007. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats. Toxicol. Appl. Pharmacol. 225, 40-46). The present experiments investigate, whether the important arsenic metabolites monomethylarsonic acid (MMA V ) and monomethylarsonous acid (MMA III ) also influence the synaptic functions of the hippocampus. In hippocampal slices of young (14-21 days-old) and adult (2-4 months-old) rats, evoked synaptic field potentials from the Schaffer collateral-CA1 synapse were measured under control conditions and during and after 30 and 60 min of application of the arsenic compounds. MMA V had no effect on the synapse functions neither in slices of adult nor in those from young rats. However, MMA III strongly influenced the synaptic transmission: it totally depressed the amplitudes of fEPSPs at concentrations of 50 μmol/l (adult rats) and 25 μmol/l (young rats) and LTP amplitudes at concentrations of 25 μmol/l (adult rats) and 10 μmol/l (young rats), respectively. In contrast, application of 1 μmol/l MMA III led to an enhancement of the LTP amplitude in young rats, which is interpretable by an enhancing effect on NMDA receptors and a lack of the blocking effect on AMPA receptors at this concentration (Krueger, K., Gruner, J

  6. The Role of Odor-Evoked Memory in Psychological and Physiological Health.

    Science.gov (United States)

    Herz, Rachel S

    2016-07-19

    This article discusses the special features of odor-evoked memory and the current state-of-the-art in odor-evoked memory research to show how these unique experiences may be able to influence and benefit psychological and physiological health. A review of the literature leads to the conclusion that odors that evoke positive autobiographical memories have the potential to increase positive emotions, decrease negative mood states, disrupt cravings, and reduce physiological indices of stress, including systemic markers of inflammation. Olfactory perception factors and individual difference characteristics that would need to be considered in therapeutic applications of odor-evoked-memory are also discussed. This article illustrates how through the experimentally validated mechanisms of odor-associative learning and the privileged neuroanatomical relationship that exists between olfaction and the neural substrates of emotion, odors can be harnessed to induce emotional and physiological responses that can improve human health and wellbeing.

  7. The Role of Odor-Evoked Memory in Psychological and Physiological Health

    Directory of Open Access Journals (Sweden)

    Rachel S. Herz

    2016-07-01

    Full Text Available This article discusses the special features of odor-evoked memory and the current state-of-the-art in odor-evoked memory research to show how these unique experiences may be able to influence and benefit psychological and physiological health. A review of the literature leads to the conclusion that odors that evoke positive autobiographical memories have the potential to increase positive emotions, decrease negative mood states, disrupt cravings, and reduce physiological indices of stress, including systemic markers of inflammation. Olfactory perception factors and individual difference characteristics that would need to be considered in therapeutic applications of odor-evoked-memory are also discussed. This article illustrates how through the experimentally validated mechanisms of odor-associative learning and the privileged neuroanatomical relationship that exists between olfaction and the neural substrates of emotion, odors can be harnessed to induce emotional and physiological responses that can improve human health and wellbeing.

  8. Fast Hydrazone Reactants: Electronic and Acid/Base Effects Strongly Influence Rate at Biological pH

    OpenAIRE

    Kool, Eric T.; Park, Do-Hyoung; Crisalli, Pete

    2013-01-01

    Kinetics studies with structurally varied aldehydes and ketones in aqueous buffer at pH 7.4 reveal that carbonyl compounds with neighboring acid/base groups form hydrazones at accelerated rates. Similarly, tests of a hydrazine with a neighboring carboxylic acid group show that it also reacts at an accelerated rate. Rate constants for the fastest carbonyl/hydrazine combinations are 2–20 M−1sec−1, which is faster than recent strain-promoted cycloaddition reactions.

  9. Weak Organic Acids Decrease Borrelia burgdorferi Cytoplasmic pH, Eliciting an Acid Stress Response and Impacting RpoN- and RpoS-Dependent Gene Expression

    Directory of Open Access Journals (Sweden)

    Daniel P. Dulebohn

    2017-09-01

    Full Text Available The spirochete Borrelia burgdorferi survives in its tick vector, Ixodes scapularis, or within various hosts. To transition between and survive in these distinct niches, B. burgdorferi changes its gene expression in response to environmental cues, both biochemical and physiological. Exposure of B. burgdorferi to weak monocarboxylic organic acids, including those detected in the blood meal of fed ticks, decreased the cytoplasmic pH of B. burgdorferi in vitro. A decrease in the cytoplasmic pH induced the expression of genes encoding enzymes that have been shown to restore pH homeostasis in other bacteria. These include putative coupled proton/cation exchangers, a putative Na+/H+ antiporter, a neutralizing buffer transporter, an amino acid deaminase and a proton exporting vacuolar-type VoV1 ATPase. Data presented in this report suggested that the acid stress response triggered the expression of RpoN- and RpoS-dependent genes including important virulence factors such as outer surface protein C (OspC, BBA66, and some BosR (Borreliaoxidative stress regulator-dependent genes. Because the expression of virulence factors, like OspC, are so tightly connected by RpoS to general cellular stress responses and cell physiology, it is difficult to separate transmission-promoting conditions in what is clearly a multifactorial and complex regulatory web.

  10. Bilayers at High pH in the Fatty Acid Soap Systems and the Applications for the Formation of Foams and Emulsions.

    Science.gov (United States)

    Xu, Wenlong; Zhang, Heng; Zhong, Yingping; Jiang, Liwen; Xu, Mengxin; Zhu, Xionglu; Hao, Jingcheng

    2015-08-20

    In our previous work, we reported bilayers at high pH in the stearic acid/CsOH/H2O system, which was against the traditional viewpoint that fatty acid (FA) bilayers must be formed at the pKa of the fatty acid. Herein, the microstructures at high pH of several fatty acid soap systems were investigated systematically. We found that palmitic acid/KOH/H2O, palmitic acid/CsOH/H2O, stearic acid/KOH/H2O, and stearic acid/CsOH/H2O systems can form bilayers at high pH. The bilayer structure was demonstrated by cryogenic transmission electron microscopy (cryo-TEM) and deuterium nuclear magnetic resonance ((2)H NMR), and molecular dynamics simulation was used to confirm the formation of bilayers. The influence of fatty acids with different chain lengths (n = 10, 12, 14, 16, and 18) and different counterions including Li(+), Na(+), K(+), Cs(+), (CH3)4N(+), (C2H5)4N(+), (C3H7)4N(+), and (C4H9)4N(+) on the formation of bilayers was discussed. The stability of foam and emulsification properties were compared between bilayers and micelles, drawing the conclusion that bilayer structures possess a much stronger ability to foam and stronger emulsification properties than micelles do.

  11. Effect of peripherally and cortically evoked swallows on jaw reflex responses in anesthetized rabbits.

    Science.gov (United States)

    Suzuki, Taku; Yoshihara, Midori; Sakai, Shogo; Tsuji, Kojun; Nagoya, Kouta; Magara, Jin; Tsujimura, Takanori; Inoue, Makoto

    2018-05-03

    This study aimed to investigate whether the jaw-opening (JOR) and jaw-closing reflexes (JCR) are modulated during not only peripherally, but also centrally, evoked swallowing. Experiments were carried out on 24 adult male Japanese white rabbits. JORs were evoked by trigeminal stimulation at 1 Hz for 30 sec. In the middle 10 sec, either the superior laryngeal nerve (SLN) or cortical swallowing area (Cx) was simultaneously stimulated to evoke swallowing. The peak-to-peak JOR amplitude was reduced during the middle and late 10-sec periods (i.e., during and after SLN or Cx stimulation), and the reduction was dependent on the current intensity of SLN/Cx stimulation: greater SLN/Cx stimulus current resulted in greater JOR inhibition. The reduction rate was significantly greater during Cx stimulation than during SLN stimulation. The amplitude returned to baseline 2 min after 10-sec SLN/Cx stimulation. The effect of co-stimulation of SLN and Cx was significantly greater than that of SLN stimulation alone. There were no significant differences in any parameters of the JCR between conditions. These results clearly showed that JOR responses were significantly suppressed, not only during peripherally evoked swallowing but also during centrally evoked swallowing, and that the inhibitory effect is likely to be larger during centrally compared with peripherally evoked swallowing. The functional implications of these results are discussed. Copyright © 2018. Published by Elsevier B.V.

  12. Enhanced α-ketoglutaric acid production and recovery in Yarrowia lipolytica yeast by effective pH controlling.

    Science.gov (United States)

    Morgunov, Igor G; Kamzolova, Svetlana V; Samoilenko, Vladimir A

    2013-10-01

    The replacement of chemical synthesis by environmentally friendly energy-efficient technologies for production of valuable metabolites is a principal strategy of developing biotechnological industry all over the world. In the present study, we develop a method for α-ketoglutaric acid (KGA) production from rapeseed oil with the use of Yarrowia lipolytica yeast. Sixty strains of Y. lipolytica yeasts were tested for their ability to produce KGA, and the strain Y. lipolytica 212 (Y. lipolytica VKM Y-2412) was selected as a promising KGA producer. Using a three-stage pH controlling, in which pH was 4.5 in the growth phase, then since 72 to 144 h, pH was maintained at 3.5 and in the later phase of acid production, the titration by KOH was switch off, selected strain produced 106.5 g l(-1) of KGA with mass yield of 0.95 g g(-1). KGA in the form of monopotassium salt was isolated from the culture broth and purified. The isolation procedure involved separation of biomass, extraction of residual triglycerides, filtrate bleaching, and acidification with mineral acid (to pH 2.8-3.4), concentration, precipitation of mineral salts, and crystallization of the product. The purity of KGA isolated from the culture filtrate reached 99.1 %.

  13. Fucoxanthin from brown seaweed Sargassum cristaefolium tea in acid pH

    Science.gov (United States)

    Kartikaningsih, Hartati; Mufti, Eka Deviana; Nurhanief, Ardian Eko

    2017-05-01

    Dried tea Sargassum cristaefolium contains the pigment fucoxanthin, which is responsible for the red-orange color found in brown algae, and is a kind of photosynthetic pigment. Fucoxanthin can be used as an anti-obesity, anticancer, anti-cholesterol, and anti-diabetic agent and as a food colorant, but it is very unstable. The aim of this research was to determine the stability of fucoxanthin from dried tea brown algae at different pH (2, 6). This involved thin layer chromatography, peak absorption, wavelength analysis and reposition in FTIR. The research showed that fucoxanthin from fresh and dried tea Sargassum cristaefolium using chromatography columns had an orange color, Rf value of 0.26-0.28, and a spectral pattern in acetone solvent of 446.3-447.4 λmax. Fucoxanthin at pH 2 showed that there was no allenic group, as fucoxanthin solution had a pale yellow color. It is therefore shown that fucoxanthin is not stable in acid solution.

  14. pH dependence of the properties of waterborne pressure-sensitive adhesives containing acrylic acid.

    Science.gov (United States)

    Wang, Tao; Canetta, Elisabetta; Weerakkody, Tecla G; Keddie, Joseph L; Rivas, Urko

    2009-03-01

    Polymer colloids are often copolymerized with acrylic acid monomers in order to impart colloidal stability. Here, the effects of the pH on the nanoscale and macroscopic adhesive properties of waterborne poly(butyl acrylate-co-acrylic acid) films are reported. In films cast from acidic colloidal dispersions, hydrogen bonding between carboxylic acid groups dominates the particle-particle interactions, whereas ionic dipolar interactions are dominant in films cast from basic dispersions. Force spectroscopy using an atomic force microscope and macroscale mechanical measurements show that latex films with hydrogen-bonding interactions have lower elastic moduli and are more deformable. They yield higher adhesion energies. On the other hand, in basic latex, ionic dipolar interactions increase the moduli of the dried films. These materials are stiffer and less deformable and, consequently, exhibit lower adhesion energies. The rate of water loss from acidic latex is slower, perhaps because of hydrogen bonding with the water. Therefore, although acid latex offers greater adhesion, there is a limitation in the film formation.

  15. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...... to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...

  16. Influence of acidic pH on keratinocyte function and re-epithelialisation of human in vitro wounds.

    Science.gov (United States)

    Lönnqvist, Susanna; Emanuelsson, Peter; Kratz, Gunnar

    2015-01-01

    Chronic wounds are one of the greatest challenges for the healthcare system. Today, a plethora of dressings are used in the treatment of these wounds, each with specific influence on the wound environment. Due to differences in the permeability of the dressings the use will result in differences in the pH balance in the wound bed. However, little is known about how changes in the pH in the wound environment affect the different phases of the healing process. The aim of the present study was to investigate the effects of acidic pH on the regeneration phase by studying keratinocyte function in vitro and re-epithelialisation in an in vitro model of human skin. In vitro assays showed reduced viability and migration rates in human keratinocytes when pH was lowered. Real time PCR revealed differential expression of genes related to wound healing and environmental impairment. Tissue culture showed no re-epithelialisation of wounds subjected to pH 5.0 and moderate re-epithelialisation at pH 6.0, compared to controls at pH 7.4. The results indicate that lowering pH down to pH 5.0 in wounds is counterproductive in aspect of keratinocyte function which is crucial for successful wound healing.

  17. Enzymatic characterization of peptidic materials isolated from aqueous solutions of ammonium cyanide (pH 9) and hydrocyanic acid (pH 6) exposed to ionizing radiation.

    Science.gov (United States)

    Niketic, V; Draganić, Z; Nesković, S; Draganić, I

    1982-01-01

    The enzymatic digestion of some radiolytically produced peptidic materials was examined. The substrates were compounds isolated from 0.1 molar solutions of NH4CN (pH 9) and HCN (pH 6), after their exposure to gamma rays from a 60Co source (15-20 Mrad doses). Commercial proteolytic enzymes pronase and aminopeptidase M were used. The examined materials were of composite nature and proteolytic action was systematically observed after their subsequent purification. In some fractions the effect was found to be positive with up to 30% of peptide bonds cleaved with respect to the amino acid content. These findings support our previous conclusions on the free radical induced formation of peptidic backbones without the intervention of amino acids. Some side effects were also noted which might be of interest in observations on enzymatic cleavage of other composite peptidic materials of abiotic origin.

  18. Effect of Temperature and pH on Formulating the Kinetic Growth Parameters and Lactic Acid Production of Lactobacillus bulgaricus

    Directory of Open Access Journals (Sweden)

    Marzieh Aghababaie

    2014-09-01

    Results: Second order model for Xmax, μmax, P and K was significant but product formation parameters were almost constant. The optimum values of temperature and pH for attaining maximum biomass, maximum specific growth rate, and maximum acid production were obtained at 44 °C and 5.7, respectively. Conclusions: The attained empirical mathematical correlations of RSM alongside the kinetic equations could be used to determine growth conditions under predefined temperature and pH in the fermentation process. Keywords: Lactobacillus bulgaricus, Richards model, Response surface methodology, Lactic acid production, Luedeking-Piret model

  19. Synaptic responses evoked by tactile stimuli in Purkinje cells in mouse cerebellar cortex Crus II in vivo.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Chu

    Full Text Available Sensory stimuli evoke responses in cerebellar Purkinje cells (PCs via the mossy fiber-granule cell pathway. However, the properties of synaptic responses evoked by tactile stimulation in cerebellar PCs are unknown. The present study investigated the synaptic responses of PCs in response to an air-puff stimulation on the ipsilateral whisker pad in urethane-anesthetized mice.Thirty-three PCs were recorded from 48 urethane-anesthetized adult (6-8-week-old HA/ICR mice by somatic or dendritic patch-clamp recording and pharmacological methods. Tactile stimulation to the ipsilateral whisker pad was delivered by an air-puff through a 12-gauge stainless steel tube connected with a pressurized injection system. Under current-clamp conditions (I = 0, the air-puff stimulation evoked strong inhibitory postsynaptic potentials (IPSPs in the somata of PCs. Application of SR95531, a specific GABA(A receptor antagonist, blocked IPSPs and revealed stimulation-evoked simple spike firing. Under voltage-clamp conditions, tactile stimulation evoked a sequence of transient inward currents followed by strong outward currents in the somata and dendrites in PCs. Application of SR95531 blocked outward currents and revealed excitatory postsynaptic currents (EPSCs in somata and a temporal summation of parallel fiber EPSCs in PC dendrites. We also demonstrated that PCs respond to both the onset and offset of the air-puff stimulation.These findings indicated that tactile stimulation induced asynchronous parallel fiber excitatory inputs onto the dendrites of PCs, and failed to evoke strong EPSCs and spike firing in PCs, but induced the rapid activation of strong GABA(A receptor-mediated inhibitory postsynaptic currents in the somata and dendrites of PCs in the cerebellar cortex Crus II in urethane-anesthetized mice.

  20. Effect of gabazine on sensory stimulation train evoked response in mouse cerebellar Purkinje cells.

    Science.gov (United States)

    Bing, Yan-Hua; Jin, Wen-Zhe; Sun, Lei; Chu, Chun-Ping; Qiu, De-Lai

    2015-02-01

    Cerebellar Purkinje cells (PCs) respond to sensory stimulation via climbing fiber and mossy fiber-granule cell pathways, and generate motor-related outputs according to internal rules of integration and computation. However, the dynamic properties of sensory information processed by PC in mouse cerebellar cortex are currently unclear. In the present study, we examined the effects of the gamma-aminobutyric acid receptor A (GABA(A)) antagonist, gabazine, on the stimulation train on the simple spike firing of PCs by electrophysiological recordings method. Our data showed that the output of cerebellar PCs could be significantly affected by all pulses of the low-frequency (0.25 -2 Hz) sensory stimulation train, but only by the 1st and 2nd pulses of the high-frequency (≥ 4 Hz) sensory stimulation train. In the presence of gabazine (20 μM), each pulse of 1 Hz facial stimulation evoked simple spike firing in the PCs, but only the 1st and 2nd pulses of 4 Hz stimulation induced an increase in simple spike firing of the PCs. These results indicated that GABAA receptor-mediated inhibition did not significantly affect the frequency properties of sensory stimulation evoked responses in the mouse cerebellar PCs.

  1. pH-, Lactic acid-, and non-lactic acid-dependent activities of probiotic Lactobacilli against Salmonella enterica Serovar Typhimurium.

    Science.gov (United States)

    Fayol-Messaoudi, Domitille; Berger, Cédric N; Coconnier-Polter, Marie-Hélène; Liévin-Le Moal, Vanessa; Servin, Alain L

    2005-10-01

    The mechanism(s) underlying the antibacterial activity of probiotic Lactobacillus strains appears to be multifactorial and includes lowering of the pH and the production of lactic acid and of antibacterial compounds, including bacteriocins and nonbacteriocin, non-lactic acid molecules. Addition of Dulbecco's modified Eagle's minimum essential medium to the incubating medium delays the killing activity of lactic acid. We found that the probiotic strains Lactobacillus johnsonii La1, Lactobacillus rhamnosus GG, Lactobacillus casei Shirota YIT9029, L. casei DN-114 001, and L. rhamnosus GR1 induced a dramatic decrease in the viability of Salmonella enterica serovar Typhimurium SL1344 mainly attributable to non-lactic acid molecule(s) present in the cell-free culture supernatant (CFCS). These molecules were more active against serovar Typhimurium SL1344 in the exponential growth phase than in the stationary growth phase. We also showed that the production of the non-lactic acid substance(s) responsible for the killing activity was dependent on growth temperature and that both unstable and stable substances with killing activity were present in the CFCSs. We found that the complete inhibition of serovar Typhimurium SL1344 growth results from a pH-lowering effect.

  2. pH effect on the enthalpy of dilution and volumetric properties of protocatechuic acid at T = 298.15 K

    International Nuclear Information System (INIS)

    Zheng, Yan; Liu, Min; Wang, Yong; Wang, Chunmei; Sun, Dezhi; Wang, Bingquan

    2014-01-01

    Graphical abstract: The dilution thermal power of PCA in potassium phosphate buffer solutions at different pHs and apparent molar volumes were determined in order to investigate the interactions of PCA with the coexistent spicies. - Highlights: • Enthalpies of dilution and apparent molar volumes of PCA in PBS at different pHs were measured. • Enthalpic interaction coefficients, limiting partial molar volumes and experimental slopes of PCA were determined. • The pH dependence of the weak interactions in the investigated system was obtained. • (Solute + solvent) interactions and structure making/breaking ability of solutes in the given system were discussed. - Abstract: The enthalpies of dilution of protocatechuic acid, a natural anti-cancer substance, in sodium phosphate and potassium phosphate buffer solutions with different pH values were measured by using a mixing-flow microcalorimeter at T = 298.15 K. Densities of the pseudo binary system (phosphate buffer + protocatechuic acid) were also measured with a quartz vibrating-tube densimeter. The enthalpic interaction coefficients (h 2 , h 3 and h 4 ) were computed according to the McMillan–Mayer model. Apparent molar volumes of the system were calculated from the data of densities, which have been used to deduce limiting partial molar volumes (V ϕ 0 ) of protocatechuic acid at different pH values. The aim of the experiments and data process is to investigate the interaction between the molecules of the important drug and that of the drug molecule with coexistent species in aqueous solutions as well as the influences on these interactions of such factors as pH and ion strength. Change trends of the enthalpic pair wise interaction coefficient h 2 and V ϕ 0 of protocatechuic acid with pH increasing in the both phosphate buffer solutions were obtained. The thermodynamic properties, h 2 and V ϕ 0 in potassium phosphate buffer solutions were compared with those in sodium phosphate buffer solutions at

  3. Urea Fertilizer and pH Influence on Sorption Process of Flumetsulam and MCPA Acidic Herbicides in a Volcanic Soil.

    Science.gov (United States)

    Palma, Graciela; Jorquera, Milko; Demanet, Rolando; Elgueta, Sebastian; Briceño, Gabriela; de la Luz Mora, María

    2016-01-01

    The aim of this study was to evaluate the influence of urea fertilizer and pH on the sorption process of two acidic herbicides, flumetsulam (2',6'-difluoro-5-methyl[1,2,4]triazolo[1,5-a]pyrimidine-2-sulfonanilide) and MCPA (4-chloro--tolyloxyacetic acid), on an Andisol. Urea reduced the adsorption of MCPA but not that of flumetsulam. The Freundlich parameter of MCPA decreased from 8.5 to 5.1 mg L kg. This finding could be attributed to an increase in dissolved organic C due to an initial increase in soil pH for urea application. The higher acidic character of MCPA compared with that of flumetsulam produced a greater hydrolysis of urea, leading to a further pH increase. A marked effect of pH on the adsorption of both herbicides was observed. The organic C distribution coefficient () values for flumetsulam were in the range of 74 to 10 L kg, while those of MCPA were in the range of 208 to 45 L kg. In the kinetic studies, the pseudo-second-order model appeared to fit the data best ( > 0.994). The initial adsorption rates () ranged from 20.00 to 4.59 mg kg h for flumetsulam and from 125.00 to 25.60 mg kg hfor MCPA. Both herbicides were adsorbed rapidly during the first stage of the sorption process, and the rates of sorption were dependent on pH. The application of the Elovich and Weber-Morris models led us to conclude that mass transfer through the boundary layer and, to a lesser degree, intraparticle diffusion were influenced by the chemical character of the herbicide. These results suggest that urea application could increase leaching of acid herbicides in soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Improved fluorescent labeling of chitin oligomers: Chitinolytic properties of acidic mammalian chitinase under somatic tissue pH conditions.

    Science.gov (United States)

    Wakita, Satoshi; Kimura, Masahiro; Kato, Naoki; Kashimura, Akinori; Kobayashi, Shunsuke; Kanayama, Naoto; Ohno, Misa; Honda, Shotaro; Sakaguchi, Masayoshi; Sugahara, Yasusato; Bauer, Peter O; Oyama, Fumitaka

    2017-05-15

    Acidic mammalian chitinase (AMCase) has been implicated in various pathophysiological conditions including asthma, allergic inflammation and food processing. AMCase is most active at pH 2.0, and its activity gradually decreases to up to pH 8. Here we analyzed chitin degradation by AMCase in weak acidic to neutral conditions by fluorophore-assisted carbohydrate electrophoresis established originally for oligosaccharides analysis. We found that specific fragments with slower-than-expected mobility as defined by chitin oligosaccharide markers were generated at pH 5.0∼8.0 as by-products of the reaction. We established an improved method for chitin oligosaccharides suppressing this side reaction by pre-acidification of the fluorophore-labeling reaction mixture. Our improved method specifically detects chitin oligosaccharides and warrants quantification of up to 50nmol of the material. Using this strategy, we found that AMCase produced dimer of N-acetyl-d-glucosamine (GlcNAc) at strong acidic to neutral condition. Moreover, we found that AMCase generates (GlcNAc) 2 as well as (GlcNAc) 3 under physiological conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid.

    Science.gov (United States)

    Olsson, Erik; Menzel, Carolin; Johansson, Caisa; Andersson, Roger; Koch, Kristine; Järnström, Lars

    2013-11-06

    Citric acid cross-linking of starch for e.g. food packaging applications has been intensely studied during the last decade as a method of producing water-insensitive renewable barrier coatings. We managed to improve a starch formulation containing citric acid as cross-linking agent for industrial paper coating applications by adjusting the pH of the starch solution. The described starch formulations exhibited both cross-linking of starch by citric acid as well as satisfactory barrier properties, e.g. fairly low OTR values at 50% RH that are comparable with EVOH. Furthermore, it has been shown that barrier properties of coated papers with different solution pH were correlated to molecular changes in starch showing both hydrolysis and cross-linking of starch molecules in the presence of citric acid. Hydrolysis was shown to be almost completely hindered at solution pH≥4 at curing temperatures≤105 °C and at pH≥5 at curing temperatures≤150 °C, whereas cross-linking still occurred to some extent at pH≤6.5 and drying temperatures as low as 70 °C. Coated papers showed a minimum in water vapor transmission rate at pH 4 of the starch coating solution, corresponding to the point where hydrolysis was effectively hindered but where a significant degree of cross-linking still occurred. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Novel Technique to improve the pH of Acidic Barren Soil using Electrokinetic-bioremediation with the application of Vetiver Grass

    Science.gov (United States)

    Azhar, A. T. S.; Nabila, A. T. A.; Nurshuhaila, M. S.; Zaidi, E.; Azim, M. A. M.; Zahin, A. M. F.

    2016-11-01

    Residual acidic slopes which are not covered by vegetation greatly increases the risk of soil erosion. In addition, low soil pH can bring numerous problems such as Al and Fe toxicity, land degradation issues and some problems related to vegetation. In this research, a series of electrokinetic bioremediation (EK-Bio) treatments using Bacillus sphaericus, Bacillus subtilis and Pseudomonas putida with a combination of Vetiver grass were performed in the laboratory. Investigations were conducted for 14 days and included the observation of changes in the soil pH and the mobilization of microorganism cells through an electrical gradient of 50 V/m under low pH. Based on the results obtained, this study has successfully proven that the pH of soil increases after going through electrokinetic bioremediation (EK-Bio). The treatment using Bacillus sphaericus increases the pH from 2.95 up to 4.80, followed by Bacillus subtilis with a value of 4.66. Based on the overall performance, Bacillus sphaericus show the highest number of bacterial cells in acidic soil with a value of 6.6 × 102 cfu/g, followed by Bacillus subtilis with a value of 5.7 × 102 cfu/g. In conclusion, Bacillus sphaericus and Bacillus subtilis show high survivability and is suitable to be used in the remediation of acidic soil.

  7. High frequency oscillations evoked by peripheral magnetic stimulation.

    Science.gov (United States)

    Biller, S; Simon, L; Fiedler, P; Strohmeier, D; Haueisen, J

    2011-01-01

    The analysis of somatosensory evoked potentials (SEP) and / or fields (SEF) is a well-established and important tool for investigating the functioning of the peripheral and central human nervous system. A standard technique to evoke SEPs / SEFs is the stimulation of the median nerve by using a bipolar electrical stimulus. We aim at an alternative stimulation technique enabling stimulation of deep nerve structures while reducing patient stress and error susceptibility. In the current study, we apply a commercial transcranial magnetic stimulation system for peripheral magnetic stimulation of the median nerve. We compare the results of simultaneously recorded EEG signals to prove applicability of our technique to evoke SEPs including low frequency components (LFC) as well as high frequency oscillations (HFO). Therefore, we compare amplitude, latency and time-frequency characteristics of the SEP of 14 healthy volunteers after electric and magnetic stimulation. Both low frequency components and high frequency oscillations were detected. The HFOs were superimposed onto the primary cortical response N20. Statistical analysis revealed significantly lower amplitudes and increased latencies for LFC and HFO components after magnetic stimulation. The differences indicate the inability of magnetic stimulation to elicit supramaximal responses. A psycho-perceptual evaluation showed that magnetic stimulation was less unpleasant for 12 out of the 14 volunteers. In conclusion, we showed that LFC and HFO components related to median nerve stimulation can be evoked by peripheral magnetic stimulation.

  8. Noise-evoked otoacoustic emissions in humans

    NARCIS (Netherlands)

    Maat, B; Wit, HP; van Dijk, P

    2000-01-01

    Click-evoked otoacoustic emissions (CEOAEs) and acoustical responses evoked by bandlimited Gaussian noise (noise-evoked otoacoustic emissions; NEOAEs) were measured in three normal-hearing subjects. For the NEOAEs the first- and second-order Wiener kernel and polynomial correlation functions up to

  9. Speciation of humic acid and some transition metal ions in presence of each other under alkaline pH conditions

    International Nuclear Information System (INIS)

    Padmanabhan, Hemalatha; Desai, M.V.M.

    1998-12-01

    Humic acid, the major natural organic matter of marine sediments, is extracted and its interactions with Zn, Mn, Co, Fe and Hg are studied. All these elements are found to form cationic, anionic and neutral complexes with humic acid in the pH range of 7 to 13. A novel feature of the work is that the humic acid itself undergoes change in its ionic character in presence of trace elements in the entire pH range studied. The rates of formation of anionic and neutral species for Zn, Mn, Co, Fe and Hg are different for each metal ion. Iron forms predominantly anionic species and the best fit lines of anionic and neutral species are practically parallel to each other. The best fit line of anionic and neutral species have positive slopes in case of Mn and Co. In case of Hg, the best fit line of the anionic species has positive slope and that of neutral species has a negative slope. Thus the abundance and type of species have an interdependence on metal ion, types of species and pH. (author)

  10. Poly methacrylic acid modified CDHA nanocomposites as potential pH responsive drug delivery vehicles.

    Science.gov (United States)

    Victor, Sunita Prem; Sharma, Chandra P

    2013-08-01

    The objective of this study was to prepare pH sensitive polymethacrylic acid-calcium deficient hydroxyapatite (CDHA) nanocomposites. The CDHA nanoparticles were prepared by coprecipitation method. The modification of CDHA by methacrylic acid (MA) was achieved by AIBN initiated free radical polymerization with sodium bisulphite as catalyst followed by emulsion technique. These nanocomposites with a half life of 8h consisted of high aspect ratio, needle like particles and exhibited an increase in swelling behaviour with pH. The in vivo potential of the nanocomposites was evaluated in vitro by the results of cell aggregation, protein adsorption, MTT assay and haemolytic activity. The invitro loading and release studies using albumin as a model drug indicate that the nanocomposites gave better loading when compared to the CDHA nanoparticles and altered the drug release rates. The nanocomposites also exhibited good uptake on C6 glioma cells as studied by fluorescence microscopy. The results obtained suggest that these nanocomposites have great potential for oral controlled protein delivery and can be extended further for intracellular drug delivery applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Influence of intramuscular granisetron on experimentally induced muscle pain by acidic saline.

    Science.gov (United States)

    Louca, S; Ernberg, M; Christidis, N

    2013-06-01

    The aim of this study was to investigate whether intramuscular administration of the 5-HT(3) receptor antagonist granisetron reduces experimental muscle pain induced by repeated intramuscular injections of acidic saline into the masseter muscles. Twenty-eight healthy and pain-free volunteers, fourteen women and fourteen men participated in this randomized, double-blind and placebo-controlled study. After a screening examination and registration of the baseline pressure-pain threshold (PPT), the first simultaneous bilateral injections of 0·5 mL acidic saline (9 mg mL(-1) , pH 3·3) into the masseter muscles were performed. Two days later, PPT and pain (VAS) were re-assessed. The masseter muscle was then pre-treated with 0·5 mL granisetron (Kytril(®) 1 mg mL(-1) pH 5·3) on one side and control substance (isotonic saline, 9 mg mL(-1) pH 6) on the contralateral side. Two minutes thereafter a bilateral simultaneous injection of 0·5 mL acidic saline followed. The evoked pain intensity, pain duration, pain area and PPT were assessed. The volunteers returned 1 week later to re-assess VAS and PPT. On the side pre-treated with granisetron, the induced pain had significantly lower intensity and shorter duration (P granisetron on pain duration was significant only in women (P granisetron has a pain-reducing effect on experimentally induced muscle pain by repeated acidic saline injection. © 2013 John Wiley & Sons Ltd.

  12. Estimation of redox potentials of Fe(III)- gallic acid complexes at different pH by spectrophotometric titration with ascorbate

    International Nuclear Information System (INIS)

    Iqbal, M.; Tasneem, Z.; Kazmi, S.A.

    1993-01-01

    Fe(III) is strongly chelated by Gallic acid. This equilibrium as well as the kinetics of reduction of the complex is strongly pH dependent. The complex was prepared in acetate buffers of pH 4.6, 5.0 and 5.6 and in Tris buffer of pH 7.0.The complex was reduced by ascorbate. The reduced absorbance was taken to be a measure of reaction. Nernst equation was then applied to determine the standard redox potentials of the complex taking the literature values of the redox potentials of ascorbate at different pH. The values of redox potentials of complex were found to be 0.197 V at pH 4.6. 0.181 V at pH 5.0 1.132 V at pH 5.6 and 0.092 V at pH 7.0. (author)

  13. Fermentation of liquid coproducts and liquid compound diets: Part 2. Effects on pH, acid-binding capacity, organic acids and ethanol during a 6-day period

    NARCIS (Netherlands)

    Scholten, R.H.J.; Rijnen, M.M.J.A.; Schrama, J.W.; Boer, H.; Peet-Schwering, van der C.M.C.; Hartog, den L.A.; Vesseur, P.C.

    2001-01-01

    The effects of a 6-day storage period on changes in pH, acid-binding capacity, level of organic acids and ethanol of three liquid coproducts [liquid wheat starch (LWS), mashed potato steam peel (PSP) and cheese whey (CW)] and two liquid compound diets [liquid grower diet (LGD) and liquid finisher

  14. Parabrachial complex glutamate receptors modulate the cardiorespiratory response evoked from hypothalamic defense area.

    Science.gov (United States)

    Díaz-Casares, A; López-González, M V; Peinado-Aragonés, C A; González-Barón, S; Dawid-Milner, M S

    2012-08-16

    To characterize the possible role of glutamate in the interaction between Hypothalamic Defense Area (HDA) and Parabrachial complex (PBc) nuclei, cardiorespiratory changes were analyzed in response to electrical stimulation of the HDA (1 ms pulses, 30-50 μA given at 100 Hz for 5s) before and after the microinjection of the nonspecific glutamate receptor antagonist kynurenic acid (50 nl, 5 nmol), NMDA receptor antagonist MK-801 (50 nl, 50 nmol), non-NMDA receptor antagonist CNQX (50 nl, 50 nmol) or metabotropic glutamate receptor antagonist MCPG (50 nl, 5 nmol) within the PBc. HDA stimulation evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (pHDA stimulation. Similarly, the magnitude of the tachycardia and the pressor response was decreased after the microinjection of MK-801 (pHDA stimulation but the respiratory response persisted unchanged after MK-801 or CNQX microinjection into the lPB. Kynurenic acid within the medial parabrachial region (mPB) abolished the tachycardia (pHDA stimulation. MK-801 and CNQX microinjection in this region decreased the magnitude of the tachycardia (pHDA stimulation was not changed after the microinjection of kynurenic acid, MK-801 or CNQX within the mPB. No changes were observed in the cardiorespiratory response evoked to HDA stimulation after MCPG microinjection within lPB and mPB. These results indicate that glutamate PBc receptors are involved in the cardiorespiratory response evoked from the HDA. The possible mechanisms involved in these interactions are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Cortical evoked potentials to an auditory illusion: binaural beats.

    Science.gov (United States)

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2009-08-01

    To define brain activity corresponding to an auditory illusion of 3 and 6Hz binaural beats in 250Hz or 1000Hz base frequencies, and compare it to the sound onset response. Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000Hz to one ear and 3 or 6Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3Hz and 6Hz, in base frequencies of 250Hz and 1000Hz. Tones were 2000ms in duration and presented with approximately 1s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. All stimuli evoked tone-onset P(50), N(100) and P(200) components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P(50) had significantly different sources than the beats-evoked oscillations; and N(100) and P(200) sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp.

  16. Effect of medium pH on chemical selectivity of oxalic acid biosynthesis by Aspergillus niger W78C in submerged batch cultures with sucrose as a carbon source.

    Science.gov (United States)

    Walaszczyk, Ewa; Podgórski, Waldemar; Janczar-Smuga, Małgorzata; Dymarska, Ewelina

    2018-01-01

    The pH of the medium is the key environmental parameter of chemical selectivity of oxalic acid biosynthesis by Aspergillus niger . The activity of the enzyme oxaloacetate hydrolase, which is responsible for decomposition of oxaloacetate to oxalate and acetate inside the cell of the fungus, is highest at pH 6. In the present study, the influence of pH in the range of 3-7 on oxalic acid secretion by A. niger W78C from sucrose was investigated. The highest oxalic acid concentration, 64.3 g dm -3 , was reached in the medium with pH 6. The chemical selectivity of the process was 58.6% because of the presence of citric and gluconic acids in the cultivation broth in the amount of 15.3 and 30.2 g dm -3 , respectively. Both an increase and a decrease of medium pH caused a decrease of oxalic acid concentration. The obtained results confirm that pH 6 of the carbohydrate medium is appropriate for oxalic acid synthesis by A. niger , but the chemical selectivity of the process described in this paper was high in comparison to values reported previously in the literature.

  17. Comparison of clinical, magnetic resonance and evoked potentials data in a case of valproic-acid-related hyperammonemic coma

    Energy Technology Data Exchange (ETDEWEB)

    Hantson, Philippe [Universite Catholique de Louvain, Department of Intensive Care, Cliniques Saint-Luc, Brussels (Belgium); Grandin, Cecile; Duprez, Thierry [Universite Catholique de Louvain, Department of Neuroradiology, Cliniques Saint-Luc, Brussels (Belgium); Nassogne, Marie-Cecile [Universite Catholique de Louvain, Department of Pediatric Neurology, Cliniques Saint-Luc, Brussels (Belgium); Guerit, Jean-Michel [Universite Catholique de Louvain, Laboratory of Neurophysiology, Cliniques Saint-Luc, Brussels (Belgium)

    2005-01-01

    Magnetic resonance (MR) multimodality evoked potentials (MEPs) and clinical findings were correlated in a 47-year-old epileptic man in whom parenteral valproic acid (VPA) therapy induced severe comatose hyperammonemic encephalopathy without biological signs of hepatotoxicity (or hepatocytic dysfunction). Although the plasma VPA level remained within a normal therapeutic range, the ammoniemia increased to a toxic peak level at 411 {mu}mol/l 24 h after symptom onset, requiring VPA therapy discontinuation. Brain MR monitoring demonstrated early cytotoxic edema evolving into delayed vasogenic edema and final brain atrophy. Concomitantly to abnormalities within the brainstem on MR images, an increase in brainstem conduction at MEPs and clinical disturbance of brainstem reflexes were observed at the initial phase of the disease course. Later, the resolution of the MR and MEPs abnormalities paralleled the clinical recovery of the reflexes. (orig.)

  18. Comparison of clinical, magnetic resonance and evoked potentials data in a case of valproic-acid-related hyperammonemic coma

    International Nuclear Information System (INIS)

    Hantson, Philippe; Grandin, Cecile; Duprez, Thierry; Nassogne, Marie-Cecile; Guerit, Jean-Michel

    2005-01-01

    Magnetic resonance (MR) multimodality evoked potentials (MEPs) and clinical findings were correlated in a 47-year-old epileptic man in whom parenteral valproic acid (VPA) therapy induced severe comatose hyperammonemic encephalopathy without biological signs of hepatotoxicity (or hepatocytic dysfunction). Although the plasma VPA level remained within a normal therapeutic range, the ammoniemia increased to a toxic peak level at 411 μmol/l 24 h after symptom onset, requiring VPA therapy discontinuation. Brain MR monitoring demonstrated early cytotoxic edema evolving into delayed vasogenic edema and final brain atrophy. Concomitantly to abnormalities within the brainstem on MR images, an increase in brainstem conduction at MEPs and clinical disturbance of brainstem reflexes were observed at the initial phase of the disease course. Later, the resolution of the MR and MEPs abnormalities paralleled the clinical recovery of the reflexes. (orig.)

  19. Interaction of Th with humic acid over a wide pH region

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, G.; Guczi, J. [National Research Inst. for Radiobiology and Radiohygi ene, Budapest, H-1775 (Hungary); Geckeis, H. [FZK - Inst. fuer Nukleare Entsorgung, Karlsruhe (Germany); Reiller, P. [CEA, CE Saclay, Nuclear Energy Division/DPC/SERC, Laboratoire de Speciation des Radionucleides et des Molecules, F-91191 Gif-sue-Y vette (France); Bulman, R.A. [Radiation Protection Division Division, Health Protec tion Agency, Chilton, Didcot (United Kingdom)

    2007-06-15

    The influence of humic substances on the migration of tetravalent actinides in the far-field of nuclear waste repositories has been modeled by examining the uptake of Th(IV) by a silica/humic acid composite. It is anticipated that this material might serve as a geochemical model of the humate-coated minerals that are likely to be present in the vicinity of the repositories. The binding of Th(IV) by the immobilized humic acid was examined at pH 1-9 in 0.1 mol/l NaClO{sub 4} by the batch method. Th(IV)-humate conditional stability constants have been evaluated from data obtained from these experiments by using non-linear regression of binding isotherms. The results have been interpreted in terms of complexes of 1:1 stoichiometry.

  20. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    Science.gov (United States)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values

  1. Impact of temperature, pH, and salinity changes on the physico-chemical properties of model naphthenic acids.

    Science.gov (United States)

    Celsie, Alena; Parnis, J Mark; Mackay, Donald

    2016-03-01

    The effects of temperature, pH, and salinity change on naphthenic acids (NAs) present in oil-sands process wastewater were modeled for 55 representative NAs. COSMO-RS was used to estimate octanol-water (KOW) and octanol-air (KOA) partition ratios and Henry's law constants (H). Validation with experimental carboxylic acid data yielded log KOW and log H RMS errors of 0.45 and 0.55 respectively. Calculations of log KOW, (or log D, for pH-dependence), log KOA and log H (or log HD, for pH-dependence) were made for model NAs between -20 °C and 40 °C, pH between 0 and 14, and salinity between 0 and 3 g NaCl L(-1). Temperature increase by 60 °C resulted in 3-5 log unit increase in H and a similar magnitude decrease in KOA. pH increase above the NA pKa resulted in a dramatic decrease in both log D and log HD. Salinity increase over the 0-3 g NaCl L(-1) range resulted in a 0.3 log unit increase on average for KOW and H values. Log KOW values of the sodium salt and anion of the conjugate base were also estimated to examine their potential for contribution to the overall partitioning of NAs. Sodium salts and anions of naphthenic acids are predicted to have on average 4 log units and 6 log units lower log KOW values, respectively, with respect to the corresponding neutral NA. Partitioning properties are profoundly influenced by the by the relative prevailing pH and the substance's pKa at the relevant temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid.

    Science.gov (United States)

    Behera, Shishir Kumar; Oh, Seok-Young; Park, Hung-Suck

    2010-07-15

    Sorption of triclosan on three sorbents, viz., activated carbon, kaolinite and montmorillonite was studied as a function of pH, ionic strength and humic acid (HA) concentration through controlled batch experiments. Triclosan sorption was found to be higher in the acidic pH range, as varying pH showed significant influence on the surface charge of the sorbents and degree of ionization of the sorbate. Sorption capacity of the sorbents increased with an increase in the ionic strength of solution. At low pH (pH 3), the overall increase in triclosan sorption was 1.2, approximately 4 and 3.5 times, respectively for activated carbon, kaolinite and montmorillonite when ionic strength was increased from 1x10(-3) to 5x10(-1) M. Triclosan sorption onto activated carbon decreased from 31.4 to 10.6 mg g(-1) by increasing the HA concentration to 200 mg C L(-1). However, during sorption onto kaolinite and montmorillonite, the effect of HA was very complex probably due to (i) hydrophobicity (log K(ow)=4.76) of triclosan; and (ii) complexation of HA with triclosan. Though triclosan sorption onto activated carbon is higher, the potential of kaolinite and montmorillonite in controlling the transport of triclosan in subsurface environment can still be appreciable. 2010 Elsevier B.V. All rights reserved.

  3. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    Directory of Open Access Journals (Sweden)

    Alpers Charles N

    2007-10-01

    Full Text Available Abstract Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5. The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1 preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2 stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3 reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA and denaturing gradient gel electrophoresis (DGGE analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures.

  4. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    Science.gov (United States)

    Church, C.D.; Wilkin, R.T.; Alpers, Charles N.; Rye, R.O.; Blaine, R.B.

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.

  5. Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress.

    Science.gov (United States)

    Huang, Renhui; Pan, Mingfang; Wan, Cuixiang; Shah, Nagendra P; Tao, Xueying; Wei, Hua

    2016-02-01

    Acid tolerance responses (ATR) in Lactobacillus plantarum ZDY2013 were investigated at physiological and molecular levels. A comparison of composition of cell membrane fatty acids (CMFA) between acid-challenged and unchallenged cells showed that acid adaptation evoked a significantly higher percentage of saturated fatty acids and cyclopropane fatty acids in acid-challenged than in unchallenged cells. In addition, reverse transcription-quantitative PCR analysis in acid-adapted cells at different pH values (ranging from 3.0 to 4.0) indicated that several genes were differently regulated, including those related to proton pumps, amino acid metabolism, sugar metabolism, and class I and class III stress response pathways. Expression of genes involved in fatty acid synthesis and production of alkali was significantly upregulated. Upon exposure to pH 4.5 for 2 h, a higher survival rate (higher viable cell count) of Lactobacillus plantarum ZDY2013 was achieved following an additional challenge to 40 mM hydrogen peroxide for 60 min, but no difference in survival rate of cells was found with further challenge to heat, ethanol, or salt. Therefore, we concluded that the physiological and metabolic changes of acid-treated cells of Lactobacillus plantarum ZDY2013 help the cells resist damage caused by acid, and further initiated global response signals to bring the whole cell into a state of defense to other stress factors, especially hydrogen peroxide. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Computer simulation of the effect of temperature on pH.

    Science.gov (United States)

    Kipp, J E; Schuck, D F

    1995-11-01

    The effect of temperature on solution pH was simulated by computer (program PHTEMP). We have determined that the change in pH due to shifts in acid-base equilibria [delta pH = pH(60 degrees C) - pH(25 degrees C)] can be substantial for compounds such as aliphatic amines that have high enthalpies for acid dissociation. This is of particular significance during elevated temperature experiments in which changes in the pKa values of formulation components, and hence the solution pH, can accelerate decomposition as compared to those formulations where sensitive functionality is absent. PHTEMP afforded the following results at initial pH = 7 (25 degrees C): (a) 0.1 M triethylamine (delta H zero = 10.4 kcal/mol) delta pH approximately -0.8; (b) 0.1 M acetic acid (delta H zero = -0.1 kcal/mol) delta pH approximately 0; (c) 0.1 M sulfuric acid (delta H zero 1 = -12 kcal/mol; delta H zero 2 = -5.4 kcal/mol) delta pH approximately -0.4. Solutions of general pharmaceutical interest were also studied and included a 12-component amino acid mixture, 0.1 M glycine, and 0.1 M triethylamine in either 0.02 M citric acid or 0.05 M TRIS buffer. In each case the pH change with temperature was dependent on the concentrations of components, the enthalpies for each acid dissociation, and the starting pH. At lower pH ( 9). These results are interpreted as the effect of a relative change in hydronium ion activity, delta H+/H+(initial), due to temperature-induced shifts in equilibria (acid dissociation, water autoprotolysis). This relative change must become larger as H+ decreases (pH increases). The output of PHTEMP was experimentally verified with 0.1 M glycine and with a multiple component amino acid solution. In both cases, agreement with prediction was excellent. The results of this investigation underscore the need to critically review formulation choices for both thermodynamic and traditional kinetic effects on the resulting product stability.

  7. Acid-base equilibria in the reaction of tantalum pentafluoride with O,O-diphenyl-H-benzoylamidophosphate (PhO)2P(0)NHC(O)Ph

    International Nuclear Information System (INIS)

    Il'in, E.G.; Kharrmann, Eh.; Shcherbakova, M.N.; Buslaev, Yu.A.

    1987-01-01

    Method of 19 F NMR was used to study TaF 5 interaction with imidodiphosphoric acid ester (PhO) 2 P(O)NHC(O)Ph(LH) in methylene chloride. Dimeric molecular LH(TaF 5 ) 2 complex was the main form in the solution with towfold TaF 5 excess; phosphoryl and carbonyl groups partisipate in complexing at that. Increase of ligand content in the solution up to equimolar one results to preliminary ligand coordination via P=O-group. Introduction of the base excess to the solution results to formation of L - anion which is coordinated to TaF 5 in a monodentate way via phosphoryl group or in a chelate way with fluorine ion substitution and formation of LTaF 4 + cationw

  8. Influence on Levels of Information as Presented by Different Technologies on Students' Understanding of Acid, Base, and pH Concepts.

    Science.gov (United States)

    Nakhleh, Mary B.; Krajcik, Joseph S.

    1994-01-01

    Involves secondary students in a study designed to allow investigation into how different levels of information presented by various technologies (chemical indicators, pH meters, and microcomputer-based laboratories-MBLs) affected students' understanding of acid, base, and pH concepts. Results showed that students using MBLs exhibited a greater…

  9. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage

    DEFF Research Database (Denmark)

    Méndez-García, Celia; Mesa, Victoria; Sprenger, Richard Remko

    2014-01-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH...

  10. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage

    NARCIS (Netherlands)

    Méndez-Garcia, C.; Mesa, V.; Sprenger, R.R.; Richter, M.; Suarez Diez, M.; Solano, J.; Bargiela, R.; Golyshina, O.V.; Manteca, A.; Ramos, J.L.; Gallego, J.R.; Llorente, I.; Martins Dos Santos, V.A.P.; Jensen, O.N.; Paláez, A.I.; Sánchez, J.; Ferrer, M.

    2014-01-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH

  11. Usnic acid controls the acidity tolerance of lichens

    International Nuclear Information System (INIS)

    Hauck, Markus; Juergens, Sascha-Rene

    2008-01-01

    The hypotheses were tested that, firstly, lichens producing the dibenzofuran usnic acid colonize substrates characterized by specific pH ranges, secondly, this preferred pH is in a range where soluble usnic acid and its corresponding anion occur in similar concentrations, and thirdly, usnic acid makes lichens vulnerable to acidity. Lichens with usnic acid prefer an ambient pH range between 3.5 and 5.5 with an optimum between 4.0 and 4.5. This optimum is close to the pK a1 value of usnic acid of 4.4. Below this optimum pH, dissolved SO 2 reduces the chlorophyll fluorescence yield more in lichens with than without their natural content of usnic acid. This suggests that usnic acid influences the acidity tolerance of lichens. The putative mechanism of the limited acidity tolerance of usnic acid-containing lichens is the acidification of the cytosol by molecules of protonated usnic acid shuttling protons through the plasma membrane at an apoplastic pH a1 . - Combined field and experimental data suggest that usnic acid makes lichens sensitive to acidity at pH <3.5

  12. [Effect of citric acid stimulation on salivary alpha-amylase, total protein, salivary flow rate and pH value in Pi deficiency children].

    Science.gov (United States)

    Yang, Ze-min; Chen, Long-hui; Lin, Jing; Zhang, Min; Yang, Xiao-rong; Chen, Wei-wen

    2015-02-01

    To compare the effect of citric acid stimulation on salivary alpha-amylase (sAA), total protein (TP), salivary flow rate, and pH value between Pi deficiency (PD) children and healthy children, thereby providing evidence for Pi controlling saliva theory. Twenty PD children were recruited, and 29 healthy children were also recruited at the same time. Saliva samples from all subjects were collected before and after citric acid stimulation. The sAA activity and amount, TP contents, salivary flow rate, and pH value were determined and compared. (1) Citric acid stimulation was able to significantly increase salivary flow rate, pH value, sAA activities, sAA specific activity and sAA amount (including glycosylated and non-glycosylated sAA amount) in healthy children (Psalivary flow rate, pH value, and glycosylated sAA levels in PD children (Psalivary indices between the two groups (P>0.05), salivary indices except salivary flow rate and glycosylated sAA levels decreased more in PD children. There was statistical difference in sAA activity ratio, sAA specific activity ratio, and the ratio of glycosylated sAA levels between PD children and healthy children (P<0.05). PD children had decreased response to citric acid stimulation.

  13. Low pH, Aluminum, and Phosphorus Coordinately Regulate Malate Exudation through GmALMT1 to Improve Soybean Adaptation to Acid Soils1[W][OA

    Science.gov (United States)

    Liang, Cuiyue; Piñeros, Miguel A.; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V.; Liao, Hong

    2013-01-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function. PMID:23341359

  14. Recovery of voluntary and evoked muscle performance following intermittent-sprint exercise in the heat.

    Science.gov (United States)

    Duffield, Rob; King, Monique; Skein, Melissa

    2009-06-01

    This study investigated the effects of hot conditions on the acute recovery of voluntary and evoked muscle performance and physiological responses following intermittent exercise. Seven youth male and six female team-sport athletes performed two sessions separated by 7 d, involving a 30-min exercise protocol and 60-min passive recovery in either 22 degrees C or 33 degrees C and 40% relative humidity. The exercise protocol involved a 20-s maximal sprint every 5 min, separated by constant-intensity exercise at 100 W on a cycle ergometer. Maximal voluntary contraction (MVC) and a resting evoked twitch (Pf) of the right knee extensors were assessed before and immediately following exercise and again 15, 30, and 60 min postexercise, and capillary blood was obtained at the same time points to measure lactate, pH, and HCO3. During and following exercise, core temperature, heart rate and rating of perceived exertion (RPE) were also measured. No differences (P=0.73 to 0.95) in peak power during repeated sprints were present between conditions. Postexercise MVC was reduced (Pheat (83+/-10 vs 74+/-11% recovered). Both heart rate and core temperature were significantly higher (Precovery in the heat. Capillary blood values did not differ between conditions at any time point, whereas sessional RPE was higher 60 min postexercise in the heat. The current data suggests that passive recovery in warm temperatures not only delays cardiovascular and thermal recovery, but may also slow the recovery of MVC and RPE.

  15. Modelling Yersinia enterocolitica inactivation in coculture experiments with Lactobacillus sakei as based on pH and lactic acid profiles.

    Science.gov (United States)

    Janssen, M; Geeraerd, A H; Logist, F; De Visscher, Y; Vereecken, K M; Debevere, J; Devlieghere, F; Van Impe, J F

    2006-08-15

    In food processing and preservation technology, models describing microbial proliferation in food products are a helpful tool to predict the microbial food safety and shelf life. In general, the available models consider microorganisms in pure culture. Thus, microbial interactions are ignored, which may lead to a discrepancy between model predictions and the actual microbial evolution, particularly for fermented and minimally processed food products in which a background flora is often present. In this study, the lactic acid mediated negative microbial interaction between the lactic acid bacterium Lactobacillus sakei and the psychrotrophic food pathogen Yersinia enterocolitica was examined. A model describing the lactic acid induced inhibition (i.e., early induction of the stationary phase) of the pathogen [Vereecken, K.M., Devlieghere, F., Bockstaele, A., Debevere, J., Van Impe, J.F., 2003. A model for lactic acid induced inhibition of Yersinia enterocolitica in mono- and coculture with Lactobacillus sakei. Food Microbiology 20, 701-713.] was extended to describe the subsequent inactivation (i.e., decrease of the cell concentration to values below the detection limit). In the development of a suitable model structure to describe the inactivation process, critical points in the variation of the specific evolution rate mu [1/h] with the dynamic (time-varying) pH and undissociated lactic acid profiles were taken into account. Thus, biological knowledge, namely, both pH and undissociated lactic acid have an influence on the microbial evolution, was incorporated. The extended model was carefully validated on new data. As a result, the newly developed model is able to accurately predict the growth, inhibition and subsequent inactivation of Y. enterocolitica in coculture as based on the dynamic pH and lactic acid profiles of the medium.

  16. Dual fluorescence of N-phenylanthranilic acid: Effect of solvents, pH and β-cyclodextrin

    Science.gov (United States)

    Rajendiran, N.; Balasubramanian, T.

    2007-11-01

    Spectral characteristics of N-phenylanthranilic acid (NPAA) have been studied in different solvents, pH and β-cyclodextrin (β-CD) and compared with anthranilic acid (2-aminobenzoic acid, 2ABA). In all solvents a dual fluorescence is observed in NPAA, whereas 2ABA gives single emission. Combining the results observed in the absorption, fluorescence emission and fluorescence excitation spectra, it is found that strong intramolecular hydrogen bonding (IHB) interactions present in NPAA molecule. The inclusion complex of NPAA with β-CD is analysed by UV-vis, fluorimetry, FT-IR, 1H NMR, scanning electron microscope and AM 1 method. The above spectral studies show that NPAA forms a 1:1 inclusion complex with β-CD and COOH group present in the β-CD cavity. A mechanism is proposed to explain the inclusion process.

  17. Dual fluorescence of N-phenylanthranilic acid: Effect of solvents, pH and beta-cyclodextrin.

    Science.gov (United States)

    Rajendiran, N; Balasubramanian, T

    2007-11-01

    Spectral characteristics of N-phenylanthranilic acid (NPAA) have been studied in different solvents, pH and beta-cyclodextrin (beta-CD) and compared with anthranilic acid (2-aminobenzoic acid, 2ABA). In all solvents a dual fluorescence is observed in NPAA, whereas 2ABA gives single emission. Combining the results observed in the absorption, fluorescence emission and fluorescence excitation spectra, it is found that strong intramolecular hydrogen bonding (IHB) interactions present in NPAA molecule. The inclusion complex of NPAA with beta-CD is analysed by UV-vis, fluorimetry, FT-IR, (1)H NMR, scanning electron microscope and AM 1 method. The above spectral studies show that NPAA forms a 1:1 inclusion complex with beta-CD and COOH group present in the beta-CD cavity. A mechanism is proposed to explain the inclusion process.

  18. Afferent signalling from the acid-challenged rat stomach is inhibited and gastric acid elimination is enhanced by lafutidine

    Directory of Open Access Journals (Sweden)

    Holzer Peter

    2009-06-01

    Full Text Available Abstract Background Lafutidine is a histamine H2 receptor antagonist, the gastroprotective effect of which is related to its antisecretory activity and its ability to activate a sensory neuron-dependent mechanism of defence. The present study investigated whether intragastric administration of lafutidine (10 and 30 mg/kg modifies vagal afferent signalling, mucosal injury, intragastric acidity and gastric emptying after gastric acid challenge. Methods Adult rats were treated with vehicle, lafutidine (10 – 30 mg/kg or cimetidine (10 mg/kg, and 30 min later their stomachs were exposed to exogenous HCl (0.25 M. During the period of 2 h post-HCl, intragastric pH, gastric volume, gastric acidity and extent of macroscopic gastric mucosal injury were determined and the activation of neurons in the brainstem was visualized by c-Fos immunocytochemistry. Results Gastric acid challenge enhanced the expression of c-Fos in the nucleus tractus solitarii but caused only minimal damage to the gastric mucosa. Lafutidine reduced the HCl-evoked expression of c-Fos in the NTS and elevated the intragastric pH following intragastric administration of excess HCl. Further analysis showed that the gastroprotective effect of lafutidine against excess acid was delayed and went in parallel with facilitation of gastric emptying, measured indirectly via gastric volume changes, and a reduction of gastric acidity. The H2 receptor antagonist cimetidine had similar but weaker effects. Conclusion These observations indicate that lafutidine inhibits the vagal afferent signalling of a gastric acid insult, which may reflect an inhibitory action on acid-induced gastric pain. The ability of lafutidine to decrease intragastric acidity following exposure to excess HCl cannot be explained by its antisecretory activity but appears to reflect dilution and/or emptying of the acid load into the duodenum. This profile of actions emphasizes the notion that H2 receptor antagonists can protect

  19. Acidic digestion in a teleost: postprandial and circadian pattern of gastric pH, pepsin activity, and pepsinogen and proton pump mRNAs expression.

    Science.gov (United States)

    Yúfera, Manuel; Moyano, Francisco J; Astola, Antonio; Pousão-Ferreira, Pedro; Martínez-Rodríguez, Gonzalo

    2012-01-01

    Two different modes for regulation of stomach acid secretion have been described in vertebrates. Some species exhibit a continuous acid secretion maintaining a low gastric pH during fasting. Others, as some teleosts, maintain a neutral gastric pH during fasting while the hydrochloric acid is released only after the ingestion of a meal. Those different patterns seem to be closely related to specific feeding habits. However, our recent observations suggest that this acidification pattern could be modified by changes in daily feeding frequency and time schedule. The aim of this study was to advance in understanding the regulation mechanisms of stomach digestion and pattern of acid secretion in teleost fish. We have examined the postprandial pattern of gastric pH, pepsin activity, and mRNA expression for pepsinogen and proton pump in white seabream juveniles maintained under a light/dark 12/12 hours cycle and receiving only one morning meal. The pepsin activity was analyzed according to the standard protocol buffering at pH 2 and using the actual pH measured in the stomach. The results show how the enzyme precursor is permanently available while the hydrochloric acid, which activates the zymogen fraction, is secreted just after the ingestion of food. Results also reveal that analytical protocol at pH 2 notably overestimates true pepsin activity in fish stomach. The expression of the mRNA encoding pepsinogen and proton pump exhibited almost parallel patterns, with notable increases during the darkness period and sharp decreases just before the morning meal. These results indicate that white seabream uses the resting hours for recovering the mRNA stock that will be quickly used during the feeding process. Our data clearly shows that both daily illumination pattern and feeding time are involved at different level in the regulation of the secretion of digestive juices.

  20. Acidic digestion in a teleost: postprandial and circadian pattern of gastric pH, pepsin activity, and pepsinogen and proton pump mRNAs expression.

    Directory of Open Access Journals (Sweden)

    Manuel Yúfera

    Full Text Available Two different modes for regulation of stomach acid secretion have been described in vertebrates. Some species exhibit a continuous acid secretion maintaining a low gastric pH during fasting. Others, as some teleosts, maintain a neutral gastric pH during fasting while the hydrochloric acid is released only after the ingestion of a meal. Those different patterns seem to be closely related to specific feeding habits. However, our recent observations suggest that this acidification pattern could be modified by changes in daily feeding frequency and time schedule. The aim of this study was to advance in understanding the regulation mechanisms of stomach digestion and pattern of acid secretion in teleost fish. We have examined the postprandial pattern of gastric pH, pepsin activity, and mRNA expression for pepsinogen and proton pump in white seabream juveniles maintained under a light/dark 12/12 hours cycle and receiving only one morning meal. The pepsin activity was analyzed according to the standard protocol buffering at pH 2 and using the actual pH measured in the stomach. The results show how the enzyme precursor is permanently available while the hydrochloric acid, which activates the zymogen fraction, is secreted just after the ingestion of food. Results also reveal that analytical protocol at pH 2 notably overestimates true pepsin activity in fish stomach. The expression of the mRNA encoding pepsinogen and proton pump exhibited almost parallel patterns, with notable increases during the darkness period and sharp decreases just before the morning meal. These results indicate that white seabream uses the resting hours for recovering the mRNA stock that will be quickly used during the feeding process. Our data clearly shows that both daily illumination pattern and feeding time are involved at different level in the regulation of the secretion of digestive juices.

  1. Acidity generated by the tumor microenvironment drives local invasion.

    Science.gov (United States)

    Estrella, Veronica; Chen, Tingan; Lloyd, Mark; Wojtkowiak, Jonathan; Cornnell, Heather H; Ibrahim-Hashim, Arig; Bailey, Kate; Balagurunathan, Yoganand; Rothberg, Jennifer M; Sloane, Bonnie F; Johnson, Joseph; Gatenby, Robert A; Gillies, Robert J

    2013-03-01

    The pH of solid tumors is acidic due to increased fermentative metabolism and poor perfusion. It has been hypothesized that acid pH promotes local invasive growth and metastasis. The hypothesis that acid mediates invasion proposes that H(+) diffuses from the proximal tumor microenvironment into adjacent normal tissues where it causes tissue remodeling that permits local invasion. In the current work, tumor invasion and peritumoral pH were monitored over time using intravital microscopy. In every case, the peritumoral pH was acidic and heterogeneous and the regions of highest tumor invasion corresponded to areas of lowest pH. Tumor invasion did not occur into regions with normal or near-normal extracellular pH. Immunohistochemical analyses revealed that cells in the invasive edges expressed the glucose transporter-1 and the sodium-hydrogen exchanger-1, both of which were associated with peritumoral acidosis. In support of the functional importance of our findings, oral administration of sodium bicarbonate was sufficient to increase peritumoral pH and inhibit tumor growth and local invasion in a preclinical model, supporting the acid-mediated invasion hypothesis. Cancer Res; 73(5); 1524-35. ©2012 AACR. ©2012 AACR.

  2. Solid phase synthesis and biological evaluation of enantiomerically pure wasp toxin analogues PhTX-343 and PhTX-12

    DEFF Research Database (Denmark)

    Strømgaard, K; Bjørnsdottir, I; Andersen, K

    2000-01-01

    ) of the enantiomers of PhTX-343 and PhTX-12. The methods were optimised with respect to chiral selector, buffer pH, and temperature around the capillary. Thus, rac-PhTX-343 was resolved using a separation buffer containing 30 mM heptakis-(2, 6-di-O-methyl)-beta-cyclodextrin in 50 mM 6-aminocarproic acid (pH 4. 0......) at 15 degrees C. rac-PhTX-12 was not resolvable in this system, but could be resolved using a separation buffer containing 10% w/v of dextrin 10, a linear maltodextrin, in 50 mM 6-aminocaproic acid (pH 4.0) at 15 degrees C. Using these methods, the optical purity of the synthetic enantiomers...

  3. Antimony leaching release from brake pads: Effect of pH, temperature and organic acids.

    Science.gov (United States)

    Hu, Xingyun; He, Mengchang; Li, Sisi

    2015-03-01

    Metals from automotive brake pads pollute water, soils and the ambient air. The environmental effect on water of antimony (Sb) contained in brake pads has been largely untested. The content of Sb in one abandoned brake pad reached up to 1.62×10(4) mg/kg. Effects of initial pH, temperature and four organic acids (acetic acid, oxalic acid, citric acid and humic acid) on Sb release from brake pads were studied using batch reactors. Approximately 30% (97 mg/L) of the total Sb contained in the brake pads was released in alkaline aqueous solution and at higher temperature after 30 days of leaching. The organic acids tested restrained Sb release, especially acetic acid and oxalic acid. The pH-dependent concentration change of Sb in aqueous solution was best fitted by a logarithmic function. In addition, Sb contained in topsoil from land where brake pads were discarded (average 9×10(3) mg/kg) was 3000 times that in uncontaminated soils (2.7±1 mg/kg) in the same areas. Because potentially high amounts of Sb may be released from brake pads, it is important that producers and environmental authorities take precautions. Copyright © 2015. Published by Elsevier B.V.

  4. Higher success rate with transcranial electrical stimulation of motor-evoked potentials using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery.

    Science.gov (United States)

    Shigematsu, Hideki; Kawaguchi, Masahiko; Hayashi, Hironobu; Takatani, Tsunenori; Iwata, Eiichiro; Tanaka, Masato; Okuda, Akinori; Morimoto, Yasuhiko; Masuda, Keisuke; Tanaka, Yuu; Tanaka, Yasuhito

    2017-10-01

    During spine surgery, the spinal cord is electrophysiologically monitored via transcranial electrical stimulation of motor-evoked potentials (TES-MEPs) to prevent injury. Transcranial electrical stimulation of motor-evoked potential involves the use of either constant-current or constant-voltage stimulation; however, there are few comparative data available regarding their ability to adequately elicit compound motor action potentials. We hypothesized that the success rates of TES-MEP recordings would be similar between constant-current and constant-voltage stimulations in patients undergoing spine surgery. The objective of this study was to compare the success rates of TES-MEP recordings between constant-current and constant-voltage stimulation. This is a prospective, within-subject study. Data from 100 patients undergoing spinal surgery at the cervical, thoracic, or lumbar level were analyzed. The success rates of the TES-MEP recordings from each muscle were examined. Transcranial electrical stimulation with constant-current and constant-voltage stimulations at the C3 and C4 electrode positions (international "10-20" system) was applied to each patient. Compound muscle action potentials were bilaterally recorded from the abductor pollicis brevis (APB), deltoid (Del), abductor hallucis (AH), tibialis anterior (TA), gastrocnemius (GC), and quadriceps (Quad) muscles. The success rates of the TES-MEP recordings from the right Del, right APB, bilateral Quad, right TA, right GC, and bilateral AH muscles were significantly higher using constant-voltage stimulation than those using constant-current stimulation. The overall success rates with constant-voltage and constant-current stimulations were 86.3% and 68.8%, respectively (risk ratio 1.25 [95% confidence interval: 1.20-1.31]). The success rates of TES-MEP recordings were higher using constant-voltage stimulation compared with constant-current stimulation in patients undergoing spinal surgery. Copyright © 2017

  5. Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV.

    Science.gov (United States)

    Hong, Yooseong; Legge, Raymond L; Zhang, S; Chen, P

    2003-01-01

    Atomic force microscopy (AFM) and axisymmetric drop shape analysis-profile (ASDA-P) were used to investigate the mechanism of self-assembly of peptides. The peptides chosen consisted of 16 alternating hydrophobic and hydrophilic amino acids, where the hydrophilic residues possess alternating negative and positive charges. Two types of peptides, AEAEAKAKAEAEAKAK (EAK16-II) and AEAEAEAEAKAKAKAK (EAK16-IV), were investigated in terms of nanostructure formation through self-assembly. The experimental results, which focused on the effects of the amino acid sequence and pH, show that the nanostructures formed by the peptides are dependent on the amino acid sequence and the pH of the solution. For pH conditions around neutrality, one of the peptides used in this study, EAK16-IV, forms globular assemblies and has lower surface tension at air-water interfaces than another peptide, EAK16-II, which forms fibrillar assemblies at the same pH. When the pH is lowered below 6.5 or raised above 7.5, there is a transition from globular to fibrillar structures for EAK16-IV, but EAK16-II does not show any structural transition. Surface tension measurements using ADSA-P showed different surface activities of peptides at air-water interfaces. EAK16-II does not show a significant difference in surface tension for the pH range between 4 and 9. However, EAK16-IV shows a noticeable decrease in surface tension at pH around neutrality, indicating that the formation of globular assemblies is related to the molecular hydrophobicity.

  6. Insights into Insulin Fibril Assembly at Physiological and Acidic pH and Related Amyloid Intrinsic Fluorescence

    Directory of Open Access Journals (Sweden)

    Clara Iannuzzi

    2017-11-01

    Full Text Available Human insulin is a widely used model protein for the study of amyloid formation as both associated to insulin injection amyloidosis in type II diabetes and highly prone to form amyloid fibrils in vitro. In this study, we aim to gain new structural insights into insulin fibril formation under two different aggregating conditions at neutral and acidic pH, using a combination of fluorescence, circular dichroism, Fourier-transform infrared spectroscopy, and transmission electron miscroscopy. We reveal that fibrils formed at neutral pH are morphologically different from those obtained at lower pH. Moreover, differences in FTIR spectra were also detected. In addition, only insulin fibrils formed at neutral pH showed the characteristic blue-green fluorescence generally associated to amyloid fibrils. So far, the molecular origin of this fluorescence phenomenon has not been clarified and different hypotheses have been proposed. In this respect, our data provide experimental evidence that allow identifying the molecular origin of such intrinsic property.

  7. Comparative study on sorption of radiocobalt to montmorillonite and its Al-pillared and cross-linked samples. Effect of pH, ionic strength and fulvic acid

    International Nuclear Information System (INIS)

    Yu, S.; Cheng, J.; Chen, C.; Wang, X.

    2007-01-01

    Effects of pH, ionic strength and fulvic acid on sorption of radiocobalt on montmorillonite and its Al-pillared and cross-linked samples were studied using batch technique. The results indicate that the sorption of cobalt is strongly dependent on pH values and independent of ionic strength. Fulvic acid enhances the sorption of cobalt slightly at low pH, but has no influence at high pH values. Surface complexation is considered the main mechanism of cobalt sorption to montmorillonite. The sequences of FA/Co 2+ additions to the system did not affect cobalt sorption. (author)

  8. Cyclophosphamide-induced cystitis reduces ASIC channel but enhances TRPV1 receptor function in rat bladder sensory neurons.

    Science.gov (United States)

    Dang, Khoa; Bielefeldt, Klaus; Gebhart, G F

    2013-07-01

    Using patch-clamp techniques, we studied the plasticity of acid-sensing ion channels (ASIC) and transient receptor potential V1 (TRPV1) channel function in dorsal root ganglia (DRG) neurons retrogradely labeled from the bladder. Saline (control) or cyclophosphamide (CYP) was given intraperitoneally on days 1, 3, and 5. On day 6, lumbosacral (LS, L6-S2) or thoracolumbar (TL, T13-L2) DRG were removed and dissociated. Bladders and bladder DRG neurons from CYP-treated rats showed signs of inflammation (greater myeloperoxidase activity; lower intramuscular wall pH) and increased size (whole cell capacitance), respectively, compared with controls. Most bladder neurons (>90%) responded to protons and capsaicin. Protons produced multiphasic currents with distinct kinetics, whereas capsaicin always triggered a sustained response. The TRPV1 receptor antagonist A-425619 abolished capsaicin-triggered currents and raised the threshold of heat-activated currents. Prolonged exposure to an acidic environment (pH range: 7.2 to 6.6) inhibited proton-evoked currents, potentiated the capsaicin-evoked current, and reduced the threshold of heat-activated currents in LS and TL bladder neurons. CYP treatment reduced density but not kinetics of all current components triggered by pH 5. In contrast, CYP-treatment was associated with an increased current density in response to capsaicin in LS and TL bladder neurons. Correspondingly, heat triggered current at a significantly lower temperature in bladder neurons from CYP-treated rats compared with controls. These results reveal that cystitis differentially affects TRPV1- and ASIC-mediated currents in both bladder sensory pathways. Acidification of the bladder wall during inflammation may contribute to changes in nociceptive transmission mediated through the TRPV1 receptor, suggesting a role for TRPV1 in hypersensitivity associated with cystitis.

  9. Partitioning of uranyl between ferrihydrite and humic substances at acidic and circum-neutral pH

    Science.gov (United States)

    Dublet, Gabrielle; Lezama Pacheco, Juan; Bargar, John R.; Fendorf, Scott; Kumar, Naresh; Lowry, Gregory V.; Brown, Gordon E.

    2017-10-01

    As part of a larger study of the reactivity and mobility of uranyl (U(VI)O22+) cations in subsurface environments containing natural organic matter (NOM) and hydrous ferric oxides, we have examined the effect of reference humic and fulvic substances on the sorption of uranyl on 2-line ferrihydrite (Fh), a common, naturally occurring nano-Fe(III)-hydroxide. Uranyl was reacted with Fh at pH 4.6 and 7.0 in the presence and absence of Elliott Soil Humic Acid (ESHA) (0-835 ppm) or Suwanee River Fulvic Acid (SRFA) (0-955 ppm). No evidence was found for reduction of uranyl by either form of NOM after 24 h of exposure. The following three size fractions were considered in this study: (1) ≥0.2 μm (Fh-NOM aggregates), (2) 0.02-0.2 μm (dispersed Fh nanoparticles and NOM macro-molecules), and (3) <0.02 μm (dissolved). The extent to which U(VI) is sorbed in aggregates or dispersed as colloids was assessed by comparing U, Fe, and NOM concentrations in these three size fractions. Partitioning of uranyl between Fh and NOM was determined in size fraction (1) using X-ray absorption spectroscopy (XAS). Uranyl sorption on Fh-NOM aggregates was affected by the presence of NOM in different ways depending on pH and type of NOM (ESHA vs. SRFA). The presence of ESHA in the uranyl-Fh-NOM ternary system at pH 4.6 enhanced uranyl uptake more than the presence of SRFA. In contrast, neither form of NOM affected uranyl sorption at pH 7.0 over most of the NOM concentration range examined (0-500 ppm); at the highest NOM concentrations (500-955 ppm) uranyl uptake in the aggregates was slightly inhibited at pH 7.0, which is interpreted as being due to the dispersion of Fh aggregates. XAS at the U LIII-edge was used to characterize molecular-level changes in uranyl complexation as a result of sorption to the Fh-NOM aggregates. In the absence of NOM, uranyl formed dominantly inner-sphere, mononuclear, bidentate sorption complexes on Fh. However, when NOM concentration was increased at pH 4.6, the

  10. From proton nuclear magnetic resonance spectra to pH. Assessment of {sup 1}H NMR pH indicator compound set for deuterium oxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Tynkkynen, Tuulia, E-mail: tuulia.tynkkynen@uku.fi [Laboratory of Chemistry, Department of Biosciences, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland); Tiainen, Mika; Soininen, Pasi; Laatikainen, Reino [Laboratory of Chemistry, Department of Biosciences, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland)

    2009-08-19

    In this study, a protocol for pH determination from D{sub 2}O samples using {sup 1}H NMR pH indicator compounds was developed and assessed by exploring the pH-dependency of 13 compounds giving pH-dependent {sup 1}H NMR signals. The indicators cover the pH range from pH* 0 to 7.2. Equations to transform the indicator chemical shifts to pH estimates are given here for acetic acid, formic acid, chloroacetic acid, dichloroacetic acid, creatine, creatinine, glycine, histidine, 1,2,4-triazole, and TSP (2,2,3,3-tetradeutero-3-(trimethylsilyl)-propionic acid). To characterize the method in presence of typical solutes, the effects of common metabolites, albumin and ionic strength were also evaluated. For the ionic strengths, the effects were also modelled. The experiments showed that the use of pH sensitive {sup 1}H NMR chemical shifts allows the pH determination of typical metabolite solutions with accuracy of 0.01-0.05 pH units. Also, when the ionic strength is known with accuracy better than 0.1 mol dm{sup -3} and the solute concentrations are low, pH{sub nmr}{sup *} (the NMR estimate of pH) can be assumed to be within 0.05 pH units from potentiometrically determined pH.

  11. Influence of pH, bleaching agents, and acid etching on surface wear of bovine enamel

    Science.gov (United States)

    Soares, Ana Flávia; Bombonatti, Juliana Fraga Soares; Alencar, Marina Studart; Consolmagno, Elaine Cristina; Honório, Heitor Marques; Mondelli, Rafael Francisco Lia

    2016-01-01

    ABSTRACT Development of new materials for tooth bleaching justifies the need for studies to evaluate the changes in the enamel surface caused by different bleaching protocols. Objective The aim of this study was to evaluate the bovine dental enamel wear in function of different bleaching gel protocols, acid etching and pH variation. Material and Methods Sixty fragments of bovine teeth were cut, obtaining a control and test areas. In the test area, one half received etching followed by a bleaching gel application, and the other half, only the bleaching gel. The fragments were randomly divided into six groups (n=10), each one received one bleaching session with five hydrogen peroxide gel applications of 8 min, activated with hybrid light, diode laser/blue LED (HL) or diode laser/violet LED (VHL) (experimental): Control (C); 35% Total Blanc Office (TBO35HL); 35% Lase Peroxide Sensy (LPS35HL); 25% Lase Peroxide Sensy II (LPS25HL); 15% Lase Peroxide Lite (LPL15HL); and 10% hydrogen peroxide (experimental) (EXP10VHL). pH values were determined by a pHmeter at the initial and final time periods. Specimens were stored, subjected to simulated brushing cycles, and the superficial wear was determined (μm). ANOVA and Tukey´s tests were applied (α=0.05). Results The pH showed a slight decrease, except for Group LPL15HL. Group LPS25HL showed the highest degree of wear, with and without etching. Conclusion There was a decrease from the initial to the final pH. Different bleaching gels were able to increase the surface wear values after simulated brushing. Acid etching before bleaching increased surface wear values in all groups. PMID:27008254

  12. Binary boronic acid-functionalized attapulgite with high adsorption capacity for selective capture of nucleosides at acidic pH values

    International Nuclear Information System (INIS)

    Li, Huihui; Zhu, Shuqiang; Cheng, Ting; Wang, Shuxia; Zhu, Bin; Liu, Xiaoyan; Zhang, Haixia

    2016-01-01

    Boronate affinity materials have been widely used for selective capture of cis-diols such as nucleosides. Adsorbents with features of low binding pH and high adsorption capacity are highly desired. However, most reported materials only possess one of the two features. We have synthesized a 1,3,5-triazine-containing binary boronic acid by reacting cyanuric chloride with 3-amino phenylboronic acid, and the product was then grafted onto attapulgite (a fibrous aluminum-magnesium silicate). The resulting functionalized attapulgite exhibit low binding pH (5.0) and display high adsorption capacity (19.5 ± 1.1 mg⋅g"−"1 for adenosine). The material exhibits high selectivity for cis-diols even in the presence of a 1000-fold excess of interferences. It was applied to the selective extraction of nucleosides from human urine. Typical features of the method include (a) limits of detection in the range from 4 to 17 ng⋅mL"−"1, (b) limits of quantification between 13 and 57 ng⋅mL"−"1, (c) relative standard deviations of ≤9.1 %, and (d) recoveries of nucleosides from spiked human urine between 85.0 and 112.9 %. In our perception, the material and method offer a promising strategy for selective capture of cis-diols in the areas of proteomics, metabolomics and glycomics. (author)

  13. Characterization of music-evoked autobiographical memories.

    Science.gov (United States)

    Janata, Petr; Tomic, Stefan T; Rakowski, Sonja K

    2007-11-01

    Despite music's prominence in Western society and its importance to individuals in their daily lives, very little is known about the memories and emotions that are often evoked when hearing a piece of music from one's past. We examined the content of music-evoked autobiographical memories (MEAMs) using a novel approach for selecting stimuli from a large corpus of popular music, in both laboratory and online settings. A set of questionnaires probed the cognitive and affective properties of the evoked memories. On average, 30% of the song presentations evoked autobiographical memories, and the majority of songs also evoked various emotions, primarily positive, that were felt strongly. The third most common emotion was nostalgia. Analyses of written memory reports found both general and specific levels of autobiographical knowledge to be represented, and several social and situational contexts for memory formation were common across many memories. The findings indicate that excerpts of popular music serve as potent stimuli for studying the structure of autobiographical memories.

  14. Modulation of electric brain responses evoked by pitch deviants through transcranial direct current stimulation.

    Science.gov (United States)

    Royal, Isabelle; Zendel, Benjamin Rich; Desjardins, Marie-Ève; Robitaille, Nicolas; Peretz, Isabelle

    2018-01-31

    Congenital amusia is a neurodevelopmental disorder, characterized by a difficulty detecting pitch deviation that is related to abnormal electrical brain responses. Abnormalities found along the right fronto-temporal pathway between the inferior frontal gyrus (IFG) and the auditory cortex (AC) are the likely neural mechanism responsible for amusia. To investigate the causal role of these regions during the detection of pitch deviants, we applied cathodal (inhibitory) transcranial direct current stimulation (tDCS) over right frontal and right temporal regions during separate testing sessions. We recorded participants' electrical brain activity (EEG) before and after tDCS stimulation while they performed a pitch change detection task. Relative to a sham condition, there was a decrease in P3 amplitude after cathodal stimulation over both frontal and temporal regions compared to pre-stimulation baseline. This decrease was associated with small pitch deviations (6.25 cents), but not large pitch deviations (200 cents). Overall, this demonstrates that using tDCS to disrupt regions around the IFG and AC can induce temporary changes in evoked brain activity when processing pitch deviants. These electrophysiological changes are similar to those observed in amusia and provide causal support for the connection between P3 and fronto-temporal brain regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Survival of mayfly larvae under mine acid conditions

    Energy Technology Data Exchange (ETDEWEB)

    Napier, S. Jr.; Hummon, W.D.

    1976-01-01

    Mayfly larvae were abundant and diverse in riffle zones of three control streams in southeastern Ohio. But none were found in such zones of three streams having current or past histories of mine acid pollution, despite vegetative recovery of reclaimed land bordering two of the streams. Laboratory studies showed stepwise increases in non-predatory mortality of mayfly larvae with increased mine acidity. Dragonfly larvae predation on mayfly larvae was constant at pH 8.1 to 4.1, but decreased at pH 3.1 despite tolerance of dragonfly larvae to low pH conditions. Extensive acid mine pollution thus may threaten aquatic biota through removal of food sources or reduced feeding rates as well as through direct mortality.

  16. Formation of novel polymeric films derived from 4-hydroxybenzoic acid

    International Nuclear Information System (INIS)

    Ferreira, Lucas F.; Souza, Leticia M.; Franco, Diego L.; Castro, Ana C.H.; Oliveira, Alex A.; Boodts, Julien F.C.; Brito-Madurro, Ana G.; Madurro, Joao M.

    2011-01-01

    Highlights: → Graphite electrodes modified with poly(4-hydroxybenzoic acid) prepared in pH 0.5, 7.0 and 12.0. → Electron transport was higher in poly(4-hydroxybenzoic acid) prepared in acid medium. → Poly(4-HBA) prepared in pH 12.0 presents higher charge transfer resistance. → Polymers prepared in pH 0.5 and 7.0 present globular morphology and in pH 0.5 higher roughness. - Abstract: This work reports electrochemical and morphological studies of formation of poly(4-hydroxybenzoic acid), prepared in different pH, on the graphite surface. Cyclic voltammetry, electrochemical impedance spectroscopy (EIS), electrochemical quartz crystal microbalance (EQCM) and atomic force microscopy (AFM) have been carried out to study the modified electrodes formed. The electrodes modified with poly(4-HBA), prepared in pH 0.5 and 7.0, presented oxidation/reduction peaks, but no peak was detected to modified electrodes prepared in pH 12.0. Voltammetric studies showed decrease in oxidation/reduction currents and slower electron transport across the polymer for all pH values, however, the electron transport was higher when the polymer was prepared in acid medium. EIS analysis indicated that the charge transfer resistance for poly(4-HBA) electropolymerized at pH 12.0 was about 2 and 1.4 times higher when compared to pH 0.5 and 7.0, respectively. Studies through EQCM showed higher amount of polymer mass deposited in acid medium. Images by AFM indicated that the topography is affected by pH value, whereas films prepared in acidic pH conditions presented higher roughness.

  17. Avian Influenza Virus Infection of Immortalized Human Respiratory Epithelial Cells Depends upon a Delicate Balance between Hemagglutinin Acid Stability and Endosomal pH.

    Science.gov (United States)

    Daidoji, Tomo; Watanabe, Yohei; Ibrahim, Madiha S; Yasugi, Mayo; Maruyama, Hisataka; Masuda, Taisuke; Arai, Fumihito; Ohba, Tomoyuki; Honda, Ayae; Ikuta, Kazuyoshi; Nakaya, Takaaki

    2015-04-24

    The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    Science.gov (United States)

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A comparison of auditory evoked potentials to acoustic beats and to binaural beats.

    Science.gov (United States)

    Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi

    2010-04-01

    The purpose of this study was to compare cortical brain responses evoked by amplitude modulated acoustic beats of 3 and 6 Hz in tones of 250 and 1000 Hz with those evoked by their binaural beats counterparts in unmodulated tones to indicate whether the cortical processes involved differ. Event-related potentials (ERPs) were recorded to 3- and 6-Hz acoustic and binaural beats in 2000 ms duration 250 and 1000 Hz tones presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to beats-evoked oscillations were determined and compared across beat types, beat frequencies and base (carrier) frequencies. All stimuli evoked tone-onset components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude in response to acoustic than to binaural beats, to 250 than to 1000 Hz base frequency and to 3 Hz than to 6 Hz beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left temporal lobe areas. Differences between estimated sources of potentials to acoustic and binaural beats were not significant. The perceptions of binaural beats involve cortical activity that is not different than acoustic beats in distribution and in the effects of beat- and base frequency, indicating similar cortical processing. Copyright 2010 Elsevier B.V. All rights reserved.

  20. In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen.

    Science.gov (United States)

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L

    2012-10-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS class III and BCS class II have been proposed, in particular, BCS class II weak acids. However, a discrepancy between the in vivo BE results and in vitro dissolution results for BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH of 6.0. Further the experimental dissolution of ibuprofen tablets in a low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol l (-1) /pH) was dramatically reduced compared with the dissolution in SIF (the average buffer capacity 12.6 mmol l (-1) /pH). Thus these predictions for the oral absorption of BCS class II acids indicate that the absorption patterns depend largely on the intestinal pH and buffer strength and must be considered carefully for a bioequivalence test. Simulation software may be a very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. Copyright © 2012 John Wiley & Sons, Ltd.

  1. The effect of varied pH on the luminescence characteristics of antibody-mercaptoacetic acid conjugated ZnS nanowires

    Science.gov (United States)

    Chaudhry, Madeeha; Rehman, Malik Abdul; Gul, Asghari; Qamar, Raheel; Bhatti, Arshad Saleem

    2017-11-01

    We demonstrate here that the effect of varied pH of the media on the photoluminescence (PL) properties of mercaptoacetic acid (MAA) and digoxin antibody (Ab) conjugated zinc sulphide (ZnS) nanowires. The charge-transfer kinetics from MAA to ZnS and vice versa showed a profound effect on the luminescence of ZnS defect states. The PL intensity of the ZnS defect states showed strong dependence on the value of pH with respect to the pKa of MAA. The carboxyl and thiol group of MAA in the protonated (pH pKa) states resulted in the quenched PL intensity. While for pH ∼ pKa, the PL intensity was regained as there was equal probability of both protonated and deprotonated carboxyl and thiol groups. These findings indicated that pH of the environment is a key parameter for the use of MAA-Ab conjugated ZnS nanowires as an optical biomarker.

  2. Assessment of Envi-Carb™ as a passive sampler binding phase for acid herbicides without pH adjustment.

    Science.gov (United States)

    Seen, Andrew; Bizeau, Oceane; Sadler, Lachlan; Jordan, Timothy; Nichols, David

    2014-05-01

    The graphitised carbon solid phase extraction (SPE) sorbent Envi-Carb has been used to fabricate glass fibre filter- Envi-Carb "sandwich" disks for use as a passive sampler for acid herbicides. Passive sampler uptake of a suite of herbicides, including the phenoxyacetic acid herbicides 4-chloro-o-tolyloxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (Dicamba), was achieved without pH adjustment, demonstrating for the first time a suitable binding phase for passive sampling of acid herbicides at neutral pH. Passive sampling experiments with Duck River (Tasmania, Australia) water spiked at 0.5 μg L(-1) herbicide concentration over a 7 d deployment period showed that sampling rates in Duck River water decreased for seven out of eight herbicides, and in the cases of 3,6-dichloro-2-pyridinecarboxylic acid (Clopyralid) and Dicamba no accumulation of the herbicides occurred in the Envi-Carb over the deployment period. Sampling rates for 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid (Picloram), 2,4-D and MCPA decreased to approximately 30% of the sampling rates in ultrapure water, whilst sampling rates for 2-(4,6-dimethylpyrimidin-2-ylcarbamoylsulfamoyl) benzoic acid, methyl ester (Sulfometuron-methyl) and 3,5,6-Trichloro-2-pyridinyloxyacetic acid (Triclopyr) were approximately 60% of the ultrapure water sampling rate. For methyl N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-D-alaninate (Metalaxyl-M) there was little variation in sampling rate between passive sampling experiments in ultrapure water and Duck River water. SPE experiments undertaken with Envi-Carb disks using ultrapure water and filtered and unfiltered Duck River water showed that not only is adsorption onto particulate matter in Duck River water responsible for a reduction in herbicide sampling rate, but interactions of herbicides with dissolved or colloidal matter (matter able to pass through a 0.2 μm membrane filter) also reduces the herbicide sampling

  3. Comparative study of buffered 50% glycolic acid (pH 3.0) + 0.5% salicylic acid solution vs Jessner's solution in patients with acne vulgaris.

    Science.gov (United States)

    In Jae, Jeong; Dong Ju, Hyun; Dong Hyun, Kim; Yoon, Moon Soo; Lee, Hee Jung

    2017-11-21

    Superficial chemical peels are frequently used in acne vulgaris treatment. Although glycolic acid (GA) has been widely used in clinical practice, its pH ranges from 0.08-2.75 and thus should be neutralized after application to avoid burns. To evaluate treatment efficacy and safety of chemical peeling using buffered 50% GA (pH 3.0) + 0.5% salicylic acid (SA) solution that does not need to be neutralized in the treatment of acne vulgaris compared to the conventional peeling using Jessner's solution. We performed a prospective, randomized, evaluator-blind, split-face clinical trial. Twenty patients were randomized by assigning one side of each patient's face to receive a 50% GA (pH 3.0) + 0.5% SA peel (GA side) and the other side to receive the Jessner's solution (Jessner's solution side). All patients underwent 2 sessions of treatment spaced 2 weeks apart. Lesion count, acne severity, subjective efficacy assessment, and side effects were evaluated. The total lesion count was significantly reduced for the GA and Jessner's solution sides (P  .05). The GA side had fewer side effects than the Jessner's solution side. The results of this study suggest that chemical peeling using the 50% GA (pH 3.0) + 0.5% SA solution can be as effective and convenient as the conventional peeling using Jessner's solution in the treatment of acne vulgaris and may show fewer adverse events than the conventional peeling. © 2017 Wiley Periodicals, Inc.

  4. Acidic pH and short-chain fatty acids activate Na+ transport but differentially modulate expression of Na+/H+ exchanger isoforms 1, 2, and 3 in omasal epithelium.

    Science.gov (United States)

    Lu, Zhongyan; Yao, Lei; Jiang, Zhengqian; Aschenbach, Jörg R; Martens, Holger; Shen, Zanming

    2016-01-01

    Low sodium content in feed and large amounts of salivary sodium secretion are essential requirements to efficient sodium reabsorption in the dairy cow. It is already known that Na(+)/H(+) exchange (NHE) of the ruminal epithelium plays a key role in Na(+) absorption, and its function is influenced by the presence of short-chain fatty acids (SCFA) and mucosal pH. By contrast, the functional role and regulation of NHE in omasal epithelium have not been completely understood. In the present study, we used model studies in small ruminants (sheep and goats) to investigate NHE-mediated Na(+) transport and the effects of pH and SCFA on NHE activity in omasal epithelium and on the expression of NHE isoform in omasal epithelial cells. Conventional Ussing chamber technique, primary cell culture, quantitative PCR, and Western blot were used. In native omasal epithelium of sheep, the Na(+) transport was electroneutral, and it was inhibited by the specific NHE3 inhibitor 3-[2-(3-guanidino-2-methyl-3-oxo-propenyl)-5-methyl-phenyl]-N-isopropylidene-2-methyl-acrylamide dihydrochloride, which decreased mucosal-to-serosal, serosal-to-mucosal, and net flux rates of Na(+) by 80% each. The application of low mucosal pH (6.4 or 5.8) in the presence of SCFA activated the Na(+) transport across omasal epithelium of sheep compared with that at pH 7.4. In cultured omasal epithelial cells of goats, mRNA and protein of NHE1, NHE2, and NHE3 were detected. The application of SCFA increased NHE1 mRNA and protein expression, which was most prominent when the culture medium pH decreased from 7.4 to 6.8. At variance, the mRNA and protein expression of NHE2 and NHE3 were decreased with low pH and SCFA, which was contrary to the published data from ruminal epithelial studies. In conclusion, this paper shows that (1) NHE1, NHE2, and NHE3 are expressed in omasal epithelium; (2) NHE3 mediates the major portion of transepithelial Na(+) transport in omasal epithelium; and (3) SCFA and acidic pH acutely

  5. The pH Game.

    Science.gov (United States)

    Chemecology, 1996

    1996-01-01

    Describes a game that can be used to teach students about the acidity of liquids and substances around their school and enable them to understand what pH levels tell us about the environment. Students collect samples and measure the pH of water, soil, plants, and other natural material. (DDR)

  6. Poly-dopamine-beta-cyclodextrin: A novel nanobiopolymer towards sensing of some amino acids at physiological pH

    International Nuclear Information System (INIS)

    Hasanzadeh, Mohammad; Sadeghi, Sattar; Bageri, Leyla; Mokhtarzadeh, Ahad; Karimzadeh, Ayub; Shadjou, Nasrin; Mahboob, Soltanali

    2016-01-01

    A novel nanobiopolymer film was electrodeposited on the surface of glassy carbon through cyclic voltammetry from dopamine, β-cyclodextrin, and phosphate buffer solution in physiological pH (7.40). The electrochemical behavior of polydopamine-Beta-cyclodextrin modified glassy carbon electrode was investigated for electro-oxidation and determination of some amino acids (L-Cysteine, L-Tyrosine, L-Glycine, and L-Phenylalanine). The modified electrode was applied for selected amino acid detection at physiological pH using cyclic voltammetry, differential pulse voltammetry and chronoamperometry, chronocoulometery. The linear concentration range of the proposed sensor for the L-Glycine, L-Cysteine, L-Tyrosine, and L-Phenylalanine were 0.2–70, 0.06–0.2, 0.01–0.1, and 0.2–10 μM, while low limit of quantifications were 0.2, 0.06, 0.01, and 0.2 μM, respectively. The modified electrode shows many advantages as an amino acid sensor such as simple preparation method without using any specific electron transfer mediator or specific reagent, good sensitivity, short response time, and long term stability. - Highlights: • A novel biopolymer film with entitled PDA-β-CD was electrodeposited on the GCE. • Synergetic effect of β-CD and GQD on the electrical signal amplifications was investigated. • The performance of β-CD-GQD-GCE towards electrochemical sensing of some amino acids was investigated.

  7. Poly-dopamine-beta-cyclodextrin: A novel nanobiopolymer towards sensing of some amino acids at physiological pH

    Energy Technology Data Exchange (ETDEWEB)

    Hasanzadeh, Mohammad, E-mail: mhmmd_hasanzadeh@yahoo.com [Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664 (Iran, Islamic Republic of); Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 51664 (Iran, Islamic Republic of); Sadeghi, Sattar [Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz (Iran, Islamic Republic of); Bageri, Leyla [Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664 (Iran, Islamic Republic of); Mokhtarzadeh, Ahad [School of Medicine, Gonabad University of Medical Sciences, Gonabad (Iran, Islamic Republic of); Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz (Iran, Islamic Republic of); Karimzadeh, Ayub [Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz (Iran, Islamic Republic of); Shadjou, Nasrin [Department of Nanochemistry, Nano Technology Research Center, Urmia University, Urmia 57154 (Iran, Islamic Republic of); Department of Nano Technology, Faculty of Science, Urmia University, Urmia 57154 (Iran, Islamic Republic of); Mahboob, Soltanali [Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz (Iran, Islamic Republic of)

    2016-12-01

    A novel nanobiopolymer film was electrodeposited on the surface of glassy carbon through cyclic voltammetry from dopamine, β-cyclodextrin, and phosphate buffer solution in physiological pH (7.40). The electrochemical behavior of polydopamine-Beta-cyclodextrin modified glassy carbon electrode was investigated for electro-oxidation and determination of some amino acids (L-Cysteine, L-Tyrosine, L-Glycine, and L-Phenylalanine). The modified electrode was applied for selected amino acid detection at physiological pH using cyclic voltammetry, differential pulse voltammetry and chronoamperometry, chronocoulometery. The linear concentration range of the proposed sensor for the L-Glycine, L-Cysteine, L-Tyrosine, and L-Phenylalanine were 0.2–70, 0.06–0.2, 0.01–0.1, and 0.2–10 μM, while low limit of quantifications were 0.2, 0.06, 0.01, and 0.2 μM, respectively. The modified electrode shows many advantages as an amino acid sensor such as simple preparation method without using any specific electron transfer mediator or specific reagent, good sensitivity, short response time, and long term stability. - Highlights: • A novel biopolymer film with entitled PDA-β-CD was electrodeposited on the GCE. • Synergetic effect of β-CD and GQD on the electrical signal amplifications was investigated. • The performance of β-CD-GQD-GCE towards electrochemical sensing of some amino acids was investigated.

  8. Aromatic amino acids and their relevance in the specificity of the PH domain

    Czech Academy of Sciences Publication Activity Database

    Morales, J.; Sobol, Margaryta; Rodriguez-Zapata, L.C.; Hozák, Pavel; Castano, E.

    2017-01-01

    Roč. 30, č. 12 (2017), č. článku e2649. ISSN 0952-3499 R&D Projects: GA TA ČR(CZ) TE01020118; GA ČR GAP305/11/2232; GA ČR GA16-03346S; GA ČR GA15-08738S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : PH domain * Phosphatidic acid * Phosphoinositides Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 2.175, year: 2016

  9. In Silico Prediction of Drug Dissolution and Absorption with variation in Intestinal pH for BCS Class II Weak Acid Drugs: Ibuprofen and Ketoprofen§

    Science.gov (United States)

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L.

    2012-01-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS Class III and BCS class II have been proposed, particularly, BCS class II weak acids. However, a discrepancy between the in vivo- BE results and in vitro- dissolution results for a BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH=6.0. Further the experimental dissolution of ibuprofen tablets in the low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol L-1/pH) was dramatically reduced compared to the dissolution in SIF (the average buffer capacity 12.6 mmol L -1/pH). Thus these predictions for oral absorption of BCS class II acids indicate that the absorption patterns largely depend on the intestinal pH and buffer strength and must be carefully considered for a bioequivalence test. Simulation software may be very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. PMID:22815122

  10. Effect of the coexistence of sodium caseinate and Tween 20 as stabilizers of food emulsions at acidic pH.

    Science.gov (United States)

    Perugini, Luisa; Cinelli, Giuseppe; Cofelice, Martina; Ceglie, Andrea; Lopez, Francesco; Cuomo, Francesca

    2018-02-05

    In the present investigation the properties of edible nanoemulsions were studied. Sodium caseinate represents a good candidate for food emulsion preparations thanks to its surface-active properties and because it is perceived as a natural product by consumers. Nevertheless, it is very sensitive to acidic pH close to its isoelectric point and, if used as emulsion stabilizer, this aspect can negatively affect the emulsion stability. In order to prevent this drawback, sodium caseinate was used in combination with a non-ionic surfactant (Tween 20) as emulsifier of oil/water nanoemulsions. For these reasons, nanoemulsions stabilized by Tween 20, sodium caseinate and by a blend of the two emulsifiers were studied and compared according to their response to pH variations. Nanoemulsions were characterized for size of the dispersed phase with variation of time and temperature, for their rheological properties, for surface charge as a function of pH and for protein fluorescence. Noticeably, it was ascertained that, at pH close to caseinate isoelectric point, emulsions stabilized with the blend of caseinate and Tween 20 were more stable, compared with emulsions stabilized only with sodium caseinate. Such behavior was explained according to the composition of the emulsifiers at the oil/water interface where, at acidic pH, the presence of Tween 20 ensured the steric stabilization thus improving the role of sodium caseinate as emulsion stabilizer. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Effects of Two Traditional Chinese Cooking Oils, Canola and Pork, on pH and Cholic Acid Content of Faeces and Colon Tumorigenesis in Kunming Mice.

    Science.gov (United States)

    He, Xiao-Qiong; Duan, Jia-Li; Zhou, Jin; Song, Zhong-Yu; Cichello, Simon Angelo

    2015-01-01

    Faecal pH and cholate are two important factors that can affect colon tumorigenesis, and can be modified by diet. In this study, the effects of two Chinese traditional cooking oils (pork oil and canola/rapeseed oil) on the pH and the cholic acid content in feces, in addition to colon tumorigenesis, were studied in mice. Kunming mice were randomized into various groups; negative control group (NCG), azoxymethane control group (ACG), pork oil group (POG), and canola oil Ggroup (COG). Mice in the ACG were fed a basic rodent chow; mice in POG and COG were given 10% cooking oil rodent chow with the respective oil type. All mice were given four weekly AOM (azoxymethane) i.p. injections (10 mg/kg). The pH and cholic acid of the feces were examined every two weeks. Colon tumors, aberrant crypt foci and organ weights were examined 32 weeks following the final AOM injection. The results showed that canola oil significantly decreased faecal pH in female mice (P0.05). Pork oil significantly increased the feces pH in both male and female mice (Pcooking oil effects faecal pH, but does not affect the faecal cholic acid content and thus AOM-induced colon neoplastic ACF is modified by dietary fat.

  12. Effects of sulfite and pH an abscisic acid (ABA) dependent transpiration and on stomatal opening

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, N.; Maruta, I.; Sugahara, K.

    1980-01-01

    In rice, alday, wheat and tobacco (Nicotiana tabacum l. samsun and samsun nn) plants which contained large amounts of ABA, the transpiration rate decreased rapidly with 2 ppM SO/sub 2/ fumigation and reached 20 to 65% of the initial level after 5- to 30-min exposure depending on their ABAj contents. In the cases of broad bean and tobacco (n. Gutinosa l.) with low ABA contents, the rate slightly increased for 20 and 40 min, respectively, after the start of the fumigation and then decreased gradually. The transpiration rates of corn and sorghum, in spite of their extremely low ABA contents, pronouncedly decreased with SO/sub 2/ fumigation and reached 65 and 50%, respectively, of the initial levels after 40-min exposure. Foliar application of 0.04 N HCL to N. tacum l. samsun nn leaves remarkably depressed the transpiration rate, while the application of 0.04 m NA/sub 2/SO/sub 3/ decreased the rate only to the same level as water treatment. Foliar application of either HCL of Na/sub 2/SO/sub 3/ to N. glutinosa l. leaves exerted little change in the transpiration rate. When 10-4 m ABA was applied to broad bean leaves prior to HCl and Na/sub 2/SO/sub 3/ treatment, their transpiration rate was decreased by HCl, but not by Na/sub 2/SO/sub 3/ application. In sonicated epidermal strips peeled from broad bean leaves, Na/sub 2/SO/sub 3/ produced a slight increase in the stomatal aperture size in the absence of ABA, but showed no effect in the presence of ABA. The aperture size was identical in the pH range of 3.0 to 7.0 in the incubation medium. In the presence of ABA in the medium, the aperture size was small in the acidic region of pH with a minimal value at pH 4.0. ABA decreased the aperture size at concentrations above 10-9 m at pH 4.0 and 10-6 m at pH 7.0 in the medium. ABA uptake by epidermal strips was large in the acidic region, especially at pH 4.0.

  13. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

    Science.gov (United States)

    Turner, Benjamin L

    2010-10-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

  14. Simultaneous estimation of a binary mixture of a weak acid and a strong acid by volumetric titration and pH measurement

    International Nuclear Information System (INIS)

    Karmakar, Sanat; Mallika, C.; Kamachi Mudali, U.

    2012-01-01

    High level liquid waste (HLLW) generated in the aqueous reprocessing of spent nuclear fuels for the separation of uranium and plutonium by PUREX process, comprises the fission and corrosion products in 4 M nitric acid. Reduction in waste volume is accomplished by destroying the acidity of the waste solution from 4 to less than 2 M by treating it with formaldehyde and subsequent concentration by evaporation. In the denitration by HCHO, nitric acid in the waste solution is reduced to NOx and water via nitrous acid as the intermediate product: whereas formaldehyde is oxidized to formic acid which is converted to CO 2 and H 2 O subsequently. The reaction is highly exothermic and the release of all gaseous products may lead to uncontrollable process conditions. Hence, for the safe operation, it is desirable to estimate the concentration of residual formic acid as well as nitric acid in the product stream as a function of time. The acidity in the feed solution is 4 M and the concentration of HNO 3 in the product solution is in the range 1- 4 M. Since the formic acid generated during the reaction will be consumed immediately, the concentration of residual acid will be in the range 0.05-0.5 M. A simultaneous titration method based on pH measurement and volumetric analysis has been developed in the present work for the quantitative determination of the weak acid (HCOOH)with known pKa value and the strong acid (HNO 3 ) in the binary mixture

  15. Effect of acidic pH on flow cytometric detection of bacteria stained with SYBR Green I and their distinction from background

    International Nuclear Information System (INIS)

    Baldock, Daniel; Nocker, Andreas; Nebe-von-Caron, Gerhard; Bongaerts, Roy

    2013-01-01

    Unspecific background caused by biotic or abiotic particles, cellular debris, or autofluorescence is a well-known interfering parameter when applying flow cytometry to the detection of microorganisms in combination with fluorescent dyes. We present here an attempt to suppress the background signal intensity and thus to improve the detection of microorganisms using the nucleic acid stain SYBR ® Green I. It has been observed that the fluorescent signals from SYBR Green I are greatly reduced at acidic pH. When lowering the pH of pre-stained samples directly prior to flow cytometric analysis, we hypothesized that the signals from particles and cells with membrane damage might therefore be reduced. Signals from intact cells, temporarily maintaining a neutral cytosolic pH, should not be affected. We show here that this principle holds true for lowering background interference, whereas the signals of membrane-compromised dead cells are only affected weakly. Signals from intact live cells at low pH were mostly comparable to signals without acidification. Although this study was solely performed with SYBR ® Green I, the principle of low pH flow cytometry (low pH-FCM) might hold promise when analyzing complex matrices with an abundance of non-cellular matter, especially when expanded to non-DNA binding dyes with a stronger pH dependence of fluorescence than SYBR Green I and a higher pK a value. (paper)

  16. Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating.

    Science.gov (United States)

    Hu, Pengbing; Dong, Xinyong; Wong, Wei Chang; Chen, Li Han; Ni, Kai; Chan, Chi Chiu

    2015-04-01

    We present a simple photonic crystal fiber interferometer (PCFI) that operates in reflection mode for pH measurement. The sensor is made by coating polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel onto the surface of the PCFI, constructed by splicing a stub of PCF at the distal end of a single-mode fiber with its free end airhole collapsed. The experimental results demonstrate a high average sensitivity of 0.9 nm/pH unit for the 11 wt.% PVA/PAA coated sensor in the pH range from 2.5 to 6.5. The sensor also displays high repeatability and stability and low cross-sensitivity to temperature. Fast, reversible rise and fall times of 12 s and 18 s, respectively, are achieved for the sensor time response.

  17. Effects of natural current pH variability on the sea urchin Paracentrotus lividus larvae development and settlement.

    Science.gov (United States)

    García, Eliseba; Clemente, Sabrina; Hernández, José Carlos

    2018-08-01

    One of the most important environmental factors controlling the distribution, physiology, morphology and behaviour of marine invertebrates is ocean pH. In the last decade, the effects of decreasing ocean pH as a result of climate change processes (i.e. ocean acidification) on marine organisms have been target of much research. However, the effects of natural pH variability in the species' niche have been largely neglected. Marine coastal habitats are characterized by a high environmental variability and, in some cases, organisms are already coping with pH values predicted by the end of the century. It is thought that because of adaptation or acclimation to natural environmental variability, intertidal species may have some resilience to future changes. In this study, we explored the sensitivities of the sea urchin Paracentrotus lividus during its larvae development and settlement undergoing two different daily pH frequencies (12 h fluctuation from 7.7 to 8.1 units of pH, and constant pH treatment of 8.1 units of pH) that have been currently recorded in the sampling region (Canary Islands). Results showed that, despite larvae development was slightly enhanced by moderated fluctuating pH regimes, P. lividus larva was able to develop normally in both, fluctuating and constant, pH environments. Results of the settlement experiment showed very clear patterns since postlarvae settlement was only successful when a covering of algae was added, regardless of the pH fluctuation applied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits

    Science.gov (United States)

    Gautam, Mamta; Benson, Christopher J.

    2013-01-01

    Acid-sensing ion channels (ASICs) are expressed in skeletal muscle afferents, in which they sense extracellular acidosis and other metabolites released during ischemia and exercise. ASICs are formed as homotrimers or heterotrimers of several isoforms (ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3), with each channel displaying distinct properties. To dissect the ASIC composition in muscle afferents, we used whole-cell patch-clamp recordings to study the properties of acid-evoked currents (amplitude, pH sensitivity, the kinetics of desensitization and recovery from desensitization, and pharmacological modulation) in isolated, labeled mouse muscle afferents from wild-type (C57BL/6J) and specific ASIC−/− mice. We found that ASIC-like currents in wild-type muscle afferents displayed fast desensitization, indicating that they are carried by heteromeric channels. Currents from ASIC1a−/− muscle afferents were less pH-sensitive and displayed faster recovery, currents from ASIC2−/− mice showed diminished potentiation by zinc, and currents from ASIC3−/− mice displayed slower desensitization than those from wild-type mice. Finally, ASIC-like currents were absent from triple-null mice lacking ASIC1a, ASIC2a, and ASIC3. We conclude that ASIC1a, ASIC2a, and ASIC3 heteromers are the principle channels in skeletal muscle afferents. These results will help us understand the role of ASICs in exercise physiology and provide a molecular target for potential drug therapies to treat muscle pain.—Gautam, M., Benson, C. J. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits. PMID:23109675

  19. The chemistry, physiology and pathology of pH in cancer.

    Science.gov (United States)

    Swietach, Pawel; Vaughan-Jones, Richard D; Harris, Adrian L; Hulikova, Alzbeta

    2014-03-19

    Cell survival is conditional on the maintenance of a favourable acid-base balance (pH). Owing to intensive respiratory CO2 and lactic acid production, cancer cells are exposed continuously to large acid-base fluxes, which would disturb pH if uncorrected. The large cellular reservoir of H(+)-binding sites can buffer pH changes but, on its own, is inadequate to regulate intracellular pH. To stabilize intracellular pH at a favourable level, cells control trans-membrane traffic of H(+)-ions (or their chemical equivalents, e.g. ) using specialized transporter proteins sensitive to pH. In poorly perfused tumours, additional diffusion-reaction mechanisms, involving carbonic anhydrase (CA) enzymes, fine-tune control extracellular pH. The ability of H(+)-ions to change the ionization state of proteins underlies the exquisite pH sensitivity of cellular behaviour, including key processes in cancer formation and metastasis (proliferation, cell cycle, transformation, migration). Elevated metabolism, weakened cell-to-capillary diffusive coupling, and adaptations involving H(+)/H(+)-equivalent transporters and extracellular-facing CAs give cancer cells the means to manipulate micro-environmental acidity, a cancer hallmark. Through genetic instability, the cellular apparatus for regulating and sensing pH is able to adapt to extracellular acidity, driving disease progression. The therapeutic potential of disturbing this sequence by targeting H(+)/H(+)-equivalent transporters, buffering or CAs is being investigated, using monoclonal antibodies and small-molecule inhibitors.

  20. Complex formation in the system uranium(VI) - alpha-substituted carboxylic acids studied by TRLFS. Pt. III. Alpha-aminoisobutyric acid at pH 4

    International Nuclear Information System (INIS)

    Moll, H.; Geipel, G.; Bernhard, G.; Fanghaenel, Th.; Grenthe, I.

    2002-01-01

    At higher ligand concentrations a 1:2 complex between UO 2 2+ and α-aminoisobutyric acid was observed at pH 4. Fluorescence lifetimes and spectra were obtained for UO 2 [NH 3 C(CH 3 ) 2 COO] 2 2+ . The complex formation constant was found to be log β 1:2 = 2.07±0.25. (orig.)

  1. STABILITY OF BETACYANIN PIGMENTS FROM RED PURPLE PITAYA FRUIT (Hylocereus polyrhizus : INFLUENCE OF PH, TEMPERATURE, METAL IONS AND ASCORBIC ACID

    Directory of Open Access Journals (Sweden)

    Tang, C.S Tang, C.S

    2010-06-01

    Full Text Available Betacyanin pigments from red-purple pitaya fruit (Hylocereus polyrhizus could be an attractive source of red colourant for food application. This paper presents results on the extraction of betacyanin pigments from pitaya fruits grown locally in Malaysia. Both the flesh of the fruit and its mesocarp were investigated and it was found that the flesh had higher pigment contents compared to its peel component. The concentration of betacyanins expressed as betanin equivalents per 100 g of flesh and peel were 10.1 ± 0.6 mg and 6.7 ± 0.2 mg, respectively when 80% methanol was used.  The stability of betacyanin pigments were investigated at different pH, temperature and in presence of different concentrations of metal ions (Cu2+ and Fe2+ and ascorbic acid. The results showed that the pigment was most stable at pH range between 5 and 6. However, it forfeited its stability to the heat induced at elevated temperatures. Metal ions (Cu2+ and Fe2+ proved to be capable of accelerating betacyanin degradation, with Cu2+ exhibiting the greatest effect. By contrast, supplementation with ascorbic acid could enhance the pigment stability against the detrimental effects caused by pH, temperature and metal ions. Nevertheless, if the concentration of ascorbic acid exceeds 0.7 %, it may change its role from pigment stabilizer to become a pro-oxidant.    Keywords: Betacyanin, pigments, pitaya fruit, Hylocereus polyrhizus, ascorbic acid

  2. Effect of cytosolic pH on inward currents reveals structural characteristics of the proton transport cycle in the influenza A protein M2 in cell-free membrane patches of Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Mattia L DiFrancesco

    Full Text Available Transport activity through the mutant D44A of the M2 proton channel from influenza virus A was measured in excised inside-out macro-patches of Xenopus laevis oocytes at cytosolic pH values of 5.5, 7.5 and 8.2. The current-voltage relationships reveal some peculiarities: 1. "Transinhibition", i.e., instead of an increase of unidirectional outward current with increasing cytosolic H(+ concentration, a decrease of unidirectional inward current was found. 2. Strong inward rectification. 3. Exponential rise of current with negative potentials. In order to interpret these findings in molecular terms, different kinetic models have been tested. The transinhibition basically results from a strong binding of H(+ to a site in the pore, presumably His37. This assumption alone already provides inward rectification and exponential rise of the IV curves. However, it results in poor global fits of the IV curves, i.e., good fits were only obtained for cytosolic pH of 8.2, but not for 7.5. Assuming an additional transport step as e.g. caused by a constriction zone at Val27 resulted in a negligible improvement. In contrast, good global fits for cytosolic pH of 7.5 and 8.2 were immediately obtained with a cyclic model. A "recycling step" implies that the protein undergoes conformational changes (assigned to Trp41 and Val27 during transport which have to be reset before the next proton can be transported. The global fit failed at the low currents at pHcyt = 5.5, as expected from the interference of putative transport of other ions besides H(+. Alternatively, a regulatory effect of acidic cytosolic pH may be assumed which strongly modifies the rate constants of the transport cycle.

  3. Generation of pH responsive fluorescent nano capsules through simple steps for the oral delivery of low pH susceptible drugs

    Science.gov (United States)

    Radhakumary, Changerath; Sreenivasan, Kunnatheeri

    2016-11-01

    pH responsive nano capsules are promising as it can encapsulate low pH susceptible drugs like insulin and guard them from the hostile environments in the intestinal tract. The strong acidity of the gastro-intestinal tract and the presence of proteolytic enzymes are the tumbling blocks for the design of drug delivery vehicles through oral route for drugs like insulin. Nano capsules are normally built over templates which are subsequently removed by further steps. Such processes are complex and often lead into deformed and collapsed capsules. In this study, we choose calcium carbonate (CaCO3) nano particles to serve as template. Over CaCO3 nanoparticles, silica layers were built followed by polymethacrylic acid chains to acquire pH responsiveness. During the polymerization process of the methacrylic acid, the calcium carbonate core particles were dissolved leading to the formation of nano hollow capsules having a size that ranges from 225 to 246 nm and thickness from 19 to 58 nm. The methodology is simple and devoid of additional steps. The nano shells exhibited 80% release of the loaded model drug, insulin at pH 7.4 while at pH 2.0 the capsules nearly stopped the release of the drug. Polymethacrylic acid shows pH responsive swelling behavior that it swells at intestinal pH (7.0-7.5) and shrinks at gastric pH (˜2.0) thus enabling the safe unloading of the drug from the nano capsules.

  4. Acidic precipitation: considerations for an air-quality standard

    Energy Technology Data Exchange (ETDEWEB)

    Evans, L.S.; Hendrey, G.R.; Stensland, G.J.; Johnson, D.W.; Francis, A.J.

    1980-01-01

    Acidic precipitation, wet or frozen deposition with a hydrogen ion concentration greatern than 2.5 ..mu..eq l/sup -1/ is a significant air pollution problem in the United States. The chief anions accounting for the hydrogen ions in rainfall are nitrate and sulfate. Agricultural systems are more likely to derive net nutritional benefits from increasing inputs of acidic rain than are forest systems when soils alone are considered. Agricultural soils may benefit because of the high N and S requirements of agricultural plants. Detrimental effects to forest soils may result if atmospheric H/sup +/ inputs significantly add to or exceed H/sup +/ production by soils. Acidification of fresh waters of southern Scandinavia, southwestern Scotland, southeastern Canada, and northeastern United States is caused by acid deposition. Areas of these regions in which this acidification occurs have in common, highly acidic precipitation with volume weighted mean annual H/sup +/ concentrations of 25 ..mu..eq l/sup -1/ or higher and slow weathering granitic or precambrian bedrock with thin soils deficient in minerals which would provide buffer capacity. Biological effects of acidification of fresh waters are detectable below pH 6.0. As lake and stream pH levels decrease below pH. 6.0, many species of plants, invertebrates, and vertebrates are progressively eliminated. Generally, fisheries are impacted below pH 5.0 and are completely destroyed below pH 4.8. There are few studies that document effects of acidic precipitation on terrestrial vegetation to establish an air quality standard. It must be demonstrated that current levels of precipitation acidity alone significantly injure terrestrial vegetation. In terms of documented damanges, current research indicates that establishing a standard for precipitation for the volume weighted annual H/sup +/ concentration at 25 ..mu..eq l/sup -1/ may protect the most sensitive areas from permanent lake acidification.

  5. CONTINUOUS MEASUREMENT OF THE CYTOPLASMIC PH IN LACTOCOCCUS-LACTIS WITH A FLUORESCENT PH INDICATOR

    NARCIS (Netherlands)

    MOLENAAR, D; ABEE, T; KONINGS, WN

    1991-01-01

    The cytoplasmic pH of Lactococcus lactis was studied with the fluorescent pH indicator 2',7'-bis-(2-carboxyethyl)-5 (and-6)-carboxyfluorescein (BCECF). A novel method was applied for loading bacterial cells with BCECF, which consists of briefly treating a dense cell suspension with acid in the

  6. The effect of distribution of monomer moiety on the pH response and mechanical properties of poly(acrylonitrile-co-acrylic acid) copolymers

    International Nuclear Information System (INIS)

    Sahoo, Anasuya; Jassal, Manjeet; Agrawal, Ashwini K

    2010-01-01

    The pH response and mechanical properties of copolymer-based hydrogels such as poly(acrylonitrile-co-acrylic acid) are usually attributed to their chemical composition. In this study, it has been shown that the architecture of the polymer chains, i.e. the distribution of comonomers in the macromolecules, also plays a major role in controlling these properties. A series of four poly(acrylonitrile-co-acrylic acids) with fixed composition (i.e. ∼30 mol% acrylic acid moieties) were synthesized, where the block lengths of both AN (acrylonitrile) and AAc (acrylic acid) moieties in the copolymers were varied by controlling the feeding pattern of the monomers during free radical copolymerization. These copolymers were then converted into fine fibers of the same dimensions. The monomer distribution in the four copolymers was estimated using quantitative carbon 13 C nuclear magnetic resonance (NMR) and related to the mechanical and pH response properties of the resultant fibers. The pH response of the fibers with similar composition increased dramatically as the block length of the AAc moiety was increased, while the mechanical properties increased as a direct function of the block length of the AN moieties. The fiber's response at pH 10 in terms of the change in length increased by ∼four times while its response rate increased by ∼50 times with the increase in block length of the AAc moiety. On the other hand, the tensile properties and retractive stress increased by ∼four times with the increase in the block length of the AN moiety

  7. The effect of distribution of monomer moiety on the pH response and mechanical properties of poly(acrylonitrile-co-acrylic acid) copolymers

    Science.gov (United States)

    Sahoo, Anasuya; Jassal, Manjeet; Agrawal, Ashwini K.

    2010-02-01

    The pH response and mechanical properties of copolymer-based hydrogels such as poly(acrylonitrile-co-acrylic acid) are usually attributed to their chemical composition. In this study, it has been shown that the architecture of the polymer chains, i.e. the distribution of comonomers in the macromolecules, also plays a major role in controlling these properties. A series of four poly(acrylonitrile-co-acrylic acids) with fixed composition (i.e. ~30 mol% acrylic acid moieties) were synthesized, where the block lengths of both AN (acrylonitrile) and AAc (acrylic acid) moieties in the copolymers were varied by controlling the feeding pattern of the monomers during free radical copolymerization. These copolymers were then converted into fine fibers of the same dimensions. The monomer distribution in the four copolymers was estimated using quantitative carbon 13C nuclear magnetic resonance (NMR) and related to the mechanical and pH response properties of the resultant fibers. The pH response of the fibers with similar composition increased dramatically as the block length of the AAc moiety was increased, while the mechanical properties increased as a direct function of the block length of the AN moieties. The fiber's response at pH 10 in terms of the change in length increased by ~four times while its response rate increased by ~50 times with the increase in block length of the AAc moiety. On the other hand, the tensile properties and retractive stress increased by ~four times with the increase in the block length of the AN moiety.

  8. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: Effect of pH

    International Nuclear Information System (INIS)

    Jimenez-Rodriguez, A.M.; Duran-Barrantes, M.M.; Borja, R.; Sanchez, E.; Colmenarejo, M.F.; Raposo, F.

    2009-01-01

    Four alternatives (runs A, B, C and D) for heavy metals removal (Fe, Cu, Zn and Al) from acid mine drainage water (AMDW) produced in the mining areas of the Huelva Province, Spain, were evaluated. In run A, the anaerobic effluent from the treatment of acid mine drainage water (cheese whey added as a source of carbon) was mixed with the raw AMDW. The pH increased to 3.5 with the addition of KOH. In run B, biogas with around 30% of hydrogen sulphide obtained in the anaerobic reactor was sparged to the mixture obtained in run A, but in this case at a pH of 5.5. In run C, the pH of the raw AMDW was increased to 3.5 by the addition of KOH solution. Finally, in run D, the pH of the raw AMDW was increased to 5.5 by the addition of KOH solution and further biogas was sparged under the same conditions as in run A. It was found that heavy metal removal was a function of pH. At a pH of 3.5 most of the iron was removed while Zn and Cu were partially removed. At a pH of 5.5 the removal of all metals increased considerably. The best results were obtained in run B where the percentages of removal of Fe, Cu, Zn and Al achieved values of 91.3, 96.1, 79.0 and 99.0%, respectively. According to the experimental results obtained tentative schemas of the flow diagram of the processes were proposed.

  9. Effect of pH on radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Chang, W. Song; Park, Heon J.; Lyons, John C.; Auger, Elizabeth A.; Lee, Hyung-Sik

    1996-01-01

    Purpose/Objective: The effect of environmental pH on the radiation-induced apoptosis in tumor cells in vitro was investigated. Materials and Methods: SCK mammary adenocarcinoma cells of A/J mice were irradiated with γ-rays using a 137 Cs irradiator and incubated in media of different pHs. After incubation at 37 degree sign C for 24-120 hrs., the extent of apoptosis was determined using agarose gel electrophoresis of DNA, in situ TUNEL staining, flow cytometry, and release of 3 H from 3 H-thymidine labeled cells. The membrane integrity, using the trypan blue exclusion method, and the clonogenicity of the cells were also determined. Results: Irradiation with 2-12 Gy of γ-rays induced apoptosis in pH 7.5 medium within 48 hrs. The radiation-induced apoptosis progressively declined as the medium pH was lowered so that little apoptosis occurred in 48 hrs. after irradiation with 12 Gy in pH 6.6 medium. However, when the cells were irradiated and incubated for 48 hrs. in pH 6.6 medium and then medium was replaced with pH 7.5 medium, apoptosis promptly occurred. Apoptosis also occurred even in pH 6.6 medium when the cells were irradiated and maintained in pH 7.5 medium for 8 hrs. or longer post-irradiation before incubation in pH 6.6 medium. Conclusion: An acidic environment markedly suppresses radiation-induced apoptosis probably by suppressing the expression of initial signals responsible for irradiation-induced apoptosis. Indications are that the signals persist in an acidic environment and trigger apoptosis when the environmental acidity is eased. Our results suggest that the acidic environment in human tumors may inhibit the apoptosis after irradiation. However, apoptosis may be triggered when reoxygenation occurs after irradiation, and thus, the intratumor environment becomes less acidic after irradiation. Not only the change in pO 2 but the change in pH during the course of fractionated radiotherapy may greatly influence the outcome of the treatment

  10. Microculture model studies on the effect of sorbic acid on Penicillium chrysogenum, Cladosporium cladosporioides and Ulocladium atrum at different pH levels.

    Science.gov (United States)

    Skirdal, I M; Eklund, T

    1993-02-01

    The minimum growth-inhibitory concentration of sorbic acid has been determined for Penicillium chrysogenum, Cladosporium cladosporioides and Ulocladium atrum at pH 4.1-7.6 by using a microculture technique. This technique had earlier been applied to bacteria and Candida albicans and gave very reliable minimum inhibitory values. This investigation has shown that it is suitable also for determination of mould growth. The minimum inhibitory concentrations of sorbic acid were at the tested pH levels 1-230 mmol l-1 for P. chrysogenum, 0.3-18.0 mmol l-1 for C. cladosporioides and 0.2-33.0 mmol l-1 for U. atrum. A mathematical model for combined inhibition by dissociated and undissociated acid, which gave a good description of the minimum inhibitory concentration data earlier obtained for bacteria and Candida albicans, was suitable also for moulds. Both dissociated and undissociated acid contributed to growth inhibition.

  11. Auditory- and visual-evoked potentials in Mexican infants are not affected by maternal supplementation with 400 mg/d docosahexaenoic acid in the second half of pregnancy.

    Science.gov (United States)

    Stein, Aryeh D; Wang, Meng; Rivera, Juan A; Martorell, Reynaldo; Ramakrishnan, Usha

    2012-08-01

    The evidence relating prenatal supplementation with DHA to offspring neurological development is limited. We investigated the effect of prenatal DHA supplementation on infant brainstem auditory-evoked responses and visual- evoked potentials in a double-blind, randomized controlled trial in Cuernavaca, Mexico. Pregnant women were supplemented daily with 400 mg DHA or placebo from gestation wk 18-22 through delivery. DHA and placebo groups did not differ in maternal characteristics at randomization or infant characteristics at birth. Brainstem auditory-evoked responses were measured at 1 and 3 mo in 749 and 664 infants, respectively, and visual-evoked potentials were measured at 3 and 6 mo in 679 and 817 infants, respectively. Left-right brainstem auditory-evoked potentials were moderately correlated (range, 0.26-0.43; all P right visual-evoked potentials were strongly correlated (range, 0.79-0.94; all P 0.10). We conclude that DHA supplementation during pregnancy did not influence brainstem auditory-evoked responses at 1 and 3 mo or visual-evoked potentials at 3 and 6 mo.

  12. Sorption of Am(III) on attapulgite/iron oxide magnetic composites. Effect of pH, ionic strength and humic acid

    International Nuclear Information System (INIS)

    Yu, T.; East China Institute of Technology, Fuzhou, Jiangxi; Fan, Q.H.; Wu, W.S.; Lanzhou Univ., Gansu; Liu, S.P.; Pan, D.Q.; Zhang, Y.Y.; Li, P.

    2012-01-01

    Attapulgite/iron oxide magnetic (ATP/IOM) composites was prepared, and the sorption behavior of Am(III) on that composites was studied as a function of pH, ionic strength, the solid-to-liquid ratio (m/V), contact time, and the concentration of Am(III) under ambient conditions using batch technique. The time to achieve the sorption equilibrium was less than 5 h. The sorption of Am(III) on ATP/IOM composites was strongly affected by pH and ionic strength. Though ion exchange reaction contributed to Am(III) sorption over low pH range and low ionic strength, the sorption was mainly dominated by surface complexion (i.e., outer- and/or inner-sphere complexes) in the whole observed pH range. In the presence of humic acid (HA), the sorption edge of Am(III) on ATP/IOM composites obviously shifted to lower pH; but Am(III) sorption gradually became weak after pH exceeded 4, which may be mainly in terms of the soluble complexes of HA-Am(III). (orig.)

  13. Proteolytische activiteit bij neutrale pH in rundermilt

    NARCIS (Netherlands)

    Marrink, Jan

    1969-01-01

    Intracellular enzymes, hydrolysing proteins optimally at acid pH values (acid proteases), have been studied in detail by several investigators. The existence of proteolytic activity at neutral pH in animal tissue extracts, on the other hand, has often been mentioned, but with few reports on the

  14. Nuclear Magnetic Resonance Structures of GCN4p Are Largely Conserved When Ion Pairs Are Disrupted at Acidic pH but Show a Relaxation of the Coiled Coil Superhelix.

    Science.gov (United States)

    Kaplan, Anne R; Brady, Megan R; Maciejewski, Mark W; Kammerer, Richard A; Alexandrescu, Andrei T

    2017-03-21

    To understand the roles ion pairs play in stabilizing coiled coils, we determined nuclear magnetic resonance structures of GCN4p at three pH values. At pH 6.6, all acidic residues are fully charged; at pH 4.4, they are half-charged, and at pH 1.5, they are protonated and uncharged. The α-helix monomer and coiled coil structures of GCN4p are largely conserved, except for a loosening of the coiled coil quaternary structure with a decrease in pH. Differences going from neutral to acidic pH include (i) an unwinding of the coiled coil superhelix caused by the loss of interchain ion pair contacts, (ii) a small increase in the separation of the monomers in the dimer, (iii) a loosening of the knobs-into-holes packing motifs, and (iv) an increased separation between oppositely charged residues that participate in ion pairs at neutral pH. Chemical shifts (HN, N, C', Cα, and Cβ) of GCN4p display a seven-residue periodicity that is consistent with α-helical structure and is invariant with pH. By contrast, periodicity in hydrogen exchange rates at neutral pH is lost at acidic pH as the exchange mechanism moves into the EX1 regime. On the basis of 1 H- 15 N nuclear Overhauser effect relaxation measurements, the α-helix monomers experience only small increases in picosecond to nanosecond backbone dynamics at acidic pH. By contrast, 13 C rotating frame T 1 relaxation (T 1ρ ) data evince an increase in picosecond to nanosecond side-chain dynamics at lower pH, particularly for residues that stabilize the coiled coil dimerization interface through ion pairs. The results on the structure and dynamics of GCNp4 over a range of pH values help rationalize why a single structure at neutral pH poorly predicts the pH dependence of the unfolding stability of the coiled coil.

  15. Antibacterial protection by enterocin AS-48 in sport and energy drinks with less acidic pH values.

    Science.gov (United States)

    Viedma, Pilar Martinez; Abriouel, Hikmate; Ben Omar, Nabil; López, Rosario Lucas; Valdivia, Eva; Gálvez, Antonio

    2009-04-01

    The low pH and acid content found in sports and energy drinks are a matter of concern in dental health. Raising the pH may solve this problem, but at the same time increase the risks of spoilage or presence of pathogenic bacteria. In the present study, commercial energy drinks were adjusted to pH 5.0 and challenged with Listeria monocytogenes (drinks A to F), Staphylococcus aureus, Bacillus cereus, and Bacillus licheniformis (drink A) during storage at 37 degrees C. L. monocytogenes was able to grow in drink A and survived in drinks D and F for at least 2 days. Addition of enterocin AS-48 (1 microg/ml final concentration) rapidly inactivated L. monocytogenes in all drinks tested. S. aureus and B. cereus also survived quite well in drink A, and were completely inactivated by 12.5 microg/ml enterocin AS-48 after 2 days of storage or by 25 microg/ml bacteriocin after 1 day. B. licheniformis was able to multiply in drink A, but it was completely inactivated by 5 microg/ml enterocin AS-48 after 2 days of storage or by 12.5 microg/ml bacteriocin after 1 day. Results from the present study suggest that enterocin AS-48 could be used as a natural preservative against these target bacteria in less acidic sport and energy drinks.

  16. Interaural difference values of vestibular evoked myogenic.

    Directory of Open Access Journals (Sweden)

    Marziyeh Moallemi

    2015-01-01

    Full Text Available Migraine is a neurologic disease, which often is associated with a unilateral headache. Vestibular abnormalities are common in migraine. Vestibular evoked myogenic potentials (VEMPs assess otolith function in particular functional integrity of the saccule and the inferior vestibular nerve. We used VEMP to evaluate if the migraine headache can affect VEMP asymmetry parameters. A total of 25 patients with migraine (22 females and 3 males who were diagnosed according to the criteria of IHS-1988 were enrolled in this cross-sectional study. Control group consisted of 26 healthy participants (18 female and 8 male, without neurotological symptoms and history of migraine. The short tone burst (95 dB nHL, 500 Hz was presented to ears. VEMP was recorded with surface electromyography over the contracted ipsilateral sternocleidomastoid (SCM muscle. Although current results showed that the amplitude ratio is greater in migraine patients than normal group, there was no statistical difference between two groups in mean asymmetry parameters of VEMP. Asymmetry measurements in vestibular evoked myogenic potentials probably are not indicators of unilateral deficient in saccular pathways of migraine patients.

  17. Microbiological profiles, pH, and titratable acidity of chorizo and salchichón (two Spanish dry fermented sausages) manufactured with ostrich, deer, or pork meat.

    Science.gov (United States)

    Capita, Rosa; Llorente-Marigómez, Sandra; Prieto, Miguel; Alonso-Calleja, Carlos

    2006-05-01

    Microbial counts, pH, and titratable acidity were determined in 102 Spanish dry fermented sausages (chorizo and salchichón) made with ostrich, deer, or pork meat. Average microbial counts (log CFU per gram) varied from 5.46 +/- 0.24 to 8.25 +/- 0.80 (total viable counts), from 4.79 +/- 0.36 to 7.99 +/- 0.20 (psychrotrophs), from 0.00 +/- 0.00 to 0.99 +/- 1.10 (undetectable values were assumed to be zero) (Enterobacteriaceae), from 0.00 +/- 0.00 to 4.27 +/- 1.47 (enterococci), from 5.15 +/- 1.15 to 8.46 +/- 0.49 (lactic acid bacteria), from 3.08 +/- 0.44 to 6.59 +/- 1.76 (Micrococcaceae), from 2.27 +/- 1.53 to 5.11 +/- 1.81 (molds and yeasts), from 0.00 +/- 0.00 to 2.25 +/- 0.81 (pseudomonads), and from 0.00 +/- 0.00 to 2.78 +/- 0.46 (Brochothrix thermosphacta). Average pH and titratable acidity varied from 5.07 +/- 0.25 to 5.63 +/- 0.51 (pH units) and from 0.30 +/- 0.01 to 0.86 +/- 0.19 (% lactic acid). Both type of sausage (P < 0.05) and species of meat (P < 0.001) influenced microbial counts. Salchich6n samples showed lower average values than chorizo samples for most microbial groups (significant for Enterobacteriaceae, lactic acid bacteria, and B. thermosphacta) and titratable acidity. Sausages made from pork showed the highest microbial loads for total viable counts, psychrotrophs, Enterobacteriaceae, enterococci, lactic acid bacteria, and yeasts and molds. Higher counts were observed only for pseudomonads in ostrich sausages. B. thermosphacta levels were similar for all species of meat. The highest average pH value was observed in sausages made from ostrich meat, and the lowest titratable acidity level was found in pork sausages.

  18. Ammonium ion transport by the AMT/Rh homolog TaAMT1;1 is stimulated by acidic pH

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Alsterfjord, Magnus; Macaulay, Nanna

    2009-01-01

    It is unclear how ammonia is transported by proteins from the Amt/Mep/Rh superfamily. We investigated this for the ammonium transporter TaAMT1;1 from wheat expressed in Xenopus oocytes by two-electrode voltage clamp and radio-labeled uptakes. Inward currents were activated by NH (4......) (+) or methylammonium ions (MeA(+)). Importantly, currents increased fivefold when the external pH was decreased from 7.4 to 5.5; this type of pH dependence is unique and is a strong indication of NH (4) (+) or MeA(+) transport. This was confirmed by the close correlation between the uptake of radio-labeled Me......A(+) and MeA(+)-induced currents. Homology models of members of the Amt/Mep/Rh superfamily exhibited major divergences in their cytoplasmic regions. A point mutation in this region of TaAMT1;1 abolished the pH sensitivity and decreased the apparent affinities for NH (4) (+) and MeA(+). We suggest a model...

  19. Abdominal acupuncture reduces laser-evoked potentials in healthy subjects

    DEFF Research Database (Denmark)

    Pazzaglia, C.; Liguori, S.; Minciotti, I.

    2015-01-01

    Objective: Acupuncture is known to reduce clinical pain, although the exact mechanism is unknown. The aim of the current study was to investigate the effect of acupuncture on laser-evoked potential amplitudes and laser pain perception. Methods: In order to evaluate whether abdominal acupuncture...... is able to modify pain perception, 10 healthy subjects underwent a protocol in which laser-evoked potentials (LEPs) and laser pain perception were collected before the test (baseline), during abdominal acupuncture, and 15. min after needle removal. The same subjects also underwent a similar protocol...... in which, however, sham acupuncture without any needle penetration was used. Results: During real acupuncture, both N1 and N2/P2 amplitudes were reduced, as compared to baseline (p . < 0.01). The reduction lasted up to 15. min after needle removal. Furthermore, laser pain perception was reduced during...

  20. Tunable pH and redox-responsive drug release from curcumin conjugated γ-polyglutamic acid nanoparticles in cancer microenvironment.

    Science.gov (United States)

    Pillarisetti, Shameer; Maya, S; Sathianarayanan, S; Jayakumar, R

    2017-11-01

    Tunable pH and redox responsive polymer was prepared using γ-polyglutamic acid (γ-PGA) with linker 3-mercaptopropionic acid (3-MPA) (γ-PGA_SH) via oxidation to obtain redox responsive disulfide (γ-PGA_SS) backbone and adipic acid dihydrazide (ADH) (γ-PGA_SS_ADH) with hydrazide functional group for pH responsiveness. Further curcumin (Cur) was conjugated through hydrazone bond of the γ-PGA_SS_ADH via Schiff base reaction to obtain (γ-PGA_SS_ADH_Cur). The prepared systems were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Qq-TOF-MS/MS) and Solid state nuclear magnetic resonance (SS NMR) techniques. γ-PGA_SS_ADH_Cur formed self-assembled core shell nanoparticles (NPs) in existence of stabilized aqueous medium. γ-PGA_SS_ADH_Cur NPs maintained its stability in physiological condition. NPs tunable Cur release and cytotoxicity were observed for γ-PGA_SS_ADH_Cur NPs in both acidic and redox conditions mimicking the cancer microenvironment. γ-PGA_SS_ADH_Cur NPs uptake study showed via endocytosis mechanism resulted in the lysosomal entrapment of these NPs within the cell. γ-PGA_SS_ADH_Cur NPs exhibited a dual stimuli responsive drug delivery and can be used as a smart and potential drug delivery system in cancer microenvironment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Low-Frequency Pulsed Current Versus Kilohertz-Frequency Alternating Current: A Scoping Literature Review.

    Science.gov (United States)

    Vaz, Marco Aurélio; Frasson, Viviane Bortoluzzi

    2018-04-01

    To compare the effectiveness of low-frequency pulsed current versus kilohertz-frequency alternating current in terms of evoked force, discomfort level, current intensity, and muscle fatigability; to discuss the physiological mechanisms of each neuromuscular electrical stimulation type; and to determine if kilohertz-frequency alternating current is better than low-frequency pulsed current for clinical treatment. Articles were obtained from PubMed, Scopus, Cochrane Central Register of Controlled Trials, CINAHL, MEDLINE, and SPORTSDiscus databases using the terms Russian current or kilohertz current or alternating current or pulsed current or Aussie current and torque or discomfort or fatigue or current intensity, and through citation tracking up to July 2017. Two independent reviewers selected studies comparing the use of the 2 neuromuscular electrical stimulation currents. Studies describing maximal current intensity tolerated and the main effects of the 2 different current types on discomfort, muscle force, and fatigability were independently reviewed. Data were systematized according to (1) methodology; (2) electrical current characteristics; and (3) outcomes on discomfort level, evoked force, current intensity, and muscle fatigability. The search revealed 15 articles comparing the 2 current types. Kilohertz-frequency alternated current generated equal or less force, similar discomfort, similar current intensity for maximal tolerated neuromuscular electrical stimulation, and more fatigue compared with low-frequency pulsed current. Similar submaximal levels of evoked force revealed higher discomfort and current intensity for kilohertz-frequency alternated current compared with low-frequency pulsed current. Available evidence does not support the idea that kilohertz-frequency alternated current is better than low-frequency pulsed current for strength training and rehabilitation. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier

  2. The acid test of fluoride: how pH modulates toxicity.

    Directory of Open Access Journals (Sweden)

    Ramaswamy Sharma

    2010-05-01

    Full Text Available It is not known why the ameloblasts responsible for dental enamel formation are uniquely sensitive to fluoride (F(-. Herein, we present a novel theory with supporting data to show that the low pH environment of maturating stage ameloblasts enhances their sensitivity to a given dose of F(-. Enamel formation is initiated in a neutral pH environment (secretory stage; however, the pH can fall to below 6.0 as most of the mineral precipitates (maturation stage. Low pH can facilitate entry of F(- into cells. Here, we asked if F(- was more toxic at low pH, as measured by increased cell stress and decreased cell function.Treatment of ameloblast-derived LS8 cells with F(- at low pH reduced the threshold dose of F(- required to phosphorylate stress-related proteins, PERK, eIF2alpha, JNK and c-jun. To assess protein secretion, LS8 cells were stably transduced with a secreted reporter, Gaussia luciferase, and secretion was quantified as a function of F(- dose and pH. Luciferase secretion significantly decreased within 2 hr of F(- treatment at low pH versus neutral pH, indicating increased functional toxicity. Rats given 100 ppm F(- in their drinking water exhibited increased stress-mediated phosphorylation of eIF2alpha in maturation stage ameloblasts (pH<6.0 as compared to secretory stage ameloblasts (pH approximately 7.2. Intriguingly, F(--treated rats demonstrated a striking decrease in transcripts expressed during the maturation stage of enamel development (Klk4 and Amtn. In contrast, the expression of secretory stage genes, AmelX, Ambn, Enam and Mmp20, was unaffected.The low pH environment of maturation stage ameloblasts facilitates the uptake of F(-, causing increased cell stress that compromises ameloblast function, resulting in dental fluorosis.

  3. Beyond the evoked/intrinsic neural process dichotomy

    Directory of Open Access Journals (Sweden)

    Taylor Bolt

    2018-03-01

    Full Text Available Contemporary functional neuroimaging research has increasingly focused on characterization of intrinsic or “spontaneous” brain activity. Analysis of intrinsic activity is often contrasted with analysis of task-evoked activity that has traditionally been the focus of cognitive neuroscience. But does this evoked/intrinsic dichotomy adequately characterize human brain function? Based on empirical data demonstrating a close functional interdependence between intrinsic and task-evoked activity, we argue that the dichotomy between intrinsic and task-evoked activity as unobserved contributions to brain activity is artificial. We present an alternative picture of brain function in which the brain’s spatiotemporal dynamics do not consist of separable intrinsic and task-evoked components, but reflect the enaction of a system of mutual constraints to move the brain into and out of task-appropriate functional configurations. According to this alternative picture, cognitive neuroscientists are tasked with describing both the temporal trajectory of brain activity patterns across time, and the modulation of this trajectory by task states, without separating this process into intrinsic and task-evoked components. We argue that this alternative picture of brain function is best captured in a novel explanatory framework called enabling constraint. Overall, these insights call for a reconceptualization of functional brain activity, and should drive future methodological and empirical efforts.

  4. Alkaline pH sensor molecules.

    Science.gov (United States)

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.

  5. Cough reflex sensitivity does not correlate with the esophageal sensitivity to acid in patients with gastroesophageal reflux disease.

    Science.gov (United States)

    Duricek, Martin; Nosakova, Lenka; Zatko, Tomas; Pecova, Renata; Hyrdel, Rudolf; Banovcin, Peter

    2018-03-27

    The sensitization of cough reflex observed in patients with gastroesophageal reflux disease (GERD) is attributed to activation of vagal C-fibers innervating the esophagus by acid, while the heartburn in GERD is mediated by esophageal acid sensitive C-fibers derived from (dorsal root ganglia) DRG. Here we explored the relationship between cough reflex sensitivity (CRS) and esophageal sensitivity to acid. We evaluated CRS to capsaicin inhalation and esophageal sensitivity to acid (intensity of heartburn evoked by esophageal infusions of acid pH = 3, 2 and 1) in patients with GERD and chronic heartburn before and 3 months after proton pump inhibitor (PPI) treatment. There was no correlation between CRS and esophageal sensitivity to acid at any pH tested. PPI treatment substantially reduced esophageal sensitivity to acid but did not affect CRS. We conclude that a simple direct relationship between CRS and esophageal sensitivity to acid is unlikely. The results indicate that spinal and vagal afferent pathways from the esophagus are probably influenced separately in subjects with GERD. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. pH dependence of MHC class I-restricted peptide presentation

    DEFF Research Database (Denmark)

    Stryhn, A; Pedersen, L O; Romme, T

    1996-01-01

    The function of MHC class I molecules is to bind and present antigenic peptides to cytotoxic T cells. Here, we report that class I-restricted peptide presentation is strongly pH dependent. The presentation of some peptides was enhanced at acidic pH, whereas the presentation of others was inhibited....... Biochemical peptide-MHC class I binding assays demonstrated that peptide-MHC class I complexes are more stable at neutral pH than at acidic pH. We suggest that acid-dependent peptide dissociation can generate empty class I molecules and that the resulting binding potential can be exploited by a subset...

  7. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhujian [College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642 (China); Wu, Pingxiao, E-mail: pppxwu@scut.edu.cn [School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006 (China); Gong, Beini; Yang, Shanshan; Li, Hailing [School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006 (China); Zhu, Ziao; Cui, Lihua [College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642 (China)

    2016-05-01

    Graphical abstract: - Highlights: • G–Fe chelate molecules were well preserved into montmorillonite. • The product shows an excellent catalytic activity under sunlight at neutral pH value. • G–Fe–Mt is a promising catalyst for advanced oxidation processes. - Abstract: To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G–Fe–Mt) was developed. The physiochemical properties of G–Fe–Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G–Fe–Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G–Fe–Mt under neutral pH. G–Fe–Mt is a promising catalyst for advanced oxidation processes.

  8. Determination of buffering capacity of selected fermented feedstuffs and the effect of dietary acid-base status on ruminal fluid pH

    Directory of Open Access Journals (Sweden)

    Lukáš Bujňák

    2011-01-01

    Full Text Available The aim of this study was to evaluate the buffering capacity of some fermented feedstuffs and the effect of dietary acid-base status on ruminal fluid pH. The first experiment was performed with different types (n = 24 of wet and dry fermented feedstuffs to determine the buffering capacity and buffer value index. The buffer value index of wet corn silages was more negative than for dry corn silages account on acid loss during drying. In the second experiment, the effects of different concentrations of lactic acid on base-buffering capacity, buffer value index and indicators of fermentation process were studied in two groups of corn silages (n = 21. Two groups of analyzed values were compared using unpaired t-test. Differences among the groups in base-buffering capacity (P P P > 0.05 correlation was found between ruminal pH and dietary buffer value index. These results confirmed that dietary acid-base status alone is not adequate as a predictor of the need for buffers in the diet of lactating cows. It is the first report about using of buffering capacity determination methods for evaluation of feedstuffs and dietary acid-base status in dairy cows.

  9. A systematic study of the effect of low pH acid treatment on anti-drug antibodies specific for a domain antibody therapeutic: Impact on drug tolerance, assay sensitivity and post-validation method assessment of ADA in clinical serum samples.

    Science.gov (United States)

    Kavita, Uma; Duo, Jia; Crawford, Sean M; Liu, Rong; Valcin, Joan; Gleason, Carol; Dong, Huijin; Gadkari, Snaehal; Dodge, Robert W; Pillutla, Renuka C; DeSilva, Binodh S

    2017-09-01

    pH also affect drug-specific signal differentially in individual samples. The results presented here represent the most extensive analyses to date on acid treatment of a wide range of ADA affinities to explore sensitivity and drug tolerance issues. They have led to a refinement of our current best practices for ADA method development and provide a depth of data to interrogate low pH mediated immune complex dissociation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of pH and salts on microstructure and viscoelastic properties of lemon peel acid insoluble fiber suspensions upon high pressure homogenization

    NARCIS (Netherlands)

    Willemsen, Katleen L.D.D.; Panozzo, Agnese; Moelants, Katlijn; Cardinaels, Ruth; Wallecan, Joël; Moldenaers, Paula; Hendrickx, Marc

    2018-01-01

    In the present paper the effect of pH and salts on microstructural and viscoelastic properties of lemon peel acid insoluble fiber residue (AR) suspensions upon mild and intense shearing was investigated. To this aim, AR suspensions were adjusted to a pH of 2.5 (as is), 4.5, 5.5, 7 or 10 prior to or

  11. Chemical mechanism of D-amino acid oxidase from Rhodotorula gracilis: pH dependence of kinetic parameters.

    Science.gov (United States)

    Ramón, F; Castillón, M; De La Mata, I; Acebal, C

    1998-01-01

    The variation of kinetic parameters of d-amino acid oxidase from Rhodotorula gracilis with pH was used to gain information about the chemical mechanism of the oxidation of D-amino acids catalysed by this flavoenzyme. d-Alanine was the substrate used. The pH dependence of Vmax and Vmax/Km for alanine as substrate showed that a group with a pK value of 6.26-7.95 (pK1) must be unprotonated and a group with a pK of 10.8-9.90 (pK2) must be protonated for activity. The lower pK value corresponded to a group on the enzyme involved in catalysis and whose protonation state was not important for binding. The higher pK value was assumed to be the amino group of the substrate. Profiles of pKi for D-aspartate as competitive inhibitor showed that binding is prevented when a group on the enzyme with a pK value of 8.4 becomes unprotonated; this basic group was not detected in Vmax/Km profiles suggesting its involvement in binding of the beta-carboxylic group of the inhibitor. PMID:9461524

  12. Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.

    Science.gov (United States)

    Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon

    2013-01-01

    Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.

  13. Fatty acid fouling of forward osmosis membrane: Effects of pH, calcium, membrane orientation, initial permeate flux and foulant composition.

    Science.gov (United States)

    Zhao, Pin; Gao, Baoyu; Yue, Qinyan; Liu, Pan; Shon, Ho Kyong

    2016-08-01

    Octanoic acid (OA) was selected to represent fatty acids in effluent organic matter (EOM). The effects of feed solution (FS) properties, membrane orientation and initial permeate flux on OA fouling in forward osmosis (FO) were investigated. The undissociated OA formed a cake layer quickly and caused the water flux to decline significantly in the initial 0.5hr at unadjusted pH3.56; while the fully dissociated OA behaved as an anionic surfactant and promoted the water permeation at an elevated pH of 9.00. Moreover, except at the initial stage, the sudden decline of water flux (meaning the occurrence of severe membrane fouling) occurred in two conditions: 1. 0.5mmol/L Ca(2+), active layer facing draw solution (AL-DS) and 1.5mol/L NaCl (DS); 2. No Ca(2+), active layer-facing FS (AL-FS) and 4mol/L NaCl (DS). This demonstrated that cake layer compaction or pore blocking occurred only when enough foulants were absorbed into the membrane surface, and the water permeation was high enough to compact the deposit inside the porous substrate. Furthermore, bovine serum albumin (BSA) was selected as a co-foulant. The water flux of both co-foulants was between the fluxes obtained separately for the two foulants at pH3.56, and larger than the two values at pH9.00. This manifested that, at pH3.56, BSA alleviated the effect of the cake layer caused by OA, and OA enhanced BSA fouling simultaneously; while at pH9.00, the mutual effects of OA and BSA eased the membrane fouling. Copyright © 2016. Published by Elsevier B.V.

  14. Influence of Bath Composition at Acidic pH on Electrodeposition of Nickel-Layered Silicate Nanocomposites for Corrosion Protection

    Directory of Open Access Journals (Sweden)

    Jeerapan Tientong

    2013-01-01

    Full Text Available Nickel-layered silicates were electrochemically deposited from acidic bath solutions. Citrate was used as a ligand to stabilize nickel (II ions in the plating solution. The silicate, montmorillonite, was exfoliated by stirring in aqueous solution over 24 hours. The plating solutions were analyzed for zeta-potential, particle size, viscosity, and conductivity to investigate the effects of the composition at various pHs. The solution particles at pH 2.5 (−22.2 mV and pH 3.0 (−21.9 mV were more stable than at pH 1.6 (−10.1 mV as shown by zeta-potential analysis of the nickel-citrate-montmorillonite plating solution. Ecorr for the films ranged from −0.32 to −0.39 V with varying pH from 1.6 to 3.0. The films were immersed in 3.5% NaCl and the open circuit potential monitored for one month. The coatings deposited at pH 3.0 were stable 13 days longer in the salt solution than the other coatings. X-ray diffraction showed a change in the (111/(200 ratio for the coatings at the various pHs. The scanning electron microscopy and hardness results also support that the electrodeposition of nickel-montmorillonite at pH 3.0 (234 GPa had improved hardness and morphology compared to pH 2.5 (174 GPa and pH 1.6 (147 GPa.

  15. Enantioselective recognition of mandelic acid by a 3,6-dithiophen-2-yl-9H-carbazole-based chiral fluorescent bisboronic acid sensor.

    Science.gov (United States)

    Wu, Yubo; Guo, Huimin; James, Tony D; Zhao, Jianzhang

    2011-07-15

    We have prepared chiral fluorescent bisboronic acid sensors with 3,6-dithiophen-2-yl-9H-carbazole as the fluorophore. The thiophene moiety was used to extend the π-conjugation framework of the fluorophore in order to red-shift the fluorescence emission and, at the same time, to enhance the novel process where the fluorophore serves as the electron donor of the photoinduced electron transfer process (d-PET) of the boronic acid sensors; i.e., the background fluorescence of the sensor 1 at acidic pH is weaker compared to that at neutral or basic pH, in stark contrast to the typical a-PET boronic acid sensors (where the fluorophore serves as the electron acceptor of the photoinduced electron transfer process). The benefit of the d-PET boronic acid sensors is that the recognition of the hydroxylic acids can be achieved at acidic pH. We found that the thiophene moiety is an efficient π-conjugation linker and electron donor; as a result, the d-PET contrast ratio of the sensors upon variation of the pH is improved 10-fold when compared to the previously reported d-PET sensors without the thiophene moiety. Enantioselective recognition of tartaric acid was achieved at acid pH, and the enantioselectivity (total response K(D)I(F)(D)/K(L)I(F)(L)) is 3.3. The fluorescence enhancement (I(F)(Sample)/I(F)(Blank)) of sensor 1 upon binding with tartaric acid is 3.5-fold at pH 3.0. With the fluorescent bisboronic acid sensor 1, enantioselective recognition of mandelic acid was achieved for the first time. To the best of our knowledge, this is the first time that the mandelic acid has been enantioselectively recognized using a chiral fluorescent boronic acid sensor. Chiral monoboronic acid sensor 2 and bisboronic acid sensor 3 without the thiophene moiety failed to enantioselectively recognize mandelic acid. Our findings with the thiophene-incorporated boronic acid sensors will be important for the design of d-PET fluorescent sensors for the enantioselective recognition of

  16. A translational study on looming-evoked defensive response and the underlying subcortical pathway in autism.

    Science.gov (United States)

    Hu, Yu; Chen, Zhuoming; Huang, Lu; Xi, Yue; Li, Bingxiao; Wang, Hong; Yan, Jiajian; Lee, Tatia M C; Tao, Qian; So, Kwok-Fai; Ren, Chaoran

    2017-11-07

    Rapidly approaching objects indicating threats can induce defensive response through activating a subcortical pathway comprising superior colliculus (SC), lateral posterior nucleus (LP), and basolateral amygdala (BLA). Abnormal defensive response has been reported in autism, and impaired synaptic connections could be the underlying mechanism. Whether the SC-LP-BLA pathway processes looming stimuli abnormally in autism is not clear. Here, we found that looming-evoked defensive response is impaired in a subgroup of the valproic acid (VPA) mouse model of autism. By combining the conventional neurotracer and transneuronal rabies virus tracing techniques, we demonstrated that synaptic connections in the SC-LP-BLA pathway were abnormal in VPA mice whose looming-evoked defensive responses were absent. Importantly, we further translated the finding to children with autism and observed that they did not present looming-evoked defensive response. Furthermore, the findings of the DTI with the probabilistic tractography showed that the structural connections of SC-pulvinar-amygdala in autism children were weak. The pulvinar is parallel to the LP in a mouse. Because looming-evoked defensive response is innate in humans and emerges much earlier than do social and language functions, the absence of defensive response could be an earlier sign of autism in children.

  17. EXAFS study on the neptunium(V) complexation by various humic acids under neutral pH conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, S.; Schmeide, K.; Brendler, V.; Heise, K.H.; Bernhard, G. [Forschungszentrum Rossendorf e.V., Inst. of Radiochemistry, Dresden (Germany); Reich, T. [Forschungszentrum Rossendorf e.V., Inst. of Radiochemistry, Dresden (Germany); Univ. Mainz, Inst. of Nuclear Chemistry (Germany)

    2005-07-01

    The structure of Np(V) humic acid (HA) complexes at pH 7 was studied by extended X-ray absorption fine structure analysis (EXAFS). For the first time, the influence of phenolic OH groups on the complexation of HA and Np(V) in the neutral pH range was investigated using modified HAs with blocked phenolic OH groups and Bio-Rex70, a cation exchange resin having only carboxyl groups as proton exchanging sites. The formation of Np(V) humate complexes was verified by near-infrared (NIR) spectroscopy. Axial Np-O bond distances of 1.84-1.85 Aa were determined for the studied Np(V) humate complexes and the Np(V)-Bio-Rex70 sorbate. In the equatorial plane Np(V) is surrounded by about 3 oxygen atoms with bond lengths of 2.48-2.49 Aa. The comparison of the structural parameters of the Np(V) humates with those of Np(V)-Bio-Rex70 points to the fact that the interaction between HA and Np(V) in the neutral pH range is dominated by carboxylate groups. However, up to now a contribution of phenolic OH groups to the interaction process cannot be excluded completely. The comparison of the obtained structural data for the Np(V) humates to those of Np(V) carboxylates and Np(V) aquo ions reported in the literature indicates that humic acid carboxylate groups predominantly act as monodentate ligands. A differentiation between equatorial coordinated carboxylate groups and water molecules using EXAFS spectroscopy is impossible. (orig.)

  18. The acid test of fluoride: how pH modulates toxicity.

    Science.gov (United States)

    Sharma, Ramaswamy; Tsuchiya, Masahiro; Skobe, Ziedonis; Tannous, Bakhos A; Bartlett, John D

    2010-05-28

    It is not known why the ameloblasts responsible for dental enamel formation are uniquely sensitive to fluoride (F(-)). Herein, we present a novel theory with supporting data to show that the low pH environment of maturating stage ameloblasts enhances their sensitivity to a given dose of F(-). Enamel formation is initiated in a neutral pH environment (secretory stage); however, the pH can fall to below 6.0 as most of the mineral precipitates (maturation stage). Low pH can facilitate entry of F(-) into cells. Here, we asked if F(-) was more toxic at low pH, as measured by increased cell stress and decreased cell function. Treatment of ameloblast-derived LS8 cells with F(-) at low pH reduced the threshold dose of F(-) required to phosphorylate stress-related proteins, PERK, eIF2alpha, JNK and c-jun. To assess protein secretion, LS8 cells were stably transduced with a secreted reporter, Gaussia luciferase, and secretion was quantified as a function of F(-) dose and pH. Luciferase secretion significantly decreased within 2 hr of F(-) treatment at low pH versus neutral pH, indicating increased functional toxicity. Rats given 100 ppm F(-) in their drinking water exhibited increased stress-mediated phosphorylation of eIF2alpha in maturation stage ameloblasts (pHdental fluorosis.

  19. In vivo microdialysis studies on the effects of decortication and excitotoxic lesions on kainic acid-induced calcium fluxes, and endogenous amino acid release, in the rat striatum

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, S.P.; Lazarewicz, J.W.; Hamberger, A.

    1987-11-01

    The in vivo effects of kainate (1 mM) on fluxes of /sup 45/Ca2+, and endogenous amino acids, were examined in the rat striatum using the brain microdialysis technique. Kainate evoked a rapid decrease in dialysate /sup 45/Ca2+, and an increase in the concentration of amino acids in dialysates in Ca2+-free dialysates. Taurine was elevated six- to 10-fold, glutamate two- to threefold, and aspartate 1.5- to twofold. There was also a delayed increase in phosphoethanolamine, whereas nonneuroactive amino acids were increased only slightly. The kainic acid-evoked reduction in dialysate /sup 45/Ca2+ activity was attenuated in striata lesioned previously with kainate, suggesting the involvement of intrinsic striatal neurons in this response. The increase in taurine concentration induced by kainate was slightly smaller under these conditions. Decortication did not affect the kainate-evoked alterations in either dialysate /sup 45/Ca2+ or amino acids. These data suggest that kainate does not release acidic amino acids from their transmitter pools located in corticostriatal terminals.

  20. Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values

    DEFF Research Database (Denmark)

    Suhr, Karin Isabel; Nielsen, Per Væggemose

    2004-01-01

    moisture sponge cake types (a(w) 0.80-0.95, pH 4.7-7.4). Initially, rye bread conditions (a(w) 0.94-0.97 and pH 4.4-4.8) in combination with calcium propionate were investigated. Results showed that the highest concentration of propionate (0.3%) at all conditions apart from high a(w) (0.97) and high pH (4...... enhanced at high water activity levels. The effect of propionate on production of secondary metabolites (mycophenolic acid, rugulovasine, echinulin, flavoglaucin) was also studied, and variable or isolate dependent results were found. Subsequently, a screening experiment representing a wider range...

  1. The evaluation of temperature and pH influences on equilibrium swelling of poly(n-isopropylacrylamide-co-acrylic acid hydrogels

    Directory of Open Access Journals (Sweden)

    Zdravković Aleksandar S.

    2017-01-01

    Full Text Available Hydrogels are synthesized by the method of radical polymerization of monomers: N-isopropylacrylamide (NIPAM and acrylic acid (AA. Characterization of poly(N-isopropylacrylamide- co-acrylic acid hydrogels, p(NIPAM/AA, has been performed by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD and by determination of the swelling behaviour in aqueous solutions at different temperatures (25, 31 and 37°C and pH values (2.2, 4.5, 6 and 6.8. After lyophilisation in the solution at pH 6 and temperature of 25°C, p(NIPAM/AA hydrogels have rapidly reached equilibrium degree of swelling, αe, in comparison to non-lyophilized samples. The mechanism of solvent transport within matrix in lyophilized samples corresponds to less Fickian diffusion, whereas Super case II diffusion is characteristic for non-lyophilized samples. p(NIPAM/AA hydrogel with 1.5 mol% of ethylene glycol dimethacrylate (EGDM at the temperature of 25°C and pH 6.8, has reached the highest swelling equilibrium degree, αe = 259.8. The results of swelling studies have shown that p(NIPAM/AA hydrogels can be classified as superabsorbent polymers (SAPs. For the evaluation of pH and temperature influences on synthesized hydrogels swelling, a full three-level experimental design has been used. Two-factor interaction model (2FI is the most optimal model of a full three-level experimental design for representing the swelling equilibrium degree of p(NIPAM/AA hydrogels as a function of investigated parameters, i.e., temperature and pH. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-34012

  2. Determinants of perception of heartburn and regurgitation

    Science.gov (United States)

    Bredenoord, A J; Weusten, B L A M; Curvers, W L; Timmer, R; Smout, A J P M

    2006-01-01

    Background and aim It is not known why some reflux episodes evoke symptoms and others do not. We investigated the determinants of perception of gastro‐oesophageal reflux. Methods In 32 patients with symptoms suggestive of gastro‐oesophageal reflux, 24 hour ambulatory pH and impedance monitoring was performed after cessation of acid suppressive therapy. In the 20 patients who had at least one symptomatic reflux episode, characteristics of symptomatic and asymptomatic reflux episodes were compared. Results A total of 1807 reflux episodes were detected, 203 of which were symptomatic. Compared with asymptomatic episodes, symptomatic episodes were associated with a larger pH drop (pheartburn; 14.8% of the symptomatic reflux episodes were weakly acidic. In total, 426 pure gas reflux episodes occurred, of which 12 were symptomatic. Symptomatic pure gas reflux was more frequently accompanied by a pH drop than asymptomatic gas reflux (pHeartburn and regurgitation are more likely to be evoked when the pH drop is large, proximal extent of the refluxate is high, and volume and acid clearance is delayed. Sensitisation of the oesophagus occurs by preceding acid exposure. Weakly acidic reflux is responsible for only a minority of symptoms in patients off therapy. Pure gas reflux associated with a pH drop (“acid vapour”) can be perceived as heartburn and regurgitation. PMID:16120760

  3. Analysis of the relationship between the decrease in pH and accumulation of 3-phosphoglyceric acid in developing forespores of Bacillus species.

    OpenAIRE

    Magill, N G; Cowan, A E; Leyva-Vazquez, M A; Brown, M; Koppel, D E; Setlow, P

    1996-01-01

    Analysis of the pH decrease and 3-phosphoglyceric acid (3PGA) accumulation in the forespore compartment of sporulating cells of Bacillus subtilis showed that the pH decrease of 1 to 1.2 units at approximately 4 h of sporulation preceded 3PGA accumulation, as observed previously in B. megaterium. These data, as well as analysis of the forespore pH decrease in asporogenous mutants of B. subtilis, indicated that sigma G-dependent forespore transcription, but not sigma K-dependent mother cell tra...

  4. Development of pH sensitive polymeric nanoparticles of erythromycin stearate

    Directory of Open Access Journals (Sweden)

    Sulekha Bhadra

    2016-01-01

    Full Text Available Context: Bioavailability of conventional tablet of erythromycin stearate is low as it is unstable at acidic pH and also shows a low dissolution rate. Objective: It was proposed to protect it from the acidic condition of the stomach along with an increase in dissolution rate by formulating pH sensitive nanoparticles. Materials and Methods: The nanoparticles were prepared by the solvent evaporation technique using different quantities of Eudragit L100-55 and polyvinyl alcohol (PVA. Size reduction was achieved by high speed homogenization technique using Digital Ultra Turrax homogenizer. The formulation was optimized using 32 factorial design, keeping drug polymer ratio and surfactant concentration as independent variables. Particle size, entrapment efficiency, and drug-release (DR were studied as dependent variables. Results: Optimized batch containing 1:0.3 erythromycin stearate: Eudragit L100-55 ratio and 1.0% PVA showed 8.24 ± 0.71% DR in pH 1.2 in 1-h and 90.38 ± 5.97% in pH 5.5 and pH 6.8 within 2-h, respectively. Discussion: The optimized batch exhibited lower release in acidic pH and faster release in higher pH compared to the marketed preparation. Conclusion: Thus the present study concludes that pH sensitive nanoparticles of erythromycin stearate increases the dissolution of the drug in intestinal pH and also protect it from acidic pH, which may help in improving the bioavailability of erythromycin.

  5. Normalization of auditory evoked potential and visual evoked potential in patients with idiot savant.

    Science.gov (United States)

    Chen, X; Zhang, M; Wang, J; Lou, F; Liang, J

    1999-03-01

    To investigate the variations of auditory evoked potentials (AEP) and visual evoked potentials (VEP) of patients with idiot savant (IS) syndrome. Both AEP and VEP were recorded from 7 patients with IS syndrome, 21 mentally retarded (MR) children without the syndrome and 21 normally age-matched controls, using a Dantec concerto SEEG-16 BEAM instrument. Both AEP and VEP of MR group showed significantly longer latencies (P1 and P2 latencies of AEP, P savant syndrome presented normalized AEP and VEP.

  6. Evaluation of buffers toxicity in tobacco cells: Homopiperazine-1,4-bis (2-ethanesulfonic acid) is a suitable buffer for plant cells studies at low pH.

    Science.gov (United States)

    Borgo, Lucélia

    2017-06-01

    Low pH is an important environmental stressor of plant root cells. Understanding the mechanisms of stress and tolerance to acidity is critical; however, there is no widely accepted pH buffer for studies of plant cells at low pH. Such a buffer might also benefit studies of Al toxicity, in which buffering at low pH is also important. The challenge is to find a buffer with minimal cellular effects. We examined the cytotoxicity and possible metabolic disturbances of four buffers that have adequate pK a values and potential use for studies in the pH range of 4.0-5.0. These were homopipes (homopiperazine-1,4-bis (2-ethanesulfonic acid); pK a1 4.4), 3,3-dimethylglutaric acid (pK a1 3.73), β-alanine (pK a1 3.70) and potassium biphthalate (pK a1 2.95; pK a2 5.41). First, tobacco BY-2 cells were grown in a rich medium containing 10 mM of each buffer or MES (2-(N-morpholino) ethanesulfonic acid) as a control, with the pH initially adjusted to 5.7. β-alanine was clearly toxic and dimethylgluturate and biphthalate were found to be cytostatic, in which no culture growth occurred but cell viability was either unaffected or decreased only after 5 days. Only homopipes allowed normal culture growth and cell viability. Homopipes (10 mM) was then tested in cell cultures with an initial pH of 4.3 ± 0.17 in minimal medium to examine whether its undissociated species (H 2 A) displayed any cellular effects and no cytotoxic effects were observed. It is possible to conclude that among tested buffers, homopipes is the most suitable for studies at low pH, and may be especially useful for aluminum toxicity experiments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Roles of pH and the Na+/H+ exchanger NHE1 in cancer

    DEFF Research Database (Denmark)

    Stock, Christian; Pedersen, Stine Helene Falsig

    2017-01-01

    Acidosis is characteristic of the solid tumor microenvironment. Tumor cells, because they are highly proliferative and anabolic, have greatly elevated metabolic acid production. To sustain a normal cytosolic pH homeostasis they therefore need to either extrude excess protons or to neutralize them...... with tumor malignancy. The present review discusses current evidence on how altered pH homeostasis, and in particular NHE1, contributes to tumor cell motility, invasion, proliferation, and growth and facilitates evasion of chemotherapeutic cell death. We summarize data from in vitro studies, 2D-, 3D...

  8. Iodine evolution and pH control

    International Nuclear Information System (INIS)

    Beahm, E.C.; Lorenz, R.A.; Weber, C.F.

    1993-01-01

    The pH is the major factor in determining the extent of I 2 in solution. In containment where no pH-control chemicals are present, the acidity or basicity of the water pool will be determined by materials that are introduced into containment as a result of the accident itself. These materials may be fission products (i.e., cesium compounds), thermally produced products (i.e., core-concrete aerosols), or compounds produced by radiation (i.e., nitric acid). In situations where pH levels fall below ∼7, the formation of I 2 will occur in irradiated iodide solutions. A correlation between pH and iodine formation is needed so that the amounts I 2 in water pools can be assessed. This, in turn, determines the amount of I 2 in the atmosphere available for escape by containment leakage. A number of calculational routines based on more than 100 differential equations representing individual reactions can be found in the literature. In this work, it is shown that a simpler approach based on the steady-state decomposition of hydrogen peroxide should correctly describe iodine formation in severe accidents. Comparisons with test data show this approach to be valid. The most important acids in containment will be nitric acid (HNO 3 ), produced by irradiation of water and air, and hydrochloric acid (HCl), produced by irradiation or heating of electrical cable insulation. The most important bases in containment will be cesium hydroxide, cesium borate (or cesium carbonate), and in some plants pH additives, such as sodium hydroxide or sodium phosphate

  9. Transcranial electric stimulation for intraoperative motor evoked potential monitoring: dependence of required stimulation current on interstimulus interval value.

    Science.gov (United States)

    Joksimovic, Boban; Szelenyi, Andrea; Seifert, Volker; Damjanovic, Aleksandar; Damjanovic, Aleksandra; Rasulic, Lukas

    2015-05-01

    To evaluate the relationship between stimulus intensity by constant current transcranial electric stimulation and interstimulus interval (ISI) for eliciting muscle motor evoked potentials (MEPs) in three different hand muscles and the tibialis anterior muscles. We tested intraoperatively different monophasic constant current pulses and ISIs in 22 patients with clinically normal motor function. Motor thresholds of contralateral muscle MEPs were determined at 0.5 milliseconds (ms) pulse duration and ISIs of 1, 2, 3, 4, 5, and 10 ms using a train of 2, 3, and 5 monophasic constant current pulses of 62 to 104 mA before craniotomy and after closure of the dura mater. The lowest stimulation threshold to elicit MEPs in the examined muscles was achieved with a train of 5 pulses (ISI: 3 ms) before craniotomy, which was statistically significant compared with 2 pulses (ISI: 3 ms) as well as 3 pulses (ISIs: 3 and 10 ms). An ISI of 3 ms gave the lowest motor thresholds with statistical significance compared with the ISIs of 4 ms (2 pulses) and of 1 ms (3 pulses). All current intensity (mA) and ISI (ms) relationship graphs had a trend of the exponential function as y = a + bx + c ρ (x), where y is intensity (mA) and x is ISI (ms). The minimum of the function was determined for each patient and each muscle. The difference was statistically significant between 3 and 5 pulses before craniotomy and between 3 and 5 pulses and 2 and 5 pulses after closure of the dura mater. In adult neurosurgical patients with a normal motor status, a train of 5 pulses and an ISI of 3 ms provide the lowest motor thresholds. We provided evidence of the dependence of required stimulation current on ISI. Georg Thieme Verlag KG Stuttgart · New York.

  10. Modulation of leak K(+) channel in hypoglossal motoneurons of rats by serotonin and/or variation of pH value.

    Science.gov (United States)

    Xu, Xue-Feng; Tsai, Hao-Jan; Li, Lin; Chen, Yi-Fan; Zhang, Cheng; Wang, Guang-Fa

    2009-08-25

    The cloned TWIK-related acid-sensitive K(+) channel (TASK-1) is sensitive to the pH changes within physiological pH range (pK~7.4). Recently, the native TASK-1-like channel was suggested to be the main contributor to the background (or leak) K(+) conductance in the motoneurons of the brain stem. Serotonin (5-HT) and variation of pH value in perfused solution could modulate these currents. Here we aimed to examine the properties and modulation of the currents by serotonin or variation of pH value in hypoglossal motoneurons of rats. Transverse slices were prepared from the brainstem of neonatal Sprague-Dawley rats (postnatal days 7-8). Hypoglossal motoneurons were used for the study. The leak K(+) current (TASK-1-like current) and hyperpolarization-activated cationic current (I(h)) were recorded with the whole-cell patch-clamp technique. The results showed that these currents were inhibited by acidified artificial cerebrospinal fluid (ACSF, pH 6.0) and activated by alkalized ACSF (pH 8.5). 5-HT (10 mumol/L) significantly inhibited both leak K(+) current and I(h) with depolarization of membrane potential and the occurrence of oscillation and/or spikes. Bath application of Ketanserine, an antagonist of 5-HT₂ receptor, reversed or reduced the inhibitory effect of acidified solution on leak K(+) current and I(h). The results suggest that 5-HT₂ receptors mediate the effects of acidified media on leak K(+) current and I(h) in hypoglossal motoneurons.

  11. Detecting Sulfuric and Nitric Acid Rain Stresses on Quercus glauca through Hyperspectral Responses.

    Science.gov (United States)

    Wang, Shanqian; Zhang, Xiuying; Ma, Yuandan; Li, Xinhui; Cheng, Min; Zhang, Xiaomin; Liu, Lei

    2018-03-09

    Acid rain, which has become one of the most severe global environmental issues, is detrimental to plant growth. However, effective methods for monitoring plant responses to acid rain stress are currently lacking. The hyperspectral technique provides a cost-effective and nondestructive way to diagnose acid rain stresses. Taking a widely distributed species ( Quercus glauca ) in Southern China as an example, this study aims to monitor the hyperspectral responses of Q. glauca to simulated sulfuric acid rain (SAR) and nitric acid rain (NAR). A total of 15 periods of leaf hyperspectral data under four pH levels of SAR and NAR were obtained during the experiment. The results showed that hyperspectral information could be used to distinguish plant responses under acid rain stress. An index (green peak area index, GPAI) was proposed to indicate acid rain stresses, based on the significantly variations in the region of 500-660 nm. Light acid rain (pH 4.5 SAR and NAR) promoted Q. glauca growth relative to the control groups (pH 5.6 SAR and NAR); moderate acid rain (pH 3.0 SAR) firstly promoted and then inhibited plant growth, while pH 3.0 NAR showed mild inhibitory effects during the experiment; and heavy acid rain (pH 2.0) significantly inhibited plant growth. Compared with NAR, SAR induced more serious damages to Q. glauca . These results could help monitor acid rain stress on plants on a regional scale using remote sensing techniques.

  12. Visually Evoked Spiking Evolves While Spontaneous Ongoing Dynamics Persist

    Science.gov (United States)

    Huys, Raoul; Jirsa, Viktor K.; Darokhan, Ziauddin; Valentiniene, Sonata; Roland, Per E.

    2016-01-01

    Neurons in the primary visual cortex spontaneously spike even when there are no visual stimuli. It is unknown whether the spiking evoked by visual stimuli is just a modification of the spontaneous ongoing cortical spiking dynamics or whether the spontaneous spiking state disappears and is replaced by evoked spiking. This study of laminar recordings of spontaneous spiking and visually evoked spiking of neurons in the ferret primary visual cortex shows that the spiking dynamics does not change: the spontaneous spiking as well as evoked spiking is controlled by a stable and persisting fixed point attractor. Its existence guarantees that evoked spiking return to the spontaneous state. However, the spontaneous ongoing spiking state and the visual evoked spiking states are qualitatively different and are separated by a threshold (separatrix). The functional advantage of this organization is that it avoids the need for a system reorganization following visual stimulation, and impedes the transition of spontaneous spiking to evoked spiking and the propagation of spontaneous spiking from layer 4 to layers 2–3. PMID:26778982

  13. Effect of Microenvironmental pH Modulation on the Dissolution Rate and Oral Absorption of the Salt of a Weak Acid - Case Study of GDC-0810.

    Science.gov (United States)

    Hou, Hao Helen; Jia, Wei; Liu, Lichuan; Cheeti, Sravanthi; Li, Jane; Nauka, Ewa; Nagapudi, Karthik

    2018-01-29

    The purpose of this work is to investigate the effect of microenvironmental pH modulation on the in vitro dissolution rate and oral absorption of GDC-0810, an oral anti-cancer drug, in human. The pH-solubility profile of GDC-0810 free acid and pH max of its N-Methyl-D-glucamine (NMG) salt were determined. Precipitation studies were conducted for GDC-0810 NMG salt at different pH values. GDC-0810 200-mg dose NMG salt tablet formulations containing different levels of sodium bicarbonate as the pH modifier were tested for dissolution under the dual pH-dilution scheme. Three tablet formulations were evaluated in human as a part of a relative bioavailability study. A 200-mg dose of GDC-0810 was administered QD with low fat food. Intrinsic solubility of GDC-0810 free acid was found to be extremely low. The pH max of the NMG salt suggested a strong tendency for form conversion to the free acid under GI conditions. In vitro dissolution profiles showed that the dissolution rate and extent of GDC-0810 increased with increasing the level of sodium bicarbonate in the formulation. The human PK data showed a similar trend for the geometric mean of C max and AUC 0-t for formulations containing 5%, 10%, and 15% sodium bicarbonate, but the difference is not statistically significant. Incorporation of a basic pH modifier, sodium bicarbonate, in GDC-0810 NMG salt tablet formulations enhanced in vitro dissolution rate of GDC-0810 via microenvironmental pH modulation. The human PK data showed no statistically significant difference in drug exposure from tablets containing 5%, 10%, and 15% sodium bicarbonate.

  14. Impaired swimming performance of acid-exposed Arctic charr, Salvelinus alpinus L

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, L.A. (North/South Consultants Inc., Winnipeg, MB (Canada)); Scherer, E. (Dept. of Fisheries and Oceans, Freshwater Inst. Science Lab., Winnipeg, MB (Canada))

    1988-01-01

    Effects of increased ambient acidity are of particular interest, as the formation of metabolic and respiratory acids and acceleration of branchial ion loss during vigorous swimming duplicates or compounds effects of exposure to environmental acidity. Three year old Arctic charr (Salvelinus alpinus L.) were exposed to five levels of acidity between pH 6 and pH 3.8. Swimming performance as determined by critical swimming speeds was 67.5 cm {center dot} s{sup -1} or 4.4 body lengths per second for untreated fish (pH 7.8). Performance declined sharply below pH 4.5; at pH 3.8 it was reduced by 35% after 7 days of exposure. Tailbeat frequencies and ventilation rates showed no dose-response effects. This would support the assumption that afferent and efferent neuromuscular functions may have remained unimpaired under increased ambient acidity so that the stimulus of directed water current continued to elicit forced swimming, causing (forcing) the fish to use the entire scope for activity available at the various pH levels. At swimming speeds between 20 and 50 cm {center dot} s{sup -1}, ventilation rates at all levels of acidity were higher than at the control level. Based on this, spontaneous, i.e., non-forced swimming activity may show a lower response threshold. 19 refs., 3 figs., 1 tab.

  15. Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH.

    Science.gov (United States)

    Aschenbach, J R; Penner, G B; Stumpff, F; Gäbel, G

    2011-04-01

    Highly fermentable diets are rapidly converted to organic acids [i.e., short-chain fatty acids (SCFA) and lactic acid] within the rumen. The resulting release of protons can constitute a challenge to the ruminal ecosystem and animal health. Health disturbances, resulting from acidogenic diets, are classified as subacute and acute acidosis based on the degree of ruminal pH depression. Although increased acid production is a nutritionally desired effect of increased concentrate feeding, the accumulation of protons in the rumen is not. Consequently, mechanisms of proton removal and their quantitative importance are of major interest. Saliva buffers (i.e., bicarbonate, phosphate) have long been identified as important mechanisms for ruminal proton removal. An even larger proportion of protons appears to be removed from the rumen by SCFA absorption across the ruminal epithelium, making efficiency of SCFA absorption a key determinant for the individual susceptibility to subacute ruminal acidosis. Proceeding initially from a model of exclusively diffusional absorption of fermentation acids, several protein-dependent mechanisms have been discovered over the last 2 decades. Although the molecular identity of these proteins is mostly uncertain, apical acetate absorption is mediated, to a major degree, via acetate-bicarbonate exchange in addition to another nitrate-sensitive, bicarbonate-independent transport mechanism and lipophilic diffusion. Propionate and butyrate also show partially bicarbonate-dependent transport modes. Basolateral efflux of SCFA and their metabolites has to be mediated primarily by proteins and probably involves the monocarboxylate transporter (MCT1) and anion channels. Although the ruminal epithelium removes a large fraction of protons from the rumen, it also recycles protons to the rumen via apical sodium-proton exchanger, NHE. The latter is stimulated by ruminal SCFA absorption and salivary Na(+) secretion and protects epithelial integrity. Finally

  16. Brain-immune interaction accompanying odor-evoked autobiographic memory.

    Science.gov (United States)

    Matsunaga, Masahiro; Bai, Yu; Yamakawa, Kaori; Toyama, Asako; Kashiwagi, Mitsuyoshi; Fukuda, Kazuyuki; Oshida, Akiko; Sanada, Kazue; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Sadato, Norihiro; Ohira, Hideki

    2013-01-01

    The phenomenon in which a certain smell evokes a specific memory is known as the Proust phenomenon. Odor-evoked autobiographic memories are more emotional than those elicited by other sensory stimuli. The results of our previous study indicated that odor-evoked autobiographic memory accompanied by positive emotions has remarkable effects on various psychological and physiological activities, including the secretion of cytokines, which are immune-signaling molecules that modulate systemic inflammation. In this study, we aimed to clarify the neural substrates associated with the interaction between odor-evoked autobiographic memory and peripheral circulating cytokines. We recruited healthy male and female volunteers and investigated the association between brain responses and the concentration of several cytokines in the plasma by using positron emission tomography (PET) recordings when an autographic memory was evoked in participants by asking them to smell an odor that was nostalgic to them. Participants experienced positive emotions and autobiographic memories when nostalgic odors were presented to them. The levels of peripheral proinflammatory cytokines, such as the tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), were significantly reduced after experiencing odor-evoked autobiographic memory. Subtraction analysis of PET images indicated that the medial orbitofrontal cortex (mOFC) and precuneus/posterior cingulate cortex (PCC) were significantly activated during experiences of odor-evoked autobiographic memory. Furthermore, a correlation analysis indicated that activities of the mOFC and precuneus/PCC were negatively correlated with IFN-γ concentration. These results indicate that the neural networks including the precuneus/PCC and mOFC might regulate the secretion of peripheral proinflammatory cytokines during the experience of odor-evoked autobiographic memories accompanied with positive emotions.

  17. Brain–Immune Interaction Accompanying Odor-Evoked Autobiographic Memory

    Science.gov (United States)

    Matsunaga, Masahiro; Bai, Yu; Yamakawa, Kaori; Toyama, Asako; Kashiwagi, Mitsuyoshi; Fukuda, Kazuyuki; Oshida, Akiko; Sanada, Kazue; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Sadato, Norihiro; Ohira, Hideki

    2013-01-01

    The phenomenon in which a certain smell evokes a specific memory is known as the Proust phenomenon. Odor-evoked autobiographic memories are more emotional than those elicited by other sensory stimuli. The results of our previous study indicated that odor-evoked autobiographic memory accompanied by positive emotions has remarkable effects on various psychological and physiological activities, including the secretion of cytokines, which are immune-signaling molecules that modulate systemic inflammation. In this study, we aimed to clarify the neural substrates associated with the interaction between odor-evoked autobiographic memory and peripheral circulating cytokines. We recruited healthy male and female volunteers and investigated the association between brain responses and the concentration of several cytokines in the plasma by using positron emission tomography (PET) recordings when an autographic memory was evoked in participants by asking them to smell an odor that was nostalgic to them. Participants experienced positive emotions and autobiographic memories when nostalgic odors were presented to them. The levels of peripheral proinflammatory cytokines, such as the tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), were significantly reduced after experiencing odor-evoked autobiographic memory. Subtraction analysis of PET images indicated that the medial orbitofrontal cortex (mOFC) and precuneus/posterior cingulate cortex (PCC) were significantly activated during experiences of odor-evoked autobiographic memory. Furthermore, a correlation analysis indicated that activities of the mOFC and precuneus/PCC were negatively correlated with IFN-γ concentration. These results indicate that the neural networks including the precuneus/PCC and mOFC might regulate the secretion of peripheral proinflammatory cytokines during the experience of odor-evoked autobiographic memories accompanied with positive emotions. PMID:23977312

  18. Brain-immune interaction accompanying odor-evoked autobiographic memory.

    Directory of Open Access Journals (Sweden)

    Masahiro Matsunaga

    Full Text Available The phenomenon in which a certain smell evokes a specific memory is known as the Proust phenomenon. Odor-evoked autobiographic memories are more emotional than those elicited by other sensory stimuli. The results of our previous study indicated that odor-evoked autobiographic memory accompanied by positive emotions has remarkable effects on various psychological and physiological activities, including the secretion of cytokines, which are immune-signaling molecules that modulate systemic inflammation. In this study, we aimed to clarify the neural substrates associated with the interaction between odor-evoked autobiographic memory and peripheral circulating cytokines. We recruited healthy male and female volunteers and investigated the association between brain responses and the concentration of several cytokines in the plasma by using positron emission tomography (PET recordings when an autographic memory was evoked in participants by asking them to smell an odor that was nostalgic to them. Participants experienced positive emotions and autobiographic memories when nostalgic odors were presented to them. The levels of peripheral proinflammatory cytokines, such as the tumor necrosis factor-α (TNF-α and interferon-γ (IFN-γ, were significantly reduced after experiencing odor-evoked autobiographic memory. Subtraction analysis of PET images indicated that the medial orbitofrontal cortex (mOFC and precuneus/posterior cingulate cortex (PCC were significantly activated during experiences of odor-evoked autobiographic memory. Furthermore, a correlation analysis indicated that activities of the mOFC and precuneus/PCC were negatively correlated with IFN-γ concentration. These results indicate that the neural networks including the precuneus/PCC and mOFC might regulate the secretion of peripheral proinflammatory cytokines during the experience of odor-evoked autobiographic memories accompanied with positive emotions.

  19. Theoretical study on the interactions between chlordecone hydrate and acidic surface groups of activated carbon under basic pH conditions.

    Science.gov (United States)

    Melchor-Rodríguez, Kenia; Gamboa-Carballo, Juan José; Ferino-Pérez, Anthuan; Passé-Coutrin, Nady; Gaspard, Sarra; Jáuregui-Haza, Ulises Javier

    2018-05-01

    A theoretical study of the influence of acidic surface groups (SG) of activated carbon (AC) on chlordecone hydrate (CLDh) adsorption is presented, in order to help understanding the adsorption process under basic pH conditions. A seven rings aromatic system (coronene) with a functional group in the edge was used as a simplified model of AC to evaluate the influence of SG in the course of adsorption from aqueous solution at basic pH conditions. Two SG were modeled in their deprotonated form: carboxyl and hydroxyl (COO - and O - ), interacting with CLDh. In order to model the solvation process, all systems under study were calculated with up to three water molecules. Multiple Minima Hypersurface (MMH) methodology was employed to study the interactions of CLDh with SG on AC using PM7 semiempirical Hamiltonian, to explore the potential energy surfaces of the systems and evaluate their thermodynamic association energies. The re-optimization of representative structures obtained from MMH was done using M06-2X Density Functional Theory. The Quantum Theory of Atoms in Molecules (QTAIM) was used to characterize the interaction types. As result, the association of CLDh with acidic SG at basic pH conditions preferentially occurs between the two alcohol groups of CLDh with COO - and O - groups and by dispersive interactions of chlorine atoms of CLDh with the graphitic surface. On the other hand, the presence of covalent interactions between the negatively charged oxygen of SG and one hydrogen atom of CLDh alcohol groups (O - ⋯HO interactions) without water molecules, was confirmed by QTAIM study. It can be concluded that the interactions of CLDh with acidic SG of AC under basic pH conditions confirms the physical mechanisms of adsorption process. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. The effect of neutral and acidic oligosaccharides on stool viscosity, stool frequency and stool pH in preterm infants

    NARCIS (Netherlands)

    Westerbeek, E. A. M.; Hensgens, R. L.; Mihatsch, W. A.; Boehm, G.; Lafeber, H. N.; van Elburg, R. M.

    2011-01-01

    To determine the effect of neutral oligosaccharides [small-chain galacto-oligosaccharides/long-chain fructo-oligosaccharides (scGOS/lcFOS)] in combination with acidic oligosaccharides (pAOS) on stool viscosity, stool frequency and stool pH in preterm infants. In this explorative RCT, preterm infants

  1. O pH da calda de aplicação e a absorção de ácido giberélico por frutas de laranja cv. ‘Valência’ The solution pH on gibberellic acid uptake by cv. ‘Valência’ orange fruits

    Directory of Open Access Journals (Sweden)

    João Guilherme Casagrande Jr.

    1999-10-01

    Full Text Available Com o objetivo de estudar os efeitos que o ácido giberélico causa em frutas de laranja ‘Valência’, quando aplicado em diferentes concentrações, e também sob diferentes pH na calda de aplicação, foi realizado experimento onde os tratamentos consistiram de 5 concentrações (0, 5, 10, 15 e 20 ppm e 3 pHs (3, 4,5 e 6. A aplicação foi feita em maio, quando as frutas estavam com coloração verde-amarelada, e as coletas para avaliação feitas a cada 30 dias, até o mês de novembro. Foram feitas 7 coletas no total. As variáveis estudadas foram coloração da epiderme, espessura da casca, pH do suco, acidez total titulável (ATT, teor de sólidos solúveis totais (SST, relação SST/ATT, índice tecnológico e rendimento de suco. Os resultados obtidos não permitiram concluir que o ácido giberélico tenha influência sobre as características fisico-químicas do suco, tais como pH, rendimento, SST, AT, Ratio e índice tecnológico. A espessura da casca também não foi influenciada pelo AG3. No entanto, o ácido giberélico reteve a coloração verde da casca, segundo um gradiente no que diz respeito à concentração, no sentido de que ao aumentá-la, manteve por mais tempo a coloração verde das frutas. Este comportamento foi observado em maior ou menor escala, em todos os pHs da solução. O pH=3 da calda de aplicação foi o que reteve por mais tempo a coloração verde nas frutas, indicando assim que o ácido giberélico foi mais absorvido neste pH, do que nos demais. O pH normal (4,5 reteve a coloração verde das frutas por mais tempo que o pH=6, indicando assim que pHs mais ácidos favorecem a absorção do ácido giberélico pelas plantas. Foi observado também que o ácido giberélico atrasou o fenômeno do reverdecimento, o qual ocorre quando as temperaturas se tornam mais altas.The objective of this work was to study the effect of gibberellic acid on "Valência" orange fruits, when applied at various concentrations, under

  2. Plasma membrane Ca2+-ATPase isoforms composition regulates cellular pH homeostasis in differentiating PC12 cells in a manner dependent on cytosolic Ca2+ elevations

    DEFF Research Database (Denmark)

    Boczek, Tomasz; Lisek, Malwina; Ferenc, Bozena

    2014-01-01

    isoforms (PMCA1-4) but only PMCA2 and PMCA3, due to their unique localization and features, perform more specialized function. Using differentiated PC12 cells we assessed the role of PMCA2 and PMCA3 in the regulation of intracellular pH in steady-state conditions and during Ca2+ overload evoked by 59 m....... In steady-state conditions, higher TMRE uptake in PMCA2-knockdown line was driven by plasma membrane potential (Ψp). Nonetheless, mitochondrial membrane potential (Ψm) in this line was dissipated during Ca2+ overload. Cyclosporin and bongkrekic acid prevented Ψm loss suggesting the involvement of Ca2......+-driven opening of mitochondrial permeability transition pore as putative underlying mechanism. The findings presented here demonstrate a crucial role of PMCA2 and PMCA3 in regulation of cellular pH and indicate PMCA membrane composition important for preservation of electrochemical gradient...

  3. Experimental and theoretical studies on electropolymerization of polar amino acids on platinum electrode

    Energy Technology Data Exchange (ETDEWEB)

    Alhedabi, Taleb [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France); Department of Chemistry, College of Science, University of Thi-qar, Thi-qar (Iraq); Cattey, Hélène [Institut ICMUB - CNRS 6302, Université de Bourgogne Franche-Comté, UFR Sciences et Techniques Mirande, 9 Avenue Alain Savary, 21000 Dijon (France); Roussel, Christophe [Ecole Polytechnique Fédérale de Lausanne, Section of Chemistry and Chemical Engineering, Station 6, CH-1015 Lausanne (Switzerland); Blondeau-Patissier, Virginie [Institut FEMTO-ST, UMR CNRS 6174, Department Time-Frequency, 26, Chemin de l' épitaphe, 25030 Besançon Cedex (France); Gharbi, Tijani [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France); Herlem, Guillaume, E-mail: guillaume.herlem@univ-fcomte.fr [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France)

    2017-01-01

    The anodic oxidation of polar amino acids (L-serine, L-threonine, L-asparagine, and L-glutamine) in aqueous electrolyte on smooth platinum electrode was carried out by cyclic voltammetry coupled to electrochemical quartz crystal microbalance (EQCM). pH (zwitterion, acidic and alkaline) effects on their electrochemical behavior were examined. The maximum current values are measured for zwitterion species. In addition, the current increases with increasing of concentration and scan rate, and decreases with increasing pH. The resulting passivation was studied by spectroscopic analysis such as attenuated total reflection FT infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and mass spectroscopy (MALDI-TOF). From thin film coatings observed on the electrode surface, peptide bonds are found, and are in favor of electropolymerization of these polar amino acids into poly-L-amino acids in an irreversible way. Scanning electronic microscopy was also used to study the morphology of these electrodeposited L-amino acids. The electrodeposited poly-L-amino acids on Pt electrode were tested as bioinspired transducer for pH sensing purposes. - Highlights: • Anodic oxidation of polar amino acids with uncharged R group on platinum electrode. • Polypeptide bonds revealed by ATR-IR and XPS spectroscopies. • The film growth depends on the chemistry of the polar amino acid.

  4. Speech Evoked Auditory Brainstem Response in Stuttering

    Directory of Open Access Journals (Sweden)

    Ali Akbar Tahaei

    2014-01-01

    Full Text Available Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency.

  5. pH dependence of steroid hormone-organic matter interactions at environmental concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Neale, Peta A. [School of Engineering and Electronics, University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)], E-mail: p.neale@ed.ac.uk; Escher, Beate I. [Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Duebendorf (Switzerland); Schaefer, Andrea I. [School of Engineering and Electronics, University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)

    2009-01-15

    The interaction of estradiol, estrone, progesterone and testosterone with environmentally relevant concentrations of Aldrich humic acid, alginic acid and tannic acid was studied using solid-phase microextraction (SPME). Since bulk organic matter and certain hormones such as estradiol and estrone contain dissociable functional groups, the effect of pH on sorption was investigated as this will influence their fate and bioavailability. For humic acid and tannic acid, sorption was strongest at acidic pH when the bulk organic matter was in a non-dissociated form and decreased when they became partially negatively charged. At acidic and neutral pH the strength of partitioning was influenced by hormone functional groups content, with the strongest sorption observed for progesterone and estrone. At alkaline pH conditions, when the bulk organics were dissociated, sorption decreased considerably (up to a factor of 14), although the non-dissociated hormones testosterone and progesterone indicated greater sorption to humic acid at pH 10 compared to the partially deprotonated estradiol and estrone. This study demonstrates that SPME can be used to assess organic matter sorption behaviour of a selected range of micropollutants and at environmentally relevant organic matter concentrations.

  6. Acid production potentials of massive sulfide minerals and lead-zinc mine tailings: a medium-term study.

    Science.gov (United States)

    Çelebi, Emin Ender; Öncel, Mehmet Salim; Kobya, Mehmet

    2018-01-01

    Weathering of sulfide minerals is a principal source of acid generation. To determine acid-forming potentials of sulfide-bearing materials, two basic approaches named static and kinetic tests are available. Static tests are short-term, and easily undertaken within a few days and in a laboratory. In contrast, kinetic tests are long-term procedures and mostly carried out on site. In this study, experiments were conducted over a medium-term period of 2 months, not as short as static tests and also not as long as kinetic tests. As a result, pH and electrical conductivity oscillations as a function of time, acid-forming potentials and elemental contents of synthetically prepared rainwater leachates of massive sulfides and sulfide-bearing lead-zinc tailings from abandoned and currently used deposition areas have been determined. Although the lowest final pH of 2.70 was obtained in massive pyrite leachate, massive chalcopyrite leachate showed the highest titrable acidity of 1.764 g H 2 SO 4 /L. On the other hand, a composite of currently deposited mine tailings showed no acidic characteristic with a final pH of 7.77. The composite abandoned mine tailing leachate had a final pH of 6.70, close to the final pH of massive galena and sphalerite leachates, and produced a slight titrable acidity of 0.130 g H 2 SO 4 /L.

  7. Evoked Electromyographically Controlled Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Hayashibe

    2016-07-01

    Full Text Available Time-variant muscle responses under electrical stimulation (ES are often problematic for all the applications of neuroprosthetic muscle control. This situation limits the range of ES usage in relevant areas, mainly due to muscle fatigue and also to changes in stimulation electrode contact conditions, especially in transcutaneous ES. Surface electrodes are still the most widely used in noninvasive applications.Electrical field variations caused by changes in the stimulation contact condition markedly affect the resulting total muscle activation levels. Fatigue phenomena under functional electrical stimulation (FES are also well known source of time-varying characteristics coming from muscle response under ES. Therefore it is essential to monitor the actual muscle state and assess the expected muscle response by ES so as to improve the current ES system in favour of adaptive muscle-response-aware FES control. To deal with this issue, we have been studying a novel control technique using evoked electromyography (eEMG signals to compensate for these muscle time-variances under ES for stable neuroprosthetic muscle control. In this perspective article, I overview the background of this topic and highlight important points to be aware of when using ES to induce the desired muscle activation regardless of the time-variance. I also demonstrate how to deal with the common critical problem of ES to move toward robust neuroprosthetic muscle control with the Evoked Electromyographically Controlled Electrical Stimulation paradigm.

  8. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    Science.gov (United States)

    Huang, Zhujian; Wu, Pingxiao; Gong, Beini; Yang, Shanshan; Li, Hailing; Zhu, Ziao; Cui, Lihua

    2016-05-01

    To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G-Fe-Mt) was developed. The physiochemical properties of G-Fe-Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G-Fe-Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G-Fe-Mt under neutral pH. G-Fe-Mt is a promising catalyst for advanced oxidation processes.

  9. Electrochemical oxidation of acid black 210 dye on the boron-doped diamond electrode in the presence of phosphate ions: Effect of current density, pH, and chloride ions

    International Nuclear Information System (INIS)

    Costa, Carla Regina; Montilla, Francisco; Morallon, Emilia; Olivi, Paulo

    2009-01-01

    The electrochemical oxidation of acid black 210 dye (AB-210) on the boron-doped diamond (BDD) was investigated under different pH conditions. The best performance for the AB-210 oxidation occurred in alkaline phosphate solution. This is probably due to oxidizing agents such as phosphate radicals and peroxodiphosphate ions, which can be electrochemically produced with good yields on the BDD anode, mainly in alkaline solution. Under this condition, the COD (chemical oxygen demand) removal was higher than that obtained from the model proposed by Comninellis. Electrolyses performed in phosphate buffer and in the presence of chloride ions resulted in faster COD and color removals in acid and neutral solutions, but in alkaline phosphate solution, a better performance in terms of TOC removal was obtained in the absence of chloride. Moreover, organochloride compounds were detected in all electrolyses performed in the presence of chloride. The AB-210 electrooxidation on BDD using phosphate as supporting electrolyte proved to be interesting since oxidizing species generated from phosphate ions were able to completely degrade the dye without producing organochloride compounds.

  10. The molecular basis of acid insensitivity in the African naked mole-rat.

    Science.gov (United States)

    Smith, Ewan St John; Omerbašić, Damir; Lechner, Stefan G; Anirudhan, Gireesh; Lapatsina, Liudmila; Lewin, Gary R

    2011-12-16

    Acid evokes pain by exciting nociceptors; the acid sensors are proton-gated ion channels that depolarize neurons. The naked mole-rat (Heterocephalus glaber) is exceptional in its acid insensitivity, but acid sensors (acid-sensing ion channels and the transient receptor potential vanilloid-1 ion channel) in naked mole-rat nociceptors are similar to those in other vertebrates. Acid inhibition of voltage-gated sodium currents is more profound in naked mole-rat nociceptors than in mouse nociceptors, however, which effectively prevents acid-induced action potential initiation. We describe a species-specific variant of the nociceptor sodium channel Na(V)1.7, which is potently blocked by protons and can account for acid insensitivity in this species. Thus, evolutionary pressure has selected for an Na(V)1.7 gene variant that tips the balance from proton-induced excitation to inhibition of action potential initiation to abolish acid nociception.

  11. Programmable pH buffers

    Science.gov (United States)

    Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.

    2017-01-24

    A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.

  12. Effect of salt and acidic pH on the stability of virulence plasmid (pYV) in Yersinia enterocolitica and expression of virulence-associated characteristics

    Science.gov (United States)

    The stability of the Yersinia enterocolitica virulence plasmid (pYV) under different NaCl concentrations and under acidic pH conditions was investigated. Exposure of five strains representing five serotypes of pYV-bearing virulent Y. enterocolitica to 0.5, 2 and 5% NaCl and under conditions of pH 4...

  13. Electrochemical degradation of clofibric acid in water by anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Sires, Ignasi [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Cabot, Pere Lluis [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Centellas, Francesc [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Garrido, Jose Antonio [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Rodriguez, Rosa Maria [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Arias, Conchita [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)]. E-mail: brillas@ub.edu

    2006-10-05

    Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical ({center_dot}OH). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl{sub 2}. Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with {center_dot}OH. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO{sub 2} with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed.

  14. Electrochemical degradation of clofibric acid in water by anodic oxidation

    International Nuclear Information System (INIS)

    Sires, Ignasi; Cabot, Pere Lluis; Centellas, Francesc; Garrido, Jose Antonio; Rodriguez, Rosa Maria; Arias, Conchita; Brillas, Enric

    2006-01-01

    Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical (·OH). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl 2 . Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with ·OH. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO 2 with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed

  15. Effect of pH, ionic strength and fulvic acid on the sorption and desorption of cobalt to bentonite

    International Nuclear Information System (INIS)

    Yu, Sh.M.; Ren, A.P.; Chen, Ch.L.; Chen, Y.X.; Wang, X.

    2006-01-01

    Humic substances and bentonite have attracted great interest in radioactive waste management. Here the sorption of cobalt on bentonite in the presence and absence of fulvic acid (FA) under ambient conditions was studied. The effects of pH, ionic strength, FA and solution concentrations on cobalt sorption to bentonite were also investigated using batch techniques. The results indicate that the sorption of cobalt is strongly dependent on pH and is independent of ionic strength under our experimental conditions. Surface complexation is considered the main mechanism of cobalt sorption to bentonite. In the presence of FA, little effect of FA on cobalt sorption was found at pH 8. The addition sequences of FA/Co 2+ to the bentonite suspension on the sorption of cobalt to FA-coated bentonite were also studied. The results indicated that the sorption is not influenced by the addition sequences. Some possible mechanisms are discussed

  16. Spectroscopic determination of pH

    International Nuclear Information System (INIS)

    Faanu, A.; Glover, E.T.; Bailey, E.; Rochelle, C.

    2009-01-01

    A technique of measuring pH at temperature range of 20 - 70 0 C and high pressure conditions of 1 - 200 atmospheres has been developed by relating the ratio of absorbance peaks of indicator solutions (basic and acidic) as a function of pH, using ultraviolet-visible spectrophotometer. The pH values of the buffer solutions measured at 20 0 C and 70 0 C indicated slight temperature dependence, while the pressure had no effect. The pH of the buffer solutions increased with temperature with relative standard deviations in the range 0.4 - 0.5 % at 95 % confidence interval. The possible causes of the temperature dependence were attributed to changes in pH values as the temperature changed. (au)

  17. Influence of soil pH on the sorption of ionizable chemicals

    DEFF Research Database (Denmark)

    Franco, Antonio; Fu, Wenjing; Trapp, Stefan

    2009-01-01

    , the optimal pH to model dissociation was lower than the bulk soil pH. The knowledge of the soil pH allows calculation of the fractions of neutral and ionic molecules in the system, thus improving the existing regression for acids. The same approach was not successful with bases, for which the impact of p......The soil-water distribution coefficient of ionizable chemicals (K-d) depends on the soil acidity, mainly because the pH governs speciation. Using pH-specific K-d values normalized to organic carbon (K-OC) from the literature, a method was developed to estimate the K-OC of monovalent organic acids...

  18. Microwave synthesis of delaminated acid saponites using quaternary ammonium salt or polymer as template. Study of pH influence

    NARCIS (Netherlands)

    Gebretsadik, Fiseha B.; Mance, Deni; Baldus, Marc; Salagre, Pilar; Cesteros, Yolanda

    2015-01-01

    Mesoporous saponites were prepared at pH8 and 13 without and with template (surfactant or polymer) at 453K and autogenic pressure using microwaves or conventional oven during the hydrothermal ageing treatment. Acidity was obtained by calcination of the NH4-form. The effect of dilution

  19. Influence of pH and lactic acid concentration on Clostridium tyrobutyricum during continuous growth in a pH-auxostat

    NARCIS (Netherlands)

    Thylin, I; Schuisky, P; Lindgren, S; Gottschal, J.C

    1995-01-01

    The aim of this project was to establish the minimal inhibitory concentration (MIC) of lactic acid for growth of Clostridium tyrobutyricum. A pH-auxostat was used to maintain a constant pH and to allow continuous growth at the highest possible rates at fixed, but adjustable concentrations of

  20. Salivary pH and Buffering Capacity as Risk Markers for Early Childhood Caries: A Clinical Study.

    Science.gov (United States)

    Jayaraj, D; Ganesan, S

    2015-01-01

    The diagnostic utility of saliva is currently being explored in various branches of dentistry, remarkably in the field of caries research. This study was aimed to determine if assessment of salivary pH and buffering capacity would serve as reliable tools in risk prediction of early childhood caries (ECC). Paraffin-stimulated salivary samples were collected from 50 children with ECC (group I) and 50 caries free children (group II). Salivary pH and buffering capacity (by titration with 0.1 N hydrochloric acid) were assessed using a handheld digital pH meter in both groups. The data obtained were subjected to statistical analysis. Statistically, no significant difference was observed between both the groups for all salivary parameters assessed, except for the buffering capacity level at 150 μl titration of 0.1 N hydrochloric acid (p = 0.73; significant at 1% level). Salivary pH and buffering capacity may not serve as reliable markers for risk prediction of ECC. How to cite this article: Jayaraj D, Ganesan S. Salivary pH and Buffering Capacity as Risk Markers for Early Childhood Caries: A Clinical Study. Int J Clin Pediatr Dent 2015;8(3):167-171.

  1. [Characteristics of precipitation pH and conductivity at Mt. Huang].

    Science.gov (United States)

    Shi, Chun-e; Deng, Xue-liang; Wu, Bi-wen; Hong, Jie; Zhang, Su; Yang, Yuan-jian

    2013-05-01

    To understand the general characteristics of pH distribution and pollution in precipitation at Mt. Huang, statistical analyses were conducted for the routine measurements of pH and conductivity (K) at Mt. Huang during 2006-2011. The results showed that: (1) Over the period of study, the annual volume weighted mean (VWM) precipitation pH varied from 4.81 to 5.57, with precipitation acidity strengthening before 2009 and weakening thereafter. The precipitation acidity showed evident seasonal variations, with the VWM pH lowest in winter (4.78), and highest in summer (5.33). The occurrence frequency of acid rain was 46% , accounting for 45% of total rainfalls and with the most frequent pH falling into weak acid to neutral rain. (2) The annual VWM K varied from 16.91 to 27.84 microS x cm(-1), with no evident trend. As for ions pollution, the precipitation was relatively clean at Mt. Huang, with the most frequent K range being below 15 microS x cm(-1), followed by 15-25 microS x cm(-1). From February 2010 to December 2011, precipitation samples were collected on daily basis for ions analysis, as well as pH and K measurement in lab. Detailed comparisons were conducted between the two sets of pH and K, one set from field measurement and the other from lab measurement. The results indicated: (1) The lab measured pH (K) was highly correlated with the field pH (K); however, the lab pH tended to move towards neutral comparing with the corresponding field pH, and the shift range was closely correlated with the field pH and rainfall. The shift range of K from field to lab was highly correlated with the total ion concentration of precipitation. The field K showed evident negative correlation with the field pH with a correlation coefficient of -0.51. (2) When sampling with nylon-polyethylene bags, the statistics showed smaller bias between two sets of pH, with higher correlation coefficient between two sets of K. Furthermore, the lab K also showed evident negative correlation with

  2. Voltage and pH sensing by the voltage-gated proton channel, HV1.

    Science.gov (United States)

    DeCoursey, Thomas E

    2018-04-01

    Voltage-gated proton channels are unique ion channels, membrane proteins that allow protons but no other ions to cross cell membranes. They are found in diverse species, from unicellular marine life to humans. In all cells, their function requires that they open and conduct current only under certain conditions, typically when the electrochemical gradient for protons is outwards. Consequently, these proteins behave like rectifiers, conducting protons out of cells. Their activity has electrical consequences and also changes the pH on both sides of the membrane. Here we summarize what is known about the way these proteins sense the membrane potential and the pH inside and outside the cell. Currently, it is hypothesized that membrane potential is sensed by permanently charged arginines (with very high p K a ) within the protein, which results in parts of the protein moving to produce a conduction pathway. The mechanism of pH sensing appears to involve titratable side chains of particular amino acids. For this purpose their p K a needs to be within the operational pH range. We propose a 'counter-charge' model for pH sensing in which electrostatic interactions within the protein are selectively disrupted by protonation of internally or externally accessible groups. © 2018 The Author.

  3. Voltage and pH sensing by the voltage-gated proton channel, HV1

    Science.gov (United States)

    2018-01-01

    Voltage-gated proton channels are unique ion channels, membrane proteins that allow protons but no other ions to cross cell membranes. They are found in diverse species, from unicellular marine life to humans. In all cells, their function requires that they open and conduct current only under certain conditions, typically when the electrochemical gradient for protons is outwards. Consequently, these proteins behave like rectifiers, conducting protons out of cells. Their activity has electrical consequences and also changes the pH on both sides of the membrane. Here we summarize what is known about the way these proteins sense the membrane potential and the pH inside and outside the cell. Currently, it is hypothesized that membrane potential is sensed by permanently charged arginines (with very high pKa) within the protein, which results in parts of the protein moving to produce a conduction pathway. The mechanism of pH sensing appears to involve titratable side chains of particular amino acids. For this purpose their pKa needs to be within the operational pH range. We propose a ‘counter-charge’ model for pH sensing in which electrostatic interactions within the protein are selectively disrupted by protonation of internally or externally accessible groups. PMID:29643227

  4. Towards a neural basis of music-evoked emotions.

    Science.gov (United States)

    Koelsch, Stefan

    2010-03-01

    Music is capable of evoking exceptionally strong emotions and of reliably affecting the mood of individuals. Functional neuroimaging and lesion studies show that music-evoked emotions can modulate activity in virtually all limbic and paralimbic brain structures. These structures are crucially involved in the initiation, generation, detection, maintenance, regulation and termination of emotions that have survival value for the individual and the species. Therefore, at least some music-evoked emotions involve the very core of evolutionarily adaptive neuroaffective mechanisms. Because dysfunctions in these structures are related to emotional disorders, a better understanding of music-evoked emotions and their neural correlates can lead to a more systematic and effective use of music in therapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Well acidizing

    Energy Technology Data Exchange (ETDEWEB)

    Street, E H

    1980-01-23

    The apparatus relates in particular to a well-treating process in which an aqueous acid solution having a pH of < 2 is injected into a subterranean reservoir in a manner such that materials that contain ferric ions are present in the acid and, as the acid reacts within the reservoir and attains a pH exceeding 3, tend to be precipitated as ferric ion-containing solid materials that may plug the pores of the reservoir. Such a precipitation is prevented by dissolving in the acid solution an amount of 5-sulfosalicylic acid which is at least sufficient to sequester significant proportions of ferric ions when the pH of the acid is from 0.5 to 3 but is less than enough to cause a significant salting-out of solid materials, and an amount of citric acid which is at least sufficient to sequester significant proportions of ferric ions when the pH of the acid is from 3 to 6 but is less than enough to precipitate a significant amount of calcium citrate. The amount of the 5-sulfosalicylic acid may be from 0.01 to 0.05 moles/l and the amount of citric acid is from 0.001 to 0.009 moles/l. 11 claims.

  6. Purification and characterization of two distinct acidic phytases with broad pH stability from Aspergillus niger NCIM 563.

    Science.gov (United States)

    Soni, S K; Magdum, A; Khire, J M

    2010-11-01

    Aspergillus niger NCIM 563 produced two different extracellular phytases (Phy I and Phy II) under submerged fermentation conditions at 30°C in medium containing dextrin-glucose-sodium nitrate-salts. Both the enzymes were purified to homogeneity using Rotavapor concentration, Phenyl-Sepharose column chromatography and Sephacryl S-200 gel filtration. The molecular mass of Phy I and II as determined by SDS-PAGE and gel filtration were 66, 264, 150 and 148 kDa respectively, indicating that Phy I consists of four identical subunits and Phy II is a monomer. The pI values of Phy I and II were 3.55 and 3.91, respectively. Phy I was highly acidic with optimum pH of 2.5 and was stable over a broad pH range (1.5-9.0) while Phy II showed a pH optimum of 5.0 with stability in the range of pH 3.5-9.0. Phy I exhibited very broad substrate specificity while Phy II was more specific for sodium phytate. Similarly Phy II was strongly inhibited by Ag(+), Hg(2+) (1 mM) metal ions and Phy I was partially inhibited. Peptide analysis by Mass Spectrometry (MS) MALDI-TOF also indicated that both the proteins were totally different. The K(m) for Phy I and II for sodium phytate was 2.01 and 0.145 mM while V(max) was 5,018 and 1,671 μmol min(-1) mg(-1), respectively. The N-terminal amino acid sequences of Phy I and Phy II were FSYGAAIPQQ and GVDERFPYTG, respectively. Phy II showed no homology with Phy I and any other known phytases from the literature suggesting its unique nature. This, according to us, is the first report of two distinct novel phytases from Aspergillus niger.

  7. Synthesis and HNO Donating Properties of the Piloty's Acid Analogue Trifluoromethanesulphonylhydroxamic acid: Evidence for Quantitative Release of HNO at Neutral pH Conditions.

    Science.gov (United States)

    Adas, Sonya K; Bharadwaj, Vinay; Zhou, Yang; Zhang, Jiuhong; Seed, Alexander J; Brasch, Nicola Elizabeth; Sampson, Paul

    2018-03-11

    Trifluoromethanesulphonylhydroxamic acid, CF3SO2NHOH, is shown to release HNO under physiological pH conditions. A two-step synthesis is presented with the first complete characterization of CF3SO2NHOH. This molecule rapidly decomposes in neutral aqueous solution to cleanly release HNO and CF3SO2-, demonstrated using the HNO traps TXPTS and HOCbl, and by 19F NMR spectroscopy. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A review of metal (Pb and Zn) sensitive and pH tolerant bioassay organisms for risk screening of metal-contaminated acidic soils

    International Nuclear Information System (INIS)

    Chapman, E.Emily V.; Dave, Göran; Murimboh, John D.

    2013-01-01

    To improve risk estimates at the screening stage of Ecological Risk Assessment (ERA), short duration bioassays tailored to undisturbed soil cores from the contaminated site could be useful. However, existing standardized bioassays use disturbed soil samples and often pH sensitive organisms. This is a problem as naturally acidic soils are widespread. Changing soil properties to suit the test organism may change metal bioavailability, leading to erroneous risk estimates. For bioassays in undisturbed soil cores to be effective, species able to withstand natural soil properties must be identified. This review presents a critical examination of bioassay species' tolerance of acidic soils and sensitivity to metal contaminants such as Pb and Zn. Promising organisms include; Dendrobaena octaedra, Folsomia candida, Caenorhabditis elegans, Oppia nitens, Brassica rapa, Trifolium pratense, Allium cepa, Quercus rubra and Acer rubrum. The MetSTICK test and the Bait lamina test were also identified as suitable microorganism tests. -- Highlights: •Risk screening of metal contaminated soils should consider metal bioavailability. •Metal bioavailability is dependent on soil properties such as pH. •Many standardized bioassay organisms are sensitive to acidic soils. •This review identifies acid tolerant and metal sensitive bioassays and species. •The identified tests can improve risk screening of acidic metal contaminated soil. -- This review identifies bioassay species able to withstand naturally acidic soils while being sensitive to metal contaminants

  9. Metabolic footprint of Lactobacillus acidophilus NCFM at different pH

    DEFF Research Database (Denmark)

    Sulek, Karolina; Frandsen, Henrik Lauritz; Smedsgaard, Jørn

    2012-01-01

    increased the concentration of lactic acid, succinic acid, adenine and arginine in the medium. The metabolism of NCFM did not change significantly between pH 5 and 7, suggesting that other environmental factors than pH might have bigger impact on its colonization throughout the gastrointestinal tract....

  10. Mine waters: Acidic to circumneutral

    Science.gov (United States)

    Nordstrom, D. Kirk

    2011-01-01

    Acid mine waters, often containing toxic concentrations of Fe, Al, Cu, Zn, Cd, Pb, Ni, Co, and Cr, can be produced from the mining of coal and metallic deposits. Values of pH for acid mine waters can range from –3.5 to 5, but even circumneutral (pH ≈ 7) mine waters can have high concentrations of As, Sb, Mo, U, and F. When mine waters are discharged into streams, lakes, and the oceans, serious degradation of water quality and injury to aquatic life can ensue, especially when tailings impoundments break suddenly. The main acid-producing process is the exposure of pyrite to air and water, which promotes oxidative dissolution, a reaction catalyzed by microbes. Current and future mining should plan for the prevention and remediation of these contaminant discharges by the application of hydrogeochemical principles and available technologies, which might include remining and recycling of waste materials.

  11. Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities.

    Science.gov (United States)

    Mandotra, S K; Kumar, Pankaj; Suseela, M R; Nayaka, S; Ramteke, P W

    2016-02-01

    The present study dealt with biomass, lipid concentration, fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under different phosphate concentrations, pH and light intensities, one at a time. Among different phosphate concentrations, higher biomass (770.10±11.0mg/L) and lipid concentration (176.87±4.6mg/L) were at the concentration of 60mg/L. Light intensity at 6000lux yielded higher biomass and lipid concentration of 742.0±9.7 and 243.15±9.1mg/L, respectively. The biomass (769.0±12.3mg/L) and lipid (179.47±5.5mg/L) concentration were highest at pH 8 and pH 6, respectively. All the culture treatments showed marked effect on the fatty acid profile and biodiesel properties of the extracted oil. FAME derived biodiesel properties were compared with European biodiesel standards (EN 14214), Indian biodiesel standards (IS 15607) and American biodiesel standards (ASTM D 6751-08) to assess the suitability of algal oil as biodiesel feedstock. Copyright © 2015. Published by Elsevier Ltd.

  12. The influence of pH on the corrosion of medium strength aerospace alloy 8090, 2091 and 2014

    DEFF Research Database (Denmark)

    Ambat, Rajan; Dwarakadasa, E.S.

    1992-01-01

    The influence of pH on the corrosion behaviour of two aluminium-lithium-copper-magnesium-zirconium (8090 and 2091) alloys was studied and compared with a standard aircraft alloy, 2014 (Al-4.4% Cu) and 99.9% pure Al. In constant exposure and potentiodynamic polarization studies conducted in 3.5% Na......Cl solution having different pH values, all the alloys exhibited high corrosion rates in acidic and alkaline environments, with a minimum in less hostile environments close to neutral pH. The pitting potentials for aluminium-lithium alloys were slightly lower than those for 2014 and pure Al. The effect of p......H on the passive current density was also less for aluminium-lithium alloys....

  13. Acid-extrusion from tissue: the interplay between membrane transporters and pH buffers.

    Science.gov (United States)

    Hulikova, Alzbeta; Harris, Adrian L; Vaughan-Jones, Richard D; Swietach, Pawel

    2012-01-01

    The acid-base balance of cells is related to the concentration of free H⁺ ions. These are highly reactive, and their intracellular concentration must be regulated to avoid detrimental effects to the cell. H⁺ ion dynamics are influenced by binding to chelator substances ('buffering'), and by the production, diffusion and membrane-transport of free H⁺ ions or of the H⁺-bound chelators. Intracellular pH (pHi) regulation aims to balance this system of diffusion-reaction-transport processes at a favourable steady-state pHi. The ability of cells to regulate pHi may set a limit to tissue growth and can be subject to selection pressures. Cancer cells have been postulated to respond favourably to such selection pressures by evolving a better means of pHi regulation. A particularly important feature of tumour pHi regulation is acid-extrusion, which involves H⁺-extrusion and HCO₃⁻-uptake by membrane-bound transporter-proteins. Extracellular CO₂/HCO₃⁻ buffer facilitates these membrane-transport processes. As a mobile pH-buffer, CO₂/HCO₃⁻ protects the extracellular space from excessive acidification that could otherwise inhibit further acid-extrusion. CO₂/HCO₃⁻ also provides substrate for HCO₃⁻-transporters. However, the inherently slow reaction kinetics of CO₂/HCO₃⁻ can be rate-limiting for acid-extrusion. To circumvent this, cells can express extracellular-facing carbonic anhydrase enzymes to accelerate the attainment of equilibrium between CO₂, HCO₃⁻ and H⁺. The acid-extrusion apparatus has been proposed as a target for anti-cancer therapy. The major targets include H⁺ pumps, Na⁺/H⁺ exchangers and carbonic anhydrases. The effectiveness of such therapy will depend on the correct identification of rate-limiting steps in pHi regulation in a specific type of cancer.

  14. Group I mGlu receptors potentiate synaptosomal [3H]glutamate release independently of exogenously applied arachidonic acid

    International Nuclear Information System (INIS)

    Reid, M.E.; Toms, N.J.; Bedingfield, J.S.; Roberts, P.J.

    1999-01-01

    In the current study, we have characterized group I metabotropic glutamate (mGlu) receptor enhancement of 4-aminopyridine (4AP)-evoked [ 3 H]glutamate release from rat cerebrocortical synaptosomes. The broad spectrum mGlu receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3R)-ACPD, 10 μM) increased 4AP-evoked [ 3 H]glutamate release (143.32±2.73% control) only in the presence of exogenously applied arachidonic acid; an effect reversed by the inclusion of bovine serum albumin (BSA, fatty acid free). In contrast, the selective group I mGlu receptor agonist (S)-3,5-dihydroxyphenylglycine (DHPG) potentiated (EC 50 =1.60±0.25 μM; E max =147.61±10.96% control) 4AP-evoked [ 3 H]glutamate release, in the absence of arachidonic acid. This potentiation could be abolished by either the selective mGlu 1 receptor antagonist (R,S)-1-aminoindan-1,5-dicarboxylic acid (AIDA, 1 mM) or the selective PKC inhibitor (Ro 31-8220, 10 μM) and was BSA-insensitive. The selective mGlu 5 receptor agonist (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG, 300μM) was without effect. DHPG (100 μM) also potentiated both 30 mM and 50 mM K + -evoked [ 3 H]glutamate release (121.60±12.77% and 121.50±4.45% control, respectively). DHPG (100 μM) failed to influence both 4AP-stimulated 45 Ca 2+ influx and 50 mM K + -induced changes in synaptosomal membrane potential. Possible group I mGlu receptor suppression of tonic adenosine A 1 receptor, group II/III mGlu receptors or GABA B receptor activity is unlikely since 4AP-evoked [ 3 H]glutamate release was insensitive to the selective inhibitory receptor antagonists 8-cyclopentyl-1,3-dimethylxanthine, (R,S)-α-cyclopropyl-4-phosphonophenylglycine or CGP55845A, respectively. These data suggest an 'mGlu 1 receptor-like' receptor potentiates [ 3 H]glutamate release from cerebrocortical synaptosomes in the absence of exogenously applied arachidonic acid. This PKC dependent effect is unlikely to be via modulation of synaptosomal membrane

  15. Determination of the pK values of 5-aminosalicylic acid and N-acetylaminosalicylic acid and comparison of the pH dependent lipid-water partition coefficients of sulphasalazine and its metabolites.

    Science.gov (United States)

    Allgayer, H; Sonnenbichler, J; Kruis, W; Paumgartner, G

    1985-01-01

    Sulphasalazine (SASP), used in the treatment of inflammatory bowel disease, is split into sulphapyridine (SP) and 5-aminosalicylic acid (5-ASA) in the colon. Lower plasma levels of SASP and 5-ASA as compared to those of SP may be due to different absorption rates from the colon because of different pK values and pH dependent lipid-water partition coefficients. In this study we determined the pK values of 5-ASA and its major metabolite, N-acetyl amino-salicylic acid (AcASA), by 13C-NMR spectroscopy and compared the pH dependent apparent benzene-water partition coefficients (Papp) of SASP, SP and 5-ASA with respect to their different plasma levels. The COOH group of 5-ASA had a pK value of 3.0, the -NH3+ group had 6.0, the -OH group 13.9; the -COOH group of AcASA had 2.7 and the -OH group 12.9; The Papp of SASP (0.042 +/- 0.004) and 5-ASA (0.059 +/- 0.01) were significantly lower than that of SP (0.092 +/- 0.03) (at pH 5.5).

  16. Photochemical decomposition of perfluorooctanoic acid mediated by iron in strongly acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Masaki, E-mail: mohno@hiroshima-u.ac.jp [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Ito, Masataka; Ohkura, Ryouichi [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Mino A, Esteban R. [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Kose, Tomohiro [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Okuda, Tetsuji [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Nakai, Satoshi [Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527 (Japan); Kawata, Kuniaki [Faculty of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Nishijima, Wataru [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan)

    2014-03-01

    Highlights: • Perfluorooctanoic acid (PFOA) was decomposed based on ferric ion performance. • Complete decomposition of PFOA was confirmed in strongly acidic conditions. • Fe{sup 2+} changed to Fe{sup 3+} to restore chemical equilibrium in this condition. • Fe{sup 3+} was only produced from Fe{sup 2+} by hydroxyl radical in weakly acidic conditions. • The Fe{sup 3+} regeneration mechanisms resulted in the performance of Fe{sup 3+} for PFOA. - Abstract: The performance of a ferric ion mediated photochemical process for perfluorooctanoic acid (PFOA) decomposition in strongly acidic conditions of pH 2.0 was evaluated in comparison with those in weakly acidic conditions, pH 3.7 or pH 5.0, based on iron species composition and ferric ion regeneration. Complete decomposition of PFOA under UV irradiation was confirmed at pH 2.0, whereas perfluoroheptanoic acid (PFHpA) and other intermediates were accumulated in weakly acidic conditions. Iron states at each pH were evaluated using a chemical equilibrium model, Visual MINTEQ. The main iron species at pH 2.0 is Fe{sup 3+} ion. Although Fe{sup 3+} ion is consumed and is transformed to Fe{sup 2+} ion by photochemical decomposition of PFOA and its intermediates, the produced Fe{sup 2+} ion will change to Fe{sup 3+} ion to restore chemical equilibrium. Continuous decomposition will occur at pH 2.0. However, half of the iron cannot be dissolved at pH 3.7. The main species of dissolved iron is Fe(OH){sup 2+}. At pH 3.7 or higher pH, Fe{sup 3+} ion will only be produced from the oxidation of Fe{sup 2+} ion by hydroxyl radical produced by Fe(OH){sup 2+} under UV irradiation. These different mechanisms of Fe{sup 3+} regeneration that prevail in strongly and weakly acidic conditions will engender different performances of the ferric ion.

  17. Influence of nature, concentration and pH of buffer acid-base system on rate determining step of the electrochemiluminescence of Ru(bpy)32+ with tertiary aliphatic amines

    International Nuclear Information System (INIS)

    Pastore, Paolo; Badocco, Denis; Zanon, Francesco

    2006-01-01

    The electrogenerated chemiluminescence (ECL) of Ru(bpy) 3 2+ (bpy 2,2'-bipyridyl) with tertiary aliphatic amines as co-reactants, was theoretically and experimentally studied as a function of the pre-equilibria involved in the ammonium proton lost and in relation to the nature of the rate determining step. Transient potential steps were used with a 3-mm glassy carbon disk electrode or carbon fiber ultramicroelectrodes array to investigate emission behavior in a variety of aqueous solution types, containing phosphate, tartrate and phthalate acid-base systems at differing pH values. The emission of Ru(bpy) 3 2+ resulting from the reaction with n-tripropylamine (TPrA), tri-isobutylamine (TisoBuA), n-tributylamine (TBuA), methyl-di-n-propylamine (MeDPrA) and triethylamine (TEtA) in varying acid-base media was interpreted on the basis of the quoted pre-equilibria, ammonium pK a being known. The nature of the rate determining steps changes depending on pH. Above pH ∼ 5 the amine neutral radical formation is the rate determining step and, is independent of pH with rate constant close to 10 3 s -1 ; below pH ∼ 5 the rate determining step becomes the deprotonation of the ammonium ion, operated by different bases present in solution. Different amines in the same acid-base system showed analogous ECL behavior, conditioned by the chosen acid base system. A single amine in different acid-base systems showed different kinetic behaviors, due to the dissociation constants of the chosen buffers. The concentration of the acid-base system also played an important role and influenced emission intensity and shape. ECL emission were simulated by finite difference methods, implementing a previously proposed mechanism by including the relevant pre-equilibria. Simulation may also give estimates of the pK a values of the ammonium ions. An ion pair formation between R 3 N· + and the mostly charged species present in solution is hypothesized to explain the contradictory experimental

  18. Negative Effect of Ellagic Acid on Cytosolic pH Regulation and Glycolytic Flux in Human Endometrial Cancer Cells.

    Science.gov (United States)

    Abdelazeem, Khalid N M; Singh, Yogesh; Lang, Florian; Salker, Madhuri S

    2017-01-01

    Key properties of tumor cells include enhanced glycolytic flux with excessive consumption of glucose and formation of lactate. As glycolysis is highly sensitive to cytosolic pH, maintenance of glycolysis requires export of H+ ions, which is in part accomplished by Na+/H+ exchangers, such as NHE1. The carrier is sensitive to oxidative stress. Growth of tumor cells could be suppressed by the polyphenol Ellagic acid, which is found in various fruits and vegetables. An effect of Ellagic acid on transport processes has, however, never been reported. The present study thus elucidated an effect of Ellagic acid on cytosolic pH (pHi), NHE1 transcript levels, NHE1 protein abundance, Na+/H+ exchanger activity, and lactate release. Experiments were performed in Ishikawa cells without or with prior Ellagic acid (20 µM) treatment. NHE1 transcript levels were determined by qRT-PCR, NHE1 protein abundance by Western blotting, pHi utilizing (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein [BCECF] fluorescence, Na+/H+ exchanger activity from Na+ dependent realkalinization after an ammonium pulse, cell volume from forward scatter in flow cytometry, reactive oxygen species (ROS) from 2',7'-dichlorodihydrofluorescein fluorescence, glucose uptake utilizing 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose, and lactate concentration in the supernatant utilizing a colorimetric (570 nm)/ fluorometric enzymatic assay. A 48 hour treatment with Ellagic acid (20 µM) significantly decreased NHE1 transcript levels by 75%, NHE1 protein abundance by 95%, pHi from 7.24 ± 0.01 to 7.02 ± 0.01, Na+/H+ exchanger activity by 77%, forward scatter by 10%, ROS by 82%, glucose uptake by 58%, and lactate release by 15%. Ellagic acid (20µM) markedly down-regulates ROS formation and NHE1 expression leading to decreased Na+/H+ exchanger activity, pHi, glucose uptake and lactate release in endometrial cancer cells. Those effects presumably contribute to reprogramming and growth

  19. Negative Effect of Ellagic Acid on Cytosolic pH Regulation and Glycolytic Flux in Human Endometrial Cancer Cells

    Directory of Open Access Journals (Sweden)

    Khalid N. M. Abdelazeem

    2017-04-01

    Full Text Available Background/Aims: Key properties of tumor cells include enhanced glycolytic flux with excessive consumption of glucose and formation of lactate. As glycolysis is highly sensitive to cytosolic pH, maintenance of glycolysis requires export of H+ ions, which is in part accomplished by Na+/H+ exchangers, such as NHE1. The carrier is sensitive to oxidative stress. Growth of tumor cells could be suppressed by the polyphenol Ellagic acid, which is found in various fruits and vegetables. An effect of Ellagic acid on transport processes has, however, never been reported. The present study thus elucidated an effect of Ellagic acid on cytosolic pH (pHi, NHE1 transcript levels, NHE1 protein abundance, Na+/H+ exchanger activity, and lactate release. Methods: Experiments were performed in Ishikawa cells without or with prior Ellagic acid (20 µM treatment. NHE1 transcript levels were determined by qRT-PCR, NHE1 protein abundance by Western blotting, pHi utilizing (2',7'-bis-(2-carboxyethyl-5-(and-6-carboxyfluorescein [BCECF] fluorescence, Na+/H+ exchanger activity from Na+ dependent realkalinization after an ammonium pulse, cell volume from forward scatter in flow cytometry, reactive oxygen species (ROS from 2’,7’-dichlorodihydrofluorescein fluorescence, glucose uptake utilizing 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-ylamino-2-deoxyglucose, and lactate concentration in the supernatant utilizing a colorimetric (570 nm/ fluorometric enzymatic assay. Results: A 48 hour treatment with Ellagic acid (20 µM significantly decreased NHE1 transcript levels by 75%, NHE1 protein abundance by 95%, pHi from 7.24 ± 0.01 to 7.02 ± 0.01, Na+/H+ exchanger activity by 77%, forward scatter by 10%, ROS by 82%, glucose uptake by 58%, and lactate release by 15%. Conclusion: Ellagic acid (20µM markedly down-regulates ROS formation and NHE1 expression leading to decreased Na+/H+ exchanger activity, pHi, glucose uptake and lactate release in endometrial cancer cells. Those

  20. pH Sensing and Regulation in Cancer

    OpenAIRE

    Mehdi eDamaghi; Jonathan W. Wojtkowiak; Robert J. Gillies

    2013-01-01

    Cells maintain intracellular pH (pHi) within a narrow range (7.1-7.2) by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors. These sensors have the ability to recognize and induce cellular responses to maintain the intracellular pH, often at the expense of acidifying the extracellular pH. In turn, extracellular acidification impacts cells via specific acid-sensing ion channels (ASICs) and proton-sensing G-protein coupled receptors (GPCRs...

  1. Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation.

    Science.gov (United States)

    Li, Bingshuo; Virtanen, Juha P; Oeltermann, Axel; Schwarz, Cornelius; Giese, Martin A; Ziemann, Ulf; Benali, Alia

    2017-11-22

    Transcranial magnetic stimulation (TMS) is a widely used non-invasive tool to study and modulate human brain functions. However, TMS-evoked activity of individual neurons has remained largely inaccessible due to the large TMS-induced electromagnetic fields. Here, we present a general method providing direct in vivo electrophysiological access to TMS-evoked neuronal activity 0.8-1 ms after TMS onset. We translated human single-pulse TMS to rodents and unveiled time-grained evoked activities of motor cortex layer V neurons that show high-frequency spiking within the first 6 ms depending on TMS-induced current orientation and a multiphasic spike-rhythm alternating between excitation and inhibition in the 6-300 ms epoch, all of which can be linked to various human TMS responses recorded at the level of spinal cord and muscles. The advance here facilitates a new level of insight into the TMS-brain interaction that is vital for developing this non-invasive tool to purposefully explore and effectively treat the human brain.

  2. Skin denervation does not alter cortical potentials to surface concentric electrode stimulation: A comparison with laser evoked potentials and contact heat evoked potentials.

    Science.gov (United States)

    La Cesa, S; Di Stefano, G; Leone, C; Pepe, A; Galosi, E; Alu, F; Fasolino, A; Cruccu, G; Valeriani, M; Truini, A

    2018-01-01

    In the neurophysiological assessment of patients with neuropathic pain, laser evoked potentials (LEPs), contact heat evoked potentials (CHEPs) and the evoked potentials by the intraepidermal electrical stimulation via concentric needle electrode are widely agreed as nociceptive specific responses; conversely, the nociceptive specificity of evoked potentials by surface concentric electrode (SE-PREPs) is still debated. In this neurophysiological study we aimed at verifying the nociceptive specificity of SE-PREPs. We recorded LEPs, CHEPs and SE-PREPs in eleven healthy participants, before and after epidermal denervation produced by prolonged capsaicin application. We also used skin biopsy to verify the capsaicin-induced nociceptive nerve fibre loss in the epidermis. We found that whereas LEPs and CHEPs were suppressed after capsaicin-induced epidermal denervation, the surface concentric electrode stimulation of the same denervated skin area yielded unchanged SE-PREPs. The suppression of LEPs and CHEPs after nociceptive nerve fibre loss in the epidermis indicates that these techniques are selectively mediated by nociceptive system. Conversely, the lack of SE-PREP changes suggests that SE-PREPs do not provide selective information on nociceptive system function. Capsaicin-induced epidermal denervation abolishes laser evoked potentials (LEPs) and contact heat evoked potentials (CHEPs), but leaves unaffected pain-related evoked potentials by surface concentric electrode (SE-PREPs). These findings suggest that unlike LEPs and CHEPs, SE-PREPs are not selectively mediated by nociceptive system. © 2017 European Pain Federation - EFIC®.

  3. Influence of pH on optoelectronic properties of zinc sulphide thin films prepared using hydrothermal and spin coating method

    Science.gov (United States)

    Choudapur, V. H.; Bennal, A. S.; Raju, A. B.

    2018-04-01

    The ZnS nanomaterial is synthesized by hydrothermal method under optimized conditions using Zinc acetate and sodium sulphide as precursors. The Zinc Sulphide thin films are obtained by simple spin coating method with high optical transmittance. The prepared thin films are adhesive and uniform. The x-ray diffraction analysis showed that the films are polycrystalline in cubic phase with the preferred orientation along (111) direction. Current-voltage curves were recorded at room temperature using Keithley 617 programmable electrometer and conductivity is calculated for the film coated on ITO by two probe method. The pH of the solution is varied by using ammonia and hydrochloric acid. The comparative studies of effect of pH on the morphology, crystallanity and optoelectronic properties of the films are studied. It is observed that the pH of the solution has large influence on optoelectronic properties. The thin film prepared with neutral pH has higher crystallanity, bandgap and conductivity as compared to the samples prepared in acidic or basic solutions.

  4. Observation of pH Value in Electrokinetic Remediation using various electrolyte (MgSO4, KH2PO4 and Na(NO3)) for Barren Acidic Soil at Ayer Hitam, Johor, Malaysia

    Science.gov (United States)

    Norashira, J.; Zaidi, E.; Aziman, M.; Saiful Azhar, A. T.

    2016-07-01

    Barren acidic soil collected at Ayer Hitam, Johor Malaysia was recorded at pH value of 2.36 with relative humidity of 86%. This pH value is not suitable for the growth of any plants especially for the soil stabilization purposes. Gradation weathering within the range of 4 to 6 indicates an incomplete/partial weathering process. The soil grade in this range is known as a black shale mudstone. Beside, this also influences to a factor of the high surface water runoff at this particular soil species. As the acidic pH become a major problem for soil fertilizing hence an appropriate technique was implemented known as using ‘Electrokinetic Remediation’, EKR. This technique has a great potential in changing the soil pH value from acidic to less acidic and also kept maintain the pH at the saturated rate of electrochemical process. This research study presents the monitoring data of pH value due to the effect of various electrolyte consist of 0.5M of MgSO4, KH2PO4, and Na(NO3). Here, the distilled water (DW) was used as reference solution. The electric field was provided by dipping two pieces of identical rectangular aluminum foil as anode and cathode. The EKR was conducted under a constant voltage gradient of 50 V/m across the sample bulk at 0.14 m length measured between both electrodes. The data collection was conducted during the total period of 7 days surveillance. The variation of pH values at the remediation area between anode and cathode for various type of electrolyte indicates that there are a significant saturated value as it reaches 7 days of treatment. During the analysis, it is found that the highest pH value at the remediation area after 7 days treatment using Na(NO3), KH2PO4 and MgSO4 was 3.93, 3.33 and 3.39 respectively. Hence from the last stage of pH value observation, it can be conclude that the best electrolyte for barren soil treatment is Na(NO3) whereby it contribute to highest pH value and turn the soil to be less acidic.

  5. Survival of lactic acid and chlorine dioxide treated Campylobacter jejuni under suboptimal conditions of pH, temperature and modified atmosphere

    DEFF Research Database (Denmark)

    Smigic, Nada; Rajkovic, Andreja; Nielsen, Dennis Sandris

    2010-01-01

    As mild decontamination treatments are gaining more and more interest due to increased consumer demands for fresh foods, it is of great importance to establish the influence of decontamination treatments on the subsequent bacterial behaviour under suboptimal storage conditions. For this purpose...... Campylobacter jejuni cells treated with lactic acid (LA, 3% lactic acid, pH 4.0, 2 min) or chlorine dioxide (ClO(2), 20 ppm, 2 min) were inoculated in Bolton broth (pH 6.0) and incubated under 80% O(2)/20% N(2), 80% CO(2)/20% N(2), air or micro-aerophilic (10% CO(2)/85% N(2)/5% O(2)) atmosphere, at 4 degrees C...... on their pH(i) values. The pH(i) response was independent on the surrounding atmosphere since similar distribution of the subpopulations was observed for all tested atmospheres. However, the pH(i) response was dependent on the initial decontamination treatment. The investigation of intracellular parameters...

  6. Exploring the selective lactic acid production from food waste in uncontrolled pH mixed culture fermentations using different reactor configurations.

    Science.gov (United States)

    Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Yousef, Ahmed F; Schmidt, Jens Ejbye

    2017-08-01

    Carboxylic acid production from food waste by mixed culture fermentation is an important future waste management option. Obstacles for its implementation are the need of pH control, and a broad fermentation product spectrum leading to increased product separation costs. To overcome these obstacles, the selective production of lactic acid (LA) from model food waste by uncontrolled pH fermentation was tested using different reactor configurations. Batch experiments, semi-continuously fed reactors and a percolation system reached LA concentrations of 32, 16 and 15gCOD LA /L, respectively, with selectivities of 93%, 84% and 75% on COD base, respectively. The semi-continuous reactor was dominated by Lactobacillales. Our techno-economic analysis suggests that LA production from food waste can be economically feasible, with LA recovery and low yields remaining as major obstacles. To solve both problems, we successfully applied in-situ product extraction using activated carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Bicarbonate sensing in mouse cortical astrocytes during extracellular acid/base disturbances

    Science.gov (United States)

    Naoshin, Zinnia; Defren, Sabrina; Schmaelzle, Jana; Weber, Tobias; Schneider, Hans‐Peter

    2017-01-01

    Key points The present study suggests that the electrogenic sodium–bicarbonate cotransporter, NBCe1, supported by carbonic anhydrase II, CAII, provides an efficient mechanism of bicarbonate sensing in cortical astrocytes. This mechanism is proposed to play a major role in setting the pHi responses to extracellular acid/base challenges in astrocytes.A decrease in extracellular [HCO3 −] during isocapnic acidosis and isohydric hypocapnia, or an increase in intracellular [HCO3 −] during hypercapnic acidosis, was effectively sensed by NBCe1, which carried bicarbonate out of the cells under these conditions, and caused an acidification and sodium fall in WT astrocytes, but not in NBCe1‐knockout astrocytes.Isocapnic acidosis, hypercapnic acidosis and isohydric hypocapnia evoked inward currents in NBCe1‐ and CAII‐expressing Xenopus laevis oocytes, but not in native oocytes, suggesting that NBCe1 operates in the outwardly directed mode under these conditions consistent with our findings in astrocytes.We propose that bicarbonate sensing of astrocytes may have functional significance during extracellular acid/base disturbances in the brain, as it not only alters intracellular pH/[HCO3 −]‐dependent functions of astrocytes, but also modulates the extracellular pH/[HCO3 −] in brain tissue. Abstract Extracellular acid/base status of the mammalian brain undergoes dynamic changes during many physiological and pathological events. Although intracellular pH (pHi) of astrocytes responds to extracellular acid/base changes, the mechanisms mediating these changes have remained unresolved. We have previously shown that the electrogenic sodium–bicarbonate cotransporter, NBCe1, is a high‐affinity bicarbonate carrier in cortical astrocytes. In the present study, we investigated whether NBCe1 plays a role in bicarbonate sensing in astrocytes, and in determining the pHi responses to extracellular acid/base challenges. We measured changes in intracellular H+ and Na+ in

  8. Functional photoacoustic microscopy of pH.

    Science.gov (United States)

    Chatni, Muhammad Rameez; Yao, Junjie; Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin I; Wang, Lihong V

    2011-10-01

    pH is a tightly regulated indicator of metabolic activity. In mammalian systems, an imbalance of pH regulation may result from or result in serious illness. In this paper, we report photoacoustic microscopy (PAM) of a commercially available pH-sensitive fluorescent dye (SNARF-5F carboxylic acid) in tissue phantoms. We demonstrated that PAM is capable of pH imaging in absolute values at tissue depths of up to 2.0 mm, greater than possible with other forms of optical microscopy.

  9. Impact of pH and application time of meta-phosphoric acid on resin-enamel and resin-dentin bonding.

    Science.gov (United States)

    Cardenas, A F M; Siqueira, F S F; Bandeca, M C; Costa, S O; Lemos, M V S; Feitora, V P; Reis, A; Loguercio, A D; Gomes, J C

    2018-02-01

    To evaluate the immediate microshear resin-enamel bond strength (μSBS) and the immediate and 6-month microtensile bond strength (μTBS) and nanoleakage (NL) of the adhesive interface performed by different pHs of 40% meta-phosphoric acid (MPA) were compared with conventional 37% ortho-phosphoric acid (OPA) under different application times. Additionally, the enamel etching patterns were evaluated and the chemical/morphological changes induced by these differents groups were evaluated. One hundred and ninety-eight extracted human molars were randomly assigned into experimental groups according to the combination of independent variables: Acid [37% ortho-phosphoric acid (OPA), 40% meta-phosphoric acid (MPA) at pHs of: 0.5, 1 and 2] and Application Time [7, 15 and 30s]. Enamel-bond specimens were prepared and tested under μSBS. Resin-dentin beams were tested under μTBS tested immediately or after 6-months of water storage. Nanoleakage was evaluated using bonded-beams of each tooth/time-period. Enamel etching pattern and chemical and ultra-morphology analyses were also performed. The μSBS (MPa) data were subjected to a two-way repeated measures ANOVA (Acid vs. Application time). For μTBS, Acid vs application time vs storage time data were subjected to three-way ANOVA and Tukey's test (α = 0.05). MPA pH 0.5 showed μTBS similar to OPA, independently of the application time on enamel (p>0.05) or dentin (p>0.05). OPA provided higher nanoleakage values than MPA (p = 0.003). Significant decreases in TBS and increases in NL were only observed for OPA after 6 months (p = 0.001). An increase in the application time resulted in a more pronounced etching pattern for MPA. Chemical analysis showed that dentin demineralized by MPA depicted peaks of brushite and octacalcium phosphate. MPA exposed less collagen than OPA. However, optimal results for MPA were dependent on pH/application time. The use of 40% meta-phosphoric acid with a pH of 0.5 is an alternative acid

  10. Hydraulic retention time and pH affect the performance and microbial communities of passive bioreactors for treatment of acid mine drainage.

    Science.gov (United States)

    Aoyagi, Tomo; Hamai, Takaya; Hori, Tomoyuki; Sato, Yuki; Kobayashi, Mikio; Sato, Yuya; Inaba, Tomohiro; Ogata, Atsushi; Habe, Hiroshi; Sakata, Takeshi

    2017-12-01

    For acceleration of removing toxic metals from acid mine drainage (AMD), the effects of hydraulic retention time (HRT) and pH on the reactor performance and microbial community structure in the depth direction of a laboratory-scale packed-bed bioreactor containing rice bran as waste organic material were investigated. The HRT was shortened stepwise from 25 to 12 h, 8 h, and 6 to 5 h under the neutral condition using AMD neutralized with limestone (pH 6.3), and from 25 to 20 h, 12 h, and 8 to 7 h under the acid condition using AMD (pH 3.0). Under the neutral condition, the bioreactor stably operated up to 6 h HRT, which was shorter than under the acid condition (up to 20 h HRT). During stable sulfate reduction, both the organic matter-remaining condition and the low oxidation-reduction potential condition in lower parts of the reactor were observed. Principal coordinate analysis of Illumina sequencing data of 16S rRNA genes revealed a dynamic transition of the microbial communities at the boundary between stable and unstable operation in response to reductions in HRT. During stable operation under both the neutral and acid conditions, several fermentative operational taxonomic units (OTUs) from the phyla Firmicutes and Bacteroidetes dominated in lower parts of the bioreactor, suggesting that co-existence of these OTUs might lead to metabolic activation of sulfate-reducing bacteria. In contrast, during unstable operation at shorter HRTs, an OTU from the candidate phylum OP11 were found under both conditions. This study demonstrated that these microorganisms can be used to monitor the treatment of AMD, which suggests stable or deteriorated performance of the system.

  11. A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain.

    Science.gov (United States)

    Bohlen, Christopher J; Chesler, Alexander T; Sharif-Naeini, Reza; Medzihradszky, Katalin F; Zhou, Sharleen; King, David; Sánchez, Elda E; Burlingame, Alma L; Basbaum, Allan I; Julius, David

    2011-11-16

    Natural products that elicit discomfort or pain represent invaluable tools for probing molecular mechanisms underlying pain sensation. Plant-derived irritants have predominated in this regard, but animal venoms have also evolved to avert predators by targeting neurons and receptors whose activation produces noxious sensations. As such, venoms provide a rich and varied source of small molecule and protein pharmacophores that can be exploited to characterize and manipulate key components of the pain-signalling pathway. With this in mind, here we perform an unbiased in vitro screen to identify snake venoms capable of activating somatosensory neurons. Venom from the Texas coral snake (Micrurus tener tener), whose bite produces intense and unremitting pain, excites a large cohort of sensory neurons. The purified active species (MitTx) consists of a heteromeric complex between Kunitz- and phospholipase-A2-like proteins that together function as a potent, persistent and selective agonist for acid-sensing ion channels (ASICs), showing equal or greater efficacy compared with acidic pH. MitTx is highly selective for the ASIC1 subtype at neutral pH; under more acidic conditions (pH 100-fold) proton-evoked activation of ASIC2a channels. These observations raise the possibility that ASIC channels function as coincidence detectors for extracellular protons and other, as yet unidentified, endogenous factors. Purified MitTx elicits robust pain-related behaviour in mice by activation of ASIC1 channels on capsaicin-sensitive nerve fibres. These findings reveal a mechanism whereby snake venoms produce pain, and highlight an unexpected contribution of ASIC1 channels to nociception. © 2011 Macmillan Publishers Limited. All rights reserved

  12. Brainstem Auditory Evoked Potential in HIV-Positive Adults.

    Science.gov (United States)

    Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C

    2015-10-20

    To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment - research groups I and II, respectively - and 30 control group individuals) were assessed through brainstem auditory evoked potential. There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment.

  13. Polyunsaturated fatty acids are potent openers of human M-channels expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Liin, Sara I; Karlsson, Urban; Bentzen, Bo Hjorth

    2016-01-01

    the threshold current to evoke action potentials in dorsal root ganglion neurons. The polyunsaturated fatty acids docosahexaenoic acid, α-linolenic acid, and eicosapentaenoic acid facilitated opening of the human M-channel, comprised of the heteromeric human KV 7.2/3 channel expressed in Xenopus oocytes......, by shifting the conductance-versus-voltage curve towards more negative voltages (by -7.4 to -11.3 mV by 70 μM). Uncharged docosahexaenoic acid methyl ester and monounsaturated oleic acid did not facilitate opening of the human KV 7.2/3 channel. CONCLUSIONS: These findings suggest that circulating...... polyunsaturated fatty acids, with a minimum requirement of multiple double bonds and a charged carboxyl group, dampen excitability by opening neuronal M-channels. Collectively, our data bring light to the molecular targets of polyunsaturated fatty acids and thus a possible mechanism by which polyunsaturated fatty...

  14. Psychological and physiological responses to odor-evoked autobiographic memory.

    Science.gov (United States)

    Matsunaga, Masahiro; Isowa, Tokiko; Yamakawa, Kaori; Kawanishi, Yoko; Tsuboi, Hirohito; Kaneko, Hiroshi; Sadato, Norihiro; Oshida, Akiko; Katayama, Atsushi; Kashiwagi, Mitsuyoshi; Ohira, Hideki

    2011-01-01

    The "Proust phenomenon" occurs when a certain smell evokes a specific memory. Recent studies have demonstrated that odor-evoked autobiographic memories are more emotional than those elicited by other sensory stimuli because of the direct neural communication between the olfactory system and the amygdala. The amygdala is known to regulate various physiological activities including the endocrine and immune systems; therefore, odor-evoked autobiographic memory may trigger various psychological and physiological responses; however, the responses elicited by this memory remains obscure. In this study, we aimed to investigate the psychological and physiological responses accompanying odor-evoked autobiographic memory. We recruited healthy male and female volunteers and investigated changes in their mood states and autonomic nervous, endocrine, and immune activities when autobiographic memory was evoked in the participants by asking them to smell an odor(s) that was nostalgic to them. The autobiographic memories associated with positive emotion resulted in increased positive mood states, such as comfort and happiness, and decreased negative mood states, such as anxiety. Furthermore, heart rate was decreased, skin-conductance level was increased, and peripheral interleukin-2 level was decreased after smelling the nostalgic odor. These psychological and physiological responses were significantly correlated. The present study suggests that odor-evoked autobiographic memory along with a positive feeling induce various physiological responses, including the autonomic nervous and immune activities. To the best of our knowledge, the present study is the first to observe an interaction between odor-evoked autobiographic memories and immune function.

  15. Effect of pH and sulfate concentration on hydrogen production using anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jae-Hoon; Choi, Jeong-A.; Bhatnagar, Amit; Kumar, Eva; Jeon, Byong-Hun [Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do, 220-710 (Korea); Abou-Shanab, R.A.I. [Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do, 220-710 (Korea); Department of Environmental Biotechnology, Mubarak City for Scientific Research, Alexandria (Egypt); Min, Booki [Department of Environmental Science and Engineering, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea); Song, Hocheol; Kim, Yong Je [Geologic Environment Division, KIGAM, Daejeon, 305-350 (Korea); Choi, Jaeyoung [Korea Institute of Science and Technology (KIST), Gangneung Institute, Gangneung 210-340 (Korea); Lee, Eung Seok [Geological Sciences, College of Arts and Sciences, Ohio University, Athens, OH 45701-2979 (United States); Um, Sukkee [School of Mechanical Engineering, Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul, 133-791 (Korea); Lee, Dae Sung [Petroleum and Marine Research Department, KIGAM, Daejeon (Korea)

    2009-12-15

    The effects of varying sulfate concentrations with pH on continuous fermentative hydrogen production were studied using anaerobic mixed cultures growing on a glucose substrate in a chemostat reactor. The maximum hydrogen production rate was 2.8 L/day at pH 5.5 and sulfate concentration of 3000 mg/L. Hydrogen production and residual sulfate level decreased with increasing the pH from 5.5 to 6.2. The volatile fatty acids (VFAs) and ethanol fractions in the effluent were in the order of butyric acid (HBu) > acetic acid (HAc) > ethanol > propionic acid (HPr). Fluorescence In Situ Hybridization (FISH) analysis revealed the presence of hydrogen producing bacteria (HPB) under all pH ranges while sulfate reducing bacteria (SRB) were present at pH 5.8 and 6.2. The inhibition in hydrogen production by SRB at pH 6.2 diminished entirely by lowering to pH 5.5, at which activity of SRB is substantially suppressed. (author)

  16. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...

  17. Gastroesophageal reflux: the acid test, scintigraphy or the pH probe

    International Nuclear Information System (INIS)

    Seibert, J.J.; Byrne, W.J.; Euler, A.R.; Latture, T.; Leach, M.; Campbell, M.

    1983-01-01

    The best established technique for diagnosing gastroesophageal reflux in children is the 24 hr esophageal pH probe test. No simultaneous comparison of this technique with radionuclide scans has been reported. Therefore, simultaneous 1 hr pH monitoring and gastroesophageal scintigraphy were performed in 49 infants and children with suspected gastroesophageal reflux. Forty-seven of these patients also were later monitored by the 24 hr pH probe test. Upper gastrointestinal series were performed on all patients. All patients with a positive 1 hr pH monitoring also had positive simultaneous scintigraphy. All patients with positive scintigraphy and pH probe monitoring also had a positive upper gastrointestinal series for reflux. The sensitivity of gastroesophageal scintigraphy, when compared to the 24 hr probe as a standard, was 79%; its specificity was 93%. The sensitivity of the upper gastrointestinal series was 86%, when compared to the 24 hr pH probe test. However, its specificity was only 21%

  18. Endogenous Isoquinoline Alkaloids Agonists of Acid-Sensing Ion Channel Type 3

    Directory of Open Access Journals (Sweden)

    Dmitry I. Osmakov

    2017-09-01

    Full Text Available Acid-sensing ion channels (ASICs ASIC3 expressed mainly in peripheral sensory neurons play an important role in pain perception and inflammation development. In response to acidic stimuli, they can generate a unique biphasic current. At physiological pH 7.4, human ASIC3 isoform (hASIC3 is desensitized and able to generate only a sustained current. We found endogenous isoquinoline alkaloids (EIAs, which restore hASIC3 from desensitization and recover the transient component of the current. Similarly, rat ASIC3 isoform (rASIC3 can also be restored from desensitization (at pH < 7.0 by EIAs with the same potency. At physiological pH and above, EIAs at high concentrations were able to effectively activate hASIC3 and rASIC3. Thus, we found first endogenous agonists of ASIC3 channels that could both activate and prevent or reverse desensitization of the channel. The decrease of EIA levels could be suggested as a novel therapeutic strategy for treatment of pain and inflammation.

  19. Highly efficient treatment of aerobic vaginitis with simple acidic buffered gels: The importance of pH and buffers on the microenvironment of vaginas.

    Science.gov (United States)

    Sun, Xiaodong; Qiu, Haiying; Jin, Yiguang

    2017-06-15

    Aerobic vaginitis (AV) leads to uterus deep infection or preterm birth. Antibacterial agents are not optimal therapeutics of AV. Here, we report a series of temperature-sensitive in situ forming acidic buffered gels for topical treatment of AV, involving lactate, acetate, and citrate gels at pH 3.5, 5.0, and 6.5. AV rat models were prepared following vaginal infection with Staphylococcus aureus and Escherichia coli. In vitro/in vivo studies of the buffered gels were performed compared with ofloxacin gels and blank gels. All the buffered gels showed the lower in vitro antibacterial activities than ofloxacin gels but the better in vivo anti-S. aureus effects and similar anti-E. coli effects. The buffered gels improved Lactobacillus growth in the vaginas. Both the healthy rat vaginal pH and the pH of rat vaginas treated with the buffered gels were about 6.5 though the AV rat models or ones treated with ofloxacin gels still remained at the high pH more than 7.0. After treatments with the buffered gels, the vaginal smears changed to a clean state nearly without aerobic bacteria, the vaginal tissues were refreshed, and the immunoreactions were downregulated. The acidic buffered gels bring rapid decrease of local vaginal pH, high antibacterial activities, improvement of probiotics, and alleviation of inflammation. They are simple, highly efficient, and safe anti-AV formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A glucose-responsive pH-switchable bioelectrocatalytic sensor based on phenylboronic acid-diol specificity

    International Nuclear Information System (INIS)

    Gao, Peiyi; Wang, Zhihua; Yang, Lele; Ma, Tengfei; Yang, Ling; Guo, Qianqiong; Huang, Shasheng

    2015-01-01

    Graphical abstract: A pH-switchable bioelectrocatayltic sensor was developed, which exhibited an obvious anodic current in acidic conditions as “ON” state, yet a prohibited signal in alkaline conditions as “OFF” state. With the change of pH and/or the presence of glucose, our proposed biosensor produced the corresponding amplified signal, providing a better sensitivity. - Abstract: Aminophenylboronic acid moieties were covalently grafted onto mercaptobenzoic acid moieties, and glucose oxidase was then immobilized through boronic acid-diol specific recognition to form a pH-sensitive electrosensor switching between pH 5.8 and pH 8.0 base solution. Using potassium ferricyanide as electroactive probe, the response was intensified in acidic condition while hindered in alkaline condition. The sharp and stable contrast in current was performed alternately upon the change of pH like a “pH switch”. In the presence of glucose, the response to glucose was further amplified catalytically by glucose oxidase on “ON” state, while electron transfer was inhibited on “OFF” state. Furthermore, when our sensor was on “ON” state, it showed a good linearity ranging from 0 to 30 μmol L −1 of glucose, with a detection limit of 348 nmol L −1 (S/B = 3) and a dynamic range extending to 50 μmol L −1 . Glucose-responsive, pH-switchable and catalytically-amplified, our biosensor provided a new method for the detection of glucose in the form of pH switch in human serum sample, and was promising to more complicated environment

  1. Polyamine stress at high pH in Escherichia coli K-12

    Directory of Open Access Journals (Sweden)

    Tate Daniel P

    2005-10-01

    Full Text Available Abstract Background Polyamines such as spermine and spermidine are required for growth of Escherichia coli; they interact with nucleic acids, and they bind to ribosomes. Polyamines block porins and decrease membrane permeability, activities that may protect cells in acid. At high concentrations, however, polyamines impair growth. They impair growth more severely at high pH, probably due to their increased uptake as membrane-permeant weak bases. The role of pH is critical in understanding polyamine stress. Results The effect of polyamines was tested on survival of Escherichia coli K-12 W3110 in extreme acid or base (pH conditions outside the growth range. At pH 2, 10 mM spermine increased survival by 2-fold, and putrescine increased survival by 30%. At pH 9.8, however, E. coli survival was decreased 100-fold by 10 mM spermine, putrescine, cadaverine, or spermidine. At pH 8.5, spermine decreased the growth rate substantially, whereas little effect was seen at pH 5.5. Spermidine required ten-fold higher concentrations to impair growth. On proteomic 2-D gels, spermine and spermidine caused differential expression of 31 different proteins. During log-phase growth at pH 7.0, 1 mM spermine induced eight proteins, including PykF, GlpK, SerS, DeaD, OmpC and OmpF. Proteins repressed included acetate-inducible enzymes (YfiD, Pta, Lpd as well as RapA (HepA, and FabB. At pH 8.5, spermine induced additional proteins: TnaA, OmpA, YrdA and NanA (YhcJ and also repressed 17 proteins. Four of the proteins that spermine induced (GlpK, OmpA, OmpF, TnaA and five that were repressed (Lpd, Pta, SucB, TpiA, YfiD show similar induction or repression, respectively, in base compared to acid. Most of these base stress proteins were also regulated by spermidine, but only at ten-fold higher concentration (10 mM at high pH (pH 8.5. Conclusion Polyamines increase survival in extreme acid, but decrease E. coli survival in extreme base. Growth inhibition by spermine and

  2. Guanfacine potentiates the activation of prefrontal cortex evoked by warning signals.

    Science.gov (United States)

    Clerkin, Suzanne M; Schulz, Kurt P; Halperin, Jeffrey M; Newcorn, Jeffrey H; Ivanov, Iliyan; Tang, Cheuk Y; Fan, Jin

    2009-08-15

    Warning signals evoke an alert state of readiness that prepares for a rapid response by priming a thalamo-frontal-striatal network that includes the dorsolateral prefrontal cortex (DLPFC). Animal models indicate that noradrenergic input is essential for this stimulus-driven activation of DLPFC, but the precise mechanisms involved have not been determined. We tested the role that postsynaptic alpha(2A) adrenoceptors play in the activation of DLPFC evoked by warning cues using a placebo-controlled challenge with the alpha(2A) agonist guanfacine. Sixteen healthy young adults were scanned twice with event-related functional magnetic resonance imaging (fMRI), while performing a simple cued reaction time (RT) task following administration of a single dose of oral guanfacine (1 mg) and placebo in counterbalanced order. The RT task temporally segregates the neural effects of warning cues and motor responses and minimizes mnemonic demands. Warning cues produced a marked reduction in RT accompanied by significant activation in a distributed thalamo-frontal-striatal network, including bilateral DLPFC. Guanfacine selectively increased the cue-evoked activation of the left DLPFC and right anterior cerebellum, although this increase was not accompanied by further reductions in RT. The effects of guanfacine on DLPFC activation were specifically associated with the warning cue and were not seen for visual- or target-related activation. Guanfacine produced marked increases in the cue-evoked activation of DLPFC that correspond to the well-described actions of postsynaptic alpha(2) adrenoceptor stimulation. The current procedures provide an opportunity to test postsynaptic alpha(2A) adrenoceptor function in the prefrontal cortex in the pathophysiology of several psychiatric disorders.

  3. Plant based dietary supplement increases urinary pH

    Directory of Open Access Journals (Sweden)

    Rao A Venket

    2008-11-01

    Full Text Available Abstract Background Research has demonstrated that the net acid load of the typical Western diet has the potential to influence many aspects of human health, including osteoporosis risk/progression; obesity; cardiovascular disease risk/progression; and overall well-being. As urinary pH provides a reliable surrogate measure for dietary acid load, this study examined whether a plant-based dietary supplement, one marketed to increase alkalinity, impacts urinary pH as advertised. Methods Using pH test strips, the urinary pH of 34 healthy men and women (33.9 +/- 1.57 y, 79.3 +/- 3.1 kg was measured for seven days to establish a baseline urinary pH without supplementation. After this initial baseline period, urinary pH was measured for an additional 14 days while participants ingested the plant-based nutritional supplement. At the end of the investigation, pH values at baseline and during the treatment period were compared to determine the efficacy of the supplement. Results Mean urinary pH statistically increased (p = 0.03 with the plant-based dietary supplement. Mean urinary pH was 6.07 +/- 0.04 during the baseline period and increased to 6.21 +/- 0.03 during the first week of treatment and to 6.27 +/- 0.06 during the second week of treatment. Conclusion Supplementation with a plant-based dietary product for at least seven days increases urinary pH, potentially increasing the alkalinity of the body.

  4. Carbon dots with strong excitation-dependent fluorescence changes towards pH. Application as nanosensors for a broad range of pH

    Energy Technology Data Exchange (ETDEWEB)

    Barati, Ali [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of); Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Abdollahi, Hamid, E-mail: abd@iasbs.ac.ir [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of)

    2016-08-10

    In this study, preparation of novel pH-sensitive N-doped carbon dots (NCDs) using glucose and urea is reported. The prepared NCDs present strong excitation-dependent fluorescence changes towards the pH that is a new behavior from these nanomaterials. By taking advantage of this unique behavior, two separated ratiometric pH sensors using emission spectra of the NCDs for both acidic (pH 2.0 to 8.0) and basic (pH 7.0 to 14.0) ranges of pH are constructed. Additionally, by considering the entire Excitation–Emission Matrix (EEM) of NCDs as analytical signal and using a suitable multivariate calibration method, a broad range of pH from 2.0 to 14.0 was well calibrated. The multivariate calibration method was independent from the concentration of NCDs and resulted in a very low average prediction error of 0.067 pH units. No changes in the predicted pH under UV irradiation (for 3 h) and at high ionic strength (up to 2 M NaCl) indicated the high stability of this pH nanosensor. The practicality of this pH nanosensor for pH determination in real water samples was validated with good accuracy and repeatability. - Highlights: • Novel pH-sensitive carbon dots with strong FL changes towards pH are reported. • Ratiometric FL pH-sensors for both acidic and basic ranges of pH are constructed. • Multivariate calibration methods were used to calibrate a broad range of pH. • Using EEM of carbon dots and ANN, pH from 2.0 to 14.0 was well calibrated. • The pH prediction is stable even at high ionic strength up to 2 M NaCl.

  5. Carbon dots with strong excitation-dependent fluorescence changes towards pH. Application as nanosensors for a broad range of pH

    International Nuclear Information System (INIS)

    Barati, Ali; Shamsipur, Mojtaba; Abdollahi, Hamid

    2016-01-01

    In this study, preparation of novel pH-sensitive N-doped carbon dots (NCDs) using glucose and urea is reported. The prepared NCDs present strong excitation-dependent fluorescence changes towards the pH that is a new behavior from these nanomaterials. By taking advantage of this unique behavior, two separated ratiometric pH sensors using emission spectra of the NCDs for both acidic (pH 2.0 to 8.0) and basic (pH 7.0 to 14.0) ranges of pH are constructed. Additionally, by considering the entire Excitation–Emission Matrix (EEM) of NCDs as analytical signal and using a suitable multivariate calibration method, a broad range of pH from 2.0 to 14.0 was well calibrated. The multivariate calibration method was independent from the concentration of NCDs and resulted in a very low average prediction error of 0.067 pH units. No changes in the predicted pH under UV irradiation (for 3 h) and at high ionic strength (up to 2 M NaCl) indicated the high stability of this pH nanosensor. The practicality of this pH nanosensor for pH determination in real water samples was validated with good accuracy and repeatability. - Highlights: • Novel pH-sensitive carbon dots with strong FL changes towards pH are reported. • Ratiometric FL pH-sensors for both acidic and basic ranges of pH are constructed. • Multivariate calibration methods were used to calibrate a broad range of pH. • Using EEM of carbon dots and ANN, pH from 2.0 to 14.0 was well calibrated. • The pH prediction is stable even at high ionic strength up to 2 M NaCl.

  6. Cinética do escurecimeno não-enzimático com soluções modelo de açúcares e aminoácidos em pH neutro e ácido = Kinetic of non-enzimatic browning with model solutions of sugar and aminoacids in neutral and acid pH

    Directory of Open Access Journals (Sweden)

    Vandré Barbosa Brião

    2011-01-01

    Full Text Available A cor dos alimentos é um importante atributo para a escolha do consumidor. O escurecimento é desejável em alguns alimentos pela cor e pelo aroma produzidos (como nos casos do pão e carne assada, mas, é indesejável em outros (como no tratamento térmico de leite. A reação de Maillard é influenciada pela natureza dos açúcares e aminoácidos envolvidos, bem como pelo pH e temperatura do processo. O objetivo do trabalho foi avaliar o escurecimento de soluções modelo contendo açúcares e aminoácidos pela reação de Maillard em pH neutro e ácido, obtendo as taxas de reação e avaliando a cinética dela. Doistipos de açúcares (glicose e lactose foram misturados com dois tipos de aminoácidos (glicina ou glutamato de sódio em pH 7,0 e pH 5,1. As soluções (2 mol L-1 foram aquecidas em água fervente (97ºC, e a absorbância medida (420 nm em intervalos de tempo. A glicose apresentou maior taxa de reação que a lactose, enquanto que entre os aminoácidos a glicina reagiu com intensidade semelhante ao glutamato. A redução do pH do meio retarda a reação, e o escurecimento demonstrou menor taxa de reação em pH ácido.The color of food is an important attribute for consumer choice. Browning is desirable in some foods due to the color and flavor itproduces (such as in bread and roasted meat, but is undesirable for others (such as heattreated milk. The Maillard reaction is influenced by the nature of the sugars and amino acids involved, as well as the pH and temperature of the process. The aim of this work was to evaluate the browning of model solutions containing sugars and amino acids due to the Maillard reaction in neutral and acid pH, and to calculate the reaction rate and the kinetics of the reaction. Two types of sugars (glucose or lactose were mixed with amino acids(glycine or sodium glutamate in pH 7.0 or pH 5.1. The solutions (2 mol L-1 were heated in boiling water (97ºC, and the absorbance was measured (420 nm at time

  7. Brainstem evoked potentials in infantile spasms

    International Nuclear Information System (INIS)

    Miyazaki, Masahito; Hashimoto, Toshiaki; Murakawa, Kazuyoshi; Tayama, Masanobu; Kuroda, Yasuhiro

    1992-01-01

    In ten patients with infantile spasms, brainstem evoked potentials and MRI examinations were performed to evaluate the brainstem involvement. The result of short latency somatosensory evoked potentials (SSEP) following the right median nerve stimulation revealed abnormal findings including the absence or low amplitudes of the waves below wave P3 and delayed central conduction time in 7 of the ten patients. The result of auditory brainstem responses (ABR) revealed abnormal findings including low amplitudes of wave V, prolonged interpeak latency of waves I-V and absence of the waves below wave IV in 5 of the ten patients. The result of the MRI examinations revealed various degrees of the brainstem atrophy in 6 of the ten patients, all of whom showed abnormal brainstem evoked potentials. The result of this study demonstrates that patients with infantile spasms are frequently associated with brainstem dysfunction and raises the possibility that brainstem atrophy might be a cause of infantile spasms. (author)

  8. pH Triggered Recovery and Reuse of Thiolated Poly(acrylic acid) Functionalized Gold Nanoparticles with Applications in Colloidal Catalysis.

    Science.gov (United States)

    Ansar, Siyam M; Fellows, Benjamin; Mispireta, Patrick; Mefford, O Thompson; Kitchens, Christopher L

    2017-08-08

    Thiolated poly(acrylic acid) (PAA-SH) functionalized gold nanoparticles were explored as a colloidal catalyst with potential application as a recoverable catalyst where the PAA provides pH-responsive dispersibility and phase transfer capability between aqueous and organic media. This system demonstrates complete nanoparticle recovery and redispersion over multiple reaction cycles without changes in nanoparticle morphology or reduction in conversion. The catalytic activity (rate constant) was reduced in subsequent reactions when recovery by aggregation was employed, despite unobservable changes in morphology or dispersibility. When colloidal catalyst recovery employed a pH induced phase transfer between two immiscible solvents, the catalytic activity of the recovered nanoparticles was unchanged over four cycles, maintaining the original rate constant and 100% conversion. The ability to recover and reuse colloidal catalysts by aggregation/redispersion and phase transfer methods that occur at low and high pH, respectively, could be used for different gold nanoparticle catalyzed reactions that occur at different pH conditions.

  9. ph Sensitive hydrogel as colon specific drug delivery

    International Nuclear Information System (INIS)

    Alarifi, A.S.

    2011-01-01

    γ-radiation induced graft copolymerization and crosslinking was for the synthesis of ph-sensitive hydrogels composed of poly (vinyl pyrrolidone) acrylic acid. The prepared hydrogels were subjected to swelling test to evaluate the effects of ph and ionic strength of the surrounding solution. Drastic changes in the swelling parameters where observed by changing the surrounding solution ph values. The release of ibuprofen from hydrogels was monitored as a function of time at ph 1 and ph 7 in order to evaluate the prepared copolymer ability for colon- specific drug carrier uses.

  10. pH responsive N-succinyl chitosan/Poly (acrylamide-co-acrylic acid hydrogels and in vitro release of 5-fluorouracil.

    Directory of Open Access Journals (Sweden)

    Shahid Bashir

    Full Text Available There has been significant progress in the last few decades in addressing the biomedical applications of polymer hydrogels. Particularly, stimuli responsive hydrogels have been inspected as elegant drug delivery systems capable to deliver at the appropriate site of action within the specific time. The present work describes the synthesis of pH responsive semi-interpenetrating network (semi-IPN hydrogels of N-succinyl-chitosan (NSC via Schiff base mechanism using glutaraldehyde as a crosslinking agent and Poly (acrylamide-co-acrylic acid(Poly (AAm-co-AA was embedded within the N-succinyl chitosan network. The physico-chemical interactions were characterized by Fourier transform infrared (FTIR, X-ray diffraction (XRD, thermogravimetric analysis (TGA, and field emission scanning electron microscope (FESEM. The synthesized hydrogels constitute porous structure. The swelling ability was analyzed in physiological mediums of pH 7.4 and pH 1.2 at 37°C. Swelling properties of formulations with various amounts of NSC/ Poly (AAm-co-AA and crosslinking agent at pH 7.4 and pH 1.2 were investigated. Hydrogels showed higher swelling ratios at pH 7.4 while lower at pH 1.2. Swelling kinetics and diffusion parameters were also determined. Drug loading, encapsulation efficiency, and in vitro release of 5-fluorouracil (5-FU from the synthesized hydrogels were observed. In vitro release profile revealed the significant influence of pH, amount of NSC, Poly (AAm-co-AA, and crosslinking agent on the release of 5-FU. Accordingly, rapid and large release of drug was observed at pH 7.4 than at pH 1.2. The maximum encapsulation efficiency and release of 5-FU from SP2 were found to be 72.45% and 85.99%, respectively. Kinetics of drug release suggested controlled release mechanism of 5-FU is according to trend of non-Fickian. From the above results, it can be concluded that the synthesized hydrogels have capability to adapt their potential exploitation as targeted oral drug

  11. Distributions of 12 elements on 64 absorbers from simulated Hanford Neutralized Current Acid Waste (NCAW)

    International Nuclear Information System (INIS)

    Svitra, Z.V.; Bowen, S.M.; Marsh, S.F.

    1994-12-01

    As part of the Hanford Tank Waste Remediation System program at Los Alamos, we evaluated 64 commercially available or experimental absorber materials for their ability to remove hazardous components from high-level waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. We tested these absorbers with a solution that simulates Hanford neutralized current acid waste (NCAW) (pH 14.2). To this simulant solution we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Cs, Sr, Tc, and Y) and matrix elements (Cr, Co, Fe, Mn, Ni, V, Zn, and Zr). For each of 768 element/absorber combinations, we measured distribution coefficients for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of these 2304 measured distribution coefficients, we determined that many of the tested absorbers may be suitable for processing NCAW solutions

  12. Can visual evoked potentials be used in biometric identification?

    Science.gov (United States)

    Power, Alan J; Lalor, Edmund C; Reilly, Richard B

    2006-01-01

    Due to known differences in the anatomical structure of the visual pathways and generators in different individuals, the use of visual evoked potentials offers the possibility of an alternative to existing biometrics methods. A study based on visual evoked potentials from 13 individuals was carried out to assess the best combination of temporal, spectral and AR modeling features to realize a robust biometric. From the results it can be concluded that visual evoked potentials show considerable biometric qualities, with classification accuracies reaching a high of 86.54% and that a specific temporal and spectral combination was found to be optimal. Based on these results the visual evoked potential may be a useful tool in biometric identification when used in conjunction with more established biometric methods.

  13. Inverse opal pH sensors with various protic monomers copolymerized with polyhydroxyethylmethacrylate hydrogel

    International Nuclear Information System (INIS)

    Shin, Jinsub; Han, Sung Gu; Lee, Wonmok

    2012-01-01

    Highlights: ► We polymerized four different inverse opal pH sensors by using vinyl monomers containing acidic or basic substituents. ► Stepwise swelling response from polyprotic acid sensor was investigated. ► Opposite color changing responses were obtained for acidic and basic sensors. ► Composite pH sensor with wide pH sensing range was fabricated by mixing different monomers. ► Both acid and base sensors show the response time as fast as ∼10 s. - Abstract: pH sensitive inverse opal sensors were synthesized using various vinyl monomers containing acidic or basic substituents. Acrylic acid (AA), vinylphosphonic acid (VPA), vinylimidazole (VI), and dimethylaminoethylmethacrylic acid (DMAEMA) were respectively copolymerized with hydroxyethylmethacrylate (HEMA), the building block monomer of the hydrogel via UV-initiated photopolymerization. Opal templating and subsequent template removal enabled the fabrication of four inverse opal (IO) hydrogel colorimetric sensors, which responded to pH in different fashions. pH-dependent swelling of the IO hydrogel induced the red-shift of the diffracted color. The sensors containing AA or VPA, the proton donating monomers showed the color shifts from green to red with pH increase due to the increased concentration of carboxylate anions bound to the hydrogel. Diprotic VPA sensor exhibited two-step increases of diffracted wavelengths at its pK a1 and pK a2 respectively. The sensors containing proton acceptors, VI and DMAEMA showed the pH-dependent color changes in an opposite way to the AA sensor and the VPA sensor since their ionizations take place by lowering pH due to the protonation at the amino groups. The shapes of pH response curves of VI and DMAEMA sensors were similar but pK b s were different from each other. Optical diffraction responses of four sensors were compared with the calculated concentration ratios of the ionized species to the total monomer with pH variation, and a deswelling effect in the

  14. Comparison of Buffer Effect of Different Acids During Sandstone Acidizing

    International Nuclear Information System (INIS)

    Shafiq, Mian Umer; Mahmud, Hisham Khaled Ben; Hamid, Mohamed Ali

    2015-01-01

    The most important concern of sandstone matrix acidizing is to increase the formation permeability by removing the silica particles. To accomplish this, the mud acid (HF: HCl) has been utilized successfully for many years to stimulate the sandstone formations, but still it has many complexities. This paper presents the results of laboratory investigations of different acid combinations (HF: HCl, HF: H 3 PO 4 and HF: HCOOH). Hydrofluoric acid and fluoboric acid are used to dissolve clays and feldspar. Phosphoric and formic acids are added as a buffer to maintain the pH of the solution; also it allows the maximum penetration of acid into the core sample. Different tests have been performed on the core samples before and after the acidizing to do the comparative study on the buffer effect of these acids. The analysis consists of permeability, porosity, color change and pH value tests. There is more increase in permeability and porosity while less change in pH when phosphoric and formic acids were used compared to mud acid. From these results it has been found that the buffer effect of phosphoric acid and formic acid is better than hydrochloric acid. (paper)

  15. Constituents of Propolis: Chrysin, Caffeic Acid, p-Coumaric Acid, and Ferulic Acid Induce PRODH/POX-Dependent Apoptosis in Human Tongue Squamous Cell Carcinoma Cell (CAL-27).

    Science.gov (United States)

    Celińska-Janowicz, Katarzyna; Zaręba, Ilona; Lazarek, Urszula; Teul, Joanna; Tomczyk, Michał; Pałka, Jerzy; Miltyk, Wojciech

    2018-01-01

    Propolis evokes several therapeutic properties, including anticancer activity. These activities are attributed to the action of polyphenols. Previously it has been demonstrated, that one of the most abundant polyphenolic compounds in ethanolic extracts of propolis are chrysin, caffeic acid, p -coumaric acid, and ferulic acid. Although their pro-apoptotic activity on human tongue squamous cell carcinoma cells (CAL-27) was established previously, the detailed mechanism of this process remains unclear. Considering the crucial role of proline metabolism and proline dehydrogenase/proline oxidase (PRODH/POX) in the regulation of cancer cell survival/apoptosis, we studied these processes in polyphenol-treated CAL-27 cells. All studied polyphenols evoked anti-proliferative activity, accompanied by increased PRODH/POX, P53, active caspases-3 and -9 expressions and decreased collagen biosynthesis, prolidase activity and proline concentration in CAL-27 cells. These data suggest that polyphenols of propolis induce PRODH/POX-dependent apoptosis through up-regulation of mitochondrial proline degradation and down-regulation of proline utilization for collagen biosynthesis.

  16. Anaerobic acidification of sugar-containing wastewater for biotechnological production of organic acids and ethanol.

    Science.gov (United States)

    Darwin; Charles, Wipa; Cord-Ruwisch, Ralf

    2018-05-03

    Anaerobic acidification of sugars can produce some useful end-products such as alcohol, volatile fatty acids (e.g. acetate, propionate, and butyrate) and lactic acid. The production of end-products is highly dependent on factors including pH, temperature, hydraulic retention time and the types of sugar being fermented. Results of this current study indicate that the pH and hydraulic retention time played significant roles in determining the end products from the anaerobic acidification of maltose and glucose. Under uncontrolled pH, the anaerobic acidification of maltose ceased when pH in the reactor dropped below 5 while anaerobic acidification of glucose continued and produced ethanol as the main end-product. Under controlled pH, lactic acid was found to be the dominant end-product produced from both maltose and glucose at pH 5. Acetate was the main end-product from both maltose and glucose fermented at neutral pH (6 and 7). Short hydraulic retention time (HRT) of 2 days could induce the production of ethanol from the anaerobic acidification of glucose. However, the anaerobic acidification of maltose could stop when short HRT of 2 days was applied in the reactor. This finding is significant for industrial fermentation and waste management systems, and selective production of different types of organic acids could be achieved by managing pH and HRT in the reactor.

  17. Liquid-containing Refluxes and Acid Refluxes May Be Less Frequent in the Japanese Population Than in Other Populations: Normal Values of 24-hour Esophageal Impedance and pH Monitoring

    Science.gov (United States)

    Kawamura, Osamu; Kohata, Yukie; Kawami, Noriyuki; Iida, Hiroshi; Kawada, Akiyo; Hosaka, Hiroko; Shimoyama, Yasuyuki; Kuribayashi, Shiko; Fujiwara, Yasuhiro; Iwakiri, Katsuhiko; Inamori, Masahiko; Kusano, Motoyasu; Hongo, Micho

    2016-01-01

    Background/Aims Twenty-four-hour esophageal impedance and pH monitoring allows detection of all types of reflux episodes and is considered the best technique for identifying gastroesophageal refluxes. However, normative data for the Japanese population are lacking. This multicenter study aimed to establish the normal range of 24-hour esophageal impedance and pH data both in the distal and the proximal esophagus in Japanese subjects. Methods Forty-two healthy volunteers (25 men and 17 women) with a mean ± standard deviation age of 33.3 ± 12.4 years (range: 22–72 years) underwent a combined 24-hour esophageal impedance and pH monitoring. According to the physical and pH properties, distal or proximal esophageal reflux events were categorized. Results Median 45 reflux events occurred in 24 hours, and the 95th percentile was 85 events. Unlike previous reports, liquid-containing reflux events are median 25/24 hours with the 95th percentile of 62/24 hours. Acidic reflux events were median 11/24 hours with the 95th percentile of 39/24 hours. Non-acidic gas reflux events were median 15/24 hours with the 95th percentile of 39/24 hours. Proximal reflux events accounted for 80% of the total reflux events and were mainly non-acidic gas refluxes. About 19% of liquid and mixed refluxes reached the proximal esophagus. Conclusions Unlike previous studies, liquid-containing and acidic reflux events may be less frequent in the Japanese population. Non-acidic gas reflux events may be frequent and a cause of frequent proximal reflux events. This study provides important normative data for 24-hour impedance and pH monitoring in both the distal and the proximal esophagus in the Japanese population. PMID:27247103

  18. Influence of variation in mobile phase pH and solute pK(a) with the change of organic modifier fraction on QSRRs of hydrophobicity and RP-HPLC retention of weakly acidic compounds.

    Science.gov (United States)

    Han, Shu-ying; Liang, Chao; Zou, Kuan; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin

    2012-11-15

    The variation in mobile phase pH and ionizable solute dissociation constant (pK(a)) with the change of organic modifier fraction in hydroorganic mobile phase has seemingly been a troublesome problem in studies and applications of reversed phase high performance liquid chromatography (RP-HPLC). Most of the early studies regarding the RP-HPLC of acid-base compounds have to measure the actual pH of the mixed mobile phase rigorously, sometimes bringing difficulties in the practices of liquid chromatographic separation. In this paper, the effect of this variation on the apparent n-octanol/water partition coefficient (K(ow)″) and the related quantitative structure-retention relationship (QSRR) of logK(ow)″ vs. logk(w), the logarithm of retention factor of analytes in neat aqueous mobile phases, was investigated for weakly acidic compounds. This QSRR is commonly used as a classical method for K(ow) measurement by RP-HPLC. The theoretical and experimental derivation revealed that the variation in mobile phase pH and solute pK(a) will not affect the QSRRs of acidic compounds. This conclusion is proved to be suitable for various types of ion-suppressors, i.e., strong acid (perchloric acid), weak acid (acetic acid) and buffer salt (potassium dihydrogen phosphate/phosphoric acid, PBS). The QSRRs of logK(ow)″ vs. logk(w) were modeled by 11 substituted benzoic acids using different types of ion-suppressors in a binary methanol-water mobile phase to confirm our deduction. Although different types of ion-suppressor all can be used as mobile phase pH modifiers, the QSRR model obtained by using perchloric acid as the ion-suppressor was found to have the best result, and the slightly inferior QSRRs were obtained by using acetic acid or PBS as the ion-suppressor. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Uric acid nephrolithiasis: An update.

    Science.gov (United States)

    Cicerello, Elisa

    2018-04-01

    Uric acid nephrolithiasis appears to increase in prevalence. While a relationship between uric acid stones and low urinary pH has been for long known, additional association with various metabolic conditions and pathophysiological basis has recently been elucidated. Some conditions such as diabetes and metabolic syndrome disease, excessive dietary intake, and increased endogenous uric acid production and/or defect in ammoniagenesis are associated with low urinary pH. In addition, the phenomenon of global warming could result in an increase in areas with greater climate risk for uric acid stone formation. There are three therapeutic steps to be taken for management of uric acid stones: identification of urinary pH profiles, assessment of urinary volume status, and identification of disorders leading to excessive uric acid production. However, the most important factor for uric acid stone formation is acid urinary pH, which is a prerequisite for uric acid precipitation. This article reviews recent insights into the pathophysiology of uric acid stones and their management.

  20. Binaural interaction in auditory evoked potentials: Brainstem, middle- and long-latency components

    OpenAIRE

    McPherson, DL; Starr, A

    1993-01-01

    Binaural interaction occurs in the auditory evoked potentials when the sum of the monaural auditory evoked potentials are not equivalent to the binaural evoked auditory potentials. Binaural interaction of the early- (0-10 ms), middle- (10-50 ms) and long-latency (50-200 ms) auditory evoked potentials was studied in 17 normal young adults. For the early components, binaural interaction was maximal at 7.35 ms accounting for a reduction of 21% of the amplitude of the binaural evoked potentials. ...

  1. Acidity function p(a(H) gamma(Cl)) as a step to pH assessment.

    Science.gov (United States)

    Camões, Maria Filomena; Guiomar Lito, Maria

    2002-11-01

    The conventional assignment of pH reference buffer standards, pH(S), is achieved by means of a series of procedures that follow from measurement of Harned cell potentials for an electrolyte solution which is the buffer solution of interest. An intermediate step is assessment of the acidity function p( a(H) gamma(Cl))(0), the extrapolated value of a linear representation of the dependence of p( a(H) gamma(Cl)) on m(Cl) for at least three different molalities, m(Cl), of added alkali chloride (0.005; 0.010; 0.015 mol kg(-1) KCl). This experimental value can be compared with a theoretically expected value calculated from the dissociation constants of the buffer species. Whereas these calculations always give negative slopes for diprotic and triprotic acids and zero slope for monoprotic acids, experimental values with negative or positive slopes can be obtained for well fitting straight lines obtained for buffer solutions with ionic strengths from 0.0025 to 0.144 mol kg(-1). Such disagreement between theoretically and experimentally obtained values introduce an extra source of uncertainty in the establishment of pH(S) and on its traceability chain. In this work examples are presented and discussed for which the discrepancy between expected and experimental values leads to different intercept p( a(H) gamma(Cl))(0).

  2. Hydrogel-coated fiber Bragg grating sensor for pH monitoring

    Science.gov (United States)

    Pabbisetti, Vayu Nandana Kishore; Madhuvarasu, Sai Shankar

    2016-06-01

    We present a fiber-optic wavelength-modulated sensor for pH applications. Fiber Bragg grating (FBG) is functionalized with a stimulus-responsive hydrogel that induces a strain on FBG due to mechanical expansion of the gel in response to ambient pH changes. The gel is synthesized from the blends of poly (vinyl alcohol)/poly (acrylic acid). The induced strain results in a shift of FBG reflected peak that is monitored by an interrogator. The sensor system shows good linearity in the acidic pH range of 3 to 7 with a sensitivity of 12.16 pm/pH. In addition, it shows good repeatability and oscillator behavior, which proves it to be fit for pH sensing applications.

  3. Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation

    Science.gov (United States)

    Li, Bingshuo; Virtanen, Juha P; Oeltermann, Axel; Schwarz, Cornelius; Giese, Martin A; Ziemann, Ulf

    2017-01-01

    Transcranial magnetic stimulation (TMS) is a widely used non-invasive tool to study and modulate human brain functions. However, TMS-evoked activity of individual neurons has remained largely inaccessible due to the large TMS-induced electromagnetic fields. Here, we present a general method providing direct in vivo electrophysiological access to TMS-evoked neuronal activity 0.8–1 ms after TMS onset. We translated human single-pulse TMS to rodents and unveiled time-grained evoked activities of motor cortex layer V neurons that show high-frequency spiking within the first 6 ms depending on TMS-induced current orientation and a multiphasic spike-rhythm alternating between excitation and inhibition in the 6–300 ms epoch, all of which can be linked to various human TMS responses recorded at the level of spinal cord and muscles. The advance here facilitates a new level of insight into the TMS-brain interaction that is vital for developing this non-invasive tool to purposefully explore and effectively treat the human brain. PMID:29165241

  4. Effect of alginate size, mannuronic/guluronic acid content and pH on particle size, thermodynamics and composition of complexes with β-lactoglobulin

    DEFF Research Database (Denmark)

    Stender, Emil G.P.; Khan, Sanaullah; Ipsen, Richard

    2018-01-01

    to be fully explored. Particle formation of a high and a low molar mass alginate (ALG) with β-lactoglobulin (BLG) at pH 2-8 depends on the average DPn (HMW-ALG: 1.59·103; LMW-ALG: 0.23·103) and the mannuronic/guluronic acid ratio (1.0; 0.6) as supported by using ManA6 and GulA6 as models. Dynamic light...... scattering (DLS) showed that particles of BLG with either of the two ALGs have essentially the same hydrodynamic diameter (D H) at pH 3 and 2, while at pH 4 particles of LMW-ALG/BLG have larger D H than of HMW-ALG/BLG. At pH 5-8 no significant particle formation was observed. ManA6 did not form insoluble...... particles at pH 2-8, while GulA6 formed insoluble particles, albeit only at pH 4. K d was approximately 10-fold higher for LMW-ALG/BLG than HMW-ALG/BLG and 3 orders of magnitude higher for an alginate trisaccharide/BLG complexation as determined by isothermal titration calorimetry (ITC). The alginate...

  5. pH Sensing and Regulation in Cancer

    Directory of Open Access Journals (Sweden)

    Mehdi eDamaghi

    2013-12-01

    Full Text Available Cells maintain intracellular pH (pHi within a narrow range (7.1-7.2 by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors. These sensors have the ability to recognize and induce cellular responses to maintain the intracellular pH, often at the expense of acidifying the extracellular pH. In turn, extracellular acidification impacts cells via specific acid-sensing ion channels (ASICs and proton-sensing G-protein coupled receptors (GPCRs. In this review, we will discuss some of the major players in proton sensing at the plasma membrane and their downstream consequences in cancer cells and how these pH-mediated changes affect processes such as migration and metastasis. The complex mechanisms by which they transduce acid pH signals to the cytoplasm and nucleus are not well understood. However, there is evidence that expression of proton-sensing GPCRs such as GPR4, TDAG8, and OGR1 can regulate aspects of tumorigenesis and invasion, including colfilin and talin regulated actin (de-polymerization. Major mechanisms for maintenance of pHi homeostasis include monocarboxylate, bicarbonate and proton transporters. Notably, there is little evidence suggesting a link between their activities and those of the extracellular H+-sensors, suggesting a mechanistic disconnect between intra- and extra-cellular pH. Understanding the mechanisms of pH sensing and regulation may lead to novel and informed therapeutic strategies that can target acidosis, a common physical hallmark of solid tumors.

  6. Kinetics of an acid-base catalyzed reaction (aspartame degradation) as affected by polyol-induced changes in buffer pH and pK values.

    Science.gov (United States)

    Chuy, S; Bell, L N

    2009-01-01

    The kinetics of an acid-base catalyzed reaction, aspartame degradation, were examined as affected by the changes in pH and pK(a) values caused by adding polyols (sucrose, glycerol) to phosphate buffer. Sucrose-containing phosphate buffer solutions had a lower pH than that of phosphate buffer alone, which contributed, in part, to reduced aspartame reactivity. A kinetic model was introduced for aspartame degradation that encompassed pH and buffer salt concentrations, both of which change with a shift in the apparent pK(a) value. Aspartame degradation rate constants in sucrose-containing solutions were successfully predicted using this model when corrections (that is, lower pH, lower apparent pK(a) value, buffer dilution from the polyol) were applied. The change in buffer properties (pH, pK(a)) from adding sucrose to phosphate buffer does impact food chemical stability. These effects can be successfully incorporated into predictive kinetic models. Therefore, pH and pK(a) changes from adding polyols to buffer should be considered during food product development.

  7. Lung disease severity in idiopathic pulmonary fibrosis is more strongly associated with impedance measures of bolus reflux than pH parameters of acid reflux alone.

    Science.gov (United States)

    Gavini, S; Borges, L F; Finn, R T; Lo, W-K; Goldberg, H J; Burakoff, R; Feldman, N; Chan, W W

    2017-05-01

    Gastroesophageal reflux (GER) has been associated with idiopathic pulmonary fibrosis (IPF). Pathogenesis may be related to chronic micro-aspiration. We aimed to assess objective measures of GER on multichannel intraluminal impedance and pH study (MII-pH) and their relationship with pulmonary function testing (PFT) results, and to compare the performance of pH/acid reflux parameters vs corresponding MII/bolus parameters in predicting pulmonary dysfunction in IPF. This was a retrospective cohort study of IPF patients undergoing prelung transplant evaluation with MII-pH off acid suppression, and having received PFT within 3 months. Patients with prior fundoplication were excluded. Severe pulmonary dysfunction was defined using diffusion capacity of the lung for carbon monoxide (DLCO) ≤40%. Six pH/acid reflux parameters with corresponding MII/bolus reflux measures were specified a priori. Multivariate analyses were applied using forward stepwise logistic regression. Predictive value of each parameter for severe pulmonary dysfunction was calculated by area-under-the-receiver-operating-characteristic-curve or c-statistic. Forty-five subjects (67% M, age 59, 15 mild-moderate vs 30 severe) met criteria for inclusion. Patient demographics and clinical characteristics were similar between pulmonary dysfunction groups. Abnormal total reflux episodes and prolonged bolus clearance time were significantly associated with pulmonary dysfunction severity on univariate and multivariate analyses. No pH parameters were significant. The c-statistic of each pH parameter was lower than its MII counterpart in predicting pulmonary dysfunction. MII/bolus reflux, but not pH/acid reflux, was associated with pulmonary dysfunction in prelung transplant patients with IPF. MII-pH may be more valuable than pH testing alone in characterizing GER in IPF. © 2016 John Wiley & Sons Ltd.

  8. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  9. Evaluation of the efficacy of four weak acids as antifungal preservatives in low-acid intermediate moisture model food systems.

    Science.gov (United States)

    Huang, Yang; Wilson, Mark; Chapman, Belinda; Hocking, Ailsa D

    2010-02-01

    The potential efficacy of four weak acids as preservatives in low-acid intermediate moisture foods was assessed using a glycerol based agar medium. The minimum inhibitory concentrations (MIC, % wt./wt.) of each acid was determined at two pH values (pH 5.0, pH 6.0) and two a(w) values (0.85, 0.90) for five food spoilage fungi, Eurotium herbariorum, Eurotium rubrum, Aspergillus niger, Aspergillus flavus and Penicillium roqueforti. Sorbic acid, a preservative commonly used to control fungal growth in low-acid intermediate moisture foods, was included as a reference. The MIC values of the four acids were lower at pH 5.0 than pH 6.0 at equivalent a(w) values, and lower at 0.85 a(w) than 0.90 a(w) at equivalent pH values. By comparison with the MIC values of sorbic acid, those of caprylic acid and dehydroacetic acid were generally lower, whereas those for caproic acid were generally higher. No general observation could be made in the case of capric acid. The antifungal activities of all five weak acids appeared related not only to the undissociated form, but also the dissociated form, of each acid.

  10. Meta-Cresol Purple Reference Material® (RM) for Seawater pH Measurements

    Science.gov (United States)

    Easley, R. A.; Waters, J. F.; Place, B. J.; Pratt, K. W.

    2016-02-01

    The pH of seawater is a fundamental quantity that governs the carbon dioxide - carbonate system in the world's oceans. High quality pH measurements for long-term monitoring, shipboard studies, and shorter-term biological studies (mesocosm and field experiments) can be ensured through a reference material (RM) that is compatible with existing procedures and which is traceable to primary pH measurement metrology. High-precision spectrophotometric measurements of seawater pH using an indicator dye such as meta-cresol purple (mCP) are well established. However, traceability of these measurements to the International System of Units (SI) additionally requires characterizing the spectrophotometric pH response of the dye in multiple artificial seawater buffers that themselves are benchmarked via primary pH (Harned cell) measurements at a range of pH, salinity, and temperature. NIST is currently developing such a mCP pH RM using this approach. This material will also incorporate new procedures developed at NIST for assessing the purity and homogeneity of the mCP reagent itself. The resulting mCP will provide long-term (years) stability and ease of shipment compared to artificial seawater pH buffers. These efforts will provide the oceanographic user community with a NIST issued mCP (RM), characterized as to its molar absorptivity values and acid dissociation constants (pKa), with uncertainties that comply with the Guide to the Expression of Uncertainty in Measurement (GUM).

  11. Azelaic acid in dermatological treatment – current state of knowledge

    Directory of Open Access Journals (Sweden)

    Radomir Reszke

    2016-09-01

    Full Text Available Azelaic acid (AZA is a naturally occurring substance produced by Malassezia furfur which exerts various effects on the skin. Azelaic acid has antibacterial, anti-inflammatory, keratolytic, comedolytic, sebostatic and tyrosinase-inhibiting properties. Topical application of AZA as 20% cream or 15% gel is a well-established therapeutic method in various common dermatoses, mainly acne vulgaris, rosacea and disorders associated with hyperpigmentation. Azelaic acid is used as a component of chemical peels as well. The paper summarizes the most relevant issues concerning AZA application in dermatological treatment based on current knowledge.

  12. Citric acid production by Koji fermentation using banana peel as a novel substrate.

    Science.gov (United States)

    Karthikeyan, Alagarsamy; Sivakumar, Nallusamy

    2010-07-01

    The growing demand for citric acid and the current need for alternative sources have encouraged biotechnologists to search for novel and economical substrates. Koji fermentation was conducted using the peels of banana (Musa acuminata) as an inexpensive substrate for the production of citric acid using Aspergillus niger. Various crucial parameters that affect citric acid production such as moisture content, temperature, pH, inoculum level and incubation time were quantified. Moisture (70%), 28 degrees C temperature, an initial pH 3, 10(8) spores/ml as inoculum and 72h incubation was found to be suitable for maximum citric acid production by A. niger using banana peel as a substrate. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Effects of electrical water bath stunning current frequencies on the spontaneous electroencephalogram and somatosensory evoked potentials in hens.

    Science.gov (United States)

    Raj, A B M; O'Callaghan, M

    2004-04-01

    1. The effectiveness of water bath electrical stunning of chickens with a constant root mean square (rms) current of 100 mA per bird delivered for 3 s using 100, 200, 400, 800 and 1500 Hz sine wave alternating current (AC) was investigated in layer hens. The quantitative changes occurring in the electroencephalogram (EEG) and somatosensory evoked potentials (SEPs) were used to determine the effectiveness of stunning. The changes occurring in the EEG were evaluated using Fast Fourier Transformations (FFT) and the SEPs were averaged to determine whether they were present or abolished. 2. The results of FFT indicated that stunning of chickens with a constant rms current of 100 mA per bird using 100 or 200 Hz induced epileptiform activity in all the hens, immediately followed by a reduction in the total (2 to 30 Hz) and relative (13 to 30 Hz) power contents in the EEG frequency bands indicative of unconsciousness and insensibility. The SEPs were abolished in the majority of hens stunned with 100 Hz and all the hens stunned with 200 Hz. 3. By contrast, stunning using 400, 800 or 1500 Hz failed to induce epileptiform activity in all the birds, the total and relative power contents in the EEG frequency bands showed a substantial increase, rather than reduction, and the SEPs were also retained in the majority of chickens. It is therefore suggested that stunning using these frequencies failed to stun them satisfactorily. In these birds, occurrence of a painful arousal, rather than unconsciousness, could not be ruled out. 4. It is therefore suggested that water bath electrical stunning of chickens with a minimum rms current of 100 mA per bird delivered using 100 or 200 Hz would be adequate to ensure bird welfare under commercial conditions, provided both the carotid arteries in the neck are severed at slaughter. On humanitarian and bird welfare grounds, a rms current of greater than 100 mA per bird should be applied whilst using frequencies of 400 Hz or more of sine wave AC

  14. Nanoparticle/Polymer assembled microcapsules with pH sensing property.

    Science.gov (United States)

    Zhang, Pan; Song, Xiaoxue; Tong, Weijun; Gao, Changyou

    2014-10-01

    The dual-labeled microcapsules via nanoparticle/polymer assembly based on polyamine-salt aggregates can be fabricated for the ratiometric intracellular pH sensing. After deposition of SiO2 nanoparticles on the poly(allylamine hydrochloride)/multivalent anionic salt aggregates followed by silicic acid treatment, the generated microcapsules are stable in a wide pH range (3.0 ∼ 8.0). pH sensitive dye and pH insensitive dye are simultaneously labeled on the capsules, which enable the ratiometric pH sensing. Due to the rough and positively charged surface, the microcapsules can be internalized by several kinds of cells naturally. Real-time measurement of intracellular pH in several living cells shows that the capsules are all located in acidic organelles after being taken up. Furthermore, the negatively charged DNA and dyes can be easily encapsulated into the capsules via charge interaction. The microcapsules with combination of localized pH sensing and drug loading abilities have many advantages, such as following the real-time transportation and processing of the carriers in cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Balamurugan, A.; Chen Shenming

    2007-01-01

    Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode was prepared by electrochemical polymerization technique. The properties of modified electrode was studied. It was found that the electrochemical properties of modified electrode was very much dependent on the experimental conditions, such as monomer oxidation potential and pH. The modified electrode surface was characterized by scanning electron microscopy (SEM). The PEDOT-PANS film modified electrode shows electrocatalytic activity toward oxidation of dopamine (DA) in acetate buffer solution (pH 5.0) and results in a marked enhancement of the current response. The linear sweep voltammetric (LSV) peak heights are linear with DA concentration from 2 x 10 -6 to 1 x 10 -5 M. The detection limit is 5 x 10 -7 M. More over, the interferences of ascorbic acid (AA) and uric acid (UA) were effectively diminished. This work provides a simple and easy approach for selective determination of dopamine in the presence of ascorbic acid and uric acid

  16. Effect of initial ph on growth characteristics and fermentation properties of Saccharomyces cerevisiae.

    Science.gov (United States)

    Liu, Xingyan; Jia, Bo; Sun, Xiangyu; Ai, Jingya; Wang, Lihua; Wang, Cheng; Zhao, Fang; Zhan, Jicheng; Huang, Weidong

    2015-04-01

    As the core microorganism of wine making, Saccharomyces cerevisiae encounter low pH stress at the beginning of fermentation. Effect of initial pH (4.50, 3.00, 2.75, 2.50) on growth and fermentation performance of 3 S. cerevisiae strains Freddo, BH8, Nº.7303, different tolerance at low pH, chosen from 12 strains, was studied. The values of yeast growth (OD600 , colony forming units, cell dry weight), fermentation efficiency (accumulated mass loss, change of total sugar concentration), and fermentation products (ethanol, glycerol, acetic acid, and l-succinic acid) at different pH stress were measured. The results showed that the initial pH of must was a vital factor influencing yeast growth and alcoholic fermentation. Among the 3 strains, strain Freddo and BH8 were more tolerant than Nº.7303, so they were affected slighter than the latter. Among the 4 pH values, all the 3 strains showed adaptation even at pH 2.50; pH 2.75 and 2.50 had more vital effect on yeast growth and fermentation products in contrast with pH 4.50 and 3.00. In general, low initial pH showed the properties of prolonging yeast lag phase, affecting accumulated mass loss, changing the consumption rate of total sugar, increasing final content of acetic acid and glycerol, and decreasing final content of ethanol and l- succinic acid, except some special cases. Based on this study, the effect of low pH on wine products would be better understood and the tolerance mechanism of low pH of S. cerevisiae could be better explored in future. © 2015 Institute of Food Technologists®

  17. Predicting and measurement of pH of seawater reverse osmosis concentrates

    KAUST Repository

    Waly, Tarek

    2011-10-01

    The pH of seawater reverse osmosis plants (SWRO) is the most influential parameter in determining the degree of supersaturation of CaCO3 in the concentrate stream. For this, the results of pH measurements of the concentrate of a seawater reverse osmosis pilot plant were compared with pH calculations based on the CO2-HCO3 --CO3 2- system equilibrium equations. Results were compared with two commercial software programs from membrane suppliers and also the software package Phreeqc. Results suggest that the real concentrate pH is lower than that of the feed and that none of the used programs was able to predict correctly real pH values. In addition, the effect of incorporating the acidity constant calculated for NaCl medium or seawater medium showed a great influence on the concentrate pH determination. The HCO3 - and CO3 2- equilibrium equation using acidity constants developed for seawater medium was the only method able to predict correctly the concentrate pH. The outcome of this study indicated that the saturation level of the concentrate was lower than previously anticipated. This was confirmed by shutting down the acid and the antiscalants dosing without any signs of scaling over a period of 12 months. © 2011 Elsevier B.V.

  18. Toxicity of fatty acid 18:5n3 from Gymnodinium cf. mikimotoi: II. Intracellular pH and K+ uptake in isolated trout hepatocytes.

    Science.gov (United States)

    Fossat, B; Porthé-Nibelle, J; Sola, F; Masoni, A; Gentien, P; Bodennec, G

    1999-01-01

    Effects of octadecapentaenoic acid 18:5n3 and other related polyunsaturated fatty acids present in gymnodinium cf. mikimotoi were tested in isolated trout hepatocytes. These exotoxins decreased intracellular pH followed by a slow recovery to initial value and alkalinization of acidic compartments, suggesting an inhibition of vacuolar H(+)-ATPases. Moreover, addition of 18:5n3 to the extracellular medium induced a decrease of K+ uptake into hepatocytes as a result of Na,K-ATPase inhibition. However, high concentrations (10(-5)-10(-3) M) are necessary to induce these effects.

  19. Hypoxia and Its Acid-Base Consequences: From Mountains to Malignancy.

    Science.gov (United States)

    Swenson, Erik R

    Hypoxia, depending upon its magnitude and circumstances, evokes a spectrum of mild to severe acid-base changes ranging from alkalosis to acidosis, which can alter many responses to hypoxia at both non-genomic and genomic levels, in part via altered hypoxia-inducible factor (HIF) metabolism. Healthy people at high altitude and persons hyperventilating to non-hypoxic stimuli can become alkalotic and alkalemic with arterial pH acutely rising as high as 7.7. Hypoxia-mediated respiratory alkalosis reduces sympathetic tone, blunts hypoxic pulmonary vasoconstriction and hypoxic cerebral vasodilation, and increases hemoglobin oxygen affinity. These effects and others can be salutary or counterproductive to tissue oxygen delivery and utilization, based upon magnitude of each effect and summation. With severe hypoxia either in the setting of profound arterial hemoglobin desaturation and reduced O2 content or poor perfusion (ischemia) at the global or local level, metabolic and hypercapnic acidosis develop along with considerable lactate formation and pH falling to below 6.8. Although conventionally considered to be injurious and deleterious to cell function and survival, both acidoses may be cytoprotective by various anti-inflammatory, antioxidant, and anti-apoptotic mechanisms which limit total hypoxic or ischemic-reperfusion injury. Attempts to correct acidosis by giving bicarbonate or other alkaline agents under these circumstances ahead of or concurrent with reoxygenation efforts may be ill advised. Better understanding of this so-called "pH paradox" or permissive acidosis may offer therapeutic possibilities. Rapidly growing cancers often outstrip their vascular supply compromising both oxygen and nutrient delivery and metabolic waste disposal, thus limiting their growth and metastatic potential. However, their excessive glycolysis and lactate formation may not necessarily represent oxygen insufficiency, but rather the Warburg effect-an attempt to provide a large amount

  20. Two distinct etiologies of gastric cardia adenocarcinoma: interactions among pH, Helicobacter pylori, and bile acids

    Directory of Open Access Journals (Sweden)

    Ken-ichi eMukaisho

    2015-05-01

    Full Text Available Gastric cancer can be classified as cardia and noncardia subtypes according to the anatomic site. Although the gastric cancer incidence has decreased steadily in several countries over the past 50 years, the incidence of cardia cancers and esophageal adenocarcinoma (EAC continue to increase. The etiological factors involved in the development of both cardia cancers and EACs are associated with high animal fat intake, which causes severe obesity. Central obesity plays roles in cardiac-type mucosa lengthening and partial hiatus hernia development. There are two distinct etiologies of cardia cancer subtypes: one associated with gastroesophageal reflux (GER, which predominantly occurs in patients without Helicobacter pylori (H. pylori infection and resembles EAC, and the other associated with H. pylori atrophic gastritis, which resembles noncardia cancer. The former can be developed in the environment of high volume duodenal content reflux, including bile acids and a higher acid production in H. pylori–negative patients. N-nitroso compounds, which are generated from the refluxate that includes a large volume of bile acids and are stabilized in the stomach (which has high levels of gastric acid, play a pivotal role in this carcinogenesis. The latter can be associated with the changing colonization of H. pylori from the distal to the proximal stomach with atrophic gastritis because a high concentration of soluble bile acids in an environment of low acid production is likely to act as a bactericide or chemorepellent for H. pylori in the distal stomach with H. pylori infection. The manuscript introduces new insights in causative factors of adenocarcinoma of the cardia about the role of bile acids in gastro-esophageal refluxate based upon robust evidences supporting interactions among pH, H. pylori, and bile acids.

  1. Radiation-induced apoptosis in different pH environments in vitro

    International Nuclear Information System (INIS)

    Lee, Hyung-Sik; Park, Heon J.; Lyons, John C.; Griffin, Robert J.; Auger, Elizabeth A.; Song, Chang W.

    1997-01-01

    Purpose: The effect of environmental pH on the radiation-induced apoptosis in tumor cells in vitro was investigated. Methods and Materials: Mammary adenocarcinoma cells of A/J mice (SCK cells) were irradiated with γ-rays using a 137 Cs irradiator and incubated in media of different pHs. After incubation at 37 deg. C for 24-120 h the extent of apoptosis was determined using agarose gel electrophoresis, TdT-mediated dUTP-biotin nick end labeling (TUNEL) staining, flow cytometry, and release of 3 H from 3 H-thymidine labeled cells. The clonogenicity of the cells irradiated in different pH medium was determined, and the progression of cells through the cell cycle after irradiation in different pHs was also determined with flow cytometry. Results: Irradiation with 2-12 Gy of γ-rays induced apoptosis in SCK cells in pH 7.5 medium within 48 h as judged from the results of four different assays mentioned. Radiation-induced apoptosis declined as the medium pH was lowered from 7.5 to 6.4. Specifically, the radiation-induced degradation of DNA including the early DNA breaks, as determined with the TUNEL method, progressively declined as the medium pH was lowered so that little DNA fragmentation occurred 48 h after irradiation with 12 Gy in pH 6.6 medium. When the cells were irradiated and incubated for 48 h in pH 6.6 medium and the medium was replaced with pH 7.5 medium, DNA fragmentation promptly occurred. DNA fragmentation also occurred even in pH 6.6 medium when the cells were irradiated and maintained in pH 7.5 medium for 8 h or longer post-irradiation before incubation in pH 6.6 medium. The radiation-induced G 2 arrest in pH 6.6 medium lasted markedly longer than that in pH 7.5 medium. Conclusion: Radiation-induced apoptosis in SCK cells in vitro is reversibly suppressed in an acidic environment. Taking the results of four different assays together, it was concluded that early step(s) in the apoptotic pathway, probably the DNA break or upstream of DNA break, is

  2. Generalised expressions for the response of pH to changes in ocean chemistry

    Science.gov (United States)

    Hagens, Mathilde; Middelburg, Jack J.

    2016-08-01

    The extent to which oceans are capable of buffering chemical changes resulting from the uptake of carbon dioxide (CO2) or other acidifying processes can be quantified using buffer factors. Here, we present general expressions describing the sensitivity of pH and concentrations of CO2 and other acid-base species to a change in ocean chemistry. These expressions can include as many acid-base systems as desirable, making them suitable for application to, e.g., upwelling regions or nutrient-rich coastal waters. We show that these expressions are fully consistent with previously derived expressions for the Revelle factor and other buffer factors, which only included the carbonate and borate acid-base systems, and provide more accurate values. We apply our general expressions to contemporary global ocean surface water and possible changes therein by the end of the 21st century. These results show that most sensitivities describing a change in pH are of greater magnitude in a warmer, high-CO2 ocean, indicating a decreased seawater buffering capacity. This trend is driven by the increase in CO2 and slightly moderated by the warming. Respiration-derived carbon dioxide may amplify or attenuate ocean acidification due to rising atmospheric CO2, depending on their relative importance. Our work highlights that, to gain further insight into current and future pH dynamics, it is crucial to properly quantify the various concurrently acting buffering mechanisms.

  3. Stream chemistry in the eastern United States. 2. Current sources of acidity in acidic and low acid-neutralizing-capacity streams

    International Nuclear Information System (INIS)

    Herlihy, A.T.; Kaufmann, P.R.; Mitch, M.E.

    1991-01-01

    The authors examined anion composition in National Stream Survey (NSS) data in order to evaluate the most probable sources of current acidity in acidic and low acid neutralizing capacity (ANC) streams in the eastern United States. Acidic streams that had almost no organic influence (less than 10% of total anions) and sulfate and nitrate concentrations indicative of evaporative concentration of atmospheric deposition were classified as acidic due to acidic deposition. These acidic streams were located in small forested watersheds in the Mid-Atlantic Highlands (an estimated 1950 km of stream length) and in the Mid-Atlantic Coastal Plain (1250 km). Acidic streams affected primarily by acidic deposition but also influenced by naturally occurring organic anions accounted for another 1180 km of acidic stream length and were located in the New Jersey Pine Barrens, plateau tops in the Mid-Atlantic and Southeast Highlands, and the Florida Panhandle. The total length of streams acidic due to acid mine drainage in the NSS (4590 km) was about the same as the total length of acidic streams likely affected by acidic deposition (4380 km). Acidic streams whose acid anion composition was dominated by organics were located in Florida and the Mid-Atlantic Coastal Plain. In Florida, most of the acidic streams were organic dominated, whereas about half of the streams in the Mid-Atlantic Coastal Plain were organic dominated. Organic-dominated acidic streams were not observed in the Mid-Atlantic and Southeast Highlands

  4. Enrofloxacin sorption on smectite clays: effects of pH, cations, and humic acid.

    Science.gov (United States)

    Yan, Wei; Hu, Shan; Jing, Chuanyong

    2012-04-15

    Enrofloxacin (ENR) occurs widely in natural waters because of its extensive use as a veterinary chemotherapeutic agent. To improve our understanding of the interaction of this emerging contaminant with soils and sediments, sorption of ENR on homoionic smectites and kaolinite was studied as a function of pH, ionic strength, exchangeable cations, and humic acid concentration. Batch experiments and in situ ATR-FTIR analysis suggested multiple sorption mechanisms. Cation exchange was a major contributor to the sorption of cationic ENR species on smectite. The decreased ENR sorption with increasing ionic strength indicated the formation of outer-sphere complexes. Exchangeable cations significantly influenced the sorption capacity, and the observed order was Csacid had a negligible contribution to the interlayer intercalation. The results of this study provide new insight into the molecular mechanisms of ENR sorption on clay minerals. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Slow cortical evoked potentials after noise exposure

    Energy Technology Data Exchange (ETDEWEB)

    von Wedel, H; Opitz, H J

    1979-07-01

    Human cortical evoked potentials under conditions of stimuation are registrated in the post-stimulatory phase of a five minutes lasting equally masking white noise (90 dB HL). Changes of the evoked potentials during adaptation, possible analogy with high tone losses after noise representation and the origin of tinnitus are examined. Stimulation was started 3 sec after the off-effect of the noise. For five minutes periodically tone bursts were represented. Each train of stimulation consists of tone bursts of three frequencies: 2 kcs, 4 kcs, 8 kcs. The 0.5 sec lasting tones were separated by pauses of 2 sec. During the experiment stimulation and analysis were controlled by a computer. Changes in latency and amplitudes of the cortical evoked potentials were registered. Changes of the adaptation patterns as a function of the poststimulatory time are discussed.

  6. Systematic review: role of acid, weakly acidic and weakly alkaline reflux in gastro-oesophageal reflux disease

    NARCIS (Netherlands)

    Boeckxstaens, G. E.; Smout, A.

    2010-01-01

    The importance of weakly acidic and weakly alkaline reflux in gastro-oesophageal reflux disease (GERD) is gaining recognition. To quantify the proportions of reflux episodes that are acidic (pH <4), weakly acidic (pH 4-7) and weakly alkaline (pH >7) in adult patients with GERD, and to evaluate their

  7. The Paradox of Music-Evoked Sadness: An Online Survey

    Science.gov (United States)

    Taruffi, Liila; Koelsch, Stefan

    2014-01-01

    This study explores listeners’ experience of music-evoked sadness. Sadness is typically assumed to be undesirable and is therefore usually avoided in everyday life. Yet the question remains: Why do people seek and appreciate sadness in music? We present findings from an online survey with both Western and Eastern participants (N = 772). The survey investigates the rewarding aspects of music-evoked sadness, as well as the relative contribution of listener characteristics and situational factors to the appreciation of sad music. The survey also examines the different principles through which sadness is evoked by music, and their interaction with personality traits. Results show 4 different rewards of music-evoked sadness: reward of imagination, emotion regulation, empathy, and no “real-life” implications. Moreover, appreciation of sad music follows a mood-congruent fashion and is greater among individuals with high empathy and low emotional stability. Surprisingly, nostalgia rather than sadness is the most frequent emotion evoked by sad music. Correspondingly, memory was rated as the most important principle through which sadness is evoked. Finally, the trait empathy contributes to the evocation of sadness via contagion, appraisal, and by engaging social functions. The present findings indicate that emotional responses to sad music are multifaceted, are modulated by empathy, and are linked with a multidimensional experience of pleasure. These results were corroborated by a follow-up survey on happy music, which indicated differences between the emotional experiences resulting from listening to sad versus happy music. This is the first comprehensive survey of music-evoked sadness, revealing that listening to sad music can lead to beneficial emotional effects such as regulation of negative emotion and mood as well as consolation. Such beneficial emotional effects constitute the prime motivations for engaging with sad music in everyday life. PMID:25330315

  8. The paradox of music-evoked sadness: an online survey.

    Directory of Open Access Journals (Sweden)

    Liila Taruffi

    Full Text Available This study explores listeners' experience of music-evoked sadness. Sadness is typically assumed to be undesirable and is therefore usually avoided in everyday life. Yet the question remains: Why do people seek and appreciate sadness in music? We present findings from an online survey with both Western and Eastern participants (N = 772. The survey investigates the rewarding aspects of music-evoked sadness, as well as the relative contribution of listener characteristics and situational factors to the appreciation of sad music. The survey also examines the different principles through which sadness is evoked by music, and their interaction with personality traits. Results show 4 different rewards of music-evoked sadness: reward of imagination, emotion regulation, empathy, and no "real-life" implications. Moreover, appreciation of sad music follows a mood-congruent fashion and is greater among individuals with high empathy and low emotional stability. Surprisingly, nostalgia rather than sadness is the most frequent emotion evoked by sad music. Correspondingly, memory was rated as the most important principle through which sadness is evoked. Finally, the trait empathy contributes to the evocation of sadness via contagion, appraisal, and by engaging social functions. The present findings indicate that emotional responses to sad music are multifaceted, are modulated by empathy, and are linked with a multidimensional experience of pleasure. These results were corroborated by a follow-up survey on happy music, which indicated differences between the emotional experiences resulting from listening to sad versus happy music. This is the first comprehensive survey of music-evoked sadness, revealing that listening to sad music can lead to beneficial emotional effects such as regulation of negative emotion and mood as well as consolation. Such beneficial emotional effects constitute the prime motivations for engaging with sad music in everyday life.

  9. The paradox of music-evoked sadness: an online survey.

    Science.gov (United States)

    Taruffi, Liila; Koelsch, Stefan

    2014-01-01

    This study explores listeners' experience of music-evoked sadness. Sadness is typically assumed to be undesirable and is therefore usually avoided in everyday life. Yet the question remains: Why do people seek and appreciate sadness in music? We present findings from an online survey with both Western and Eastern participants (N = 772). The survey investigates the rewarding aspects of music-evoked sadness, as well as the relative contribution of listener characteristics and situational factors to the appreciation of sad music. The survey also examines the different principles through which sadness is evoked by music, and their interaction with personality traits. Results show 4 different rewards of music-evoked sadness: reward of imagination, emotion regulation, empathy, and no "real-life" implications. Moreover, appreciation of sad music follows a mood-congruent fashion and is greater among individuals with high empathy and low emotional stability. Surprisingly, nostalgia rather than sadness is the most frequent emotion evoked by sad music. Correspondingly, memory was rated as the most important principle through which sadness is evoked. Finally, the trait empathy contributes to the evocation of sadness via contagion, appraisal, and by engaging social functions. The present findings indicate that emotional responses to sad music are multifaceted, are modulated by empathy, and are linked with a multidimensional experience of pleasure. These results were corroborated by a follow-up survey on happy music, which indicated differences between the emotional experiences resulting from listening to sad versus happy music. This is the first comprehensive survey of music-evoked sadness, revealing that listening to sad music can lead to beneficial emotional effects such as regulation of negative emotion and mood as well as consolation. Such beneficial emotional effects constitute the prime motivations for engaging with sad music in everyday life.

  10. Use of the Stockwell Transform in the Detection of P300 Evoked Potentials with Low-Cost Brain Sensors

    Directory of Open Access Journals (Sweden)

    Alan F. Pérez-Vidal

    2018-05-01

    Full Text Available The evoked potential is a neuronal activity that originates when a stimulus is presented. To achieve its detection, various techniques of brain signal processing can be used. One of the most studied evoked potentials is the P300 brain wave, which usually appears between 300 and 500 ms after the stimulus. Currently, the detection of P300 evoked potentials is of great importance due to its unique properties that allow the development of applications such as spellers, lie detectors, and diagnosis of psychiatric disorders. The present study was developed to demonstrate the usefulness of the Stockwell transform in the process of identifying P300 evoked potentials using a low-cost electroencephalography (EEG device with only two brain sensors. The acquisition of signals was carried out using the Emotiv EPOC® device—a wireless EEG headset. In the feature extraction, the Stockwell transform was used to obtain time-frequency information. The algorithms of linear discriminant analysis and a support vector machine were used in the classification process. The experiments were carried out with 10 participants; men with an average age of 25.3 years in good health. In general, a good performance (75–92% was obtained in identifying P300 evoked potentials.

  11. Ph3CCOOSnPh3.Ph3PO AND Ph3CCOOSnPh3.Ph3AsO: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    ABDOU MBAYE

    2014-08-01

    Full Text Available The mixture of ethanolic solutions of Ph3CCOOSnPh3 and Ph3PO or Ph3AsO gives Ph3CCOOSnPh3.Ph3PO and Ph3CCOOSnPh3.Ph3AsO adducts which have been characterized by infrared spectroscopy. A discrete structure is suggested for both, the environment around the tin centre being trigonal bipyramidal, the triphenylacetate anion behaving as a mondentate ligand.

  12. Excitatory amino acid receptors mediate asymmetry and lateralization in the descending cardiovascular pathways from the dorsomedial hypothalamus.

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Xavier

    Full Text Available The dorsomedial hypothalamus (DMH and lateral/dorsolateral periaqueductal gray (PAG are anatomically and functionally connected. Both the DMH and PAG depend on glutamatergic inputs for activation. We recently reported that removal of GABA-ergic tone in the unilateral DMH produces: asymmetry, that is, a right- (R- sided predominance in cardiac chronotropism, and lateralization, that is, a greater increase in ipsilateral renal sympathetic activity (RSNA. In the current study, we investigated whether excitatory amino acid (EAA receptors in the DMH-PAG pathway contribute to the functional interhemispheric difference. In urethane (1.2 to 1.4 g/kg, i.p. anesthetized rats, we observed that: (i nanoinjections of N-methyl D-aspartate (NMDA 100 pmol/100 nl into the unilateral DMH produced the same right-sided predominance in the control of cardiac chronotropy, (ii nanoinjections of NMDA into the ipsilateral DMH or PAG evoked lateralized RSNA responses, and (iii blockade of EAA receptors in the unilateral DMH attenuated the cardiovascular responses evoked by injection of NMDA into either the R- or left- (L- PAG. In awake rats, nanoinjection of kynurenic acid (1 nmol/100 nL into the L-DMH or R- or L-PAG attenuated the tachycardia evoked by air stress. However, the magnitude of stress-evoked tachycardia was smallest when the EAA receptors of the R-DMH were blocked. We conclude that EAA receptors contribute to the right-sided predominance in cardiac chronotropism. This interhemispheric difference that involves EAA receptors was observed in the DMH but not in the PAG.

  13. Influence of soil pH on the sorption of ionizable chemicals: modeling advances.

    Science.gov (United States)

    Franco, Antonio; Fu, Wenjing; Trapp, Stefan

    2009-03-01

    The soil-water distribution coefficient of ionizable chemicals (K(d)) depends on the soil acidity, mainly because the pH governs speciation. Using pH-specific K(d) values normalized to organic carbon (K(OC)) from the literature, a method was developed to estimate the K(OC) of monovalent organic acids and bases. The regression considers pH-dependent speciation and species-specific partition coefficients, calculated from the dissociation constant (pK(a)) and the octanol-water partition coefficient of the neutral molecule (log P(n)). Probably because of the lower pH near the organic colloid-water interface, the optimal pH to model dissociation was lower than the bulk soil pH. The knowledge of the soil pH allows calculation of the fractions of neutral and ionic molecules in the system, thus improving the existing regression for acids. The same approach was not successful with bases, for which the impact of pH on the total sorption is contrasting. In fact, the shortcomings of the model assumptions affect the predictive power for acids and for bases differently. We evaluated accuracy and limitations of the regressions for their use in the environmental fate assessment of ionizable chemicals.

  14. Genetic influence demonstrated for MEG-recorded somatosensory evoked responses

    NARCIS (Netherlands)

    van 't Ent, D.; van Soelen, I.L.C.; Stam, K.J.; de Geus, E.J.C.; Boomsma, D.I.

    2010-01-01

    We tested for a genetic influence on magnetoencephalogram (MEG)-recorded somatosensory evoked fields (SEFs) in 20 monozygotic (MZ) and 14 dizygotic (DZ) twin pairs. Previous electroencephalogram (EEG) studies that demonstrated a genetic contribution to evoked responses generally focused on

  15. Influence of the alloying elements vanadium, chromium and carbon on the electrochemical behavior of uranium in media with a pH 13 or a pH acid

    International Nuclear Information System (INIS)

    Pommier, Gerard; Jouve, Gerard; Lacombe, Paul.

    1976-06-01

    The electrochemical properties of uranium alloys with low vanadium and chromium contents were studied in aqueous medium for different pH values of the solution (pH between 0 and 5 in H 2 SO 4 medium and pH=13 in NaOH medium). In acid medium, the study of the behavior of the two types of alloys carried out by the potentiokinetic method is described. The specific role of chromium concerning the anodic process is demonstrated and the influence of vanadium in specimens of same nominal vanadium contents but different carbon contents is revealed by the modification of the reduction overvoltage of water. In basic medium, the electrochemical study was supported by an optical method of determining the relative growth kinetics of the films in situ and continuously. At lower values of potential, the growth of an oxide film of UO 2 with linear growth kinetics is demonstrated; at higher values of potential a system of two layers is observed and its evolution is followed kinematically. The film initially formed is constituted of an oxide UO 3 2H 2 O, and its growth is linear, then a film of UO 2 develops underneath. A structural evolution of the superficial film is then observed, an evolution which leads to its cracking after breakdown. These phenomena were followed by electron microscopy using a technic of two stage replicas [fr

  16. Acid-regulated proteins induced by Streptococcus mutans and other oral bacteria during acid shock.

    Science.gov (United States)

    Hamilton, I R; Svensäter, G

    1998-10-01

    Our previous research has demonstrated that with the more aciduric oral bacteria, an acid shock to sub-lethal pH values results in the induction of an acid tolerance response that protects the cells at extremely low pH (pH 3.0-4.0) that kills unadapted control cells maintained at pH 7.5 (Oral Microbiol Immunol 1997: 12: 266-273). In this study, we were interested in comparing the protein profiles of acid-shocked and control cells of nine organisms from three acid-ogenic genera that could be categorized as strong, weak and non-acid responders in an attempt to identify proteins that could be classified as acid-regulated proteins and which may be important in the process of survival at very low pH. For this, log-phase cultures were rapidly acidified from pH 7.5 to 5.5 in the presence of [14C]-amino acids for varying periods up to 2 h, the period previously shown to be required for maximum induction of the acid response. The cells were extracted for total protein and subjected to one-dimensional sodium dodecyl sulfate-polyacrylamide chromatography with comparable control and acid-shocked protein profiles compared by scanning and computer analysis. Of particular interest were the proteins in the acid-shocked cells that showed enhanced labeling (i.e., synthesis) over the control cells, since these were considered acid-regulated proteins of importance in pH homeostasis. Streptococcus mutans LT11 generated the most rapid and complex pattern: a total of 36 acid-regulated proteins showing enhanced synthesis, with 25 appearing within the first 30 min of acid shock. The enhanced synthesis was transient with all proteins, with the exception of two with molecular weights of 50/49 and 33/32 kDa. Within the acid-regulated proteins were proteins having molecular weights comparable to the heat shock proteins and the various subunits of the membrane H+/ATPase. By comparison, the strong responder, Lactobacillus casei 151, showed the enhanced formation of only nine proteins within the

  17. Macronutrients and micronutrients of soybean oil bodies extracted at different pH.

    Science.gov (United States)

    Chen, Yeming; Cao, Yanyun; Zhao, Luping; Kong, Xiangzhen; Hua, Yufei

    2014-07-01

    In this study, the macronutrients and micronutrients of pH 6.8, 8.0, 9.5, and 11.0 extracted soybean oil bodies (OBs) were examined, revealing that soybean OBs might be used as a natural carrier for bioactive components (unsaturated fatty acids, phospholipid, tocopherol, and phytosterol). pH 6.8 extracted OBs (dry basis) contained 85.88% neutral lipid, 8.18% protein, and 5.85% polar lipid (mainly phospholipid) by gravimetric analysis. The percentage of neutral lipid was increased, while those of protein and polar lipid were decreased with increasing pH. Tocopherol (about 75 mg/100 g neutral lipid of OBs) was not affected, while phytosterol was decreased (136 to 110 mg/100 g neutral lipid of OBs) with increasing pH. The detectable total monosaccaride (galactosamine, glucosamine, and glucose) content of extracted OBs was low and also decreased (35.80 to 6.13 mg/100 g neutral lipid of OBs) with increasing pH. The protein of extracted OBs had higher percentage of essential amino acids than soybean protein isolate with tryptophan and methionine as limited amino acids. The fatty acid composition of extracted OBs was rich in linoleic acid (about 59%), oleic acid (about 20%), and α-linolenic acid (about 7%). Oil bodies (OBs) from soybean and other plant seeds are greatly examined owing to their potential utilizations in food ingredients. The determination of its macronutrients and micronutrients would be very meaningful for its efficient utilization in the future. © 2014 Institute of Food Technologists®

  18. The role of calcium ions in the photocatalytic oxidation of humic acid at neutral pH.

    Science.gov (United States)

    Mariquit, Eden G; Salim, Chris; Hinode, Hirofumi

    2008-10-01

    Humic acids (HAs) are natural organic matter derived from the decomposition of plant, algal, and microbial materials. They belong to the group of the most predominant type of natural organic matter present in ground and surface waters. HAs affect the mobility and bioavailability of aquatic contaminants. However, if they are left unremoved from the water before water treatment processes, they can form carcinogenic disinfection by-products, such as trihalomethanes, haloacetic acids, and other halogenated disinfection by-products, that can pose a threat to human beings. An advanced oxidation process using UV light and a commercially available titanium dioxide was used to oxidize HA at a pH that is similar to that of natural water. The effect of adding calcium ions to the adsorption and the photocatalytic oxidation of HAs was studied. The effect of varying the TiO(2) load was also investigated. The experiment was done using a photochemical batch reactor equipped with a mercury lamp emitting light with wavelengths of 310-580 nm. The absorbances by the samples were determined at wavelengths of 254 nm and 436 nm, which represent the aromatic-compound content of and the color of the solution, respectively. Results indicated calcium ions have an effect on both the adsorption and the photocatalytic oxidation of HA at a pH within 8.0 +/- 0.5. Calcium ions facilitated adsorption of HA onto the surface of TiO(2) and resulted to faster photocatalytic oxidation. The data were plotted with respect to the normalized absorbances and irradiation time.

  19. Visually Evoked Spiking Evolves While Spontaneous Ongoing Dynamics Persist

    DEFF Research Database (Denmark)

    Huys, Raoul; Jirsa, Viktor K; Darokhan, Ziauddin

    2016-01-01

    attractor. Its existence guarantees that evoked spiking return to the spontaneous state. However, the spontaneous ongoing spiking state and the visual evoked spiking states are qualitatively different and are separated by a threshold (separatrix). The functional advantage of this organization...

  20. Subtype-specific Modulation of Acid-sensing Ion Channel (ASIC) Function by 2-Guanidine-4-methylquinazoline*

    Science.gov (United States)

    Alijevic, Omar; Kellenberger, Stephan

    2012-01-01

    Acid-sensing ion channels (ASICs) are neuronal Na+-selective channels that are transiently activated by extracellular acidification. ASICs are involved in fear and anxiety, learning, neurodegeneration after ischemic stroke, and pain sensation. The small molecule 2-guanidine-4-methylquinazoline (GMQ) was recently shown to open ASIC3 at physiological pH. We have investigated the mechanisms underlying this effect and the possibility that GMQ may alter the function of other ASICs besides ASIC3. GMQ shifts the pH dependence of activation to more acidic pH in ASIC1a and ASIC1b, whereas in ASIC3 this shift goes in the opposite direction and is accompanied by a decrease in its steepness. GMQ also induces an acidic shift of the pH dependence of inactivation of ASIC1a, -1b, -2a, and -3. As a consequence, the activation and inactivation curves of ASIC3 but not other ASICs overlap in the presence of GMQ at pH 7.4, thereby creating a window current. At concentrations >1 mm, GMQ decreases maximal peak currents by reducing the unitary current amplitude. Mutation of residue Glu-79 in the palm domain of ASIC3, previously shown to be critical for channel opening by GMQ, disrupted the GMQ effects on inactivation but not activation. This suggests that this residue is involved in the consequences of GMQ binding rather than in the binding interaction itself. This study describes the mechanisms underlying the effects of a novel class of ligands that modulate the function of all ASICs as well as activate ASIC3 at physiological pH. PMID:22948146