WorldWideScience

Sample records for acid-resin modified composites

  1. Low pressure process for continuous fiber reinforced polyamic acid resin matrix composite laminates

    Science.gov (United States)

    Druyun, Darleen A. (Inventor); Hou, Tan-Hung (Inventor); Kidder, Paul W. (Inventor); Reddy, Rakasi M. (Inventor); Baucom, Robert M. (Inventor)

    1994-01-01

    A low pressure processor was developed for preparing a well-consolidated polyimide composite laminate. Prepreg plies were formed from unidirectional fibers and a polyamic acid resin solution. Molding stops were placed at the sides of a matched metal die mold. The prepreg plies were cut shorter than the length of the mold in the in-plane lateral direction and were stacked between the molding stops to a height which was higher than the molding stops. The plies were then compressed to the height of the stops and heated to allow the volatiles to escape and to start the imidization reaction. After removing the stops from the mold, the heat was increased and 0 - 500 psi was applied to complete the imidization reaction. The heat and pressure were further increased to form a consolidated polyimide composite laminate.

  2. Fission product behavior in HTGR fuel particles made from weak-acid resins

    International Nuclear Information System (INIS)

    Tiegs, T.N.; Henson, T.J.

    1979-04-01

    Fission product retention and behavior are of utmost importance in HTGR fuel particles. The present study concentrates on particles made from weak-acid resins, which can vary in composition from 100% UO 2 plus excess carbon to 100% UC 2 plus excess carbon. Five compositions were tested: UC 4 58 O 2 04 , UC 3 68 O 0 01 , UC 4 39 O 1 72 , UC 4 63 O 0 97 , and UC 4 14 O 1 53 . Metallographically sectioned particles were examined with a shielded electron microprobe. The distributions of the fission products were determined by monitoring characteristic x-ray lines while scanning the electron beam over the particle surface

  3. Modifying milk composition through forage

    NARCIS (Netherlands)

    Elgersma, A.; Tamminga, S.; Ellen, G.

    2006-01-01

    The fatty acid (FA) composition of cows milk has become less favorable to human health in the last four decades due to changed feeding and management practices, notably higher proportions of concentrates and silages in diets with less grazing. Essential FA and conjugated linoleic acid (CLA)

  4. Chelating ion exchange with macroreticular hydroxamic acid resins

    International Nuclear Information System (INIS)

    Phillips, R.J.

    1980-01-01

    The synthesis, reactions, and analytical applications of hydroxamic acids, including chelating resins with this functional group, are reviewed. A procedure for attaching N-phenyl hydroxamic acid groups to Amberlite XAD-4 is described. The extraction of 20 metal ions from 2 M hydrochloric acid by this resin is discussed. Conditions for the quantitative extraction and back-extraction of 9 ions are reported. Results are compared with work on solvent extraction with N-phenylbenzohydroxamic acid. Procedures for attaching N-methyl and N-unsubstituted hydroxamic acid groups to Amberlite XAD-4 are described. The N-phenyl, N-methyl, and N-unsubstituted hydroxamic acid resins are compared with respect to metal-ion complexation. The scope of applications for hydroxamic acid resins is investigated by studying the extraction of 19 metal ions as a function of pH. The resins are especially suitable for the extraction of zirconium(IV), titanium(IV), and uranium(IV) from strongly acidic solution. Aluminum(III) is separated from calcium and phosphate by extraction at pH 4. The use of the resins for the purification of reagents, concentration of trace constituents, and chromatographic separation is demonstrated

  5. Uptake of actinides by sulphonated phosphinic acid resin from acid medium

    International Nuclear Information System (INIS)

    Jaya Mohandas; Srinivasa Rao, V.; Vijayakumar, N.; Kumar, T.; Velmurugan, S.; Narasimhan, S.V.

    2014-01-01

    The removal of uranium and americium from nitric acid solutions by sulphonated phosphinic acid resin has been investigated. The capacity of the sulphonated resin exceeds the capacities of phosphinic acid resin and commercial cation exchange resin. Other advantages of the sulphonated resin for uranium and americium removal include reduced sensitivity to acidity and inert salt concentration. (author)

  6. mwnts composite film modified glassy carbon electrode

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: A poly p-aminosalicylic acid (Poly(p-ASA)) and multiwall carbon nanotubes. (MWCNTs) composite modified glassy carbon (GC) electrode was constructed by casting the MWNTs on the GC electrode surface followed by electropolymerization of the p-ASA on the MWCNTs/GCE. The electrochemical behaviours ...

  7. Tough and Reinforced Polypropylene/Kaolin Composites using Modified Kaolin

    Science.gov (United States)

    Yao, J. L.; Zhu, H. X.; Qi, Y. B.; Guo, M. J.; Hu, Q.; Gao, L.

    2018-05-01

    Polypropylene (PP)/kaolin composites have been prepared by filling modified kaolin with diethylenetriaminepentaacetic acid (DTPA) into the PP matrix. The surface modification of kaolin particles effectively improves the compatibility between kaolin and PP matrix. It is conducive for uniform dispersion of inorganic particles in the matrix, and enhances the mechanical performance of the composites. Compared with plain kaolin, the mechanical properties of the modified composites exhibit higher tensile strength, bending strength, impact strength and melt index simultaneously. The DTPA modification of kaolin overall enhances the mechanical properties of PP composites. It meets the requirements in various applications, and makes the modified experiment interesting in modern teaching.

  8. POLYPROPYLENE-MODIFIED KAOLINITE COMPOSITES: EFFECT ...

    African Journals Online (AJOL)

    Meziane O, Bensedira A, Guessoum M and Haddaoui N

    2016-05-01

    May 1, 2016 ... prepared by the melt intercalation method. ... several beneficial variations on stiffness, hardness, toughness and heat ..... Polypropylene/ untreated and treated kaolinite composites have been prepared via direct melt.

  9. Carbon fibers and composites modified by intercalation

    International Nuclear Information System (INIS)

    Macherzynska, B.; Blazewicz, S.

    2002-01-01

    The aim of this paper was to describe ability to intercalation of laboratory prepared carbon composites and their constituents. In work the following materials were tested; pinch-based fibres of P-120 and K-1100 manufacturer's designations, carbon matrix and resulting composites. To prepare a matrix of composites, phenol-formaldehyde resin (Z) and pinch-based precursor (PAK) were used. After initial carbonization, the carbon matrix was heated to 2150 o C i to improve ability to the future intercalation. Three kinds of composites (P/Z, K/Z and K/PAK), with two directional reinforcement (2D), were prepared. All carbon samples were intercalated with copper chloride(II). To study the structure of all materials, before and after intercalation, X-ray diffraction method was used. It enabled to measure microstructure parameters (L c and L a ), interplanar distance (d 002 ) thickness of an intercalation layer (d i ). Before intercalation, graphite fibers are characterized by well developed graphite structure of three-dimensional order, different than carbon turbostratic structures. Graphite fibres show a tendency to intercalation, however this process proceeds harder than in a synthetic graphite, which is testified by diffraction spectra with visible complex stages of intercalation. Comparison of two kinds of graphite fibres show s that their structure significantly affects intercalation process. In the case of composite matrix, a better structure ordering was observed for carbon obtained from PAK than for carbon originating from Z precursor. During production of composites, after the heat treatment (2150 o C), carbon obtained from pyrolysis of Z precursor crystallises on the fibre surface, building a well-developed structure of matrix. The same process occurs during carbonization of pinch-based precursor in presence of graphite fibres. In both cases the composites contain well crystallized graphite phases. The study of carbon composite intercalation shows that the process

  10. CNTs Modified and Enhanced Cu Matrix Composites

    Directory of Open Access Journals (Sweden)

    ZHANG Wen-zhong

    2016-12-01

    Full Text Available The composite powders of 2%-CNTs were prepared by wet ball milling and hydrogen annealing treatment-cold pressing sintering was used to consolidate the ball milled composite powders with different modifications of the CNTs. The results show that the length of the CNTs is shortened, ports are open, and amorphous carbon content is increased by ball milling. And after a mixed acid purification, the impurity on the surface of the CNTs is completely removed,and a large number of oxygen-containing reactive groups are introduced; the most of CNTs can be embedded in the Cu matrix and the CNTs have a close bonding with the Cu matrix, forming the lamellar composite structure, then, ultrafine-grained composite powders can be obtained by hydrogen annealing treatment. Shortening and purification of the CNTs are both good for dispersion and bonding of CNTs in the Cu matrix, and the tensile strength and hardness of the composites after shortening and purification reaches the highest, and is 296MPa and 139.8HV respectively, compared to the matrix, up to 123.6% in tensile strength and 42.9% in hardness, attributed to the fine grain strengthening and load transferring.

  11. Additives for cement compositions based on modified peat

    Energy Technology Data Exchange (ETDEWEB)

    Kopanitsa, Natalya, E-mail: kopanitsa@mail.ru; Sarkisov, Yurij, E-mail: sarkisov@tsuab.ru; Gorshkova, Aleksandra, E-mail: kasatkina.alexandra@gmail.com; Demyanenko, Olga, E-mail: angel-n@sibmail.com [Tomsk State University of Architecture and Building, 2, Solyanaya sq., Tomsk, 634003 (Russian Federation)

    2016-01-15

    High quality competitive dry building mixes require modifying additives for various purposes to be included in their composition. There is insufficient amount of quality additives having stable properties for controlling the properties of cement compositions produced in Russia. Using of foreign modifying additives leads to significant increasing of the final cost of the product. The cost of imported modifiers in the composition of the dry building mixes can be up to 90% of the material cost, depending on the composition complexity. Thus, the problem of import substitution becomes relevant, especially in recent years, due to difficult economic situation. The article discusses the possibility of using local raw materials as a basis for obtaining dry building mixtures components. The properties of organo-mineral additives for cement compositions based on thermally modified peat raw materials are studied. Studies of the structure and composition of the additives are carried out by physicochemical research methods: electron microscopy and X-ray analysis. Results of experimental research showed that the peat additives contribute to improving of cement-sand mortar strength and hydrophysical properties.

  12. Chemical composition of silica-based biocidal modifier

    Directory of Open Access Journals (Sweden)

    Grishina Anna Nikolaevna

    2016-11-01

    Full Text Available Increase of the amount of fungi spores and micotixines causes the increase in the number of different diseases. Because of this, ensuring the biological safety in buildings is becoming more and more important today. The preferred way to guarantee the biological safety of a building is to employ modern building materials that prevent the settlement of the fungi colonies on the inner surfaces of walls. Such building materials can be produced using novel biocidal modifiers that allow controlling the number of microorganisms on the surface and in the bulk of a composite construction. The precipitation product of zinc hydrosilicates and sodium sulfate is one of the mentioned modifiers. Till now, the exact chemical composition of such precipitation product is controversial; it is obvious, though, that the efficacy of the biocidal modifier is mostly determined by the type of the copper compounds. In the present work an integrated approach is used for the investigation of the chemical composition of the biocidal modifier. Such an approach consists in the examination of the modifier’s composition by means of different, yet complementary, research methods: X-ray diffraction, infrared spectroscopy and DTA. It is shown that the chemical composition of the modifier mainly depends on the amount of precipitant. X-ray diffraction reveals that the major part of the modifier is represented by amorphous phase. Along with the increase of the precipitant’s amount the crystalline phase Zn4SO4(OH6•xH2O formation takes place. Such a crystalline phase is not appropriate as a component of the biocidal modifier. Another two methods - DTA and IR spectroscopy - reveal that the amorphous phase consists essentially of zinc hydrosilicates.

  13. Surface treated fly ash filled modified epoxy composites

    Directory of Open Access Journals (Sweden)

    Uma Dharmalingam

    2015-01-01

    Full Text Available Abstract Fly ash, an inorganic alumino silicate has been used as filler in epoxy matrix, but it reduces the mechanical properties due to its poor dispersion and interfacial bonding with the epoxy matrix. To improve its interfacial bonding with epoxy matrix, surface treatment of fly ash was done using surfactant sodium lauryl sulfate and silane coupling agent glycidoxy propyl trimethoxy silane. An attempt is also made to reduce the particle size of fly ash using high pressure pulverizer. To improve fly ash dispersion in epoxy matrix, the epoxy was modified by mixing with amine containing liquid silicone rubber (ACS. The effect of surface treated fly ash with varying filler loadings from 10 to 40% weight on the mechanical, morphological and thermal properties of modified epoxy composites was investigated. The surface treated fly ash was characterized by particle size analyzer and FTIR spectra. Morphological studies of surface treated fly ash filled modified epoxy composites indicate good dispersion of fillers in the modified epoxy matrix and improves its mechanical properties. Impact strength of the surface treated fly ash filled modified epoxy composites show more improvement than unmodified composites.

  14. Municipal Sewage Sludge Drying Treatment by an Composite Modifier

    OpenAIRE

    Na Wei

    2012-01-01

    A sludge composite modifier (SCM) which comprises a mixture of three cementitious components was proposed for sludge drying and stabilization. Effect of SCM components on sludge moisture content was analyzed using uniform design and the optimum composition of SCM was determined by computer-aided modeling and optimization. To compare the drying effect of SCM, quicklime, and Portland cement, the effects of material content and curing time on moisture content of sludge were also studied. The res...

  15. HTGR fuel development: investigations of breakages of uranium-loaded weak acid resin microspheres

    International Nuclear Information System (INIS)

    Carpenter, J.A. Jr.

    1977-11-01

    During the HTGR fuel development program, a high percentage of uranium-loaded weak acid resin microspheres broke during pneumatic transfer, carbonization, and conversion. One batch had been loaded by the UO 3 method; the other by the ammonia neutralization method. To determine the causes of failure, samples of the two failed batches were investigated by optical microscopy, scanning electron microscopy, electron beam microprobe, and other techniques. Causes of failure are postulated and methods are suggested to prevent recurrence of this kind of failure

  16. Polypropylene-modified kaolinite composites: Effect of chemical ...

    African Journals Online (AJOL)

    PP/kaolinite compounds were prepared by the melt intercalation method. The effects of modified clay on properties of the prepared composites were studied. The XRD results showed that the treatment with the ammonium salt caused the return to the initial state of the clay. The thermogravimetric analysis thermograms (TGA) ...

  17. POLYMER COMPOSITES MODIFIED BY WASTE MATERIALS CONTAINING WOOD FIBRES

    Directory of Open Access Journals (Sweden)

    Bernardeta Dębska

    2016-11-01

    Full Text Available In recent years, the idea of sustainable development has become one of the most important require-ments of civilization. Development of sustainable construction involves the need for the introduction of innovative technologies and solutions that will combine beneficial economic effects with taking care of the health and comfort of users, reducing the negative impact of the materials on the environment. Composites obtained from the use of waste materials are part of these assumptions. These include modified epoxy mortar containing waste wood fibres, described in this article. The modification consists in the substitution of sand by crushed waste boards, previously used as underlays for panels, in quantities of 0%, 10%, 20%, 35% and 50% by weight, respectively. Composites containing up to 20% of the modifier which were characterized by low water absorption, and good mechanical properties, also retained them after the process of cyclic freezing and thawing.

  18. Production and Structural Investigation of Polyethylene Composites with Modified Kaolin

    International Nuclear Information System (INIS)

    Domka, L.; Malicka, A.; Stachowiak, N.

    2008-01-01

    The study was undertaken to evaluate the effect of the filler (kaolin) modification with silane coupling agents on the properties of the polyethylene (HDPE Hostalen ACP 5831) composites. Powder mineral fillers are added to polymers to modify the properties of the latter and to reduce the cost of their production. A very important factor is the filler dispersion in the polymer matrix. Kaolin modified with 3-methacryloxypropyltrimethoxysilane and pure kaolin were characterised by surface area, pore size, water absorbing capacity, paraffin oil absorbing capacity, bulk density, scanning electron microscopy observations and X-ray diffraction measurements. Their performance was characterised by determination of the mechanical resistance upon static stretching and tearing, and their structure was observed in scanning electron microscopy images. The results were compared to those obtained for the composites with unmodified filler and pure HDPE. (authors)

  19. Production and Structural Investigation of Polyethylene Composites with Modified Kaolin

    Science.gov (United States)

    Domka, L.; Malicka, A.; Stachowiak, N.

    2008-08-01

    The study was undertaken to evaluate the effect of the filler (kaolin) modification with silane coupling agents on the properties of the polyethylene (HDPE Hostalen ACP 5831) composites. Powder mineral fillers are added to polymers to modify the properties of the latter and to reduce the cost of their production. A very important factor is the filler dispersion in the polymer matrix. Kaolin modified with 3-methacryloxypropyltrimethoxysilane and pure kaolin were characterised by surface area, pore size, water absorbing capacity, paraffin oil absorbing capacity, bulk density, scanning electron microscopy observations and X-ray diffraction measurements. Their performance was characterised by determination of the mechanical resistance upon static stretching and tearing, and their structure was observed in scanning electron microscopy images. The results were compared to those obtained for the composites with unmodified filler and pure HDPE.

  20. Uranium loss from BISO-coated weak-acid-resin HTGR fuel

    International Nuclear Information System (INIS)

    Pearson, R.L.; Lindemer, T.B.

    1977-02-01

    Recycle fuel for the High-Temperature Gas-Cooled Reactor (HTGR) contains a weak-acid-resin (WAR) kernel, which consists of a mixture of UC 2 , UO 2 , and free carbon. At 1900 0 C, BISO-coated WAR UC 2 or UC 2 -UO 2 kernels lose a significant portion of their uranium in several hundred hours. The UC 2 decomposes and uranium diffuses through the pyrolytic coating. The rate of escape of the uranium is dependent on the temperature and the surface area of the UC 2 , but not on a temperature gradient. The apparent activation energy for uranium loss, ΔH, is approximately 90 kcal/mole. Calculations indicate that uranium loss from the kernel would be insignificant under conditions to be expected in an HTGR

  1. Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents.

    Science.gov (United States)

    Zhu, Hong; Cao, Quan; Li, Chunhu; Mu, Xindong

    2011-09-27

    Conversion of fructose into furan derivatives 5-hydroxymethylfurfural (HMF) and 5-methoxymethylfurfural (MMF) is performed in tetrahydrofuran (THF) and methanol-organic solvent systems, catalysed by an acidic resin Amberlyst-15. The melted fructose can be converted into HMF on the surface of the solid resin catalyst in the presence of THF as an extracting phase, which is a good solvent for HMF and other by-products. The solid resin catalyst can be reused eleven times without losing its catalytic ability, with an average HMF yield of approximately 50%. Upon the addition of methanol, the generated HMF can further react with methanol to form MMF, and the total yield of HMF and MMF could be promoted to 65%. GC-MS analysis confirms the formation of a small amount of methyl levulinate in methanolorganic solvent system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Microbial activity in an acid resin deposit: Biodegradation potential and ecotoxicology in an extremely acidic hydrocarbon contamination

    International Nuclear Information System (INIS)

    Kloos, Karin; Schloter, Michael; Meyer, Ortwin

    2006-01-01

    Acid resins are residues produced in a recycling process for used oils that was in use in the forties and fifties of the last century. The resin-like material is highly contaminated with mineral oil hydrocarbons, extremely acidic and co-contaminated with substituted and aromatic hydrocarbons, and heavy metals. To determine the potential for microbial biodegradation the acid resin deposit and its surroundings were screened for microbial activity by soil respiration measurements. No microbial activity was found in the core deposit. However, biodegradation of hydrocarbons was possible in zones with a lower degree of contamination surrounding the deposit. An extreme acidophilic microbial community was detected close to the core deposit. With a simple ecotoxicological approach it could be shown that the pure acid resin that formed the major part of the core deposit, was toxic to the indigenous microflora due to its extremely low pH of 0-1. - Acidity is the major toxic factor of the extremely hydrophobic and acidic mixed contamination found in an acid resin deposit

  3. POTENTIAL ANTISTATIC PROPERTIES OF A CEMENT COMPOSITION MODIFIED BY CHITOSAN

    Directory of Open Access Journals (Sweden)

    Darchiya Valentina Ivanovna

    2012-10-01

    Full Text Available Environmental compatibility of construction materials and their impact onto the human organism and the environment are the essential factors to be taken account of in the course of construction. Therefore, natural renewable biological polymers arouse interest. Polysaccharide chitin takes a special position among them. It represents one of the most widely spread biological polymers; it is extracted from 100% renewable materials. It is part of the external skeleton of crustaceans and insects, and it also part of cell walls of mushrooms and algae. Any research of potential materials to be generated from chitin and its derivative chitosan may involve a practical implementation. The research of the antistatic properties followed the introduction of 1% of chitosan into the cement composition. Electrostatic field intensity was measured by Electrostatic Field Intensity Meter ST-01. The electrostatic property of the sample modified by chitosan turned out to be lower than the one of the benchmark sample by 5.6 times. The presence of chitosan in the cement composition makes no impact on strength-related properties of the construction material. The cement composition modified by chitosan may be used in the manufacturing of antistatic self-leveling floors.

  4. Municipal Sewage Sludge Drying Treatment by an Composite Modifier

    Directory of Open Access Journals (Sweden)

    Na Wei

    2012-01-01

    Full Text Available A sludge composite modifier (SCM which comprises a mixture of three cementitious components was proposed for sludge drying and stabilization. Effect of SCM components on sludge moisture content was analyzed using uniform design and the optimum composition of SCM was determined by computer-aided modeling and optimization. To compare the drying effect of SCM, quicklime, and Portland cement, the effects of material content and curing time on moisture content of sludge were also studied. The results showed that the optimum ratio of modifier component was slag/cement clinker/dihydrate gypsum = 0.64/0.292/0.068 and the moisture content of SCM-stabilized sludge decreased with the increasing material content and extending curing time. Besides, the experimental results showed that optimized SCM behaved better than quicklime and Portland cement in sludge semi-drying and XRD analysis revealed that the main hydrated product of stabilization was ettringite, which played an important role in the effective drying process. Sewage sludge stabilized using SCM could be used as an effective landfill cover.

  5. Specific heat of nano-ferrites modified composites

    Directory of Open Access Journals (Sweden)

    Muntenita Cristian

    2017-01-01

    Full Text Available The specific heat of nano-ferrites modified composites was studied using differential scanning calorimeter (DSC method in the temperature range of 30 to 150°C. Initially, nano-ferrites were introduced in epoxy systems in order to improve the electromagnetic properties of formed materials. Together with the changes in electromagnetic properties some modifications occur regarding thermal and mechanical properties. The materials were formed by placing 5g or 10g of ferrite into 250g polymer matrix leading to a very low weight ratio of modifying agent. At so low ratios the effect of ferrite presence should be insignificant according to mixing rule. Anyway there is possible to appear some chelation reaction with effects on thermal properties of materials. Three types of epoxy resins had been used as matrix and barium ferrite and strontium ferrite as modifying agents. The thermal analysis was developed on two heatingcooling cycles and the specific heat was evaluated for each segment of the cycle analysis.

  6. Manganese oxalate nanorods as ballistic modifier for composite solid propellants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Supriya [Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273009, U.P. (India); Chawla, Mohit [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, H.P. (India); Siril, Prem Felix, E-mail: prem@iitmandi.ac.in [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, H.P. (India); Singh, Gurdip [Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273009, U.P. (India)

    2014-12-10

    Highlights: • Manganese oxalate nanorods were prepared using mild thermal precipitation and aging. • The nanorods were found to be efficient ballistic modifier for solid propellants. • The nanorods sensitized the thermolysis of ammonium perchlorate. • Controlled thermal decomposition of nanorods yielded manganese oxide nanoparticles. • MnO nanoparticles formed insitu in the condensed phase enhance the burning rates. - Abstract: Rod-shaped nanostructures of manganese oxalate (MnC{sub 2}O{sub 4}) were synthesized via mild thermal precipitation and aging process. Chemical composition of the MnC{sub 2}O{sub 4} nanorods was confirmed using Fourier transform infra-red (FTIR) spectroscopy and energy dispersive X-ray spectroscopy (EDS). X-ray diffraction (XRD) and selected area electron diffraction (SAED) studies revealed the crystal structure. Field emission scanning electron microscopy (FE-SEM) imaging and high resolution transmission electron microscopy (HR-TEM) were employed to study the structural features of the nanorods. The MnC{sub 2}O{sub 4} nanorods were found to be efficient ballistic modifier for the burning rate enhancement of composite solid propellants (CSPs). Thermal analysis using TGA-DSC showed that MnC{sub 2}O{sub 4} nanorods sensitized the thermal decomposition of ammonium perchlorate (AP) and the CSPs. Controlled thermal decomposition of the MnC{sub 2}O{sub 4} nanorods resulted in the formation of managanese oxide nanoparticles with mesoporosity. A plausible mechanism for the burning rate enhancement using MnC{sub 2}O{sub 4} nanorods was proposed.

  7. Study on the performance of MoS2 modified PTFE composites by molding process

    Science.gov (United States)

    Ma, Weiqiang; Hou, Genliang; Bi, Song; Li, Ping; Li, Penghui

    2017-10-01

    MoS2 filled PTFE composites were prepared by cold pressing and sintering molding. The compressive and creep properties of composite materials were analyzed by controlling the size of molded composites during molding. The results show that the composites have the best compressive and creep resistance when the molding pressure is 55 MPa in the MoS2 composites with 15% mass fraction, which is a practical reference for the preparation of MoS2-modified PTFE composites.

  8. Particle reinforced composites from acrylamide modified blend of styrene-butadiene and natural rubber

    Science.gov (United States)

    Blends of styrene-butadiene rubber and natural rubber that provide balanced properties were modified with acrylamide and reinforced with soy protein particles. The rubber composites show improved mechanical properties. Both modified rubber and composites showed a faster curing rate. The crosslinking...

  9. Post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin

    International Nuclear Information System (INIS)

    Yap, A.U.J.

    1997-01-01

    This study examined the post-irradiation hardness of resin-modified glass ionomer cements and a polyacid-modified composite resin using a digital microhardness tester. Change in hardness of these materials over a period of 6 months was compared to that of conventional glass ionomer cements and a composite resin. With the exception of the composite resin, all materials showed a significant increase in hardness over 24 h after their initial set. Dual-cure resin-modified glass ionomer cements showed decreased hardness with increased storage time in saline at 37 o C. Results suggest that the addition of resins to glass ionomer cements does not improve initial hardness and does not negate the acid-base reaction of conventional cements. Resin addition may, however, lead to increased water sorption and decreased hardness. (author)

  10. Surface modified carbon nanoparticle papers and applications on polymer composites

    Science.gov (United States)

    Ouyang, Xilian

    Free-standing paper like materials are usually employed as protective layers, chemical filters, components of electrical batteries or supercapacitors, adhesive layers, and electronic or optoelectric components. Free-standing papers made from carbon nanoparticles have drawn increased interest because they have a variety of superior chemical and physical characteristics, such as light weight, high intrinsic mechanical properties, and extraordinary high electrical conductivity. Nanopapers fabricated from 1- D shape carbon nanofibers (CNFs) and carbon nanotubes (CNTs) are promising reinforcing materials for polymer composites, because the highly porous CNF and CNT nanopapers (porosity ˜80% and ˜70% respectively) can be impregnated with matrix polymers. In the first part of this work, polyaniline (PANI) was used to functionalize the surface of CNFs, and the resultant carbon nanopapers presented impressive mechanical strength and electrical conductivity that it could be used in the in-mold coating (IMC)/ injection molding process to achieve high electromagnetic interference (EMI) shielding effectiveness. Aniline modified (AF) CNT nanopapers were used as a 3D network in gas separation membranes. The resultant composite membranes demonstrated better and stable CO2 permeance and CO 2/H2 selectivity in a high temperature (107°C) and high pressure (15-30 atm) gas separation process, not achievable by conventional polymer membranes. In the second part, we demonstrated that 2-D graphene (GP) or graphene oxide (GO) nanosheets could be tightly packed into a film which was impermeable to most gases and liquids. GP or GO nanopapers could be coated on polymer composites. In order to achieve well-dispersed single-layer graphene in aqueous medium, we developed a facile approach to synthesize functional GP bearing benzenesulfonic acid groups which allow the preparation of nanopapers by water based assembly. With the optimized processing conditions, our best GP nanopapers could reach

  11. Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Z.T., E-mail: sxyzt@126.com [College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Chen, T. [Department of Ocean Science and Engineering, Zhejiang University, Hangzhou 310058 (China); Li, H.Y. [Zhoushan Ocean Research Institute, Zhejiang University, Zhoushan 316021 (China); Xia, M.S., E-mail: msxia@zju.edu.cn [Department of Ocean Science and Engineering, Zhejiang University, Hangzhou 310058 (China); Ye, Y.; Zheng, H. [Department of Ocean Science and Engineering, Zhejiang University, Hangzhou 310058 (China)

    2013-11-15

    Highlights: • Adding modified shell powder could significantly increase the properties of PP. • The modified shell powder could act as a nucleating agent in PP matrix. • The modified shell powder has a potential to be used as a bio-filler. -- Abstract: Shell waste, with its high content of calcium carbonate (CaCO{sub 3}) plus organic matrix, has a potential to be used as a bio-filler. In this work, shell waste was modified by furfural and then incorporated to reinforce polypropylene (PP). The shell waste and modified powder were characterized by means of X-ray diffraction (XRD), scanning electron microscopy equipped with an energy dispersive spectrometer (SEM-EDS), X-ray photoelectronic spectroscopy (XPS), and Fourier transformed infrared spectroscopy (FTIR). The mechanical and thermal properties of neat PP and PP composites were investigated as well. Thermal gravimetric (TG) analyses confirmed the reinforcing role of modified powder in PP composites. The mechanical properties studied showed that adding modified powder could significantly increase the impact strength, elongation at break point and flexural modulus of composites. The maximum incorporation content could reach 15 wt.% with a good balance between toughness and stiffness of PP composites. Differential scanning calorimetry (DSC) results showed that the modified powder could act as a nucleating agent and thus increase the crystallization temperature of PP. Polarized optical microscopy (POM) observation also indicated that the introduction of modified powder could promote the heterogeneous nucleation of PP matrix.

  12. Humidity Sensing Properties of Surface Modified Polyaniline Metal Oxide Composites

    Directory of Open Access Journals (Sweden)

    S. C. Nagaraju

    2014-01-01

    Full Text Available Polyaniline- (PANI praseodymium Oxide (Pr2O3 composites have been synthesized by in situ polymerization method with different weight percentages. The synthesized composites have been characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The temperature dependent conductivity shows that the conductivity is due to the hopping of polarons and bipolarons. These composites show negative thermal coefficient (α behavior as a function of temperature, which is characteristic behavior of semiconducting materials. Sensor studies have been carried out by two-probe method and found that the sensitivity increases with increase in % RH. It is noticed that stability increase is due to the presence of Pr2O3 in polyaniline up to 30 wt%. A fast recovery and response time along with high sensitivity make these composites suitable for humidity sensors.

  13. Mechanical Properties of Epoxy and Its Carbon Fiber Composites Modified by Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2017-01-01

    Full Text Available Compressive properties are commonly weak parts in structural application of fiber composites. Matrix modification may provide an effective way to improve compressive performance of the composites. In this work, the compressive property of epoxies (usually as matrices of fiber composites modified by different types of nanoparticles was firstly investigated for the following study on the compressive property of carbon fiber reinforced epoxy composites. Carbon fiber/epoxy composites were fabricated by vacuum assisted resin infusion molding (VARIM technique using stitched unidirectional carbon fabrics, with the matrices modified with nanosilica, halloysite, and liquid rubber. Testing results showed that the effect of different particle contents on the compressive property of fiber/epoxy composites was more obvious than that in epoxies. Both the compressive and flexural results showed that rigid nanoparticles (nanosilica and halloysite have evident strengthening effects on the compression and flexural responses of the carbon fiber composite laminates fabricated from fabrics.

  14. Biological resistance of polyethylene composites made with chemically modified fiber or flour

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons

    2002-01-01

    The role of moisture in the biological decay of wood-plastic composites was investigated. Southern pine wood fiber and ponderosa pine wood flour were chemically modified using either acetic anhydride (AA), butylene oxide (BO), or propylene oxide (PO). A 50:50 mixture of high density polyethylene and either chemically modified fiber or flour, or untreated fiber or flour...

  15. Thermal shock behavior of rare earth modified alumina ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junlong; Liu, Changxia [Ludong Univ., Yantai (China). School of Transportation

    2017-05-15

    Alumina matrix ceramic composites toughened by AlTiC master alloys, diopside and rare earths were fabricated by hot-pressing and their thermal shock behavior was investigated and compared with that of monolithic alumina. Results showed that the critical thermal shock temperature (ΔT) of monolithic alumina was 400 C. However, it decreased to 300 C for alumina incorporating only AlTiC master alloys, and increased with further addition of diopside and rare earths. Improvement of thermal shock resistance was obtained for alumina ceramic composites containing 9.5 wt.% AlTiC master alloys and 0.5 wt.% rare earth additions, which was mainly attributed to the formation of elongated grains in the composites.

  16. Improved fire retardancy of thermoset composites modified with carbon nanofibers

    International Nuclear Information System (INIS)

    Zhao Zhongfu; Gou Jan

    2009-01-01

    Multifunctional thermoset composites were made from polyester resin, glass fiber mats and carbon nanofiber sheets (CNS). Their flaming behavior was investigated with cone calorimeter under well-controlled combustion conditions. The heat release rate was lowered by pre-planting carbon nanofiber sheets on the sample surface with the total fiber content of only 0.38 wt.%. Electron microscopy showed that carbon nanofiber sheet was partly burned and charred materials were formed on the combusting surface. Both the nanofibers and charred materials acted as an excellent insulator and/or mass transport barrier, improving the fire retardancy of the composite. This behavior agrees well with the general mechanism of fire retardancy in various nanoparticle-thermoplastic composites.

  17. Correlation and prediction of ion exchange equilibria on weak-acid resins by means of the surface complex formation model

    International Nuclear Information System (INIS)

    Horst, J.

    1988-11-01

    The present work summarizes investigations of the equilibrium of the exchange of protons, copper, zinc, calcium, magnesium and sodium ions on two weak-acid exchange resins in hydrochloric and carbonic acid bearing solutions at 25 0 C. The description of the state of equilibrium between resin and solution is based on the individual chemical equilibria which have to be adjusted simultaneously. The equilibrium in the liquid phase is described by the mass action law and the condition of electroneutrality using activity coefficients calculated according to the theory of Debye and Hueckel. The exchange equilibria are described by means of a surface complex formation model, which was developed by Davis, James and Leckie for activated aluminia and which has been applied to weak-acid resins. The model concept assumes the resin as a plane surface in which the functional groups are distributed uniformly. (orig./RB) [de

  18. Poly(dimethylsiloxane) / tetraethyl orthosilicate modified hydroxyapatite composites: mechanical properties and biocompatibility evaluation

    International Nuclear Information System (INIS)

    Bareiro, O.; Santos, L. A.

    2012-01-01

    A composite of poly(dimethylsiloxane)/hydroxyapatite (PDMS/HAp) has been developed and its mechanical properties and biocompatibility were assessed. The processing of the composite involved the surface modification of HAp with 5 or 10 %(wt/wt) tetraethyl orthosilicate (TEOS) solutions, followed by mixing in a two roll open mixer with the silicone. The energy dispersive spectroscopy (EDS) spectra indicated evidence of a silane layer in the HAp modified surface. In tensile property measurement, the PDMS/modified-HAp composite showed higher values of tensile strength (2.41 MPa) and lower elongation at break (73.44 %) than the PDMS/unmodified HAp composite, 2.26 MPa and 365.58 % respectively. In both cases, the composites showed higher values of tensile strength than the original silicone (1.97 MPa). Scanning electron microscopy (SEM) micrographs of the PDMS/unmodified-HAp composite exhibited debonding of the HAp particles from the elastomeric matrix at the fracture surface. On the other hand, HAp particles remained well attached to the matrix in the PDMS/modified-HAp composite. The presence of HAp improved the biocompatibility of the silicone. The soaking of the composites for 7 days in a simulated body fluid (SBF) formed a dense and homogeneous layer of HAp like crystals in the surface of the composites. The surface modification of HAp powders with TEOS solutions formed a strong interface PDMS/HAp, this enhanced the tensile strength of the composite. (author)

  19. Fabrication of superhydrophobic sol-gel composite films using hydrophobically modified colloidal zinc hydroxide.

    Science.gov (United States)

    Lakshmi, R V; Basu, Bharathibai J

    2009-11-15

    A superhydrophobic sol-gel composite film was fabricated by incorporating hydrophobically modified colloidal zinc hydroxide (CZH) in sol-gel matrix. CZH was prepared by controlled precipitation and modified by treatment with stearic acid. The concentration of stearic acid and stirring time were optimized to obtain modified CZH with very high water contact angle (WCA) of 165 degrees and sliding angle (SA)superhydrophobic surfaces. FTIR spectrum also confirmed the presence of zinc stearate in the composite film. The method is simple and cost-effective and does not involve any expensive chemicals or equipments.

  20. A preliminary study on PVDC modified composite materials of protective for tritium

    International Nuclear Information System (INIS)

    Wan Xiaoli; Dan Guiping; Li Ye; Wen Wei; Zhang Dong

    2012-01-01

    Through the experimental device, the HTO permeation performances of two kinds of PVDC modified composite materials were studied. The characteristic curves of the two composite materials were ascertained, and various other packing materials with anti-tritium permeation performance were compared. (authors)

  1. MECHANICAL, ELECTRICAL, AND THERMAL PROPERTIES OF MALEIC ANHYDRIDE MODIFIED RICE HUSK FILLED PVC COMPOSITES

    OpenAIRE

    Navin Chand; Bhajan Das Jhod

    2008-01-01

    Unmodified and modified rice husk powder filled PVC composites were prepared having different amounts of rice husk powder. Mechanical, thermal, and electrical properties of these composites were determined. The tensile strength of rice husk powder PVC composites having 0, 10, 20, 30, and 40 weight percent of rice husk powder was found to be 33.9, 19.4, 18.1, 14.6, and 9.5 MPa, respectively. Adding of maleic anhydride- modified rice husk powder improved the tensile strength of rice husk powder...

  2. Composite modified Luneburg model of human eye lens.

    Science.gov (United States)

    Gómez-Correa, J E; Balderas-Mata, S E; Pierscionek, B K; Chávez-Cerda, S

    2015-09-01

    A new lens model based on the gradient-index Luneburg lens and composed of two oblate half spheroids of different curvatures is presented. The spherically symmetric Luneburg lens is modified to create continuous isoindicial contours and to incorporate curvatures that are similar to those found in a human lens. The imaging capabilities of the model and the changes in the gradient index profile are tested for five object distances, for a fixed geometry and for a fixed image distance. The central refractive index decreases with decreasing object distance. This indicates that in order to focus at the same image distance as is required in the eye, a decrease in refractive power is needed for rays from closer objects that meet the lens surface at steeper angles compared to rays from more distant objects. This ensures a highly focused image with no spherical aberration.

  3. Properties of cement based composites modified using diatomaceous earth

    Science.gov (United States)

    Pokorný, Jaroslav; Pavlíková, Milena; Záleská, Martina; Pavlík, Zbyšek

    2017-07-01

    Diatomite belongs among natural materials rich on amorphous silica (a-SiO2). When finely milled, it can potentially substitute part of cement binder and positively support formation of more dense composite structure. In this connection, two types of diatomaceous earth applied as a partial substitution of 5, 10, 15, and 20 mass% of Portland cement in the composition of cement paste were studied. In the tested mixtures with cement blends, the amount of batch water remained same, with water/binder ratio 0.5. For fresh paste mixtures, initial and final setting times were measured. First, hardened pastes cured 28 days in water were characterized by their physical properties such as bulk density, matrix density and open porosity. Then, their mechanical and thermophysical parameters were assessed. Obtained results gave clear evidence of setting time shortening for pastes with diatomite what brought negative effect with respect to the impaired workability of fresh mixtures. On the other hand, there was observed strength improvement for mixtures containing diatomite with higher amount of SiO2. Here, the increase in mechanical resistivity was distinct up to 15 mass% of cement replacement. Higher cement substitution by diatomite resulted in an increase in porosity and thus improvement of thermal insulation properties.

  4. PERSPECTIVES OF NANOPOWDERS APPLICATION FOR MANUFACTURING OF MODIFYING ALLOYING COMPOSITIONS

    Directory of Open Access Journals (Sweden)

    A. Kalinichenko

    2015-01-01

    Full Text Available Application of nanomaterials for grain refining of metals and its allac is of great interest as it aimis achieveto higher physicalmechanical properties in finished parts. Analysis shows that to gain high effectiveness of nanoparticles it is important to provide proper input of these particles into alloying alloy. The aim of present research is study of initial nanoparticles structure on the base of titanium, boron, yttrium and carbon nanotubes as well as development of method to manufacture alloying alloys containing nanoparticles.Investigations of nanopowders phase compositions on the base of titanium, boron and yttrium have shown that active elements such as boron carbide, titanium carbide and nitride, yttrium oxide are base compounds of these nanopowders. Powder particles are formed by primary structural elements having mainly plate state (titanium and boron carbides and containing equiaxial inclusions with sizes of 5–200 nm. Chemical composition of specimens synthesized is uniform and contains 98.0 – 99.5% of main compound.Results of metal-protector and nanoparticles mixing have revealed that the increase of mixing duration from 2 to 6 hours assist to more uniform elements distribution through the pellet volume. Applying extrusion method specimens of alloying alloys have been produced and elements distribution in cross-section and longitudinal directions were determined.Analysis of research implemented has shown that distribution of active nanopowders in matrix is more uniform in extruded alloying alloys specimens compared to ones produced by methods of sintering or pressing of powder mixtures.

  5. Strong composition dependence of adhesive properties of ultraviolet curing adhesives with modified acrylates

    Science.gov (United States)

    Feng, Yefeng; Li, Yandong; Wang, Fupeng; Peng, Cheng; Xu, Zhichao; Hu, Jianbing

    2018-05-01

    Ultraviolet (UV) curable adhesives have been widely researched in fields of health care and electronic components. UV curing systems with modified acrylic ester prepolymers have been frequently employed. In order to clarify composition dependence of adhesive properties of adhesives containing modified acrylates, in this work, several UV curing adhesives bearing urethane and epoxy acrylates were designed and fabricated. The effects of prepolymer, diluent, feed ratio, initiator and assistant on adhesive performances were investigated. This work might offer a facile route to gain promising high-performance UV curable adhesives with desired adhesive traits through regulating their compositions.

  6. Effect of modified atmosphere packaging and addition of calcium hypochlorite on the atmosphere composition, colour and microbial quality of mushrooms

    CSIR Research Space (South Africa)

    Kuyper, L

    1993-01-01

    Full Text Available The effect of modified atmosphere packaging in combination with the addition of calcium hypochlorite on the atmosphere composition, colour and microbial quality of mushrooms was investigated. A modified atmosphere which slowed down discolouration...

  7. Seawater Durability of Nano-Montmorillonite Modified Single-Lap Joining Epoxy Composite Laminates

    OpenAIRE

    ULUS, Hasan; KAYBAL, Halil Burak; DEMİR, Okan; TATAR, Ahmet Caner; SENYURT, Muhammed Ali; AVCI, Ahmet

    2018-01-01

    The objective of this study was to investigate of nano-montmorillonite modified epoxy composite single-lap bonded joints, after being exposed to seawater immersion in order to understand the effect of seawater environment on their performance. To prepare the nano adhesives, nano montmorillonite (2 wt %) was incorporated into epoxy resin. Composite bonded specimens which manufactured with VARIM (Vacuum Assisted Resin Infusion Method) were prepared accordance with ASTM D5868-01 and immersed in ...

  8. A study on effect of ATH on Euphorbia coagulum modified polyester banana fiber composite

    Science.gov (United States)

    Kumari, Sanju; Rai, Bhuvneshwar; Kumar, Gulshan

    2018-02-01

    Fiber reinforced polymer composites are used for building and structural applications due to their high strength. In conventional composites both the binder and the reinforcing fibers are synthetic or either one of the material is natural. In the present study coagulum of Euphorbia royleana has been used for replacing polyester resinas binder in polyester banana composite. Euphorbia coagulum (driedlatex) is rich in resinous mass (60-80%), which are terpenes and polyisoprene (10-20%). Effect of varying percentage of coagulum content on various physico-mechanical properties of polyester-banana composites has been studied. Since banana fiber is sensitive to water due to presence of polar group, banana composite undergoes delamination and deterioration under humid condition. Alkali treated banana fiber along with coagulum content has improved overall mechanical properties and reduction in water absorption. The best physico-mechanical properties have been achieved on replacing 40% of polyester resin by coagulum. An increase of 50% in bending strength, 30% bending modulus and 45% impact strength as well as 68% decrease in water absorption was observed. Incorporation of 20% ATH as flame retardant in coagulum modified banana polyester composite enhanced limiting oxygen index from 20.6 to 26.8% and smoke density reduced up to 40%. This study presents the possibility of utilization of renewable materials for environmental friendly composite development as well as to find out alternative feedstock for petroleum products. Developed Euphorbia latex modified banana polyester composites can have potential utility in hardboard, partition panel, plywood and automotive etc.

  9. Reducing composite restoration polymerization shrinkage stress through resin modified glass-ionomer based adhesives.

    Science.gov (United States)

    Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E

    2015-12-01

    The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.

  10. The weak acid resin process: a dustless conversion route for the synthesis of americium bearing-blanket precursors

    International Nuclear Information System (INIS)

    Picart, S.; Gauthe, A.; Parant, P.; Remy, E.; Jobelin, I.; Pomared, J.M.; Grangaud, P.; Dauby, J.; Delahaye, T.; Caisso, M.; Bataille, M.; Bayle, J.P.; Frost, C.; Delage, C.; Martin, C.L.; Ayral, E.

    2016-01-01

    Mixed uranium-americium oxides are one of the materials envisaged for Americium Bearing Blankets dedicated to transmutation in fast neutron reactors. Conversion and fabrication processes are currently developed to make those materials in the form of dense and homogeneous oxide ceramic pellets or dense granulates incorporating uranium and americium. Their development points out the need of a simplified and optimized process which could lower hazards linked to dust generation of highly contaminating and irradiating compounds and facilitate material transfer in remote handling operations. This reason motivated the development of innovative 'dustless' route such as the Weak Acid Resin route (WAR) which provides the oxide precursors in the form of sub-millimeter-sized microspheres with optimal flowability and limits dust generation during conversion and fabrication steps. This study is thus devoted to the synthesis of mixed uranium-americium oxide microspheres by the WAR process and to the characterization of such precursors. This work also deals with their application to the fabrication of dense or porous pellets and with their potential use as dense spherules to make Sphere-Pac fuel. (authors)

  11. The weak acid resin process: a dustless conversion route for the synthesis of americium bearing-blanket precursors

    Energy Technology Data Exchange (ETDEWEB)

    Picart, S.; Gauthe, A.; Parant, P.; Remy, E.; Jobelin, I.; Pomared, J.M.; Grangaud, P.; Dauby, J.; Delahaye, T. [CEA, Centre de Marcoule, DEN/MAR/DRCP, F-30207 Bagnols-sur-Ceze (France); Caisso, M.; Bataille, M.; Bayle, J.P. [CEA, Centre de Marcoule, DEN/MAR/DTEC, F-30207 Bagnols-sur-Ceze (France); Frost, C. [CEA, Centre de Marcoule, DEN/MAR/DRCP, F-30207 Bagnols-sur-Ceze (France); Institut Europeen des Membranes, CNRS-ENSCM-UM, CC47, University of Montpellier, F-34095 Montpellier (France); Delage, C. [CEA, Centre de Cadarache, DEN/CAD/DEC, Saint-Paul-lez-Durance (France); Martin, C.L. [Univ. Grenoble Alpes, CNRS, SIMAP, F-38000 Grenoble (France); Ayral, E. [Institut Europeen des Membranes, CNRS-ENSCM-UM, CC47, University of Montpellier, F-34095 Montpellier (France)

    2016-07-01

    Mixed uranium-americium oxides are one of the materials envisaged for Americium Bearing Blankets dedicated to transmutation in fast neutron reactors. Conversion and fabrication processes are currently developed to make those materials in the form of dense and homogeneous oxide ceramic pellets or dense granulates incorporating uranium and americium. Their development points out the need of a simplified and optimized process which could lower hazards linked to dust generation of highly contaminating and irradiating compounds and facilitate material transfer in remote handling operations. This reason motivated the development of innovative 'dustless' route such as the Weak Acid Resin route (WAR) which provides the oxide precursors in the form of sub-millimeter-sized microspheres with optimal flowability and limits dust generation during conversion and fabrication steps. This study is thus devoted to the synthesis of mixed uranium-americium oxide microspheres by the WAR process and to the characterization of such precursors. This work also deals with their application to the fabrication of dense or porous pellets and with their potential use as dense spherules to make Sphere-Pac fuel. (authors)

  12. Wood plastic composites from modified wood. Part 3. Durability of WPCs with bioderived matrix

    NARCIS (Netherlands)

    Westin, M.; Larsson-Brelid, P.; Segerholm, B.K.; Oever, van den M.J.A.

    2008-01-01

    The decay resistance of fully bio-derived wood plastic composites, WPCs, was tested in both laboratory and field tests. The laboratory tests were performed according to modified versions of AWPA E10 (soil-block test) and ENV 807 (tests in three un-sterile soils) and the field tests according to EN

  13. Surface characterization of weathered wood-plastic composites produced from modified wood flour

    Science.gov (United States)

    James S. Fabiyi; Armando G. McDonald; Nicole M. Stark

    2007-01-01

    The effects of weathering on the surface properties of wood-plastic composites (WPC) were examined. High-density polyethylene (HDPE) based WPCs made from modified wood flour (untreated, extractives free, and holocellulose (delignified) fibers) were subjected to accelerated (xenon-arc) weathering. Colorimetry and Fourier-transform infrared spectroscopy were employed to...

  14. Mechanical and Thermal Stability Properties of Modified Rice Straw Fiber Blend with Polycaprolactone Composite

    Directory of Open Access Journals (Sweden)

    Roshanak Khandanlou

    2014-01-01

    Full Text Available The goal of this study was to investigate the effect of modified rice straw (ORS on the mechanical and thermal properties of modified rice straw/polycaprolactone composites (ORS/PCL-Cs. The composites (Cs of polycaprolactone (PCL with ORS were successfully synthesized using the solution-casting method. The RS modified with octadecylamine (ODA as an organic modifier. The prepared composites were characterized by using powder X-ray diffraction (XRD, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, and Fourier transforms infrared spectroscopy (FT-IR, and mechanical properties were investigated. Composites of ORS/PCL showed superior mechanical properties due to greater compatibility of ORS with PCL. The XRD results showed that the intensity of the peaks decreased with the increase of ORS content from 1.0 to 7.0 wt.% in comparison with PCL peaks. Tensile measurement showed an increase in tensile modulus but a decrease in tensile strength and elongation at break as the ORS contents are increased from 1.0 to 7.0 wt.%; on the other hand, tensile strength was improved with the addition of 5.0 wt.% of ORS. Thermal stability was decreased with the increase of ORS contents. SEM micrograph indicated good dispersion of ORS into the matrix, and FT-IR spectroscopy showed that the interaction between PCL and ORS is physical interaction.

  15. Preparation of Sandy Soil Stabilizer for Roads Based on Radiation Modified Polymer Composite

    International Nuclear Information System (INIS)

    Elnahas, H.H.

    2016-01-01

    Radiation modified polymer composite (RMPC) was studied to build an extremely durable sandy road, construct a trail or bath, or control dust and erosion. A dilute solution of composite binds sandy soil fines through a coagulation bonding process. The result is a dense soil structure that has superior resistance to cracks and water penetration and can also solve erosion control problems. In erosion control applications, diluted composite is merely sprayed into sandy soil without compaction, effectively sealing the surface to prevent air-born dust or deterioration from erosion. The prepared composite has an elastic and melt-able film formation that imparts thermal compacting to the stabilized sandy soil after full dryness for sandy road leveling, repairing and restoration processes. The prepared composite is environmentally economical when compared with traditional sandy soil stabilizing (SSS) or sealing methods.

  16. Synthesis and Characterizations of Poly(3-hexylthiophene and Modified Carbon Nanotube Composites

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaul Karim

    2012-01-01

    Full Text Available Poly(3-hexylthiophene and modified (functionalized and silanized multiwall carbon nanotube (MWNT nanocomposites have been prepared through in situ polymerization process in chloroform medium with FeCl3 oxidant at room temperature. The composites are characterized through Fourier transfer infrared spectroscopy (FT-IR, Raman, and X-ray diffraction (XRD measurements to probe the nature of interaction between the moieties. Optical properties of the composites are measured from ultraviolet-visible (UV-Vis and photoluminescence (PL spectroscopy. Conductivity of the composites is followed by four probe techniques to understand the conduction mechanism. The change (if any in C=C symmetric and antisymmetric stretching frequencies in FT-IR, the shift in G band frequencies in Raman, any alterations in λmax of UV-Vis, and PL spectroscopic measurements are monitored with modified MWNT loading in the polymer matrix.

  17. Fracture frequency and longevity of fractured resin composite, polyacid-modified resin composite, and resin-modified glass ionomer cement class IV restorations: an up to 14 years of follow-up

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2010-01-01

    The aim of this study was to evaluate the fracture frequency and longevity of fractured class IV resin composite (RC), polyacid-modified resin composite (compomer; PMRC), and resin-modified glass ionomer cement (RMGIC) restorations in a longitudinal long-term follow-up. Eighty-five class IV RC (43...

  18. 5-year clinical performance of resin composite versus resin modified glass ionomer restorative system in non-carious cervical lesions

    DEFF Research Database (Denmark)

    Franco, Eduardo Batista; Benetti, Ana Raquel; Ishikiriama, Sérgio Kiyoshi

    2006-01-01

    To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions.......To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions....

  19. Preparation and Performance of Amphiphilic Random Copolymer Noncovalently Modified MWCNTs/Epoxy Composite

    Directory of Open Access Journals (Sweden)

    MA Qiang

    2016-09-01

    Full Text Available An amphiphilic random copolymer of polyglycidyl methacrylate-co-N-vinyl carbazole P(GMA-co-NVC was synthesized by free radical polymerization and was used to noncovalently modify multi-walled carbon nanotubes (MWCNTs. The obtained P(GMA-co-NVC/MWCNTs was mixed with epoxy resin and used to reinforce epoxy resin. Polymer modified carbon nanotubes/epoxy resin composites were prepared by a casting molding method. Tensile test, electrical resistivity test and differential scanning calorimeter(DSC analysis were used to study the effect of polymer modified carbon nanotubes on the mechanical, electrical, and thermal properties of epoxy resin. The results show that the epoxy composite reinforced with P(GMA-co-NVC/MWCNTs shows a remarkable enhancement in both tensile strength and elongation at break compared to either the pure epoxy or the pristine MWCNTs/epoxy composites. In addition, the electrical conductivity of epoxy is significantly improved and the volume resistivity decreases from 1014Ω·m to 106Ω·m with 0.25% mass fraction loading of P(GMA-co-NVC/MWCNTs. Moreover, glass transition temperature of the epoxy composite also increases from 144℃ to 149℃.

  20. Surface Modified Characteristics of the Tetracalcium Phosphate as Light-Cured Composite Resin Fillers

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Chen

    2014-01-01

    Full Text Available The objectives of this study are to characterize the properties of light-cured composite resins that are reinforced with whisker surface-modified particles of tetracalcium phosphate (TTCP and to investigate the influence of thermal cycling on the reinforced composites properties. The characteristics of ultimate diametral tensile strength (DTS, moduli, pH values, and fracture surfaces of the samples with different amounts of surface-modified TTCP (30%–60% were determined before and after thermal cycling between 5°C and 55°C in deionized water for 600 cycles. The trends of all groups were ductile prior to thermal cycling and the moduli of all groups increased after thermal cycling. The ductile property of the control group without filler was not significantly affected. Larger amounts of fillers caused the particles to aggregate, subsequently decreasing the resin’s ability to disperse external forces and leading to brittleness after thermal cycling. Therefore, the trend of composite resins with larger amounts of filler would become more brittle and exhibited higher moduli after thermal cycling. This developed composite resin with surface modified-TTCP fillers has the potential to be successful dental restorative materials.

  1. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  2. Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading

    Directory of Open Access Journals (Sweden)

    Jaqueline Albano de Morais

    Full Text Available Abstract Short fibers are used in thermoplastic composites to increase their tensile and flexural resistance; however, it often decreases impact resistance. Composites with short vegetal fibers are not an exception to this behavior. The purpose of this work is to produce a vegetal fiber reinforced composite with improved tensile and impact resistance in relation to the polymer matrix. We used poly(ethylene-co-vinyl acetate, EVA, to recover the impact resistance of high density polyethylene, HDPE, reinforced with Curauá fibers, CF. Blends and composites were processed in a corotating twin screw extruder. The pure polymers, blends and composites were characterized by differential scanning calorimetry, thermogravimetry, infrared spectroscopy, scanning electron microscopy, tensile mechanical properties and Izod impact resistance. EVA used as impact modifier in the HDPE matrix exhibited a co-continuous phase and in the composites the fibers were homogeneously dispersed. The best combination of mechanical properties, tensile, flexural and impact, were obtained for the formulations of composites with 20 wt. % of CF and 20 to 40 wt. % of EVA. The composite prepared with 20 wt. % EVA and containing 30 wt. % of CF showed impact resistance comparable to pure HDPE and improved tensile and flexural mechanical properties.

  3. Graphene Modified TiO2 Composite Photocatalysts: Mechanism, Progress and Perspective

    Science.gov (United States)

    Tang, Bo; Chen, Haiqun; Peng, Haoping; Wang, Zhengwei; Huang, Weiqiu

    2018-01-01

    Graphene modified TiO2 composite photocatalysts have drawn increasing attention because of their high performance. Some significant advancements have been achieved with the continuous research, such as the corresponding photocatalytic mechanism that has been revealed. Specific influencing factors have been discovered and potential optimizing methods are proposed. The latest developments in graphene assisted TiO2 composite photocatalysts are abstracted and discussed. Based on the primary reasons behind the observed phenomena of these composite photocatalysts, probable development directions and further optimizing strategies are presented. Moreover, several novel detective technologies—beyond the decomposition test—which can be used to judge the photocatalytic performances of the resulting photocatalysts are listed and analyzed. Although some objectives have been achieved, new challenges still exist and hinder the widespread application of graphene-TiO2 composite photocatalysts, which deserves further study. PMID:29439545

  4. Unintended compositional changes in genetically modified (GM) crops: 20 years of research.

    Science.gov (United States)

    Herman, Rod A; Price, William D

    2013-12-04

    The compositional equivalency between genetically modified (GM) crops and nontransgenic comparators has been a fundamental component of human health safety assessment for 20 years. During this time, a large amount of information has been amassed on the compositional changes that accompany both the transgenesis process and traditional breeding methods; additionally, the genetic mechanisms behind these changes have been elucidated. After two decades, scientists are encouraged to objectively assess this body of literature and determine if sufficient scientific uncertainty still exists to continue the general requirement for these studies to support the safety assessment of transgenic crops. It is concluded that suspect unintended compositional effects that could be caused by genetic modification have not materialized on the basis of this substantial literature. Hence, compositional equivalence studies uniquely required for GM crops may no longer be justified on the basis of scientific uncertainty.

  5. Anhydrous proton conducting composite membranes containing Nafion and triazole modified POSS

    International Nuclear Information System (INIS)

    Lei, M.; Wang, Y.G.; Zhang, F.F.; Huang, C.; Xu, X.; Zhang, R.; Fan, D.Y.

    2014-01-01

    Development of membrane electrolytes having reasonable proton conductivity and mechanical strength under anhydrous conditions is of great importance for proton exchange membrane fuel cells operated at elevated temperature. With the introduction of triazole modified polyhedral oligomeric silsesquioxanes (Tz-POSS) into Nafion membrane, the formed composite electrolytes exhibit improved mechanical properties compared to pristine Nafion membrane due to the well distribution of Tz-POSS inside the membrane. The anhydrous proton conductivity of the formed composite membranes increases initially with the increase in temperature, reaching about 0.02 Scm −1 at 140 °C. With further increase in temperature to about 150 °C, the composite membrane reaches its glass transition point above which the proton conductivity decreases dramatically. The performance of assembled single cell from composite membrane is slightly dependent on humidification conditions at 95 °C, reaching 0.45 V at 600 mAcm −2 using hydrogen and oxygen as reaction gases

  6. Disinfection of water with new chitosan-modified hybrid clay composite adsorbent

    Directory of Open Access Journals (Sweden)

    Emmanuel I. Unuabonah

    2017-08-01

    Full Text Available Hybrid clay composites were prepared from Kaolinite clay and Carica papaya seeds via modification with chitosan, Alum, NaOH, and ZnCl2 in different ratios, using solvothermal and surface modification techniques. Several composite adsorbents were prepared, and the most efficient of them for the removal of gram negative enteric bacteria was the hybrid clay composite that was surface-modified with chitosan, Ch-nHYCA1:5 (Chitosan: nHYCA = 1:5. This composite adsorbent had a maximum adsorption removal value of 4.07 × 106 cfu/mL for V. cholerae after 120 min, 1.95 × 106 cfu/mL for E. coli after ∼180 min and 3.25 × 106 cfu/mL for S. typhi after 270 min. The Brouers-Sotolongo model was found to better predict the maximum adsorption capacity (qmax of Ch-nHYCA1:5 composite adsorbent for the removal of E. coli with a qmax of 103.07 mg/g (7.93 × 107 cfu/mL and V. cholerae with a qmax of 154.18 mg/g (1.19 × 108 cfu/mL while the Sips model best described S. typhi adsorption by Ch-nHYCA1:5 composite with an estimated qmax of 83.65 mg/g (6.43 × 107 cfu/mL. These efficiencies do far exceed the alert/action levels of ca. 500 cfu/mL in drinking water for these bacteria. The simplicity of the composite preparation process and the availability of raw materials used for its preparation underscore the potential of this low-cost chitosan-modified composite adsorbent (Ch-nHYCA1:5 for water treatment.

  7. Physicochemical Study of Irradiated polypropylene/Organo :Modified Montmorillonite Composites by Using Electron Beam Irradiation Technique

    International Nuclear Information System (INIS)

    Hassan, M.S.

    2008-01-01

    Polypropylene/ Organo modified montmorillonite composites (PP/ OMMT) were prepared by melt blending with a twin screw extruder. The thermal properties by thermo gravimetric analysis (TGA), the dispersion of OMMT of macromolecules by X-ray diffraction (XRD), mechanical properties and the morphology by scanning electron microscopy (SEM) were investigated. The effect of electron beam irradiation on these properties was also studied. The results showed an intercalation between the silicate layers and the PP polymer matrix. The (PP/ OMMT) composites exhibit higher thermal stability and lower mechanical properties than pure polypropylene

  8. PREPARATION AND CHARACTERIZATION OF COMPOSITES COMPRISING MODIFIED HARDWOOD AND WOOD POLYMERS/POLY(VINYL CHLORIDE

    Directory of Open Access Journals (Sweden)

    Ruxanda Bodîrlău

    Full Text Available Chemical modification of hardwood sawdust from ash-tree species was carried out with a solution of maleic anhydride in acetone. Wood polymers, lignin, and cellulose were isolated from the wood sawdust and modified by the same method. Samples were characterized by Fourier transform infrared spectroscopy (FTIR, providing evidence that maleic anhydride esterifies the free hydroxyl groups of the wood polymer components. Composites comprising chemically modified wood sawdust and wood polymers (cellulose, lignin-as variable weight percentages-, and poly (vinyl chloride were obtained and further characterized by using FTIR spectroscopy and scanning electron microscopy (SEM. The thermal behavior of composites was investigated by using the thermogravimetric analysis (TGA. In all cases, thermal properties were affected by fillers addition.

  9. Modified titanium surface with gelatin nano gold composite increases osteoblast cell biocompatibility

    International Nuclear Information System (INIS)

    Lee, Young-Hee; Bhattarai, Govinda; Aryal, Santosh; Lee, Nan-Hee; Lee, Min-Ho; Kim, Tae-Gun; Jhee, Eun-Chung; Kim, Hak-Yong; Yi, Ho-Keun

    2010-01-01

    This study examined the gelatin nano gold (GnG) composite for surface modification of titanium in addition to insure biocompatibility on dental implants or biomaterials. The GnG composite was constructed by gelatin and hydrogen tetrachloroaurate in presence of reducing agent, sodium borohydrate (NabH 4 ). The GnG composite was confirmed by UV-VIS spectroscopy and transmission electron microscopy (TEM). A dipping method was used to modify the titanium surface by GnG composite. Surface was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The MC-3T3 E1 cell viability was assessed by trypan blue and the expression of proteins to biocompatibility were analyzed by Western blotting. The GnG composite showed well dispersed character, the strong absorption at 530 nm, roughness, regular crystal and clear C, Na, Cl, P, and Au signals onto titanium. Further, this composite allowed MC-3T3 E1 growth and viability compared to gelatin and pure titanium. It induced ERK activation and the expression of cell adherent molecules, FAK and SPARC, and growth factor, VEGF. However, GnG decreased the level of SAPK/JNK. This shows that GnG composite coated titanium surfaces have a good biocompatibility for osteoblast growth and attachment than in intact by simple and versatile dipping method. Furthermore, it offers good communication between cell and implant surfaces by regulating cell signaling and adherent molecules, which are useful to enhance the biocompatibility of titanium surfaces.

  10. Aspects of the Fracture Toughness of Carbon Nanotube Modified Epoxy Polymer Composites

    Science.gov (United States)

    Mirjalili, Vahid

    Epoxy resins used in fibre reinforced composites exhibit a brittle fracture behaviour, because they show no sign of damage prior to a catastrophic failure. Rubbery materials and micro-particles have been added to epoxy resins to improve their fracture toughness, which reduces strength and elastic properties. In this research, carbon nanotubes (CNTs) are investigated as a potential toughening agent for epoxy resins and carbon fibre reinforced composites, which can also enhance strength and elastic properties. More specifically, the toughening mechanisms of CNTs are investigated theoretically and experimentally. The effect of aligned and randomly oriented carbon nanotubes (CNTs) on the fracture toughness of polymers was modelled using Elastic Plastic Fracture Mechanics. Toughening from CNT pull-out and rupture were considered, depending on the CNTs critical length. The model was used to identify the effect of CNTs geometrical and mechanical properties on the fracture toughness of CNT-modified epoxies. The modelling results showed that a uniform dispersion and alignment of a high volume fraction of CNTs normal to the crack growth plane would lead to the maximum fracture toughness enhancement. To achieve a uniform dispersion, the effect of processing on the dispersion of single walled and multi walled CNTs in epoxy resins was investigated. An instrumented optical microscope with a hot stage was used to quantify the evolution of the CNT dispersion during cure. The results showed that the reduction of the resin viscosity at temperatures greater than 100 °C caused an irreversible re-agglomeration of the CNTs in the matrix. The dispersion quality was then directly correlated to the fracture toughness of the modified resin. It was shown that the fine tuning of the ratio of epoxy resin, curing agent and CNT content was paramount to the improvement of the base resin fracture toughness. For the epoxy resin (MY0510 from Hexcel), an improvement of 38% was achieved with 0.3 wt

  11. Composite wastewater treatment by aerated electrocoagulation and modified peroxi-coagulation processes.

    Science.gov (United States)

    Kumar, Abhijeet; Nidheesh, P V; Suresh Kumar, M

    2018-08-01

    Treatment of composite wastewater generating from the industrial estates is a great challenge. The present study examines the applicability of aerated electrocoagulation and modified peroxi-coagulation processes for removing color and COD from composite wastewater. Iron plates were used as anodes and cathodes in both electrochemical processes and experiments were carried out in a working volume of 2 L. Aeration enhanced the efficiency of electrocoagulation process significantly. More than 50% of COD and 60% of color were removed after 1 h of electrocoagulation process operated at pH 3 and applied voltage of 1 V. Efficiency of the modified peroxi-coagulation process was significantly higher than that of aerated electrocoagulation. COD and color removal efficiencies of the modified peroxi-coagulation process were found as 77.7% and 97%, respectively after 1 h of electrolysis operated at 1 V, solution pH 3 and 50 mM hydrogen peroxide addition. This improved efficiency of modified peroxi-coagulation compared to aerated electrocoagulation is mainly due to the attack of in-situ generated hydroxyl radicals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. On the PEEK composites reinforced by surface-modified nano-silica

    International Nuclear Information System (INIS)

    Lai, Y.H.; Kuo, M.C.; Huang, J.C.; Chen, M.

    2007-01-01

    The nano-sized silica fillers reinforced poly(ether ether ketone) (PEEK) composites were fabricated by means of compression molding technique. The nano-sized silica, measuring 30 nm in size, was firstly modified by surface pretreatment with stearic acid. The performances and properties of the resulting PEEK/SiO 2 nanocomposites were examined in terms of tensile loading, hardness, dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The modified nano-silica was seen to disperse more uniformly than the unmodified counterpart. The XRD patterns of the modified silica reinforced PEEK composites reveal a systematic shift toward higher angles, suggesting the smaller d-spacing of the PEEK crystallites. The coefficient of thermal expansion (CTE) becomes lowered when the content of the nano-silica increases. Furthermore, the CTE of the modified silica filled PEEK nanocomposites shows the higher CTE values. A logic model is proposed. The increment of the dynamic modulus for the PEEK nanocomposites is up to 40% at elevated temperatures from 100 to 250 deg. C, indicating the apparent improvement of elevated temperature mechanical properties

  13. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing

    International Nuclear Information System (INIS)

    Yuan, Xiaomin; Zhu, Bo; Cai, Xun; Liu, Jianjun; Qiao, Kun; Yu, Junwei

    2017-01-01

    Highlights: • An improved interfacial adhesion in CF/EP composite by FSMPA sizing was put forward. • Sized CFs featured promotions of wettability, chemical activity and mechanical property. • A sizing mechanism containing chemical interaction and physical absorption was proposed. - Abstract: The adhesion behavior of epoxy resin to carbon fibers has always been a challenge, on account of the inertness of carbon fibers and the lack of reactive functional groups. In this work, a modified polyacrylate sizing agent was prepared to modify the interface between the carbon fiber and the epoxy matrix. The surface characteristics of carbon fibers were investigated to determine chemical composition, morphology, wettability, interfacial phase analysis and interfacial adhesion. Sized carbon fibers featured improved wettability and a slightly decreased surface roughness due to the coverage of a smooth sizing layer, compared with the unsized ones. Moreover, the content of surface activated carbon atoms increased from 12.65% to 24.70% and the interlaminar shear strength (ILSS) of carbon fiber/epoxy composites raised by 14.2%, indicating a significant improvement of chemical activity and mechanical property. SEM images of the fractured surface of composites further proved that a gradient interfacial structure with increased thicknesses was formed due to the transition role of the sizing. Based on these results, a sizing mechanism consisting of chemical interaction bonding and physical force absorption was proposed, which provides an efficient and feasible method to solve the poor adhesion between carbon fiber and epoxy matrix.

  14. Facile Synthesis of Mono-Dispersed Polystyrene (PS/Ag Composite Microspheres via Modified Chemical Reduction

    Directory of Open Access Journals (Sweden)

    Wen Zhu

    2013-12-01

    Full Text Available A modified method based on in situ chemical reduction was developed to prepare mono-dispersed polystyrene/silver (PS/Ag composite microspheres. In this approach; mono-dispersed PS microspheres were synthesized through dispersion polymerization using poly-vinylpyrrolidone (PVP as a dispersant at first. Then, poly-dopamine (PDA was fabricated to functionally modify the surfaces of PS microspheres. With the addition of [Ag(NH32]+ to the PS dispersion, [Ag(NH32]+ complex ions were absorbed and reduced to silver nanoparticles on the surfaces of PS-PDA microspheres to form PS/Ag composite microspheres. PVP acted both as a solvent of the metallic precursor and as a reducing agent. PDA also acted both as a chemical protocol to immobilize the silver nanoparticles at the PS surface and as a reducing agent. Therefore, no additional reducing agents were needed. The resulting composite microspheres were characterized by TEM, field emission scanning electron microscopy (FESEM, energy-dispersive X-ray spectroscopy (EDS, XRD, UV-Vis and surface-enhanced Raman spectroscopy (SERS. The results showed that Ag nanoparticles (NPs were homogeneously immobilized onto the PS microspheres’ surface in the presence of PDA and PVP. PS/Ag composite microspheres were well formed with a uniform and compact shell layer and were adjustable in terms of their optical property.

  15. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xiaomin [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Zhu, Bo, E-mail: zhubo@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Cai, Xun, E-mail: caixunzh@sdu.edu.cn [School of Computer Science and Technology, Shandong University, Jinan 250101 (China); Liu, Jianjun [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Qiao, Kun [Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China); Yu, Junwei [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061 (China); Carbon Fiber Engineering Research Center, School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2017-04-15

    Highlights: • An improved interfacial adhesion in CF/EP composite by FSMPA sizing was put forward. • Sized CFs featured promotions of wettability, chemical activity and mechanical property. • A sizing mechanism containing chemical interaction and physical absorption was proposed. - Abstract: The adhesion behavior of epoxy resin to carbon fibers has always been a challenge, on account of the inertness of carbon fibers and the lack of reactive functional groups. In this work, a modified polyacrylate sizing agent was prepared to modify the interface between the carbon fiber and the epoxy matrix. The surface characteristics of carbon fibers were investigated to determine chemical composition, morphology, wettability, interfacial phase analysis and interfacial adhesion. Sized carbon fibers featured improved wettability and a slightly decreased surface roughness due to the coverage of a smooth sizing layer, compared with the unsized ones. Moreover, the content of surface activated carbon atoms increased from 12.65% to 24.70% and the interlaminar shear strength (ILSS) of carbon fiber/epoxy composites raised by 14.2%, indicating a significant improvement of chemical activity and mechanical property. SEM images of the fractured surface of composites further proved that a gradient interfacial structure with increased thicknesses was formed due to the transition role of the sizing. Based on these results, a sizing mechanism consisting of chemical interaction bonding and physical force absorption was proposed, which provides an efficient and feasible method to solve the poor adhesion between carbon fiber and epoxy matrix.

  16. Microstructures evolution and physical properties of laser induced NbC modified nanocrystalline composites

    Science.gov (United States)

    Li, Jianing; Liu, Kegao; Yuan, Xingdong; Shan, Feihu; Zhang, Bolun; Wang, Zhe; Xu, Wenzhuo; Zhang, Zheng; An, Xiangchen

    2017-10-01

    The nanoscale quasicrystals (NQs), amorphous and ultrafine nanocrystals (UNs) modified hard composites are produced by laser cladding (LC) of the Ni60A-TiC-NbC-Sb mixed powders on the additive manufacturing (AM) TA1 titanium alloy. The LC technique is favorable to formations of icosahedral quasicrystals (I-phase) with five-fold symmetry due to its rapid cooling and solidification characteristics. The formation mechanism of this I-phase is explained here. Under the actions of NQs, amorphous and UNs, such LC composites exhibited an extremely high micro-hardness. UNs may also intertwin with amorphous, forming yarn-shape materials. This research provides essential theoretical basis to improve the quality of laser-treated composites.

  17. Drop Weight Impact Studies of Woven Fibers Reinforced Modified Polyester Composites

    Directory of Open Access Journals (Sweden)

    Muhammed Tijani ISA

    2014-02-01

    Full Text Available Low velocity impact tests were conducted on modified unsaturated polyester reinforced with four different woven fabrics using hand-layup method to investigate the effect of fiber type and fiber combinations. The time-load curves were analysed and scanning electron microscopy was used to observe the surface of the impacted composite laminates. The results indicated that all the composites had ductility index (DI of above two for the test conducted at impact energy of 27J with the monolithic composite of Kevlar having the highest DI. The damage modes observed were mainly matrix cracks and fiber breakages. Hybridization of the fibers in the matrix was observed to minimize these damages.

  18. Comparison of Mechanical Properties of Resin Composites with Resin Modified Glass Ionomers

    Directory of Open Access Journals (Sweden)

    Taha NA

    2015-06-01

    Full Text Available Statement of Problem: There are controversial reports regarding physical and mechanical properties of resin composites and glass ionomer cements. Some revealed higher strength and hardness for resin composites while others showed a comparable value for glass ionomer cements. Evaluation of mechanical properties of different types of resin composites in comparison with resin modified glass ionomers is not widely studied. Objectives: To measure and compare the flexural strength and Vickers hardness of three resin composites and two resins modified glass ionomer cements before and after ageing. Materials and Methods: Three resin composites, i.e. Filtek Supreme XTE (3M ESPE, Ice (SDI, Gradia (GC, and two resins modified glass ionomers, i.e. Fuji II LC (GC and Riva Light Cure (SDI, were selected. Ten barshaped specimens were prepared for each material and cured using LED curing light. After 24 hours storage in distilled water at 37oC, the specimens were randomly divided into two equal groups (n=5. The first group was tested as a baseline and the second group was restored at 37oC for another 29 days. Flexural strength was performed by four-point bending test using universal testing machine at crosshead speed of 0.5mm/min, and the maximum load at failure was recorded. The specimen’s halves were used for evaluating Vickers hardness, using a Digital Hardness Tester (300 g/15 sec and the Vickers hardness number (VHN was recorded. Data were analyzed using one-way analysis of variance (ANOVA, Tukey’s and student’s t-test. Results: After 24 hours of immersion, the highest hardness number was found for Filtek Supreme and Ice and the highest flexural strength was obtained for Gradia. After 30 days of storage, hardness of Fuji II LC and Gradia showed a significant decrease; flexural strength of Ice and Fuji II LC revealed a significant increase while Gradia and Filtek Supreme showed a significant decrease. Conclusions: Resin modified glass ionomers showed

  19. Sintering behavior and property of bioglass modified HA-Al2O3 composite

    Directory of Open Access Journals (Sweden)

    Wang Li-li

    2012-01-01

    Full Text Available The bioglass modified HA-Al2O3 composites were successfully fabricated by mixing HA, synthesized by wet chemical method between precursor materials H3PO4 and Ca(OH2, with 25wt% Al2O3 and different content of bioglass (5%, 25%, 45%, 65wt% respectively, with a mole fraction of 53.9%SiO2, 22.6%Na2O, 21.8%CaO, and 1.7wt%P2O5, sintered in air at various temperatures (750-950°C for 2h. when the content of bioglass is below 45wt% in the composite, HA decomposes completely and transforms to β-TCP. The main phase in this case are β-TCP, Al2O3 and Ca3(AlO32.When the content of bioglass is above 45wt% in the composite, the decomposition of HA to β-TCP is suppressed and the main phases in this case are Al2O3 and HA, DCP□CaHPO4□ and β-TCP, which almost have the same chemical composition, forming ternary-glass phase, and have better bioactive than pure HA. It can also be found that at the certain addition of bioglass, the higher sintered temperature, the bigger volume density and flexural strength of the composite are, but when the sintered temperature reaches 950°C, they decrease. This modified HA-Al2O3 composites by calcium silicate glass have a much lower sintering temperature and decrease the production cost much.

  20. Synthesis of molybdenum and tungsten modified composite systems based on bisorbent from rice husk

    Directory of Open Access Journals (Sweden)

    Duisek Haisagalievich Kamysbaev

    2017-12-01

    Full Text Available The article presents results of the synthesis of a new composite material modified with polyvalent metals. Rice husk was chosen as a raw material for obtaining a carrier – a bisorbent consisting of carbon and amorphous silicon oxide. The sorption material was obtained from the products of thermal decomposition of rice husks. Further it was modified with ammonium salts of molybdenum and tungsten: (NH46Mo7O24·4H2O and (NH42O·12WO3·5H2O in Mo/W ratios: 5/5 wt. %, 10/5 wt. % and reducted by heating in a stream of hydrogen. The registration of the voltammetric curves in the medium of 1-methyl-4-piperidone was carried out in various background electrolytes: 0.2 M Li2SO4, pH = 6.36 and 0.1 M KOH, pH = 13, 2,5·10–2 M K2HPO4 + 2,5·10–2 M NaH2PO4, pH = 6.86. Differential voltammetric curves were analyzed. The electrochemical activity of the obtained modified composites in the potential range from -1.2 V to 0.5 V was determinated. The mechanism of the proceeding electrochemical processes on these modified electrode materials has been studied. The possibility of further use of synthesized composite systems based on bisorbents from the rice husk for the electrochemical reduction of 1-methyl-4-piperidone was shown.

  1. Composite Differential Evolution with Modified Oracle Penalty Method for Constrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Minggang Dong

    2014-01-01

    Full Text Available Motivated by recent advancements in differential evolution and constraints handling methods, this paper presents a novel modified oracle penalty function-based composite differential evolution (MOCoDE for constrained optimization problems (COPs. More specifically, the original oracle penalty function approach is modified so as to satisfy the optimization criterion of COPs; then the modified oracle penalty function is incorporated in composite DE. Furthermore, in order to solve more complex COPs with discrete, integer, or binary variables, a discrete variable handling technique is introduced into MOCoDE to solve complex COPs with mix variables. This method is assessed on eleven constrained optimization benchmark functions and seven well-studied engineering problems in real life. Experimental results demonstrate that MOCoDE achieves competitive performance with respect to some other state-of-the-art approaches in constrained optimization evolutionary algorithms. Moreover, the strengths of the proposed method include few parameters and its ease of implementation, rendering it applicable to real life. Therefore, MOCoDE can be an efficient alternative to solving constrained optimization problems.

  2. Electrochemical performance of SnO{sub 2}/modified graphite composite material as anode of lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Qiang [Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004 (China); Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000 (China); Yang, Guan-Hua; Huang, You-Guo; Zhang, Xiao-Hui; Yan, Zhi-Xiong [Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004 (China); Li, Qing-Yu, E-mail: liqingyu62@126.com [Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004 (China)

    2015-11-01

    In this report, we synthesized SnO{sub 2}/modified graphite anode composite material by a simple reflux method using SnCl{sub 4}·5H{sub 2}O as tin source and modified graphite as carbon source. The as-obtained composite was investigated with the help of X-ray diffraction (XRD), scanning electron microscopy (SEM) and galvanostatic cycling tests. The results show that the composite has a wave-shaped fold structure and the SnO{sub 2} nanoparticles on it have an average size of about 50 nm. Compared to pure modified graphite, the SnO{sub 2}/modified graphite exhibits a better electrochemical performance with a reversible specific capacity of 581.7 mAh g{sup −1} after 80 cycles, owing to high mechanical stress and elasticity of modified graphite could hinder the volume effect of SnO{sub 2} nanoparticles during the Li{sup +} insertion/extraction process. All these favourable characters reveal that the composite is a great potential anode material in high-performance lithium ion batteries. - Highlights: • A simple synthetic method of SnO{sub 2}/modified graphite composite as anode. • The as-prepared composite with layered structure alleviates the huge reunion of SnO{sub 2}. • The composite exhibits a good capacity retention rate of 85.8% after 25 cycles.

  3. Mechanical properties of epoxy composites with plasma-modified rice-husk-derived nanosilica

    Science.gov (United States)

    Hubilla, Fatima Athena D.; Panghulan, Glenson R.; Pechardo, Jason; Vasquez, Magdaleno R., Jr.

    2018-01-01

    In this study, we explored the use of rice-husk-derived nanosilica (nSiO2) as fillers in epoxy resins. The nSiO2 was irradiated with a capacitively coupled 13.56 MHz radio frequency (RF) plasma using an admixture of argon (Ar) and hexamethyldisiloxane (HMDSO) or 1,7-octadiene (OD) monomers. The plasma-polymerized nSiO2 was loaded at various concentrations (1-5%) into the epoxy matrix. Surface hydrophobicity of the plasma-treated nSiO2-filled composites increased, which is attributed to the attachment of functional groups from the monomer gases on the silica surface. Microhardness increased by at least 10% upon the inclusion of plasma-modified nSiO2 compared with pristine nSiO2-epoxy composites. Likewise, hardness increased with increasing loading volume, with the HMDSO-treated silica composite recording the highest increase. Elastic moduli of the composites also showed an increase of at least 14% compared with untreated nSiO2-filled composites. This work demonstrated the use of rice husk, an agricultural waste, as a nSiO2 source for epoxy resin fillers.

  4. MAX Phase Modified SiC Composites for Ceramic-Metal Hybrid Cladding Tubes

    International Nuclear Information System (INIS)

    Jung, Yang-Il; Kim, Sun-Han; Park, Dong-Jun; Park, Jeong-Hwan; Park, Jeong-Yong; Kim, Hyun-Gil; Koo, Yang-Hyun

    2015-01-01

    A metal-ceramic hybrid cladding consists of an inner zirconium tube, and an outer SiC fiber-matrix SiC ceramic composite with surface coating as shown in Fig. 1 (left-hand side). The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. In addition, the outermost layer prevents the dissolution of SiC during normal operation. On the other hand, a ceramic-metal hybrid cladding consists of an outer zirconium tube, and an inner SiC ceramic composite as shown in Fig. 1 (right-hand side). The outer zirconium protects the fuel rod from a corrosion during reactor operation, as in the present fuel claddings. The inner SiC composite, additionally, is designed to resist the severe oxidation under a postulated accident condition of a high-temperature steam environment. Reaction-bonded SiC was fabricated by modifying the matrix as the MAX phase. The formation of Ti 3 SiC 2 was investigated depending on the compositions of the preform and melt. In most cases, TiSi 2 was the preferential phase because of its lowest melting point in the Ti-Si-C system. The evidence of Ti 3 SiC 2 was the connection with the pressurizing

  5. High Photocatalytic Performance of Two Types of Graphene Modified TiO2 Composite Photocatalysts

    Science.gov (United States)

    Zhang, Jun; Li, Sen; Tang, Bo; Wang, Zhengwei; Ji, Guojian; Huang, Weiqiu; Wang, Jinping

    2017-07-01

    High quality and naturally continuous structure of three-dimensional graphene network (3DGN) endow it a promising candidate to modify TiO2. Although the resulting composite photocatalysts display outstanding performances, the lacking of active sites of the 3DGN not only goes against a close contact between the graphene basal plane and TiO2 nanoparticles (weaken electron transport ability) but also limits the efficient adsorption of pollutant molecules. Similar with surface functional groups of the reduced graphene oxide (RGO) nanosheets, surface defects of the 3DGN can act as the adsorption sites. However, the defect density of the 3DGN is difficult to control (a strict cool rate of substrate and a strict flow of precursor gas are necessary) because of its growth approach (chemical vapor deposition method). In this study, to give full play to the functions of graphene, the RGO nanosheets and 3DGN co-modified TiO2 composite photocatalysts are prepared. After optimizing the mass fraction of the RGO nanosheets in the composite photocatalyst, the resulting chemical adsorption ability and yields of strong oxidizing free radicals increase significantly, indicating the synergy of the RGO nanosheets and 3DGN.

  6. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    International Nuclear Information System (INIS)

    Sicinski, M; Gozdek, T; Bielinski, D M; Kleczewska, J; Szymanowski, H; Piatkowska, A

    2015-01-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied. (paper)

  7. Enhanced Thermal Conductivity of Polyimide Composites Filled with Modified h-BN and Nanodiamond Hybrid Filler.

    Science.gov (United States)

    Yang, Xi; Yu, Xiaoyan; Naito, Kimiyoshi; Ding, Huili; Qu, Xiongwei; Zhang, Qingxin

    2018-05-01

    A new thermally conductive and electrically insulative polyimide were prepared by filling different amounts of hexagonal boron nitride (h-BN) particles, and the thermal conductivity of Polyimide (PI) composites were improved with the increasing h-BN content. Based on this, two methods were applied to improve thermal conductivity furtherly at limited filler loading in this paper. One is modifying the h-BN to improve interface interaction, another is fabricating a nano-micro hybrid filler with 2-D h-BN and 0-D nano-scale nanodiamond (ND) to build more effective conductive network. Both surface modification and hybrid system have a positive effect on thermal conductivity. The composites introducing 40 wt% hybrid filler (the weight ratio of ND/modified BN was 1/10) showed the highest thermal conductivity, being up to 0.98 W/(m K) (5.2 times that of PI). In addition, the composites exhibits excellent electrical insulation, thermal stability properties etc.

  8. Voltammetric detection of bisphenol a by a chitosan–graphene composite modified carbon ionic liquid electrode

    International Nuclear Information System (INIS)

    Wang Qingxiang; Wang Yuhua; Liu Shengyun; Wang Liheng; Gao Feng; Gao Fei; Sun Wei

    2012-01-01

    In this paper 1-ethyl-3-methylimidazolium tetrafluoroborate based carbon ionic liquid electrode (CILE) was fabricated and further modified with chitosan (CTS) and graphene (GR) composite film. The fabricated CTS-GR/CILE was further used for the investigation on the electrochemical behavior of bisphenol A (BPA) by cyclic voltammetry and differential pulse voltammetry. A well-defined anodic peak appeared at 0.436 V in 0.1 mol/L pH 8.0 Britton–Robinson buffer solution, which was attributed to the electrooxidation of BPA on the modified electrode. The electrochemical parameters of BPA on the modified electrode were calculated with the results of the charge transfer coefficient (α) as 0.662 and the apparent heterogeneous electron transfer rate constant (k s ) as 1.36 s −1 . Under the optimal conditions, a linear relationship between the oxidation peak current of BPA and its concentration can be obtained in the range from 0.1 μmol/L to 800.0 μmol/L with the limit of detection as 2.64 × 10 −8 mol/L (3σ). The CTS-GR/CILE was applied to the detection of BPA content in plastic products with satisfactory results. - Highlights: ► A graphene modified carbon ionic liquid electrode was fabricated and characterized. ► Electrochemical behaviors of bisphenol A were investigated. ► Bisphenol A was detected by the proposed electrode.

  9. Development of modified release diltiazem HCl tablets using composite index to identify optimal formulation.

    Science.gov (United States)

    Gohel, M C; Patel, M M; Amin, A F

    2003-05-01

    This article reports the preparation of tartaric acid treated ispaghula husk powder for the development of modified release tablets of diltiazem HCl by adopting direct compression technique and a 32 full factorial design. The modified ispaghula husk powder showed superior swelling and gelling as compared to untreated powder. Addition of compaction augmenting agent such as dicalcium phosphate was found to be essential for obtaining tablets with adequate crushing strength. In order to improve the crushing strength of diltiazem HCl tablets, to modulate drug release pattern, and to obtain similarity of dissolution profiles in distilled water and simulated gastric fluid (pH 1.2), modified guar gum was used along with modified ispaghula husk powder and tartaric acid. A novel composite index, which considers a positive or a negative deviation from an ideal value, was calculated considering percentage drug release in 60, 300, and 540 min as dependent variables for the selection of a most appropriate batch. Polynomial equation and contour plots are presented. The concept of similarity factor (f2) was used to prove similarity of dissolution in water and simulated gastric fluid (pH 1.2).

  10. High performance natural rubber composites with a hierarchical reinforcement structure of carbon nanotube modified natural fibers

    International Nuclear Information System (INIS)

    Tzounis, Lazaros; Debnath, Subhas; Rooj, Sandip; Fischer, Dieter; Mäder, Edith; Das, Amit; Stamm, Manfred; Heinrich, Gert

    2014-01-01

    A simple and facile method for depositing multiwall carbon nanotubes (MWCNTs) onto the surface of naturally occurring short jute fibers (JFs) is reported. Hierarchical multi-scale structures were formed with CNT-networks uniformly distributed and fully covering the JFs (JF–CNT), as depicted by the scanning electron microscopy (SEM) micrographs. The impact of these hybrid fillers on the mechanical properties of a natural rubber (NR) matrix was systematically investigated. Pristine JFs were cut initially to an average length of 2.0 mm and exposed to an alkali treatment (a-JFs) to remove impurities existing in the raw jute. MWCNTs were treated under mild acidic conditions to generate carboxylic acid moieties. Afterward, MWCNTs were dispersed in an aqueous media and short a-JFs were allowed to react with them. Raman spectroscopy confirmed the chemical interaction between CNTs and JFs. The JF–CNT exposed quite hydrophobic behavior as revealed by the water contact angle measurements, improving the wettability of the non-polar NR. Consequently, the composite interfacial adhesion strength was significantly enhanced while a micro-scale “mechanical interlocking” mechanism was observed from the interphase-section transmission electron microscopy (TEM) images. SEM analysis of the composite fracture surfaces demonstrated the interfacial strength of NR/a-JF and NR/JF–CNT composites, at different fiber loadings. It can be presumed that the CNT-coating effectively compatibillized the composite structure acting as a macromolecular coupling agent. A detailed analysis of stress-strain and dynamic mechanical spectra confirmed the high mechanical performance of the hierarchical composites, consisting mainly of materials arising from natural resources. - Highlights: • Natural rubber (NR) composites reinforced with CNT-modified short jute fibers. • MWCNTs deposited to the surface of jute fibers via non-covalent interactions. • Hierarchical reinforcement structure with

  11. X-ray diffraction characterization of epitaxial CVD diamond films with natural and isotopically modified compositions

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru [Russian Academy of Sciences, Space Materials Science Laboratory, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics”, Kaluga Branch (Russian Federation); Voloshin, A. E. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Ralchenko, V. G.; Bolshakov, A. P. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Romanov, D. A. [Bauman Moscow State Technical University, Kaluga Branch (Russian Federation); Khomich, A. A. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Sozontov, E. A. [National Research Centre “Kurchatov Institute” (Russian Federation)

    2016-11-15

    Comparative investigations of homoepitaxial diamond films with natural and modified isotopic compositions, grown by chemical vapor deposition (CVD) on type-Ib diamond substrates, are carried out using double-crystal X-ray diffractometry and topography. The lattice mismatch between the substrate and film is precisely measured. A decrease in the lattice constant on the order of (Δa/a){sub relax} ∼ (1.1–1.2) × 10{sup –4} is recorded in isotopically modified {sup 13}C (99.96%) films. The critical thicknesses of pseudomorphic diamond films is calculated. A significant increase in the dislocation density due to the elastic stress relaxation is revealed by X-ray topography.

  12. Results of breeding for modified C18-fatty acid composition in sunflower

    International Nuclear Information System (INIS)

    Schmidt, L.; Marquard, R.; Friedt, W.

    1990-01-01

    Full text: In an earlier experiment, KUEBLER was able to select sunflower lines with modified fatty acid composition after induced mutagenesis. From this material, genotypes with more than 80% linoleic acid content could be selected, whereas the highest level of oleic acid obtained was 30% under field conditions and up to 50% in the phytotron. Recently, inbred lines with up to 90% oleic acid could be selected from a progeny of the Russian cultivar Pervenets, which has high oleic acid content inherited by one major, partially dominant gene. The inheritance of oleic/linoleic acid content in our own material is not fully understood yet, but is highly heritable. (author)

  13. Interfacial enhancement of polypropylene composites modified with sorbitol derivatives and siloxane-silsesquioxane resin

    Science.gov (United States)

    Dobrzyńska-Mizera, Monika; Dutkiewicz, Michał; Sterzyński, Tomasz; Di Lorenzo, Maria Laura

    2015-12-01

    Composites based on polypropylene (iPP) modified with a sorbitol derivative (NX8000) and siloxane-silsesquioxane resin (SiOPh) containing maleated polypropylene (MAPP) as compatibilizer were prepared by melt extrusion. Calorimetric investigations were carried out using differential scanning calorimetry (DSC), whereas the morphological and mechanical properties were investigated by scanning electron microscopy (SEM) and static tensile tests. DSC measurements revealed no influence of SiOPh and a slight effect of MAPP addition on the crystallization kinetics of polypropylene. Additionally, the introduction of MAPP into the iPP+NX8000+SiOPh composites increased plastic properties of the samples. All the above was attributed to the compatibilizing effect of MAPP which improved interfacial adhesion between iPP, NX8000 and SiOPh. This phenomenon was also confirmed by the SEM images illustrating more homogenous distribution of the filler in the compatibilized samples.

  14. Modified composite material developed on the basis of no-fines asphalt concrete

    Directory of Open Access Journals (Sweden)

    Mikhasek Andrey

    2017-01-01

    Full Text Available Being a composite material, asphalt concrete is widely used in hydraulic engineering and road construction. The paper proves one of asphalt concrete modification, which includes first creating a skeleton of no-fines concrete and then its washing-down with bituminous materials by a hot procedure, can be successfully used in hydraulic structures Modified composite material based on no-fines asphalt concrete has a harder skeleton because of links from cement stone and has a technological advantage, as through the proposed technology it allows to reduce the cost of filling porous spaces. This technology allows to conclude that concrete aggregate with size fractions of 120 mm or less and frost resistance of 50 cycles and less can be recommended for fastening of slopes.

  15. Composite anion-exchangers modified with nanoparticles of hydrated oxides of multivalent metals

    Science.gov (United States)

    Maltseva, T. V.; Kolomiets, E. O.; Dzyazko, Yu. S.; Scherbakov, S.

    2018-02-01

    Organic-inorganic composite ion-exchangers based on anion exchange resins have been obtained. Particles of one-component and two-component modifier were embedded using the approach, which allows us to realize purposeful control of a size of the embedded particles. The approach is based on Ostwald-Freundlich equation, which was adapted to deposition in ion exchange matrix. The equation was obtained experimentally. Hydrated oxides of zirconium and iron were applied to modification, concentration of the reagents were varied. The embedded particles accelerate sorption, the rate of which is fitted by the model equation of chemical reactions of pseudo-second order. When sorption of arsenate ions from very diluted solution (50 µg dm-3) occurs, the composites show higher distribution coefficients comparing with the pristine resin.

  16. Thermal dewetting behavior of polystyrene composite thin films with organic-modified inorganic nanoparticles.

    Science.gov (United States)

    Kubo, Masaki; Takahashi, Yosuke; Fujii, Takeshi; Liu, Yang; Sugioka, Ken-ichi; Tsukada, Takao; Minami, Kimitaka; Adschiri, Tadafumi

    2014-07-29

    The thermal dewetting of polystyrene composite thin films with oleic acid-modified CeO2 nanoparticles prepared by the supercritical hydrothermal synthesis method was investigated, varying the nanoparticle concentration (0-30 wt %), film thickness (approximately 50 and 100 nm), and surface energy of silanized silicon substrates on which the composite films were coated. The dewetting behavior of the composite thin films during thermal annealing was observed by an optical microscope. The presence of nanoparticles in the films affected the morphology of dewetting holes, and moreover suppressed the dewetting itself when the concentration was relatively high. It was revealed that there was a critical value of the surface energy of the substrate at which the dewetting occurred. In addition, the spatial distributions of nanoparticles in the composite thin films before thermal annealing were investigated using AFM and TEM. As a result, we found that most of nanoparticles segregated to the surface of the film, and that such distributions of nanoparticles contribute to the stabilization of the films, by calculating the interfacial potential of the films with nanoparticles.

  17. Rubber Composites Based on Polar Elastomers with Incorporated Modified and Unmodified Magnetic Filler

    Directory of Open Access Journals (Sweden)

    Ján Kruželák

    2016-01-01

    Full Text Available Rubber magnetic composites were prepared by incorporation of unmodified and surface modified strontium ferrite into rubber matrices based on NBR and NBR/PVC. Strontium ferrite was dosed to the rubber matrices in concentration scale ranging from 0 to 100 phr. The main goal was to investigate the influence of the type of ferrite on the curing process, physical-mechanical and magnetic properties of composites. The mutual interactions between the filler and rubber matrices were investigated by determination of cross-link density and SEM analysis. The incorporation of magnetic fillers leads to the increase of cross-link density and remanent magnetic induction of composites. Moreover, the improvement of physical-mechanical properties was achieved in dependence on the content of magnetic fillers. Surface modification of ferrite contributed to the enhancement of adhesion on the interphase filler-rubber. It can be stated that ferrite exhibits reinforcing effect in the composite materials and this reinforcing behavior was emphasized with the increase in polarity of the rubber matrix.

  18. Characterization of dispersion of a nano composites PP/TiO2 non modified

    International Nuclear Information System (INIS)

    Soares, Igor L.; Tavares, Maria I.B.; Silva, Vanessa A. da; Legramanti, Cintia; Luetkmeyer, Leandro

    2011-01-01

    Polymeric nano composites are composite materials where an inorganic particle, which has a dimension in the nanometer range, is dispersed in a polymer matrix. Nano composites, using polypropylene (PP) as matrix polymer and titanium dioxide (TiO 2 ) as filler, have great versatility in marketing applications, this factor is inherent in the PP and the inherent ability photo degraded TiO 2 particles. This combination can lead to a widely used material and a degradation time after discharge reduced, there by becoming, a residue of low environmental impact. This study aimed to evaluate the dispersion and particle distribution of TiO 2 , non modified, in PP matrix, using the process of preparation by melt extrusion pathway and characterization of the materials obtained: on the molecular dynamics, using low field NMR solid state, measures the relaxation time spin-network (T 1 H); morphology using XRD technique, and thermal analysis technique with the TGA of pure PP and nano composites PP/TiO 2 . (author)

  19. Physicochemical Characteristics of Artificial Rice from Composite Flour: Modified Cassava Starch, Canavalia ensiformis and Dioscorea esculenta

    Science.gov (United States)

    Sumardiono, Siswo; Pudjihastuti, Isti; Handayani, Noer Abyor; Kusumayanti, Heny

    2018-02-01

    Indonesia is the third largest country on the global paddy rice production and also considered as a rice importer. Even, Indonesia has the biggest per capita consumption of paddy rice (140 kg of paddy rice per person per year). Product diversification using local commodities. Artificial rice is potential to be developed as a new value product using different types of grains. It is one of appropriate solutions for reducing imported rice rate. Artificial rice was produced using high nutrition composite flours (modified cassava starch, corn, Canavalian ensiformis, and Dioscorea esculenta). This study consists of three main stages, preparation of composite flour, formulation, and artificial rice production using hot extruder capacity 10 kg/day. The objectives of this studies were to investigate some formulation in compare with commercial paddy rice. Artificial rice has been successfully conducted using prototype of hot extruder with the temperature 95°C. Physical analyses (color and water absorption) were carried out to artificial rice product and commercial paddy rice. Chemical analyses (nutrition and amylose content) of product will be also presented in this study. The best formulation of artificial rice was achieved in 80% modified cassava starch, 10% Canavalian ensiformis, and 10% Dioscorea esculenta, respectively.

  20. Physicochemical Characteristics of Artificial Rice from Composite Flour: Modified Cassava Starch, Canavalia ensiformis and Dioscorea esculenta

    Directory of Open Access Journals (Sweden)

    Sumardiono Siswo

    2018-01-01

    Full Text Available Indonesia is the third largest country on the global paddy rice production and also considered as a rice importer. Even, Indonesia has the biggest per capita consumption of paddy rice (140 kg of paddy rice per person per year. Product diversification using local commodities. Artificial rice is potential to be developed as a new value product using different types of grains. It is one of appropriate solutions for reducing imported rice rate. Artificial rice was produced using high nutrition composite flours (modified cassava starch, corn, Canavalian ensiformis, and Dioscorea esculenta. This study consists of three main stages, preparation of composite flour, formulation, and artificial rice production using hot extruder capacity 10 kg/day. The objectives of this studies were to investigate some formulation in compare with commercial paddy rice. Artificial rice has been successfully conducted using prototype of hot extruder with the temperature 95°C. Physical analyses (color and water absorption were carried out to artificial rice product and commercial paddy rice. Chemical analyses (nutrition and amylose content of product will be also presented in this study. The best formulation of artificial rice was achieved in 80% modified cassava starch, 10% Canavalian ensiformis, and 10% Dioscorea esculenta, respectively.

  1. THE ENZYMATIC EFFECT (α-AMYLASE ON VISCOSITY AND CARBOHYDRATE COMPOSITION OF MAIZE FLOUR MODIFIED

    Directory of Open Access Journals (Sweden)

    Suarni Suarni

    2010-06-01

    Full Text Available Technology is required in making new product of maize flour. Enzymatic modification of three varieties of maize flours i.e. MS2, Srikandi and Local product has been conducted using α-amylase from mung bean sprouts has been carried out in Laboratorium Bioproses BB Pascapanen Bogor. A research was performed used the flour without addition of sprouts (as control and with addition of 10, 20, 30 % of sprouts. Parameters observed were the change in viscosity of the maize flour; amylose, glucose and oligosaccharide contents. Results showed that there were changes in polymerization degree, dextrose equivalent, amylase content, viscosity (50 oC, viscosity (50 ºC/20΄, and carbohydrate composition. An enzymatic treatment using 20% of sprout to the three varieties gave results as follows:  amylose content was 20.02 - 24.02%, viscosity (50 ºC was  210 - 230 BU, and viscosity (50 ºC/20΄ was 200 - 220 BU. Functional properties of the flour fulfilled with the soft texture product, such as  food material for children under five years old. Data of the modified flour can be utilized by consuments as an alternative food material.   Keywords: modified maize flour, viscosity and carbohydrate composition

  2. Optimization of compositions of multicomponent fine-grained fiber concretes modified at different scale levels.

    Directory of Open Access Journals (Sweden)

    NIZINA Tatyana Anatolevna,

    2017-04-01

    Full Text Available The paper deals with perspectives of modification of cement composites at different scale levels (nano-, micro-, macro-. Main types of micro- and nanomodifiers used in modern concrete technology are presented. Advantages of fullerene particles applied in nanomodification of cement concretes have been shown. Use of complex modifiers based on dispersed fibers, mineral additives and nanoparticles is proposed. These are the basic components of the fiber fine-grained concretes: cement of class CEM I 42,5R produced by JSC «Mordovcement», river sand of Novostepanovskogo quarry (Smolny settlement, Ichalkovsky district, Republic of Mordovia, densified condensed microsilica (DCM-85 produced by JSC «Kuznetskie Ferrosplavy» (Novokuznetsk, highly active metakaolin white produced by LLC «D-Meta» (Dneprodzerzhinsk, waterproofing additive in concrete mix «Penetron Admix» produced by LLC «Waterproofing materials plant «Penetron» (Ekaterinburg, polycarboxylate superplasticizer Melflux 1641 F (Construction Polymers BASF, Germany. Dispersed reinforcement of concretes was provided by injection of the fibers of three types: polypropylene multifilament fiber with cutting length of 12 mm, polyacrylonitrile synthetic fiber FibARM Fiber WВ with cutting length of 12 mm and basalt microfiber «Astroflex-MBM» modified by astralene with length about 100÷500 microns. Analysis of results of the study focused on saturated D-optimal plan was carried out by polynomial models «mixture I, mixture II, technology – properties» that considers the impact of six variable factors. Optimum fields of variation of fine-grained modified fiber concrete components have been identified by the method of experimental-statistical modeling. Polygons of distribution levels of factors of modified cement fiber concretes are constructed, that allowed tracing changes in fields of tensile in compressive strength and tensile strength in bending at age of 28 days depending on target

  3. Mechanical, Thermal Degradation, and Flammability Studies on Surface Modified Sisal Fiber Reinforced Recycled Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Arun Kumar Gupta

    2012-01-01

    Full Text Available The effect of surface treated sisal fiber on the mechanical, thermal, flammability, and morphological properties of sisal fiber (SF reinforced recycled polypropylene (RPP composites was investigated. The surface of sisal fiber was modified with different chemical reagent such as silane, glycidyl methacrylate (GMA, and O-hydroxybenzene diazonium chloride (OBDC to improve the compatibility with the matrix polymer. The experimental results revealed an improvement in the tensile strength to 11%, 20%, and 31.36% and impact strength to 78.72%, 77%, and 81% for silane, GMA, and OBDC treated sisal fiber reinforced recycled Polypropylene (RPP/SF composites, respectively, as compared to RPP. The thermogravimetric analysis (TGA, differential scanning calorimeter (DSC, and heat deflection temperature (HDT results revealed improved thermal stability as compared with RPP. The flammability behaviour of silane, GMA, and OBDC treated SF/RPP composites was studied by the horizontal burning rate by UL-94. The morphological analysis through scanning electron micrograph (SEM supports improves surface interaction between fiber surface and polymer matrix.

  4. Application of three-dimensional reduced graphene oxide-gold composite modified electrode for direct electrochemistry and electrocatalysis of myoglobin

    International Nuclear Information System (INIS)

    Shi, Fan; Xi, Jingwen; Hou, Fei; Han, Lin; Li, Guangjiu; Gong, Shixing; Chen, Chanxing; Sun, Wei

    2016-01-01

    In this paper a three-dimensional (3D) reduced graphene oxide (RGO) and gold (Au) composite was synthesized by electrodeposition and used for the electrode modification with carbon ionic liquid electrode (CILE) as the substrate electrode. Myoglobin (Mb) was further immobilized on the surface of 3D RGO–Au/CILE to obtain an electrochemical sensing platform. Direct electrochemistry of Mb on the modified electrode was investigated with a pair of well-defined redox waves appeared on cyclic voltammogram, indicating the realization of direct electron transfer of Mb with the modified electrode. The results can be ascribed to the presence of highly conductive 3D RGO–Au composite on the electrode surface that accelerate the electron transfer rate between the electroactive center of Mb and the electrode. The Mb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid in the concentration range from 0.2 to 36.0 mmol/L with the detection limit of 0.06 mmol/L (3σ). - Graphical abstract: Direct electrochemistry of myoglobin was realized on a three-dimensional reduced graphene oxide and gold nanocomposite modified carbon ionic liquid electrode. - Highlights: • A three-dimensional reduced graphene oxide and gold composite was synthesized by electrodeposition. • Myoglobin was immobilized on the modified electrode to obtain an electrochemical sensor. • Direct electrochemistry of myoglobin was realized on the modified electrode. • The myoglobin modified electrode showed excellent electrocatalytic reduction to trichloroacetic acid.

  5. Endogenous allergens and compositional analysis in the allergenicity assessment of genetically modified plants.

    Science.gov (United States)

    Fernandez, A; Mills, E N C; Lovik, M; Spoek, A; Germini, A; Mikalsen, A; Wal, J M

    2013-12-01

    Allergenicity assessment of genetically modified (GM) plants is one of the key pillars in the safety assessment process of these products. As part of this evaluation, one of the concerns is to assess that unintended effects (e.g. over-expression of endogenous allergens) relevant for the food safety have not occurred due to the genetic modification. Novel technologies are now available and could be used as complementary and/or alternative methods to those based on human sera for the assessment of endogenous allergenicity. In view of these developments and as a step forward in the allergenicity assessment of GM plants, it is recommended that known endogenous allergens are included in the compositional analysis as additional parameters to be measured. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Service Composition Instantiation Based on Cross-Modified Artificial Bee Colony Algorithm

    Institute of Scientific and Technical Information of China (English)

    Lei Huo; Zhiliang Wang

    2016-01-01

    Internet of things (IoT) imposes new challenges on service composition as it is difficult to manage a quick instantiation of a complex services from a growing number of dynamic candidate services.A cross-modified Artificial Bee Colony Algorithm (CMABC) is proposed to achieve the optimal solution services in an acceptable time and high accuracy.Firstly,web service instantiation model was established.What is more,to overcome the problem of discrete and chaotic solution space,the global optimal solution was used to accelerate convergence rate by imitating the cross operation of Genetic algorithm (GA).The simulation experiment result shows that CMABC exhibited faster convergence speed and better convergence accuracy than some other intelligent optimization algorithms.

  7. Food safety: importance of composition for assessing genetically modified cassava (Manihot esculenta Crantz).

    Science.gov (United States)

    van Rijssen, Fredrika W Jansen; Morris, E Jane; Eloff, Jacobus N

    2013-09-04

    The importance of food composition in safety assessments of genetically modified (GM) food is described for cassava ( Manihot esculenta Crantz) that naturally contains significantly high levels of cyanogenic glycoside (CG) toxicants in roots and leaves. The assessment of the safety of GM cassava would logically require comparison with a non-GM crop with a proven "history of safe use". This study investigates this statement for cassava. A non-GM comparator that qualifies would be a processed product with CG level below the approved maximum level in food and that also satisfies a "worst case" of total dietary consumption. Although acute and chronic toxicity benchmark CG values for humans have been determined, intake data are scarce. Therefore, the non-GM cassava comparator is defined on the "best available knowledge". We consider nutritional values for cassava and conclude that CG residues in food should be a priority topic for research.

  8. Strengthening and toughening of poly(L-lactide) composites by surface modified MgO whiskers

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wei [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Luo, Binghong, E-mail: tluobh@jnu.edu.cn [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Qin, Xiaopeng; Li, Cairong [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Liu, Mingxian; Ding, Shan [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Zhou, Changren, E-mail: tcrz9@jnu.edu.cn [Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2015-03-30

    Highlights: • The grafted PLLA chain on the surface of g-MgO whisker was ruled out by FTIR spectroscopy and TG/DTG analyses. • The excellent dispersion of g-MgO whiskers and the strong interfacial adhesion of g-MgO whiskers/PLLA composite were proved by FSEM. • Comparing to MgO particles and MgO whiskers, fibrous-like g-MgO whiskers are the most effective reinforcing and toughening fillers for PLLA. - Abstract: To improve both the strength and toughness of poly(L-lactide) (PLLA), fibrous-like MgO whiskers with diameters of 0.15–1 μm and lengths of 15–110 μm were prepared, and subsequently surface modified with L-lactide to obtain grafted MgO whiskers (g-MgO whiskers). The structures and properties of MgO whiskers and g-MgO whiskers were studied. Then, a series of MgO whiskers/PLLA and g-MgO whiskers/PLLA composites were prepared by solution casting method, for comparison, MgO particles/PLLA composite was prepared too. The resulting composites were evaluated in terms of hydrophilicity, crystallinity, dispersion of whiskers, interfacial adhesion and mechanical performance by means of polarized optical microscopy (POM), contact angle measurement, field emission scanning electron microscope (FSEM), transmission electron microscopy (TEM) and tensile testing. The results revealed that the crystallization rate and hydrophilicity of PLLA were improved by the introduction of MgO whiskers and g-MgO whiskers. The g-MgO whiskers can disperse more uniformly in and show stronger interfacial adhesion with the matrix than MgO whiskers as a result of the surface modification. Due to the bridge effect of the whiskers and the excellent interfacial adhesion between g-MgO whiskers and PLLA, g-MgO whiskers/PLLA composites exhibited remarkably higher strength, modulus and toughness compared to the pristine PLLA, MgO particles/PLLA and MgO whiskers/PLLA composites.

  9. Super-cool paints: optimizing composition with a modified four-flux model

    Science.gov (United States)

    Gali, Marc A.; Arnold, Matthew D.; Gentle, Angus R.; Smith, Geoffrey B.

    2017-09-01

    The scope for maximizing the albedo of a painted surface to produce low cost new and retro-fitted super-cool roofing is explored systematically. The aim is easy to apply, low cost paint formulations yielding albedos in the range 0.90 to 0.95. This requires raising the near-infrared (NIR) spectral reflectance into this range, while not reducing the more easily obtained high visible reflectance values. Our modified version of the four-flux method has enabled results on more complex composites. Key parameters to be optimized include; fill factors, particle size and material, using more than one mean size, thickness, substrate and binder materials. The model used is a variation of the classical four-flux method that solves the energy transfer problem through four balance differential equations. We use a different approach to the characteristic parameters to define the absorptance and scattering of the complete composite. This generalization allows extension to inclusion of size dispersion of the pigment particle and various binder resins, including those most commonly in use based on acrylics. Thus, the pigment scattering model has to take account of the matrix having loss in the NIR. A paint ranking index aimed specifically at separating paints with albedo above 0.80 is introduced representing the fraction of time at a sub-ambient temperature.

  10. Melamine-formaldehyde microcapsules filled sappan dye modified polypropylene composites: encapsulation and thermal properties

    Science.gov (United States)

    Phanyawong, Suphitcha; Siengchin, Suchart; Parameswaranpillai, Jyotishkumar; Asawapirom, Udom; Polpanich, Duangporn

    2018-01-01

    Sappan dye, a natural dye extracted from sappan wood is widely used in cosmetics, textile dyeing and as food additives. However, it was recognized that natural dyes cannot withstand high temperature. In this study, a protective coating of melamine-formaldehyde shell material was applied over the sappan dye to improve its thermal stability. The percentage of sappan dye used in the microencapsulation was 30, 40, 50, 60 and 70 wt%. The color, shape, size, and thermal stability of sappan dye microcapsules were investigated. It was found that increasing amount of sappan dye content in the microcapsules decreased the particle size. Thermal analysis reveals that the melamine-formaldehyde resin served as an efficient protective shell for sappan dye. Besides, 30 wt% sappan dye microcapsules with different weight percent (1, 3 and 5 wt%) of sappan dye was used as modifier for polypropylene (PP). All the prepared composites are red in color which supports the thermal stability of the microcapsules. The changes in crystallinity and melting behavior of PP by the addition of microcapsules were studied in detail by differential scanning calorimetry. Thermogravimetric studies showed that the thermal stability of PP composites increased by the addition of microcapsules.

  11. Optimization the composition of sand-lime products modified of diabase aggregate

    Science.gov (United States)

    Komisarczyk, K.; Stępień, A.

    2017-10-01

    The problem of optimizing the composition of building materials is currently of great importance due to the increasing competitiveness and technological development in the construction industry. This phenomenon also applies to catalog sand-lime. The respective arrangement of individual components or their equivalents, and linking them with the main parameters of the composition of the mixture, i.e. The lime/sand/water should lead to the intended purpose. The introduction of sand-lime diabase aggregate is concluded with a positive effect of final products. The paper presents the results of optimization with the addition of diabase aggregate. The constant value was the amount of water, variable - the mass of the dry ingredients. The program of experimental studies was taken for 6 series of silicates made in industrial conditions. Final samples were tested for mechanical and physico-chemical expanding the analysis of the mercury intrusion porosimetry, SEM and XRD. The results show that, depending on the aggregate’s contribution, exhibit differences. The sample in an amount of 10% diabase aggregate the compressive strength was higher than in the case of reference sample, while modified samples absorbed less water.

  12. Bacterial viability and physical properties of antibacterially modified experimental dental resin composites.

    Directory of Open Access Journals (Sweden)

    Stefan Rüttermann

    Full Text Available PURPOSE: To investigate the antibacterial effect and the effect on the material properties of a novel delivery system with Irgasan as active agent and methacrylated polymerizable Irgasan when added to experimental dental resin composites. MATERIALS AND METHODS: A delivery system based on novel polymeric hollow beads, loaded with Irgasan and methacrylated polymerizable Irgasan as active agents were used to manufacture three commonly formulated experimental resin composites. The non-modified resin was used as standard (ST. Material A contained the delivery system providing 4 % (m/m Irgasan, material B contained 4 % (m/m methacrylated Irgasan and material C 8 % (m/m methacrylated Irgasan. Flexural strength (FS, flexural modulus (FM, water sorption (WS, solubility (SL, surface roughness Ra, polymerization shrinkage, contact angle Θ, total surface free energy γS and its apolar γS (LW, polar γS (AB, Lewis acid γS (+and base γS (- term as well as bacterial viability were determined. Significance was p < 0.05. RESULTS: The materials A to C were not unacceptably influenced by the modifications and achieved the minimum values for FS, WS and SL as requested by EN ISO 4049 and did not differ from ST what was also found for Ra. Only A had lower FM than ST. Θ of A and C was higher and γS (AB of A and B was lower than of ST. Materials A to C had higher γS (+ than ST. The antibacterial effect of materials A to C was significantly increased when compared with ST meaning that significantly less vital cells were found. CONCLUSION: Dental resin composites with small quantities of a novel antibacterially doped delivery system or with an antibacterial monomer provided acceptable physical properties and good antibacterial effectiveness. The sorption material being part of the delivery system can be used as a vehicle for any other active agent.

  13. Species effects on ecosystem processes are modified by faunal responses to habitat composition.

    Science.gov (United States)

    Bulling, Mark T; Solan, Martin; Dyson, Kirstie E; Hernandez-Milian, Gema; Luque, Patricia; Pierce, Graham J; Raffaelli, Dave; Paterson, David M; White, Piran C L

    2008-12-01

    Heterogeneity is a well-recognized feature of natural environments, and the spatial distribution and movement of individual species is primarily driven by resource requirements. In laboratory experiments designed to explore how different species drive ecosystem processes, such as nutrient release, habitat heterogeneity is often seen as something which must be rigorously controlled for. Most small experimental systems are therefore spatially homogeneous, and the link between environmental heterogeneity and its effects on the redistribution of individuals and species, and on ecosystem processes, has not been fully explored. In this paper, we used a mesocosm system to investigate the relationship between habitat composition, species movement and sediment nutrient release for each of four functionally contrasting species of marine benthic invertebrate macrofauna. For each species, various habitat configurations were generated by selectively enriching patches of sediment with macroalgae, a natural source of spatial variability in intertidal mudflats. We found that the direction and extent of faunal movement between patches differs with species identity, density and habitat composition. Combinations of these factors lead to concomitant changes in nutrient release, such that habitat composition effects are modified by species identity (in the case of NH4-N) and by species density (in the case of PO4-P). It is clear that failure to accommodate natural patterns of spatial heterogeneity in such studies may result in an incomplete understanding of system behaviour. This will be particularly important for future experiments designed to explore the effects of species richness on ecosystem processes, where the complex interactions reported here for single species may be compounded when species are brought together in multi-species combinations.

  14. Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper.

    Science.gov (United States)

    Song, Zhaoping; Xiao, Huining; Zhao, Yi

    2014-10-13

    New biodegradable nanocomposites have been successfully prepared by incorporating modified nano-cellulose fibers (NCF) in a biodegradable polylactic acid (PLA) matrix in this work. The hydrophobic-modified NCF was obtained by grafting hydrophobic monomers on NCF to improve the compatibility between NCF and PLA during blending. The resulting NCF/PLA composites were then applied on paper surface via a cast-coating process in an attempt to reduce the water vapor transmission rate (WVTR) of paper. The WVTR tests, conducted under various testing conditions and with different coating weights, demonstrated that the modified NCF/PLA composites coating played a critical role in lowering WVTR of paper. The lowest WVTR value was 34 g/m(2)/d, which was obtained with an addition of 1% of modified NCF to PLA and the composites coating weight at 40 g/m(2) and substantially lower than the control value at 1315 g/m(2)/d. The paper coated with the modified biodegradable composite is promising as green-based packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Mechanical strengths of modified PET mortar composites in aggressive MgSO4 medium: ACI & B.S predictions

    OpenAIRE

    Kazi Tani N; Benosman A.S.; Senhadji Y.; Taïbi H.; Mouli M.

    2018-01-01

    Composites mortars based on plastic aggregates are often considered as an innovative materials of the future because of their potential and the advantages they present. In this paper, a comparative study was carried out on the effect of magnesium sulfate MgSO4 (5%) attack on the durability of composite mortars modified by recycled polyethylene terephthalate (PET). Laboratory tests were accomplished on limestone sand and cement mortars where the blended Portland cement was partially replaced b...

  16. Effect of Interface Modified by Graphene on the Mechanical and Frictional Properties of Carbon/Graphene/Carbon Composites

    Science.gov (United States)

    Yang, Wei; Luo, Ruiying; Hou, Zhenhua

    2016-01-01

    In this work, we developed an interface modified by graphene to simultaneously improve the mechanical and frictional properties of carbon/graphene/carbon (C/G/C) composite. Results indicated that the C/G/C composite exhibits remarkably improved interfacial bonding mode, static and dynamic mechanical performance, thermal conductivity, and frictional properties in comparison with those of the C/C composite. The weight contents of carbon fibers, graphene and pyrolytic carbon are 31.6, 0.3 and 68.1 wt %, respectively. The matrix of the C/G/C composite was mainly composed of rough laminar (RL) pyrocarbon. The average hardness by nanoindentation of the C/G/C and C/C composite matrices were 0.473 and 0.751 GPa, respectively. The flexural strength (three point bending), interlaminar shear strength (ILSS), interfacial debonding strength (IDS), internal friction and storage modulus of the C/C composite were 106, 10.3, 7.6, 0.038 and 12.7 GPa, respectively. Those properties of the C/G/C composite increased by 76.4%, 44.6%, 168.4% and 22.8%, respectively, and their internal friction decreased by 42.1% in comparison with those of the C/C composite. Owing to the lower hardness of the matrix, improved fiber/matrix interface bonding strength, and self-lubricating properties of graphene, a complete friction film was easily formed on the friction surface of the modified composite. Compared with the C/C composite, the C/G/C composite exhibited stable friction coefficients and lower wear losses at simulating air-plane normal landing (NL) and rejected take-off (RTO). The method appears to be a competitive approach to improve the mechanical and frictional properties of C/C composites simultaneously. PMID:28773613

  17. Does neighbourhood composition modify the association between acculturation and unhealthy dietary behaviours?

    Science.gov (United States)

    Zhang, Donglan; van Meijgaard, Jeroen; Shi, Lu; Cole, Brian; Fielding, Jonathan

    2015-08-01

    Studies have shown that immigrants' acculturation is associated with numerous unhealthy behaviours. Yet, the role of environmental factors in modifying the effect of acculturation on health behaviours has received little attention. This study aims to create a more nuanced understanding of the health effects of acculturation by examining how neighbourhood immigrant composition modifies the association between individuals' eating patterns and acculturation. Cross-sectional Data from Los Angeles County Health Survey 2007 adult sample were linked to data on retail food establishments and US Census 2000 neighbourhood characteristics. Acculturation was measured by language spoken at home and years stayed in the US. Eating fast food more than once per week and eating zero serving of fruit or vegetables during the previous day were used as proxy indicators for unhealthy dietary behaviour. Multilevel logistic regression models were performed in the full sample and in the sample with only Latino adults. Immigrants' lack of acculturation and living in a neighbourhood with a high percentage immigrants were associated with healthier dietary behaviour. We also identified that lack of acculturation conveyed a significantly stronger protective effect on regular fast-food consumption for immigrants living in neighbourhoods with higher percentage immigrants (OR: 0.34, 95% CI: 0.12 to 0.93). Among immigrants in Los Angeles County, living in a neighbourhood with a high density of other immigrants attenuates the negative effects of acculturation on healthy eating behaviours. Healthy eating promotion efforts should build on this protective effect in outreach to acculturating immigrant communities. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. INFLUENCE ОF MODIFIER THERMAL TREATMENT ОN CHARACTERISTICS ОF COMPOSITE MATERIALS FOR PROTECTIVE COATINGS

    Directory of Open Access Journals (Sweden)

    V. Ivashko

    2012-01-01

    Full Text Available This paper presents results that reveal influence of modifiers characterized by different nature and composition and subjected to heat treatment on operational characteristics of single and binary compositions. Interaction between dispersed clay particles and dependence of  coating properties on  their mass content in oligomeric and polymeric matrices have been justified in the paper. The paper contains data that prove an increase of coating hardness by 15–20 %. The coating composition includes thermally-treated dispersed clay particles.

  19. The use of maleic anhydride-modified polypropylene for performance enhancement in continuous glass fiber-reinforced polypropylene composites

    NARCIS (Netherlands)

    Rijsdijk, H.A.; Contant, M.; Peijs, A.A.J.M.; Miravete, A.

    1993-01-01

    The influence of maleic anhydride-modified polypropylene (m-PP) on static mech. properties of continuous glass fiber-reinforced polypropylene (PP) composites was studied. M-PP was added to the PP homopolymer to improve the adhesion between the matrix and the glass fiber. Three-point bending tests

  20. Investigation of timing effects in modified composite quadrupolar echo pulse sequences by mean of average Hamiltonian theory

    Science.gov (United States)

    Mananga, Eugene Stephane

    2018-01-01

    The utility of the average Hamiltonian theory and its antecedent the Magnus expansion is presented. We assessed the concept of convergence of the Magnus expansion in quadrupolar spectroscopy of spin-1 via the square of the magnitude of the average Hamiltonian. We investigated this approach for two specific modified composite pulse sequences: COM-Im and COM-IVm. It is demonstrated that the size of the square of the magnitude of zero order average Hamiltonian obtained on the appropriated basis is a viable approach to study the convergence of the Magnus expansion. The approach turns to be efficient in studying pulse sequences in general and can be very useful to investigate coherent averaging in the development of high resolution NMR technique in solids. This approach allows comparing theoretically the two modified composite pulse sequences COM-Im and COM-IVm. We also compare theoretically the current modified composite sequences (COM-Im and COM-IVm) to the recently published modified composite pulse sequences (MCOM-I, MCOM-IV, MCOM-I_d, MCOM-IV_d).

  1. Distillation time modifies essential oil yield, composition, and antioxidant capacity of fennel (Foeniculum vulgare Mill).

    Science.gov (United States)

    Zheljazkov, Valtcho D; Horgan, Thomas; Astatkie, Tess; Schlegel, Vicki

    2013-01-01

    Fennel (Foeniculum vulgare Mill) is an essential oil crop grown worldwide for production of essential oil, as medicinal or as culinary herb. The essential oil is extracted via steam distillation either from the whole aboveground biomass (herb) or from fennel fruits (seed). The hypothesis of this study was that distillation time (DT) can modify fennel oil yield, composition, and antioxidant capacity of the oil. Therefore, the objective of this study was to evaluate the effect of eight DT (1.25, 2.5, 5, 10, 20, 40, 80, and 160 min) on fennel herb essential oil. Fennel essential oil yield (content) reached a maximum of 0.68% at 160 min DT. The concentration of trans-anethole (32.6-59.4% range in the oil) was low at 1.25 min DT, and increased with an increase of the DT. Alpha-phelandrene (0.9-10.5% range) was the lowest at 1.25 min DT and higher at 10, 80, and 160 min DT. Alpha-pinene (7.1-12.4% range) and beta-pinene (0.95-1.64% range) were higher in the shortest DT and the lowest at 80 min DT. Myrcene (0.93-1.95% range), delta-3-carene (2.1-3.7% range), cis-ocimene (0-0.23% range), and gamma-terpinene (0.22-2.67% range) were the lowest at 1.25 min DT and the highest at 160 min DT. In contrast, the concentrations of paracymene (0.68-5.97% range), fenchone (9.8-22.7% range), camphor (0.21-0.51% range), and cis-anethole (0.14-4.66% range) were highest at shorter DT (1.25-5 min DT) and the lowest at the longer DT (80-160 min DT). Fennel oils from the 20 and 160 min DT had higher antioxidant capacity than the fennel oil obtained at 1.25 min DT. DT can be used to obtain fennel essential oil with differential composition. DT must be reported when reporting essential oil content and composition of fennel essential oil. The results from this study may be used to compare reports in which different DT to extract essential oil from fennel biomass were used.

  2. Variations of magnetic properties of UH3 with modified structure and composition

    Directory of Open Access Journals (Sweden)

    M. Paukov

    2016-06-01

    Full Text Available UH3 based hydrides with modified structure and composition can be prepared using high H2 pressures from precursors in the form of rapidly cooled uranium alloys. While the alloys with α-U structure lead to the β-UH3 type of hydrides, γ-U alloys (bcc lead either to α-UH3 hydride type or nanocrystalline β-UH3. The nanocrystalline β-UH3 structure, appearing for Mo alloying, can accommodate in addition numerous other d-metal components, as Ti, Zr, Fe, Nb. The pure Mo alloyed hydrides (UH31−xMox exhibit increasing Curie temperature TC with maximum exceeding 200 K for x = 0.12–0.15. Other components added reduce the TC increment with respect to pure UH3 (170 K. Also alloying by Zr gives a weaker enhancement. Seen globally, the TC variations are rather modest, which reflects the prominence of interaction of U with H. It is suggested that important ingredient is a charge transfer, depopulating the U-6d and 7s states, while the 5f band stays at the Fermi level.

  3. Vibration reduction of composite plates by piezoelectric patches using a modified artificial bee colony algorithm

    Directory of Open Access Journals (Sweden)

    Hadi Ghashochi-Bargh

    Full Text Available In Current paper, power consumption and vertical displacement optimization of composite plates subject to a step load are carried out by piezoelectric patches using the modified multi-objective Elitist-Artificial Bee Colony (E-ABC algorithm. The motivation behind this concept is to well balance the exploration and exploitation capability for attaining better convergence to the optimum. In order to reduce the calculation time, the elitist strategy is also used in Artificial Bee Colony algorithm. The voltages of patches, plate length/width ratios, ply angles, plate thickness/length ratios, number of layers and edge conditions are chosen as design variables. The formulation is based on the classical laminated plate theory (CLPT and Hamilton's principle. The performance of the new ABC approach is compared with the PSO algorithm and shows the good efficiency of the new ABC approach. To check the validity, the transient responses of isotropic and orthotropic plates are compared with those available in the literature and show a good agreement.

  4. Long-term results of modified Bentall procedure using flanged composite aortic prosthesis.

    Science.gov (United States)

    Tamura, Kiyoshi; Arai, Hirokuni; Kawaguchi, Satoru; Makita, Satoru; Miyagi, Naoto; Watanabe, Taiju; Fujiwara, Tatsuki

    2013-01-01

    We have been using the flanged composite aortic prosthesis and Carrel button technique to re-attach the coronary ostia in aortic root replacement procedures at our institution over the last twenty five years. Our objective was to evaluate the long-term results of aortic root replacement with this technique. A total of 73 patients from January 1984 to August 2010 were included in this study. The median age was 52.7 ± 14.4 years (range 28-80 years). There were 48 male and 25 female patients. 44 patients (60.3%) had annuloaortic ectasia, and 15 patients (20.5%) had acute type A aortic dissection. Marfan syndrome was recognized in 12 patients (16.5%). The early mortality rate was 5.5% (n = 4). Causes of death were multiple organ failures in two patients and sepsis in another two patients. The actuarial survival rate was 84.2% at 5 years, 64.3% at 15 years and 51.9% at 25 years. Only one patient with aortitis needed a reoperation because of coronary pseudoaneurysm after 23 years from the previous operation. This modified Bentall procedure is reliable and safe, with superior long-term survival and a low rate of aortic reoperation.

  5. Biomimetic fabrication of calcium phosphate/chitosan nanohybrid composite in modified simulated body fluids

    Directory of Open Access Journals (Sweden)

    K. H. Park

    2017-01-01

    Full Text Available In this study, nucleation and growth of bone-like hydroxyapatite (HAp mineral in modified simulated body fluids (m-SBF were induced on chitosan (CS substrates, which were prepared by spin coating of chitosan on Ti substrate. The m-SBF showed a two fold increase in the concentrations of calcium and phosphate ions compared to SBF, and the post-NaOH treatment provided stabilization of the coatings. The calcium phosphate/chitosan composite prepared in m-SBF showed homogeneous distribution of approximately 350 nm-sized spherical clusters composed of octacalcium phosphate (OCP; Ca8H2(PO46·5H2O crystalline structure. Chitosan provided a control over the size of calcium phosphate prepared by immersion in m-SBF, and post-NaOH treatment supported the binding of calcium phosphate compound on the Ti surface. Post-NaOH treatment increased hydrophilicity and crystallinity of carbonate apatite, which increased its potential for biomedical application.

  6. Robust and thermal-enhanced melamine formaldehyde–modified glassfiber composite separator for high-performance lithium batteries

    International Nuclear Information System (INIS)

    Wang, Qingfu

    2015-01-01

    The composite separator of melamine formaldehyde resin coated glass microfiber membrane was prepared for high performance lithium ion battery. It was demonstrated that this composite membranes possessed a significantly enhanced tensile strength and a modified porous structure, compared with that of pristine glass microfiber membrane. Impressive improvements in thermo-stability, with no shrinkage at an elevated temperature of 150 °C. Meanwhile, such composite membrane presented a favorable wettability and remarkable electrochemical stability in commercial liquid electrolyte. In addition, the battery test results of LiCoO 2 /graphite cells proved the composite membrane was a promising separator with an improved cycling performance and rate capability. The cycle performance of LiFePO 4 /Li cells at the elevated temperature of 120 °C demonstrated their excellent safety characteristic as separator in LIB, indicating the composite membrane was a potential separator candidate for high power battery.

  7. Thermo-chemical characterization of a Al nanoparticle and NiO nanowire composite modified by Cu powder

    International Nuclear Information System (INIS)

    Bohlouli-Zanjani, Golnaz; Wen, John Z.; Hu, Anming; Persic, John; Ringuette, Sophie; Zhou, Y. Norman

    2013-01-01

    Highlights: • First study on the copper modified powder-type Al nanoparticle and NiO nanowire composites. • Experimental findings were unique in identifying the AlNi formation and comparing with the Al/CuO thermite. • Potential applications in material joining and bonding. - Abstract: Thermo-chemical properties of the Al nanoparticle and NiO nanowire composites modified by the micro-sized copper additive were investigated experimentally. Their onset temperatures of ignition and energy release data per mass were characterized using differential thermal analysis measurements. These microstructures and chemical compositions of reaction products were analyzed using scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The fuel-rich Al/NiO/Cu composites produced two types of metallic spheres. Copper spheres were formed from melting and solidification of the copper additive, while AlNi composite spheres were identified by the energy dispersive X-ray spectroscopy and X-ray diffraction analyses. It was found that the amount of the copper additive did not significantly influence the onset temperature of thermite peaks, but caused a dramatic change in energy release. The aforementioned ignition and energetic properties were compared with these from the Al nanoparticle and CuO nanowire composites

  8. Wear-resistant and electromagnetic absorbing behaviors of oleic acid post-modified ferrite-filled epoxy resin composite coating

    Science.gov (United States)

    Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie

    2015-03-01

    The post-modified Mn-Zn ferrite was prepared by grafting oleic acid on the surface of Mn-Zn ferrite to inhibit magnetic nanoparticle aggregation. Fourier Transform Infrared (FT-IR) spectroscopy was used to characterize the particle surfaces. The friction and electromagnetic absorbing properties of a thin coating fabricated by dispersing ferrite into epoxy resin (EP) were investigated. The roughness of the coating and water contact angle were measured using the VEECO and water contact angle meter. Friction tests were conducted using a stainless-steel bearing ball and a Rockwell diamond tip, respectively. The complex permittivity and complex permeability of the composite coating were studied in the low frequency (10 MHz-1.5 GHz). Surface modified ferrites are found to improve magnetic particles dispersion in EP resulting in significant compatibility between inorganic and organic materials. Results also indicate that modified ferrite/EP coatings have a lower roughness average value and higher water contact angle than original ferrite/EP coatings. The enhanced tribological properties of the modified ferrite/EP coatings can be seen from the increased coefficient value. The composite coatings with modified ferrite are observed to exhibit better reflection loss compared with the coatings with original ferrite.

  9. /UV Synergistic Aging of Polyester Polyurethane Film Modified by Composite UV Absorber

    Directory of Open Access Journals (Sweden)

    Yanzhi Wang

    2013-01-01

    Full Text Available The pure polyester polyurethane (TPU film and the modified TPU (M-TPU film containing 2.0 wt.% inorganic UV absorbers mixture (nano-ZnO/CeO2 with weight ratio of 3 : 2 and 0.5 wt.% organic UV absorbers mixture (UV-531/UV-327 with weight ratio of 1 : 1 were prepared by spin-coating technique. The accelerated aging tests of the films exposed to constant UV radiation of 400 ± 20 µW/cm2 (313 nm with an ozone atmosphere of 100 ± 2 ppm were carried out by using a self-designed aging equipment at ambient temperature and relative humidity of 20%. The aging resistance properties of the films were evaluated by UV-Vis spectra, Fourier transform infrared spectra (FT-IR, photooxidation index, and carbonyl index analysis. The results show that the composite UV absorber has better protection for TPU system, which reduces distinctly the degradation of TPU film. O3/UV aging of the films increases with incremental exposure time. PI and CI of TPU and M-TPU films increase with increasing exposure time, respectively. PI and CI of M-TPU films are much lower than that of TPU film after the same time of exposure, respectively. Distinct synergistic aging effect exists between ozone aging and UV aging when PI and CI are used as evaluation index, respectively. Of course, the formula of these additives needs further improvement for industrial application.

  10. How to adapt winemaking practices to modified grape composition under climate change conditions

    Directory of Open Access Journals (Sweden)

    Sylvie Dequin

    2017-05-01

    Full Text Available Aim: In the context of climate change, adaptation of enological practices and implementation of novel techniques are major challenges for winemakers. The potential interventions are linked in particular with the alcohol content and the global acidity of wine. Here, we review current microbiological and technological strategies to overcome such issues. Methods and results: Reducing ethanol concentration poses a number of technical and scientific challenges, in particular looking for specific yeast strains with lower alcohol yield. Several non-genetically modified organism (GMO strains – S. cerevisiae or interspecific hybrids of the Saccharomyces genus – have yet been developed using different strategies, and some of them allow decreasing the final ethanol concentration by up to 1%. Several membrane-based technologies have also been developed not only to reduce the ethanol content of wines but also to increase the acidity and more generally to control the wine pH. New strategies are also proposed to improve the control of winemaking, especially the management of alcoholic fermentation of sugar-rich musts and the control of oxidation during the process. Conclusion: Reducing ethanol of wines  and increasing their acidity are good examples of novel techniques  of interest in the context of climate change. Other strategies are still under study to adapt winemaking practices to changes in grape composition. Significance and impact of the study: [Membrane-based technologies can be used to reduce the ethanol content of wines or to increase the acidity.  Microbiological strategies will also be soon available for winemakers.

  11. Textile Dye Removal from Aqueous Solution using Modified Graphite Waste/Lanthanum/Chitosan Composite

    Science.gov (United States)

    Kusrini, E.; Wicaksono, B.; Yulizar, Y.; Prasetyanto, EA; Gunawan, C.

    2018-03-01

    We investigated various pre-treatment processes of graphite waste using thermal, mechanical and chemical methods. The aim of this work is to study the performance of modified graphite waste/lanthanum/chitosan composite (MG) as adsorbent for textile dye removal from aqueous solution. Effect of graphite waste resources, adsorbent size and lanthanum concentration on the dye removal were studied in batch experiments. Selectivity of MG was also investigated. Pre-heated graphite waste (NMG) was conducted at 80°C for 1 h, followed by mechanical crushing of the resultant graphite to 75 μm particle size, giving adsorption performance of ˜58%, ˜67%, ˜93% and ˜98% of the model dye rhodamine B (concentration determined by UV-vis spectroscopy at 554 nm), methyl orange (464 nm), methylene blue (664 nm) and methyl violet (580 nm), respectively from aqueous solution. For this process, the system required less than ˜5 min for adsorbent material to be completely saturated with the adsorbate. Further chemical modification of the pre-treated graphite waste (MG) with lanthanum (0.01 – V 0.03 M) and chitosan (0.5% w/w) did not improve the performance of dye adsorption. Under comparable experimental conditions, as those of the ‘thermal-mechanical-pre-treated-only’ (NMG), modification of graphite waste (MG) with 0.03 M lanthanum and 0.5% w/w chitosan resulted in ˜14%, ˜47%, ˜72% and ˜85% adsorption of rhodamine B, methyl orange, methylene blue and methyl violet, respectively. Selective adsorption of methylene blue at most to ˜79%, followed by methyl orange, methyl violet and rhodamine B with adsorption efficiency ˜67, ˜38, and ˜9% sequentially using MG with 0.03 M lanthanum and 0.5% w/w chitosan.

  12. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    Science.gov (United States)

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  13. Fabrication of modified hydrogenated castor oil/GPTMS-ZnO composites and effect on UV resistance of leather.

    Science.gov (United States)

    Ma, Jianzhong; Duan, Limin; Lu, Juan; Lyu, Bin; Gao, Dangge; Wu, Xionghu

    2017-06-16

    Leather products are made from the natural skin collagen fibers. It is vulnerable to the environmental factor such as solar ultraviolet irradiation in the using process. Therefore anti-UV performance is a very important quality, particularly for chrome-free leather. ZnO is a well-known UV absorber commonly used in the cosmetic industry. We have investigated its potential to increase the anti-UV performance of chrome-free leather. Modified hydrogenated castor oil/GPTMS-ZnO (MHCO/ GPTMS-ZnO) composites were prepared using spherical ZnO nanoparticles, hydrogenated castor oil, maleic anhydride and sodium bisulfite. MHCO/GPTMS-ZnO composites have better anti-UV ability and stability. MHCO/GPTMS-ZnO composites were applied to the leather processing. The treated samples were exposed to artificial sunlight. Anti-yellowing tests showed that MHCO/GPTMS-ZnO composites significantly improved anti-UV performance of leather.

  14. A fine surface roughness electroless Ni–P–PTFE composite modified stamper for light guide plate application

    International Nuclear Information System (INIS)

    Pan, K; Fu, C

    2010-01-01

    Electroless Ni–P–PTFE composite coating technology takes advantage of the beneficial properties from both Ni–P alloy and PTFE, such as good wear resistance, good anti-adhesion, dry lubrication, low coefficient of friction and good corrosion resistance. It has been applied in many mold industries. However, the Ni–P–PTFE composite coating suffers from bad surface roughness, when the PTFE particles incorporate into a Ni–P matrix. This severely hampers the technology to be applied to optical grade applications. In this paper, we propose a trick to generate a fine surface roughness (FSR) electroless Ni–P–PTFE composite to modify a nickel stamper. Using this new method, the nickel stamper can be covered by a Ni–P–PTFE functional layer and can keep the original surface property at the same time, namely the optical properties. We have chosen 4.5 inch (97 mm × 59 mm × 0.6 mm) light guide plates (LGPs) to demonstrate the effectiveness of the procedure. For the sake of comparison, the LGPs were produced by injection molding with three kinds of stampers including an original SUS430 master, an electroless Ni–P–PTFE composite coated nickel stamper and an FSR electroless Ni–P–PTFE composite modified stamper. We measured and discussed the optical performances at both the element level and system level, namely complete back light units.

  15. Nanosilica Modification of Elastomer-Modified VARTM Epoxy Resins for Improved Resin and Composite Toughness

    National Research Council Canada - National Science Library

    Robinette, Jason; Bujanda, Andres; DeSchepper, Daniel; Dibelka, Jessica; Costanzo, Philip; Jensen, Robert; McKnight, Steven

    2007-01-01

    Recent publications have reported a synergy between rubber and silica in modified epoxy resins that results in significantly improved fracture toughness without reductions in other material properties...

  16. Modified fly ash from municipal solid waste incineration as catalyst support for Mn-Ce composite oxides

    Science.gov (United States)

    Chen, Xiongbo; Liu, Ying; Yang, Ying; Ren, Tingyan; Pan, Lang; Fang, Ping; Chen, Dingsheng; Cen, Chaoping

    2017-08-01

    Fly ash from municipal solid waste incineration was modified by hydrothermal treatment and used as catalyst support for Mn-Ce composite oxides. The prepared catalyst showed good activity for the selective catalytic reduction (SCR) of NO by NH3. A NO conversion of 93% could be achieved at 300 °C under a GHSV of 32857 h-1. With the help of characterizations including XRD, BET, SEM, TEM, XPS and TPR, it was found that hydrothermal treatment brought a large surface area and abundant mesoporous to the modified fly ash, and Mn-Ce composite oxides were highly dispersed on the surface of the support. These physical and chemical properties were the intrinsic reasons for the good SCR activity. This work transformed fly ash into high value-added products, providing a new approach to the resource utilization and pollution control of fly ash.

  17. Composites of ionic liquid and amine-modified SAPO 34 improve CO2 separation of CO2-selective polymer membranes

    Science.gov (United States)

    Hu, Leiqing; Cheng, Jun; Li, Yannan; Liu, Jianzhong; Zhang, Li; Zhou, Junhu; Cen, Kefa

    2017-07-01

    Mixed matrix membranes with ionic liquids and molecular sieve particles had high CO2 permeabilities, but CO2 separation from small gas molecules such as H2 was dissatisfied because of bad interfacial interaction between ionic liquid and molecular sieve particles. To solve that, amine groups were introduced to modify surface of molecular sieve particles before loading with ionic liquid. SAPO 34 was adopted as the original filler, and four mixed matrix membranes with different fillers were prepared on the outer surface of ceramic hollow fibers. Both surface voids and hard agglomerations disappeared, and the surface became smooth after SAPO 34 was modified by amine groups and ionic liquid [P66614][2-Op]. Mixed matrix membranes with composites of amine-modified SAPO 34 and ionic liquid exhibited excellent CO2 permeability (408.9 Barrers) and CO2/H2 selectivity (22.1).

  18. Electrochemical detection of rutin with a carbon ionic liquid electrode modified by Nafion, graphene oxide and ionic liquid composite

    International Nuclear Information System (INIS)

    Hu, S.; Xiang, J.; Zhang, L.; Zhu, H.; Liu, S.; Sun, W.

    2012-01-01

    We report on a carbon ionic liquid electrode modified with a composite made from Nafion, graphene oxide and ionic liquid, and its application to the sensitive determination of rutin. The modified electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. It shows excellent cyclic voltammetric and differential pulse voltammetric performance due to the presence of nanoscale graphene oxide and the ionic liquid, and their interaction. A pair of well-defined redox peaks of rutin appears at pH 3.0, and the reduction peak current is linearly related to its concentration in the range from 0.08 μM to 0.1 mM with a detection limit of 0.016 μM (at 3σ). The modified electrode displays excellent selectivity and good stability, and was successfully applied to the determination of rutin in tablets with good recovery. (author)

  19. Facile preparation of molecularly imprinted polypyrrole-graphene-multiwalled carbon nanotubes composite film modified electrode for rutin sensing.

    Science.gov (United States)

    Yang, Lite; Yang, Juan; Xu, Bingjie; Zhao, Faqiong; Zeng, Baizhao

    2016-12-01

    In this paper, a novel molecularly imprinted composite film modified electrode was presented for rutin (RT) detection. The modified electrode was fabricated by electropolymerization of pyrrole on a graphene-multiwalled carbon nanotubes composite (G-MWCNTs) coated glassy carbon electrode in the presence of RT. The netlike G-MWCNTs composite, prepared by in situ hydrothermal process, had high conductivity and electrocatalytic activity. At the resulting MIP/G-MWCNTs/GCE electrode RT could produce a sensitive anodic peak in pH 1.87 Britton-Robinson buffer solution. The factors affecting the electrochemical behavior and response of RT on the modified electrode were carefully investigated and optimized. Under the selected conditions, the linear response range of RT was 0.01-1.0μmolL -1 and the detection limit (S/N=3) was 5.0nmolL -1 . The electrode was successfully applied to the determination of RT in buckwheat tea and orange juice samples, and the recoveries for standards added were 93.4-105%. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. In situ intercalative polymerization of poly (ε-caprolactone)/ 12-amino lauric acid-modified clay nano composites

    International Nuclear Information System (INIS)

    Reyes, Larry; Monserate, Juvy J.; Sumera, Florentino

    2013-01-01

    Polymer/layered silicate nano composites were prepared by in situ intercalative polymerization method from from ε-caprolactone (ε-CL) and 12-amino lauric acid modified montmorillonite (AMMT). The organo-modified clay was investigated for its capacity to facilitate ring-opening polymerization of ε-caprolactone within its silicate layers. The effect of varying the organo-modified clay loading (5%, 10% and 15% by weight) on the molecular weight of the poly (ε-caprolactone) (PCL) product was assessed by gel-permeation chromatography. The molecular weight of the polymer with different clay loadings ranged from ∼30,000 g/mo to ∼70,000 g/mol, where the 10% loading produced the highest molecular weight. Fourier Transform infrared (FTIR), and 1 H and 13 C Nuclear Magnetic Resonance (NMR) Spectroscopy were conducted to probe the composition of the polymer and the catalytic activity of AMMT to polymerize ε-CL. FTIR analyses showed two medium intensity and narrow CO-O stretching vibrations for the PCL products at around 1240 cm-1 and 1160 cm-1, which are attributed to ester skeletal backbone. 1 HNMR spectroscopic analysis revealed signals at 4.07 ppm and 3.66 ppm which can be attributed to εmethylene of caprolactone and methyl of ending ester group, respectively. The formation of the nano composites were assessed by X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM), XRD analyses showed a broadening and disappearance of diffraction peak of AMMT in the nana composite which may indicate the formation of the intercalated and partially exfoliated PCVL/AMMT nana composites. TEM observations corroborated the presence of intercalated and exfoliated layers of AMMT after polymerization. The present work demonstrates that AMMT can be used as an alternative g reen catalyst's for the production of biodegradable polymers, where the in situ intercalative polymerization was employed as a direct method of preparing polymer/layered silicates (author)

  1. Improved photoelectrochemical detection of mercury (II) with a TiO2-modified composite photoelectrode

    International Nuclear Information System (INIS)

    Chamier, Jessica; Crouch, Andrew M.

    2012-01-01

    Highlights: • We have determined that a PANI–RS modified photoelectrode behaved as a photoanode in the presence of Hg 2+ . • The photoresponse of the ITO/TiO 2 /PANI–RS photoelectrode was equivalent to the amount of Hg 2+ in solution. • The linear range for photoelectrochemical detection of Hg 2+ was 10–200 μg L −1 Hg 2+ with a LOQ of 4 μg L −1 . • We determined that the pH independence of ITO/TiO 2 /PANI–RS photoelectrode was limit by the TiO 2 layer to between pH 6 and 7. - Abstract: The spectrophotometric change of a mercury (II) (Hg 2+ ) selective small molecule chemosensor has been successfully converted into a photovoltaic response upon ligating Hg 2+ . The photon excitation was followed by charge separation facilitated by TiO 2 and polyaniline (PANI), resulting in an electron transfer to an electrical back contact. The photoresponse of the Hg 2+ selective chromophore was converted to an electron current equivalent to the amount of Hg 2+ in solution. The favourable properties of a Hg 2+ sensitive chemosensor was combined with the semiconductor capabilities of TiO 2 to construct a sensor that is capable of generating a current in the presence of Hg 2+ under illumination. A composite of the fluorescent chemosensor rhodamine 6G hydrozone derivative (RS) and PANI was immobilized on indium tin oxide (ITO) plates coated with TiO 2 and subjected to photovoltammetric measurements. The photovoltammetric responses of the coated layers were investigated to determine the sensitivity and selectivity of the immobilized sensor to Hg 2+ in the presence of background ions. The photo-response increased linearly with increasing Hg 2+ concentration from 10 to 200 μg L −1 with a limit of quantification (LOQ) of 4 μg L −1 . The pH independence for the photoresponse was limited by the TiO 2 layer and was optimal between pH 6 and 7.

  2. Improved photoelectrochemical detection of mercury (II) with a TiO{sub 2}-modified composite photoelectrode

    Energy Technology Data Exchange (ETDEWEB)

    Chamier, Jessica [Department of Chemistry and Polymer Science, University of Stellenbosch, Matieland X1, Stellenbosch 7602 (South Africa); Council for Scientific and Industrial Research, Natural Resources and the Environment, P.O. Box 320, Stellenbosch 7599 (South Africa); Crouch, Andrew M., E-mail: andrew.crouch@wits.ac.za [Institute of Molecular Sciences, Faculty of Science, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg (South Africa)

    2012-01-16

    Highlights: Bullet We have determined that a PANI-RS modified photoelectrode behaved as a photoanode in the presence of Hg{sup 2+}. Bullet The photoresponse of the ITO/TiO{sub 2}/PANI-RS photoelectrode was equivalent to the amount of Hg{sup 2+} in solution. Bullet The linear range for photoelectrochemical detection of Hg{sup 2+} was 10-200 {mu}g L{sup -1} Hg{sup 2+} with a LOQ of 4 {mu}g L{sup -1}. Bullet We determined that the pH independence of ITO/TiO{sub 2}/PANI-RS photoelectrode was limit by the TiO{sub 2} layer to between pH 6 and 7. - Abstract: The spectrophotometric change of a mercury (II) (Hg{sup 2+}) selective small molecule chemosensor has been successfully converted into a photovoltaic response upon ligating Hg{sup 2+}. The photon excitation was followed by charge separation facilitated by TiO{sub 2} and polyaniline (PANI), resulting in an electron transfer to an electrical back contact. The photoresponse of the Hg{sup 2+} selective chromophore was converted to an electron current equivalent to the amount of Hg{sup 2+} in solution. The favourable properties of a Hg{sup 2+} sensitive chemosensor was combined with the semiconductor capabilities of TiO{sub 2} to construct a sensor that is capable of generating a current in the presence of Hg{sup 2+} under illumination. A composite of the fluorescent chemosensor rhodamine 6G hydrozone derivative (RS) and PANI was immobilized on indium tin oxide (ITO) plates coated with TiO{sub 2} and subjected to photovoltammetric measurements. The photovoltammetric responses of the coated layers were investigated to determine the sensitivity and selectivity of the immobilized sensor to Hg{sup 2+} in the presence of background ions. The photo-response increased linearly with increasing Hg{sup 2+} concentration from 10 to 200 {mu}g L{sup -1} with a limit of quantification (LOQ) of 4 {mu}g L{sup -1}. The pH independence for the photoresponse was limited by the TiO{sub 2} layer and was optimal between pH 6 and 7.

  3. Preparation and mechanical properties of modified nanocellulose/PLA composites from cassava residue

    Directory of Open Access Journals (Sweden)

    Lijie Huang

    2018-02-01

    Full Text Available Nanocellulose was prepared by a mechanochemical method using cassava residue as a raw material and phosphoric acid as the auxiliary agent. The prepared nanocellulose was hydrophobically modified with stearic acid to improve its dispersibility. This modified nanocellulose was added to polylactic acid (PLA film-forming liquids at concentrations of 0%, 0.5%, 1.0%, 1.5% and 2.0%, and the effect of modified nanocellulose on the mechanical properties of polylactic acid (PLA films were investigated. When at least 0.5% modified nanocellulose is added, more active groups of modified nanocellulose are adsorbed onto the PLA molecular chain. Although the tensile strength of the film is only improved by 13.59%, the flexibility of the film decreases, and the elastic modulus decreases by 28.91%. When 1% modified nanocellulose is added, the modified nanocellulose and PLA are tangled together through molecular chains and they co-crystallize to form a stable network structure. The tensile strength of the nanocomposite films is enhanced by 40.03%, the elastic modulus is enhanced by 55.65%, and the flexibility of the film decreases.

  4. Preparation and mechanical properties of modified nanocellulose/PLA composites from cassava residue

    Science.gov (United States)

    Huang, Lijie; Zhang, Xiaoxiao; Xu, Mingzi; Chen, Jie; Shi, Yinghan; Huang, Chongxing; Wang, Shuangfei; An, Shuxiang; Li, Chunying

    2018-02-01

    Nanocellulose was prepared by a mechanochemical method using cassava residue as a raw material and phosphoric acid as the auxiliary agent. The prepared nanocellulose was hydrophobically modified with stearic acid to improve its dispersibility. This modified nanocellulose was added to polylactic acid (PLA) film-forming liquids at concentrations of 0%, 0.5%, 1.0%, 1.5% and 2.0%, and the effect of modified nanocellulose on the mechanical properties of polylactic acid (PLA) films were investigated. When at least 0.5% modified nanocellulose is added, more active groups of modified nanocellulose are adsorbed onto the PLA molecular chain. Although the tensile strength of the film is only improved by 13.59%, the flexibility of the film decreases, and the elastic modulus decreases by 28.91%. When 1% modified nanocellulose is added, the modified nanocellulose and PLA are tangled together through molecular chains and they co-crystallize to form a stable network structure. The tensile strength of the nanocomposite films is enhanced by 40.03%, the elastic modulus is enhanced by 55.65%, and the flexibility of the film decreases.

  5. Influence of the reaction stoichiometry on the mechanical and thermal properties of SWCNT-modified epoxy composites

    International Nuclear Information System (INIS)

    Ashrafi, Behnam; Johnston, Andrew; Martinez-Rubi, Yadienka; Kingston, Christopher T; Simard, Benoit; Khoun, Lolei; Yourdkhani, Mostafa; Hubert, Pascal

    2013-01-01

    Previous studies suggest that carbon nanotubes (CNTs) have a considerable influence on the curing behavior and crosslink density of epoxy resins. This invariably has an important effect on different thermal and mechanical properties of the epoxy network. This work focuses on the important role of the epoxy/hardener mixing ratio on the mechanical and thermal properties of a high temperature aerospace-grade epoxy (MY0510 Araldite as an epoxy and 4,4′-diaminodiphenylsulfone as an aromatic hardener) modified with single-walled carbon nanotubes (SWCNTs). The effects of three different stoichiometries (stoichiometric and off-stoichiometric) on various mechanical and thermal properties (fracture toughness, tensile properties, glass transition temperature) of the epoxy resin and its SWCNT-modified composites were obtained. The results were also supported by Raman spectroscopy and scanning electron microscopy (SEM). For the neat resin, it was found that an epoxy/hardener molar ratio of 1:0.8 provides the best overall properties. In contrast, the pattern in property changes with the reaction stoichiometry was considerably different for composites reinforced with unfunctionalized SWCNTs and reduced SWCNTs. A comparison among composites suggests that a 1:1 molar ratio considerably outperforms the other two ratios examined in this work (1:0.8 and 1:1.1). This composition at 0.2 wt% SWCNT loading provides the highest overall mechanical properties by improving fracture toughness, ultimate tensile strength and ultimate tensile strain of the epoxy resin by 40%, 34%, 54%, respectively. (paper)

  6. Plant species composition alters the sign and strength of an emergent multi-predator effect by modifying predator foraging behaviour.

    Directory of Open Access Journals (Sweden)

    Andrew Wilby

    Full Text Available The prediction of pest-control functioning by multi-predator communities is hindered by the non-additive nature of species functioning. Such non-additivity, commonly termed an emergent multi-predator effect, is known to be affected by elements of the ecological context, such as the structure and composition of vegetation, in addition to the traits of the predators themselves. Here we report mesocosm experiments designed to test the influence of plant density and species composition (wheat monoculture or wheat and faba bean polyculture on the emergence of multi-predator effects between Adalia bipunctata and Chrysoperla carnea, in their suppression of populations of the aphid Metopolophium dirhodum. The mesocosm experiments were followed by a series of behavioural observations designed to identify how interactions among predators are modified by plant species composition and whether these effects are consistent with the observed influence of plant species composition on aphid population suppression. Although plant density was shown to have no influence on the multi-predator effect on aphid population growth, plant composition had a marked effect. In wheat monoculture, Adalia and Chrysoperla mixed treatments caused greater suppression of M. dirhodum populations than expected. However this positive emergent effect was reversed to a negative multi-predator effect in wheat and faba bean polyculture. The behavioural observations revealed that although dominant individuals did not respond to the presence of faba bean plants, the behaviour of sub-dominants was affected markedly, consistent with their foraging for extra-floral nectar produced by the faba bean. This interaction between plant composition and predator community composition on the foraging behaviour of sub-dominants is thought to underlie the observed effect of plant composition on the multi-predator effect. Thus, the emergence of multi-predator effects is shown to be strongly influenced by

  7. High-Performance Stretchable Conductive Composite Fibers from Surface-Modified Silver Nanowires and Thermoplastic Polyurethane by Wet Spinning.

    Science.gov (United States)

    Lu, Ying; Jiang, Jianwei; Yoon, Sungho; Kim, Kyung-Shik; Kim, Jae-Hyun; Park, Sanghyuk; Kim, Sang-Ho; Piao, Longhai

    2018-01-17

    Highly stretchable and conductive fibers have attracted great interest as a fundamental building block for the next generation of textile-based electronics. Because of its high conductivity and high aspect ratio, the Ag nanowire (AgNW) has been considered one of the most promising conducting materials for the percolation network-based conductive films and composites. However, the poor dispersibility of AgNWs in hydrophobic polymers has hindered their application to stretchable conductive composite fibers. In this paper, we present a highly stretchable and conductive composite fiber from the co-spinning of surface-modified AgNWs and thermoplastic polyurethane (PU). The surface modification of AgNWs with a polyethylene glycol derivative improved the compatibility of PU and AgNWs, which allowed the NWs to disperse homogeneously in the elastomeric matrix, forming effective percolation networks and causing the composite fiber to show enhanced electrical and mechanical performance. The maximum AgNW mass fraction in the composite fiber was 75.9 wt %, and its initial electrical conductivity was as high as 14 205 S/cm. The composite fibers also exhibited superior stretchability: the maximum rupture strain of the composite fiber with 14.6 wt % AgNW was 786%, and the composite fiber was also conductive even when it was stretched up to 200%. In addition, 2-dimensional (2-D) Ag nanoplates were added to the AgNW/PU composite fibers to increase the stability of the conductive network under repeated stretching and releasing. The Ag nanoplates acted as a bridge to effectively prevent the AgNWs from slippage and greatly improved the stability of the conductive network.

  8. Evaluation of carbon fiber composites modified by in situ incorporation of carbon nanofibers

    Directory of Open Access Journals (Sweden)

    André Navarro de Miranda

    2011-12-01

    Full Text Available Nano-carbon materials, such as carbon nanotubes and carbon nanofibers, are being thought to be used as multifunctional reinforcement in composites. The growing of carbon nanofiber at the carbon fiber/epoxy interface results in composites having better electrical properties than conventional carbon fiber/epoxy composites. In this work, carbon nanofibers were grown in situ over the surface of a carbon fiber fabric by chemical vapor deposition. Specimens of carbon fiber/nanofiber/epoxy (CF/CNF/epoxy composites were molded and electrical conductivity was measured. Also, the CF/CNF/epoxy composites were tested under flexure and interlaminar shear. The results showed an overall reduction in mechanical properties as a function of added nanofiber, although electrical conductivity increased up to 74% with the addition of nanofibers. Thus CF/CNF/epoxy composites can be used as electrical dissipation discharge materials.

  9. Fracture Resistance of Endodontically Treated Teeth Restored with Biodentine, Resin Modified GIC and Hybrid Composite Resin as a Core Material.

    Science.gov (United States)

    Subash, Dayalan; Shoba, Krishnamma; Aman, Shibu; Bharkavi, Srinivasan Kumar Indu; Nimmi, Vijayan; Abhilash, Radhakrishnan

    2017-09-01

    The restoration of a severely damaged tooth usually needs a post and core as a part of treatment procedure to provide a corono - radicular stabilization. Biodentine is a class of dental material which possess high mechanical properties with excellent biocompatibility and bioactive behaviour. The sealing ability coupled with optimum physical properties could make Biodentine an excellent option as a core material. The aim of the study was to determine the fracture resistance of Biodentine as a core material in comparison with resin modified glass ionomer and composite resin. Freshly extracted 30 human permanent maxillary central incisors were selected. After endodontic treatment followed by post space preparation and luting of Glass fibre post (Reforpost, Angelus), the samples were divided in to three groups based on the type of core material. The core build-up used in Group I was Biodentine (Septodont, France), Group II was Resin-Modified Glass Ionomer Cement (GC, Japan) and Group III was Hybrid Composite Resin (TeEconom plus, Ivoclar vivadent). The specimens were subjected to fracture toughness using Universal testing machine (1474, Zwick/Roell, Germany) and results were compared using One-way analysis of variance with Tukey's Post hoc test. The results showed that there was significant difference between groups in terms of fracture load. Also, composite resin exhibited highest mean fracture load (1039.9 N), whereas teeth restored with Biodentine demonstrated the lowest mean fracture load (176.66 N). Resin modified glass ionomer exhibited intermediate fracture load (612.07 N). The primary mode of failure in Group I and Group II was favourable (100%) while unfavourable fracture was seen in Group III (30%). Biodentine, does not satisfy the requirements to be used as an ideal core material. The uses of RMGIC's as a core build-up material should be limited to non-stress bearing areas. Composite resin is still the best core build-up material owing to its high fracture

  10. Long term durability of wood-plastic composites made with chemically modified wood

    Science.gov (United States)

    Rebecca E. Ibach; Craig M. Clemons

    2017-01-01

    Wood-plastic composites (WPCs) have slower moisture sorption than solid wood, but over time moisture can impact the strength, stiffness, and decay of the composite. These changes will become increasingly important if WPCs are used in more challenging environments such as in ground-contact applications. There are several options for mitigating the moisture sorption of...

  11. Elastomer modified polypropylene–polyethylene blends as matrices for wood flour–plastic composites

    Science.gov (United States)

    Craig Clemons

    2010-01-01

    Blends of polyethylene (PE) and polypropylene (PP) could potentially be used as matrices for wood–plastic composites (WPCs). The mechanical performance and morphology of both the unfilled blends and wood-filled composites with various elastomers and coupling agents were investigated. Blending of the plastics resulted in either small domains of the minor phase in a...

  12. J-integral evaluation of nanoclay-modified HDPE/PA6 microfibrillar composites

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Hodan, Jiří; Kaprálková, Ludmila; Kratochvíl, Jaroslav; Hromádková, Jiřina; Kotek, Jiří

    2017-01-01

    Roč. 58, April (2017), s. 54-59 ISSN 0142-9418 R&D Projects: GA ČR(CZ) GA13-15255S Institutional support: RVO:61389013 Keywords : nanocomposite * blend * melt drawing Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 2.464, year: 2016

  13. Application of three-dimensional reduced graphene oxide-gold composite modified electrode for direct electrochemistry and electrocatalysis of myoglobin.

    Science.gov (United States)

    Shi, Fan; Xi, Jingwen; Hou, Fei; Han, Lin; Li, Guangjiu; Gong, Shixing; Chen, Chanxing; Sun, Wei

    2016-01-01

    In this paper a three-dimensional (3D) reduced graphene oxide (RGO) and gold (Au) composite was synthesized by electrodeposition and used for the electrode modification with carbon ionic liquid electrode (CILE) as the substrate electrode. Myoglobin (Mb) was further immobilized on the surface of 3D RGO-Au/CILE to obtain an electrochemical sensing platform. Direct electrochemistry of Mb on the modified electrode was investigated with a pair of well-defined redox waves appeared on cyclic voltammogram, indicating the realization of direct electron transfer of Mb with the modified electrode. The results can be ascribed to the presence of highly conductive 3D RGO-Au composite on the electrode surface that accelerate the electron transfer rate between the electroactive center of Mb and the electrode. The Mb modified electrode showed excellent electrocatalytic activity to the reduction of trichloroacetic acid in the concentration range from 0.2 to 36.0 mmol/L with the detection limit of 0.06 mmol/L (3σ). Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Synthesis of water dispersible polyaniline/poly(styrenesulfonic acid) modified graphene composite and its electrochemical properties

    International Nuclear Information System (INIS)

    Luo, Jing; Jiang, Sisi; Liu, Ren; Zhang, Yongjie; Liu, Xiaoya

    2013-01-01

    A novel water-dispersible polyaniline (PANI)/graphene composite was prepared by the in situ polymerization of aniline on the surface of poly(styrenesulfonic acid) (PSS) coated graphene nanosheets (PSS-GR). The characterization of atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy confirmed the successful synthesis of PANI/PSS-GR composites and strong interaction between PANI and PSS-GR. The as-synthesized PANI/PSS-GR composite is readily dispersible in water and forms a homogeneous aqueous dispersion which is stable for more than one month. More interestingly, PSS-GR can dope PANI effectively and shift its electroactivity to a neutral or even alkaline environment, making them promising candidates for biological application. In addition, the PANI/PSS-GR composite shows improved electrical conductivity and electrochemical stability compared to the neat polyaniline. Furthermore, the potential use of this composite for detection of ascorbic acid (AA) was investigated. A low detection limit of 5 × 10 −6 M and a linear detection range between 1 × 10 −4 M and 1 × 10 −3 M was attained, indicating the high electrocatalytic ability of this composite. Anticipatedly, the synthesized composite will find promising applications as a novel electrode material in sensors and other devices in virtue of their outstanding characteristics of water-dispersibility, good cycle stability, electroactivity in neutral solution and excellent electrocatalytic ability

  15. Effect of reaction time and polyethylene glycol monooleate-isocyanate composition on the properties of polyurethane-polysiloxane modified epoxy

    Science.gov (United States)

    Triwulandari, Evi; Ramadhan, Mohammad Kemilau; Ghozali, Muhammad

    2017-11-01

    Polyurethane-polysiloxane modified epoxy based on polyethylene glycol monooleate (PSME-PEGMO) was synthesized. Polyethylene glycol monooleate (PEGMO) for the synthesis of PSME-GMO was synthesized via esterification between oleic acid and polyethylene glycol by using sodium hydroxide as catalyst. Synthesis of PSME-PEGMO was conducted by reacting epoxy, isocyanate, PEGMO, and polysiloxane (hydrolyzed and condensable 3-glycidyloxypropyltrimethoxysilane) simultaneously in one step. This synthesis was carried out by varied the reaction time (1, 2, 3 hours), PEGMO-isocyanate composition (PI composition: 10 and 20 % toward epoxy), and isocyanate/PEGMO ratio (NCO/OH ratio: 1.5 and 2.5). Characterization of PSME-PEGMO was conducted by determining the isocyanate conversion, viscosity analysis, mechanical properties (tensile strength and elongation at break) and thermal analysis using thermogravimetric analysis (TGA). The data show that the PI composition and NCO/OH ratio does not affect the isocyanate conversion linearly. The viscosity of PSME-PEGMO product at ratio and composition variation show has tended to increase with increasing of reaction time. The highest tensile strength and elongation at break PSME-PEGMO was shown by PI composition 20%, NCO/OH ratio 2.5 and reaction time 3 hours.

  16. A novel electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold nanoparticles composite modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Niu, Xiuli; Yang, Wu; Wang, Guoying; Ren, Jie; Guo, Hao; Gao, Jinzhang

    2013-01-01

    In this paper, a novel and convenient electrochemical sensor based on stacked graphene nanofibers (SGNF) and gold nanoparticles (AuNPs) composite modified glassy carbon electrode (GCE) was developed for the determination of bisphenol A (BPA). The AuNPs/SGNF modified electrode showed an efficient electrocatalytic role for the oxidation of BPA, and the oxidation overpotentials of BPA were decreased significantly and the peak current increased greatly compared with bare GCE and other modified electrode. The transfer electron number (n) and the charge transfer coefficient (α) were calculated with the result as n = 4, α = 0.52 for BPA, which indicated the electrochemical oxidation of BPA on AuNPs/SGNF modified electrode was a four-electron and four-proton process. The effective surface areas of AuNPs/SGNF/GCE increased for about 1.7-fold larger than that of the bare GCE. In addition, the kinetic parameters of the modified electrode were calculated and the apparent heterogeneous electron transfer rate constant (k s ) was 0.51 s −1 . Linear sweep voltammetry was applied as a sensitive analytical method for the determination of BPA and a good linear relationship between the peak current and BPA concentration was obtained in the range from 0.08 to 250 μM with a detection limit of 3.5 × 10 −8 M. The modified electrode exhibited a high sensitivity, long-term stability and remarkable reproducible analytical performance and was successfully applied for the determination of BPA in baby bottles with satisfying results

  17. Effect of n-HA with different surface-modified on the properties of n-HA/PLGA composite

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Liuyun, E-mail: jlytxg@163.com [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Xiong Chengdong; Chen Dongliang [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Jiang Lixin [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Graduated School of Chinese Academy of Sciences, Beijing 100039 (China); Pang Xiubing [Zhejiang Apeloa Medical Technology Co. Ltd, Jinhua 322118 (China)

    2012-10-15

    Graphical abstract: The bend strength of n-HA/PLGA composite with the unmodified n-HA becomes lower than that of PLGA. However, when n-HA was modified by different methods, the bend strength of g-n-HA/PLGA composites gets a little increase than PLGA, and the g3-n-HA/PLGA shows the highest bend strength at 3% g3-n-HA loading amount in weight, reached 162 MPa, which was 24.4% higher than that of pure PLGA. Highlights: Black-Right-Pointing-Pointer A new surface modification method for n-HA of combining stearic acid with surface-grafting L-lactic was adopted. Black-Right-Pointing-Pointer Three different surface modification methods for n-HA were compared in detail. Black-Right-Pointing-Pointer The new surface modification method was the most ideal method in this study. Black-Right-Pointing-Pointer The g3-n-HA/PLGA composite had the highest bending strength, which would be potential to be used as bone fracture internal fixation materials. - Abstract: Three different surface modification methods for nano-hydroxyapatite (n-HA) of stearic acid, grafted with L-lactide, combining stearic acid and surface-grafting L-lactic were adopted, respectively. The surface modification reaction and the effect of different methods were evaluated by Fourier transformation infrared (FTIR), X-ray photoelectron spectra (XPS), thermal gravimetric analysis (TGA), transmission electron microscopy (TEM). The results showed that n-HA surfaces were all successful modified, and the modification method of combining stearic acid and surface-grafting L-lactic had the greatest grafting amount and the best dispersion among the three modification methods. Then, the n-HA with three different surface modification and unmodified n-HA were introduced into PLGA, respectively, and a serials of n-HA/PLGA composites with 3% n-HA amount in weight were prepared by solution mixing, and the properties of n-HA/PLGA composites were also investigated by electromechanical universal tester and scanning electron

  18. Dielectric Properties of Polyether Sulfone/Bismaleimide Resin Composite Based on Nanolumina Modified by Super-Critical Ethanol

    Science.gov (United States)

    Chen, Yufei; Li, Zhichao; Teng, Chengjun; Li, Fangliang; Han, Yang

    2016-11-01

    Nano-alumina was chemically modified with super-critical ethanol enabling a surface active coating. Modified nano-alumina was incorporated in polymer blends based on thermoplastic polyether sulfone and thermosetting bismaleimide resin to produce novel nanocomposites designated as SCE-Al2O3/PES-MBAE. In the SCE-Al2O3/PES-MBAE nano-composites, the matrix was originally formed from 4,4'-diamino diphenyl methane bismaleimide (MBMI) using the diluents of 3,3'-diallyl bisphenol A (BBA) and bisphenol-A diallyl ether (BBE), while polyether sulfone (PES) was used as toughening agent along with super-critically modified nano-alumina (SCE-Al2O3) as filler material. The content of SCE-Al2O3 was varied from 0 wt.% to 6 wt.%. The nano-composites were characterized for their morphological, spectroscopic and dielectric properties. Fourier transform infrared spectroscopy (FT-IR) indicated that ethanol molecules had adhered to the surface of the nano-Al2O3 in super-critical state. A reaction between MBMI and allyl compound occurred and SCE-Al2O3 was doped into the polymer matrix. Volume resistivity of the composite initially increased and then decreased. The modification due to SCE-Al2O3 could overcome the undesirable impact of PES by using a bare minimum level of SCE-Al2O3. The dielectric constant ( ɛ) and dielectric loss (tan δ) as in the case of volume resistivity were initially increased and then decreased with the content of SCE-Al2O3 in the composite. The dielectric constant, dielectric loss and dielectric strength of SCE-Al2O3 (4 wt.%)/PES (5 wt.%)-MBAE nano-composite were 3.53 (100 Hz), 1.52 × 10-3 (100 Hz) and 15.66 kV/mm, respectively, which indicated that the dielectric properties of the composite fulfilled the basic requirements of electrical and insulating material. It was evident from the morphological analysis that the SCE-Al2O3 was evenly dispersed at the nanoscale; for example, the size of SCE-Al2O3 in SCE-Al2O3 (4 wt.%)/PES (5 wt.%)-MBAE measured less than 50 nm.

  19. Structure-property effects on mechanical, friction and wear properties of electron modified PTFE filled EPDM composite

    Directory of Open Access Journals (Sweden)

    2009-01-01

    Full Text Available Tribological properties of Ethylene-Propylene-Diene-rubber (EPDM containing electron modified Polytetrafluoroethylene (PTFE have been investiagted with the help of pin on disk tribometer without lubrication for a testing time of 2 hrs in atmospheric conditions at a sliding speed and applied normal load of 0.05 m•s–1 and FN = 1 N, respectively. Radiation-induced chemical changes in electron modified PTFE powders were analyzed using Electron Spin Resonance (ESR and Fourier Transform Infrared (FTIR specroscopy to characterize the effects of compatibility and chemical coupling of modified PTFE powders with EPDM on mechanical, friction and wear properties. The composites showed different friction and wear behaviour due to unique morphology, dispersion behaviour and radiation functionalization of PTFE powders. In general, EPDM reinforced with electron modified PTFE powder demonstrated improvement both in mechanical and tribological properties. However, the enhanced compatibility of PTFE powder resulting from the specific chemical coupling of PTFE powder with EPDM has been found crucial for mechanical, friction and wear properties.

  20. Modified Polyacrylic Acid-Zinc Composites: Synthesis, Characterization and Biological Activity

    Directory of Open Access Journals (Sweden)

    Mohammed Rafi Shaik

    2016-02-01

    Full Text Available Polyacrylic acid (PAA is an important industrial chemical, which has been extensively applied in various fields, including for several biomedical purposes. In this study, we report the synthesis and modification of this polymer with various phenol imides, such as succinimide, phthalimide and 1,8-naphthalimide. The as-synthesized derivatives were used to prepare polymer metal composites by the reaction with Zn+2. These composites were characterized by using various techniques, including NMR, FT-IR, TGA, SEM and DSC. The as-prepared PAA-based composites were further evaluated for their anti-microbial properties against various pathogens, which include both Gram-positive and Gram-negative bacteria and different fungal strains. The synthesized composites have displayed considerable biocidal properties, ranging from mild to moderate activities against different strains tested.

  1. A Facile Pathway to Modify Cellulose Composite Film by Reducing Wettability and Improving Barrier towards Moisture

    Directory of Open Access Journals (Sweden)

    Xiaorong Hu

    2017-01-01

    Full Text Available The hydrophilic property of cellulose is a key limiting factor for its wide application. Here, a novel solution impregnation pathway was developed to increase the hydrophobic properties of cellulose. When compared with the regenerated cellulose (RC, the composite films showed a decrease in water uptake ability towards water vapor, and an increase of the water contact angle from 29° to 65° with increasing resin content in the composites, with only a slight change in the transmittance. Furthermore, the Young’s modulus value increased from 3.2 GPa (RC film to 5.1 GPa (RCBEA50 film. The results indicated that the composites had combined the advantages of cellulose and biphenyl A epoxy acrylate prepolymer (BEA resin. The presented method has great potential for the preparation of biocomposites with improved properties. The overall results suggest that composite films can be used as high-performance packaging materials.

  2. Large grazers modify effects of aboveground-belowground interactions on small-scale plant community composition

    NARCIS (Netherlands)

    Veen, G. F. (Ciska); Geuverink, Elzemiek; Olff, Han; Schmid, Bernhard

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales

  3. Large grazers modify effects of aboveground–belowground interactions on small-scale plant community composition

    NARCIS (Netherlands)

    Veen, G.F.; Geuverink, E.; Olff, H.

    2012-01-01

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales

  4. A Facile Synthesis of a Palladium-Doped Polyaniline-Modified Carbon Nanotube Composites for Supercapacitors

    Science.gov (United States)

    Giri, Soumen; Ghosh, Debasis; Malas, Asish; Das, Chapal Kumar

    2013-08-01

    Supercapacitors have evolved as the premier choice of the era for storing huge amounts of charge in the field of energy storage devices, but it is still necessary to enhance their performance to meet the increasing requirements of future systems. This could be achieved either through advancing the interfaces of the material at the nanoscale or by using novel material compositions. We report a high-performance material composition prepared by combining a transition metal (palladium)-doped conductive polymer with multiwalled carbon nanotubes (MWCNTs). MWCNTs/palladium-doped polyaniline (MWCNTs/Pd/PANI) composites and multiwalled carbon nanotube/polyaniline (MWCNTs/PANI) composites (for comparison) were prepared via in situ oxidative polymerization of aniline monomer. The reported composites were characterized by Fourier-transform infrared (FTIR), x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) studies. FESEM and TEM studies indicated the narrow size distribution of the π-conjugated polymer-protected palladium nanoparticles on the surface of the carbon nanotubes. All the electrochemical characterizations were executed using a three-electrode system in 1 M H2SO4 electrolyte. Cyclic voltammetry (CV) analysis was performed to observe the capacitive performance and redox behavior of the composites. The ion transfer behavior and cyclic stability of the composites were investigated by electrochemical impedance spectroscopy (EIS) analysis and cyclic charge-discharge (CCD) testing, respectively. The MWCNTs/Pd/PANI composite was found to exhibit an especially high specific capacitance value of 920 F/g at scan rate of 2 mV/s.

  5. Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density

    Science.gov (United States)

    Cheng, Qian; Tang, Jie; Shinya, Norio; Qin, Lu-Chang

    2013-11-01

    Graphene and single-walled carbon nanotube (CNT) composites are explored as the electrodes for supercapacitors by coating polyaniline (PANI) nano-cones onto the graphene/CNT composite to obtain graphene/CNT-PANI composite electrode. The graphene/CNT-PANI electrode is assembled with a graphene/CNT electrode into an asymmetric pseudocapacitor and a highest energy density of 188 Wh kg-1 and maximum power density of 200 kW kg-1 are achieved. The structure and morphology of the graphene/CNT composite and the PANI nano-cone coatings are characterized by both scanning electron microscopy and transmission electron microscopy. The excellent performance of the assembled supercapacitors is also discussed and it is attributed to (i) effective utilization of the large surface area of the three-dimensional network structure of graphene-based composite, (ii) the presence of CNT in the composite preventing graphene from re-stacking, and (ii) uniform and vertically aligned PANI coating on graphene offering increased electrical conductivity.

  6. Investigation on Rubber-Modified Polybenzoxazine Composites for Lubricating Material Applications

    Science.gov (United States)

    Jubsilp, Chanchira; Taewattana, Rapiphan; Takeichi, Tsutomu; Rimdusit, Sarawut

    2015-10-01

    Effects of liquid amine-terminated butadiene-acrylonitrile (ATBN) on the properties of bisphenol-A/aniline-based polybenzoxazine (PBA-a) composites were investigated. Liquid ATBN decreased gel time and lowered curing temperature of the benzoxazine resin (BA-a). The PBA-a/ATBN-based self-lubricating composites resulted in substantial enhancement regarding their tribological, mechanical, and thermal properties. The inclusion of the ATBN at 5% by weight was found decreasing the friction coefficient and improved wear resistance of the PBA-a/ATBN composites. Flexural modulus and glass transition temperature of the PBA-a composite samples added the ATBN was constant within the range of 1-5% by weight. A plausible wear mechanism of the composites is proposed based on their worn surface morphologies. Based on the findings in this work, it seems that the obtained PBA-a/ATBN self-lubricating composites would have high potential to be used for bearing materials where low friction coefficient, high wear resistance, and modulus with good thermal property are required.

  7. Composite hydrogel based on surface modified mesoporous silica and poly[(2-acryloyloxy)ethyl trimethylammonium chloride

    International Nuclear Information System (INIS)

    Torres, Cecilia C.; Urbano, Bruno F.; Campos, Cristian H.; Rivas, Bernabé L.; Reyes, Patricio

    2015-01-01

    This work focused on the synthesis, characterization and water absorbency of a composite hydrogel based on poly[(2-acryloyloxy)ethyl trimethylammonium chloride] and mesoporous silica, MCM-41. The MCM-41 was synthesized and later surface functionalized with triethoxyvinylsilane (VTES) and 3-trimethoxysilylpropylmethacrylate (TMSPM) by a post-grafting procedure. The composite hydrogels were obtained by in-situ polymerization using a mixture of monomer, crosslinker and initiator in the presence of functionalized MCM-41. Diverse characterization techniques were used at the different stages of synthesis, namely, FT-IR, TEM, SEM, DRX, 29 Si and 13 C solid state NMR, and N 2 adsorption isotherms at 77 K. Finally, the water uptake performance of the composites was tested as a function of time, mesoporous silica loading and coupling agent used at the functionalization. The composites using non-functionalized MCM-41 reached the highest water uptake, whereas those composite with MCM-41 TMSPM exhibited the lowest sorption. - Highlights: • Hydrophilic crosslinked polymer-mesoporous silica was obtained. • Mesoporous silica MCM-41 was synthesized and functionalized with organosilane. • Functionalization of MCM-41 affects the water uptake of composite. • Mesoporous silica is covalently bound to the polymer acting as crosslinked point

  8. Composite hydrogel based on surface modified mesoporous silica and poly[(2-acryloyloxy)ethyl trimethylammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Cecilia C. [Department of Organic Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Urbano, Bruno F., E-mail: burbano@udec.cl [Department of Polymer Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Campos, Cristian H. [Department of Organic Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Rivas, Bernabé L. [Department of Polymer Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Reyes, Patricio [Department of Physical Chemistry, Faculty of Chemical Science, University of Concepción (Chile)

    2015-02-15

    This work focused on the synthesis, characterization and water absorbency of a composite hydrogel based on poly[(2-acryloyloxy)ethyl trimethylammonium chloride] and mesoporous silica, MCM-41. The MCM-41 was synthesized and later surface functionalized with triethoxyvinylsilane (VTES) and 3-trimethoxysilylpropylmethacrylate (TMSPM) by a post-grafting procedure. The composite hydrogels were obtained by in-situ polymerization using a mixture of monomer, crosslinker and initiator in the presence of functionalized MCM-41. Diverse characterization techniques were used at the different stages of synthesis, namely, FT-IR, TEM, SEM, DRX, {sup 29}Si and {sup 13}C solid state NMR, and N{sub 2} adsorption isotherms at 77 K. Finally, the water uptake performance of the composites was tested as a function of time, mesoporous silica loading and coupling agent used at the functionalization. The composites using non-functionalized MCM-41 reached the highest water uptake, whereas those composite with MCM-41 TMSPM exhibited the lowest sorption. - Highlights: • Hydrophilic crosslinked polymer-mesoporous silica was obtained. • Mesoporous silica MCM-41 was synthesized and functionalized with organosilane. • Functionalization of MCM-41 affects the water uptake of composite. • Mesoporous silica is covalently bound to the polymer acting as crosslinked point.

  9. Bond Strength of Silorane- and Methacrylate-Based Composites to Resin-Modified Glass Ionomers

    Science.gov (United States)

    2012-01-13

    genre was given the name of resin-modified glass ionomers (RMGI) (Antonucci et al., 1988). The addition of resin improved many of the drawbacks of...entire surface for 15 seconds then gentle air was used to create an even film over the sample. This layer was cured for 10 seconds using the Bluephase

  10. Surface modified nano-hydroxyapatite/poly(lactide acid) composite and its osteocyte compatibility

    International Nuclear Information System (INIS)

    Diao Huaxin; Si Yunfeng; Zhu Aiping; Ji Lijun; Shi Hongchan

    2012-01-01

    In this study, melt blending was used to fabricate poly(lactic acid) (PLA)/ hydroxyapatite (HA) nanocomposites. Surface modifying HA nanoparticles (mHA) with dodecyl alcohol through esterification reaction could effectively improve the dispersibility of HA nanoparticles in PLA matrix and the interfacial interactions between PLA and HA nanoparticles, as revealed by field emission scanning electron microscopy (FESEM), rheology analysis, and dynamic mechanical thermal analysis (DMTA). mHA/PLA nanocomposite film demonstrated better cartilage cell attachment, spreading and proliferation than that of PLA and HA/PLA film. The good cytocompatibility could be due to the good dispersibility of the osteoinductive HA nanoparticles, good interfacial interactions between PLA and HA nanoparticles, and balanced hydrophobic/hydrophilic property. This newly developed mHA/PLA nanocomposites may be considered for bone tissue engineering applications. - Highlights: ► Dodecyl alcohol modifies HA nanoparticles via esterification reaction. ► The modified HA results in good dispersibility in PLA matrix. ► The interfacial interactions are improved because of the modified HA. ► The addition of HA and mHA results in good cell affinity and biocompatibility.

  11. Effects of modified detonation nanodiamonds on the biochemical composition of human blood.

    Science.gov (United States)

    Baron, A V; Puzyr, A P; Baron, I I; Bondar, V S

    2013-04-01

    In vitro experiments showed that protein and non-protein components of human blood serum could be absorbed on the surface of modified nanodiamonds obtained by detonation synthesis. The prospects of using nanodiamond as a new absorbent for hemodialysis, plasmapheresis, and laboratory diagnostics are discussed.

  12. Thermal fatigue behavior of C/C composites modified by SiC-MoSi2-CrSi2 coating

    International Nuclear Information System (INIS)

    Chu Yanhui; Fu Qiangang; Li Hejun; Li Kezhi

    2011-01-01

    Highlights: → The low-density C/C composites were modified by SiC-MoSi 2 -CrSi 2 multiphase coating by pack cementation. → The thermal fatigue behavior of the modified C/C composites was studied after undergoing thermal cycling for 20 times under the different environments. → The decrease of the flexural strength of the modified C/C composites during thermal cycle in air was primarily attributed to the partial oxidation of the modified C/C samples. - Abstract: Carbon/carbon (C/C) composites were modified by SiC-MoSi 2 -CrSi 2 multiphase coating by pack cementation, and their thermal fatigue behavior under thermal cycling in Ar and air environments was investigated. The modified C/C composites were characterized by scanning electron microscopy and X-ray diffraction. Results of tests show that, after 20-time thermal cycles between 1773 K and room temperature in Ar environment, the flexural strength of modified C/C samples decreased lightly and the percentage of remaining strength was 94.92%. While, after thermal cycling between 1773 K and room temperature in air for 20 times, the weight loss of modified C/C samples was 5.1%, and the flexural strength of the modified C/C samples reduced obviously and the percentage of remaining strength was only 75.22%. The fracture mode of modified C/C samples changed from a brittle behavior to a pseudo-plastic one as the service environment transformed from Ar to air. The decrease of the flexural strength during thermal cycle in air was primarily attributed to the partial oxidation of modified C/C samples.

  13. Physical properties of a high molecular weight hydroxyl-terminated polydimethylsiloxane modified castor oil based polyurethane/epoxy interpenetrating polymer network composites

    Science.gov (United States)

    Chen, Shoubing; Wang, Qihua; Wang, Tingmei

    2011-06-01

    A series of polyurethane (PU)/epoxy resin (EP) graft interpenetrating polymer network (IPN) composites modified by a high molecular weight hydroxyl-terminated polydimethylsiloxane (HTPDMS) were prepared. The effects of HTPDMS content on the phase structure, damping properties and the glass transition temperature ( Tg) of the HTPDMS-modified PU/EP IPN composites were studied by scanning electron microscopy (SEM) and dynamic mechanical analysis (DMA). Thermogravimetric analysis (TGA) showed that the thermal decomposition temperature of the composites increased with the increase of HTPDMS content. The tensile strength and impact strength of the IPN composites were also significantly improved, especially when the HTPDMS content was 10%. The modified IPN composites were expected to be used as structural damping materials in the future.

  14. Reactivity of sulfide-containing silane toward boehmite and in situ modified rubber/boehmite composites by the silane

    Science.gov (United States)

    Lin, Tengfei; Zhu, Lixin; Chen, Weiwei; Wu, Siwu; Guo, Baochun; Jia, Demin

    2013-09-01

    The silanization reaction between boehmite (BM) nanoplatelets and bis-[3-(triethoxysilyl)-propyl]-tetrasulfide (TESPT) was characterized in detail. Via such modification process, the grafted sulfide moieties on the BM endow reactivity toward rubber and substantially improved hydrophobicity for BM. Accordingly, TESPT was employed as in situ modifier for the nitrile rubber (NBR)/BM compounds to improve the mechanical properties of the reinforced vulcanizates. The effects of BM content and in situ modification on the mechanical properties, curing characteristics and morphology were investigated. BM was found to be effective in improving the mechanical performance of NBR vulcanizates. The NBR/BM composites could be further strengthened by the incorporation of TESPT. The interfacial adhesion of NBR/BM composites was obviously improved by the addition of TESPT. The substantially improved mechanical performance was correlated to the interfacial reaction and the improved dispersion of BM in rubber matrix.

  15. Enhanced proton conductivity by the influence of modified montmorillonite on poly (vinyl alcohol) based blend composite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Palani, P. Bahavan, E-mail: bahavanpalani@gmail.com; Abidin, K. Sainul [Department of Physics, University College of Engineering, Anna University, Dindigul-624622 (India); Kannan, R., E-mail: rksrsrk@gmail.com [Department of Physics, University College of Engineering, Anna University, Dindigul-624622 (India); Department of Material Sciences & Engineering, Cornell University, Ithaca, NewYork-14853 (United States); Rajashabala, S. [School of Physics, Madurai Kamaraj University, Madurai-625021 (India); Sivakumar, M. [School of Physics, Alagappa University, Karaikudi-630004 (India)

    2016-05-23

    The highest proton conductivity value of 0.0802 Scm{sup −1} is obtained at 6 wt% of protonated MMT added to the PVA/PEG blends. The polymer blend composite membranes are prepared with varied concentration of Poly vinyl alcohol (PVA), Poly ethylene glycol (PEG) and Montmorillonite (MMT) by solution casting method. The Na{sup +} MMT was modified (protonated) to H{sup +} MMT with ion exchange process. The prepared membranes were characterized by using TGA, FTIR, XRD, Ion Exchange Capacity, Water/Methanol uptake, swelling ratio and proton conductivity. The significant improvements in the hydrolytic stability were observed. In addition, thermal stability of the composite membranes were improved and controlled by the addition of MMT. All the prepared membranes are shown appreciable values of proton conductivity at room temperature with 100% relative humidity.

  16. Nano-modified cement composites and its applicability as concrete repair material

    Science.gov (United States)

    Manzur, Tanvir

    Nanotechnology or Nano-science, considered the forth industrial revolution, has received considerable attention in the past decade. The physical properties of a nano-scaled material are entirely different than that of bulk materials. With the emerging nanotechnology, one can build material block atom by atom. Therefore, through nanotechnology it is possible to enhance and control the physical properties of materials to a great extent. Composites such as concrete materials have very high strength and Young's modulus but relatively low toughness and ductility due to their covalent bonding between atoms and lacking of slip systems in the crystal structures. However, the strength and life of concrete structures are determined by the microstructure and mass transfer at nano scale. Cementitious composites are amenable to manipulation through nanotechnology due to the physical behavior and size of hydration products. Carbon nanotubes (CNT) are nearly ideal reinforcing agent due to extremely high aspect ratios and ultra high strengths. So there is a great potential to utilize CNT in producing new cement based composite materials. It is evident from the review of past literature that mechanical properties of nanotubes reinforced cementitious composites have been highly variable. Some researches yielded improvement in performance of CNT-cement composites as compared to plain cement samples, while other resulted in inconsequential changes in mechanical properties. Even in some cases considerable less strengths and modulus were obtained. Another major difficulty of producing CNT reinforced cementitious composites is the attainment of homogeneous dispersion of nanotubes into cement but no standard procedures to mix CNT within the cement is available. CNT attract more water to adhere to their surface due to their high aspect ratio which eventually results in less workability of the cement mix. Therefore, it is extremely important to develop a suitable mixing technique and an

  17. Use of Winemaking Supplements To Modify the Composition and Sensory Properties of Shiraz Wine.

    Science.gov (United States)

    Li, Sijing; Bindon, Keren; Bastian, Susan E P; Jiranek, Vladimir; Wilkinson, Kerry L

    2017-02-22

    Wine quality can be significantly affected by tannin and polysaccharide composition, which can in turn be influenced by grape maturity and winemaking practices. This study explored the impact of three commercial wine additives, a maceration enzyme, an enotannin, and a mannoprotein, on the composition and sensory properties of red wine, in particular, in mimicking the mouthfeel associated with wines made from riper grapes. Shiraz grapes were harvested at 24 and 28 °Brix and the former vinified with commercial additives introduced either individually or in combination. Compositional analyses of finished wines included tannin and polysaccharide concentration, composition and size distribution by high-performance liquid chromatography, whereas the sensory profiles of wines were assessed by descriptive analysis. As expected, wines made from riper grapes were naturally higher in tannin and mannoprotein than wines made from grapes harvested earlier. Enzyme addition resulted in a significantly higher concentration and average molecular mass of wine tannin, which increased wine astringency. Conversely, mannoprotein addition reduced tannin concentration and astringency. Addition of enotannin did not meaningfully influence wine composition or sensory properties.

  18. Mechanical Properties of Non-Woven Polyester Fibers and Polymer-Modified Bitumen Composites

    Directory of Open Access Journals (Sweden)

    V. Hadadi

    2007-12-01

    Full Text Available Blown bitumen (110/10 was mixed with heavy vacuum slops (H.V.S, 60/70 penetration grade bitumen and recycled isotactic polypropylene (iPP at different levels. The resulting resins were used to impregnate non-woven poly(ethylene terephthalate fibers to form composites. The modulus and penetration grade of the resulting bituminous resins were determined. It was found that these bituminous resins drastically affect the modulus of the composites formed by low-Young’s modulus fibers such as polyesters. Consequently, interactions between resin and fibers and the correlation length of asphalthenes (in absence of iPP and interdiffused coalescence and segregated network of asphalthenes (in presence of iPP result in a non-linear behavior of composite’s modulus. The behavior of the composites with or without iPP is controlled by resin toughness and resin interactions with the fiber through the viscosity. Comparison of the experimental composite modulus data with the theoretical modulus data revealed that the Takayanangi’s model best predicts the behavior of these composites. The adjustment factors of this model were reported and proposed as an indication of fiber-resin interaction. It was also found that the modulus of fibers is affected by toughness, viscosity and the iPP content of the bituminous resin.

  19. Excellent Temperature Performance of Spherical LiFePO4/C Composites Modified with Composite Carbon and Metal Oxides

    Directory of Open Access Journals (Sweden)

    Bao Zhang

    2014-01-01

    Full Text Available Nanosized spherical LiFePO4/C composite was synthesized from nanosized spherical FePO4·2H2O, Li2C2O4, aluminum oxide, titanium oxide, oxalic acid, and sucrose by binary sintering process. The phases and morphologies of LiFePO4/C were characterized using SEM, TEM, CV, EIS, EDS, and EDX as well as charging and discharging measurements. The results showed that the as-prepared LiFePO4/C composite with good conductive webs from nanosized spherical FePO4·2H2O exhibits excellent electrochemical performances, delivering an initial discharge capacity of 161.7 mAh·g−1 at a 0.1 C rate, 152.4 mAh·g−1 at a 1 C rate and 131.7 mAh·g−1 at a 5 C rate, and the capacity retention of 99.1%, 98.7%, and 95.8%, respectively, after 50 cycles. Meanwhile, the high and low temperature performance is excellent for 18650 battery, maintaining capacity retention of 101.7%, 95.0%, 88.3%, and 79.3% at 55°C, 0°C, −10°C, and −20°C by comparison withthat of room temperature (25°C at the 0.5 C rate over a voltage range of 2.2 V to 3.6 V, respectively.

  20. Excellent temperature performance of spherical LiFePO4/C composites modified with composite carbon and metal oxides.

    Science.gov (United States)

    Zhang, Bao; Zeng, Tao; Zhang, Jiafeng; Peng, Chunli; Zheng, Junchao; Chen, Guomin

    2014-01-01

    Nanosized spherical LiFePO4/C composite was synthesized from nanosized spherical FePO4 ·2H2O, Li2C2O4, aluminum oxide, titanium oxide, oxalic acid, and sucrose by binary sintering process. The phases and morphologies of LiFePO4/C were characterized using SEM, TEM, CV, EIS, EDS, and EDX as well as charging and discharging measurements. The results showed that the as-prepared LiFePO4/C composite with good conductive webs from nanosized spherical FePO4 ·2H2O exhibits excellent electrochemical performances, delivering an initial discharge capacity of 161.7 mAh·g(-1) at a 0.1 C rate, 152.4 mAh·g(-1) at a 1 C rate and 131.7 mAh·g(-1) at a 5 C rate, and the capacity retention of 99.1%, 98.7%, and 95.8%, respectively, after 50 cycles. Meanwhile, the high and low temperature performance is excellent for 18650 battery, maintaining capacity retention of 101.7%, 95.0%, 88.3%, and 79.3% at 55°C, 0°C, -10°C, and -20°C by comparison withthat of room temperature (25°C) at the 0.5 C rate over a voltage range of 2.2 V to 3.6 V, respectively.

  1. Highly Stable and Flexible Pressure Sensors with Modified Multi-Walled Carbon Nanotube/Polymer Composites for Human Monitoring.

    Science.gov (United States)

    He, Yin; Ming, Yue; Li, Wei; Li, Yafang; Wu, Maoqi; Song, Jinzhong; Li, Xiaojiu; Liu, Hao

    2018-04-26

    A facile method for preparing an easy processing, repeatable and flexible pressure sensor was presented via the synthesis of modified multi-walled carbon nanotubes (m-MWNTs) and polyurethane (PU) films. The surface modification of multi-walled carbon nanotubes (MWNTs) simultaneously used a silane coupling agent (KH550) and sodium dodecyl benzene sulfonate (SDBS) to improve the dispersibility and compatibility of the MWNTs in a polymer matrix. The electrical property and piezoresistive behavior of the m-MWNT/PU composites were compared with raw multi-walled carbon nanotube (raw MWNT)/PU composites. Under linear uniaxial pressure, the m-MWNT/PU composite exhibited 4.282%kPa −1 sensitivity within the pressure of 1 kPa. The nonlinear error, hysteresis error and repeatability error of the piezoresistivity of m-MWNT/PU decreased 9%, 16.72% and 54.95% relative to raw MWNT/PU respectively. Therefore, the piezoresistive response of m-MWNT/PU had better stability than that of raw MWNT/PU composites. The m-MWNT/PU sensors could be utilized in wearable devices for body movement detection, monitoring of respiration and pressure detection in garments.

  2. Cu–Co–O nano-catalysts as a burn rate modifier for composite solid propellants

    Directory of Open Access Journals (Sweden)

    D. Chaitanya Kumar Rao

    2016-08-01

    Full Text Available Nano-catalysts containing copper–cobalt oxides (Cu–Co–O have been synthesized by the citric acid (CA complexing method. Copper (II nitrate and Cobalt (II nitrate were employed in different molar ratios as the starting reactants to prepare three types of nano-catalysts. Well crystalline nano-catalysts were produced after a period of 3 hours by the calcination of CA–Cu–Co–O precursors at 550 °C. The phase morphologies and crystal composition of synthesized nano-catalysts were examined using Scanning Electron Microscope (SEM, Energy Dispersive Spectroscopy (EDS and Fourier Transform Infrared Spectroscopy (FTIR methods. The particle size of nano-catalysts was observed in the range of 90 nm–200 nm. The prepared nano-catalysts were used to formulate propellant samples of various compositions which showed high reactivity toward the combustion of HTPB/AP-based composite solid propellants. The catalytic effects on the decomposition of propellant samples were found to be significant at higher temperatures. The combustion characteristics of composite solid propellants were significantly improved by the incorporation of nano-catalysts. Out of the three catalysts studied in the present work, CuCo-I was found to be the better catalyst in regard to thermal decomposition and burning nature of composite solid propellants. The improved performance of composite solid propellant can be attributed to the high crystallinity, low agglomeration and lowering the decomposition temperature of oxidizer by the addition of CuCo-I nano-catalyst.

  3. Directed synthesis of bio-inorganic vanadium oxide composites using genetically modified filamentous phage

    International Nuclear Information System (INIS)

    Mueller, Michael; Baik, Seungyun; Jeon, Hojeong; Kim, Yuchan; Kim, Jungtae; Kim, Young Jun

    2015-01-01

    Highlights: • Phage is an excellent seeding for bio-templates for environmentally benign vanadium oxide nanocomposite synthesis. • The synthesized bio-inorganic vanadium oxide showed photodegradation activities. • The fabricated wt phage/vanadium oxide composite exhibited bundle-like structure. • The fabricated RSTB-phage/vanadium oxide composite exhibited a ball with a fiber-like nanostructure. • The virus/vanadium oxide composite could be applied in photocatalysts, sensors and nanoelectronic applications. - Abstract: The growth of crystalline vanadium oxide using a filamentous bacteriophage template was investigated using sequential incubation in a V 2 O 5 precursor. Using the genetic modification of the bacteriophage, we displayed two cysteines that constrained the RSTB-1 peptide on the major coat protein P8, resulting in vanadium oxide crystallization. The phage-driven vanadium oxide crystals with different topologies, microstructures, photodegradation and vanadium oxide composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), quartz microbalance and dissipation (QCM-D) and X-ray photoelectron spectroscopy (XPS). Non-specific electrostatic attraction between a wild-type phage (wt-phage) and vanadium cations in the V 2 O 5 precursor caused phage agglomeration and fiber formation along the length of the viral scaffold. As a result, the addition of recombinant phage (re-phage) in V 2 O 5 precursors formed heterogeneous structures, which led to efficient condensation of vanadium oxide crystal formation in lines, shown by QCM-D analysis. Furthermore, re-phage/V x O x composites showed significantly enhanced photodegradation activities compared with the synthesized wt-phage-V 2 O 5 composite under illumination. This study demonstrates that peptide-mediated vanadium oxide mineralization is governed by a complicated interplay of peptide sequence, local structure, kinetics and the presence of a mineralizing

  4. Thermal analysis of polypropylene modified by gamma irradiation composites under outdoor conditions

    International Nuclear Information System (INIS)

    Komatsu, Luiz G.H.; Oliani, Washington L.; Lugao, Ademar B.; Parra, Duclerc F.

    2015-01-01

    This work reports the influence of the clay in the degradation process of the HMSPP.The polypropylene (PP) was irradiated under acetylene atmosphere in gamma irradiation source ( 60 Co) to obtain the HMSPP (high melt strength polypropylene). Composites of HMSPP were processed in twin-screw extruder with clay Cloisite 20A and Maleic Anhydride (PP-g-MA) as coupling agent. The obtained composites were exposed under outdoor conditions for 6 months. The ageing effects were characterized by Differential Scanning Calorimetry (DSC), Thermogravimetry Analysis (TGA). Chemical oxidation was evaluated by Carbonyl Index (IC) through infrared Spectroscopy (FT-IR). The results showed correlation between carbonyl index and ageing time. (author)

  5. Thermal analysis of polypropylene modified by gamma irradiation composites under outdoor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Luiz G.H.; Oliani, Washington L.; Lugao, Ademar B.; Parra, Duclerc F., E-mail: dfparra@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This work reports the influence of the clay in the degradation process of the HMSPP.The polypropylene (PP) was irradiated under acetylene atmosphere in gamma irradiation source ({sup 60}Co) to obtain the HMSPP (high melt strength polypropylene). Composites of HMSPP were processed in twin-screw extruder with clay Cloisite 20A and Maleic Anhydride (PP-g-MA) as coupling agent. The obtained composites were exposed under outdoor conditions for 6 months. The ageing effects were characterized by Differential Scanning Calorimetry (DSC), Thermogravimetry Analysis (TGA). Chemical oxidation was evaluated by Carbonyl Index (IC) through infrared Spectroscopy (FT-IR). The results showed correlation between carbonyl index and ageing time. (author)

  6. Sensing nitric oxide with a carbon nanofiber paste electrode modified with a CTAB and nafion composite

    International Nuclear Information System (INIS)

    Zheng, Dongyun; Liu, Xiaojun; Zhu, Shanying; Cao, Huimin; Chen, Yaguang; Hu, Shengshui

    2015-01-01

    We describe an electrochemical sensor for nitric oxide that was obtained by modifying the surface of a nanofiber carbon paste microelectrode with a film composed of hexadecyl trimethylammonium bromide and nafion. The modified microelectrode displays excellent catalytic activity in the electrochemical oxidation of nitric oxide. The mechanism was studied by scanning electron microscopy and cyclic voltammetry. Under optimal conditions, the oxidation peak current at a working voltage of 0.75 V (vs. SCE) is related to the concentration of nitric oxide in the 2 nM to 0.2 mM range, and the detection limit is as low as 2 nM (at an S/N ratio of 3). The sensor was successfully applied to the determination of nitric oxide released from mouse hepatocytes. (author)

  7. The development of a modified composition of ceramic mass for the production of bricks

    OpenAIRE

    Torosyan, Vera Fedorovna; Torosyan, Elena Samvelovna; Yakutova, V. A.; Antyufeev, V. K.

    2016-01-01

    The need to improve the technical level of production of construction materials, their product range, to improve product quality and reduce its cost requires the expansion of the raw material base, the use of resource and energy saving technology and design solutions. To implement all these it is necessary to conduct a more detailed study of the properties of ceramic materials and to investigate the behavior-modifying components of their formulations. This paper presents the development of th...

  8. Submerged macrophytes modify bacterial community composition in sediments in a large, shallow, freshwater lake.

    Science.gov (United States)

    Zhao, Da-Yong; Liu, Peng; Fang, Chao; Sun, Yi-Meng; Zeng, Jin; Wang, Jian-Qun; Ma, Ting; Xiao, Yi-Hong; Wu, Qinglong L

    2013-04-01

    Submerged aquatic macrophytes are an important part of the lacustrine ecosystem. In this study, the bacterial community compositions in the rhizosphere sediments from three kinds of submerged macrophytes (Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans) were investigated to determine whether submerged macrophytes could drive the variation of bacterial community in the eutrophic Taihu Lake, China. Molecular techniques, including terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene and clone libraries, were employed to analyze the bacterial community compositions. Remarkable differences of the T-RFLP patterns were observed among the different samples, and the results of LIBSHUFF analysis also confirmed that the bacterial community compositions in the rhizosphere sediments of three kinds of submerged macrophytes were statistically different from that of the unvegetated sediment. Acidobacteria, Deltaproteobacteria, and Betaproteobacteria were the dominant bacterial groups in the rhizosphere sediments of Ceratophyllum demersum, Potamogeton crispus, and Vallisneria natans, respectively, accounting for 15.38%, 29.03%, and 18.00% of the total bacterial abundances. Our study demonstrated that submerged macrophytes could influence the bacterial community compositions in their rhizosphere sediments, suggesting that macrophytes have an effect on the cycling and transportation of nutrients in the freshwater lake ecosystem.

  9. Modified creep and shrinkage prediction model B3 for serviceability limit state analysis of composite slabs

    Science.gov (United States)

    Gholamhoseini, Alireza

    2016-03-01

    Relatively little research has been reported on the time-dependent in-service behavior of composite concrete slabs with profiled steel decking as permanent formwork and little guidance is available for calculating long-term deflections. The drying shrinkage profile through the thickness of a composite slab is greatly affected by the impermeable steel deck at the slab soffit, and this has only recently been quantified. This paper presents the results of long-term laboratory tests on composite slabs subjected to both drying shrinkage and sustained loads. Based on laboratory measurements, a design model for the shrinkage strain profile through the thickness of a slab is proposed. The design model is based on some modifications to an existing creep and shrinkage prediction model B3. In addition, an analytical model is developed to calculate the time-dependent deflection of composite slabs taking into account the time-dependent effects of creep and shrinkage. The calculated deflections are shown to be in good agreement with the experimental measurements.

  10. Ceramic core–shell composites with modified mechanical properties prepared by thermoplastic co-extrusion

    Czech Academy of Sciences Publication Activity Database

    Kaštyl, J.; Chlup, Zdeněk; Clemens, F.; Trunec, M.

    2015-01-01

    Roč. 35, č. 10 (2015), s. 2873-2881 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Alumina * Zirconia toughened alumina * Co-extrusion * Composite * Mechanical properties1 Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.933, year: 2015

  11. Pore structure modified diatomite-supported PEG composites for thermal energy storage.

    Science.gov (United States)

    Qian, Tingting; Li, Jinhong; Deng, Yong

    2016-09-01

    A series of novel composite phase change materials (PCMs) were tailored by blending PEG and five kinds of diatomite via a vacuum impregnation method. To enlarge its pore size and specific surface area, different modification approaches including calcination, acid treatment, alkali leaching and nano-silica decoration on the microstructure of diatomite were outlined. Among them, 8 min of 5 wt% NaOH dissolution at 70 °C has been proven to be the most effective and facile. While PEG melted during phase transformation, the maximum load of PEG could reach 70 wt.%, which was 46% higher than that of the raw diatomite. The apparent activation energy of PEG in the composite was 1031.85 kJ·mol(-1), which was twice higher than that of the pristine PEG. Moreover, using the nano-silica decorated diatomite as carrier, the maximum PEG load was 66 wt%. The composite PCM was stable in terms of thermal and chemical manners even after 200 cycles of melting and freezing. All results indicated that the obtained composite PCMs were promising candidate materials for building applications due to its large latent heat, suitable phase change temperature, excellent chemical compatibility, improved supercooling extent, high thermal stability and long-term reliability.

  12. Effect of Interfacial Modifying on Thermo-physical Properties of SiCp/Cu Composites

    Directory of Open Access Journals (Sweden)

    LIU Meng

    2016-08-01

    Full Text Available SiCp/Cu composites were successfully fabricated by vacuum hot-pressing method. Molybdenum coating was deposited on the surface of silicon carbide by sol-gel method. The effects of the interfacial design on thermo-physical properties of SiCp/Cu composites were studied. The results indicate that:continuous and uniform MoO3 coating can be deposited on the surface of silicon carbide by peroxomolybdic acid sol-gel system, and the best processing parameters are as follows:SiC:MoO3=5:1(mass ratio, H2O2:C2H5OH=1:1(volume ratio, and surface pretreatment with acetone and hydrofluoric acid is good to the deposition and growth of MoO3 coating. After hydrogen reduction at 540℃ for 90min the MoO3 is changed into MoO2, and then hydrogen reduction at 940℃ for 90min the MoO2 is changed into Mo absolutely, and the Mo coating is continuous and uniform. SiCp/Cu composites prepared by vacuum hot-pressing method show a compact and uniform microstructure, and the thermal conductivity of the composites is increased obviously after the Mo coating interfacial modification, which can reach 214.16W·m-1·K-1 when the volume of silicon carbide is about 50%.

  13. Pore structure modified diatomite-supported PEG composites for thermal energy storage

    Science.gov (United States)

    Qian, Tingting; Li, Jinhong; Deng, Yong

    2016-09-01

    A series of novel composite phase change materials (PCMs) were tailored by blending PEG and five kinds of diatomite via a vacuum impregnation method. To enlarge its pore size and specific surface area, different modification approaches including calcination, acid treatment, alkali leaching and nano-silica decoration on the microstructure of diatomite were outlined. Among them, 8 min of 5 wt% NaOH dissolution at 70 °C has been proven to be the most effective and facile. While PEG melted during phase transformation, the maximum load of PEG could reach 70 wt.%, which was 46% higher than that of the raw diatomite. The apparent activation energy of PEG in the composite was 1031.85 kJ·mol-1, which was twice higher than that of the pristine PEG. Moreover, using the nano-silica decorated diatomite as carrier, the maximum PEG load was 66 wt%. The composite PCM was stable in terms of thermal and chemical manners even after 200 cycles of melting and freezing. All results indicated that the obtained composite PCMs were promising candidate materials for building applications due to its large latent heat, suitable phase change temperature, excellent chemical compatibility, improved supercooling extent, high thermal stability and long-term reliability.

  14. Study on performance of composite polymer films doped with modified molecular sieve for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang Yuqing; Zhang Guodong; Du Tingdong; Zhang Lizao

    2010-01-01

    To improve the tensile strength and ionic conductivity of composite polymer films for lithium-ion batteries, molecular sieves of MCM-41 modified with sulfated zirconia (SO 4 2- /ZrO 2 , SZ), denoted as MCM-41/SZ, were doped into a poly(vinylidene fluoride) (PVdF) matrix to fabricate MCM-41/SZ composite polymer films, denoted as MCM-41/SZ films. Examination by transmission electron microscope (TEM) shows that modified molecular sieves have lower aggregation and a more porous structure. Tensile strength tests were carried out to investigate the mechanical performance of MCM-41/SZ films, and then the electrochemical performance of batteries with MCM-41/SZ films as separators was tested. The results show that the tensile strength (σ t ) of MCM-41/SZ film was up to 7.8 MPa; the ionic conductivity of MCM-41/SZ film was close to 10 -3 S cm -1 at room temperature; and the coulombic efficiency of the assembled lithium-ion battery was 92% at the first cycle and reached as high as 99.99% after the 20th cycle. Meanwhile, the charge-discharge voltage plateau of the lithium-ion battery presented a stable state. Therefore, MCM-41/SZ films are a good choice as separators for lithium-ion batteries due to their high tensile strength and ionic conductivity.

  15. Physico-chemical properties of modified inter-polymer complexes and composites

    International Nuclear Information System (INIS)

    Khafizov, M.M.

    2004-01-01

    Full text: Inter-polymer complexes (IC) are rather perspective and can occupy the important place in technology of materials, as find out a number of the most valuable properties. In essence, they are new polymeric materials with a complex of new qualities and operational characteristics. In the present work the influence of a nature and structure of cooperating components both on structure, and on properties of received final products is investigated. It is shown new opportunities of use of the IC for reception composite materials formed IC on the physical properties, rather close to amorphous compounds. The opportunity of reception polymeric composite materials with the given properties and structure is shown; the purposeful regulation of process of hardening inter-polymeric composite materials with disperse fillers of a various nature and contents is established. The properties of such composite materials are determined by amount of entered components, both their distribution and chemical nature of a filler, that allows to increase stability properties in 2.5-3 times. By using phenomenological analysis of the contact phenomena the differential equations are made which are used for the analysis of VAC sandwich-structures metal-IC-metal. In a range of voltage V=0 -1 -10 2 V the experimental VAC are described by dependences close to Ohmic J∼V n , n=1. It is shown that the presence of breaks σ=f(T) at temperature ∼ 300 K specifies on ionic character of conductivity of samples. The chemical resistance of inter-polymeric composites in relation to water, to a solution of NaCl and 'to aggressive environment' is comprehensively characterized. The optimum degree of filling of the fillers Cv=2-3 is determined at a specific surface of fillers 0.2-0.3 m 2 /g

  16. Study of samarium modified lead zirconate titanate and nickel zinc ferrite composite system

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Rekha [Department of Physics, SD PG College, Panipat 132103 (India); School of Physics and Materials Science, Thapar University, Patiala 147004 (India); Juneja, J.K., E-mail: jk_juneja@yahoo.com [Department of Physics, Hindu College, Sonepat 131001 (India); Singh, Sangeeta [Department of Physics, GVM Girls College, Sonepat 131001 (India); Raina, K.K. [School of Physics and Materials Science, Thapar University, Patiala 147004 (India); Prakash, Chandra [Solid State Physics Laboratory, Timarpur, Delhi 110054 (India)

    2015-03-15

    In the present work, composites of samarium substituted lead zirconate titanate and nickel zinc ferrite with compositional formula 0.95Pb{sub 1−3x/2} Sm{sub x}Zr{sub 0.65}Ti{sub 0.35}O{sub 3}–0.05Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} (x=0, 0.01, 0.02 and 0.03) were prepared by the conventional solid state route. X-ray diffraction analysis was carried out to confirm the coexistence of individual phases. Microstructural study was done by using scanning electron microscope. Dielectric constant and loss were studied as a function of temperature and frequency. To study ferroelectric and magnetic properties of the composite samples, corresponding P–E and M–H hysteresis loops were recorded. Change in magnetic properties of electrically poled composite sample (x=0.02) was studied to confirm the magnetoelectric (ME) coupling. ME coefficient (dE/dH) of the samples (x=0 and 0.02) was measured as a function of DC magnetic field. - Highlights: • We are reporting the effect of Sm substitution on PZT–NiZn ferrite composites. • Observation of both P–E and M–H loops confirms ferroelectric and magnetic ordering. • With Sm substitution, significant improvement in properties was observed. • Increase in magnetization for electrically poled sample is evidence of ME coupling. • Electric polarization is generated by applying magnetic field.

  17. Preparation of Cerium (III) 12-tungstophosphoric acid/ordered mesoporous carbon composite modified electrode and its electrocatalytic properties

    International Nuclear Information System (INIS)

    Liu Lin; Ndamanisha, Jean Chrysostome; Bai Jing; Guo Liping

    2010-01-01

    In this work, a novel structured Cerium (III) 12-tungstophosphoric acid (CePW)/ordered mesoporous carbon (OMC) composite is synthesized. The characterization of the material by the Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical characterization shows that the novel CePW/OMC composite has improved properties based on the combination of CePW and OMC properties. CePW/OMC can be used to modify the glassy carbon (GC) electrode and the CePW/OMC/GC modified electrode shows an enhanced electrocatalytic activity. This property can be applied in the determination of some biomolecules. Especially, the detection and determination of the guanine (G) in the presence of adenine (A) is achieved. The catalytic current of G versus its concentration shows a good linearity with two good linear ranges from 4.0 x 10 -6 to 8.0 x 10 -5 M and from 8.0 x 10 -5 to 1.9 x 10 -3 M (correlation coefficient = 0.999 and 0.996) with a detection limit of 5.7 x 10 -9 M (S/N = 3). The linear range for adenine is 4.0 x 10 -6 -7.0 x 10 -4 M with a detection limit of 7.45 x 10 -8 M. With good stability and reproducibility, the present CePW/OMC/GC modified electrode should be a good model for constructing a novel and promising electrochemical sensing platform for further electrochemical detection of other biomolecules.

  18. Directed synthesis of bio-inorganic vanadium oxide composites using genetically modified filamentous phage

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Michael; Baik, Seungyun [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany); Jeon, Hojeong; Kim, Yuchan [Center for Biomaterials, Biomedical Research Institute Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, Jungtae [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany); Kim, Young Jun, E-mail: youngjunkim@kist-europe.de [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany)

    2015-05-15

    Highlights: • Phage is an excellent seeding for bio-templates for environmentally benign vanadium oxide nanocomposite synthesis. • The synthesized bio-inorganic vanadium oxide showed photodegradation activities. • The fabricated wt phage/vanadium oxide composite exhibited bundle-like structure. • The fabricated RSTB-phage/vanadium oxide composite exhibited a ball with a fiber-like nanostructure. • The virus/vanadium oxide composite could be applied in photocatalysts, sensors and nanoelectronic applications. - Abstract: The growth of crystalline vanadium oxide using a filamentous bacteriophage template was investigated using sequential incubation in a V{sub 2}O{sub 5} precursor. Using the genetic modification of the bacteriophage, we displayed two cysteines that constrained the RSTB-1 peptide on the major coat protein P8, resulting in vanadium oxide crystallization. The phage-driven vanadium oxide crystals with different topologies, microstructures, photodegradation and vanadium oxide composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), quartz microbalance and dissipation (QCM-D) and X-ray photoelectron spectroscopy (XPS). Non-specific electrostatic attraction between a wild-type phage (wt-phage) and vanadium cations in the V{sub 2}O{sub 5} precursor caused phage agglomeration and fiber formation along the length of the viral scaffold. As a result, the addition of recombinant phage (re-phage) in V{sub 2}O{sub 5} precursors formed heterogeneous structures, which led to efficient condensation of vanadium oxide crystal formation in lines, shown by QCM-D analysis. Furthermore, re-phage/V{sub x}O{sub x} composites showed significantly enhanced photodegradation activities compared with the synthesized wt-phage-V{sub 2}O{sub 5} composite under illumination. This study demonstrates that peptide-mediated vanadium oxide mineralization is governed by a complicated interplay of peptide sequence, local structure

  19. SEM examination and analysis of the interface character in surface modified aramid-epoxy composite

    International Nuclear Information System (INIS)

    Hussain, S.; Khan, M.B.; Hussain, R.

    2011-01-01

    The surface of Kevlar fibers is chemically modified by treatment with Phthalic anhydride (PA) and the effect is examined by SEM for the laser cut, three point bending and interlaminar shear delaminated surfaces. The surface modification improved the adhesion to epoxy resin that clearly leads to cohesive fracture as opposed to interfacial failure in the untreated specimen. SEM reveals marginal surface roughening of fibers without compromising their strength. The interface modification technique described in this paper is attractive thermodynamically as it does not compromise surface free energy of the polymer matrix or that of the fiber itself to enhance wet ability. (author)

  20. Thermomechanical and adhesive properties of radiation-modified polymer composites for thermosetting products

    International Nuclear Information System (INIS)

    Kalkis, V.; Maksimov, R.D.; Kalnins, M.; Zicans, J.; Bocoka, T.; Revjakin, O.

    2000-01-01

    The gamma-irradiated blends of polyethylene (PE) with ethylene / propylene / diene copolymer (Epdm) and thermotropic liquid crystalline polymer (LCP) are investigated. The radiation dose absorbed does not exceed 150 kGy (10 kGy=1 Mrad). It is shown that the even small amounts of LCP added to PE improve the mechanical and operational properties of composites and the thermosetting products made of them. The temperature dependences of the elastics modulus, tension diagrams at a temperature above the PE melting point, and recovery curves of the oriented specimens are presented. The kinetics of thermorelaxation and residual setting stresses upon isometric heating and cooling of the previously oriented composites is studied. The data on the influence of LCP on the adhesion interaction of the blend with steel are obtained. The features of thermomechanical and adhesive properties are discussed and the results of morphological and calorimetric tests are given. (author)

  1. Ceramic composite resistors of B4C modified by TIO2 and glass phase

    International Nuclear Information System (INIS)

    Klimiec, E.; Zaraska, W.; Stobiecki, T.

    1998-01-01

    Technical progress in the manufacturing technology of composite materials resulted in arising of new generation of bulk resistors, resistant to high levels of overloads and high temperature. These resistors can be applied in extremely heavy working conditions, for instance in cooperation with ignition circuits. The resistors investigated in our research were performed on the basis of ceramic composite consisted of semiconductor boron carbide B 4 C as conductive phase, aluminium oxide Al 2 O 3 and non-alkali glass as insulators and titanium dioxide TiO 2 . The technological procedure of the fabrication of resistors and the results of the tests, such as temperature dependence of the electrical resistance exploitation trials, are presented. (author)

  2. Properties of modified polysiloxane based ceramic matrix for long fibre reinforced composite materials

    Czech Academy of Sciences Publication Activity Database

    Chlup, Zdeněk; Černý, Martin; Strachota, Adam; Kozák, Vladislav

    2011-01-01

    Roč. 40, 6-7 (2011), s. 380-385 ISSN 1465-8011 R&D Projects: GA ČR GA106/09/1101 Institutional research plan: CEZ:AV0Z20410507; CEZ:AV0Z30460519; CEZ:AV0Z40500505 Keywords : Polysiloxane resin * Pyrolysis * Indentation Subject RIV: JI - Composite Materials Impact factor: 0.597, year: 2011

  3. Assessment of radiopacity of restorative composite resins with various target distances and exposure times and a modified aluminum step wedge

    Energy Technology Data Exchange (ETDEWEB)

    Bejeh Mir, Arash Poorsattar [Dentistry Student Research Committee (DSRC), Dental Materials Research Center, Dentistry School, Babol University of Medical Sciences, Babol (Iran, Islamic Republic of); Bejeh Mir, Morvarid Poorsattar [Private Practice of Orthodontics, Montreal, Quebec (Canada)

    2012-09-15

    ANSI/ADA has established standards for adequate radiopacity. This study was aimed to assess the changes in radiopacity of composite resins according to various tube-target distances and exposure times. Five 1-mm thick samples of Filtek P60 and Clearfil composite resins were prepared and exposed with six tube-target distance/exposure time setups (i.e., 40 cm, 0.2 seconds; 30 cm, 0.2 seconds; 30 cm, 0.16 seconds, 30 cm, 0.12 seconds; 15 cm, 0.2 seconds; 15 cm, 0.12 seconds) performing at 70 kVp and 7 mA along with a 12-step aluminum stepwedge (1 mm incremental steps) using a PSP digital sensor. Thereafter, the radiopacities measured with Digora for Windows software 2.5 were converted to absorbencies (i.e., A=-log (1-G/255)), where A is the absorbency and G is the measured gray scale). Furthermore, the linear regression model of aluminum thickness and absorbency was developed and used to convert the radiopacity of dental materials to the equivalent aluminum thickness. In addition, all calculations were compared with those obtained from a modified 3-step stepwedge (i.e., using data for the 2nd, 5th, and 8th steps). The radiopacities of the composite resins differed significantly with various setups (p<0.001) and between the materials (p<0.001). The best predicted model was obtained for the 30 cm 0.2 seconds setup (R2=0.999). Data from the reduced modified stepwedge was remarkable and comparable with the 12-step stepwedge. Within the limits of the present study, our findings support that various setups might influence the radiopacity of dental materials on digital radiographs.

  4. PES/POSS Soluble Veils as Advanced Modifiers for Multifunctional Fiber Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Gianluca Cicala

    2017-07-01

    Full Text Available Novel polyhedral oligomeric silsesquioxanes (POSS-filled thermoplastic electrospun veils were used to tailor the properties of the interlaminar region of epoxy-based composites. The veils were designed to be soluble upon curing in the epoxy matrix, so that POSS could be released within the interlaminar region. Three different POSS contents, varying from 1 to 10 wt %, were tested while the percentage of coPolyethersulphone (coPES dissolved in the epoxy resin was kept to a fixed value of 10 wt %. Good quality veils could be obtained at up to 10 wt % of POSS addition, with the nanofibers’ diameters varying from 861 nm for the coPES to 428 nm upon POSS addition. The feasibility of the soluble veils to disperse POSS in the interlaminar region was proved, and the effect of POSS on phase morphology and viscoelastic properties studied. POSS was demonstrated to significantly affect the morphology and viscoelastic properties of epoxy composites, especially for the percentages 1% and 5%, which enabled the composites to avoid POSS segregates occurring. A dynamic mechanical analysis showed a significant improvement to the storage modulus, and a shift of more than 30 °C due to the POSS cages hindering the motion of the molecular chains and network junctions.

  5. Homogeneous metal matrix composites produced by a modified stir-casting technique

    International Nuclear Information System (INIS)

    Kennedy, A.R.; McCartney, D.G.; Wood, J.V.

    1995-01-01

    Al-based metal matrix composites have been made by a novel liquid processing route which is not only cheap and versatile but produces composites with extremely uniform distributions of the reinforcing phase. Particles of TiB 2 , TiC and B 4 C have been spontaneously incorporated, that is without the use of external mechanical agitation, into Al and Al-alloy melts in volume fractions as high as 0.3. This has been achieved through the use of wetting agents which produce K-Al-F based slags on the melt surface. Spontaneous particle entry and the chemistry of the slag facilitate the generation of good distributions of the reinforcing phase in the solidified composite castings. Non-clustered, near homogeneous distributions have been achieved irrespective of the casting conditions and the volume fraction, type or size of the reinforcement. The majority of the reinforcement becomes engulfed into the solid metal grains during solidification rather than, what is more commonly the case, being pushed to the inter-granular regions. This intra-granular distribution of the reinforcement is likely to improve the mechanical properties of the material

  6. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.

    Science.gov (United States)

    Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S

    2016-09-01

    We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.

  7. Study and Electrochemical Determination of Tyrosine at Graphene Nanosheets Composite Film Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    M. Behpour

    2013-06-01

    Full Text Available A graphene nanosheets (GNS film coated glassy carbon electrode (GCE was fabricated for sensitive determination of tyrosine (Tyr. The GNS-based sensor was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The voltammetric techniques were employed to study electro-oxidation of Tyr. The results revealed that the modified electrode showed an electrocatalytic activity toward the anodic oxidation of Tyr by a marked enhancement in the current intensity and the shift in the oxidation potential to lower values (50 mV in comparison with the bare GCE. Some kinetic parameters such as the electron transfer coefficient (α were also determined for the Tyr oxidation. The detection limit  for Tyr was found to be 2.0×10-8 M (n=9, and the peak current increases linearly with the Tyr concentration within the molar concentration ranges of 5.0 ×10-6 to 1.2 ×10-4 M. The modified electrode shows good sensitivity, selectivity and stability. The prepared electrode was applied for the determination of Tyr in real sample.

  8. Effect of Gamma Irradiation on Polymer Modified White Sand Cement Mortar Composites

    International Nuclear Information System (INIS)

    Khattab, M.M.

    2012-01-01

    This study focuses on the substitution effect of standard sand of conventional cement mortar made from ordinary Portland cement (OPC) and standard sand (SS) OPC/SS 1:3; by different ratios of white sand (WS) powder to prepare three types of white sand cement mortar designated as 1OPC:2SS:1WS, 1OPC:1SS:2WS and 1OPC:0SS:3WS. The prepared samples were first cured under tap water for different time intervals namely 3, 7, 28 and 90 days. The effect of addition of 10% styrene-acrylic ester (SAE) as well as the effect of different doses of gamma rays (10, 20, 30 and 50 kGy) on the physicomechanical properties of polymer modified white sand cement mortar specimens also discussed. Compression strength test, total porosity and water absorption percentages were measured according to standard specifications. The obtained data indicated that, the cement mortar samples containing different ratios of white sand have lower values of compressive strength as compared to the conventional cement mortar while, the percentages of total porosity and water absorption increased. On the other hand, the polymer modified mortar specimens showed a noticeably enhancement in the physico-mechanical properties under the effect of gamma-radiation than those of untreated samples. These results were confirmed by scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) studies

  9. Adsorptive Stripping Determination of Trace Nickel Using Bismuth Modified Mesoporous Carbon Composite Electrode

    Science.gov (United States)

    Ouyang, Ruizhuo; Feng, Kai; Su, Yongfu; Zong, Tianyu; Zhou, Xia; Lei, Tian; Jia, Pengpeng; Cao, Penghui; Zhao, Yuefeng; Guo, Ning; Chang, Haizhou; Miao, Yuqing; Zhou, Shuang

    Novel bismuth nanoparticle-modified mesoporous carbon (MPC) was successfully prepared on a glassy carbon electrode (Bi@MPC/GCE) for the adsorptive stripping voltammetric determination of nickel by complexing with dimethylglyoxime (DMG). The presence of MPC obviously improved the properties of Bi particles like the electron transfer ability, particle size and hydrophicility, important parameters to achieve preferable analytical performances of Bi@MPC/GCE toward Ni(II). The best electrochemical behaviors of Bi@MPC/GCE was obtained for the stripping determination of Ni(II), compared with electrodes individually modified with Bi and MPC. The synergic effect between metallic Bi and ordered MPC (forming a 3D array like Bi microelectrodes) made major contribution to such improved electrochemical properties of Bi@MPC/GCE for Ni(II) sensing. The good linear analytical curve was achieved in a Ni(II) concentration range from 0.1μM to 5.0μM with a correlation coefficient of 0.9995. The detection limit and sensitivity were calculated to be 1.2nM (S/N=3) and 1410μAmM-1cm-2, respectively. The new method was successfully applied to Ni(II) determination in soybean samples with recoveries higher than 99% and proved to be a simple, efficient alternative for Ni(II) monitoring in real samples.

  10. Adsorption of carbon dioxide on TEPA-modified TiO_2/titanate composite nano-rods

    International Nuclear Information System (INIS)

    Kapica-Kozar, Joanna; Michalkiewicz, Beata; Wrobel, Rafal J.; Mozia, Sylwia; Pirog, Ewa; Usiak-Nejman, Ewelina K.; Serafin, Jaroslaw; Morawski, Antoni W.; Narkiewicz, Urszula

    2017-01-01

    A titanate-TiO_2 composite was obtained through hydrothermal treatment of TiO_2 in KOH solution. The presence of a titanate phase was confirmed by X-ray diffraction (XRD), whereas scanning electron microscopy (SEM) measurements showed the porous nano-rod structure of the material. The obtained nano-rods were treated with tetra-ethylene-pentamine (TEPA). Such synthesized sorbents were applied for CO_2 removal. The CO_2 capacity under a pressure of 1 bar and at 80 C was 0.47, 0.34, and 3.11 mmol.g"-"1 for the starting TiO_2, the titanate-TiO_2 composite and the TEPA-titanate-TiO_2 composite (27.4 wt% of TEPA), respectively. The experimental isotherms of CO_2 were analysed using the Langmuir, Freundlich, Sips, Toth, Unilan, Redlich-Peterson, Radke-Prausnitz, Dubinin-Radushkevich, Temkin and Pyzhev, and Jovanovich models. The error sums of squares (SSR) function was used to test the fit of the models. The analysis revealed that the Sips isotherm is the best-fitting model for the CO_2 adsorption on the starting TiO_2, whereas the Freundlich equation should be used to describe the CO_2 adsorption isotherm on the titanate-TiO_2 composite. The CO_2 adsorption on the TEPA-modified sorbents was proposed to be described using the Sips isotherm for physical sorption and the modified Sips model for chemical sorption. The calculated isosteric heat of adsorption was found to be E46 kJ mol"-"1, which is about two times higher than the heat of CO_2 absorption in liquid TEPA reported in the literature (i.e. E85 kJ.mol"-"1). Therefore, it was concluded that the TEPA-titanate-TiO_2 composite is an attractive alternative for liquid amines due to the lower energy of regeneration in the sorption-desorption process. The material was proved to be stable during multiple sorption-desorption cycles. Moreover, its thermal stability up to 150 C was confirmed by thermogravimetric analysis (TGA). All these features make it a promising alternative for sorbents based on liquid amines. (authors)

  11. Detection of dopamine in non-treated urine samples using glassy carbon electrodes modified with PAMAM dendrimer-Pt composites

    International Nuclear Information System (INIS)

    Garcia, M.G.; Armendariz, G.M.E.; Godinez, Luis A.; Torres, J.; Sepulveda-Guzman, S.; Bustos, E.

    2011-01-01

    Composites of hydroxyl-terminated PAMAM dendrimers, generation 4.0 (64 peripheral OH groups) containing Pt nanoparticles were synthesized at different reaction times using a microwave reactor. The synthetic procedure resulted in dendrimer encapsulated nanoparticles of Pt (DENs-Pt) of 1.53 ± 0.17 nm diameter that was calculated from transmission electron microscopy, and the Pt nanoparticles had single crystal plane in (1 1 1) orientation determinate by selective area diffraction. Each composite was electrochemically immobilized on a pre-functionalized glassy carbon (GC) electrode that was incorporated as a flow injection amperometric (FIA) detector, for the selective detection and quantification of dopamine (DA) in untreated urine samples. Comparison of the analytical performance of the novel electrochemical detector revealed that the DENs-Pt modified GC electrode with the composite synthesized for 30 min in the microwave reactor, showed the best response for the detection of DA in samples of non-treated urine, being the detection and quantification limits smaller (19 and 9 ppb, respectively) than those corresponding to the naked a GC electrode (846 and 423 ppb, respectively) using the FIA detector. In addition, it was found that this electroanalytical approach suffers minimal matrix effects that arise in the analysis of DA in untreated samples of urine.

  12. Electrospun composite nanofibers of poly vinyl pyrrolidone and zinc oxide nanoparticles modified carbon paste electrode for electrochemical detection of curcumin

    Energy Technology Data Exchange (ETDEWEB)

    Afzali, Moslem, E-mail: moslem_afzali@yahoo.com [Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Young Research Society, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Mostafavi, Ali; Shamspur, Tayebeh [Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2016-11-01

    A simple and novel ferrocene-nanofiber carbon paste electrode was developed to determine curcumin in a phosphate buffer solution at pH = 8. ZnO nanoparticles were produced via a sonochemical process and composite nanofibers of PVP/ZnO were prepared by electrospinning. The characterization was performed by SEM, XRD and IR. The results suggest that the electrospun composite nanofibers having a large surface area promote electron transfer for the oxidation of curcumin and hence the FCNFCPE exhibits high electrocatalytic activity and performs well in regard to the oxidation of curcumin. The proposed method was successfully applied for measurement of curcumin in urine and turmeric as real samples. - Highlights: • A novel ferrocene-nanofiber carbon paste electrode is presented to determine an anticancer material curcumin. • Composite nanofibers of PVP and zinc oxide nanoparticles with average diameter of 64 nm, were produced by electrospinning. • High surface area of nanofibers resulted in high effective surface of the electrode increases sensitivity of the method. • This modified electrode is successfully employed for determining curcumin in real samples and LOD was 0.024 μM.

  13. Detection of dopamine in non-treated urine samples using glassy carbon electrodes modified with PAMAM dendrimer-Pt composites

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.G. [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico); Department of Chemistry, Universidad de Guanajuato, Cerro de la Venada S/N Col. Pueblito de Rocha, 36040 Guanajuato, Gto (Mexico); Armendariz, G.M.E.; Godinez, Luis A.; Torres, J. [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico); Sepulveda-Guzman, S. [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Universidad, San Nicolas de los Garza, Nuevo Leon, 66451 Nuevo Leon (Mexico); Bustos, E., E-mail: ebustos@cideteq.mx [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico)

    2011-09-01

    Composites of hydroxyl-terminated PAMAM dendrimers, generation 4.0 (64 peripheral OH groups) containing Pt nanoparticles were synthesized at different reaction times using a microwave reactor. The synthetic procedure resulted in dendrimer encapsulated nanoparticles of Pt (DENs-Pt) of 1.53 {+-} 0.17 nm diameter that was calculated from transmission electron microscopy, and the Pt nanoparticles had single crystal plane in (1 1 1) orientation determinate by selective area diffraction. Each composite was electrochemically immobilized on a pre-functionalized glassy carbon (GC) electrode that was incorporated as a flow injection amperometric (FIA) detector, for the selective detection and quantification of dopamine (DA) in untreated urine samples. Comparison of the analytical performance of the novel electrochemical detector revealed that the DENs-Pt modified GC electrode with the composite synthesized for 30 min in the microwave reactor, showed the best response for the detection of DA in samples of non-treated urine, being the detection and quantification limits smaller (19 and 9 ppb, respectively) than those corresponding to the naked a GC electrode (846 and 423 ppb, respectively) using the FIA detector. In addition, it was found that this electroanalytical approach suffers minimal matrix effects that arise in the analysis of DA in untreated samples of urine.

  14. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration

    Science.gov (United States)

    Meng, Qingyang; Man, Zhentao; Dai, Linghui; Huang, Hongjie; Zhang, Xin; Hu, Xiaoqing; Shao, Zhenxing; Zhu, Jingxian; Zhang, Jiying; Fu, Xin; Duan, Xiaoning; Ao, Yingfang

    2015-12-01

    Articular cartilage injury is still a significant challenge because of the poor intrinsic healing potential of cartilage. Stem cell-based tissue engineering is a promising technique for cartilage repair. As cartilage defects are usually irregular in clinical settings, scaffolds with moldability that can fill any shape of cartilage defects and closely integrate with the host cartilage are desirable. In this study, we constructed a composite scaffold combining mesenchymal stem cells (MSCs) E7 affinity peptide-modified demineralized bone matrix (DBM) particles and chitosan (CS) hydrogel for cartilage engineering. This solid-supported composite scaffold exhibited appropriate porosity, which provided a 3D microenvironment that supports cell adhesion and proliferation. Cell proliferation and DNA content analysis indicated that the DBM-E7/CS scaffold promoted better rat bone marrow-derived MSCs (BMMSCs) survival than the CS or DBM/CS groups. Meanwhile, the DBM-E7/CS scaffold increased matrix production and improved chondrogenic differentiation ability of BMMSCs in vitro. Furthermore, after implantation in vivo for four weeks, compared to those in control groups, the regenerated issue in the DBM-E7/CS group exhibited translucent and superior cartilage-like structures, as indicated by gross observation, histological examination, and assessment of matrix staining. Overall, the functional composite scaffold of DBM-E7/CS is a promising option for repairing irregularly shaped cartilage defects.

  15. XRD study of intercalation in statically annealed composites of ethylene copolymers and organically modified montmorillonites. 2. One-tailed organoclays

    Directory of Open Access Journals (Sweden)

    Sara Filippi

    2014-01-01

    Full Text Available Ethylene copolymers with different polar comonomers, such as vinyl acetate, methyl acrylate, glycidyl methacrylate, and maleic anhydride, were used for the preparation of polymer/clay nanocomposites by statically annealing their mechanical mixtures with different commercial or home-made organically modified montmorillonites containing only one long alkyl tail. The nanostructure of the products was monitored by X-ray diffraction, and the dispersion of the silicate particles within the polymer matrix was qualitatively evaluated through microscopic analyses. The effect of the preparation conditions on the structure and the morphology of the composites was also addressed through the characterization of selected samples with similar composition prepared by melt compounding. In agreement with the findings reported in a previous paper for the composites filled with two-tailed organoclays, intercalation of the copolymer chains within the tighter galleries of the one-tailed clays occurs easily, independent of the application of a mechanical stress. However, the shear-driven break-up of the intercalated clay particles into smaller platelets (exfoliation seems more hindered. A collapse of the organoclay interlayer spacing was only observed clearly for a commercial one-tailed organoclay – Cloisite® 30B – whereas the same effect was almost negligible for a home-made organoclay with similar structure.

  16. REPRODUCIBILITY OF THE MODIFIED STAR EXCURSION BALANCE TEST COMPOSITE AND SPECIFIC REACH DIRECTION SCORES.

    Science.gov (United States)

    van Lieshout, Remko; Reijneveld, Elja A E; van den Berg, Sandra M; Haerkens, Gijs M; Koenders, Niek H; de Leeuw, Arina J; van Oorsouw, Roel G; Paap, Davy; Scheffer, Else; Weterings, Stijn; Stukstette, Mirelle J

    2016-06-01

    The mSEBT is a screening tool used to evaluate dynamic balance. Most research investigating measurement properties focused on intrarater reliability and was done in small samples. To know whether the mSEBT is useful to discriminate dynamic balance between persons and to evaluate changes in dynamic balance, more research into intra- and interrater reliability and smallest detectable change (synonymous with minimal detectable change) is needed. To estimate intra- and interrater reliability and smallest detectable change of the mSEBT in adults at risk for ankle sprain. Cross-sectional, test-retest design. Fifty-five healthy young adults participating in sports at risk for ankle sprain participated (mean ± SD age, 24.0 ± 2.9 years). Each participant performed three test sessions within one hour and was rated by two physical therapists (session 1, rater 1; session 2, rater 2; session 3, rater 1). Participants and raters were blinded for previous measurements. Normalized composite and reach direction scores for the right and left leg were collected. Analysis of variance was used to calculate intraclass correlation coefficient values for intra- and interrater reliability. Smallest detectable change values were calculated based on the standard error of measurement. Intra- and interrater reliability for both legs was good to excellent (intraclass correlation coefficient ranging from 0.87 to 0.94). The intrarater smallest detectable change for the composite score of the right leg was 7.2% and for the left 6.2%. The interrater smallest detectable change for the composite score of the right leg was 6.9% and for the left 5.0%. The mSEBT is a reliable measurement instrument to discriminate dynamic balance between persons. Most smallest detectable change values of the mSEBT appear to be large. More research is needed to investigate if the mSEBT is usable for evaluative purposes. Level 2.

  17. Development of road soil cement compositions modified with complex additive based on polycarboxylic ether

    Science.gov (United States)

    Bulanov, P. E.; Vdovin, E. A.; Mavliev, L. F.; Kuznetsov, D. A.

    2018-03-01

    The paper is focused on the research results of the main physical and technical properties of the cement-stabilized polymineral clay modified with a complex hydrophobic plasticizer based on polycarboxylate and octyltriethoxysilane ethers. A graphical result interpretation of the mathematic model which shows the influence of the complex hydrophobic plasticizer components on the cement-stabilized polymineral clay, containing more than 85% of relict minerals, has been designed. The research significance for the building sector lies in the fact that applying a complex hydrophobic plasticizer provides increasing the compressive strength of the cement-stabilized polymineral clay up to 102%, the tensile bending strength – up to 88%, the freeze-thaw resistance – up to 114%.

  18. Emergent macrophytes modify the abundance and community composition of ammonia oxidizers in their rhizosphere sediments.

    Science.gov (United States)

    Zhao, Dayong; He, Xiaowei; Huang, Rui; Yan, Wenming; Yu, Zhongbo

    2017-07-01

    Ammonia oxidation is a crucial process in global nitrogen cycling, which is catalyzed by the ammonia oxidizers. Emergent plants play important roles in the freshwater ecosystem. Therefore, it is meaningful to investigate the effects of emergent macrophytes on the abundance and community composition of ammonia oxidizers. In the present study, two commonly found emergent macrophytes (Zizania caduciflora and Phragmitas communis) were obtained from freshwater lakes and the abundance and community composition of the ammonia-oxidizing prokaryotes in the rhizosphere sediments of these emergent macrophytes were investigated. The abundance of the bacterial amoA gene was higher in the rhizosphere sediments of the emergent macrophytes than those of bulk sediments. Significant positive correlation was found between the potential nitrification rates (PNRs) and the abundance of bacterial amoA gene, suggesting that ammonia-oxidizing bacteria (AOB) might play an important role in the nitrification process of the rhizosphere sediments of emergent macrophytes. The Nitrosotalea cluster is the dominant ammonia-oxidizing archaea (AOA) group in all the sediment samples. Analysis of AOB group showed that the N. europaeal cluster dominated the rhizosphere sediments of Z. caduciflora and the bulk sediments, whereas the Nitrosospira cluster was the dominant AOB group in the rhizosphere sediments of P. communis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces

    International Nuclear Information System (INIS)

    Maho, Anthony; Detriche, Simon; Delhalle, Joseph; Mekhalif, Zineb

    2013-01-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH) 2 ). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests. Highlights: ► Formation of tantalum/carbon nanotube

  20. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Maho, Anthony [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Fonds pour la Formation à la Recherche dans l' Industrie et dans l' Agriculture (FRIA), Rue d' Egmont 5, B-1000 Bruxelles (Belgium); Detriche, Simon; Delhalle, Joseph [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Mekhalif, Zineb, E-mail: zineb.mekhalif@fundp.ac.be [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium)

    2013-07-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH){sub 2}). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests. Highlights: ► Formation of tantalum

  1. Physicochemical characterization of modified clay based composites obtained by a novel method

    Science.gov (United States)

    Kalra, Swati; Dudi, D.; Singh, G. P.; Verma, S. K.; Bhojak, N.

    2018-05-01

    Material science is one of the important fields where, absorption spectra of lanthanide ions have been a subject of several investigations because of their possible use as laser materials, diagnostic tools and sensors. Study of absorption spectra in visible and near infrared regions yields useful information regarding energy and intensity parameters, and nature and probabilities of transitions. Chemical physics provides fundamental tool to develop lanthanide chemistry, which has been increasingly significant in the last few years due to the wide variety of potential applications of their complexes in many important areas of biology and medicines. The present work describes the development of a novel method of composite preparation based on clay and its physiochemical characterization. Simultaneous measurement of some thermal properties has made study more useful. Results match with accepted models.

  2. Composition of a Vision Screen for Servicemembers With Traumatic Brain Injury: Consensus Using a Modified Nominal Group Technique

    Science.gov (United States)

    Finkelstein, Marsha; Llanos, Imelda; Scheiman, Mitchell; Wagener, Sharon Gowdy

    2014-01-01

    Vision impairment is common in the first year after traumatic brain injury (TBI), including among service members whose brain injuries occurred during deployment in Iraq and Afghanistan. Occupational therapy practitioners provide routine vision screening to inform treatment planning and referral to vision specialists, but existing methods are lacking because many tests were developed for children and do not screen for vision dysfunction typical of TBI. An expert panel was charged with specifying the composition of a vision screening protocol for servicemembers with TBI. A modified nominal group technique fostered discussion and objective determinations of consensus. After considering 29 vision tests, the panel recommended a nine-test vision screening that examines functional performance, self-reported problems, far–near acuity, reading, accommodation, convergence, eye alignment and binocular vision, saccades, pursuits, and visual fields. Research is needed to develop reliable, valid, and clinically feasible vision screening protocols to identify TBI-related vision disorders in adults. PMID:25005505

  3. Thermosetting materials of the radiation-modified polymer compositions. 3. Development of thermoplastic thermosetting materials from polymeric blends

    International Nuclear Information System (INIS)

    Kalkis, V.; Zicans, J.; Bocoka, T.; Ivanova, T.

    2000-01-01

    Experimental studies of blends consisting of chemically and radiation modified polyethylene and ethylene-propylene-diene copolymers have been carried out. Measurements of crystallinity, toughness, viscoelastic, adhesion and thermorelaxation properties as well as scanning electron-microscopic studies have shown that the blends chemically vulcanized by elastomer phase crosslinking system possess a typical double-phase structure within the whole composition range and characteristics specific for rubber, whereas, in radiation-vulcanized blends where crosslinking of both disperse phases takes part, formation of chemical bonds between these phases was observed. Consequently, the radiation treatment improves the properties of the blends, and materials formed by such a system can be successfully used, e.g., as elastic and adhesion active thermosetting materials if the polymer is previously oriented. (author)

  4. Attenuation of Neutron and Gamma Radiation by a Composite Material Based on Modified Titanium Hydride with a Varied Boron Content

    Science.gov (United States)

    Yastrebinskii, R. N.

    2018-04-01

    The investigations on estimating the attenuation of capture gamma radiation by a composite neutron-shielding material based on modified titanium hydride and Portland cement with a varied amount of boron carbide are performed. The results of calculations demonstrate that an introduction of boron into this material enables significantly decreasing the thermal neutron flux density and hence the levels of capture gamma radiation. In particular, after introducing 1- 5 wt.% boron carbide into the material, the thermal neutron flux density on a 10 cm-thick layer is reduced by 11 to 176 factors, and the capture gamma dose rate - from 4 to 9 times, respectively. The difference in the degree of reduction in these functionals is attributed to the presence of capture gamma radiation in the epithermal region of the neutron spectrum.

  5. Preparation and Characterization of Thin-Film Composite Membrane with Nanowire-Modified Support for Forward Osmosis Process

    Science.gov (United States)

    Low, Ze-Xian; Liu, Qi; Shamsaei, Ezzatollah; Zhang, Xiwang; Wang, Huanting

    2015-01-01

    Internal concentration polarization (ICP) in forward osmosis (FO) process is a characteristic problem for asymmetric thin-film composite (TFC) FO membrane which leads to lower water flux. To mitigate the ICP effect, modification of the substrates’ properties has been one of the most effective methods. A new polyethersulfone-based ultrafiltration membrane with increased surface porosity and high water flux was recently produced by incorporating Zn2GeO4 nanowires. The composite membrane was used as a substrate for the fabrication of TFC FO membrane, by coating a thin layer of polyamide on top of the substrate. The substrate and the nanowires were characterized by a range of techniques such as SEM, XRD, and contact angle goniometry. The water permeability and molecular weight cut-offs (MWCO) of the substrate; and the FO performance of the TFC membrane were also determined. The Zn2GeO4-modified membrane showed ~45% increase in water permeability and NaCl salt rejection of 80% under RO mode. In FO mode, the ratio of water flux to reverse solute flux was also improved. However, lower FO flux was obtained which could be due to ICP. The result shows that Zn2GO4 nanowire may be used as a modifier to the substrate to improve the quality of the polyamide layer on the substrate to improve the flux and selectivity, but not as effective in reducing ICP. This work demonstrates that the incorporation of nanomaterials to the membrane substrate may be an alternative approach to improve the formation of polyamide skin layer to achieve better FO performance. PMID:25803239

  6. Preparation and Characterization of Thin-Film Composite Membrane with Nanowire-Modified Support for Forward Osmosis Process

    Directory of Open Access Journals (Sweden)

    Ze-Xian Low

    2015-03-01

    Full Text Available Internal concentration polarization (ICP in forward osmosis (FO process is a characteristic problem for asymmetric thin-film composite (TFC FO membrane which leads to lower water flux. To mitigate the ICP effect, modification of the substrates’ properties has been one of the most effective methods. A new polyethersulfone-based ultrafiltration membrane with increased surface porosity and high water flux was recently produced by incorporating Zn2GeO4 nanowires. The composite membrane was used as a substrate for the fabrication of TFC FO membrane, by coating a thin layer of polyamide on top of the substrate. The substrate and the nanowires were characterized by a range of techniques such as SEM, XRD, and contact angle goniometry. The water permeability and molecular weight cut-offs (MWCO of the substrate; and the FO performance of the TFC membrane were also determined. The Zn2GeO4-modified membrane showed ~45% increase in water permeability and NaCl salt rejection of 80% under RO mode. In FO mode, the ratio of water flux to reverse solute flux was also improved. However, lower FO flux was obtained which could be due to ICP. The result shows that Zn2GO4 nanowire may be used as a modifier to the substrate to improve the quality of the polyamide layer on the substrate to improve the flux and selectivity, but not as effective in reducing ICP. This work demonstrates that the incorporation of nanomaterials to the membrane substrate may be an alternative approach to improve the formation of polyamide skin layer to achieve better FO performance.

  7. Factors influencing photo curing kinetics of novel UV-cured siloxane-modified acrylic coatings: Oxygen inhibition and composition

    International Nuclear Information System (INIS)

    Esposito Corcione, Carola; Frigione, Mariaenrica

    2012-01-01

    Highlights: ► The inhibition effect of oxygen on the kinetic behaviour of photopolymerizable siloxane acrylic formulations was analyzed by thermal analysis. ► The addition of a thiol in the mixtures allows to obtain higher conversion, to reduce the content of the UV initiator and to increase the T g . ► The data found in air were fitted as a function of the presence of the thiol monomer obtaining a good agreement. - Abstract: An experimental study was carried out for the development and characterization of innovative photopolymerizable siloxane-modified acrylic formulations for possible use as protective coatings of stone substrates. The kinetics of the radical photopolymerization mechanism induced by UV radiations in presence of a suitable photoinitiator was studied by a calorimetric analysis by varying the atmosphere (oxygen or nitrogen) and the composition of the mixtures, in particular of the UV photoinitiator. The reactivity, expressed in terms of both heat developed and rate of reaction, was generally found to decrease when the photopolymerization was carried out in air, due the inhibiting action of the oxygen towards the free radical polymerization. The addition of a proper thiol to the acrylic modified resin was found to reduce the adverse effect of oxygen on the kinetic reaction and on the degree of conversion. This result allowed to reduce the content of the photoinitiator and to increase the content of the siloxane in the acrylic based mixtures. The effect of the change of the composition of the formulations on the kinetic behaviour of the acrylic based resins was also analysed by calorimetric analysis. Calorimetric experimental data were fitted to a simple kinetic model for radical photopolymerization reactions. Finally, a proper relationship between the glass transition temperature and the total extent of reaction was applied to the experimental data. A good agreement between the experimental data and both the theoretical models was generally

  8. A Disposable Organophosphorus Pesticides Enzyme Biosensor Based on Magnetic Composite Nano-Particles Modified Screen Printed Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Weigang Wen

    2010-01-01

    Full Text Available A disposable organophosphorus pesticides (OPs enzyme biosensor based on magnetic composite nanoparticle-modified screen printed carbon electrodes (SPCE has been developed. Firstly, an acetylcholinesterase (AChE-coated Fe3O4/Au (GMP magnetic nanoparticulate (GMP-AChE was synthesized. Then, GMP-AChE was absorbed on the surface of a SPCE modified by carbon nanotubes (CNTs/nano-ZrO2/prussian blue (PB/Nafion (Nf composite membrane by an external magnetic field. Thus, the biosensor (SPCE|CNTs/ZrO2/PB/Nf|GMP-AChE for OPs was fabricated. The surface of the biosensor was characterized by scanning electron micrography (SEM and X-ray fluorescence spectrometery (XRFS and its electrochemical properties were studied by cyclic voltammetry (CV and differential pulse voltammetry (DPV. The degree of inhibition (A% of the AChE by OPs was determined by measuring the reduction current of the PB generated by the AChE-catalyzed hydrolysis of acetylthiocholine (ATCh. In pH = 7.5 KNO3 solution, the A was related linearly to the concentration of dimethoate in the range from 1.0 × 10-3–10 ng•mL-1 with a detection limit of 5.6 × 10-4 ng•mL-1. The recovery rates in Chinese cabbage exhibited a range of 88%–105%. The results were consistent with the standard gas chromatography (GC method. Compared with other enzyme biosensors the proposed biosensor exhibited high sensitivity, good selectivity with disposable, low consumption of sample. In particular its surface can be easily renewed by removal of the magnet. The convenient, fast and sensitive voltammetric measurement opens new opportunities for OPs analysis.

  9. Preparation of chitosan/amine modified diatomite composites and adsorption properties of Hg(II) ions.

    Science.gov (United States)

    Fu, Yong; Huang, Yue; Hu, Jianshe; Zhang, Zhengjie

    2018-03-01

    A green functional adsorbent (CAD) was prepared by Schiff base reaction of chitosan and amino-modified diatomite. The morphology, structure and adsorption properties of the CAD were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and Brunauer Emmett Teller measurements. The effect of pH value, contact time and temperature on the adsorption of Hg(II) ions for the CAD is discussed in detail. The experimental results showed that the CAD had a large specific surface area and multifunctional groups such as amino, hydroxyl and Schiff base. The optimum adsorption effect was obtained when the pH value, temperature and contact time were 4, 25 °C and 120 min, respectively, and the corresponding maximum adsorption capacity of Hg(II) ions reached 102 mg/g. Moreover, the adsorption behavior of Hg(II) ions for the CAD followed the pseudo-second-order kinetic model and Langmuir model. The negative ΔG 0 and ΔH 0 suggested that the adsorption was a spontaneous exothermic process.

  10. Design and evaluation of modified screen net house for off-season vegetable raising in composite climate

    International Nuclear Information System (INIS)

    Sethi, V.P.; Dubey, R.K.; Dhath, A.S.

    2009-01-01

    Currently the use of conventional screen net houses for off-season vegetable raising in north India composite climate is not so effective and has many constructional and operational limitations like poor structural design, higher constructional cost, no greenhouse effect in winter and higher plant temperatures in summer. Similarly, the use of polyethylene sheet covered greenhouses also has problems like much higher constructional and operational costs and higher inside air temperatures in summers. In this study, modified designs of 500 m 2 (one kanal) and 250 m 2 (half kanal) screen net house have been presented particularly suitable for composite climate (where both winters as well as summers are harsh) as a replacement for conventional net house and polyethylene sheet covered greenhouse design. To make these designs low cost and more effective, low tunnels (covered with low density polyethylene sheet) have been designed and used in winter over the plant rows to generate localized greenhouse effect for faster plant growth. By doing so, average daily air temperature under the tunnels was raised about 9-10 deg. C above the open field air temperature. In this way, huge cost of covering the net house or greenhouse during winter with costly polyethylene sheet could be saved. Similarly, in extreme summer when the ambient air temperature exceeded 40 deg. C (during the fruiting stage of the crop) a 50% shade net was used inside the modified net house at 2.5 m height (instead of using active cooling system) resulting in 4-6 deg. C drop in the plant temperature. Experimental evaluation of the modified net house was conducted during winter and summer months of year 2007-08 (December to June) by growing brinjal crop and compared with conventional net house, polyethylene sheet greenhouse and in open field condition. It was observed that due to the combined effect of low tunnels (in winter) and shade net (in summer), the micro-climatic parameters like air temperature, plant

  11. Enhanced NO2 sensing characteristics of Au modified porous silicon/thorn-sphere-like tungsten oxide composites

    Science.gov (United States)

    Yuan, Lin; Hu, Ming; Wei, Yulong; Ma, Wenfeng

    2016-12-01

    The thorn-sphere-like tungsten oxide (WO3) made up by 1D nanorods has been successfully synthesized through hydrothermal method on the Au-modified porous silicon (PS) substrates with seed-layer induction. By using XRD, EDS, FESEM and TEM techniques, we tested and verified that the crystal structure and morphology evolution of WO3 hierarchical nanostructure on the Au-modified PS strongly depend on the Au-sputtering time and hydrothermal reaction time. In addition, by comparing the NO2-sensing properties of the prepared products, we found that the 10 s-Au decorated PS/WO3-3 h (sputtering Au for 10 s and hydrothermal reaction for 3 h) composites sensor behaving as a typical p-type semiconductor and operating at room temperature (RT) exhibits high sensitivity and response characteristics even to ppb-level NO2, which makes this kind of sensor a competitive candidate for NO2-sensing applications. Moreover, the enhanced response may not only due to the high specific surface area but the Au nanoparticles acting as promoters for the spillover effect and forming metal-semiconductor heterojunctions with the PS and WO3. The transmission of electrons and holes in the heterogeneous interface generated among PS, WO3 and Au is proposed to illustrate the p-type response mechanism.

  12. Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films.

    Science.gov (United States)

    Teacă, Carmen-Alice; Bodîrlău, Ruxanda; Spiridon, Iuliana

    2013-03-01

    The present paper describes the preparation and characterization of polysaccharides-based bio-composite films obtained by the incorporation of 10, 20 and 30 wt% birch cellulose (BC) within a glycerol plasticized matrix constituted by the corn starch (S) and chemical modified starch microparticles (MS). The obtained materials (coded as MS/S, respectively MS/S/BC) were further characterized. FTIR spectroscopy and X-ray diffraction were used to evidence structural and crystallinity changes in starch based films. Morphological, thermal, mechanical, and water resistance properties were also investigated. Addition of cellulose alongside modified starch microparticles determined a slightly improvement of the starch-based films water resistance. Some reduction of water uptake for any given time was observed mainly for samples containing 30% BC. Some compatibility occurred between MS and BC fillers, as evidenced by mechanical properties. Tensile strength increased from 5.9 to 15.1 MPa when BC content varied from 0 to 30%, while elongation at break decreased significantly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip

    International Nuclear Information System (INIS)

    Li Xinchun; Chen Zuanguang; Zhong Yuwen; Yang Fan; Pan Jianbin; Liang Yajing

    2012-01-01

    Highlights: ► CoHCF nanoparticles modified MWCNTs/graphite electrode use for electrochemistry on electrophoresis microchip for the first time. ► Simultaneous, rapid, and sensitive electrochemical detection of hydrazine and isoniazid in real samples. ► An exemplary work of CME sensor assembly onto microchip for determination of analytes with environmental significance. ► Manifestation of the applicability and flexibility of CME sensor for electroanalysis on microfluidic chip. - Abstract: Nanomaterial-based electrochemical sensor has received significant interest. In this work, cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode was electrochemically prepared and exploited as an amperometric detector for microchip electrophoresis. The prepared sensor displayed rapid and sensitive response towards hydrazine and isoniazid oxidation, which was attributed to synergetic electrocatalytic effect of cobalt hexacyanoferrate and multi-walled carbon nanotubes. The sensitivity enhancement with nearly two orders of magnitude was gained, compared with the bare carbon paste electrode, with the detection limit of 0.91 μM (S/N = 3) for hydrazine. Acceptable repeatability of the microanalysis system was verified by consecutive eleven injections of hydrazine without chip and electrode treatments, the RSDs for peak current and migration time were 3.4% and 2.1%, respectively. Meanwhile, well-shaped electrophoretic peaks were observed, mainly due to fast electron transfer of electroactive species on the modified electrode. The developed microchip-electrochemistry setup was successfully applied to the determination of hydrazine and isoniazid in river water and pharmaceutical preparation, respectively. Several merits of the novel electrochemical sensor coupled with microfluidic platform, such as comparative stability, easy fabrication and high sensitivity, hold great potential for hydrazine compounds assay in the lab-on-a-chip system.

  14. Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip

    Energy Technology Data Exchange (ETDEWEB)

    Li Xinchun [School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road of Higher Education Mega Centre, Guangzhou 510006 (China); Chen Zuanguang, E-mail: chenzg@mail.sysu.edu.cn [School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road of Higher Education Mega Centre, Guangzhou 510006 (China); Zhong Yuwen, E-mail: yu0106@163.com [Center for Disease Control and Prevention of Guangdong Province, 176 Xingangxi, Guangzhou 510300 (China); Yang Fan; Pan Jianbin; Liang Yajing [School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road of Higher Education Mega Centre, Guangzhou 510006 (China)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer CoHCF nanoparticles modified MWCNTs/graphite electrode use for electrochemistry on electrophoresis microchip for the first time. Black-Right-Pointing-Pointer Simultaneous, rapid, and sensitive electrochemical detection of hydrazine and isoniazid in real samples. Black-Right-Pointing-Pointer An exemplary work of CME sensor assembly onto microchip for determination of analytes with environmental significance. Black-Right-Pointing-Pointer Manifestation of the applicability and flexibility of CME sensor for electroanalysis on microfluidic chip. - Abstract: Nanomaterial-based electrochemical sensor has received significant interest. In this work, cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode was electrochemically prepared and exploited as an amperometric detector for microchip electrophoresis. The prepared sensor displayed rapid and sensitive response towards hydrazine and isoniazid oxidation, which was attributed to synergetic electrocatalytic effect of cobalt hexacyanoferrate and multi-walled carbon nanotubes. The sensitivity enhancement with nearly two orders of magnitude was gained, compared with the bare carbon paste electrode, with the detection limit of 0.91 {mu}M (S/N = 3) for hydrazine. Acceptable repeatability of the microanalysis system was verified by consecutive eleven injections of hydrazine without chip and electrode treatments, the RSDs for peak current and migration time were 3.4% and 2.1%, respectively. Meanwhile, well-shaped electrophoretic peaks were observed, mainly due to fast electron transfer of electroactive species on the modified electrode. The developed microchip-electrochemistry setup was successfully applied to the determination of hydrazine and isoniazid in river water and pharmaceutical preparation, respectively. Several merits of the novel electrochemical sensor coupled with microfluidic platform, such as comparative stability, easy fabrication and

  15. Compositional and structural studies of ion-beam modified AlN/TiN multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Amati, M., E-mail: matteo.amati@elettra.eu [Elettra – Sincrotrone Trieste SCpA,Area Science Park, 34149, Trieste (Italy); Gregoratti, L.; Sezen, H. [Elettra – Sincrotrone Trieste SCpA,Area Science Park, 34149, Trieste (Italy); Grce, A.; Milosavljević, M. [VINČA Institute of Nuclear Sciences, Belgrade University, P.O. Box 522, 11001, Belgrade (Serbia); Homewood, K.P. [Materials Research Institute and School of Physics and Astronomy, Queen Mary University of London, Mile End Road, E1 4NS, London (United Kingdom)

    2017-07-31

    Highlights: • Inter-layer mixing, atomic redistribution, structural change, and phase transformation on AlN/TiN multilayers via argon ion irradiation. • Severe modifications are observed with TEM studies on highly immiscible alternating layers without any side effects such as beam heating. • The original TiN layers appear to grow in thickness by consuming the adjacent AlN layers, while obtaining a better TiAlN fcc crystalline structure. • Photoemission spectroscopy/microscopy indicates a transformation into Al deficient ternary and highly homogeneous compounds on both layers. • These results can be interesting towards further development of radiation tolerant materials based on immiscible ceramic nanocomposites. - Abstract: This paper reports on compositional and structural modifications induced in coated AlN/TiN multilayers by argon ion irradiation. The initial structure consisting of totally 30 alternate AlN (8 nm thick) and TiN (9.3 nm thick) layers was deposited on Si (100) wafers, by reactive sputtering. Irradiation was done with 180 keV Ar{sup +} to a high dose of 8 × 10{sup 16} ions/cm{sup 2}, which introduces up to ∼10 at.% of argon species, and generates a maximum displacement per atom of 92 for AlN and 127 for TiN, around the projected ion range (109 ± 34 nm). Characterizations were performed by Rutherford backscattering spectrometry, spatially resolved x-ray photoelectron spectroscopy, and transmission electron microscopy. The obtained results reveal that this highly immiscible and thermally stable system suffered a severe modification upon the applied ion irradiation, although it was performed at room temperature. They illustrate a thorough inter-layer mixing, atomic redistribution, structural change and phase transformation within the affected depth. The original TiN layers appear to grow in thickness, consuming the adjacent AlN layers, while retaining the fcc crystalline structure. In the mostly affected region, the interaction proceeds

  16. Results of breeding for modified C18-fatty acid composition in Linum

    International Nuclear Information System (INIS)

    Nickel, M.; Nichterlein, K.; Friedt, W.

    1990-01-01

    Full text: The oil of cultivated linseed (Linum usitatissimum) is characterised by a high level (55-65%) of linolenic acid (C18:3) with comparatively little genetic variability. However, among wild Linum species there are large differences in fatty acid composition. Therefore, interspecific hybridisation between cultivated linseed and wild species may provide material segregating for oil quality. Alternatively, induced mutagenesis may be used for broadening genetic variation. Seeds of 32 Linum species were obtained from botanical gardens and institutes. Plant habitus, flower colour, oil content, fatty acid pattern, 1000-seed weight and seed colour were determined. Crosses between Linum usitatissimum cultivars and wild species were attempted. Where capsule development was not obtained, pollen tube growth was studied by fluorescence microscopy. It was tried to circumvent incompatibility barriers by applying the embryo rescue technique. For that purpose, 'heart-shaped' immature embryos of Linum usitatissimum plants were cultured on MONNIER-medium. In a mutation breeding programme, M 5 lines with reduced C18:3-content (35-40%) derived from the cultivars 'Bionda' and 'Raulinus' by EMS-mutagenesis were intercrossed and the progeny analysed. Variation in fatty acid composition amongst wild species was 3.5-68.2% for linolenic and 9.2-83.4% for linoleic acid. Variation of oil content was 22.5-46.0% and of 1000-seed weight 0.1-4.4g. Interspecific crosses of cultivated linseed with wild species of low linolenic and high linoleic acid content (especially L. flavum, L. catharticum, and L. campanulatum), were not successful because of pre-fertilisation barriers. Crosses between M 5 -lines selected for reduced linolenic acid content (35-40%) were analysed for segregation in the F 2 . Here, new recombinant types with only 11-13% linolenic, but nearly 50% oleic and 25-30% linoleic acid content could be identified. Previously, GREEN selected a mutant with very low C18:3-content (2

  17. Solar PAR and UVR modify the community composition and photosynthetic activity of sea ice algae.

    Science.gov (United States)

    Enberg, Sara; Piiparinen, Jonna; Majaneva, Markus; Vähätalo, Anssi V; Autio, Riitta; Rintala, Janne-Markus

    2015-10-01

    The effects of increased photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) on species diversity, biomass and photosynthetic activity were studied in fast ice algal communities. The experimental set-up consisted of nine 1.44 m(2) squares with three treatments: untreated with natural snow cover (UNT), snow-free (PAR + UVR) and snow-free ice covered with a UV screen (PAR). The total algal biomass, dominated by diatoms and dinoflagellates, increased in all treatments during the experiment. However, the smaller biomass growth in the top 10-cm layer of the PAR + UVR treatment compared with the PAR treatment indicated the negative effect of UVR. Scrippsiella complex (mainly Scrippsiella hangoei, Biecheleria baltica and Gymnodinium corollarium) showed UV sensitivity in the top 5-cm layer, whereas Heterocapsa arctica ssp. frigida and green algae showed sensitivity to both PAR and UVR. The photosynthetic activity was highest in the top 5-cm layer of the PAR treatment, where the biomass of the pennate diatom Nitzschia frigida increased, indicating the UV sensitivity of this species. This study shows that UVR is one of the controlling factors of algal communities in Baltic Sea ice, and that increased availability of PAR together with UVR exclusion can cause changes in algal biomass, photosynthetic activity and community composition. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Compositional and proteomic analyses of genetically modified broccoli (Brassica oleracea var. italica) harboring an agrobacterial gene.

    Science.gov (United States)

    Liu, Mao-Sen; Ko, Miau-Hwa; Li, Hui-Chun; Tsai, Shwu-Jene; Lai, Ying-Mi; Chang, You-Ming; Wu, Min-Tze; Chen, Long-Fang O

    2014-08-28

    Previously, we showed improved shelf life for agrobacterial isopentenyltransferase (ipt) transgenic broccoli (Brassica oleracea var. italica), with yield comparable to commercial varieties, because of the protection mechanism offered by molecular chaperones and stress-related proteins. Here, we used proximate analysis to examine macronutrients, chemical and mineral constituents as well as anti-nutrient and protein changes of ipt-transgenic broccoli and corresponding controls. We also preliminarily assessed safety in mice. Most aspects were comparable between ipt-transgenic broccoli and controls, except for a significant increase in carbohydrate level and a decrease in magnesium content in ipt-transgenic lines 101, 102 and 103, as compared with non-transgenic controls. In addition, the anti-nutrient glucosinolate content was increased and crude fat content decreased in inbred control 104 and transgenic lines as compared with the parental control, "Green King". Gel-based proteomics detected more than 50 protein spots specifically found in ipt-transgenic broccoli at harvest and after cooking; one-third of these proteins showed homology to potential allergens that also play an important role in plant defense against stresses and senescence. Mice fed levels of ipt-transgenic broccoli mimicking the 120 g/day of broccoli eaten by a 60-kg human adult showed normal growth and immune function. In conclusion, the compositional and proteomic changes attributed to the transgenic ipt gene did not affect the growth and immune response of mice under the feeding regimes examined.

  19. Influence of surface modified nanoilmenite/amorphous silica composite particles on the thermal stability of cold galvanizing coating

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2018-03-01

    Full Text Available The present approach investigates the use of novel nanoilmenite/amorphous silica composite (NI/AS particles fabricated from ilmenite nanoparticles (FeTiO3 NPs and synthesized amorphous silica grains to improve thermal stability of the cold galvanizing coating. Transmission electron microscopic (TEM images demonstrated that both nanoilmenite and nanocomposite particles were of flaky-like nature and the average diameter of the particles is 20 nm. The lamellar shape of the nanocomposite and spherical nature of Zn-dust particles were illustrated by scanning electron microscopy (SEM micrographs. Different alkyd-based cold galvanizing coating formulations were modified using uniformly dispersing various amounts of the processed nanocomposite particles as a modifier to form some engineering nanocomposite coatings. Thermal stability of the nanocomposite and Zn-dust particles was determined by thermo-gravimetric analysis (TGA. From the obtained results it could be observed that the weight loss (% as a feature of the thermal stability in case of the nanocomposite particles was 2.9 compared to 85.9 for Zn-dust powder grains. Derivative thermo-gravimetric (DTG measurements were done under nitrogen atmosphere for the cured cold galvanizing coating samples heated from room temperature to 1000 °C. The obtained results revealed that the maximum decomposition temperature point in the third degradation step for 6% nanocomposite surface modified cured sample (CG-F was detected at 693 °C and was less value for unmodified conventional cold galvanizing coating (CG-A at 612 °C. The increase in thermal stability with increasing the concentration of nanocomposite particles could be mainly attributed to the interface surface interaction between the nanocomposite particles and alkyd resin matrix in which enhancing the inorganic-organic network stiffness by causing a reduction in the total free spaces and enhancement in the cross-linking density of the cured film

  20. Nanostructural morphology of plasticized wheat gluten and modified potato starch composites: relationship to mechanical and barrier properties.

    Science.gov (United States)

    Muneer, Faraz; Andersson, Mariette; Koch, Kristine; Menzel, Carolin; Hedenqvist, Mikael S; Gällstedt, Mikael; Plivelic, Tomás S; Kuktaite, Ramune

    2015-03-09

    In the present study, we were able to produce composites of wheat gluten (WG) protein and a novel genetically modified potato starch (MPS) with attractive mechanical and gas barrier properties using extrusion. Characterization of the MPS revealed an altered chain length distribution of the amylopectin fraction and slightly increased amylose content compared to wild type potato starch. WG and MPS of different ratios plasticized with either glycerol or glycerol and water were extruded at 110 and 130 °C. The nanomorphology of the composites showed the MPS having semicrystalline structure of a characteristic lamellar arrangement with an approximately 100 Å period observed by small-angle X-ray scattering and a B-type crystal structure observed by wide-angle X-ray scattering analysis. WG has a structure resembling the hexagonal macromolecular arrangement as reported previously in WG films. A larger amount of β-sheets was observed in the samples 70/30 and 30/70 WG-MPS processed at 130 °C with 45% glycerol. Highly polymerized WG protein was found in the samples processed at 130 °C versus 110 °C. Also, greater amounts of WG protein in the blend resulted in greater extensibility (110 °C) and a decrease in both E-modulus and maximum stress at 110 and 130 °C, respectively. Under ambient conditions the WG-MPS composite (70/30) with 45% glycerol showed excellent gas barrier properties to be further explored in multilayer film packaging applications.

  1. Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth.

    Science.gov (United States)

    Draeger, Christian; Ndinyanka Fabrice, Tohnyui; Gineau, Emilie; Mouille, Grégory; Kuhn, Benjamin M; Moller, Isabel; Abdou, Marie-Therese; Frey, Beat; Pauly, Markus; Bacic, Antony; Ringli, Christoph

    2015-06-24

    Leucine-rich repeat extensins (LRXs) are extracellular proteins consisting of an N-terminal leucine-rich repeat (LRR) domain and a C-terminal extensin domain containing the typical features of this class of structural hydroxyproline-rich glycoproteins (HRGPs). The LRR domain is likely to bind an interaction partner, whereas the extensin domain has an anchoring function to insolubilize the protein in the cell wall. Based on the analysis of the root hair-expressed LRX1 and LRX2 of Arabidopsis thaliana, LRX proteins are important for cell wall development. The importance of LRX proteins in non-root hair cells and on the structural changes induced by mutations in LRX genes remains elusive. The LRX gene family of Arabidopsis consists of eleven members, of which LRX3, LRX4, and LRX5 are expressed in aerial organs, such as leaves and stem. The importance of these LRX genes for plant development and particularly cell wall formation was investigated. Synergistic effects of mutations with gradually more severe growth retardation phenotypes in double and triple mutants suggest a similar function of the three genes. Analysis of cell wall composition revealed a number of changes to cell wall polysaccharides in the mutants. LRX3, LRX4, and LRX5, and most likely LRX proteins in general, are important for cell wall development. Due to the complexity of changes in cell wall structures in the lrx mutants, the exact function of LRX proteins remains to be determined. The increasingly strong growth-defect phenotypes in double and triple mutants suggests that the LRX proteins have similar functions and that they are important for proper plant development.

  2. Micro-structure, Mechanical Properties and Dielectric Properties of Bisphenol A Allyl Compound-Bismaleimide Modified by Super-Critical Silica and Polyethersulfone Composite

    Science.gov (United States)

    Chen, Yufei; Wang, Botao; Li, Fangliang; Teng, Chengjun

    2017-07-01

    Bisphenol A allyl compound-bismaleimide (MBAE) composite modified by SCE-SiO2 and polyethersulfone (PES) resin has been prepared and researched. SCE-SiO2 was modified by super-critical ethanol and PES thermoplastic resin used as modifiers. The composite was prepared via the hot melting method. The FT-IR measurements indicated that ethanol molecular had adsorbed on the nano-SiO2 surface. SEM images showed that the composite had a multiphase structure, PES and SCE-SiO2 existed as a dispersed phase, and the interaction of the three phases affected each other, such that the bending fracture behavior transformed from brittle fracture to ductile fracture, and the modifiers of SCE-SiO2 and PES resin could improve the mechanical properties. The impact and the bending strength of the composite was 16.5 kJ/mm2 and 150.4 MPa, improved by 68.3% and 56.7% compared with those of the MBAE matrix, respectively, when the content of SCE-SiO2 was 2 wt.% and PES 5 wt.%. The dielectric constant ( ɛ) of the composites was less than 3.9 and decreased with increasing frequency, and the dielectric loss was less than 9 × 10-3 for frequencies between 102 Hz and 105 Hz. These properties could meet the requirement of insulating material.

  3. Modified natural fibrils for structural hybrid composites: Towards an investigation of textile reduction

    Science.gov (United States)

    Ufodike, Chukwuzubelu Okenwa

    Recently, the interest for renewable resources for fibers particularly of plant origin has been increasing. Reduction of use of traditional textile materials is now considered more critical due to the increasing environmental concern. Natural fibers are renewable, biodegradable, recyclable, and lightweight materials with high specific modulus, in competition with man-made fossil materials and fiberglass. Natural fibers are used for preparation of functionalized textiles to achieve smart and intelligent properties. However, the incorporation of these fibers in composite systems has been challenging due to their hydrophilic nature. Nevertheless, the fact that these biodegradable materials can be manipulated at a nano-scale to complement desired objective and application has made them a favorable option. The idea behind this project is to explore ways to convert green waste to high value materials and to utilize natural building blocks to design textile reinforcement materials. In this work, cellulose nanofibrils (CNF) supplied from the University of Maine were hydrophobized by silylation and characterized using Fourier-Transform Infrared (FTIR) spectroscopy, Raman spectroscopy, and Thermogravimetric analysis (TGA). Results from FTIR spectroscopy showed a formation of Si-O-C bonds, indicating better fiber-matrix adhesion. Raman spectroscopy showed disruption of hydrogen bonding which indicates interference of parallel nanocellulose fiber adhesion to neighboring fibrils. The TGA suggests that the thermal stability of the functionalized CNF is higher than that of the corresponding neat sample, which could be a result of stable Si bond formation. The raw materials (neat and functionalized) were encapsulated in a polystyrene matrix through a solvent and non-solvent precipitation process, and then extruded using single and dual heat processing. The extruded thin filaments were tested according to the ASTM D638 (tensile test of plastics). Results showed an increasing

  4. Synthesis and Properties of High Strength Thin Film Composites of Poly(ethylene Oxide and PEO-PMMA Blend with Cetylpyridinium Chloride Modified Clay

    Directory of Open Access Journals (Sweden)

    Mohammad Saleem Khan

    2015-01-01

    Full Text Available Ion-conducting thin film composites of polymer electrolytes were prepared by mixing high MW poly(ethylene oxide (PEO, poly(methyl methacrylate (PMMA as a polymer matrix, cetylpyridinium chloride (CPC modified MMT as filler, and different content of LiClO4 by using solution cast method. The crystallinity, ionic conductivity (σ, and mechanical properties of the composite electrolytes and blend composites were evaluated by using XRD, AC impedance, and UTM studies, respectively. The modification of clay by CPC showed enhancement in the d-spacing. The loading of clay has effect on crystallinity of PEO systems. Blend composites showed better mechanical properties. Young’s modulus and elongation at break values showed increase with salt and clay incorporation in pure PEO. The optimum composition composite of PEO with 3.5 wt% of salt and 3.3 wt% of CPMMT exhibited better performance.

  5. Optimization of High Temperature and Pressurized Steam Modified Wood Fibers for High-Density Polyethylene Matrix Composites Using the Orthogonal Design Method

    Directory of Open Access Journals (Sweden)

    Xun Gao

    2016-10-01

    Full Text Available The orthogonal design method was used to determine the optimum conditions for modifying poplar fibers through a high temperature and pressurized steam treatment for the subsequent preparation of wood fiber/high-density polyethylene (HDPE composites. The extreme difference, variance, and significance analyses were performed to reveal the effect of the modification parameters on the mechanical properties of the prepared composites, and they yielded consistent results. The main findings indicated that the modification temperature most strongly affected the mechanical properties of the prepared composites, followed by the steam pressure. A temperature of 170 °C, a steam pressure of 0.8 MPa, and a processing time of 20 min were determined as the optimum parameters for fiber modification. Compared to the composites prepared from untreated fibers, the tensile, flexural, and impact strength of the composites prepared from modified fibers increased by 20.17%, 18.5%, and 19.3%, respectively. The effect on the properties of the composites was also investigated by scanning electron microscopy and dynamic mechanical analysis. When the temperature, steam pressure, and processing time reached the highest values, the composites exhibited the best mechanical properties, which were also well in agreement with the results of the extreme difference, variance, and significance analyses. Moreover, the crystallinity and thermal stability of the fibers and the storage modulus of the prepared composites improved; however, the hollocellulose content and the pH of the wood fibers decreased.

  6. In situ hydrothermal synthesis of a novel hierarchically porous TS-1/modified-diatomite composite for methylene blue (MB) removal by the synergistic effect of adsorption and photocatalysis.

    Science.gov (United States)

    Yuan, Weiwei; Yuan, Peng; Liu, Dong; Yu, Wenbin; Laipan, Minwang; Deng, Liangliang; Chen, Fanrong

    2016-01-15

    Hierarchically porous TS-1/modified-diatomite composites with high removal efficiency for methylene blue (MB) were prepared via a facile in situ hydrothermal route. The surface charge state of the diatomite was modified to enhance the electrostatic interactions, followed by in situ hydrothermal coating with TS-1 nanoparticles. The zeolite loading amount in the composites could be adjusted by changing the hydrothermal time. The highest specific surface area and micropore volume of the obtained composites were 521.3m(2)/g and 0.254cm(3)/g, respectively, with an optimized zeolite loading amount of 96.8%. Based on the synergistic effect of efficient adsorption and photocatalysis resulting from the newly formed hierarchically porous structure and improved dispersion of TS-1 nanoparticles onto diatomite, the composites' removal efficiency for MB reached 99.1% after 2h of photocatalytic reaction, even higher than that observed using pure TS-1 nanoparticles. Moreover, the superior MB removal kinetics of the composites were well represented by a pseudo-first-order model, with a rate constant (5.28×10(-2)min(-1)) more than twice as high as that of pure TS-1 nanoparticles (2.43×10(-2)min(-1)). The significant dye removal performance of this novel TS-1/modified-diatomite composite indicates that it is a promising candidate for use in waste water treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Distortion of genetically modified organism quantification in processed foods: influence of particle size compositions and heat-induced DNA degradation.

    Science.gov (United States)

    Moreano, Francisco; Busch, Ulrich; Engel, Karl-Heinz

    2005-12-28

    Milling fractions from conventional and transgenic corn were prepared at laboratory scale and used to study the influence of sample composition and heat-induced DNA degradation on the relative quantification of genetically modified organisms (GMO) in food products. Particle size distributions of the obtained fractions (coarse grits, regular grits, meal, and flour) were characterized using a laser diffraction system. The application of two DNA isolation protocols revealed a strong correlation between the degree of comminution of the milling fractions and the DNA yield in the extracts. Mixtures of milling fractions from conventional and transgenic material (1%) were prepared and analyzed via real-time polymerase chain reaction. Accurate quantification of the adjusted GMO content was only possible in mixtures containing conventional and transgenic material in the form of analogous milling fractions, whereas mixtures of fractions exhibiting different particle size distributions delivered significantly over- and underestimated GMO contents depending on their compositions. The process of heat-induced nucleic acid degradation was followed by applying two established quantitative assays showing differences between the lengths of the recombinant and reference target sequences (A, deltal(A) = -25 bp; B, deltal(B) = +16 bp; values related to the amplicon length of the reference gene). Data obtained by the application of method A resulted in underestimated recoveries of GMO contents in the samples of heat-treated products, reflecting the favored degradation of the longer target sequence used for the detection of the transgene. In contrast, data yielded by the application of method B resulted in increasingly overestimated recoveries of GMO contents. The results show how commonly used food technological processes may lead to distortions in the results of quantitative GMO analyses.

  8. Application of graphene-ionic liquid-chitosan composite-modified carbon molecular wire electrode for the sensitive determination of adenosine-5′-monophosphate

    International Nuclear Information System (INIS)

    Shi, Fan; Gong, Shixing; Xu, Li; Zhu, Huanhuan; Sun, Zhenfan; Sun, Wei

    2013-01-01

    In this paper, a graphene (GR) ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite-modified carbon molecular wire electrode (CMWE) was fabricated by a drop-casting method and further applied to the sensitive electrochemical detection of adenosine-5′-monophosphate (AMP). CMWE was prepared with diphenylacetylene (DPA) as the modifier and the binder. The properties of modified electrode were examined by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical behaviors of AMP was carefully investigated with enhanced responses appeared, which was due to the presence of GR-IL composite on the electrode surface with excellent electrocatalytic ability. A well-defined oxidation peak of AMP appeared at 1.314 V and the electrochemical parameters were calculated by electrochemical methods. Under the selected conditions, the oxidation peak current of AMP was proportional to its concentration in the range from 0.01 μM to 80.0 μM with the detection limit as 3.42 nM (3σ) by differential pulse voltammetry. The proposed method exhibited good selectivity and was applied to the detection of vidarabine monophosphate injection samples with satisfactory results. - Highlights: • A graphene, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite were prepared. • Composite-modified carbon molecular wire electrode was fabricated and characterized. • A sensitive electrochemical method for the detection of adenosine-5′-monophosphate was established

  9. Application of graphene-ionic liquid-chitosan composite-modified carbon molecular wire electrode for the sensitive determination of adenosine-5′-monophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Fan [Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Gong, Shixing; Xu, Li; Zhu, Huanhuan [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Sun, Zhenfan [Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China); Sun, Wei, E-mail: swyy26@hotmail.com [Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158 (China)

    2013-12-01

    In this paper, a graphene (GR) ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite-modified carbon molecular wire electrode (CMWE) was fabricated by a drop-casting method and further applied to the sensitive electrochemical detection of adenosine-5′-monophosphate (AMP). CMWE was prepared with diphenylacetylene (DPA) as the modifier and the binder. The properties of modified electrode were examined by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical behaviors of AMP was carefully investigated with enhanced responses appeared, which was due to the presence of GR-IL composite on the electrode surface with excellent electrocatalytic ability. A well-defined oxidation peak of AMP appeared at 1.314 V and the electrochemical parameters were calculated by electrochemical methods. Under the selected conditions, the oxidation peak current of AMP was proportional to its concentration in the range from 0.01 μM to 80.0 μM with the detection limit as 3.42 nM (3σ) by differential pulse voltammetry. The proposed method exhibited good selectivity and was applied to the detection of vidarabine monophosphate injection samples with satisfactory results. - Highlights: • A graphene, ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate and chitosan composite were prepared. • Composite-modified carbon molecular wire electrode was fabricated and characterized. • A sensitive electrochemical method for the detection of adenosine-5′-monophosphate was established.

  10. Dimensional stability of wood-plastic composites reinforced with potassium methyl siliconate modified fiber and sawdust made from beetle-killed trees

    Science.gov (United States)

    Cheng Piao; Zhiyong Cai; Nicole M. Stark; Charles J. Montezun

    2014-01-01

    Wood fromtwovarieties of beetle-killed trees was used to fabricate wood–plastic composites. Loblolly pine and lodgepole pine beetle-killed trees were defibrated mechanically and thermomechanically, respectively, into fiber. Fiber and sawdust produced from the trees were modified with potassium methyl siliconate (PMS) and injection-molded into fiber/sawdust reinforced...

  11. Electrochemical Determination of Chlorpyrifos on a Nano-TiO₂Cellulose Acetate Composite Modified Glassy Carbon Electrode.

    Science.gov (United States)

    Kumaravel, Ammasai; Chandrasekaran, Maruthai

    2015-07-15

    A rapid and simple method of determination of chlorpyrifos is important in environmental monitoring and quality control. Electrochemical methods for the determination of pesticides are fast, sensitive, reproducible, and cost-effective. The key factor in electrochemical methods is the choice of suitable electrode materials. The electrode materials should have good stability, reproducibility, more sensitivity, and easy method of preparation. Mercury-based electrodes have been widely used for the determination of chlorpyrifos. From an environmental point of view mercury cannot be used. In this study a biocompatible nano-TiO2/cellulose acetate modified glassy carbon electrode was prepared by a simple method and used for the electrochemical sensing of chlorpyrifos in aqueous methanolic solution. Electroanalytical techniques such as cyclic voltammetry, differential pulse voltammetry, and amperometry were used in this work. This electrode showed very good stability, reproducibility, and sensitivity. A well-defined peak was obtained for the reduction of chlorpyrifos in cyclic voltammetry and differential pulse voltammetry. A smooth noise-free current response was obtained in amperometric analysis. The peak current obtained was proportional to the concentration of chlorpyrifos and was used to determine the unknown concentration of chlorpyrifos in the samples. Analytical parameters such as LOD, LOQ, and linear range were estimated. Analysis of real samples was also carried out. The results were validated through HPLC. This composite electrode can be used as an alternative to mercury electrodes reported in the literature.

  12. A modified multi-objective particle swarm optimization approach and its application to the design of a deepwater composite riser

    Science.gov (United States)

    Zheng, Y.; Chen, J.

    2017-09-01

    A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multi-objective particle swarm optimization methods, Kriging meta-models and the trapezoid index are introduced and integrated with the traditional one. Kriging meta-models are built to match expensive or black-box functions. By applying Kriging meta-models, function evaluation numbers are decreased and the boundary Pareto-optimal solutions are identified rapidly. For bi-objective optimization problems, the trapezoid index is calculated as the sum of the trapezoid's area formed by the Pareto-optimal solutions and one objective axis. It can serve as a measure whether the Pareto-optimal solutions converge to the Pareto front. Illustrative examples indicate that to obtain Pareto-optimal solutions, the method proposed needs fewer function evaluations than the traditional multi-objective particle swarm optimization method and the non-dominated sorting genetic algorithm II method, and both the accuracy and the computational efficiency are improved. The proposed method is also applied to the design of a deepwater composite riser example in which the structural performances are calculated by numerical analysis. The design aim was to enhance the tension strength and minimize the cost. Under the buckling constraint, the optimal trade-off of tensile strength and material volume is obtained. The results demonstrated that the proposed method can effectively deal with multi-objective optimizations with black-box functions.

  13. The Effect of Resin-modified Glass-ionomer Cement Base and Bulk-fill Resin Composite on Cuspal Deformation.

    Science.gov (United States)

    Nguyen, K V; Wong, R H; Palamara, J; Burrow, M F

    2016-01-01

    This study investigated cuspal deformation in teeth restored with different types of adhesive materials with and without a base. Mesio-occluso-distal slot cavities of moderately large dimension were prepared on extracted maxillary premolars (n=24). Teeth were assigned to one of four groups and restored with either a sonic-activated bulk-fill resin composite (RC) (SonicFill), or a conventional nanohybrid RC (Herculite Ultra). The base materials used were a flowable nanofilled RC (Premise Flowable) and a high-viscosity resin-modified glass-ionomer cement (RMGIC) (Riva Light-Cure HV). Cuspal deflection was measured with two direct current differential transformers, each contacting a buccal and palatal cusp. Cuspal movements were recorded during and after restoration placement. Data for the buccal and palatal cusp deflections were combined to give the net cuspal deflection. Data varied widely. All teeth experienced net inward cuspal movement. No statistically significant differences in cuspal deflection were found among the four test groups. The use of a flowable RC or an RMGIC in closed-laminate restorations produced the same degree of cuspal movement as restorations filled with only a conventional nanohybrid or bulk-fill RC.

  14. 3,5-Diiodo-L-Thyronine Modifies the Lipid Droplet Composition in a Model of Hepatosteatosis

    Directory of Open Access Journals (Sweden)

    Elena Grasselli

    2014-02-01

    Full Text Available Background/Aims: Fatty acids are the main energy stores and the major membrane components of the cells. In the hepatocyte, fatty acids are esterified to triacylglycerols (TAGs and stored in lipid droplets (LDs. The lipid lowering action of 3,5-diiodo-L-thyronine (T2 on an in vitro model of hepatosteatosis was investigated in terms of fatty acid and protein content of LDs, lipid oxidation and secretion. Methods: FaO cells were exposed to oleate/palmitate, then treated with T2. Results: T2 reduced number and size of LDs, and modified their acyl composition by decreasing the content of saturated (SFA vs monounsaturated (MUFA fatty acids thus reversing the SFA/MUFA ratio. The expression of the LD-associated proteins adipose differentiation-related protein (ADRP, oxidative tissue-enriched PAT protein (OXPAT, and adipose triglyceride lipase (ATGL was increased in ‘steatotic' cells and further up-regulated by T2. Moreover, T2 stimulated the mitochondrial oxidation by up-regulating carnitine-palmitoyl-transferase (CPT1, uncoupling protein 2 (UCP2 and very long-chain acyl-coenzyme A dehydrogenase (VLCAD. Conclusions: T2 leads to mobilization of TAGs from LDs and stimulates mitochondrial oxidative metabolism of fatty acids, in particular of SFAs, and thus enriches of MUFAs the LDs. This action may protect the hepatocyte from excess of SFAs that are more toxic than MUFAs.

  15. Phenanthrene and Pyrene Modify the Composition and Structure of the Cultivable Endophytic Bacterial Community in Ryegrass (Lolium multiflorum Lam

    Directory of Open Access Journals (Sweden)

    Xuezhu Zhu

    2016-11-01

    Full Text Available This study provides new insights into the dynamics of bacterial community structure during phytoremediation. The communities of cultivable autochthonous endophytic bacteria in ryegrass exposed to polycyclic aromatic hydrocarbons (PAHs were investigated with regard to their potential to biodegrade PAHs. Bacterial counts and 16S rRNA gene sequence were used in the microbiological evaluation. A total of 33 endophytic bacterial strains were isolated from ryegrass plants, which represented 15 different genera and eight different classes, respectively. Moreover, PAH contamination modified the composition and structure of the endophytic bacterial community in the plants. Bacillus sp., Pantoea sp., Pseudomonas sp., Arthrobacter sp., Pedobacter sp. and Delftia sp. were only isolated from the seedlings exposed to PAHs. Furthermore, the dominant genera in roots shifted from Enterobacter sp. to Serratia sp., Bacillus sp., Pantoea sp., and Stenotrophomonas sp., which could highly biodegrade phenanthrene (PHE. However, the diversity of endophytic bacterial community was decreased by exposure to the mixture of PAHs, and increased by respective exposure to PHE and pyrene (PYR, while the abundance was increased by PAH exposure. The results clearly indicated that the exposure of plants to PAHs would be beneficial for improving the effectiveness of phytoremediation of PAHs.

  16. Ablation behavior of rare earth La-modified ZrC coating for SiC-coated carbon/carbon composites under an oxyacetylene torch

    International Nuclear Information System (INIS)

    Jia, Yujun; Li, Hejun; Feng, Lei; Sun, Jiajia; Li, Kezhi; Fu, Qiangang

    2016-01-01

    Highlights: • La-modified ZrC coating was prepared by supersonic atmosphere plasma spraying. • The oxyacetylene ablation behavior of La-modified ZrC/SiC coating was evaluated. • The coating shows a good ablation resistance under heat flux of 2.4 MW/m"2. • La promotes the liquid phase sintering of ZrO_2 and the formation of a compact scale. • The protection of the scale results in retaining elemental C in its inner layer. - Abstract: To improve the ablation resistance of carbon/carbon (C/C) composites at ultra-high temperature, La-modified ZrC coating was prepared on SiC-coated C/C composites by supersonic atmosphere plasma spraying. The coating shows a significant improvement on the ablation resistance compared with ZrC coating and could protect C/C composites for more than 120 s under heat flux of 2.4 MW/m"2. La acted as a role in promoting the liquid phase sintering of ZrO_2 and forming a compact scale with high thermal stability, improving the ablation resistance of C/C composites.

  17. Adsorption of Pb(II) using silica gel composite from rice husk ash modified 3-aminopropyltriethoxysilane (APTES)-activated carbon from coconut shell

    Science.gov (United States)

    Yusmaniar, Purwanto, Agung; Putri, Elfriyana Awalita; Rosyidah, Dzakiyyatur

    2017-03-01

    Silica gel modified by 3-aminopropyltriethoxysilane (APTES) was synthesized from rice husk ash combined with activated carbon from coconut shell yielded the composite adsorbent. The composite was characterized by Fourier Transform Infra Red spectroscopy (FT-IR), Electron Dispersive X-Ray (EDX), Surface Area Analyzer (SAA) and adsorption test by Atomic Absorption Spectrometry (AAS). This composite adsorbent has been used moderately for the removal of lead ions from metal solutions and compared with silica gel modified APTES and activated carbon. The adsorption experiments of Pb -ions by adsorbents were performed at different pH and contact time with the same metal solutions concentration, volume solution, and adsorbent dosage. The optimum pH for the adsorption was found to be 5.0 and the equilibrium was achieved for Pb with 20 min of contact time. Pb ions adsorption by composite silica gel modified APTES-activated carbon followed by Langmuir isotherm model with qmax value of 46.9483 mg/g that proved an adsorbent mechanism consistent to the mechanism of monolayer formation.

  18. Fabrication of Superhydrophobic Surface on Polydopamine-coated Al Plate by Using Modified SiO{sub 2} Nanoparticles/Polystyrene Nano-Composite Coating

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Songho; Lee, Woohee; Ahn, Yonghyun [Dankook University, Yongin (Korea, Republic of)

    2016-04-15

    A superhydrophobic Al surface has been fabricated by coating with polydopamine, followed by coating with a modified silica nanoparticles/PS composite solution. The role of polydopamine layer is to improve the adhesion of the modified silica nanoparticles. This platform is an ideal structure for attaching various nano/micro particles. Aluminum is an important industrial metal, and the superhydrophobic surface of Al plates has potential applications in various fields. Aluminum is a relatively lightweight, soft, and durable metal with good thermal conductivity and excellent corrosion resistance.

  19. Interface and its effect on the interlaminate shear strength of novel glass fiber/hyperbranched polysiloxane modified maleimide-triazine resin composites

    International Nuclear Information System (INIS)

    Liu Ping; Guan Qingbao; Gu Aijuan; Liang Guozheng; Yuan Li; Chang Jianfei

    2011-01-01

    Interface is Key topic of developing advanced fiber reinforced polymeric composites. Novel advanced glass woven fabric (GF) reinforced composites, coded as GF/mBT, were prepared, of which the matrix resin was hyperbranched polysiloxane (HBPSi) modified maleimide-triazine (mBT) resin. The influence of the composition of the matrix on the interfacial nature of the GF/mBT composites were studied and compared with that of the composite based on GF and BT resin using contact angle, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and dielectric properties over wide frequency and temperature ranges. Results show that the interfacial nature of the composites is dependent on the chemistries of the matrices, mBT matrices have better interfacial adhesion with GF than BT resin owing to the formation of chemical and hydrogen bonds between mBT resin and GF; while in the case of mBT resins, the content of HBPSi also plays an important role on the interfacial feature and thus the macro-performance. Specifically, with increasing the content of HBPSi in the matrix, the interlaminate shear strength of corresponding composites significantly improves, demonstrating that better interfacial adhesion guarantees outstanding integrated properties of the resultant composites.

  20. Microstructure and magnetorheological properties of the thermoplastic magnetorheological elastomer composites containing modified carbonyl iron particles and poly(styrene-b-ethylene-ethylenepropylene-b-styrene) matrix

    International Nuclear Information System (INIS)

    Qiao, Xiuying; Lu, Xiushou; Li, Wei; Sun, Kang; Li, Weihua; Chen, Jun; Gong, Xinglong; Yang, Tao; Chen, Xiaodong

    2012-01-01

    Novel isotropic and anisotropic thermoplastic magnetorheological elastomers (MRE) were prepared by melt blending titanated coupling agent modified carbonyl iron (CI) particles with poly(styrene-b-ethylene-ethylene–propylene-b-styrene) (SEEPS) matrix in the absence and presence of a magnetic field, and the microstructure and magnetorheological properties of these SEEPS-based MRE were investigated in detail. The particle surface modification improves the dispersion of the particles in the matrix and remarkably softens the CI/SEEPS composites, thus significantly enhancing the MR effect and improving the processability of these SEEPS-based MRE. A microstructural model was proposed to describe the interfacial compatibility mechanism that occurred in the CI/SEEPS composites after titanate coupling agent modification, and validity of this model was also demonstrated through adsorption tests of unmodified and surface-modified CI particles. (paper)

  1. Application of laws, policies, and guidance from the United States and Canada to the regulation of food and feed derived from genetically modified crops: interpretation of composition data.

    Science.gov (United States)

    Price, William D; Underhill, Lynne

    2013-09-04

    With the development of recombinant DNA techniques for genetically modifying plants to exhibit beneficial traits, laws and regulations were adopted to ensure the safety of food and feed derived from such plants. This paper focuses on the regulation of genetically modified (GM) plants in Canada and the United States, with emphasis on the results of the compositional analysis routinely utilized as an indicator of possible unintended effects resulting from genetic modification. This work discusses the mandate of Health Canada and the Canadian Food Inspection Agency as well as the U.S. Food and Drug Administration's approach to regulating food and feed derived from GM plants. This work also addresses how publications by the Organisation for Economic Co-operation and Development and Codex Alimentarius fit, particularly with defining the importance and purpose of compositional analysis. The importance of study design, selection of comparators, use of literature, and commercial variety reference values is also discussed.

  2. Role of heat on the development of electrochemical sensors on bare and modified Co3O4/CuO composite nanopowder carbon paste electrodes.

    Science.gov (United States)

    Kumar, Mohan; Kumara Swamy, B E

    2016-01-01

    The Co3O4/CuO composite nanopowder (NP) was synthesized by a mechanochemical method and characterized by using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The synthesized Co3O4/CuO NP was used as a modified carbon paste electrode (MCPE) and further the bare carbon paste and Co3O4/CuO NP modified carbon paste was heated at different temperatures (100, 150, 200 and 250 °C) for 10 min. The Co3O4/CuO NP MCPE was used to study the consequences of scan rate and dopamine concentration. Furthermore the preheated modified electrodes were used to study the electrochemical response to dopamine (DA), ascorbic acid (AA) and uric acid (UA). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Antidegradation and reinforcement effects of phenyltrimethoxysilane- or N-[3-(trimethoxysilyl)propyl]aniline-modified silica particles in natural rubber composites

    Energy Technology Data Exchange (ETDEWEB)

    Tunlert, Apinya [Program in Petrochemistry and Polymer Science, Chulalongkorn University, Bangkok 10330 (Thailand); Prasassarakich, Pattarapan [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Poompradub, Sirilux, E-mail: sirilux.p@chula.ac.th [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Center for Petroleum, Petrochemical and Advanced Material, Chulalongkorn University Bangkok 10330 (Thailand)

    2016-04-15

    The modification of silica particles with phenyltrimethoxysilane or N-[3-(trimethoxysilyl)propyl]aniline via a sol–gel reaction was performed in order to improve the dispersion of silica and antidegradation in natural rubber (NR). The functional groups on the modified silica surface were characterized by Fourier transform infrared spectroscopy, while the morphology was evaluated by scanning and transmission electron microscopy. The surface properties and antioxidant activity of the modified silica particles were determined by the water contact angle and 2, 2-diphenyl-1-picrylhydrazyl assay, respectively. The modified silica particles exhibited a higher hydrophobicity and a decreased interfacial adhesion energy compared with the unmodified silica particles. The modified silica particles were then incorporated into NR. The better dispersion of the modified silica particles than the unmodified ones in the NR matrix resulted in improved mechanical properties in terms of the modulus at 300% elongation (2.9 ± 0.02 MPa), hardness (52.5 ± 0.2 Shore A), abrasion resistance (241 ± 8 mm{sup 3}) and compression set (20.2 ± 0.6%). In addition, the inclusion of the modified silica particles in the NR matrix gave a high initial temperature of decomposition and retarded the ozone-induced degradation compared with the NR filled with unmodified silica particles. - Highlights: • Silica was surface modified with PhTMS or ATMS via a sol–gel reaction. • Modified silica showed a decreased interfacial adhesion energy. • Modified silica showed an enhanced free radical scavenging activity. • Modified silica improved the mechanical properties, thermal stability and ozone resistance in NR vulcanizates.

  4. Rheological and mechanical properties and interfacial stress development of composite cements modified with thio-urethane oligomers.

    Science.gov (United States)

    Bacchi, Ataís; Pfeifer, Carmem S

    2016-08-01

    Thio-urethane oligomers have been shown to reduce stress and increase toughness in highly filled composite materials. This study evaluated the influence of thio-urethane backbone structure on rheological and mechanical properties of resin cements modified with a fixed concentration of the oligomers. Thio-urethane oligomers (TU) were synthesized by combining thiols - pentaerythritol tetra-3-mercaptopropionate (PETMP) or trimethylol-tris-3-mercaptopropionate (TMP) - with isocyanates - 1,6-hexanediol-diissocyante (HDDI) (aliphatic) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (BDI) (aromatic) or dicyclohexylmethane 4,4'-diisocyanate (HMDI) (cyclic), at 1:2 isocyanate:thiol, leaving pendant thiols. 20wt% TU were added to BisGMA-UDMA-TEGDMA (5:3:2). 60wt% silanated inorganic fillers were added. Near-IR was used to follow methacrylate conversion and rate of polymerization ( [Formula: see text] ). Mechanical properties were evaluated in three-point bending (ISO 4049) for flexural strength/modulus (FS/FM, and toughness), and notched specimens (ASTM Standard E399-90) for fracture toughness (KIC). PS was measured on the Bioman. Viscosity (V) and gel-points (defined as the crossover between storage and loss shear moduli (G'/G″)) were obtained with rheometry. Glass transition temperature (Tg), cross-link density and homogeneity of the network were obtained with dynamic mechanical analysis. Film-thickness was evaluated according to ISO 4049. DC and mechanical properties increased and [Formula: see text] and PS decreased with the addition of TUs. Gelation (G'/G″) was delayed and DC at G'/G″ increased in TU groups. Tg and cross-link density dropped in TU groups, while oligomers let to more homogenous networks. An increase in V was observed, with no effect on film-thickness. Significant reductions in PS were achieved at the same time conversion and mechanical properties increased. The addition of thio-urethane oligomers proved successful in improving several key properties

  5. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Hesaraki, S., E-mail: S-hesaraki@merc.ac.ir

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO{sub 2}-CaO-P{sub 2}O{sub 5} glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~ 32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption. - Highlights: • Light cure cement based on SiO{sub 2}-CaO-P{sub 2}O{sub 5} glass and polymer-like matrix was formed. • The matrix includes poly(acrylic/maleic acid) and poly(hydroxyethyl methacrylate). • The cement is as strong as polymethylmethacrylate bone cement. • The cement exhibits apatite formation ability in simulated body fluid. • The cement is biodegradable and supports proliferation of osteoblastic cells.

  6. Composites

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1983-01-01

    This chapter discusses the roles of composite laminates and aggregates in cryogenic technology. Filamentary-reinforced composites are emphasized because they are the most widely used composite materials. Topics considered include composite systems and terminology, design and fabrication, composite failure, high-pressure reinforced plastic laminates, low-pressure reinforced plastics, reinforced metals, selectively reinforced structures, the effect of cryogenic temperatures, woven-fabric and random-mat composites, uniaxial fiber-reinforced composites, composite joints in cryogenic structures, joining techniques at room temperature, radiation effects, testing laminates at cryogenic temperatures, static and cyclic tensile testing, static and cyclic compression testing, interlaminar shear testing, secondary property tests, and concrete aggregates. It is suggested that cryogenic composite technology would benefit from the development of a fracture mechanics model for predicting the fitness-for-purpose of polymer-matrix composite structures

  7. Morphology and contact angle studies of poly(styrene-co-acrylonitrile modified epoxy resin blends and their glass fibre reinforced composites

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available In this study, the surface characteristics of blends and composites of epoxy resin were investigated. Poly(styrene-co-acylonitrile (SAN was used to modify diglycedyl ether of bisphenol-A (DGEBA type epoxy resin cured with diamino diphenyl sulfone (DDS and the modified epoxy resin was used as the matrix for fibre reinforced composites (FRP’s. E-glass fibre was used as the fibre reinforcement. The scanning electron micrographs of the fractured surfaces of the blends and composites were analyzed. Morphological analysis revealed different morphologies such as dispersed, cocontinuous and phase-inverted structures for the blends. Contact angle studies were carried out using water and methylene iodide at room temperature. The solid surface energy was calculated using harmonic mean equations. Blending of epoxy resin increases its contact angle. The surface free energy, work of adhesion, interfacial free energy, spreading coefficient and Girifalco-Good’s interaction parameter were changed significantly in the case of blends and composites. The incorporation of thermoplastic and glass fibre reduces the wetting and hydrophilicity of epoxy resin.

  8. p-toluene sulfonic acid doped polyaniline carbon nanotube composites: synthesis via different routes and modified properties

    Directory of Open Access Journals (Sweden)

    ASHOK K. SHARMA

    2013-04-01

    Full Text Available Composites of polyaniline and carbon nanotube (CNT were prepared by in-situ chemical polymerization method using various aniline concentrations in the initial polymerization solution with p-toluene sulfonic acid (PTS as secondary dopant and mechanical mixing of the PANI and CNT using different weight ratios of PANI and CNTs. The structural characterizations of the composites were done by Fourier transform infrared (FTIR and Ultra violet visible spectroscopy (UV-Visible. Scanning electron microscopy (SEM was used to characterize the surface morphology of the composites. It was found that the composites prepared by in-situ chemical polymerization had smoother surface morphology in comparison to the composites obtained by mechanical mixing. The capacitive studies reveal that the in-situ composite has synergistic effect and the specific capacitance of the composite calculated from cyclic voltammogram (CV was 385.1 F/g. Thermal studies indicate that the composites are stable as compared to PANI alone showing that the CNT contributes towards thermal stability in the PANI-CNT composites.

  9. [Effects of sintered bone modified with surface mineralization/P24 peptide composite biomaterial on the adhesion, proliferation and osteodifferentiation of MC3T3-E1 cells].

    Science.gov (United States)

    Li, Jingfeng; Zheng, Qixin; Guo, Xiaodong; Chen, Liaobin

    2014-10-01

    In the present research, the effects of sintered bone modified with surface mineralization/P24 peptide composite biomaterials on the adhesion, proliferation and osteodifferentiation of MC3T3-E1 cells were investigated. The experiments were divided into three groups due to biomaterials used: Group A (composite materials of sintered bone modified with surface mineralization and P24, a peptide of bone morphogenetic protein-2); Group B (sintered bone modified with surface mineralization) and Group C (sintered bone only). The three groups were observed by scanning electron microscopy (SEM) before the experiments, respectively. Then MC3T3-E1 cells were cultured on the surfaces of the three kinds of material, respectively. The cell adhesion rate was assessed by precipitation method. The proliferative ability of MC3T3-E1 cells were measured with MTT assay. And the ALP staining and measurement of alkaline phosphatase (ALP) activity were performed to assess the differentiation of cells into osteoblasts. The SEM results showed that the materials in the three groups retained the natural pore structure and the pore sizes were in the range between 200-850 μm. The adhesive ratio measurements and MTT assay suggested that adhesion and proliferation of MC3T3-E1 cells in Group A were much higher than those in Group B and Group C (P bone modified with surface mineralization/P24 composite material was confirmed to improve the adhesion rate and proliferation and osteodifferentiation of MC3T3-E1 cells, and maintained their morphology.

  10. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    International Nuclear Information System (INIS)

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-01-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets

  11. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wencai [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013 (China); Huang, Hui; Gao, Xiaochun [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Ma, Houyi, E-mail: hyma@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets.

  12. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films.

    Science.gov (United States)

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1-65 μM with a low detection limit of 0.01 μM (S/N=3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  14. Composition

    DEFF Research Database (Denmark)

    2014-01-01

    Memory Pieces are open compositions to be realised solo by an improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them...

  15. Study on the structure-properties relationship of natural rubber/SiO2 composites modified by a novel multi-functional rubber agent

    Directory of Open Access Journals (Sweden)

    S. Y. Yang

    2014-06-01

    Full Text Available Vulcanization property and structure-properties relationship of natural rubber (NR/silica (SiO2 composites modified by a novel multi-functional rubber agent, N-phenyl- N'-(γ-triethoxysilane-propyl thiourea (STU, are investigated in detail. Results from the infrared spectroscopy (IR and X-ray photoelectron spectroscopy (XPS show that STU can graft to the surface of SiO2 under heating, resulting in a fine-dispersed structure in the rubber matrix without the connectivity of SiO2 particles as revealed by transmission electron microscopy (TEM. This modification effect reduces the block vulcanization effect of SiO2 for NR/SiO2/STU compounds under vulcanization process evidently. The 400% modulus and tensile strength of NR/SiO2/STU composites are much higher than that of NR/SiO2/TU composites, although the crystal index at the stretching ratio of 4 and crosslinking densities of NR/SiO2 composites are almost the same at the same dosage of SiO2. Consequently, a structure-property relationship of NR/SiO2/STU composites is proposed that the silane chain of STU can entangle with NR molecular chains to form an interfacial region, which is in accordance with the experimental observations quite well.

  16. Electrochemical horseradish peroxidase biosensor based on dextran-ionic liquid-V2O5 nanobelt composite material modified carbon ionic liquid electrode

    International Nuclear Information System (INIS)

    Zhu Zhihong; Sun Xiaoying; Wang Yan; Zeng Yan; Sun Wei; Huang Xintang

    2010-01-01

    Direct electrochemistry of horseradish peroxidase (HRP) was realized in a dextran (De), 1-ethyl-3-methylimidazolium ethylsulphate ([EMIM]EtOSO 3 ) and V 2 O 5 nanobelt composite material modified carbon ionic liquid electrode (CILE). Spectroscopic results indicated that HRP retained its native structure in the composite. A pair of well-defined redox peaks of HRP appeared in pH 3.0 phosphate buffer solution with the formal potential of -0.213 V (vs. SCE), which was the characteristic of HRP heme Fe(III)/Fe(II) redox couple. The result was attributed to the specific characteristics of De-IL-V 2 O 5 nanocomposite and CILE, which promoted the direct electron transfer rate of HRP with electrode. The electrochemical parameters of HRP on the composite modified electrode were calculated and the electrocatalysis of HRP to the reduction of trichloroacetic acid (TCA) was examined. Under the optimal conditions the reduction peak current increased with TCA concentration in the range from 0.4 to 16.0 mmol L -1 . The proposed electrode is valuable for the third-generation electrochemical biosensor.

  17. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    International Nuclear Information System (INIS)

    Ghazali, Z.; Dahlan, K.Z.; Wongsuban, B.; Idris, S.; Muhammad, K.

    2001-01-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  18. Effect of cross linking of PVA/starch and reinforcement of modified barley husk on the properties of composite films.

    Science.gov (United States)

    Mittal, Aanchal; Garg, Sangeeta; Kohli, Deepak; Maiti, Mithu; Jana, Asim Kumar; Bajpai, Shailendra

    2016-10-20

    Barley husk (BH) was graft copolymerized by palmitic acid. The crystalline behavior of BH decreased after grafting. Poly vinyl alcohol (PVA)/starch (St) blend film, urea formaldehyde cross linked PVA/St films and composite films containing natural BH, grafted BH were prepared separately. The effect of urea/starch ratio, content of BH and grafted BH on the mechanical properties, water uptake (%), and biodegradability of the composite films was observed. With increase in urea: starch ratio from 0 to 0.5 in the blend, tensile strength of cross linked film increased by 40.23% compared to the PVA/St film. However, in grafted BH composite film, the tensile strength increased by 72.4% than PVA/St film. The degradation rate of natural BH composite film was faster than PVA/St film. Various films were characterized by SEM, FT-IR and thermal analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    Energy Technology Data Exchange (ETDEWEB)

    Ghazali, Z.; Dahlan, K.Z. [Malaysian Institute for Nuclear and Technology Research (MINT), Bangi, Kajang (Malaysia); Wongsuban, B.; Idris, S.; Muhammad, K. [Universiti Putra Malaysia, Faculty of Food Science and Biotechnology, Department of Food Science, Serdang (Malaysia)

    2001-03-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  20. A study on flexural and water absorption of surface modified rice husk flour/E-glass/polypropylene hybrid composite

    Science.gov (United States)

    Rassiah, K.; Sin, T. W.; Ismail, M. Z.

    2016-10-01

    This work is to study the effects of rice husk (RH)/E-Glass (EG)/polypropylene (PP) hybrid composites in terms of flexural and water absorption properties. The tests conducted are the flexural test and also the water absorption test using two types of water: distilled and sea water. The hybrid composites are prepared with various ratios of fibre weight fractions and the rice husk is treated using 2% Sodium Hydroxide (NaOH) to improve interaction and adhesion between the non-polar matrix and the polar lignocellulosic fibres. It was found that the content of rice husk/E-Glass fillers affected the structural integrity and flexural properties of hybrid composites. In addition, a higher ratio of rice husk contributes to higher water absorption in the hybrid composites.

  1. Effects of Topical Fluoride on the Marginal Microleakage of Composite Resin and Resin-Modified Glass Ionomer Restorations in Primary Molars: An In-vitro Study

    Directory of Open Access Journals (Sweden)

    Fatemeh Mir

    2017-12-01

    Full Text Available Introduction: Topical fluoride may deteriorate dental restorations. The present study aimed to evaluate the effects of topical fluoride on the marginal microleakage of composite resin and resin-modified glass ionomer (RMGI restorations in primary molars. Materials and Methods: In this experimental study, 60 primary molars were randomly divided into six groups of 10 based on the type of the restoration materials and before/after the application of fluoride gel, including FC (fluoride + composite, CF (composite + fluoride, C (composite, FG (fluoride + RMGI, GF (RMGI + fluoride, and G (RMGI. Class V cavities were prepared on the buccal surface, so that the gingival margins were located in cementum. After storing, thermocycling, and immersing the specimens in basic fuchsin, they were sectioned buccolingually and evaluated in terms of dye penetration. Data analysis was performed in SPSS version 18 using Kruskal-Wallis and Mann-Whitney U test at the significance level of 0.05. Results: No significant difference was observed between the three composite groups in terms of microleakage (P>0.05. In the RMGI groups, GF showed a significantly higher microleakage compared to G (P=0.029. However, no significant difference was observed between the other groups in this regard (P>0.05. Moreover, comparison of composite and RMGI groups (matched in terms of fluoride application indicated that microleakage was significantly higher in FG than FC (P=0.024, as well as in GF than CF (P=0.002. However, no significant difference was observed between groups C and G in this regard (P=0.268. Conclusion: According to the results, the marginal seal of composite restorations in the primary molars were not affected by the acidic fluoride gel. On the other hand, applying the acidic fluoride gel was associated with a higher microleakage in the cavities restored with RMGI.

  2. Preparation and dielectric properties of novel composites based on oxidized styrene-butadienestyrene copolymer and polyaniline modified exfoliated graphite nanoplates

    Science.gov (United States)

    Lv, Qun-Chen; Li, Ying; Zhong, Zhi-Kui; Wu, Hui-Jun; He, Fu-An; Lam, Kwok-Ho

    2018-05-01

    To improve the dielectric performance of high-dielectric-constant conductive filler/polymer composites, polyaniline was deposited on exfoliated graphite nanoplates (xGNPs) by in-situ polymerization method to form polyaniline (PANI) coated xGNPs (xGNPs@PANI) as the conductive filler for the oxidized styrene-butadienestyrene copolymer (SBS-FH) containing both hydroxyl and formyloxy groups. The results of TEM, SEM, FTIR, TGA, Raman spectrum, XPS, and WAXD showed that PANI had been coated onto the surface of xGNPs successfully. The xGNPs@PANI/SBS-FH composites were prepared by a simple solution-blending method and the homogenous distribution of xGNPs@PANI in the SBS-FH matrix was confirmed by SEM. The presence of xGNPs@PANI was found to significantly improve the dielectric properties of resultant composite compared to the unmodified xGNPs. For example, the xGNPs@PANI/SBS-FH composite near percolation threshold filled with 9.38 vol.% xGNPs@PANI showed a dielectric constant of 56.8 and a dielectric loss factor of 0.51 at 1000 Hz, while the corresponding values of xGNPs (1.19 vol.%)/SBS composite were 15.96 and 2.91 at 1000 Hz, respectively. In addition, the incorporation of xGNPs@PANI into SBS-FH could effectively enhance the thermal conductivity of resultant xGNPs@PANI/SBS-FH composite.

  3. Electrochemical oxidation of adenosine-5 Prime -triphosphate on a chitosan-graphene composite modified carbon ionic liquid electrode and its determination

    Energy Technology Data Exchange (ETDEWEB)

    Sun Wei, E-mail: swyy26@hotmail.com [College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 (China); College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Liu Jun; Wang Xiuzhen; Li Tongtong; Li Guangjiu; Wu Jie [College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhang Liqi [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-10-01

    In this paper a new electrochemical method was proposed for the determination of adenosine-5 Prime -triphosphate (ATP) based on a chitosan (CTS) and graphene (GR) composite film modified carbon ionic liquid electrode (CTS-GR/CILE). CILE was fabricated by using ionic liquid 1-butyl-3-methylimidazolium dihydrogen phosphate ([BMIM]H{sub 2}PO{sub 4}) as the binder, which was further modified by GR and CTS composite. The modified electrode exhibited an excellent electrocatalytic activity toward the oxidation of ATP with the increase of the oxidation peak current and the decrease of the oxidation peak potential. The electrochemical parameters of ATP on CTS-GR/CILE were calculated with the electron transfer coefficient ({alpha}) as 0.329, the electron transfer number (n) as 2.15, the apparent heterogeneous electron transfer rate constant (ks) as 3.705 Multiplication-Sign 10{sup -5} s{sup -1} and the surface coverage ({Gamma}{sub T}) as 9.33 Multiplication-Sign 10{sup -10} mol cm{sup -2}. Under the optimal conditions the oxidation peak current was proportional to ATP concentration in the range from 1.0 Multiplication-Sign 10{sup -6} to 1.0 Multiplication-Sign 10{sup -3} M with the detection limit of 0.311 {mu}M (S/N = 3). The proposed electrode showed excellent reproducibility, stability, anti-interference ability and further successfully applied to the ATP injection sample detection. - Highlights: Black-Right-Pointing-Pointer Ionic liquid [BMIM]H{sub 2}PO{sub 4} based carbon ionic liquid electrode (CILE) was prepared. Black-Right-Pointing-Pointer Graphene modified CILE was fabricated for the sensitive electrochemical detection of ATP. Black-Right-Pointing-Pointer Good electrocatalytic ability to the ATP oxidation was achieved. Black-Right-Pointing-Pointer Detection of 5 Prime -ATP in commercial injection samples with satisfactory results.

  4. Electrocatalytic reduction of oxygen at glassy carbon electrode modified by polypyrrole/anthraquinones composite film in various pH media

    International Nuclear Information System (INIS)

    Valarselvan, S.; Manisankar, P.

    2011-01-01

    Graphical abstract: The electrocatalytic reduction of dioxygen by one mono and four dihydroxy derivatives of 9,10-anthraquinone (AQ) incorporated in polypyrrole (PPy) matrix on glassy carbon electrode has been investigated. AQ and PPy composite film showed excellent electrocatalytic performance for the reduction of O 2 to H 2 O 2 . Highlights: → Hydroxyl derivatives of anthraquinones as electrocatalysts for dioxygen reduction. → AQ/PPy composite film on GC electrode exhibits potent electrocatalytic activity. → Substituent groups influence electrocatalytic dioxygen reduction. → Surface coverage varies the rate of electrocatalytic dioxygen reduction. - Abstract: The electrocatalytic reduction of dioxygen by one mono and four dihydroxy derivatives of 9,10-anthraquinone (AQ) incorporated in polypyrrole (PPy) matrix on glassy carbon electrode has been investigated. The electrochemical behaviour of the modified electrodes was examined in various pH media and both the formal potential of anthraquinones and reduction potential of dioxygen exhibited pH dependence. AQ and PPy composite film showed excellent electrocatalytic performance for the reduction of O 2 to H 2 O 2 . pH 6.0 was chosen as the most suitable medium to study the electrocatalysis by comparing the peak potential of oxygen reduction and enhancement in peak current for oxygen reduction. The diffusion coefficient values of AQ at the modified electrodes and the number of electrons involved in AQ reduction were evaluated by chronoamperometric and chronocoulometric techniques, respectively. In addition, hydrodynamic voltammetric studies showed the involvement of two electrons in O 2 reduction. The mass specific activity of AQ used, the diffusion coefficient of oxygen and the heterogeneous rate constants for the oxygen reduction at the surface of modified electrodes were also determined by rotating disk voltammetry.

  5. Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene–chitosan composite

    International Nuclear Information System (INIS)

    Zheng, Meixia; Gao, Feng; Wang, Qingxiang; Cai, Xili; Jiang, Shulian; Huang, Lizhang; Gao, Fei

    2013-01-01

    The electrochemical behaviors of acetaminophen (ACOP) on a graphene–chitosan (GR–CS) nanocomposite modified glassy carbon electrode (GCE) were investigated by cyclic voltammetry (CV), chronocoulometry (CC) and differential pulse voltammetry (DPV). Electrochemical characterization showed that the GR–CS nanocomposite had excellent electrocatalytic activity and surface area effect. As compared with bare GCE, the redox signal of ACOP on GR–CS/GCE was greatly enhanced. The values of electron transfer rate constant (k s ), diffusion coefficient (D) and the surface adsorption amount (Γ ⁎ ) of ACOP on GR–CS/GCE were determined to be 0.25 s −1 , 3.61 × 10 −5 cm 2 s −1 and 1.09 × 10 −9 mol cm −2 , respectively. Additionally, a 2e − /2H + electrochemical reaction mechanism of ACOP was deduced based on the acidity experiment. Under the optimized conditions, the ACOP could be quantified in the range from 1.0 × 10 −6 to 1.0 × 10 −4 M with a low detection limit of 3.0 × 10 −7 M based on 3S/N. The interference and recovery experiments further showed that the proposed method is acceptable for the determination of ACOP in real pharmaceutical preparations. Highlights: ► A chitosan–graphene nanocomposite modified glassy carbon electrode was prepared. ► The modified electrode was electrochemically characterized by CV and EIS. ► Electro-oxidation of acetaminophen was examined on the modified electrode. ► Sensing analysis of the modified electrode toward acetaminophen was studied

  6. A study of thermal diffusivity of carbon-epoxy and glass-epoxy composites using the modified pulse method

    Directory of Open Access Journals (Sweden)

    Terpiłowski Janusz

    2014-09-01

    Full Text Available Transient heat transfer is studied and compared in two planeparallel composite walls and one EPIDIAN 53 epoxy resin wall acting as a matrix for both composites. The first of the two walls is made of carbonepoxy composite; the other wall is made of glass-epoxy composite, both with comparable thickness of about 1 mm and the same number of carbon and glass fabric layers (four layers. The study was conducted for temperatures in the range of 20-120 °C. The results of the study of thermal diffusivity which characterizes the material as a heat conductor under transient conditions have a preliminary character. Three series of tests were conducted for each wall. Each series took about 24 h. The results from the three series were approximated using linear functions and were found between (0.7-1.35×10−7m2/s. In the whole range of temperature variation, the thermal diffusivity values for carbon-epoxy composite are from 1.2 to 1.5 times higher than those for the other two materials with nearly the same thermal diffusivity characteristics.

  7. Preparation and properties of bisphenol-F based boron-phenolic resin/modified silicon nitride composites and their usage as binders for grinding wheels

    International Nuclear Information System (INIS)

    Lin, Chun-Te; Lee, Hsun-Tsing; Chen, Jem-Kun

    2015-01-01

    Highlights: • Bisphenol-F based boron-phenolic resins (B-BPF) with B−O bonds were synthesized. • The modified silicon nitride (m-SiN) was well dispersed and adhered in the B-BPF. • B-BPF/m-SiN composites have good thermal resistance and mechanical properties. • The grinding wheels bound by B-BPF/m-SiN have excellent grinding quality. - Abstract: In this study, phenolic resins based on bisphenol-F (BPF) were synthesized. Besides, ammonium borate was added in the synthesis process of BPF to form the bisphenol-F based boron-phenolic resins (B-BPF). The glass transition temperature, thermal resistance, flexural strength and hardness of B-BPF are respectively higher than those of BPF. This is due to the presence of new cross-link B−O bonds in the B-BPF. In addition, the 3-aminopropyltriethoxysilane modified silicon nitride powders (m-SiN) were fully mixed with B-BPF to form the B-BPF/m-SiN composites. The thermal resistance and mechanical properties of the B-BPF/m-SiN are promoted by the well-dispersed and well-adhered m-SiN in these novel polymer/ceramics composites. The results of grinding experiments indicate that the grinding wheels bound by the B-BPF/m-SiN have better grinding quality than those bound by the BPF. Thus the B-BPF/m-SiN composites are better binding media than the BPF resins

  8. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa

    Energy Technology Data Exchange (ETDEWEB)

    Shoja, Yalda; Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir; Ghodsi, Javad

    2016-01-01

    A novel and selective enzymatic biosensor was designed and constructed for voltammetric determination of levodopa (L-Dopa) in aqueous media (phosphate buffer solution, pH = 7). Biosensor development was on the basis of to physically immobilizing of horse radish peroxidase (HRP) as electrochemical catalyst by sol–gel on glassy carbon electrode modified with organic nucleophilic carbon nanotube composite which in this composite p-phenylenediamine (pPDA) as organic nucleophile chemically bonded with functionalized MWCNT (MWCNT-COOH). The results of this study suggest that prepared bioorganic nucleophilic carbon nanotube composite (HRP/MWCNT-pPDA) shows fast electron transfer rate for electro oxidation of L-Dopa because of its high electrochemical catalytic activity toward the oxidation of L-Dopa, more −NH{sub 2} reactive sites and large effective surface area. Also in this work we measured L-Dopa in the presence of folic acid and uric acid as interferences. The proposed biosensor was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), FT-IR spectroscopy and cyclic voltammetry (CV). The differential pulse voltammetry (DPV) was used for determination of L-Dopa from 0.1 μM to 1.9 μM with a low detection limit of 40 nM (for S/N = 3) and sensitivity was about 35.5 μA/μM. Also this biosensor has several advantages such as rapid response, high stability and reproducibility. - Highlights: • Glassy carbon electrode modified by a novel composite in which pPDA as nucleophile is chemically attached to MWCNTs. • The developed biosensor exhibited excellent electrocatalytic activity in electrochemically determination of L-Dopa. • The biosensor showed acceptable sensitivity, reproducibility, detection limit, selectivity and stability. • MWCNT-pPDA provides a good electrical conductivity and large effective surface area for enzyme immobilization.

  9. Preparation and electrochemical properties of nanocable-like Nb2O5/surface-modified carbon nanotubes composites for anode materials in lithium ion batteries

    International Nuclear Information System (INIS)

    Shi, Chongfu; Xiang, Kaixiong; Zhu, Yirong; Chen, Xianhong; Zhou, Wei; Chen, Han

    2017-01-01

    Highlights: •The acid pretreatment for CNTs is a key factor to fabricate nanocable-like Nb 2 O 5 /SMCNTs composites. •The polar functional groups can induce the symmetrical growth of Nb 2 O 5 nanoparticitles on the surface of SMCNTs. •SMCNTs can provide sufficient conductive contacts for composites and abundant active sites for electrochemical reaction. -- Abstract: Uniform nanocable-like Nb 2 O 5 /surface-modified carbon nanotubes (SMCNTs) composites for anode materials in lithium ion batteries were synthesized by hydrothermal method. It was indicated that Nb 2 O 5 nanoparticles were tightly and uniformly cultivated on carbon nanotubes when CNTs were pretreated with concentrated H 2 SO 4 . As a result, Nb 2 O 5 /SMCNTs composite materials showed remarkable electrochemical performance as anode materials for lithium-ion batteries. It delivered a high reversible capacity of 441 mA h g −1 cycled at the current density of 40 mA g −1 after 100 cycles and an excellent rate capacity of 185 mA h g −1 at the high current density of 5000 mA g −1 after 200 cycles.

  10. In-situ grown CNTs modified SiO2/C composites as anode with improved cycling stability and rate capability for lithium storage

    Science.gov (United States)

    Wang, Siqi; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; He, Fang; Ma, Liying

    2018-03-01

    Silica (SiO2) is regarded as one of the most promising anode materials for lithium ion batteries owing to its high theoretical specific capacity, relatively low operation potentials, abundance, environmental benignity and low cost. However, the low intrinsic electrical conductivity and large volume change of SiO2 during the discharge/charge cycles usually results in poor electrochemical performance. In this work, carbon nanotubes (CNTs) modified SiO2/C composites have been fabricated through an in-situ chemical vapor deposition method. The results show that the electrical conductivity of the SiO2/C/CNTs is visibly enhanced through a robust connection between the CNTs and SiO2/C particles. Compared with the pristine SiO2 and SiO2/C composites, the SiO2/C/CNTs composites display a high initial capacity of 1267.2 mA h g-1. Besides, an excellent cycling stability with the capacity of 315.7 mA h g-1 is achieved after 1000th cycles at a rate of 1 A g-1. The significantly improved electrochemical properties of the SiO2/C/CNTs composites are mainly attributed to the formation of three dimensional CNT networks in the SiO2/C substrate, which can not only shorten the Li-ion diffusion path but also relieve the volume change during the lithium-ion insertion/extraction processes.

  11. Preparation and characterization of silane-modified SiO2 particles reinforced resin composites with fluorinated acrylate polymer.

    Science.gov (United States)

    Liu, Xue; Wang, Zengyao; Zhao, Chengji; Bu, Wenhuan; Na, Hui

    2018-04-01

    A series of fluorinated dental resin composites were prepared with two kinds of SiO 2 particles. Bis-GMA (bisphenol A-glycerolate dimethacrylate)/4-TF-PQEA (fluorinated acrylate monomer)/TEGDMA (triethylene glycol dimethacrylate) (40/30/30, wt/wt/wt) was introduced as resin matrix. SiO 2 nanopartices (30nm) and SiO 2 microparticles (0.3µm) were silanized with 3-methacryloxypropyl trimethoxysilane (γ-MPS) and used as fillers. After mixing the resin matrix with 0%, 10%, 20%, 30% SiO 2 nanopartices and 0%, 10%, 20%, 30%, 40%, 50% SiO 2 microparticles, respectively, the fluorinated resin composites were obtained. Properties including double bond conversion (DC), polymerization shrinkage (PS), water sorption (W p ), water solubility (W y ), mechanical properties and cytotoxicity were investigated in comparison with those of neat resin system. The results showed that, filler particles could improve the overall performance of resin composites, particularly in improving mechanical properties and reducing PS of composites along with the addition of filler loading. Compared to resin composites containing SiO 2 microparticles, SiO 2 nanoparticles resin composites had higher DC, higher mechanical properties, lower PS and lower W p under the same filler content. Especially, 50% SiO 2 microparticles reinforced resins exhibited the best flexural strength (104.04 ± 7.40MPa), flexural modulus (5.62 ± 0.16GPa), vickers microhardness (37.34 ± 1.13 HV), compressive strength (301.54 ± 5.66MPa) and the lowest polymerization (3.42 ± 0.22%). Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Fe3O4@Au composite magnetic nanoparticles modified with cetuximab for targeted magneto-photothermal therapy of glioma cells.

    Science.gov (United States)

    Lu, Qianling; Dai, Xinyu; Zhang, Peng; Tan, Xiao; Zhong, Yuejiao; Yao, Cheng; Song, Mei; Song, Guili; Zhang, Zhenghai; Peng, Gang; Guo, Zhirui; Ge, Yaoqi; Zhang, Kangzhen; Li, Yuntao

    2018-01-01

    Thermoresponsive nanoparticles have become an attractive candidate for designing combined multimodal therapy strategies because of the onset of hyperthermia and their advantages in synergistic cancer treatment. In this paper, novel cetuximab (C225)-encapsulated core-shell Fe 3 O 4 @Au magnetic nanoparticles (Fe 3 O 4 @Au-C225 composite-targeted MNPs) were created and applied as a therapeutic nanocarrier to conduct targeted magneto-photothermal therapy against glioma cells. The core-shell Fe 3 O 4 @Au magnetic nanoparticles (MNPs) were prepared, and then C225 was further absorbed to synthesize Fe 3 O 4 @Au-C225 composite-targeted MNPs. Their morphology, mean particle size, zeta potential, optical property, magnetic property and thermal dynamic profiles were characterized. After that, the glioma-destructive effect of magnetic fluid hyperthermia (MFH) combined with near-infrared (NIR) hyperthermia mediated by Fe 3 O 4 @Au-C225 composite-targeted MNPs was evaluated through in vitro and in vivo experiments. The inhibitory and apoptotic rates of Fe 3 O 4 @Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group were significantly higher than other groups in vitro and the marked upregulation of caspase-3, caspase-8, and caspase-9 expression indicated excellent antitumor effect by inducing intrinsic apoptosis. Furthermore, Fe 3 O 4 @Au-C225 composite-targeted MNPs-mediated combined hyperthermia (MFH+NIR) group exhibited significant tumor growth suppression compared with other groups in vivo. Our studies illustrated that Fe 3 O 4 @Au-C225 composite-targeted MNPs have great potential as a promising nanoplatform for human glioma therapy and could be of great value in medical use in the future.

  13. Arbuscular mycorrhizal fungi modify nutrient allocation and composition in wheat (Triticum aestivum L.) subjected to heat-stress

    DEFF Research Database (Denmark)

    Cabral, Carmina; Ravnskov, Sabine; Tringovska, Ivanka

    2016-01-01

    - and micronutrient concentrations in aboveground biomass; evaluation of AM fungal structures in roots and assessment of light-use efficiency of plants. Results AM increased grain number in wheat under heat-stress, and altered nutrient allocation and tiller nutrient composition. Heat increased number of arbuscules...... in wheat root, whereas number of vesicles and total colonization were unaffected. Heat increased photosystem II yield and the electron transfer rate, whereas non-photochemical quenching decreased during the first 2 days of heat-stress. Conclusions Nutrient allocation and –composition in wheat grown under...

  14. Biliary lipid composition and gallstone formation in rabbits fed on soy protein, cholesterol, casein and modified casein.

    OpenAIRE

    Ozben, T

    1989-01-01

    In four experimental groups, rabbits were fed on diets containing soy beans, soy beans plus cholesterol (1%, w/w), casein and modified casein for 8 weeks. Biliary lipid levels, lithogenic-index values and the rate of gallstone formation were determined. The highest mean relative concentrations (mol%) of cholesterol and phospholipid were found in the soy bean + cholesterol group, and the highest mean relative bile acid concentration was in the soy bean group. The lowest mean relative cholester...

  15. Modified resistivity-strain behavior through the incorporation of metallic particles in conductive polymer composite fibers containing carbon nanotubes

    NARCIS (Netherlands)

    Lin, L.; Deng, H.; Gao, X.; Zhang, S.M.; Bilotti, E.; Peijs, A.A.J.M.; Fu, Q.

    2013-01-01

    Eutectic metal particles and carbon nanotubes are incorporated into a thermoplastic polyurethane matrix through a simple but efficient method, melt compounding, to tune the resistivity-strain behavior of conductive polymer composite (CPC) fibers. Such a combination of conductive fillers is rarely

  16. Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes

    Science.gov (United States)

    Wei, Yingcong; Shang, Yabei; Ni, Chuangjiang; Zhang, Hanyu; Li, Xiaobai; Liu, Baijun; Men, Yongfeng; Zhang, Mingyao; Hu, Wei

    2017-09-01

    Highly sulfonated poly(ether ether ketone ketone)s (SFPEEKKs) with sulfonation degrees of 2.34 (SFPEEKK5) and 2.48 (SFPEEKK10) were synthesized through the direct sulfonation of a fluorene-containing poly(ether ether ketone ketone) under a relatively mild reaction condition. Using the solution blending method, sulfonated nanocrystal cellulose (sNCC)-enhanced SFPEEKK composites (SFPEEKK/sNCC) were successfully prepared for investigation as proton exchange membranes. Transmission electron microscopy showed that sNCC was uniformly distributed in the composite membranes. The properties of the composite membranes, including thermal stability, mechanical properties, water uptake, swelling ratio, oxidative stability and proton conductivity were thoroughly evaluated. Results indicated that the insertion of sNCC could contribute to water management and improve the mechanical performance of the membranes. Notably, the proton conductivity of SFPEEKK5/sNCC-5 was as high as 0.242 S cm-1 at 80 °C. All data proved the potential of SFPEEKK/sNCC composites for proton exchange membranes in medium-temperature fuel cells.

  17. Compositional Bias in Naïve and Chemically-modified Phage-Displayed Libraries uncovered by Paired-end Deep Sequencing.

    Science.gov (United States)

    He, Bifang; Tjhung, Katrina F; Bennett, Nicholas J; Chou, Ying; Rau, Andrea; Huang, Jian; Derda, Ratmir

    2018-01-19

    Understanding the composition of a genetically-encoded (GE) library is instrumental to the success of ligand discovery. In this manuscript, we investigate the bias in GE-libraries of linear, macrocyclic and chemically post-translationally modified (cPTM) tetrapeptides displayed on the M13KE platform, which are produced via trinucleotide cassette synthesis (19 codons) and NNK-randomized codon. Differential enrichment of synthetic DNA {S}, ligated vector {L} (extension and ligation of synthetic DNA into the vector), naïve libraries {N} (transformation of the ligated vector into the bacteria followed by expression of the library for 4.5 hours to yield a "naïve" library), and libraries chemically modified by aldehyde ligation and cysteine macrocyclization {M} characterized by paired-end deep sequencing, detected a significant drop in diversity in {L} → {N}, but only a minor compositional difference in {S} → {L} and {N} → {M}. Libraries expressed at the N-terminus of phage protein pIII censored positively charged amino acids Arg and Lys; libraries expressed between pIII domains N1 and N2 overcame Arg/Lys-censorship but introduced new bias towards Gly and Ser. Interrogation of biases arising from cPTM by aldehyde ligation and cysteine macrocyclization unveiled censorship of sequences with Ser/Phe. Analogous analysis can be used to explore library diversity in new display platforms and optimize cPTM of these libraries.

  18. Column Adsorption Studies for the Removal of Cr(VI Ions by Ethylamine Modified Chitosan Carbonized Rice Husk Composite Beads with Modelling and Optimization

    Directory of Open Access Journals (Sweden)

    S. Sugashini

    2013-01-01

    Full Text Available The objective of this present study is the optimization of process parameters in adsorption of Cr(VI ions by ethylamine modified chitosan carbonized rice husk composite beads (EAM-CCRCBs using response surface methodology (RSM and continuous adsorption studies of Cr(VI ions by ethylamine modified chitosan carbonized rice husk composite beads (EAM-CCRCBs. The effect of process variables such as initial metal ion concentration, adsorbent dosage and pH were optimized using RSM in order to ensure high adsorption capacity at low adsorbent dosage and high initial metal ion concentration of Cr(VI in batch process. The optimum condition suggested by the model for the process variable such as adsorbent dosage, pH and initial metal ion concentration was 0.14 g, 300 mg/L and pH2 with maximum removal of 99.8% and adsorption capacity of 52.7 mg/g respectively. Continuous adsorption studies were conducted under optimized initial metal ion concentration and pH for the removal of Cr(VI ions using EAM-CCRCBs. The breakthrough curve analysis was determined using the experimental data obtained from the continuous adsorption. Continuous adsorption modelling such as bed depth service model and Thomson model were established by fitting it with experimental data.

  19. FE simulation of the indentation deformation of SiC modified vinylester composites in respect to their abrasive wear performance

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available The abrasive sliding friction and wear behaviours of silicon carbide (SiC filled vinylester (VE composites were investigated. The average grain size of the incorporated SiC particles was varied, holding the volume content of them in every case at 16 vol%. Mechanical properties (hardness, compression modulus, yield stress of the filled and neat VE were determined. The tribological properties were investigated in block (composite – on – ring (steel test configuration. The steel counter bodies were covered with abrasive papers of different graining. Coefficient of friction (COF and specific wear rate of the VE + SiC composites were determined. It was observed that the wear resistance increases with increasing average filler grain size and with decreasing abrasiveness of the counter surface. The COF of the VE + SiC composites is independent of the size of the incorporated particles, but it is strongly influenced by the abrasiveness of the counter body. The worn surfaces of the VE + SiC systems were analysed in scanning electron microscope (SEM to deduce the typical wear mechanisms. The size effect of the SiC filler particles onto the abrasive wear characteristics was investigated by assuming that the roughness peaks of the abrasive paper and the indenter of the microhardness test cause similar micro scaled contact deformations in the composites. Therefore FE method was used to simulate the micro scaled deformation process in the VE + SiC systems during microindentation tests. The FE results provided valuable information on how to explain the size effect of the incorporated SiC filler.

  20. Preparation of granular activated carbons from composite of powder activated carbon and modified β-zeolite and application to heavy metals removal.

    Science.gov (United States)

    Seyedein Ghannad, S M R; Lotfollahi, M N

    2018-03-01

    Heavy metals are continuously contaminating the surface and subsurface water. The adsorption process is an attractive alternative for removing the heavy metals because of its low cost, simple operation, high efficiency, and flexible design. In this study, influences of β-zeolite and Cu-modified β-zeolite on preparation of granular activated carbons (GACs) from a composite of powder activated carbon (PAC), methylcellulose as organic binder, bentonite as inorganic binder, and water were investigated. A number of granular samples were prepared by controlling the weight percentage of binder materials, PAC and zeolites as a reinforcing adsorbent. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction techniques were employed to characterize zeolite, modified zeolite and produced GAC. The produced GACs were used as the adsorbent for removal of Zn +2 , Cd 2+ and Pb 2+ ions from aqueous solutions. The results indicated that the adsorption of metals ions depended on the pH (5.5) and contact time (30 min). Maximum adsorption of 97.6% for Pb 2+ , 95.9% for Cd 2+ and 91.1% for Zn +2 occurred with a new kind of GAC made of Cu-modified β-zeolite. The Zn +2 , Cd 2+ and Pb 2+ ions sorption kinetics data were well described by a pseudo-second order model for all sorbents. The Langmuir and Freundlich isotherm models were applied to analyze the experimental equilibrium data.

  1. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2014-01-01

    Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all....... Please DOWNLOAD them to see/hear them in full length! This work is licensed under a Creative Commons "by-nc" License. You may for non-commercial purposes use and distribute it, performance instructions as well as specially designated recordings, as long as the author is mentioned. Please see http...

  2. [Regulation of thermal stability of enzymes by changing the composition of media. Native and modified alpha-chymotrypsin].

    Science.gov (United States)

    Levitskiĭ, V Iu; Melik-Nubarov, N S; Slepnev, V I; Shikshnis, V A; Mozhaev, V V

    1990-01-01

    Stabilizing effect of denaturing salts on irreversible thermoinactivation of native and modified alpha-chymotrypsin at elevated temperatures is observed. The effect is caused by a shift of conformational equilibrium, at the primary step of reversible unfolding in the course of thermoinactivation, to a more unfolded form which is not able to refold "incorrectly". The stability of alpha-chymotrypsin is regulated within a wide range by medium alteration: the stabilizing effects are similar to those achieved by multipoint attachment of the enzyme to a support or by hydrophilization of protein by covalent modification.

  3. Preparation and Characterization of Graphene Oxide-Modified Sapium sebiferum Oil-Based Polyurethane Composites with Improved Thermal and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Guiying Wu

    2018-01-01

    Full Text Available Bio-based polyurethane (PU composites with superior thermal and mechanical properties have received wide attention. This is due to the recent rapid developments in the PU industry. In the work reported here, novel nano-composites with graphene oxide (GO-modified Sapium sebiferum oil (SSO-based PU has been synthesized via in situ polymerization. GO, prepared using the improved Hummers method from natural graphene (NG, and SSO-based polyol with a hydroxyl value of 211 mg KOH/g, prepared by lipase hydrolysis, were used as raw materials. The microstructures and properties of GO and the nano-composites were both characterized using Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, and tensile tests. The results showed that GO with its nano-sheet structure possessed a significant number of oxygen-containing functional groups at the surface. The nano-composites containing 1 wt % GO in the PU matrix (PU1 exhibited excellent comprehensive properties. Compared with those for pure PU, the glass transition temperature (Tg and initial decomposition temperature (IDT of the PU1 were enhanced by 14.1 and 31.8 °C, respectively. In addition, the tensile strength and Young’s modulus of the PU1 were also improved by 126% and 102%, respectively, compared to the pure PU. The significant improvement in both the thermal stability and mechanical properties for PU/GO composites was attributed to the homogeneous dispersion and good compatibility of GO with the PU matrix. The improvement in the properties upon the addition of GO may be attributable to the strong interfacial interaction between the reinforcing agent and the PU matrix.

  4. Electrochemical monitoring of the interaction between mitomycin C and DNA at chitosan--carbon nanotube composite modified electrodes

    OpenAIRE

    CANAVAR, Pembe Ece; EKŞİN, Ece; ERDEM, Arzum

    2015-01-01

    Single-walled carbon nanotube (CNT) and chitosan composite (chitosan*CNT) based sensors were developed as DNA biosensors, and then they were applied for electrochemical investigation of the interaction between the anticancer drug mitomycin C (MC) and DNA. The oxidation signals of MC and guanine were monitored before and after the interaction process by differential pulse voltammetry (DPV). The DPV results were in good agreement with those of electrochemical impedance spectroscopy (EIS)....

  5. Preparation of modified polymer- Alumino silicate composite and their application in removal of some radionuclides from aqueous solutions

    International Nuclear Information System (INIS)

    El- Masry, E.H.

    2012-01-01

    Ion exchange is one of the most common and effective treatment methods for radioactive liquid waste. This technique is well developed and has been employed for many years in both the nuclear industry and in other industries. In this thesis polyacrylamide- zeolite and polyacrylamide- bentonite composites were prepared and characterized using advanced analytical techniques. The prepared materials were used as composite ion exchangers for removal of Cesium, Cobalt and Strontium ions from simulated waste solution. Effect of ph of the medium on the removal of aforementioned ions was investigated. The sorption kinetic was studied and the data were analyzed by different kinetic models which rivaled that the mechanism of the sorption processes is mainly controlled by pseudo-second order reaction, and particle diffusion might be involved in the sorption processes. The values of diffusion coefficient of the three metal ions were calculated and suggested that chemisorption was the predominated sorption mechanism. Several isotherm models were applied for the sorption, and thermodynamic parameters were determined. The positive values of enthalpy change, δH, for the three metal ions confirmed the endothermic nature of the sorption processes. The results indicated that the prepared materials can be used as efficient ion exchange materials for the removal of cesium, cobalt and strontium ions from simulated waste solution. In the present study, immobilization of polyacrylamide- zeolite and/ or polyacrylamide- bentonite composites loaded with cesium, cobalt and/or strontium radionuclides with Ordinary Portland Cement (OPC) has been carried out. Several factors affecting the characteristics of the final solidified waste product towards safe disposal such as mechanical strength and leaching behavior of the radioisotopes have been studied. The obtained results showed that the presence of polyacrylamide- zeolite and/ or polyacrylamide- bentonite composites in the cemented wastes

  6. Effect of Modified Red Pottery Clay on the Moisture Absorption Behavior and Weatherability of Polyethylene-Based Wood-Plastic Composites

    Directory of Open Access Journals (Sweden)

    Qingde Li

    2017-01-01

    Full Text Available Red pottery clay (RPC was modified using a silane coupling agent, and the modified RPC (mRPC was then used to enhance the performance of high-density polyethylene-based wood-plastic composites. The effect of the mRPC content on the performances of the composites was investigated through Fourier transform infrared spectrometry, differential mechanical analysis (DMA and ultraviolet (UV-accelerated aging tests. After adding the mRPC, a moisture adsorption hysteresis was observed. The DMA results indicated that the mRPC effectively enhanced the rigidity and elasticity of the composites. The mRPC affected the thermal gravimetric, leading to a reduction of the thermal degradation rate and a right-shift of the thermal degradation peak; the initial thermal degradation temperature was increased. After 3000 h of UV-accelerated aging, the flexural strength and impact strength both declined. For aging time between 0 and 1000 h, the increase in amplitude of ΔL* (luminescence and ΔE* (color reached a maximum; the surface fading did not became obvious. ΔL* and ΔE* increased more significantly between 1000 and 2000 h. These characterization results indicate that the chromophores of the mRPC became briefly active. However, when the aging times were higher than 2000 h, the photo-degradation reaction was effectively prevented by adding the mRPC. The best overall enhancement was observed for an mRPC mass percentage of 5%, with a storage modulus of 3264 MPa and an increase in loss modulus by 16.8%, the best anti-aging performance and the lowest degree of color fading.

  7. Chitosan surface modified electrospun poly(ε-caprolactone)/carbon nanotube composite fibers with enhanced mechanical, cell proliferation and antibacterial properties.

    Science.gov (United States)

    Wang, Siyu; Li, Yumei; Zhao, Rui; Jin, Toufeng; Zhang, Li; Li, Xiang

    2017-11-01

    The surface modification is one of the most effective methods to improve the bioactivity and cell affinity effect of electrospun poly(ε-caprolactone) (PCL) fibers. In the present study, chitosan (CS), a cationic polysaccharide, was used to modify the surface of electrospun PCL fibers. To obtain strong interaction between CS and PCL fibers, negatively charged PCL fibers were prepared by the incorporation of acid-treated carbon nanotubes (CNTs) into the fibers. In this way, the positively charged chitosan could be immobilized onto the surface of PCL fibers tightly by the electrostatic attraction. Besides, the incorporation of CNTs could significantly improve the mechanical strength of electrospun PCL fibers even after the CS modification, which guaranteed their usability in practical applications. The CS modification could effectively improve the wettability and bioactivity of electrospun PCL fibers. Cultivation of L929 fibroblast cells on the obtained fibers and the antibacterial activity were both evaluated to discuss the influence of chitosan modification. The results indicated that this modification could enhance the cell proliferation and antibacterial ability in comparison to the non-modified groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Synthesis, characterization, and solid-state NMR investigation of organically modified bentonites and their composites with LDPE.

    Science.gov (United States)

    Borsacchi, Silvia; Sudhakaran, Umayal; Geppi, Marco; Ricci, Lucia; Liuzzo, Vincenzo; Ruggeri, Giacomo

    2013-07-23

    Polymer/clay nanocomposites show remarkably improved properties (mechanical properties, as well as decreased gas permeability and flammability, etc.) with respect to their microscale counterparts and pristine polymers. Due to the substantially apolar character of most of the organic polymers, natural occurring hydrophilic clays are modified into organophilic clays with consequent increase of the polymer/clay compatibility. Different strategies have been developed for the preparation of nanocomposites with improved properties, especially aimed at achieving the best dispersion of clay platelets in the polymer matrix. In this paper we present the preparation and characterization of polymer/clay nanocomposites composed of low-density polyethylene (LDPE) and natural clay, montmorillonite-containing bentonite. Two different forms of the clay have been considered: the first, a commercial organophilic bentonite (Nanofil 15), obtained by exchanging the natural cations with dimethyldioctadecylammonium (2C18) cations, and the second, obtained by performing a grafting reaction of an alkoxysilane containing a polymerizable group, 3-(trimethoxysilyl)propyl methacrylate (TSPM), onto Nanofil 15. Both the clays and LDPE/clay nanocomposites were characterized by thermal, FT-IR, and X-ray diffraction techniques. The samples were also investigated by means of (29)Si, (13)C, and (1)H solid-state NMR, obtaining information on the structural properties of the modified clays. Moreover, by exploiting the effect of bentonite paramagnetic (Fe(3+)) ions on proton spin-lattice relaxation times (T1's), useful information about the extent of the polymer-clay dispersion and their interfacial interactions could be obtained.

  9. The modified amino sugarN-Butyryl Glucosaminefed toovariectomized ratspreservesbone mineralthroughincreased early mineralization,but does not affect body composition

    Directory of Open Access Journals (Sweden)

    Tassos Anastassiades

    2017-10-01

    Full Text Available Background: The toxicities of pharmaceuticals for chronic arthritis and osteoporosis should be of concern to consumers. This partially accounts for the popularity of consumption of the amino sugar glucosamine, in-spite of controversy about its efficacy. We chemically synthesized N-butyryl glucosamine (GlcNBu, which we discovered protected bone and cartilage in an inflammatory arthritis rat model when used as a feed supplement. GlcNBu can also be potentially synthesized biochemically, since we recently demonstrated that human acetyl-CoA: glucosamine-6-phosphate N-acetyltransferase 1 has a relaxed donor specificity and transfers acyl groups of up to four carbons in length, i.e. the butyryl moiety. Oral GlcNBu had no detectable toxicity and also protected against bone loss in ovariectomized (OVX rats as a model for osteoporosis. However, we demonstrated this only for bones excised at 6 months. Thus, the current study aims to determine when bone mineralization is maximized during daily GlcNBu supplementation, in both OVΧ and Sham-OVX rats, in addition to the relationship of bone mineralization to body composition. Methods: Female Sprague-Dawley rats were randomized into 4 groups, containing 8 rats each. The groups consisted of OVX or Sham-OVX rats whose diets were supplemented with either 200 mg/kg/day of GlcNBu or an equimolar amount of glucose. We performed sequential bone density and body composition measurements, by dual-energy X-ray absorptiometry in the live, anesthetised rats, over a 6-month experimental period, starting at the age of 8 weeks. Results were analyzed by descriptive statistics and 2-way ANOVA. Results: The major increases in the mineral content and density of the spine and the femur in GlcNBu-supplemented rats occurred early, from the baseline to week 8. Ovariectomy resulted in a number of significant differences in body composition, while feeding GlcNBu had no significant effects on body composition. The significant effects of

  10. Compositional analysis of genetically modified corn events (NK603, MON88017×MON810 and MON89034×MON88017) compared to conventional corn.

    Science.gov (United States)

    Rayan, Ahmed M; Abbott, Louise C

    2015-06-01

    Compositional analysis of genetically modified (GM) crops continues to be an important part of the overall evaluation in the safety assessment for these materials. The present study was designed to detect the genetic modifications and investigate the compositional analysis of GM corn containing traits of multiple genes (NK603, MON88017×MON810 and MON89034×MON88017) compared with non-GM corn. Values for most biochemical components assessed for the GM corn samples were similar to those of the non-GM control or were within the literature range. Significant increases were observed in protein, fat, fiber and fatty acids of the GM corn samples. The observed increases may be due to the synergistic effect of new traits introduced into corn varieties. Furthermore, SDS-PAGE analysis showed high similarity among the protein fractions of the investigated corn samples. These data indicate that GM corn samples were compositionally equivalent to, and as nutritious as, non-GM corn. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Characterization of thermal destruction behavior of hybrid composites based on polyoxymethylene, ethylene-octene copolymer impact modifier and ZnO nanofiller

    Energy Technology Data Exchange (ETDEWEB)

    Meri, Remo Merijs; Zicans, Janis; Abele, Agnese; Ivanova, Tatjana; Kalnins, Martins [Riga Technical University, Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Paula Valdena street 3/7, Riga, LV-1048 (Latvia)

    2016-05-18

    Hybrid polymer nanocomposites, composed of polyoxymethylene (POM), ethylene octene copolymer (EOC) and plasma synthesized tetrapod shaped zinc oxide (ZnO), were prepared by using melt compounding. The content of EOC in the POM based composites was varied between 10 and 50 mass %, while the content of ZnO was constant (2 mass %). Thermal behaviour of POM based systems was studied by using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy. The influence of the elastomer content and/or ZnO addition on the thermal stability of POM based systems was evaluated. The influence of the α-octene content in the elastomer on the thermal decomposition behaviour of POM and its nanocomposites with ZnO was also evaluated. Results of thermogravimetric analysis showed that, by rising either the elastomer or ZnO content, thermal stability of the investigated POM composites was increased. The modifying effect of EOC17 in respect of thermal resistance was somewhat larger than that of EOC38 because of the smaller amount of tertiary carbon atoms in the macromolecular structure of the former elastomer. Improved thermal resistance of ZnO containing POM based composites was because of impermeable structure the inorganic nanofiller allowing decrease gas exchange rate and facilitating non-combustible gases, such as CO{sub 2}, stay in the zone of burning. Addition of ZnO have a potential to influence structure of the polymer blend matrix itself by improving its barrier characteristics.

  12. Natural and Modified Zeolite—Alginate Composites. Application for Removal of Heavy Metal Cations from Contaminated Water Solutions

    Directory of Open Access Journals (Sweden)

    Milan Kragović

    2018-01-01

    Full Text Available In present paper, the influence of the initial pH and concentration of Pb2+ on its adsorption by the natural (NZA and Fe(III-modified zeolite-alginate beads (FeA was studied. Results showed that modification of the starting materials have a positive effect on their adsorption capacities (102 and 136 mg/g for the NZA and FeA, respectively. After encapsulation, the mechanism of lead adsorption by both adsorbents was changed and ion exchange dominates. The best adsorption was achieved for initial pH > 3.8. Cation exchange capacity, structural properties, and hydrophobicity of samples were also determined, and the presence of the alginate has no significant influence on investigated properties of samples. Experiments on wastewater from tailings of lead and zinc mine Grot, Serbia, showed that after treatment with both adsorbents, the content of the most abundant heavy metals (Pb, Zn, Hg, and Mn significantly decreased.

  13. A novel polythiophene – ionic liquid modified clay composite solid phase microextraction fiber: Preparation, characterization and application to pesticide analysis

    International Nuclear Information System (INIS)

    Pelit, Füsun Okçu; Pelit, Levent; Dizdaş, Tuğberk Nail; Aftafa, Can; Ertaş, Hasan; Yalçınkaya, E.E.; Türkmen, Hayati; Ertaş, F.N.

    2015-01-01

    Highlights: • A novel polythiophene – ionic liquid modified clay surface has been prepared. • Polymerization was performed electrochemically on a stainless steel wire. • This material was used as a SPME fiber in head space mode. • This new SPME fiber was applied for analysis of pesticides in juice samples. • Fiber adsorption properties were improved by modification of ionic liquids. - Abstract: This report comprises the novel usage of polythiophene – ionic liquid modified clay surfaces for solid phase microextraction (SPME) fiber production to improve the analysis of pesticides in fruit juice samples. Montmorillonite (Mmt) clay intercalated with ionic liquids (IL) was co-deposited with polythiophene (PTh) polymer coated electrochemically on an SPME fiber. The surface of the fibers were characterized by using scanning electron microscopy (SEM). Operational parameters effecting the extraction efficiency namely; the sample volume and pH, adsorption temperature and time, desorption temperature and time, stirring rate and salt amount were optimized. In order to reveal the major effects, these eight factors were selected and Plackett–Burman Design was constructed. The significant parameters detected; adsorption and temperature along with the stirring rate, were further investigated by Box–Behnken design. Under optimized conditions, calibration graphs were plotted and detection limits were calculated in the range of 0.002–0.667 ng mL −1 . Relative standard deviations were no higher than 18%. Overall results have indicated that this novel PTh-IL-Mmt SPME surface developed by the aid of electrochemical deposition could offer a selective and sensitive head space analysis for the selected pesticide residues

  14. A novel polythiophene – ionic liquid modified clay composite solid phase microextraction fiber: Preparation, characterization and application to pesticide analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pelit, Füsun Okçu, E-mail: fusun.okcu@ege.edu.tr; Pelit, Levent; Dizdaş, Tuğberk Nail; Aftafa, Can; Ertaş, Hasan; Yalçınkaya, E.E.; Türkmen, Hayati; Ertaş, F.N.

    2015-02-15

    Highlights: • A novel polythiophene – ionic liquid modified clay surface has been prepared. • Polymerization was performed electrochemically on a stainless steel wire. • This material was used as a SPME fiber in head space mode. • This new SPME fiber was applied for analysis of pesticides in juice samples. • Fiber adsorption properties were improved by modification of ionic liquids. - Abstract: This report comprises the novel usage of polythiophene – ionic liquid modified clay surfaces for solid phase microextraction (SPME) fiber production to improve the analysis of pesticides in fruit juice samples. Montmorillonite (Mmt) clay intercalated with ionic liquids (IL) was co-deposited with polythiophene (PTh) polymer coated electrochemically on an SPME fiber. The surface of the fibers were characterized by using scanning electron microscopy (SEM). Operational parameters effecting the extraction efficiency namely; the sample volume and pH, adsorption temperature and time, desorption temperature and time, stirring rate and salt amount were optimized. In order to reveal the major effects, these eight factors were selected and Plackett–Burman Design was constructed. The significant parameters detected; adsorption and temperature along with the stirring rate, were further investigated by Box–Behnken design. Under optimized conditions, calibration graphs were plotted and detection limits were calculated in the range of 0.002–0.667 ng mL{sup −1}. Relative standard deviations were no higher than 18%. Overall results have indicated that this novel PTh-IL-Mmt SPME surface developed by the aid of electrochemical deposition could offer a selective and sensitive head space analysis for the selected pesticide residues.

  15. Water deficit modifies the carbon isotopic composition of lipids, soluble sugars and leaves of Copaifera langsdorffii Desf. (Fabaceae

    Directory of Open Access Journals (Sweden)

    Angelo Albano da Silva Bertholdi

    2017-11-01

    Full Text Available ABSTRACT Water deficit is most frequent in forest physiognomies subjected to climate change. As a consequence, several tree species alter tissue water potential, gas exchange and production of carbon compounds to overcome damage caused by water deficiency. The working hypothesis, that a reduction in gas exchange by plants experiencing water deficit will affect the composition of carbon compounds in soluble sugars, lipids and vegetative structures, was tested on Copaifera langsdorffii. Stomatal conductance, leaf water potential, and CO2 assimilation rate declined after a period of water deficit. After rehydration, leaf water potential and leaf gas exchange did not recover completely. Water deficit resulted in 13C enrichment in leaves, soluble sugars and root lipids. Furthermore, the amount of soluble sugars and root lipids decreased after water deficit. In rehydration, the carbon isotopic composition and amount of root lipids returned to levels similar to the control. Under water deficit, 13C-enriched in root lipids assists in the adjustment of cellular membrane turgidity and avoids damage to the process of water absorption by roots. These physiological adjustments permit a better understanding of the responses of Copaifera langsdorffi to water deficit.

  16. Hydrogen peroxide sensor based on modified vitreous carbon with multiwall carbon nanotubes and composites of Pt nanoparticles-dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, C.; Orozco, G. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Verde, Y. [Instituto Tecnologico de Cancun, Av. Kabah Km. 3, C.P. 77500, Cancun, Quintana Roo (Mexico); Jimenez, S. [Unidad Queretaro Centro de Investigacion y de Estudios Avanzados del I.P.N., Juriquilla, Santiago de Queretaro (Mexico); Godinez, Luis A. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Juaristi, E. [Chemistry Department, Centro de Investigacion y de Estudios Avanzados del I.P.N., P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico); Bustos, E. [Electrochemistry Department, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica S.C., P.O. Box 064, C.P. 76700, Pedro Escobedo, Queretaro (Mexico); Chemistry Department, Centro de Investigacion y de Estudios Avanzados del I.P.N., P.O. Box 14-740, C.P. 07360 Mexico, D.F. (Mexico)], E-mail: ebustos@cideteq.mx

    2009-02-15

    Sensors using nanostructured materials have been under development in the last decade due to their selectivity for the detection and quantification of different compounds. The physical and chemical characteristics of carbon nanotubes provide significant advantages when used as electrodes for electronic devices, fuel cells and electrochemical sensors. This paper presents preliminary results on the modification of vitreous carbon electrodes with Multiwall Carbon Nanotubes (MWCNTs) and composites of Pt nanoparticles-dopamine (DA) as electro-catalytic materials for the hydrogen peroxide (H{sub 2}O{sub 2}) reaction. Chemical pre-treatment and consequent functionalization of MWCNTs with carboxylic groups was necessary to increase the distribution of the composites. In addition, the presence of DA was important to protect the active sites and eliminate the pasivation of the surface after the electro-oxidation of H{sub 2}O{sub 2} takes place. The proposed H{sub 2}O{sub 2} sensor exhibited a linear response in the 0-5 mM range, with detection and quantification limits of 0.3441 mM and 1.1472 mM, respectively.

  17. Hydrogen peroxide sensor based on modified vitreous carbon with multiwall carbon nanotubes and composites of Pt nanoparticles-dopamine

    International Nuclear Information System (INIS)

    Guzman, C.; Orozco, G.; Verde, Y.; Jimenez, S.; Godinez, Luis A.; Juaristi, E.; Bustos, E.

    2009-01-01

    Sensors using nanostructured materials have been under development in the last decade due to their selectivity for the detection and quantification of different compounds. The physical and chemical characteristics of carbon nanotubes provide significant advantages when used as electrodes for electronic devices, fuel cells and electrochemical sensors. This paper presents preliminary results on the modification of vitreous carbon electrodes with Multiwall Carbon Nanotubes (MWCNTs) and composites of Pt nanoparticles-dopamine (DA) as electro-catalytic materials for the hydrogen peroxide (H 2 O 2 ) reaction. Chemical pre-treatment and consequent functionalization of MWCNTs with carboxylic groups was necessary to increase the distribution of the composites. In addition, the presence of DA was important to protect the active sites and eliminate the pasivation of the surface after the electro-oxidation of H 2 O 2 takes place. The proposed H 2 O 2 sensor exhibited a linear response in the 0-5 mM range, with detection and quantification limits of 0.3441 mM and 1.1472 mM, respectively

  18. Carbon nanostructures modified LiFePO4 cathodes for lithium ion battery applications: optimized porosity and composition

    Science.gov (United States)

    Mahmoud, Lama; Singh Lalia, Boor; Hashaikeh, Raed

    2016-12-01

    Lithium iron phosphate (LiFePO4) battery cathode was fabricated without using any metallic current collector and polymeric binder. Carbon nanostructures (CNS) were used as microbinders for LiFePO4 particles and at the same time as a 3D current collector. A facile and cost effective method of fabricating composite cathodes of CNS and LiFePO4 was developed. Thick electrodes with high loading of active material (20-25 mg cm-2) were obtained that are almost 2-3 folds higher than commercial electrodes. SEM images confirm that the 3D CNS conductive network encapsulated the LiFePO4 particles homogenously facilitating the charge transfer at the electrode-CNS interface. The composition, scan rate and porosity of the paper-like cathode were sequentially varied and their influence was systematically monitored by means of linear sweep cyclic voltammetry and AC electrochemical impedance spectroscopy. Addition of CNS improved the electrode’s bulk electronic conductivity, mechanical integrity, surface area and double layer capacitance, yet compromised the charge transfer resistance at the electrode-electrolyte interface. Based on a range of the tested binder-free electrodes, this study proposes that electrodes with 20 wt% CNS having 49 ± 2.5% porosity had realized best improvements of two folds and four folds in the electronic conductivity and diffusion coefficient, respectively.

  19. Effect of resin-modified glass-ionomer cement lining and composite layering technique on the adhesive interface of lateral wall

    Directory of Open Access Journals (Sweden)

    Larissa Marinho AZEVEDO

    2015-06-01

    Full Text Available Interface integrity can be maintained by setting the composite in a layering technique and using liners. Objective The aim of this in vitro study was to verify the effect of resin-modified glass-ionomer cement (RMGIC lining and composite layering technique on the bond strength of the dentin/resin adhesive interface of lateral walls of occlusal restorations. Material and Methods Occlusal cavities were prepared in 52 extracted sound human molars, randomly assigned into 4 groups: Group 2H (control – no lining + two horizontal layers; Group 4O: no lining + four oblique layers; Group V-2H: RMGIC lining (Vitrebond + two horizontal layers; and Group V-4O: RMGIC lining (Vitrebond + four oblique layers. Resin composite (Filtek Z250, 3M ESPE was placed after application of an adhesive system (Adper™ Single Bond 2, 3M ESPE dyed with a fluorescent reagent (Rhodamine B to allow confocal microscopy analysis. The teeth were stored in deionized water at 37oC for 24 hours before being sectioned into 0.8 mm slices. One slice of each tooth was randomly selected for Confocal Laser Scanning Microscopy (CLSM analysis. The other slices were sectioned into 0.8 mm x 0.8 mm sticks to microtensile bond strength test (MPa. Data were analyzed by two-way ANOVA and Fisher's test. Results There was no statistical difference on bond strength among groups (p>0.05. CLSM analysis showed no significant statistical difference regarding the presence of gap at the interface dentin/resin among groups. Conclusions RMGIC lining and composite layering techniques showed no effect on the microtensile bond strength and gap formation at the adhesive interface of lateral walls of high C-factor occlusal restorations.

  20. Fabrification of electroreduced graphene oxide–bentonite sodium composite modified electrode and its sensing application for linezolid

    International Nuclear Information System (INIS)

    Prashanth, S.N.; Teradal, Nagappa L.; Seetharamappa, J.; Satpati, Ashis K.; Reddy, A.V.R.

    2014-01-01

    Graphene and its composites have attracted considerable attention in synthesis and electrochemical applications. In the present work, we have synthesized and characterized graphene oxide-bentonite composite (GO-BEN) and utilized it to fabricate an electrochemical sensor. For this, the solution of GO-BEN cast on glassy carbon electrode (GCE) was reduced electrochemically in phosphate buffer solution of pH 6 to obtain electrochemically reduced graphene oxide-bentonite composite (ERGO-BEN-GCE). This ERGO-BEN film was used for electrochemical investigation of an oxazolidinone class of antibiotic, linezolid (LIN) for the first time. The electrochemical sensor showed excellent enhancement and adsorptive ability towards the electrooxidation of LIN. LIN exhibited two each of oxidation and reduction peaks on ERGO-BEN film in phosphate buffer of pH 7.0. Effects of accumulation time, pH of solution and scan rate were studied and various electrochemical parameters were evaluated. The plot of pH versus E p gave a slope of 26.2 mV/pH in the pH range of 4.2-8.0 indicating the participation of two electrons and one proton in the electrode process. An adsorptive stripping differential pulse voltammetric method (AdSDPV) was developed for the determination of LIN in bulk, pharmaceutical formulations and urine samples. Adsorptive stripping linear sweep voltammetric (AdSLSV) and differential pulse voltammetric (DPV) methods were also developed and the results were compared. LIN showed linear relationship between the current density and concentration in the range of 0.25 - 31.25 μM with a LOD of 0.0337 μM in AdSDPV method; 0.5 - 31.25 μM with a LOD of 0.100 μM in DPV method and 1.25 - 37.5 μM with a LOD of 0.5461 μM in AdSLSV method respectively. The proposed AdSDPV method was observed to be simple, fast and inexpensive and hence, could be readily adopted for quality control in pharmaceutical products

  1. [Determination of deuterium concentration in foods and influence of water with modified isotopic composition on oxidation parameters and heavy hydrogen isotopes content in experimental animals].

    Science.gov (United States)

    Basov, A A; Bykov, I M; Baryshev, M G; Dzhimak, S S; Bykov, M I

    2014-01-01

    The article presents the results of the study of the deuterium (D) content in food products as well as the influence of deuterium depleted water (DDW) on the concentration of heavy hydrogen isotopes in the blood and lyophilized tissues of rats. The most significant difference in the content of D was found between potato and pork fat, which indexes the standard delta notation (δ) D in promille, related to the international standard SMOW (Standard Mean Ocean of Water) amounted to -83,2 per thousand and -250,7 per thousand, respectively (phydrogen atoms in the body. The data obtained in the experimental modeling of the diet of male Wistar rats in the age of 5-6 mo (weight 235 ± 16 g) using DDW (δD = -743,2 per thousand) instead of drinking water (δD = -37,0 per thousand) with identical mineral composition showed that after 2 weeks significant (p tissue") is due to different rates ofisotopic exchange reactions in plasma and tissues (liver, kidney, heart), which can be explained by entering into the composition of a modified diet of organic substrates with more than DDW concentration D, which are involved in the construction of cellular structures and eventually lead to a redistribution of D and change direction of D/H gradient "plasmamodified isotopic composition, aimed at reducing the level of heavy non-radioactive atoms will allow the targeted nutritional correction of prooxidant-antioxidant status of the population in areas with adverse environmental conditions, stimulating by created isotopic D/H gradient cytoprotective mechanisms influencing the various components of nonspecific protection, including free radical oxidation processes. And then again, periodic assessment of the isotopic composition of nutrients will monitor the quality of food consumed by the population, and if

  2. Pt(II) porphyrin modified TiO{sub 2} composites as photocatalysts for efficient 4-NP degradation

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Duan [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian, Shaanxi 710069 (China); Li Jun, E-mail: junli@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian, Shaanxi 710069 (China); Min, Li [Datang Wujiang Gas Turbine Power Limited Liability Company, Jiangsu 215214 (China); Zengqi, Zhang; Chen, Wang [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian, Shaanxi 710069 (China)

    2012-05-01

    Three Pt(II) porphyrins 5,10,15,20-tetra-[2 or 3 or 4-(3-phenoxy)propoxy]phenyl porphyrin]platinum(II) (1-3) were synthesized and characterized spectroscopically. The corresponding Pt(II) porphyrins-TiO{sub 2} composites were then prepared and characterized by means of FT-IR and diffused reflectance spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of Pt(II) porphyrins-TiO{sub 2} catalyst was investigated by testing the photodegradation of 4-nitrophenol (4-NP) in aqueous solution under irradiation with Xenon lamp. The results indicated that Pt(II) porphyrins greatly enhanced the photocatalytic efficiency of bare TiO{sub 2} in photodegrading the 4-NP, and the distinct space tropisms of peripheral substituents in meso-sites of porphyrin ring led to different results.

  3. Bonding Characteristics of Macrosynthetic Fiber in Latex-Modified Fiber-Reinforced Cement Composites as a Function of Carbon Nanotube Content

    Directory of Open Access Journals (Sweden)

    Ji-Hong Jean

    2016-01-01

    Full Text Available The effect of carbon nanotube content (0, 0.5, 1.0, 1.5, and 2.0% of the cement weight on the bonding properties of macrosynthetic fiber in latex-modified hybrid fiber cement-based composites (LMHFRCCs was evaluated. The slump value, compressive strength, and bonding strength were measured for each LMHFRCC. As the carbon nanotube content increased to 1.5%, the bonding properties of the macrosynthetic fiber improved. However, the bonding performance deteriorated at a carbon nanotube content of 2.0%. A decrease in the fluidity of the mix negatively affected the dispersion of the nanotubes in the LMHFRCCs. The addition of carbon nanotubes also affected the relative bonding strength independently of the improvement in compressive strength. Microscopic analysis of the macrosynthetic fiber surfaces was used to understand changes in the bonding behavior.

  4. The effect of water volume and mixing time on physical properties of bread made from modified cassava starch-wheat composite flour

    Science.gov (United States)

    Srirejeki, S.; Manuhara, G. J.; Amanto, B. S.; Atmaka, W.; Laksono, P. W.

    2018-03-01

    Modification of cassava starch with soaking in the whey (by product on cheese production) resulted in changes of the flour characteristics. Adjustments of processing condition are important to be studied in the making of bread from modified cassava starch and wheat composite flour (30:70). This research aims to determine the effect of water volume and mixing time on the physical properties of the bread. The experimental design of this research was Completely Randomized Factorial Design (CRFD) with two factors which were water volume and mixing time. The variation of water volume significantly affected on bread height, dough volume, dough specific volume, and crust thickness. The variation of mixing time had a significant effect on the increase of dough volume and dough specific volume. The combination of water volume and mixing time had a significant effect on dough height, bread volume, bread specific volume, baking expansion, and weight loss.

  5. Highly sensitive detection of 2,4,6-trichlorophenol based on HS-β-cyclodextrin/gold nanoparticles composites modified indium tin oxide electrode

    International Nuclear Information System (INIS)

    Zheng, Xiangli; Liu, Shan; Hua, Xiaoxia; Xia, Fangquan; Tian, Dong; Zhou, Changli

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •A novel electrochemical sensing platform by self-assembling of HS-β-cyclodextrin/gold nanoparticles onto indium tin oxide electrode (HS-β-CD/AuNPs/SAM/ITO electrode) surface was constructed. •The proposed electrochemical sensor exhibited high sensitivity for the determination 2,4,6-trichlorophenol which electrochemical activity is very weak. •The newly developed method was successfully applied to quantitatively determine 2,4,6-trichlorophenol in tap water samples. -- ABSTRACT: A new electrochemical sensor for determination of 2,4,6-trichlorophenol (2,4,6-TCP) was fabricated. The characterization of the sensor was studied by scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry techniques. The electrochemical behavior of 2,4,6-TCP was investigated using cyclic voltammetry and differential pulse voltammetry at the HS-β-cyclodextrin (HS-β-CD)/gold nanoparticles (AuNPs) composite modified indium tin oxide (ITO) electrode. The results showed that the current responses of 2,4,6-TCP greatly enhanced due to the high catalytic activity and enrichment capability of composites. The peak current of 2,4,6-TCP increases linearly with the increase of the 2,4,6-TCP concentration from 3.0 × 10 −9 to 2.8 × 10 −8 M, with the limit of detection of 1.0 × 10 −9 . Further more, the modified electrode was successfully applied to detect the level of 2,4,6-TCP in tap water samples with excellent sensitivity

  6. Comparative performances of a bare graphite-polyurethane composite electrode unmodified and modified with graphene and carbon nanotubes in the electrochemical determination of escitalopram.

    Science.gov (United States)

    Baccarin, Marina; Cervini, Priscila; Cavalheiro, Eder Tadeu Gomes

    2018-02-01

    A bare composite graphite-polyurethane electrode (EGPU) and two other modified with graphene (EGPU-GR) and functionalized multi-walled carbon nanotubes (EGPU-CNTs) were prepared and compared regarding their voltammetric response to escitalopran (EST). The modifiers were characterized by Raman spectroscopy and the resulting electrode materials by contact angle measurements with a hydrophilicity character in the ascending order for the composites: GPU > GPU-GR > GPU-CNTs and scanning electron microscopy (SEM). The electroactive areas of the EGPU, EGPU-GR, and EGPU-CNTs were 0.065, 0.080, and 0.092cm 2 , respectively, calculated from the chronocoulometry using K 3 [Fe(CN) 6 ] as a probe and the Cottrell equation. The cyclic voltammograms obtained for EST indicated irreversible electrochemical behavior, with an anodic peak at ca. +0.80V (νs. SCE). These measurements were carried out with the three electrodes, and comparison of the analytical responses led to the EGPU-GR electrode being selected for use in the subsequent experiments. Under optimal conditions, square wave and differential pulse voltammetry at EGPU-GR presented linear dynamic ranges between 1.5 × 10 -6 and 1.2 × 10 -5 mol L -1 , with a detection limit of 2.5 × 10 -7 molL -1 (SWV) and 1.5 × 10 -6 and 1.2 × 10 -5 molL -1 , with a detection limit of 3.2 × 10 -7 molL -1 (DPV) for EST. The proposed method was applied for the quantification of EST in synthetic urine and cerebrospinal fluid samples, offering advantages including simplicity of fabrication, no requirement for analyte preconcentration and surface renewal, fast response, and selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Marginal microleakage of resin-modified glass-ionomer and composite resin restorations: Effect of using etch-and-rinse and self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Maryam Khoroushi

    2012-01-01

    Full Text Available Objectives: Previous studies have shown that dental adhesives increase the bond strength of resin-modified glass-ionomer (RMGI restorative materials to dentin. This in vitro study has evaluated the effect of etch-and-rinse and self-etch bonding systems v/s cavity conditioner, and in comparison to similar composite resin restorations on maintaining the marginal sealing of RMGI restorations. Materials and Methods: 98 rectangular cavities (2.5×3×1.5 mm were prepared on buccal and palatal aspects of 49 human maxillary premolars, randomly divided into 7 groups (N=14. The cavities in groups 1, 2 and 3 were restored using a composite resin (APX. The cavities in groups 4, 5, 6 and 7 were restored using a resin-modified glass-ionomer (Fuji II LC. Before restoring, adhesive systems (Optibond FL = OFL, three-step etch-and-rinse; One Step Plus = OSP, two-step etch-and-rinse; Clearfil Protect Bond = CPB, two-step self-etch were used as bonding agents in groups 1-6 as follow: OFL in groups 1 and 4, OSP in groups 2 and 5, and CPB in groups 3 and 6, respectively. The specimens in group 7 were restored with GC cavity conditioner and Fuji II LC. All the specimens were thermo-cycled for 1000 cycles. Microleakage scores were determined using dye penetration method. Statistical analyzes were carried out with Kruskal-Wallis and Mann-Whitney U tests (α=0.05. Results: There were significant differences in microleakage scores at both enamel and dentinal margins between the study groups (P<0.05. The lowest microleakage scores at enamel and dentin margins of RMGI restorations were observed in group 6. Conclusion: Use of two-step self-etch adhesive, prior to restoring cervical cavities with RMGIC, seems to be more efficacious than the conventional cavity conditioner in decreasing marginal microleakage.

  8. Arsenic removal in aqueous solution by a novel Fe-Mn modified biochar composite: Characterization and mechanism.

    Science.gov (United States)

    Lin, Lina; Qiu, Weiwen; Wang, Di; Huang, Qing; Song, Zhengguo; Chau, Henry Wai

    2017-10-01

    The aim of this study was to develop a cost-effective method for As removal from aqueous systems. To this end, pristine biochar (BC) was impregnated with Fe-Mn oxides and a comparative analysis was conducted on the adsorption capacities of BC, Fe-Mn binary oxide (FMO), and Fe/Mn modified biochar (FMBC). The ferromanganese oxides increased the specific surface areas of BC. FMBC presented greater adsorption of As (Q max = 8.25mgg -1 ) than FMO and BC. Energy dispersive spectrometer analysis and electron microscope scanning revealed numerous pores of FMBC with the existence of Fe-Mn oxide using. Distinguished binding energy shifting of the As3d, Fe2p, O1s, and Mn2p3/2 regions after As sorption were found, indicating that Mn(III) oxidation and interaction of oxygen-containing function groups in the FMBC promoted the conversion of As(III) to As(V). Furthermore, chemisorption was found to be the main mechanism for As sorption on FMBC. Thus, the results suggest that FMBC could be used as an inexpensive and highly efficient adsorbent for As removal from water environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Highly sensitive and selective determination of methylergometrine maleate using carbon nanofibers/silver nanoparticles composite modified carbon paste electrode.

    Science.gov (United States)

    Kalambate, Pramod K; Rawool, Chaitali R; Karna, Shashi P; Srivastava, Ashwini K

    2016-12-01

    A highly sensitive and selective voltammetric method for determination of Methylergometrine maleate (MM) in pharmaceutical formulations, urine and blood serum samples has been developed based on enhanced electrochemical response of MM at carbon nanofibers and silver nanoparticles modified carbon paste electrode (CNF-AgNP-CPE). The electrode material was characterized by various techniques viz., X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. The electrocatalytic response of MM at CNF-AgNP-CPE was studied by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the proposed sensor exhibits excellent electrochemical response towards MM. The DPV study shows greatly enhanced electrochemical signal for MM at CNF-AgNP-CPE lending high sensitivity to the proposed sensor for MM detection. The peak (Ip) current for MM is found to be rectilinear in the range 4.0×10(-8)-2.0×10(-5)M with a detection limit of 7.1×10(-9)M using DPV. The feasibility of the proposed sensor in analytical applications was investigated by conducting experiments on commercial pharmaceutical formulations, human urine and blood serum samples, which yielded satisfactory recoveries of MM. The proposed electrochemical sensor offers high sensitivity, selectivity, reproducibility and practical utility. We recommend it as an authentic and productive electrochemical sensor for successful determination of MM. Copyright © 2016. Published by Elsevier B.V.

  10. Impedimetric Salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes

    International Nuclear Information System (INIS)

    Jia, Fei; Dai, Ruitong; Duan, Nuo; Wu, Shijia; Wang, Zhouping; Li, Xingmin

    2016-01-01

    We describe a Salmonella biosensor that was obtained by electrochemical immobilization of a nanocomposite consisting of reduced graphene oxide (rGO) and carboxy-modified multi-walled carbon nanotubes (MWCNTs) directly on the surface of a glassy carbon electrode (GCE). An amino-modified aptamer specific for Salmonella was covalently bound to the rGO-MWCNT composite via amide bonds. The morphology of the rGO-MWCNT nanocomposite was characterized by transmission electron microscopy and scanning electron microscopy. Cyclic voltammetry and electrochemical impedance spectroscopy were used to monitor all steps during assembly. When exposed to samples containing Salmonella, the anti-Salmonella aptamer on the electrode captures its target. Hence, electron transfer is blocked, and this results in a large increase in impedance. Salmonella can be quantified by this aptasensor, typically operated at a working voltage of 0.2 V (vs. Ag/AgCl), in the range from 75 to 7.5 × 10 5 cfu⋅mL −1 and detection limit of 25 cfu⋅mL −1 (at an S/N of 3). The method is perceived to have a wide scope in that other bacteria may be detected by analogy to this approach and with very low limits of detection by applying respective analyte-specific aptamers. (author)

  11. Sensitive electrochemical determination of trace cadmium on a stannum film/poly(p-aminobenzene sulfonic acid)/electrochemically reduced graphene composite modified electrode

    International Nuclear Information System (INIS)

    Wang, Zhiqiang; Wang, Hui; Zhang, Zhihao; Yang, Xiaojing; Liu, Gang

    2014-01-01

    In this study, a novel stannum film/poly(p-aminobenzene sulfonic acid)/graphene composite modified glassy carbon electrode (GCE) was prepared by using electrodeposition of exfoliated graphene oxide, electropolymerization of p-aminobenzene sulfonic acid (p-ABSA) and in situ plating stannum fim methods, successively. This sensor was further used for sensitive determination of trace cadmium ions by square wave anodic stripping voltammetry (SWASV). The morphologies and electrochemistry properties of the modified electrode were characterized by scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and linear sweep voltammetry. It was found that the formed graphene layer on the top of GCE could remarkably facilitate the electron transfer and enlarge the specific surface area of the electrode. While the poly(p-ABSA) film could effectively increase the adhesion and stability of graphene layer, enhance ion-exchange capacity and prevent the macromolecule in real samples absorbing on the surface of electrode. By combining co-deposits ability with heavy metals of stannum film, the obtained electrode exhibited a good stripping performance for the analysis of Cd(II). Under the optimum conditions, a linear response was observed in the range from 1.0 to 70.0 μgL −1 with a detection limit of 0.05 μgL −1 (S/N = 3). The sensor was further applied to the determination of cadmium ions in real water samples with satisfactory results

  12. Very sensitive electrochemical determination of diuron on glassy carbon electrode modified with reduced graphene oxide-gold nanoparticle-Nafion composite film.

    Science.gov (United States)

    Zarei, K; Khodadadi, A

    2017-10-01

    In this work, a very sensitive electrochemical sensor based on glassy carbon electrode (GCE) modified with reduced graphene oxide-gold nanoparticles/Nafion (rGO-AuNPs/Nafion) composite film was applied to determine diuron. Synthesized GO was characterized using X-ray diffraction (XRD) and UV-visible spectroscopy. The surface morphology of the rGO-AuNPs/Nafion film was also characterized using scanning electron microscopy and electrochemical impedance spectroscopy. Cyclic voltammetry (CV) and adsorptive differential pulse voltammetry (AdDPV) were applied to investigate the electrochemical response of the diuron on the modified electrode. The electrode showed a linear response at 1.0×10 -9 -1.0×10 -7 M and a detection limit of 0.3nM under the optimized conditions. The effect of some other species on the determination of diuron was investigated and the sensor showed good selectivity for determination of diuron. The constructed sensor was applied to determine diuron in enriched samples of orange juice, mineral and tap water which statistical t-test showed accuracy of method. Also the sensor was applied to obtain diuron content in the tea sample. The reliability of the proposed sensor was confirmed after comparing the results with those obtained using high performance liquid chromatography (HPLC) as a comparative method. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The antifungal effects and mechanical properties of silver bromide/cationic polymer nano-composite-modified Poly-methyl methacrylate-based dental resin.

    Science.gov (United States)

    Zhang, Yu; Chen, Yin-Yan; Huang, Li; Chai, Zhi-Guo; Shen, Li-Juan; Xiao, Yu-Hong

    2017-05-08

    Poly-methyl methacrylate (PMMA)-based dental resins with strong and long-lasting antifungal properties are critical for the prevention of denture stomatitis. This study evaluated the antifungal effects on Candida albicans ATCC90028, the cytotoxicity toward human dental pulp cells (HDPCs), and the mechanical properties of a silver bromide/cationic polymer nano-composite (AgBr/NPVP)-modified PMMA-based dental resin. AgBr/NPVP was added to the PMMA resin at 0.1, 0.2, and 0.3 wt%, and PMMA resin without AgBr/NPVP served as the control. Fungal growth was inhibited on the AgBr/NPVP-modified PMMA resin compared to the control (P  0.05) between the experimental and control groups. These data indicate that the incorporation of AgBr/NPVP conferred strong and long-lasting antifungal effects against Candida albicans to the PMMA resin, and it has low toxicity toward HDPCs, and its mechanical properties were not significantly affected.

  14. Preparation and application of a carbon paste electrode modified with multi-walled carbon nanotubes and boron-embedded molecularly imprinted composite membranes.

    Science.gov (United States)

    Wang, Hongjuan; Qian, Duo; Xiao, Xilin; Deng, Chunyan; Liao, Lifu; Deng, Jian; Lin, Ying-Wu

    2018-06-01

    An innovative electrochemical sensor was fabricated for the sensitive and selective determination of tinidazole (TNZ), based on a carbon paste electrode (CPE) modified with multi-walled carbon nanotubes (MWCNTs) and boron-embedded molecularly imprinted composite membranes (B-MICMs). Density functional theory (DFT) calculations were carried out to investigate the utility of template-monomer interactions to screen appropriate monomers for the rational design of B-MICMs. The distinct synergic effect of MWCNTs and B-MICMs was evidenced by the positive shift of the reduction peak potential of TNZ at B-MICMs/MWCNTs modified CPE (B-MICMs/MWCNTs/CPE) by about 200 mV, and the 12-fold amplification of the peak current, compared with a bare carbon paste electrode (CPE). Moreover, the coordinate interactions between trisubstituted boron atoms embedded in B-MICMs matrix and nitrogen atoms of TNZ endow the sensor with advanced affinity and specific directionality. Thereafter, a highly sensitive electrochemical analytical method for TNZ was established by different pulse voltammetry (DPV) at B-MICMs/MWCNTs/CPE with a lower detection limit (1.25 × 10 -12  mol L -1 ) (S/N = 3). The practical application of the sensor was demonstrated by determining TNZ in pharmaceutical and biological samples with good precision (RSD 1.36% to 3.85%) and acceptable recoveries (82.40%-104.0%). Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan with Azure A-interlinked multi-walled carbon nanotube/gold nanoparticles composite modified electrode

    Directory of Open Access Journals (Sweden)

    Hayati Filik

    2016-05-01

    Full Text Available In this paper, multi-walled carbon nanotube/Azure A/gold nanoparticle composites (Nafion/AuNPs/AzA/MWCNTs were prepared by binding gold nanoparticles to the surfaces of Azure A-coated carbon nanotubes. Nafion/AuNPs/AzA/MWCNTs based electrochemical sensor was fabricated for the simultaneous determination of ascorbic acid, dopamine, uric acid, and tryptophan. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the electrochemical properties of the modified electrodes. The modified electrode showed excellent electrocatalytic activity toward ascorbic acid, dopamine, uric acid, and tryptophan (pH 7.0. The experiment results showed that the linear response range for simultaneous detection of AA, DA, UA and Trp were 300–10,000 μM, 0.5–50 μM, 0.5–50 μM and 1.0–100 μM, respectively, and the detection limits were 16 μM, 0.014 μM, 0.028 μM and 0.56 μM (S/N = 3. The proposed method offers promise for simple, rapid, selective and cost-effective analysis of small biomolecules. The procedure was also applied to the determination of tryptophan in spiked milk samples.

  16. Simultaneous voltammetric determination of 2-nitrophenol and 4-nitrophenol based on an acetylene black paste electrode modified with a graphene-chitosan composite

    International Nuclear Information System (INIS)

    Deng, Peihong; Xu, Zhifeng; Li, Junhua

    2014-01-01

    We describe a simple and sensitive voltammetric method for the simultaneous determination of 2-nitrophenol and 4-nitrophenol. It is based on the use of an acetylene black paste electrode modified with a graphene-chitosan composite film (denoted as Gr-Chit/ABPE). The reduction peak currents of 2-nitrophenol (at −252 mV) and of 4-nitrophenol (at −340 mV) in pH 1.0 solution increase significantly at the Gr-Chit/ABPE in comparison to a bare ABPE. Factors affecting sensitivity were optimized and a linear relationship is found between peak current and the concentrations of 2-nitrophenol (in the 0.4 μM to 80 μM range) and for 4-nitrophenol (in the 0.1 μM to 80 μM range). The detection limits (at an SNR of 3 and after a 30-s accumulation time) are 200 nM for 2-nitrophenol and 80 nM for 4-nitrophenol, respectively. The modified electrode was successfully applied to the direct and parallel determination of 2-nitrophenol and 4-nitrophenol in spiked water samples. (author)

  17. Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Peter G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Swingle, Kirstie L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Paxton, Walter F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nogan, John J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stromberg, Loreen R. [Univ. of New Mexico, Albuquerque, NM (United States); Firestone, Millicent A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mukundan, Harshini [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); New Mexico Consortium, Los Alamos, NM (United States); Montaño, Gabriel A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-27

    Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when used in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.

  18. Adaptive control of ionic polymer–metal composite in air and under water using a modified direct self-tuning regulator embedded with integral action

    International Nuclear Information System (INIS)

    Fang, Bo-Kai; Ju, Ming-Shuang; Lin, Chou-Ching K

    2011-01-01

    Due to its large deformation response to a low voltage, ionic polymer–metal composite (IPMC) is a highly attractive actuator for many applications in air or under water. However, the dynamic characteristics of IPMC are nonlinear and vary with time, especially in water actuations. In this study, a modified direct self-tuning regulator (DSTR) with integral action was designed to control the tip-displacement of the IPMC, which is a non-minimum phase system to serve in air and underwater applications. The modified DSTR consisted of a pole-placement controller embedded with integral action, a reference model, and a self-tuning mechanism. The reference model specified the dynamic characteristic of the closed-loop IPMC system, and the controller parameters were automatically adjusted by the self-tuning mechanism to minimize the tracking error from the comparison between the response and the reference model output. The integral action may circumvent low-frequency distortions such as the back-relaxation phenomenon. Also, the DSTR may easily control the non-minimum phase system of the IPMC by tuning a delay factor in the reference model. The DSTR was implemented to control an IPMC (0.2 mm × 5 mm × 35 mm) actuated in air and under water, and the tracking performances were compared with a proportional-integral-derivative controller (PID). In contrast with the PID, the parameters of which were determined by the Ziegler–Nichols rule and produced large root-mean-squared tracking errors, the DSTR yielded good tracking performances for actuations both in air and under water from 0.01 to 1 Hz. Through control of the modified DSTR, IPMC may have a wide range of applications in the future

  19. Highly sensitive and selective determination of methylergometrine maleate using carbon nanofibers/silver nanoparticles composite modified carbon paste electrode

    International Nuclear Information System (INIS)

    Kalambate, Pramod K.; Rawool, Chaitali R.; Karna, Shashi P.; Srivastava, Ashwini K.

    2016-01-01

    A highly sensitive and selective voltammetric method for determination of Methylergometrine maleate (MM) in pharmaceutical formulations, urine and blood serum samples has been developed based on enhanced electrochemical response of MM at carbon nanofibers and silver nanoparticles modified carbon paste electrode (CNF-AgNP-CPE). The electrode material was characterized by various techniques viz., X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy. The electrocatalytic response of MM at CNF-AgNP-CPE was studied by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Under optimized conditions, the proposed sensor exhibits excellent electrochemical response towards MM. The DPV study shows greatly enhanced electrochemical signal for MM at CNF-AgNP-CPE lending high sensitivity to the proposed sensor for MM detection. The peak (I p ) current for MM is found to be rectilinear in the range 4.0 × 10 −8 –2.0 × 10 −5 M with a detection limit of 7.1 × 10 −9 M using DPV. The feasibility of the proposed sensor in analytical applications was investigated by conducting experiments on commercial pharmaceutical formulations, human urine and blood serum samples, which yielded satisfactory recoveries of MM. The proposed electrochemical sensor offers high sensitivity, selectivity, reproducibility and practical utility. We recommend it as an authentic and productive electrochemical sensor for successful determination of MM. - Highlights: • Voltammetric sensor for methylergometrine maleate using carbon nanofibers and silver nanoparticle - carbon paste electrode • Wide working range, good reproducibility, fast response and high stability were the main advantages of the proposed sensor • Analysis of methylergometrine maleate in pharmaceutical formulations, urine and blood serum samples • Lowest limit of detection obtained for methylergometrine maleate

  20. A Modified Edge Crack Torsion Test for Measurement of Mode III Fracture Toughness of Laminated Tape Composites

    Science.gov (United States)

    Czabaj, Michael W.; Davidson, Barry D.; Ratcliffe, James G.

    2016-01-01

    Modifications to the edge crack torsion (ECT) test are studied to improve the reliability of this test for measuring the mode-III fracture toughness, G (sub IIIc), of laminated tape fiber-reinforced polymeric (FRP) composites. First, the data reduction methods currently used in the ECT test are evaluated and deficiencies in their accuracy are discussed. An alternative data reduction technique, which uses a polynomial form to represent ECT specimen compliance solution, is evaluated and compared to FEA (finite element analysis) results. Second, seven batches of ECT specimens are tested, each batch containing specimens with a preimplanted midplane edge delamination and midplane plies with orientations of plus theta divided by minus theta, with theta ranging from 0 degrees to 90 degrees in 15-degree increments. Tests on these specimens show that intralaminar cracking occurs in specimens from all batches except for which theta = 15 degrees and 30 degrees. Tests on specimens of these two batches are shown to result in mode-III delamination growth at the intended ply interface. The findings from this study are encouraging steps towards the use of the ECT test as a standardized method for measuring G (sub IIIc), although further modification to the data reduction method is required to make it suitable for use as part of a standardized test method.

  1. Cocoa Diet Prevents Antibody Synthesis and Modifies Lymph Node Composition and Functionality in a Rat Oral Sensitization Model

    Directory of Open Access Journals (Sweden)

    Mariona Camps-Bossacoma

    2016-04-01

    Full Text Available Cocoa powder, a rich source of polyphenols, has shown immunomodulatory properties in both the intestinal and systemic immune compartments of rats. The aim of the current study was to establish the effect of a cocoa diet in a rat oral sensitization model and also to gain insight into the mesenteric lymph nodes (MLN activities induced by this diet. To achieve this, three-week-old Lewis rats were fed either a standard diet or a diet with 10% cocoa and were orally sensitized with ovalbumin (OVA and with cholera toxin as a mucosal adjuvant. Specific antibodies were quantified, and lymphocyte composition, gene expression, and cytokine release were established in MLN. The development of anti-OVA antibodies was almost totally prevented in cocoa-fed rats. In addition, this diet increased the proportion of TCRγδ+ and CD103+CD8+ cells and decreased the proportion of CD62L+CD4+ and CD62L+CD8+ cells in MLN, whereas it upregulated the gene expression of OX40L, CD11c, and IL-1β and downregulated the gene expression of IL-17α. In conclusion, the cocoa diet induced tolerance in an oral sensitization model accompanied by changes in MLN that could contribute to this effect, suggesting its potential implication in the prevention of food allergies.

  2. Cocoa Diet Prevents Antibody Synthesis and Modifies Lymph Node Composition and Functionality in a Rat Oral Sensitization Model.

    Science.gov (United States)

    Camps-Bossacoma, Mariona; Abril-Gil, Mar; Saldaña-Ruiz, Sandra; Franch, Àngels; Pérez-Cano, Francisco J; Castell, Margarida

    2016-04-23

    Cocoa powder, a rich source of polyphenols, has shown immunomodulatory properties in both the intestinal and systemic immune compartments of rats. The aim of the current study was to establish the effect of a cocoa diet in a rat oral sensitization model and also to gain insight into the mesenteric lymph nodes (MLN) activities induced by this diet. To achieve this, three-week-old Lewis rats were fed either a standard diet or a diet with 10% cocoa and were orally sensitized with ovalbumin (OVA) and with cholera toxin as a mucosal adjuvant. Specific antibodies were quantified, and lymphocyte composition, gene expression, and cytokine release were established in MLN. The development of anti-OVA antibodies was almost totally prevented in cocoa-fed rats. In addition, this diet increased the proportion of TCRγδ+ and CD103+CD8+ cells and decreased the proportion of CD62L+CD4+ and CD62L+CD8+ cells in MLN, whereas it upregulated the gene expression of OX40L, CD11c, and IL-1β and downregulated the gene expression of IL-17α. In conclusion, the cocoa diet induced tolerance in an oral sensitization model accompanied by changes in MLN that could contribute to this effect, suggesting its potential implication in the prevention of food allergies.

  3. Phosphate Fertilizer and Growing Environment Change the Phytochemicals, Oil Quality, and Nutritional Composition of Roundup Ready Genetically Modified and Conventional Soybean.

    Science.gov (United States)

    Scilewski da Costa Zanatta, Tatiane; Manica-Berto, Roberta; Ferreira, Cristiano Dietrich; Cardozo, Michele Maciel Crizel; Rombaldi, Cesar Valmor; Zambiazi, Rui Carlos; Dias, Álvaro Renato Guerra

    2017-04-05

    Phosphorus (P) intake, genotype, and growth environment in soybean cultivation can affect the composition of the soybean. This experiment was conducted in two locations (microregions I and II) using a randomized complete block design, including conventional soybean (BRS Sambaíba) and genetically modified (GM) [Msoy 9144 Roundup Ready (RR)] cultivars and varying doses of phosphorus fertilizer (0, 60, 120, and 240 kg/ha P 2 O 5 ). Soybeans were evaluated for chemical composition, total phenols, phytic acid content, individual isoflavone content, antioxidant activity, oil quality, fatty acid profile, total carotenoid content, and individual tocopherol contents. Multivariate analysis facilitated reduction in the number of variables with respect to soybean genotype (conventional BRS Sambaíba and GM Msoy 9144 RR), dose of P 2 O 5 fertilizer, and place of cultivation (microregion I and II). BRS Sambaíba had higher concentrations of β-glucosides, malonylglucosides, glycitein, and genistein than Msoy 9144 RR, which showed a higher concentration of daidzein. The highest concentrations of isoflavones and fatty acids were observed in soybeans treated with 120 and 240 kg/ha P 2 O 5 , regardless of the location and cultivar.

  4. Comparing the reinforcing effects of a resin modified glassionomer cement, Flowable compomer, and Flowable composite in the restoration of calcium hydroxide-treated immature roots in vitro

    Directory of Open Access Journals (Sweden)

    S Prathibha Rani

    2011-01-01

    Full Text Available One hundred and sixty human permanent central incisors were enlarged to a 120 file size after crown removal procedure to simulate immature teeth. The root canals were filled with calcium hydroxide and stored for 15 days (phase I, 30 days (phase II, 90 days (phase III, and 180 days (Phase IV. At the end of these selected time periods, calcium hydroxide was cleaned off the root canals of forty teeth that were randomly selected and obturated with gutta-percha points in the apical 2 mm of the root canals with a sealer. The specimens were further equally divided into four groups. Unrestored Group I served as control and the root canals of teeth in the other three group specimens were reinforced with resin modified glassionomer cement (RMGIC (Group II, Flowable Compomer (Group III, and Flowable Composite (Group IV, respectively, using a translucent curing post. All specimens were subjected to compressive force using an Instron Testing machine, until fracture occurred. All the materials evaluated substantially reinforced the root specimens compared to the control. At the end of 180 days, Flowable composites showed maximum reinforcement compared to the other groups; however, no significant differences were found between the reinforcement capabilities of Flowable Compomer and RMGIC.

  5. Simultaneous determination of 2,4,6-trichlorophenol and pentachlorophenol based on poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes composite film modified electrode

    International Nuclear Information System (INIS)

    Zhu, Xiaolin; Zhang, Kexin; Lu, Nan; Yuan, Xing

    2016-01-01

    Graphical abstract: A poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes composite film modified glassy carbon electrode (PRhB/GO/MWCNTs/GCE) was developed for the simultaneous determination of 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) without any pretreatment. - Highlights: • A poly(RhB)/graphene oxide/multiwalled carbon nanotubes composite was synthesized. • The composite film was characterized by SEM, XRD, EIS and Raman spectroscopy. • The simultaneous electrochemical determination of 2,4,6-TCP and PCP was realized. • The electrode showed high sensitivity, excellent reproducibility and good stability. • The electrode was used to determine 2,4,6-TCP and PCP in practical water samples. - Abstract: In the present study, a poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes nanocomposite modified glass carbon electrode (PRhB/GO/MWCNTs/GCE) was developed for the simultaneous determination of 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP). The PRhB/GO/MWCNTs film was extensively characterized by emission scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and electrochemical impedance spectroscopy (EIS). The electrochemical behaviors of 2,4,6-TCP and PCP were investigated by cyclic voltammetry, linear sweep voltammetry and differential pulse voltammetry. Due to the synergistic effect, the PRhB/GO/MWCNTs/GCE significantly facilitated the simultaneous electro-oxidation of 2,4,6-TCP and PCP with peak potential difference of 160 mV and enhanced oxidation currents. Under optimum conditions, the oxidation current of 2,4,6-TCP was linear to its concentration in the ranges of 4.0 × 10"−"9 to 1.0 × 10"−"7 M and 1.0 × 10"−"7 to 1.0 × 10"−"4 M with the detection limit (S/N = 3) of 8.0 × 10"−"1"0 M. And the linear concentration ranges for PCP were 2.0 × 10"−"9 to 1.0 × 10"−"7 M and 1.0 × 10"−"7 to 9.0 × 10"−"5 M with the detection limit of 5.0 × 10"−"1"0 M

  6. Simultaneous determination of 2,4,6-trichlorophenol and pentachlorophenol based on poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes composite film modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaolin; Zhang, Kexin; Lu, Nan; Yuan, Xing, E-mail: yuanx@nenu.edu.cn

    2016-01-15

    Graphical abstract: A poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes composite film modified glassy carbon electrode (PRhB/GO/MWCNTs/GCE) was developed for the simultaneous determination of 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) without any pretreatment. - Highlights: • A poly(RhB)/graphene oxide/multiwalled carbon nanotubes composite was synthesized. • The composite film was characterized by SEM, XRD, EIS and Raman spectroscopy. • The simultaneous electrochemical determination of 2,4,6-TCP and PCP was realized. • The electrode showed high sensitivity, excellent reproducibility and good stability. • The electrode was used to determine 2,4,6-TCP and PCP in practical water samples. - Abstract: In the present study, a poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes nanocomposite modified glass carbon electrode (PRhB/GO/MWCNTs/GCE) was developed for the simultaneous determination of 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP). The PRhB/GO/MWCNTs film was extensively characterized by emission scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and electrochemical impedance spectroscopy (EIS). The electrochemical behaviors of 2,4,6-TCP and PCP were investigated by cyclic voltammetry, linear sweep voltammetry and differential pulse voltammetry. Due to the synergistic effect, the PRhB/GO/MWCNTs/GCE significantly facilitated the simultaneous electro-oxidation of 2,4,6-TCP and PCP with peak potential difference of 160 mV and enhanced oxidation currents. Under optimum conditions, the oxidation current of 2,4,6-TCP was linear to its concentration in the ranges of 4.0 × 10{sup −9} to 1.0 × 10{sup −7} M and 1.0 × 10{sup −7} to 1.0 × 10{sup −4} M with the detection limit (S/N = 3) of 8.0 × 10{sup −10} M. And the linear concentration ranges for PCP were 2.0 × 10{sup −9} to 1.0 × 10{sup −7} M and 1.0 × 10{sup −7} to 9.0 × 10{sup −5} M with the

  7. Macronutrient Intake-Associated FGF21 Genotype Modifies Effects of Weight-Loss Diets on 2-Year Changes of Central Adiposity and Body Composition: The POUNDS Lost Trial.

    Science.gov (United States)

    Heianza, Yoriko; Ma, Wenjie; Huang, Tao; Wang, Tiange; Zheng, Yan; Smith, Steven R; Bray, George A; Sacks, Frank M; Qi, Lu

    2016-11-01

    Fibroblast growth factor 21 (FGF21) is involved in the regulation of energy balance and adipose metabolism. Our previous genome-wide association study identified genetic variants in the FGF21 region associated with macronutrient intake preference. We investigated whether the FGF21 genotype modified effects of weight-loss diets varying in macronutrient intake on changes in adiposity in a 2-year randomized diet intervention trial. We genotyped FGF21 rs838147 in 715 overweight or obese individuals who were assigned to one of four diets varying in macronutrient contents. A DEXA scan was performed to evaluate body composition. We observed a significant interaction between the FGF21 genotype and carbohydrate/fat intake on 2-year changes in waist circumference (WC), percentage of total fat mass, and percentage of trunk fat (P = 0.049, P = 0.001, and P = 0.003 for interaction, respectively). In response to the low-carbohydrate/high-fat diet, carrying the carbohydrate intake-decreasing C allele of rs838147 was marginally associated with less reduction in WC (P = 0.08) and significantly associated with less reduction of total fat mass (P = 0.01) and trunk fat (P = 0.02). Opposite genetic associations with these outcomes were observed among the high-carbohydrate/low-fat diet group; carrying the C allele was associated with a greater reduction of WC, total body fat mass, and trunk fat. Our data suggest that FGF21 genotypes may interact with dietary carbohydrate/fat intake on changes in central adiposity and body fat composition. A low-calorie, high-carbohydrate/low-fat diet was beneficial for overweight or obese individuals carrying the carbohydrate intake-decreasing allele of the FGF21 variant to improve body composition and abdominal obesity. © 2016 by the American Diabetes Association.

  8. Compositional optimization for nanocrystalline hard magnetic MRE–Fe–B–Zr alloys via modifying RE and B contents

    Energy Technology Data Exchange (ETDEWEB)

    Qian, D.Y.; Hussain, M.; Zheng, Z.G.; Zhong, X.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Gao, X.X. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Z.W., E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-06-15

    To reduce the rare earth content and maintain good magnetic properties for NdFeB based alloys, the effects of RE and B contents on the micro-structure and magnetic properties of nanocrystalline MRE{sub 11−y}Fe{sub 79.5}B{sub 8+y}Zr{sub 1.5} (MRE=Nd{sub 0.8}(Dy{sub 0.5}Y{sub 0.5}){sub 0.2}, y=0–3) alloys have been investigated. Increasing B concentration leads to the appearance and increase of soft magnetic Fe{sub 3}B phase and reduced grain size. With decreasing MRE and increasing B concentrations, the coercivity decreased from 1159.8 kA/m for y=0 to 619.0 kA/m for y=3. The saturation magnetization and remanence increased with B content until y=2 then decreases. The B content also has effects on the exchange coupling, microstructure and thermal stability. While comparing MRE{sub 10}Fe{sub 82.5}B{sub 6}Zr{sub 1.5} alloy with MRE{sub 11−y}Fe{sub 79.5}B{sub 8+y}Zr{sub 1.5} (y=1 and 2) alloys, the alloy with 9 at% MRE can achieve similar magnetic properties as that with 10 at% MRE. The magnetic properties with coercivity of 792.2 kA/m, (BH){sub max} of 128 kJ/m{sup 3} and good thermal stability have been obtained for MRE{sub 9}Fe{sub 79.5}B{sub 10}Zr{sub 1.5} alloy. - Highlights: • Nanocomposite NdFeB composition is optimized to reduce RE from 10 to 9 at.%. • Increasing B content benefits microstructure, exchange coupling, thermal stability. • Alloy with 9% RE has H{sub c}=792kA/m, (BH){sub max}=128kJ/m{sup 3} and low temperature coefficients.

  9. Shear bond strength evaluation of resin composite to resin-modified glass-ionomer cement using three different resin adhesives vs. glass-ionomer based adhesive

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2015-12-01

    Full Text Available Background: The clinical success of sandwich technique depends on the strength of resin-modified glass ionomer cement (RMGIC bonding to both dentin and resin composite. Therefore, the shear bond strength (SBS of resin composite bonded to RMGIC utilizing different resin adhesives versus a GIC-based adhesive was compared. Materials and methods: In this in vitro study, 84 holes (5×2 mm were prepared in acrylic blocks, randomly divided into seven groups (n=12 and filled with RMGIC (Light-Cured Universal Restorative, GC. In the Group I; no adhesive was applied on the RMGIC. In the Group II, non-etched and Group III was etched with phosphoric acid. In groups II and III, after rinsing, etch-and-rinse adhesive (OptiBond Solo Plus; in the Group IV; a two-step self-etch adhesive (OptiBond XTR and in Group V; a one-step self-etch (OptiBond All-in-One were applied on the cement surfaces. Group VI; a GIC-based adhesive (Fuji Bond LC was painted over the cement surface and cured. Group VII; the GIC-based adhesive was brushed over RMGIC followed by the placement of resin composite and co-cured. Afterward; resin composite (Point 4 cylinders were placed on the treated cement surfaces. The specimens were placed in 100% humidity at 37 ± 1°C and thermo cycled. The shear bond test was performed at a cross-head speed of 1 mm/min and calculated in MPa; the specimens were examined to determine mode of failure. The results were analyzed using one-way ANOVA and Tukey test. Results: The maximum (24.62±3.70 MPa and minimum (18.15±3.38 MPa SBS mean values were recorded for OptiBond XTR adhesive and the control group, respectively. The pairwise comparisons showed no significant differences between the groups that bonded with different adhesives. The adhesive failure was the most common failure mode observed. Conclusion: This study suggests that GIC-based adhesive could be applied over RMGIC as co-cure technique for sandwich restorations in lieu of employing the resin

  10. Composites Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose of the Composites Characterization Laboratory is to investigate new and/or modified matrix materials and fibers for advanced composite applications both...

  11. Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode

    International Nuclear Information System (INIS)

    Chaiyo, Sudkate; Mehmeti, Eda; Žagar, Kristina; Siangproh, Weena; Chailapakul, Orawon; Kalcher, Kurt

    2016-01-01

    A simple, low cost, and highly sensitive electrochemical sensor, based on a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode (N/IL/G/SPCE) was developed to determine zinc (Zn(II)), cadmium (Cd(II)), and lead (Pb(II)) simultaneously. This disposable electrode shows excellent conductivity and fast electron transfer kinetics. By in situ plating with a bismuth film (BiF), the developed electrode exhibited well-defined and separate peaks for Zn(II), Cd(II), and Pb(II) by square wave anodic stripping voltammetry (SWASV). Analytical characteristics of the BiF/N/IL/G/SPCE were explored with calibration curves which were found to be linear for Zn(II), Cd(II), and Pb(II) concentrations over the range from 0.1 to 100.0 ng L"−"1. With an accumulation period of 120 s detection limits of 0.09 ng mL"−"1, 0.06 ng L"−"1 and 0.08 ng L"−"1 were obtained for Zn(II), Cd(II) and Pb(II), respectively using the BiF/N/IL/G/SPCE sensor, calculated as 3σ value of the blank. In addition, the developed electrode displayed a good repeatability and reproducibility. The interference from other common ions associated with Zn(II), Cd(II) and Pb(II) detection could be effectively avoided. Finally, the proposed analytical procedure was applied to detect the trace metal ions in drinking water samples with satisfactory results which demonstrates the suitability of the BiF/N/IL/G/SPCE to detect heavy metals in water samples and the results agreed well with those obtained by inductively coupled plasma mass spectrometry. - Highlights: • Nafion/ionic liquid/graphene composite modified electrode was fabricated. • Simultaneous determination of Zn, Cd and Pb in real samples was studied. • Zn, Cd and Pb could be sensitively measured as low as 90, 60 and 80 pg mL"−"1.

  12. Square-wave voltammetric determination of rutin in pharmaceutical formulations using a carbon composite electrode modified with copper (II phosphate immobilized in polyester resin

    Directory of Open Access Journals (Sweden)

    Kellen Heloizy Garcia Freitas

    2012-12-01

    Full Text Available A carbon composite electrode modified with copper (II phosphate immobilized in a polyester resin (Cu3(PO42-Poly for the determination of rutin in pharmaceutical samples by square-wave voltammetry is described herein. The modified electrode allows the determination of rutin at a potential (0.20 V vs. Ag/AgCl (3.0 mol L-1 KCl lower than that observed at an unmodified electrode. The peak current was found to be linear to the rutin concentration in the range from 9.9 × 10-8 to 2.5 × 10-6 mol L-1, with a detection limit of 1.2×10-8 mol L-1. The response of the electrode was stable, with no variation in baseline levels within several hours of continuous operation. The surface morphology of the modified electrode was characterized by scanning electron microscopy (SEM and energy dispersive X-ray (EDX system. The results obtained are precise and accurate. In addition, these results are in agreement with those obtained by the chromatographic method at a 95% confidence level.Descreve-se um eletrodo de carbono modificado com fosfato de cobre (II imobilizado em uma resina de poliéster (Cu3(PO42-Poly para a determinação de rutina em amostras farmacêuticas por voltametria de onda quadrada. O eletrodo modificado permite a determinação de rutina em potencial (0.20 V vs Ag / AgCl (3,0 mol L-1 KCl menor que o observado em um eletrodo não modificado. Verificou-se que a corrente de pico foi linear com a concentração de rutina na faixa de 9,9 × 10-8 a 2,5 × 10-6 mol L-1, com um limite de detecção de 1,2 × 10-8 mol L¹. A resposta do eletrodo foi estável, sem variação significativa dentro de várias horas de operação contínua. A morfologia da superfície do eletrodo modificado foi caracterizada por microscopia eletrônica de varredura (MEV e pelo sistema de energia dispersiva de raios-X (EDX. Os resultados obtidos foram precisos e exatos. Ademais, estes resultados estão de acordo com aqueles obtidos pelo método cromatográfico a um nível de

  13. Reduced graphene oxide-NH2 modified low pressure nanofiltration composite hollow fiber membranes with improved water flux and antifouling capabilities

    Science.gov (United States)

    Li, Xipeng; Zhao, Changwei; Yang, Mei; Yang, Bin; Hou, Deyin; Wang, Tao

    2017-10-01

    Reduced graphene oxide-NH2 (R-GO-NH2), a kind of amino graphene oxide, was embedded into the polyamide (PA) layer of nanofiltration (NF) composite hollow fiber membranes via interfacial polymerization to enhance the permeate flux and antifouling properties of NF membranes under low pressure conditions. In addition, it could mitigate the poor compatibility issue between graphene oxide materials and PA layer. To evaluate the influence of R-GO-NH2 on the performance of the NF composite hollow fiber membrane, SEM, AFM, FTIR, XPS and Zeta potentials were used to characterize the membranes. The results indicated that the compatibility and interactions between R-GO-NH2 and PA layer were enhanced, which was mainly due to the polymerization reaction between amino groups of R-GO-NH2 and acyl chloride groups of TMC. Therefore, salts rejection of the current membranes was improved significantly, and the modified membranes with 50 mg/L R-GO-NH2 demonstrated highest performance in terms of the rejections, which were 26.9%, 98.5%, 98.1%, and 96.1%, for NaCl, Na2SO4, MgSO4, and CaCl2 respectively. It was found that with the R-GO-NH2 contents rasing from 0 to 50 mg/L, pure water flux increased from 30.44 ± 1.71 to 38.57 ± 2.01 L/(m2.h) at 2 bar. What's more, the membrane demonstrated improved antifouling properties.

  14. Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene-polyvinylpyrrolidone composite film.

    Science.gov (United States)

    Deng, Peihong; Xu, Zhifeng; Zeng, Rongying; Ding, Chunxia

    2015-08-01

    The graphene-polyvinylpyrrolidone composite film modified acetylene black paste electrode (GR-PVP/ABPE) was fabricated and used to determine vanillin. In 0.1M H3PO4 solution, the oxidation peak current of vanillin increased significantly at GR-PVP/ABPE compared with bare ABPE, PVP/ABPE and GR/ABPE. The oxidation mechanism was discussed. The experimental conditions that exert influence on the voltammetric determination of vanillin, such as supporting electrolytes, pH values, accumulation potential and accumulation time, were optimized. Besides, the interference, repeatability, reproducibility and stability measurements were also evaluated. Under the optimal experimental conditions, the oxidation peak current was proportional to vanillin concentration in the range of 0.02-2.0 μM, 2.0-40 μM and 40-100 μM. The detection limit was 10nM. This sensor was used successfully for vanillin determination in various food samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode

    International Nuclear Information System (INIS)

    Gholivand, Mohammad Bagher; Mohammadi-Behzad, Leila

    2015-01-01

    A method is described for the construction of a novel electrochemical warfarin sensor based on covalent immobilization of CdS-quantum dots (CdS-QDs) onto carboxylated multiwalled carbon nanotubes/chitosan (CS) composite film on the surface of a glassy carbon electrode. The CdS-QDs/CS/MWCNTs were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, XRD analysis and electrochemical impedance spectroscopy (EIS). The sensor showed optimum anodic stripping response within 90 s at an accumulation potential of 0.75 V. The modified electrode was used to detect the concentration of warfarin with a wide linear range of 0.05–80 μM and a detection limit (S/N = 3) of 8.5 nM. The proposed sensor has good storage stability, repeatability and reproducibility and was successfully applied for the determination of warfarin in real samples such as urine, serum and milk. - Highlights: • A new sensitive sensor for warfarin determination was developed. • The sensor was constructed based on covalent immobilization of CdS-QDs on the chitosan/MWCNTs/GCE. • The parameters affecting the stripping analysis of warfarin were optimized. • The proposed sensor is used for trace determination of warfarin in urine, serum and milk

  16. Structure-property and composition-property relationships for poly(ethylene terephthalate) surfaces modified by helium plasma-based ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Toth, A., E-mail: totha@chemres.hu [Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17 (Hungary); Veres, M. [Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 49 (Hungary); Kereszturi, K.; Mohai, M.; Bertoti, I.; Szepvoelgyi, J. [Institute of Materials and Environmental Chemistry, Chemical Research Center, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17 (Hungary)

    2011-10-01

    The surfaces of untreated and helium plasma-based ion implantation (He PBII) treated poly(ethylene terephthalate) (PET) samples were characterised by reflectance colorimetry, contact angle studies and measurements of surface electrical resistance. The results were related to the structural and compositional data obtained by the authors earlier on parallel samples by XPS and Raman spectroscopy. Inverse correlations between lightness and I{sub D}/I{sub G} ratio and between chroma and I{sub D}/I{sub G} ratio were obtained, suggesting that the PBII-treated PET samples darken and their colourfulness decreases with the increase of the portion of aromatic sp{sup 2} carbon rings in the chemical structure of the modified layer. Direct correlation between water contact angle and the I{sub D}/I{sub G} ratio and inverse correlations between surface energy and I{sub D}/I{sub G} ratio and between dispersive component of surface energy and I{sub D}/I{sub G} ratio were found, reflecting that surface wettability, surface energy and its dispersive component decrease with the formation of surface structure, characterised again by enhanced portion of aromatic sp{sup 2} carbon rings. The surface electrical resistance decreased with the increase of the surface C-content determined by XPS and also with the increase of the surface concentration of conjugated double bonds, reflected by the increase of the {pi} {yields} {pi}* shake-up satellite of the C 1s peak.

  17. In vitro secretion of TNF-{alpha} from bone marrow mononuclear cells incubated on amino group modified TiO{sub 2} nano-composite under ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Furuzono, T., E-mail: furuzono@ri.ncvc.go.jp [Department of Bioengineering, Advanced Medical Engineering Center, National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565 (Japan); Masuda, M. [Department of Bioengineering, Advanced Medical Engineering Center, National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565 (Japan); Nitta, N.; Kaya, A.; Yamane, T. [Institute for Human Science and Biomedical Engineering, National Institute of Advanced Industrial Science and Technology, 1-2-1 Namiki, Tsukuba, Ibaraki, 305-8564 (Japan); Okada, M. [Department of Bioengineering, Advanced Medical Engineering Center, National Cardiovascular Center Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565 (Japan)

    2010-10-15

    It is recently known that titanium dioxide (TiO{sub 2}) can be excited by ultrasound and release of OH radicals on the surface. In this study, secretion of an indirect angiogenic factor, tumor necrosis factor-{alpha} (TNF-{alpha}), from bone marrow mononuclear cells (BM-MNC) incubated on amino group modified TiO{sub 2} nano-particles covalently coated on polyester fabric (TiO{sub 2}/PET) under ultrasonic irradiation was examined in vitro. The cell viability and TNF-{alpha} secretion were measured under ultrasound irradiation condition with 255 mW/cm{sup 2} of intensity, which is below the highest output (1 W/cm{sup 2}) specified in the safety standard for a medical ultrasonic diagnostic apparatus. The living cell number on the TiO{sub 2}/PET and original PET with/without continuous ultrasound irradiation was unchanged statistically by ANOVA test. TNF-{alpha} secretion level from BM-MNC remarkably increased on the TiO{sub 2}/PET under ultrasonic irradiation without cell damage. It was, therefore, thought that the high level of TNF-{alpha} secretion on the TiO{sub 2} nano-composite by ultrasound irradiation was due to oxidative stress induced from OH radicals on TiO{sub 2}.

  18. Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar.

    Science.gov (United States)

    Yu, Zhihong; Qiu, Weiwen; Wang, Fei; Lei, Ming; Wang, Di; Song, Zhengguo

    2017-02-01

    A pot experiment was used to investigate arsenic (As) speciation and accumulation in rice, as well as its concentration in both heavily contaminated and moderately contaminated soils amended with manganese oxide-modified biochar composites (MBC) and biochar alone (BC). In heavily As-contaminated soil, application of BC and MBC improved the weight of above-ground part and rice root, whereas in moderately As-contaminated soil, the application of MBC and low rate BC amendment increased rice root, grain weight and the biomass of the plant. Arsenic reduction in different parts of rice grown in MBC-amended soils was greater than that in plants cultivated in BC-amended soils. Such reduction can be attributed to the oxidation of arsenite, As(III), to arsenate, As(V), by Mn-oxides, which also had a strong adsorptive capacity for As(V). MBC amended to As-contaminated soil had a positive effect on amino acids. The Fe and Mn levels in the iron-manganese plaque that formed on the rice root surface differed among the treatments. MBC addition significantly increased Mn content (p rice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. [High-density lipoproteins (HDL) size and composition are modified in the rat by a diet supplemented with "Hass" avocado (Persea americana Miller)].

    Science.gov (United States)

    Pérez Méndez, Oscar; García Hernández, Lizbeth

    2007-01-01

    To determine the effects of dietary avocado on HDL structure and their associated enzyme, paraoxonase 1 (PON1). Fifteen Wistar male rats received avocado as part of their daily meal (5 g by 17.5 g chow diet), keeping the caloric intake similar to the control group (n=15) that received their usual chow diet. After 5 weeks, HDL were isolated by sequential ultracentrifugation and their size and chemical composition were analyzed. PON1 was determined in serum spectrophotometrically using phenylacetate as substrate. Rats that received avocado had about 27% lower triglycerides plasma levels whereas their HDL-cholesterol was 17% higher as compared to control group. The mean HDL Stokes diameter was significantly lower in avocado group (11.71 +/- 0.8 vs. 12.27 +/- 0.26 nm, in control group, p avocado group. HDL structural modifications induced by avocado were not related to modifications of LCAT and PLTP activities, but occurred in parallel with higher serum levels of PON1 activity when compared to the controls (57.4 +/- 8.9 vs. 43.0 +/- 5.6 micromol/min/mL serum, p avocado in the diet decreased plasma triglycerides, increased HDL-cholesterol plasma levels and modified HDL structure. The latter effect may enhance the antiatherogenic properties of HDL since PON1 activity also increased as a consequence of avocado.

  20. In vitro secretion of TNF-α from bone marrow mononuclear cells incubated on amino group modified TiO2 nano-composite under ultrasound irradiation

    International Nuclear Information System (INIS)

    Furuzono, T.; Masuda, M.; Nitta, N.; Kaya, A.; Yamane, T.; Okada, M.

    2010-01-01

    It is recently known that titanium dioxide (TiO 2 ) can be excited by ultrasound and release of OH radicals on the surface. In this study, secretion of an indirect angiogenic factor, tumor necrosis factor-α (TNF-α), from bone marrow mononuclear cells (BM-MNC) incubated on amino group modified TiO 2 nano-particles covalently coated on polyester fabric (TiO 2 /PET) under ultrasonic irradiation was examined in vitro. The cell viability and TNF-α secretion were measured under ultrasound irradiation condition with 255 mW/cm 2 of intensity, which is below the highest output (1 W/cm 2 ) specified in the safety standard for a medical ultrasonic diagnostic apparatus. The living cell number on the TiO 2 /PET and original PET with/without continuous ultrasound irradiation was unchanged statistically by ANOVA test. TNF-α secretion level from BM-MNC remarkably increased on the TiO 2 /PET under ultrasonic irradiation without cell damage. It was, therefore, thought that the high level of TNF-α secretion on the TiO 2 nano-composite by ultrasound irradiation was due to oxidative stress induced from OH radicals on TiO 2 .

  1. An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad Bagher, E-mail: mbgholivand2013@gmail.com; Mohammadi-Behzad, Leila

    2015-12-01

    A method is described for the construction of a novel electrochemical warfarin sensor based on covalent immobilization of CdS-quantum dots (CdS-QDs) onto carboxylated multiwalled carbon nanotubes/chitosan (CS) composite film on the surface of a glassy carbon electrode. The CdS-QDs/CS/MWCNTs were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, XRD analysis and electrochemical impedance spectroscopy (EIS). The sensor showed optimum anodic stripping response within 90 s at an accumulation potential of 0.75 V. The modified electrode was used to detect the concentration of warfarin with a wide linear range of 0.05–80 μM and a detection limit (S/N = 3) of 8.5 nM. The proposed sensor has good storage stability, repeatability and reproducibility and was successfully applied for the determination of warfarin in real samples such as urine, serum and milk. - Highlights: • A new sensitive sensor for warfarin determination was developed. • The sensor was constructed based on covalent immobilization of CdS-QDs on the chitosan/MWCNTs/GCE. • The parameters affecting the stripping analysis of warfarin were optimized. • The proposed sensor is used for trace determination of warfarin in urine, serum and milk.

  2. Voltammetric determination of the endocrine disruptor diethylstilbestrol by using a glassy carbon electrode modified with a composite consisting of platinum nanoparticles and multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Hu, Xiaobin; Zhang, Rongfei

    2016-01-01

    A nanocomposite consisting of multi-walled carbon nanotubes (MWCNTs) decorated with Pt nanoparticles (Pt-NPs) was synthesized via an ionic liquid-assisted method. The composite was characterized by transmission electron microscopy, X-ray diffraction patterns, and X-ray photo-electron spectroscopy. The results showed the Pt-NPs to be evenly deposited on the surface of the MWCNTs, with diameters ranging from about 2 nm to 3 nm. The nanocomposite was used to modify a glassy carbon electrode which then revealed a substantial catalytic activity for the oxidation of diethylstilbestrol (DES), best at a working potential of 0.73 V (vs. Ag/AgCl) at pH 7. The electrochemical oxidation mechanism is discussed. The peak current in square wave voltammetry is linearly related to the concentration of DES in the 0.1 to 25 μM range. The limit of detection (at an SNR of 3) is 12 nM. (author)

  3. Role of heat on the development of electrochemical sensors on bare and modified Co{sub 3}O{sub 4}/CuO composite nanopowder carbon paste electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mohan; Kumara Swamy, B.E., E-mail: kumaraswamy21@yahoo.com

    2016-01-01

    The Co{sub 3}O{sub 4}/CuO composite nanopowder (NP) was synthesized by a mechanochemical method and characterized by using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The synthesized Co{sub 3}O{sub 4}/CuO NP was used as a modified carbon paste electrode (MCPE) and further the bare carbon paste and Co{sub 3}O{sub 4}/CuO NP modified carbon paste was heated at different temperatures (100, 150, 200 and 250 °C) for 10 min. The Co{sub 3}O{sub 4}/CuO NP MCPE was used to study the consequences of scan rate and dopamine concentration. Furthermore the preheated modified electrodes were used to study the electrochemical response to dopamine (DA), ascorbic acid (AA) and uric acid (UA). - Highlights: • Co{sub 3}O{sub 4}/CuO composite nanopowders (NPs) are prepared by the mechanochemical method. • Co{sub 3}O{sub 4}/CuO was used as a modified electrode for detection of DA, AA and UA. • The role of temperature on the sensor development was studied. • The modified carbon paste electrode shows good sensitivity to DA and UA.

  4. Construction of a new selective coated disk electrode for Ag (I) based on modified polypyrrole-carbon nanotubes composite with new lariat ether.

    Science.gov (United States)

    Abbaspour, A; Tashkhourian, J; Ahmadpour, S; Mirahmadi, E; Sharghi, H; Khalifeh, R; Shahriyari, M R

    2014-01-01

    A poly (vinyl chloride) (PVC) matrix membrane ion-selective electrode for silver (I) ion is fabricated based on modified polypyrrole - multiwalled carbon nanotubes composite with new lariat ether. This sensor has a Nernstian slope of 59.4±0.5mV/decade over a wide linear concentration range of 1.0×10(-7) to 1.0×10(-1)molL(-1) for silver (I) ion. It has a short response time of about 8.0s and can be used for at least 50days. The detection limit is 9.3×10(-8)molL(-1) for silver (I) ion, and the electrode was applicable in the wide pH range of 1.6 -7.7. The electrode shows good selectivity for silver ion against many cations such as Hg (II), which usually imposes serious interference in the determination of silver ion concentration. The use of multiwalled carbon nanotubes (MWCNTs) in a polymer matrix improves the linear range and sensitivity of the electrode. In addition by coating the solid contact with a layer of the polypyrrole (Ppy) before coating the membrane on it, not only did it reduce the drift in potential, but a shorter response time was also resulted. The proposed electrode was used as an indicator electrode for potentiometric titration of silver ions with chloride anions and in the titration of mixed halides. This electrode was successfully applied for the determination of silver ions in silver sulphadiazine as a burning cream. © 2013.

  5. The influence of surface microstructure and chemical composition on corrosion behaviour in fuel-grade bio-ethanol of low-alloy steel modified by plasma nitro-carburizing and post-oxidizing

    Science.gov (United States)

    Boniatti, Rosiana; Bandeira, Aline L.; Crespi, Ângela E.; Aguzzoli, Cesar; Baumvol, Israel J. R.; Figueroa, Carlos A.

    2013-09-01

    The interaction of bio-ethanol on steel surfaces modified by plasma-assisted diffusion technologies is studied for the first time. The influence of surface microstructure and chemical composition on corrosion behaviour of AISI 4140 low-alloy steel in fuel-grade bio-ethanol was investigated. The steel surfaces were modified by plasma nitro-carburizing followed plasma oxidizing. X-ray diffraction, scanning electron microscopy, optical microscopy, X-ray dispersive spectroscopy, and glow-discharge optical emission spectroscopy were used to characterize the modified surface before and after immersion tests in bio-ethanol up to 77 days. The main corrosion mechanism is pit formation. The pit density and pit size were measured in order to quantify the corrosion resistance which was found to depend more strongly on microstructure and morphology of the oxide layer than on its thickness. The best corrosion protection was observed for samples post-oxidized at 480 °C and 90 min.

  6. The influence of surface microstructure and chemical composition on corrosion behaviour in fuel-grade bio-ethanol of low-alloy steel modified by plasma nitro-carburizing and post-oxidizing

    International Nuclear Information System (INIS)

    Boniatti, Rosiana; Bandeira, Aline L.; Crespi, Ângela E.; Aguzzoli, Cesar; Baumvol, Israel J.R.; Figueroa, Carlos A.

    2013-01-01

    The interaction of bio-ethanol on steel surfaces modified by plasma-assisted diffusion technologies is studied for the first time. The influence of surface microstructure and chemical composition on corrosion behaviour of AISI 4140 low-alloy steel in fuel-grade bio-ethanol was investigated. The steel surfaces were modified by plasma nitro-carburizing followed plasma oxidizing. X-ray diffraction, scanning electron microscopy, optical microscopy, X-ray dispersive spectroscopy, and glow-discharge optical emission spectroscopy were used to characterize the modified surface before and after immersion tests in bio-ethanol up to 77 days. The main corrosion mechanism is pit formation. The pit density and pit size were measured in order to quantify the corrosion resistance which was found to depend more strongly on microstructure and morphology of the oxide layer than on its thickness. The best corrosion protection was observed for samples post-oxidized at 480 °C and 90 min.

  7. Nitrogen-modified nano-titania: True phase composition, microstructure and visible-light induced photocatalytic NO{sub x} abatement

    Energy Technology Data Exchange (ETDEWEB)

    Tobaldi, D.M., E-mail: david.tobaldi@ua.pt [Department of Materials and Ceramic Engineering / CICECO−Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Pullar, R.C. [Department of Materials and Ceramic Engineering / CICECO−Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Gualtieri, A.F. [Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Modena e Reggio Emilia, I-41121 Modena (Italy); Otero-Irurueta, G.; Singh, M.K. [Center for Mechanical Technology and Automation – TEMA, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Seabra, M.P.; Labrincha, J.A. [Department of Materials and Ceramic Engineering / CICECO−Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)

    2015-11-15

    Titanium dioxide (TiO{sub 2}) is a popular photocatalyst used for many environmental and anti-pollution applications, but it normally operates under UV light, exploiting ∼5% of the solar spectrum. Nitrification of titania to form N-doped TiO{sub 2} has been explored as a way to increase its photocatalytic activity under visible light, and anionic doping is a promising method to enable TiO{sub 2} to harvest visible-light by changing its photo-absorption properties. In this paper, we explore the insertion of nitrogen into the TiO{sub 2} lattice using our green sol–gel nanosynthesis method, used to create 10 nm TiO{sub 2} NPs. Two parallel routes were studied to produce nitrogen-modified TiO{sub 2} nanoparticles (NPs), using HNO{sub 3}+NH{sub 3} (acid-precipitated base-peptised) and NH{sub 4}OH (totally base catalysed) as nitrogen sources. These NPs were thermally treated between 450 and 800 °C. Their true phase composition (crystalline and amorphous phases), as well as their micro-/nanostructure (crystalline domain shape, size and size distribution, edge and screw dislocation density) was fully characterised through advanced X-ray methods (Rietveld-reference intensity ratio, RIR, and whole powder pattern modelling, WPPM). As pollutants, nitrogen oxides (NO{sub x}) are of particular concern for human health, so the photocatalytic activity of the NPs was assessed by monitoring NO{sub x} abatement, using both solar and white-light (indoor artificial lighting), simulating outdoor and indoor environments, respectively. Results showed that the onset of the anatase-to-rutile phase transformation (ART) occurred at temperatures above 450 °C, and NPs heated to 450 °C possessed excellent photocatalytic activity (PCA) under visible white-light (indoor artificial lighting), with a PCA double than that of the standard P25 TiO{sub 2} NPs. However, higher thermal treatment temperatures were found to be detrimental for visible-light photocatalytic activity, due to the effects

  8. Fatty acid composition of soybean/sunflower mix oil, fish oil and butterfat applying the AOCS Ce 1j-07 method with a modified temperature program

    Directory of Open Access Journals (Sweden)

    Masson, L.

    2015-03-01

    Full Text Available Gas-Liquid Chromatography (GLC methods such as AOAC Fat in foods 966.06 (2005, AOCS Official Methods Ce 1h-05 (2005, Ce 1j-07 (2007, allow for analyzing the fatty acids (FAs in dietary fats using highly polar liquid phase capillary columns. However, there are still difficulties in completely separating butiric acid from solvent, FA critical pairs with similar polarity, conjugated linoleic acid (CLA isomers, and long chainpolyunsaturated FAs (LC-PUFAs. Therefore, the selection of the temperature program to be employed is important. This work aimed to improve the AOCS Ce 1j-07 Method for the FA composition of a mixture of soybean and sunflower oil, fish oil, and butterfat, using a modified temperature program, tested among five laboratories. It takes more time, but it allows to completely separate butyric acid from the solvent, trans-18:1 from cis-18:1, 20:1 isomers from 18:3 n-3, 22:1 n-9 from 20:4 n-6, 20:5 n-3 from 24:0 and the main CLA isomers, thus permitting FA quantification in fats and oils for different purposes such as nutritional labeling, quality control and research.Métodos por cromatografía gas-líquido, AOAC 966.06 (2005, AOCS Ce 1h-05 (2005, Ce 1j-07 (2007 permiten determinar ácidos grasos (AG en matrices grasas usando columnas capilares altamente polares y distintos programas de temperatura. No obstante, aún existen dificultades para separar ácido butírico del solvente, pares críticos de AG con polaridades similares, isómeros del ácido linoleico conjugado (CLA, AG de cadena larga poliinsaturados (LC-PUFAs. El objetivo fue mejorar el Método AOCS Ce 1j-07 aplicándolo a la composición en AG de mezcla de aceite soja/girasol, aceite de pescado, mantequilla, usando un programa de temperatura modificado, entre cinco laboratorios. El programa de temperatura elegido, si bien emplea más tiempo, permite separar completamente ácido butírico del solvente, trans-18:1 de cis-18:1, isómeros 20:1 de 18:3 n-3, 22:1 n-9 de 20:4 n-6

  9. Modified cyanobacteria

    Science.gov (United States)

    Vermaas, Willem F J.

    2014-06-17

    Disclosed is a modified photoautotrophic bacterium comprising genes of interest that are modified in terms of their expression and/or coding region sequence, wherein modification of the genes of interest increases production of a desired product in the bacterium relative to the amount of the desired product production in a photoautotrophic bacterium that is not modified with respect to the genes of interest.

  10. Sensitive stripping voltammetric determination of Cd(II) and Pb(II) by a Bi/multi-walled carbon nanotube-emeraldine base polyaniline-Nafion composite modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Zhao, Guo; Yin, Yuan; Wang, Hui; Liu, Gang; Wang, Zhiqiang

    2016-01-01

    Highlights: • A MWCNT-EBP-NA composite film modified GCE was fabricated and characterized. • The GCE modified with the MWCNT-EBP-NA composite film exhibited excellent performance in the analysis of Cd(II) and Pb(II) by SWASV. • The Cd(II) and Pb(II) detection limits of the developed electrode were approximately 0.06 μg/L and 0.08 μg/L, respectively. • Bi/MWCNT-EBP-NA/GCE was successfully used to determine metal ions in soil samples. - Abstract: In this study, a multi-walled carbon nanotube (MWCNT)-emeraldine base polyaniline (EBP)-Nafion (NA) composite modified glassy carbon electrode (MWCNT-EBP-NA/GCE) was prepared and used for the sensitive detection of trace Pb(II) and Cd(II), with a detection limit of 0.06 μg/L for Cd(II) and 0.08 μg/L for Pb(II) (S/N = 3), by square wave anodic stripping voltammetry (SWASV). A bismuth film was prepared through the in situ plating of bismuth on the MWCNT-EBP-NA/GCE. The morphologies and electrochemical properties of the modified electrode were characterized by SWASV, scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The parameters affecting the stripping current response were investigated and optimized. The formed MWCNTs in the composite film enlarged the specific surface area of the electrode and significantly promoted electron transferring, and the formed polyaniline (PANI) enhanced the ion-exchange capacity and prevented the macromolecules in real samples from absorbing onto the surface of the electrode. The presence of NA effectively increased the stability and adhesion of the composite film, enhanced the cation-exchange capacity and improved the ability to preconcentrate metal ions. Under the optimized conditions, a linear range of 1.0 to 50.0 μg/L was achieved for both metal ions, with a detection limit of 0.06 μg/L for Cd(II) and 0.08 μg/L for Pb(II) (S/N = 3), offering good repeatability. Finally, the Bi/MWCNT-EBP-NA/GCE was used for the

  11. Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene–ionic liquid–chitosan composite film modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Niu Xiuli; Yang Wu; Ren Jie; Guo Hao; Long Shijia; Chen Jiaojiao; Gao Jinzhang

    2012-01-01

    Highlights: ► This work developed a novel electrochemical biosensors for guanine and adenine detection simultaneously. ► A disposable electrode based on graphene sheets, ionic liquid and chitosan was proposed. ► The presented method was also applied to simultaneous determination of guanine and adenine in denatured DNA samples with satisfying results. ► Easy fabrication, high sensitivity, excellent reproducibility and long-term stability. - Abstract: A graphene sheets (GS), ionic liquid (IL) and chitosan (CS) modified electrode was fabricated and the modified electrode displayed excellent electrochemical catalytic activities toward guanine and adenine. The transfer electron number (n) and the charge transfer coefficient (α) were calculated with the result as n = 2, α = 0.58 for guanine, and n = 2, α = 0.51 for adenine, which indicated the electrochemical oxidation of guanine and adenine on GS/IL/CS modified electrode was a two-electron and two-proton process. The oxidation overpotentials of guanine and adenine were decreased significantly compared with those obtained at the bare glassy carbon electrode and multi-walled carbon nanotubes modified electrode. The modified electrode exhibited good analytical performance and was successfully applied for individual and simultaneous determination of guanine and adenine. Low detection limits of 0.75 μM for guanine and 0.45 μM for adenine were obtained, with the linear calibration curves over the concentration range 2.5–150 μM and 1.5–350 μM, respectively. At the same time, the proposed method was successfully applied for the determination of guanine and adenine in denatured DNA samples with satisfying results. Moreover, the GS/IL/CS modified electrode exhibited good sensitivity, long-term stability and reproducibility for the determination of guanine and adenine.

  12. Mechanical properties of chemically modified Sansevieria trifasciata/natural rubber/high density polyethylene (STF/NR/HDPE) composites: Effect of silane coupling agent

    Science.gov (United States)

    Zakaria, Nurzam Ezdiani; Baharum, Azizah; Ahmad, Ishak

    2018-04-01

    The main objective of this research is to study the effects of chemical modification on the mechanical properties of treated Sansevieria trifasciata fiber/natural rubber/high density polyethylene (TSTF/NR/HDPE) composites. Processing of STF/NR/HDPE composites was done by using an internal mixer. The processing parameters used were 135°C for temperature and a mixing rotor speed of 55 rpm for 15 minutes. Filler loading was varied from 10% to 40% of STF and the fiber size used was 125 µm. The composite blends obtained then were pressed with a hot press machine to get test samples of 1 mm and 3 mm of thickness. Samples were evaluated via tensile tests, Izod impact test and scanning electron microscopy (SEM). Results showed that tensile strength and strain value decreased while tensile modulus increased when filler loading increased. Impact strength increased when filler loading increased and began to decrease after 10% of filler amount for treated composites. For untreated composites, impact strength began to decrease after 20% of filler loading. Chemical modification by using silane coupling agent has improved certain mechanical properties of the composites such as tensile strength, strain value and tensile modulus. Adding more amount of filler will also increase the viscosity and the stiffness of the materials.

  13. Using heat-treated starch to modify the surface of biochar and improve the tensile properties of biochar-filled stryene-butadiene rubber composites

    Science.gov (United States)

    Heat-treated starch is a renewable material that can be used to modify the surface chemistry of small particles. In this work, heat-treated starch was used to coat hydrophilic biochar particles in order to make them more hydrophobic. Then when added as filler to hydrophobic styrene-butadiene rubber,...

  14. Particle-size distribution modified effective medium theory and validation by magneto-dielectric Co-Ti substituted BaM ferrite composites

    Science.gov (United States)

    Li, Qifan; Chen, Yajie; Harris, Vincent G.

    2018-05-01

    This letter reports an extended effective medium theory (EMT) including particle-size distribution functions to maximize the magnetic properties of magneto-dielectric composites. It is experimentally verified by Co-Ti substituted barium ferrite (BaCoxTixFe12-2xO19)/wax composites with specifically designed particle-size distributions. In the form of an integral equation, the extended EMT formula essentially takes the size-dependent parameters of magnetic particle fillers into account. It predicts the effective permeability of magneto-dielectric composites with various particle-size distributions, indicating an optimal distribution for a population of magnetic particles. The improvement of the optimized effective permeability is significant concerning magnetic particles whose properties are strongly size dependent.

  15. Characterization of dispersion of a nano composites PP/TiO{sub 2} non modified; Caracterizacao da dispersao dos nanocompositos de PP/TiO{sub 2} nao modificados

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Igor L.; Tavares, Maria I.B.; Silva, Vanessa A. da; Legramanti, Cintia, E-mail: igorl@ima.ufrj.br [Universidade Federal do Rio de Janeiro - UFRJ, Instituto de Macromoleculas - IMA (Brazil); Luetkmeyer, Leandro [Universidades Federais do Mato Grosso - UFMT, Escritorio de Inovacao Tecnologica - EIT (Brazil)

    2011-07-01

    Polymeric nano composites are composite materials where an inorganic particle, which has a dimension in the nanometer range, is dispersed in a polymer matrix. Nano composites, using polypropylene (PP) as matrix polymer and titanium dioxide (TiO{sub 2}) as filler, have great versatility in marketing applications, this factor is inherent in the PP and the inherent ability photo degraded TiO{sub 2} particles. This combination can lead to a widely used material and a degradation time after discharge reduced, there by becoming, a residue of low environmental impact. This study aimed to evaluate the dispersion and particle distribution of TiO{sub 2}, non modified, in PP matrix, using the process of preparation by melt extrusion pathway and characterization of the materials obtained: on the molecular dynamics, using low field NMR solid state, measures the relaxation time spin-network (T{sub 1}H); morphology using XRD technique, and thermal analysis technique with the TGA of pure PP and nano composites PP/TiO{sub 2}. (author)

  16. Electrical, thermophysical and micromechanical properties of ethylene-vinyl acetate elastomer composites with surface modified BaTiO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huang Xingyi; Xie Liyuan; Jiang Pingkai; Wang Genlin; Liu Fei, E-mail: xyhuang@sjtu.edu.c, E-mail: pkjiang@sjtu.edu.c [Shanghai Key Lab of Electrical Insulation and Thermal Aging, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2009-12-21

    In this study, we investigated the influence of the surface modified BaTiO{sub 3} nanoparticles on the electrical, thermophysical and micromechanical properties of ethylene-vinyl acetate (EVM) vulcanizates. Gamma-aminopropyl triethoxysilane was used as a silane coupling agent for the surface treatment of the BaTiO{sub 3} nanoparticles. It was found that the incorporation of surface modified BaTiO{sub 3} nanoparticles into the EVM matrix not only increased the permittivity, thermal conductivity and the mechanical strength but also showed a comparative dielectric loss tangent with pure EVM vulcanizates. In particular, the nanocomposites exhibit relatively high dielectric strength and good ductility even at the loading level of 50 vol%. The improved properties not only originate from the homogeneous dispersion of BaTiO{sub 3} nanoparticles but also should be ascribed to the strong interfacial interaction between the surface modified BaTiO{sub 3} nanoparticles and EVM matrix. We also investigated the dielectric relaxation behaviour of the BaTiO{sub 3} filled EVM nanocomposites by using Jonscher's theory of universal dielectric response.

  17. Nitrogen Dioxide-Sensing Properties at Room Temperature of Metal Oxide-Modified Graphene Composite via One-Step Hydrothermal Method

    Science.gov (United States)

    Zhang, Dongzhi; Liu, Jingjing; Xia, Bokai

    2016-08-01

    A metal oxide/graphene composite film-based sensor toward room-temperature detection of ppm-level nitrogen dioxide (NO2) gas has been demonstrated. The sensor prototype was constructed on a PCB substrate with microelectrodes, and a tin oxide-reduced graphene oxide (SnO2-rGO) composite as sensing film was prepared by one-step hydrothermal synthesis of tin tetrachloride pentahydrate solution in the presence of graphene oxide (GO). The SnO2-rGO hybrid composite was examined by scanning electron microscope and x-ray diffraction (XRD). The gas sensing properties of the SnO2-rGO composite were investigated at room temperature by exposing it to a wide concentration ranging from 1 ppm to 2000 ppm toward NO2 gas. The experiment results showed that the sensor exhibited a high response, superior selectivity, good repeatability, rapid response/recovery characteristics and low detection limit of 1 ppm, which exceeded that of a pure rGO sensor. The gas sensing mechanisms of the proposed sensor toward NO2 were possibly attributed to the nano-hybrid structures and n- p heterojunctions created at the interface of the SnO2 nanocrystals and rGO nanosheets.

  18. A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications.

    Science.gov (United States)

    Noorbakhsh-Soltani, S M; Zerafat, M M; Sabbaghi, S

    2018-06-01

    Environmental concerns have led to extensive research for replacing polymer-based food packaging with bio-nano-composites. In this study, incorporation of nano-cellulose into gelatin and starch matrices is investigated for this purpose. Chitosan is used to improve mechanical, anti-fungal and waterproof properties. Experiments are designed and analyzed using response surface methodology. Nano-Cellulose is synthesized via acid hydrolysis and incorporated in base matrices through wet processing. Also, tensile strength test, food preservation, transparency in visible and UV and water contact angle are performed on the nano-composite films. DSC/TGA and air permeability tests are also performed on the optimal films. The results show that increasing nano-cellulose composition to 10% leads to increase the tensile strength at break to 8121 MN/m 2 and decrease the elongation at break. Also, increasing chitosan composition from 5% to 30% can enhance food preservation up to 15 days. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Microhardness and wear behaviour of surface modified Ti6Al4V/Zr-TiC metal matrix composite for advanced material

    CSIR Research Space (South Africa)

    Popoola, API

    2012-12-01

    Full Text Available . The beam diameter was set at 4 mm. The microstructures of fabricated composites consist of homogeneous distribution of TiC particles which were free of cracks with x-ray diffraction (XRD) analyses indicating formation of interstitial carbides. Multilayer...

  20. Dispersed hydroxyapatite and modified bioglass 45S5 composites: sintering behavior of glass matrix ranging from 20 to 30 wt% in calcium oxide investigation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.C.; Parra-Silva, J.; Santos, S.C.; Mello-Castanho, S.R.H, E-mail: dasilva.ac@uol.com.br [Instituto de Pesquisas Enegeticas e Nucleares (IPEN/CNEN-SP), DP (Brazil); Braga, F.J.C. [Consulmat Materiais de Referencia, Solucoes e Servicos, Sao Carlos, SP (Brazil); Setz, L.F.G. [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2014-07-01

    Biomaterial technology plays an important role in cell-based tissue proliferation environment creation. The hydroxyapatite (HA) bioceramics are reference materials to employment as a bone substitute, however, their slow rate of degradation and its low rate of bioactivity (Ib) are presented as limiting factors for application as bone graft. In contrast, the bioglass (BG) is a resorbable and osteoinductive material and can act as fluxing in HA/BG composites. The present work objective the development of HA/BG (40/70wt%) composites, Three compositions of the 45S5 bioglass derived ranging from 20-30wt% in CaO were used in order to study the sintering behavior of these materials with hydroxyapatite 30wt% dispersed. The composites were uniaxially pressed in the form of cylinders and sinterized at (1100°C/1h). The characterization was made employing scanning electron microscopy, Infra-Red Spectrometry, X-ray diffraction and hydrolytic resistance test. The results indicate the potential use of the materials developed for applications like bone graft.(author)

  1. Dispersed hydroxyapatite and modified bioglass 45S5 composites: sintering behavior of glass matrix ranging from 20 to 30 wt% in calcium oxide investigation

    International Nuclear Information System (INIS)

    Silva, A.C.; Parra-Silva, J.; Santos, S.C.; Mello-Castanho, S.R.H; Braga, F.J.C.; Setz, L.F.G.

    2014-01-01

    Biomaterial technology plays an important role in cell-based tissue proliferation environment creation. The hydroxyapatite (HA) bioceramics are reference materials to employment as a bone substitute, however, their slow rate of degradation and its low rate of bioactivity (Ib) are presented as limiting factors for application as bone graft. In contrast, the bioglass (BG) is a resorbable and osteoinductive material and can act as fluxing in HA/BG composites. The present work objective the development of HA/BG (40/70wt%) composites, Three compositions of the 45S5 bioglass derived ranging from 20-30wt% in CaO were used in order to study the sintering behavior of these materials with hydroxyapatite 30wt% dispersed. The composites were uniaxially pressed in the form of cylinders and sinterized at (1100°C/1h). The characterization was made employing scanning electron microscopy, Infra-Red Spectrometry, X-ray diffraction and hydrolytic resistance test. The results indicate the potential use of the materials developed for applications like bone graft.(author)

  2. Exposure of tumor-bearing mice to extremely high-frequency electromagnetic radiation modifies the composition of fatty acids in thymocytes and tumor tissue.

    Science.gov (United States)

    Gapeyev, Andrew B; Kulagina, Tatiana P; Aripovsky, Alexander V

    2013-08-01

    To test the participation of fatty acids (FA) in antitumor effects of extremely high-frequency electromagnetic radiation (EHF EMR), the changes in the FA composition in the thymus, liver, blood plasma, muscle tissue, and tumor tissue in mice with Ehrlich solid carcinoma exposed to EHF EMR were studied. Normal and tumor-bearing mice were exposed to EHF EMR with effective parameters (42.2 GHz, 0.1 mW/cm2, 20 min daily during five consecutive days beginning the first day after the inoculation of tumor cells). Fatty acid composition of various organs and tissues of mice were determined using a gas chromatography. It was shown that the exposure of normal mice to EHF EMR or tumor growth significantly increased the content of monounsaturated FA (MUFA) and decreased the content of polyunsaturated FA (PUFA) in all tissues examined. Exposure of tumor-bearing mice to EHF EMR led to the recovery of FA composition in thymocytes to the state that is typical for normal animals. In other tissues of tumor-bearing mice, the exposure to EHF EMR did not induce considerable changes that would be significantly distinguished between disturbances caused by EHF EMR exposure or tumor growth separately. In tumor tissue which is characterized by elevated level of MUFA, the exposure to EHF EMR significantly decreased the summary content of MUFA and increased the summary content of PUFA. The recovery of the FA composition in thymocytes and the modification of the FA composition in the tumor under the influence of EHF EMR on tumor-bearing animals may have crucial importance for elucidating the mechanisms of antitumor effects of the electromagnetic radiation.

  3. Pressurized fluid extraction of essential oil from Lavandula hybrida using a modified supercritical fluid extractor and a central composite design for optimization.

    Science.gov (United States)

    Kamali, Hossein; Jalilvand, Mohammad Reza; Aminimoghadamfarouj, Noushin

    2012-06-01

    Essential oil components were extracted from lavandin (Lavandula hybrida) flowers using pressurized fluid extraction. A central composite design was used to optimize the effective extraction variables. The chemical composition of extracted samples was analyzed by a gas chromatograph-flame ionization detector column. For achieving 100% extraction yield, the temperature, pressure, extraction time, and the solvent flow rate were adjusted at 90.6°C, 63 bar, 30.4 min, and 0.2 mL/min, respectively. The results showed that pressurized fluid extraction is a practical technique for separation of constituents such as 1,8-cineole (8.1%), linalool (34.1%), linalyl acetate (30.5%), and camphor (7.3%) from lavandin to be applied in the food, fragrance, pharmaceutical, and natural biocides industries. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Overexpression of PhEXPA1 increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in Petunia hybrida.

    Science.gov (United States)

    Zenoni, Sara; Fasoli, Marianna; Tornielli, Giovanni Battista; Dal Santo, Silvia; Sanson, Andrea; de Groot, Peter; Sordo, Sara; Citterio, Sandra; Monti, Francesca; Pezzotti, Mario

    2011-08-01

    • Expansins are cell wall proteins required for cell enlargement and cell wall loosening during many developmental processes. The involvement of the Petunia hybrida expansin A1 (PhEXPA1) gene in cell expansion, the control of organ size and cell wall polysaccharide composition was investigated by overexpressing PhEXPA1 in petunia plants. • PhEXPA1 promoter activity was evaluated using a promoter-GUS assay and the protein's subcellular localization was established by expressing a PhEXPA1-GFP fusion protein. PhEXPA1 was overexpressed in transgenic plants using the cauliflower mosaic virus (CaMV) 35S promoter. Fourier transform infrared (FTIR) and chemical analysis were used for the quantitative analysis of cell wall polymers. • The GUS and GFP assays demonstrated that PhEXPA1 is present in the cell walls of expanding tissues. The constitutive overexpression of PhEXPA1 significantly affected expansin activity and organ size, leading to changes in the architecture of petunia plants by initiating premature axillary meristem outgrowth. Moreover, a significant change in cell wall polymer composition in the petal limbs of transgenic plants was observed. • These results support a role for expansins in the determination of organ shape, in lateral branching, and in the variation of cell wall polymer composition, probably reflecting a complex role in cell wall metabolism. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  5. Cyclovoltammetric acetylcholinesterase activity assay after inhibition and subsequent reactivation by using a glassy carbon electrode modified with palladium nanorods composited with functionalized C60 fullerene

    International Nuclear Information System (INIS)

    Ye, Cui; Zhong, Xia; Chai, Yaqin; Yuan, Ruo; Wang, Min-Qiang

    2016-01-01

    A glassy carbon electrode (GCE) was modified with a nanocomposite consisting of tetraoctylammonium bromide (TOAB), C 60 fullerene, and palladium nanorods (PdNRs). The PdNRs were hydrothermally prepared and had a typical width of 20 ± 2 nm. The nanocomposite forms stable films on the GCE and exhibits a reversible redox pair for the C 60 /C 60 − system while rendering the surface to be positively charged. The modified GCE was applied to fabricate an electrochemical biosensor for detecting acetylcholinesterase (AChE) by measurement of the amount of thiocholine formed from acetylthiocholine, best at a working voltage of −0.19 V (vs. SCE). The detection scheme is based on (a) measurement of the activity of ethyl paraoxon-inhibited AChE, and (b) measurement of AChE activity after reactivation with pralidoxime (2-PAM). Compared to the conventional methods using acetylthiocholine as a substrate, the dual method presented here provides data on the AChE activity after inhibition and subsequent reactivation, thereby yielding credible data on reactivated enzyme activity. The linear analytical range for AChE activity extends from 2.5 U L −1 to 250 kU·L −1 , and the detection limit is 0.83 U L −1 . (author)

  6. Simultaneous determination of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry based on graphite nanofibers-Nafion composite modified bismuth film electrode.

    Science.gov (United States)

    Li, Dongyue; Jia, Jianbo; Wang, Jianguo

    2010-12-15

    A bismuth-film modified graphite nanofibers-Nafion glassy carbon electrode (BiF/GNFs-NA/GCE) was constructed for the simultaneous determination of trace Cd(II) and Pb(II). The electrochemical properties and applications of the modified electrode were studied. Operational parameters such as deposition potential, deposition time, and bismuth ion concentration were optimized for the purpose of determination of trace metal ions in 0.10 M acetate buffer solution (pH 4.5). Under optimal conditions, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L(-1) for Cd(II) and 0.02 μg L(-1) for Pb(II) with a 10 min preconcentration. In addition, the BiF/GNFs-NA/GCE displayed good reproducibility and selectivity, making it suitable for the simultaneous determination of Cd(II) and Pb(II) in real sample such as river water and human blood samples. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. A C8-Modified Graphene@mSiO2 Composites Based Method for Quantification of Gallic Acid in Rat Plasma after Oral Administration of Changtai Granule and Its Application to Pharmacokinetics.

    Science.gov (United States)

    Xu, Chen; Yu, Yingjia; Ling, Li; Wang, Yang; Zhang, Jundong; Li, Yan; Duan, Gengli

    2017-01-01

    A rapid, effective extraction technique has been established for measuring the gallic acid in rat plasma by using sandwich-structured graphene/mesoporous silica composites with C 8 -modified interior pore-walls as adsorbent. The unique characteristics of the graphene-silica composites excluded large molecules, like proteins, from the mesopore channels as a result of size exclusion effect, leading to a direct extraction of drug molecules from protein-rich biological samples such as plasma without any other pretreatment procedure. Followed by elution and centrifugation, the gallic acid-absorbed composites were rapidly isolated before LC-MS/MS. Serving as a reliable tool for analysis of Traditional Chinese Medicine: Changtai Granule, the newly developed method was fully validated and successfully applied in the pharmacokinetic study of gallic acid in rat plasma. Extraction recovery, matrix effect and stability were satisfactory in rat plasma. According to the results of pharmacokinetic studies, Changtai Granule exhibited greater adsorption, distribution and clearance properties of gallic acid in the treatment of ulcerative colitis. Hence, this study may offer a valuable alternative to simplify and speed up sample preparation, and be useful for clinical studies of related preparations.

  8. Maternal pre-pregnancy BMI and offspring body composition in young adulthood: the modifying role of offspring sex and birth order.

    Science.gov (United States)

    Chaparro, M Pia; Koupil, Ilona; Byberg, Liisa

    2017-12-01

    To investigate if the association between maternal pre-pregnancy BMI and offspring's body composition in late adolescence and young adulthood varies by offspring birth order and sex. Family cohort study, with data from registers, questionnaires and physical examinations. The main outcome under study was offspring body composition (percentage fat mass (%FM), percentage lean mass (%LM)) measured by dual-energy X-ray absorptiometry. Uppsala, Sweden. Two hundred and twenty-six siblings (first-born v. second-born; average age 19 and 21 years) and their mothers. In multivariable linear regression models, maternal pre-pregnancy BMI was positively associated with daughter's %FM, with stronger estimates for first-born (β=0·97, 95 % CI 0·14, 1·80) v. second-born daughters (β=0·64, 95 % CI 0·08, 1·20). Mother's BMI before her first pregnancy was associated with her second-born daughter's body composition (β=1·05, 95 % CI 0·31, 1·79 (%FM)) Similar results albeit in the opposite direction were observed for %LM. No significant associations were found between pre-pregnancy BMI and %FM (β=0·59, 95 % CI-0·27, 1·44 first-born; β=-0·13, 95 % CI-0·77, 0·52 second-born) or %LM (β=-0·54, 95 % CI-1·37, 0·28 first-born; β=0·11, 95 % CI-0·52, 0·74 second-born) for sons. A higher pre-pregnancy BMI was associated with higher offspring %FM and lower offspring %LM in late adolescence and young adulthood, with stronger associations for first-born daughters. Preventing obesity at the start of women's reproductive life might reduce the risk of obesity in her offspring, particularly for daughters.

  9. Preparation of chitin–silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wysokowski, Marcin [Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Skłodowskiej-Curie 2, PL-60965 Poznan (Poland); Behm, Thomas [Institute of Experimental Physics, TU Bergakademie Freiberg, Liepziger 23, 09599 Freiberg (Germany); Born, René [Institute of Materials Science, Dresden University of Technology, Helmholtzstraße 10, 01069 Dresden (Germany); Bazhenov, Vasilii V. [Institute of Experimental Physics, TU Bergakademie Freiberg, Liepziger 23, 09599 Freiberg (Germany); Meißner, Heike; Richter, Gert [Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, 01307 Dresden (Germany); Szwarc-Rzepka, Karolina [Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Skłodowskiej-Curie 2, PL-60965 Poznan (Poland); Makarova, Anna; Vyalikh, Denis [Institute of Solid State Physics, Dresden University of Technology, Helmholtzstraße 10, 01069 Dresden (Germany); Schupp, Peter [Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Emsstr. 20, 26382 Wilhelmshaven (Germany); Jesionowski, Teofil, E-mail: teofil.jesionowski@put.poznan.pl [Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, M. Skłodowskiej-Curie 2, PL-60965 Poznan (Poland); Ehrlich, Hermann, E-mail: hermann.ehrlich@physik.tu-freiberg.de [Institute of Experimental Physics, TU Bergakademie Freiberg, Liepziger 23, 09599 Freiberg (Germany)

    2013-10-15

    Chitin is a biopolymer found in cell walls of various fungi and skeletal structures of numerous invertebrates. The occurrence of chitin within calcium- and silica-containing biominerals has inspired development of chitin-based hybrids and composites in vitro with specific physico-chemical and material properties. We show here for the first time that the two-dimensional α-chitin scaffolds isolated from the skeletons of marine demosponge Ianthella basta can be effectively silicified by the two-step method with the use of Stöber silica micro- and nanodispersions under Extreme Biomimetic conditions. The chitin–silica composites obtained at 120 °C were characterized by the presence of spherical SiO{sub 2} particles homogeneously distributed over the chitin fibers, which probably follows from the compatibility of Si–OH groups to the hydroxyl groups of chitin. The biocomposites obtained were characterized by various analytical techniques such as energy dispersive spectrometry, scanning electron microscopy, thermogravimetric/differential thermal analyses as well as X-ray photoelectron spectroscopy, Fourier transform infrared and Raman spectroscopy to determine possible interactions between silica and chitin molecule. The results presented proved that the character and course of the in vitro chitin silicification in Stöber dispersions depended considerably on the degree of hydrolysis of the SiO{sub 2} precursor. - Highlights: • 2D α-chitin scaffolds isolated from marine demosponge can be effectively silicified using Stöber silica. • The chitin–silica composites were obtained under Extreme Biomimetic conditions. • Character and course of the in vitro chitin silicification in Stöber dispersions is discussed.

  10. Determination of two-liquid mixture composition by assessing its dielectric parameters 2. modified measuring system for monitoring the dehydration process of bioethanol production

    Directory of Open Access Journals (Sweden)

    Vilitis O.

    2014-02-01

    Full Text Available In Part 2 of the work we describe a modified measuring system for precise monitoring of the dehydration process of bioethanol production. This is based on the earlier proposed system for measuring the concentration of solutions and two-liquid mixtures using devices with capacitive sensors (1-300pF, which provides a stable measuring resolution of ± 0.005 pF at measuring the capacitance of a sensor. In this part of our work we determine additional requirements that are to be imposed on the measuring system at monitoring the ethanol dehydration process and control of bioethanol production. The most important parameters of the developed measuring system are identified. An exemplary calculation is given for the thermocompensated calibration of measuring devices. The results of tests have shown a good performance of the developed measuring system.

  11. Maraviroc modifies gut microbiota composition in a mouse model of obesity: a plausible therapeutic option to prevent metabolic disorders in HIV-infected patients.

    Science.gov (United States)

    Pérez-Matute, Patricia; Pérez-Martínez, Laura; Aguilera-Lizarraga, Javier; Blanco, José R; Oteo, José A

    2015-08-01

    The proportion of HIV-infected patients with overweight/obesity has increased in recent years. These patients have an increased metabolic/cardiovascular risk compared with non-obese patients. Modulation of gut microbiota composition arises as a promising tool to prevent the development of obesity and associated disorders. The aim of this study was to investigate the impacts of maraviroc (MVC), a CCR5 antagonist approved for clinical use in HIV-infected patients, on gut microbiota composition in a mouse model of obesity. Thirty two male C57BL/6 mice were assigned to:a) Control (chow diet), b) MVC (chow diet plus 300 mg/L MVC), c) High-fat diet (HFD) or d) HFD/MVC (HFD plus 300 mg/L MVC) groups. Body weight and food intake was recorded every 2-3 days. Mice were euthanized after 16 weeks of treatment and cecal contents were removed to analyse by real-time PCR four bacterial orders from the most dominant phyla in gut. Mice fed with a HFD showed a significant increase in Enterobacteriales (pobesity and related disorders in HIV-infected patients.

  12. The hydroxylated form of docosahexaenoic acid (DHA-H) modifies the brain lipid composition in a model of Alzheimer's disease, improving behavioral motor function and survival.

    Science.gov (United States)

    Mohaibes, Raheem J; Fiol-deRoque, María A; Torres, Manuel; Ordinas, Margarita; López, David J; Castro, José A; Escribá, Pablo V; Busquets, Xavier

    2017-09-01

    We have compared the effect of the commonly used ω-3 fatty acid, docosahexaenoic acid ethyl ester (DHA-EE), and of its 2-hydroxylated DHA form (DHA-H), on brain lipid composition, behavior and lifespan in a new human transgenic Drosophila melanogaster model of Alzheimer's disease (AD). The transgenic flies expressed human Aβ42 and tau, and the overexpression of these human transgenes in the CNS of these flies produced progressive defects in motor function (antigeotaxic behavior) while reducing the animal's lifespan. Here, we demonstrate that both DHA-EE and DHA-H increase the longer chain fatty acids (≥18C) species in the heads of the flies, although only DHA-H produced an unknown chromatographic peak that corresponded to a non-hydroxylated lipid. In addition, only treatment with DHA-H prevented the abnormal climbing behavior and enhanced the lifespan of these transgenic flies. These benefits of DHA-H were confirmed in the well characterized transgenic PS1/APP mouse model of familial AD (5xFAD mice), mice that develop defects in spatial learning and in memory, as well as behavioral deficits. Hence, it appears that the modulation of brain lipid composition by DHA-H could have remedial effects on AD associated neurodegeneration. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017. Published by Elsevier B.V.

  13. Modified SEAGULL

    Science.gov (United States)

    Salas, M. D.; Kuehn, M. S.

    1994-01-01

    Original version of program incorporated into program SRGULL (LEW-15093) for use on National Aero-Space Plane project, its duty being to model forebody, inlet, and nozzle portions of vehicle. However, real-gas chemistry effects in hypersonic flow fields limited accuracy of that version, because it assumed perfect-gas properties. As a result, SEAGULL modified according to real-gas equilibrium-chemistry methodology. This program analyzes two-dimensional, hypersonic flows of real gases. Modified version of SEAGULL maintains as much of original program as possible, and retains ability to execute original perfect-gas version.

  14. Modifying effects of low-intensity extremely high-frequency electromagnetic radiation on content and composition of fatty acids in thymus of mice exposed to X-rays.

    Science.gov (United States)

    Gapeyev, Andrew B; Aripovsky, Alexander V; Kulagina, Tatiana P

    2015-03-01

    The effects of extremely high-frequency electromagnetic radiation (EHF EMR) on thymus weight and its fatty acids (FA) content and FA composition in X-irradiated mice were studied to test the involvement of FA in possible protective effects of EHF EMR against ionizing radiation. Mice were exposed to low-intensity pulse-modulated EHF EMR (42.2 GHz, 0.1 mW/cm(2), 20 min exposure, 1 Hz modulation) and/or X-rays at a dose of 4 Gy with different sequences of the treatments. In 4-5 hours, 10, 30, and 40 days after the last exposure, the thymuses were weighed; total FA content and FA composition of the thymuses were determined on days 1, 10, and 30 using a gas chromatography. It was shown that after X-irradiation of mice the total FA content per mg of thymic tissue was significantly increased in 4-5 h and decreased in 10 and 30 days after the treatment. On days 30 and 40 after X-irradiation, the thymus weight remained significantly reduced. The first and tenth days after X-rays injury independently of the presence and sequence of EHF EMR exposure were characterized by an increased content of polyunsaturated FA (PUFA) and a decreased content of monounsaturated FA (MUFA) with unchanged content of saturated FA (SFA). Exposure of mice to EHF EMR before or after X-irradiation prevented changes in the total FA content in thymic tissue, returned the summary content of PUFA and MUFA to the control level and decreased the summary content of SFA on the 30th day after the treatments, and promoted the restoration of the thymus weight of X-irradiated mice to the 40th day of the observations. Changes in the content and composition of PUFA in the early period after treatments as well as at the restoration of the thymus weight under the combined action of EHF EMR and X-rays indicate to an active participation of FA in the acceleration of post-radiation recovery of the thymus by EHF EMR exposure.

  15. Modified composites based on mesostructured iron oxyhydroxide and synthetic minerals: A potential material for the treatment of various toxic heavy metals and its toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Seung-Gun [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Ryu, Jae-Chun; Song, Mi-Kyung [Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); An, Byungryul [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, Song-Bae [Environmental Functional Materials and Biocolloids Laboratory, Seoul National University, Seoul 151-921 (Korea, Republic of); Lee, Sang-Hyup [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Graduate School of Convergence Green Technology and Policy, Korea University, Seoul 136-701 (Korea, Republic of); Choi, Jae-Woo, E-mail: plead36@kist.re.kr [Center for Water Resource Cycle Research, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2014-02-01

    Graphical abstract: - Highlights: • Meso-iron-oxyhydroxide was found to be efficient for anion heavy metal adsorption. • The composite bead can simultaneously remove the cations and anions of heavy metals. • Powdered form had stronger cytotoxicity than did the granular form. • Adsorbent recovery is facilitated by granulation process of powder-type. - Abstract: The composites of mesostructured iron oxyhydroxide and/or commercial synthetic zeolite were investigated for use in the removal of toxic heavy metals, such as cadmium, copper, lead and arsenic, from aqueous solution. Four types of adsorbents, dried alginate beads (DABs), synthetic-zeolite impregnated beads (SZIBs), meso-iron-oxyhydroxide impregnated beads (MIOIBs) and synthetic-zeolite/meso-iron-oxyhydroxide composite beads (SZMIOIBs), were prepared for heavy metal adsorption tests. Laboratory experiments were conducted to investigate the removal efficiencies of cations and anions of heavy metals and the possibility of regenerating the adsorbents. Among these adsorbents, the MIOIBs can simultaneously remove cations and anions of heavy metals; they have high adsorption capacities for lead (60.1 mg g{sup −1}) and arsenic (71.9 mg g{sup −1}) compared with other adsorbents, such as DABs (158.1 and 0.0 mg g{sup −1}), SZIB (42.9 and 0.0 mg g{sup −1}) and SZMIOIB (54.0 and 5.9 mg g{sup −1}) for lead and arsenic, respectively. Additionally, the removal efficiency was consistent at approximately 90%, notwithstanding repetitive regeneration. The characteristics of meso-iron-oxyhydroxide powder were confirmed by X-ray diffraction, Brunauer–Emmett–Teller and transmission electron microscopy. We also performed a comparative toxicity study that indicated that much lower concentrations of the powdered form of mesostructured iron oxyhydroxide had stronger cytotoxicity than the granular form. These results suggest that the granular form of meso iron oxyhydroxide is a more useful and safer adsorbent for

  16. A glassy carbon electrode modified with a composite consisting of reduced graphene oxide, zinc oxide and silver nanoparticles in a chitosan matrix for studying the direct electron transfer of glucose oxidase and for enzymatic sensing of glucose

    International Nuclear Information System (INIS)

    Li, Zhenjiang; Sheng, Liying; Xie, Cuicui; Meng, Alan; Zhao, Kun

    2016-01-01

    The authors describe the fabrication of a nanocomposite consisting of reduced graphene oxide, zinc oxide and silver nanoparticles by microwave-assisted synthesis. The composite was further reduced in-situ with hydrazine hydrate and then placed, along with the enzyme glucose oxidase, on a glassy carbon electrode. The synergistic effect of the materials employed in the nanocomposite result in excellent electrocatalytic activity. The Michaelis-Menten constant of the adsorbed GOx is 0.25 mM, implying a remarkable affinity of the GOx for glucose. The amperometric response of the modified GCE is linearly proportional to the concentration of glucose in 0.1 to 12.0 mM concentration range, and the detection limit is 10.6 µM. The biosensor is highly selective, well reproducible and stable. (author)

  17. Using ICP and micro-PIXE to investigate possible differences in the mineral composition of genetically modified versus wild-type sorghum grain

    Science.gov (United States)

    Ndimba, R.; Cloete, K.; Mehlo, L.; Kossmann, J.; Mtshali, C.; Pineda-Vargas, C.

    2017-08-01

    In the present study, possible differences in the mineral composition of transgenic versus non-transgenic sorghum grains were investigated using inductively coupled atomic emission spectroscopy (ICP-AES); and, in-tissue elemental mapping by micro Proton-Induced X-ray Emission (micro-PIXE) analysis. ICP AES was used to analyse the bulk mineral content of the wholegrain flour derived from each genotype; whilst micro-PIXE was used to interrogate localised differences in mineral composition specific to certain areas of the grain, such as the bran layer and the central endosperm tissue. According to the results obtained, no significant difference in the average Fe, Zn or Ca content was found to differentiate the transgenic from the wild-type grain using ICP-AES. However, using micro-PIXE, a significant reduction in zinc could be detected in the bran layer of the transgenic grains relative to wild-type. Although it is difficult to draw firm conclusions, as a result of the small sample size used in this study, micro-PIXE has nonetheless proven itself as a useful technique for highlighting the possibility that there may be reduced levels of zinc accumulation in the bran layer of the transgenic grains. Given that the genetic modification targets proteins that are highly concentrated in certain parts of the bran tissue, it seems plausible that the reduced levels of zinc may be an unintended consequence of the silencing of kafirin proteins. Although no immediate health or nutritional concerns emerge from this preliminary finding, it is noted that zinc plays an important biological role within this part of the grain as a structural stabiliser and antioxidant factor. Further study is therefore needed to assess more definitively the extent of the apparent localised reduction in zinc in the transgenic grains and how this may affect other important grain quality characteristics.

  18. Modified composites based on mesostructured iron oxyhydroxide and synthetic minerals: a potential material for the treatment of various toxic heavy metals and its toxicity.

    Science.gov (United States)

    Chung, Seung-Gun; Ryu, Jae-Chun; Song, Mi-Kyung; An, Byungryul; Kim, Song-Bae; Lee, Sang-Hyup; Choi, Jae-Woo

    2014-02-28

    The composites of mesostructured iron oxyhydroxide and/or commercial synthetic zeolite were investigated for use in the removal of toxic heavy metals, such as cadmium, copper, lead and arsenic, from aqueous solution. Four types of adsorbents, dried alginate beads (DABs), synthetic-zeolite impregnated beads (SZIBs), meso-iron-oxyhydroxide impregnated beads (MIOIBs) and synthetic-zeolite/meso-iron-oxyhydroxide composite beads (SZMIOIBs), were prepared for heavy metal adsorption tests. Laboratory experiments were conducted to investigate the removal efficiencies of cations and anions of heavy metals and the possibility of regenerating the adsorbents. Among these adsorbents, the MIOIBs can simultaneously remove cations and anions of heavy metals; they have high adsorption capacities for lead (60.1mgg(-1)) and arsenic (71.9mgg(-1)) compared with other adsorbents, such as DABs (158.1 and 0.0mgg(-1)), SZIB (42.9 and 0.0mgg(-1)) and SZMIOIB (54.0 and 5.9mgg(-1)) for lead and arsenic, respectively. Additionally, the removal efficiency was consistent at approximately 90%, notwithstanding repetitive regeneration. The characteristics of meso-iron-oxyhydroxide powder were confirmed by X-ray diffraction, Brunauer-Emmett-Teller and transmission electron microscopy. We also performed a comparative toxicity study that indicated that much lower concentrations of the powdered form of mesostructured iron oxyhydroxide had stronger cytotoxicity than the granular form. These results suggest that the granular form of meso iron oxyhydroxide is a more useful and safer adsorbent for heavy metal treatment than the powdered form. This research provides promising results for the application of MIOIBs as an adsorbent for various heavy metals from wastewater and sewage. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Fabrication of β-cyclodextrin-coated poly (diallyldimethylammonium chloride)-functionalized graphene composite film modified glassy carbon-rotating disk electrode and its application for simultaneous electrochemical determination colorants of sunset yellow and tartrazine.

    Science.gov (United States)

    Ye, Xiaoliang; Du, Yongling; Lu, Daban; Wang, Chunming

    2013-05-24

    We proposed a green and facile approach for the synthesis of β-cyclodextrin-coated poly(diallyldimethylammonium chloride)-functionalized graphene composite film (β-CD-PDDA-Gr) by using L-ascorbic acid (L-AA) as the reducing agent at room temperature. The β-CD-PDDA-Gr composite film modified glassy carbon-rotating disk electrode (GC-RDE) was then developed for the sensitive simultaneous determination of two synthetic food colorants: sunset yellow (SY) and tartrazine (TT). By cyclic voltammetry (CV), the peak currents of SY and TT increased obviously on the developed electrochemical sensor. The kinetic parameters, such as diffusion coefficient D and standard heterogeneous rate constant kb, were estimated by linear sweep voltammetry (LSV). Under the optimal conditions, the differential pulse voltammetry (DPV) signals of SY and TT on the β-CD-PDDA-Gr modified GC-RDE were significantly enhanced. The enhanced anodic peak currents represented the excellent analytical performance of simultaneous detection of SY and TT in the range of 5.0×10(-8) to 2.0×10(-5) mol L(-1), with a low limit of detection (LOD) of 1.25×10(-8) mol L(-1) for SY and 1.43×10(-8) mol L(-1) for TT (SN(-1)=3). This proposed method displayed outstanding selectivity, good stability and acceptable repeatability and reproducibility, and also has been used to simultaneously determine SY and TT in some commercial soft drinks with satisfactory results. The obtained results were compared to HPLC of analysis for those two colorants and no significant differences were found. By the treatment of the experimental data, the electrochemical reaction mechanisms of SY and TT both involved a one-electron-one-proton-transfer process. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. In Situ Determination of Bisphenol A in Beverage Using a Molybdenum Selenide/Reduced Graphene Oxide Nanoparticle Composite Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Rongguang Shi

    2018-05-01

    Full Text Available Due to the endocrine disturbing effects of bisphenol A (BPA on organisms, rapid detection has become one of the most important techniques for monitoring its levels in the aqueous solutions associated with plastics and human beings. In this paper, a glassy carbon electrode (GCE modified with molybdenum selenide/reduced graphene oxide (MoSe2/rGO was fabricated for in situ determination of bisphenol A in several beverages. The surface area of the electrode dramatically increases due to the existence of ultra-thin nanosheets in a flower-like structure of MoSe2. Adding phosphotungstic acid in the electrolyte can significantly enhance the repeatability (RSD = 0.4% and reproducibility (RSD = 2.2% of the electrode. Under the optimized condition (pH = 6.5, the linear range of BPA was from 0.1 μM–100 μM and the detection limit was 0.015 μM (S/N = 3. When using the as-prepared electrode for analyzing BPA in beverage samples without any pretreatments, the recoveries ranged from 98–107%, and the concentrations were from below the detection limit to 1.7 μM, indicating its potential prospect for routine analysis of BPA.

  1. In Situ Determination of Bisphenol A in Beverage Using a Molybdenum Selenide/Reduced Graphene Oxide Nanoparticle Composite Modified Glassy Carbon Electrode.

    Science.gov (United States)

    Shi, Rongguang; Liang, Jing; Zhao, Zongshan; Liu, Yi; Liu, Aifeng

    2018-05-22

    Due to the endocrine disturbing effects of bisphenol A (BPA) on organisms, rapid detection has become one of the most important techniques for monitoring its levels in the aqueous solutions associated with plastics and human beings. In this paper, a glassy carbon electrode (GCE) modified with molybdenum selenide/reduced graphene oxide (MoSe₂/rGO) was fabricated for in situ determination of bisphenol A in several beverages. The surface area of the electrode dramatically increases due to the existence of ultra-thin nanosheets in a flower-like structure of MoSe₂. Adding phosphotungstic acid in the electrolyte can significantly enhance the repeatability (RSD = 0.4%) and reproducibility (RSD = 2.2%) of the electrode. Under the optimized condition (pH = 6.5), the linear range of BPA was from 0.1 μM⁻100 μM and the detection limit was 0.015 μM (S/ N = 3). When using the as-prepared electrode for analyzing BPA in beverage samples without any pretreatments, the recoveries ranged from 98⁻107%, and the concentrations were from below the detection limit to 1.7 μM, indicating its potential prospect for routine analysis of BPA.

  2. Composition dependence of the ferroelectric properties of lanthanum-modified bismuth titanate thin films grown by using pulsed-laser deposition

    CERN Document Server

    Bu, S D; Park, B H; Noh, T W

    2000-01-01

    Lanthanum-modified bismuth titanate, Bi sub 4 sub - sub x La sub x Ti sub 3 O sub 1 sub 2 (BLT), thin films with a La concentration of 0.25<=x<=1.00 were grown on Pt/Ti/SiO sub 2 /Si substrates by using pulsed-laser deposition. The BLT films showed well-saturated polarization-electric field curves whose remnant polarizations were 16.1 mu C/cm sup 2 , 27.8 mu C/cm sup 2 , 19.6 mu C/cm sup 2 , and 2.7 mu C/cm sup 2 , respectively, for x=0.25, 0.05, 0.75, and 1.00. The fatigue characteristics became better with increasing x up to 0.75. The Au/BLT/Pt capacitor with a La concentration of 0.50 showed an interesting dependence of the remanent polarization on the number of repetitive read/write cycles. On the other hand, the capacitor with a La concentration of 0.75 showed fatigue-free characteristics.

  3. Adhesives from modified soy protein

    Science.gov (United States)

    Sun, Susan [Manhattan, KS; Wang, Donghai [Manhattan, KS; Zhong, Zhikai [Manhattan, KS; Yang, Guang [Shanghai, CN

    2008-08-26

    The present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  4. The fatty acid and cholesterol composition of enriched egg yolk lipids obtained by modifying hens’ diets with fish oil and flaxseed

    Directory of Open Access Journals (Sweden)

    Yalçyn, Hasan

    2007-12-01

    Full Text Available The effects of fish oil and flaxseed in the diets of laying hens on the cholesterol and fatty acid composition of egg lipids were studied. Isa-White laying hens and five experimental diets were used. The first diet was used as the control. Fish oil (1.5%, flaxseed (4.32% and 8.64 or both of them (1.5% fish oil and 4.32% flaxseed were added to the others and hens were fed for 30 and 60 days. The cholesterol and fatty acid composition of the yolks were determined. No significant difference (pSe han estudiado los efectos producidos por la presencia de aceite de pescado y linaza, en la dieta de gallinas ponedoras, sobre la composición en colesterol y ácidos grasos de los lípidos del huevo. Se han utilizado gallinas ponedoras Isa-White y cinco tipos de dietas experimentales. La primera dieta fue usada como control. Se añadió aceite de pescado (1.5%, linaza (4.32% y 8.64 o ambos (1.5% aceite de pescado y 4.32% linaza a las otras dietas y se alimentó a las gallinas durante 30 y 60 días, determinándose la composición en colesterol y ácidos grasos de las yemas. No se encontró diferencia significativa (p<0.05 debida a las dietas en el contenido de colesterol de las yemas excepto en la que contenía 8.64% de linaza. El contenido total de ácidos grasos saturados disminuyó en todas las dietas en comparación con la dieta control. El contenido total de ácidos grasos n-3 fue significativamente mayor en todas las dietas. El cambio predominante en las dietas que contenían linaza se encontró en el contenido de ácido linolénico. El contenido de los ácidos eicosapentaenoico, docosapentaenoico y docosahexaenoico de todas las dietas fue significativamente mayor.

  5. Preparation of ionic liquid modified magnetic metal-organic frameworks composites for the solid-phase extraction of α-chymotrypsin.

    Science.gov (United States)

    Wei, Xiaoxiao; Wang, Yuzhi; Chen, Jing; Xu, Panli; Zhou, Yigang

    2018-05-15

    A novel magnetic solid-phase extraction (MSPE) method based on 1-hexyl-3-methyl imidazolium chloride ionic liquid (IL) modified magnetic Fe 3 O 4 nanoparticles, hydroxylated multiwall carbon nanotubes (MWCNTs-OH) and zeolitic imidazolate frameworks (ZIFs) nanocomposites (Fe 3 O 4 -MWCNTs-OH@ZIF-67@IL) were proposed and applied to extract α-chymotrypsin. The magnetic materials were synthesized successfully and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), thermal gravimetric analysis (TGA), fourier transform infrared spectrometry (FT-IR), vibrating sample magnetometer (VSM) and zeta potentials. Subsequently, the UV-vis spectrophotometer at about 280 nm was utilized to quantitatively analyze the α-chymotrypsin concentration in the supernatant. Furthermore, single factor experiments revealed that the extraction capacity was influenced by initial α-chymotrypsin concentration, ionic strength, extraction time, extraction temperature and pH value. The extraction capacity could reach up to about 635 mg g -1 under the optimized conditions, absolutely higher than that of extraction for Ovalbumin (OVA), Bovine serum albumin (BSA) and Bovine hemoglobin (BHb). In addition, the regeneration studies showed Fe 3 O 4 -MWCNTs-OH@ZIF-67@IL particles could be reused several times and kept a high extraction capacity. Besides, the study of enzymatic activity also indicated that the activity of the extracted α-chymotrypsin was well maintained 93% of initial activity. What's more, the proposed method was successfully applied to extract α-chymotrypsin in porcine pancreas crude extract with satisfactory results. All of above conclusions highlight the great potential of the proposed Fe 3 O 4 -MWCNTs-OH@ZIF-67@IL-MSPE method in the analysis of biomolecules. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A pilot study to compare two types of heat-stabilized rice bran in modifying compositions of intestinal microbiota among healthy Chinese adults

    Directory of Open Access Journals (Sweden)

    Winnie K.W. So

    2018-02-01

    Full Text Available The purpose of this pilot study is to evaluate the feasibility and acceptability of a rice bran dietary intervention for healthy Chinese adults, and its effects on the participants’ gut microbiome. Sixteen participants were randomized into two groups (Groups A and B, each consuming a different brand of rice bran. The feasibility of the intervention was assessed by the retention rate, and participants’ compliance to the study. Its acceptability was evaluated by participant satisfaction with the study. Changes in the microbiota profile of their stool samples were analyzed through metagenomic sequencing. High retention (81% and compliance rates (88.0% and 93.8% were observed. Most agreed the rice bran they consumed was palatable. A decrease in the intestinal abundance of Firmicutes (P = 0.01, and an increase in that of Bacteroidetes (P = 0.02, was reported in the stool samples of the participants post-intervention. Interestingly, the fecal abundance of certain propionate producers (Veillonellaceae was increased post-intervention (P < 0.01, while that of butyrate producers (Faecalibacterium prausnitzii was decreased (P = 0.01. Our data show that the intervention was feasible and acceptable to the participants, and could result in changes in the composition of intestinal microbiota that maintains intestinal health in Chinese adults.

  7. Synthesis of modified gum tragacanth/graphene oxide composite hydrogel for heavy metal ions removal and preparation of silver nanocomposite for antibacterial activity.

    Science.gov (United States)

    Sahraei, Razieh; Ghaemy, Mousa

    2017-02-10

    New composite hydrogels were synthesized based on gum tragacanth (GT) carbohydrate and graphene oxide (GO). GT was sulfonic acid-functionalized and cross-linked by using 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and N,N'-methylenebisacrylamide (MBA) monomers and ceric ammonium nitrate (CAN) as an initiator. The prepared hydrogels were characterized by Fourier transform infrared spectrum (FT-IR), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Adsorption process for removal of heavy metal ions has followed the pseudo-first-order kinetic model and fitted well with the Langmuir model. The maximum adsorption capacity (Q m ) was 142.50, 112.50 and 132.12mgg -1 for Pb(II), Cd(II), and Ag(I), respectively. The removal percentage decreased slightly after several adsorption/desorption cycles. The adsorbed Ag(I) ions in hydrogel were transformed to Ag 0 nanoparticles (with a narrow distribution and mean size of 13.0nm) by using Achillea millefolium flower extract. The antibacterial performance of the Ag 0 nanocomposite hydrogel was also investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Streptococcus mutans counts in plaque adjacent to orthodontic brackets bonded with resin-modified glass ionomer cement or resin-based composite

    Directory of Open Access Journals (Sweden)

    Solange Machado Mota

    2008-03-01

    Full Text Available This study investigated the number of Streptococcus mutans CFU (colony forming units in the saliva and plaque adjacent to orthodontic brackets bonded with a glass ionomer cement - GIC (Fuji Ortho or a resin-based composite - RC (Concise. Twenty male and female patients, aged 12 to 20 years, participated in the study. Saliva was collected before and after placement of appliances. Plaque was collected from areas adjacent to brackets and saliva was again collected on the 15th, 30th, and 45th day after placement. On the 30th day, 0.4% stannous fluoride gel was applied for 4 minutes. No significant modification in the number of Streptococcus mutans CFU in saliva was observed after placement of the fixed orthodontic appliances. On the 15th day, the percentage of Streptococcus mutans CFU in plaque was statistically lower in sites adjacent to GIC-bonded brackets (mean = 0.365 than in those adjacent to RC-bonded brackets (mean = 0.935. No evidence was found of a contribution of GIC to the reduction of CFU in plaque after the 15th day. Topical application of stannous fluoride gel on the 30th day reduced the number of CFU in saliva, but not in plaque. This study suggests that the antimicrobial activity of GIC occurs only in the initial phase and is not responsible for a long-term anticariogenic property.

  9. Fabrication of β-cyclodextrin-coated poly (diallyldimethylammonium chloride)-functionalized graphene composite film modified glassy carbon-rotating disk electrode and its application for simultaneous electrochemical determination colorants of sunset yellow and tartrazine

    International Nuclear Information System (INIS)

    Ye, Xiaoliang; Du, Yongling; Lu, Daban; Wang, Chunming

    2013-01-01

    Graphical abstract: -- Highlights: •A green and facile approach for synthesis of β-CD-PDDA-Gr at room temperature. •We present the β-CD-PDDA-Gr modified GC-RDE for simultaneous detection of SY and TT. •SY and TT's electrooxidations are both the one-electron-one-proton-transfer process. •Diffusion coefficients and standard rate constants of SY and TT were discussed. -- Abstract: We proposed a green and facile approach for the synthesis of β-cyclodextrin-coated poly(diallyldimethylammonium chloride)-functionalized graphene composite film (β-CD-PDDA-Gr) by using L-ascorbic acid (L-AA) as the reducing agent at room temperature. The β-CD-PDDA-Gr composite film modified glassy carbon-rotating disk electrode (GC-RDE) was then developed for the sensitive simultaneous determination of two synthetic food colorants: sunset yellow (SY) and tartrazine (TT). By cyclic voltammetry (CV), the peak currents of SY and TT increased obviously on the developed electrochemical sensor. The kinetic parameters, such as diffusion coefficient D and standard heterogeneous rate constant k b , were estimated by linear sweep voltammetry (LSV). Under the optimal conditions, the differential pulse voltammetry (DPV) signals of SY and TT on the β-CD-PDDA-Gr modified GC-RDE were significantly enhanced. The enhanced anodic peak currents represented the excellent analytical performance of simultaneous detection of SY and TT in the range of 5.0 × 10 −8 to 2.0 × 10 −5 mol L −1 , with a low limit of detection (LOD) of 1.25 × 10 −8 mol L −1 for SY and 1.43 × 10 −8 mol L −1 for TT (S N −1 = 3). This proposed method displayed outstanding selectivity, good stability and acceptable repeatability and reproducibility, and also has been used to simultaneously determine SY and TT in some commercial soft drinks with satisfactory results. The obtained results were compared to HPLC of analysis for those two colorants and no significant differences were found. By the treatment of the

  10. Fabrication of β-cyclodextrin-coated poly (diallyldimethylammonium chloride)-functionalized graphene composite film modified glassy carbon-rotating disk electrode and its application for simultaneous electrochemical determination colorants of sunset yellow and tartrazine

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xiaoliang; Du, Yongling; Lu, Daban; Wang, Chunming, E-mail: wangcm@lzu.edu.cn

    2013-05-24

    Graphical abstract: -- Highlights: •A green and facile approach for synthesis of β-CD-PDDA-Gr at room temperature. •We present the β-CD-PDDA-Gr modified GC-RDE for simultaneous detection of SY and TT. •SY and TT's electrooxidations are both the one-electron-one-proton-transfer process. •Diffusion coefficients and standard rate constants of SY and TT were discussed. -- Abstract: We proposed a green and facile approach for the synthesis of β-cyclodextrin-coated poly(diallyldimethylammonium chloride)-functionalized graphene composite film (β-CD-PDDA-Gr) by using L-ascorbic acid (L-AA) as the reducing agent at room temperature. The β-CD-PDDA-Gr composite film modified glassy carbon-rotating disk electrode (GC-RDE) was then developed for the sensitive simultaneous determination of two synthetic food colorants: sunset yellow (SY) and tartrazine (TT). By cyclic voltammetry (CV), the peak currents of SY and TT increased obviously on the developed electrochemical sensor. The kinetic parameters, such as diffusion coefficient D and standard heterogeneous rate constant k{sub b}, were estimated by linear sweep voltammetry (LSV). Under the optimal conditions, the differential pulse voltammetry (DPV) signals of SY and TT on the β-CD-PDDA-Gr modified GC-RDE were significantly enhanced. The enhanced anodic peak currents represented the excellent analytical performance of simultaneous detection of SY and TT in the range of 5.0 × 10{sup −8} to 2.0 × 10{sup −5} mol L{sup −1}, with a low limit of detection (LOD) of 1.25 × 10{sup −8} mol L{sup −1} for SY and 1.43 × 10{sup −8} mol L{sup −1} for TT (S N{sup −1} = 3). This proposed method displayed outstanding selectivity, good stability and acceptable repeatability and reproducibility, and also has been used to simultaneously determine SY and TT in some commercial soft drinks with satisfactory results. The obtained results were compared to HPLC of analysis for those two colorants and no significant

  11. A novel sensor made of Antimony Doped Tin Oxide-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes for detection of norepinephrine.

    Science.gov (United States)

    Wang, Zhao; Wang, Kai; Zhao, Lu; Chai, Shigan; Zhang, Jinzhi; Zhang, Xiuhua; Zou, Qichao

    2017-11-01

    In this study, we designed a novel molecularly imprinted polymer (MIP), Antimony Doped Tin Oxide (ATO)-silica composite sol, which was made using a sol-gel method. Then a sensitive and selective imprinted electrochemical sensor was constructed with the ATO-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes (SWNTs). The introduction of SWNTs increased the sensitivity of the MIP sensor. The surface morphology of the MIP and MIP/SWNTs were characterized by scanning electron microscopy (SEM), and the optimal conditions for detection were determined. The oxidative peak current increased linearly with the concentration of norepinephrine in the range of 9.99×10 -8 M to 1.50×10 -5 M, as detected by cyclic voltammetry (CV), the detection limit was 3.33×10 -8 M (S/N=3). In addition, the proposed electrochemical sensors were successfully applied to detect the norepinephrine concentration in human blood serum samples. The recoveries of the sensors varied from 99.67% to 104.17%, indicating that the sensor has potential for the determination of norepinephrine in clinical tests. Moreover, the imprinted electrochemical sensor was used to selectively detect norepinephrine. The analytical application was conducted successfully and yielded accurate and precise results. Copyright © 2017. Published by Elsevier B.V.

  12. Modified blank ammunition injuries.

    Science.gov (United States)

    Ogunc, Gokhan I; Ozer, M Tahir; Coskun, Kagan; Uzar, Ali Ihsan

    2009-12-15

    Blank firing weapons are designed only for discharging blank ammunition cartridges. Because they are cost-effective, are easily accessible and can be modified to live firearms plus their unclear legal situation in Turkish Law makes them very popular in Turkey. 2004 through 2008, a total of 1115 modified blank weapons were seized in Turkey. Blank firing weapons are easily modified by owners, making them suitable for discharging live firearm ammunition or modified blank ammunitions. Two common methods are used for modification of blank weapons. After the modification, these weapons can discharge the live ammunition. However, due to compositional durability problems with these types of weapons; the main trend is to use the modified blank ammunitions rather than live firearm ammunition fired from modified blank firing weapons. In this study, two types of modified blank weapons and two types of modified blank cartridges were tested on three different target models. Each of the models' shooting side was coated with 1.3+/-2 mm thickness chrome tanned cowhide as a skin simulant. The first model was only coated with skin simulant. The second model was coated with skin simulant and 100% cotton police shirt. The third model was coated with skin simulant and jean denim. After the literature evaluation four high risky anatomic locations (the neck area; the eyes; the thorax area and inguinal area) were pointed out for the steel and lead projectiles are discharged from the modified blank weapons especially in close range (0-50 cm). The target models were designed for these anatomic locations. For the target models six Transparent Ballistic Candle blocks (TCB) were prepared and divided into two test groups. The first group tests were performed with lead projectiles and second group with steel projectile. The shortest penetration depth (lead projectile: 4.358 cm; steel projectile 8.032 cm) was recorded in the skin simulant and jean denim coated block for both groups. In both groups

  13. Interfacial Modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Ina; French, Roger H.

    2018-03-19

    Our project objective in the first and only Budget Period was to demonstrate the potential of nm-scale organofunctional silane coatings as a method of extending the lifetime of PV materials and devices. Specifically, the target was to double the lifetime performance of a laminated Cu(In,Ga)Se2 (CIGS) cell under real-world and accelerated aging exposure conditions. Key findings are that modification of aluminum-doped zinc oxide (AZO) films (materials used as transparent conductive oxide (TCO) top contacts) resulted in decreased degradation of optical and electrical properties under damp heat (DH) exposure compared to un-modified AZO. The most significant finding is that modification of the AZO top contact of full CIGS devices resulted in significantly improved properties under DH exposure compared to un-modified devices, by a factor of 4 after 1000 h. Results of this one-year project have demonstrated that surface functionalization is a viable pathway for extending the lifetime of state-of-the-art CIGS devices.

  14. Biodegradable modified Phba systems

    International Nuclear Information System (INIS)

    Aniscenko, L.; Dzenis, M.; Erkske, D.; Tupureina, V.; Savenkova, L.; Muizniece - Braslava, S.

    2004-01-01

    Compositions as well as production technology of ecologically sound biodegradable multicomponent polymer systems were developed. Our objective was to design some bio plastic based composites with required mechanical properties and biodegradability intended for use as biodegradable packaging. Significant characteristics required for food packaging such as barrier properties (water and oxygen permeability) and influence of γ-radiation on the structure and changes of main characteristics of some modified PHB matrices was evaluated. It was found that barrier properties were plasticizers chemical nature and sterilization with γ-radiation dependent and were comparable with corresponding values of typical polymeric packaging films. Low γ-radiation levels (25 kGy) can be recommended as an effective sterilization method of PHB based packaging materials. Purposely designed bio plastic packaging may provide an alternative to traditional synthetic packaging materials without reducing the comfort of the end-user due to specific qualities of PHB - biodegradability, Biocompatibility and hydrophobic nature

  15. Performance Analysis of Compositional and Modified Black-Oil Models For a Gas Lift Process Analyse des performances de modèles black-oil pour le procédé d’extraction par injection de gaz

    Directory of Open Access Journals (Sweden)

    Mahmudi M.

    2013-03-01

    Full Text Available Artificial gas lift is frequently used to boost production rate of mature oil fields. An integrated mathematical model was developed in order to track the spatial and temporal changes in various components of the continuous gas lift process. The computational demand for solving the comprehensive gas lift model highly depends on the thermodynamic treatment of the hydrocarbon fluids involved. A full compositional treatment using an equation of state provides the most accurate results but at a high computational cost. The results of this article showed that the computational cost can be halved without sacrificing accuracy by using reduced parameter stability and flash calculation procedures. It was also demonstrated that a Modified Black-Oil treatment of the fluids can provide reasonable accuracy at a much-reduced computational cost. The Modified Black-Oil treatment provides a valuable tool when the model has to be solved many hundreds of times to find the optimal combination of the gas lift parameters. Les procédés artificiels d’extraction par injection de gaz sont utilisés pour améliorer le taux de récupération des champs pétroliers matures. Un modèle mathématique intégré a été développé pour détecter de faibles changements temporels et spatiaux dans plusieurs composants des procédés continus d’extraction par injection de gaz. La solution numérique utilisée pour résoudre le modèle du procédé d’extraction dépend fortement du comportement thermodynamique des hydrocarbures impliqués. Un traitement complet de la composition utilisant une équation d’état offre les résultats les plus précis, mais à un coût de calcul très élevé. Les résultats de nos travaux de recherche montrent que l’implication des paramètres de stabilité et des procédures de calcul flash, peut diviser par deux le coût du calcul tout en gardant la précision attendue. Ces travaux montrent que la précision admissible peut être

  16. Design of a novel dual Z-scheme photocatalytic system composited of Ag{sub 2}O modified Ti{sup 3+} self doped TiO{sub 2} nanocrystals with individual exposed (001) and (101) facets

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mengyan; Liu, Hui, E-mail: liuhui@sust.edu.cn; Liu, Tingting; Qin, Yangxiao

    2017-02-15

    A novel dual Z-scheme photocatalytic system composited of Ag{sub 2}O nanocrystals modified Ti{sup 3+} self doped TiO{sub 2} nanocrystals with individual exposed (001) and (101) facets were successfully fabricated. In which, the Ti{sup 3+} self doped TiO{sub 2} nanocrystals with individual exposed (001) and (101) facets have been firstly prepared by a simple hydrothermal method, subsequently the as-prepared products were modified with Ag{sub 2}O nanocrystals through a sonochemical depositing process in order to build a novel dual Z-scheme photocatalytic system. The samples were carefully characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–visible diffuse reflectance spectra (UV–vis DRS), and Brunauer-Emmett-Teller (BET). The photocatalytic activity toward degradation of Rhodamine B (Rh B) aqueous solution under stimulated solar light was investigated. The experimental results showed this new dual Z-scheme photocatalytic system possess an enhanced photocatalytic degradation activity compared to that similar surface heterojunction photocatalysts composed of Ti{sup 3+} self doped TiO{sub 2} nanocrystals with individual exposed (001) and (101) facets. This novel photocatalytic system presents a high charge-separation efficiency and strong redox ability. This study will help us to better understand the photocatalytic mechanism of semiconductor photocatalysts with exposed different facets, and provide a new insight into the design and fabrication of advanced photocatalytic materials. - Highlights: •A novel dual Z-scheme system was built by Ag{sub 2}O and facet exposed TiO{sub 2} nanocrystals. •The individual TiO{sub 2} nanocrystals exposed (001) and (101) facets respectively. •Ag{sub 2}O coupled with Ti{sup 3+} self doped TiO{sub 2} nanocrystals through a sonochemical process. •The as-prepared sample possesses a super photocatalytic activity.

  17. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    Science.gov (United States)

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  18. Incorporation of the Fe3O4 and SiO2 nanoparticles in epoxy-modified silicone resin as the coating for soft magnetic composites with enhanced performance

    Science.gov (United States)

    Luo, Dahao; Wu, Chen; Yan, Mi

    2018-04-01

    Three inorganic-organic hybrids have been designed by incorporating epoxy-modified silicone resin (ESR) with SiO2, Fe3O4 and their mixture in the application as the coating of Fe soft magnetic composites (SMCs). The introduced SiO2 nanoparticles are well dispersed in the ESR, while the Fe3O4 tends to agglomerate or even separate from the ESR. Simultaneous addition of the SiO2 and Fe3O4 gives rise to satisfactory distribution of both nanoparticles and optimized magnetic performance of the SMCs with high permeability (124.6) and low loss (807.8 mW/cm3). On one hand, introduction of the ferromagnetic Fe3O4 reduces the magnetic dilution effect, which is beneficial for improved magnetization and permeability. On the other hand, SiO2 incorporation prevents the agglomeration of the Fe3O4 nanoparticles and gives rise to increased electrical resistivity for reduced core loss as well as enhanced mechanical strength of the SMCs.

  19. Modified quantum mechanics of small composite systems

    International Nuclear Information System (INIS)

    Wolters, G.F.

    1986-12-01

    Boundary conditions on radial wave functions are considered for a particle bound by a central potential. It is argued that the usual condition at the origin needs modification for systems of small intrinsic size. This affects s-states, especially the ground state. With the obtained modification the virial theorem is imposed rather than derived. As an illustration the central rectangular well potential is treated and applied to the nucleon. Its soft electromagnetic structure can be largely explained while quark confinement holds despite moderate strength of the potential. A discussion follows. (Auth.)

  20. Voltammetric sensing of bisphenol A based on a single-walled carbon nanotubes/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode

    International Nuclear Information System (INIS)

    Chen, Xuemin; Ren, Tongqing; Ma, Ming; Wang, Zhengguo; Zhan, Guoqing; Li, Chunya

    2013-01-01

    Highlights: • Single-walled carbon nanotubes (SWCNTs)-ionic liquid (IL) nanocomposite fabrication. • SWCNTs-Poly-IL film modified electrode was prepared and characterized. • Voltammetric behaviors of bisphenol A were investigated thoroughly. • Sensitive voltammetric method for bisphenol A determination was developed. -- Abstract: Using carboxylic acid-functionalized single walled carbon nanotubes (SWCNTs-COO − ) as an anion and 3-butyl-1-[3-(N-pyrrolyl)propyl]imidazolium as a cation, a novel SWCNTs-COO-ionic liquid (SWCNTs-COO-IL) nanocomposite was fabricated successfully. The as-prepared SWCNTs-COO-IL nanocomposite was confirmed with transmission electron microscopy, X-ray photoelectron spectroscopy, UV–vis, FTIR and Raman spectroscopy. The SWCNTs-COO-IL nanocomposite was coated onto a glassy carbon electrode surface followed by cyclic voltammetric scanning to fabricate a SWCNTs/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode (SWCNTs/Poly-IL/GCE). Scanning electron microscope and electrochemical impedance spectroscopy were used to characterize SWCNTs/Poly-IL/GCE. Electrochemical behaviors of bisphenol A (BPA) at the SWCNTs/Poly-IL/GCE were investigated thoroughly. It was found that an obvious oxidation peak appeared without reduction peak in the reverse scanning, indicating an irreversible electrochemical process. The oxidation peak currents of BPA were linearly related to scan rate in the range of 20–300 mV s −1 , suggesting an adsorption controlled process rather than a diffusion controlled process. Differential pulse voltammetry was employed for the voltammetric sensing of BPA. Experimental conditions such as film thickness, pH value, accumulation potential and time that influence the analytical performance of the SWCNTs/Poly-IL/GCE were optimized. Under optimal conditions, the oxidation peak current was linearly related to BPA concentration in the range of 5.0 × 10 −9 to 3.0 × 10 −5 mol L

  1. Metabolomics of Genetically Modified Crops

    Directory of Open Access Journals (Sweden)

    Carolina Simó

    2014-10-01

    Full Text Available Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  2. Metabolomics of Genetically Modified Crops

    Science.gov (United States)

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  3. Functional properties of unmodified and modified Jack bean ...

    African Journals Online (AJOL)

    The native Jack bean (Canavalia eniformis) starch was chemically modified through oxidation and acetylation. Proximate composition analysis revealed higher moisture, protein, fat and ash contents 'native unmodified than modified starches and higher yield in modified starches. Swelling capacity and solubility of all the ...

  4. Mechanical Properties of Isotactic Polypropylene Modified with Thermoplastic Potato Starch

    Science.gov (United States)

    Knitter, M.; Dobrzyńska-Mizera, M.

    2015-05-01

    In this paper selected mechanical properties of isotactic polypropylene (iPP) modified with potato starch have been presented. Thermoplastic starch (TPS) used as a modifier in the study was produced from potato starch modified with glycerol. Isotactic polypropylene/thermoplastic potato starch composites (iPP/TPS) that contained 10, 30, 50 wt.% of modified starch were examined using dynamic mechanical-thermal analysis, static tensile, Brinell hardness, and Charpy impact test. The studies indicated a distinct influence of a filler content on the mechanical properties of composites in comparison with non-modified polypropylene.

  5. Nanophosphor composite scintillators comprising a polymer matrix

    Science.gov (United States)

    Muenchausen, Ross Edward; Mckigney, Edward Allen; Gilbertson, Robert David

    2010-11-16

    An improved nanophosphor composite comprises surface modified nanophosphor particles in a solid matrix. The nanophosphor particle surface is modified with an organic ligand, or by covalently bonding a polymeric or polymeric precursor material. The surface modified nanophosphor particle is essentially charge neutral, thereby preventing agglomeration of the nanophosphor particles during formation of the composite material. The improved nanophosphor composite may be used in any conventional scintillator application, including in a radiation detector.

  6. Feasibility of protein-sparing modified fast by tube (ProMoFasT) in obesity treatment: a phase II pilot trial on clinical safety and efficacy (appetite control, body composition, muscular strength, metabolic pattern, pulmonary function test).

    Science.gov (United States)

    Sukkar, S G; Signori, A; Borrini, C; Barisione, G; Ivaldi, C; Romeo, C; Gradaschi, R; Machello, N; Nanetti, E; Vaccaro, A L

    2013-01-01

    Anecdotal data in the last few years suggest that protein-sparing modified diet (PSMF) delivered by naso-gastric tube enteral (with continuous feeding) could attain an significant weight loss and control of appetite oral feeding, but no phase II studies on safety and efficacy have been done up to now. To verify the safety and efficacy of a protein-sparing modified fast administered by naso-gastric tube (ProMoFasT) for 10 days followed by 20 days of a low-calorie diet, in patients with morbid obesity (appetite control, fat free mass maintenance, pulmonary function tests and metabolic pattern, side effects), 26 patients with a BMI ≥30 kg/m 2 have been selected. The patients had to follow a protein-sparing fast by enteral nutrition (ProMoFasT) for 24 h/day, for 10 days followed by 20 days of low-calorie diet (LCD). The endpoint was represented by body weight, BMI, abdominal circumference, Haber's appetite test, body composition by body impedance assessment (BIA), handgrip strength test, metabolic pattern, pulmonary function test. Safety was assessed by evaluation of complications and side effects of PSMF and/or enteral nutrition. In this report the results on safety and efficacy are described after 10 and 30 days of treatment. After the recruiting phase, a total of 22 patients out of 26 enrolled [14 (63.6 %) females] were evaluated in this study. Globally almost all clinical parameters changed significantly during first 10 days. Total body weight significantly decreased after 10 days (∆-6.1 ± 2; p  < 0.001) and this decrease is maintained in the following 20 days of LCD (∆ = -5.88 ± 1.79; p  < 0.001). Also the abdominal circumference significantly decreased after 10 days [median (range): -4.5 (-30 to 0); p  < 0.001] maintained then in the following 20 days of LCD [median (range) = -7 (-23.5 to -2); p  < 0.001]. All BIA parameters significantly changed after 10 and 30 days from baseline. All parameters except BF had a significant

  7. Properties of Direct Coal Liquefaction Residue Modified Asphalt Mixture

    Directory of Open Access Journals (Sweden)

    Jie Ji

    2017-01-01

    Full Text Available The objectives of this paper are to use Direct Coal Liquefaction Residue (DLCR to modify the asphalt binders and mixtures and to evaluate the performance of modified asphalt mixtures. The dynamic modulus and phase angle of DCLR and DCLR-composite modified asphalt mixture were analyzed, and the viscoelastic properties of these modified asphalt mixtures were compared to the base asphalt binder SK-90 and Styrene-Butadiene-Styrene (SBS modified asphalt mixtures. The master curves of the asphalt mixtures were shown, and dynamic and viscoelastic behaviors of asphalt mixtures were described using the Christensen-Anderson-Marasteanu (CAM model. The test results show that the dynamic moduli of DCLR and DCLR-composite asphalt mixtures are higher than those of the SK-90 and SBS modified asphalt mixtures. Based on the viscoelastic parameters of CAM models of the asphalt mixtures, the high- and low-temperature performance of DLCR and DCLR-composite modified asphalt mixtures are obviously better than the SK-90 and SBS modified asphalt mixtures. In addition, the DCLR and DCLR-composite modified asphalt mixtures are more insensitive to the frequency compared to SK-90 and SBS modified asphalt mixtures.

  8. Characterization of modified clinoptilolite

    International Nuclear Information System (INIS)

    Novosad, J.; Jandl, J.; Woollins, J.D.

    1992-01-01

    Samples of clinoptilolite were modified using insoluble hexacyanoferrate from aqueous solution. The modified samples were characterized by elemental analysis, powder X-ray diffraction, solid state NMR and vibrational spectroscopy. The sorption properties of modified clinoptilolite were studied, too. Higher affinity for 137 Cs sorption in comparison with the natural clinoptilolite has been proved. (author) 5 refs.; 3 figs.; 2 tabs

  9. Structure and distribution of cross-links in boron-modified phenol-formaldehyde resins designed for soft magnetic composites: a multiple-quantum 11B-11B MAS NMR correlation spectroscopy study

    Czech Academy of Sciences Publication Activity Database

    Kobera, Libor; Czernek, Jiří; Strečková, M.; Urbanová, Martina; Abbrent, Sabina; Brus, Jiří

    2015-01-01

    Roč. 48, č. 14 (2015), s. 4874-4881 ISSN 0024-9297 R&D Projects: GA MŠk(CZ) LD14010 Grant - others:European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:61389013 Keywords : phenol-formaldehyde polymers * boron crosslinks * soft magnetic composites Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.554, year: 2015

  10. Deposit of isotopically modified gadolinium suitable to detect solar neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Cribier, M

    1999-04-01

    Consideration on the possibility to find gadolinium with a modified isotopic composition are envisaged, in particular with respect to the important use of this element by the nuclear energy. These possibility could exist in the far future. (author)

  11. Composites from wood and plastics

    Science.gov (United States)

    Craig Clemons

    2010-01-01

    Composites made from thermoplastics and fillers or reinforcements derived from wood or other natural fibers are a dynamic research area encompassing a wide variety of composite materials. For example, as the use of biopolymers grows, wood and other natural fiber sources are being investigated as renewable sources of fillers and reinforcements to modify performance....

  12. Amorphous metal matrix composite ribbons

    International Nuclear Information System (INIS)

    Barczy, P.; Szigeti, F.

    1998-01-01

    Composite ribbons with amorphous matrix and ceramic (SiC, WC, MoB) particles were produced by modified planar melt flow casting methods. Weldability, abrasive wear and wood sanding examinations were carried out in order to find optimal material and technology for elevated wear resistance and sanding durability. The correlation between structure and composite properties is discussed. (author)

  13. On Modified Bar recursion

    DEFF Research Database (Denmark)

    Oliva, Paulo Borges

    2002-01-01

    Modified bar recursion is a variant of Spector's bar recursion which can be used to give a realizability interpretation of the classical axiom of dependent choice. This realizability allows for the extraction of witnesses from proofs of forall-exists-formulas in classical analysis. In this talk I...... shall report on results regarding the relationship between modified and Spector's bar recursion. I shall also show that a seemingly weak form of modified bar recursion is as strong as "full" modified bar recursion in higher types....

  14. Modified carbohydrate-chitosan compounds, methods of making the same and methods of using the same

    Science.gov (United States)

    Venditti, Richard A; Pawlak, Joel J; Salam, Abdus; El-Tahlawy, Khaled Fathy

    2015-03-10

    Compositions of matter are provided that include chitosan and a modified carbohydrate. The modified carbohydrate includes a carbohydrate component and a cross linking agent. The modified carbohydrate has increased carboxyl content as compared to an unmodified counterpart carbohydrate. A carboxyl group of the modified carbohydrate is covalently bonded with an amino group of chitosan. The compositions of matter provided herein may include cross linked starch citrate-chitosan and cross linked hemicellulose citrate-chitosan, including foams thereof. These compositions yield excellent absorbency and metal chelation properties. Methods of making cross linked modified carbohydrate-chitosan compounds are also provided.

  15. Biodegradation and moisture uptake modified starch-filled Linear ...

    African Journals Online (AJOL)

    Sixteen different modified-cassava starch-LLDPE blends containing starch in the range of 10-40% by weight were prepared. Calcium chloride, D-glucose, chloroform and alumina were differently used as modifying agents. The Moisture uptake and biodegradation of each of the composites were investigated. Both of these ...

  16. Developing an electrochemical sensor based on a carbon paste electrode modified with nano-composite of reduced graphene oxide and CuFe2O4 nanoparticles for determination of hydrogen peroxide.

    Science.gov (United States)

    Benvidi, Ali; Nafar, Mohammad Taghi; Jahanbani, Shahriar; Tezerjani, Marzieh Dehghan; Rezaeinasab, Masoud; Dalirnasab, Sudabeh

    2017-06-01

    In this paper, a highly sensitive voltammetric sensor based on a carbon paste electrode with CuFe 2 O 4 nanoparticle (RGO/CuFe 2 O 4 /CPE) was designed for determination of hydrogen peroxide (H 2 O 2 ). The electrocatalytic reduction of H 2 O 2 was examined using various techniques such as cyclic voltammetry (CV), chronoamperometry, amperometry and differential pulse voltammetry (DPV). CuFe 2 O 4 nanoparticles were synthesized by co-precipitation method and characterized with scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) techniques. Then, a high conductive platform based on a carbon paste electrode modified with RGO and CuFe 2 O 4 nanoparticles was prepared as a suitable platform for determination of hydrogen peroxide. Under the optimum conditions (pH5), the modified electrode indicated a fast amperometric response of determination of hydrogen peroxide. Also, the peak current of differential pulse voltammetry (DPV) of hydrogen peroxide is increased linearly with its concentration in the ranges of 2 to 10μM and 10 to 1000μM. The obtained detection limit for hydrogen peroxide was evaluated to be 0.064μM by DPV. The designed sensor was successfully applied for the assay of hydrogen peroxide in biological and pharmaceutical samples such as milk, green tea, and hair dye cream and mouthwash solution. Copyright © 2017. Published by Elsevier B.V.

  17. Extending Profiles with Stereotypes for Composite Concepts

    OpenAIRE

    Quartel, Dick; Dijkman, R.M.; van Sinderen, Marten J.; Briand, L.; Williams, C.

    2005-01-01

    This paper proposes an extension of the UML 2.0 profiling mechanism. This extension facilitates a language designer to introduce composite concepts as separate conceptual and notational elements in a modelling language. Composite concepts are compositions of existing concepts. To facilitate the introduction of composite concepts, the notion of stereotype is extended. This extension defines how a composite concept can be specified and added to a language’s metamodel, ithout modifying the exist...

  18. Modified Allergens for Immunotherapy.

    Science.gov (United States)

    Satitsuksanoa, Pattraporn; Głobińska, Anna; Jansen, Kirstin; van de Veen, Willem; Akdis, Mübeccel

    2018-02-16

    During the past few decades, modified allergens have been developed for use in allergen-specific immunotherapy (AIT) with the aim to improve efficacy and reduce adverse effects. This review aims to provide an overview of the different types of modified allergens, their mechanism of action and their potential for improving AIT. In-depth research in the field of allergen modifications as well as the advance of recombinant DNA technology have paved the way for improved diagnosis and research on human allergic diseases. A wide range of structurally modified allergens has been generated including allergen peptides, chemically altered allergoids, adjuvant-coupled allergens, and nanoparticle-based allergy vaccines. These modified allergens show promise for the development of AIT regimens with improved safety and long-term efficacy. Certain modifications ensure reduced IgE reactivity and retained T cell reactivity, which facilities induction of immune tolerance to the allergen. To date, multiple clinical trials have been performed using modified allergens. Promising results were obtained for the modified cat, grass and birch pollen, and house dust mite allergens. The use of modified allergens holds promise for improving AIT efficacy and safety. There is however a need for larger clinical studies to reliably assess the added benefit for the patient of using modified allergens for AIT.

  19. Electrochemical DNA biosensor for the detection of Trichoderma harzianum based on a gold electrode modified with a composite membrane made from an ionic liquid, ZnO nanoparticles and chitosan, and by using acridine orange as a redox indicator

    International Nuclear Information System (INIS)

    Siddiquee, S.; Yusof, N.A.; Salleh, A.B.; Tan, S.G.; Bakar, F.A.

    2011-01-01

    An electrochemical DNA biosensor was developed that is based on a gold electrode modified with a nanocomposite membrane made from an ionic liquid, ZnO nanoparticles and chitosan. A single-stranded DNA probe was immobilized on this electrode. Acridine orange was used as the hybridization probe for monitoring the hybridization of the target DNA. The biosensor was capable of detecting target DNA in the concentration range from 1.0 x 10 -14 to 1.8 x 10 -4 mol L -1 , with a detection limit of 1.0 x 10 -15 mol L -1 . The approach towards constructing a DNA biosensor allows studies on the hybridization even with crude DNA fragments and also to analyze sample obtained from real samples. The results show that the DNA biosensor has the potential for sensitive detection of a specific sequence of the Trichoderma harzianum gene and provides a quick, sensitive and convenient method for the study of microorganisms. (author)

  20. Anisotropic properties of aligned SWNT modified poly (methyl ...

    Indian Academy of Sciences (India)

    The electrical and mechanical properties of PMMA/SWNT composite were studied as a function of SWNT orientation and concentration. The aligned SWNT modified PMMA/SWNT composite presented highly anisotropic properties. The experimental results showed that the electrical conductivity and mechanical properties of ...

  1. Modified Nance palatal button

    Directory of Open Access Journals (Sweden)

    Nitin Arora

    2015-01-01

    Full Text Available This paper describes modified Nance palatal button by which problems encountered in the palatal region around the acrylic button during space closure and molar distalization can be minimized.

  2. Modified microdissection electrocautery needle

    OpenAIRE

    Singh, Virendra; Kumar, Pramod

    2014-01-01

    Electrocautery is routinely used in surgical procedures. The commercially available microdissection electrocautery needles are costly. To overcome this disadvantage, we have modified monopolar electrocautery tip to function as well as commercially available systems.

  3. Modified binders on the basis of flotation tailings

    Science.gov (United States)

    Shapovalov, N. A.; Zagorodnyuk, L. Kh; Shchekina, A. Yu; Gorodov, A. I.

    2018-03-01

    The article proposes compositions of efficient modified composite binders on the basis of portland cement and flotation tailings; the new binders attain the ultimate compressive stress that is twice as high as that of the cement stone. At that, use of annually growing volume of flotation tailings in the production of the composite binder is a rational way for recycling this type of waste and allows saving the planet's natural resources.

  4. Simultaneous determination of acetaminophen, theophylline and caffeine using a glassy carbon disk electrode modified with a composite consisting of poly(Alizarin Violet 3B), multiwalled carbon nanotubes and graphene

    International Nuclear Information System (INIS)

    Wang, Yan; Wu, Ting; Bi, Chun-yan

    2016-01-01

    The authors describe a glassy carbon disk electrode which after modification with poly(Alizarin Violet 3B), multiwalled carbon nanotubes and graphene enables simultaneous determination of the drugs acetaminophen (AP), theophylline (TP) and caffeine (CF). The electrochemical response to AP, TP and CF at the modified electrode was studied by cyclic voltammetry, and the results revealed an excellent electrocatalytic activity towards the oxidation of the three analytes at potentials of typically 0.5, 1.15 and 1.4 V (vs. SCE) respectively. The anodic peaks are well defined and occur at lower oxidation potential and enhanced oxidation peak currents (compared to an unmodified electrode). Simultaneous differential pulse voltammetric measurements resulted in calibration plot for AP, TP and CF were obtained that cover range from 0.2 to 100 μM for AP, from 0.5 to 120 μM for TP, and from 1.0 to 120 μM for CF. The respective detection limits are 0.01, 0.02 and 0.10 μM. The method was applied to simultaneous determination of AP, TP and CF in spiked human serum and gave satisfactory results. (author)

  5. Biological response modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.E.

    1991-10-01

    Much of what used to be called immunotherapy is now included in the term biological response modifiers. Biological response modifiers (BRMs) are defined as those agents or approaches that modify the relationship between the tumor and host by modifying the host's biological response to tumor cells with resultant therapeutic effects.'' Most of the early work with BRMs centered around observations of spontaneous tumor regression and the association of tumor regression with concurrent bacterial infections. The BRM can modify the host response in the following ways: Increase the host's antitumor responses through augmentation and/or restoration of effector mechanisms or mediators of the host's defense or decrease the deleterious component by the host's reaction; Increase the host's defenses by the administration of natural biologics (or the synthetic derivatives thereof) as effectors or mediators of an antitumor response; Augment the host's response to modified tumor cells or vaccines, which might stimulate a greater response by the host or increase tumor-cell sensitivity to an existing response; Decrease the transformation and/or increase differentiation (maturation) of tumor cells; or Increase the ability of the host to tolerate damage by cytotoxic modalities of cancer treatment.

  6. Multifunctional materials and composites

    Science.gov (United States)

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  7. Genetically Modified Crops and Food Security

    OpenAIRE

    Qaim, Matin; Kouser, Shahzad

    2013-01-01

    The role of genetically modified (GM) crops for food security is the subject of public controversy. GM crops could contribute to food production increases and higher food availability. There may also be impacts on food quality and nutrient composition. Finally, growing GM crops may influence farmers’ income and thus their economic access to food. Smallholder farmers make up a large proportion of the undernourished people worldwide. Our study focuses on this latter aspect and provides the firs...

  8. Chemically modified carbon fibers and their applications

    International Nuclear Information System (INIS)

    Ermolenko, I.N.; Lyubliner, I.P.; Gulko, N.V.

    1990-01-01

    This book gives a comprehensive review about chemically modified carbon fibers (e.g. by incorporation of other elements) and is structured as follows: 1. Types of carbon fibers, 2. Structure of carbon fibers, 3. Properties of carbon fibers, 4. The cellulose carbonization process, 5. Formation of element-carbon fiber materials, 6. Surface modification of carbon fibers, and 7. Applications of carbon fibers (e.g. adsorbents, catalysts, constituents of composites). (MM)

  9. Effects of MAR-M247 substrate (modified) composition on coating oxidation coating/substrate interdiffusion. M.S. Thesis. Final Report; [protective coatings for hot section components of gas turbine engines

    Science.gov (United States)

    Pilsner, B. H.

    1985-01-01

    The effects of gamma+gamma' Mar-M247 substrate composition on gamma+beta Ni-Cr-Al-Zr coating oxidation and coating/substrate interdiffusion were evaluated. These results were also compared to a prior study for a Ni-Cr-Al-Zr coated gamma Ni-Cr-Al substrate with equivalent Al and Cr atomic percentages. Cyclic oxidation behavior at 1130 C was investigated using change in weight curves. Concentration/distance profiles were measured for Al, Cr, Co, W, and Ta. The surface oxides were examined by X-ray diffraction and scanning electron microscopy. The results indicate that variations of Ta and C concentrations in the substrate do not affect oxidation resistance, while additions of grain boundary strengthening elements (Zr, Hf, B) increase oxidation resistance. In addition, the results indicate that oxidation phenomena in gamma+beta/gamma+gamma' Mar-M247 systems have similar characteristics to the l gamma+beta/gamma Ni-Cr-Al system.

  10. Electrocatalytic boost up of epinephrine and its simultaneous resolution in the presence of serotonin and folic acid at poly(serine)/multi-walled carbon nanotubes composite modified electrode: A voltammetric study

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, P.V. [Electrochemical Research Laboratory, Department of Chemistry, SVU College of Sciences, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh (India); Madhusudana Reddy, T., E-mail: tmsreddysvu@gmail.com [Electrochemical Research Laboratory, Department of Chemistry, SVU College of Sciences, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh (India); Gopal, P. [Electrochemical Research Laboratory, Department of Chemistry, SVU College of Sciences, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh (India); Mohan Reddy, M. [Department of Psychiatry, Sri Devaraj Ur' s Acedamy of Higher Education and Research (SDUAHER), Tamaka, Kolar, Karnataka (India); Ramakrishna Naidu, G. [Department of Environmental Sciences, SVU College of Sciences, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh (India)

    2015-11-01

    The present paper describes the new strategy for the development of nanosensor based on dropcasting of multi-walled carbon nanotubes (MWCNTs) followed by electropolymerization of serine (ser) onto the glassy carbon electrode (GCE). The developed nanocomposite sensor was abbreviated as poly(ser)/MWCNTs/GCE and was characterized by using electrochemical impedance spectroscopy (EIS) technique. The EIS results confirmed the fast electron transfer rate at the surface of poly(ser)/MWCNTs/GCE. The proposed sensor exhibited good catalytic activity towards the sensing of epinephrine (EP) individually and simultaneously in the presence of serotonin (5-HT) and folic acid (FA) in 0.1 M phosphate buffer solution (PBS) at pH 7.0. The limit of detection (LOD) and limit of quantification (LOQ) of EP was found to be 6 × 10{sup −7} M and 2 × 10{sup −6} M respectively. The fabricated sensor showed excellent precision and accuracy with a relative standard deviation (RSD) of 4.86%. The proposed composite sensor was effectively applied towards the determination of EP in human blood serum and pharmaceutical injection sample. - Highlights: • Poly(ser)/MWCNTs/GCE showed high sensitivity in the sensing of EP. • The sensor reduced the overpotential for oxidation of EP. • This electrode was successfully used for simultaneous sensing of EP, 5-HT and FA. • The electrode was effectively used for the determination of EP in real samples.

  11. Novel organo soluble poly imides and polyimide nano composites based on 1,4-bis(4-aminophenyl)-1,3,4-oxadiaz olyl)benzene, BAOB, via BAOB-modified organo clay

    International Nuclear Information System (INIS)

    Mansoori, Y.; Darvishi, K.

    2014-01-01

    New, thermally stable poly imides (PI) containing a 1,3,4-oxadiazole ring in the polymer backbone based on 1,4-bis((4-aminophenyl)-1,3,4-oxadiaz olyl)benzene, BAOB, were synthesized. The prepared polymers were soluble in polar and aprotic solvents. The obtained results reveal that within the prepared polymers, polyimide which has been obtained from BAOB and 4,4-oxy diphthalic dianhydride, ODPA, has the most improved thermal properties. In the next part, thermally stable organophilic clay was obtained via cation exchange reaction between sodium montmorillonite (Na-MMT) and the hydrochloride salt of BAOB. Then, a series of PI/clay nano composite materials (PCNs) were synthesized from the in situ polymerization reaction of BAOB and ODPA via thermal imidization, BAOB-MMT was used as the filler at different concentrations. Intercalation of polymer chains within the organo clay galleries was confirmed by W XRD. The glass transition temperature is increased with respect to pristine PI for PCNs 1-3 wt %. At high clay loadings, the aggregation of organo clay particles results in a decrease in T g . In the Sem images of the pure polymer too many micro-cracks were observed in the background, while surface homogeneity of PCN 1 wt % is increased and micro-cracks are reduced. (Author)

  12. Novel organo soluble poly imides and polyimide nano composites based on 1,4-bis(4-aminophenyl)-1,3,4-oxadiaz olyl)benzene, BAOB, via BAOB-modified organo clay

    Energy Technology Data Exchange (ETDEWEB)

    Mansoori, Y.; Darvishi, K., E-mail: ya_mansoori@yahoo.com [University of Mohaghegh Ardabili, Faculty of Science, Department of Applied Chemistry, Daneshgah, Ardabil (Iran, Islamic Republic of)

    2014-10-01

    New, thermally stable poly imides (PI) containing a 1,3,4-oxadiazole ring in the polymer backbone based on 1,4-bis((4-aminophenyl)-1,3,4-oxadiaz olyl)benzene, BAOB, were synthesized. The prepared polymers were soluble in polar and aprotic solvents. The obtained results reveal that within the prepared polymers, polyimide which has been obtained from BAOB and 4,4-oxy diphthalic dianhydride, ODPA, has the most improved thermal properties. In the next part, thermally stable organophilic clay was obtained via cation exchange reaction between sodium montmorillonite (Na-MMT) and the hydrochloride salt of BAOB. Then, a series of PI/clay nano composite materials (PCNs) were synthesized from the in situ polymerization reaction of BAOB and ODPA via thermal imidization, BAOB-MMT was used as the filler at different concentrations. Intercalation of polymer chains within the organo clay galleries was confirmed by W XRD. The glass transition temperature is increased with respect to pristine PI for PCNs 1-3 wt %. At high clay loadings, the aggregation of organo clay particles results in a decrease in T{sub g}. In the Sem images of the pure polymer too many micro-cracks were observed in the background, while surface homogeneity of PCN 1 wt % is increased and micro-cracks are reduced. (Author)

  13. Study on durability of natural fibre concrete composites using ...

    Indian Academy of Sciences (India)

    33, No. 6, December 2010, pp. 719–729. * Indian Academy of Sciences. 719 ... vegetable fibre–cement composites. ... modified vegetable fibre–mortar composites was analysed ... exhibit better performance than conventional concrete.

  14. Microstructures and properties of TiN reinforced Co-based composite coatings modified with Y_2O_3 by laser cladding on Ti–6Al–4V alloy

    International Nuclear Information System (INIS)

    Weng, Fei; Yu, Huijun; Chen, Chuanzhong; Liu, Jianli; Zhao, Longjie

    2015-01-01

    In this study, TiN reinforced composite coatings were fabricated on Ti–6Al–4V substrate by laser cladding with Co42 self-fluxing alloy, TiN and Y_2O_3 mixed powders. Microstructures and wear resistance of the cladding coatings with and without Y_2O_3 addition were investigated comparatively. Results showed that the coatings were mainly comprised of γ-Co/Ni, TiN, CoTi, CoTi_2, NiTi, TiC, Cr_7C_3, TiB, Ti_5Si_3 and TiC_0_._3N_0_._7 phases. The coatings showed metallurgical bonding free of pores and cracks with the substrate. Compared with the Ti–6Al–4V substrate, the microhardness and wear resistance of the coatings was enhanced by 3–4 times and 9.5–11.9 times, respectively. With 1.0 wt.% Y_2O_3 addition, the microstructure of the coating was refined significantly, and the microhardness and dry sliding wear resistance were enhanced further. The effects of Y_2O_3 were attributed to the residual Y_2O_3 and decomposed Y atoms. - Graphical abstract: The diagram illustration for the action mechanism of Y_2O_3: (a) dissolution of Y_2O_3 and TiN, (b) re-formation of TiN and in situ formation of TiC, (c) growth of TiN, TiC and the distribution of Y atoms. - Highlights: • Coatings showing metallurgical bonding with the substrate were fabricated. • The effect of Y_2O_3 on the refinement of the microstructure is notable. • A kind of Y_2O_3 centered core–shell structure was picked out in the coating. • Microhardness and wear resistance of the coatings was enhanced significantly.

  15. Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity.

    Science.gov (United States)

    Faraji, Masoud; Mohaghegh, Neda; Abedini, Amir

    2018-01-01

    A series of g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plates were fabricated via simple dipping of TiO 2 nanotubes/Ti in a solution containing SnCl 2 and g-C 3 N 4 nanosheets and finally annealing of the plates. Synthesized plates were characterized by various techniques. The SEM analysis revealed that the g-C 3 N 4 -SnO 2 nanosheets with high physical stability have been successfully deposited onto the surface of TiO 2 nanotubes/Ti plate. Photocatalytic activity was investigated using two probe chemical reactions: oxidative decomposition of acetic acid and oxidation of 2-propanol under irradiation. Antibacterial activities for Escherichia coli (E. coli) bacteria were also investigated in dark and under UV/Vis illuminations. Detailed characterization and results of photocatalytic and antibacterial activity tests revealed that semiconductor coupling significantly affected the photocatalyst properties synthesized and hence their photocatalytic and antibacterial activities. Modification of TiO 2 nanotubes/Ti plates with g-C 3 N 4 -SnO 2 deposits resulted in enhanced photocatalytic activities in both chemical and microbial systems. The g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate exhibited the highest photocatalytic and antibacterial activity, probably due to the heterojunction between g-C 3 N 4 -SnO 2 and TiO 2 nanotubes/Ti in the ternary composite plate and thus lower electron/hole recombination rate. Based on the obtained results, a photocatalytic and an antibacterial mechanism for the degradation of E. coli bacteria and chemical pollutants over g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate were proposed and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Modified nasolacrimal duct stenting

    International Nuclear Information System (INIS)

    Tian Min; Jin Mei; Chen Huanjun; Li Yi

    2008-01-01

    Objective: Traditional nasolacrimal duct stenting possesses some shortcoming including difficulty of pulling ball head guide wire from the nasal cavity with turbinate hypertrophy and nasal septal deviation. The new method of nose-oral tube track establishment can overcome the forementioned and increase the successful rate. Methods: 5 F catheter and arterial sheath were modified to be nasolacrimal duct stent delivery device respectively. Antegrade dacryocystography was taken firstly to display the obstructed site and followed by the modified protocol of inserting the guide wire through nasolacrimal duct and nasal cavity, and establishing the stent delivery track for retrograde stent placement. Results: 5 epiphora patients with failure implantation by traditional method were all succeeded through the modified stenting (100%). During 6-mouth follow-up, no serious complications and reocclusion occurred. Conclusion: The establishment of eye-nose-mouth-nose of external nasal guide wire track can improve the successful rate of nasolacrimal duct stenting. (authors)

  17. Healable Composites

    Science.gov (United States)

    2012-03-28

    oriented fibers and healable polymer matrix 4. Laminate pre-preg layers to form composite panels with minimal voids & defects 5. Characterize the...composites: determine mechanical and crack healing properties (4, 5) Composite (3) Prepreg (2) Polymer (1) Furan (1) Maleimide Healable Composites...Develop pre-preg system of oriented fibers and healable polymer matrix 4. Laminate pre-preg layers to form composite panels with minimal voids & defects

  18. Normal modified stable processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    Gaussian (NGIG) laws. The wider framework thus established provides, in particular, for added flexibility in the modelling of the dynamics of financial time series, of importance especially as regards OU based stochastic volatility models for equities. In the special case of the tempered stable OU process......This paper discusses two classes of distributions, and stochastic processes derived from them: modified stable (MS) laws and normal modified stable (NMS) laws. This extends corresponding results for the generalised inverse Gaussian (GIG) and generalised hyperbolic (GH) or normal generalised inverse...

  19. Microstructures and properties of TiN reinforced Co-based composite coatings modified with Y{sub 2}O{sub 3} by laser cladding on Ti–6Al–4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Fei, E-mail: wengfeisdu@126.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science and Engineering, Shandong University, Ji' nan 250061 (China); Shandong University, Suzhou Institute, Suzhou 215123 (China); Yu, Huijun, E-mail: yhj2001@sdu.edu.cn [Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Ji' nan 250061 (China); Shandong University, Suzhou Institute, Suzhou 215123 (China); Chen, Chuanzhong, E-mail: czchen@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science and Engineering, Shandong University, Ji' nan 250061 (China); Shandong University, Suzhou Institute, Suzhou 215123 (China); Liu, Jianli, E-mail: jianli21s@163.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science and Engineering, Shandong University, Ji' nan 250061 (China); Shandong University, Suzhou Institute, Suzhou 215123 (China); Zhao, Longjie, E-mail: zhaoljsdu@sina.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Department of Materials Science and Engineering, Shandong University, Ji' nan 250061 (China); Shandong University, Suzhou Institute, Suzhou 215123 (China)

    2015-11-25

    In this study, TiN reinforced composite coatings were fabricated on Ti–6Al–4V substrate by laser cladding with Co42 self-fluxing alloy, TiN and Y{sub 2}O{sub 3} mixed powders. Microstructures and wear resistance of the cladding coatings with and without Y{sub 2}O{sub 3} addition were investigated comparatively. Results showed that the coatings were mainly comprised of γ-Co/Ni, TiN, CoTi, CoTi{sub 2}, NiTi, TiC, Cr{sub 7}C{sub 3}, TiB, Ti{sub 5}Si{sub 3} and TiC{sub 0.3}N{sub 0.7} phases. The coatings showed metallurgical bonding free of pores and cracks with the substrate. Compared with the Ti–6Al–4V substrate, the microhardness and wear resistance of the coatings was enhanced by 3–4 times and 9.5–11.9 times, respectively. With 1.0 wt.% Y{sub 2}O{sub 3} addition, the microstructure of the coating was refined significantly, and the microhardness and dry sliding wear resistance were enhanced further. The effects of Y{sub 2}O{sub 3} were attributed to the residual Y{sub 2}O{sub 3} and decomposed Y atoms. - Graphical abstract: The diagram illustration for the action mechanism of Y{sub 2}O{sub 3}: (a) dissolution of Y{sub 2}O{sub 3} and TiN, (b) re-formation of TiN and in situ formation of TiC, (c) growth of TiN, TiC and the distribution of Y atoms. - Highlights: • Coatings showing metallurgical bonding with the substrate were fabricated. • The effect of Y{sub 2}O{sub 3} on the refinement of the microstructure is notable. • A kind of Y{sub 2}O{sub 3} centered core–shell structure was picked out in the coating. • Microhardness and wear resistance of the coatings was enhanced significantly.

  20. Genetically modified soybean plants and their ecosystem

    Directory of Open Access Journals (Sweden)

    Milošević Mirjana B.

    2004-01-01

    Full Text Available Transgenic plants are developed by introgressing new genes using methods of molecular genetics and genetic engineering. The presence of these genes in plant genome is identified on the basis of specific oligonucleotides primers, and the use of PCR (Polymerase Chain Reaction and DNA fragments multiplication. Genetically modified plants such as soybean constitute a newly created bioenergetic potential whose gene expression can cause disturbance of the biological balance ecosystem, soil structure and soil microbiological activity. Genetically modified plants may acquire monogenic or polygenic traits causing genetic and physiological changes in these plants, which may elicit a certain reaction of the environment including changes of microbiological composition of soil rhizosphere. The aim of introgressing genes for certain traits into a cultivated plant is to enhance its yield and intensify food production. There are more and more genetically modified plant species such as soybean, corn, potato, rice and others and there is a pressure to use them as human food and animal feed. Genetically modified soybean plants with introgressed gene for resistance to total herbicides, such as Round-up, are more productive than non-modified herbicide-sensitive soybeans.

  1. EAMJ Modifiable 10.indd

    African Journals Online (AJOL)

    2010-02-02

    Feb 2, 2010 ... MODIFIABLE FACTORS ASSOCIATED WITH ACTIVE PULMONARY TUBERCULOSIS IN A KENYAN PRISON. A. S. Amwayi, MBChB, MSc., ... University of Agriculture and Technology, P.O. Box 62000- 0200, Nairobi, Kenya and E. M. Muchiri, MSc, PhD., Division ..... Diabetes and low BMI. 223452.81.

  2. Isotopically modified compounds

    International Nuclear Information System (INIS)

    Kuruc, J.

    2009-01-01

    In this chapter the nomenclature of isotopically modified compounds in Slovak language is described. This chapter consists of following parts: (1) Isotopically substituted compounds; (2) Specifically isotopically labelled compounds; (3) Selectively isotopically labelled compounds; (4) Non-selectively isotopically labelled compounds; (5) Isotopically deficient compounds.

  3. Modifiable Combining Functions

    OpenAIRE

    Cohen, Paul; Shafer, Glenn; Shenoy, Prakash P.

    2013-01-01

    Modifiable combining functions are a synthesis of two common approaches to combining evidence. They offer many of the advantages of these approaches and avoid some disadvantages. Because they facilitate the acquisition, representation, explanation, and modification of knowledge about combinations of evidence, they are proposed as a tool for knowledge engineers who build systems that reason under uncertainty, not as a normative theory of evidence.

  4. Modifying Cookbook Labs.

    Science.gov (United States)

    Clark, Robert, L.; Clough, Michael P.; Berg, Craig A.

    2000-01-01

    Modifies an extended lab activity from a cookbook approach for determining the percent mass of water in copper sulfate pentahydrate crystals to one which incorporates students' prior knowledge, engenders active mental struggling with prior knowledge and new experiences, and encourages metacognition. (Contains 12 references.) (ASK)

  5. The Chemical Composition of Mercury

    OpenAIRE

    Nittler, Larry R.; Chabot, Nancy L.; Grove, Timothy L.; Peplowski, Patrick N.

    2017-01-01

    The chemical composition of a planetary body reflects its starting conditions modified by numerous processes during its formation and geological evolution. Measurements by X-ray, gamma-ray, and neutron spectrometers on the MESSENGER spacecraft revealed Mercury's surface to have surprisingly high abundances of the moderately volatile elements sodium, sulfur, potassium, chlorine, and thorium, and a low abundance of iron. This composition rules out some formation models for which high temperatur...

  6. Acceleration of the universe dark energy or modified

    International Nuclear Information System (INIS)

    Cardenas, Rolando; Leyva, Yoelsy

    2007-01-01

    We present a composite model of dark energy, motivated in string and quantum field theory considerations. Then we speak on gravity theories in which the gravity Lagrangian is modified, resulting in a modification of General Relativity. We outline a methodology allowing a mapping between these two theories, i. e., both dark energy models and modified gravity can give the same cosmological dynamics. We apply aforementioned methodology to obtain the mapping composite dark energy-modified gravity for a particular case. Cosmic expansion history takes into account very large scales, the homogeneous Universe, and can not discriminate between above two theories. However, cosmic growth history takes into consideration intermediate cluster and galactic scales, the inhomogeneous Universe, and there might be the clue to discriminate whether the current acceleration of the Universe is because it is filled with a new fluid having repulsive gravity (dark energy) or it is just that gravity gets weaker and long scales (modified gravity). (Author)

  7. The immobilization of anion exchange resins in polymer modified cements

    International Nuclear Information System (INIS)

    Dyer, A.; Morgan, P.D.

    1991-09-01

    Organic anion exchange resins, loaded with 99-Tc as the pertechnate ion, were incorporated into polymer modified cements (Flexocrete Ltd, Preston). BFS/OPC (9:1 mix) also was modified by three polymers from the same source (styrene acrylic (2) styrene butadiene) and loaded with anion exchanger containing the pertechnate. Composites were tested for initial compressive strengths, under water and radiation stability and leach rate. IAEA standard leach testing was with simulated sea and ground waters. Ground water leaching also was carried out on composites subjected to 1.10 9 rads (γ). Leach testing correlated well with compressive strength. Modified composites performed better than the BFS/OPC mix under all conditions studied and were able to encapsulate higher resin loadings. (author)

  8. Modified pavement cement concrete

    Science.gov (United States)

    Botsman, L. N.; Ageeva, M. S.; Botsman, A. N.; Shapovalov, S. M.

    2018-03-01

    The paper suggests design principles of pavement cement concrete, which covers optimization of compositions and structures at the stage of mixture components selection due to the use of plasticizing agents and air-retaining substances that increase the viability of a concrete mixture. It also demonstrates advisability of using plasticizing agents together with air-retaining substances when developing pavement concrete compositions, which provides for the improvement of physical and mechanical properties of concrete and the reduction of cement binding agent consumption thus preserving strength indicators. The paper shows dependences of the main physical-mechanical parameters of concrete on cement consumption, a type and amount of additives.

  9. Wood composites

    Science.gov (United States)

    Lars Berglund; Roger M. Rowell

    2005-01-01

    A composite can be defined as two or more elements held together by a matrix. By this definition, what we call “solid wood” is a composite. Solid wood is a three-dimensional composite composed of cellulose, hemicelluloses and lignin (with smaller amounts of inorganics and extractives), held together by a lignin matrix. The advantages of developing wood composites are (...

  10. Modified Faraday cup

    Science.gov (United States)

    Elmer, John W.; Teruya, Alan T.; O'Brien, Dennis W.

    1996-01-01

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-din-tensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.

  11. Tip-modified Propellers

    DEFF Research Database (Denmark)

    Andersen, Poul

    1999-01-01

    The paper deals with tip-modified propellers and the methods which, over a period of two decades, have been applied to develop such propellers. The development is driven by the urge to increase the efficiency of propellers and can be seen as analogous to fitting end plates and winglets to aircraft...... propeller, have efficiency increases of a reasonable magnitude in both open-water and behind-ship conditions....

  12. Modified Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Surafel Luleseged Tilahun

    2012-01-01

    Full Text Available Firefly algorithm is one of the new metaheuristic algorithms for optimization problems. The algorithm is inspired by the flashing behavior of fireflies. In the algorithm, randomly generated solutions will be considered as fireflies, and brightness is assigned depending on their performance on the objective function. One of the rules used to construct the algorithm is, a firefly will be attracted to a brighter firefly, and if there is no brighter firefly, it will move randomly. In this paper we modify this random movement of the brighter firefly by generating random directions in order to determine the best direction in which the brightness increases. If such a direction is not generated, it will remain in its current position. Furthermore the assignment of attractiveness is modified in such a way that the effect of the objective function is magnified. From the simulation result it is shown that the modified firefly algorithm performs better than the standard one in finding the best solution with smaller CPU time.

  13. Genetically Modified Organisms

    Directory of Open Access Journals (Sweden)

    Claro Llaguno

    2001-06-01

    Full Text Available Recent reports have brought to public attention concerns about Bt corn and genetically modified organisms (GMO in general. The timing, it seems, is most appropriate considering two related developments early this year: the final approval of the Cartagena Protocol on Biosafety in Montreal on January 29, 2001, and the OECD Edinburgh Conference on GM food safety last February 28- March 1, 2001. The protocol makes clear that GMOs include all living modified organisms (LMO defined as "any living organism that possesses a novel combination of genetic material obtained through the use of modern biotechnology". This includes seeds, live fish, and other organisms intentionally obtained for release to the environment. It would seem that the common understanding about GMOs as referring to farm-to-table products is perforce expanded to embrace genetically modified farm animals and aquatic resources. Being a trade agreement, the Montreal accord primarily deals with the safety issues related to the transboundary movement of LMOs around the globe. The OECD conference on the other hand, called for an international body "to address all sides of the GM debate" in response to the public outcry, particularly in Western Europe, regarding the risks the new products pose to human health and the environment. Some points of contention, which remain unresolved, include issues such as whether countries should be allowed to develop their own GM food based on their needs, and whether a global moratorium on GMOs and mandatory labeling should be enforced worldwide.

  14. Polyvinyl alcohol–cellulose composite

    Indian Academy of Sciences (India)

    We have made an attempt to prepare taste sensor material by using functionalized polymer without any lipid. PVA–cellulose composite has been modified to use as the sensor material. The research work covers polymer membrane preparation, morphology study and structural characterization of the membrane and study of ...

  15. Automated DNA extraction from genetically modified maize using aminosilane-modified bacterial magnetic particles.

    Science.gov (United States)

    Ota, Hiroyuki; Lim, Tae-Kyu; Tanaka, Tsuyoshi; Yoshino, Tomoko; Harada, Manabu; Matsunaga, Tadashi

    2006-09-18

    A novel, automated system, PNE-1080, equipped with eight automated pestle units and a spectrophotometer was developed for genomic DNA extraction from maize using aminosilane-modified bacterial magnetic particles (BMPs). The use of aminosilane-modified BMPs allowed highly accurate DNA recovery. The (A(260)-A(320)):(A(280)-A(320)) ratio of the extracted DNA was 1.9+/-0.1. The DNA quality was sufficiently pure for PCR analysis. The PNE-1080 offered rapid assay completion (30 min) with high accuracy. Furthermore, the results of real-time PCR confirmed that our proposed method permitted the accurate determination of genetically modified DNA composition and correlated well with results obtained by conventional cetyltrimethylammonium bromide (CTAB)-based methods.

  16. Simulating the structure of gypsum composites using pulverized basalt waste

    Directory of Open Access Journals (Sweden)

    Buryanov Аleksandr

    2017-01-01

    Full Text Available This paper examines the possibility of simulating the structure of gypsum composite modified with basalt dust waste to make materials and products based on it. Structural simulating of the topological space in gypsum modified composite by optimizing its grain-size composition highly improves its physical and mechanical properties. Strength and density tests have confirmed the results of the simulation. The properties of modified gypsum materials are improved by obtaining of denser particle packing in the presence of hemihydrate of finely dispersed basalt and plasticizer particles in the system, and by engaging basalt waste in the structuring process of modified gypsum stone.

  17. Investigation of properties of modified oxides structured by nano technology

    International Nuclear Information System (INIS)

    Kurina, I.S.; Serebrennikova, O.V.; Rumyantsev, V.N.; Dvoryashin, A.M.

    2009-01-01

    Research results on the PuO 2 +MgO fuel composition with CeO 2 as a PuO 2 simulator are presented. The water nano technology for the production of oxide ceramic materials, developed in IPPE, was used for fabrication of powders and modified pellets. This technology includes obtaining precipitate, consisting of particles of different sizes as well as of nanoparticles, which is further calcined, pressed and sintered. It results in modifying structure of the sintered pellets. Modified pellets have anomalously high thermal conductivity measured by the axial heat flux method [ru

  18. Acid-degradable and bioerodible modified polyhydroxylated materials

    Energy Technology Data Exchange (ETDEWEB)

    Frechet, Jean M. J.; Bachelder, Eric M.; Beaudette, Tristan T.; Broaders, Kyle E.

    2017-05-09

    Compositions and methods of making a modified polyhydroxylated polymer comprising a polyhydroxylated polymer having reversibly modified hydroxyl groups, whereby the hydroxyl groups are modified by an acid-catalyzed reaction between a polydroxylated polymer and a reagent such as acetals, aldehydes, vinyl ethers and ketones such that the modified polyhydroxylated polymers become insoluble in water but freely soluble in common organic solvents allowing for the facile preparation of acid-sensitive materials. Materials made from these polymers can be made to degrade in a pH-dependent manner. Both hydrophobic and hydrophilic cargoes were successfully loaded into particles made from the present polymers using single and double emulsion techniques, respectively. Due to its ease of preparation, processability, pH-sensitivity, and biocompatibility, of the present modified polyhydroxylated polymers should find use in numerous drug delivery applications.

  19. Modified harmony search

    Science.gov (United States)

    Mohamed, Najihah; Lutfi Amri Ramli, Ahmad; Majid, Ahmad Abd; Piah, Abd Rahni Mt

    2017-09-01

    A metaheuristic algorithm, called Harmony Search is quite highly applied in optimizing parameters in many areas. HS is a derivative-free real parameter optimization algorithm, and draws an inspiration from the musical improvisation process of searching for a perfect state of harmony. Propose in this paper Modified Harmony Search for solving optimization problems, which employs a concept from genetic algorithm method and particle swarm optimization for generating new solution vectors that enhances the performance of HS algorithm. The performances of MHS and HS are investigated on ten benchmark optimization problems in order to make a comparison to reflect the efficiency of the MHS in terms of final accuracy, convergence speed and robustness.

  20. Modified puestow lateral pancreaticojejunostomy.

    Science.gov (United States)

    Ceppa, Eugene P; Pappas, Theodore N

    2009-05-01

    There are various surgical options for the treatment of pain associated with chronic pancreatitis. The modified Puestow lateral pancreaticojejunostomy has been proven to be effective in ameliorating symptoms and expediting return to normal lifestyle while maintaining a low rate of morbidity and mortality. However, the debate regarding which surgical treatment provides the best outcomes is controversial. The aims of this manuscript are to identify the patient population for which the Puestow benefits the most and discuss the pertinent technical aspects of the surgical procedure.

  1. Radiation resistant modified polypropylene

    International Nuclear Information System (INIS)

    Bojarski, J.; Zimek, Z.

    1997-01-01

    Radiation technology for production of radiation resistant polypropylene for medical use has been presented. The method consists in radiation induced copolymerization of polypropylene with ethylene and addition of small amount of copolymer of polyethylene and vinyl acetate. The material of proposed composition has a very good mechanical properties and elevated radiation resistivity decided on possibility of radiosterilization of products made of this material and designed for medical use. 3 figs, 3 tabs

  2. Aerospace Composite Materials Delivery Order 0003: Nanocomposite Polymeric Resin Enhancements for Improved Composite Performance

    National Research Council Canada - National Science Library

    Chen, Chenggang

    2002-01-01

    .... The addition of clays does not significantly alter the viscosity or cure kinetics so that the modified resin will still be suitable for liquid composite molding techniques such as resin transfer molding...

  3. Crystallization of modified hydroxyapatite on titanium implants

    International Nuclear Information System (INIS)

    Golovanova, O A; Izmailov, R R; Zaits, A V; Ghyngazov, S A

    2016-01-01

    Carbonated-hydroxyapatite (CHA) and Si-hydroxyapatite (Si-HA) precipitation have been synthesized from the model bioliquid solutions (synovial fluid and SBF). It is found that all the samples synthesized from the model solutions are single-phase and represent hydroxyapatite. The crystallization of the modified hydroxyapatite on alloys of different composition, roughness and subjected to different treatment techniques was investigated. Irradiation of the titanium substrates with the deposited biomimetic coating can facilitate further growth of the crystal and regeneration of the surface. (paper)

  4. Composite Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    This book deals with the mechanical and physical behavior of composites as influenced by composite geometry. "Composite Materials" provides a comprehensive introduction for researchers and students to modern composite materials research with a special emphasis on the significance of phase geometry......, viscoelastic behavior, and internal stress states. Other physical properties considered are thermal and electrical conductivities, diffusion coefficients, dielectric constants and magnetic permeability. Special attention is given to the effect of pore shape on the mechanical and physical behavior of porous....... The book enables the reader to a better understanding of the behavior of natural composites, improvement of such materials, and design of new materials with prescribed properties. A number of examples are presented: Special composite properties considered are stiffness, shrinkage, hygro-thermal behavior...

  5. The increase of compressive strength of natural polymer modified concrete with Moringa oleifera

    Science.gov (United States)

    Susilorini, Rr. M. I. Retno; Santosa, Budi; Rejeki, V. G. Sri; Riangsari, M. F. Devita; Hananta, Yan's. Dianaga

    2017-03-01

    Polymer modified concrete is one of some concrete technology innovations to meet the need of strong and durable concrete. Previous research found that Moringa oleifera can be applied as natural polymer modifiers into mortars. Natural polymer modified mortar using Moringa oleifera is proven to increase their compressive strength significantly. In this resesearch, Moringa oleifera seeds have been grinded and added into concrete mix for natural polymer modified concrete, based on the optimum composition of previous research. The research investigated the increase of compressive strength of polymer modified concrete with Moringa oleifera as natural polymer modifiers. There were 3 compositions of natural polymer modified concrete with Moringa oleifera referred to previous research optimum compositions. Several cylinder of 10 cm x 20 cm specimens were produced and tested for compressive strength at age 7, 14, and, 28 days. The research meets conclusions: (1) Natural polymer modified concrete with Moringa oleifera, with and without skin, has higher compressive strength compared to natural polymer modified mortar with Moringa oleifera and also control specimens; (2) Natural polymer modified concrete with Moringa oleifera without skin is achieved by specimens contains Moringa oleifera that is 0.2% of cement weight; and (3) The compressive strength increase of natural polymer modified concrete with Moringa oleifera without skin is about 168.11-221.29% compared to control specimens

  6. Modifying glycoalkaloid content in transgenic potato – Metabolome impacts

    Science.gov (United States)

    Metabolite profiling has been used to assess the potential for unintended composition changes in potato (Solanum tuberosum L. cv. Desirée) tubers, which have been genetically modified (GM) to reduce glycoalkaloid content via the independent down-regulation of three genes SGT1, SGT2 and SGT3 known t...

  7. Bitumen based modified substance

    International Nuclear Information System (INIS)

    Kostolanyi, P.

    1987-01-01

    The necessary amounts of tetrahydrosilicic acid and methyl phenyl silicon oil are added to molten bitumen heated to temperatures of 50 to 200 degC. The mixture is thoroughly mixed and let to cool. The structure of the product comes close to gel and its properties (penetration, softening point, workability time, penetration index) may be changed in dependence on the amount of additions and on the time and temperature of heating. The advantage of the thus prepared modified material is its shorter workability time, its ability to bind materials with a certain water content, and its relatively low price. It may be used for fixing and storing low-and medium-level radioactive organic and thickened waste waters. (E.S.)

  8. Modified Clipped LMS Algorithm

    Directory of Open Access Journals (Sweden)

    Lotfizad Mojtaba

    2005-01-01

    Full Text Available Abstract A new algorithm is proposed for updating the weights of an adaptive filter. The proposed algorithm is a modification of an existing method, namely, the clipped LMS, and uses a three-level quantization ( scheme that involves the threshold clipping of the input signals in the filter weight update formula. Mathematical analysis shows the convergence of the filter weights to the optimum Wiener filter weights. Also, it can be proved that the proposed modified clipped LMS (MCLMS algorithm has better tracking than the LMS algorithm. In addition, this algorithm has reduced computational complexity relative to the unmodified one. By using a suitable threshold, it is possible to increase the tracking capability of the MCLMS algorithm compared to the LMS algorithm, but this causes slower convergence. Computer simulations confirm the mathematical analysis presented.

  9. Modified arthroscopic Brostrom procedure.

    Science.gov (United States)

    Lui, Tun Hing

    2015-09-01

    The open modified Brostrom anatomic repair technique is widely accepted as the reference standard for lateral ankle stabilization. However, there is high incidence of intra-articular pathologies associated with chronic lateral ankle instability which may not be addressed by an isolated open Brostrom procedure. Arthroscopic Brostrom procedure with suture anchor has been described for anatomic repair of chronic lateral ankle instability and management of intra-articular lesions. However, the complication rates seemed to be higher than open Brostrom procedure. Modification of the arthroscopic Brostrom procedure with the use of bone tunnel may reduce the risk of certain complications. Copyright © 2015 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  10. Modified circular velocity law

    Science.gov (United States)

    Djeghloul, Nazim

    2018-05-01

    A modified circular velocity law is presented for a t