WorldWideScience

Sample records for acid-induced early pulmonary

  1. Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats

    Directory of Open Access Journals (Sweden)

    Lili eGao

    2015-10-01

    Full Text Available Idiopathic pulmonary fibrosis is a progressive and lethal form of interstitial lung disease that lacks effective therapies at present. Glycyrrhizic acid (GA, a natural compound extracted from a traditional Chinese herbal medicine Glycyrrhiza glabra, was recently reported to benefit lung injury and liver fibrosis in animal models, yet whether GA has a therapeutic effect on pulmonary fibrosis is unknown. In this study, we investigated the potential therapeutic effect of GA on pulmonary fibrosis in a rat model with bleomycin (BLM-induced pulmonary fibrosis. The results indicated that GA treatment remarkably ameliorated BLM-induced pulmonary fibrosis and attenuated BLM-induced inflammation, oxidative stress, epithelial-mesenchymal transition and activation of tansforming growth factor-beta signaling pathway in the lungs. Further, we demonstrated that GA treatment inhibited proliferation of 3T6 fibroblast cells, induced cell cycle arrest and promoted apoptosis in vitro, implying that GA-mediated suppression of fibroproliferation may contribute to the anti-fibrotic effect against BLM-induced pulmonary fibrosis. In summary, our study suggests a therapeutic potential of GA in the treatment of pulmonary fibrosis.

  2. Reversal of reflex pulmonary vasoconstriction induced by main pulmonary arterial distension.

    Science.gov (United States)

    Juratsch, C E; Grover, R F; Rose, C E; Reeves, J T; Walby, W F; Laks, M M

    1985-04-01

    Distension of the main pulmonary artery (MPA) induces pulmonary hypertension, most probably by neurogenic reflex pulmonary vasoconstriction, although constriction of the pulmonary vessels has not actually been demonstrated. In previous studies in dogs with increased pulmonary vascular resistance produced by airway hypoxia, exogenous arachidonic acid has led to the production of pulmonary vasodilator prostaglandins. Hence, in the present study, we investigated the effect of arachidonic acid in seven intact anesthetized dogs after pulmonary vascular resistance was increased by MPA distention. After steady-state pulmonary hypertension was established, arachidonic acid (1.0 mg/min) was infused into the right ventricle for 16 min; 15-20 min later a 16-mg bolus of arachidonic acid was injected. MPA distension was maintained throughout the study. Although the infusion of arachidonic acid significantly lowered the elevated pulmonary vascular resistance induced by MPA distension, the pulmonary vascular resistance returned to control levels only after the bolus injection of arachidonic acid. Notably, the bolus injection caused a biphasic response which first increased the pulmonary vascular resistance transiently before lowering it to control levels. In dogs with resting levels of pulmonary vascular resistance, administration of arachidonic acid in the same manner did not alter the pulmonary vascular resistance. It is concluded that MPA distension does indeed cause reflex pulmonary vasoconstriction which can be reversed by vasodilator metabolites of arachidonic acid. Even though this reflex may help maintain high pulmonary vascular resistance in the fetus, its function in the adult is obscure.

  3. Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure.

    Science.gov (United States)

    Jin, Li; Piao, Zhe Hao; Sun, Simei; Liu, Bin; Ryu, Yuhee; Choi, Sin Young; Kim, Gwi Ran; Kim, Hyung-Seok; Kee, Hae Jin; Jeong, Myung Ho

    2017-12-01

    Gallic acid, a trihydroxybenzoic acid found in tea and other plants, attenuates cardiac hypertrophy, fibrosis, and hypertension in animal models. However, the role of gallic acid in heart failure remains unknown. In this study, we show that gallic acid administration prevents heart failure-induced pulmonary fibrosis. Heart failure induced in mice, 8weeks after transverse aortic constriction (TAC) surgery, was confirmed by echocardiography. Treatment for 2weeks with gallic acid but not furosemide prevented cardiac dysfunction in mice. Gallic acid significantly inhibited TAC-induced pathological changes in the lungs, such as increased lung mass, pulmonary fibrosis, and damaged alveolar morphology. It also decreased the expression of fibrosis-related genes, including collagen types I and III, fibronectin, connective tissue growth factor (CTGF), and phosphorylated Smad3. Further, it inhibited the expression of epithelial-mesenchymal transition (EMT)-related genes, such as N-cadherin, vimentin, E-cadherin, SNAI1, and TWIST1. We suggest that gallic acid has therapeutic potential for the treatment of heart failure-induced pulmonary fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Docosahexaenoic acid inhibits monocrotaline-induced pulmonary hypertension via attenuating endoplasmic reticulum stress and inflammation.

    Science.gov (United States)

    Chen, Rui; Zhong, Wei; Shao, Chen; Liu, Peijing; Wang, Cuiping; Wang, Zhongqun; Jiang, Meiping; Lu, Yi; Yan, Jinchuan

    2018-02-01

    Endoplasmic reticulum (ER) stress and inflammation contribute to pulmonary hypertension (PH) pathogenesis. Previously, we confirmed that docosahexaenoic acid (DHA) could improve hypoxia-induced PH. However, little is known about the link between DHA and monocrotaline (MCT)-induced PH. Our aims were, therefore, to evaluate the effects and molecular mechanisms of DHA on MCT-induced PH in rats. Rat PH was induced by MCT. Rats were treated with DHA daily in the prevention group (following MCT injection) and the reversal group (after MCT injection for 2 wk) by gavage. After 4 wk, mean pulmonary arterial pressure (mPAP), right ventricular (RV) hypertrophy index, and morphological and immunohistochemical analyses were evaluated. Rat pulmonary artery smooth muscle cells (PASMCs) were used to investigate the effects of DHA on cell proliferation stimulated by platelet-derived growth factor (PDGF)-BB. DHA decreased mPAP and attenuated pulmonary vascular remodeling and RV hypertrophy, which were associated with suppressed ER stress. DHA blocked the mitogenic effect of PDGF-BB on PASMCs and arrested the cell cycle via inhibiting nuclear factor of activated T cells-1 (NFATc1) expression and activation and regulating cell cycle-related proteins. Moreover, DHA ameliorated inflammation in lung and suppressed macrophage and T lymphocyte accumulation in lung and adventitia of resistance pulmonary arteries. These findings suggest that DHA could protect against MCT-induced PH by reducing ER stress, suppressing cell proliferation and inflammation.

  5. Preventive and curative effects of dicaffeoylquinic acid on early pulmonary fibrosis in mice

    International Nuclear Information System (INIS)

    Liu Tao; Song Liangwen; Dong Junxing; Huang Shanying; Li Yang

    2005-01-01

    Objective: To explore the effect of dicaffeoylquinic acid (IBE5) on prevention and treatment of pulmonary fibrosis induced by bleomycin (BLM) in mice and its mechanism. Methods: Hydroxyproline content determination, imaging analysis, collagen I and III assay, α-smooth muscle actin (α-SMA) and matrix metalloproteinase 7 (MMP-7 ) immunohistochemistry were performed. Results: 1)Hydroxyproline content decreased in fibrotic lung tissue after administration of IBE5(P<0.05). 2)The number of pulmonary alveoli reduced, alveolus interstitium was thickened and collagen deposition and fibrosis were formed in lung tissue of BLM group. The break of pulmonary alveoli and extension of pulmonary fibrosis were decreased by use of IBE5 (P<0.05). 3)A lot of collagen I and III were synthesized in lung interstitium in BLM group and their quantity was reduced in IBE5 group (P<0.05). 4) In BLM group, α-SMA expression increased and located in myofibroblasts in fibrotic area, and MMP7 immunohistochemical signal was located in myofibroblasts also. They were decreased in IBE5 group(P<0.05). Conclusion: IBE5 plays a preventive and curative role in pulmonary fibrosis by inhibition of transformation of fibroblasts towards myofibroblasts and MMP7 expression. (authors)

  6. Pulmonary dynamics of radiolabelled erythrocytes and leucocytes in early gram-negative sepsis in pigs

    International Nuclear Information System (INIS)

    Walther, Sten; Wenyao, Shi; Lennquist, Sten

    1999-01-01

    objective: to study the pulmonary dynamic of erythrocytes and leucocytes in vivo in early experimental sepsis. design: open, experimental study. setting: academic research laboratory, Sweden. material: 10 adolescent, domestic pigs. interventions: technetium (Tc 99) labelling of erythrocytes (n=5) and indium (In 111) labelling of autologous leucocytes (n=10). sepsis was induced by endotoxin (n=4) or live Escherichia Coli (n=3), given intravenously. major outcome measures: regional pulmonary scintigraphy, central haemodynamics and gas exchange followed for 180 minutes. results: septic animals developed arterial hypoxia, pulmonary hypertension and systemic hypotension. They also had an early increase in mean (SD) regional pulmonary erythrocyte and leucocyte counts (+10.3(7.7%) and + 12.0 (3.5%) respectively) with simultaneous maximum 27-32 minutes after the start of the septic insult. Conclusions: The immediate sepsis-induced pulmonary accumulation of leucocytes as detected by external scintigraphy can be ascribed at least in part, to a simultaneous sepsis-induced increase in pulmonary blood volume. 3 figs., 1 tab., 19 refs

  7. Interleukin-22 Inhibits Bleomycin-Induced Pulmonary Fibrosis

    Directory of Open Access Journals (Sweden)

    Minrui Liang

    2013-01-01

    Full Text Available Pulmonary fibrosis is a progressive and fatal fibrotic disease of the lungs with unclear etiology. Recent insight has suggested that early injury/inflammation of alveolar epithelial cells could lead to dysregulation of tissue repair driven by multiple cytokines. Although dysregulation of interleukin- (IL- 22 is involved in various pulmonary pathophysiological processes, the role of IL-22 in fibrotic lung diseases is still unclear and needs to be further addressed. Here we investigated the effect of IL-22 on alveolar epithelial cells in the bleomycin- (BLM- induced pulmonary fibrosis. BLM-treated mice showed significantly decreased level of IL-22 in the lung. IL-22 produced γδT cells were also decreased significantly both in the tissues of lungs and spleens. Administration of recombinant human IL-22 to alveolar epithelial cell line A549 cells ameliorated epithelial to mesenchymal transition (EMT and partially reversed the impaired cell viability induced by BLM. Furthermore, blockage of IL-22 deteriorated pulmonary fibrosis, with elevated EMT marker (α-smooth muscle actin (α-SMA and overactivated Smad2. Our results indicate that IL-22 may play a protective role in the development of BLM-induced pulmonary fibrosis and may suggest IL-22 as a novel immunotherapy tool in treating pulmonary fibrosis.

  8. Oleanolic acid acetate attenuates polyhexamethylene guanidine phosphate-induced pulmonary inflammation and fibrosis in mice.

    Science.gov (United States)

    Kim, Min-Seok; Han, Jin-Young; Kim, Sung-Hwan; Jeon, Doin; Kim, Hyeon-Young; Lee, Seung Woong; Rho, Mun-Chual; Lee, Kyuhong

    2018-06-01

    Oleanolic acid acetate (OAA), triterpenoid compound isolated from Vigna angularis (azuki bean), has been revealed anti-inflammatory in several studies. We investigated the effects of OAA against polyhexamethylene guanidine phosphate (PHMG-P)-induced pulmonary inflammation and fibrosis in mice. OAA treatment effectively alleviated PHMG-P-induced lung injury, including the number of total and differential cell in BAL fluid, histopathological lesions and hydroxyproline content in a dose dependent manner. Moreover, OAA treatment significantly decreased the elevations of IL-1β, IL-6, TNF-α, TGF-β1, and fibronectin, and the activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in the lungs of PHMG-P-treated mice. Cytokines are known to be key modulators in the inflammatory responses that drive progression of fibrosis in injured tissues. The activation of NLRP3 inflammasome has been reported to be involved in induction of inflammatory cytokines. These results indicate that OAA may mitigate the inflammatory response and development of pulmonary fibrosis in the lungs of mice treated with PHMG-P. Copyright © 2018. Published by Elsevier B.V.

  9. Experimental study on early detection of alloxan-induced pulmonary injury by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Awai, Kazuo; Fukuda, Hiroshi; Nakamura, Susumu; Fujikawa, Koichi; Utsumi, Toshio; Kajima, Toshio; Azuma, Kazuyoshi; Ito, Katsuhide.

    1995-01-01

    We studied the early detection of alloxan-induced pulmonary injury by magnetic resonance imaging in vivo. Permeability edema was induced in ten rats by intravenous injection of alloxan at 100 mg/Kg. T1-and T2-weighted images were acquired in five rats every 30 min for 120 min after alloxan injection. Five rats served as controls. The rats were sacrificed immediately after imaging and examined microscopically. CT images were also acquired in five rats every 30 min for 120 min after alloxan injection. Five rats served as controls. The rats were sacrificed immediately after imaging, and the wet-to-dry ratio of the lung was measured. In T1-weighted images, relative signal intensity from the lung with permeability edema rose from 30 min to 120 min, and was greater than that from normal lung every time. In T2-weighted images, there was no statistically significant difference in relative signal intensity of the lung between permeability edema and the control during 120 min. In CT images, there was also no statistically significant difference in lung density between permeability edema and the control during 120 min. There was no statistically significant difference in the wet-to-dry lung ratio between edematous lung and normal lung. In histological study, mild congestion and interstitial edema were observed in edematous lung. These results suggest the potential capability of MR imaging in detecting the early phase of permeability pulmonary edema. (author)

  10. Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Fetal Pulmonary Circulation: An Experimental Study in Fetal Lambs.

    Science.gov (United States)

    Sharma, Dyuti; Aubry, Estelle; Ouk, Thavarak; Houeijeh, Ali; Houfflin-Debarge, Véronique; Besson, Rémi; Deruelle, Philippe; Storme, Laurent

    2017-07-16

    Background: Persistent pulmonary hypertension of the newborn (PPHN) causes significant morbidity and mortality in neonates. n -3 Poly-unsaturated fatty acids have vasodilatory properties in the perinatal lung. We studied the circulatory effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in fetal sheep and in fetal pulmonary arterial rings. Methods: At 128 days of gestation, catheters were placed surgically in fetal systemic and pulmonary circulation, and a Doppler probe around the left pulmonary artery (LPA). Pulmonary arterial pressure and LPA flow were measured while infusing EPA or DHA for 120 min to the fetus, to compute pulmonary vascular resistance (PVR). The dose effects of EPA or DHA were studied in vascular rings pre-constricted with serotonin. Rings treated with EPA were separated into three groups: E+ (intact endothelium), E- (endothelium stripped) and LNA E+ (pretreatment of E+ rings with l-nitro-arginine). Results: EPA, but not DHA, induced a significant and prolonged 25% drop in PVR ( n = 8, p DHA resulted in only a mild relaxation at the highest concentration of DHA (300 µM) compared to E+. Conclusions: EPA induces a sustained pulmonary vasodilatation in fetal lambs. This effect is endothelium- and dose-dependent and involves nitric oxide (NO) production. We speculate that EPA supplementation may improve pulmonary circulation in clinical conditions with PPHN.

  11. Role of MMP-12 on tissue remodeling at early stage of radiation-induced pulmonary injury

    International Nuclear Information System (INIS)

    Li Ming; Song Liangwen; Diao Ruiying; Wang Shaoxia; Xu Xinping; Luo Qingliang

    2008-01-01

    Objective: To explore the role of MMP-12 on tissue remodeling at early stage of radiation- induced pulmonary injury. Methods: Wistar rats irradiated by 60 Co γ-rays to the whole lungs were sacrificed at 1, 2, 4 weeks. MMP-12 mRNA expression was detected by RT-PCR. MMP-2, MMP-9, MMP-12 activities were determined by zymography. The degradation and collapse of elastin were determined by tissue elastin particular staining; the 'cross talking' phenomenon between alveolar type II cells and mesenchymal cells was observed under electron microscope; the expression of TGF-β1 and TNF-α in BALF was detected by ELISA. The expression of α-SMA was determined by immunohistochemistry. Results: The mRNA expression of MMP-12 displayed a significant elevation at 1, 2, 4 weeks after irradiation. MMP-12 activity increased at 2, 4 weeks after irradiation. Elastin began to degrade and collapse at 1 week, which became worst 4 weeks after irradiation. The cross talking phenomenon was found under electron microscope. The expression of TGF-β1, TNF-α and α-SMA was increased gradually as time elapse after irradiation. Conclusions: 60 Co γ-ray irradiation can promote pulmonary MMP-12 expression, initiate pulmonary tissue remodeling by degradation of elastin, and make the pulmonary injury develop towards pulmonary fibrosis eventually. (authors)

  12. Pulmonary berylliosis. Experimental induction. Early detection

    International Nuclear Information System (INIS)

    Andre, Stephane

    1984-01-01

    This research thesis reports the study of the biological reactivity of industrial and environmental aerosols, notably beryllium powder aerosols. In order to study beryllium toxicity under its metal form, and the dose-effect relationship and the suspected carcinogen effect, a pulmonary berylliosis has been experimentally induced in rat and monkey. In order to develop means of rapid detection of exposure and sensitisation to beryllium, the author studied early pathological cellular mechanisms occurring during a pulmonary granulomatosis. Quantitative and qualitative modifications have been searched for, more particularly at the level of endo-alveolar cellular populations of macrophages and lymphocytes. The study has also been extended to the sensitisation of lymphocytes with respect to beryllium. After some generalities about beryllium (properties, sources, uses, exposure sources), and an overview of its toxicity (epidemiology, pathologies, experiments, biological mechanisms, detoxification), the author reports the introduction of a chronic pulmonary berylliosis into animals, discusses the various noticed pathologies and their analysis, and reports in situ and in vitro studies [fr

  13. Lactic Acid is Elevated in Idiopathic Pulmonary Fibrosis and Induces Myofibroblast Differentiation Via pH-Dependent Activation of Transforming Growth Factor-β

    Energy Technology Data Exchange (ETDEWEB)

    Kottman, R. M.; Kulkarni, Ajit A.; Smolnycki, Katie A.; Lyda, Elizabeth; Dahanayake, Thinesh; Salibi, Rami; Honnons, Sylvie; Jones, Carolyn; Isern, Nancy G.; Hu, Jian Z.; Nathan, Steven D.; Grant, Geraldine; Phipps, Richard P.; Sime, Patricia J.

    2012-10-15

    Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex disease for which the pathogenesis is poorly understood. In this study, we identified lactic acid as a metabolite that is elevated in the lung tissue of patients with IPF. Objectives: This study examines the effect of lactic acid on myofibroblast differentiation and pulmonary fibrosis. Methods:We used metabolomic analysis to examine cellular metabolism in lung tissuefrom patients with IPFanddeterminedthe effects of lactic acid and lactate dehydrogenase-5 (LDH5) overexpression on myofibroblast differentiation and transforming growth factor (TGF)-b activation in vitro. Measurements and Main Results: Lactic acid concentrations from healthy and IPF lung tissue were determined by nuclear magnetic resonance spectroscopy; a-smooth muscle actin, calponin, and LDH5 expression were assessed by Western blot of cell culture lysates. Lactic acid and LDH5 were significantly elevated in IPF lung tissue compared with controls. Physiologic concentrations of lactic acid induced myofibroblast differentiation via activation of TGF-b. TGF-b induced expression of LDH5 via hypoxia-inducible factor 1a (HIF1a). Importantly, overexpression of both HIF1a and LDH5 in human lung fibroblasts induced myofibroblast differentiation and synergized with low dose TGF-b to induce differentiation. Furthermore, inhibition of both HIF1a and LDH5 inhibited TGF-b–induced myofibroblast differentiation. Conclusions: We have identified the metabolite lactic acid as an important mediator of myofibroblast differentiation via a pHdependent activation of TGF-b. We propose that the metabolic milieu of the lung, and potentially other tissues, is an important driving force behind myofibroblast differentiation and potentially the initiation and progression of fibrotic disorders.

  14. Edaravone attenuates lipopolysaccharide-induced acute respiratory distress syndrome associated early pulmonary fibrosis via amelioration of oxidative stress and transforming growth factor-β1/Smad3 signaling.

    Science.gov (United States)

    Wang, Xida; Lai, Rongde; Su, Xiangfen; Chen, Guibin; Liang, Zijing

    2018-01-01

    Pulmonary fibrosis is responsible for the both short-term and long-term outcomes in patients with acute respiratory distress syndrome (ARDS). There is still no effective cure to improve prognosis. The purpose of this study was to investigate whether edaravone, a free radical scavenger, have anti-fibrosis effects in the rat model of ARDS associated early pulmonary fibrosis by lipopolysaccharide (LPS) administration. Rats were subjected to intravenous injection of LPS, and edaravone was given intraperitoneally after LPS administration daily for 7 consecutive days. LPS treatment rapidly increased lung histopathology abnormalities, coefficient of lung, hydroxyproline and collagen I levels, stimulated myofibroblast differentiation and induced expression of TGF-β1 and activation of TGF-β1/Smad3 signaling as early as day 7 after LPS injection. Moreover, LPS intoxication significantly increased the contents of malondialdehyde (MDA), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), whereas it dramatically decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities from day 1 after LPS treatment. On the contrary, edaravone treatment ameliorated LPS-induced myofibroblast differentiation and pulmonary fibrosis, simultaneously, and attenuated LPS-stimulated oxidative stress and activation of TGF-β1/Smad3 signaling. Collectively, edaravone may attenuate ARDS associated early pulmonary fibrosis through amelioration of oxidative stress and TGF-β1/Smad3 signaling pathway. Edaravone may be a promising drug candidate for the treatment of ARDS-related pulmonary fibrosis in early period. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Experimental pulmonary fibrosis in rats with chronic gastric acid reflux esophagitis.

    Science.gov (United States)

    Shimazu, Rintaro; Aoki, Shigehisa; Kuratomi, Yuichiro

    2015-10-01

    To elucidate the association between gastric acid reflux and respiratory diseases by studying the histological changes of the lower airway in rats with chronic acid reflux esophagitis. An experimental rat model of chronic acid reflux esophagitis was surgically created. The lower airways of these rats were histologically observed for more than 50 weeks. Although there were no histological changes which induced gastric acid reflux at 10 weeks after surgery, thickening of the basal laminae and the proliferation of the collagenous fibers were observed in the alveolar epithelium at 20 weeks after surgery. At 50 weeks after surgery, the collagenous fibers obliterated the pulmonary alveoli and bronchial lumen. These findings observed in the GERD rats are similar to the pathological findings of human pulmonary fibrosis. In this study, we reported pathological changes in the lower airways of GERD rat models observed for more than 50 weeks. These results suggest that gastric acid reflux may be one of the pathogenic or exacerbating factors of pulmonary fibrosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Regional myocardial extraction of a radioiodinated branched chain fatty acid during right ventricular pressure overload due to acute pulmonary hypertension

    International Nuclear Information System (INIS)

    Hurford, W.; Lowenstein, E.; Zapol, W.; Barlai-Kovach, M.; Livni, E.; Elmaleh, D.R.; Strauss, H.W.

    1985-01-01

    To determine whether branched chain fatty acid extraction is reduced during right ventricular (RV) dysfunction due to acute pulmonary artery hypertension, studies were done in 6 anesthetized dogs. Regional branched chain fatty acid extraction was measured by comparing the myocardial uptake of I-125 labeled 15-[p-(iodophenyl)]-3-methylpentadecanoic acid (I-PDA) to myocardial blood flow. Acute pulmonary hypertension was induced by incremental intravenous injection of 100 micron diameter glass beads into six pentobarbital anesthetized, mechanically ventilated dogs. Myocardial blood flow was measured by radiolabeled microspheres both under baseline conditions and during pulmonary hypertension. Mean RV pressure rose from 12 +- 2 (mean +- SEM) to 30 +-3mmHg resulting in a 225 +- 16% increase in RV stroke work. RV ejection fraction, as assessed by gated blood pool scans fell from 39 +- 2 to 18 +- 2%. Left ventricular (LV) pressures, stroke work and ejection fraction were unchanged. Myocardial blood flow increased 132 + 59% in the RV free wall and 67 +- 22% in the RV septum. LV blood flow was unchanged. Despite increased RV work and myocardial blood flow, no differences were noted in the branched chain fatty acid extraction ratios among LV or RV free walls or septum. The authors conclude that early RV dysfunction associated with pulmonary artery hypertension is not due to inadequate myocardial blood flow or branched chain fatty acid extraction

  17. HRCT in the evaluation and diagnosis of the early/active pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Tan Gao; Liu Xueguo; Zhang Qingwen; Wang Ying; Li Zhanjun; Zhang Cuiyun; Wang Jian; He Yanli; Hong Guobin

    2003-01-01

    Objective: To evaluate the HRCT findings of early/active pulmonary tuberculosis before and after antituberculous chemotherapy. Methods: One hundred tuberculous patients were studied prospectively and they were divided into 2 groups according to the history. The diagnosis of early active pulmonary tuberculosis was based on positive acid-fast bacilli in sputum (75 patients) and changes on serial radiographs obtained during treatment (25 patients). The correlation between pathology and imaging was done in the lungs from the cadavers of five other patients who died of pulmonary tuberculosis. Results: Comparing with the presence of other HRCT findings, the presence of centrilobular lesions (93.0%), tree-in-bud appearance (76.0%), and wall thickening of bronchioles (70.0%) were most common signs in both the first group consisting of 66 patients with newly diagnosed pulmonary tuberculosis and the second group consisting of 34 patients with recent reactivation of pulmonary tuberculosis at examination by HRCT, and there was significant difference between the presence of those signs and other signs (P<0.001). Conclusion: Centrilobular lesion appeared to be the most commonly seen characteristic HRCT features of early active tuberculosis, and it may be helpful to the diagnosis and (or ) differential diagnosis if combined with other commonly seen characteristic HRCT features as well as clinical information

  18. Comparative scintigraphy in oleic acid pulmonary microvascular injury

    International Nuclear Information System (INIS)

    Sugerman, H.J.; Hirsch, J.I.; Tatum, J.L.; Strash, A.M.; Sharp, D.E.; Greenfield, L.J.

    1982-01-01

    Computerized gamma scintigraphy revealed a significant (p less than 0.001) rising lung:heart radioactivity ratio, which has been called ''slope of injury'' or ''slope index'', with both 99mTechnetium-tagged human serum albumin (99mTc-HSA) and 99mTechnetium-tagged red blood cells (99Tc-RBC) after 0.05 or 0.2 ml/kg iv oleic acid administration to dogs. This slope index was significantly greater with 99mTc-HSA than 99mTc-RBC (p less than 0.001). These findings verify that the scintigraphic 99mTc-HSA slope of injury is a result of a pulmonary capillary protein leak and not oleic acid induced changes in pulmonary blood or air volume. The leak of red blood cells noted with scintigraphy was confirmed by light microscopy and examination of the tracheal edema fluid. The leak of albumin, however, was much greater than the leak of red blood cells by microscopy and tracheal fluid examination, confirming the scintigraphic data. This study provides further evidence that computerized gamma scintigraphy will be of value for the diagnosis of permeability pulmonary edema and its response to treatment

  19. Pulmonary dysfunction in obese early adolescents

    Directory of Open Access Journals (Sweden)

    Bambang Supriyatno

    2010-08-01

    Full Text Available Aim Obesity leads to various complications, including pulmonary dysfunction. Studies on pulmonary function of obese children are limited and the results are controversial. This study was aimed to determine proportion of pulmonary dysfunction on early adolescents with obesity and to evaluate correlation between obesity degree with pulmonary dysfunction degree.Methods A cross-sectional study was conducted at the Department of Child Health, Medical School, University of Indonesia, from November 2007 to December 2008. Subjects were 10 to 12 year-old adolescents with obesity. Subjects underwent pulmonary function test (PFT to assess FEV1/FVC, FEV1, FVC, V50, and V25.Results 110 subjects fulfilled study criteria, 83 (75.5% were male and 27 (24.5% were female with median BMI 26.7 (22.6-54.7 kg/m2; 92 subjects (83.6% were superobese. History of asthma and allergic rhinitis were found in 32 (29.1% and 46 (41.8% subjects, respectively. 64 (58.2% subjects had abnormal PFT results consisting of restrictive type in 28 (25.5% subjects, obstructive in 3 (2.7%, and combined type in 33 (30%. Mean FEV1, FVC, V50, and V25 values were below normal, while mean FEV1/FVC ratio was normal. There was no statistically significant correlation between BMI and PFT parameters. No significant correlation was found between degree of obesity and the severity of pulmonary dysfunction.Conclusions Pulmonary dysfunction occurs in 58.2% obese early adolescents. The most common abnormality was combined type (30%, followed by restrictive (25.5%, and obstructive type (2.7%. There was no correlation between BMI and pulmonary function test parameters. (Med J Indones 2010;19:179-84Key words: early adolescents, obesity, pulmonary function test

  20. Cardiopulmonary protective effects of the selective FXR agonist obeticholic acid in the rat model of monocrotaline-induced pulmonary hypertension.

    Science.gov (United States)

    Vignozzi, Linda; Morelli, Annamaria; Cellai, Ilaria; Filippi, Sandra; Comeglio, Paolo; Sarchielli, Erica; Maneschi, Elena; Vannelli, Gabriella Barbara; Adorini, Luciano; Maggi, Mario

    2017-01-01

    Farnesoid X receptor (FXR) activation by obeticholic acid (OCA) has been demonstrated to inhibit inflammation and fibrosis development and even induce fibrosis regression in liver, kidney and intestine in multiple disease models. OCA also inhibits liver fibrosis in nonalcoholic steatohepatitis patients. FXR activation has also been demonstrated to suppress the inflammatory response and to promote lung repair after lung injury. This study investigated the effects of OCA treatment (3, 10 or 30mg/kg, daily for 5days a week, for 7 and/or 28 days) on inflammation, tissue remodeling and fibrosis in the monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) rat model. Treatment with OCA attenuated MCT-induced increased pulmonary arterial wall thickness and right ventricular hypertrophy, by i) blunting pathogenic inflammatory mechanisms (downregulation of interleukin 6, IL-6, and monocyte chemoattractant protein-1, MCP-1) and ii) enhancing protective mechanisms counteracting fibrosis and endothelial/mesenchymal transition. MCT-injected rats also showed a marked decrease of pulmonary artery responsiveness to both endothelium-dependent and independent relaxant stimuli, such as acetylcholine and a nitric oxide donor, sodium nitroprusside. Administration of OCA (30mg/kg) normalized this decreased responsiveness. Accordingly, OCA treatment induced profound beneficial effects on lung histology. In particular, both OCA doses markedly reduced the MCT-induced medial wall thickness increase in small pulmonary arteries. To evaluate the objective functional improvement by OCA treatment of MCT-induced PAH, we performed a treadmill test and measured duration of exercise. MCT significantly reduced, and OCA normalized treadmill endurance. Results with OCA were similar, or even superior, to those obtained with tadalafil, a well-established treatment of PAH. In conclusion, OCA treatment demonstrates cardiopulmonary protective effects, modulating lung vascular remodeling, reducing

  1. Role of xanthine oxidase and reactive oxygen intermediates in LPS- and TNF-induced pulmonary edema.

    Science.gov (United States)

    Faggioni, R; Gatti, S; Demitri, M T; Delgado, R; Echtenacher, B; Gnocchi, P; Heremans, H; Ghezzi, P

    1994-03-01

    We studied the role of reactive oxygen intermediates (ROI) in lipopolysaccharide (LPS)-induced pulmonary edema. LPS treatment (600 micrograms/mouse, IP) was associated with a marked induction of the superoxide-generating enzyme xanthine oxidase (XO) in serum and lung. Pretreatment with the antioxidant N-acetylcysteine (NAC)--1 gm/kg orally, 45 minutes before LPS--or with the XO inhibitor allopurinol (AP)--50 mg/kg orally at -1 hour and +3 hours--was protective. On the other hand nonsteroidal antiinflammatory drugs (ibuprofen, indomethacin, and nordihydroguaiaretic acid) were ineffective. These data suggested that XO might be involved in the induction of pulmonary damage by LPS. However, treatment with the interferon inducer polyriboinosylic-polyribocytidylic acid, although inducing XO to the same extent as LPS, did not cause any pulmonary edema, indicating that XO is not sufficient for this toxicity of LPS. To define the possible role of cytokines, we studied the effect of direct administration of LPS (600 micrograms/mouse, IP), tumor necrosis factor (TNF, 2.5 or 50 micrograms/mouse, IV), interleukin-1 (IL-1 beta, 2.5 micrograms/mouse, IV), interferon-gamma (IFN-gamma, 2.5 micrograms/mouse, IV), or their combination at 2.5 micrograms each. In addition to LPS, only TNF at the highest dose induced pulmonary edema 24 hours later. LPS-induced pulmonary edema was partially inhibited by anti-IFN-gamma antibodies but not by anti-TNF antibodies, anti-IL-1 beta antibodies, or IL-1 receptor antagonist (IL-1Ra).

  2. Lysophosphatidic acid generation by pulmonary NKT cell ENPP-2/autotaxin exacerbates hyperoxic lung injury.

    Science.gov (United States)

    Nowak-Machen, Martina; Lange, Martin; Exley, Mark; Wu, Sherry; Usheva, Anny; Robson, Simon C

    2015-12-01

    Hyperoxia is still broadly used in clinical practice in order to assure organ oxygenation in critically ill patients, albeit known toxic effects. In this present study, we hypothesize that lysophosphatidic acid (LPA) mediates NKT cell activation in a mouse model of hyperoxic lung injury. In vitro, pulmonary NKT cells were exposed to hyperoxia for 72 h, and the induction of the ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP-2) was examined and production of lysophosphatidic acid (LPA) was measured. In vivo, animals were exposed to 100 % oxygen for 72 h and lungs and serum were harvested. Pulmonary NKT cells were then incubated with the LPA antagonist Brp-LPA. Animals received BrP-LPA prior to oxygen exposure. Autotaxin (ATX, ENPP-2) was significantly up-regulated on pulmonary NKT cells after hyperoxia (p NKT cells. LPA levels were significantly reduced by incubating NKT cells with LPA-BrP during oxygen exposure (p NKT cell numbers in vivo. BrP-LPA injection significantly improved survival as well as significantly decreased lung injury and lowered pulmonary NKT cell numbers. We conclude that NKT cell-induced hyperoxic lung injury is mediated by pro-inflammatory LPA generation, at least in part, secondary to ENPP-2 up-regulation on pulmonary NKT cells. Being a potent LPA antagonist, BrP-LPA prevents hyperoxia-induced lung injury in vitro and in vivo.

  3. Cyclophosphamide-induced pulmonary toxicity

    International Nuclear Information System (INIS)

    Siemann, D.W.; Macler, L.; Penney, D.P.

    1986-01-01

    Unlike radiation effects, pulmonary toxicity following drug treatments may develop soon after exposure. The dose-response relationship between Cyclophosphamide and lung toxicity was investigated using increased breathing frequency assays used successfully for radiation induced injury. The data indicate that release of protein into the alveolus may play a significant role in Cy induced pulmonary toxicity. Although the mechanism responsible for the increased alveolar protein is as yet not identified, the present findings suggest that therapeutic intervention to inhibit protein release may be an approach to protect the lungs from toxic effects. (UK)

  4. Ginsenoside Rb1 Attenuates Agonist-Induced Contractile Response via Inhibition of Store-Operated Calcium Entry in Pulmonary Arteries of Normal and Pulmonary Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Rui-Xing Wang

    2015-03-01

    Full Text Available Background: Pulmonary hypertension (PH is characterized by sustained vasoconstriction, enhanced vasoreactivity and vascular remodeling, which leads to right heart failure and death. Despite several treatments are available, many forms of PH are still incurable. Ginsenoside Rb1, a principle active ingredient of Panax ginseng, exhibits multiple pharmacological effects on cardiovascular system, and suppresses monocrotaline (MCT-induced right heart hypertrophy. However, its effect on the pulmonary vascular functions related to PH is unknown. Methods: We examined the vasorelaxing effects of ginsenoside Rb1 on endothelin-1 (ET-1 induced contraction of pulmonary arteries (PAs and store-operated Ca2+ entry (SOCE in pulmonary arterial smooth muscle cells (PASMCs from chronic hypoxia (CH and MCT-induced PH. Results: Ginsenoside Rb1 elicited concentration-dependent relaxation of ET-1-induced PA contraction. The vasorelaxing effect was unaffected by nifedipine, but abolished by the SOCE blocker Gd3+. Ginsenoside Rb1 suppressed cyclopiazonic acid (CPA-induced PA contraction, and CPA-activated cation entry and Ca2+ transient in PASMCs. ET-1 and CPA-induced contraction, and CPA-activated cation entry and Ca2+ transients were enhanced in PA and PASMCs of CH and MCT-treated rats; the enhanced responses were abolished by ginsenoside Rb1. Conclusion: Ginsenoside Rb1 attenuates ET-1-induced contractile response via inhibition of SOCE, and it can effectively antagonize the enhanced pulmonary vasoreactivity in PH.

  5. 8,9-Epoxyeicosatrienoic acid analog protects pulmonary artery smooth muscle cells from apoptosis via ROCK pathway

    International Nuclear Information System (INIS)

    Ma, Jun; Zhang, Lei; Li, Shanshan; Liu, Shulin; Ma, Cui; Li, Weiyang; Falck, J.R.; Manthati, Vijay L.; Reddy, D. Sudarshan; Medhora, Meetha; Jacobs, Elizabeth R.; Zhu, Daling

    2010-01-01

    Epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid (AA) catalyzed by cytochrome P450 (CYP), have many essential biologic roles in the cardiovascular system including inhibition of apoptosis in cardiomyocytes. In the present study, we tested the potential of 8,9-EET and derivatives to protect pulmonary artery smooth muscle cells (PASMCs) from starvation induced apoptosis. We found 8,9-epoxy-eicos-11(Z)-enoic acid (8,9-EET analog (214)), but not 8,9-EET, increased cell viability, decreased activation of caspase-3 and caspase-9, and decreased TUNEL-positive cells or nuclear condensation induced by serum deprivation (SD) in PASMCs. These effects were reversed after blocking the Rho-kinase (ROCK) pathway with Y-27632 or HA-1077. Therefore, 8,9-EET analog (214) protects PASMC from serum deprivation-induced apoptosis, mediated at least in part via the ROCK pathway. Serum deprivation of PASMCs resulted in mitochondrial membrane depolarization, decreased expression of Bcl-2 and enhanced expression of Bax, all effects were reversed by 8,9-EET analog (214) in a ROCK dependent manner. Because 8,9-EET and not the 8,9-EET analog (214) protects pulmonary artery endothelial cells (PAECs), these observations suggest the potential to differentially promote apoptosis or survival with 8,9-EET or analogs in pulmonary arteries.

  6. 8,9-Epoxyeicosatrienoic acid analog protects pulmonary artery smooth muscle cells from apoptosis via ROCK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jun; Zhang, Lei; Li, Shanshan [Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081 (China); Liu, Shulin [Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081 (China); Bio-pharmaceutical Key Laboratory of Heilongjiang Province, Harbin 150081 (China); Ma, Cui [Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081 (China); Li, Weiyang [Mudanjiang Medical College, Mudanjiang 157011 (China); Falck, J.R.; Manthati, Vijay L.; Reddy, D. Sudarshan [University of Texas Southwestern Medical Center, Dallas, TX 75390 (United States); Medhora, Meetha; Jacobs, Elizabeth R. [Division of Pulmonary and Critical Care, Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Zhu, Daling, E-mail: dalingz@yahoo.com [Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081 (China); Bio-pharmaceutical Key Laboratory of Heilongjiang Province, Harbin 150081 (China)

    2010-08-15

    Epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid (AA) catalyzed by cytochrome P450 (CYP), have many essential biologic roles in the cardiovascular system including inhibition of apoptosis in cardiomyocytes. In the present study, we tested the potential of 8,9-EET and derivatives to protect pulmonary artery smooth muscle cells (PASMCs) from starvation induced apoptosis. We found 8,9-epoxy-eicos-11(Z)-enoic acid (8,9-EET analog (214)), but not 8,9-EET, increased cell viability, decreased activation of caspase-3 and caspase-9, and decreased TUNEL-positive cells or nuclear condensation induced by serum deprivation (SD) in PASMCs. These effects were reversed after blocking the Rho-kinase (ROCK) pathway with Y-27632 or HA-1077. Therefore, 8,9-EET analog (214) protects PASMC from serum deprivation-induced apoptosis, mediated at least in part via the ROCK pathway. Serum deprivation of PASMCs resulted in mitochondrial membrane depolarization, decreased expression of Bcl-2 and enhanced expression of Bax, all effects were reversed by 8,9-EET analog (214) in a ROCK dependent manner. Because 8,9-EET and not the 8,9-EET analog (214) protects pulmonary artery endothelial cells (PAECs), these observations suggest the potential to differentially promote apoptosis or survival with 8,9-EET or analogs in pulmonary arteries.

  7. Perturbation of bile acid homeostasis is an early pathogenesis event of drug induced liver injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Makoto; Miyake, Manami; Sato, Hiroko; Masutomi, Naoya; Tsutsui, Naohisa [Mitsubishi Tanabe Pharma Corporation, Kisarazu, Chiba 292-0818 (Japan); Adam, Klaus-Peter; Alexander, Danny C.; Lawton, Kay A.; Milburn, Michael V.; Ryals, John A.; Wulff, Jacob E. [Metabolon Inc., 617 Davis Drive, Suite 400, Durham, NC 27713 (United States); Guo, Lining, E-mail: lguo@metabolon.com [Metabolon Inc., 617 Davis Drive, Suite 400, Durham, NC 27713 (United States)

    2013-04-01

    Drug-induced liver injury (DILI) is a significant consideration for drug development. Current preclinical DILI assessment relying on histopathology and clinical chemistry has limitations in sensitivity and discordance with human. To gain insights on DILI pathogenesis and identify potential biomarkers for improved DILI detection, we performed untargeted metabolomic analyses on rats treated with thirteen known hepatotoxins causing various types of DILI: necrosis (acetaminophen, bendazac, cyclosporine A, carbon tetrachloride, ethionine), cholestasis (methapyrilene and naphthylisothiocyanate), steatosis (tetracycline and ticlopidine), and idiosyncratic (carbamazepine, chlorzoxasone, flutamide, and nimesulide) at two doses and two time points. Statistical analysis and pathway mapping of the nearly 1900 metabolites profiled in the plasma, urine, and liver revealed diverse time and dose dependent metabolic cascades leading to DILI by the hepatotoxins. The most consistent change induced by the hepatotoxins, detectable even at the early time point/low dose, was the significant elevations of a panel of bile acids in the plasma and urine, suggesting that DILI impaired hepatic bile acid uptake from the circulation. Furthermore, bile acid amidation in the hepatocytes was altered depending on the severity of the hepatotoxin-induced oxidative stress. The alteration of the bile acids was most evident by the necrosis and cholestasis hepatotoxins, with more subtle effects by the steatosis and idiosyncratic hepatotoxins. Taking together, our data suggest that the perturbation of bile acid homeostasis is an early event of DILI. Upon further validation, selected bile acids in the circulation could be potentially used as sensitive and early DILI preclinical biomarkers. - Highlights: ► We used metabolomics to gain insights on drug induced liver injury (DILI) in rats. ► We profiled rats treated with thirteen hepatotoxins at two doses and two time points. ► The toxins decreased the

  8. Genetics and Early Detection in Idiopathic Pulmonary Fibrosis

    Science.gov (United States)

    Putman, Rachel K.; Rosas, Ivan O.

    2014-01-01

    Genetic studies hold promise in helping to identify patients with early idiopathic pulmonary fibrosis (IPF). Recent studies using chest computed tomograms (CTs) in smokers and in the general population have demonstrated that imaging abnormalities suggestive of an early stage of pulmonary fibrosis are not uncommon and are associated with respiratory symptoms, physical examination abnormalities, and physiologic decrements expected, but less severe than those noted in patients with IPF. Similarly, recent genetic studies have demonstrated strong and replicable associations between a common promoter polymorphism in the mucin 5B gene (MUC5B) and both IPF and the presence of abnormal imaging findings in the general population. Despite these findings, it is important to note that the definition of early-stage IPF remains unclear, limited data exist to definitively connect abnormal imaging findings to IPF, and genetic studies assessing early-stage pulmonary fibrosis remain in their infancy. In this perspective we provide updated information on interstitial lung abnormalities and their connection to IPF. We summarize information on the genetics of pulmonary fibrosis by focusing on the recent genetic findings of MUC5B. Finally, we discuss the implications of these findings and suggest a roadmap for the use of genetics in the detection of early IPF. PMID:24547893

  9. Protective role of gambogic acid in experimental pulmonary fibrosis in vitro and in vivo.

    Science.gov (United States)

    Qu, Yubei; Zhang, Guanghua; Ji, Yunxia; Zhua, Haibo; Lv, Changjun; Jiang, Wanglin

    2016-04-15

    Idiopathic pulmonary fibrosis (IPF) is a progressive disorder with poor prognosis. The treatment options for IPF are very limited. Gambogic acid (GA) has anticancer effect and anti-proliferative activity which is extracted from a dried yellow resin of the Garcinia hanburyi Hook.f. [Clusiaceae (Guttiferae)] in Southeast Asia. However, the anti-fibrotic activities of GA have not been previously investigated. In this study, the effects of GA on TGF-β1-mediated epithelial-mesenchymal transition (EMT) in A549 cells and endothelial-mesenchymal transition (EndoMT) in human pulmonary microvascular endothelial cells (HPMECs), on the proliferation of human lung fibroblasts (HLF-1) were investigated in vitro, and on bleomycin (BLM)-induced pulmonary fibrosis was investigated in vivo. In TGF-β1 stimulated A549 cells, treatment with GA resulted in a reduction of EMT with a decrease in vimentin and p-Smad3 and an increase in E-cadherin instead. In TGF-β1 stimulated HPMECs, treatment with GA resulted in a reduction of EndoMT with a decrease in vimentin, and an increase in VE-cadherin instead. In the hypoxic HPMECs, treatment with GA reduced Vasohibin-2 (VASH-2), whereas increased VASH-1. In TGF-β1 stimulated HLF-1, treatment with GA reduced HLF-1 proliferation with a decrease in platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF-2) expressions. In vivo, treatment with GA for 2 weeks resulted in an amelioration of the BLM-induced pulmonary fibrosis in rats with a lower VASH-2. Instead, it was observed a higher VASH-1 expression at early stage of fibrosis at 1 mg/kg, with reductions of the pathological score, collagen deposition, α-SMA, PDGF and FGF-2 expressions at fibrotic stage at 0.5 mg/kg and 1 mg/kg. In summary, GA reversed EMT and EndoMT, as well as HLF-1 proliferation in vitro and prevented pulmonary fibrosis in vivo by modulating VASH-2/VASH-1 and suppressing the TGF-β1/Smad3 pathway. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Synthesis of phosphatidylcholine in rats with oleic acid-induced pulmonary edema and effect of exogenous pulmonary surfactant on its De Novo synthesis.

    Science.gov (United States)

    Gao, Xiwen; Qian, Peiyu; Cen, Dong; Hong, Weijun; Peng, Qing; Xue, Min

    2018-01-01

    In mammals, oleic acid (OA) induces pulmonary edema (PE), which can initiate acute lung injury (ALI) and lead to acute respiratory distress syndrome (ARDS). Pulmonary surfactant (PS) plays a key role in a broad range of treatments for ARDS. The aim of the present investigation was to assess changes in the synthesis of phosphatidylcholine (PC) from choline and determine the effect of exogenous PS on its de novo synthesis in rats with OA-induced PE. Experimental rats were randomized into three groups, including a control group, OA-induced PE group, and OA-induced group treated with exogenous PS (OA-PS). Twenty-four rats were sacrificed 4 h after induction of the OA model, and tissue was examined by light and electron microscopy to assess the severity of ALI using an established scoring system at the end of the experiment. After 15 μCi 3H-choline chloride was injected intravenously, eight rats in each group were sacrificed at 4, 8, and 16 h. The radioactivity of 3H incorporated into total phospholipid (TPL) and desaturated phosphatidylcholine (DSPC) was measured in bronchoalveolar lavage fluid (BALF) and lung tissue (LT) using a liquid scintillation counter and was expressed as counts per minute (CPM). Results showed that TPL, DSPC, and the ratio of DSPC/total protein (TP) in lung tissue decreased 4 h after challenge with OA, but the levels recovered after 8 and 16 h. At 8 h after injection, 3H-TPL and 3H-DSPC radioactivity in the lungs reached its peak. Importantly, 3H-DSPC CPM were significantly lower in the PS treatment group (LT: Control: 62327 ± 9108; OA-PE: 97315 ± 10083; OA-PS: 45127 ± 10034, P exogenous PS treatments may adversely affect endogenous de novo synthetic and secretory phospholipid pathways via feedback inhibition. This novel finding reveals the specific involvement of exogenous PS in endogenous synthetic and secretory phospholipid pathways during the treatment of ARDS. This information improves our understanding of how PS treatment is

  11. Role of lipoxygenase metabolites of arachidonic acid in enhanced pulmonary artery contractions of female rabbits.

    Science.gov (United States)

    Pfister, Sandra L

    2011-04-01

    Pulmonary arterial hypertension is characterized by elevated pulmonary artery pressure and vascular resistance. In women the incidence is 4-fold greater than that in men. Studies suggest that sustained vasoconstriction is a factor in increased vascular resistance. Possible vasoconstrictor mediators include arachidonic acid-derived lipoxygenase (LO) metabolites. Our studies in rabbits showed enhanced endothelium-dependent contractions to arachidonic acid in pulmonary arteries from females compared with males. Because treatment with a nonspecific LO inhibitor reduced contractions in females but not males, the present study identified which LO isoform contributes to sex-specific pulmonary artery vasoconstriction. The 15- and 5- but not 12-LO protein expressions were greater in females. Basal and A23187-stimulated release of 15-, 5-, and 12-hydroxyeicosatetraenoic acids (HETEs) from females and males were measured by liquid chromatography/mass spectrometry. Only 15-HETE synthesis was greater in females compared with males under both basal and stimulated conditions. Vascular contractions to 15-HETE were enhanced in females compared with males (maximal contraction: 44±6%versus 25±3%). The specific 15-LO inhibitor PD146176 (12 μmol/L) decreased arachidonic acid-induced contractions in females (maximal contraction: 93±4% versus 57±10%). If male pulmonary arteries were incubated with estrogen (1 μmol/L, 18 hours), protein expression of 15-LO and 15-HETE production increased. Mechanisms to explain the increased incidence of pulmonary hypertension in women are not known. Results suggest that the 15-LO pathway is different between females and males and is regulated by estrogen. Understanding this novel sex-specific mechanism may provide insight into the increased incidence of pulmonary hypertension in females.

  12. Carbon monoxide is not responsible for the cigarette smokeinduced changes in the pulmonary metabolism of arachidonic acid and prostaglandin E2

    International Nuclear Information System (INIS)

    Maennistoe, J.; Puustinen, T.; Uotila, P.

    1985-01-01

    Cigarette smoke is known to interfere with the pulmonary metabolism of arachidomic acid and prostaglandin E 2 (PGE 2 ). We investigated the possible role of carbon monoxide in these cigarette smoke-infuced alterations. 4 C-Arachidonic acid (50 nmol) was indused into the pulmonary circulation of isolated perfused hamster lungs and the radioactive metabolites in the perfusion effluent, as well as the distribution of incorporated radioactive arachidonic acid within the lung lipids, were analysed. Carbon monoxide, added into the ventilatory air, had no effect on the oxidative metabolism of arachidonic acid or on the distribution of radioactive arachidonic acid within the lung. In addition, carbon monoxide had no effect on the metabolism of PGE 2 following infusion of 100 nmol of 14 C-PGE 2 into the rat pulmonary circulation. The present study suggests that carbon monoxide is not responsible for the cigarette smoke-induced changes in the pulmonary metabolism of arachidonic acid and PGE 2 . (author)

  13. [Early diagnosis and therapy in pulmonary hypertension--aspects of a vision].

    Science.gov (United States)

    Ewert, R; Olschewski, H; Ghofrani, H A; Opitz, C F

    2013-07-01

    In patients with pulmonary hypertension progressive vascular changes in the lung precede the clinical and hemodynamic manifestations of the disease. Therefore, early diagnosis and timely treatment of the disease are crucial. This has been the topic of an expert meeting in Greifswald, Germany in June 2012. The current definition of pulmonary hypertension requires a mean pulmonary artery pressure ≥ 25 mmHg at rest, a hemodynamic abnormality already reflecting pulmonary vascular changes beyond early disease. There is increasing evidence supporting the concept that a lower pressure threshold at rest or an abnormal pressure response with exercise better characterize early disease. While right heart catheterization at rest remains the diagnostic gold standard other methods for detecting early disease are explored with echocardiography being the most frequently used technique. Targeted therapy has been approved for patients with pulmonary arterial hypertension (PAH, WHO-group I) in functional class II-IV. Preliminary data in functional class I patients suggest therapeutic potential of theses drugs in early disease as well. Current guidelines propose therapeutic goals based on parameters with prognostic importance. However, these recommendations are based on mostly retrospective analyses of pre-treatment data obtained in patients with pulmonary hypertension in functional class II-IV. Therefore, evidence-based therapeutic goals for early interventions in functional class I patients are lacking. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4 Induced Hepatic Fibrosis in Mice.

    Directory of Open Access Journals (Sweden)

    Leola N Chow

    Full Text Available Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM-induced pulmonary fibrosis and carbon tetrachloride (CCl4-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC, the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis.

  15. Salvianolic acid B protects against paraquat-induced pulmonary injury by mediating Nrf2/Nox4 redox balance and TGF-β1/Smad3 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin, E-mail: iamicehe@163.com [Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Logistic University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Cao, Bo, E-mail: caobo19814@126.com [Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Tianjin, 300162 (China); Zhang, Di, E-mail: zhangdibad@163.com [Department of Otorhinolaryngology Head and Neck Surgery, Institute of Otorhinolaryngology, Tianjin First Center Hospital, Tianjin 300192 (China); Xiao, Na [Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Logistic University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Chen, Hong [Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Li, Guo-qiang; Peng, Shou-chun [Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Logistic University of Chinese People' s Armed Police Force, Tianjin 300162 (China); Wei, Lu-qing, E-mail: luqing-wei@163.com [Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Logistic University of Chinese People' s Armed Police Force, Tianjin 300162 (China)

    2016-10-15

    The present study was aimed at exploring the protective effects of Salvianolic acid B (SalB) against paraquat (PQ)-induced lung injury in mice. Lung fibrotic injuries were induced in mice by a single intragastrical administration of 300 mg/kg PQ, then the mice were administrated with 200 mg/kg, 400 mg/kg SalB, 100 mg/kg vitamin C (Vit C) and dexamethasone (DXM) for 14 days. PQ-triggered structure distortion, collagen overproduction, excessive inflammatory infiltration, pro-inflammatory cytokine release, and oxidative stress damages in lung tissues and mortality of mice were attenuated by SalB in a dose-dependent manner. Furthermore, SalB was noted to enhance the expression and nuclear translocation of nuclear factor erythroid 2–related factor 2 (Nrf2) and reduce expression of the reactive oxygen species-generating enzyme Nox4 [NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase-4]. SalB also inhibited the increasing expression of transforming growth factor (TGF)-β1 and the phosphorylation of its downstream target Smad3 which were enhanced by PQ. These results suggest that SalB may exert protective effects against PQ-induced lung injury and pulmonary fibrosis. Its mechanisms involve the mediation of Nrf2/Nox4 redox balance and TGF-β1/Smad3 signaling. - Highlights: • Salvianolic acid B (SalB) reduced Paraquat-induced mortality and pulmonary injury in mice. • SalB has anti-oxidation, anti-inflammatory and anti-fibrogenic effects simultaneously. • Its mechanisms were targeting Nrf2-Nox4 redox balance and TGF-β1/Smad3 signaling.

  16. Salvianolic acid B protects against paraquat-induced pulmonary injury by mediating Nrf2/Nox4 redox balance and TGF-β1/Smad3 signaling

    International Nuclear Information System (INIS)

    Liu, Bin; Cao, Bo; Zhang, Di; Xiao, Na; Chen, Hong; Li, Guo-qiang; Peng, Shou-chun; Wei, Lu-qing

    2016-01-01

    The present study was aimed at exploring the protective effects of Salvianolic acid B (SalB) against paraquat (PQ)-induced lung injury in mice. Lung fibrotic injuries were induced in mice by a single intragastrical administration of 300 mg/kg PQ, then the mice were administrated with 200 mg/kg, 400 mg/kg SalB, 100 mg/kg vitamin C (Vit C) and dexamethasone (DXM) for 14 days. PQ-triggered structure distortion, collagen overproduction, excessive inflammatory infiltration, pro-inflammatory cytokine release, and oxidative stress damages in lung tissues and mortality of mice were attenuated by SalB in a dose-dependent manner. Furthermore, SalB was noted to enhance the expression and nuclear translocation of nuclear factor erythroid 2–related factor 2 (Nrf2) and reduce expression of the reactive oxygen species-generating enzyme Nox4 [NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase-4]. SalB also inhibited the increasing expression of transforming growth factor (TGF)-β1 and the phosphorylation of its downstream target Smad3 which were enhanced by PQ. These results suggest that SalB may exert protective effects against PQ-induced lung injury and pulmonary fibrosis. Its mechanisms involve the mediation of Nrf2/Nox4 redox balance and TGF-β1/Smad3 signaling. - Highlights: • Salvianolic acid B (SalB) reduced Paraquat-induced mortality and pulmonary injury in mice. • SalB has anti-oxidation, anti-inflammatory and anti-fibrogenic effects simultaneously. • Its mechanisms were targeting Nrf2-Nox4 redox balance and TGF-β1/Smad3 signaling.

  17. Cocaine-induced pulmonary changes: HRCT findings

    Directory of Open Access Journals (Sweden)

    Renata Rocha de Almeida

    2015-08-01

    Full Text Available AbstractObjective: To evaluate HRCT scans of the chest in 22 patients with cocaine-induced pulmonary disease.Methods: We included patients between 19 and 52 years of age. The HRCT scans were evaluated by two radiologists independently, discordant results being resolved by consensus. The inclusion criterion was an HRCT scan showing abnormalities that were temporally related to cocaine use, with no other apparent causal factors.Results:In 8 patients (36.4%, the clinical and tomographic findings were consistent with "crack lung", those cases being studied separately. The major HRCT findings in that subgroup of patients included ground-glass opacities, in 100% of the cases; consolidations, in 50%; and the halo sign, in 25%. In 12.5% of the cases, smooth septal thickening, paraseptal emphysema, centrilobular nodules, and the tree-in-bud pattern were identified. Among the remaining 14 patients (63.6%, barotrauma was identified in 3 cases, presenting as pneumomediastinum, pneumothorax, and hemopneumothorax, respectively. Talcosis, characterized as perihilar conglomerate masses, architectural distortion, and emphysema, was diagnosed in 3 patients. Other patterns were found less frequently: organizing pneumonia and bullous emphysema, in 2 patients each; and pulmonary infarction, septic embolism, eosinophilic pneumonia, and cardiogenic pulmonary edema, in 1 patient each.Conclusions: Pulmonary changes induced by cocaine use are varied and nonspecific. The diagnostic suspicion of cocaine-induced pulmonary disease depends, in most of the cases, on a careful drawing of correlations between clinical and radiological findings.

  18. Cocaine-induced pulmonary changes: HRCT findings

    International Nuclear Information System (INIS)

    Almeida, Renata Rocha de; Zanetti, Glaucia; Marchiori, Edson; Souza, Luciana Soares de; Silva, Jorge Luiz Pereira e; Mancano, Alexandre Dias; Nobre, Luiz Felipe; Hochhegger, Bruno; Marchiori, Edson

    2015-01-01

    Objective: To evaluate HRCT scans of the chest in 22 patients with cocaine-induced pulmonary disease. Methods: We included patients between 19 and 52 years of age. The HRCT scans were evaluated by two radiologists independently, discordant results being resolved by consensus. The inclusion criterion was an HRCT scan showing abnormalities that were temporally related to cocaine use, with no other apparent causal factors. Results: In 8 patients (36.4%), the clinical and tomographic findings were consistent with 'crack lung', those cases being studied separately. The major HRCT findings in that subgroup of patients included ground-glass opacities, in 100% of the cases; consolidations, in 50%; and the halo sign, in 25%. In 12.5% of the cases, smooth septal thickening, paraseptal emphysema, centrilobular nodules, and the tree-in-bud pattern were identified. Among the remaining 14 patients (63.6%), barotrauma was identified in 3 cases, presenting as pneumomediastinum, pneumothorax, and hemopneumothorax, respectively. Talcosis, characterized as perihilar conglomerate masses, architectural distortion, and emphysema, was diagnosed in 3 patients. Other patterns were found less frequently: organizing pneumonia and bullous emphysema, in 2 patients each; and pulmonary infarction, septic embolism, eosinophilic pneumonia, and cardiogenic pulmonary edema, in 1 patient each. Conclusions: Pulmonary changes induced by cocaine use are varied and nonspecific. The diagnostic suspicion of cocaine-induced pulmonary disease depends, in most of the cases, on a careful drawing of correlations between clinical and radiological findings. (author)

  19. Cocaine-induced pulmonary changes: HRCT findings

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Renata Rocha de; Zanetti, Glaucia; Marchiori, Edson, E-mail: edmarchiori@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Pos-Graduacao em Radiologia; Souza Junior, Arthur Soares [Faculdade de Medicina de Petropolis, Petropolis, RJ (Brazil); Souza, Luciana Soares de [Ultra-X, Sao Jose do Rio Preto, SP (Brazil); Silva, Jorge Luiz Pereira e [Universidade Federal da Bahia (UFBA), Salvador (Brazil). Dep. de Medicina e Apoio Diagnostico; Escuissato, Dante Luiz [Universidade Federal do Parana (UFPR), Curitiba (Brazil). Dept. de Clinica Medica; Irion, Klaus Loureiro [Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool (United Kingdom); Mancano, Alexandre Dias [Hospital Anchieta, Taguatinga, DF (Brazil); Nobre, Luiz Felipe [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Hochhegger, Bruno [Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, RS (Brazil); Marchiori, Edson [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2015-07-15

    Objective: To evaluate HRCT scans of the chest in 22 patients with cocaine-induced pulmonary disease. Methods: We included patients between 19 and 52 years of age. The HRCT scans were evaluated by two radiologists independently, discordant results being resolved by consensus. The inclusion criterion was an HRCT scan showing abnormalities that were temporally related to cocaine use, with no other apparent causal factors. Results: In 8 patients (36.4%), the clinical and tomographic findings were consistent with 'crack lung', those cases being studied separately. The major HRCT findings in that subgroup of patients included ground-glass opacities, in 100% of the cases; consolidations, in 50%; and the halo sign, in 25%. In 12.5% of the cases, smooth septal thickening, paraseptal emphysema, centrilobular nodules, and the tree-in-bud pattern were identified. Among the remaining 14 patients (63.6%), barotrauma was identified in 3 cases, presenting as pneumomediastinum, pneumothorax, and hemopneumothorax, respectively. Talcosis, characterized as perihilar conglomerate masses, architectural distortion, and emphysema, was diagnosed in 3 patients. Other patterns were found less frequently: organizing pneumonia and bullous emphysema, in 2 patients each; and pulmonary infarction, septic embolism, eosinophilic pneumonia, and cardiogenic pulmonary edema, in 1 patient each. Conclusions: Pulmonary changes induced by cocaine use are varied and nonspecific. The diagnostic suspicion of cocaine-induced pulmonary disease depends, in most of the cases, on a careful drawing of correlations between clinical and radiological findings. (author)

  20. Agmatine attenuates silica-induced pulmonary fibrosis.

    Science.gov (United States)

    El-Agamy, D S; Sharawy, M H; Ammar, E M

    2014-06-01

    There is a large body of evidence that nitric oxide (NO) formation is implicated in mediating silica-induced pulmonary fibrosis. As a reactive free radical, NO may not only contribute to lung parenchymal tissue injury but also has the ability to combine with superoxide and form a highly reactive toxic species peroxynitrite that can induce extensive cellular toxicity in the lung tissues. This study aimed to explore the effect of agmatine, a known NO synthase inhibitor, on silica-induced pulmonary fibrosis in rats. Male Sprague Dawley rats were treated with agmatine for 60 days following a single intranasal instillation of silica suspension (50 mg in 0.1 ml saline/rat). The results revealed that agmatine attenuated silica-induced lung inflammation as it decreased the lung wet/dry weight ratio, protein concentration, and the accumulation of the inflammatory cells in the bronchoalveolar lavage fluid. Agmatine showed antifibrotic activity as it decreased total hydroxyproline content of the lung and reduced silica-mediated lung inflammation and fibrosis in lung histopathological specimen. In addition, agmatine significantly increased superoxide dismutase (p Agmatine also reduced silica-induced overproduction of pulmonary nitrite/nitrate as well as tumor necrosis factor α. Collectively, these results demonstrate the protective effects of agmatine against the silica-induced lung fibrosis that may be attributed to its ability to counteract the NO production, lipid peroxidation, and regulate cytokine effects. © The Author(s) 2014.

  1. Exercise-Induced Pulmonary Edema in a Triathlon

    Directory of Open Access Journals (Sweden)

    Hirotomo Yamanashi

    2015-01-01

    Full Text Available Introduction. Family physicians have more opportunities to attend athletic competitions as medical staff at first-aid centers because of the increasing popularity of endurance sports. Case. A 38-year-old man who participated in a triathlon race experienced difficulty in breathing after swimming and was moved to a first-aid center. His initial oxygen saturation was 82% and a thoracic computed tomography scan showed bilateral ground glass opacity in the peripheral lungs. His diagnosis was noncardiogenic pulmonary edema associated with exercise or swimming: exercise-induced pulmonary edema (EIPE or swimming-induced pulmonary edema (SIPE. Treatment with furosemide and corticosteroid relieved his symptoms of pulmonary edema. Discussion. Noncardiogenic pulmonary edema associated with endurance sports is not common, but knowledge about EIPE/SIPE or neurogenic pulmonary edema associated with hyponatremia, which is called Ayus-Arieff syndrome, is crucial. Knowledge and caution for possible risk factors, such as exposure to cold water or overhydration, are essential for both medical staff and endurance athletes. Conclusion. To determine the presence of pulmonary edema associated with strenuous exercise, oxygen saturation should be used as a screening tool at a first-aid center. To avoid risks for EIPE/SIPE, knowledge about these diseases is essential for medical staff and for athletes who perform extreme exercise.

  2. Gallium accumulation in early pulmonary Pneumocystis carinii infection

    International Nuclear Information System (INIS)

    Stevens, D.A.; Allegra, J.C.

    1986-01-01

    The accumulation of gallium 67 citrate in pulmonary Pneumocystis carinii is well known. The sensitivity of gallium uptake in detecting early inflammatory processes, even when conventional roentgenograms are normal, would seem to make it possible in immunocompromised patients to make a presumptive diagnosis of this serious infection early in its course without using invasive techniques to demonstrate the organism. However, the presence of gallium uptake in radiation pneumonitis, pulmonary drug toxicity, and other processes that also occur in this group limit its usefulness. In our two patients--a young woman with Hodgkin's disease and an elderly woman with small cell lung cancer--this technique proved helpful. Although the latter patient was successfully treated empirically, such empiric treatment should be reserved for patients unable or unwilling to undergo invasive tests. Pulmonary gallium uptake in patients with respiratory symptoms, even with a normal chest film, should prompt attempts to directly demonstrate the organism

  3. Connective tissue growth factor stimulates the proliferation, migration and differentiation of lung fibroblasts during paraquat-induced pulmonary fibrosis.

    Science.gov (United States)

    Yang, Zhizhou; Sun, Zhaorui; Liu, Hongmei; Ren, Yi; Shao, Danbing; Zhang, Wei; Lin, Jinfeng; Wolfram, Joy; Wang, Feng; Nie, Shinan

    2015-07-01

    It is well established that paraquat (PQ) poisoning can cause severe lung injury during the early stages of exposure, finally leading to irreversible pulmonary fibrosis. Connective tissue growth factor (CTGF) is an essential growth factor that is involved in tissue repair and pulmonary fibrogenesis. In the present study, the role of CTGF was examined in a rat model of pulmonary fibrosis induced by PQ poisoning. Histological examination revealed interstitial edema and extensive cellular thickening of interalveolar septa at the early stages of poisoning. At 2 weeks after PQ administration, lung tissue sections exhibited a marked thickening of the alveolar walls with an accumulation of interstitial cells with a fibroblastic appearance. Masson's trichrome staining revealed a patchy distribution of collagen deposition, indicating pulmonary fibrogenesis. Western blot analysis and immunohistochemical staining of tissue samples demonstrated that CTGF expression was significantly upregulated in the PQ-treated group. Similarly, PQ treatment of MRC-5 human lung fibroblast cells caused an increase in CTGF in a dose-dependent manner. Furthermore, the addition of CTGF to MRC-5 cells triggered cellular proliferation and migration. In addition, CTGF induced the differentiation of fibroblasts to myofibroblasts, as was evident from increased expression of α-smooth muscle actin (α-SMA) and collagen. These findings demonstrate that PQ causes increased CTGF expression, which triggers proliferation, migration and differentiation of lung fibroblasts. Therefore, CTGF may be important in PQ-induced pulmonary fibrogenesis, rendering this growth factor a potential pharmacological target for reducing lung injury.

  4. Reduced pulmonary blood flow in regions of injury 2 hours after acid aspiration in rats.

    Science.gov (United States)

    Richter, Torsten; Bergmann, Ralf; Musch, Guido; Pietzsch, Jens; Koch, Thea

    2015-01-01

    Aspiration-induced lung injury can decrease gas exchange and increase mortality. Acute lung injury following acid aspiration is characterized by elevated pulmonary blood flow (PBF) in damaged lung areas in the early inflammation stage. Knowledge of PBF patterns after acid aspiration is important for targeting intravenous treatments. We examined PBF in an experimental model at a later stage (2 hours after injury). Anesthetized Wistar-Unilever rats (n = 5) underwent unilateral endobronchial instillation of hydrochloric acid. The PBF distribution was compared between injured and uninjured sides and with that of untreated control animals (n = 6). Changes in lung density after injury were measured using computed tomography (CT). Regional PBF distribution was determined quantitatively in vivo 2 hours after acid instillation by measuring the concentration of [(68)Ga]-radiolabeled microspheres using positron emission tomography. CT scans revealed increased lung density in areas of acid aspiration. Lung injury was accompanied by impaired gas exchange. Acid aspiration decreased the arterial pressure of oxygen from 157 mmHg [139;165] to 74 mmHg [67;86] at 20 minutes and tended toward restoration to 109 mmHg [69;114] at 110 minutes (P < 0.001). The PBF ratio of the middle region of the injured versus uninjured lungs of the aspiration group (0.86 [0.7;0.9], median [25%;75%]) was significantly lower than the PBF ratio in the left versus right lung of the control group (1.02 [1.0;1.05]; P = 0.016). The PBF pattern 2 hours after aspiration-induced lung injury showed a redistribution of PBF away from injured regions that was likely responsible for the partial recovery from hypoxemia over time. Treatments given intravenously 2 hours after acid-induced lung injury may not preferentially reach the injured lung regions, contrary to what occurs during the first hour of inflammation. Please see related article: http://dx.doi.org/10.1186/s12871-015-0014-z.

  5. Production site of radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Song Liangwen; Cui Xuemei; Gao Yabing; Yang Ruibiao; Xia Guowei; Wang Dewen

    1997-01-01

    Production site development and alterations of early pulmonary fibrosis were studied. Single irradiation was made at right thorax of rats with 0, 15 and 30 Gy of γ-irradiation, respectively. The rats were divided into three groups which were sacrificed 1, 3, 5 months post irradiation. Hydroxyproline in lungs was measured by biochemical method. Pulmonary type I and III collagens were measured by polarization method. Distribution of angiotensin II (A II) in pulmonary tissues was displayed by immunohistochemical method. Extent of pulmonary fibrosis relatively increased with irradiation dose and time elapse after irradiation. Ratio of type I to type III collagens increased with increasing fibrosis. Proliferating collagen fibers mainly came from fibroblasts of pulmonary bronchial and arterial adventitia, and extended into pulmonary parenchyma. Meanwhile, type I collagen substituted for type III collagen in interstitium of pulmonary alveoli. A II was positive for fibroblasts and macrophages in pulmonary interstitium. Irradiation can stimulate fibroblasts in interstitium proliferation, and type I collagen substitutes for type III collagen. Expression and synthesis of A II in interstitium may promote the course of pulmonary fibrosis

  6. Upregulated copper transporters in hypoxia-induced pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Adriana M Zimnicka

    Full Text Available Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX, a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2 also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC. In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness.

  7. Comparison of Thresholds for Pulmonary Capillary Hemorrhage Induced by Pulsed-wave and B-mode Ultrasound

    Science.gov (United States)

    Miller, Douglas L.; Dou, Chunyan; Raghavendran, Krishnan

    Pulsed ultrasound was found to induce pulmonary capillary hemorrhage (PCH) in mice about 25 years ago but remains a poorly understood risk factor for pulmonary diagnostic ultrasound. In early research using laboratory fixed beam ultrasound, thresholds for PCH had frequency variation from 1-4 MHz similar to the Mechanical Index. In recent research, thresholds for B mode diagnostic ultrasound from 1.5-12 MHz had little dependence on frequency. To compare the diagnostic ultrasound method to laboratory pulsed exposure, thresholds for fixed beam ultrasound were determined using comparable methods at 1.5 and 7.5 MHz. PCH thresholds were lower for simple fixed-beam pulse modes than for B mode and in approximate agreement with early research. However, for comparable timing parameters, PCH thresholds had little dependence on ultrasonic frequency. These findings suggest that the MI may not be directly useful as a dosimetric parameter for safety guidance in pulmonary ultrasound.

  8. Dasatinib-induced pulmonary arterial hypertension - A rare late complication.

    Science.gov (United States)

    Ibrahim, Uroosa; Saqib, Amina; Dhar, Vidhya; Odaimi, Marcel

    2018-01-01

    Dasatinib is a dual Src/Abl tyrosine kinase inhibitor approved for frontline and second line treatment of chronic phase chronic myelogenous leukemia. Pulmonary arterial hypertension is defined by an increase in mean pulmonary arterial pressure >25 mmHg at rest. Dasatinib-induced pulmonary hypertension has been reported in less than 1% of patients on chronic dasatinib treatment for chronic myelogenous leukemia. The pulmonary arterial hypertension from dasatinib may be categorized as either group 1 (drug-induced) or group 5 based on various mechanisms that may be involved including the pathogenesis of the disease process of chronic myelogenous leukemia. There have been reports of dasatinib-induced pulmonary arterial hypertension being reversible. We report a case of pulmonary arterial hypertension in a 46-year-old female patient with chronic phase chronic myelogenous leukemia on dasatinib treatment for over 10 years. She had significant improvement in symptoms after discontinuation of dasatinib and initiation of vasodilators. Several clinical questions arise once patients experience significant adverse effects as discussed in our case.

  9. Obaculactone protects against bleomycin-induced pulmonary fibrosis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xingqi; Ouyang, Zijun; You, Qian; He, Shuai; Meng, Qianqian; Hu, Chunhui; Wu, Xudong; Shen, Yan; Sun, Yang, E-mail: yangsun@nju.edu.cn; Wu, Xuefeng, E-mail: wuxf@nju.edu.cn; Xu, Qiang, E-mail: molpharm@163.com

    2016-07-15

    Idiopathic pulmonary fibrosis is a progressive, degenerative and almost irreversible disease. There is hardly an effective cure for lung damage due to pulmonary fibrosis. The purpose of this study was to evaluate the role of obaculactone in an already-assessed model of idiopathic pulmonary fibrosis induced by bleomycin administration. Mice were subjected to intratracheal instillation of bleomycin, and obaculactone was given orally after bleomycin instillation daily for 23 days. Treatment with obaculactone ameliorated body weight loss, lung histopathology abnormalities and pulmonary collagen deposition, with a decrease of the inflammatory cell number and the cytokine level in bronchoalveolar lavage fluid. Moreover, obaculactone inhibited the expression of icam1, vcam1, inos and cox2, and attenuated oxidative stress in bleomycin-treated lungs. Importantly, the production of collagen I and α-SMA in lung tissues as well as the levels of TGF-β1, ALK5, p-Smad2 and p-Smad3 in lung homogenates was also reduced after obaculactone treatment. Finally, the TGF-β1-induced epithelial-mesenchymal transition via Smad-dependent and Smad-independent pathways was reversed by obaculactone. Collectively, these data suggest that obaculactone may be a promising drug candidate for the treatment of idiopathic pulmonary fibrosis. - Highlights: • Obaculactone ameliorates bleomycin-induced pulmonary fibrosis in mice. • Obaculactone mitigates bleomycin-induced inflammatory response in lungs. • Obaculactone exerts inhibitory effects on TGF-β1 signaling and TGF-β1-induced EMT progress.

  10. Obaculactone protects against bleomycin-induced pulmonary fibrosis in mice

    International Nuclear Information System (INIS)

    Wang, Xingqi; Ouyang, Zijun; You, Qian; He, Shuai; Meng, Qianqian; Hu, Chunhui; Wu, Xudong; Shen, Yan; Sun, Yang; Wu, Xuefeng; Xu, Qiang

    2016-01-01

    Idiopathic pulmonary fibrosis is a progressive, degenerative and almost irreversible disease. There is hardly an effective cure for lung damage due to pulmonary fibrosis. The purpose of this study was to evaluate the role of obaculactone in an already-assessed model of idiopathic pulmonary fibrosis induced by bleomycin administration. Mice were subjected to intratracheal instillation of bleomycin, and obaculactone was given orally after bleomycin instillation daily for 23 days. Treatment with obaculactone ameliorated body weight loss, lung histopathology abnormalities and pulmonary collagen deposition, with a decrease of the inflammatory cell number and the cytokine level in bronchoalveolar lavage fluid. Moreover, obaculactone inhibited the expression of icam1, vcam1, inos and cox2, and attenuated oxidative stress in bleomycin-treated lungs. Importantly, the production of collagen I and α-SMA in lung tissues as well as the levels of TGF-β1, ALK5, p-Smad2 and p-Smad3 in lung homogenates was also reduced after obaculactone treatment. Finally, the TGF-β1-induced epithelial-mesenchymal transition via Smad-dependent and Smad-independent pathways was reversed by obaculactone. Collectively, these data suggest that obaculactone may be a promising drug candidate for the treatment of idiopathic pulmonary fibrosis. - Highlights: • Obaculactone ameliorates bleomycin-induced pulmonary fibrosis in mice. • Obaculactone mitigates bleomycin-induced inflammatory response in lungs. • Obaculactone exerts inhibitory effects on TGF-β1 signaling and TGF-β1-induced EMT progress.

  11. Alterations of N-3 polyunsaturated fatty acid-activated K2P channels in hypoxia-induced pulmonary hypertension

    DEFF Research Database (Denmark)

    Nielsen, Gorm; Wandall-Frostholm, Christine; Sadda, Veeranjaneyulu

    2013-01-01

    Polyunsaturated fatty acid (PUFA)-activated two-pore domain potassium channels (K2P ) have been proposed to be expressed in the pulmonary vasculature. However, their physiological or pathophysiological roles are poorly defined. Here, we tested the hypothesis that PUFA-activated K2P are involved...... in pulmonary vasorelaxation and that alterations of channel expression are pathophysiologically linked to pulmonary hypertension. Expression of PUFA-activated K2P in the murine lung was investigated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), by patch...... clamp (PC) and myography. K2P -gene expression was examined in chronic hypoxic mice. qRT-PCR showed that the K2P 2.1 and K2P 6.1 were the predominantly expressed K2P in the murine lung. IHC revealed protein expression of K2P 2.1 and K2P 6.1 in the endothelium of pulmonary arteries and of K2P 6...

  12. Humane metapneumovirus (HMPV) associated pulmonary infections in immunocompromised adults—Initial CT findings, disease course and comparison to respiratory-syncytial-virus (RSV) induced pulmonary infections

    International Nuclear Information System (INIS)

    Syha, R.; Beck, R.; Hetzel, J.; Ketelsen, D.; Grosse, U.; Springer, F.; Horger, M.

    2012-01-01

    Aim: To describe computed tomography (CT)-imaging findings in human metapneumovirus (HMPV)-related pulmonary infection as well as their temporal course and to analyze resemblances/differences to pulmonary infection induced by the closely related respiratory-syncytial-virus (RSV) in immunocompromised patients. Materials and methods: Chest-CT-scans of 10 HMPV PCR-positive patients experiencing pulmonary symptoms were evaluated retrospectively with respect to imaging findings and their distribution and results were then compared with data acquired in 13 patients with RSV pulmonary infection. Subsequently, we analyzed the course of chest-findings in HMPV patients. Results: In HMPV, 8/10 patients showed asymmetric pulmonary findings, whereas 13/13 patients with RSV-pneumonia presented more symmetrical bilateral pulmonary infiltrates. Image analysis yielded in HMPV patients following results: ground-glass-opacity (GGO) (n = 6), parenchymal airspace consolidations (n = 5), ill-defined nodular-like centrilobular opacities (n = 9), bronchial wall thickening (n = 8). In comparison, results in RSV patients were: GGO (n = 10), parenchymal airspace consolidations (n = 9), ill-defined nodular-like centrilobular opacities (n = 10), bronchial wall thickening (n = 4). In the course of the disease, signs of acute HMPV interstitial pneumonia regressed transforming temporarily in part into findings compatible with bronchitis/bronchiolitis. Conclusions: Early chest-CT findings in patients with HMPV-related pulmonary symptoms are compatible with asymmetric acute interstitial pneumonia accompanied by signs of bronchitis; the former transforming with time into bronchitis and bronchiolitis before they resolve. On the contrary, RSV-induced pulmonary infection exhibits mainly symmetric acute interstitial pneumonia.

  13. Humane metapneumovirus (HMPV) associated pulmonary infections in immunocompromised adults—Initial CT findings, disease course and comparison to respiratory-syncytial-virus (RSV) induced pulmonary infections

    Energy Technology Data Exchange (ETDEWEB)

    Syha, R., E-mail: roland.syha@med.uni-tuebingen.de [Department of Diagnostic Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076 Tübingen (Germany); Beck, R. [Institute of Medical Virology, Eberhard-Karls-University, Elfriede-Authorn-Str. 6, 72076 Tübingen (Germany); Hetzel, J. [Department of Medical Oncology and Hematology, Eberhard-Karls-University, Otfried-Müller-Str. 10, 72070 Tübingen (Germany); Ketelsen, D.; Grosse, U.; Springer, F.; Horger, M. [Department of Diagnostic Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str.3, 72076 Tübingen (Germany)

    2012-12-15

    Aim: To describe computed tomography (CT)-imaging findings in human metapneumovirus (HMPV)-related pulmonary infection as well as their temporal course and to analyze resemblances/differences to pulmonary infection induced by the closely related respiratory-syncytial-virus (RSV) in immunocompromised patients. Materials and methods: Chest-CT-scans of 10 HMPV PCR-positive patients experiencing pulmonary symptoms were evaluated retrospectively with respect to imaging findings and their distribution and results were then compared with data acquired in 13 patients with RSV pulmonary infection. Subsequently, we analyzed the course of chest-findings in HMPV patients. Results: In HMPV, 8/10 patients showed asymmetric pulmonary findings, whereas 13/13 patients with RSV-pneumonia presented more symmetrical bilateral pulmonary infiltrates. Image analysis yielded in HMPV patients following results: ground-glass-opacity (GGO) (n = 6), parenchymal airspace consolidations (n = 5), ill-defined nodular-like centrilobular opacities (n = 9), bronchial wall thickening (n = 8). In comparison, results in RSV patients were: GGO (n = 10), parenchymal airspace consolidations (n = 9), ill-defined nodular-like centrilobular opacities (n = 10), bronchial wall thickening (n = 4). In the course of the disease, signs of acute HMPV interstitial pneumonia regressed transforming temporarily in part into findings compatible with bronchitis/bronchiolitis. Conclusions: Early chest-CT findings in patients with HMPV-related pulmonary symptoms are compatible with asymmetric acute interstitial pneumonia accompanied by signs of bronchitis; the former transforming with time into bronchitis and bronchiolitis before they resolve. On the contrary, RSV-induced pulmonary infection exhibits mainly symmetric acute interstitial pneumonia.

  14. Proteome analysis of Radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Song, Jie Young; Lim, Hee Soon; Kim, Hyung Doo; Shim, Ji Young; Han, Young Soo; Son, Hyeog Jin Son; Yun, Yeon Sook

    2005-01-01

    Pulmonary fibrosis is perhaps the most universal late effect of organ damage after both chemical insult and irradiation in the treatment of lung cancer. The use chemotherapy and radiation therapy, alone or combined, can be associated with clinically significant pulmonary toxicity, which leads to pneumonia and pulmonary fibrosis. It is also reported that about 100,000 people in the United States are suffered from pulmonary fibrosis. Therefore, pulmonary fibrosis will be more focused by medicinal researchers. Because current therapies, aimed at inhibiting pulmonary inflammation that often precedes fibrosis, are effective only in a minority of suffered patients, novel therapeutic methods are highly needed. Some researchers have used bleomycininduced pulmonary fibrosis as a basis for looking at the molecular mechanisms of fibrosis, and total gene expression was monitored using genomics method. However, radiation-induced pulmonary fibrosis has not been fully focused and investigated. Here, we have analyzed changes in gene expression in response to γ- irradiation by using proteomic analysis

  15. Maternal-pup interaction disturbances induce long-lasting changes in the newborn rat pulmonary vasculature.

    Science.gov (United States)

    Shifrin, Yulia; Sadeghi, Sina; Pan, Jingyi; Jain, Amish; Fajardo, Andres F; McNamara, Patrick J; Belik, Jaques

    2015-11-15

    The factors accounting for the pathological maintenance of a high pulmonary vascular (PV) resistance postnatally remain elusive, but neonatal stressors may play a role in this process. Cross-fostering in the immediate neonatal period is associated with adult-onset vascular and behavioral changes, likely triggered by early-in-life stressors. In hypothesizing that fostering newborn rats induces long-lasting PV changes, we evaluated them at 14 days of age during adulthood and compared the findings with animals raised by their biological mothers. Fostering resulted in reduced maternal-pup contact time when compared with control newborns. At 2 wk of age, fostered rats exhibited reduced pulmonary arterial endothelium-dependent relaxation secondary to downregulation of tissue endothelial nitric oxide synthase expression and tetrahydrobiopterin deficiency-induced uncoupling. These changes were associated with neonatal onset-increased ANG II receptor type 1 expression, PV remodeling, and right ventricular hypertrophy that persisted into adulthood. The pulmonary arteries of adult-fostered rats exhibited a higher contraction dose response to ANG II and thromboxane A2, the latter of which was abrogated by the oxidant scavenger Tempol. In conclusion, fostering-induced neonatal stress induces long-standing PV changes modulated via the renin-angiotensin system. Copyright © 2015 the American Physiological Society.

  16. IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis.

    Directory of Open Access Journals (Sweden)

    Paméla Gasse

    Full Text Available BACKGROUND: Idiopathic pulmonary fibrosis is a devastating as yet untreatable disease. We demonstrated recently the predominant role of the NLRP3 inflammasome activation and IL-1β expression in the establishment of pulmonary inflammation and fibrosis in mice. METHODS: The contribution of IL-23 or IL-17 in pulmonary inflammation and fibrosis was assessed using the bleomycin model in deficient mice. RESULTS: We show that bleomycin or IL-1β-induced lung injury leads to increased expression of early IL-23p19, and IL-17A or IL-17F expression. Early IL-23p19 and IL-17A, but not IL-17F, and IL-17RA signaling are required for inflammatory response to BLM as shown with gene deficient mice or mice treated with neutralizing antibodies. Using FACS analysis, we show a very early IL-17A and IL-17F expression by RORγt(+ γδ T cells and to a lesser extent by CD4αβ(+ T cells, but not by iNKT cells, 24 hrs after BLM administration. Moreover, IL-23p19 and IL-17A expressions or IL-17RA signaling are necessary to pulmonary TGF-β1 production, collagen deposition and evolution to fibrosis. CONCLUSIONS: Our findings demonstrate the existence of an early IL-1β-IL-23-IL-17A axis leading to pulmonary inflammation and fibrosis and identify innate IL-23 and IL-17A as interesting drug targets for IL-1β driven lung pathology.

  17. Pulmonary epithelial clearance of 99mTc-DTPA after thrombin-induced pulmonary microembolism

    International Nuclear Information System (INIS)

    Cooper, J.A.; Feustel, P.J.; Line, B.R.; Malik, A.B.

    1986-01-01

    We investigated the effect of thrombin-induced pulmonary microembolism on the pulmonary clearance rate of aerosolized 99mTc diethylenetriamine pentaacetic acid (99mTc-DTPA) in awake, chronically prepared sheep. Chest activity was recorded after administration of a 0.44 micron aerosol of 99mTc-DTPA. Decay-corrected data were fit to an exponential and expressed as percent decrease per min (%/min). Sheep were given alpha-thrombin intravenously (80 U/kg for 10 min) 60 min after the aerosol administration. The clearance rate prior to alpha-thrombin was 0.35 +/- 0.05 %/min (mean +/- SEM). During alpha-thrombin administration, the clearance rate increased to 5.84 +/- 0.70 %/min (p less than 0.001 from baseline), but returned to 0.41 +/- 0.06 %/min within 30 min after the end of the thrombin infusion. The increased clearance rate during alpha-thrombin administration was not due to increased lung volume since alpha-thrombin did not change functional residual capacity. Moreover, the clearance rate was unchanged during gamma-thrombin administration, which does not induce coagulation, or during alpha-thrombin challenge in defibrinogenated animals. alpha-thrombin administration in neutrophil-depleted sheep caused a transient increase in DTPA clearance similar to that in control sheep, suggesting that the increase occurred independently of neutrophils. The results indicate that alpha-thrombin causes a large, transient increase in 99mTc-DTPA clearance, which may be the result of increased epithelial permeability. This response is dependent on the activation of intravascular coagulation

  18. Indices allowing early detection of chronic pulmonary emphysema

    International Nuclear Information System (INIS)

    Yamaguchi, Kazuhiro; Soejima, Kenzo; Koda, Eiichi; Mori, Masaaki; Matsubara, Hiroaki; Oguma, Tsuyoshi; Kawamura, Masahumi; Kobayashi, Koichi

    1996-01-01

    To establish criteria allowing early detection of pathologically significant alterations in pulmonary emphysema caused by smoking, pulmonary-function tests and high-resolution computed tomography were done in 104 subjects categorized into three groups: nonsmoking healthy adults, smokers with a normal FEV 1 %, and smokers with a low FEV 1 % (cross-sectional analysis). Fifty-six of the 104 patients underwent pulmonary-function testing and high-resolution computed tomography once per year for 3 years (longitudinal analysis). Cross-sectional and longitudinal analyses showed that abnormalities in functional residual capacity, in single-breath diffusing capacity for carbon monoxide, and in the average tomographic density of sections in the lower lung fields obtained after a deep inspiration could be used to predict whether the disease would reach an advanced stage, even if the patients had no significant symptoms at the time of testing. Relative areas of low-attenuation regions, which were alleged to directly reflect the size of emphysematous areas, appear not to be useful for early detection of pathological emphysema. (author)

  19. Chemotherapy-induced pulmonary hypertension: role of alkylating agents.

    Science.gov (United States)

    Ranchoux, Benoît; Günther, Sven; Quarck, Rozenn; Chaumais, Marie-Camille; Dorfmüller, Peter; Antigny, Fabrice; Dumas, Sébastien J; Raymond, Nicolas; Lau, Edmund; Savale, Laurent; Jaïs, Xavier; Sitbon, Olivier; Simonneau, Gérald; Stenmark, Kurt; Cohen-Kaminsky, Sylvia; Humbert, Marc; Montani, David; Perros, Frédéric

    2015-02-01

    Pulmonary veno-occlusive disease (PVOD) is an uncommon form of pulmonary hypertension (PH) characterized by progressive obstruction of small pulmonary veins and a dismal prognosis. Limited case series have reported a possible association between different chemotherapeutic agents and PVOD. We evaluated the relationship between chemotherapeutic agents and PVOD. Cases of chemotherapy-induced PVOD from the French PH network and literature were reviewed. Consequences of chemotherapy exposure on the pulmonary vasculature and hemodynamics were investigated in three different animal models (mouse, rat, and rabbit). Thirty-seven cases of chemotherapy-associated PVOD were identified in the French PH network and systematic literature analysis. Exposure to alkylating agents was observed in 83.8% of cases, mostly represented by cyclophosphamide (43.2%). In three different animal models, cyclophosphamide was able to induce PH on the basis of hemodynamic, morphological, and biological parameters. In these models, histopathological assessment confirmed significant pulmonary venous involvement highly suggestive of PVOD. Together, clinical data and animal models demonstrated a plausible cause-effect relationship between alkylating agents and PVOD. Clinicians should be aware of this uncommon, but severe, pulmonary vascular complication of alkylating agents. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Chen

    2008-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a progressive lung disease characterized by abnormal cellular responses to cigarette smoke, resulting in tissue destruction and airflow limitation. Autophagy is a degradative process involving lysosomal turnover of cellular components, though its role in human diseases remains unclear.Increased autophagy was observed in lung tissue from COPD patients, as indicated by electron microscopic analysis, as well as by increased activation of autophagic proteins (microtubule-associated protein-1 light chain-3B, LC3B, Atg4, Atg5/12, Atg7. Cigarette smoke extract (CSE is an established model for studying the effects of cigarette smoke exposure in vitro. In human pulmonary epithelial cells, exposure to CSE or histone deacetylase (HDAC inhibitor rapidly induced autophagy. CSE decreased HDAC activity, resulting in increased binding of early growth response-1 (Egr-1 and E2F factors to the autophagy gene LC3B promoter, and increased LC3B expression. Knockdown of E2F-4 or Egr-1 inhibited CSE-induced LC3B expression. Knockdown of Egr-1 also inhibited the expression of Atg4B, a critical factor for LC3B conversion. Inhibition of autophagy by LC3B-knockdown protected epithelial cells from CSE-induced apoptosis. Egr-1(-/- mice, which displayed basal airspace enlargement, resisted cigarette-smoke induced autophagy, apoptosis, and emphysema.We demonstrate a critical role for Egr-1 in promoting autophagy and apoptosis in response to cigarette smoke exposure in vitro and in vivo. The induction of autophagy at early stages of COPD progression suggests novel therapeutic targets for the treatment of cigarette smoke induced lung injury.

  1. Grape seed extract ameliorates bleomycin-induced mouse pulmonary fibrosis.

    Science.gov (United States)

    Liu, Qi; Jiang, Jun-Xia; Liu, Ya-Nan; Ge, Ling-Tian; Guan, Yan; Zhao, Wei; Jia, Yong-Liang; Dong, Xin-Wei; Sun, Yun; Xie, Qiang-Min

    2017-05-05

    Pulmonary fibrosis is common in a variety of inflammatory lung diseases, such as interstitial pneumonia, chronic obstructive pulmonary disease, and silicosis. There is currently no effective clinical drug treatment. It has been reported that grape seed extracts (GSE) has extensive pharmacological effects with minimal toxicity. Although it has been found that GSE can improve the lung collagen deposition and fibrosis pathology induced by bleomycin in rat, its effects on pulmonary function, inflammation, growth factors, matrix metalloproteinases and epithelial-mesenchymal transition remain to be researched. In the present study, we studied whether GSE provided protection against bleomycin (BLM)-induced mouse pulmonary fibrosis. ICR strain mice were treated with BLM in order to establish pulmonary fibrosis models. GSE was given daily via intragastric administration for three weeks starting at one day after intratracheal instillation. GSE at 50 or 100mg/kg significantly reduced BLM-induced inflammatory cells infiltration, proinflammatory factor protein expression, and hydroxyproline in lung tissues, and improved pulmonary function in mice. Additionally, treatment with GSE also significantly impaired BLM-induced increases in lung fibrotic marker expression (collagen type I alpha 1 and fibronectin 1) and decreases in an anti-fibrotic marker (E-cadherin). Further investigation indicated that the possible molecular targets of GSE are matrix metalloproteinases-9 (MMP-9) and TGF-β1, given that treatment with GSE significantly prevented BLM-induced increases in MMP-9 and TGF-β1 expression in the lungs. Together, these results suggest that supplementation with GSE may improve the quality of life of lung fibrosis patients by inhibiting MMP-9 and TGF-β1 expression in the lungs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Upfront triple combination therapy-induced pulmonary edema in a case of pulmonary arterial hypertension associated with Sjogren's syndrome

    Directory of Open Access Journals (Sweden)

    Kimikazu Takeuchi

    Full Text Available Clinical efficacy of combination therapy using vasodilators for pulmonary arterial hypertension (PAH is well established. However, information on its safety are limited. We experienced a case of primary Sjogren's syndrome associated with PAH where the patient developed pulmonary edema immediately after the introduction of upfront triple combination therapy. Although the combination therapy successfully stabilized her pre-shock state, multiple ground glass opacities (GGO emerged. We aborted the dose escalation of epoprostenol and initiated continuous furosemide infusion and noninvasive positive pressure ventilation (NPPV, but this did not prevent an exacerbation of pulmonary edema. Chest computed tomography showing diffuse alveolar infiltrates without inter-lobular septal thickening suggests the pulmonary edema was unlikely due to cardiogenic pulmonary edema and pulmonary venous occlusive disease. Acute respiratory distress syndrome was also denied from no remarkable inflammatory sign and negative results of drug-induced lymphocyte stimulation tests (DLST. We diagnosed the etiological mechanism as pulmonary vasodilator-induced trans-capillary fluid leakage. Following steroid pulse therapy dramatically improved GGO. We realized that overmuch dose escalation of epoprostenol on the top of dual upfront combination poses the risk of pulmonary edema. Steroid pulse therapy might be effective in cases of vasodilator-induced pulmonary edema in Sjogren's syndrome associated with PAH. Keywords: Steroid therapy, Ground glass opacity, Inter-lobular septal thickening, Epoprostenol, Acute respiratory distress syndrome, Trans-capillary fluid leakage

  3. The Curious Question of Exercise-Induced Pulmonary Edema

    Directory of Open Access Journals (Sweden)

    Melissa L. Bates

    2011-01-01

    Full Text Available The question of whether pulmonary edema develops during exercise on land is controversial. Yet, the development of pulmonary edema during swimming and diving is well established. This paper addresses the current controversies that exist in the field of exercise-induced pulmonary edema on land and with water immersion. It also discusses the mechanisms by which pulmonary edema can develop during land exercise, swimming, and diving and the current gaps in knowledge that exist. Finally, this paper discusses how these fields can continue to advance and the areas where clinical knowledge is lacking.

  4. Early pulmonary response is critical for extra-pulmonary carbon nanoparticle mediated effects: comparison of inhalation versus intra-arterial infusion exposures in mice.

    Science.gov (United States)

    Ganguly, Koustav; Ettehadieh, Dariusch; Upadhyay, Swapna; Takenaka, Shinji; Adler, Thure; Karg, Erwin; Krombach, Fritz; Kreyling, Wolfgang G; Schulz, Holger; Schmid, Otmar; Stoeger, Tobias

    2017-06-20

    The death toll associated with inhaled ambient particulate matter (PM) is attributed mainly to cardio-vascular rather than pulmonary effects. However, it is unclear whether the key event for cardiovascular impairment is particle translocation from lung to circulation (direct effect) or indirect effects due to pulmonary particle-cell interactions. In this work, we addressed this issue by exposing healthy mice via inhalation and intra-arterial infusion (IAI) to carbon nanoparticles (CNP) as surrogate for soot, a major constituent of (ultrafine) urban PM. Equivalent surface area CNP doses in the blood (30mm 2 per animal) were applied by IAI or inhalation (lung-deposited dose 10,000mm 2 ; accounting for 0.3% of lung-to-blood CNP translocation). Mice were analyzed for changes in hematology and molecular markers of endothelial/epithelial dysfunction, pro-inflammatory reactions, oxidative stress, and coagulation in lungs and extra-pulmonary organs after CNP inhalation (4 h and 24 h) and CNP infusion (4 h). For methodological reasons, we used two different CNP types (spark-discharge and Printex90), with very similar physicochemical properties [≥98 and ≥95% elemental carbon; 10 and 14 nm primary particle diameter; and 800 and 300 m 2 /g specific surface area] for inhalation and IAI respectively. Mild pulmonary inflammatory responses and significant systemic effects were observed following 4 h and 24 h CNP inhalation. Increased retention of activated leukocytes, secondary thrombocytosis, and pro-inflammatory responses in secondary organs were detected following 4 h and 24 h of CNP inhalation only. Interestingly, among the investigated extra-pulmonary tissues (i.e. aorta, heart, and liver); aorta revealed as the most susceptible extra-pulmonary target following inhalation exposure. Bypassing the lungs by IAI however did not induce any extra-pulmonary effects at 4 h as compared to inhalation. Our findings indicate that extra-pulmonary effects due to CNP

  5. Circulating microparticles in severe pulmonary arterial hypertension increase intercellular adhesion molecule-1 expression selectively in pulmonary artery endothelium

    Directory of Open Access Journals (Sweden)

    Leslie A. Blair

    2016-10-01

    Full Text Available Abstract Background Microparticles (MPs stimulate inflammatory adhesion molecule expression in systemic vascular diseases, however it is unknown whether circulating MPs stimulate localized ICAM-1 expression in the heterogeneically distinct pulmonary endothelium during pulmonary arterial hypertension (PAH. Pulmonary vascular lesions with infiltrating inflammatory cells in PAH form in the pulmonary arteries and arterioles, but not the microcirculation. Therefore, we sought to determine whether circulating MPs from PAH stimulate pulmonary artery endothelial cell-selective ICAM-1 expression. Results Pulmonary artery endothelial cells (PAECs were exposed to MPs isolated from the circulation of a rat model of severe PAH. During late-stage (8-weeks PAH, but not early-stage (3-weeks, an increase in ICAM-1 was observed. To determine whether PAH MP-induced ICAM-1 was selective for a specific segment of the pulmonary circulation, pulmonary microvascular endothelial cells (PMVECs were exposed to late-stage PAH MPs and no increase in ICAM-1 was detected. A select population of circulating MPs, the late-stage endoglin + MPs, were used to assess their ability to stimulate ICAM-1 and it was determined that the endoglin + MPs were sufficient to promote ICAM-1 increases in the whole cell, but not surface only expression. Conclusions Late-stage, but not early-stage, MPs in a model of severe PAH selectively induce ICAM-1 in pulmonary artery endothelium, but not pulmonary microcirculation. Further, the selected endoglin + PAH MPs, but not endoglin + MPs from control, are sufficient to promote whole cell ICAM-1 in PAECs. The implications of this work are that MPs in late-stage PAH are capable of inducing ICAM-1 expression selectively in the pulmonary artery. ICAM-1 likely plays a significant role in the observed inflammatory cell recruitment, specifically to vascular lesions in the pulmonary artery and not the pulmonary microcirculation.

  6. Effect of acid suppression therapy on gastroesophageal reflux and cough in idiopathic pulmonary fibrosis: an intervention study.

    Science.gov (United States)

    Kilduff, Claire E; Counter, Melanie J; Thomas, Gareth A; Harrison, Nicholas K; Hope-Gill, Benjamin D

    2014-01-01

    Chronic cough affects more than 70 percent of patients with Idiopathic Pulmonary Fibrosis and causes significant morbidity. Gastroesophageal reflux is the cause of some cases of chronic cough; and also has a postulated role in the aetiology of Idiopathic Pulmonary Fibrosis. A high prevalence of acid; and more recently non-acid, reflux has been observed in Idiopathic Pulmonary Fibrosis cohorts. Therefore, gastroesophageal reflux may be implicated in the pathogenesis of cough in Idiopathic Pulmonary Fibrosis. Eighteen subjects with Idiopathic Pulmonary Fibrosis underwent 24-hour oesophageal impedance and cough count monitoring after the careful exclusion of causes of chronic cough other than gastroesophageal reflux. All 18 were then treated with high dose acid suppression therapies. Fourteen subjects underwent repeat 24-hour oesophageal impedance and cough count monitoring after eight weeks. Total reflux and acid reflux frequencies were within the normal range in the majority of this cohort. The frequencies of non-acid and proximal reflux events were above the normal range. Following high dose acid suppression therapy there was a significant decrease in the number of acid reflux events (p = 0.02), but an increase in the number of non-acid reflux events (p = 0.01). There was no change in cough frequency (p = 0.70). This study confirms that non-acid reflux is prevalent; and that proximal oesophageal reflux occurs in the majority, of subjects with Idiopathic Pulmonary Fibrosis. It is the first study to investigate the effect of acid suppression therapy on gastroesophageal reflux and cough in patients with Idiopathic Pulmonary Fibrosis. The observation that cough frequency does not improve despite verifiable reductions in oesophageal acid exposure challenges the role of acid reflux in Idiopathic Pulmonary Fibrosis associated cough. The finding that non-acid reflux is increased following the use of acid suppression therapies cautions against the widespread use

  7. Manganese (II) induces chemical hypoxia by inhibiting HIF-prolyl hydroxylase: Implication in manganese-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Han, Jeongoh; Lee, Jong-Suk; Choi, Daekyu; Lee, Youna; Hong, Sungchae; Choi, Jungyun; Han, Songyi; Ko, Yujin; Kim, Jung-Ae; Mi Kim, Young; Jung, Yunjin

    2009-01-01

    Manganese (II), a transition metal, causes pulmonary inflammation upon environmental or occupational inhalation in excess. We investigated a potential molecular mechanism underlying manganese-induced pulmonary inflammation. Manganese (II) delayed HIF-1α protein disappearance, which occurred by inhibiting HIF-prolyl hydroxylase (HPH), the key enzyme for HIF-1α hydroxylation and subsequent von Hippel-Lindau(VHL)-dependent HIF-1α degradation. HPH inhibition by manganese (II) was neutralized significantly by elevated dose of iron. Consistent with this, the induction of cellular HIF-1α protein by manganese (II) was abolished by pretreatment with iron. Manganese (II) induced the HIF-1 target gene involved in pulmonary inflammation, vascular endothelial growth factor (VEGF), in lung carcinoma cell lines. The induction of VEGF was dependent on HIF-1. Manganese-induced VEGF promoted tube formation of HUVEC. Taken together, these data suggest that HIF-1 may be a potential mediator of manganese-induced pulmonary inflammation

  8. Hyperthyroidism enhances 5-HT-induced contraction of the rat pulmonary artery: role of calcium-activated chloride channel activation.

    Science.gov (United States)

    Oriowo, Mabayoje A; Oommen, Elsie; Khan, Islam

    2011-11-01

    Experimentally-induced hyperthyroidism in rodents is associated with signs and symptoms of pulmonary hypertension. The main objective of the present study was to investigate the effect of thyroxine-induced pulmonary hypertension on the contractile response of the pulmonary artery to 5-HT and the possible underlying signaling pathway. 5-HT concentration-dependently contracted artery segments from control and thyroxine-treated rats with pD(2) values of 5.04 ± 0.19 and 5.34 ± 0.14, respectively. The maximum response was significantly greater in artery segments from thyroxine-treated rats. Neither BW 723C86 (5-HT(2B)-receptor agonist) nor CP 93129 (5-HT(1B)-receptor agonist) contracted ring segments of the pulmonary artery from control and thyroxine-treated rats at concentrations up to 10(-4)M. There was no significant difference in the level of expression of 5-HT(2A)-receptor protein between the two groups. Ketanserin (3 × 10(-8)M) produced a rightward shift of the concentration-response curve to 5-HT in both groups with equal potency (-logK(B) values were 8.1 ± 0.2 and 7.9 ± 0.1 in control and thyroxine-treated rats, respectively). Nifedipine (10(-6)M) inhibited 5-HT-induced contractions in artery segments from control and thyroxine-treated rats and was more effective against 5-HT-induced contraction in artery segments for thyroxine-treated rats. The calcium-activated chloride channel blocker, niflumic acid (10(-4)M) also inhibited 5-HT-induced contractions in artery segments from control and thyroxine-treated rats and was more effective against 5-HT-induced contraction in artery segments for thyroxine-treated rats. It was concluded that hyperthyroidism enhanced 5-HT-induced contractions of the rat pulmonary artery by a mechanism involving increased activity of calcium-activated chloride channels. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    International Nuclear Information System (INIS)

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic

  10. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  11. Antioxidant mechanism of Rutin on hypoxia-induced pulmonary arterial cell proliferation.

    Science.gov (United States)

    Li, Qian; Qiu, Yanli; Mao, Min; Lv, Jinying; Zhang, Lixin; Li, Shuzhen; Li, Xia; Zheng, Xiaodong

    2014-11-18

    Reactive oxygen species (ROS) are involved in the pathologic process of pulmonary arterial hypertension as either mediators or inducers. Rutin is a type of flavonoid which exhibits significant scavenging properties on oxygen radicals both in vitro and in vivo. In this study, we proposed that rutin attenuated hypoxia-induced pulmonary artery smooth muscle cell (PASMC) proliferation by scavenging ROS. Immunofluorescence data showed that rutin decreased the production of ROS, which was mainly generated through mitochondria and NADPH oxidase 4 (Nox4) in pulmonary artery endothelial cells (PAECs). Western blot results provided further evidence on rutin increasing expression of Nox4 and hypoxia-inducible factor-1α (HIF-1α). Moreover, cell cycle analysis by flow cytometry indicated that proliferation of PASMCs triggered by hypoxia was also repressed by rutin. However, N-acetyl-L-cysteine (NAC), a scavenger of ROS, abolished or diminished the capability of rutin in repressing hypoxia-induced cell proliferation. These data suggest that rutin shows a potential benefit against the development of hypoxic pulmonary arterial hypertension by inhibiting ROS, subsequently preventing hypoxia-induced PASMC proliferation.

  12. Antioxidant Mechanism of Rutin on Hypoxia-Induced Pulmonary Arterial Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Qian Li

    2014-11-01

    Full Text Available Reactive oxygen species (ROS are involved in the pathologic process of pulmonary arterial hypertension as either mediators or inducers. Rutin is a type of flavonoid which exhibits significant scavenging properties on oxygen radicals both in vitro and in vivo. In this study, we proposed that rutin attenuated hypoxia-induced pulmonary artery smooth muscle cell (PASMC proliferation by scavenging ROS. Immunofluorescence data showed that rutin decreased the production of ROS, which was mainly generated through mitochondria and NADPH oxidase 4 (Nox4 in pulmonary artery endothelial cells (PAECs. Western blot results provided further evidence on rutin increasing expression of Nox4 and hypoxia-inducible factor-1α (HIF-1α. Moreover, cell cycle analysis by flow cytometry indicated that proliferation of PASMCs triggered by hypoxia was also repressed by rutin. However, N-acetyl-L-cysteine (NAC, a scavenger of ROS, abolished or diminished the capability of rutin in repressing hypoxia-induced cell proliferation. These data suggest that rutin shows a potential benefit against the development of hypoxic pulmonary arterial hypertension by inhibiting ROS, subsequently preventing hypoxia-induced PASMC proliferation.

  13. Early detection of interstitial pneumonia by WXGa-citrate scintigraphy. Cases of abnormal pulmonary WXGa uptake with normal chest radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Shinsaku; Mikami, Riichiro; Ryujin, Yoshitada

    1985-04-01

    In this paper we report our recent experience indicating usefulness of WXGa-citrate scintigraphy in 4 cases with inflammatory pulmonary diseases. These cases showed abnormal pulmonary WXGa uptake with normal chest radiographs. The first case with malignant lymphoma and the second one with lung cancer suffered from pulmonary infection following secondary immuno-insufficiency due to radiotherapy and chemotherapy. Pneumocystis carinii was suspected as causative agent in the first case, and gram negative bacilli in the second case. The third case with lung cancer developed radiation pneumonia after radiotherapy. The fourth case with acute bronchitis developed drug induced interstitial pneumonia presumably due to minocycline administration. It is concluded that WXGa-citrate scintigraphy is more sensitive for early detection of interstitial pneumonia than routine chest radiography.

  14. Bosutinib induced pleural effusions: Case report and review of tyrosine kinase inhibitors induced pulmonary toxicity

    Directory of Open Access Journals (Sweden)

    Natalia I. Moguillansky, MD

    2017-01-01

    Full Text Available Tyrosine kinase inhibitors are known to cause pulmonary complications. We report a case of bosutinib related bilateral pleural effusions in a patient with chronic myeloid leukemia. Characteristics of the pleural fluid are presented. We also discuss other tyrosine kinase inhibitors induced pulmonary toxicities, including pulmonary hypertension and interstitial lung disease.

  15. Pulmonary decompression sickness at altitude: early symptoms and circulating gas emboli

    Science.gov (United States)

    Balldin, Ulf I.; Pilmanis, Andrew A.; Webb, James T.

    2002-01-01

    INTRODUCTION: Pulmonary altitude decompression sickness (DCS) is a rare condition. 'Chokes' which are characterized by the triad of substernal pain, cough, and dyspnea, are considered to be associated with severe accumulation of gas bubbles in the pulmonary capillaries and may rapidly develop into a life-threatening medical emergency. This study was aimed at characterizing early symptomatology and the appearance of venous gas emboli (VGE). METHODS: Symptoms of simulated-altitude DCS and VGE (with echo-imaging ultrasound) were analyzed in 468 subjects who participated in 22 high altitude hypobaric chamber research protocols from 1983 to 2001 at Brooks Air Force Base, TX. RESULTS: Of 2525 subject-exposures to simulated altitude, 1030 (41%) had symptoms of DCS. Only 29 of those included DCS-related pulmonary symptoms. Of these, only 3 subjects had all three pulmonary symptoms of chokes; 9 subjects had two of the pulmonary symptoms; and 17 subjects had only one. Of the 29 subject-exposures with pulmonary symptoms, 27 had VGE and 21 had severe VGE. The mean onset times of VGE and symptoms in the 29 subject-exposures were 42 +/- 30 min and 109 +/- 61 min, respectively. In 15 subjects, the symptoms disappeared during recompression to ground level followed by 2 h of oxygen breathing. In the remaining 14 cases, the symptoms disappeared with immediate hyperbaric oxygen treatment. CONCLUSIONS: Pulmonary altitude DCS or chokes is confirmed to be a rare condition. Our data showed that when diagnosed early, recompression to ground level pressure and/or hyperbaric oxygen treatment was 100% successful in resolving the symptoms.

  16. Early Treatment of radiation-Induced Heart Damage in Rats by Caffeic acid phenethyl Ester

    International Nuclear Information System (INIS)

    Tawfik, S.S.; Mansour, H. H.

    2012-12-01

    The study designed to determine the therapeutic effect of caffeic acid phenethyl ester (CAPE) in minimising radiation-induced injuries in rats. Rats were exposed to 7 Gy γ-rays, 30 minutes later; rats were injected with CAPE (10μmol/ kg body, i.p.) for 7 consecutive days. Rats were sacrificed at 8 and 15 days after starting the experiment. Gamma-irradiation induced significant increase in malonaldehyde (MDA) level and xanthine oxidase (XO) and adenosine deaminase (ADA) activities, and significant decrease in total nitrate/nitrate (NO (x)) level and glutathione peroxidise (Gpx), superoxide dismutase (SOD)and catalase (CAT) activities in heart tissue and augmented activities of lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and aspartate transaminase (AST) in serum. Irradiated rats early treated with CAPE showed significant decrease in MDA, XO and ADA and significant increase in group. Cardiac enzymes were restored. Conclusion, CAPE could exhibits curable effect on gamma irradiation-induced cardiac-oxidative impairment in rats. (Author)

  17. Role of Lipoxygenase Metabolites of Arachidonic Acid in Enhanced Pulmonary Artery Contractions of Female Rabbits

    OpenAIRE

    Pfister, Sandra L.

    2011-01-01

    Pulmonary arterial hypertension is characterized by elevated pulmonary artery pressure and vascular resistance. In women the incidence is 4 fold greater than that in men. Studies suggest sustained vasoconstriction is a factor in increased vascular resistance. Possible vasoconstrictor mediators include arachidonic acid-derived lipoxygenase metabolites. Our studies in rabbits showed enhanced endothelium-dependent contractions to arachidonic acid in pulmonary arteries from females compared to ma...

  18. Drug-induced pulmonary arterial hypertension: a recent outbreak

    Directory of Open Access Journals (Sweden)

    Gérald Simonneau

    2013-09-01

    Full Text Available Pulmonary arterial hypertension (PAH is a rare disorder characterised by progressive obliteration of the pulmonary microvasculature resulting in elevated pulmonary vascular resistance and premature death. According to the current classification PAH can be associated with exposure to certain drugs or toxins, particularly to appetite suppressant intake drugs, such as aminorex, fenfluramine derivatives and benfluorex. These drugs have been confirmed to be risk factors for PAH and were withdrawn from the market. The supposed mechanism is an increase in serotonin levels, which was demonstrated to act as a growth factor for the pulmonary artery smooth muscle cells. Amphetamines, phentermine and mazindol were less frequently used, but are considered possible risk factors, for PAH. Dasatinib, dual Src/Abl kinase inhibitor, used in the treatment of chronic myelogenous leukaemia was associated with cases of severe PAH, potentially in part reversible after dasatinib withdrawal. Recently, several studies have raised the issue of potential endothelial dysfunction that could be induced by interferon, and a few cases of PAH have been reported with interferon therapy. PAH remains a rare complication of these drugs, suggesting possible individual susceptibility, and further studies are needed to identify patients at risk of drug-induced PAH.

  19. Role of secretory phospholipase A(2) in rhythmic contraction of pulmonary arteries of rats with monocrotaline-induced pulmonary arterial hypertension.

    Science.gov (United States)

    Tanabe, Yoshiyuki; Saito-Tanji, Maki; Morikawa, Yuki; Kamataki, Akihisa; Sawai, Takashi; Nakayama, Koichi

    2012-01-01

    Excessive stretching of the vascular wall in accordance with pulmonary arterial hypertension (PAH) induces a variety of pathogenic cellular events in the pulmonary arteries. We previously reported that indoxam, a selective inhibitor for secretory phospholipase A(2) (sPLA(2)), blocked the stretch-induced contraction of rabbit pulmonary arteries by inhibition of untransformed prostaglandin H(2) (PGH(2)) production. The present study was undertaken to investigate involvement of sPLA(2) and untransformed PGH(2) in the enhanced contractility of pulmonary arteries of experimental PAH in rats. Among all the known isoforms of sPLA(2), sPLA(2)-X transcript was most significantly augmented in the pulmonary arteries of rats with monocrotaline-induced pulmonary hypertension (MCT-PHR). The pulmonary arteries of MCT-PHR frequently showed two types of spontaneous contraction in response to stretch; 27% showed rhythmic contraction, which was sensitive to indoxam and SC-560 (selective COX-1 inhibitor), but less sensitive to NS-398 (selective COX-2 inhibitor); and 47% showed sustained incremental tension (tonic contraction), which was insensitive to indoxam and SC-560, but sensitive to NS-398 and was attenuated to 45% of the control. Only the rhythmically contracting pulmonary arteries of MCT-PHR produced a substantial amount of untransformed PGH(2), which was abolished by indoxam. These results suggest that sPLA(2)-mediated PGH(2) synthesis plays an important role in the rhythmic contraction of pulmonary arteries of MCT-PHR.

  20. Diesel exhaust induced pulmonary and cardiovascular impairment: The role of hypertension intervention

    Energy Technology Data Exchange (ETDEWEB)

    Kodavanti, Urmila P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States); Thomas, Ronald F.; Ledbetter, Allen D.; Schladweiler, Mette C.; Bass, Virginia; Krantz, Q. Todd; King, Charly [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States); Nyska, Abraham [Tel Aviv University, Tel Aviv (Israel); Richards, Judy E. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States); Andrews, Debora [Research Core Unit, NHEERL, ORD, U.S. EPA, Research Triangle Park, NC 27711 (United States); Gilmour, M. Ian [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory (NHEERL), Office of Research and Development (ORD), U.S. Environmental Protection Agency - EPA, Research Triangle Park, NC 27711 (United States)

    2013-04-15

    Exposure to diesel exhaust (DE) and associated gases is linked to cardiovascular impairments; however, the susceptibility of hypertensive individuals is poorly understood. The objectives of this study were (1) to determine cardiopulmonary effects of gas-phase versus whole-DE and (2) to examine the contribution of systemic hypertension in pulmonary and cardiovascular effects. Male Wistar Kyoto (WKY) rats were treated with hydralazine to reduce blood pressure (BP) or L-NAME to increase BP. Spontaneously hypertensive (SH) rats were treated with hydralazine to reduce BP. Control and drug-pretreated rats were exposed to air, particle-filtered exhaust (gas), or whole DE (1500 μg/m{sup 3}), 4 h/day for 2 days or 5 days/week for 4 weeks. Acute and 4-week gas and DE exposures increased neutrophils and γ-glutamyl transferase (γ-GT) activity in lavage fluid of WKY and SH rats. DE (4 weeks) caused pulmonary albumin leakage and inflammation in SH rats. Two-day DE increased serum fatty acid binding protein-3 (FABP-3) in WKY. Marked increases occurred in aortic mRNA after 4-week DE in SH (eNOS, TF, tPA, TNF-α, MMP-2, RAGE, and HMGB-1). Hydralazine decreased BP in SH while L-NAME tended to increase BP in WKY; however, neither changed inflammation nor BALF γ-GT. DE-induced and baseline BALF albumin leakage was reduced by hydralazine in SH rats and increased by L-NAME in WKY rats. Hydralazine pretreatment reversed DE-induced TF, tPA, TNF-α, and MMP-2 expression but not eNOS, RAGE, and HMGB-1. ET-1 was decreased by HYD. In conclusion, antihypertensive drug treatment reduces gas and DE-induced pulmonary protein leakage and expression of vascular atherogenic markers. - Highlights: ► Acute diesel exhaust exposure induces pulmonary inflammation in healthy rats. ► In hypertensive rats diesel exhaust effects are seen only after long term exposure. ► Normalizing blood pressure reverses lung protein leakage caused by diesel exhaust. ► Normalizing blood pressure reverses

  1. Drug-induced Pulmonary Fibrosis

    International Nuclear Information System (INIS)

    Daba, Mohammad H.; Al-Arifi, Mohammad N; Gubar, Othman A.; El-Tahir, Kamal E.

    2004-01-01

    Pulmonary fibrosis is characterized by the accumulation of excessive connective tissue in the lungs. Its causes include chronic administration of some drugs for example bleomycin, cyclophosphamide, amiodarone, procainamide, penicillamine, gold and nitrofurantoin; exposure to certain environmental factors such as gases, asbestos and silica and bacterial or fungal infections. Some systemic diseases also predispose to the disease for example rheumatoid arthritis and systemic lupus erythematosus. The disease is associated with release of oxygen radicals and some mediators such as tumor necrosis factor-alpha TNF-alpha, transforming growth factor-beta Tbgf-beta, PDGF, If-I, Et-I and interleukins 1, 4, 8 and 13. The symptoms of the disease include dyspne a, non-productive cough, fever and damage to the lung cells. It is diagnosed with the aid of chest radiography, high resolution computed tomographic scanning and the result of pulmonary function tests. Drug-induced pulmonary fibrosis may involve release of free oxygen radicals and various cytokines for example Il-I beta and TNF-alpha via activation of nuclear transcription factor Nf-beta as in the case of bleomycin and mitomycin or via release of TGF-beta as in case of tamoxifen or via inhibition of macrophages and lymphocytes phospholipases as in the case of amiodarone with the resultant accumulation of phospholipids and reduction of the immune system. (author)

  2. Rosmarinic acid potentiates carnosic acid induced apoptosis in lung fibroblasts.

    Directory of Open Access Journals (Sweden)

    Sana Bahri

    Full Text Available Pulmonary fibrosis is characterized by over-population and excessive activation of fibroblasts and myofibroblasts disrupting normal lung structure and functioning. Rosemary extract rich in carnosic acid (CA and rosmarinic acid (RA was reported to cure bleomycin-(BLM-induced pulmonary fibrosis. We demonstrate that CA decreased human lung fibroblast (HLF viability with IC50 value of 17.13±1.06 μM, while RA had no cytotoxic effect. In the presence of 50 μM of RA, dose-response for CA shifted to IC50 value of 11.70±1.46 μM, indicating synergic action. TGFβ-transformed HLF, rat lung fibroblasts and L929 cells presented similar sensitivity to CA and CA+RA (20μM+100μM, respectively treatment. Rat alveolar epithelial cells died only under CA+RA treatment, while A549 cells were not affected. Annexin V staining and DNA quantification suggested that HLF are arrested in G0/G1 cell cycle phase and undergo apoptosis. CA caused sustained activation of phospho-Akt and phospho-p38 expression and inhibition of p21 protein.Addition of RA potentiated these effects, while RA added alone had no action.Only triple combination of inhibitors (MAPK-p38, pan-caspase, PI3K/Akt/autophagy partially attenuated apoptosis; this suggests that cytotoxicity of CA+RA treatment has a complex mechanism involving several parallel signaling pathways. The in vivo antifibrotic effect of CA and RA was compared with that of Vitamine-E in BLM-induced fibrosis model in rats. We found comparable reduction in fibrosis score by CA, RA and CA+RA, attenuation of collagen deposition and normalization of oxidative stress markers. In conclusion, antifibrotic effect of CA+RA is due to synergistic pro-apoptotic action on lung fibroblasts and myofibroblasts.

  3. Impact of Major Pulmonary Resections on Right Ventricular Function: Early Postoperative Changes.

    Science.gov (United States)

    Elrakhawy, Hany M; Alassal, Mohamed A; Shaalan, Ayman M; Awad, Ahmed A; Sayed, Sameh; Saffan, Mohammad M

    2018-01-15

    Right ventricular (RV) dysfunction after pulmonary resection in the early postoperative period is documented by reduced RV ejection fraction and increased RV end-diastolic volume index. Supraventricular arrhythmia, particularly atrial fibrillation, is common after pulmonary resection. RV assessment can be done by non-invasive methods and/or invasive approaches such as right cardiac catheterization. Incorporation of a rapid response thermistor to pulmonary artery catheter permits continuous measurements of cardiac output, right ventricular ejection fraction, and right ventricular end-diastolic volume. It can also be used for right atrial and right ventricular pacing, and for measuring right-sided pressures, including pulmonary capillary wedge pressure. This study included 178 patients who underwent major pulmonary resections, 36 who underwent pneumonectomy assigned as group (I) and 142 who underwent lobectomy assigned as group (II). The study was conducted at the cardiothoracic surgery department of Benha University hospital in Egypt; patients enrolled were operated on from February 2012 to February 2016. A rapid response thermistor pulmonary artery catheter was inserted via the right internal jugular vein. Preoperatively the following was recorded: central venous pressure, mean pulmonary artery pressure, pulmonary capillary wedge pressure, cardiac output, right ventricular ejection fraction and volumes. The same parameters were collected in fixed time intervals after 3 hours, 6 hours, 12 hours, 24 hours, and 48 hours postoperatively. For group (I): There were no statistically significant changes between the preoperative and postoperative records in the central venous pressure and mean arterial pressure; there were no statistically significant changes in the preoperative and 12, 24, and 48 hour postoperative records for cardiac index; 3 and 6 hours postoperative showed significant changes. There were statistically significant changes between the preoperative and

  4. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms.

    Science.gov (United States)

    Stenmark, Kurt R; Fagan, Karen A; Frid, Maria G

    2006-09-29

    Chronic hypoxic exposure induces changes in the structure of pulmonary arteries, as well as in the biochemical and functional phenotypes of each of the vascular cell types, from the hilum of the lung to the most peripheral vessels in the alveolar wall. The magnitude and the specific profile of the changes depend on the species, sex, and the developmental stage at which the exposure to hypoxia occurred. Further, hypoxia-induced changes are site specific, such that the remodeling process in the large vessels differs from that in the smallest vessels. The cellular and molecular mechanisms vary and depend on the cellular composition of vessels at particular sites along the longitudinal axis of the pulmonary vasculature, as well as on local environmental factors. Each of the resident vascular cell types (ie, endothelial, smooth muscle, adventitial fibroblast) undergo site- and time-dependent alterations in proliferation, matrix protein production, expression of growth factors, cytokines, and receptors, and each resident cell type plays a specific role in the overall remodeling response. In addition, hypoxic exposure induces an inflammatory response within the vessel wall, and the recruited circulating progenitor cells contribute significantly to the structural remodeling and persistent vasoconstriction of the pulmonary circulation. The possibility exists that the lung or lung vessels also contain resident progenitor cells that participate in the remodeling process. Thus the hypoxia-induced remodeling of the pulmonary circulation is a highly complex process where numerous interactive events must be taken into account as we search for newer, more effective therapeutic interventions. This review provides perspectives on each of the aforementioned areas.

  5. Pathogenesis pathways of idiopathic pulmonary fibrosis in bleomycin-induced lung injury model in mice.

    Science.gov (United States)

    Shi, Keyun; Jiang, Jianzhong; Ma, Tieliang; Xie, Jing; Duan, Lirong; Chen, Ruhua; Song, Ping; Yu, Zhixin; Liu, Chao; Zhu, Qin; Zheng, Jinxu

    2014-01-01

    Our objective was to investigate the pathogenesis pathways of idiopathic pulmonary fibrosis (IPF). Bleomycin (BLM) induced animal models of experimental lung fibrosis were used. CHIP assay was executed to find the link between Smad3 and IL-31, and the expressions of TGF-β1, Smad3, IL-31 and STAT1 were detected to find whether they were similar with each other. We found that in the early injury or inflammation of the animal model, BLM promoted the development of inflammation, leading to severe pulmonary fibrosis. Then the expression of TGF-β1 and Smad3 increased. Activated Smad3 bound to the IL-31 promoter region, followed by the activation of JAK-STAT pathways. The inhibitor of TGF-β1 receptor decreased the IL-31 expression and knocking-down of IL-31 also decreased the STAT1 expression. We conclude that there is a pathway of pathogenesis in BLM-induced mouse model that involves the TGF-β, IL-31 and JAKs/STATs pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Interleukin-6 overexpression induces pulmonary hypertension.

    Science.gov (United States)

    Steiner, M Kathryn; Syrkina, Olga L; Kolliputi, Narasaish; Mark, Eugene J; Hales, Charles A; Waxman, Aaron B

    2009-01-30

    Inflammatory cytokine interleukin (IL)-6 is elevated in the serum and lungs of patients with pulmonary artery hypertension (PAH). Several animal models of PAH cite the potential role of inflammatory mediators. We investigated role of IL-6 in the pathogenesis of pulmonary vascular disease. Indices of pulmonary vascular remodeling were measured in lung-specific IL-6-overexpressing transgenic mice (Tg(+)) and compared to wild-type (Tg(-)) controls in both normoxic and chronic hypoxic conditions. The Tg(+) mice exhibited elevated right ventricular systolic pressures and right ventricular hypertrophy with corresponding pulmonary vasculopathic changes, all of which were exacerbated by chronic hypoxia. IL-6 overexpression increased muscularization of the proximal arterial tree, and hypoxia enhanced this effect. It also reproduced the muscularization and proliferative arteriopathy seen in the distal arteriolar vessels of PAH patients. The latter was characterized by the formation of occlusive neointimal angioproliferative lesions that worsened with hypoxia and were composed of endothelial cells and T-lymphocytes. IL-6-induced arteriopathic changes were accompanied by activation of proangiogenic factor, vascular endothelial growth factor, the proproliferative kinase extracellular signal-regulated kinase, proproliferative transcription factors c-MYC and MAX, and the antiapoptotic proteins survivin and Bcl-2 and downregulation of the growth inhibitor transforming growth factor-beta and proapoptotic kinases JNK and p38. These findings suggest that IL-6 promotes the development and progression of pulmonary vascular remodeling and PAH through proproliferative antiapoptotic mechanisms.

  7. In Vivo Dark-Field Radiography for Early Diagnosis and Staging of Pulmonary Emphysema.

    Science.gov (United States)

    Hellbach, Katharina; Yaroshenko, Andre; Meinel, Felix G; Yildirim, Ali Ö; Conlon, Thomas M; Bech, Martin; Mueller, Mark; Velroyen, Astrid; Notohamiprodjo, Mike; Bamberg, Fabian; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz

    2015-07-01

    The aim of this study was to evaluate the suitability of in vivo x-ray dark-field radiography for early-stage diagnosis of pulmonary emphysema in mice. Furthermore, we aimed to analyze how the dark-field signal correlates with morphological changes of lung architecture at distinct stages of emphysema. Female 8- to 10-week-old C57Bl/6N mice were used throughout all experiments. Pulmonary emphysema was induced by orotracheal injection of porcine pancreatic elastase (80-U/kg body weight) (n = 30). Control mice (n = 11) received orotracheal injection of phosphate-buffered saline. To monitor the temporal patterns of emphysema development over time, the mice were imaged 7, 14, or 21 days after the application of elastase or phosphate-buffered saline. X-ray transmission and dark-field images were acquired with a prototype grating-based small-animal scanner. In vivo pulmonary function tests were performed before killing the animals. In addition, lungs were obtained for detailed histopathological analysis, including mean cord length (MCL) quantification as a parameter for the assessment of emphysema. Three blinded readers, all of them experienced radiologists and familiar with dark-field imaging, were asked to grade the severity of emphysema for both dark-field and transmission images. Histopathology and MCL quantification confirmed the introduction of different stages of emphysema, which could be clearly visualized and differentiated on the dark-field radiograms, whereas early stages were not detected on transmission images. The correlation between MCL and dark-field signal intensities (r = 0.85) was significantly higher than the correlation between MCL and transmission signal intensities (r = 0.37). The readers' visual ratings for dark-field images correlated significantly better with MCL (r = 0.85) than visual ratings for transmission images (r = 0.36). Interreader agreement and the diagnostic accuracy of both quantitative and visual assessment were significantly higher

  8. The use of iloprost in early pregnancy in patients with pulmonary arterial hypertension.

    Science.gov (United States)

    Elliot, C A; Stewart, P; Webster, V J; Mills, G H; Hutchinson, S P; Howarth, E S; Bu'lock, F A; Lawson, R A; Armstrong, I J; Kiely, D G

    2005-07-01

    In patients with pulmonary hypertension, pregnancy is associated with a high risk of maternal death. Such patients are counselled to avoid pregnancy, or if it occurs, are offered early interruption. Some patients, however, decide to continue with their pregnancy and others may present with symptoms for the first time whilst pregnant. Pulmonary vasodilator therapy provides a treatment option for these high-risk patients. The present study describes three patients with pulmonary arterial hypertension of various aetiologies who were treated with the prostacyclin analogue iloprost during pregnancy, and the post-partum period. Nebulised iloprost commenced as early as 8 weeks of gestation and patients were admitted to hospital between 24-36 weeks of gestation. All pregnancies were completed with a duration of between 25-36 weeks and all deliveries were by caesarean section under local anaesthetic. All patients delivered children free from congenital abnormalities, and there was no post-partum maternal or infant mortality. In conclusion, although pregnancy is strongly advised against in those with pulmonary hypertension, the current authors have achieved a successful outcome for mother and foetus with a multidisciplinary approach and targeted pulmonary vascular therapy.

  9. Cardioprotective effects of early and late aerobic exercise training in experimental pulmonary arterial hypertension.

    Science.gov (United States)

    Moreira-Gonçalves, Daniel; Ferreira, Rita; Fonseca, Hélder; Padrão, Ana Isabel; Moreno, Nuno; Silva, Ana Filipa; Vasques-Nóvoa, Francisco; Gonçalves, Nádia; Vieira, Sara; Santos, Mário; Amado, Francisco; Duarte, José Alberto; Leite-Moreira, Adelino F; Henriques-Coelho, Tiago

    2015-11-01

    Clinical studies suggest that aerobic exercise can exert beneficial effects in pulmonary arterial hypertension (PAH), but the underlying mechanisms are largely unknown. We compared the impact of early or late aerobic exercise training on right ventricular function, remodeling and survival in experimental PAH. Male Wistar rats were submitted to normal cage activity (SED), exercise training in early (EarlyEX) and in late stage (LateEX) of PAH induced by monocrotaline (MCT, 60 mg/kg). Both exercise interventions resulted in improved cardiac function despite persistent right pressure-overload, increased exercise tolerance and survival, with greater benefits in EarlyEX+MCT. This was accompanied by improvements in the markers of cardiac remodeling (SERCA2a), neurohumoral activation (lower endothelin-1, brain natriuretic peptide and preserved vascular endothelial growth factor mRNA), metabolism and mitochondrial oxidative stress in both exercise interventions. EarlyEX+MCT provided additional improvements in fibrosis, tumor necrosis factor-alpha/interleukin-10 and brain natriuretic peptide mRNA, and beta/alpha myosin heavy chain protein expression. The present study demonstrates important cardioprotective effects of aerobic exercise in experimental PAH, with greater benefits obtained when exercise training is initiated at an early stage of the disease.

  10. Improving early diagnosis of pulmonary infections in patients with febrile neutropenia using low-dose chest computed tomography.

    Directory of Open Access Journals (Sweden)

    M G Gerritsen

    Full Text Available We performed a prospective study in patients with chemotherapy induced febrile neutropenia to investigate the diagnostic value of low-dose computed tomography compared to standard chest radiography. The aim was to compare both modalities for detection of pulmonary infections and to explore performance of low-dose computed tomography for early detection of invasive fungal disease. The low-dose computed tomography remained blinded during the study. A consensus diagnosis of the fever episode made by an expert panel was used as reference standard. We included 67 consecutive patients on the first day of febrile neutropenia. According to the consensus diagnosis 11 patients (16.4% had pulmonary infections. Sensitivity, specificity, positive predictive value and negative predictive value were 36%, 93%, 50% and 88% for radiography, and 73%, 91%, 62% and 94% for low-dose computed tomography, respectively. An uncorrected McNemar showed no statistical difference (p = 0.197. Mean radiation dose for low-dose computed tomography was 0.24 mSv. Four out of 5 included patients diagnosed with invasive fungal disease had radiographic abnormalities suspect for invasive fungal disease on the low-dose computed tomography scan made on day 1 of fever, compared to none of the chest radiographs. We conclude that chest radiography has little value in the initial assessment of febrile neutropenia on day 1 for detection of pulmonary abnormalities. Low-dose computed tomography improves detection of pulmonary infiltrates and seems capable of detecting invasive fungal disease at a very early stage with a low radiation dose.

  11. Improving early diagnosis of pulmonary infections in patients with febrile neutropenia using low-dose chest computed tomography.

    Science.gov (United States)

    Gerritsen, M G; Willemink, M J; Pompe, E; van der Bruggen, T; van Rhenen, A; Lammers, J W J; Wessels, F; Sprengers, R W; de Jong, P A; Minnema, M C

    2017-01-01

    We performed a prospective study in patients with chemotherapy induced febrile neutropenia to investigate the diagnostic value of low-dose computed tomography compared to standard chest radiography. The aim was to compare both modalities for detection of pulmonary infections and to explore performance of low-dose computed tomography for early detection of invasive fungal disease. The low-dose computed tomography remained blinded during the study. A consensus diagnosis of the fever episode made by an expert panel was used as reference standard. We included 67 consecutive patients on the first day of febrile neutropenia. According to the consensus diagnosis 11 patients (16.4%) had pulmonary infections. Sensitivity, specificity, positive predictive value and negative predictive value were 36%, 93%, 50% and 88% for radiography, and 73%, 91%, 62% and 94% for low-dose computed tomography, respectively. An uncorrected McNemar showed no statistical difference (p = 0.197). Mean radiation dose for low-dose computed tomography was 0.24 mSv. Four out of 5 included patients diagnosed with invasive fungal disease had radiographic abnormalities suspect for invasive fungal disease on the low-dose computed tomography scan made on day 1 of fever, compared to none of the chest radiographs. We conclude that chest radiography has little value in the initial assessment of febrile neutropenia on day 1 for detection of pulmonary abnormalities. Low-dose computed tomography improves detection of pulmonary infiltrates and seems capable of detecting invasive fungal disease at a very early stage with a low radiation dose.

  12. Hypoxia-induced glucose-6-phosphate dehydrogenase overexpression and -activation in pulmonary artery smooth muscle cells: implication in pulmonary hypertension

    Science.gov (United States)

    Chettimada, Sukrutha; Gupte, Rakhee; Rawat, Dhwajbahadur; Gebb, Sarah A.; McMurtry, Ivan F.

    2014-01-01

    Severe pulmonary hypertension is a debilitating disease with an alarmingly low 5-yr life expectancy. Hypoxia, one of the causes of pulmonary hypertension, elicits constriction and remodeling of the pulmonary arteries. We now know that pulmonary arterial remodeling is a consequence of hyperplasia and hypertrophy of pulmonary artery smooth muscle (PASM), endothelial, myofibroblast, and stem cells. However, our knowledge about the mechanisms that cause these cells to proliferate and hypertrophy in response to hypoxic stimuli is still incomplete, and, hence, the treatment for severe pulmonary arterial hypertension is inadequate. Here we demonstrate that the activity and expression of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway, are increased in hypoxic PASM cells and in lungs of chronic hypoxic rats. G6PD overexpression and -activation is stimulated by H2O2. Increased G6PD activity contributes to PASM cell proliferation by increasing Sp1 and hypoxia-inducible factor 1α (HIF-1α), which directs the cells to synthesize less contractile (myocardin and SM22α) and more proliferative (cyclin A and phospho-histone H3) proteins. G6PD inhibition with dehydroepiandrosterone increased myocardin expression in remodeled pulmonary arteries of moderate and severe pulmonary hypertensive rats. These observations suggest that altered glucose metabolism and G6PD overactivation play a key role in switching the PASM cells from the contractile to synthetic phenotype by increasing Sp1 and HIF-1α, which suppresses myocardin, a key cofactor that maintains smooth muscle cell in contractile state, and increasing hypoxia-induced PASM cell growth, and hence contribute to pulmonary arterial remodeling and pathogenesis of pulmonary hypertension. PMID:25480333

  13. Rho-Kinase Inhibition Ameliorates Dasatinib-Induced Endothelial Dysfunction and Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    Csilla Fazakas

    2018-05-01

    Full Text Available The multi-kinase inhibitor dasatinib is used for treatment of imatinib-resistant chronic myeloid leukemia, but is prone to induce microvascular dysfunction. In lung this can manifest as capillary leakage with pleural effusion, pulmonary edema or even pulmonary arterial hypertension. To understand how dasatinib causes endothelial dysfunction we examined the effects of clinically relevant concentrations of dasatinib on both human pulmonary arterial macro- and microvascular endothelial cells (ECs. The effects of dasatinib was compared to imatinib and nilotinib, two other clinically used BCR/Abl kinase inhibitors that do not inhibit Src. Real three-dimensional morphology and high resolution stiffness mapping revealed softening of both macro- and microvascular ECs upon dasatinib treatment, which was not observed in response to imatinib. In a dose-dependent manner, dasatinib decreased transendothelial electrical resistance/impedance and caused a permeability increase as well as disruption of tight adherens junctions in both cell types. In isolated perfused and ventilated rat lungs, dasatinib increased mean pulmonary arterial pressure, which was accompanied by a gain in lung weight. The Rho-kinase inhibitor Y27632 partly reversed the dasatinib-induced changes in vitro and ex vivo, presumably by acting downstream of Src. Co-administration of the Rho-kinase inhibitor Y27632 completely blunted the increased pulmonary pressure in response to dasatinib. In conclusion, a dasatinib-induced permeability increase in human pulmonary arterial macro- and microvascular ECs might explain many of the adverse effects of dasatinib in patients. Rho-kinase inhibition might be suitable to ameliorate these effects.

  14. Effect of carbon dioxide inhalation on pulmonary hypertension induced by increased blood flow and hypoxia

    Directory of Open Access Journals (Sweden)

    I-Chun Chuang

    2011-08-01

    Full Text Available There is now increasing evidence from the experimental and clinical setting that therapeutic hypercapnia from intentionally inspired carbon dioxide (CO2 or lower tidal volume might be a beneficial adjunct to the strategies of mechanical ventilation in critical illness. Although previous reports indicate that CO2 exerts a beneficial effect in the lungs, the pulmonary vascular response to hypercapnia under various conditions remains to be clarified. The purpose of the present study is to characterize the pulmonary vascular response to CO2 under the different conditions of pulmonary hypertension secondary to increased pulmonary blood flow and secondary to hypoxic pulmonary vasoconstriction. Isolated rat lung (n = 32 was used to study (1 the vasoactive action of 5% CO2 in either N2 (hypoxic-hypercapnia or air (normoxic-hypercapnia at different pulmonary arterial pressure levels induced by graded speed of perfusion flow and (2 the role of nitric oxide (NO in mediating the pulmonary vascular response to hypercapnia, hypoxia, and flow-associated pulmonary hypertension. The results indicated that inhaled CO2 reversed pulmonary hypertension induced by hypoxia but not by flow alteration. Endogenous NO attenuates hypoxic pulmonary vasoconstriction but does not augment the CO2-induced vasodilatation. Acute change in blood flow does not alter the endogenous NO production.

  15. Melatonin suppresses acrolein-induced IL-8 production in human pulmonary fibroblasts.

    Science.gov (United States)

    Kim, Gun-Dong; Lee, Seung Eun; Kim, Tae-Ho; Jin, Young-Ho; Park, Yong Seek; Park, Cheung-Seog

    2012-04-01

    Cigarette smoke (CS) causes harmful alterations in the lungs and airway structures and functions that characterize chronic obstructive pulmonary disease (COPD). In addition to COPD, active cigarette smoking causes other respiratory diseases and diminishes health status. Furthermore, recent studies show that, α, β-unsaturated aldehyde acrolein in CS induces the production of interleukin (IL)-8, which is known to be related to bronchitis, rhinitis, pulmonary fibrosis, and asthma. In addition, lung and pulmonary fibroblasts secrete IL-8, which has a chemotactic effect on leukocytes, and which in turn, play a critical role in lung inflammation. On the other hand, melatonin regulates circadian rhythm homeostasis in humans and has many other effects, which include antioxidant and anti-inflammatory effects, as demonstrated by the reduced expressions of iNOS, IL-1β, and IL-6 and increased glutathione (GSH) and superoxide dismutase activities. In this study, we investigated whether melatonin suppresses acrolein-induced IL-8 secretion in human pulmonary fibroblasts (HPFs). It was found that acrolein-induced IL-8 production was accompanied by increased levels of phosphorylation of Akt and extracellular signal-regulated kinases (ERK1/2) in HPFs, and that melatonin suppressed IL-8 production in HPFs. These results suggest that melatonin suppresses acrolein-induced IL-8 production via ERK1/2 and phosphatidylinositol 3-kinase (PI3K)/Akt signal inhibition in HPFs. © 2011 John Wiley & Sons A/S.

  16. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats.

    Science.gov (United States)

    Cao, Zhengwang; Fang, Yiliang; Lu, Yonghui; Qian, Fenghua; Ma, Qinglong; He, Mingdi; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2016-01-01

    With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 inflammasome is involved in NiONP-induced pulmonary inflammation and injury. NiONP suspensions were administered by single intratracheal instillation to rats, and inflammatory responses were evaluated at 3 days, 7 days, or 28 days after treatment. NiONP exposure resulted in sustained pulmonary inflammation accompanied by inflammatory cell infiltration, alveolar proteinosis, and cytokine secretion. Expression of Nlrp3 was markedly upregulated by the NiONPs, which was accompanied by overexpression of the active form of caspase-1 (p20) and interleukin (IL)-1β secretion in vivo. NiONP-induced IL-1β secretion was partially prevented by co-treatment with a caspase-1 inhibitor in macrophages. Moreover, siRNA-mediated Nlrp3 knockdown completely attenuated NiONP-induced cytokine release and caspase-1 activity in macrophages in vitro. In addition, NiONP-induced NLRP3 inflammasome activation requires particle uptake and reactive oxygen species production. Collectively, our findings suggest that the NLRP3 inflammasome participates in NiONP-induced pulmonary inflammation and offer new strategies to combat the pulmonary toxicity induced by NiONPs.

  17. Correction of Pulmonary Oxygenizing Dysfunction in the Early Activation of Cardiosurgical Patients

    Directory of Open Access Journals (Sweden)

    I. A. Kozlov

    2009-01-01

    ventilation/perfusion ratio may be ensured via preoperative stimulating spirometry and an alveolar opening maneuver early after extracorporeal circulation if indicated. The comprehensive approach allows a reduction in the incidence of pulmonary oxygenizing dysfunction that prevents early activation in the operating suite from 40 to 5—7%. Key words: early activation, pulmonary oxygenizing function, myocardial revascularization, surgery under extracorporeal circulation, tracheal extubation in the operating-room.

  18. [Association between pulmonary vascular remodeling and expression of hypoxia-inducible factor-1α, endothelin-1 and inducible nitric oxide synthase in pulmonary vessels in neonatal rats with hypoxic pulmonary hypertension].

    Science.gov (United States)

    Wang, Jian-Rong; Zhou, Ying; Sang, Kui; Li, Ming-Xia

    2013-02-01

    To investigate the association between pulmonary vascular remodeling and expression of hypoxia-inducible factor-1α (HIF-1α), endothelin-1 (ET-1) and inducible nitric oxide synthase (iNOS) in pulmonary vessels in neonatal rats with hypoxic pulmonary hypertension (HPH). A neonatal rat model of HPH was established as an HPH group, and normal neonatal rats were enrolled as a control group. The mean pulmonary arterial pressure (mPAP) was measured. The percentage of medial thickness to outer diameter of the small pulmonary arteries (MT%) and the percentage of medial cross-section area to total cross-section area of the pulmonary small arteries (MA%) were measured as the indicators for pulmonary vascular remodeling. The immunohistochemical reaction intensities for HIF-1α, ET-1 and iNOS and their mRNA expression in lung tissues of neonatal rats were measured. Correlation analysis was performed to determine the relationship between pulmonary vascular remodeling and mRNA expression of HIF-1α, ET-1 and iNOS. The mPAP of the HPH group kept increasing on days 3, 5, 7, 10, 14, and 21 of hypoxia, with a significant difference compared with the control group (P<0.05). The HPH group had significantly higher MT% and MA% than the control group from day 7 of hypoxia (P<0.05). HIF-1α protein expression increased significantly on days 3, 5, 7 and 10 days of hypoxia, and HIF-1α mRNA expression increased significantly on days 3, 5 and 7 days of hypoxia in the HPH group compared with the control group (P<0.05). ET-1 protein expression increased significantly on days 3, 5 and 7 days of hypoxia and ET-1 mRNA expression increased significantly on day 3 of hypoxia in the HPH group compared with the control group (P<0.05). Both iNOS protein and mRNA expression were significantly higher on days 3, 5 and 7 days of hypoxia than the control group (P<0.05). Both MT% and MA% were positively correlated with HIF-1α mRNA expression (r=0.835 and 0.850 respectively; P<0.05). Pulmonary vascular

  19. Protective role of andrographolide in bleomycin-induced pulmonary fibrosis in mice.

    Science.gov (United States)

    Zhu, Tao; Zhang, Wei; Xiao, Min; Chen, Hongying; Jin, Hong

    2013-12-03

    Idiopathic pulmonary fibrosis (IPF) is a chronic devastating disease with poor prognosis. Multiple pathological processes, including inflammation, epithelial mesenchymal transition (EMT), apoptosis, and oxidative stress, are involved in the pathogenesis of IPF. Recent findings suggested that nuclear factor-κB (NF-κB) is constitutively activated in IPF and acts as a central regulator in the pathogenesis of IPF. The aim of our study was to reveal the value of andrographolide on bleomycin-induced inflammation and fibrosis in mice. The indicated dosages of andrographolide were administered in mice with bleomycin-induced pulmonary fibrosis. On day 21, cell counts of total cells, macrophages, neutrophils and lymphocytes, alone with TNF-α in bronchoalveolar lavage fluid (BALF) were measured. HE staining and Masson's trichrome (MT) staining were used to observe the histological alterations of lungs. The Ashcroft score and hydroxyproline content of lungs were also measured. TGF-β1 and α-SMA mRNA and protein were analyzed. Activation of NF-κB was determined by western blotting and electrophoretic mobility shift assay (EMSA). On day 21 after bleomycin stimulation, andrographolide dose-dependently inhibited the inflammatory cells and TNF-α in BALF. Meanwhile, our data demonstrated that the Ashcroft score and hydroxyproline content of the bleomycin-stimulated lung were reduced by andrographolide administration. Furthermore, andrographloide suppressed TGF-β1 and α-SMA mRNA and protein expression in bleomycin-induced pulmonary fibrosis. Meanwhile, andrographolide significantly dose-dependently inhibited the ratio of phospho-NF-κB p65/total NF-κB p65 and NF-κB p65 DNA binding activities. Our findings indicate that andrographolide compromised bleomycin-induced pulmonary inflammation and fibrosis possibly through inactivation of NF-κB. Andrographolide holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis.

  20. Protective Role of Andrographolide in Bleomycin-Induced Pulmonary Fibrosis in Mice

    Directory of Open Access Journals (Sweden)

    Tao Zhu

    2013-12-01

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a chronic devastating disease with poor prognosis. Multiple pathological processes, including inflammation, epithelial mesenchymal transition (EMT, apoptosis, and oxidative stress, are involved in the pathogenesis of IPF. Recent findings suggested that nuclear factor-κB (NF-κB is constitutively activated in IPF and acts as a central regulator in the pathogenesis of IPF. The aim of our study was to reveal the value of andrographolide on bleomycin-induced inflammation and fibrosis in mice. The indicated dosages of andrographolide were administered in mice with bleomycin-induced pulmonary fibrosis. On day 21, cell counts of total cells, macrophages, neutrophils and lymphocytes, alone with TNF-α in bronchoalveolar lavage fluid (BALF were measured. HE staining and Masson’s trichrome (MT staining were used to observe the histological alterations of lungs. The Ashcroft score and hydroxyproline content of lungs were also measured. TGF-β1 and α-SMA mRNA and protein were analyzed. Activation of NF-κB was determined by western blotting and electrophoretic mobility shift assay (EMSA. On day 21 after bleomycin stimulation, andrographolide dose-dependently inhibited the inflammatory cells and TNF-α in BALF. Meanwhile, our data demonstrated that the Ashcroft score and hydroxyproline content of the bleomycin-stimulated lung were reduced by andrographolide administration. Furthermore, andrographloide suppressed TGF-β1 and α-SMA mRNA and protein expression in bleomycin-induced pulmonary fibrosis. Meanwhile, andrographolide significantly dose-dependently inhibited the ratio of phospho-NF-κB p65/total NF-κB p65 and NF-κB p65 DNA binding activities. Our findings indicate that andrographolide compromised bleomycin-induced pulmonary inflammation and fibrosis possibly through inactivation of NF-κB. Andrographolide holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis.

  1. Bleomycin-Induced Pulmonary Changes on Restaging Computed Tomography Scans in Two Thirds of Testicular Cancer Patients Show No Correlation With Fibrosis Markers.

    Science.gov (United States)

    den Hollander, Martha W; Westerink, Nico-Derk L; Lubberts, Sjoukje; Bongaerts, Alfons H H; Wolf, Rienhart F E; Altena, Renska; Nuver, Janine; Oosting, Sjoukje F; de Vries, Elisabeth G E; Walenkamp, Anna M E; Meijer, Coby; Gietema, Jourik A

    2016-08-01

    In metastatic testicular cancer patients treated with bleomycin, etoposide, and cisplatin (BEP) chemotherapy, bleomycin-induced pneumonitis is a well-known and potentially fatal side effect. We sought to determine the prevalence of lesions as signs of bleomycin-induced pulmonary changes on restaging computed tomography (CT) scans after treatment and to ascertain whether fibrosis markers were predictive of these changes. This prospective nonrandomized cohort study included metastatic testicular cancer patients, 18-50 years of age, treated with BEP chemotherapy. Restaging CT scans were examined for lesions as signs of bleomycin-induced pulmonary changes by two independent radiologists and graded as minor, moderate, or severe. Plasma samples were collected before, during, and after treatment and were quantified for transforming growth factor-β1 (TGF-β1), growth differentiation factor-15 (GDF-15), and high-sensitivity C-reactive protein (hs-CRP). In total, 66 patients were included: forty-five (68%) showed signs of bleomycin-induced pulmonary changes on the restaging CT scan, 37 of which were classified as minor and 8 as moderate. No differences in TGF-β1, GDF-15, or hs-CRP plasma levels were found between these groups. Bleomycin-induced pulmonary changes are common on restaging CT scans after BEP chemotherapy for metastatic testicular cancer. Changes in TGF-β1, GDF-15, and hs-CRP plasma levels do not differ between patients with and without radiological lesions as signs of bleomycin-induced pulmonary changes and are therefore not helpful as predictive biomarkers. Bleomycin-induced pneumonitis (BIP) is a well-known and potentially fatal side effect in metastatic testicular cancer patients treated with bleomycin, etoposide, and cisplatin chemotherapy. Currently, the decision to discontinue bleomycin administration is made during treatment and is based on clinical signs. An upfront or early marker or biomarker that identifies patients likely to develop BIP would be

  2. Assessment of β-methyl iodophenyl pentadecanoic acid myocardial scintigraphy in patients with chronic pulmonary diseases

    International Nuclear Information System (INIS)

    Matsumoto, Hiroyuki; Takeuchi, Katsuro; Ogasa, Tomoyuki

    1999-01-01

    The purpose of this study was to determine whether impaired fatty acid metabolism occurs in the right ventricle of patients with chronic pulmonary diseases (TB sequelae, TB seq.: 8, and chronic pulmonary emphysema, CPE: 14). 123 I-BMIPP myocardial scintigraphy was performed on 22 subjects. The RV-BMIPP index (ratio of radioactivity in the right ventricle to that in the upper mediastinum), LV-BMIPP index (ratio of radioactivity in the left ventricle to that in the upper mediastinum), and RVc/LVc (ratio of radioactivity in the right ventricle to that in the left ventricle) were calculated to compare the distribution of radioactivity in the right and left ventricles. We also examined the correlations between these parameters and parameters of blood gas analysis and pulmonary hemodynamics. The RV-BMIPP index, LV-BMIPP index, and RVc/LVc were elevated in the TB seq. and CPE patient groups compared to the control group. The RV-BMIPP and LV-BMIPP indices demonstrated significant, negative correlations with PaO 2 ; also a significant positive correlation was observed between the RV-BMIPP index and mean pulmonary arterial pressure. On the other hand, no significant correlation was found between the LV-BMIPP index and mean pulmonary arterial pressure. In the arm-stretching test under right heart catheterization, the RV-BMIPP and LV-BMIPP indices demonstrated significant, positive correlations with the cardiac index during exercise. These results suggest that hypoxemia accelerates fatty acid metabolism in the myocardium, and that local pressure overloading accelerates fatty acid metabolism in the right ventricle. Anomalies of fatty acid metabolism in the right ventricle may appear in patients with chronic pulmonary disease, and could be an adaptation to hypoxemia and overload, not an impairment. (author)

  3. Maternal PUFA omega-3 supplementation prevents hyperoxia-induced pulmonary hypertension in the offspring.

    Science.gov (United States)

    Zhong, Ying; Catheline, Daniel; Houeijeh, Ali; Sharma, Dyuti; Du, Li-Zhong; Besengez, Capucine; Deruelle, Philippe; Legrand, Philippe; Storme, Laurent

    2018-03-29

    Pulmonary hypertension (PH) and right ventricular hypertrophy (RVH) affect 16-25% of premature infants with bronchopulmonary dysplasia (BPD), contributing significantly to perinatal morbidity and mortality. Polyunsaturated fatty acids ω-3 (PUFA ω-3) can improve vascular remodeling, angiogenesis, and inflammation under pathophysiological conditions. However, the effects of PUFA ω-3 supplementation in BPD-associated PH are unknown. The present study aimed to evaluate the effects of PUFA ω-3 on pulmonary vascular remodeling, angiogenesis, and inflammatory response in a hyperoxia-induced rat model of PH. From embryonic day 15, pregnant Spague-Dawley rats were supplemented daily with PUFA ω-3, PUFA ω-6, or normal saline (0.2 ml/day). After birth, pups were pooled, assigned as 12 per litter, and randomly to either in air or continuous oxygen exposure (FiO2 = 85%) for 20 days, then sacrificed for pulmonary hemodynamic and morphometric analysis. We found that PUFA ω-3 supplementation improved survival, decreased right ventricular systolic pressure and RVH caused by hyperoxia, and significantly improved alveolarization, vascular remodeling, and vascular density. PUFA ω-3 supplementation produced a higher level of total ω-3 in lung tissue and breast milk, and was found reversing the reduced levels of VEGFA, VEGFR-2, ANGPT-1, TIE-2, eNOS, and NO concentrations in lung tissue, and the increased ANGPT-2 levels in hyperoxia-exposed rats. The beneficial effects of PUFA ω-3 in improving lung injuries were also associated with an inhibition of leukocyte infiltration, and reduced expression of proinflammatory cytokines IL-1β, IL-6 and TNF-α. These data indicated that maternal PUFA ω-3 supplementation strategies could effectively protect against infant PH induced by hyperoxia.

  4. EXERCISE-INDUCED PULMONARY HEMORRHAGE AFTER RUNNING A MARATHON

    Science.gov (United States)

    We report on a healthy 26-year-old male who had an exercise-induced pulmonary hemorrhage (EIPH) within 24 hours of running a marathon. There were no symptoms, abnormalities on exam, or radiographic infiltrates. He routinely participated in bronchoscopy research and the EIPH was e...

  5. Suppression of the expression of hypoxia-inducible factor-1α by RNA interference alleviates hypoxia-induced pulmonary hypertension in adult rats.

    Science.gov (United States)

    Li, Ying; Shi, Bo; Huang, Liping; Wang, Xin; Yu, Xiaona; Guo, Baosheng; Ren, Weidong

    2016-12-01

    Hypoxia-inducible factor-1α (HIF-1α) has been implicated in the pathogenesis of hypoxic pulmonary hypertension (PH). However, the potential clinical value of HIF-1α as a therapeutic target in the treatment of PH has not yet been evaluated. In this study, an animal model of hypoxia-induced PH was established by exposing adult rats to 10% O2 for 3 weeks, and the effects of the lentivirus-mediated delivery of HIF-1α short hairpin RNA (shRNA) by intratracheal instillation prior to exposure to hypoxia on the manifestations of hypoxia-induced PH were assessed. The successful delivery of HIF-1α shRNA into the pulmonary arteries effectively suppressed the hypoxia-induced upregulation of HIF-1α, accompanied by the prominent attenuation the symptoms associated with hypoxia-induced PH, including the elevation of pulmonary arterial pressure, hypertrophy and hyperplasia of pulmonary artery smooth muscle cells (PASMCs), as well as the muscularization of pulmonary arterioles. In addition, the knockdown of HIF-1α in cultured rat primary PASMCs significantly inhibited the hypoxia-induced acceleration of the cell cycle and the proliferation of the PASMCs, suggesting that HIF-1α may be a direct mediator of PASMC hyperplasia in hypoxia-induced PH. In conclusion, this study demonstrates the potent suppressive effects of HIF-1α shRNA on hypoxia-induced PH and PASMC hyperplasia, providing evidence for the potential application of HIF-1α shRNA in the treatment of hypoxic PH.

  6. Effects of chronic acetazolamide administration on gas exchange and acid-base control in pulmonary circulation in exercising horses.

    Science.gov (United States)

    Vengust, M; Stämpfli, H; De Moraes, A N; Teixeiro-Neto, F; Viel, L; Heigenhauser, G

    2010-11-01

    Carbonic anhydrase (CA) catalyses the hydration/dehydration reaction of CO(2) and increases the rate of Cl(-) and HCO(3)(-) exchange between the erythrocytes and plasma. Therefore, chronic inhibition of CA has a potential to attenuate CO(2) output and induce greater metabolic and respiratory acidosis in exercising horses. To determine the effects of Carbonic anhydrase inhibition on CO(2) output and ionic exchange between erythrocytes and plasma and their influence on acid-base balance in the pulmonary circulation (across the lung) in exercising horses with and without CA inhibition. Six horses were exercised to exhaustion on a treadmill without (Con) and with CA inhibition (AczTr). CA inhibition was achieved with administration of acetazolamide (10 mg/kg bwt t.i.d. for 3 days and 30 mg/kg bwt before exercise). Arterial, mixed venous blood and CO(2) output were sampled at rest and during exercise. An integrated physicochemical systems approach was used to describe acid base changes. AczTr decreased the duration of exercise by 45% (P changes across the lung with exception of lactate. CO(2) and chloride changes in erythrocytes across the lung seem to be the major contributors to acid-base and ions balance in pulmonary circulation in exercising horses. © 2010 EVJ Ltd.

  7. Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; Mo, Yiqun; Schlueter, Connie F.; Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu

    2013-10-15

    Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. We previously developed a chlorine inhalation model in which mice develop epithelial injury, neutrophilic inflammation, pulmonary edema, and impaired pulmonary function. This model was used to evaluate nine corticosteroids for the ability to inhibit chlorine-induced neutrophilic inflammation. Two of the most potent corticosteroids in this assay, mometasone and budesonide, were investigated further. Mometasone or budesonide administered intraperitoneally 1 h after chlorine inhalation caused a dose-dependent inhibition of neutrophil influx in lung tissue sections and in the number of neutrophils in lung lavage fluid. Budesonide, but not mometasone, reduced the levels of the neutrophil attractant CXCL1 in lavage fluid 6 h after exposure. Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Corticosteroids may inhibit lung injury through their anti-inflammatory actions. • Corticosteroids inhibited chlorine-induced pneumonitis and pulmonary edema. • Mometasone and budesonide are potential rescue treatments for chlorine lung injury.

  8. The Critical Role of Pulmonary Arterial Compliance in Pulmonary Hypertension

    Science.gov (United States)

    Prins, Kurt W.; Pritzker, Marc R.; Scandurra, John; Volmers, Karl; Weir, E. Kenneth

    2016-01-01

    The normal pulmonary circulation is a low-pressure, high-compliance system. Pulmonary arterial compliance decreases in the presence of pulmonary hypertension because of increased extracellular matrix/collagen deposition in the pulmonary arteries. Loss of pulmonary arterial compliance has been consistently shown to be a predictor of increased mortality in patients with pulmonary hypertension, even more so than pulmonary vascular resistance in some studies. Decreased pulmonary arterial compliance causes premature reflection of waves from the distal pulmonary vasculature, leading to increased pulsatile right ventricular afterload and eventually right ventricular failure. Evidence suggests that decreased pulmonary arterial compliance is a cause rather than a consequence of distal small vessel proliferative vasculopathy. Pulmonary arterial compliance decreases early in the disease process even when pulmonary artery pressure and pulmonary vascular resistance are normal, potentially enabling early diagnosis of pulmonary vascular disease, especially in high-risk populations. With the recognition of the prognostic importance of pulmonary arterial compliance, its impact on right ventricular function, and its contributory role in the development and progression of distal small-vessel proliferative vasculopathy, pulmonary arterial compliance is an attractive target for the treatment of pulmonary hypertension. PMID:26848601

  9. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    International Nuclear Information System (INIS)

    Xiong, Shanshan; Pan, Xiujie; Xu, Long; Yang, Zhihua; Guo, Renfeng; Gu, Yongqing; Li, Ruoxi; Wang, Qianjun; Xiao, Fengjun; Du, Li; Zhou, Pingkun; Zhu, Maoxiang

    2015-01-01

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4 + CD25 + FoxP3 + regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated on days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis

  10. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Shanshan; Pan, Xiujie; Xu, Long; Yang, Zhihua [Beijing Institute of Radiation Medicine, Beijing (China); Guo, Renfeng [Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan (United States); Gu, Yongqing; Li, Ruoxi; Wang, Qianjun; Xiao, Fengjun; Du, Li; Zhou, Pingkun [Beijing Institute of Radiation Medicine, Beijing (China); Zhu, Maoxiang, E-mail: zhumx@nic.bmi.ac.cn [Beijing Institute of Radiation Medicine, Beijing (China)

    2015-10-01

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4{sup +}CD25{sup +}FoxP3{sup +} regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated on days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis.

  11. Basiliximab induced non-cardiogenic pulmonary edema in two pediatric renal transplant recipients.

    LENUS (Irish Health Repository)

    Dolan, Niamh

    2009-11-01

    We report two cases of non-cardiogenic pulmonary edema as a complication of basiliximab induction therapy in young pediatric renal transplant patients identified following a retrospective review of all pediatric renal transplant cases performed in the National Paediatric Transplant Centre, Childrens University Hospital, Temple Street, Dublin, Ireland. Twenty-eight renal transplantations, of which five were living-related (LRD) and 23 were from deceased donors (DD), were performed in 28 children between 2003 and 2006. In six cases, transplantations were pre-emptive. Immunosuppression was induced pre-operatively using a combination of basiliximab, tacrolimus and methylprednisolone in all patients. Basiliximab induction was initiated 2 h prior to surgery in all cases and, in 26 patients, basiliximab was re-administered on post-operative day 4. Two patients, one LRD and one DD, aged 6 and 11 years, respectively, developed acute non-cardiogenic pulmonary edema within 36 h of surgery. Renal dysplasia was identified as the primary etiological factor for renal failure in both cases. Both children required assisted ventilation for between 4 and 6 days. While both grafts had primary function, the DD transplant patient subsequently developed acute tubular necrosis and was eventually lost within 3 weeks due to thrombotic microangiopathy and severe acute antibody-mediated rejection despite adequate immunosuppression. Non-cardiogenic pulmonary edema is a potentially devastating post-operative complication of basiliximab induction therapy in young pediatric patients following renal transplantation. Early recognition and appropriate supportive therapy is vital for patient and, where possible, graft survival.

  12. Prostaglandin D2 Attenuates Bleomycin-Induced Lung Inflammation and Pulmonary Fibrosis.

    Science.gov (United States)

    Kida, Taiki; Ayabe, Shinya; Omori, Keisuke; Nakamura, Tatsuro; Maehara, Toko; Aritake, Kosuke; Urade, Yoshihiro; Murata, Takahisa

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal lung disease with limited therapeutic options. Although it is well known that lipid mediator prostaglandins are involved in the development of pulmonary fibrosis, the role of prostaglandin D2 (PGD2) remains unknown. Here, we investigated whether genetic disruption of hematopoietic PGD synthase (H-PGDS) affects the bleomycin-induced lung inflammation and pulmonary fibrosis in mouse. Compared with H-PGDS naïve (WT) mice, H-PGDS-deficient mice (H-PGDS-/-) represented increased collagen deposition in lungs 14 days after the bleomycin injection. The enhanced fibrotic response was accompanied by an increased mRNA expression of inflammatory mediators, including tumor necrosis factor-α, monocyte chemoattractant protein-1, and cyclooxygenase-2 on day 3. H-PGDS deficiency also increased vascular permeability on day 3 and infiltration of neutrophils and macrophages in lungs on day 3 and 7. Immunostaining showed that the neutrophils and macrophages expressed H-PGDS, and its mRNA expression was increased on day 3and 7 in WT lungs. These observations suggest that H-PGDS-derived PGD2 plays a protective role in bleomycin-induced lung inflammation and pulmonary fibrosis.

  13. Altered serum microRNAs as biomarkers for the early diagnosis of pulmonary tuberculosis infection.

    Science.gov (United States)

    Qi, Yuhua; Cui, Lunbiao; Ge, Yiyue; Shi, Zhiyang; Zhao, Kangchen; Guo, Xiling; Yang, Dandan; Yu, Hao; Cui, Lan; Shan, Yunfeng; Zhou, Minghao; Wang, Hua; Lu, Zuhong

    2012-12-28

    Pulmonary tuberculosis (TB) is a highly lethal infectious disease and early diagnosis of TB is critical for the control of disease progression. The objective of this study was to profile a panel of serum microRNAs (miRNAs) as potential biomarkers for the early diagnosis of pulmonary TB infection. Using TaqMan Low-Density Array (TLDA) analysis followed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) validation, expression levels of miRNAs in serum samples from 30 patients with active tuberculosis and 60 patients with Bordetella pertussis (BP), varicella-zoster virus (VZV) and enterovirus (EV) were analyzed. The Low-Density Array data showed that 97 miRNAs were differentially expressed in pulmonary TB patient sera compared with healthy controls (90 up-regulated and 7 down-regulated). Following qRT-PCR confirmation and receiver operational curve (ROC) analysis, three miRNAs (miR-361-5p, miR-889 and miR-576-3p) were shown to distinguish TB infected patients from healthy controls and other microbial infections with moderate sensitivity and specificity (area under curve (AUC) value range, 0.711-0.848). Multiple logistic regression analysis of a combination of these three miRNAs showed an enhanced ability to discriminate between these two groups with an AUC value of 0.863. Our study suggests that altered levels of serum miRNAs have great potential to serve as non-invasive biomarkers for early detection of pulmonary TB infection.

  14. Induced pluripotent stem cells inhibit bleomycin-induced pulmonary fibrosis in mice through suppressing TGF-β1/Smad-mediated epithelial to mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    2016-11-01

    Full Text Available Pulmonary fibrosis is a progressive and irreversible fibrotic lung disorder with high mortality and few treatment options. Recently, induced pluripotent stem (iPS cells have been considered as an ideal resource for stem cell-based therapy. Although an earlier study demonstrated the therapeutic effect of iPS cells on pulmonary fibrosis, the exact mechanisms remain obscure. The present study investigated the effects of iPS cells on inflammatory responses, transforming growth factor (TGF-β1 signaling pathway, and epithelial to mesenchymal transition (EMT during bleomycin (BLM-induced lung fibrosis. A single intratracheal instillation of BLM (5 mg/kg was performed to induce pulmonary fibrosis in C57BL/6 mice. Then, iPS cells (c-Myc-free were administrated intravenously at 24 h following BLM instillation. Three weeks after BLM administration, pulmonary fibrosis was evaluated. As expected, treatment with iPS cells significantly limited the pathological changes, edema, and collagen deposition in lung tissues of BLM-induced mice. Mechanically, treatment with iPS cells obviously repressed the expression ratios of matrix metalloproteinase-2 (MMP-2 to its tissue inhibitor -2 (TIMP-2 and MMP-9/TIMP-1 in BLM-induced pulmonary tissues. In addition, iPS cell administration remarkably suppressed BLM-induced up-regulation of pulmonary inflammatory mediators, including tumor necrosis factor-α, interleukin (IL-1β, IL-6, inducible nitric oxide synthase, nitric oxide, cyclooxygenase-2 and prostaglandin E2. We further demonstrated that transplantation of iPS cells markedly inhibited BLM-mediated activation of TGF-β1/Mothers against decapentaplegic homolog 2/3 (Smad2/3 and EMT in lung tissues through up-regulating epithelial marker E-cadherin and down-regulating mesenchymal markers including fibronectin, vimentin and α-smooth muscle actin. Moreover, in vitro, iPS cell-conditioned medium (iPSC-CM profoundly inhibited TGF-β1-induced EMT signaling pathway in mouse

  15. Overexpression of fatty acid amide hydrolase induces early flowering in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Neal D. Teaster

    2012-02-01

    Full Text Available N-Acylethanolamines (NAEs are bioactive lipids derived from the hydrolysis of the membrane phospholipid N-acylphosphatidylethanolamine (NAPE. In animal systems this reaction is part of the endocannabinoid signaling pathway, which regulates a variety of physiological processes. The signaling function of NAE is terminated by fatty acid amide hydrolase (FAAH, which hydrolyzes NAE to ethanolamine and free fatty acid. Our previous work in Arabidopsis thaliana showed that overexpression of AtFAAH (At5g64440 lowered endogenous levels of NAEs in seeds, consistent with its role in NAE signal termination. Reduced NAE levels were accompanied by an accelerated growth phenotype, increased sensitivity to abscisic acid (ABA, enhanced susceptibility to bacterial pathogens, and early flowering. Here we investigated the nature of the early flowering phenotype of AtFAAH overexpression. AtFAAH overexpressors flowered several days earlier than wild type and AtFAAH knockouts under both non-inductive short day (SD and inductive long day (LD conditions. Microarray analysis revealed that the FLOWERING LOCUS T (FT gene, which plays a major role in regulating flowering time, and one target MADS box transcription factor, SEPATALLA3 (SEP3, were elevated in AtFAAH overexpressors. Furthermore, AtFAAH overexpressors, with the early flowering phenotype had lower endogenous NAE levels in leaves compared to wild type prior to flowering. Exogenous application of NAE 12:0, which was reduced by up to 30% in AtFAAH overexpressors, delayed the onset of flowering in wild type plants. We conclude that the early flowering phenotype of AtFAAH overexpressors is, in part, explained by elevated FT gene expression resulting from the enhanced NAE hydrolase activity of AtFAAH, suggesting that NAE metabolism may participate in floral signaling pathways.

  16. Thymosin Beta 4 protects mice from monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available Pulmonary hypertension (PH is a progressive vascular disease of pulmonary arteries that impedes ejection of blood by the right ventricle. As a result there is an increase in pulmonary vascular resistance and pulmonary arterial pressure causing right ventricular hypertrophy (RVH and RV failure. The pathology of PAH involves vascular cell remodeling including pulmonary arterial endothelial cell (PAEC dysfunction and pulmonary arterial smooth muscle cell (PASMC proliferation. Current therapies are limited to reverse the vascular remodeling. Investigating a key molecule is required for development of new therapeutic intervention. Thymosin beta-4 (Tβ4 is a ubiquitous G-actin sequestering protein with diverse biological function and promotes wound healing and modulates inflammatory responses. However, it remains unknown whether Tβ4 has any protective role in PH. The purpose of this study is to evaluate the whether Tβ4 can be used as a vascular-protective agent. In monocrotaline (MCT-induced PH mouse model, we showed that mice treated with Tβ4 significantly attenuated the systolic pressure and RVH, compared to the MCT treated mice. Our data revealed for the first time that Tβ4 selectively targets Notch3-Col 3A-CTGF gene axis in preventing MCT-induced PH and RVH. Our study may provide pre-clinical evidence for Tβ4 and may consider as vasculo-protective agent for the treatment of PH induced RVH.

  17. Pulmonary emphysema induced by methylphenidate: experimental study.

    Science.gov (United States)

    Rapello, Gabriel Victor Guimarães; Antoniolli, Andréia; Pereira, Daniel Martins; Facco, Gilberto; Pêgo-Fernandes, Paulo Manuel; Pazetti, Rogério

    2015-01-01

    Methylphenidate is the most widely used drug for treating attention deficit hyperactivity disorder. However, it has important side effects, such as abdominal pain, insomnia, anorexia and loss of appetite, and also some cases of early severe emphysema after drug abuse have been reported. Our aim was to investigate the development of pulmonary emphysema in rats that were subjected to different doses of methylphenidate. Experimental study carried out at the laboratory of a public university. Eighteen male Wistar rats were divided into three groups: control (0.9% saline solution); MP 0.8 (methylphenidate, 0.8 mg/kg); MP 1.2 (methylphenidate, 1.2 mg/kg). After 90 days of daily gavage, the animals were sacrificed and lung tissue samples were prepared for analysis on the mean alveolar diameter (Lm). The Lm was greater in MP 0.8 (47.91 ± 3.13; P pulmonary emphysema.

  18. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis

    International Nuclear Information System (INIS)

    Flechsig, Paul; Hartenstein, Bettina; Teurich, Sybille; Dadrich, Monika; Hauser, Kai; Abdollahi, Amir; Groene, Hermann-Josef; Angel, Peter; Huber, Peter E.

    2010-01-01

    Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results: We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.

  19. Cell therapy with bone marrow mononuclear cells in elastase-induced pulmonary emphysema.

    Science.gov (United States)

    Longhini-Dos-Santos, Nathalia; Barbosa-de-Oliveira, Valter Abraão; Kozma, Rodrigo Heras; Faria, Carolina Arruda de; Stessuk, Talita; Frei, Fernando; Ribeiro-Paes, João Tadeu

    2013-04-01

    Emphysema is characterized by destruction of alveolar walls with loss of gas exchange surface and consequent progressive dyspnea. This study aimed to evaluate the efficiency of cell therapy with bone marrow mononuclear cells (BMMC) in an animal model of elastase-induced pulmonary emphysema. Emphysema was induced in C57Bl/J6 female mice by intranasal instillation of elastase. After 21 days, the mice received bone marrow mononuclear cells from EGFP male mice with C57Bl/J6 background. The groups were assessed by comparison and statistically significant differences (p pulmonary emphysema.

  20. PREVALENCE, CLINICAL PRESENTATION, DIAGNOSIS AND TREATMENT OF ACUTE PULMONARY OEDEMA IN SEVERE PREGNANCY-INDUCED HYPERTENSION AND ECLAMPSIA CASES IN TRIBAL POPULATION OF SOUTH RAJASTHAN

    Directory of Open Access Journals (Sweden)

    (Brig. Pradeep Kuma

    2016-05-01

    Full Text Available BACKGROUND Pulmonary oedema in severe pregnancy-induced hypertension is a life threatening complication with high maternal mortality, particularly in tribal population of South Rajasthan. METHODS Thirteen cases which occurred in the duration of two and half years were analysed through medical records and findings were recorded. RESULTS Maximum cases 10(76.92% were in less than 20 years of age. 12 (92.30% cases were nulliparous. Out of 13 cases of PIH, pulmonary oedema developed in 5 (38.46% cases of eclampsia and 8 (61.54% cases of severe pregnancy-induced hypertension. 10 (76.92%cases were 28 to 30 weeks of gestation and 3 (23.08% were 31 to 34 weeks of gestation. 8 (61.54% cases were severely anaemic. 12 (92.30% were unbooked cases. CONCLUSION Regular antenatal checkups, early diagnosis, prompt treatment of hypertension and pulmonary oedema and termination of pregnancy is required to prevent maternal death.

  1. Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses.

    Directory of Open Access Journals (Sweden)

    Kathie-Anne Walters

    Full Text Available Pulmonary exposure to Francisella tularensis is associated with severe lung pathology and a high mortality rate. The lack of induction of classical inflammatory mediators, including IL1-β and TNF-α, during early infection has led to the suggestion that F. tularensis evades detection by host innate immune surveillance and/or actively suppresses inflammation. To gain more insight into the host response to Francisella infection during the acute stage, transcriptomic analysis was performed on lung tissue from mice exposed to virulent (Francisella tularensis ssp tularensis SchuS4. Despite an extensive transcriptional response in the lungs of animals as early as 4 hrs post-exposure, Francisella tularensis was associated with an almost complete lack of induction of immune-related genes during the initial 24 hrs post-exposure. This broad subversion of innate immune responses was particularly evident when compared to the pulmonary inflammatory response induced by other lethal (Yersinia pestis and non-lethal (Legionella pneumophila, Pseudomonas aeruginosa pulmonary infections. However, the unique induction of a subset of inflammation-related genes suggests a role for dysregulation of lymphocyte function and anti-inflammatory pathways in the extreme virulence of Francisella. Subsequent activation of a classical inflammatory response 48 hrs post-exposure was associated with altered abundance of Francisella-specific transcripts, including those associated with bacterial surface components. In summary, virulent Francisella induces a unique pulmonary inflammatory response characterized by temporal regulation of innate immune pathways correlating with altered bacterial gene expression patterns. This study represents the first simultaneous measurement of both host and Francisella transcriptome changes that occur during in vivo infection and identifies potential bacterial virulence factors responsible for regulation of host inflammatory pathways.

  2. Altered serum microRNAs as biomarkers for the early diagnosis of pulmonary tuberculosis infection

    Directory of Open Access Journals (Sweden)

    Qi Yuhua

    2012-12-01

    Full Text Available Abstract Background Pulmonary tuberculosis (TB is a highly lethal infectious disease and early diagnosis of TB is critical for the control of disease progression. The objective of this study was to profile a panel of serum microRNAs (miRNAs as potential biomarkers for the early diagnosis of pulmonary TB infection. Methods Using TaqMan Low-Density Array (TLDA analysis followed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR validation, expression levels of miRNAs in serum samples from 30 patients with active tuberculosis and 60 patients with Bordetella pertussis (BP, varicella-zoster virus (VZV and enterovirus (EV were analyzed. Results The Low-Density Array data showed that 97 miRNAs were differentially expressed in pulmonary TB patient sera compared with healthy controls (90 up-regulated and 7 down-regulated. Following qRT-PCR confirmation and receiver operational curve (ROC analysis, three miRNAs (miR-361-5p, miR-889 and miR-576-3p were shown to distinguish TB infected patients from healthy controls and other microbial infections with moderate sensitivity and specificity (area under curve (AUC value range, 0.711-0.848. Multiple logistic regression analysis of a combination of these three miRNAs showed an enhanced ability to discriminate between these two groups with an AUC value of 0.863. Conclusions Our study suggests that altered levels of serum miRNAs have great potential to serve as non-invasive biomarkers for early detection of pulmonary TB infection.

  3. Prevention of Pulmonary Fibrosis via Trichostatin A (TSA) in Bleomycin Induced Rats.

    Science.gov (United States)

    Ye, Qing; Li, Yanqin; Jiang, Handong; Xiong, Jianfei; Xu, Jiabo; Qin, Hui; Liu, Bin

    2014-10-20

    To investigate the effects of non selective histone deacetylase inhibitors Trichostatin A (TSA)on bleomycin-induced pulmonary fibrosis. To investigate the effects of non selective histone deacetylase inhibitors Trichostatin A ( TSA ) on HDAC2, p-SMAD2, HDAC2 mRNA, SMAD2mRNA in pulmonary fibrosis rats and investigate impossible mechanism. 46 SPF level male SD rats were randomly divided into four groups: ten for normal control group, fourteen for model control group I, twelve for model control group II and ten for treatment group. Rat pulmonary fibrosis was induced by bleomycin(5mg/kg) via single intratracheal perfusion in the two model control groups and treatment group. Normal control mice were instilled with a corresponding volume of 0.9% saline intratracheally. Treatment group was treated by the dilution of TSA 2mg/kg DMSO 60ul and0.9% saline 1.2ml intraperitoneal injection from the next day ,once a day for three days. Model control group II was treated by the dilution of DMSO 60ul and0.9% saline 1.2ml intraperitoneal injection from the next day once a day for three days. Model control group I and normal control group were treated by 0.9% saline 1.2ml intraperitoneal injection from the next day once a day for three days. All the animals were sacrificed on the 21 day after modeling. The pathological changes were observed by hematoxylin and eosin(HE)stain and masson trichrome stain. The expression of HDAC2 mRNA,SMAD2 mRNA were measured by real-time PCR. The protein level of HDAC2 and p-SMAD2 in serum was measured by Western blot. The pulmonary fibrosis in treatment group were significantly alleviated compared to the two model control groups (P0.05). Western blot indicated that the protein level of HDAC2 and p-SMAD2 in serum increased in the two model control groups compared with normal control group(P0.05). Non selective histone deacetylase inhibitors of Trichostatin A (TSA) can reduce the bleomycin induced pulmonary fibrosis in rats. TSA attenuates pulmonary

  4. TNF-α-induced NF-κB activation promotes myofibroblast differentiation of LR-MSCs and exacerbates bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Hou, Jiwei; Ma, Tan; Cao, Honghui; Chen, Yabing; Wang, Cong; Chen, Xiang; Xiang, Zou; Han, Xiaodong

    2018-03-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible lung disease of unknown cause. It has been reported that both lung resident mesenchymal stem cells (LR-MSCs) and tumor necrosis factor-α (TNF-α) play important roles in the development of pulmonary fibrosis. However, the underlying connections between LR-MSCs and TNF-α in the pathogenesis of pulmonary fibrosis are still elusive. In this study, we found that the pro-inflammatory cytokine TNF-α and the transcription factor nuclear factor kappa B (NF-κB) p65 subunit were both upregulated in bleomycin-induced fibrotic lung tissue. In addition, we discovered that TNF-α promotes myofibroblast differentiation of LR-MSCs through activating NF-κB signaling. Interestingly, we also found that TNF-α promotes the expression of β-catenin. Moreover, we demonstrated that suppression of the NF-κB signaling could attenuate myofibroblast differentiation of LR-MSCs and bleomycin-induced pulmonary fibrosis which were accompanied with decreased expression of β-catenin. Our data implicates that inhibition of the NF-κB signaling pathway may provide a therapeutic strategy for pulmonary fibrosis, a disease that warrants more effective treatment approaches. © 2017 Wiley Periodicals, Inc.

  5. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure

    International Nuclear Information System (INIS)

    Zychowski, Katherine E.; Lucas, Selita N.; Sanchez, Bethany; Herbert, Guy; Campen, Matthew J.

    2016-01-01

    Ozone (O 3 )-related cardiorespiratory effects are a growing public health concern. Ground level O 3 can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O 3 -induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O 3 pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O 3 exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O 2 ) or hypoxia (10.0% O 2 ), followed by a 4-h exposure to either 1 ppm O 3 or filtered air (FA). As an additional experimental intervention fasudil (20 mg/kg) was administered intraperitoneally prior to and after O 3 exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O 3 exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O 3 exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O 3 -induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability. - Highlights: • Environmental exposures can exacerbate chronic obstructive pulmonary disease (COPD). • It is unknown if comorbid

  6. Lung irradiation induces pulmonary vascular remodelling resembling pulmonary arterial hypertension

    NARCIS (Netherlands)

    Ghobadi, G.; Bartelds, B.; van der Veen, S. J.; Dickinson, M. G.; Brandenburg, S.; Berger, R. M. F.; Langendijk, J. A.; Coppes, R. P.; van Luijk, P.

    Background Pulmonary arterial hypertension (PAH) is a commonly fatal pulmonary vascular disease that is often diagnosed late and is characterised by a progressive rise in pulmonary vascular resistance resulting from typical vascular remodelling. Recent data suggest that vascular damage plays an

  7. Early chronic obstructive pulmonary disease: definition, assessment, and prevention.

    Science.gov (United States)

    Rennard, Stephen I; Drummond, M Bradley

    2015-05-02

    Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. COPD, however, is a heterogeneous collection of diseases with differing causes, pathogenic mechanisms, and physiological effects. Therefore a comprehensive approach to COPD prevention will need to address the complexity of COPD. Advances in the understanding of the natural history of COPD and the development of strategies to assess COPD in its early stages make prevention a reasonable, if ambitious, goal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. SiO2-induced release of sVEGFRs from pulmonary macrophages.

    Science.gov (United States)

    Chao, Jie; Lv, Yan; Chen, Jin; Wang, Jing; Yao, Honghong

    2018-01-01

    The inhalation of silicon dioxide (SiO 2 ) particles causes silicosis, a stubborn pulmonary disease that is characterized by alveolar inflammation during the early stage. Soluble cytokine receptors (SCRs) play important roles in regulating inflammation by either attenuating or promoting cytokine signaling. However, the role of SCRs in silicosis remains unknown. Luminex assays revealed increased soluble vascular endothelial growth factor receptor (sVEGFR) family levels in the plasma of silicosis patients. In an enzyme-linked immunosorbent assay (ELISA), cells from the differentiated human monocytic cell line U937 released sVEGFR family proteins after exposure to SiO 2 (50μg/cm 2 ). Further Western blot experiments revealed that VEGFR expression was also elevated in U937 cells. In contrast, levels of sVEGFR family members did not change in the supernatants of human umbilical vein endothelial cells (HUVECs) after exposure to SiO 2 (50μg/cm 2 ). Interestingly, VEGFR expression in HUVECs decreased after SiO 2 treatment. In a scratch assay, HUVECs exhibited cell migration ability, indicating the acquisition of mesenchymal properties. Our findings highlight the important role of sVEGFRs in both inflammation and fibrosis induced by SiO 2 , suggesting a possible mechanism for the fibrogenic effects observed in pulmonary diseases associated with fibrosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension

    International Nuclear Information System (INIS)

    Satwiko, Muhammad Gahan; Ikeda, Koji; Nakayama, Kazuhiko; Yagi, Keiko; Hocher, Berthold; Hirata, Ken-ichi; Emoto, Noriaki

    2015-01-01

    Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wall thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formation in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH. - Highlights: • Role of endothelin-1 in pulmonary arterial hypertension (PAH) was investigated. • The endothelin-1 transgenic (ETTG) and wild type (WT) mice were analyzed. • ETTG mice spontaneously developed PAH under normoxia conditions. • SU5416 further aggravated PAH in ETTG mice. • Enhanced endothelin system activity could be a causative factor in

  10. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Satwiko, Muhammad Gahan [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Ikeda, Koji [Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan); Nakayama, Kazuhiko [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Yagi, Keiko [Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan); Hocher, Berthold [Institute for Nutritional Science, University of Potsdam, Potsdam (Germany); Hirata, Ken-ichi [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Emoto, Noriaki, E-mail: emoto@med.kobe-u.ac.jp [Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan)

    2015-09-25

    Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wall thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formation in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH. - Highlights: • Role of endothelin-1 in pulmonary arterial hypertension (PAH) was investigated. • The endothelin-1 transgenic (ETTG) and wild type (WT) mice were analyzed. • ETTG mice spontaneously developed PAH under normoxia conditions. • SU5416 further aggravated PAH in ETTG mice. • Enhanced endothelin system activity could be a causative factor in

  11. Central role of T helper 17 cells in chronic hypoxia-induced pulmonary hypertension.

    Science.gov (United States)

    Maston, Levi D; Jones, David T; Giermakowska, Wieslawa; Howard, Tamara A; Cannon, Judy L; Wang, Wei; Wei, Yongyi; Xuan, Weimin; Resta, Thomas C; Gonzalez Bosc, Laura V

    2017-05-01

    Inflammation is a prominent pathological feature in pulmonary arterial hypertension, as demonstrated by pulmonary vascular infiltration of inflammatory cells, including T and B lymphocytes. However, the contribution of the adaptive immune system is not well characterized in pulmonary hypertension caused by chronic hypoxia. CD4 + T cells are required for initiating and maintaining inflammation, suggesting that these cells could play an important role in the pathogenesis of hypoxic pulmonary hypertension. Our objective was to test the hypothesis that CD4 + T cells, specifically the T helper 17 subset, contribute to chronic hypoxia-induced pulmonary hypertension. We compared indices of pulmonary hypertension resulting from chronic hypoxia (3 wk) in wild-type mice and recombination-activating gene 1 knockout mice (RAG1 -/- , lacking mature T and B cells). Separate sets of mice were adoptively transferred with CD4 + , CD8 + , or T helper 17 cells before normoxic or chronic hypoxic exposure to evaluate the involvement of specific T cell subsets. RAG1 -/- mice had diminished right ventricular systolic pressure and arterial remodeling compared with wild-type mice exposed to chronic hypoxia. Adoptive transfer of CD4 + but not CD8 + T cells restored the hypertensive phenotype in RAG1 -/- mice. Interestingly, RAG1 -/- mice receiving T helper 17 cells displayed evidence of pulmonary hypertension independent of chronic hypoxia. Supporting our hypothesis, depletion of CD4 + cells or treatment with SR1001, an inhibitor of T helper 17 cell development, prevented increased pressure and remodeling responses to chronic hypoxia. We conclude that T helper 17 cells play a key role in the development of chronic hypoxia-induced pulmonary hypertension. Copyright © 2017 the American Physiological Society.

  12. Multiple cavities with halo sign in a case of invasive pulmonary aspergillosis during therapy for drug-induced hypersensitivity syndrome

    Directory of Open Access Journals (Sweden)

    Tomoo Ikari

    2017-01-01

    Full Text Available A 67-year-old female with rheumatoid arthritis and asthma-chronic obstructive pulmonary disease overlap syndrome was admitted for drug-induced hypersensitivity syndrome (DIHS caused by salazosulfapyridine. Human herpes virus 6 (HHV-6 variant B was strongly positive on peripheral blood. Multiple cavities with ground grass opacities rapidly emerged predominantly in the upper and middle lobes. She was diagnosed with invasive pulmonary aspergillosis (IPA, and was treated successfully with antifungal agents. Therapeutic systemic corticosteroids, emphysematous change in the lungs, and the worsening of the patient's general condition due to DIHS were considered major contributing factor leading to IPA. HHV-6 reactivation could have an effect on clinical course of IPA. Cavities with halo sign would provide an early clue to IPA in non-neutropenic and immunosuppressive patients.

  13. Pulmonary capillary haemangiomatosis: a rare cause of pulmonary hypertension.

    Science.gov (United States)

    Babu, K Anand; Supraja, K; Singh, Raj B

    2014-01-01

    Pulmonary capillary haemangiomatosis (PCH) is a rare disorder of unknown aetiology, characterised by proliferating capillaries that invade the pulmonary interstitium, alveolar septae and the pulmonary vasculature. It is often mis-diagnosed as primary pulmonary hypertension and pulmonary veno-occlusive disease. Pulmonary capillary haemangiomatosis is a locally aggressive benign vascular neoplasm of the lung. We report the case of a 19-year-old female who was referred to us in the early post-partum period with severe pulmonary artery hypertension, which was diagnosed as PCH by open lung biopsy.

  14. The protective effect of Transhinone II A in radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Li Guanghu; Li Zhiping; Xu Yong; Xu Feng; Wang Jin

    2006-01-01

    Objective: To investigate the protective effect and it's possible mechanism of Tanshinone II A in radiation-induced pulmonary fibrosis. Methods: Having the right hemithorax of female Wistar rats irradiated 30 Gy in 10 fractions within 14 days by 6 MV photons, the radiation-induced pulmonary fibrosis animal model was established. In the treatment group, sodium Tanshinone II A sulfonate (15 mg/kg) was given by intraperitoneal injection 1 hour before each fraction of irradiation. Five months after irradiation, the difference of the histopathological changes, the hyckoxyproline content and expression of TGF-β1 between the radiation alone group, tanshinone plus radiation and control group were analyzed by HE stain, Massion stain, immunohistochemical methor and reverse transcriptase polymerase chain reaction(RT-PCR) method. Results: The histopathological comparison revealed the protective effect of Tanshinone II A. The content of hydroxyproline was (21.99±3.96), (38.25± 7.18), (28.94±4.29) μg/g in the control group, radiation alone group and radiation plus Tanshinone II A. The expression of TGF-β1 (mRNA and protein) was reduced by Tanshinone II A. Pathological changes of the pulmonary fibrosis was reduced by Tanshinone II A yet. Conclusions: Our study shows that Tanshinone II A can inhibit radiation-induced pulmonary fibrosis, and the possible mechanism of its may be made possible through down-regulating the expression of TGF-β1 in the irritated lung tissue. (authors)

  15. Effect of enzyme-induced pulmonary emphysema in Syrian hamsters on the deposition and retention of inhaled particles

    International Nuclear Information System (INIS)

    Hahn, F.F.; Hobbs, C.H.

    1974-01-01

    Experimental emphysema was induced in Syrian hamsters by intratracheal injection of elastase or by inhaled papain aerosols. Control hamsters were injected with saline or exposed to enzyme diluent aerosols. After 3 weeks, all groups were simultaneously exposed to an aerosol of relatively insoluble 137 Cs in fused clay particles with an activity median aerodynamic diameter of 1.4 to 1.6 and a geometric standard deviation of 1.6. The initial pulmonary deposition of particles (measured 3 hours after inhalation) was significantly lower in treated hamsters, 45 percent of controls with elastase and 65 percent with papain aerosols. The effect of both enzyme treatments on the retention of particles was similar in spite of the fact that the pulmonary lesions were not the same. Elastase I.T. caused a diffuse destruction and enlargement of alveoli with a loss of pulmonary elastic recoil. Papain aerosols caused a focal destruction and enlargement of alveoli with no loss of elastic recoil. The common feature of both lesions was an increased number of alveolar macrophages which may account for the early increased clearance of particles. The prolonged retention of particles may be due to focal accumulations of macrophages in distal alveoli. (U.S.)

  16. Pulmonary lesions induced by inhaled plutonium in beagles

    International Nuclear Information System (INIS)

    Dagle, G.E.; Lund, J.E.; Park, J.F.

    1975-01-01

    The histopathologic features of pulmonary fibrosis and bronchiolo-alveolar carcinoma in beagles exposed to aerosols of plutonium oxide were reviewed. A hypothesis of the pathogenesis of radiation pneumonitis induced by inhalation of plutonium oxide was presented; this hypothesis included phagocytosis of plutonium particles, fibrosis responding to the necrosis, and alveolar cell hyperplasia compensating for alveolar cells killed by alpha radiation. Histopathologic features of the epithelial changes suggest a progression from hyperplasia to metaplasia and, finally, to bronchiolo-alveolar carcinoma. The possibility of concurrent radiation-induced lymphopenia contributing to the development of bronchiolo-alveolar carcinoma through a loss of immunologic surveillance was discussed

  17. Bilirubin treatment suppresses pulmonary inflammation in a rat model of smoke-induced emphysema.

    Science.gov (United States)

    Wei, Jingjing; Zhao, Hui; Fan, Guoquan; Li, Jianqiang

    2015-09-18

    Cigarette smoking is a significant risk factor for emphysema, which is characterized by airway inflammation and oxidative damage. To assess the capacity of bilirubin to protect against smoke-induced emphysema. Smoking status and bilirubin levels were recorded in 58 patients with chronic obstructive pulmonary diseases (COPD) and 71 non-COPD participants. The impact of smoking on serum bilirubin levels and exogenous bilirubin (20 mg/kg/day) on pulmonary injury was assessed in a rat model of smoking-induced emphysema. At sacrifice lung histology, airway leukocyte accumulation and cytokine and chemokine levels in serum, bronchoalveolar lavage fluid (BALF) and lung were analyzed. Oxidative lipid damage and anti-oxidative components was assessed by measuring malondialdehyde, superoxide dismutase (SOD) activity and glutathione. Total serum bilirubin levels were lower in smokers with or without COPD than non-smoking patients without COPD (P pulmonary injury by suppressing inflammatory cell recruitment and pro-inflammatory cytokine secretion, increasing anti-inflammatory cytokine levels, and anti-oxidant SOD activity in a rat model of smoke-induced emphysema. Copyright © 2015. Published by Elsevier Inc.

  18. Ozone-induced systemic and pulmonary effects are diminished in adrenalectomized rats

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set is an excel file pertaining to the study that examined ozone-induced systemic and pulmonary effects in rats that underwent SHAM surgery (control),...

  19. The hallucinogen d-lysergic acid diethylamide (d-LSD) induces the immediate-early gene c-Fos in rat forebrain.

    Science.gov (United States)

    Frankel, Paul S; Cunningham, Kathryn A

    2002-12-27

    The hallucinogen d-lysergic acid diethylamide (d-LSD) evokes dramatic somatic and psychological effects. In order to analyze the neural activation induced by this unique psychoactive drug, we tested the hypothesis that expression of the immediate-early gene product c-Fos is induced in specific regions of the rat forebrain by a relatively low, behaviorally active, dose of d-LSD (0.16 mg/kg, i.p.); c-Fos protein expression was assessed at 30 min, and 1, 2 and 4 h following d-LSD injection. A time- and region-dependent expression of c-Fos was observed with a significant increase (PLSD administration. These data demonstrate a unique pattern of c-Fos expression in the rat forebrain following a relatively low dose of d-LSD and suggest that activation of these forebrain regions contributes to the unique behavioral effects of d-LSD. Copyright 2002 Elsevier Science B.V.

  20. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Zychowski, Katherine E.; Lucas, Selita N.; Sanchez, Bethany; Herbert, Guy; Campen, Matthew J., E-mail: mcampen@salud.unm.edu

    2016-08-15

    Ozone (O{sub 3})-related cardiorespiratory effects are a growing public health concern. Ground level O{sub 3} can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O{sub 3}-induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O{sub 3} pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O{sub 3} exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O{sub 2}) or hypoxia (10.0% O{sub 2}), followed by a 4-h exposure to either 1 ppm O{sub 3} or filtered air (FA). As an additional experimental intervention fasudil (20 mg/kg) was administered intraperitoneally prior to and after O{sub 3} exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O{sub 3} exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O{sub 3} exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O{sub 3}-induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability. - Highlights: • Environmental exposures can exacerbate chronic obstructive

  1. Ghrelin ameliorates acute lung injury induced by oleic acid via inhibition of endoplasmic reticulum stress.

    Science.gov (United States)

    Tian, Xiuli; Liu, Zhijun; Yu, Ting; Yang, Haitao; Feng, Linlin

    2018-03-01

    Acute lung injury (ALI) is associated with excessive mortality and lacks appropriate therapy. Ghrelin is a novel peptide that protects the lung against ALI. This study aimed to investigate whether endoplasmic reticulum stress (ERS) mediates the protective effect of ghrelin on ALI. We used a rat oleic acid (OA)-induced ALI model. Pulmonary impairment was detected by hematoxylin and eosin (HE) staining, lung mechanics, wet/dry weight ratio, and arterial blood gas analysis. Plasma and lung content of ghrelin was examined by ELISA, and mRNA expression was measured by quantitative real-time PCR. Protein levels were detected by western blot. Rats with OA treatment showed significant pulmonary injury, edema, inflammatory cellular infiltration, cytokine release, hypoxia and CO 2 retention as compared with controls. Plasma and pulmonary content of ghrelin was reduced in rats with ALI, and mRNA expression was downregulated. Ghrelin (10nmol/kg) treatment ameliorated the above symptoms, but treatment with the ghrelin antagonists D-Lys 3 GHRP-6 (1μmol/kg) and JMV 2959 (6mg/kg) exacerbated the symptoms. ERS induced by OA was prevented by ghrelin and augmented by ghrelin antagonist treatment. The ERS inducer, tunicamycin (Tm) prevented the ameliorative effect of ghrelin on ALI. The decreased ratio of p-Akt and Akt induced by OA was improved by ghrelin treatment, and was further exacerbated by ghrelin antagonists. Ghrelin protects against ALI by inhibiting ERS. These results provide a new target for prevention and therapy of ALI. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Bleomycin induced pulmonary to cytotoxicity in patients with germ cell tumours

    International Nuclear Information System (INIS)

    Usman, M.; Faruqui, Z.S.; Din, N.U.

    2010-01-01

    Background: Bleomycin is a cytotoxic drug used in treatment of Germ Cell Tumours (GCTs) and is associated with pulmonary toxicity. Bleomycin pulmonary toxicity (BPT) manifests predominantly as pulmonary fibrosis, organising pneumonia (OP) or Nonspecific Interstitial Pneumonitis (NSIP). Our objectives were to determine the incidence of BPT, describe the common HRCT patterns of pulmonary toxicity and to find out the correlation of variables (cumulative dose of bleomycin, age and glomerular filtration rate) with pulmonary toxicity. Methods: The study included the data of 96 patients from March 2006 to September 2008. All patients had histologically proven GCT and received bleomycin containing regimes. Variables age, GFR at the time of initial presentation along with cumulative dose of bleomycin at completion of chemotherapy or at the time of BPT were recorded. The High resolution CT chest (HRCT) of these patients was independently reviewed by two radiologists. Bleomycin toxicity was reported on the radiologic features of pulmonary fibrosis, OP or NSIP. Results : Fourteen patients (14.6%) developed BPT. Common patterns of BPT were, pulmonary fibrosis (5.2%), OP (5.2%) and NSIP (4.2%). Using the Univariate regression analysis there was significant relationship between BPT and age, cumulative bleomycin dose an d initial GFR at the beginning of treatment. Conclusions: Because BPT can be progressive and fatal, early recognition is important. The diagnosis of pulmonary toxicity should be considered in any patient with new or progressive respiratory complaints. BPT can be difficult to diagnose; therefore, knowledge and understanding of radiologic manifestations of toxicity caused by Bleomycin are necessary for institution of appropriate treatment. There is increasing incidence of BPT with increasing age, cumulative dose and decreasing GFR. (author)

  3. Neogambogic acid prevents silica-induced fibrosis via inhibition of high-mobility group box 1 and MCP-1-induced protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096 (China); Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Zhang, Mei, E-mail: meizhang1717@163.com [Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Wang, Zhongjiang [Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Cheng, Yusi; Liu, Haijun [Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Zhou, Zewei [Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Han, Bing [Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Chen, Baoan [Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Yao, Honghong, E-mail: yaohh@seu.edu.cn [Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096 (China); Chao, Jie, E-mail: chaojie@seu.edu.cn [Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China); Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096 (China); Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009 (China)

    2016-10-15

    Background: Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO{sub 2}); early stages are characterized by alveolar inflammation, and later stages are characterized by progressive lung fibrosis. Mounting evidence indicates that high-mobility group box 1 (HMGB1) is involved in pulmonary fibrosis. Whether neogambogic acid (NGA) inhibits macrophage and fibroblast activation induced by SiO{sub 2} by targeting HMGB1 remains unclear. Methods and results: Experiments using cultured mouse macrophages (RAW264.7 cells) demonstrated that SiO{sub 2} treatment induces the expression of HMGB1 in a time- and dose-dependent manner via mitogen-activated protein kinases (MAPKs) and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway; in turn, this expression causes macrophage apoptosis and fibroblast activation. Pretreating macrophages with NGA inhibited the HMGB1 expression induced by SiO{sub 2} and attenuated both macrophage apoptosis and fibroblast activation. Moreover, NGA directly inhibited MCP-1-induced protein 1 (MCPIP1) expression, as well as markers of fibroblast activation and migration induced by SiO{sub 2}. Furthermore, the effects of NGA on macrophages and fibroblasts were confirmed in vivo by exposing mice to SiO{sub 2}. Conclusion: NGA can prevent SiO{sub 2}-induced macrophage activation and apoptosis via HMGB1 inhibition and SiO{sub 2}-induced fibrosis via the MCPIP1 pathway. Targeting HMGB1 and MCPIP1 with NGA could provide insights into the potential development of a therapeutic approach for alleviating the inflammation and fibrosis induced by SiO{sub 2}. - Highlights: • The SiO{sub 2} induced HMGB1 in alveolar macrophage and MCPIP1 in fibroblast. • NGA rescued the SiO{sub 2}-induced apoptosis of alveolar macrophages via HMGB1 signaling. • NGA inhibited the fibroblast activation induced by SiO{sub 2} via MCPIP1 signaling. • NGA might represent a potential therapeutic approach for silicosis.

  4. Gallic Acid Induces a Reactive Oxygen Species-Provoked c-Jun NH2-Terminal Kinase-Dependent Apoptosis in Lung Fibroblasts

    Science.gov (United States)

    Chen, Chiu-Yuan; Chen, Kun-Chieh; Yang, Tsung-Ying; Liu, Hsiang-Chun; Hsu, Shih-Lan

    2013-01-01

    Idiopathic pulmonary fibrosis is a chronic lung disorder characterized by fibroblasts proliferation and extracellular matrix accumulation. Induction of fibroblast apoptosis therefore plays a crucial role in the resolution of this disease. Gallic acid (3,4,5-trihydroxybenzoic acid), a common botanic phenolic compound, has been reported to induce apoptosis in tumor cell lines and renal fibroblasts. The present study was undertaken to examine the role of mitogen-activated protein kinases (MAPKs) in lung fibroblasts apoptosis induced by gallic acid. We found that treatment with gallic acid resulted in activation of c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB, Akt), but not p38MAPK, in mouse lung fibroblasts. Inhibition of JNK using pharmacologic inhibitor (SP600125) and genetic knockdown (JNK specific siRNA) significantly inhibited p53 accumulation, reduced PUMA and Fas expression, and abolished apoptosis induced by gallic acid. Moreover, treatment with antioxidants (vitamin C, N-acetyl cysteine, and catalase) effectively diminished gallic acid-induced hydrogen peroxide production, JNK and p53 activation, and cell death. These observations imply that gallic acid-mediated hydrogen peroxide formation acts as an initiator of JNK signaling pathways, leading to p53 activation and apoptosis in mouse lung fibroblasts. PMID:23533505

  5. Pulmonary arachidonic acid metabolism following acute exposures to ozone and nitrogen dioxide

    International Nuclear Information System (INIS)

    Schlesinger, R.B.; Driscoll, K.E.; Gunnison, A.F.; Zelikoff, J.T.

    1990-01-01

    Ozone (O 3 ) and nitrogen dioxide (NO 2 ) are common air pollutants, and exposure to these gases has been shown to affect pulmonary physiology, biochemistry, and structure. This study examined their ability to modulate arachidonic acid metabolites (eicosanoids) in the lungs. Rabbits were exposed for 2 h to O 3 at 0.1, 0.3, or 1 ppm; NO 2 at 1, 3, or 10 ppm; or to a mixture of 0.3 ppm O 3 and 3 ppm NO 2 . Groups of animals sacrificed either immediately or 24 h after each exposure underwent broncho-pulmonary lavage. Selected eicosanoids were assessed in lavage fluid by radioimmunoassay. Increases in prostaglandins E2 (PGE2) and F2 alpha (PGF2 alpha) were found immediately after exposure to 1 ppm O 3 . Exposure to 10 ppm NO 2 resulted in a depression of 6-keto-PGF1 alpha, while thromboxane B2 (TxB2) was elevated after exposure to 1 ppm NO 2 and depressed following 3 and 10 ppm. The O 3 /NO 2 mixture resulted in synergistic increases in PGE2 and PGF2 alpha, with the response appearing to be driven by O 3 . This study has demonstrated that acute exposure to either O 3 or NO 2 can alter pulmonary arachidonic acid metabolism and that the responses to these oxidants differ, both quantitatively and qualitatively

  6. Inhaled hyaluronic acid microparticles extended pulmonary retention and suppressed systemic exposure of a short-acting bronchodilator

    DEFF Research Database (Denmark)

    Li, Ying; Han, Meihua; Liu, Tingting

    2017-01-01

    The aim of this study was to investigate the feasibility of using hyaluronic acid (HA), a biomucoadhesive carbohydrate polymer to prolong the pulmonary retention and reduce the systemic exposure of inhaled medicine. Salbutamol sulphate (SAS), a model bronchodilator, was co-spray dried with HA...... to spray-dried plain SAS powders, the SAS-loaded HA microparticles possessed enhanced biomucoadhesive property in vitro and had much longer pulmonary retention and reduced systemic exposure in vivo. By incorporation, the pulmonary retention time of SAS was prolonged from 2h to 8h while the maximum...

  7. Therapeutic Benefits of Induced Pluripotent Stem Cells in Monocrotaline-Induced Pulmonary Arterial Hypertension.

    Directory of Open Access Journals (Sweden)

    Wei-Chun Huang

    Full Text Available Pulmonary arterial hypertension (PAH is characterized by progressive increases in vascular resistance and the remodeling of pulmonary arteries. The accumulation of inflammatory cells in the lung and elevated levels of inflammatory cytokines in the bloodstream suggest that inflammation may play a role in PAH. In this study, the benefits of induced pluripotent stem cells (iPSCs and iPSC-conditioned medium (iPSC CM were explored in monocrotaline (MCT-induced PAH rats. We demonstrated that both iPSCs and iPSC CM significantly reduced the right ventricular systolic pressure and ameliorated the hypertrophy of the right ventricle in MCT-induced PAH rats in models of both disease prevention and disease reversal. In the prevention of MCT-induced PAH, iPSC-based therapy led to the decreased accumulation of inflammatory cells and down-regulated the expression of the IL-1β, IL-6, IL-12α, IL-12β, IL-23 and IFNγ genes in lung specimens, which implied that iPSC-based therapy may be involved in the regulation of inflammation. NF-κB signaling is essential to the inflammatory cascade, which is activated via the phosphorylation of the NF-κB molecule. Using the chemical inhibitor specifically blocked the phosphorylation of NF-κB, and in vitro assays of cultured human M1 macrophages implied that the anti-inflammation effect of iPSC-based therapy may contribute to the disturbance of NF-κB activation. Here, we showed that iPSC-based therapy could restore the hemodynamic function of right ventricle with benefits for preventing the ongoing inflammation in the lungs of MCT-induced PAH rats by regulating NF-κB phosphorylation.

  8. Adiponectin attenuates lung fibroblasts activation and pulmonary fibrosis induced by paraquat.

    Directory of Open Access Journals (Sweden)

    Rong Yao

    Full Text Available Pulmonary fibrosis is one of the most common complications of paraquat (PQ poisoning, which demands for more effective therapies. Accumulating evidence suggests adiponectin (APN may be a promising therapy against fibrotic diseases. In the current study, we determine whether the exogenous globular APN isoform protects against pulmonary fibrosis in PQ-treated mice and human lung fibroblasts, and dissect the responsible underlying mechanisms. BALB/C mice were divided into control group, PQ group, PQ + low-dose APN group, and PQ + high-dose APN group. Mice were sacrificed 3, 7, 14, and 21 days after PQ treatment. We compared pulmonary histopathological changes among different groups on the basis of fibrosis scores, TGF-β1, CTGF and α-SMA pulmonary content via Western blot and real-time quantitative fluorescence-PCR (RT-PCR. Blood levels of MMP-9 and TIMP-1 were determined by ELISA. Human lung fibroblasts WI-38 were divided into control group, PQ group, APN group, and APN receptor (AdipoR 1 small-interfering RNA (siRNA group. Fibroblasts were collected 24, 48, and 72 hours after PQ exposure for assay. Cell viability and apoptosis were determined via Kit-8 (CCK-8 and fluorescein Annexin V-FITC/PI double labeling. The protein and mRNA expression level of collagen type III, AdipoR1, and AdipoR2 were measured by Western blot and RT-PCR. APN treatment significantly decreased the lung fibrosis scores, protein and mRNA expression of pulmonary TGF-β1, CTGF and α-SMA content, and blood MMP-9 and TIMP-1 in a dose-dependent manner (p<0.05. Pretreatment with APN significantly attenuated the reduced cell viability and up-regulated collagen type III expression induced by PQ in lung fibroblasts, (p<0.05. APN pretreatment up-regulated AdipoR1, but not AdipoR2, expression in WI-38 fibroblasts. AdipoR1 siRNA abrogated APN-mediated protective effects in PQ-exposed fibroblasts. Taken together, our data suggests APN protects against PQ-induced pulmonary fibrosis in a

  9. Exercise facilitates early recognition of cardiac and vascular remodeling in chronic thromboembolic pulmonary hypertension in swine.

    Science.gov (United States)

    Stam, Kelly; van Duin, Richard W B; Uitterdijk, André; Cai, Zongye; Duncker, Dirk J; Merkus, Daphne

    2018-03-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) develops in 4% of patients after pulmonary embolism and is accompanied by an impaired exercise tolerance, which is ascribed to the increased right ventricular (RV) afterload in combination with a ventilation/perfusion (V/Q) mismatch in the lungs. The present study aimed to investigate changes in arterial Po 2 and hemodynamics in response to graded treadmill exercise during development and progression of CTEPH in a novel swine model. Swine were chronically instrumented and received multiple pulmonary embolisms by 1) microsphere infusion (Spheres) over 5 wk, 2) endothelial dysfunction by administration of the endothelial nitric oxide synthase inhibitor N ω -nitro-l-arginine methyl ester (L-NAME) for 7 wk, 3) combined pulmonary embolisms and endothelial dysfunction (L-NAME + Spheres), or 4) served as sham-operated controls (sham). After a 9 wk followup, embolization combined with endothelial dysfunction resulted in CTEPH, as evidenced by mean pulmonary artery pressures of 39.5 ± 5.1 vs. 19.1 ± 1.5 mmHg (Spheres, P swine to result in an exercise-induced increase in cardiac index. In conclusion, embolization in combination with endothelial dysfunction results in CTEPH in swine. Exercise increased RV afterload, exacerbated the V/Q mismatch, and unmasked RV dysfunction. NEW & NOTEWORTHY Here, we present the first double-hit chronic thromboembolic pulmonary hypertension swine model. We show that embolization as well as endothelial dysfunction is required to induce sustained pulmonary hypertension, which is accompanied by altered exercise hemodynamics and an exacerbated ventilation/perfusion mismatch during exercise.

  10. Pulmonary lesions induced by inhaled plutonium in beagles

    International Nuclear Information System (INIS)

    Dagle, G.E.; Lund, J.E.; Park, J.F.

    1976-01-01

    The histopathologic features of pulmonary fibrosis and bronchiolo-alveolar carcinoma in beagles exposed to aerosols of 238 Pu or 239 Pu oxide are reviewed. A hypothesis of the pathogenesis of radiation pneumonitis induced by inhalation of plutonium oxide is presented; this hypothesis included phagocytosis of Pu particles, fibrosis responding to the necrosis, and alveolar cell hyperplasia compensating for alveolar cells killed by alpha radiation. Histopathologic features of the epithelial changes suggest a progression from hyperplasia to metaplasia and, finally, to bronchiolo-alveolar carcinoma. The possibility of concurrent radiation-induced lymphopenia contributing to the development of bronchiolo-alveolar carcinoma through a loss of immunologic surveillance is discussed

  11. Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses.

    Science.gov (United States)

    Kim, Ha Ryong; Lee, Kyuhong; Park, Chang We; Song, Jeong Ah; Shin, Da Young; Park, Yong Joo; Chung, Kyu Hyuck

    2016-03-01

    Polyhexamethylene guanidine (PHMG) phosphate was used as a disinfectant for the prevention of microorganism growth in humidifiers, without recognizing that a change of exposure route might cause significant health effects. Epidemiological studies reported that the use of humidifier disinfectant containing PHMG-phosphate can provoke pulmonary fibrosis. However, the pulmonary toxicity of PHMG-phosphate aerosol particles is unknown yet. This study aimed to elucidate the toxicological relationship between PHMG-phosphate aerosol particles and pulmonary fibrosis. An in vivo nose-only exposure system and an in vitro air-liquid interface (ALI) co-culture model were applied to confirm whether PHMG-phosphate induces inflammatory and fibrotic responses in the respiratory tract. Seven-week-old male Sprague-Dawley rats were exposed to PHMG-phosphate aerosol particles for 3 weeks and recovered for 3 weeks in a nose-only exposure chamber. In addition, three human lung cells (Calu-3, differentiated THP-1 and HMC-1 cells) were cultured at ALI condition for 12 days and were treated with PHMG-phosphate at set concentrations and times. The reactive oxygen species (ROS) generation, airway barrier injuries and inflammatory and fibrotic responses were evaluated in vivo and in vitro. The rats exposed to PHMG-phosphate aerosol particles in nanometer size showed pulmonary inflammation and fibrosis including inflammatory cytokines and fibronectin mRNA increase, as well as histopathological changes. In addition, PHMG-phosphate triggered the ROS generation, airway barrier injuries and inflammatory responses in a bronchial ALI co-culture model. Those results demonstrated that PHMG-phosphate aerosol particles cause pulmonary inflammatory and fibrotic responses. All features of fibrogenesis by PHMG-phosphate aerosol particles closely resembled the pathology of fibrosis that was reported in epidemiological studies. Finally, we expected that PHMG-phosphate infiltrated into the lungs in the form of

  12. Anti-pulmonary fibrotic activity of salvianolic acid B was screened by a novel method based on the cyto-biophysical properties

    International Nuclear Information System (INIS)

    Liu, Miao; Zheng, Mingjing; Xu, Hanying; Liu, Lianqing; Li, Yanchun; Xiao, Wei; Li, Jianchun; Ma, Enlong

    2015-01-01

    Various methods have been used to evaluate anti-fibrotic activity of drugs. However, most of them are complicated, labor-intensive and lack of efficiency. This study was intended to develop a rapid method for anti-fibrotic drugs screening based on biophysical properties. A549 cells in vitro were stimulated with transforming growth factor-β1 (TGF-β1), and fibrogenesis was confirmed by conventional immunological assays. Meanwhile, the alterations of cyto-biophysical properties including morphology, roughness and stiffness were measured utilizing atomic force microscopy (AFM). It was found that fibrogenesis was accompanied with changes of cellular biophysical properties. TGF-β1-stimulated A549 cells became remarkably longer, rougher and stiffer than the control. Then, the effect of N-acetyl-L-cysteine (NAC) as a positive drug on ameliorating fibrogenesis in TGF-β1-stimulated A549 cells was verified respectively by immunological and biophysical markers. The result of Principal Component Analysis showed that stiffness was a leading index among all biophysical markers during fibrogenesis. Salvianolic acid B (SalB), a natural anti-oxidant, was detected by AFM to protect TGF-β1-stimulated A549 cells against stiffening. Then, SalB treatment was provided in preventive mode on a rat model of bleomycin (BLM) -induced pulmonary fibrosis. The results showed that SalB treatment significantly ameliorated BLM-induced histological alterations, blocked collagen accumulations and reduced α-SMA expression in lung tissues. All these results revealed the anti-pulmonary fibrotic activity of SalB. Detection of cyto-biophysical properties were therefore recommended as a rapid method for anti-pulmonary fibrotic drugs screening. - Highlights: • Fibrogenesis was accompanied with the changes of cyto-biophysical properties. • Cyto-biophysical properties could be markers for anti-fibrotic drugs screening. • Stiffness is a leading index among all biophysical markers. • SalB was

  13. Anti-pulmonary fibrotic activity of salvianolic acid B was screened by a novel method based on the cyto-biophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Miao; Zheng, Mingjing; Xu, Hanying [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Liu, Lianqing [Shenyang Institute of Automation China Academy of Sciences, Shenyang, 110016 (China); Li, Yanchun [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Xiao, Wei [Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing, 222001 (China); Li, Jianchun, E-mail: lijianchun0317@sina.com.cn [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Ma, Enlong, E-mail: enlong_ma2014@hotmail.com [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing, 222001 (China)

    2015-12-04

    Various methods have been used to evaluate anti-fibrotic activity of drugs. However, most of them are complicated, labor-intensive and lack of efficiency. This study was intended to develop a rapid method for anti-fibrotic drugs screening based on biophysical properties. A549 cells in vitro were stimulated with transforming growth factor-β1 (TGF-β1), and fibrogenesis was confirmed by conventional immunological assays. Meanwhile, the alterations of cyto-biophysical properties including morphology, roughness and stiffness were measured utilizing atomic force microscopy (AFM). It was found that fibrogenesis was accompanied with changes of cellular biophysical properties. TGF-β1-stimulated A549 cells became remarkably longer, rougher and stiffer than the control. Then, the effect of N-acetyl-L-cysteine (NAC) as a positive drug on ameliorating fibrogenesis in TGF-β1-stimulated A549 cells was verified respectively by immunological and biophysical markers. The result of Principal Component Analysis showed that stiffness was a leading index among all biophysical markers during fibrogenesis. Salvianolic acid B (SalB), a natural anti-oxidant, was detected by AFM to protect TGF-β1-stimulated A549 cells against stiffening. Then, SalB treatment was provided in preventive mode on a rat model of bleomycin (BLM) -induced pulmonary fibrosis. The results showed that SalB treatment significantly ameliorated BLM-induced histological alterations, blocked collagen accumulations and reduced α-SMA expression in lung tissues. All these results revealed the anti-pulmonary fibrotic activity of SalB. Detection of cyto-biophysical properties were therefore recommended as a rapid method for anti-pulmonary fibrotic drugs screening. - Highlights: • Fibrogenesis was accompanied with the changes of cyto-biophysical properties. • Cyto-biophysical properties could be markers for anti-fibrotic drugs screening. • Stiffness is a leading index among all biophysical markers. • SalB was

  14. Passion fruit peel extract attenuates bleomycin-induced pulmonary fibrosis in mice.

    Science.gov (United States)

    Chilakapati, Shanmuga Reddy; Serasanambati, Mamatha; Manikonda, Pavan Kumar; Chilakapati, Damodar Reddy; Watson, Ronald Ross

    2014-08-01

    Idiopathic pulmonary fibrosis is a progressive fatal lung disease characterized by excessive collagen deposition, with no effective treatments. We investigated the efficacy of natural products with high anti-inflammatory activity, such as passion fruit peel extract (PFPE), in a mouse model of bleomycin-induced pulmonary fibrosis (PF). C57BL/6J mice were subjected to a single intratracheal instillation of bleomycin to induce PF. Daily PFPE treatment significantly reduced loss of body mass and mortality rate in mice compared with those treated with bleomycin. While bleomycin-induced PF resulted in elevated total numbers of inflammatory cells, macrophages, lymphocytes, and neutrophils in bronchoalveolar lavage fluid on both days 7 and 21, PFPE administration significantly attenuated these phenomena compared with bleomycin group. On day 7, the decreased superoxide dismutase and myeloperoxidase activities observed in the bleomycin group were significantly restored with PFPE treatment. On day 21, enhanced hydroxyproline deposition in the bleomycin group was also suppressed by PFPE administration. PFPE treatment significantly attenuated extensive inflammatory cell infiltration and accumulation of collagen in lung tissue sections of bleomycin-induced mice on days 7 and 21, respectively. Our results indicate that administration of PFPE decreased bleomycin-induced PF because of anti-inflammatory and antioxidant activities.

  15. Mycophenolate mofetil attenuates pulmonary arterial hypertension in rats

    International Nuclear Information System (INIS)

    Suzuki, Chihiro; Takahashi, Masafumi; Morimoto, Hajime; Izawa, Atsushi; Ise, Hirohiko; Hongo, Minoru; Hoshikawa, Yasushi; Ito, Takayuki; Miyashita, Hiroshi; Kobayashi, Eiji; Shimada, Kazuyuki; Ikeda, Uichi

    2006-01-01

    Pulmonary arterial hypertension (PAH) is characterized by abnormal proliferation of smooth muscle cells (SMCs), leading to occlusion of pulmonary arterioles, right ventricular (RV) hypertrophy, and death. We investigated whether mycophenolate mofetil (MMF), a potent immunosuppresssant, prevents the development of monocrotaline (MCT)-induced PAH in rats. MMF effectively decreased RV systolic pressure and RV hypertrophy, and reduced the medial thickness of pulmonary arteries. MMF significantly inhibited the number of proliferating cell nuclear antigen (PCNA)-positive cells, infiltration of macrophages, and expression of P-selectin and interleukin-6 on the endothelium of pulmonary arteries. The infiltration of T cells and mast cells was not affected by MMF. In vitro experiments revealed that mycophenolic acid (MPA), an active metabolite of MMF, dose-dependently inhibited proliferation of human pulmonary arterial SMCs. MMF attenuated the development of PAH through its anti-inflammatory and anti-proliferative properties. These findings provide new insight into the potential role of immunosuppressants in the treatment of PAH

  16. Negative Pressure Pulmonary Edema after Reversing Rocuronium-Induced Neuromuscular Blockade by Sugammadex

    Directory of Open Access Journals (Sweden)

    Manzo Suzuki

    2014-01-01

    Full Text Available Negative pressure pulmonary edema (NPPE is a rare complication that accompanies general anesthesia, especially after extubation. We experienced a case of negative pressure pulmonary edema after tracheal extubation following reversal of rocuronium-induced neuromuscular blockade by sugammadex. In this case, the contribution of residual muscular block on the upper airway muscle as well as large inspiratory forces created by the respiratory muscle which has a low response to muscle relaxants, is suspected as the cause.

  17. Comparison of extravascular lung water volume with radiographic findings in dogs with experimentally increased permeability pulmonary edema

    International Nuclear Information System (INIS)

    Takeda, A.; Okumura, S.; Miyamoto, T.; Hagio, M.; Fujinaga, T.

    1995-01-01

    The relationship between extravascular lung water volume (ELWV) and chest radiographical findings was studied in general-anesthetized beagles. The dogs were experimentally injected with oleic acid to increase pulmonary vascular permeability. When the ELWV value in the dogs increased more than approximately 37% from the control value, their chest radiographs began to show signs of pulmonary edema. At this time, the chest X-ray density increased to 10% above the control level. PaO2 decreased, and PaCO2 increased after the administration of oleic acid. This clearly showed that the pulmonary gas exchange function was reduced following increasing ELWV. This comparison showed that probably the thermal-sodium double indicator dilution measurement of ELWV can detect slight hyperpermeability pulmonary edema that does not show on chest radiographs. The chest radiograph was therefore not suitable for the detection of slight pulmonary edema, because it did not show any changes in the early stages in hyperpermeability pulmonary edema

  18. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    Science.gov (United States)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P pulmonary hypertension.

  19. Amino Acid Stability in the Early Oceans

    Science.gov (United States)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.

    2015-01-01

    It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.

  20. When a pulmonary embolism is not a pulmonary embolism: a rare case of primary pulmonary leiomyosarcoma

    Directory of Open Access Journals (Sweden)

    Nargiz Muganlinskaya

    2015-12-01

    Full Text Available Arterial leiomyosarcomas account for up to 21% of vascular leiomyosarcomas, with 56% of arterial leiomyosarcomas occurring in the pulmonary artery. While isolated cases of primary pulmonary artery leiomyosarcoma document survival up to 36 months after treatment, these uncommon, aggressive tumors are highly lethal, with 1-year survival estimated at 20% from the onset of symptoms. We discuss a rare case of a pulmonary artery leiomyosarcoma that was originally diagnosed as a pulmonary embolism (PE. A 72-year-old Caucasian female was initially diagnosed with ‘saddle pulmonary embolism’ based on computerized tomographic angiography of the chest 2 months prior to admission and placed on anticoagulation. Dyspnea escalated, and serial computed tomography scans showed cardiomegaly with pulmonary emboli involving the right and left main pulmonary arteries with extension into the right and left upper and lower lobe branches. An echocardiogram on admission showed severe pulmonary hypertension with a pulmonary artery pressure of 82.9 mm Hg, and a severely enlarged right ventricle. Respiratory distress and multiorgan failure developed and, unfortunately, the patient expired. Autopsy showed a lobulated, yellow mass throughout the main pulmonary arteries measuring 13 cm in diameter. The mass extended into the parenchyma of the right upper lobe. On microscopy, the mass was consistent with a high-grade primary pulmonary artery leiomyosarcoma. Median survival of patients with primary pulmonary artery leiomyosarcoma without surgery is one and a half months, and mortality is usually due to right-sided heart failure. Pulmonary artery leiomyosarcoma is a rare but highly lethal disease commonly mistaken for PE. Thus, we recommend clinicians to suspect this malignancy when anticoagulation fails to relieve initial symptoms. In conclusion, early detection and suspicion of pulmonary artery leiomyosarcoma should be considered in patients refractory to anticoagulation

  1. Inhalation of activated protein C inhibits endotoxin-induced pulmonary inflammation in mice independent of neutrophil recruitment

    NARCIS (Netherlands)

    Slofstra, S. H.; Groot, A. P.; Maris, N. A.; Reitsma, P. H.; Cate, H. Ten; Spek, C. A.

    2006-01-01

    BACKGROUND AND PURPOSE: Intravenous administration of recombinant human activated protein C (rhAPC) is known to reduce lipopolysaccharide (LPS)-induced pulmonary inflammation by attenuating neutrophil chemotaxis towards the alveolar compartment. Ideally, one would administer rhAPC in pulmonary

  2. IL-4 receptor-alpha-dependent control of Cryptococcus neoformans in the early phase of pulmonary infection.

    Directory of Open Access Journals (Sweden)

    Andreas Grahnert

    Full Text Available Cryptococcus neoformans is an opportunistic fungal pathogen that causes lung inflammation and meningoencephalitis in immunocompromised people. Previously we showed that mice succumb to intranasal infection by induction of pulmonary interleukin (IL-4Rα-dependent type 2 immune responses, whereas IL-12-dependent type 1 responses confer resistance. In the experiments presented here, IL-4Rα⁻/⁻ mice unexpectedly show decreased fungal control early upon infection with C. neoformans, whereas wild-type mice are able to control fungal growth accompanied by enhanced macrophage and dendritic cell recruitment to the site of infection. Lower pulmonary recruitment of macrophages and dendritic cells in IL-4Rα⁻/⁻ mice is associated with reduced pulmonary expression of CCL2 and CCL20 chemokines. Moreover, IFN-γ and nitric oxide production are diminished in IL-4Rα⁻/⁻ mice compared to wild-type mice. To directly study the potential mechanism(s responsible for reduced production of IFN-γ, conventional dendritic cells were stimulated with C. neoformans in the presence of IL-4 which results in increased IL-12 production and reduced IL-10 production. Together, a beneficial role of early IL-4Rα signaling is demonstrated in pulmonary cryptococcosis, which contrasts with the well-known IL-4Rα-mediated detrimental effects in the late phase.

  3. Milrinone therapy for enterovirus 71-induced pulmonary edema and/or neurogenic shock in children: a randomized controlled trial.

    Science.gov (United States)

    Chi, Chia-Yu; Khanh, Truong Huu; Thoa, Le Phan Kim; Tseng, Fan-Chen; Wang, Shih-Min; Thinh, Le Quoc; Lin, Chia-Chun; Wu, Han-Chieh; Wang, Jen-Ren; Hung, Nguyen Thanh; Thuong, Tang Chi; Chang, Chung-Ming; Su, Ih-Jen; Liu, Ching-Chuan

    2013-07-01

    Enterovirus 71-induced brainstem encephalitis with pulmonary edema and/or neurogenic shock (stage 3B) is associated with rapid mortality in children. In a small pilot study, we found that milrinone reduced early mortality compared with historical controls. This prospective, randomized control trial was designed to provide more definitive evidence of the ability of milrinone to reduce the 1-week mortality of stage 3B enterovirus 71 infections. Prospective, unicenter, open-label, randomized, controlled study. Inpatient ward of a large tertiary teaching hospital in Ho Chi Minh City, Vietnam. Children (≤ 18 yr old) admitted with proven enterovirus 71-induced pulmonary edema and/or neurogenic shock. Patients were randomly assigned to receive intravenous milrinone (0.5 μg/kg/min) (n = 22) or conventional management (n = 19). Both groups received dopamine or dobutamine and intravenous immunoglobulin. The primary endpoint was 1-week mortality. The secondary endpoints included length of ventilator dependence and hospital stay and adverse events. The median age was 2 years with a predominance of boys in both groups. The 1-week mortality was significantly lower, 18.2% (4/22) in the milrinone compared with 57.9% (11/19) in the conventional management group (relative risk = 0.314 [95% CI, 0.12-0.83], p = 0.01). The median duration of ventilator-free days was longer in the milrinone treatment group (p = 0.01). There was no apparent neurologic sequela in the survivors in either group, and no drug-related adverse events were documented. Milrinone significantly reduced the 1-week mortality of enterovirus 71-induced pulmonary edema and/or neurogenic shock without adverse effects. Further studies are needed to determine whether milrinone might be useful to prevent progression of earlier stages of brainstem encephalitis.

  4. Raw milk consumption and other early-life farm exposures and adult pulmonary function in the Agricultural Lung Health Study.

    Science.gov (United States)

    Wyss, Annah B; House, John S; Hoppin, Jane A; Richards, Marie; Hankinson, John L; Long, Stuart; Henneberger, Paul K; Beane Freeman, Laura E; Sandler, Dale P; O'Connell, Elizabeth Long; Cummings, Christie Barker; Umbach, David M; London, Stephanie J

    2018-03-01

    Literature suggests that early exposure to the farming environment protects against atopy and asthma; few studies have examined pulmonary function. We evaluated associations between early-life farming exposures and pulmonary function in 3061 adults (mean age=63) from a US farming population using linear regression. Childhood raw milk consumption was associated with higher FEV 1 (β=49.5 mL, 95% CI 2.8 to 96.1 mL, p=0.04) and FVC (β=66.2 mL, 95% CI 13.2 to 119.1 mL, p=0.01). We did not find appreciable associations with other early-life farming exposures. We report a novel association between raw milk consumption and higher pulmonary function that lasts into older adulthood. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Bufei Huoxue Capsule Attenuates PM2.5-Induced Pulmonary Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Yue Jing

    2017-01-01

    Full Text Available Atmospheric fine particulate matter 2.5 (PM 2.5 may carry many toxic substances on its surface and this may pose a public health threat. Epidemiological research indicates that cumulative ambient PM2.5 is correlated to morbidity and mortality due to pulmonary and cardiovascular diseases and cancer. Mitigating the toxic effects of PM2.5 is therefore highly desired. Bufei Huoxue (BFHX capsules have been used in China to treat pulmonary heart disease (cor pulmonale. Thus, we assessed the effects of BFHX capsules on PM2.5-induced pulmonary inflammation and the underlying mechanisms of action. Using Polysearch and Cytoscape 3.2.1 software, pharmacological targets of BFHX capsules in atmospheric PM2.5-related respiratory disorders were predicted and found to be related to biological pathways of inflammation and immune function. In a mouse model of PM2.5-induced inflammation established with intranasal instillation of PM2.5 suspension, BFHX significantly reduced pathological response and inflammatory mediators including IL-4, IL-6, IL-10, IL-8, TNF-α, and IL-1β. BFHX also reduced keratinocyte growth factor (KGF, secretory immunoglobulin A (sIgA, and collagen fibers deposition in lung and improved lung function. Thus, BFHX reduced pathological responses induced by PM2.5, possibly via regulation of inflammatory mediators in mouse lungs.

  6. Mast cell mediators in citric acid-induced airway constriction of guinea pigs

    International Nuclear Information System (INIS)

    Lin, C.-H.; Lai, Y.-L.

    2005-01-01

    We demonstrated previously that mast cells play an important role in citric acid (CA)-induced airway constriction. In this study, we further investigated the underlying mediator(s) for this type of airway constriction. At first, to examine effects caused by blocking agents, 67 young Hartley guinea pigs were divided into 7 groups: saline + CA; methysergide (serotonin receptor antagonist) + CA; MK-886 (leukotriene synthesis inhibitor) + CA; mepyramine (histamine H 1 receptor antagonist) + CA; indomethacin (cyclooxygenase inhibitor) + CA; cromolyn sodium (mast cell stabilizer) + CA; and compound 48/80 (mast cell degranulating agent) + CA. Then, we tested whether leukotriene C 4 (LTC 4 ) or histamine enhances CA-induced airway constriction in compound 48/80-pretreated guinea pigs. We measured dynamic respiratory compliance (Crs) and forced expiratory volume in 0.1 s (FEV 0.1 ) during either baseline or recovery period. In addition, we detected histamine level, an index of pulmonary mast cell degranulation, in bronchoalveolar lavage (BAL) samples. Citric acid aerosol inhalation caused decreases in Crs and FEV 0.1 , indicating airway constriction in the control group. This airway constriction was significantly attenuated by MK-886, mepyramine, cromolyn sodium, and compound 48/80, but not by either methysergide or indomethacin. Both LTC 4 and histamine infusion significantly increased the magnitude of CA-induced airway constriction in compound 48/80-pretreated guinea pigs. Citric acid inhalation caused significant increase in histamine level in the BAL sample, which was significantly suppressed by compound 48/80. These results suggest that leukotrienes and histamine originating from mast cells play an important role in CA inhalation-induced noncholinergic airway constriction

  7. Swimming-induced pulmonary oedema an uncommon condition diagnosed with POCUS ultrasound.

    Science.gov (United States)

    Alonso, Joaquín Valle; Chowdhury, Motiur; Borakati, Raju; Gankande, Upali

    2017-12-01

    Swimming Induced Pulmonary Edema, or SIPE, is an emerging condition occurring in otherwise healthy individuals during surface swimming or diving that is characterized by cough, dyspnea, hemoptysis, and hypoxemia. It is typically found in those who spend time in cold water exercise with heavy swimming and surface swimming, such as civilian training for iron Man, triathalon, and military training. We report the case of a highly trained young female swimmer in excellent cardiopulmonary health, who developed acute alveolar pulmonary oedema in an open water swimming training diagnosed in the emergency department using POCUS ultrasound. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Benefit of early discharge among patients with low-risk pulmonary embolism.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Clinical guidelines recommend early discharge of patients with low-risk pulmonary embolism (LRPE. This study measured the overall impact of early discharge of LRPE patients on clinical outcomes and costs in the Veterans Health Administration population. Adult patients with ≥1 inpatient diagnosis for pulmonary embolism (PE (index date between 10/2011-06/2015, continuous enrollment for ≥12 months pre- and 3 months post-index date were included. PE risk stratification was performed using the simplified Pulmonary Embolism Stratification Index. Propensity score matching (PSM was used to compare 90-day adverse PE events (APEs [recurrent venous thromboembolism, major bleed and death], hospital-acquired complications (HACs, healthcare utilization, and costs among short (≤2 days versus long length of stay (LOS. Net clinical benefit was defined as 1 minus the combined rate of APE and HAC. Among 6,746 PE patients, 95.4% were men, 22.0% were African American, and 1,918 had LRPE. Among LRPE patients, only 688 had a short LOS. After 1:1 PSM, there were no differences in APE, but short LOS had fewer HAC (1.5% vs 13.3%, 95% CI: 3.77-19.94 and bacterial pneumonias (5.9% vs 11.7%, 95% CI: 1.24-3.23, resulting in better net clinical benefit (86.9% vs 78.3%, 95% CI: 0.84-0.96. Among long LOS patients, HACs (52 exceeded APEs (14 recurrent DVT, 5 bleeds. Short LOS incurred lower inpatient ($2,164 vs $5,100, 95% CI: $646.8-$5225.0 and total costs ($9,056 vs $12,544, 95% CI: $636.6-$6337.7. LRPE patients with short LOS had better net clinical outcomes at lower costs than matched LRPE patients with long LOS.

  9. Lack of bcr and abr promotes hypoxia-induced pulmonary hypertension in mice.

    Directory of Open Access Journals (Sweden)

    Min Yu

    Full Text Available Bcr and Abr are GTPase activating proteins that specifically downregulate activity of the small GTPase Rac in restricted cell types in vivo. Rac1 is expressed in smooth muscle cells, a critical cell type involved in the pathogenesis of pulmonary hypertension. The molecular mechanisms that underlie hypoxia-associated pulmonary hypertension are not well-defined.Bcr and abr null mutant mice were compared to wild type controls for the development of pulmonary hypertension after exposure to hypoxia. Also, pulmonary arterial smooth muscle cells from those mice were cultured in hypoxia and examined for proliferation, p38 activation and IL-6 production. Mice lacking Bcr or Abr exposed to hypoxia developed increased right ventricular pressure, hypertrophy and pulmonary vascular remodeling. Perivascular leukocyte infiltration in the lungs was increased, and under hypoxia bcr-/- and abr-/- macrophages generated more reactive oxygen species. Consistent with a contribution of inflammation and oxidative stress in pulmonary hypertension-associated vascular damage, Bcr and Abr-deficient animals showed elevated endothelial leakage after hypoxia exposure. Hypoxia-treated pulmonary arterial smooth muscle cells from Bcr- or Abr-deficient mice also proliferated faster than those of wild type mice. Moreover, activated Rac1, phosphorylated p38 and interleukin 6 were increased in these cells in the absence of Bcr or Abr. Inhibition of Rac1 activation with Z62954982, a novel Rac inhibitor, decreased proliferation, p38 phosphorylation and IL-6 levels in pulmonary arterial smooth muscle cells exposed to hypoxia.Bcr and Abr play a critical role in down-regulating hypoxia-induced pulmonary hypertension by deactivating Rac1 and, through this, reducing both oxidative stress generated by leukocytes as well as p38 phosphorylation, IL-6 production and proliferation of pulmonary arterial smooth muscle cells.

  10. Induction of virulence gene expression in Staphylococcus aureus by pulmonary surfactant.

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Yasukawa, Jyunichiro; Suzuki, Yutaka; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-04-01

    We performed a genomewide analysis using a next-generation sequencer to investigate the effect of pulmonary surfactant on gene expression in Staphylococcus aureus, a clinically important opportunistic pathogen. RNA sequence (RNA-seq) analysis of bacterial transcripts at late log phase revealed 142 genes that were upregulated >2-fold following the addition of pulmonary surfactant to the culture medium. Among these genes, we confirmed by quantitative reverse transcription-PCR analysis that mRNA amounts for genes encoding ESAT-6 secretion system C (EssC), an unknown hypothetical protein (NWMN_0246; also called pulmonary surfactant-inducible factor A [PsiA] in this study), and hemolysin gamma subunit B (HlgB) were increased 3- to 10-fold by the surfactant treatment. Among the major constituents of pulmonary surfactant, i.e., phospholipids and palmitate, only palmitate, which is the most abundant fatty acid in the pulmonary surfactant and a known antibacterial substance, stimulated the expression of these three genes. Moreover, these genes were also induced by supplementing the culture with detergents. The induction of gene expression by surfactant or palmitate was not observed in a disruption mutant of the sigB gene, which encodes an alternative sigma factor involved in bacterial stress responses. Furthermore, each disruption mutant of the essC, psiA, and hlgB genes showed attenuation of both survival in the lung and host-killing ability in a murine pneumonia model. These findings suggest that S. aureus resists membrane stress caused by free fatty acids present in the pulmonary surfactant through the regulation of virulence gene expression, which contributes to its pathogenesis within the lungs of the host animal.

  11. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage.

    Science.gov (United States)

    Frid, Maria G; Brunetti, Jacqueline A; Burke, Danielle L; Carpenter, Todd C; Davie, Neil J; Reeves, John T; Roedersheimer, Mark T; van Rooijen, Nico; Stenmark, Kurt R

    2006-02-01

    Vascular remodeling in chronic hypoxic pulmonary hypertension includes marked fibroproliferative changes in the pulmonary artery (PA) adventitia. Although resident PA fibroblasts have long been considered the primary contributors to these processes, we tested the hypothesis that hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage, termed fibrocytes. Using two neonatal animal models (rats and calves) of chronic hypoxic pulmonary hypertension, we demonstrated a dramatic perivascular accumulation of mononuclear cells of a monocyte/macrophage lineage (expressing CD45, CD11b, CD14, CD68, ED1, ED2). Many of these cells produced type I collagen, expressed alpha-smooth muscle actin, and proliferated, thus exhibiting mesenchymal cell characteristics attributed to fibrocytes. The blood-borne origin of these cells was confirmed in experiments wherein circulating monocytes/macrophages of chronically hypoxic rats were in vivo-labeled with DiI fluorochrome via liposome delivery and subsequently identified in the remodeled pulmonary, but not systemic, arterial adventitia. The DiI-labeled cells that appeared in the vessel wall expressed monocyte/macrophage markers and procollagen. Selective depletion of this monocytic cell population, using either clodronate-liposomes or gadolinium chloride, prevented pulmonary adventitial remodeling (ie, production of collagen, fibronectin, and tenascin-C and accumulation of myofibroblasts). We conclude that circulating mesenchymal precursors of a monocyte/macrophage lineage, including fibrocytes, are essential contributors to hypoxia-induced pulmonary vascular remodeling.

  12. Valproic acid-induced hyperammonemic encephalopathy - a potentially fatal adverse drug reaction.

    Science.gov (United States)

    Sousa, Carla

    2013-12-01

    A patient with an early diagnosed epilepsy Valproic acid is one of the most widely used antiepileptic drugs. Hyperammonemic encephalopathy is a rare, but potentially fatal, adverse drug reaction to valproic acid. A patient with an early diagnosed epilepsy, treated with valproic acid, experienced an altered mental state after 10 days of treatment. Valproic acid serum levels were within limits, hepatic function tests were normal but ammonia levels were above the normal range. Valproic acid was stopped and the hyperammonemic encephalopathy was treated with lactulose 15 ml twice daily, metronidazole 250 mg four times daily and L-carnitine 1 g twice daily. Monitoring liver function and ammonia levels should be recommended in patients taking valproic acid. The constraints of the pharmaceutical market had to be taken into consideration and limited the pharmacological options for this patient's treatment. Idiosyncratic symptomatic hyperammonemic encephalopathy is completely reversible, but can induce coma and even death, if not timely detected. Clinical pharmacists can help detecting adverse drug reactions and provide evidence based information for the treatment.

  13. Pulmonary ablation: a primer.

    Science.gov (United States)

    Roberton, Benjamin J; Liu, David; Power, Mark; Wan, John M C; Stuart, Sam; Klass, Darren; Yee, John

    2014-05-01

    Percutaneous image-guided thermal ablation is safe and efficacious in achieving local control and improving outcome in the treatment of both early stage non-small-cell lung cancer and pulmonary metastatic disease, in which surgical treatment is precluded by comorbidity, poor cardiorespiratory reserve, or unfavorable disease distribution. Radiofrequency ablation is the most established technology, but new thermal ablation technologies such as microwave ablation and cryoablation may offer some advantages. The use of advanced techniques, such as induced pneumothorax and the popsicle stick technique, or combining thermal ablation with radiotherapy, widens the treatment options available to the multidisciplinary team. The intent of this article is to provide the reader with a practical knowledge base of pulmonary ablation by concentrating on indications, techniques, and follow-up. Copyright © 2014 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  14. Aspiration, Localized Pulmonary Inflammation, and Predictors of Early-Onset Bronchiolitis Obliterans Syndrome after Lung Transplantation

    Science.gov (United States)

    Fisichella, P Marco; Davis, Christopher S; Lowery, Erin; Ramirez, Luis; Gamelli, Richard L; Kovacs, Elizabeth J

    2014-01-01

    BACKGROUND We hypothesized that immune mediator concentrations in the bronchoalveolar fluid (BALF) are predictive of bronchiolitis obliterans syndrome (BOS) and demonstrate specific patterns of dysregulation, depending on the presence of acute cellular rejection, BOS, aspiration, and timing of lung transplantation. STUDY DESIGN We prospectively collected 257 BALF samples from 105 lung transplant recipients. The BALF samples were assessed for absolute and differential white blood cell counts and 34 proteins implicated in pulmonary immunity, inflammation, fibrosis, and aspiration. RESULTS There were elevated BALF concentrations of interleukin (IL)-15, IL-17, basic fibroblast growth factor, tumor necrosis factor–α, and myeloperoxidase, and reduced concentrations of α1-antitrypsin, which were predictive of early-onset BOS. Patients with BOS had an increased percentage of BALF lymphocytes and neutrophils, with a reduced percentage of macrophages (p < 0.05). The BALF concentrations of IL-1β; IL-8; interferon-γ–induced protein 10; regulated upon activation, normal T-cell expressed and secreted; neutrophil elastase; and pepsin were higher in patients with BOS (p < 0.05). Among those with BOS, BALF concentrations of IL-1RA; IL-8; eotaxin; interferon-γ–induced protein 10; regulated upon activation, normal T-cell expressed and secreted; myeloperoxidase; and neutrophil elastase were positively correlated with time since transplantation (p < 0.01). Those with worse grades of acute cellular rejection had an increased percentage of lymphocytes in their BALF (p < 0.0001) and reduced BALF concentrations of IL-1β, IL-7, IL-9, IL-12, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, interferon-γ, and vascular endothelial growth factor (p ≤ 0.001). Patients with aspiration based on detectable pepsin had increased percentage of neutrophils (p < 0.001) and reduced BALF concentrations of IL-12 (p < 0.001). CONCLUSIONS The BALF levels

  15. Gender differences in ozone-induced pulmonary and metabolic health effects

    Science.gov (United States)

    SOT 2015 abstractGender differences in ozone-induced pulmonary and metabolic health effectsU.P. Kodavanti1, V.L. Bass2, M.C. Schladweiler1, C.J. Gordon3, K.A. Jarema3, P. Phillips3, A.D. Ledbetter1, D.B. Miller4, S. Snow5, J.E. Richards1. 1 EPHD, NHEERL, USEPA, Research Triangle ...

  16. Interplay of mycolic acids, antimycobacterial compounds and pulmonary surfactant membrane: a biophysical approach to disease.

    Science.gov (United States)

    Pinheiro, Marina; Giner-Casares, Juan J; Lúcio, Marlene; Caio, João M; Moiteiro, Cristina; Lima, José L F C; Reis, Salette; Camacho, Luis

    2013-02-01

    This work focuses on the interaction of mycolic acids (MAs) and two antimycobacterial compounds (Rifabutin and N'-acetyl-Rifabutin) at the pulmonary membrane level to convey a biophysical perspective of their role in disease. For this purpose, accurate biophysical techniques (Langmuir isotherms, Brewster angle microscopy, and polarization-modulation infrared reflection spectroscopy) and lipid model systems were used to mimic biomembranes: MAs mimic bacterial lipids of the Mycobacterium tuberculosis (MTb) membrane, whereas Curosurf® was used as the human pulmonary surfactant (PS) membrane model. The results obtained show that high quantities of MAs are responsible for significant changes on PS biophysical properties. At the dynamic inspiratory surface tension, high amounts of MAs decrease the order of the lipid monolayer, which appears to be a concentration dependent effect. These results suggest that the amount of MAs might play a critical role in the initial access of the bacteria to their targets. Both molecules also interact with the PS monolayer at the dynamic inspiratory surface. However, in the presence of higher amounts of MAs, both compounds improve the phospholipid packing and, therefore, the order of the lipid surfactant monolayer. In summary, this work discloses the putative protective effects of antimycobacterial compounds against the MAs induced biophysical impairment of PS lipid monolayers. These protective effects are most of the times overlooked, but can constitute an additional therapeutic value in the treatment of pulmonary tuberculosis (Tb) and may provide significant insights for the design of new and more efficient anti-Tb drugs based on their behavior as membrane ordering agents. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Integrative analyses of miRNA and proteomics identify potential biological pathways associated with onset of pulmonary fibrosis in the bleomycin rat model

    International Nuclear Information System (INIS)

    Fukunaga, Satoki; Kakehashi, Anna; Sumida, Kayo; Kushida, Masahiko; Asano, Hiroyuki; Gi, Min; Wanibuchi, Hideki

    2015-01-01

    To determine miRNAs and their predicted target proteins regulatory networks which are potentially involved in onset of pulmonary fibrosis in the bleomycin rat model, we conducted integrative miRNA microarray and iTRAQ-coupled LC-MS/MS proteomic analyses, and evaluated the significance of altered biological functions and pathways. We observed that alterations of miRNAs and proteins are associated with the early phase of bleomycin-induced pulmonary fibrosis, and identified potential target pairs by using ingenuity pathway analysis. Using the data set of these alterations, it was demonstrated that those miRNAs, in association with their predicted target proteins, are potentially involved in canonical pathways reflective of initial epithelial injury and fibrogenic processes, and biofunctions related to induction of cellular development, movement, growth, and proliferation. Prediction of activated functions suggested that lung cells acquire proliferative, migratory, and invasive capabilities, and resistance to cell death especially in the very early phase of bleomycin-induced pulmonary fibrosis. The present study will provide new insights for understanding the molecular pathogenesis of idiopathic pulmonary fibrosis. - Highlights: • We analyzed bleomycin-induced pulmonary fibrosis in the rat. • Integrative analyses of miRNA microarray and proteomics were conducted. • We determined the alterations of miRNAs and their potential target proteins. • The alterations may control biological functions and pathways in pulmonary fibrosis. • Our result may provide new insights of pulmonary fibrosis

  18. Integrative analyses of miRNA and proteomics identify potential biological pathways associated with onset of pulmonary fibrosis in the bleomycin rat model

    Energy Technology Data Exchange (ETDEWEB)

    Fukunaga, Satoki [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558 (Japan); Kakehashi, Anna [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Sumida, Kayo; Kushida, Masahiko; Asano, Hiroyuki [Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 3-1-98 Kasugade-Naka, Konohana-ku, Osaka 554-8558 (Japan); Gi, Min [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp [Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan)

    2015-08-01

    To determine miRNAs and their predicted target proteins regulatory networks which are potentially involved in onset of pulmonary fibrosis in the bleomycin rat model, we conducted integrative miRNA microarray and iTRAQ-coupled LC-MS/MS proteomic analyses, and evaluated the significance of altered biological functions and pathways. We observed that alterations of miRNAs and proteins are associated with the early phase of bleomycin-induced pulmonary fibrosis, and identified potential target pairs by using ingenuity pathway analysis. Using the data set of these alterations, it was demonstrated that those miRNAs, in association with their predicted target proteins, are potentially involved in canonical pathways reflective of initial epithelial injury and fibrogenic processes, and biofunctions related to induction of cellular development, movement, growth, and proliferation. Prediction of activated functions suggested that lung cells acquire proliferative, migratory, and invasive capabilities, and resistance to cell death especially in the very early phase of bleomycin-induced pulmonary fibrosis. The present study will provide new insights for understanding the molecular pathogenesis of idiopathic pulmonary fibrosis. - Highlights: • We analyzed bleomycin-induced pulmonary fibrosis in the rat. • Integrative analyses of miRNA microarray and proteomics were conducted. • We determined the alterations of miRNAs and their potential target proteins. • The alterations may control biological functions and pathways in pulmonary fibrosis. • Our result may provide new insights of pulmonary fibrosis.

  19. Fatal postoperative systemic pulmonary hypertension in benfluorex-induced valvular heart disease surgery: A case report.

    Science.gov (United States)

    Baufreton, Christophe; Bruneval, Patrick; Rousselet, Marie-Christine; Ennezat, Pierre-Vladimir; Fouquet, Olivier; Giraud, Raphael; Banfi, Carlo

    2017-01-01

    Drug-induced valvular heart disease (DI-VHD) remains an under-recognized entity. This report describes a heart valve replacement which was complicated by intractable systemic pulmonary arterial hypertension in a 61-year-old female with severe restrictive mitral and aortic disease. The diagnosis of valvular disease was preceded by a history of unexplained respiratory distress. The patient had been exposed to benfluorex for 6.5 years. The diagnostic procedure documented specific drug-induced valvular fibrosis. Surgical mitral and aortic valve replacement was performed. Heart valve replacement was postoperatively complicated by unanticipated disproportionate pulmonary hypertension. This issue was fatal despite intensive care including prolonged extracorporeal life support. Benfluorex is a fenfluramine derivative which has been marketed between 1976 and 2009. Although norfenfluramine is the common active and toxic metabolite of all fenfluramine derivatives, the valvular and pulmonary arterial toxicity of benfluorex was much less known than that of fenfluramine and dexfenfluramine. The vast majority of benfluorex-induced valvular heart disease remains misdiagnosed as hypothetical rheumatic fever due to similarities between both etiologies. Better recognition of DI-VHD is likely to improve patient outcome.

  20. Adrenergic and steroid hormone modulation of ozone-induced pulmonary injury and inflammation

    Science.gov (United States)

    Rationale: We have shown that acute ozone inhalation promotes activation of the sympathetic and hypothalamic-pituitary-adrenal (HPA) axis leading to release of cortisol and epinephrine from the adrenals. Adrenalectomy (ADREX) inhibits ozone-induced pulmonary vascular leakage and ...

  1. Acute adaptive immune response correlates with late radiation-induced pulmonary fibrosis in mice

    International Nuclear Information System (INIS)

    Paun, Alexandra; Kunwar, Amit; Haston, Christina K

    2015-01-01

    The lung response to radiation exposure can involve an immediate or early reaction to the radiation challenge, including cell death and an initial immune reaction, and can be followed by a tissue injury response, of pneumonitis or fibrosis, to this acute reaction. Herein, we aimed to determine whether markers of the initial immune response, measured within days of radiation exposure, are correlated with the lung tissue injury responses occurring weeks later. Inbred strains of mice known to be susceptible (KK/HIJ, C57BL/6J, 129S1/SvImJ) or resistant (C3H/HeJ, A/J, AKR/J) to radiation-induced pulmonary fibrosis and to vary in time to onset of respiratory distress post thoracic irradiation (from 10–23 weeks) were studied. Mice were untreated (controls) or received 18 Gy whole thorax irradiation and were euthanized at 6 h, 1d or 7 d after radiation treatment. Pulmonary CD4+ lymphocytes, bronchoalveolar cell profile & cytokine level, and serum cytokine levels were assayed. Thoracic irradiation and inbred strain background significantly affected the numbers of CD4+ cells in the lungs and the bronchoalveolar lavage cell differential of exposed mice. At the 7 day timepoint greater numbers of pulmonary Th1 and Th17 lymphocytes and reduced lavage interleukin17 and interferonγ levels were significant predictors of late stage fibrosis. Lavage levels of interleukin-10, measured at the 7 day timepoint, were inversely correlated with fibrosis score (R = −0.80, p = 0.05), while serum levels of interleukin-17 in control mice significantly correlated with post irradiation survival time (R = 0.81, p = 0.04). Lavage macrophage, lymphocyte or neutrophil counts were not significantly correlated with either of fibrosis score or time to respiratory distress in the six mouse strains. Specific cytokine and lymphocyte levels, but not strain dependent lavage cell profiles, were predictive of later radiation-induced lung injury in this panel of inbred strains. The online version of this

  2. Trastuzumab-induced pulmonaryfibrosis: A case report and review of literature

    OpenAIRE

    Tamojit Chaudhuri; Saurabh Karmakar

    2012-01-01

    Optimal treatment for human epidermal growth factor receptor 2 (HER2)/neu-positive, node-positive early breast cancer should include the monoclonal antibody trastuzumab. This relatively new targeted agent has shown very limited pulmonary toxicity. We report a case of Trastuzumab-induced pulmonary fibrosis in a 41-year-old female that occurred 4 months after starting adjuvant trastuzumab. To the best of our knowledge, this is the first ever report of trastuzumab-induced pulmonary fibrosis in t...

  3. Pulmonary oxidative stress is increased in cyclooxygenase-2 knockdown mice with mild pulmonary hypertension induced by monocrotaline.

    Directory of Open Access Journals (Sweden)

    Francesca Seta

    Full Text Available The aim of this study was to examine the role of cyclooxygenase-2 (COX-2 and downstream signaling of prostanoids in the pathogenesis of pulmonary hypertension (PH using mice with genetically manipulated COX-2 expression. COX-2 knockdown (KD mice, characterized by 80-90% suppression of COX-2, and wild-type (WT control mice were treated weekly with monocrotaline (MCT over 10 weeks. Mice were examined for cardiac hypertrophy/function and right ventricular pressure. Lung histopathological analysis was performed and various assays were carried out to examine oxidative stress, as well as gene, protein, cytokine and prostanoid expression. We found that MCT increased right ventricular systolic and pulmonary arterial pressures in comparison to saline-treated mice, with no evidence of cardiac remodeling. Gene expression of endothelin receptor A and thromboxane synthesis, regulators of vasoconstriction, were increased in MCT-treated lungs. Bronchoalveolar lavage fluid and lung sections demonstrated mild inflammation and perivascular edema but activation of inflammatory cells was not predominant under the experimental conditions. Heme oxygenase-1 (HO-1 expression and indicators of oxidative stress in lungs were significantly increased, especially in COX-2 KD MCT-treated mice. Gene expression of NOX-4, but not NOX-2, two NADPH oxidase subunits crucial for superoxide generation, was induced by ∼4-fold in both groups of mice by MCT. Vasodilatory and anti-aggregatory prostacyclin was reduced by ∼85% only in MCT-treated COX-2 KD mice. This study suggests that increased oxidative stress-derived endothelial dysfunction, vasoconstriction and mild inflammation, exacerbated by the lack of COX-2, contribute to the pathogenesis of early stages of PH when mild hemodynamic changes are evident and not yet accompanied by vascular and cardiac remodeling.

  4. Indian red scorpion venom-induced augmentation of cardio-respiratory reflexes and pulmonary edema involve the release of histamine.

    Science.gov (United States)

    Dutta, Abhaya; Deshpande, Shripad B

    2011-02-01

    Pulmonary edema is a consistent feature of Mesobuthus tamulus (MBT) envenomation. Kinins, prostaglandins and other inflammatory mediators are implicated in it. Since, histamine also increases capillary permeability, this study was undertaken to evaluate whether MBT venom utilizes histamine to produce pulmonary edema and augmentation of cardio-respiratory reflexes evoked by phenylbiguanide (PBG). Blood pressure, respiratory excursions and ECG were recorded in urethane anaesthetized adult rats. Injection of PBG (10 μg/kg) produced apnoea, hypotension and bradycardia and the responses were augmented after exposure to venom (100 μg/kg). There was increased pulmonary water content in these animals. Pretreatment with pheniramine maleate (H₁ antagonist, 3 mg/kg) blocked both venom-induced augmentation of PBG response and pulmonary edema. In another series, compound 48/80 (mast cell depletor) was treated for 4 days then the PBG responses were elicited as before. At the end of the experiments, mast cells were counted from the peritoneal fluid. The venom-induced pulmonary edema and the augmentation of PBG reflex were not observed in compound 48/80 treated animals. Further, mast cells in the peritoneal fluid were absent in this group as compared to vehicle treated group (29 ± 7.9 cells/mm³). These observations indicate that venom-induced pulmonary edema and augmentation of PBG reflexe are mediated through mast cells by involving H₁ receptors. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. GERD related micro-aspiration in chronic mustard-induced pulmonary disorder

    Directory of Open Access Journals (Sweden)

    Rasoul Aliannejad

    2012-01-01

    Full Text Available Background and Aim: Bronchiolitis obliterans (BO is the main pulmonary involvement resulting from sulfur mustard (SM gas exposure that was used against Iranian civilians and military forces during the Iran-Iraq war. The present study aimed to investigate the prevalence of gastro-esophageal reflux (GER and gastric micro-aspiration in SM gas injured patients with chronic pulmonary diseases and recurrent episodes of exacerbations. Materials and Methods: This cross-sectional study was done at Baqiyatallah University of Medical Sciences, Tehran, Iran. Gastric micro-aspiration and GER were assessed in the enrolled patients by assessing bile acids, pepsin and trypsin in their bronchoalveolar lavage fluid. Results: Our result showed that bile acids were found to be high in 21.4% patients, and low in 53.6% of patients. Only in 16% patients, no bile was detected in the BALF. Trypsin and pepsin were detected in BAL fluid of all patients. Conclusion: Most of BO patients after exposure to SM suffer GER, while none the etiologic factors of GER in post lung transplant BO are present. It would be hypothesized that GER per se could be considered as an aggregative factor for exacerbations in patients. Further studies will provide more advances to better understanding of pathophysiological mechanism regarding GER and BO and treatment.

  6. Hydrogen-rich saline inhibits tobacco smoke-induced chronic obstructive pulmonary disease by alleviating airway inflammation and mucus hypersecretion in rats.

    Science.gov (United States)

    Liu, Zibing; Geng, Wenye; Jiang, Chuanwei; Zhao, Shujun; Liu, Yong; Zhang, Ying; Qin, Shucun; Li, Chenxu; Zhang, Xinfang; Si, Yanhong

    2017-09-01

    Chronic obstructive pulmonary disease induced by tobacco smoke has been regarded as a great health problem worldwide. The purpose of this study is to evaluate the protective effect of hydrogen-rich saline, a novel antioxidant, on chronic obstructive pulmonary disease and explore the underlying mechanism. Sprague-Dawley rats were made chronic obstructive pulmonary disease models via tobacco smoke exposure for 12 weeks and the rats were treated with 10 ml/kg hydrogen-rich saline intraperitoneally during the last 4 weeks. Lung function testing indicated hydrogen-rich saline decreased lung airway resistance and increased lung compliance and the ratio of forced expiratory volume in 0.1 s/forced vital capacity in chronic obstructive pulmonary disease rats. Histological analysis revealed that hydrogen-rich saline alleviated morphological impairments of lung in tobacco smoke-induced chronic obstructive pulmonary disease rats. ELISA assay showed hydrogen-rich saline lowered the levels of pro-inflammatory cytokines (IL-8 and IL-6) and anti-inflammatory cytokine IL-10 in bronchoalveolar lavage fluid and serum of chronic obstructive pulmonary disease rats. The content of malondialdehyde in lung tissue and serum was also determined and the data indicated hydrogen-rich saline suppressed oxidative stress reaction. The protein expressions of mucin MUC5C and aquaporin 5 involved in mucus hypersecretion were analyzed by Western blot and ELISA and the data revealed that hydrogen-rich saline down-regulated MUC5AC level in bronchoalveolar lavage fluid and lung tissue and up-regulated aquaporin 5 level in lung tissue of chronic obstructive pulmonary disease rats. In conclusion, these results suggest that administration of hydrogen-rich saline exhibits significant protective effect on chronic obstructive pulmonary disease through alleviating inflammation, reducing oxidative stress and lessening mucus hypersecretion in tobacco smoke-induced chronic obstructive pulmonary disease rats

  7. Reexpansion Pulmonary Edema following Laparoscopy-Assisted Distal Gastrectomy for a Patient with Early Gastric Cancer: A Case Report

    Directory of Open Access Journals (Sweden)

    Kazuhito Yajima

    2012-01-01

    Full Text Available We report here a case of reexpansion pulmonary edema following laparoscopy-assisted distal gastrectomy (LADG for early gastric cancer. A 57-year-old Japanese woman with no preoperative comorbidity was diagnosed with early gastric cancer. The patient underwent LADG using the pneumoperitoneum method. During surgery, the patient was unintentionally subjected to single-lung ventilation for approximately 247 minutes due to intratracheal tube dislocation. One hour after surgery, she developed severe dyspnea and produced a large amount of pink frothy sputum. Chest radiography results showed diffuse ground-glass attenuation and alveolar consolidation in both lungs without cardiomegaly. A diagnosis of pulmonary edema was made, and the patient was immediately intubated and received ventilatory support with high positive end-expiratory pressure. The patient gradually recovered and was weaned from the ventilatory support on the third postoperative day. This case shows that single-lung ventilation may be a risk factor for reexpansion pulmonary edema during laparoscopic surgery with pneumoperitoneum.

  8. Isolated unilateral pulmonary artery hypoplasia with accompanying pulmonary parenchymal findings on CT: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Park, Surin; Cha, Yoon Ki; Kim, Jeung Sook; Kwon, Jae Hyun; Jeong, Yun Jeong [Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang (Korea, Republic of); Kim, Seon Jeong [Dept. of Radiology, Myongji Hospital, Goyang (Korea, Republic of)

    2017-05-15

    Unilateral pulmonary artery hypoplasia or agenesis without congenital cardiovascular anomalies is rare in adults. We report a case of a 36-year-old man with isolated left unilateral pulmonary artery hypoplasia with recurrent hemoptysis. On computed tomography (CT), the left pulmonary artery showed hypoplasia with multiple collateral vessels seen in the mediastinum and the left hemithorax. Also, parenchymal bands and peripheral linear opacities were seen in the affected lung, which were probably due to chronic infarction induced by unilateral pulmonary artery hypoplasia. There are only a few reports focusing on the radiologic findings in the pulmonary parenchyma induced by unilateral pulmonary artery hypoplasia, such as parenchymal bands and peripheral linear opacities. Therefore we report this case, which focused on the CT findings in the pulmonary parenchyma due to isolated unilateral pulmonary artery hypoplasia.

  9. Isolated unilateral pulmonary artery hypoplasia with accompanying pulmonary parenchymal findings on CT: A case report

    International Nuclear Information System (INIS)

    Park, Surin; Cha, Yoon Ki; Kim, Jeung Sook; Kwon, Jae Hyun; Jeong, Yun Jeong; Kim, Seon Jeong

    2017-01-01

    Unilateral pulmonary artery hypoplasia or agenesis without congenital cardiovascular anomalies is rare in adults. We report a case of a 36-year-old man with isolated left unilateral pulmonary artery hypoplasia with recurrent hemoptysis. On computed tomography (CT), the left pulmonary artery showed hypoplasia with multiple collateral vessels seen in the mediastinum and the left hemithorax. Also, parenchymal bands and peripheral linear opacities were seen in the affected lung, which were probably due to chronic infarction induced by unilateral pulmonary artery hypoplasia. There are only a few reports focusing on the radiologic findings in the pulmonary parenchyma induced by unilateral pulmonary artery hypoplasia, such as parenchymal bands and peripheral linear opacities. Therefore we report this case, which focused on the CT findings in the pulmonary parenchyma due to isolated unilateral pulmonary artery hypoplasia

  10. Aminocaproic Acid and Tranexamic Acid Fail to Reverse Dabigatran-Induced Coagulopathy.

    Science.gov (United States)

    Levine, Michael; Huang, Margaret; Henderson, Sean O; Carmelli, Guy; Thomas, Stephen H

    In recent years, dabigatran has emerged as a popular alternative to warfarin for treatment of atrial fibrillation. If rapid reversal is required, however, no reversal agent has clearly been established. The primary purpose of this manuscript was to evaluate the efficacy of tranexamic acid and aminocaproic acid as agents to reverse dabigatran-induced coagulopathy. Rats were randomly assigned to 6 groups. Each rat received either dabigatran or oral placebo, followed by saline, tranexamic acid, or aminocaproic acid. An activated clotting test was used to measure the coagulopathy. Neither tranexamic acid nor aminocaproic acid successfully reversed dabigatran-induced coagulopathy. In this rodent model of dabigatran-induced coagulopathy, neither tranexamic acid nor aminocaproic acid were able to reverse the coagulopathy.

  11. Differential activation of airway eosinophils induces IL-13-mediated allergic Th2 pulmonary responses in mice.

    Science.gov (United States)

    Jacobsen, E A; Doyle, A D; Colbert, D C; Zellner, K R; Protheroe, C A; LeSuer, W E; Lee, N A; Lee, J J

    2015-09-01

    Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Wild-type or cytokine-deficient (IL-13(-/-) or IL-4(-/-) ) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophil deficient mice, which induced no immune/inflammatory changes either in the lung or in the lung draining lymph nodes (LDLN), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLN. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4(+) T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4, and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4(+) T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13, whereas IL-4 expression by eosinophils had no significant role. The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Differential Activation of Airway Eosinophils Induces IL-13 Mediated Allergic Th2 Pulmonary Responses in Mice

    Science.gov (United States)

    Jacobsen, EA; Doyle, AD; Colbert, DC; Zellner, KR; Protheroe, CA; LeSuer, WE; Lee, NA.; Lee, JJ

    2015-01-01

    Background Eosinophils are hallmark cells of allergic Th2 respiratory inflammation. However, the relative importance of eosinophil activation and the induction of effector functions such as the expression of IL-13 to allergic Th2 pulmonary disease remain to be defined. Methods Wild type or cytokine deficient (IL-13−/− or IL-4−/−) eosinophils treated with cytokines (GM-CSF, IL-4, IL-33) were adoptively transferred into eosinophil-deficient recipient mice subjected to allergen provocation using established models of respiratory inflammation. Allergen-induced pulmonary changes were assessed. Results In contrast to the transfer of untreated blood eosinophils to the lungs of recipient eosinophildeficient mice, which induced no immune/inflammatory changes either in the lung or lung draining lymph nodes (LDLNs), pretreatment of blood eosinophils with GM-CSF prior to transfer elicited trafficking of these eosinophils to LDLNs. In turn, these LDLN eosinophils elicited the accumulation of dendritic cells and CD4+ T cells to these same LDLNs without inducing pulmonary inflammation. However, exposure of eosinophils to GM-CSF, IL-4 and IL-33 prior to transfer induced not only immune events in the LDLN, but also allergen-mediated increases in airway Th2 cytokine/chemokine levels, the subsequent accumulation of CD4+ T cells as well as alternatively activated (M2) macrophages, and the induction of pulmonary histopathologies. Significantly, this allergic respiratory inflammation was dependent on eosinophil-derived IL-13 whereas IL-4 expression by eosinophils had no significant role. Conclusion The data demonstrate the differential activation of eosinophils as a function of cytokine exposure and suggest that eosinophil-specific IL-13 expression by activated cells is a necessary component of the subsequent allergic Th2 pulmonary pathologies. PMID:26009788

  13. Anti-pulmonary fibrotic activity of salvianolic acid B was screened by a novel method based on the cyto-biophysical properties.

    Science.gov (United States)

    Liu, Miao; Zheng, Mingjing; Xu, Hanying; Liu, Lianqing; Li, Yanchun; Xiao, Wei; Li, Jianchun; Ma, Enlong

    Various methods have been used to evaluate anti-fibrotic activity of drugs. However, most of them are complicated, labor-intensive and lack of efficiency. This study was intended to develop a rapid method for anti-fibrotic drugs screening based on biophysical properties. A549 cells in vitro were stimulated with transforming growth factor-β1 (TGF-β1), and fibrogenesis was confirmed by conventional immunological assays. Meanwhile, the alterations of cyto-biophysical properties including morphology, roughness and stiffness were measured utilizing atomic force microscopy (AFM). It was found that fibrogenesis was accompanied with changes of cellular biophysical properties. TGF-β1-stimulated A549 cells became remarkably longer, rougher and stiffer than the control. Then, the effect of N-acetyl-L-cysteine (NAC) as a positive drug on ameliorating fibrogenesis in TGF-β1-stimulated A549 cells was verified respectively by immunological and biophysical markers. The result of Principal Component Analysis showed that stiffness was a leading index among all biophysical markers during fibrogenesis. Salvianolic acid B (SalB), a natural anti-oxidant, was detected by AFM to protect TGF-β1-stimulated A549 cells against stiffening. Then, SalB treatment was provided in preventive mode on a rat model of bleomycin (BLM) -induced pulmonary fibrosis. The results showed that SalB treatment significantly ameliorated BLM-induced histological alterations, blocked collagen accumulations and reduced α-SMA expression in lung tissues. All these results revealed the anti-pulmonary fibrotic activity of SalB. Detection of cyto-biophysical properties were therefore recommended as a rapid method for anti-pulmonary fibrotic drugs screening. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Comparison of the Pulmonary Oxidative Stress Caused by Intratracheal Instillation and Inhalation of NiO Nanoparticles when Equivalent Amounts of NiO Are Retained in the Lung

    Directory of Open Access Journals (Sweden)

    Masanori Horie

    2016-01-01

    Full Text Available NiO nanoparticles were administered to rat lungs via intratracheal instillation or inhalation. During pulmonary toxicity caused by NiO nanoparticles, the induction of oxidative stress is a major factor. Both intratracheal instillation and inhalation of NiO nanoparticles induced pulmonary oxidative stress. The oxidative stress response protein, heme oxygenase-1 (HO-1, was induced by the administration of NiO nanoparticles at both the protein and gene expression level. Additionally, certain oxidative-stress markers in the lung, such as 8-iso-prostaglandin F2α, thioredoxin, and inducible nitric oxide synthase were increased. Furthermore, the concentration of myeloperoxidase (MPO in the lung was also increased by the administration of NiO nanoparticles. When the amount of NiO in the lung is similar, the responses against pulmonary oxidative stress of intratracheal instillation and inhalation are also similar. However, the state of pulmonary oxidative stress in the early phase was different between intratracheal instillation and inhalation, even if the amount of NiO in the lung was similar. Inhalation causes milder oxidative stress than that caused by intratracheal instillation. On evaluation of the nanoparticle-induced pulmonary oxidative stress in the early phase, we should understand the different states of oxidative stress induced by intratracheal instillation and inhalation.

  15. Glycosaminoglycan synthesis in amiodarone-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Farinas, E.M.

    1986-01-01

    Glycosaminoglycans (GAG) have previously been demonstrated to be synthesized in greater than normal amounts following a single intratracheal insufflation of bleomycin in hamsters. This suggests that GAG may play a role in the propagation of pulmonary fibrotic reactions. To further test this hypothesis, GAG synthesis was studied in a new hamster model of interstitial lung injury, induced by the cardiac drug, aminodarone. Animals received a single intratracheal instillation of 1.25 mg aminodarone. At 4, 9, and 21 days post-insufflation, the animals were sacrificed, their lungs removed, and 1 mm fragments placed in explant culture for 6 hours at 37 0 C in the presence of 35 S-sulfate. The labeled GAG were isolated and measured for 35 S incorporation. The author then isolated the hexosamine portions of the respective GAGs, Heparan Sulfate (HEP S), Chondroitin-6-Sulfate (Ch-6-S) and Chondroitin-4-Sulfate and Dermatan Sulfate (CH-4-S and DS) using the enzyme ABC and paper chromatography. They also studied the GAG content and distribution in hamster lung fibroblasts incorporated with 35 S for 48 hours and subjected to either 0, 0.01 mg, 0.1 mg, or 1 mg of aminodarone. GAG synthesis is increased at an early stage following the induction of lung injury by aminodarone and remains elevated for a 3 week period. The change in GAG distribution boards elevated CH-4-S and DS may be characteristic of interstitial diseases in general. The GAGs that are synthesized by fibroblasts may be responsible for the increased CH-4-S and DS synthesis

  16. Hypertonic saline reduces inflammation and enhances the resolution of oleic acid induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-07-01

    Full Text Available Abstract Background Hypertonic saline (HTS reduces the severity of lung injury in ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. However, the potential for HTS to modulate the resolution of lung injury is not known. We investigated the potential for hypertonic saline to modulate the evolution and resolution of oleic acid induced lung injury. Methods Adult male Sprague Dawley rats were used in all experiments. Series 1 examined the potential for HTS to reduce the severity of evolving oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 12 or hypertonic saline (HTS, n = 12, and the extent of lung injury assessed after 6 hours. Series 2 examined the potential for HTS to enhance the resolution of oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 6 or hypertonic saline (HTS, n = 6, and the extent of lung injury assessed after 6 hours. Results In Series I, HTS significantly reduced bronchoalveolar lavage (BAL neutrophil count compared to Control [61.5 ± 9.08 versus 102.6 ± 11.89 × 103 cells.ml-1]. However, there were no between group differences with regard to: A-a O2 gradient [11.9 ± 0.5 vs. 12.0 ± 0.5 KPa]; arterial PO2; static lung compliance, or histologic injury. In contrast, in Series 2, hypertonic saline significantly reduced histologic injury and reduced BAL neutrophil count [24.5 ± 5.9 versus 46.8 ± 4.4 × 103 cells.ml-1], and interleukin-6 levels [681.9 ± 190.4 versus 1365.7 ± 246.8 pg.ml-1]. Conclusion These findings demonstrate, for the first time, the potential for HTS to reduce pulmonary inflammation and enhance the resolution of oleic acid induced lung injury.

  17. Hypoxia Inducible Factor Signaling and Experimental Persistent Pulmonary Hypertension of the Newborn: A Therapeutic Opportunity

    Directory of Open Access Journals (Sweden)

    Stephen eWedgwood

    2015-03-01

    Full Text Available BACKGROUND: Mitochondrial reactive oxygen species levels and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB activity are increased in a lamb model of persistent pulmonary hypertension of the newborn (PPHN. These events can trigger hypoxia inducible factor (HIF signaling in response to hypoxia, which has been shown to contribute to pulmonary vascular remodeling in rodent models of pulmonary hypertension. However the role of HIF signaling in chronic intrauterine pulmonary hypertension is not well understood.AIM: To determine if HIF signaling is increased in the lamb model of PPHN, and to identify the underlying mechanisms. RESULTS: PPHN was induced in lambs by antenatal ligation of the ductus arteriosus at 128 days gestation. After 9 days, lungs and pulmonary artery smooth muscle cells (PASMC were isolated from control and PPHN lambs. HIF-1α expression was increased in PPHN lungs and HIF activity was increased in PPHN PASMC relative to controls. Hypoxia increased HIF activity to a greater degree in PPHN vs. control PASMC. Control PASMC were exposed to cyclic stretch at 1Hz and 15% elongation for 24h, as an in vitro model of vascular stress. Stretch increased HIF activity, which was attenuated by inhibition of mitochondrial complex III and NFκB.CONCLUSION: Increased HIF signaling in PPHN is triggered by stretch, via mechanisms involving mitochondrial ROS and NFκB. Hypoxia substantially amplifies HIF activity in PPHN vascular cells. Targeting these signaling molecules may attenuate and reverse pulmonary vascular remodeling associated with PPHN.

  18. Particle-induced pulmonary acute phase response may be the causal link between particle inhalation and cardiovascular disease

    DEFF Research Database (Denmark)

    Saber, Anne T.; Jacobsen, Nicklas R.; Jackson, Petra

    2014-01-01

    Inhalation of ambient and workplace particulate air pollution is associated with increased risk of cardiovascular disease. One proposed mechanism for this association is that pulmonary inflammation induces a hepatic acute phase response, which increases risk of cardiovascular disease. Induction...... epidemiological studies. In this review, we present and review emerging evidence that inhalation of particles (e.g., air diesel exhaust particles and nanoparticles) induces a pulmonary acute phase response, and propose that this induction constitutes the causal link between particle inhalation and risk...

  19. Oleic acid blocks EGF-induced [Ca2+]i release without altering cellular metabolism in fibroblast EGFR T17.

    Science.gov (United States)

    Zugaza, J L; Casabiell, X A; Bokser, L; Casanueva, F F

    1995-02-06

    EGFR-T17 cells were pretreated with oleic acid and 5-10 minutes later stimulated with EGF, to study if early ionic signals are instrumental in inducing metabolic cellular response. Oleic acid blocks EGF-induced [Ca2+]i rise and Ca2+ influx without altering 2-deoxyglucose and 2-aminobutiryc acid uptake nor acute, nor chronically. Oleic acid it is shown, in the first minutes favors the entrance of both molecules to modify the physico-chemical membrane state. On the other hand, oleic acid is unable to block protein synthesis. The results suggest that EGF-induced Ins(1,4,5)P3/Ca2+ pathway does not seem to be decisive in the control of cellular metabolic activity.

  20. Lung disease severity in idiopathic pulmonary fibrosis is more strongly associated with impedance measures of bolus reflux than pH parameters of acid reflux alone.

    Science.gov (United States)

    Gavini, S; Borges, L F; Finn, R T; Lo, W-K; Goldberg, H J; Burakoff, R; Feldman, N; Chan, W W

    2017-05-01

    Gastroesophageal reflux (GER) has been associated with idiopathic pulmonary fibrosis (IPF). Pathogenesis may be related to chronic micro-aspiration. We aimed to assess objective measures of GER on multichannel intraluminal impedance and pH study (MII-pH) and their relationship with pulmonary function testing (PFT) results, and to compare the performance of pH/acid reflux parameters vs corresponding MII/bolus parameters in predicting pulmonary dysfunction in IPF. This was a retrospective cohort study of IPF patients undergoing prelung transplant evaluation with MII-pH off acid suppression, and having received PFT within 3 months. Patients with prior fundoplication were excluded. Severe pulmonary dysfunction was defined using diffusion capacity of the lung for carbon monoxide (DLCO) ≤40%. Six pH/acid reflux parameters with corresponding MII/bolus reflux measures were specified a priori. Multivariate analyses were applied using forward stepwise logistic regression. Predictive value of each parameter for severe pulmonary dysfunction was calculated by area-under-the-receiver-operating-characteristic-curve or c-statistic. Forty-five subjects (67% M, age 59, 15 mild-moderate vs 30 severe) met criteria for inclusion. Patient demographics and clinical characteristics were similar between pulmonary dysfunction groups. Abnormal total reflux episodes and prolonged bolus clearance time were significantly associated with pulmonary dysfunction severity on univariate and multivariate analyses. No pH parameters were significant. The c-statistic of each pH parameter was lower than its MII counterpart in predicting pulmonary dysfunction. MII/bolus reflux, but not pH/acid reflux, was associated with pulmonary dysfunction in prelung transplant patients with IPF. MII-pH may be more valuable than pH testing alone in characterizing GER in IPF. © 2016 John Wiley & Sons Ltd.

  1. Pinocembrin ex vivo preconditioning improves the therapeutic efficacy of endothelial progenitor cells in monocrotaline-induced pulmonary hypertension in rats.

    Science.gov (United States)

    Ahmed, Lamiaa A; Rizk, Sherine M; El-Maraghy, Shohda A

    2017-08-15

    Pulmonary hypertension is still not curable and the available current therapies can only alleviate symptoms without hindering the progression of disease. The present study was directed to investigate the possible modulatory effect of pinocembrin on endothelial progenitor cells transplanted in monocrotaline-induced pulmonary hypertension in rats. Pulmonary hypertension was induced by a single subcutaneous injection of monocrotaline (60mg/kg). Endothelial progenitor cells were in vitro preconditioned with pinocembrin (25mg/L) for 30min before being i.v. injected into rats 2weeks after monocrotaline administration. Four weeks after monocrotaline administration, blood pressure, electrocardiography and right ventricular systolic pressure were recorded. Rats were sacrificed and serum was separated for determination of endothelin-1 and asymmetric dimethylarginine levels. Right ventricles and lungs were isolated for estimation of tumor necrosis factor-alpha and transforming growth factor-beta contents as well as caspase-3 activity. Moreover, protein expression of matrix metalloproteinase-9 and endothelial nitric oxide synthase in addition to myocardial connexin-43 was assessed. Finally, histological analysis of pulmonary arteries, cardiomyocyte cross-sectional area and right ventricular hypertrophy was performed and cryosections were done for estimation of cell homing. Preconditioning with pinocembrin provided a significant improvement in endothelial progenitor cells' effect towards reducing monocrotaline-induced elevation of inflammatory, fibrogenic and apoptotic markers. Furthermore, preconditioned cells induced a significant amelioration of endothelial markers and cell homing and prevented monocrotaline-induced changes in right ventricular function and histological analysis compared with native cells alone. In conclusion, pinocembrin significantly improves the therapeutic efficacy of endothelial progenitor cells in monocrotaline-induced pulmonary hypertension in rats

  2. Effects and mechanism of oridonin on pulmonary hypertension induced by chronic hypoxia-hypercapnia in rats.

    Science.gov (United States)

    Wang, Liang-Xing; Sun, Yu; Chen, Chan; Huang, Xiao-Ying; Lin, Quan; Qian, Guo-Qing; Dong, Wei; Chen, Yan-Fan

    2009-06-20

    Pulmonary arterial hypertension (PAH) is characterized by suppressing apoptosis and enhancing cell proliferation in the vascular wall. Inducing pulmonary artery smooth muscle cells (PASMC) apoptosis had been regarded as a therapeutic approach for PAH. Oridonin can cause apoptosis in many cell lines, while little has been done to evaluate its effect on PASMC. Thirty male Sprague-Dawley rats were randomly assigned to three groups: normal control (NC); hypoxia-hypercapnia (HH); Hypoxia-hypercapnia + oridonin (HHO). Rats were exposed to hypoxia-hypercapnia for four weeks. Cultured human PASMC (HPASMC) were assigned to three groups: normoxia (NO); hypoxia (HY); hypoxia + oridonin (HO). The mean pulmonary artery pressure, mass ratio of right ventricle over left ventricle plus septum (RV/(LV + S)), the ratio of thickness of the pulmonary arteriole wall to vascular external diameter (WT%) and the ratio of the vessel wall area to the total area (WA%) were measured. Morphologic changes of pulmonary arteries were observed under light and electron microscopes. The apoptotic characteristics in vitro and in vivo were detected. The mPAP, RV/(LV + S), WT%, and WA% in the HH group were significantly greater than those in the NC (P HHO groups (P HHO groups; and the expression of Bcl-2 in group HH was greater than that in the NC and HHO groups. HPASMC mitochondrial membrane potentials in group HO was lower than in group HY (P < 0.01), and cyt-C in the cytoplasm, AI, and caspase-9 in the HO group were greater than that in the HY group (P < 0.01), but the expression of Bcl-2 in the HO group was less than that in the HY group (P < 0.05). The results suggest that oridonin can lower pulmonary artery pressure effectively, and inhibit pulmonary artery structural remodeling by inducing smooth cell apoptosis via a mitochondria-dependent pathway.

  3. Hemolysis-induced Lung Vascular Leakage Contributes to the Development of Pulmonary Hypertension.

    Science.gov (United States)

    Rafikova, Olga; Williams, Elissa R; McBride, Matthew L; Zemskova, Marina; Srivastava, Anup; Nair, Vineet; Desai, Ankit A; Langlais, Paul R; Zemskov, Evgeny; Simon, Marc; Mandarino, Lawrence J; Rafikov, Ruslan

    2018-04-13

    While hemolytic anemia-associated pulmonary hypertension (PH) and pulmonary arterial hypertension (PAH) are more common than the prevalence of idiopathic PAH alone, the role of hemolysis in the development of PAH is poorly characterized. We hypothesized that hemolysis independently contributes to PAH pathogenesis via endothelial barrier dysfunction with resulting perivascular edema and inflammation. Plasma samples from patients with and without PAH (both confirmed by right heart catheterization) were used to measure free hemoglobin (Hb) and its correlation with PAH severity. A sugen(50mg/kg)/hypoxia(3wks)/normoxia(2wks) rat model was used to elucidate the role of free Hb/heme pathways in PAH. Human lung microvascular endothelial cells (HLMVECs) were utilized to study heme-mediated endothelial barrier effects. Our data indicate that PAH patients have increased levels of free Hb in plasma that correlate with PAH severity. There is also a significant accumulation of free Hb and depletion of haptoglobin in the rat model. In rats, perivascular edema was observed at early time points concomitant with increased infiltration of inflammatory cells. Heme-induced endothelial permeability in HLMVECs involved activation of the p38/HSP27 pathway. Indeed, the rat model also exhibited increased activation of p38/HSP27 during the initial phase of PH. Surprisingly, despite the increased levels of hemolysis and heme-mediated signaling, there was no heme oxygenase-1 activation. This can be explained by observed destabilization of HIF1a during the first two weeks of PH regardless of hypoxic conditions. Our data suggest that hemolysis may play a significant role in PAH pathobiology.

  4. Protective Effects of Hydrogen-Rich Saline Against Lipopolysaccharide-Induced Alveolar Epithelial-to-Mesenchymal Transition and Pulmonary Fibrosis.

    Science.gov (United States)

    Dong, Wen-Wen; Zhang, Yun-Qian; Zhu, Xiao-Yan; Mao, Yan-Fei; Sun, Xue-Jun; Liu, Yu-Jian; Jiang, Lai

    2017-05-19

    BACKGROUND Fibrotic change is one of the important reasons for the poor prognosis of patients with acute respiratory distress syndrome (ARDS). The present study investigated the effects of hydrogen-rich saline, a selective hydroxyl radical scavenger, on lipopolysaccharide (LPS)-induced pulmonary fibrosis. MATERIAL AND METHODS Male ICR mice were divided randomly into 5 groups: Control, LPS-treated plus vehicle treatment, and LPS-treated plus hydrogen-rich saline (2.5, 5, or 10 ml/kg) treatment. Twenty-eight days later, fibrosis was assessed by determination of collagen deposition, hydroxyproline, and type I collagen levels. Development of epithelial-to-mesenchymal transition (EMT) was identified by examining protein expressions of E-cadherin and α-smooth muscle actin (α-SMA). Transforming growth factor (TGF)-β1 content, total antioxidant capacity (T-AOC), malondialdehyde (MDA) content, catalase (CAT), and superoxide dismutase (SOD) activity were determined. RESULTS Mice exhibited increases in collagen deposition, hydroxyproline, type I collagen contents, and TGF-β1 production in lung tissues after LPS treatment. LPS-induced lung fibrosis was associated with increased expression of α-SMA, as well as decreased expression of E-cadherin. In addition, LPS treatment increased MDA levels but decreased T-AOC, CAT, and SOD activities in lung tissues, indicating that LPS induced pulmonary oxidative stress. Hydrogen-rich saline treatment at doses of 2.5, 5, or 10 ml/kg significantly attenuated LPS-induced pulmonary fibrosis. LPS-induced loss of E-cadherin in lung tissues was largely reversed, whereas the acquisition of α-SMA was dramatically decreased by hydrogen-rich saline treatment. In addition, hydrogen-rich saline treatment significantly attenuated LPS-induced oxidative stress. CONCLUSIONS Hydrogen-rich saline may protect against LPS-induced EMT and pulmonary fibrosis through suppressing oxidative stress.

  5. Use of pharmacogenomics in predicting bleomycin-induced pulmonary toxicity in testicular cancer patients.

    NARCIS (Netherlands)

    Nuver, J; Van Zweeden, M; Holzik, ML; Meijer, C; Hoekstra, H; Suurmeijer, A; Hofstra, R; Groen, H; Sleijfer, D; Gietema, J

    2004-01-01

    4531 Background:Use of bleomycin, important for treatment efficacy in testicular cancer, is limited by its pulmonary toxicity. Bleomycin is mainly excreted by the kidneys, but can also be inactivated by bleomycin hydrolase (BLH). An A1450G polymorphic site in the BLH gene results in an amino acid

  6. TBHQ Alleviated Endoplasmic Reticulum Stress-Apoptosis and Oxidative Stress by PERK-Nrf2 Crosstalk in Methamphetamine-Induced Chronic Pulmonary Toxicity

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2017-01-01

    Full Text Available Methamphetamine (MA leads to cardiac and pulmonary toxicity expressed as increases in inflammatory responses and oxidative stress. However, some interactions may exist between oxidative stress and endoplasmic reticulum stress (ERS. The current study is designed to investigate if both oxidative stress and ERS are involved in MA-induced chronic pulmonary toxicity and if antioxidant tertiary butylhydroquinone (TBHQ alleviated ERS-apoptosis and oxidative stress by PERK-Nrf2 crosstalk. In this study, the rats were randomly divided into control group, MA-treated group (MA, and MA plus TBHQ-treated group (MA + TBHQ. Chronic exposure to MA resulted in slower growth of weight and pulmonary toxicity of the rats by increasing the pulmonary arterial pressure, promoting the hypertrophy of right ventricle and the remodeling of pulmonary arteries. MA inhibited the Nrf2-mediated antioxidative stress by downregulation of Nrf2, GCS, and HO-1 and upregulation of SOD2. MA increased GRP78 to induce ERS. Overexpression and phosphorylation of PERK rapidly phosphorylated eIF2α, increased ATF4, CHOP, bax, caspase 3, and caspase 12, and decreased bcl-2. These changes can be reversed by antioxidant TBHQ through upregulating expression of Nrf2. The above results indicated that TBHQ can alleviate MA-induced oxidative stress which can accelerate ERS to initiate PERK-dependent apoptosis and that PERK/Nrf2 is likely to be the key crosstalk between oxidative stress and ERS in MA-induced chronic pulmonary toxicity.

  7. Rationale and design of a randomized trial of home electronic symptom and lung function monitoring to detect cystic fibrosis pulmonary exacerbations: the early intervention in cystic fibrosis exacerbation (eICE) trial.

    Science.gov (United States)

    Lechtzin, N; West, N; Allgood, S; Wilhelm, E; Khan, U; Mayer-Hamblett, N; Aitken, M L; Ramsey, B W; Boyle, M P; Mogayzel, P J; Goss, C H

    2013-11-01

    Acute pulmonary exacerbations are central events in the lives of individuals with cystic fibrosis (CF). Pulmonary exacerbations lead to impaired lung function, worse quality of life, and shorter survival. We hypothesized that aggressive early treatment of acute pulmonary exacerbation may improve clinical outcomes. Describe the rationale of an ongoing trial designed to determine the efficacy of home monitoring of both lung function measurements and symptoms for early detection and subsequent early treatment of acute CF pulmonary exacerbations. A randomized, non-blinded, multi-center trial in 320 individuals with CF aged 14 years and older. The study compares usual care to a twice a week assessment of home spirometry and CF respiratory symptoms using an electronic device with data transmission to the research personnel to identify and trigger early treatment of CF pulmonary exacerbation. Participants will be enrolled in the study for 12 months. The primary endpoint is change in FEV1 (L) from baseline to 12 months determined by a linear mixed effects model incorporating all quarterly FEV1 measurements. Secondary endpoints include time to first acute protocol-defined pulmonary exacerbation, number of acute pulmonary exacerbations, number of hospitalization days for acute pulmonary exacerbation, time from the end of acute pulmonary exacerbation to onset of subsequent pulmonary exacerbation, change in health related quality of life, change in treatment burden, change in CF respiratory symptoms, and adherence to the study protocol. This study is a first step in establishing alternative approaches to the care of CF pulmonary exacerbations. We hypothesize that early treatment of pulmonary exacerbations has the potential to slow lung function decline, reduce respiratory symptoms and improve the quality of life for individuals with CF. © 2013.

  8. Pulmonary artery remodeling differs in hypoxia- and monocrotaline-induced pulmonary hypertension

    NARCIS (Netherlands)

    van Suylen, R. J.; Smits, J. F.; Daemen, M. J.

    1998-01-01

    In the present study we analyzed structural characteristics of muscular pulmonary arteries and arterioles in two classic models of pulmonary hypertension, the rat hypoxia and monocrotaline models. We hypothesized that an increase in medial cross-sectional area would result in reduction of the lumen

  9. Propilthiouracil-induced diffuse pulmonary hemorrhage: a case report with the clinical and radiologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Jun; Kim, Joung Sook; Kim, Ji Young; Choi, Soo Jeon [Sanggye Paik Hospital, Inje University College of Medicine, Seoul (Korea, Republic of)

    2007-05-15

    Propylthiouracil (PTU) is a drug that's used to manage hyperthyroidism and it can, on rare occasions, induce antineutrophil cytoplasmic antibody-associated vasculitis that involved multiple organ systems and it can also cause extremely rare isolated or diffuse pulmonary hemorrhage. We report here on a case of a patient who develop diffuse pulmonary hemorrhage after she had been taking PTU for five years. The patient is a 33-year-old woman who presented with hemoptysis. Simple chest radiographs and the chest CT showed bilateral ground-glass opacity, consolidation and pulmonary arterial hypertension. The bronchoalveolar lavage fluid revealed alveolar hemorrhage. The laboratory values showed increased perinuclear-antineutrophil cytoplasmic antibody ({rho} - ANCA) and anti-peroxidase antibody titers.

  10. Effect of raised serum uric acid level on perinatal and maternal outcome in cases of pregnancy-induced hypertension

    Directory of Open Access Journals (Sweden)

    Qumrun Nassa Ahmed

    2017-05-01

    Full Text Available The aim of this study was to find out the effects of raised serum uric acid level on perinatal and maternal outcome in cases of pregnancy-induced hypertension. One hundred pregnant women with gestational period beyond 28 weeks with pregnancy-induced hypertension-preeclampsia and eclampsia were included in this study and divided into two groups. Group A (n=65 patients with a serum uric acid level >6 mg/dL was compared to Group B (n=35 patients with a uric acid level <6 gm/dL. It revealed that high uric acid level in patients with pregnancy-induced hypertension was a risk factor for several maternal complications like postpartum hemorrhage (Group A, 17.4%; Group B, 22.6%, postpartum eclampsia (Group A, 10.1%; Group B, 9.7%, abruptio placentae (Group A, 8.7%; Group B, 6.4%, HELLP syndrome (Group A, 2.9%; Group B, 0% and pulmonary edema (Group A, 4.3%; Group B, 0%. In case of perinatal outcome, the birth weight, intrauterine growth retardation, intrauterine death, stillbirth and neonatal death rate were worse in Group A 1.9 kg, 66.7, 19, 7 and 8% in comparison to Group B, where those were 2.1, 13, 6, 2, and 2% respectively. In conclusion, high uric acid in blood in patient with hypertensive disorders in pregnancy is a risk factor for several maternal complications.

  11. Pulmonary function, respiratory symptoms, and dust exposures among workers engaged in early manufacturing processes of tea: a cohort study.

    Science.gov (United States)

    Shieh, Tzong-Shiun; Chung, Jui-Jung; Wang, Chung-Jing; Tsai, Perng-Jy; Kuo, Yau-Chang; Guo, How-Ran

    2012-02-13

    To evaluate pulmonary function and respiratory symptoms in workers engaged in the early manufacturing processes of tea and to identify the associated factors, we conducted a study in a tea production area in Taiwan. We recruited tea workers who engaged in the early manufacturing process in the Mountain Ali area in Taiwan and a comparison group of local office workers who were matched for age, gender, and smoking habits. We performed questionnaire interviews, pulmonary function tests, skin prick tests, and measurement of specific IgE for tea on the participants and assessed tea dust exposures in the tea factories. The 91 participating tea workers had higher prevalence of respiratory symptoms than the comparison group (32 participants). Among tea workers, ball-rolling workers had the highest prevalence of symptoms and the highest exposures of inhalable dusts. At baseline, tea workers had similar pulmonary functions as the comparison group, but compared to the other tea workers ball-rolling workers had a lower ratio of the 1-second forced expiratory volume to forced vital capacity (FEV1/FVC) and a lower maximal mid-expiratory flow rate expressed as% of the predicted value--MMF (%pred). A total of 58 tea workers participated in the on-site investigation and the cross-shift lung function measurements. We found ball-rolling yielded the highest inhalable dust level, panning yielded the highest respirable dust level, and withering yielded the lowest levels of both dusts. Ball-rolling also yielded the highest coarse fraction (defined as inhalable dusts minus respirable dusts), which represented exposures from nose to tracheobronchial tract. During the shift, we observed significant declines in pulmonary function, especially in ball-rolling workers. Multiple regressions showed that age, height, work tasks, coarse fraction, and number of months working in tea manufacturing each year were independent predictors of certain pulmonary function parameters in tea workers. Tea

  12. Ozone-Induced Pulmonary Injury and Inflammation are Modulated by Adrenal-Derived Stress Hormones

    Science.gov (United States)

    Ozone exposure promotes pulmonary injury and inflammation. Previously we have characterized systemic changes that occur immediately after acute ozone exposure and are mediated by neuro-hormonal stress response pathway. Both HPA axis and sympathetic tone alterations induce the rel...

  13. Prolonged Hypocalcemic Effect by Pulmonary Delivery of Calcitonin Loaded Poly(Methyl Vinyl Ether Maleic Acid Bioadhesive Nanoparticles

    Directory of Open Access Journals (Sweden)

    J. Varshosaz

    2014-01-01

    Full Text Available The purpose of the present study was to design a pulmonary controlled release system of salmon calcitonin (sCT. Therefore, poly(methyl vinyl ether maleic acid [P(MVEMA] nanoparticles were prepared by ionic cross-linking method using Fe2+ and Zn2+ ions. Physicochemical properties of nanoparticles were studied in vitro. The stability of sCT in the optimized nanoparticles was studied by electrophoretic gel method. Plasma calcium levels until 48 h were determined in rats as pulmonary-free sCT solution or nanoparticles (25 μg·kg−1, iv solution of sCT (5 μg·kg−1, and pulmonary blank nanoparticles. The drug remained stable during fabrication and tests on nanoparticles. The optimized nanoparticles showed proper physicochemical properties. Normalized reduction of plasma calcium levels was at least 2.76 times higher in pulmonary sCT nanoparticles compared to free solution. The duration of hypocalcemic effect of pulmonary sCT nanoparticles was 24 h, while it was just 1 h for the iv solution. There was not any significant difference between normalized blood calcium levels reduction in pulmonary drug solution and iv injection. Pharmacological activity of nanoparticles after pulmonary delivery was 65% of the iv route. Pulmonary delivery of P(MVEMA nanoparticles of sCT enhanced and prolonged the hypocalcemic effect of the drug significantly.

  14. Hypoxia-Induced Mitogenic Factor (HIMF/FIZZ1/RELM?) Recruits Bone Marrow-Derived Cells to the Murine Pulmonary Vasculature

    OpenAIRE

    Angelini, Daniel J.; Su, Qingning; Kolosova, Irina A.; Fan, Chunling; Skinner, John T.; Yamaji-Kegan, Kazuyo; Collector, Michael; Sharkis, Saul J.; Johns, Roger A.

    2010-01-01

    Background Pulmonary hypertension (PH) is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD) progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM?) is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling ...

  15. Asthma causes inflammation of human pulmonary arteries and decreases vasodilatation induced by prostaglandin I2 analogs.

    Science.gov (United States)

    Foudi, Nabil; Badi, Aouatef; Amrane, Mounira; Hodroj, Wassim

    2017-12-01

    Asthma is a chronic inflammatory disease associated with increased cardiovascular events. This study assesses the presence of inflammation and the vascular reactivity of pulmonary arteries in patients with acute asthma. Rings of human pulmonary arteries obtained from non-asthmatic and asthmatic patients were set up in organ bath for vascular tone monitoring. Reactivity was induced by vasoconstrictor and vasodilator agents. Protein expression of inflammatory markers was detected by western blot. Prostanoid releases and cyclic adenosine monophosphate (cAMP) levels were quantified using specific enzymatic kits. Protein expression of cluster of differentiation 68, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and cyclooxygenase-2 was significantly increased in arteries obtained from asthmatic patients. These effects were accompanied by an alteration of vasodilatation induced by iloprost and treprostinil, a decrease in cAMP levels and an increase in prostaglandin (PG) E 2 and PGI 2 synthesis. The use of forskolin (50 µmol/L) has restored the vasodilatation and cAMP release. No difference was observed between the two groups in reactivity induced by norepinephrine, angiotensin II, PGE 2 , KCl, sodium nitroprusside, and acetylcholine. Acute asthma causes inflammation of pulmonary arteries and decreases vasodilation induced by PGI 2 analogs through the impairment of cAMP pathway.

  16. Adenovirus vector expressing keratinocyte growth factor using CAG promoter impairs pulmonary function of mice with elastase-induced emphysema.

    Science.gov (United States)

    Oki, Hiroshi; Yazawa, Takuya; Baba, Yasuko; Kanegae, Yumi; Sato, Hanako; Sakamoto, Seiko; Goto, Takahisa; Saito, Izumu; Kurahashi, Kiyoyasu

    2017-07-01

    Pulmonary emphysema impairs quality of life and increases mortality. It has previously been shown that administration of adenovirus vector expressing murine keratinocyte growth factor (KGF) before elastase instillation prevents pulmonary emphysema in mice. We therefore hypothesized that therapeutic administration of KGF would restore damage to lungs caused by elastase instillation and thus improve pulmonary function in an animal model. KGF expressing adenovirus vector, which prevented bleomycin-induced pulmonary fibrosis in a previous study, was constructed. Adenovirus vector (1.0 × 10 9 plaque-forming units) was administered intratracheally one week after administration of elastase into mouse lungs. One week after administration of KGF-vector, exercise tolerance testing and blood gas analysis were performed, after which the lungs were removed under deep anesthesia. KGF-positive pneumocytes were more numerous, surfactant protein secretion in the airspace greater and mean linear intercept of lungs shorter in animals that had received KGF than in control animals. Unexpectedly, however, arterial blood oxygenation was worse in the KGF group and maximum running speed, an indicator of exercise capacity, had not improved after KGF in mice with elastase-induced emphysema, indicating that KGF-expressing adenovirus vector impaired pulmonary function in these mice. Notably, vector lacking KGF-expression unit did not induce such impairment, implying that the KGF expression unit itself may cause the damage to alveolar cells. Possible involvement of the CAG promoter used for KGF expression in impairing pulmonary function is discussed. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  17. Histopathological Study of Cyclosporine Pulmonary Toxicity in Rats

    Directory of Open Access Journals (Sweden)

    Said Said Elshama

    2016-01-01

    Full Text Available Cyclosporine is considered one of the common worldwide immunosuppressive drugs that are used for allograft rejection prevention. However, articles that address adverse effects of cyclosporine use on the vital organs such as lung are still few. This study aims to investigate pulmonary toxic effect of cyclosporine in rats by assessment of pulmonary histopathological changes using light and electron microscope examination. Sixty male adult albino rats were divided into three groups; each group consists of twenty rats. The first received physiological saline while the second and third groups received 25 and 40 mg/kg/day of cyclosporine, respectively, by gastric gavage for forty-five days. Cyclosporine reduced the lung and body weight with shrinkage or pyknotic nucleus of pneumocyte type II, degeneration of alveoli and interalveolar septum beside microvilli on the alveolar surface, emphysema, inflammatory cellular infiltration, pulmonary blood vessels congestion, and increase of fibrous tissues in the interstitial tissues and around alveoli with negative Periodic Acid-Schiff staining. Prolonged use of cyclosporine induced pulmonary ultrastructural and histopathological changes with the lung and body weight reduction depending on its dose.

  18. Baicalin inhibits hypoxia-induced pulmonary artery smooth muscle cell proliferation via the AKT/HIF-1α/p27-associated pathway.

    Science.gov (United States)

    Zhang, Lin; Pu, Zhichen; Wang, Junsong; Zhang, Zhifeng; Hu, Dongmei; Wang, Junjie

    2014-05-09

    Baicalin, a flavonoid compound purified from the dry roots of Scutellaria baicalensis Georgi, has been shown to possess various pharmacological actions. Previous studies have revealed that baicalin inhibits the growth of cancer cells through the induction of apoptosis. Pulmonary arterial hypertension (PAH) is a devastating disease characterized by enhanced pulmonary artery smooth muscle cell (PASMCs) proliferation and suppressed apoptosis. However, the potential mechanism of baicalin in the regulation of PASMC proliferation and the prevention of cardiovascular diseases remains unexplored. To test the effects of baicalin on hypoxia, we used rats treated with or without baicalin (100 mg·kg⁻¹ each rat) at the beginning of the third week after hypoxia. Hemodynamic and pulmonary pathomorphology data showed that right ventricular systolic pressures (RVSP), the weight of the right ventricle/left ventricle plus septum (RV/LV + S) ratio and the medial width of pulmonary arterioles were much higher in chronic hypoxia. However, baicalin treatment repressed the elevation of RVSP, RV/LV + S and attenuated the pulmonary vascular structure remodeling (PVSR) of pulmonary arterioles induced by chronic hypoxia. Additionally, baicalin (10 and 20 μmol·L⁻¹) treatment suppressed the proliferation of PASMCs and attenuated the expression of hypoxia-inducible factor-α (HIF-α) under hypoxia exposure. Meanwhile, baicalin reversed the hypoxia-induced reduction of p27 and increased AKT/protein kinase B phosphorylation p-AKT both in vivo and in vitro. These results suggested that baicalin could effectively attenuate PVSR and hypoxic pulmonary hypertension.

  19. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis

    International Nuclear Information System (INIS)

    Rubin, Philip; Johnston, Carl J.; Williams, Jacqueline P.; McDonald, Sandra; Finkelstein, Jacob N.

    1995-01-01

    Purpose: Radiation-induced pulmonary reactions have classically been viewed as distinct phases--acute pneumonitis and, later, fibrosis--occurring at different times after irradiation and attributed to different target cell populations. We prefer to view these events as a continuum, with no clear distinction between the temporal sequence of the different pulmonary reactions; the progression is the result of an early activation of an inflammatory reaction, leading to the expression and maintenance of a cytokine cascade. In the current study, we have examined the temporal and spatial expression of cytokine and extracellular matrix messenger ribonucleic acid (mRNA) abundance in fibrosis-sensitive mice after thoracic irradiation. Methods and Materials: Radiation fibrosis-prone ((C57BL(6))) mice received thoracic irradiation of 5 and 12.5 Gy. At Day 1, and 1, 2, 8, 16 and 24 weeks after treatment, animals were killed and lung tissue processed for light microscopy and isolation of RNA. Expression of cytokine and extracellular matrix mRNA abundance was evaluated by slot-blot analysis and cellular localization by in situ hybridization and immunochemistry. Results: One of the cytokines responsible for the inflammatory phase (IL-1α) is elevated at 2 weeks, returns to normal baseline values, then increases at 8 weeks, remaining elevated until 26 weeks when lung fibrosis appears. Transforming growth factor-beta (TGFβ), a proliferative cytokine, is elevated at 2 weeks, persists until 8 weeks, and then returns to baseline values. In parallel with the cytokine cascade, the fibrogenic markers for CI/CIII/IV (collagen genes) correlate by showing a similar early and then later elevation of activity. For instance, the collagen gene expression of CI/CIII is a biphasic response with an initial increase at 1-2 weeks that remits at 8 weeks, remains inactive from 8 to 16 weeks, and then becomes elevated at 6 months when collagen deposition is recognized histopathologically. Conclusion

  20. Effects of positive expiratory pressure on pulmonary clearance of aerosolized technetium-99m-labeled diethylenetriaminepentaacetic acid in healthy individuals

    Directory of Open Access Journals (Sweden)

    Isabella Martins de Albuquerque

    Full Text Available ABSTRACT Objective: To evaluate the effects of positive expiratory pressure (PEP on pulmonary epithelial membrane permeability in healthy subjects. Methods: We evaluated a cohort of 30 healthy subjects (15 males and 15 females with a mean age of 28.3 ± 5.4 years, a mean FEV1/FVC ratio of 0.89 ± 0.14, and a mean FEV1 of 98.5 ± 13.1% of predicted. Subjects underwent technetium-99m-labeled diethylenetriaminepentaacetic acid (99mTc-DTPA radioaerosol inhalation lung scintigraphy in two stages: during spontaneous breathing; and while breathing through a PEP mask at one of three PEP levels-10 cmH2O (n = 10, 15 cmH2O (n = 10, and 20 cmH2O (n = 10. The 99mTc-DTPA was nebulized for 3 min, and its clearance was recorded by scintigraphy over a 30-min period during spontaneous breathing and over a 30-min period during breathing through a PEP mask. Results: The pulmonary clearance of 99mTc-DTPA was significantly shorter when PEP was applied-at 10 cmH2O (p = 0.044, 15 cmH2O (p = 0.044, and 20 cmH2O (p = 0.004-in comparison with that observed during spontaneous breathing. Conclusions: Our findings indicate that PEP, at the levels tested, is able to induce an increase in pulmonary epithelial membrane permeability and lung volume in healthy subjects.

  1. Comparative effects of pulmonary and parenteral Δ⁹-tetrahydrocannabinol exposure on extinction of opiate-induced conditioned aversion in rats.

    Science.gov (United States)

    Manwell, Laurie A; Mallet, Paul E

    2015-05-01

    Evidence suggesting that the endogenous cannabinoid (eCB) system can be manipulated to facilitate or impair extinction of learned behaviours has important consequences for opiate withdrawal and abstinence. We demonstrated that the fatty acid amide hydrolase (FAAH) inhibitor URB597, which increases eCB levels, facilitates extinction of a naloxone-precipitated morphine withdrawal-induced conditioned place aversion (CPA). The potential of the exogenous CB1 ligand, Δ(9)-tetrahydrocannabinol (Δ(9)-THC), to facilitate extinction of this CPA was tested. Effects of both pulmonary and parenteral Δ(9)-THC exposure were evaluated using comparable doses previously determined. Rats trained to associate a naloxone-precipitated morphine withdrawal with a floor cue were administered Δ(9)-THC-pulmonary (1, 5, 10 mg vapour inhalation) or parenteral (0.5, 1.0, 1.5 mg/kg intraperitoneal injection)-prior to each of 20 to 28 extinction/testing trials. Vapourized Δ(9)-THC facilitated extinction of the CPA in a dose- and time-dependent manner: 5 and 10 mg facilitated extinction compared to vehicle and 1 mg Δ(9)-THC. Injected Δ(9)-THC significantly impaired extinction only for the 1.0-mg/kg dose: it prolonged the CPA fourfold longer than the vehicle and 0.5- and 1.5-mg/kg doses. These data suggest that both dose and route of Δ(9)-THC administration have important consequences for its pharmacokinetic and behavioural effects; specifically, pulmonary exposure at higher doses facilitates, whereas pulmonary and parenteral exposure at lower doses impairs, rates of extinction learning for CPA. Pulmonary-administered Δ(9)-THC may prove beneficial for potentiation of extinction learning for aversive memories, such as those supporting drug-craving/seeking in opiate withdrawal syndrome, and other causes of conditioned aversions, such as illness and stress.

  2. Aryl hydrocarbon receptor–ligand axis mediates pulmonary fibroblast migration and differentiation through increased arachidonic acid metabolism

    International Nuclear Information System (INIS)

    Su, Hsiang-Han; Lin, Hsin-Ting; Suen, Jau-Ling; Sheu, Chau Chyun; Yokoyama, Kazunari K.; Huang, Shau-Ku; Cheng, Chih Mei

    2016-01-01

    Pulmonary fibroblast migration and differentiation are critical events in fibrogenesis; meanwhile, fibrosis characterizes the pathology of many respiratory diseases. The role of aryl hydrocarbon receptor (AhR), a unique cellular chemical sensor, has been suggested in tissue fibrosis, but the mechanisms through which the AhR-ligand axis influences the fibrotic process remain undefined. In this study, the potential impact of the AhR-ligand axis on pulmonary fibroblast migration and differentiation was analyzed using human primary lung fibroblasts HFL-1 and CCL-202 cells. Boyden chamber-based cell migration assay showed that activated AhR in HFL-1cells significantly enhanced cell migration in response to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), and a known AhR antagonist, CH223191, inhibited its migratory activity. Furthermore, the calcium mobilization and subsequent upregulated expression of arachidonic acid metabolizing enzymes, including cyclooxygenase2 (COX-2) and 5-lipoxygenase (5-LOX), were observed in TCDD-treated HFL-1 cells, concomitant with elevated levels of prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) secretion. Also, significantly increased expression of α-smooth muscle actin α-SMA), a fibroblast differentiation marker, was also noted in TCDD-treated HFL-1 cells (p < 0.05), resulting in a dynamic change in cytoskeleton protein levels and an increase in the nuclear translocation of the myocardin-related transcription factor. Moreover, the enhanced levels of α-SMA expression and fibroblast migration induced by TCDD, PGE2 and LTB4 were abrogated by selective inhibitors for COX-2 and 5-LOX. Knockdown of AhR by siRNA Completely diminished intracellular calcium uptake and reduced α-SMA protein verified by promoter-reporter assays and chromatin immunoprecipitation. Taken together, our results suggested the importance of the AhR-ligand axis in fibroblast migration and differentiation through its capacity in enhancing arachidonic acid metabolism.

  3. Rosiglitazone attenuates pulmonary fibrosis and radiation-induced intestinal damage

    International Nuclear Information System (INIS)

    Mangoni, M.; Gerini, C.; Sottili, M.; Cassani, S.; Stefania, G.; Biti, G.; Castiglione, F.; Vanzi, E.; Bottoncetti, A.; Pupi, A.

    2011-01-01

    Full text of publication follows: Purpose.-The aim of the study was to evaluate radioprotective effect of rosiglitazone (RGZ) on a murine model of late pulmonary damage and of acute intestinal damage. Methods.- Lung fibrosis: C57 mice were treated with the radiomimetic agent bleomycin, with or without rosiglitazone (5 mg/kg/day). To obtain an independent qualitative and quantitative measure for lung fibrosis we used high resolution CT, performed twice a week during the entire observation period. Hounsfield Units (HU) of section slides from the upper and lower lung region were determined. On day 31 lungs were collected for histological analysis. Acute intestinal damage: mice underwent 12 Gy total body irradiation with or without rosiglitazone. Mice were sacrificed 24 or 72 h after total body irradiation and ileum and colon were collected. Results.- Lung fibrosis: after bleomycin treatment, mice showed typical CT features of lung fibrosis, including irregular septal thickening and patchy peripheral reticular abnormalities. Accordingly, HU lung density was dramatically increased. Rosiglitazone markedly attenuated the radiological signs of fibrosis and strongly inhibited HU lung density increase (60% inhibition at the end of the observation period). Histological analysis revealed that in bleomycin-treated mice, fibrosis involved 50-55% of pulmonary parenchyma and caused an alteration of the alveolar structures in 10% of parenchyma, while in rosiglitazone-treated mice, fibrosis involved only 20-25% of pulmonary parenchyma, without alterations of the alveolar structures. Acute intestinal damage: 24 h after 12 Gy of total body irradiation intestinal mucosa showed villi shortening, mucosal thickness and crypt necrotic changes. Rosiglitazone showed a histological improvement of tissue structure, with villi and crypts normalization and oedema reduction. Conclusion.- These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis and radiation-induced

  4. Rosiglitazone attenuates pulmonary fibrosis and radiation-induced intestinal damage

    Energy Technology Data Exchange (ETDEWEB)

    Mangoni, M.; Gerini, C.; Sottili, M.; Cassani, S.; Stefania, G.; Biti, G. [Radiotherapy Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy); Castiglione, F. [Department of Human Pathology and Oncology, University of Florence, Firenze (Italy); Vanzi, E.; Bottoncetti, A.; Pupi, A. [Nuclear Medicine Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy)

    2011-10-15

    Full text of publication follows: Purpose.-The aim of the study was to evaluate radioprotective effect of rosiglitazone (RGZ) on a murine model of late pulmonary damage and of acute intestinal damage. Methods.- Lung fibrosis: C57 mice were treated with the radiomimetic agent bleomycin, with or without rosiglitazone (5 mg/kg/day). To obtain an independent qualitative and quantitative measure for lung fibrosis we used high resolution CT, performed twice a week during the entire observation period. Hounsfield Units (HU) of section slides from the upper and lower lung region were determined. On day 31 lungs were collected for histological analysis. Acute intestinal damage: mice underwent 12 Gy total body irradiation with or without rosiglitazone. Mice were sacrificed 24 or 72 h after total body irradiation and ileum and colon were collected. Results.- Lung fibrosis: after bleomycin treatment, mice showed typical CT features of lung fibrosis, including irregular septal thickening and patchy peripheral reticular abnormalities. Accordingly, HU lung density was dramatically increased. Rosiglitazone markedly attenuated the radiological signs of fibrosis and strongly inhibited HU lung density increase (60% inhibition at the end of the observation period). Histological analysis revealed that in bleomycin-treated mice, fibrosis involved 50-55% of pulmonary parenchyma and caused an alteration of the alveolar structures in 10% of parenchyma, while in rosiglitazone-treated mice, fibrosis involved only 20-25% of pulmonary parenchyma, without alterations of the alveolar structures. Acute intestinal damage: 24 h after 12 Gy of total body irradiation intestinal mucosa showed villi shortening, mucosal thickness and crypt necrotic changes. Rosiglitazone showed a histological improvement of tissue structure, with villi and crypts normalization and oedema reduction. Conclusion.- These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis and radiation-induced

  5. Role of inducible nitric oxide synthase-derived nitric oxide in lipopolysaccharide plus interferon-γ-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Zeidler, Patti C.; Millecchia, Lyndell M.; Castranova, Vincent

    2004-01-01

    Exposure of mice to lipopolysaccharide (LPS) plus interferon-γ (IFN-γ) increases nitric oxide (NO) production, which is proposed to play a role in the resulting pulmonary damage and inflammation. To determine the role of inducible nitric oxide synthase (iNOS)-induced NO in this lung reaction, the responses of inducible nitric oxide synthase knockout (iNOS KO) versus C57BL/6J wild-type (WT) mice to aspirated LPS + IFN-γ were compared. Male mice (8-10 weeks) were exposed to LPS (1.2 mg/kg) + IFN-γ (5000 U/mouse) or saline. At 24 or 72 h postexposure, lungs were lavaged with saline and the acellular fluid from the first bronchoalveolar lavage (BAL) was analyzed for total antioxidant capacity (TAC), lactate dehydrogenase (LDH) activity, albumin, tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-2 (MIP-2). The cellular fraction of the total BAL was used to determine alveolar macrophage (AM) and polymorphonuclear leukocyte (PMN) counts, and AM zymosan-stimulated chemiluminescence (AM-CL). Pulmonary responses 24 h postexposure to LPS + IFN-γ were characterized by significantly decreased TAC, increased BAL AMs and PMNs, LDH, albumin, TNF-α, and MIP-2, and enhanced AM-CL to the same extent in both WT and iNOS KO mice. Responses 72 h postexposure were similar; however, significant differences were found between WT and iNOS KO mice. iNOS KO mice demonstrated a greater decline in total antioxidant capacity, greater BAL PMNs, LDH, albumin, TNF-α, and MIP-2, and an enhanced AM-CL compared to the WT. These data suggest that the role of iNOS-derived NO in the pulmonary response to LPS + IFN-γ is anti-inflammatory, and this becomes evident over time

  6. ω-3 and folic acid act against depressive-like behavior and oxidative damage in the brain of rats subjected to early- or late-life stress.

    Science.gov (United States)

    Réus, Gislaine Z; Maciel, Amanda L; Abelaira, Helena M; de Moura, Airam B; de Souza, Thays G; Dos Santos, Thais R; Darabas, Ana Caroline; Parzianello, Murilo; Matos, Danyela; Abatti, Mariane; Vieira, Ana Carolina; Fucillini, Vanessa; Michels, Monique; Dal-Pizzol, Felipe; Quevedo, João

    2018-03-30

    To investigate the antidepressant and antioxidant effects of omega-3, folic acid and n-acetylcysteine (NAC) in rats which were subjected to early or late life stress. Early stress was induced through maternal deprivation (MD), while late life stress was induced using the chronic mild stress (CMS) protocol. Young rats which were subjected to MD and the adult rats which were subjected to CMS were treated with omega-3 fatty acids (0.72 g/kg), NAC (20 mg/kg) or folic acid (50 mg/kg) once/day, for a period of 20 days. Then, the animals' immobility times were evaluated using the forced swimming test. Oxidative stress parameters were evaluated in the brain. Depressive-like behavior induced by CMS was prevented by NAC and folic acid, and depressive-like behavior induced by MD was prevented by NAC, folic acid and omega-3. NAC, folic acid and omega-3 were able to exert antioxidant effects in the brain of rats subjected to CMS or MD. These preventive treatments decreased the levels of protein carbonylation and lipid peroxidation, and also decreased the concentrations of nitrite/nitrate and reduced the activity of myeloperoxidase activity in the rat brain which was induced by CMS or MD. NAC, folic acid and omega-3 increased superoxide dismutase and catalase activities in the rat brain subjected to early or late life stress. NAC, omega-3 and folic acid may present interesting lines of treatment based on their antioxidant properties, which cause an inhibition of behavioral and brain changes that occur from stressful life events. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Oleic Acid Induces Lung Injury in Mice through Activation of the ERK Pathway

    Directory of Open Access Journals (Sweden)

    Cassiano Felippe Gonçalves-de-Albuquerque

    2012-01-01

    Full Text Available Oleic acid (OA can induce acute lung injury in experimental models. In the present work, we used intratracheal OA injection to show augmented oedema formation, cell migration and activation, lipid mediator, and cytokine productions in the bronchoalveolar fluids of Swiss Webster mice. We also demonstrated that OA-induced pulmonary injury is dependent on ERK1/2 activation, since U0126, an inhibitor of ERK1/2 phosphorylation, blocked neutrophil migration, oedema, and lipid body formation as well as IL-6, but not IL-1β production. Using a mice strain carrying a null mutation for the TLR4 receptor, we proved that increased inflammatory parameters after OA challenges were not due to the activation of the TLR4 receptor. With OA being a Na/K-ATPase inhibitor, we suggest the possible involvement of this enzyme as an OA target triggering lung inflammation.

  8. Nucleic Acid Amplification Testing and Sequencing Combined with Acid-Fast Staining in Needle Biopsy Lung Tissues for the Diagnosis of Smear-Negative Pulmonary Tuberculosis.

    Directory of Open Access Journals (Sweden)

    Faming Jiang

    sensitivity, specificity, PPV, NPV, and accuracy to be 94.0% (125/133, 95.8% (46/48, 98.4% (125/127, 85.2% (46/54, and 94.5% (171/181, respectively. Among patients with positive AFB and negative PCR results in lung tissue specimens, two were diagnosed with NTM infections (Mycobacterium avium-intracellulare complex and Mycobacterium kansasii.Nucleic acid amplification testing combined with acid-fast staining in lung biopsy tissues can lead to early and accurate diagnosis in patients with smear-negative pulmonary tuberculosis. For patients with positive histological AFB and negative tuberculous PCR results in lung tissue, NTM infection should be suspected and could be identified by specific probe assays or 16S rRNA sequencing.

  9. Role of Cardiovascular Disease-associated iron overload in Libby amphibole-induced acute pulmonary injury and inflammation

    Science.gov (United States)

    Pulmonary toxicity induced by asbestos is thought to be mediated through redox-cycling of fiber-bound and bioavailable iron (Fe). We hypothesized that Libby amphibole (LA)-induced cute lung injury will be exacerbated in rat models of cardiovascular disease (CVD)-associated Fe-ove...

  10. Attenuation of pancreatitis-induced pulmonary injury by aerosolized hypertonic saline.

    LENUS (Irish Health Repository)

    Shields, C J

    2012-02-03

    BACKGROUND: The immunomodulatory effects of hypertonic saline (HTS) provide potential strategies to attenuate inappropriate inflammatory reactions. This study tested the hypothesis that administration of intratracheal aerosolized HTS modulates the development of lung injury in pancreatitis. METHODS: Pancreatitis was induced in 24 male Sprague-Dawley rats by intraperitoneal injection of 20% L-arginine (500 mg\\/100 g body weight). At 24 and 48 h, intratracheal aerosolized HTS (7.5% NaCl, 0.5 mL) was administered to 8 rats, while a further 8 received 0.5 mL of aerosolized normal saline (NS). At 72 hours, pulmonary neutrophil infiltration (myeloperoxidase activity) and endothelial permeability (bronchoalveolar lavage and wet:dry weight ratios) were assessed. In addition, histological assessment of representative lung tissue was performed by a blinded assessor. In a separate experiment, polymorphonucleocytes (PMN) were isolated from human donors, and exposed to increments of HTS. Neutrophil transmigration across an endothelial cell layer, VEGF release, and apoptosis at 1, 6, 12, 18, and 24 h were assessed. RESULTS: Histopathological lung injury scores were significantly reduced in the HTS group (4.78 +\\/- 1.43 vs. 8.64 +\\/- 0.86); p < 0.001). Pulmonary neutrophil sequestration (1.40 +\\/- 0.2) and increased endothelial permeability (6.77 +\\/- 1.14) were evident in the animals resuscitated with normal saline when compared with HTS (0.70 +\\/- 0.1 and 3.57 +\\/- 1.32), respectively; p < 0.04). HTS significantly reduced PMN transmigration (by 97.1, p = 0.002, and induced PMN apoptosis (p < 0.03). HTS did not impact significantly upon neutrophil VEGF release (p > 0.05). CONCLUSIONS: Intratracheal aerosolized HTS attenuates the neutrophil-mediated pulmonary insult subsequent to pancreatitis. This may represent a novel therapeutic strategy.

  11. Comparison of sputum acid-fast culture and chest radiography in pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Lim, G.M.

    1991-01-01

    While it is still a common practice of some clinicians to rely on chest radiography examination alone for the diagnosis of pulmonary tuberculosis, others still claim that absolute diagnosis of tuberculosis can firmly be established by bacteriological examination from secretions or tissues of the infected host. This study will evaluate the relationship between radiographic findings (CXR) and the likelihood of finding tubercle bacilli on sputum acid-fast bacilli (AFB) culture in pulmonary tuberculosis at Lung Center of the Philippines. Of 41 individuals who submitted their sputum for AFB culture, tubercle bacilli in the sputum was shown in 25 (60%) of cases and no growth of tubercle bacilli in 16 (40%) of cases. Chest radiography reading revealed tuberculosis in 100% of cases, of which when classified further, 22 (54%) has fibrohazed or hazy infiltrates on their CXR, 7 (17%) has cavitations or interpreted as moderate or far advanced TB, 12 (29%) has fibroid, nodular infiltrates or densities. In patients radiologically diagnosed as PTB minimal, sputum culture revealed tubercle bacilli in 15 (57%) among moderate, far advanced tuberculosis, and 6 (50%) among those with inactive or old tuberculosis. Therefore, the probability of detecting tubercle bacilli in pulmonary tuberculosis is not greatly influenced by radiographic findings. (auth.). 11 refs.; 2 figs.; 2 tabs

  12. Plasmodium falciparum-Derived Uric Acid Precipitates Induce Maturation of Dendritic Cells

    Science.gov (United States)

    van de Hoef, Diana L.; Coppens, Isabelle; Holowka, Thomas; Ben Mamoun, Choukri; Branch, OraLee; Rodriguez, Ana

    2013-01-01

    Malaria is characterized by cyclical fevers and high levels of inflammation, and while an early inflammatory response contributes to parasite clearance, excessive and persistent inflammation can lead to severe forms of the disease. Here, we show that Plasmodium falciparum-infected erythrocytes contain uric acid precipitates in the cytoplasm of the parasitophorous vacuole, which are released when erythrocytes rupture. Uric acid precipitates are highly inflammatory molecules that are considered a danger signal for innate immunity and are the causative agent in gout. We determined that P. falciparum-derived uric acid precipitates induce maturation of human dendritic cells, increasing the expression of cell surface co-stimulatory molecules such as CD80 and CD86, while decreasing human leukocyte antigen-DR expression. In accordance with this, uric acid accounts for a significant proportion of the total stimulatory activity induced by parasite-infected erythrocytes. Moreover, the identification of uric acid precipitates in P. falciparum- and P. vivax-infected erythrocytes obtained directly from malaria patients underscores the in vivo and clinical relevance of our findings. Altogether, our data implicate uric acid precipitates as a potentially important contributor to the innate immune response to Plasmodium infection and may provide a novel target for adjunct therapies. PMID:23405174

  13. Characteristics of weak base-induced vacuoles formed around individual acidic organelles.

    Science.gov (United States)

    Hiruma, Hiromi; Kawakami, Tadashi

    2011-01-01

    We have previously found that the weak base 4-aminopyridine induces Brownian motion of acidic organelles around which vacuoles are formed, causing organelle traffic disorder in neurons. Our present study investigated the characteristics of vacuoles induced by weak bases (NH(4)Cl, aminopyridines, and chloroquine) using mouse cells. Individual vacuoles included acidic organelles identified by fluorescent protein expression. Mitochondria and actin filaments were extruded outside the vacuoles, composing the vacuole rim. Staining with amine-reactive fluorescence showed no protein/amino acid content in vacuoles. Thus, serous vacuolar contents are probably partitioned by viscous cytosol, other organelles, and cytoskeletons, but not membrane. The weak base (chloroquine) was immunochemically detected in intravacuolar organelles, but not in vacuoles. Early vacuolization was reversible, but long-term vacuolization caused cell death. The vacuolization and cell death were blocked by the vacuolar H(+)-ATPase inhibitor and Cl--free medium. Staining with LysoTracker or LysoSensor indicated that intravacuolar organelles were strongly acidic and vacuoles were slightly acidic. This suggests that vacuolization is caused by accumulation of weak base and H(+) in acidic organelles, driven by vacuolar H(+)-ATPase associated with Cl(-) entering, and probably by subsequent extrusion of H(+) and water from organelles to the surrounding cytoplasm.

  14. The Mitochondrial Cardiolipin Remodeling Enzyme Lysocardiolipin Acyltransferase Is a Novel Target in Pulmonary Fibrosis

    Science.gov (United States)

    Huang, Long Shuang; Mathew, Biji; Zhao, Yutong; Noth, Imre; Reddy, Sekhar P.; Harijith, Anantha; Usatyuk, Peter V.; Berdyshev, Evgeny V.; Kaminski, Naftali; Zhou, Tong; Zhang, Wei; Zhang, Yanmin; Rehman, Jalees; Kotha, Sainath R.; Gurney, Travis O.; Parinandi, Narasimham L.; Lussier, Yves A.; Garcia, Joe G. N.

    2014-01-01

    Rationale: Lysocardiolipin acyltransferase (LYCAT), a cardiolipin-remodeling enzyme regulating the 18:2 linoleic acid pattern of mammalian mitochondrial cardiolipin, is necessary for maintaining normal mitochondrial function and vascular development. We hypothesized that modulation of LYCAT expression in lung epithelium regulates development of pulmonary fibrosis. Objectives: To define a role for LYCAT in human and murine models of pulmonary fibrosis. Methods: We analyzed the correlation of LYCAT expression in peripheral blood mononuclear cells (PBMCs) with the outcomes of pulmonary functions and overall survival, and used the murine models to establish the role of LYCAT in fibrogenesis. We studied the LYCAT action on cardiolipin remodeling, mitochondrial reactive oxygen species generation, and apoptosis of alveolar epithelial cells under bleomycin challenge. Measurements and Main Results: LYCAT expression was significantly altered in PBMCs and lung tissues from patients with idiopathic pulmonary fibrosis (IPF), which was confirmed in two preclinical murine models of IPF, bleomycin- and radiation-induced pulmonary fibrosis. LYCAT mRNA expression in PBMCs directly and significantly correlated with carbon monoxide diffusion capacity, pulmonary function outcomes, and overall survival. In both bleomycin- and radiation-induced pulmonary fibrosis murine models, hLYCAT overexpression reduced several indices of lung fibrosis, whereas down-regulation of native LYCAT expression by siRNA accentuated fibrogenesis. In vitro studies demonstrated that LYCAT modulated bleomycin-induced cardiolipin remodeling, mitochondrial membrane potential, reactive oxygen species generation, and apoptosis of alveolar epithelial cells, potential mechanisms of LYCAT-mediated lung protection. Conclusions: This study is the first to identify modulation of LYCAT expression in fibrotic lungs and offers a novel therapeutic approach for ameliorating lung inflammation and pulmonary fibrosis. PMID

  15. Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Muzaffar, Suhail; Chattoo, Bharat B

    2017-03-01

    Anacardic acid is a medicinal phytochemical that inhibits proliferation of fungal as well as several types of cancer cells. It induces apoptotic cell death in various cell types, but very little is known about the mechanism involved in the process. Here, we used budding yeast Saccharomyces cerevisiae as a model to study the involvement of some key elements of apoptosis in the anacardic acid-induced cell death. Plasma membrane constriction, chromatin condensation, DNA degradation, and externalization of phosphatidylserine (PS) indicated that anacardic acid induces apoptotic cell death in S. cerevisiae. However, the exogenous addition of broad-spectrum caspase inhibitor Z-VAD-FMK or deletion of the yeast caspase Yca1 showed that the anacardic acid-induced cell death is caspase independent. Apoptosis-inducing factor (AIF1) deletion mutant was resistant to the anacardic acid-induced cell death, suggesting a key role of Aif1. Overexpression of Aif1 made cells highly susceptible to anacardic acid, further confirming that Aif1 mediates anacardic acid-induced apoptosis. Interestingly, instead of the increase in the intracellular reactive oxygen species (ROS) normally observed during apoptosis, anacardic acid caused a decrease in the intracellular ROS levels. Quantitative real-time PCR analysis showed downregulation of the BIR1 survivin mRNA expression during the anacardic acid-induced apoptosis.

  16. Nicorandil attenuates monocrotaline-induced vascular endothelial damage and pulmonary arterial hypertension.

    Directory of Open Access Journals (Sweden)

    Makoto Sahara

    Full Text Available BACKGROUND: An antianginal K(ATP channel opener nicorandil has various beneficial effects on cardiovascular systems; however, its effects on pulmonary vasculature under pulmonary arterial hypertension (PAH have not yet been elucidated. Therefore, we attempted to determine whether nicorandil can attenuate monocrotaline (MCT-induced PAH in rats. MATERIALS AND METHODS: Sprague-Dawley rats injected intraperitoneally with 60 mg/kg MCT were randomized to receive either vehicle; nicorandil (5.0 mg·kg(-1·day(-1 alone; or nicorandil as well as either a K(ATP channel blocker glibenclamide or a nitric oxide synthase (NOS inhibitor N(ω-nitro-L-arginine methyl ester (L-NAME, from immediately or 21 days after MCT injection. Four or five weeks later, right ventricular systolic pressure (RVSP was measured, and lung tissue was harvested. Also, we evaluated the nicorandil-induced anti-apoptotic effects and activation status of several molecules in cell survival signaling pathway in vitro using human umbilical vein endothelial cells (HUVECs. RESULTS: Four weeks after MCT injection, RVSP was significantly increased in the vehicle-treated group (51.0±4.7 mm Hg, whereas it was attenuated by nicorandil treatment (33.2±3.9 mm Hg; P<0.01. Nicorandil protected pulmonary endothelium from the MCT-induced thromboemboli formation and induction of apoptosis, accompanied with both upregulation of endothelial NOS (eNOS expression and downregulation of cleaved caspase-3 expression. Late treatment with nicorandil for the established PAH was also effective in suppressing the additional progression of PAH. These beneficial effects of nicorandil were blocked similarly by glibenclamide and l-NAME. Next, HUVECs were incubated in serum-free medium and then exhibited apoptotic morphology, while these changes were significantly attenuated by nicorandil administration. Nicorandil activated the phosphatidylinositol 3-kinase (PI3K/Akt and extracellular signal-regulated kinase (ERK

  17. Pulmonary langerhans cell histiocytosis

    Directory of Open Access Journals (Sweden)

    Suri Harpreet S

    2012-03-01

    Full Text Available Abstract Pulmonary Langerhans Cell Histiocytosis (PLCH is a relatively uncommon lung disease that generally, but not invariably, occurs in cigarette smokers. The pathologic hallmark of PLCH is the accumulation of Langerhans and other inflammatory cells in small airways, resulting in the formation of nodular inflammatory lesions. While the overwhelming majority of patients are smokers, mechanisms by which smoking induces this disease are not known, but likely involve a combination of events resulting in enhanced recruitment and activation of Langerhans cells in small airways. Bronchiolar inflammation may be accompanied by variable lung interstitial and vascular involvement. While cellular inflammation is prominent in early disease, more advanced stages are characterized by cystic lung destruction, cicatricial scarring of airways, and pulmonary vascular remodeling. Pulmonary function is frequently abnormal at presentation. Imaging of the chest with high resolution chest CT scanning may show characteristic nodular and cystic abnormalities. Lung biopsy is necessary for a definitive diagnosis, although may not be required in instances were imaging findings are highly characteristic. There is no general consensus regarding the role of immunosuppressive therapy in smokers with PLCH. All smokers must be counseled on the importance of smoking cessation, which may result in regression of disease and obviate the need for systemic immunosuppressive therapy. The prognosis for most patients is relatively good, particularly if longitudinal lung function testing shows stability. Complications like pneumothoraces and secondary pulmonary hypertension may shorten life expectancy. Patients with progressive disease may require lung transplantation.

  18. Bile acids in radiation-induced diarrhea

    International Nuclear Information System (INIS)

    Arlow, F.L.; Dekovich, A.A.; Priest, R.J.; Beher, W.T.

    1987-01-01

    Radiation-induced bowel disease manifested by debilitating diarrhea is an unfortunate consequence of therapeutic irradiation for pelvic malignancies. Although the mechanism for this diarrhea is not well understood, many believe it is the result of damage to small bowel mucosa and subsequent bile acid malabsorption. Excess amounts of bile acids, especially the dihydroxy components, are known to induce water and electrolyte secretion and increase bowel motility. We have directly measured individual and total bile acids in the stool samples of 11 patients with radiation-induced diarrhea and have found bile acids elevated two to six times normal in eight of them. Our patients with diarrhea and increased bile acids in their stools had prompt improvement when given cholestyramine. They had fewer stools and returned to a more normal life-style

  19. Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injury

    Science.gov (United States)

    Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injuryHenriquez, A.1, Snow, S.2, Miller, D1.,Schladweiler, M.2 and Kodavanti, U2.1 Curriculum in Toxicology, UNC, Chapel Hill, NC. 2 EPHD/NHEERL, US EPA, RTP, Durham, NC. ...

  20. [Serum uric acid is associated with disease severity and an important predictor for clinical outcome in patients with pulmonary hypertension].

    Science.gov (United States)

    Luo, D L; Zhang, C J; Huang, Y G; Huang, T; Li, H Z

    2017-06-24

    Objective: The growing body of literature showed a link between uric acid and pulmonary hypertension (PH), but the impact of hyperuremia on outcome of patients with PH has not been well defined. Therefore, the present study was performed to analyze the impact of uric acid on outcome of PH patients. Methods: One hundred seventy-three PH patients (112 females, mean age 38 years old), who were hospitalized in our department between January 2010 and December 2015, were included in our study, the PH diagnosis was made based on right heart catheterization examination result (mean pulmonary artery pressure≥25 mmHg(1 mmHg=0.133 kPa)). PH patients were divided into mild to moderate PH group (Rp/Rs≤0.6, n =97) and severe PH group (Rp/Rs>0.6, n =76). Fifty-one patients (33 females, mean age 45 years old) without PH based on right heart catheterization were included as control subjects. All participants were followed up for a median of 24 months(6-71 months). Clinical endpoints were defined as cardiogenic death or heart-and-lung transplantation. Results: Uric acid was positively correlated with pulmonary vascular resistance( r =0.398, P uric acid level was significantly higher in patients with severe PH than in patients with mild-to-moderate PH and the control subjects (both P uric acid level to predict the outcome of PH patients (sensitivity 50%, specificity 72%). During follow-up, patients with higher level of uric acid (>425.5 μmol/L) were linked with poorer clinical outcome compared to patients with uric acid uric acid is associated with the severity of PH and higher uric acid level serves as an important predictor for poor clinical outcome of PH patients.

  1. Decreased creatine kinase is linked to diastolic dysfunction in rats with right heart failure induced by pulmonary artery hypertension

    NARCIS (Netherlands)

    Fowler, Ewan D.; Benoist, David; Drinkhill, Mark J.; Stones, Rachel; Helmes, Michiel; Wüst, Rob C. I.; Stienen, Ger J. M.; Steele, Derek S.; White, Ed

    2015-01-01

    Our objective was to investigate the role of creatine kinase in the contractile dysfunction of right ventricular failure caused by pulmonary artery hypertension. Pulmonary artery hypertension and right ventricular failure were induced in rats by monocrotaline and compared to saline-injected control

  2. Shunt Surgery, Right Heart Catheterization, and Vascular Morphometry in a Rat Model for Flow-induced Pulmonary Arterial Hypertension

    NARCIS (Netherlands)

    van der Feen, Diederik E.; Weij, Michel; Smit-van Oosten, Annemieke; Jorna, Lysanne M.; Hagdorn, Quint A. J.; Bartelds, Beatrijs; Berger, Rolf M. F.

    2017-01-01

    In this protocol, PAH is induced by combining a 60 mg/kg monocrotalin (MCT) injection with increased pulmonary blood flow through an aorto-caval shunt (MCT+Flow). The shunt is created by inserting an 18-G needle from the abdominal aorta into the adjacent caval vein. Increased pulmonary flow has been

  3. Losartan attenuates chronic cigarette smoke exposure-induced pulmonary arterial hypertension in rats: Possible involvement of angiotensin-converting enzyme-2

    International Nuclear Information System (INIS)

    Han Suxia; He Guangming; Wang Tao; Chen Lei; Ning Yunye; Luo Feng; An Jin; Yang Ting; Dong Jiajia; Liao Zenglin; Xu Dan; Wen Fuqiang

    2010-01-01

    Chronic cigarette smoking induces pulmonary arterial hypertension (PAH) by largely unknown mechanisms. Renin-angiotensin system (RAS) is known to function in the development of PAH. Losartan, a specific angiotensin II receptor antagonist, is a well-known antihypertensive drug with a potential role in regulating angiotensin-converting enzyme-2 (ACE2), a recently found regulator of RAS. To determine the effect of losartan on smoke-induced PAH and its possible mechanism, rats were daily exposed to cigarette smoke for 6 months in the absence and in the presence of losartan. Elevated right ventricular systolic pressure (RVSP), thickened wall of pulmonary arteries with apparent medial hypertrophy along with increased angiotensin II (Ang II) and decreased ACE2 levels were observed in smoke-exposed-only rats. Losartan administration ameliorated pulmonary vascular remodeling, inhibited the smoke-induced RVSP and Ang II elevation and partially reversed the ACE2 decrease in rat lungs. In cultured primary pulmonary artery smooth muscle cells (PASMCs) from 3- and 6-month smoke-exposed rats, ACE2 levels were significantly lower than in those from the control rats. Moreover, PASMCs from 6-month exposed rats proliferated more rapidly than those from 3-month exposed or control rats, and cells grew even more rapidly in the presence of DX600, an ACE2 inhibitor. Consistent with the in vivo study, in vitro losartan pretreatment also inhibited cigarette smoke extract (CSE)-induced cell proliferation and ACE2 reduction in rat PASMCs. The results suggest that losartan may be therapeutically useful in the chronic smoking-induced pulmonary vascular remodeling and PAH and ACE2 may be involved as part of its mechanism. Our study might provide insight into the development of new therapeutic interventions for PAH smokers.

  4. Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide-induced lung injury by inhibiting endothelial-to-mesenchymal transition.

    Science.gov (United States)

    Suzuki, Toshio; Tada, Yuji; Gladson, Santhi; Nishimura, Rintaro; Shimomura, Iwao; Karasawa, Satoshi; Tatsumi, Koichiro; West, James

    2017-10-16

    Pulmonary fibrosis is a late manifestation of acute respiratory distress syndrome (ARDS). Sepsis is a major cause of ARDS, and its pathogenesis includes endotoxin-induced vascular injury. Recently, endothelial-to-mesenchymal transition (EndMT) was shown to play an important role in pulmonary fibrosis. On the other hand, dipeptidyl peptidase (DPP)-4 was reported to improve vascular dysfunction in an experimental sepsis model, although whether DPP-4 affects EndMT and fibrosis initiation during lipopolysaccharide (LPS)-induced lung injury is unclear. The aim of this study was to investigate the anti-EndMT effects of the DPP-4 inhibitor vildagliptin in pulmonary fibrosis after systemic endotoxemic injury. A septic lung injury model was established by intraperitoneal injection of lipopolysaccharide (LPS) in eight-week-old male mice (5 mg/kg for five consecutive days). The mice were then treated with vehicle or vildagliptin (intraperitoneally, 10 mg/kg, once daily for 14 consecutive days from 1 day before the first administration of LPS.). Flow cytometry, immunohistochemical staining, and quantitative polymerase chain reaction (qPCR) analysis was used to assess cell dynamics and EndMT function in lung samples from the mice. Lung tissue samples from treated mice revealed obvious inflammatory reactions and typical interstitial fibrosis 2 days and 28 days after LPS challenge. Quantitative flow cytometric analysis showed that the number of pulmonary vascular endothelial cells (PVECs) expressing alpha-smooth muscle actin (α-SMA) or S100 calcium-binding protein A4 (S100A4) increased 28 days after LPS challenge. Similar increases in expression were also confirmed by qPCR of mRNA from isolated PVECs. EndMT cells had higher proliferative activity and migration activity than mesenchymal cells. All of these changes were alleviated by intraperitoneal injection of vildagliptin. Interestingly, vildagliptin and linagliptin significantly attenuated EndMT in the absence of immune

  5. Absence of the inflammasome adaptor ASC reduces hypoxia-induced pulmonary hypertension in mice.

    Science.gov (United States)

    Cero, Fadila Telarevic; Hillestad, Vigdis; Sjaastad, Ivar; Yndestad, Arne; Aukrust, Pål; Ranheim, Trine; Lunde, Ida Gjervold; Olsen, Maria Belland; Lien, Egil; Zhang, Lili; Haugstad, Solveig Bjærum; Løberg, Else Marit; Christensen, Geir; Larsen, Karl-Otto; Skjønsberg, Ole Henning

    2015-08-15

    Pulmonary hypertension is a serious condition that can lead to premature death. The mechanisms involved are incompletely understood although a role for the immune system has been suggested. Inflammasomes are part of the innate immune system and consist of the effector caspase-1 and a receptor, where nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) is the best characterized and interacts with the adaptor protein apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC). To investigate whether ASC and NLRP3 inflammasome components are involved in hypoxia-induced pulmonary hypertension, we utilized mice deficient in ASC and NLRP3. Active caspase-1, IL-18, and IL-1β, which are regulated by inflammasomes, were measured in lung homogenates in wild-type (WT), ASC(-/-), and NLRP3(-/-) mice, and phenotypical changes related to pulmonary hypertension and right ventricular remodeling were characterized after hypoxic exposure. Right ventricular systolic pressure (RVSP) of ASC(-/-) mice was significantly lower than in WT exposed to hypoxia (40.8 ± 1.5 mmHg vs. 55.8 ± 2.4 mmHg, P right ventricular remodeling. RVSP of NLRP3(-/-) mice exposed to hypoxia was not significantly altered compared with WT hypoxia. Whereas hypoxia increased protein levels of caspase-1, IL-18, and IL-1β in WT and NLRP3(-/-) mice, this response was absent in ASC(-/-) mice. Moreover, ASC(-/-) mice displayed reduced muscularization and collagen deposition around arteries. In conclusion, hypoxia-induced elevated right ventricular pressure and remodeling were attenuated in mice lacking the inflammasome adaptor protein ASC, suggesting that inflammasomes play an important role in the pathogenesis of pulmonary hypertension. Copyright © 2015 the American Physiological Society.

  6. Pulmonary Administration of GW0742, a High-Affinity Peroxisome Proliferator-Activated Receptor Agonist, Repairs Collapsed Alveoli in an Elastase-Induced Mouse Model of Emphysema.

    Science.gov (United States)

    Ozawa, Chihiro; Horiguchi, Michiko; Akita, Tomomi; Oiso, Yuki; Abe, Kaori; Motomura, Tomoki; Yamashita, Chikamasa

    2016-01-01

    Pulmonary emphysema is a disease in which lung alveoli are irreversibly damaged, thus compromising lung function. Our previous study revealed that all-trans-retinoic acid (ATRA) induces the differentiation of human lung alveolar epithelial type 2 progenitor cells and repairs the alveoli of emphysema model mice. ATRA also reportedly has the ability to activate peroxisome proliferator-activated receptor (PPAR) β/δ. A selective PPARβ/δ ligand has been reported to induce the differentiation of human keratinocytes during wound repair. Here, we demonstrate that treatment using a high-affinity PPARβ/δ agonist, GW0742, reverses the lung tissue damage induced by elastase in emphysema-model mice and improves respiratory function. Mice treated with elastase, which collapsed their alveoli, were then treated with either 10% dimethyl sulfoxide (DMSO) in saline (control group) or GW0742 (1.0 mg/kg twice a week) by pulmonary administration. Treatment with GW0742 for 2 weeks increased the in vivo expression of surfactant proteins A and D, which are known alveolar type II epithelial cell markers. GW0742 treatment also shortened the average distance between alveolar walls in the lungs of emphysema model mice, compared with a control group treated with 10% DMSO in saline. Treatment with GW0742 for 3 weeks also improved tissue elastance (cm H2O/mL), as well as the ratio of the forced expiratory volume in the first 0.05 s to the forced vital capacity (FEV 0.05/FVC). In each of these experiments, GW0742 treatment reversed the damage caused by elastase. In conclusion, PPARβ/δ agonists are potential therapeutic agents for pulmonary emphysema.

  7. The effect of vitamin D prophylaxis on radiation induced pulmonary damage

    International Nuclear Information System (INIS)

    Yazici, G.; Yildiz, F.; Iskit, A.; Surucu, S.; Firat, P.; Hayran, M.; Ozyigit, G.; Cengiz, M.; Erdemli, E.

    2011-01-01

    Vitamin D has a selective radio and chemosensitizing effect on tumor cells. In vitro and in vivo studies have shown that vitamin D inhibits collagen gel construction, induces type II pneumocyte proliferation and surfactant synthesis in the lungs, and decreases vascular permeability caused by radiation. The aim of this experimental study was to determine if vitamin D has a protective effect against radiation-induced pulmonary damage. Adult Wistar rats were divided into 4 groups. Group 1 was comprised of control animals. Group 2, which was administered 0.25 μg/kg/day of vitamin D3 for 8 weeks, was the vitamin D control group. Rats in groups 3 and 4 were given 20 Gy right hemithorax radiotherapy, and in addition group 4 was given vitamin D3 treatment, which began the day before the radiotherapy and continued for 8 weeks. At the 8 th and the 12 th weeks of the study 4 rats from each group were sacrificed. Right lungs were dissected for light and electron microscopic study. The electron microscopy examinations revealed statistically significant differences between group 3 and 4, and in group 4 there was less interstitial inflammation and collagen deposition, and the alveolar structure and the cells lining the alveolar walls were protected. These results confirm that vitamin D has a protective effect against radiation-induced pulmonary toxicity. These findings should be evaluated with further clinical studies. (author)

  8. Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha recruits bone marrow-derived cells to the murine pulmonary vasculature.

    Directory of Open Access Journals (Sweden)

    Daniel J Angelini

    2010-06-01

    Full Text Available Pulmonary hypertension (PH is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling in vivo.We used a mouse bone marrow transplant model in which lethally irradiated mice were rescued with bone marrow transplanted from green fluorescent protein (GFP(+ transgenic mice to determine the role of HIMF in recruiting BMD cells to the lung vasculature during PH development. Exposure to chronic hypoxia and pulmonary gene transfer of HIMF were used to induce PH. Both models resulted in markedly increased numbers of BMD cells in and around the pulmonary vasculature; in several neomuscularized small (approximately 20 microm capillary-like vessels, an entirely new medial wall was made up of these cells. We found these GFP(+ BMD cells to be positive for stem cell antigen-1 and c-kit, but negative for CD31 and CD34. Several of the GFP(+ cells that localized to the pulmonary vasculature were alpha-smooth muscle actin(+ and localized to the media layer of the vessels. This finding suggests that these cells are of mesenchymal origin and differentiate toward myofibroblast and vascular smooth muscle. Structural location in the media of small vessels suggests a functional role in the lung vasculature. To examine a potential mechanism for HIMF-dependent recruitment of mesenchymal stem cells to the pulmonary vasculature, we performed a cell migration assay using cultured human mesenchymal stem cells (HMSCs. The addition of recombinant HIMF induced migration of HMSCs in a phosphoinosotide-3-kinase-dependent manner.These results demonstrate HIMF-dependent recruitment of BMD

  9. Amelioration of both early and late radiation-induced damage to pig skin by essential fatty acids

    International Nuclear Information System (INIS)

    Hopewell, J.W.; Van den Aardweg, G.J.M.J.; Morris, G.M.

    1994-01-01

    To evaluate the possible role of essential fatty acids, specifically gamma-linolenic and eicosapentaenoic acid, in the amelioration of early and late radiation damage to the skin. Skin sites on the flank of 22-25 kg female large white pigs were irradiated with either single or fractionated doses (20 F/28 days) of β-rays from 22.5 mm diameter 90 Sr/ 90 Y plaques at a dose rate of ∼3 Gy/min. Essential fatty acids were administered orally in the form of two open-quotes activeclose quotes oils, So-1100 and So-5407, which contained gamma-linolenic acid and a mixture of that oil with eicosapentaenoic acid, respectively. Oils (1.5-6.0 ml) were given daily for 4 weeks prior, both 4 weeks prior and 10-16 weeks after, or in the case of one single dose study, just for 10 weeks after irradiation. Control animals received a open-quotes placeboclose quotes oil, So-1129, containing no gamma linolenic acid or eicosapentaenoic acid over similar time scales before and after irradiation. Acute and late skin reactions were assessed visually and the dose-related incidence of a specific reaction used to compare the effects of different treatment schedules. A reduction in the severity of both the early and late radiation reactions in the skin was only observed when open-quotes activeclose quotes oils were given over the time course of the expression of radiation damage. Prior treatment with oils did not modify the radiation reaction. A 3.0 ml daily dose of either So-1100 or So-5407 given prior to, but also after irradiation with single and fractionated doses of β-rays produced the most significant modification to the radiation reactions, effects consistent with dose modification factors between 1.06-1.24 for the acute reactions of bright red erythema and/or moist desquamation, and of 1.14-1.35 for the late reactions of dusky/mauve erythema and dermal necrosis. 38 refs., 5 tabs

  10. A Case of Nonthrombotic Pulmonary Embolism after Facial Injection of Hyaluronic Acid in an Illegal Cosmetic Procedure

    OpenAIRE

    Jang, Jong Geol; Hong, Kyung Soo; Choi, Eun Young

    2014-01-01

    Hyaluronic acid is widely used in medical procedures, particularly in cosmetic procedures administered by physicians or nonmedical personnel. The materials used for cosmetic procedures by physicians as well as illegally by non-medical personnel can cause nonthrombotic pulmonary embolism (NTPE). We report the case of a woman with acute respiratory failure, neurologic symptoms and petechiae after an illegal procedure of hyaluronic acid dermal filler performed by an unlicensed medical practition...

  11. Protective roles of pulmonary rehabilitation mixture in experimental pulmonary fibrosis in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Ji, Y.X.; Jiang, W.L.; Lv, C.J. [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai (China)

    2015-05-08

    Abnormal high mobility group protein B1 (HMGB1) activation is involved in the pathogenesis of pulmonary fibrosis. Pulmonary rehabilitation mixture (PRM), which combines extracts from eight traditional Chinese medicines, has very good lung protection in clinical use. However, it is not known if PRM has anti-fibrotic activity. In this study, we investigated the effects of PRM on transforming growth factor-β1 (TGF-β1)-mediated and bleomycin (BLM)-induced pulmonary fibrosis in vitro and in vivo. The effects of PRM on TGF-β1-mediated epithelial-mesenchymal transition (EMT) in A549 cells, on the proliferation of human lung fibroblasts (HLF-1) in vitro, and on BLM-induced pulmonary fibrosis in vivo were investigated. PRM treatment resulted in a reduction of EMT in A549 cells that was associated with attenuating an increase of vimentin and a decrease of E-cadherin. PRM inhibited the proliferation of HLF-1 at an IC{sub 50} of 0.51 µg/mL. PRM ameliorated BLM-induced pulmonary fibrosis in rats, with reduction of histopathological scores and collagen deposition, and a decrease in α-smooth muscle actin (α-SMA) and HMGB1 expression. An increase in receptor for advanced glycation end-product (RAGE) expression was found in BLM-instilled lungs. PRM significantly decreased EMT and prevented pulmonary fibrosis through decreasing HMGB1 and regulating RAGE in vitro and in vivo. PRM inhibited TGF-β1-induced EMT via decreased HMGB1 and vimentin and increased RAGE and E-cadherin levels. In summary, PRM prevented experimental pulmonary fibrosis by modulating the HMGB1/RAGE pathway.

  12. Protective roles of pulmonary rehabilitation mixture in experimental pulmonary fibrosis in vitro and in vivo

    International Nuclear Information System (INIS)

    Zhang, L.; Ji, Y.X.; Jiang, W.L.; Lv, C.J.

    2015-01-01

    Abnormal high mobility group protein B1 (HMGB1) activation is involved in the pathogenesis of pulmonary fibrosis. Pulmonary rehabilitation mixture (PRM), which combines extracts from eight traditional Chinese medicines, has very good lung protection in clinical use. However, it is not known if PRM has anti-fibrotic activity. In this study, we investigated the effects of PRM on transforming growth factor-β1 (TGF-β1)-mediated and bleomycin (BLM)-induced pulmonary fibrosis in vitro and in vivo. The effects of PRM on TGF-β1-mediated epithelial-mesenchymal transition (EMT) in A549 cells, on the proliferation of human lung fibroblasts (HLF-1) in vitro, and on BLM-induced pulmonary fibrosis in vivo were investigated. PRM treatment resulted in a reduction of EMT in A549 cells that was associated with attenuating an increase of vimentin and a decrease of E-cadherin. PRM inhibited the proliferation of HLF-1 at an IC 50 of 0.51 µg/mL. PRM ameliorated BLM-induced pulmonary fibrosis in rats, with reduction of histopathological scores and collagen deposition, and a decrease in α-smooth muscle actin (α-SMA) and HMGB1 expression. An increase in receptor for advanced glycation end-product (RAGE) expression was found in BLM-instilled lungs. PRM significantly decreased EMT and prevented pulmonary fibrosis through decreasing HMGB1 and regulating RAGE in vitro and in vivo. PRM inhibited TGF-β1-induced EMT via decreased HMGB1 and vimentin and increased RAGE and E-cadherin levels. In summary, PRM prevented experimental pulmonary fibrosis by modulating the HMGB1/RAGE pathway

  13. Drug- and radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Uthgenannt, H.

    1976-01-01

    These two forms of pulmonary fibrosis which according to their type have nothing to do with one another, are presented as they are well suited to clarify the problems of the diagnosis of pulmonary fibrosis which is not a fixed concept for the pathologists. The frequent discrepancy found between the subjective clinical symptoms, clinical findings and X-ray and morphological pictures is indicated. (MG) [de

  14. The role of perfusion lung scanning and diffusion capacity for early diagnosis of micro circulatory disturbances in chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Petrova, D.; Shoshlov, P.; Hadjikostova, H.

    2002-01-01

    The development of chronic obstructive pulmonary disease (COPD) and the frequent inflammatory exacerbations with development of respiratory failure lead to changes in the micro circulatory and an increased risk of lung thrombotic and thromboembolic complication. The aim of the study was to establish the possibility of the perfusion lung scanning and diffusion capacity for early diagnosis of pulmonary micro circulatory disturbances in COPD with mild and moderate respiratory failure. 59 COPD patients were investigated. The data presented significant segmental disorders. Only in 5 (8.47%) of them the perfusion lung scintigrams were normal. In 23 of the patients, single-breath diffusing capacity (DICO) and its two components: membranous component (Dm) and capillary blood component (Vc) were determined. DICO was lower especially Vc the mean sign of micro circulatory disorders. A relationship between the degree of hypoxaemia and the changes found in the perfusion scintigraphy was found. Changes in the pulmonary lung scanning and in the diffusion capacity in COPD with mild respiratory failure seem to be an early diagnostic test. The early anticoagulant and desaggregant prevention may decrease the risk of thrombotic complications in the development of the disease. (authors)

  15. Acute chemical pneumonitis caused by nitric acid inhalation: case report

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Hyung Shim; Lee, In Jae; Ko, Eun Young; Lee, Jae Young; Kim, Hyun Beom; Hwang, Dae Hyun; Lee, Kwan Seop; Lee, Yul; Bae, Sang Hoon [Hallym University Sacred Heart Hospital, Anyang (Korea, Republic of)

    2003-06-01

    Chemical pneumonitis induced by nitric acid inhalation is a rare clinical condition. The previously reported radiologic findings of this disease include acute permeability pulmonary edema, delayed bronchiolitis obliterans, and bronchiectasis. In very few published rare radiologic reports has this disease manifested as acute alveolar injury; we report a case of acute chemical pneumonitis induced by nitric acid inhalation which at radiography manifested as bilateral perihilar consolidation and ground-glass attenuation, suggesting acute alveolar injury.

  16. Familial Pulmonary Capillary Hemangiomatosis Early in Life

    Directory of Open Access Journals (Sweden)

    Johannes Wirbelauer

    2011-01-01

    Full Text Available Background. Pulmonary capillary hemangiomatosis (PCH is a rare disease, especially in infancy. Four infants have been reported up to the age of 12 months. So far, no familial patients are observed at this age. Patients. We report three siblings, two female newborns and a foetus of 15-week gestation of unrelated, healthy parents suffering from histologically proven PCH. The first girl presented with increased O2 requirements shortly after birth and patent ductus arteriosus (PDA. She subsequently developed progressive respiratory failure and pulmonary hypertension and died at the age of five months. The second girl presented with clinical signs of bronchial obstruction at the age of three months. The work-up showed a PDA—which was surgically closed—pulmonary hypertension, and bronchial wall instability with stenosis of the left main bronchus. Transient oxygen therapy was required with viral infections. The girl is now six years old and clinically stable without additional O2 requirements. Failure to thrive during infancy and a somewhat delayed development may be the consequence of the disease itself but also could be attributed to repeated episodes of respiratory failure and a long-term systemic steroid therapy. The third pregnancy ended as spontaneous abortion. The foetus showed histological signs of PCH. Conclusion. Despite the differences in clinical course, the trias of PCH, PDA, and pulmonary hypertension in the two life born girls suggests a genetic background.

  17. Tranexamic acid-induced fixed drug eruption

    Directory of Open Access Journals (Sweden)

    Natsuko Matsumura

    2015-01-01

    Full Text Available A 33-year-old male showed multiple pigmented patches on his trunk and extremities after he took tranexamic acid for common cold. He stated that similar eruptions appeared when he was treated with tranexamic acid for influenza 10 months before. Patch test showed positive results at 48 h and 72 h by 1% and 10% tranexamic acid at the lesional skin only. To our knowledge, nine cases of fixed drug eruption induced by tranexamic acid have been reported in Japan. Tranexamic acid is a safe drug and frequently used because of its anti-fibrinolytic and anti-inflammatory effects, but caution of inducing fixed drug eruption should be necessary.

  18. The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Williamson, James D; Sadofsky, Laura R; Hart, Simon P

    2015-03-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown etiology, for which there is no curative pharmacological therapy. Bleomycin, an anti-neoplastic agent that causes lung fibrosis in human patients has been used extensively in rodent models to mimic IPF. In this review, we compare the pathogenesis and histological features of human IPF and bleomycin-induced pulmonary fibrosis (BPF) induced in rodents by intratracheal delivery. We discuss the current understanding of IPF and BPF disease development, from the contribution of alveolar epithelial cells and inflammation to the role of fibroblasts and cytokines, and draw conclusions about what we have learned from the intratracheal bleomycin model of lung fibrosis.

  19. Protective effects of lipoic acid against oxidative stress induced by lead acetate and gamma-irradiation in the kidney and lung in albino rats

    International Nuclear Information System (INIS)

    Rezk, R.G.; Abdel-Rahman, N.A.

    2013-01-01

    Lipoic acid is widely used as antioxidant that protects tissues against a range of oxidative stress. The present study was designed to determine the protective effect of lipoic acid against oxidative organ damage induced by lead intoxication and/or gamma-irradiation. Rats were treated daily intrapritonealy (i. p.) with lipoic acid( 200 mg/kg/b.w.) for 15 consecutive days before lead acetate injection(30 mg/kg/b.w) i.p. for 5 days and/ or whole body. gamma-irradiation (3 Gy). Animals were sacrificed on the 3rd day post the last treatment. Histological examination of kidney and lung tissues through light microscope showed that lead acetate injection and/or exposure to gamma radiation has provoked severe architectural damage in both tissues as necrotic lesions, atrophoid glomerulei and degenerated proximal and distal convoluted tubules, severe bronchiole fibrosis, decreased ciliated bronchioles and dilated and widened pulmonary artery. Histological damage was associated with significant biochemical. changes as increase in lead, copper, iron, zinc and calcium levels in both kidney and lung tissues. Kidney and lung of rats treated with lipoic acid before lead intoxication and/or gamma-irradiation showed significant regenerated glomerulei structure, well-defined structure of proximal and distal convoluted tubules, regenerated ciliated bronchiole structure and improved pulmonary artery. Tissue regeneration was associated with significant decrease in Pb, Cu, Fe, Zn, and Ca levels in kidney and lung and prevented the accumulation of metals in these organs. It could be concluded that lipoic acid administration before lead and/or whole body gamma-irradiation might be capable to attenuate lead and/or gamma radiation induced organ injury and organ metals disruption

  20. Vaccine-mediated immune responses to experimental pulmonary Cryptococcus gattii infection in mice.

    Directory of Open Access Journals (Sweden)

    Ashok K Chaturvedi

    Full Text Available Cryptococcus gattii is a fungal pathogen that can cause life-threatening respiratory and disseminated infections in immune-competent and immune-suppressed individuals. Currently, there are no standardized vaccines against cryptococcosis in humans, underlying an urgent need for effective therapies and/or vaccines. In this study, we evaluated the efficacy of intranasal immunization with C. gattii cell wall associated (CW and/or cytoplasmic (CP protein preparations to induce protection against experimental pulmonary C. gattii infection in mice. BALB/c mice immunized with C. gattii CW and/or CP protein preparations exhibited a significant reduction in pulmonary fungal burden and prolonged survival following pulmonary challenge with C. gattii. Protection was associated with significantly increased pro-inflammatory and Th1-type cytokine recall responses, in vitro and increased C. gattii-specific antibody production in immunized mice challenged with C. gattii. A number of immunodominant proteins were identified following immunoblot analysis of C. gattii CW and CP protein preparations using sera from immunized mice. Immunization with a combined CW and CP protein preparation resulted in an early increase in pulmonary T cell infiltrates following challenge with C. gattii. Overall, our studies show that C. gattii CW and CP protein preparations contain antigens that may be included in a subunit vaccine to induce prolonged protection against pulmonary C. gattii infection.

  1. Early versus late pulmonary valve replacement in patients with transannular patch-repaired tetralogy of Fallot.

    Science.gov (United States)

    Dobbels, Bieke; Herregods, Marie-Christine; Troost, Els; Van De Bruaene, Alexander; Rega, Filip; Budts, Werner; De Meester, Pieter

    2017-09-01

    Although the effects of pulmonary regurgitation after tetralogy of Fallot repair are detrimental, timing of pulmonary valve replacement (PVR) is unclear. Our goal was to evaluate the midterm efficacy and safety of early PVR. Patients with tetralogy of Fallot who underwent repair from 1962 to 2015 were included from the local database. Statistical analyses compared patients who underwent early PVR (age ≤16 years), late PVR and no PVR. The timing of the intervention was compared for efficacy-all-cause mortality and the combined end-point of all-cause mortality, ventricular tachycardia and defibrillator implantation-and for safety-the combined end-point of 1-year postoperative mortality after PVR, endocarditis and reintervention. Echocardiographic and electrocardiographic data at the last follow-up examination were compared across the 3 groups. Two hundred seventy-three patients (age 21 ± 5 years; 52% female) were included. The mean follow-up was 24 (95% confidence interval 22.7-26.2) years; the observed median was 21 years (interquartile range 11-31). No significant difference in survival was found between the early PVR (n = 106; 39%), the late PVR (n = 47; 17%) and the no PVR groups (n = 120; 44%) (P = 0.990). No significant difference in the combined efficacy end-point was noted between patients who underwent early PVR compared with patients who underwent late PVR (P = 0.247). Worse event-free survival for the 3-point safety end-point was observed after early PVR (P < 0.001). Right ventricular morphology (P < 0.001) and function (P < 0.001) were better preserved in the patient group that underwent PVR before the age of 16 years. As expected, PVR-related morbidity was higher in patients who underwent early PVR but the midterm outcome was similar. Nevertheless, better preservation of right ventricular morphology and function in the early PVR group might result in better long-term survival. © The Author 2017. Published by Oxford

  2. Valproic Acid-induced Agranulocytosis

    Directory of Open Access Journals (Sweden)

    Hui-Chuan Hsu

    2009-06-01

    Full Text Available Valproic acid is considered to be the most well-tolerated antiepileptic drug. However, few cases of neutropenia or leukopenia caused by valproic acid have been reported. We present a patient who took valproic acid to treat a complication of brain surgery and in whom severe agranulocytosis occurred after 2.5 months. Valproic acid was stopped immediately, and granulocyte colony-stimulating factor was administered for 2 days. The patient's white blood cell count returned to normal within 2 weeks. The result of bone marrow aspiration was compatible with drug-induced agranulocytosis. This case illustrates that patients who take valproic acid may need regular checking of complete blood cell count.

  3. IL-23 Is Essential for the Development of Elastase-Induced Pulmonary Inflammation and Emphysema.

    Science.gov (United States)

    Fujii, Utako; Miyahara, Nobuaki; Taniguchi, Akihiko; Waseda, Koichi; Morichika, Daisuke; Kurimoto, Etsuko; Koga, Hikari; Kataoka, Mikio; Gelfand, Erwin W; Cua, Daniel J; Yoshimura, Akihiko; Tanimoto, Mitsune; Kanehiro, Arihiko

    2016-11-01

    We recently reported that IL-17A plays a critical role in the development of porcine pancreatic elastase (PPE)-induced emphysema. The proliferation of T-helper type 17 (Th17) cells was induced by IL-23. To determine the contribution of IL-23 to the development of pulmonary emphysema, a mouse model of PPE-induced emphysema was used in which responses of IL-23p19-deficient (IL-23 -/- ) and wild-type (WT) mice were compared. Intratracheal instillation of PPE induced emphysematous changes in the lungs and was associated with increased levels of IL-23 in lung homogenates. Compared with WT mice, IL-23 -/- mice developed significantly lower static compliance values and markedly reduced emphysematous changes on histological analyses after PPE instillation. These changes were associated with lower levels of IL-17A and fewer Th17 cells in the lung. The neutrophilia seen in bronchoalveolar lavage fluid of WT mice was attenuated in IL-23 -/- mice, and the reduction was associated with decreased levels of keratinocyte-derived cytokine and macrophage inflammatory protein-2 in bronchoalveolar lavage fluid. Treatment with anti-IL-23p40 monoclonal antibody significantly attenuated PPE-induced emphysematous changes in the lungs of WT mice. These data identify the important contributions of IL-23 to the development of elastase-induced pulmonary inflammation and emphysema, mediated through an IL-23/IL-17 pathway. Targeting IL-23 in emphysema is a potential therapeutic strategy for delaying disease progression.

  4. Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Jennifer E [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Raymond, Angela M [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Winn, Louise M [Department of Pharmacology and Toxicology and School of Environmental Studies, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada)

    2006-03-01

    In utero exposure to valproic acid (VPA) during pregnancy is associated with an increased risk of neural tube defects (NTDs). Although the mechanism by which VPA mediates these effects is unknown, VPA-initiated changes in embryonic protein levels have been implicated. The objectives of this study were to investigate the effect of in utero VPA exposure on embryonic protein levels of p53, NF-{kappa}B, Pim-1, c-Myb, Bax, and Bcl-2 in the CD-1 mouse. We also evaluated the protective effects of folic acid and pantothenic acid on VPA-induced NTDs and VPA-induced embryonic protein changes in this model. Pregnant CD-1 mice were administered a teratogenic dose of VPA prior to neural tube closure and embryonic protein levels were analyzed. In our study, VPA (400 mg/kg)-induced NTDs (24%) and VPA-exposed embryos with an NTD showed a 2-fold increase in p53, and 4-fold decreases in NF-{kappa}B, Pim-1, and c-Myb protein levels compared to their phenotypically normal littermates (P < 0.05). Additionally, VPA increased the ratio of embryonic Bax/Bcl-2 protein levels (P < 0.05). Pretreatment of pregnant dams with either folic acid or pantothenic acid prior to VPA significantly protected against VPA-induced NTDs (P < 0.05). Folic acid also reduced VPA-induced alterations in p53, NF-{kappa}B, Pim-1, c-Myb, and Bax/Bcl-2 protein levels, while pantothenic acid prevented VPA-induced alterations in NF-{kappa}B, Pim-1, and c-Myb. We hypothesize that folic acid and pantothenic acid protect CD-1 embryos from VPA-induced NTDs by independent, but not mutually exclusive mechanisms, both of which may be mediated by the prevention of VPA-induced alterations in proteins involved in neurulation.

  5. Acid-Base Disorders in Patients with Chronic Obstructive Pulmonary Disease: A Pathophysiological Review

    Directory of Open Access Journals (Sweden)

    Cosimo Marcello Bruno

    2012-01-01

    Full Text Available The authors describe the pathophysiological mechanisms leading to development of acidosis in patients with chronic obstructive pulmonary disease and its deleterious effects on outcome and mortality rate. Renal compensatory adjustments consequent to acidosis are also described in detail with emphasis on differences between acute and chronic respiratory acidosis. Mixed acid-base disturbances due to comorbidity and side effects of some drugs in these patients are also examined, and practical considerations for a correct diagnosis are provided.

  6. Endothelium-dependent relaxation induced by cathepsin G in porcine pulmonary arteries

    Science.gov (United States)

    Glusa, Erika; Adam, Christine

    2001-01-01

    Serine proteinases elicit profound cellular effects in various tissues mediated by activation of proteinase-activated receptors (PAR). In the present study, we investigated the vascular effects of cathepsin G, a serine proteinase that is present in the azurophil granules of leukocytes and is known to activate several cells that express PARs. In prostaglandin F2α (3 μM)-precontracted rings from porcine pulmonary arteries with intact endothelium, cathepsin G caused concentration-dependent relaxant responses (pEC50=9.64±0.12). The endothelium-dependent relaxant effect of cathepsin G could also be demonstrated in porcine coronary arteries (pEC50=9.23±0.07). In pulmonary arteries the cathepsin G-induced relaxation was inhibited after blockade of nitric oxide synthesis by L-NAME (200 μM) and was absent in endothelium-denuded vessels. Bradykinin- and cathepsin G-induced relaxant effects were associated with a 5.7 fold and 2.4 fold increase in the concentration of cyclic GMP, respectively. Compared with thrombin and trypsin, which also produced an endothelium-dependent relaxation in pulmonary arteries, cathepsin G was 2.5 and four times more potent, respectively. Cathepsin G caused only small homologous desensitization. In cathepsin G-challenged vessels, thrombin was still able to elicit a relaxant effect. The effects of cathepsin G were blocked by soybean trypsin inhibitor (IC50=0.043 μg ml−1), suggesting that proteolytic activity is essential for induction of relaxation. Recombinant acetyl-eglin C proved to be a potent inhibitor (IC50=0.14 μg ml−1) of the cathepsin G effect, whereas neither indomethacin (3 μM) nor the thrombin inhibitor hirudin (5 ATU ml−1) elicited any inhibitory activity. Due to their polyanionic structure defibrotide (IC50=0.11 μg ml−1), heparin (IC50=0.48 μg ml−1) and suramin (IC50=1.85 μg ml−1) diminished significantly the relaxation in response to the basic protein cathepsin G. In conclusion, like

  7. Interleukin 13– and interleukin 17A–induced pulmonary hypertension phenotype due to inhalation of antigen and fine particles from air pollution

    Science.gov (United States)

    Park, Sung-Hyun; Chen, Wen-Chi; Esmaeil, Nafiseh; Lucas, Benjamin; Marsh, Leigh M.; Reibman, Joan

    2014-01-01

    Abstract Pulmonary hypertension has a marked detrimental effect on quality of life and life expectancy. In a mouse model of antigen-induced pulmonary arterial remodeling, we have recently shown that coexposure to urban ambient particulate matter (PM) significantly increased the thickening of the pulmonary arteries and also resulted in significantly increased right ventricular systolic pressures. Here we interrogate the mechanism and show that combined neutralization of interleukin 13 (IL-13) and IL-17A significantly ameliorated the increase in right ventricular systolic pressure, the circumferential muscularization of pulmonary arteries, and the molecular change in the right ventricle. Surprisingly, our data revealed a protective role of IL-17A for the antigen- and PM-induced severe thickening of pulmonary arteries. This protection was due to the inhibition of the effects of IL-13, which drove this response, and the expression of metalloelastase and resistin-like molecule α. However, the latter was redundant for the arterial thickening response. Anti-IL-13 exacerbated airway neutrophilia, which was due to a resulting excess effect of IL-17A, confirming concurrent cross inhibition of IL-13- and IL-17A-dependent responses in the lungs of animals exposed to antigen and PM. Our experiments also identified IL-13/IL-17A-independent molecular reprogramming in the lungs induced by exposure to antigen and PM, which indicates a risk for arterial remodeling and protection from arterial constriction. Our study points to IL-13- and IL-17A-coinduced inflammation as a new template for biomarkers and therapeutic targeting for the management of immune response–induced pulmonary hypertension. PMID:25610601

  8. TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema.

    Science.gov (United States)

    An, Chang Hyeok; Wang, Xiao Mei; Lam, Hilaire C; Ifedigbo, Emeka; Washko, George R; Ryter, Stefan W; Choi, Augustine M K

    2012-11-01

    Toll-like receptors (TLRs) exert important nonimmune functions in lung homeostasis. TLR4 deficiency promotes pulmonary emphysema. We examined the role of TLR4 in regulating cigarette smoke (CS)-induced autophagy, apoptosis, and emphysema. Lung tissue was obtained from chronic obstructive lung disease (COPD) patients. C3H/HeJ (Tlr4-mutated) mice and C57BL/10ScNJ (Tlr4-deficient) mice and their respective control strains were exposed to chronic CS or air. Human or mouse epithelial cells (wild-type, Tlr4-knockdown, and Tlr4-deficient) were exposed to CS-extract (CSE). Samples were analyzed for TLR4 expression, and for autophagic or apoptotic proteins by Western blot analysis or confocal imaging. Chronic obstructive lung disease lung tissues and human pulmonary epithelial cells exposed to CSE displayed increased TLR4 expression, and increased autophagic [microtubule-associated protein-1 light-chain-3B (LC3B)] and apoptotic (cleaved caspase-3) markers. Beas-2B cells transfected with TLR4 siRNA displayed increased expression of LC3B relative to control cells, basally and after exposure to CSE. The basal and CSE-inducible expression of LC3B and cleaved caspase-3 were elevated in pulmonary alveolar type II cells from Tlr4-deficient mice. Wild-type mice subjected to chronic CS-exposure displayed airspace enlargement;, however, the Tlr4-mutated or Tlr4-deficient mice exhibited a marked increase in airspace relative to wild-type mice after CS-exposure. The Tlr4-mutated or Tlr4-deficient mice showed higher levels of LC3B under basal conditions and after CS exposure. The expression of cleaved caspase-3 was markedly increased in Tlr4-deficient mice exposed to CS. We describe a protective regulatory function of TLR4 against emphysematous changes of the lung in response to CS.

  9. Chronic hypoxia promotes pulmonary artery endothelial cell proliferation through H2O2-induced 5-lipoxygenase.

    Directory of Open Access Journals (Sweden)

    Kristi M Porter

    Full Text Available Pulmonary Hypertension (PH is a progressive disorder characterized by endothelial dysfunction and proliferation. Hypoxia induces PH by increasing vascular remodeling. A potential mediator in hypoxia-induced PH development is arachidonate 5-Lipoxygenase (ALOX5. While ALOX5 metabolites have been shown to promote pulmonary vasoconstriction and endothelial cell proliferation, the contribution of ALOX5 to hypoxia-induced proliferation remains unknown. We hypothesize that hypoxia exposure stimulates HPAEC proliferation by increasing ALOX5 expression and activity. To test this, human pulmonary artery endothelial cells (HPAEC were cultured under normoxic (21% O2 or hypoxic (1% O2 conditions for 24-, 48-, or 72 hours. In a subset of cells, the ALOX5 inhibitor, zileuton, or the 5-lipoxygenase activating protein inhibitor, MK-886, was administered during hypoxia exposure. ALOX5 expression was measured by qRT-PCR and western blot and HPAEC proliferation was assessed. Our results demonstrate that 24 and 48 hours of hypoxia exposure have no effect on HPAEC proliferation or ALOX5 expression. Seventy two hours of hypoxia significantly increases HPAEC ALOX5 expression, hydrogen peroxide (H2O2 release, and HPAEC proliferation. We also demonstrate that targeted ALOX5 gene silencing or inhibition of the ALOX5 pathway by pharmacological blockade attenuates hypoxia-induced HPAEC proliferation. Furthermore, our findings indicate that hypoxia-induced increases in cell proliferation and ALOX5 expression are dependent on H2O2 production, as administration of the antioxidant PEG-catalase blocks these effects and addition of H2O2 to HPAEC promotes proliferation. Overall, these studies indicate that hypoxia exposure induces HPAEC proliferation by activating the ALOX5 pathway via the generation of H2O2.

  10. Novel form of miR-29b suppresses bleomycin-induced pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Yuko Yamada

    Full Text Available MicroRNA 29b (miR-29b replacement therapy is effective for suppressing fibrosis in a mouse model. However, to develop clinical applications for miRNA mimics, the side effects of nucleic acid drugs have to be addressed. In this study, we focused on miRNA mimics in order to develop therapies for idiopathic pulmonary fibrosis. We developed a single-stranded RNA, termed "miR-29b Psh-match," that has a unique structure to avoid problems associated with the therapeutic uses of miRNAs. A comparison of miR-29b Psh-match and double-stranded one, termed "miR-29b mimic" indicated that the single-stranded form was significantly effective towards fibrosis according to both in vivo and in vitro experiments. This novel form of miR-29b may become the foundation for developing an effective therapeutic drug for pulmonary fibrosis.

  11. The α-MSH analogue AP214 attenuates rise in pulmonary pressure and fall in ejection fraction in lipopolysaccharide-induced systemic inflammatory response syndrome in pigs.

    Science.gov (United States)

    Kristensen, Jens; Jonassen, Thomas E N; Rehling, Michael; Tønnesen, Else; Sloth, Erik; Nielsen, Søren; Frøkiaer, Jørgen

    2011-01-01

    The effect of an α-melanocyte stimulating hormone (α-MSH) analogue (AP214) on experimentally endotoxin-induced systemic inflammatory response syndrome (SIRS) was studied, because α-MSH in rodent models has shown promise in attenuating inflammatory response markers and associated organ damage in SIRS. SIRS is associated with considerable morbidity and mortality. Consequently, new treatment modalities are still warranted to address the different aspects of the pathophysiological process. SIRS was induced by lipopolysaccharide (LPS) (Escherichia coli endotoxin) infusion in anaesthetized Danish Landrace pigs (20-25 kg). The pigs received an α-MSH analogue (AP214) or saline as a bolus at the initiation of the LPS infusion. The hemodynamic response was registered as well as echocardiographic indices of left ventricular function. The cardiovascular response was recorded together with echocardiographic indices of left ventricular function in control and in intervention animals. AP214 reduced the early peak in pulmonary pressure and pulmonary vascular resistance by approximately 33%. Furthermore, AP214 prevented the decline in left ventricular fractional shortening as observed in the control group. Mean change and standard deviation in fractional shortening (ΔFS) in control group: - 7·3 (4·7), AP214 (low dose): 0·9 (8·2) and AP214 (high dose) 4·1 (6·0), P < 0·05 for both intervention groups versus control. In the porcine model, the peak increase in pulmonary pressure was attenuated, and the LPS-induced decline in left ventricular function was prevented. © 2010 The Authors. Clinical Physiology and Functional Imaging © 2010 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  12. Bile acids induce glucagon-like peptide 2 secretion with limited effects on intestinal adaptation in early weaned pigs

    DEFF Research Database (Denmark)

    Ipharraguerre, Ignacio R; Tedó, Gemma; Menoyo, David

    2013-01-01

    Early weaning is a stressful event characterized by a transient period of intestinal atrophy that may be mediated by reduced secretion of glucagon-like peptide (GLP) 2. We tested whether enterally fed bile acids or plant sterols could increase nutrient-dependent GLP-2 secretion and improve.......05) but did not affect plasma GLP-1 and feed intake. The intestinal expression of glucagon-like peptide 2 receptor, sodium-dependent bile acid transporter, farnesoid X receptor, and guanosine protein-coupled bile acid receptor genes were not affected by CDC treatment. The intragastric administration of CDC...

  13. [The effect of calcitonin gene-related peptide on collagen accumulation in pulmonary arteries of rats with hypoxic pulmonary arterial hypertension].

    Science.gov (United States)

    Li, Xian-Wei; Du, Jie; Li, Yuan-Jian

    2013-03-01

    To observe the effect of calcitonin gene-related peptide (CGRP) on pulmonary vascular collagen accumulation in hypoxia rats in order to study the effect of CGRP on hypoxic pulmonary vascular structural remodeling and its possible mechanism. Rats were acclimated for 1 week, and then were randomly divided into three groups: normoxia group, hypoxia group, and hypoxia plus capsaicin group. Pulmonary arterial hypertension was induced by hypoxia in rats. Hypoxia plus capsaicin group, rats were given capsaicin (50 mg/(kg x d), s.c) 4 days before hypoxia to deplete endogenous CGRP. Hypoxia (3% O2) stimulated proliferation of pulmonary arterial smooth muscle cells (PASMCs) and proliferation was measured by BrdU marking. The expression levels of CGRP, phosphorylated ERK1/2 (p-ERK1/ 2), collagen I and collagen III were detected by real-time PCR or Western blot. Right ventricle systolic pressure (RVSP) and mean pulmonary arterial pressure (mPAP) of pulmonary arterial hypertension (PAH) rats induced by hypoxia were higher than those of normoxia rats. By HE and Masson staining, it was demonstrated that hypoxia also significantly induced hypertrophy of pulmonary arteries and increased level of collagen accumulation. Hypoxia dramatically decreased the CGRP level and increased the expression of p-ERK1/2, collagen I, collagen III in pulmonary arteries. All these effects of hypoxia were further aggravated by pre-treatment of rats with capsaicin. CGRP concentration-dependently inhibited hypoxia-induced proliferation of PASMCs, markedly decreased the expression of p-ERK1/2, collagen I and collagen III. All these effects of CGRP were abolished in the presence of CGRP8-37. These results suggest that CGRP might inhibit hypoxia-induced PAH and pulmonary vascular remodeling, through inhibiting phosphorylation of ERK1/2 and alleviating the collagen accumulation of pulmonary arteries.

  14. Danshensu prevents hypoxic pulmonary hypertension in rats by inhibiting the proliferation of pulmonary artery smooth muscle cells via TGF-β-smad3-associated pathway.

    Science.gov (United States)

    Zhang, Ning; Dong, Mingqing; Luo, Ying; Zhao, Feng; Li, Yongjun

    2018-02-05

    Hypoxic pulmonary hypertension is characterized by the remodeling of pulmonary artery. Previously we showed that tanshinone IIA, one lipid-soluble component from the Chinese herb Danshen, ameliorated hypoxic pulmonary hypertension by inhibiting pulmonary artery remodeling. Here we explored the effects of danshensu, one water-soluble component of Danshen, on hypoxic pulmonary hypertension and its mechanism. Rats were exposed to hypobaric hypoxia for 4 weeks to develop hypoxic pulmonary hypertension along with administration of danshensu. Hemodynamics and pulmonary arterial remodeling index were measured. The effects of danshensu on the proliferation of primary pulmonary artery smooth muscle cells and transforming growth factor-β-smad3 pathway were assessed in vitro. Danshensu significantly decreased the right ventricle systolic pressure, the right ventricle hypertrophy and pulmonary vascular remodeling index in hypoxic pulmonary hypertension rats. Danshensu also reduced the increased expression of transforming growth factor-β and phosphorylation of smad3 in pulmonary arteries in hypoxic pulmonary hypertension rats. In vitro, danshensu inhibited the hypoxia- or transforming growth factor-β-induced proliferation of primary pulmonary artery smooth muscle cells. Moreover, danshensu decreased the hypoxia-induced expression and secretion of transforming growth factor in primary pulmonary adventitial fibroblasts and NR8383 cell line, inhibited the hypoxia or transforming growth factor-β-induced phosphorylation of smad3 in rat primary pulmonary artery smooth muscle cells. These results demonstrate that danshensu ameliorates hypoxic pulmonary hypertension in rats by inhibiting the hypoxia-induced proliferation of pulmonary artery smooth muscle cells, and the inhibition effects is associated with transforming growth factor-β-smad3 pathway. Therefore danshensu may be a potential treatment for hypoxic pulmonary hypertension. Copyright © 2017 Elsevier B.V. All rights

  15. Diet-Induced Alterations in Gut Microflora Contribute to Lethal Pulmonary Damage in TLR2/TLR4-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Yewei Ji

    2014-07-01

    Full Text Available Chronic intake of Western diet has driven an epidemic of obesity and metabolic syndrome, but how it induces mortality remains unclear. Here, we show that chronic intake of a high-fat diet (HFD, not a low-fat diet, leads to severe pulmonary damage and mortality in mice deficient in Toll-like receptors 2 and 4 (DKO. Diet-induced pulmonary lesions are blocked by antibiotic treatment and are transmissible to wild-type mice upon either cohousing or fecal transplantation, pointing to the existence of bacterial pathogens. Indeed, diet and innate deficiency exert significant impact on gut microbiota composition. Thus, chronic intake of HFD promotes severe pulmonary damage and mortality in DKO mice in part via gut dysbiosis, a finding that may be important for immunodeficient patients, particularly those on chemotherapy or radiotherapy, where gut-microbiota-caused conditions are often life threatening.

  16. Pulmonary venous thrombosis secondary to radiofrequency ablation of the pulmonary veins.

    Science.gov (United States)

    López-Reyes, Raquel; García-Ortega, Alberto; Torrents, Ana; Feced, Laura; Calvillo, Pilar; Libreros-Niño, Eugenia Alejandra; Escrivá-Peiró, Juan; Nauffal, Dolores

    2018-01-01

    Pulmonary Vein Thrombosis (PVT) is a rare and underdiagnosed entity produced by local mechanical nature mechanisms, vascular torsion or direct injury to the vein. PVT has been described in clinical cases or small multicenter series mainly in relation to pulmonary vein stenosis, metastatic carcinoma, fibrosing mediastinitis, as an early surgical complication of lung transplantation lobectomy and radiofrequency ablation performed in patients with atrial fibrillation, although in some cases the cause is not known. We report the case of a 57 years old male with history of atrial fibrillation treated by radiofrequency ablation who was admitted in our center because of a two-week history of consistent pleuritic pain in the left hemithorax and low-grade hemoptysis and a lung consolidation treated as a pneumonia with antibiotic but not responding to medical therapy. In view of the poor evolution of the patient, computed tomography angiography was performed with findings of PVT and secondary venous infarction and anticoagulation therapy was optimized. At the end, pulmonary resection was performed due to hemorrhagic recurrence. PVT remains a rare complication of radiofrequency ablation and other procedures involving pulmonary veins. Clinical suspicion and early diagnosis is crucial because is a potentially life-threatening entity.

  17. Retinoic acid-induced alveolar cellular growth does not improve function after right pneumonectomy.

    Science.gov (United States)

    Dane, D Merrill; Yan, Xiao; Tamhane, Rahul M; Johnson, Robert L; Estrera, Aaron S; Hogg, Deborah C; Hogg, Richard T; Hsia, Connie C W

    2004-03-01

    To determine whether all-trans retinoic acid (RA) treatment enhances lung function during compensatory lung growth in fully mature animals, adult male dogs (n = 4) received 2 mg x kg(-1) x day(-1) po RA 4 days/wk beginning the day after right pneumonectomy (R-PNX, 55-58% resection). Litter-matched male R-PNX controls (n = 4) received placebo. After 3 mo, transpulmonary pressure (TPP)-lung volume relationship, diffusing capacities for carbon monoxide and nitric oxide, cardiac output, and septal volume (V(tiss-RB)) were measured under anesthesia by a rebreathing technique at two lung volumes. Lung air and tissue volumes (V(air-CT) and V(tiss-CT)) were also measured from high-resolution computerized tomographic (CT) scans at a constant TPP. In RA-treated dogs compared with controls, TPP-lung volume relationships were similar. Diffusing capacities for carbon monoxide and nitric oxide were significantly impaired at a lower lung volume but similar at a high lung volume. Whereas V(tiss-RB) was significantly lower at both lung volumes in RA-treated animals, V(air-CT) and V(tiss-CT) were not different between groups; results suggest uneven distribution of ventilation consistent with distortion of alveolar geometry and/or altered small airway function induced by RA. We conclude that RA does not improve resting pulmonary function during the early months after R-PNX despite histological evidence of its action in enhancing alveolar cellular growth in the remaining lung.

  18. Exposure to neonatal cigarette smoke causes durable lung changes but does not potentiate cigarette smoke–induced chronic obstructive pulmonary disease in adult mice

    Science.gov (United States)

    McGrath-Morrow, Sharon; Malhotra, Deepti; Lauer, Thomas; Collaco, J. Michael; Mitzner, Wayne; Neptune, Enid; Wise, Robert; Biswal, Shyam

    2016-01-01

    The impact of early childhood cigarette smoke (CS) exposure on CS-induced chronic obstructive pulmonary disease (COPD) is unknown. This study was performed to evaluate the individual and combined effects of neonatal and adult CS exposure on lung structure, function, and gene expression in adult mice. To model a childhood CS exposure, neonatal C57/B6 mice were exposed to 14 days of CS (Neo CS). At 10 weeks of age, Neo CS and control mice were exposed to 4 months of CS. Pulmonary function tests, bronchoalveolar lavage, and lung morphometry were measured and gene expression profiling was performed on lung tissue. Mean chord lengths and lung volumes were increased in neonatal and/or adult CS-exposed mice. Differences in immune, cornified envelope protein, muscle, and erythrocyte genes were found in CS-exposed lung. Neonatal CS exposure caused durable structural and functional changes in the adult lung but did not potentiate CS-induced COPD changes. Cornified envelope protein gene expression was decreased in all CS-exposed mice, whereas myosin and erythrocyte gene expression was increased in mice exposed to both neonatal and adult CS, suggesting an adaptive response. Additional studies may be warranted to determine the utility of these genes as biomarkers of respiratory outcomes. PMID:21649527

  19. Early assisted discharge with generic community nursing for chronic obstructive pulmonary disease exacerbations: Results of a randomised controlled trial

    NARCIS (Netherlands)

    C.M.A. Utens (Cecile); L.M.A. Goossens (Lucas); F.W.J.M. Smeenk (Frank); M.P.M.H. Rutten-van Mölken (Maureen); M. van Vliet (Monique); M.W. Braken (Maria); L. van Eijsden (Loes); O.C.P. Schayck (Onno)

    2012-01-01

    textabstractObjectives: To determine the effectiveness of early assisted discharge for chronic obstructive pulmonary disease (COPD) exacerbations, with home care provided by generic community nurses, compared with usual hospital care. Design: Prospective, randomised controlled and multicentre trial

  20. Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses.

    Science.gov (United States)

    de Torres Zabala, Marta; Bennett, Mark H; Truman, William H; Grant, Murray R

    2009-08-01

    The importance of phytohormone balance is increasingly recognized as central to the outcome of plant-pathogen interactions. Recently it has been demonstrated that abscisic acid signalling pathways are utilized by the bacterial phytopathogen Pseudomonas syringae to promote pathogenesis. In this study, we examined the dynamics, inter-relationship and impact of three key acidic phytohormones, salicylic acid, abscisic acid and jasmonic acid, and the bacterial virulence factor, coronatine, during progression of P. syringae infection of Arabidopsis thaliana. We show that levels of SA and ABA, but not JA, appear to play important early roles in determining the outcome of the infection process. SA is required in order to mount a full innate immune responses, while bacterial effectors act rapidly to activate ABA biosynthesis. ABA suppresses inducible innate immune responses by down-regulating SA biosynthesis and SA-mediated defences. Mutant analyses indicated that endogenous ABA levels represent an important reservoir that is necessary for effector suppression of plant-inducible innate defence responses and SA synthesis prior to subsequent pathogen-induced increases in ABA. Enhanced susceptibility due to loss of SA-mediated basal resistance is epistatically dominant over acquired resistance due to ABA deficiency, although ABA also contributes to symptom development. We conclude that pathogen-modulated ABA signalling rapidly antagonizes SA-mediated defences. We predict that hormonal perturbations, either induced or as a result of environmental stress, have a marked impact on pathological outcomes, and we provide a mechanistic basis for understanding priming events in plant defence.

  1. Non-invasive monitoring of pulmonary artery pressure from timing information by EIT: experimental evaluation during induced hypoxia.

    Science.gov (United States)

    Proença, Martin; Braun, Fabian; Solà, Josep; Adler, Andy; Lemay, Mathieu; Thiran, Jean-Philippe; Rimoldi, Stefano F

    2016-06-01

    Monitoring of pulmonary artery pressure (PAP) in pulmonary hypertensive patients is currently limited to invasive solutions. We investigate a novel non-invasive approach for continuous monitoring of PAP, based on electrical impedance tomography (EIT), a safe, low-cost and non-invasive imaging technology. EIT recordings were performed in three healthy subjects undergoing hypoxia-induced PAP variations. The pulmonary pulse arrival time (PAT), a timing parameter physiologically linked to the PAP, was automatically calculated from the EIT signals. Values were compared to systolic PAP values from Doppler echocardiography, and yielded strong correlation scores ([Formula: see text]) for all three subjects. Results suggest the feasibility of non-invasive, unsupervised monitoring of PAP.

  2. Effects of positive expiratory pressure on pulmonary clearance of aerosolized technetium-{sup 99m}-labeled diethylenetriaminepentaacetic acid in healthy individuals

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Isabella Martins de, E-mail: albuisa@gmail.com [Universidade Federal de Santa Maria (UFSM), Santa Maria, RS (Brazil). Departamento de Fisioterapia e Reabilitacao; Cardoso, Dannuey Machado; Paiva, Dulciane Nunes [Universidade de Santa Cruz do Sul, RS (Brazil); Masiero, Paulo Ricardo; Menna-Barreto, Sergio Saldanha [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil); Resqueti, Vanessa Regiane; Fregonezi, Guilherme Augusto de Freitas [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2016-11-15

    Objective: To evaluate the effects of positive expiratory pressure (PEP) on pulmonary epithelial membrane permeability in healthy subjects. Methods: We evaluated a cohort of 30 healthy subjects (15 males and 15 females) with a mean age of 28.3 ± 5.4 years, a mean FEV{sub 1}/FVC ratio of 0.89 ± 0.14, and a mean FEV{sub 1} of 98.5 ± 13.1% of predicted. Subjects underwent technetium-99m labeled diethylenetriaminepentaacetic acid ({sup 99m}TcDTPA) radio aerosol inhalation lung scintigraphy in two stages: during spontaneous breathing; and while breathing through a PEP mask at one of three PEP levels—10 cmH{sub 2}O (n = 10), 15 cmH{sub 2}O (n = 10), and 20 cmH{sub 2}O (n = 10). The {sup 99m}Tc-DTPA was nebulized for 3 min, and its clearance was recorded by scintigraphy over a 30-min period during spontaneous breathing and over a 30-min period during breathing through a PEP mask. Results: The pulmonary clearance of {sup 99m}Tc-DTPA was significantly shorter when PEP was applied—at 10 cmH{sub 2}O (p = 0.044), 15 cmH{sub 2}O (p = 0.044), and 20 cmH{sub 2}O (p = 0.004) - in comparison with that observed during spontaneous breathing. Conclusions: Our findings indicate that PEP, at the levels tested, is able to induce an increase in pulmonary epithelial membrane permeability and lung volume in healthy subjects. (author)

  3. 4-Hydroxyphenylacetic Acid Attenuated Inflammation and Edema via Suppressing HIF-1α in Seawater Aspiration-Induced Lung Injury in Rats

    Science.gov (United States)

    Liu, Zhongyang; Xi, Ronggang; Zhang, Zhiran; Li, Wangping; Liu, Yan; Jin, Faguang; Wang, Xiaobo

    2014-01-01

    4-Hydroxyphenylacetic acid (4-HPA) is an active component of Chinese herb Aster tataricus which had been widely used in China for the treatment of pulmonary diseases. The aim of this study is to investigate the effect of 4-HPA on seawater aspiration-induced lung injury. Pulmonary inflammation and edema were assessed by enzyme-linked immunosorbent assay (ELISA), bronchoalveolar lavage fluid (BALF) white cell count, Evans blue dye analysis, wet to dry weight ratios, and histology study. Hypoxia-inducible factor-1α (HIF-1α) siRNA and permeability assay were used to study the effect of 4-HPA on the production of inflammatory cytokines and monolayer permeability in vitro. The results showed that 4-HPA reduced seawater instillation-induced mortality in rats. In lung tissues, 4-HPA attenuated hypoxia, inflammation, vascular leak, and edema, and decreased HIF-1α protein level. In primary rat alveolar epithelial cells (AEC), 4-HPA decreased hypertonicity- and hypoxia-induced HIF-1α protein levels through inhibiting the activations of protein translational regulators and via promoting HIF-1α protein degradation. In addition, 4-HPA lowered inflammatory cytokines levels through suppressing hypertonicity- and hypoxia-induced HIF-1α in NR8383 macrophages. Moreover, 4-HPA decreased monolayer permeability through suppressing hypertonicity and hypoxia-induced HIF-1α, which was mediated by inhibiting vascular endothelial growth factor (VEGF) in rat lung microvascular endothelial cell line (RLMVEC). In conclusion, 4-HPA attenuated inflammation and edema through suppressing hypertonic and hypoxic induction of HIF-1α in seawater aspiration-induced lung injury in rats. PMID:25050781

  4. Obesity-Induced Endoplasmic Reticulum Stress Causes Lung Endothelial Dysfunction and Promotes Acute Lung Injury.

    Science.gov (United States)

    Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross

    2017-08-01

    Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese

  5. [Clinical characteristics and renal uric acid excretion in early-onset gout patients].

    Science.gov (United States)

    Li, Q H; Liang, J J; Chen, L X; Mo, Y Q; Wei, X N; Zheng, D H; Dai, L

    2018-03-01

    Objective: To investigate clinical characteristics and renal uric acid excretion in early-onset gout patients. Methods: Consecutive inpatients with primary gout were recruited between 2013 and 2017. The patients with gout onset younger than 30 were defined as early-onset group while the others were enrolled as control group. Clinical characteristics and uric acid (UA) indicators were compared between two groups. Results: Among 202 recruited patients, the early-onset group included 36 patients (17.8%). Compared with control group, the early-onset group presented more patients with obesity [13 patients (36.1%) vs. 22 patients (13.3%), Pgout early onset. Conclusion: The gout patients with early-onset younger than 30 present high serum and glomerular load of uric acid which might be due to obesity and relative under-excretion of renal uric acid.

  6. Complement C3 deficiency attenuates chronic hypoxia-induced pulmonary hypertension in mice.

    Directory of Open Access Journals (Sweden)

    Eileen M Bauer

    Full Text Available Evidence suggests a role of both innate and adaptive immunity in the development of pulmonary arterial hypertension. The complement system is a key sentry of the innate immune system and bridges innate and adaptive immunity. To date there are no studies addressing a role for the complement system in pulmonary arterial hypertension.Immunofluorescent staining revealed significant C3d deposition in lung sections from IPAH patients and C57Bl6/J wild-type mice exposed to three weeks of chronic hypoxia to induce pulmonary hypertension. Right ventricular systolic pressure and right ventricular hypertrophy were increased in hypoxic vs. normoxic wild-type mice, which were attenuated in C3-/- hypoxic mice. Likewise, pulmonary vascular remodeling was attenuated in the C3-/- mice compared to wild-type mice as determined by the number of muscularized peripheral arterioles and morphometric analysis of vessel wall thickness. The loss of C3 attenuated the increase in interleukin-6 and intracellular adhesion molecule-1 expression in response to chronic hypoxia, but not endothelin-1 levels. In wild-type mice, but not C3-/- mice, chronic hypoxia led to platelet activation as assessed by bleeding time, and flow cytometry of platelets to determine cell surface P-selectin expression. In addition, tissue factor expression and fibrin deposition were increased in the lungs of WT mice in response to chronic hypoxia. These pro-thrombotic effects of hypoxia were abrogated in C3-/- mice.Herein, we provide compelling genetic evidence that the complement system plays a pathophysiologic role in the development of PAH in mice, promoting pulmonary vascular remodeling and a pro-thrombotic phenotype. In addition we demonstrate C3d deposition in IPAH patients suggesting that complement activation plays a role in the development of PAH in humans.

  7. Extra-pulmonary tuberculosis in Uyo, South - South, Nigeria | Abudu ...

    African Journals Online (AJOL)

    Background: Tuberculosis is a disease of the poor, affecting the pulmonary and extra-pulmonary organs. Objectives: To assess the frequency and morphologic pattern of extra-pulmonary tuberculosis as well as determining the occurrence of other acid fast organisms from extra-pulmonary tissue biopsies using common ...

  8. Membrane remodeling, an early event in benzo[α]pyrene-induced apoptosis

    International Nuclear Information System (INIS)

    Tekpli, Xavier; Rissel, Mary; Huc, Laurence; Catheline, Daniel; Sergent, Odile; Rioux, Vincent; Legrand, Philippe; Holme, Jorn A.; Dimanche-Boitrel, Marie-Therese; Lagadic-Gossmann, Dominique

    2010-01-01

    Benzo[α]pyrene (B[α]P) often serves as a model for mutagenic and carcinogenic polycyclic aromatic hydrocarbons (PAHs). Our previous work suggested a role of membrane fluidity in B[α]P-induced apoptotic process. In this study, we report that B[α]P modifies the composition of cholesterol-rich microdomains (lipid rafts) in rat liver F258 epithelial cells. The cellular distribution of the ganglioside-GM1 was markedly changed following B[α]P exposure. B[α]P also modified fatty acid composition and decreased the cholesterol content of cholesterol-rich microdomains. B[α]P-induced depletion of cholesterol in lipid rafts was linked to a reduced expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase). Aryl hydrocarbon receptor (AhR) and B[α]P-related H 2 O 2 formation were involved in the reduced expression of HMG-CoA reductase and in the remodeling of membrane microdomains. The B[α]P-induced membrane remodeling resulted in an intracellular alkalinization observed during the early phase of apoptosis. In conclusion, B[α]P altered the composition of plasma membrane microstructures through AhR and H 2 O 2 dependent-regulation of lipid biosynthesis. In F258 cells, the B[α]P-induced membrane remodeling was identified as an early apoptotic event leading to an intracellular alkalinization.

  9. MicroRNA-365 in macrophages regulates Mycobacterium tuberculosis-induced active pulmonary tuberculosis via interleukin-6.

    Science.gov (United States)

    Song, Qingzhang; Li, Hui; Shao, Hua; Li, Chunling; Lu, Xiao

    2015-01-01

    The present study is to investigate the relationship between microRNA (miR)-365 expression and the levels of interleukin (IL)-6 mRNA and protein in patients with active tuberculosis. From June 2011 to June 2014, 48 patients with active pulmonary tuberculosis induced by Mycobacterium tuberculosis were included in the study. In addition, 23 healthy subjects were enrolled as control. Macrophages were collected by pulmonary alveolus lavage. In addition, serum and mononuclear cells were isolated from peripheral blood. The levels of miR-365 and IL-6 in macrophages, mononuclear cells and serum were determined using quantitative real-time polymerase chain reaction. The protein expression of IL-6 in macrophages and mononuclear cells was measured using Western blotting, while that in serum was detected by enzyme-linked immunoabsorbent assay. Expression of IL-6 mRNA and protein was significantly enhanced in patients with active pulmonary tuberculosis. Increase of IL-6 protein concentration in serum was probably due to the release of IL-6 protein from mononuclear cells in the blood. In addition, miR-365 levels were significantly lowered in patients with active pulmonary tuberculosis. Up-regulated IL-6 expression in macrophages, mononuclear cells and serum in patients with active pulmonary tuberculosis is related to the down-regulation of miR-365, suggesting that miR-365 may regulate the occurrence and immune responses of active pulmonary tuberculosis via IL-6.

  10. Effects of bone marrow-derived cells on monocrotaline- and hypoxia-induced pulmonary hypertension in mice

    Directory of Open Access Journals (Sweden)

    Vainchenker William

    2007-01-01

    Full Text Available Abstract Background Bone marrow -derived cells (BMDCs can either limit or contribute to the process of pulmonary vascular remodeling. Whether the difference in their effects depends on the mechanism of pulmonary hypertension (PH remains unknown. Objectives We investigated the effect of BMDCs on PH induced in mice by either monocrotaline or exposure to chronic hypoxia. Methods Intravenous administration of the active monocrotaline metabolite (monocrotaline pyrrole, MCTp to C57BL/6 mice induced PH within 15 days, due to remodeling of small distal vessels. Three days after the MCTp injection, the mice were injected with BMDCs harvested from femurs and tibias of donor mice treated with 5-fluorouracil (3.5 mg IP/animal to deplete mature cells and to allow proliferation of progenitor cells. Results BMDCs significantly attenuated PH as assessed by reductions in right ventricular systolic pressure (20 ± 1 mmHg vs. 27 ± 1 mmHg, P ≤ 0.01, right ventricle weight/left ventricle+septum weight ratio (0.29 ± 0.02 vs. 0.36 ± 0.01, P ≤ 0.03, and percentage of muscularized vessels (26.4% vs. 33.5%, P ≤ 0.05, compared to control animals treated with irradiated BMDCs. Tracking cells from constitutive GFP-expressing male donor mice with anti-GFP antibodies or chromosome Y level measurement by quantitative real-time PCR showed BMDCs in the lung. In contrast, chronically hypoxic mice subjected to the same procedure failed to show improvement in PH. Conclusion These results show that BMDCs limit pulmonary vascular remodeling induced by vascular injury but not by hypoxia.

  11. Resistance to ursodeoxycholic acid-induced growth arrest can also result in resistance to deoxycholic acid-induced apoptosis and increased tumorgenicity

    International Nuclear Information System (INIS)

    Powell, Ashley A; Akare, Sandeep; Qi, Wenqing; Herzer, Pascal; Jean-Louis, Samira; Feldman, Rebecca A; Martinez, Jesse D

    2006-01-01

    There is a large body of evidence which suggests that bile acids increase the risk of colon cancer and act as tumor promoters, however, the mechanism(s) of bile acids mediated tumorigenesis is not clear. Previously we showed that deoxycholic acid (DCA), a tumorogenic bile acid, and ursodeoxycholic acid (UDCA), a putative chemopreventive agent, exhibited distinct biological effects, yet appeared to act on some of the same signaling molecules. The present study was carried out to determine whether there is overlap in signaling pathways activated by tumorogenic bile acid DCA and chemopreventive bile acid UDCA. To determine whether there was an overlap in activation of signaling pathways by DCA and UDCA, we mutagenized HCT116 cells and then isolated cell lines resistant to UDCA induced growth arrest. These lines were then tested for their response to DCA induced apoptosis. We found that a majority of the cell lines resistant to UDCA-induced growth arrest were also resistant to DCA-induced apoptosis, implying an overlap in DCA and UDCA mediated signaling. Moreover, the cell lines which were the most resistant to DCA-induced apoptosis also exhibited a greater capacity for anchorage independent growth. We conclude that UDCA and DCA have overlapping signaling activities and that disregulation of these pathways can lead to a more advanced neoplastic phenotype

  12. Time course of reversed cardiac remodeling after pulmonary endarterectomy in patients with chronic pulmonary thromboembolism

    Energy Technology Data Exchange (ETDEWEB)

    Iino, Misako; Dymarkowski, Steven; Chaothawee, Lertlak; Bogaert, Jan [UZ Leuven, Department of Radiology, Leuven (Belgium); Delcroix, Marion [UZ Leuven, Department of Pneumology, Leuven (Belgium)

    2008-04-15

    To evaluate the time course of reversed remodeling after pulmonary endarterectomy (PEA) in patients with chronic thromboembolic pulmonary hypertension(CTPEH), we studied 22 patients (age: 60 {+-} 13 years) with MRI immediately before, 1 month, 3 months, and 6 months after PEA. MRI included assessment of biventricular function, aortic and pulmonary artery(PA) flow, and right ventricular (RV) overload using the ratio of RV-to-biventricular diameter. Except in one patient, who died 2 months post-surgery, clinical improvement occurred early after PEA (NYHA class: 3.3 {+-} 0.6 to 1.5 {+-} 0.8, p < 0.0001) with a decrease of systolic pulmonary artery pressures (79 {+-} 14 to 44 {+-} 14 mmHg, p < 0.0001). At 1 month post PEA, RV end-diastolic volumes decreased (198 {+-} 72 to 137 {+-} 59 ml, p < 0.0001), and the RV ejection fraction (EF) improved (31 {+-} 9 to 47 {+-} 10%, p < 0.0001). No further significant improvement in pulmonary pressures or RV function occurred at 3 months or 6 months. Although no significant change was found in LV volumes or function, aortic flow increased early after surgery. PEA had only a beneficial effect on right PA flow. RV overload decreased early after PEA (ratio RV-to-biventricular diameter: before: 0.67 {+-} 0.04, after: 0.54 {+-} 0.06, p < 0.0001), showing a good correlation with the improvement in RVEF (r = 0.7, P < 0.0001). In conclusion, reversed cardiac remodeling occurs early after PEA, to slow down after 1 month. At 6 months, cardiac remodeling is incomplete as witnessed by low-normal RV function and residually elevated PA pressures. (orig.)

  13. Decreased proteasomal function accelerates cigarette smoke-induced pulmonary emphysema in mice.

    Science.gov (United States)

    Yamada, Yosuke; Tomaru, Utano; Ishizu, Akihiro; Ito, Tomoki; Kiuchi, Takayuki; Ono, Ayako; Miyajima, Syota; Nagai, Katsura; Higashi, Tsunehito; Matsuno, Yoshihiro; Dosaka-Akita, Hirotoshi; Nishimura, Masaharu; Miwa, Soichi; Kasahara, Masanori

    2015-06-01

    Chronic obstructive pulmonary disease (COPD) is a disease common in elderly people, characterized by progressive destruction of lung parenchyma and chronic inflammation of the airways. The pathogenesis of COPD remains unclear, but recent studies suggest that oxidative stress-induced apoptosis in alveolar cells contributes to emphysematous lung destruction. The proteasome is a multicatalytic enzyme complex that plays a critical role in proteostasis by rapidly destroying misfolded and modified proteins generated by oxidative and other stresses. Proteasome activity decreases with aging in many organs including lungs, and an age-related decline in proteasomal function has been implicated in various age-related pathologies. However, the role of the proteasome system in the pathogenesis of COPD has not been investigated. Recently, we have established a transgenic (Tg) mouse model with decreased proteasomal chymotrypsin-like activity, showing age-related phenotypes. Using this model, we demonstrate here that decreased proteasomal function accelerates cigarette smoke (CS)-induced pulmonary emphysema. CS-exposed Tg mice showed remarkable airspace enlargement and increased foci of inflammation compared with wild-type controls. Importantly, apoptotic cells were found in the alveolar walls of the affected lungs. Impaired proteasomal activity also enhanced apoptosis in cigarette smoke extract (CSE)-exposed fibroblastic cells derived from mice and humans in vitro. Notably, aggresome formation and prominent nuclear translocation of apoptosis-inducing factor were observed in CSE-exposed fibroblastic cells isolated from Tg mice. Collective evidence suggests that CS exposure and impaired proteasomal activity coordinately enhance apoptotic cell death in the alveolar walls that may be involved in the development and progression of emphysema in susceptible individuals such as the elderly.

  14. Effect of essential fatty acids on glucose-induced cytotoxicity to retinal vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Shen Junhui

    2012-07-01

    Full Text Available Abstract Background Diabetic retinopathy is a major complication of dysregulated hyperglycemia. Retinal vascular endothelial cell dysfunction is an early event in the pathogenesis of diabetic retinopathy. Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by docosahexaenoic acid (DHA, 22:6 ω-3 and eicosapentaenoic acid (EPA, 20:5 ω-3. The influence of dietary omega-3 PUFA on brain zinc metabolism has been previously implied. Zn2+ is essential for the activity of Δ6 desaturase as a co-factor that, in turn, converts essential fatty acids to their respective long chain metabolites. Whether essential fatty acids (EFAs α-linolenic acid and linoleic acid have similar beneficial effect remains poorly understood. Methods RF/6A cells were treated with different concentrations of high glucose, α-linolenic acid and linoleic acid and Zn2+. The alterations in mitochondrial succinate dehydrogenase enzyme activity, cell membrane fluidity, reactive oxygen species generation, SOD enzyme and vascular endothelial growth factor (VEGF secretion were evaluated. Results Studies showed that hyperglycemia-induced excess proliferation of retinal vascular endothelial cells can be abrogated by both linoleic acid (LA and α-linolenic acid (ALA, while the saturated fatty acid, palmitic acid was ineffective. A dose–response study with ALA showed that the activity of the mitochondrial succinate dehydrogenase enzyme was suppressed at all concentrations of glucose tested to a significant degree. High glucose enhanced fluorescence polarization and microviscocity reverted to normal by treatment with Zn2+ and ALA. ALA was more potent that Zn2+. Increased level of high glucose caused slightly increased ROS generation that correlated with corresponding decrease in SOD activity. ALA suppressed ROS generation to a significant degree in a dose dependent fashion and raised SOD activity significantly. ALA suppressed

  15. Ozone-Induced Vascular Contractility and Pulmonary Injury Are Differentially Impacted by Diets Enriched With Coconut Oil, Fish Oil, and Olive Oil.

    Science.gov (United States)

    Snow, Samantha J; Cheng, Wan-Yun; Henriquez, Andres; Hodge, Myles; Bass, Virgina; Nelson, Gail M; Carswell, Gleta; Richards, Judy E; Schladweiler, Mette C; Ledbetter, Allen D; Chorley, Brian; Gowdy, Kymberly M; Tong, Haiyan; Kodavanti, Urmila P

    2018-05-01

    Fish, olive, and coconut oil dietary supplementation have several cardioprotective benefits, but it is not established if they protect against air pollution-induced adverse effects. We hypothesized that these dietary supplements would attenuate ozone-induced systemic and pulmonary effects. Male Wistar Kyoto rats were fed either a normal diet, or a diet supplemented with fish, olive, or coconut oil for 8 weeks. Animals were then exposed to air or ozone (0.8 ppm), 4 h/day for 2 days. Ozone exposure increased phenylephrine-induced aortic vasocontraction, which was completely abolished in rats fed the fish oil diet. Despite this cardioprotective effect, the fish oil diet increased baseline levels of bronchoalveolar lavage fluid (BALF) markers of lung injury and inflammation. Ozone-induced pulmonary injury/inflammation were comparable in rats on normal, coconut oil, and olive oil diets with altered expression of markers in animals fed the fish oil diet. Fish oil, regardless of exposure, led to enlarged, foamy macrophages in the BALF that coincided with decreased pulmonary mRNA expression of cholesterol transporters, cholesterol receptors, and nuclear receptors. Serum microRNA profile was assessed and demonstrated marked depletion of a variety of microRNAs in animals fed the fish oil diet, several of which were of splenic origin. No ozone-specific changes were noted. Collectively, these data indicate that although fish oil offered vascular protection from ozone exposure, it increased pulmonary injury/inflammation and impaired lipid transport mechanisms resulting in foamy macrophage accumulation, demonstrating the need to be cognizant of potential off-target pulmonary effects that might offset the overall benefit of this vasoprotective supplement.

  16. Remodeling of the pulmonary artery induced by metastatic gastric carcinoma: a histopathological analysis of 51 autopsy cases

    International Nuclear Information System (INIS)

    Ishiwatari, Takao; Yamamoto, Yoshiro; Nakayama, Haruo; Shibuya, Kazutoshi; Okubo, Yoichiro; Tochigi, Naobumi; Wakayama, Megumi; Nemoto, Tetsuo; Kobayashi, Junko; Shinozaki, Minoru; Aki, Kyoko; Sasai, Daisuke

    2014-01-01

    Gastric carcinoma remains the second commonest cause of cancer deaths worldwide. Presence of the carcinoma cell in the pulmonary artery is serious condition that might cause remodeling of the pulmonary artery. The present study conducted detailed histopathological analyses to elucidate how gastric carcinoma cells may affect the structure and hemodynamics of pulmonary arteries. Remodeling of the pulmonary artery was assessed based on measurements of arterial diameters and stenosis rates from the autopsies, and their correlation were also validated. We additionally calculated 95 percent confidential intervals (CIs) for the rate of stenosis in groups of pulmonary arteries of different caliber zones (under 100, 100 to 300, and over 300 micrometer). The right ventricular thickness was measured and examined whether it correlated with the rate of pulmonary arterial stenosis. A total of 4612 autopsy cases were recorded at our institute, among which 168 had gastric carcinoma. Finally, 51 cases of the gastric carcinoma were employed for the study which had carcinoma cells in the lumen of the pulmonary artery. The mean right ventricular wall thickness of these cases was 3.14 mm. There were significant positive associations between the rates of pulmonary arterial stenosis and right ventricular thickness from pulmonary arteries of diameter under 100, 100 to 300, and over 300 micrometer. In these zones, 31, 31, and 33 cases had rates of pulmonary arterial stenosis that were below the lower limit of the 95 percent CI values, respectively. On the other hand, among cases with significant pulmonary stenosis, 17 of 18 cases with stenosis in the over 300 micrometer zone involved pulmonary arteries of both in the under 100 and 100 to 300 micrometer zones. One-third of autopsy with advanced gastric carcinoma had carcinoma cells in lumen of pulmonary artery, but implantation and proliferation may be essential to induce intimal thickening that causes an increasing of pulmonary arterial

  17. Does exercise pulmonary hypertension exist?

    Science.gov (United States)

    Lau, Edmund M; Chemla, Denis; Whyte, Kenneth; Kovacs, Gabor; Olschewski, Horst; Herve, Philippe

    2016-09-01

    The exercise definition of pulmonary hypertension using a mean pulmonary artery pressure threshold of greater than 30 mmHg was abandoned following the 4th World Pulmonary Hypertension Symposium in 2008, as this definition was not supported by evidence and healthy individuals frequently exceed this threshold. Meanwhile, the clinical value of exercise pulmonary hemodynamic testing has also been questioned. Recent data support the notion that an abnormal pulmonary hemodynamic response during exercise (or exercise pulmonary hypertension) is associated with symptoms and exercise limitation. Pathophysiologic mechanisms accounting for the development of exercise pulmonary hypertension include increased vascular resistance, excessive elevation in left atrial pressure and/or increased volume of trapped air during exercise, resulting in a steep rise in pulmonary artery pressure relative to cardiac output. Recent evidence suggests that exercise pulmonary hypertension may be defined by a mean pulmonary artery pressure surpassing 30 mmHg together with a simultaneous total pulmonary resistance exceeding 3 WU. Exercise pulmonary hypertension is a clinically relevant entity and an improved definition has been suggested based on new evidence. Exercise pulmonary hemodynamics may help unmask early or latent disease, particularly in populations that are at high risk for the development of pulmonary hypertension.

  18. Early invasive pulmonary aspergillosis with fatal outcome in a patient with acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Gaspar, M.; Poczova, M.; Sladekova, M.; Drgona, L.

    2015-01-01

    Purpose: The main objective of this publication is to highlight the complexity of the issue of care for patients with hemato-oncological disease, with a focus on infectious complication - invasive pulmonary aspergillosis. Case: We present a case report of a 49-year-old patient treated for acute lymphoblastic leukemia. In the early post-transplant period, in spite of combined antimicrobial treatment, an onset of fever and dyspnoea occurred. Because of the clinical condition of our immunosuppressed patient, as well as radiological finding of suspected inflammatory changes in the lung, antibiotic and antifungal therapy was changed. Respiratory symptoms progressed and the state extorted artificial ventilation. Realized bronchoscopy showed structural changes in bronchial mucosa. The results of laboratory analyses of bronchoalveolar lavage testified to fungal infection - pulmonary aspergillosis, with the cultures of Aspergillus flavus. Despite intensive complex treatment, the patient's condition led to multiple organ failure and on the Day D +27 after transplantation physicians stated exitus letalis. Autopsy confirmed invasive pulmonary aspergillosis. Conclusion: Acute leukemia and its treatment is an increased risk of systemic fungal infections in those patients - especially invasive aspergillosis. The fatality rate for invasive aspergillosis in this risk group represents on average 50 %. With this in mind, it is necessary for life-saving to diagnose the infection in time and treat it appropriately. (author)

  19. Early perception of stink bug damage in developing seeds of field-grown soybean induces chemical defences and reduces bug attack.

    Science.gov (United States)

    Giacometti, Romina; Barneto, Jesica; Barriga, Lucia G; Sardoy, Pedro M; Balestrasse, Karina; Andrade, Andrea M; Pagano, Eduardo A; Alemano, Sergio G; Zavala, Jorge A

    2016-08-01

    Southern green stink bugs (Nezara viridula L.) invade field-grown soybean crops, where they feed on developing seeds and inject phytotoxic saliva, which causes yield reduction. Although leaf responses to herbivory are well studied, no information is available about the regulation of defences in seeds. This study demonstrated that mitogen-activated protein kinases MPK3, MPK4 and MPK6 are expressed and activated in developing seeds of field-grown soybean and regulate a defensive response after stink bug damage. Although 10-20 min after stink bug feeding on seeds induced the expression of MPK3, MPK6 and MPK4, only MPK6 was phosphorylated after damage. Herbivory induced an early peak of jasmonic acid (JA) accumulation and ethylene (ET) emission after 3 h in developing seeds, whereas salicylic acid (SA) was also induced early, and at increasing levels up to 72 h after damage. Damaged seeds upregulated defensive genes typically modulated by JA/ET or SA, which in turn reduced the activity of digestive enzymes in the gut of stink bugs. Induced seeds were less preferred by stink bugs. This study shows that stink bug damage induces seed defences, which is perceived early by MPKs that may activate defence metabolic pathways in developing seeds of field-grown soybean. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Baicalin Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension to Improve Hypoxic Cor Pulmonale by Reducing the Activity of the p38 MAPK Signaling Pathway and MMP-9

    Directory of Open Access Journals (Sweden)

    Shuangquan Yan

    2016-01-01

    Full Text Available Baicalin has a protective effect on hypoxia-induced pulmonary hypertension in rats, but the mechanism of this effect remains unclear. Thus, investigating the potential mechanism of this effect was the aim of the present study. Model rats that display hypoxic pulmonary hypertension and cor pulmonale under control conditions were successfully generated. We measured a series of indicators to observe the levels of pulmonary arterial hypertension, pulmonary arteriole remodeling, and right ventricular remodeling. We assessed the activation of p38 mitogen-activated protein kinase (MAPK in the pulmonary arteriole walls and pulmonary tissue homogenates using immunohistochemistry and western blot analyses, respectively. The matrix metalloproteinase- (MMP- 9 protein and mRNA levels in the pulmonary arteriole walls were measured using immunohistochemistry and in situ hybridization. Our results demonstrated that baicalin not only reduced p38 MAPK activation in both the pulmonary arteriole walls and tissue homogenates but also downregulated the protein and mRNA expression levels of MMP-9 in the pulmonary arteriole walls. This downregulation was accompanied by the attenuation of pulmonary hypertension, arteriole remodeling, and right ventricular remodeling. These results suggest that baicalin may attenuate pulmonary hypertension and cor pulmonale, which are induced by chronic hypoxia, by downregulating the p38 MAPK/MMP-9 pathway.

  1. Diagnosis of Swimming Induced Pulmonary Edema—A Review

    Science.gov (United States)

    Grünig, Hannes; Nikolaidis, Pantelis T.; Moon, Richard E.; Knechtle, Beat

    2017-01-01

    Swimming induced pulmonary edema (SIPE) is a complication that can occur during exercise with the possibility of misdiagnosis and can quickly become life threatening; however, medical literature infrequently describes SIPE. Therefore, the aim of this review was to analyse all individual cases diagnosed with SIPE as reported in scientific sources, with an emphasis on the diagnostic pathways and the key facts resulting in its diagnosis. Due to a multifactorial and complicated pathophysiology, the diagnosis could be difficult. Based on the actual literature, we try to point out important findings regarding history, conditions, clinical findings, and diagnostic testing helping to confirm the diagnosis of SIPE. Thirty-eight cases from seventeen articles reporting the diagnosis of SIPE were selected. We found remarkable differences in the individual described diagnostic pathways. A total of 100% of the cases suffered from an acute onset of breathing problems, occasionally accompanied by hemoptysis. A total of 73% showed initial hypoxemia. In most of the cases (89%), an initial chest X-Ray or chest CT was available, of which one-third (71%) showed radiological signs of pulmonary edema. The majority of the cases (82%) experienced a rapid resolution of symptoms within 48 h, the diagnostic hallmark of SIPE. Due to a foreseeable increase in participation in swimming competitions and endurance competitions with a swimming component, diagnosis of SIPE will be important, especially for medical teams caring for these athletes. PMID:28912730

  2. Liposomal Fasudil, a Rho-Kinase Inhibitor, for Prolonged Pulmonary Preferential Vasodilation in Pulmonary Arterial Hypertension

    Science.gov (United States)

    Gupta, Vivek; Gupta, Nilesh; Shaik, Imam H.; Mehvar, Reza; McMurtry, Ivan F.; Oka, Masahiko; Nozik-Grayck, Eva; Komatsu, Masanobu; Ahsan, Fakhrul

    2013-01-01

    Current pharmacological interventions for pulmonary arterial hypertension (PAH) require continuous infusions, multiple inhalations, or oral administration of drugs that act on various pathways involved in the pathogenesis of PAH. However, invasive methods of administration, short duration of action, and lack of pulmonary selectivity result in noncompliance and poor patient outcomes. In this study, we tested the hypothesis that encapsulation of an investigational anti-PAH molecule fasudil (HA-1077), a Rho-kinase inhibitor, into liposomal vesicles results in prolonged vasodilation in distal pulmonary arterioles. Liposomes were prepared by hydration and extrusion method and fasudil was loaded by ammonium sulfate-induced transmembrane electrochemical gradient. Liposomes were then characterized for various physicochemical properties. Optimized formulations were tested for pulmonary absorption and their pharmacological efficacy in a monocrotaline (MCT) induced rat model of PAH. The entrapment efficiency of optimized liposomal fasudil formulations was between 68.1±0.8% and 73.6±2.3%, and the cumulative release at 37°C was 98–99% over a period of 5 days. Compared to intravenous (IV) fasudil, a ~10 fold increase in the terminal plasma half-life was observed when liposomal fasudil was administered as aerosols. The t1/2 of IV fasudil was 0.39±0.12 h. and when given as liposomes via pulmonary route, the t1/2 extended to 4.71±0.72 h. One h after intratracheal instillation of liposomal fasudil, mean pulmonary arterial pressure (MPAP) was reduced by 37.6±5.7% and continued to decrease for about 3 h, suggesting that liposomal formulations produced pulmonary preferential vasodilation in MCT induced PAH rats. Overall, this study established the proof-of-principle that aerosolized liposomal fasudil is a feasible option for a non-invasive, controlled release and pulmonary preferential treatment of PAH. PMID:23353807

  3. Localized-low attenuation of the lung on thin-section CT in experimentally induced pulmonary arterial occlusion with balloon catheter in pigs

    International Nuclear Information System (INIS)

    Lee, Hyun Ju; Goo, Jin Mo; Im, Jung Gi; Kim, Ji Hye

    2008-01-01

    To determine whether a localized low-attenuation (LLA) is induced on a thin-section CT (TSCT) during an acute pulmonary arterial occlusion in pigs. In eight pigs, 14 sites of the descending pulmonary artery were obstructed using balloon catheters. The lung TSCTs were obtained immediately after pulmonary artery obstruction (n=13), 10 min (n=10), 30 min (n=14) and 60 min (n=14) after pulmonary artery obstruction at the end of expiration. The TSCTs were also obtained after balloon-deflation at the end of expiration (n=11) and with the balloon-reinflation at inspiration (n=6). Of the 14 sites of pulmonary artery obstruction, 11 (79%) showed LLA. However, LLA progressively became fainter or disappeared on a follow-up CT in seven sites. When the balloon was deflated, 10 of the 11 sites measured showed no change in lung attenuation. After full inspiration, LLA disappeared in three of the six sites. The corresponding areas of LLA on the CT showed a statistically significant increase compared to the baseline CT immediately after inflation (ρ =0.021) and 30 minutes after inflation (ρ = 0.041), and after balloon deflation (ρ = 0.036). LLA was induced by acute pulmonary artery obstruction. However, LLA, gradually faded over the 60 minutes following obstruction. LLAs were maintained despite the restoration of pulmonary arterial flow, but disappeared as a result of a full inspiration. Thus, LLA might be caused by air trapping

  4. Role of {sup 18}F-FDG PET-CT in monitoring the cyclophosphamide induced pulmonary toxicity in patients with breast cancer - 2 Case Reports

    Energy Technology Data Exchange (ETDEWEB)

    Taywade, Sameer Kamalakar; Kumar, Rakesh; Bhethanabhotla, Sainath; Bal, Chandrasekhar [A.I.I.M.S, New Delhi (India)

    2016-09-15

    Drug induced pulmonary toxicity is not uncommon with the use of various chemotherapeutic agents. Cyclophosphamide is a widely used chemotherapeutic drug in the treatment of breast cancer. Although rare, lung toxicity has been reported with cyclophosphamide use. Detection of bleomycin induced pulmonary toxicity and pattern of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) uptake in lungs on fluorodeoxyglucose positron emission tomography-computed tomography ({sup 18}F-FDG PET-CT) has been elicited in literature in relation to lymphoma. However, limited data is available regarding the role of {sup 18}F-FDG PET-CT in monitoring drug induced pulmonary toxicity in breast cancer. We here present two cases of cyclophosphamide induced drug toxicity. Interim {sup 18}F-FDG PET-CT demonstrated diffusely increased tracer uptake in bilateral lung fields in both these patients. Subsequently there was resolution of lung uptake on {sup 18}F-FDG PET-CT scan post completion of chemotherapy. These patients did not develop significant respiratory symptoms during chemotherapy treatment and in follow up.

  5. Anti-inflammatory effects of potato extract on a rat model of cigarette smoke–induced chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Gui Hua Xu

    2015-10-01

    Full Text Available Objective: This study aimed to evaluate the therapeutic effects of potato extract (PE on cigarette smoke (CS–induced chronic obstructive pulmonary disease (COPD. Methods: PE was first prepared by frozen centrifugation, and its amino acid composition was detected. Toxicity of PE was analyzed by changes in morphology, behavior, routine blood indexes, and biochemical criteria of mice. Then, the COPD rat model was established by CS exposure, and PE, doxofylline, and prednisolone acetate were used to treat these rats. After 45 days of treatment, the morphology and behavior of rats were recorded. In addition, the histopathology of lung tissue was evaluated by chest x-ray and hematoxylin and eosin staining. The expression of interleukine-10 (IL-10, tumor necrosis factor-α (TNF-α, and granulocyte colony-stimulating factor (G-CSF was detected in serum and lung tissue by enzyme-linked immunosorbent assay (ELISA and immunohistochemistry, respectively. Results: Various amino acids were identified in PE, and no toxicity was exhibited in mice. The CS-induced COPD rat model was successfully established, which exhibited significant thickened and disordered lung markings on 90% of the rats. After administering doxofylline and prednisolone acetate, inflammation symptoms were improved. However, side effects such as emaciation, weakness, and loosening of teeth appeared. In the PE group, obviously improved histopathology was observed in lung tissues. Meanwhile, it was revealed that PE could increase the expression of IL-10 and reduce the expression of TNF-α and G-CSF in COPD rats, and doxofylline and prednisolone acetate also elicited similar results. Conclusion: Our study suggests PE might be effective in the treatment of CS-induced COPD by inhibiting inflammation.

  6. Oxidative stress induced pulmonary endothelial cell proliferation is ...

    African Journals Online (AJOL)

    Cellular hyper-proliferation, endothelial dysfunction and oxidative stress are hallmarks of the pathobiology of pulmonary hypertension. Indeed, pulmonary endothelial cells proliferation is susceptible to redox state modulation. Some studies suggest that superoxide stimulates endothelial cell proliferation while others have ...

  7. Anacardic Acids from Cashew Nuts Ameliorate Lung Damage Induced by Exposure to Diesel Exhaust Particles in Mice

    Directory of Open Access Journals (Sweden)

    Ana Laura Nicoletti Carvalho

    2013-01-01

    Full Text Available Anacardic acids from cashew nut shell liquid, a Brazilian natural substance, have antimicrobial and antioxidant activities and modulate immune responses and angiogenesis. As inflammatory lung diseases have been correlated to environmental pollutants exposure and no reports addressing the effects of dietary supplementation with anacardic acids on lung inflammation in vivo have been evidenced, we investigated the effects of supplementation with anacardic acids in a model of diesel exhaust particle- (DEP- induced lung inflammation. BALB/c mice received an intranasal instillation of 50 μg of DEP for 20 days. Ten days prior to DEP instillation, animals were pretreated orally with 50, 150, or 250 mg/kg of anacardic acids or vehicle (100 μL of cashew nut oil for 30 days. The biomarkers of inflammatory and antioxidant responses in the alveolar parenchyma, bronchoalveolar lavage fluid (BALF, and pulmonary vessels were investigated. All doses of anacardic acids ameliorated antioxidant enzyme activities and decreased vascular adhesion molecule in vessels. Animals that received 50 mg/kg of anacardic acids showed decreased levels of neutrophils and tumor necrosis factor in the lungs and BALF, respectively. In summary, we demonstrated that AAs supplementation has a potential protective role on oxidative and inflammatory mechanisms in the lungs.

  8. ER Stress Inhibits Liver Fatty Acid Oxidation while Unmitigated Stress Leads to Anorexia-Induced Lipolysis and Both Liver and Kidney Steatosis

    DEFF Research Database (Denmark)

    DeZwaan-McCabe, Diane; Sheldon, Ryan D; Gorecki, Michelle C

    2017-01-01

    advantage of enhanced hepatic and renal steatosis in mice lacking the ER stress sensor ATF6α. We found that impaired fatty acid oxidation contributed to the early development of steatosis in the liver but not the kidney, while anorexia-induced lipolysis promoted late triglyceride and free fatty acid...

  9. Biaxial Properties of the Left and Right Pulmonary Arteries in a Monocrotaline Rat Animal Model of Pulmonary Arterial Hypertension.

    Science.gov (United States)

    Pursell, Erica R; Vélez-Rendón, Daniela; Valdez-Jasso, Daniela

    2016-11-01

    In a monocrotaline (MCT) induced-pulmonary arterial hypertension (PAH) rat animal model, the dynamic stress-strain relation was investigated in the circumferential and axial directions using a linear elastic response model within the quasi-linear viscoelasticity theory framework. Right and left pulmonary arterial segments (RPA and LPA) were mechanically tested in a tubular biaxial device at the early stage (1 week post-MCT treatment) and at the advanced stage of the disease (4 weeks post-MCT treatment). The vessels were tested circumferentially at the in vivo axial length with matching in vivo measured pressure ranges. Subsequently, the vessels were tested axially at the mean pulmonary arterial pressure by stretching them from in vivo plus 5% of their length. Parameter estimation showed that the LPA and RPA remodel at different rates: axially, both vessels decreased in Young's modulus at the early stage of the disease, and increased at the advanced disease stage. Circumferentially, the Young's modulus increased in advanced PAH, but it was only significant in the RPA. The damping properties also changed in PAH; in the LPA relaxation times decreased continuously as the disease progressed, while in the RPA they initially increased and then decreased. Our modeling efforts were corroborated by the restructuring organization of the fibers imaged under multiphoton microscopy, where the collagen fibers become strongly aligned to the 45 deg angle in the RPA from an uncrimped and randomly organized state. Additionally, collagen content increased almost 10% in the RPA from the placebo to advanced PAH.

  10. Inhalable delivery of AAV-based MRP4/ABCC4 silencing RNA prevents monocrotaline-induced pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    Caroline Claude

    Full Text Available The ATP-binding cassette transporter MRP4 (encoded by ABCC4 regulates membrane cyclic nucleotides concentrations in arterial cells including smooth muscle cells. MRP4/ABCC4 deficient mice display a reduction in smooth muscle cells proliferation and a prevention of pulmonary hypertension in response to hypoxia. We aimed to study gene transfer of a MRP4/ABCC4 silencing RNA via intratracheal delivery of aerosolized adeno-associated virus 1 (AAV1.shMRP4 or AAV1.control in a monocrotaline-induced model of pulmonary hypertension in rats. Gene transfer was performed at the time of monocrotaline administration and the effect on the development of pulmonary vascular remodeling was assessed 35 days later. AAV1.shMRP4 dose-dependently reduced right ventricular systolic pressure and hypertrophy with a significant reduction with the higher doses (i.e., >1011 DRP/animal as compared to AAV1.control. The higher dose of AAV1.shMRP4 was also associated with a significant reduction in distal pulmonary arteries remodeling. AAV1.shMRP4 was finally associated with a reduction in the expression of ANF, a marker of cardiac hypertrophy. Collectively, these results support a therapeutic potential for downregulation of MRP4 for the treatment of pulmonary artery hypertension.

  11. Docosahexaenoic acid and other fatty acids induce a decrease in pHi in Jurkat T-cells

    OpenAIRE

    Aires, Virginie; Hichami, Aziz; Moutairou, Kabirou; Khan, Naim Akhtar

    2003-01-01

    Docosahexaenoic acid (DHA) induced rapid (t1/2=33 s) and dose-dependent decreases in pHi in BCECF-loaded human (Jurkat) T-cells. Addition of 5-(N,N-dimethyl)-amiloride, an inhibitor of Na+/H+ exchanger, prolonged DHA-induced acidification as a function of time, indicating that the exchanger is implicated in pHi recovery.Other fatty acids like oleic acid, arachidonic acid, eicosapentaenoic acid, but not palmitic acid, also induced a fall in pHi in these cells.To assess the role of calcium in t...

  12. Enhanced pulmonary immunization with aerosolized inactivated influenza vaccine containing delta inulin adjuvant.

    Science.gov (United States)

    Murugappan, Senthil; Frijlink, Henderik W; Petrovsky, Nikolai; Hinrichs, Wouter L J

    2015-01-23

    Vaccination is the primary intervention to contain influenza virus spread during seasonal and pandemic outbreaks. Pulmonary vaccination is gaining increasing attention for its ability to induce both local mucosal and systemic immune responses without the need for invasive injections. However, pulmonary administration of whole inactivated influenza virus (WIV) vaccine induces a Th2 dominant systemic immune response while a more balanced Th1/Th2 vaccine response may be preferred and only induces modest nasal immunity. This study evaluated immunity elicited by pulmonary versus intramuscular (i.m.) delivery of WIV, and tested whether the immune response could be improved by co-administration of delta (δ)-inulin, a novel carbohydrate-based particulate adjuvant. After pulmonary administration both unadjuvanted and δ-inulin adjuvanted WIV induced a potent systemic immune response, inducing higher serum anti-influenza IgG titers and nasal IgA titers than i.m. administration. Moreover, the addition of δ-inulin induced a more balanced Th1/Th2 response and induced higher nasal IgA titers versus pulmonary WIV alone. Pulmonary WIV alone or with δ-inulin induced hemagglutination inhibition (HI) titers>40, titers which are considered protective against influenza virus. In conclusion, in this study we have shown that δ-inulin adjuvanted WIV induces a better immune response after pulmonary administration than vaccine alone. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Role of oxidative stress in thuringiensin-induced pulmonary toxicity

    International Nuclear Information System (INIS)

    Tsai, S.-F.; Yang Chi; Liu, B.-L.; Hwang, J.-S.; Ho, S.-P.

    2006-01-01

    To understand the effect of thuringiensin on the lungs tissues, male Sprague-Dawley rats were administrated with thuringiensin by intratracheal instillation at doses 0.8, 1.6 and 3.2 mg/kg of body weight, respectively. The rats were sacrificed 4 h after treatment, and lungs were isolated and examined. Subsequently, an effective dose of 1.6 mg/kg was selected for the time course study (4, 8, 12, and 24 h). Intratracheal instillation of thuringiensin resulted in lung damage, as evidenced by increase in lung weight and decrease in alkaline phosphatase (10-54%), an enzyme localized primarily in pulmonary alveolar type II epithelial cells. Furthermore, the administration of thuringiensin caused increases in lipid peroxidation (21-105%), the indices of lung injury. In addition, the superoxide dismutase (SOD) and glutathione (GSH) activities of lung tissue extracts were measured to evaluate the effect of thuringiensin on antioxidant defense system. The SOD activity and GSH content in lung showed significant decreases in a dose-related manner with 11-21% and 15-37%, respectively. Those were further supported by the release of proinflammatory cytokines, as indicated by increases in IL-1β (229-1017%) and TNF-α (234%) levels. Therefore, the results demonstrated that changes in the pulmonary oxidative-antioxidative status might play an important role in the thuringiensin-induced lung injury

  14. DNaseI Protects against Paraquat-Induced Acute Lung Injury and Pulmonary Fibrosis Mediated by Mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Guo Li

    2015-01-01

    Full Text Available Background. Paraquat (PQ poisoning is a lethal toxicological challenge that served as a disease model of acute lung injury and pulmonary fibrosis, but the mechanism is undetermined and no effective treatment has been discovered. Methods and Findings. We demonstrated that PQ injures mitochondria and leads to mtDNA release. The mtDNA mediated PBMC recruitment and stimulated the alveolar epithelial cell production of TGF-β1 in vitro. The levels of mtDNA in circulation and bronchial alveolar lavage fluid (BALF were elevated in a mouse of PQ-induced lung injury. DNaseI could protect PQ-induced lung injury and significantly improved survival. Acute lung injury markers, such as TNFα, IL-1β, and IL-6, and marker of fibrosis, collagen I, were downregulated in parallel with the elimination of mtDNA by DNaseI. These data indicate a possible mechanism for PQ-induced, mtDNA-mediated lung injury, which may be shared by other causes of lung injury, as suggested by the same protective effect of DNaseI in bleomycin-induced lung injury model. Interestingly, increased mtDNA in the BALF of patients with amyopathic dermatomyositis-interstitial lung disease can be appreciated. Conclusions. DNaseI targeting mtDNA may be a promising approach for the treatment of PQ-induced acute lung injury and pulmonary fibrosis that merits fast tracking through clinical trials.

  15. Pulmonary venous thrombosis secondary to radiofrequency ablation of the pulmonary veins

    Directory of Open Access Journals (Sweden)

    Raquel López-Reyes

    Full Text Available Background: Pulmonary Vein Thrombosis (PVT is a rare and underdiagnosed entity produced by local mechanical nature mechanisms, vascular torsion or direct injury to the vein. PVT has been described in clinical cases or small multicenter series mainly in relation to pulmonary vein stenosis, metastatic carcinoma, fibrosing mediastinitis, as an early surgical complication of lung transplantation lobectomy and radiofrequency ablation performed in patients with atrial fibrillation, although in some cases the cause is not known. Case: We report the case of a 57 years old male with history of atrial fibrillation treated by radiofrequency ablation who was admitted in our center because of a two-week history of consistent pleuritic pain in the left hemithorax and low-grade hemoptysis and a lung consolidation treated as a pneumonia with antibiotic but not responding to medical therapy. In view of the poor evolution of the patient, computed tomography angiography was performed with findings of PVT and secondary venous infarction and anticoagulation therapy was optimized. At the end, pulmonary resection was performed due to hemorrhagic recurrence. Conclusion: PVT remains a rare complication of radiofrequency ablation and other procedures involving pulmonary veins. Clinical suspicion and early diagnosis is crucial because is a potentially life-threatening entity. Keywords: Venous thrombosis, Atrial fibrilation, Radiofrequency ablation, Hemoptysis, Lung consolidation, Lung infarction, Lung resection surgery

  16. Exercise induced pulmonary, hepatic and splenic blood volume changes in diabetic subjects

    International Nuclear Information System (INIS)

    Mubashar, M.

    1993-01-01

    Exercise induced blood volume changes in visceral organs were determined by scintillation gamma camera imaging in 11 normal healthy male volunteers and 15 NIDDM male diabetics without clinical signs of neuropathy. After in-vivo labelling of red cells with Technetium-99m, the data was acquired in the supine position at rest and immediately after graded upright ergometer bicycle exercise. From rest to peak exercise, pulmonary blood volume increased 19% and 75% in normal volunteers of less than and more than 40 years of age respectively. A decrease of 18% and 42% was noted in the hepatic and splenic blood volume respectively, regardless of the age, in the normal subjects. In contrast to normals, the diabetic patients showed in response to peak exercise as compared to age-matched controls. A significant difference in the drop in pulmonary blood volume 82.37% and 90% was observed between diabetics of more than and less than 7 years duration respectively. The liver and spleen of the diabetic subjects revealed a lesser decrease of 87.6% and 71.33% respectively in response to peak stress in comparison to the age matched controls. The reduction in the hepatic and splenic blood volume was equally evident in diabetics of more than or less than 50 years of age and it was statistically nonsignificant. This study demonstrates that the normal pattern of redistribution of blood volume in response to maximum exercise in diabetics is altered such that there is restricted pulmonary perfusion and diminished vasoconstriction of the hepato splenic vascular bed and the changes in the pulmonary circulation are related to the duration of the diabetics rather than the age of the patient. (author)

  17. ChronicOnline: Implementing a mHealth solution for monitoring and early alerting in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Bitsaki, Marina; Koutras, Christos; Koutras, George; Leymann, Frank; Steimle, Frank; Wagner, Sebastian; Wieland, Matthias

    2017-09-01

    Lack of time or economic difficulties prevent chronic obstructive pulmonary disease patients from communicating regularly with their physicians, thus inducing exacerbation of their chronic condition and possible hospitalization. Enhancing Chronic patients' Health Online proposes a new, sustainable and innovative business model that provides at low cost and at significant savings to the national health system, a preventive health service for chronic obstructive pulmonary disease patients, by combining human medical expertise with state-of-the-art online service delivery based on cloud computing, service-oriented architecture, data analytics, and mobile applications. In this article, we implement the frontend applications of the Enhancing Chronic patients' Health Online system and describe their functionality and the interfaces available to the users.

  18. Study of pulmonary dysfunctions in liver cirrhosis

    Directory of Open Access Journals (Sweden)

    Amr M. Helmy

    2014-10-01

    Conclusion: Liver cirrhosis is associated with unique pulmonary complications. The early identification of pulmonary dysfunctions in cirrhotic patients is crucial as it affects the prognosis and guides the future management by speeding up orthotopic liver transplantation (OLT recommendations.

  19. NFATc3 and VIP in Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease.

    Directory of Open Access Journals (Sweden)

    Anthony M Szema

    Full Text Available Idiopathic pulmonary fibrosis (IPF and chronic obstructive pulmonary disease (COPD are both debilitating lung diseases which can lead to hypoxemia and pulmonary hypertension (PH. Nuclear Factor of Activated T-cells (NFAT is a transcription factor implicated in the etiology of vascular remodeling in hypoxic PH. We have previously shown that mice lacking the ability to generate Vasoactive Intestinal Peptide (VIP develop spontaneous PH, pulmonary arterial remodeling and lung inflammation. Inhibition of NFAT attenuated PH in these mice suggesting a connection between NFAT and VIP. To test the hypotheses that: 1 VIP inhibits NFAT isoform c3 (NFATc3 activity in pulmonary vascular smooth muscle cells; 2 lung NFATc3 activation is associated with disease severity in IPF and COPD patients, and 3 VIP and NFATc3 expression correlate in lung tissue from IPF and COPD patients. NFAT activity was determined in isolated pulmonary arteries from NFAT-luciferase reporter mice. The % of nuclei with NFAT nuclear accumulation was determined in primary human pulmonary artery smooth muscle cell (PASMC cultures; in lung airway epithelia and smooth muscle and pulmonary endothelia and smooth muscle from IPF and COPD patients; and in PASMC from mouse lung sections by fluorescence microscopy. Both NFAT and VIP mRNA levels were measured in lungs from IPF and COPD patients. Empirical strategies applied to test hypotheses regarding VIP, NFATc3 expression and activity, and disease type and severity. This study shows a significant negative correlation between NFAT isoform c3 protein expression levels in PASMC, activity of NFATc3 in pulmonary endothelial cells, expression and activity of NFATc3 in bronchial epithelial cells and lung function in IPF patients, supporting the concept that NFATc3 is activated in the early stages of IPF. We further show that there is a significant positive correlation between NFATc3 mRNA expression and VIP RNA expression only in lungs from IPF patients

  20. Sulfur Amino Acids in Diet-induced Fatty Liver: A New Perspective Based on Recent Findings

    Directory of Open Access Journals (Sweden)

    John I. Toohey

    2014-06-01

    Full Text Available The relationship of sulfur amino acids to diet-induced fatty liver was established 80 years ago, with cystine promoting the condition and methionine preventing it. This relationship has renewed importance today because diet-induced fatty liver is relevant to the current epidemics of obesity, non-alcoholic fatty liver disease, metabolic syndrome, and type 2 diabetes. Two recent papers provide the first evidence linking sulfane sulfur to diet-induced fatty liver opening a new perspective on the problem. This review summarizes the early data on sulfur amino acids in fatty liver and correlates that data with current knowledge of sulfur metabolism. Evidence is reviewed showing that the lipotropic effect of methionine may be mediated by sulfane sulfur and that the hepatosteatogenic effect of cystine may be related to the removal of sulfane sulfur by cysteine catabolites. Possible preventive and therapeutic strategies are discussed.

  1. Acute secondhand smoke-induced pulmonary inflammation is diminished in RAGE knockout mice.

    Science.gov (United States)

    Wood, Tyler T; Winden, Duane R; Marlor, Derek R; Wright, Alex J; Jones, Cameron M; Chavarria, Michael; Rogers, Geraldine D; Reynolds, Paul R

    2014-11-15

    The receptor for advanced glycation end-products (RAGE) has increasingly been demonstrated to be an important modulator of inflammation in cases of pulmonary disease. Published reports involving tobacco smoke exposure have demonstrated increased expression of RAGE, its participation in proinflammatory signaling, and its role in irreversible pulmonary remodeling. The current research evaluated the in vivo effects of short-term secondhand smoke (SHS) exposure in RAGE knockout and control mice compared with identical animals exposed to room air only. Quantitative PCR, immunoblotting, and immunohistochemistry revealed elevated RAGE expression in controls after 4 wk of SHS exposure and an anticipated absence of RAGE expression in RAGE knockout mice regardless of smoke exposure. Ras activation, NF-κB activity, and cytokine elaboration were assessed to characterize the molecular basis of SHS-induced inflammation in the mouse lung. Furthermore, bronchoalveolar lavage fluid was procured from RAGE knockout and control animals for the assessment of inflammatory cells and molecules. As a general theme, inflammation coincident with leukocyte recruitment was induced by SHS exposure and significantly influenced by the availability of RAGE. These data reveal captivating information suggesting a role for RAGE signaling in lungs exposed to SHS. However, ongoing research is still warranted to fully explain roles for RAGE and other receptors in cells coping with involuntary smoke exposure for prolonged periods of time. Copyright © 2014 the American Physiological Society.

  2. Suppression of radiation-induced in vitro carcinogenesis by ascorbic acid

    International Nuclear Information System (INIS)

    Tauchi, Hiroshi; Sawada, Shozo

    1993-01-01

    The effects of ascorbic acid on radiation-induced in vitro carcinogenesis have been reported using neoplastic transformation system of C3H 10T1/2 cells. In these reports, no suppressive effect on X-ray-induced transformation was observed with 6 weeks' administration of ascorbic acid (daily addition for 5 days per week) by Kennedy (1984), whereas apparent suppression was observed with daily addition for 7 days by Yasukawa et al (1989). We have tested the effects of ascorbic acid on 60 Co gamma-ray or 252 Cf fission neutron-induced transformation in Balb/c 3T3 cells. The transformation induced by both types of radiations was markedly suppressed when ascorbic acid was daily added to the medium during first 8 days of the post-irradiation period. If ascorbic acid was added for a total of 8 days but with a day's interruption in the middle, the suppression of transformation was decreased. These results suggest that continuous presence of ascorbic acid for a certain number of days is needed to suppress radiation-induced transformation. Since ascorbic acid also suppressed the promotion of radiation-induced transformation by TPA when both chemicals were added together into the medium, ascorbic acid might act on the promotion stage of transformation. Therefore, the effect of ascorbic acid on the distribution of protein kinase C activity was also investigated, and possible mechanisms of suppression of radiation-induced transformation by ascorbic acid will be discussed. (author)

  3. Inhaled nitric oxide pretreatment but not posttreatment attenuates ischemia-reperfusion-induced pulmonary microvascular leak.

    Science.gov (United States)

    Chetham, P M; Sefton, W D; Bridges, J P; Stevens, T; McMurtry, I F

    1997-04-01

    Ischemia-reperfusion (I/R) pulmonary edema probably reflects a leukocyte-dependent, oxidant-mediated mechanism. Nitric oxide (NO) attenuates leukocyte-endothelial cell interactions and I/R-induced microvascular leak. Cyclic adenosine monophosphate (cAMP) agonists reverse and prevent I/R-induced microvascular leak, but reversal by inhaled NO (INO) has not been tested. In addition, the role of soluble guanylyl cyclase (sGC) activation in the NO protection effect is unknown. Rat lungs perfused with salt solution were grouped as either I/R, I/R with INO (10 or 50 ppm) on reperfusion, or time control. Capillary filtration coefficients (Kfc) were estimated 25 min before ischemia (baseline) and after 30 and 75 min of reperfusion. Perfusate cell counts and lung homogenate myeloperoxidase activity were determined in selected groups. Additional groups were treated with either INO (50 ppm) or isoproterenol (ISO-10 microM) after 30 min of reperfusion. Guanylyl cyclase was inhibited with 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ-15 microM), and Kfc was estimated at baseline and after 30 min of reperfusion. (1) Inhaled NO attenuated I/R-induced increases in Kfc. (2) Cell counts were similar at baseline. After 75 min of reperfusion, lung neutrophil retention (myeloperoxidase activity) and decreased perfusate neutrophil counts were similar in all groups. (3) In contrast to ISO, INO did not reverse microvascular leak. (4) 8-bromoguanosine 3',5'-cyclic monophosphate (8-br-cGMP) prevented I/R-induced microvascular leak in ODQ-treated lungs, but INO was no longer effective. Inhaled NO attenuates I/R-induced pulmonary microvascular leak, which requires sGC activation and may involve a mechanism independent of inhibition of leukocyte-endothelial cell interactions. In addition, INO is ineffective in reversing I/R-induced microvascular leak.

  4. Computed chest tomography in rats with pulmonary damage due to microembolism

    Energy Technology Data Exchange (ETDEWEB)

    Wegener, T.; Wegenius, G.; Hemmingsson, A.; Jung, B.; Saldeen, T.

    Computed chest tomography was performed in 13 rats with pulmonary damage due to microembolism, caused by injection of thrombin (500 NIH/kg body weight) and tranexamic acid, a fibrinolytic inhibitor (200 mg/kg body weight), and in 9 control rats. The purpose of the investigation was to perform attenuation measurements at two levels of the right lung, each with three regions of interest (anterior, mid and posterior). Alterations in attenuation, compared with controls, were correlated with lung weight. Compared with controls, the attenuation was significantly increased in the anterior and posterior regions at both levels in animals with pulmonary damage, but not in the mid regions. There was a statistically significant correlation between increasing attenuation and increasing lung weight. A significant difference was found between damaged and control lungs regarding the microscopic grade of interstitial oedema, alveolar oedema and fibrin. Histograms of attenuation values in computed tomograms might be of value in detecting alveolar oedema. It is concluded that computed chest tomography is a good method for detection pulmonary oedema at an early stage of experimental microembolism in the rat.

  5. Computed chest tomography in rats with pulmonary damage due to microembolism

    International Nuclear Information System (INIS)

    Wegener, T.; Wegenius, G.; Hemmingsson, A.; Jung, B.; Saldeen, T.; Uppsala Univ.; Uppsala Univ.; Uppsala Univ.

    1986-01-01

    Computed chest tomography was performed in 13 rats with pulmonary damage due to microembolism, caused by injection of thrombin (500 NIH/kg body weight) and tranexamic acid, a fibrinolytic inhibitor (200 mg/kg body weight), and in 9 control rats. The purpose of the investigation was to perform attenuation measurements at two levels of the right lung, each with three regions of interest (anterior, mid and posterior). Alterations in attenuation, compared with controls, were correlated with lung weight. Compared with controls, the attenuation was significantly increased in the anterior and posterior regions at both levels in animals with pulmonary damage, but not in the mid regions. There was a statistically significant correlation between increasing attenuation and increasing lung weight. A significant difference was found between damaged and control lungs regarding the microscopic grade of interstitial oedema, alveolar oedema and fibrin. Histograms of attenuation values in computed tomograms might be of value in detecting alveolar oedema. It is concluded that computed chest tomography is a good method for detection pulmonary oedema at an early stage of experimental microembolism in the rat. (orig.)

  6. Saudi Guidelines on the Diagnosis and Treatment of Pulmonary Hypertension: Pulmonary arterial hypertension associated with congenital heart disease

    Directory of Open Access Journals (Sweden)

    Antonio Lopes

    2014-01-01

    Full Text Available Congenital heart disease (CHD with intracardiac/extracardiac shunts is an important etiology of pulmonary arterial hypertension (PAH. The majority of children with congenital cardiac shunts do not develop advanced pulmonary vasculopathy, as surgical repair of the anomalies is now performed early in life. However, if not repaired early, some defects will inevitably lead to pulmonary vascular disease (truncus arteriosus, transposition of the great arteries associated with a ventricular septal defect (VSD, atrioventricular septal defects remarkably in Down syndrome, large, nonrestrictive VSDs, patent ductus arteriosus and related anomalies. The majority of patients are now assigned to surgery based on noninvasive evaluation only. PAH becomes a concern (requiring advanced diagnostic procedures in about 2-10% of them. In adults with CHD, the prevalence of advanced pulmonary vasculopathy (Eisenmenger syndrome is around 4-12%. [1] This article will discuss the diagnostic and management approach for PAH associated with CHD (PAH-CHD.

  7. Pulmonary stromal cells induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation.

    Science.gov (United States)

    Li, Qian; Guo, Zhenhong; Xu, Xiongfei; Xia, Sheng; Cao, Xuetao

    2008-10-01

    The tissue microenvironment may affect the development and function of immune cells such as DC. Whether and how the pulmonary stromal microenvironment can affect the development and function of lung DC need to be investigated. Regulatory DC (DCreg) can regulate T-cell response. We wondered whether such regulatory DC exist in the lung and what is the effect of the pulmonary stromal microenvironment on the generation of DCreg. Here we demonstrate that murine pulmonary stromal cells can drive immature DC, which are regarded as being widely distributed in the lung, to proliferate and differentiate into a distinct subset of DCreg, which express high levels of CD11b but low levels of MHC class II (I-A), CD11c, secrete high amounts of IL-10, NO and prostaglandin E2 (PGE2) and suppress T-cell proliferation. The natural counterpart of DCreg in the lung with similar phenotype and regulatory function has been identified. Pulmonary stroma-derived TGF-beta is responsible for the differentiation of immature DC to DCreg, and DCreg-derived PGE2 contributes to their suppression of T-cell proliferation. Moreover, DCreg can induce the generation of CD4+CD25+Foxp3+ Treg. Importantly, infusion with DCreg attenuates T-cell-mediated eosinophilic airway inflammation in vivo. Therefore, the pulmonary microenvironment may drive the generation of DCreg, thus contributing to the maintenance of immune homoeostasis and the control of inflammation in the lung.

  8. Pulmonary hypertension in patients with chronic myeloproliferative disorders

    Directory of Open Access Journals (Sweden)

    Yochai Adir

    2015-09-01

    Full Text Available Pulmonary hypertension (PH is a major complication of several haematological disorders. Chronic myeloproliferative diseases (CMPDs associated with pulmonary hypertension have been included in group five of the clinical classification for pulmonary hypertension, corresponding to pulmonary hypertension for which the aetiology is unclear and/or multifactorial. The aim of this review is to discuss the epidemiology, pathogenic mechanism and treatment approaches of the more common forms of pulmonary hypertension in the context of CMPD's: chronic thromboembolic pulmonary hypertension, precapillary pulmonary hypertension and drug-induced PH.

  9. ANALYSIS OF SERUM URIC ACID LEVELS IN EARLY SECOND TRIMESTER AS AN EARLY PREDICTOR FOR PREECLAMPSIA

    Directory of Open Access Journals (Sweden)

    Ratna Bulusu

    2017-01-01

    Full Text Available BACKGROUND Hypertensive disorders complicate 5-10% of all pregnancies. Screening for these factors in the second trimester of pregnancy will help in early detection of hypertensive disorders of pregnancy, thus enabling. 1. Early identification of patients at risk of developing preeclampsia and eclampsia. 2. Prophylactic medication to prevent hypertension or to reduce its severity. 3. Proper antenatal care. The aim of the study is to study the accuracy of serum uric acid levels in early second trimester (14-20 weeks as early predictor of preeclampsia. MATERIALS AND METHODS 100 pregnant normotensive women between 14-20 weeks gestation with singleton pregnancy irrespective of parity were selected randomly and serum levels of uric acid was estimated. Regular follow up of the cases was done till delivery. Number of cases developing preeclampsia was noted. Results were analysed statistically. RESULTS Out of the 100 patients enrolled in the study, 11 developed preeclampsia while rest 89 remained normotensive. Mean value of uric acid in preeclampsia cases was 6.28±0.86 mg/dL while that in normotensive cases was 3.42±0.94 mg/dL. This result was statistically significant. CONCLUSION Serum uric acid level at 14-20 weeks of gestation was significantly raised in the cases who developed preeclampsia as compared to those who remained normotensive. Hence, serum uric acid estimation at 14-20 weeks of gestation could be used as an effective parameter for predicting preeclampsia.

  10. Protocatechuic aldehyde ameliorates experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang, E-mail: countryspring@sina.com; Ji, Yunxia, E-mail: 413499057@qq.com; Kang, Zechun, E-mail: davidjiangwl@163.com; Lv, Changjun, E-mail: Lucky_lcj@sina.com; Jiang, Wanglin, E-mail: jwl518@163.com

    2015-02-15

    An abnormal high mobility group box 1 (HMGB1) activation and a decrease in receptor for advanced glycation end-product (RAGE) play a key role in the pathogenesis of pulmonary fibrosis. Protocatechuic aldehyde (PA) is a naturally occurring compound, which is extracted from the degradation of phenolic acids. However, whether PA has anti-fibrotic functions is unknown. In this study, the effects of PA on the transforming growth factor-β1 (TGF-β1)-mediated epithelial–mesenchymal transition (EMT) in A549 cells, on the apoptosis of human type I alveolar epithelial cells (AT I), on the proliferation of human lung fibroblasts (HLF-1) in vitro, and on bleomycin (BLM)-induced pulmonary fibrosis in vivo were investigated. PA treatment resulted in a reduction of EMT in A549 cells with a decrease in vimentin and HMGB, an increase of E-cadherin and RAGE, a reduction of HLF-1 proliferation with a decrease of fibroblast growth factor 2 (FGF-2) and platelet-derived growth factor (PDGF). Apoptosis of AT I was attenuated with an increase of RAGE. PA ameliorated BLM-induced pulmonary fibrosis in rats with a reduction of histopathological scores and collagen deposition, and a lower FGF-2, PDGF, α-smooth muscle actin (α-SMA) and HMGB1 expression, whereas higher RAGE was found in BLM-instilled lungs. Through the decrease of HGMB1 and the regulation of RAGE, PA reversed the EMT, inhibited HLF-1 proliferation as well as reduced apoptosis in AT I, and prevented pulmonary fibrosis in vivo. Collectively, our results demonstrate that PA prevents experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway. - Highlights: • PA prevents EMT, reduces the apoptosis of AT1 in vitro. • PA decreases proliferation of HLF-1, reduces PDGF and FGF expression in vitro. • PA prevents experimental pulmonary fibrosis by modulating the HMGB1/RAGE pathway.

  11. Protocatechuic aldehyde ameliorates experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway

    International Nuclear Information System (INIS)

    Zhang, Liang; Ji, Yunxia; Kang, Zechun; Lv, Changjun; Jiang, Wanglin

    2015-01-01

    An abnormal high mobility group box 1 (HMGB1) activation and a decrease in receptor for advanced glycation end-product (RAGE) play a key role in the pathogenesis of pulmonary fibrosis. Protocatechuic aldehyde (PA) is a naturally occurring compound, which is extracted from the degradation of phenolic acids. However, whether PA has anti-fibrotic functions is unknown. In this study, the effects of PA on the transforming growth factor-β1 (TGF-β1)-mediated epithelial–mesenchymal transition (EMT) in A549 cells, on the apoptosis of human type I alveolar epithelial cells (AT I), on the proliferation of human lung fibroblasts (HLF-1) in vitro, and on bleomycin (BLM)-induced pulmonary fibrosis in vivo were investigated. PA treatment resulted in a reduction of EMT in A549 cells with a decrease in vimentin and HMGB, an increase of E-cadherin and RAGE, a reduction of HLF-1 proliferation with a decrease of fibroblast growth factor 2 (FGF-2) and platelet-derived growth factor (PDGF). Apoptosis of AT I was attenuated with an increase of RAGE. PA ameliorated BLM-induced pulmonary fibrosis in rats with a reduction of histopathological scores and collagen deposition, and a lower FGF-2, PDGF, α-smooth muscle actin (α-SMA) and HMGB1 expression, whereas higher RAGE was found in BLM-instilled lungs. Through the decrease of HGMB1 and the regulation of RAGE, PA reversed the EMT, inhibited HLF-1 proliferation as well as reduced apoptosis in AT I, and prevented pulmonary fibrosis in vivo. Collectively, our results demonstrate that PA prevents experimental pulmonary fibrosis by modulating HMGB1/RAGE pathway. - Highlights: • PA prevents EMT, reduces the apoptosis of AT1 in vitro. • PA decreases proliferation of HLF-1, reduces PDGF and FGF expression in vitro. • PA prevents experimental pulmonary fibrosis by modulating the HMGB1/RAGE pathway

  12. Effect of gallic acid on the wear behavior of early carious enamel

    International Nuclear Information System (INIS)

    Gao, S S; Huang, S B; Yu, H Y; Qian, L M

    2009-01-01

    The purpose of this research was to investigate the wear behavior of early carious enamel remineralized with gallic acid. Forty natural human premolar specimens with early caries lesions were prepared. A remineralization pH-cycling treatment agent of 4000 ppm gallic acid was used for 12 days to treat the early lesions. The changes in microhardness were monitored. Nanoscratch tests were used to evaluate wear resistance. The experimental data were analyzed by using a t-test. The widths of traces were measured by an AMBIOS XP-2 stylus profilometer. After remineralization, all samples re-hardened significantly. The coefficients of friction became higher, and the widths of scratches were larger than they were before remineralization. Gallic acid significantly improved the early carious enamel's hardness. The wear damage of the samples treated with gallic acid was more severe than that of the control group. There were more obvious cracks and delaminations on the traces of the treated group. Compared with the control group, the enamel remineralized with gallic acid had inferior wear resistance. After remineralization, the dominant damage mechanisms of early carious enamel had changed from plastic deformation and adhesive wear to a combination of brittle cracks and delamination of enamel.

  13. Pulmonary Tuberculosis Wheezing In Early Childhood

    Directory of Open Access Journals (Sweden)

    Dumitra G

    2013-06-01

    Full Text Available Background: Primary pulmonary tuberculosis in children and infants can be suggested by the presence of a wheezing, often interpreted as acute bronchiolitis or asthma. The objective of this study is to assess the frequency and mechanism of wheezing in infants and toddlers with tuberculosis and to assess its value as an alarm symptom in children from areas where tuberculosis incidence is high.

  14. Bilateral multiple pulmonary artery aneurysms associated with cavitary pulmonary tuberculosis: a case report.

    Science.gov (United States)

    Pallangyo, Pedro; Lyimo, Frederick; Bhalia, Smita; Makungu, Hilda; Nyangasa, Bashir; Lwakatare, Flora; Suranyi, Pal; Janabi, Mohamed

    2017-07-19

    Pulmonary artery aneurysms constitute 50%) of cases, however, pulmonary artery aneurysm is a rare sequelae of pulmonary tuberculosis reported in about 5% of patients with chronic cavitary tuberculosis on autopsy. The natural history of this potentially fatal condition remains poorly understood and guidelines for optimal management are controversial. A 24-year-old man, a nursing student of African descent, was referred to us from an up-country regional hospital with a 4-week history of recurrent episodes of breathlessness, awareness of heartbeats and coughing blood 3 weeks after completing a 6-month course of anti-tuberculosis drugs. A physical examination revealed conjuctival and palmar pallor but there were no stigmata of connective tissue disorders, systemic vasculitides or congenital heart disease. An examination of the cardiovascular system revealed accentuated second heart sound (S 2 ) with early diastolic (grade 1/6) and holosystolic (grade 2/6) murmurs at the pulmonic and tricuspid areas respectively. Blood tests showed iron deficiency anemia, prolonged bleeding time, and mild hyponatremia. A chest radiograph revealed bilateral ovoid-shaped perihilar opacities while a computed tomography scan showed bilateral multiple pulmonary artery pseudoaneurysms with surrounding hematoma together with adjacent cystic changes, consolidations, and tree-in-bud appearance. Our patient refused to undergo surgery and died of aneurismal rupture after 9 days of hospitalization. The presence of intractable hemoptysis among patients with tuberculosis even after completion of anti-tuberculosis course should raise an index of suspicion for pulmonary artery aneurysm. Furthermore, despite of its rarity, early recognition and timely surgical intervention of pulmonary artery aneurysm is crucial to reducing morbidity and preventing the attributed mortality.

  15. Determinants of exercise-induced pulmonary arterial hypertension in systemic sclerosis.

    Science.gov (United States)

    Voilliot, Damien; Magne, Julien; Dulgheru, Raluca; Kou, Seisyou; Henri, Christine; Laaraibi, Saloua; Sprynger, Muriel; Andre, Béatrice; Pierard, Luc A; Lancellotti, Patrizio

    2014-05-15

    Exercise-induced pulmonary arterial hypertension (EIPH) in systemic sclerosis (SSc) has already been observed but its determinants remain unclear. The aim of this study was to determine the incidence and the determinants of EIPH in SSc. We prospectively enrolled 63 patients with SSc (age 54±3years, 76% female) followed in CHU Sart-Tilman in Liège. All patients underwent graded semi-supine exercise echocardiography. Systolic pulmonary arterial pressure (sPAP) was derived from the peak velocity of the tricuspid regurgitation jet and adding the estimation of right atrial pressure, both at rest and during exercise. Resting pulmonary arterial hypertension (PH) was defined as sPAP > 35 mmHg and EIPH as sPAP > 50 mmHg during exercise. The following formulas were used: mean PAP (mPAP) = 0.61 × sPAP + 2, left atrial pressure (LAP)=1.9+1.24 × left ventricular (LV) E/e' and pulmonary vascular resistance (PVR)=(mPAP-LAP)/LV cardiac output (CO) and slope of mPAP-LVCO relationship=changes in mPAP/changes in LVCO. Resting PH was present in 3 patients (7%) and 21 patients developed EIPH (47%). Patients with EIPH had higher resting LAP (10.3 ± 2.2 versus 8.8 ± 2.3 mmHg; p = 0.03), resting PVR (2.6 ± 0.8 vs. 1.4 ± 1.1 Woods units; p=0.004), exercise LAP (13.3 ± 2.3 vs. 9 ± 1.7 mmHg; p exercise PVR (3.6 ± 0.7 vs. 2.1 ± 0.9 Woods units; p = 0.02) and slope of mPAP-LVCO (5.8 ± 2.4 vs. 2.9 ± 2.1 mmHg/L/min; p age and gender, exercise LAP (β=3.1 ± 0.8; p=0.001) and exercise PVR (β=7.9 ± 1.7; p=0.0001) were independent determinants of exercise sPAP. EIPH is frequent in SSc patients and is mainly related to both increased exercise LV filling pressure and exercise PVR. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Effects of Uric Acid on Exercise-induced Oxidative Stress

    OpenAIRE

    平井, 富弘

    2001-01-01

    We studied effects of uric acid on exercise― induced oxidative stress in humans based on a hypothesis that uric acid acts as an antioxidant to prevent from exercise―induced oxidative stress. Relation between uric acid level in plasma and increase of thiobarbituric acid reactive substance (TBARS)after the cycle ergometer exercise was examined. Thiobarbituricacid reactive substance in plasma increased after the ergometer exercise. High uric acid in plasma did not result in low increase of TBARS...

  17. Development and comparison of a minimally-invasive model of autologous clot pulmonary embolism in Sprague-Dawley and Copenhagen rats

    Directory of Open Access Journals (Sweden)

    Sanapareddy Nina

    2010-02-01

    Full Text Available Abstract Background Experimental models of pulmonary embolism (PE that produce pulmonary hypertension (PH employ many different methods of inducing acute pulmonary occlusion. Many of these models induce PE with intravenous injection of exogenous impervious objects that may not completely reproduce the physiological properties of autologous thromboembolism. Current literature lacks a simple, well-described rat model of autlogous PE. Objective: Test if moderate-severity autologous PE in Sprague-Dawley (SD and Copenhagen (Cop rats can produce persistent PH. Methods blood was withdrawn from the jugular vein, treated with thrombin-Ca++ and re-injected following pretreatment with tranexamic acid. Hemodynamic values, clot weights and biochemical measurements were performed at 1 and 5 days. Results Infusion of clot significantly increased the right ventricular peak systolic pressure to 45-55 mm Hg, followed by normalization within 24 hours in SD rats, and within 5 days in COP rats. Clot lysis was 95% (24 hours and 97% (5 days in SD rats and was significantly lower in COP rats (70%, 24 hours; 87% 5 days. Plasma D-dimer was elevated in surgical sham animals and was further increased 8 hours after pulmonary embolism. Neither strain showed a significant increase in bronchoalveolar chemotactic activity, myeloperoxidase activity, leukocyte infiltration, or chemokine accumulation, indicating that there was no significant pulmonary inflammation. Conclusions Both SD and COP rats exhibited near complete fibrinolysis of autologous clot PE within 5 days. Neither strain developed persistent PH. Experimental models of PE designed to induce sustained PH and a robust inflammatory response appear to require significant, persistent pulmonary vascular occlusion.

  18. Early Detection of Chronic Obstructive Pulmonary Disease in Primary Care.

    Science.gov (United States)

    Kobayashi, Seiichi; Hanagama, Masakazu; Yanai, Masaru

    2017-12-01

    Objective To evaluate the effectiveness of an early detection program for chronic obstructive pulmonary disease (COPD) in a primary care setting in Japan. Methods Participants of ≥40 years of age who regularly visited a general practitioner's clinic due to chronic disease were asked to complete a COPD screening questionnaire (COPD Population Screener; COPD-PS) and undergo simplified spirometry using a handheld spirometric device. Patients who showed possible COPD were referred to a respiratory specialist and underwent a detailed examination that included spirometry and chest radiography. Results A total of 111 patients with possible COPD were referred for close examination. Among these patients, 27 patients were newly diagnosed with COPD. The patients with COPD were older, had lower BMI values, and had a longer smoking history in comparison to non-COPD patients. COPD patients also had more comorbid conditions. A diagnosis of COPD was significantly associated with a high COPD-PS score (pearly detection of undiagnosed COPD in primary care.

  19. Outcomes of Pulmonary Valve Replacement for Correction Pulmonary Insufficiency after Primary Repair of Tetralogy of Fallot (TOF)

    OpenAIRE

    Mohammad Abbassi Teshnisi; Aliasghar Moeinipour; Hamid Hoseinikhah; Seyedeh Zahra Aemmi; Shahla Shirin Bahador; Nahid Zirak

    2016-01-01

    Background Total correction of Tetralogy of Fallot (TOF) anomaly in early childhood has been practiced in many centers with good results, but in some of patients after few years sever Pulmonary valve insufficiency occurred. Materials and Methods At a cross- sectional study from January 2015 to January 2016, 10 patients who had history of primary repair of TOF with free pulmonary insufficiency (PI) that underwent of pulmonary valve replacement (PVR) with bioprosthetic valves were evaluated. Re...

  20. Genetic variation in the bleomycin hydrolase gene and bleomycin-induced pulmonary toxicity in germ cell cancer patients

    NARCIS (Netherlands)

    Nuver, J; Lutke-Holzik, MF; van Zweeden, M; Hoekstra, HJ; Meijer, C; Suurmeijer, AJH; Hofstra, RM; Sluiter, WJ; Sleijfer, D; Gietema, JA; Groen, Hendricus; Groen, Herman

    Objective Use of bleomycin as a cytotoxic agent is limited by its pulmonary toxicity. Bleomycin is mainly excreted by the kidneys, but can also be inactivated by bleomycin hydrolase (BMH). An 1450A > G polymorphic site in the BMH gene results in an amino acid substitution in the C-terminal domain of

  1. Pulmonary agenesis: two cases reported

    Directory of Open Access Journals (Sweden)

    Denis Yaraví Solano-Vázquez

    2014-11-01

    Full Text Available Background: Pulmonary agenesis is a rare anomaly (1 in 15 000 live births which consists in a total absence or severe hypoplasia of one or both lungs. The clinical spectrum of the unilateral agenesis could vary from early and severe respiratory distress, recurrent pneumonia to being an incidental finding. The prognosis is based on the presence of associated congenital abnormalities. Material and methods: We present two cases of unilateral pulmonary agenesis in patients at Tlaxcala’s Children Hospital during 2012. Results: Report details the case of a one-month old boy with left pulmonary agenesis and interatrial communication and mild pulmonary arterial hypertension. He had two resolved pneumonia incidents. The other case was a one-month old girl with right pulmonary agenesis, associated to multiple heart malformations who evolved to respiratory failure, heart failure and death.Conclusions: Pulmonary agenesis is a rare anomaly. Its outcome and prognosis varies with the hemodynamics related to its location and associated malformations.

  2. The Influence of CO2 and Exercise on Hypobaric Hypoxia Induced Pulmonary Edema in Rats

    Directory of Open Access Journals (Sweden)

    Ryan L. Sheppard

    2018-02-01

    Full Text Available Introduction: Individuals with a known susceptibility to high altitude pulmonary edema (HAPE demonstrate a reduced ventilation response and increased pulmonary vasoconstriction when exposed to hypoxia. It is unknown whether reduced sensitivity to hypercapnia is correlated with increased incidence and/or severity of HAPE, and while acute exercise at altitude is known to exacerbate symptoms the effect of exercise training on HAPE susceptibility is unclear.Purpose: To determine if chronic intermittent hypercapnia and exercise increases the incidence of HAPE in rats.Methods: Male Wistar rats were randomized to sedentary (sed-air, CO2 (sed-CO2, exercise (ex-air, or exercise + CO2 (ex-CO2 groups. CO2 (3.5% and treadmill exercise (15 m/min, 10% grade were conducted on a metabolic treadmill, 1 h/day for 4 weeks. Vascular reactivity to CO2 was assessed after the training period by rheoencephalography (REG. Following the training period, animals were exposed to hypobaric hypoxia (HH equivalent to 25,000 ft for 24 h. Pulmonary injury was assessed by wet/dry weight ratio, lung vascular permeability, bronchoalveolar lavage (BAL, and histology.Results: HH increased lung wet/dry ratio (HH 5.51 ± 0.29 vs. sham 4.80 ± 0.11, P < 0.05, lung permeability (556 ± 84 u/L vs. 192 ± 29 u/L, P < 0.001, and BAL protein (221 ± 33 μg/ml vs. 114 ± 13 μg/ml, P < 0.001, white blood cell (1.16 ± 0.26 vs. 0.66 ± 0.06, P < 0.05, and platelet (16.4 ± 2.3, vs. 6.0 ± 0.5, P < 0.001 counts in comparison to normobaric normoxia. Vascular reactivity was suppressed by exercise (−53% vs. sham, P < 0.05 and exercise+CO2 (−71% vs. sham, P < 0.05. However, neither exercise nor intermittent hypercapnia altered HH-induced changes in lung wet/dry weight, BAL protein and cellular infiltration, or pulmonary histology.Conclusion: Exercise training attenuates vascular reactivity to CO2 in rats but neither exercise training nor chronic intermittent hypercapnia affect HH- induced

  3. A temible complication of ischemic stroke: pulmonary embolism

    Directory of Open Access Journals (Sweden)

    Linda Iurato

    2015-12-01

    Pulmonary embolism is a major contributor to in-hospital death after stroke. Although the rate of clinically overt pulmonary embolism after stroke has been estimated to be less than 1%, pulmonary emboli account for up to 50% of early deaths after stroke. In daily practice, the clinical burden of pulmonary embolism in patient with stroke is, however, underestimated since the clinical symptoms of stroke may obscure the recognition of this complication. The aim of this article is to describe the clinical and therapeutic aspects of pulmonary embolism as complication after stroke.

  4. Localization of quantitative trait loci associated with radiation induced pulmonary fibrosis in the mouse

    International Nuclear Information System (INIS)

    Oas, L.G.; Haston, C.K.; Travis, E.L.

    1997-01-01

    Purpose/Objective: Pulmonary fibrosis is often a limiting factor in the planning of radiotherapy for thoracic neoplasms. Differences in the propensity to develop radiation induced pulmonary fibrosis have been noted between C3Hf/Kam (resistant) and C57BL/6J (susceptible) mouse strains. Bleomycin and radiation induced pulmonary fibrosis have been shown to be heritable traits in mice with significant linkage to the major histocompatibility complex on chromosome 17. The heritability of radiation induced damage was estimated to be 38%±11% with 1-2 genetic factors influencing expression. Only 6.6% of the phenotypic variance could be attributed to chromosome 17. A search of the genome was undertaken to identify loci which may be responsible for the remaining phenotypic variance. Materials and Methods: C3Hf/Kam and C57BL/6J mice were crosbred to yield F1 and F2 (F1 intercross) generations. Two hundred sixty eight males and females of the F2 generation were treated with orthovoltage radiation, 14 or 16 Gy, to the whole thorax. The mice were sacrificed after development of respiratory distress or at 33 weeks. Histologic sections were assessed with quantified image analysis to determine the percentage of fibrosis in both lungs. Genotyping was done on the pooled DNA of the mice who developed respiratory distress with 44 32 P labeled microsatellite markers having an average spacing of 24.5 cM. Correlation of the quantitative trait loci (QTLs) with the highest quartile of fibrosis revealed 10 out of 44 regions showing possible linkage. Individual DNA from 54 mice with the least fibrosis and 40 with the most fibrosis were probed using these markers. PCR and gel electrophoresis were performed and the results analysed. Results: Of the 10 markers analysed, one locus on chromosome 1 meets the criterion of suggestion of linkage. Conclusion: These findings point to regions on the mouse genome for which further investigation of fibrosis associated loci may be warranted

  5. Arginase Inhibition Reverses Monocrotaline-Induced Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    Christian Jung

    2017-07-01

    Full Text Available Pulmonary hypertension (PH is a heterogeneous disorder associated with a poor prognosis. Thus, the development of novel treatment strategies is of great interest. The enzyme arginase (Arg is emerging as important player in PH development. The aim of the current study was to determine the expression of ArgI and ArgII as well as the effects of Arg inhibition in a rat model of PH. PH was induced in 35 Sprague–Dawley rats by monocrotaline (MCT, 60 mg/kg as single-dose. There were three experimental groups: sham-treated controls (control group, n = 11, MCT-induced PH (MCT group, n = 11 and MCT-induced PH treated with the Arg inhibitor Nω-hydroxy-nor-l-arginine (nor-NOHA; MCT/NorNoha group, n = 13. ArgI and ArgII expression was determined by immunohistochemistry and Western blot. Right ventricular systolic pressure (RVPsys was measured and lung tissue remodeling was determined. Induction of PH resulted in an increase in RVPsys (81 ± 16 mmHg compared to the control group (41 ± 15 mmHg, p = 0.002 accompanied by a significant elevation of histological sum-score (8.2 ± 2.4 in the MCT compared to 1.6 ± 1.6 in the control group, p < 0.001. Both, ArgI and ArgII were relevantly expressed in lung tissue and there was a significant increase in the MCT compared to the control group (p < 0.01. Arg inhibition resulted in a significant reduction of RVPsys to 52 ± 19 mmHg (p = 0.006 and histological sum-score to 5.8 ± 1.4 compared to the MCT group (p = 0.022. PH leads to increased expression of Arg. Arg inhibition leads to reduction of RVPsys and diminished lung tissue remodeling and therefore represents a potential treatment strategy in PH.

  6. Characterization of the early pulmonary inflammatory response associated with PTFE fume exposure

    Science.gov (United States)

    Johnston, C. J.; Finkelstein, J. N.; Gelein, R.; Baggs, R.; Oberdorster, G.; Clarkson, T. W. (Principal Investigator)

    1996-01-01

    Heating of polytetrafluoroethylene (PTFE) has been described to release fumes containing ultrafine particles (approximately 18 nm diam). These fumes can be highly toxic in the respiratory tract inducing extensive pulmonary edema with hemorrhagic inflammation. Fischer-344 rats were exposed to PTFE fumes generated by temperatures ranging from 450 to 460 degrees C for 15 min at an exposure concentration of 5 x 10(5) particles/cm3, equivalent to approximately 50 micrograms/m3. Responses were examined 4 hr post-treatment when these rats demonstrated 60-85% neutrophils (PMNs) in their lung lavage. Increases in abundance for messages encoding the antioxidants manganese superoxide dismutase and metallothionein (MT) increased 15- and 40-fold, respectively. For messages encoding the pro- and anti-inflammatory cytokines: inducible nitric oxide synthase, interleukin 1 alpha, 1 beta, and 6 (IL-1 alpha, IL-1 beta, and IL-6), macrophage inflammatory protein-2, and tumor necrosis factor-alpha (TNF alpha) increases of 5-, 5-, 10-, 40-, 40-, and 15-fold were present. Vascular endothelial growth factor, which may play a role in the integrity of the endothelial barrier, was decreased to 20% of controls. In situ sections were hybridized with 33P cRNA probes encoding IL-6, MT, surfactant protein C, and TNF alpha. Increased mRNA abundance for MT and IL-6 was expressed around all airways and interstitial regions with MT and IL-6 demonstrating similar spatial distribution. Large numbers of activated PMNs expressed IL-6, MT, and TNF alpha. Additionally, pulmonary macrophages and epithelial cells were actively involved. These observations support the notion that PTFE fumes containing ultrafine particles initiate a severe inflammatory response at low inhaled particle mass concentrations, which is suggestive of an oxidative injury. Furthermore, PMNs may actively regulate the inflammatory process through cytokine and antioxidant expression.

  7. Antagonist effects of veratric acid against UVB-induced cell damages.

    Science.gov (United States)

    Shin, Seoung Woo; Jung, Eunsun; Kim, Seungbeom; Lee, Kyung-Eun; Youm, Jong-Kyung; Park, Deokhoon

    2013-05-10

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human epidermis, resulting in inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effect of UV irradiation is essential. In recent years naturally occurring herbal compounds such as phenolic acids, flavonoids, and high molecular weight polyphenols have gained considerable attention as beneficial protective agents. The simple phenolic veratric acid (VA, 3,4-dimethoxybenzoic acid) is one of the major benzoic acid derivatives from vegetables and fruits and it also occurs naturally in medicinal mushrooms which have been reported to have anti-inflammatory and anti-oxidant activities. However, it has rarely been applied in skin care. This study, therefore, aimed to explore the possible roles of veratric acid in protection against UVB-induced damage in HaCaT cells. Results showed that veratric acid can attenuate cyclobutane pyrimidine dimers (CPDs) formation, glutathione (GSH) depletion and apoptosis induced by UVB. Furthermore, veratric acid had inhibitory effects on the UVB-induced release of the inflammatory mediators such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of veratric acid on human skin. Overall, results demonstrated significant benefits of veratric acid on the protection of keratinocyte against UVB-induced injuries and suggested its potential use in skin photoprotection.

  8. Uric acid ameliorates indomethacin-induced enteropathy in mice through its antioxidant activity.

    Science.gov (United States)

    Yasutake, Yuichi; Tomita, Kengo; Higashiyama, Masaaki; Furuhashi, Hirotaka; Shirakabe, Kazuhiko; Takajo, Takeshi; Maruta, Koji; Sato, Hirokazu; Narimatsu, Kazuyuki; Yoshikawa, Kenichi; Okada, Yoshikiyo; Kurihara, Chie; Watanabe, Chikako; Komoto, Shunsuke; Nagao, Shigeaki; Matsuo, Hirotaka; Miura, Soichiro; Hokari, Ryota

    2017-11-01

    Uric acid is excreted from blood into the intestinal lumen, yet the roles of uric acid in intestinal diseases remain to be elucidated. The study aimed to determine whether uric acid could reduce end points associated with nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy. A mouse model of NSAID-induced enteropathy was generated by administering indomethacin intraperitoneally to 8-week-old male C57BL/6 mice, and then vehicle or uric acid was administered orally. A group of mice treated with indomethacin was also concurrently administered inosinic acid, a uric acid precursor, and potassium oxonate, an inhibitor of uric acid metabolism, intraperitoneally. For in vitro analysis, Caco-2 cells treated with indomethacin were incubated in the presence or absence of uric acid. Oral administration of uric acid ameliorated NSAID-induced enteropathy in mice even though serum uric acid levels did not increase. Intraperitoneal administration of inosinic acid and potassium oxonate significantly elevated serum uric acid levels and ameliorated NSAID-induced enteropathy in mice. Both oral uric acid treatment and intraperitoneal treatment with inosinic acid and potassium oxonate significantly decreased lipid peroxidation in the ileum of mice with NSAID-induced enteropathy. Treatment with uric acid protected Caco-2 cells from indomethacin-induced oxidative stress, lipid peroxidation, and cytotoxicity. Uric acid within the intestinal lumen and in serum had a protective effect against NSAID-induced enteropathy in mice, through its antioxidant activity. Uric acid could be a promising therapeutic target for NSAID-induced enteropathy. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  9. Effect of gallic acid on the wear behavior of early carious enamel

    Energy Technology Data Exchange (ETDEWEB)

    Gao, S S; Huang, S B; Yu, H Y [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Qian, L M, E-mail: yhyang6812@scu.edu.c [Tribology Research Institute, National Traction Power Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2009-06-15

    The purpose of this research was to investigate the wear behavior of early carious enamel remineralized with gallic acid. Forty natural human premolar specimens with early caries lesions were prepared. A remineralization pH-cycling treatment agent of 4000 ppm gallic acid was used for 12 days to treat the early lesions. The changes in microhardness were monitored. Nanoscratch tests were used to evaluate wear resistance. The experimental data were analyzed by using a t-test. The widths of traces were measured by an AMBIOS XP-2 stylus profilometer. After remineralization, all samples re-hardened significantly. The coefficients of friction became higher, and the widths of scratches were larger than they were before remineralization. Gallic acid significantly improved the early carious enamel's hardness. The wear damage of the samples treated with gallic acid was more severe than that of the control group. There were more obvious cracks and delaminations on the traces of the treated group. Compared with the control group, the enamel remineralized with gallic acid had inferior wear resistance. After remineralization, the dominant damage mechanisms of early carious enamel had changed from plastic deformation and adhesive wear to a combination of brittle cracks and delamination of enamel.

  10. Mefenamic Acid Induced Nephrotoxicity: An Animal Model

    Directory of Open Access Journals (Sweden)

    Muhammad Nazrul Somchit

    2014-12-01

    Full Text Available Purpose: Nonsteroidal anti-inflammatory drugs (NSAIDs are used for the treatment of many joint disorders, inflammation and to control pain. Numerous reports have indicated that NSAIDs are capable of producing nephrotoxicity in human. Therefore, the objective of this study was to evaluate mefenamic acid, a NSAID nephrotoxicity in an animal model. Methods: Mice were dosed intraperitoneally with mefenamic acid either as a single dose (100 or 200 mg/kg in 10% Dimethyl sulfoxide/Palm oil or as single daily doses for 14 days (50 or 100 mg/kg in 10% Dimethyl sulfoxide/Palm oil per day. Venous blood samples from mice during the dosing period were taken prior to and 14 days post-dosing from cardiac puncture into heparinized vials. Plasma blood urea nitrogen (BUN and creatinine activities were measured. Results: Single dose of mefenamic acid induced mild alteration of kidney histology mainly mild glomerular necrosis and tubular atrophy. Interestingly, chronic doses induced a dose dependent glomerular necrosis, massive degeneration, inflammation and tubular atrophy. Plasma blood urea nitrogen was statistically elevated in mice treated with mefenamic acid for 14 days similar to plasma creatinine. Conclusion: Results from this study suggest that mefenamic acid as with other NSAIDs capable of producing nephrotoxicity. Therefore, the study of the exact mechanism of mefenamic acid induced severe nephrotoxicity can be done in this animal model.

  11. MAP3K19 Is a Novel Regulator of TGF-β Signaling That Impacts Bleomycin-Induced Lung Injury and Pulmonary Fibrosis.

    Science.gov (United States)

    Boehme, Stefen A; Franz-Bacon, Karin; DiTirro, Danielle N; Ly, Tai Wei; Bacon, Kevin B

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, debilitating disease for which two medications, pirfenidone and nintedanib, have only recently been approved for treatment. The cytokine TGF-β has been shown to be a central mediator in the disease process. We investigated the role of a novel kinase, MAP3K19, upregulated in IPF tissue, in TGF-β-induced signal transduction and in bleomycin-induced pulmonary fibrosis. MAP3K19 has a very limited tissue expression, restricted primarily to the lungs and trachea. In pulmonary tissue, expression was predominantly localized to alveolar and interstitial macrophages, bronchial epithelial cells and type II pneumocytes of the epithelium. MAP3K19 was also found to be overexpressed in bronchoalveolar lavage macrophages from IPF patients compared to normal patients. Treatment of A549 or THP-1 cells with either MAP3K19 siRNA or a highly potent and specific inhibitor reduced phospho-Smad2 & 3 nuclear translocation following TGF-β stimulation. TGF-β-induced gene transcription was also strongly inhibited by both the MAP3K19 inhibitor and nintedanib, whereas pirfenidone had a much less pronounced effect. In combination, the MAP3K19 inhibitor appeared to act synergistically with either pirfenidone or nintedanib, at the level of target gene transcription or protein production. Finally, in an animal model of IPF, inhibition of MAP3K19 strongly attenuated bleomycin-induced pulmonary fibrosis when administered either prophylactically ortherapeutically. In summary, these results strongly suggest that inhibition of MAP3K19 may have a beneficial therapeutic effect in the treatment of IPF and represents a novel strategy to target this disease.

  12. Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity.

    Directory of Open Access Journals (Sweden)

    Esther M Verhaag

    Full Text Available Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis.To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions.HepG2.rNtcp cells were preconditioned (24 h with sub-apoptotic concentrations (0.1-50 μM of various bile acids, the superoxide donor menadione, TNF-α or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 μM for 4 h, menadione (50 μM, 6 h or cytokine mixture (CM; 6 h. Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11 and bile acid sensors, as well as intracellular GCDCA levels were analyzed.Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauroursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-α potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM- or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration- and time-dependent. GCDCA-, CDCA- and GW4064- preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA

  13. Deletion of Iron Regulatory Protein 1 Causes Polycythemia and Pulmonary Hypertension in Mice through Translational De-repression of HIF2α

    Science.gov (United States)

    Ghosh, Manik C.; Zhang, De-Liang; Jeong, Suh Young; Kovtunovych, Gennadiy; Ollivierre-Wilson, Hayden; Noguchi, Audrey; Tu, Tiffany; Senecal, Thomas; Robinson, Gabrielle; Crooks, Daniel R.; Tong, Wing-Hang; Ramaswamy, Kavitha; Singh, Anamika; Graham, Brian B.; Tuder, Rubin M.; Yu, Zu-Xi; Eckhaus, Michael; Lee, Jaekwon; Springer, Danielle A.; Rouault, Tracey A.

    2013-01-01

    SUMMARY Iron regulatory proteins 1 and 2 (Irps) post-transcriptionally control the expression of transcripts that contain iron responsive element (IRE) sequences, including ferritin, ferroportin, transferrin receptor and hypoxia inducible factor 2α (HIF2α). We report here that mice with targeted deletion of Irp1 developed pulmonary hypertension and polycythemia that was exacerbated by a low iron diet. Hematocrits increased to 65% in iron-starved mice, and many polycythemic mice died of abdominal hemorrhages. Irp1 deletion enhanced HIF2α protein expression in kidneys of Irp1−/− mice, which led to increased erythropoietin (EPO) expression, polycythemia and concomitant tissue iron deficiency. Increased HIF2α expression in pulmonary endothelial cells induced high expression of endothelin-1, likely contributing to the pulmonary hypertension of Irp1−/− mice. Our results reveal why anemia is an early physiological consequence of iron deficiency, highlight the physiological significance of Irp1 in regulating erythropoiesis and iron distribution, and provide important insights into the molecular pathogenesis of pulmonary hypertension. PMID:23395173

  14. Different profiles of notch signaling in cigarette smoke-induced pulmonary emphysema and bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Li, Shi; Hu, Xiaofei; Wang, Zheng; Wu, Meng; Zhang, Jinnong

    2015-05-01

    Different profiles of Notch signaling mediate naive T cell differentiation which might be involved in pulmonary emphysema and fibrosis. C57BL/6 mice were randomized into cigarette smoke (CS) exposure, bleomycin (BLM) exposure, and two separate groups of control for sham exposure to CS or BLM. The paratracheal lymph nodes of the animals were analyzed by real-time PCR and immunohistochemistry. Morphometry of the lung parenchyma, measurement of the cytokines, and cytometry of the bronchoalveolar lavage fluid (BALF) were also done accordingly. In comparison with controls, all Notch receptors and ligands were upregulated by chronic CS exposure, especially Notch3 and DLL1 (P emphysema-like morphology and Th1-biased inflammation. While Notch3 and DLL1 were downregulated by BLM exposure (P pulmonary emphysema. Unable to initiate the Th1 response or inhibit it may lead to Th2 polarization and aberrant repair.

  15. The Effects of Portulaca oleracea on Hypoxia-Induced Pulmonary Edema in Mice.

    Science.gov (United States)

    Yue, Tan; Xiaosa, Wen; Ruirui, Qi; Wencai, Shi; Hailiang, Xin; Min, Li

    2015-03-01

    Portulaca oleracea L. (PO) is known as "a vegetable for long life" due to its antioxidant, anti-inflammatory, and other pharmacological activities. However, the protective activity of the ethanol extract of PO (EEPO) against hypoxia-induced pulmonary edema has not been fully investigated. In this study, we exposed mice to a simulated altitude of 7000 meters for 0, 3, 6, 9, and 12 h to observe changes in the water content and transvascular leakage of the mouse lung. It was found that transvascular leakage increased to the maximum in the mouse lung after 6 h exposure to hypobaric hypoxia. Prophylactic administration of EEPO before hypoxic exposure markedly reduced the transvascular leakage and oxidative stress, and inhibited the upregulation of NF-kB in the mouse lung, as compared with the control group. In addition, EEPO significantly reduced the levels of proinflammatory cytokines and cell adhesion molecules in the lungs of mice, as compared with the hypoxia group. Our results show that EEPO can reduce initial transvascular leakage and pulmonary edema under hypobaric hypoxia conditions.

  16. Protein S is protective in pulmonary fibrosis.

    Science.gov (United States)

    Urawa, M; Kobayashi, T; D'Alessandro-Gabazza, C N; Fujimoto, H; Toda, M; Roeen, Z; Hinneh, J A; Yasuma, T; Takei, Y; Taguchi, O; Gabazza, E C

    2016-08-01

    Essentials Epithelial cell apoptosis is critical in the pathogenesis of idiopathic pulmonary fibrosis. Protein S, a circulating anticoagulant, inhibited apoptosis of lung epithelial cells. Overexpression of protein S in lung cells reduced bleomycin-induced pulmonary fibrosis. Intranasal therapy with exogenous protein S ameliorated bleomycin-induced pulmonary fibrosis. Background Pulmonary fibrosis is the terminal stage of interstitial lung diseases, some of them being incurable and of unknown etiology. Apoptosis plays a critical role in lung fibrogenesis. Protein S is a plasma anticoagulant with potent antiapoptotic activity. The role of protein S in pulmonary fibrosis is unknown. Objectives To evaluate the clinical relevance of protein S and its protective role in pulmonary fibrosis. Methods and Results The circulating level of protein S was measured in patients with pulmonary fibrosis and controls by the use of enzyme immunoassays. Pulmonary fibrosis was induced with bleomycin in transgenic mice overexpressing human protein S and wild-type mice, and exogenous protein S or vehicle was administered to wild-type mice; fibrosis was then compared in both models. Patients with pulmonary fibrosis had reduced circulating levels of protein S as compared with controls. Inflammatory changes, the levels of profibrotic cytokines, fibrosis score, hydroxyproline content in the lungs and oxygen desaturation were significantly reduced in protein S-transgenic mice as compared with wild-type mice. Wild-type mice treated with exogenous protein S showed significant decreases in the levels of inflammatory and profibrotic markers and fibrosis in the lungs as compared with untreated control mice. After bleomycin infusion, mice overexpressing human protein S showed significantly low caspase-3 activity, enhanced expression of antiapoptotic molecules and enhanced Akt and Axl kinase phosphorylation as compared with wild-type counterparts. Protein S also inhibited apoptosis of alveolar

  17. Inflammatory Response Mechanisms Exacerbating Hypoxemia in Coexistent Pulmonary Fibrosis and Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Ayodeji Adegunsoye

    2015-01-01

    Full Text Available Mediators of inflammation, oxidative stress, and chemoattractants drive the hypoxemic mechanisms that accompany pulmonary fibrosis. Patients with idiopathic pulmonary fibrosis commonly have obstructive sleep apnea, which potentiates the hypoxic stimuli for oxidative stress, culminating in systemic inflammation and generalized vascular endothelial damage. Comorbidities like pulmonary hypertension, obesity, gastroesophageal reflux disease, and hypoxic pulmonary vasoconstriction contribute to chronic hypoxemia leading to the release of proinflammatory cytokines that may propagate clinical deterioration and alter the pulmonary fibrotic pathway. Tissue inhibitor of metalloproteinase (TIMP-1, interleukin- (IL- 1α, cytokine-induced neutrophil chemoattractant (CINC-1, CINC-2α/β, lipopolysaccharide induced CXC chemokine (LIX, monokine induced by gamma interferon (MIG-1, macrophage inflammatory protein- (MIP- 1α, MIP-3α, and nuclear factor- (NF- κB appear to mediate disease progression. Adipocytes may induce hypoxia inducible factor (HIF 1α production; GERD is associated with increased levels of lactate dehydrogenase (LDH, alkaline phosphatase (ALP, and tumor necrosis factor alpha (TNF-α; pulmonary artery myocytes often exhibit increased cytosolic free Ca2+. Protein kinase C (PKC mediated upregulation of TNF-α and IL-1β also occurs in the pulmonary arteries. Increased understanding of the inflammatory mechanisms driving hypoxemia in pulmonary fibrosis and obstructive sleep apnea may potentiate the identification of appropriate therapeutic targets for developing effective therapies.

  18. Use of stable helium tracer for the early detection of impaired pulmonary function

    International Nuclear Information System (INIS)

    Susskind, H.; Richards, P.; Atkins, H.L.

    1975-01-01

    Methodology and instrumentation are being developed to measure distal airway closure, a very sensitive diagnostic technique for the early detection of emphysema and other obstructive lung diseases and premature closure indicating abnormalities. The procedure is rapid and involves the inhalation of only a 1 ml bolus of readily available stable 4 He, continuous measurement of its concentration in the exhaled air with a helium leak detector type of mass spectrometer, and the subsequent analysis of the single-breath washout curve. Helium appears to be an ideal tracer, well-suited for testing in clinics and hospitals, as well as for epidemiological studies relating the effects of atmospheric pollutants and lung impairment and for screening of large populations for pulmonary dysfunction

  19. Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice

    Directory of Open Access Journals (Sweden)

    Izziki Mohamed

    2009-01-01

    Full Text Available Abstract Background Inflammation may contribute to the pathogenesis of various forms of pulmonary hypertension (PH. Recent studies in patients with idiopathic PH or PH associated with underlying diseases suggest a role for interleukin-6 (IL-6. Methods To determine whether endogenous IL-6 contributes to mediate hypoxic PH and lung inflammation, we studied IL-6-deficient (IL-6-/- and wild-type (IL-6+/+ mice exposed to hypoxia for 2 weeks. Results Right ventricular systolic pressure, right ventricle hypertrophy, and the number and media thickness of muscular pulmonary vessels were decreased in IL-6-/- mice compared to wild-type controls after 2 weeks' hypoxia, although the pressure response to acute hypoxia was similar in IL-6+/+ and IL-6-/- mice. Hypoxia exposure of IL-6+/+ mice led to marked increases in IL-6 mRNA and protein levels within the first week, with positive IL-6 immunostaining in the pulmonary vessel walls. Lung IL-6 receptor and gp 130 (the IL-6 signal transducer mRNA levels increased after 1 and 2 weeks' hypoxia. In vitro studies of cultured human pulmonary-artery smooth-muscle-cells (PA-SMCs and microvascular endothelial cells revealed prominent synthesis of IL-6 by PA-SMCs, with further stimulation by hypoxia. IL-6 also markedly stimulated PA-SMC migration without affecting proliferation. Hypoxic IL-6-/- mice showed less inflammatory cell recruitment in the lungs, compared to hypoxic wild-type mice, as assessed by lung protein levels and immunostaining for the specific macrophage marker F4/80, with no difference in lung expression of adhesion molecules or cytokines. Conclusion These data suggest that IL-6 may be actively involved in hypoxia-induced lung inflammation and pulmonary vascular remodeling in mice.

  20. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective.

    Science.gov (United States)

    Wang, Pei-Hui; Weng, Shao-Ping; He, Jian-Guo

    2015-02-01

    Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Upregulation of Klotho potentially inhibits pulmonary vascular remodeling by blocking the activation of the Wnt signaling pathway in rats with PM2.5-induced pulmonary arterial hypertension.

    Science.gov (United States)

    Cong, Lu-Hong; Du, Shi-Yu; Wu, Yi-Na; Liu, Ying; Li, Tao; Wang, Hui; Li, Gang; Duan, Jun

    2018-01-30

    We evaluated the effects of Klotho on pulmonary vascular remodeling and cell proliferation and apoptosis in rat models with PM2.5-induced pulmonary arterial hypertension (PAH) via the Wnt signaling pathway. After establishing rat models of PM2.5-induced PAH, these Sprague-Dawley male rats were randomized into control and model groups. Cells extracted from the model rats were sub-categorized into different groups. Activation of Wnt/β-catenin signaling transcription factor was detected by a TOPFlash/FOPFlash assay. A serial of experiment was conducted to identify the mechanism of Klotho on PHA via the Wnt signaling pathway. VEGF levels and PaCO 2 content were higher in the model group, while PaO 2, NO 2 - /NO 3 - content and Klotho level was lower compared to the control group. In comparison to the control group, the model group had decreased Klotho and Bax levels, and elevated Wnt-1, β-catenin, bcl-2, survivin, and PCNA expression, VEGF, IL-6, TNF-α, TNF-β1, and bFGF levels, as well as the percentage of pulmonary artery ring contraction. The Klotho vector, DKK-1 and DKK-1 + Klotho vector groups exhibited reduced cell proliferation, luciferase activity, and the expression of Wnt-1, β-catenin, bcl-2, survivin, and PCNA, as well as shortened S phase compared with the blank and NC groups. Compared with the Klotho vector and DKK-1 groups, the DKK-1 + Klotho vector groups had reduced cell proliferation, luciferase activity, and the expression of Wnt-1, β-catenin, bcl-2, survivin, and PCNA, as well as a shortened S phase. Conclusively, Klotho inhibits pulmonary vascular remodeling by inactivation of Wnt signaling pathway. © 2018 Wiley Periodicals, Inc.

  2. A human model of dietary saturated fatty acid induced insulin resistance.

    Science.gov (United States)

    Koska, Juraj; Ozias, Marlies K; Deer, James; Kurtz, Julie; Salbe, Arline D; Harman, S Mitchell; Reaven, Peter D

    2016-11-01

    Increased consumption of high-fat diets is associated with the development of insulin resistance and type 2 diabetes. Current models to study the mechanisms of high-fat diet-induced IR in humans are limited by their long duration or low efficacy. In the present study we developed and characterized an acute dietary model of saturated fatty acid-enriched diet induced insulin resistance. High caloric diets enriched with saturated fatty acids (SFA) or carbohydrates (CARB) were evaluated in subjects with normal and impaired glucose tolerance (NGT or IGT). Both diets were compared to a standard eucaloric American Heart Association (AHA) control diet in a series of crossover studies. Whole body insulin resistance was estimated as steady state plasma glucose (SSPG) concentrations during the last 30min of a 3-h insulin suppression test. SSPG was increased after a 24-h SFA diet (by 83±74% vs. control, n=38) in the entire cohort, which was comprised of participants with NGT (92±82%, n=22) or IGT (65±55%, n=16) (all pinsulin resistance in both NGT and IGT subjects. Insulin resistance persisted overnight after the last SFA meal and was attenuated by one day of a healthy diet. This model offers opportunities for identifying early mechanisms and potential treatments of dietary saturated fat induced insulin resistance. Published by Elsevier Inc.

  3. Antagonist Effects of Veratric Acid against UVB-Induced Cell Damages

    Directory of Open Access Journals (Sweden)

    Deokhoon Park

    2013-05-01

    Full Text Available Ultraviolet (UV radiation induces DNA damage, oxidative stress, and inflammatory processes in human epidermis, resulting in inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effect of UV irradiation is essential. In recent years naturally occurring herbal compounds such as phenolic acids, flavonoids, and high molecular weight polyphenols have gained considerable attention as beneficial protective agents. The simple phenolic veratric acid (VA, 3,4-dimethoxybenzoic acid is one of the major benzoic acid derivatives from vegetables and fruits and it also occurs naturally in medicinal mushrooms which have been reported to have anti-inflammatory and anti-oxidant activities. However, it has rarely been applied in skin care. This study, therefore, aimed to explore the possible roles of veratric acid in protection against UVB-induced damage in HaCaT cells. Results showed that veratric acid can attenuate cyclobutane pyrimidine dimers (CPDs formation, glutathione (GSH depletion and apoptosis induced by UVB. Furthermore, veratric acid had inhibitory effects on the UVB-induced release of the inflammatory mediators such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of veratric acid on human skin. Overall, results demonstrated significant benefits of veratric acid on the protection of keratinocyte against UVB-induced injuries and suggested its potential use in skin photoprotection.

  4. Pulmonary tumors induced in the rat by the internal α irradiation; target cells and sensitive cells

    International Nuclear Information System (INIS)

    Fritsch, P.; Masse, R.; Nolibe, D.; Metivier, H.; Morin, M.; Lafuma, J.

    1977-01-01

    Over, 500 rat pulmonary tumors induced by inhalation of various radionuclides have been examined by means of the usual histological methods and ultrastructurally for part of them. Tumor grafts were obtained and several lines have been preserved for several years. The malignity of some varieties: circumscribed epidermoid carcinoma, fibrosarcoma derived from stromareaction, bronchiolo alveolar carcinoma was thus established. It was not possible to establish any relation between the turnover per day and the incidence of pulmonary tumors whatever the correction factor applied taking account of the distribution of the delivered dose. The possibility of showing unapparent lesions of the target cells by grafts of immunodepressed animals suggested that local regulating mechanisms are of particular significance [fr

  5. Prevalence of and risk factors for postoperative pulmonary complications after lung cancer surgery in patients with early-stage COPD

    Directory of Open Access Journals (Sweden)

    Kim ES

    2016-06-01

    Full Text Available Eun Sun Kim,1 Young Tae Kim,2 Chang Hyun Kang,2 In Kyu Park,2 Won Bae,1 Sun Mi Choi,1 Jinwoo Lee,1 Young Sik Park,1 Chang-Hoon Lee,1 Sang-Min Lee,1 Jae-Joon Yim,1 Young Whan Kim,1 Sung Koo Han,1 Chul-Gyu Yoo1 1Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, 2Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea Purpose: This study aimed to investigate whether the prevalence of postoperative pulmonary complications (PPCs in patients with non-small-cell lung cancer (NSCLC is even higher in the early stages of COPD than in such patients with normal lung function and to verify the usefulness of symptom- or quality of life (QoL-based scores in predicting risk for PPCs.Patients and methods: Patients undergoing pulmonary resection for NSCLC between July 2012 and October 2014 were prospectively enrolled. Preoperative measurements of lung function, dyspnea, and QoL, operative characteristics, PPCs, duration of postoperative hospitalization, and in-hospital mortality were assessed.Results: Among 351 consecutive patients with NSCLC, 343 patients with forced expiratory volume in 1 second (FEV1 ≥70% of predicted value were enrolled. At least one PPC occurred in 57 (16.6% patients. Prevalence of PPC was higher in patients with COPD (30.1% than in those with normal spirometry (10.0%; P<0.001. However, in patients with COPD, the prevalence of PPC was not different in patients with FEV1 ≥70% compared to those with FEV1 <70% and between group A (low risk and less symptoms and group B (low risk and more symptoms patients with COPD, based on the new Global initiative for chronic Obstructive Lung Disease 2011 guidelines. In patients with COPD, body mass index (odds ratio [OR]: 0.80, P=0.007, carbon monoxide diffusing capacity of the lung (DLCO, % predicted value (OR: 0.97, P=0.024, and operation time (OR: 1.01, P=0.003, but not COPD assessment test or St

  6. Fundamentals of management of acute postoperative pulmonary hypertension.

    Science.gov (United States)

    Taylor, Mary B; Laussen, Peter C

    2010-03-01

    In the last several years, there have been numerous advancements in the field of pulmonary hypertension as a whole, but there have been few changes in the management of children with pulmonary hypertension after cardiac surgery. Patients at particular risk for postoperative pulmonary hypertension can be identified preoperatively based on their cardiac disease and can be grouped into four broad categories based on the mechanisms responsible for pulmonary hypertension: 1) increased pulmonary vascular resistance; 2) increased pulmonary blood flow with normal pulmonary vascular resistance; 3) a combination of increased pulmonary vascular resistance and increased blood flow; and 4) increased pulmonary venous pressure. In this review of the immediate postoperative management of pulmonary hypertension, various strategies are discussed including medical therapies, monitoring, ventilatory strategies, and weaning from these supports. With early recognition of patients at particular risk for severe pulmonary hypertension, management strategies can be directed at preventing or minimizing hemodynamic instability and thereby prevent the development of ventricular dysfunction and a low output state.

  7. Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats

    International Nuclear Information System (INIS)

    Miller, Desinia B.; Snow, Samantha J.; Henriquez, Andres; Schladweiler, Mette C.; Ledbetter, Allen D.; Richards, Judy E.; Andrews, Debora L.; Kodavanti, Urmila P.

    2016-01-01

    Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25 ppm or 1.00 ppm ozone, 5 h/day, 3 consecutive days/week (wk) for 13 wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13 wk or following a 1 wk recovery period (13 wk + 1 wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13 wk, however, these responses were largely reversible following a 1 wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism. - Highlights: • Subchronic episodic ozone exposure caused pulmonary and metabolic effects. • These

  8. Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Desinia B. [Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina (United States); Snow, Samantha J. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Henriquez, Andres [Curriculum in Toxicology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina (United States); Schladweiler, Mette C.; Ledbetter, Allen D.; Richards, Judy E.; Andrews, Debora L. [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Kodavanti, Urmila P., E-mail: kodavanti.urmila@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    2016-09-01

    Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25 ppm or 1.00 ppm ozone, 5 h/day, 3 consecutive days/week (wk) for 13 wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13 wk or following a 1 wk recovery period (13 wk + 1 wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13 wk, however, these responses were largely reversible following a 1 wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism. - Highlights: • Subchronic episodic ozone exposure caused pulmonary and metabolic effects. • These

  9. Interactive effects of cerium oxide and diesel exhaust nanoparticles on inducing pulmonary fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jane Y.C., E-mail: jym1@cdc.gov [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Young, Shih-Houng; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Ma, Joseph K. [School of Pharmacy, West Virginia University, Morgantown, WV 26506 (United States); Castranova, Vincent [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States)

    2014-07-15

    Cerium compounds have been used as a fuel-borne catalyst to lower the generation of diesel exhaust particles (DEPs), but are emitted as cerium oxide nanoparticles (CeO{sub 2}) along with DEP in the diesel exhaust. The present study investigates the effects of the combined exposure to DEP and CeO{sub 2} on the pulmonary system in a rat model. Specific pathogen-free male Sprague–Dawley rats were exposed to CeO{sub 2} and/or DEP via a single intratracheal instillation and were sacrificed at various time points post-exposure. This investigation demonstrated that CeO{sub 2} induces a sustained inflammatory response, whereas DEP elicits a switch of the pulmonary immune response from Th1 to Th2. Both CeO{sub 2} and DEP activated AM and lymphocyte secretion of the proinflammatory cytokines IL-12 and IFN-γ, respectively. However, only DEP enhanced the anti-inflammatory cytokine IL-10 production in response to ex vivo LPS or Concanavalin A challenge that was not affected by the presence of CeO{sub 2}, suggesting that DEP suppresses host defense capability by inducing the Th2 immunity. The micrographs of lymph nodes show that the particle clumps in DEP + CeO{sub 2} were significantly larger than CeO{sub 2} or DEP, exhibiting dense clumps continuous throughout the lymph nodes. Morphometric analysis demonstrates that the localization of collagen in the lung tissue after DEP + CeO{sub 2} reflects the combination of DEP-exposure plus CeO{sub 2}-exposure. At 4 weeks post-exposure, the histological features demonstrated that CeO{sub 2} induced lung phospholipidosis and fibrosis. DEP induced lung granulomas that were not significantly affected by the presence of CeO{sub 2} in the combined exposure. Using CeO{sub 2} as diesel fuel catalyst may cause health concerns. - Highlights: • DEP induced acute lung inflammation and switched immune response from Th1 to Th2. • DEP induced lung granulomas were not affected by the presence of CeO{sub 2}. • CeO{sub 2} induced sustained lung

  10. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    International Nuclear Information System (INIS)

    Wu, Dong-mei; Lu, Jun; Zhang, Yan-qiu; Zheng, Yuan-lin; Hu, Bin; Cheng, Wei; Zhang, Zi-feng; Li, Meng-qiu

    2013-01-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders

  11. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dong-mei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Lu, Jun, E-mail: lu-jun75@163.com [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Zhang, Yan-qiu [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zheng, Yuan-lin, E-mail: ylzheng@xznu.edu.cn [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Hu, Bin [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China); Cheng, Wei [School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu Province (China); Zhang, Zi-feng; Li, Meng-qiu [Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province (China)

    2013-09-01

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitive deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.

  12. Gallic Acid Induces Apoptosis in Human Gastric Adenocarcinoma Cells.

    Science.gov (United States)

    Tsai, Chung-Lin; Chiu, Ying-Ming; Ho, Tin-Yun; Hsieh, Chin-Tung; Shieh, Dong-Chen; Lee, Yi-Ju; Tsay, Gregory J; Wu, Yi-Ying

    2018-04-01

    Gastric cancer is one of the most common malignant cancers with a poor prognosis and high mortality rate worldwide. Current treatment of gastric cancer includes surgery and chemotherapy as the main modalities, but the potentially severe side-effects of chemotherapy present a considerable challenge. Gallic acid is a trihydroxybenzoic acid found to exert an anticancer effect against a variety of cancer cells. The purpose of this study was to determine the anti-cancer activity of Galla chinensis and its main component gallic acid on human gastric adenocarcinoma cells. MTT assay and cell death ELISA were used to determine the apoptotic effect of Gallic Chinensis and gallic acid on human gastric adenocarcinoma cells. To determine the pathway and relevant components by which gallic acid-induced apoptosis is mediated through, cells were transfected with siRNA (Fas, FasL, DR5, p53) using Lipofectamine 2000. Reults: Gallic Chinensis and gallic acid induced apoptosis of human gastric adenocarcinoma cells. Gallic acid induced up-regulation of Fas, FasL, and DR5 expression in AGS cells. Transfection of cells with Fas, FasL, or DR5 siRNA reduced gallic acid-induced cell death. In addition, p53 was shown to be involved in gallic acid-mediated Fas, FasL, and DR5 expression as well as cell apoptosis in AGS cells. These results suggest that gallic acid has a potential role in the treatment of gastric cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. Increased proximal acid reflux is associated with early readmission following lung transplantation.

    Science.gov (United States)

    Lo, W-K; Goldberg, H J; Burakoff, R; Feldman, N; Chan, W W

    2016-02-01

    Gastroesophageal reflux disease has been associated with poor outcomes following lung transplantation. However, the association between pretransplant reflux and post-transplant readmission, an indicator of early clinical outcome, has not been previously assessed. This was a retrospective cohort study of lung transplant recipients undergoing pretransplant multichannel intraluminal impedance and pH (MII-pH) study off acid suppression at a tertiary care center since 2007. Subjects with pretransplant fundoplication were excluded. Time to readmission was defined as duration from post-transplant discharge to next hospital admission for any reason. Subgroup analysis was performed to exclude elective readmissions. Time-to-event analysis was performed using Cox proportional hazards model, with appropriate censoring. Forty-three subjects (60% men, mean age: 57, median follow-up: 1.7 years) met inclusion criteria for the study. Patient demographics and pretransplant cardiopulmonary function were similar between readmission cohorts. Time to all-cause readmission was associated with increased distal acid episodes (HR: 3.15, p = 0.04) and proximal acid episodes (HR: 3.61, p = 0.008) on impedance, increased acid exposure on pH (HR: 2.22, p = 0.04), and elevated Demeester score (HR: 2.26, p = 0.03). When elective readmissions were excluded, early readmission remained significantly associated with increased proximal acid reflux episodes (HR: 2.49, p = 0.04). All findings were confirmed on Kaplan-Meier analysis. Elevated proximal acid reflux on pretransplant MII-pH testing was associated with early readmission following lung transplantation, even after excluding elective readmissions. Exposure to severe acid reflux has measurable effects on early postoperative outcomes such as readmission, and aggressive early antireflux therapy should be considered. © 2015 John Wiley & Sons Ltd.

  14. Lung imaging in pulmonary disease

    International Nuclear Information System (INIS)

    Taplin, G.V.; Chopra, S.K.

    1976-01-01

    Although it has been recognized for several years that chronic obstructive pulmonary disease (COPD) can cause lung perfusion defects which may simulate pulmonary embolism, relatively little use has been made of either the radioxenon or the radioaerosol inhalation lung imaging procedures until the last few years as a means of distinguishing pulmonary embolism (P.E.) from COPD is reported. Recent experience is reported with the use of both of these procedures in comparison with pulmonary function tests for the early detection of COPD in population studies and also in P.E. suspects. Equal emphasis is given to simultaneous aerosol ventilation-perfusion (V/P) imaging in the differential diagnosis of P.E. Finally, this paper is concerned with new developments in regional lung diffusion imaging following the inhalation of radioactive gases and rapidly absorbed radioaerosols. Their experimental basis is presented and their potential clinical applications in pulmonary embolism are discussed. As a result of these investigations, a functional (V/P) diagnosis of pulmonary embolism in patients may be possible in the near future with a sequential radioaerosol inhalation procedure alone

  15. Variation in the HFE gene is associated with the development of bleomycin-induced pulmonary toxicity in testicular cancer patients.

    Science.gov (United States)

    van der Schoot, Gabriela G F; Westerink, Nico-Derk L; Lubberts, Sjoukje; Nuver, Janine; Zwart, Nynke; Walenkamp, Annemiek M E; Wempe, Johan B; Meijer, Coby; Gietema, Jourik A

    2016-05-01

    Bleomycin and cisplatin are of key importance in testicular cancer treatment. Known potential serious adverse effects are bleomycin-induced pulmonary toxicity (BIP) and cisplatin-induced renal toxicity. Iron handling may play a role in development of this toxicity. Carriage of allelic variants of the HFE gene induces altered iron metabolism and may contribute to toxicity. We investigated the association between two common allelic variants of the HFE gene, H63D and C282Y, with development of pulmonary and renal toxicity during and after treatment with bleomycin- and cisplatin-containing chemotherapy. In 369 testicular cancer patients treated with bleomycin and cisplatin at the University Medical Center Groningen between 1978 and 2006, H63D and/or C282Y genotypes were determined with an allelic discrimination assay. Data were collected on development of BIP, pulmonary function parameters, renal function, and survival. BIP developed more frequently in patients who were heterozygote (16 in 75, 21%) and homozygote (2 in 4, 50%) for the H63D variant, compared with those who had the HFE wild-type gene (31 in 278, 11%) (p = 0.012). Overall survival, testicular cancer-related survival, and change in renal function were not associated with the H63D variant. We observed an association between presence of one or both H63D alleles and development of BIP in testicular cancer patients treated with bleomycin combination chemotherapy. In patients heterozygote and homozygote for the H63D variant, BIP occurred more frequently compared with wild-type patients. When validated and confirmed, HFE H63D genotyping may be used to identify patients with increased risk for pulmonary bleomycin toxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Prostacyclin and milrinone by aerosolization improve pulmonary hemodynamics in newborn lambs with experimental pulmonary hypertension.

    Science.gov (United States)

    Kumar, Vasanth H; Swartz, Daniel D; Rashid, Nasir; Lakshminrusimha, Satyan; Ma, Changxing; Ryan, Rita M; Morin, Frederick C

    2010-09-01

    Aerosolized prostacyclin (PGI2) produces selective pulmonary vasodilation in patients with pulmonary hypertension (PH). The response to PGI2 may be increased by phosphodiesterase type 3 inhibitors such as milrinone. We studied the dose response effects of aerosolized PGI2 and aerosolized milrinone both alone and in combination on pulmonary and systemic hemodynamics in newborn lambs with Nomega-nitro-L-arginine methyl ester (L-NAME)-induced PH. We hypothesized that coaerosolization of PGI2 with milrinone would additively decrease pulmonary vascular resistance (PVR), prolong the duration of action of PGI2, and selectively dilate the pulmonary vasculature. Near-term lambs were delivered by C-section and instrumented and PH was induced by L-NAME (bolus 25 mg/kg; infusion 10 mg.kg(-1).h(-1)) and indomethacin. In the first set of experiments, PGI2 was aerosolized at random doses of 2, 20, 100, 200, 500, and 1,000 ng.kg(-1).min(-1) followed by milrinone at doses of 0.1, 1, and 10 microg.kg(-1).min(-1) over 10 min. In the second set of experiments, milrinone at 1 microg.kg(-1).min(-1) was aerosolized in combination with PGI2 at doses of 20, 100, and 200 ng.kg(-1).min(-1) over 10 min. Pulmonary arterial pressures (PAP) and PVR decreased significantly with increasing doses of aerosolized PGI2 and milrinone. The combination of PGI2 and milrinone significantly reduced PAP and PVR more than either of the drugs aerosolized alone. Addition of milrinone significantly increased the duration of action of PGI2. When aerosolized independently, PGI2 and milrinone selectively dilated the pulmonary vasculature but the combination did not. Milrinone enhances the vasodilatory effects of PGI2 on the pulmonary vasculature but caution must be exercised regarding systemic hypotension.

  17. Incremental yield of bronchial washing for diagnosing smear-negative pulmonary tuberculosis

    Directory of Open Access Journals (Sweden)

    Alonso Soto

    2013-08-01

    Full Text Available OBJECTIVE To assess the increased diagnostic yield for pulmonary tuberculosis using bronchial washing cultures compared with sputum cultures. METHODS Study conducted with 61 adults in Lima, Peru, from January 2006 to December 2007. The yield of sputum cultures was compared with the yield of acid-fast bacilli smears and cultures of bronchial washing for diagnosing pulmonary tuberculosis in suspected cases of clinical tuberculosis with negative acid fast bacilli sputum smears. RESULTS Twenty seven (95%CI 32;58 of the cases were eventually diagnosed with smear-negative pulmonary tuberculosis. Bronchial washing samples detected 23 (95%CI 72;99 of the smear-negative pulmonary tuberculosis cases compared with 15 (95%CI 37;74 for sputum cultures (p = 0.02. The incremental diagnostic yield of acid fast bacilli smear and culture of bronchial washing specimens over sputum culture was 44% (95%CI 25;65. CONCLUSIONS In function of the epidemiological context and the resources available, bronchoscopy should be deployed as part of a comprehensive work up that optimizes smear-negative pulmonary tuberculosis diagnosis and minimizes risk and costs.

  18. Diagnosis of pulmonary hypertension and pulmonary heart at Berylliosis and plutonium pneumosclerosis (Clinical-functional investigation)

    International Nuclear Information System (INIS)

    Metlyaeva, N. A.

    2004-01-01

    The subject of the research was 54 workers with Beryllium and Plutonium incorporation from 33 to 60 old, all of them had 41- Berylliosis and 13- Plutonium pneumosclerosis. Patient were investigated with ECG, pulmonary, kinetocordiography, echocardiography. Hypertension in the pulmonary artery developed due to a combination of anatomical and functional disturbances and also with increasing of a stroke and minutely volumes at a definite stage of the disease with Beryllium and Plutonium pneumosclerosis. Two type of hypertension were discovered with pulmonary reography in the Beryllium and the Plutonium pneumosclerosis patients: hyper volume and hypertension type. Hyper volume type of pulmonary circulation (31.7% and 53.8%) consist ed of a high amplitude systolic wave. It was revealed in patients at the early stage of disease, when the pulmonary vessels stretching and right ventricle function kept still at a good condition. Hypertensive type of pulmonary circulation (68.3% and 46.2%) had a low amplitude systolic wave. The low amplitude systolic wave caused by increasing resistance of the pulmonary vessels, decreasing in the flow of blood in arterial system and the injection fraction and a low circulatory volume. (Author) 17 refs

  19. Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers.

    Science.gov (United States)

    Bloom, Chloe I; Graham, Christine M; Berry, Matthew P R; Rozakeas, Fotini; Redford, Paul S; Wang, Yuanyuan; Xu, Zhaohui; Wilkinson, Katalin A; Wilkinson, Robert J; Kendrick, Yvonne; Devouassoux, Gilles; Ferry, Tristan; Miyara, Makoto; Bouvry, Diane; Valeyre, Dominique; Dominique, Valeyre; Gorochov, Guy; Blankenship, Derek; Saadatian, Mitra; Vanhems, Phillip; Beynon, Huw; Vancheeswaran, Rama; Wickremasinghe, Melissa; Chaussabel, Damien; Banchereau, Jacques; Pascual, Virginia; Ho, Ling-Pei; Lipman, Marc; O'Garra, Anne

    2013-01-01

    New approaches to define factors underlying the immunopathogenesis of pulmonary diseases including sarcoidosis and tuberculosis are needed to develop new treatments and biomarkers. Comparing the blood transcriptional response of tuberculosis to other similar pulmonary diseases will advance knowledge of disease pathways and help distinguish diseases with similar clinical presentations. To determine the factors underlying the immunopathogenesis of the granulomatous diseases, sarcoidosis and tuberculosis, by comparing the blood transcriptional responses in these and other pulmonary diseases. We compared whole blood genome-wide transcriptional profiles in pulmonary sarcoidosis, pulmonary tuberculosis, to community acquired pneumonia and primary lung cancer and healthy controls, before and after treatment, and in purified leucocyte populations. An Interferon-inducible neutrophil-driven blood transcriptional signature was present in both sarcoidosis and tuberculosis, with a higher abundance and expression in tuberculosis. Heterogeneity of the sarcoidosis signature correlated significantly with disease activity. Transcriptional profiles in pneumonia and lung cancer revealed an over-abundance of inflammatory transcripts. After successful treatment the transcriptional activity in tuberculosis and pneumonia patients was significantly reduced. However the glucocorticoid-responsive sarcoidosis patients showed a significant increase in transcriptional activity. 144-blood transcripts were able to distinguish tuberculosis from other lung diseases and controls. Tuberculosis and sarcoidosis revealed similar blood transcriptional profiles, dominated by interferon-inducible transcripts, while pneumonia and lung cancer showed distinct signatures, dominated by inflammatory genes. There were also significant differences between tuberculosis and sarcoidosis in the degree of their transcriptional activity, the heterogeneity of their profiles and their transcriptional response to treatment.

  20. Impact of pulmonary rehabilitation on postoperative complications in patients with lung cancer and chronic obstructive pulmonary disease.

    Science.gov (United States)

    Saito, Hajime; Hatakeyama, Kazutoshi; Konno, Hayato; Matsunaga, Toshiki; Shimada, Yoichi; Minamiya, Yoshihiro

    2017-09-01

    Given the extent of the surgical indications for pulmonary lobectomy in breathless patients, preoperative care and evaluation of pulmonary function are increasingly necessary. The aim of this study was to assess the contribution of preoperative pulmonary rehabilitation (PR) for reducing the incidence of postoperative pulmonary complications in non-small cell lung cancer (NSCLC) patients with chronic obstructive pulmonary disease (COPD). The records of 116 patients with COPD, including 51 patients who received PR, were retrospectively analyzed. Pulmonary function testing, including slow vital capacity (VC) and forced expiratory volume in one second (FEV 1 ), was obtained preoperatively, after PR, and at one and six months postoperatively. The recovery rate of postoperative pulmonary function was standardized for functional loss associated with the different resected lung volumes. Propensity score analysis generated matched pairs of 31 patients divided into PR and non-PR groups. The PR period was 18.7 ± 12.7 days in COPD patients. Preoperative pulmonary function was significantly improved after PR (VC 5.3%, FEV 1 5.5%; P pulmonary complications after pulmonary lobectomy (odds ratio 18.9, 16.1, and 13.9, respectively; P pulmonary function after lobectomy in the early period, and may decrease postoperative pulmonary complications. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  1. Pleural and pulmonary alterations caused by rheumatoid arthritis

    International Nuclear Information System (INIS)

    Bankier, A.A.; Fleischmann, D.; Kiener, H.P.; Wiesmayr, M.N.; Herold, C.J.

    1996-01-01

    Pulmonary complications caused by rheumatoid arthritis are a clinically relevant aspect of this chronic arthropathy. This article reviews pulmonary abnormalities induced by rheumatoid arthritis and their clinical and radiological findings. In addition, the role of different imaging modalities in the diagnostic work-up of pulmonary complications caused by rheumatoid arthritis is discussed. (orig./MG) [de

  2. Rhabdomyosarcoma of the pulmonary artery

    International Nuclear Information System (INIS)

    Barth, J.; Lehmann, H.; Thermann, M.; Horny, H.P.; Stein, H.; Kiel Univ.; Kiel Univ.; Kiel Univ.

    1982-01-01

    A case of a 55-year-old man with the histological diagnosis rhabdomyosarcoma of the left pulmonary artery has been seen. Lung scanning and pulmonary arteriography are the clues for the diagnostical procedure. 55 cases from the literature are reviewed and clinical findings of the early and late stages of the diseases are discussed. Surgical treatment is the therapy of choice if ever possible; aggressive chemotherapy might be an acceptable alternative. (orig.) [de

  3. Early detection of chronic obstructive pulmonary disease in apparently healthy attendants of tertiary care hospital and assessment of its severity

    International Nuclear Information System (INIS)

    Zubair, T.; Abbassi, A.; Khan, O. A.

    2017-01-01

    Objective: Early detection of Chronic Obstructive Pulmonary Disease in apparently healthy attendants of tertiary care hospital and assessment of its severity. Study Design: Cross-sectional, observational study. Place and Duration of Study: Study was conducted from January 2015 to July 2015 at Dow University Hospital, Ojha campus. Methodology: A screening method was designed for apparently healthy individuals including attendants of patients, hospital staff, faculty and students, belonging to age group 18-60 years after excluding severe obesity and already diagnosed respiratory and cardiovascular diseases by means of history. Each participant performed pulmonary function tests via spirometer after filling a questionnaire based on various risk factors and symptoms of chronic obstructive pulmonary disease (COPD). Data was entered and analysed by SPSS-20. Results: Out of the 517 participants, 122 (23.6%) were found to have COPD diagnosed by means of spirometry. Out of these, 23 (4.4%) had COPD stage I, 42 (8.1%) had COPD II, 34 (6.6%) had COPD III, and 23 (4.4%) had COPD IV. Exposure to smoking, wooden stoves, pesticides, biomass fuel, aerosol sprays, gas grill and vehicle exhaust were found to be statistically significant factors in relation to development of COPD. Conclusion: Apparently healthy individuals may have underlying COPD and active screening by means of spirometry plays vital role in early detection of COPD. Smoking and exposure to certain hazardous environmental pollutants are responsible for the development and progression of COPD. (author)

  4. Angiotensin II type 1 receptor blockade partially attenuates hypoxia-induced pulmonary hypertension in newborn piglets: relationship with the nitrergic system

    Energy Technology Data Exchange (ETDEWEB)

    Camelo, J.S. Jr. [Departamento de Puericultura e Pediatria, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Martins, A.R. [Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Instituto de Ciências Biológicas, Universidade Federal do Triângulo Mineiro, Uberaba, MG (Brazil); Rosa, E. [Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Ramos, S.G. [Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SPBrasil (Brazil); Hehre, D.; Bancalari, E.; Suguihara, C. [Department of Pediatrics, Division of Neonatology, Neonatal Developmental Biology Laboratory, University of Miami Miller School of Medicine, Miami, FL (United States)

    2012-02-10

    The objective of this study was to observe possible interactions between the renin-angiotensin and nitrergic systems in chronic hypoxia-induced pulmonary hypertension in newborn piglets. Thirteen chronically instrumented newborn piglets (6.3 ± 0.9 days; 2369 ± 491 g) were randomly assigned to receive saline (placebo, P) or the AT{sub 1} receptor (AT{sub 1}-R) blocker L-158,809 (L) during 6 days of hypoxia (FiO{sub 2} = 0.12). During hypoxia, pulmonary arterial pressure (Ppa; P < 0.0001), pulmonary vascular resistance (PVR; P < 0.02) and the pulmonary to systemic vascular resistance ratio (PVR/SVR; P < 0.05) were significantly attenuated in the L (N = 7) group compared to the P group (N = 6). Western blot analysis of lung proteins showed a significant decrease of endothelial NOS (eNOS) in both P and L animals, and of AT{sub 1}-R in P animals during hypoxia compared to normoxic animals (C group, N = 5; P < 0.01 for all groups). AT{sub 1}-R tended to decrease in L animals. Inducible NOS (iNOS) did not differ among P, L, and C animals and iNOS immunohistochemical staining in macrophages was significantly more intense in L than in P animals (P < 0.01). The vascular endothelium showed moderate or strong eNOS and AT{sub 1}-R staining. Macrophages and pneumocytes showed moderate or strong iNOS and AT{sub 1}-R staining, but C animals showed weak iNOS and AT{sub 1}-R staining. Macrophages of L and P animals showed moderate and weak AT{sub 2}-R staining, respectively, but the endothelium of all groups only showed weak staining. In conclusion, pulmonary hypertension induced by chronic hypoxia in newborn piglets is partially attenuated by AT{sub 1}-R blockade. We suggest that AT{sub 1}-R blockade might act through AT{sub 2}-R and/or Mas receptors and the nitrergic system in the lungs of hypoxemic newborn piglets.

  5. Elevated expression of NEU1 sialidase in idiopathic pulmonary fibrosis provokes pulmonary collagen deposition, lymphocytosis, and fibrosis.

    Science.gov (United States)

    Luzina, Irina G; Lockatell, Virginia; Hyun, Sang W; Kopach, Pavel; Kang, Phillip H; Noor, Zahid; Liu, Anguo; Lillehoj, Erik P; Lee, Chunsik; Miranda-Ribera, Alba; Todd, Nevins W; Goldblum, Simeon E; Atamas, Sergei P

    2016-05-15

    Idiopathic pulmonary fibrosis (IPF) poses challenges to understanding its underlying cellular and molecular mechanisms and the development of better therapies. Previous studies suggest a pathophysiological role for neuraminidase 1 (NEU1), an enzyme that removes terminal sialic acid from glycoproteins. We observed increased NEU1 expression in epithelial and endothelial cells, as well as fibroblasts, in the lungs of patients with IPF compared with healthy control lungs. Recombinant adenovirus-mediated gene delivery of NEU1 to cultured primary human cells elicited profound changes in cellular phenotypes. Small airway epithelial cell migration was impaired in wounding assays, whereas, in pulmonary microvascular endothelial cells, NEU1 overexpression strongly impacted global gene expression, increased T cell adhesion to endothelial monolayers, and disrupted endothelial capillary-like tube formation. NEU1 overexpression in fibroblasts provoked increased levels of collagen types I and III, substantial changes in global gene expression, and accelerated degradation of matrix metalloproteinase-14. Intratracheal instillation of NEU1 encoding, but not control adenovirus, induced lymphocyte accumulation in bronchoalveolar lavage samples and lung tissues and elevations of pulmonary transforming growth factor-β and collagen. The lymphocytes were predominantly T cells, with CD8(+) cells exceeding CD4(+) cells by nearly twofold. These combined data indicate that elevated NEU1 expression alters functional activities of distinct lung cell types in vitro and recapitulates lymphocytic infiltration and collagen accumulation in vivo, consistent with mechanisms implicated in lung fibrosis.

  6. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses

    International Nuclear Information System (INIS)

    Ma, Jane; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Cohen, Joel M.; Demokritou, Philip; Castranova, Vincent

    2015-01-01

    Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO 2 ) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO 2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague–Dawley rats were exposed to CeO 2 or CeO 2 coated with a nano layer of amorphous SiO 2 (aSiO 2 /CeO 2 ) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO 2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15 mg/kg), CeO 2 but not aSiO 2 /CeO 2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1 day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO 2 (high dose at 3.5 mg/kg) treatment at 28 days post-exposure. aSiO 2 coating significantly reduced CeO 2 -induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO 2 /CeO 2 -exposed lungs up to 3 days after exposure, suggesting that aSiO 2 dissolved off the CeO 2 core, and some of the CeO 2 was transformed to CePO 4 with time. These results demonstrate that aSiO 2 coating reduce CeO 2 -induced inflammation, phospholipidosis and fibrosis. - Highlights: • Both CeO 2 and aSiO 2 /CeO 2 particles were detected in the respective particle-exposed lungs. • The

  7. Mesoporous carbon nanomaterials induced pulmonary surfactant inhibition, cytotoxicity, inflammation and lung fibrosis.

    Science.gov (United States)

    Chen, Yunan; Yang, Yi; Xu, Bolong; Wang, Shunhao; Li, Bin; Ma, Juan; Gao, Jie; Zuo, Yi Y; Liu, Sijin

    2017-12-01

    Environmental exposure and health risk upon engineered nanomaterials are increasingly concerned. The family of mesoporous carbon nanomaterials (MCNs) is a rising star in nanotechnology for multidisciplinary research with versatile applications in electronics, energy and gas storage, and biomedicine. Meanwhile, there is mounting concern on their environmental health risks due to the growing production and usage of MCNs. The lung is the primary site for particle invasion under environmental exposure to nanomaterials. Here, we studied the comprehensive toxicological profile of MCNs in the lung under the scenario of moderate environmental exposure. It was found that at a low concentration of 10μg/mL MCNs induced biophysical inhibition of natural pulmonary surfactant. Moreover, MCNs at similar concentrations reduced viability of J774A.1 macrophages and lung epithelial A549 cells. Incubating with nature pulmonary surfactant effectively reduced the cytotoxicity of MCNs. Regarding the pro-inflammatory responses, MCNs activated macrophages in vitro, and stimulated lung inflammation in mice after inhalation exposure, associated with lung fibrosis. Moreover, we found that the size of MCNs played a significant role in regulating cytotoxicity and pro-inflammatory potential of this nanomaterial. In general, larger MCNs induced more pronounced cytotoxic and pro-inflammatory effects than their smaller counterparts. Our results provided valuable information on the toxicological profile and environmental health risks of MCNs, and suggested that fine-tuning the size of MCNs could be a practical precautionary design strategy to increase safety and biocompatibility of this nanomaterial. Copyright © 2017. Published by Elsevier B.V.

  8. Technical modification enabling pulmonary valve-sparing repair of a severely hypoplastic pulmonary annulus in patients with tetralogy of Fallot.

    Science.gov (United States)

    Ito, Hiroki; Ota, Noritaka; Murata, Masaya; Tosaka, Yuko; Ide, Yujiro; Tachi, Maiko; Sugimoto, Ai; Sakamoto, Kisaburo

    2013-06-01

    Although pulmonary valve-sparing repair is preferable for patients with tetralogy of Fallot, the repair of very small pulmonary valves is challenging. The present study evaluates our modification for preserving severely hypoplastic pulmonary valves in patients with tetralogy of Fallot. Sixty-eight consecutive patients who underwent complete repair of a tetralogy of Fallot between 2005 and 2011 were retrospectively reviewed. Patients with pulmonary atresia, absence of a pulmonary valve, atrioventricular septal defect and/or subarterial ventricular septal defect were excluded. There were 19 (28%) patients with a severely hypoplastic pulmonary annulus determined by preoperative echocardiography (z-score -4 group. In the z tetralogy of Fallot could not be applied in all patients, this strategy enabled acceptable growth of the valve annulus, with only mild stenosis during the early to mid-term follow-up. This modification seems to be an option, even for a very small pulmonary valve.

  9. Lung-specific loss of α3 laminin worsens bleomycin-induced pulmonary fibrosis.

    Science.gov (United States)

    Morales-Nebreda, Luisa I; Rogel, Micah R; Eisenberg, Jessica L; Hamill, Kevin J; Soberanes, Saul; Nigdelioglu, Recep; Chi, Monica; Cho, Takugo; Radigan, Kathryn A; Ridge, Karen M; Misharin, Alexander V; Woychek, Alex; Hopkinson, Susan; Perlman, Harris; Mutlu, Gokhan M; Pardo, Annie; Selman, Moises; Jones, Jonathan C R; Budinger, G R Scott

    2015-04-01

    Laminins are heterotrimeric proteins that are secreted by the alveolar epithelium into the basement membrane, and their expression is altered in extracellular matrices from patients with pulmonary fibrosis. In a small number of patients with pulmonary fibrosis, we found that the normal basement membrane distribution of the α3 laminin subunit was lost in fibrotic regions of the lung. To determine if these changes play a causal role in the development of fibrosis, we generated mice lacking the α3 laminin subunit specifically in the lung epithelium by crossing mice expressing Cre recombinase driven by the surfactant protein C promoter (SPC-Cre) with mice expressing floxed alleles encoding the α3 laminin gene (Lama3(fl/fl)). These mice exhibited no developmental abnormalities in the lungs up to 6 months of age, but, compared with control mice, had worsened mortality, increased inflammation, and increased fibrosis after the intratracheal administration of bleomycin. Similarly, the severity of fibrosis induced by an adenovirus encoding an active form of transforming growth factor-β was worse in mice deficient in α3 laminin in the lung. Taken together, our results suggest that the loss of α3 laminin in the lung epithelium does not affect lung development, but plays a causal role in the development of fibrosis in response to bleomycin or adenovirally delivered transforming growth factor-β. Thus, we speculate that the loss of the normal basement membrane organization of α3 laminin that we observe in fibrotic regions from the lungs of patients with pulmonary fibrosis contributes to their disease progression.

  10. Molecular Mechanisms of Nanosized Titanium Dioxide–Induced Pulmonary Injury in Mice

    Science.gov (United States)

    Sang, Xuezi; Cui, Yaling; Wang, Xiaochun; Gui, Suxin; Tan, Danlin; Zhu, Min; Zhao, Xiaoyang; Sheng, Lei; Wang, Ling; Hong, Fashui; Tang, Meng

    2013-01-01

    The pulmonary damage induced by nanosized titanium dioxide (nano-TiO2) is of great concern, but the mechanism of how this damage may be incurred has yet to be elucidated. Here, we examined how multiple genes may be affected by nano-TiO2 exposure to contribute to the observed damage. The results suggest that long-term exposure to nano-TiO2 led to significant increases in inflammatory cells, and levels of lactate dehydrogenase, alkaline phosphate, and total protein, and promoted production of reactive oxygen species and peroxidation of lipid, protein and DNA in mouse lung tissue. We also observed nano-TiO2 deposition in lung tissue via light and confocal Raman microscopy, which in turn led to severe pulmonary inflammation and pneumonocytic apoptosis in mice. Specifically, microarray analysis showed significant alterations in the expression of 847 genes in the nano-TiO2-exposed lung tissues. Of 521 genes with known functions, 361 were up-regulated and 160 down-regulated, which were associated with the immune/inflammatory responses, apoptosis, oxidative stress, the cell cycle, stress responses, cell proliferation, the cytoskeleton, signal transduction, and metabolic processes. Therefore, the application of nano-TiO2 should be carried out cautiously, especially in humans. PMID:23409001

  11. Early detection of interstitial pneumonia by 67Ga-citrate scintigraphy

    International Nuclear Information System (INIS)

    Ito, Shinsaku; Mikami, Riichiro; Ryujin, Yoshitada

    1985-01-01

    In this paper we report our recent experience indicating usefulness of 67 Ga-citrate scintigraphy in 4 cases with inflammatory pulmonary diseases. These cases showed abnormal pulmonary 67 Ga uptake with normal chest radiographs. The first case with malignant lymphoma and the second one with lung cancer suffered from pulmonary infection following secondary immuno-insufficiency due to radiotherapy and chemotherapy. Pneumocystis carinii was suspected as causative agent in the first case, and gram negative bacilli in the second case. The third case with lung cancer developed radiation pneumonia after radiotherapy. The fourth case with acute bronchitis developed drug induced interstitial pneumonia presumably due to minocycline administration. It is concluded that 67 Ga-citrate scintigraphy is more sensitive for early detection of interstitial pneumonia than routine chest radiography. (author)

  12. Pulmonary rehabilitation in lung transplant candidates.

    Science.gov (United States)

    Li, Melinda; Mathur, Sunita; Chowdhury, Noori A; Helm, Denise; Singer, Lianne G

    2013-06-01

    While awaiting lung transplantation, candidates may participate in pulmonary rehabilitation to improve their fitness for surgery. However, pulmonary rehabilitation outcomes have not been systematically evaluated in lung transplant candidates. This investigation was a retrospective cohort study of 345 pre-transplant pulmonary rehabilitation participants who received a lung transplant between January 2004 and June 2009 and had available pre-transplant exercise data. Data extracted included: 6-minute walk tests at standard intervals; exercise training details; health-related quality-of-life (HRQL) measures; and early post-transplant outcomes. Paired t-tests were used to examine changes in the 6MW distance (6MWD), exercise training volume and HRQL during the pre-transplant period. We evaluated the association between pre-transplant 6MWD and transplant hospitalization outcomes. The final 6MWD prior to transplantation was only 15 m less than the listing 6MWD (n = 200; p = 0.002). Exercise training volumes increased slightly from the start of the pulmonary rehabilitation program until transplant: treadmill, increase 0.69 ml/kg/min (n = 238; p volumes are well preserved among lung transplant candidates participating in pulmonary rehabilitation, even in the setting of severe, progressive lung disease. Participants with greater exercise capacity prior to transplantation have more favorable early post-transplant outcomes. Copyright © 2013 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  13. Hypoxia, leukocytes, and the pulmonary circulation.

    Science.gov (United States)

    Stenmark, Kurt R; Davie, Neil J; Reeves, John T; Frid, Maria G

    2005-02-01

    Data are rapidly accumulating in support of the idea that circulating monocytes and/or mononuclear fibrocytes are recruited to the pulmonary circulation of chronically hypoxic animals and that these cells play an important role in the pulmonary hypertensive process. Hypoxic induction of monocyte chemoattractant protein-1, stromal cell-derived factor-1, vascular endothelial growth factor-A, endothelin-1, and tumor growth factor-beta(1) in pulmonary vessel wall cells, either directly or indirectly via signals from hypoxic lung epithelial cells, may be a critical first step in the recruitment of circulating leukocytes to the pulmonary circulation. In addition, hypoxic stress appears to induce release of increased numbers of monocytic progenitor cells from the bone marrow, and these cells may have upregulated expression of receptors for the chemokines produced by the lung circulation, which thus facilitates their specific recruitment to the pulmonary site. Once present, macrophages/fibrocytes may exert paracrine effects on resident pulmonary vessel wall cells stimulating proliferation, phenotypic modulation, and migration of resident fibroblasts and smooth muscle cells. They may also contribute directly to the remodeling process through increased production of collagen and/or differentiation into myofibroblasts. In addition, they could play a critical role in initiating and/or supporting neovascularization of the pulmonary artery vasa vasorum. The expanded vasa network may then act as a conduit for further delivery of circulating mononuclear cells to the pulmonary arterial wall, creating a feedforward loop of pathological remodeling. Future studies will need to determine the mechanisms that selectively induce leukocyte/fibrocyte recruitment to the lung circulation under hypoxic conditions, their direct role in the remodeling process via production of extracellular matrix and/or differentiation into myofibroblasts, their impact on the phenotype of resident smooth muscle

  14. Significance of measurement of serum fibrosis markers (HA, LN, P III P, IV C) in patients with pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Zhou Mingxian

    2006-01-01

    Objective: To study the clinical significance of determination of serum fibrosis markers in patients with pulmonary tuberculosis. Methods: Serum hyaluronic acid (HA), laminin (LN), procollagen III peptide (P III P) and Type IV collagen (IV C) contents were determined with RIA in 128 patients with pulmonary tuberculosis both before and after treatment as well as in 40 controls. Results: Before treatment, the serum contents of the four markers in the patients were significantly higher than those in the controls (P 0.05). Decreases of the levels in treatment failures were not significant and the levels remained significantly higher than those in controls (P<0.01 or P<0.05). Conclusion: Determination of serum fibrosis markers levels in patients with pulmonary tuberculosis is valuable for early diagnosis as well as for evaluation of the effect of chemotherapy. (authors)

  15. Acute and chronic effects of treatment with mesenchymal stromal cells on LPS-induced pulmonary inflammation, emphysema and atherosclerosis development.

    Directory of Open Access Journals (Sweden)

    P Padmini S J Khedoe

    Full Text Available COPD is a pulmonary disorder often accompanied by cardiovascular disease (CVD, and current treatment of this comorbidity is suboptimal. Systemic inflammation in COPD triggered by smoke and microbial exposure is suggested to link COPD and CVD. Mesenchymal stromal cells (MSC possess anti-inflammatory capacities and MSC treatment is considered an attractive treatment option for various chronic inflammatory diseases. Therefore, we investigated the immunomodulatory properties of MSC in an acute and chronic model of lipopolysaccharide (LPS-induced inflammation, emphysema and atherosclerosis development in APOE*3-Leiden (E3L mice.Hyperlipidemic E3L mice were intranasally instilled with 10 μg LPS or vehicle twice in an acute 4-day study, or twice weekly during 20 weeks Western-type diet feeding in a chronic study. Mice received 0.5x106 MSC or vehicle intravenously twice after the first LPS instillation (acute study or in week 14, 16, 18 and 20 (chronic study. Inflammatory parameters were measured in bronchoalveolar lavage (BAL and lung tissue. Emphysema, pulmonary inflammation and atherosclerosis were assessed in the chronic study.In the acute study, intranasal LPS administration induced a marked systemic IL-6 response on day 3, which was inhibited after MSC treatment. Furthermore, MSC treatment reduced LPS-induced total cell count in BAL due to reduced neutrophil numbers. In the chronic study, LPS increased emphysema but did not aggravate atherosclerosis. Emphysema and atherosclerosis development were unaffected after MSC treatment.These data show that MSC inhibit LPS-induced pulmonary and systemic inflammation in the acute study, whereas MSC treatment had no effect on inflammation, emphysema and atherosclerosis development in the chronic study.

  16. The zinc transporter ZIP12 regulates the pulmonary vascular response to chronic hypoxia.

    Science.gov (United States)

    Zhao, Lan; Oliver, Eduardo; Maratou, Klio; Atanur, Santosh S; Dubois, Olivier D; Cotroneo, Emanuele; Chen, Chien-Nien; Wang, Lei; Arce, Cristina; Chabosseau, Pauline L; Ponsa-Cobas, Joan; Frid, Maria G; Moyon, Benjamin; Webster, Zoe; Aldashev, Almaz; Ferrer, Jorge; Rutter, Guy A; Stenmark, Kurt R; Aitman, Timothy J; Wilkins, Martin R

    2015-08-20

    The typical response of the adult mammalian pulmonary circulation to a low oxygen environment is vasoconstriction and structural remodelling of pulmonary arterioles, leading to chronic elevation of pulmonary artery pressure (pulmonary hypertension) and right ventricular hypertrophy. Some mammals, however, exhibit genetic resistance to hypoxia-induced pulmonary hypertension. We used a congenic breeding program and comparative genomics to exploit this variation in the rat and identified the gene Slc39a12 as a major regulator of hypoxia-induced pulmonary vascular remodelling. Slc39a12 encodes the zinc transporter ZIP12. Here we report that ZIP12 expression is increased in many cell types, including endothelial, smooth muscle and interstitial cells, in the remodelled pulmonary arterioles of rats, cows and humans susceptible to hypoxia-induced pulmonary hypertension. We show that ZIP12 expression in pulmonary vascular smooth muscle cells is hypoxia dependent and that targeted inhibition of ZIP12 inhibits the rise in intracellular labile zinc in hypoxia-exposed pulmonary vascular smooth muscle cells and their proliferation in culture. We demonstrate that genetic disruption of ZIP12 expression attenuates the development of pulmonary hypertension in rats housed in a hypoxic atmosphere. This new and unexpected insight into the fundamental role of a zinc transporter in mammalian pulmonary vascular homeostasis suggests a new drug target for the pharmacological management of pulmonary hypertension.

  17. Role of tumor necrosis factor in flavone acetic acid-induced tumor vasculature shutdown

    International Nuclear Information System (INIS)

    Mahadevan, V.; Malik, S.T.; Meager, A.; Fiers, W.; Lewis, G.P.; Hart, I.R.

    1990-01-01

    Flavone acetic acid (FAA), a novel investigational antitumor agent, has been shown to cause early vascular shutdown in several experimental murine tumors, and this phenomenon is believed to be crucial to FAA's antitumor effects. However, the basis of this FAA-induced tumor vascular shutdown is unknown. In this study a radioactive tracer-clearance technique has been used as an objective indication of tumor blood flow to show that i.p. administered FAA induces a progressive and sustained reduction in blood flow in a colon 26 tumor growing s.c. in syngeneic mice. As early as 1 h after administration, there was a significant increase in the t1/2 clearance value for intratumorally injected 133Xe, reaching a peak at 3 h (117.3 +/- 36.4 versus 7.8 +/- 0.85 min for controls). Significant inhibition of blood flow was still apparent 48 h after a single injection of drug. This FAA-induced vascular shutdown was virtually abolished in tumor-bearing mice pretreated with an antiserum against tumor necrosis factor, while no such effect was observed in controls pretreated with nonimmune serum (t1/2 of 10.8 +/- 1.2 versus 65.6 +/- 8.0 min for controls). Furthermore, in vitro FAA was seen to induce tumor necrosis factor secretion from murine peritoneal cells and splenocytes. These studies suggest that FAA-induced tumor vascular shutdown in the colon 26 tumor is mediated by tumor necrosis factor

  18. Branched chain amino acid profile in early chronic kidney disease

    Directory of Open Access Journals (Sweden)

    M Anil Kumar

    2012-01-01

    Full Text Available The nutritional status in chronic kidney disease (CKD patients is a predictor of prognosis during the first period of dialysis. Serum albumin is the most commonly used nutritional marker. Another index is plasma amino acid profile. Of these, the plasma levels of branched chain amino acids (BCAA, especially valine and leucine, correlate well with nutritional status. Plasma BCAAs were evaluated along with albumin and C-reactive protein in 15 patients of early stages of CKD and 15 age- and sex-matched healthy controls. A significant decrease in plasma valine, leucine and albumin levels was observed in CKD patients when compared with the controls (P <0.05. No significant difference in C-reactive protein (CRP levels was observed between the two groups. Malnutrition seen in our CKD patients in the form of hypoalbuminemia and decreased concentrations of BCAA points to the need to evaluate the nutritional status in the early stages itself. Simple measures in the form of amino acid supplementation should be instituted early to decrease the morbidity and mortality before start of dialysis in these patients.

  19. Erythropoietin Attenuates Pulmonary Vascular Remodeling in Experimental Pulmonary Arterial Hypertension through Interplay between Endothelial Progenitor Cells and Heme Oxygenase

    OpenAIRE

    van Loon, Rosa Laura E; Bartelds, Beatrijs; Wagener, Frank A D T G; Affara, Nada; Mohaupt, Saffloer; Wijnberg, Hans; Pennings, Sebastiaan W C; Takens, Janny; Berger, Rolf M F

    2015-01-01

    BACKGROUND: Pulmonary arterial hypertension (PAH) is a pulmonary vascular disease with a high mortality, characterized by typical angio-proliferative lesions. Erythropoietin (EPO) attenuates pulmonary vascular remodeling in PAH. We postulated that EPO acts through mobilization of endothelial progenitor cells (EPCs) and activation of the cytoprotective enzyme heme oxygenase-1 (HO-1). METHODS: Rats with flow-associated PAH, resembling pediatric PAH, were treated with HO-1 inducer EPO in the pre...

  20. Erythropoietin Attenuates Pulmonary Vascular Remodeling in Experimental Pulmonary Arterial Hypertension through Interplay between Endothelial Progenitor Cells and Heme Oxygenase

    OpenAIRE

    van Loon, Rosa Laura E.; Bartelds, Beatrijs; Wagener, Frank A. D. T. G.; Affara, Nada; Mohaupt, Saffloer; Wijnberg, Hans; Pennings, Sebastiaan W. C.; Takens, Janny; Berger, Rolf M. F.

    2015-01-01

    Background Pulmonary arterial hypertension (PAH) is a pulmonary vascular disease with a high mortality, characterized by typical angio-proliferative lesions. Erythropoietin (EPO) attenuates pulmonary vascular remodeling in PAH. We postulated that EPO acts through mobilization of endothelial progenitor cells (EPCs) and activation of the cytoprotective enzyme heme oxygenase-1 (HO-1). Methods Rats with flow-associated PAH, resembling pediatric PAH, were treated with HO-1 inducer EPO i...

  1. Validation of a model for predicting smear-positive active pulmonary tuberculosis in patients with initial acid-fast bacilli smear-negative sputum

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Jun-Jun [Department of Chest Medicine, Section of Thoracic Imaging, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City (China); Chia Nan University of Pharmacy and Science, Tainan (China); Meiho University, Pingtung (China); Pingtung Christian Hospital, Pingtung (China); Heng Chun Christian Hospital, Pingtung (China)

    2018-01-15

    The objective of this study was to develop a predictive model for final smear-positive (SP) active pulmonary tuberculosis (aPTB) in patients with initial negative acid fast bacilli (AFB) sputum smears (iSN-SP-aPTB) based on high-resolution computed tomography (HRCT). Eighty (126, 21) patients of iSN-SP-aPTB and 402 (459, 876) patients of non-initial positive acid fast bacilli (non-iSP) pulmonary disease without iSN-SP-aPTB were included in a derivation (validation, prospective) cohort. HRCT characteristics were analysed, and multivariable regression and receiver operating characteristic (ROC) curve analysis was performed to develop a score predictive of iSN-SP-aPTB. The derivation cohort showed clusters of nodules/mass of the right upper lobe or left upper lobe were independent predictors of iSN-SP-aPTB, while bronchiectasis in the right middle lobe or left lingual lobe were negatively associated with iSN-SP-aPTB. A predictive score for iSN-SP-aPTB based on these findings was tested in the validation and prospective cohorts. With an ideal cut-off score = 1, the sensitivity, specificity, positive predictive value, and negative predictive value of the prediction model were 87.5% (90%, 90.5%), 99% (97.1%, 98.4%), 94.6% (81.3%, 57.5%), and 97.6% (97%, 99.8%) in the derivation (validation, prospective) cohorts, respectively. The model may help identify iSN-SP-aPTB among patients with non-iSP pulmonary diseases. circle Smear-positive active pulmonary tuberculosis that is initial smear-negative (iSN-SP-aPTB) is infectious. (orig.)

  2. Prevalence and prediction of exercise-induced oxygen desaturation in patients with chronic obstructive pulmonary disease.

    Science.gov (United States)

    van Gestel, A J R; Clarenbach, C F; Stöwhas, A C; Teschler, S; Russi, E W; Teschler, H; Kohler, M

    2012-01-01

    Previous studies with small sample sizes reported contradicting findings as to whether pulmonary function tests can predict exercise-induced oxygen desaturation (EID). To evaluate whether forced expiratory volume in one second (FEV(1)), resting oxygen saturation (SpO(2)) and diffusion capacity for carbon monoxide (DLCO) are predictors of EID in chronic obstructive pulmonary disease (COPD). We measured FEV(1), DLCO, SpO(2) at rest and during a 6-min walking test as well as physical activity by an accelerometer. A drop in SpO(2) of >4 to daily physical activity (r = -0.31, p = 0.008). EID is highly prevalent among patients with COPD and can be predicted by FEV(1). EID seems to be associated with impaired daily physical activity which supports its clinical importance. Copyright © 2012 S. Karger AG, Basel.

  3. Induced resistance by cresotic acid (3-hydroxy-4-methyl methylbenzoic acid) against wilt disease of melon and cotton

    International Nuclear Information System (INIS)

    Dong, H.; Li, Z.; Zhang, D.; Li, W.; Tang, W.

    2004-01-01

    Cresotic acid (3-hydroxy-4-methylbenzoic acid) was proved be active in controlling wilt diseases of melon and cotton plants grown in the house. Soil drench with 200-1000 ppm cresotic acid induced 62-77 %, 69-79 % and 50-60 % protection against Fusarium oxysporum f.sp melonis (FOM) in melon, Fusarium oxysporum f.sp vasinfectum (FOV) and Verticillium dahliae in cotton, respectively. Since no inhibitory effect of cresotic acid on mycelial growth of these three fungual pathogens was observed in vitro, it is suggested that control of these wilt diseases with cresotic acid resulted from induced resistance. Cresotic acid induced resistance in melon plants not only against race 0, race 1, race 2 and race 1,2, but also against a mixture of these four races of FOM, suggesting a non-race- specific resistance. Level of induced resistance by cresotic acid against FOM depended on inoculum pressure applied to melon plants. At 25 day after inoculation with FOM, percentage protection induced by cresotic acid under low inoculum pressure retained a level of 51 %, while under high inoculum pressure percentage protection decreased to only 10 %. High concentrations of cresotic acid significantly reduced plant growth. Reduction in fresh weight of melon (36-51%) and cotton (42-71%) was obtained with 500-1000 ppm cresotic acid, while only less than 8% reduction occurred with 100-200 ppm. (author)

  4. Congenital pulmonary arteriovenous malformation: a rare cause of ...

    African Journals Online (AJOL)

    Pulmonary arteriovenous malformation (PAVM) is a rare condition in which there is abnormal connection between pulmonary arteries and veins. The disorder usually appears in late childhood or early adult life, with dyspnea on exertion, clubbing or cyanosis. We present two patients with severe cyanosis and their work-up ...

  5. Pulmonary hypertension and isolated right heart failure complicating amiodarone induced hyperthyroidism.

    Science.gov (United States)

    Wong, Sean-Man; Tse, Hung-Fat; Siu, Chung-Wah

    2012-03-01

    Hyperthyroidism is a common side effect encountered in patients prescribed long-term amiodarone therapy for cardiac arrhythmias. We previously studied 354 patients prescribed amiodarone in whom the occurrence of hyperthyroidism was associated with major adverse cardiovascular events including heart failure, myocardial infarction, ventricular arrhythmias, stroke and even death [1]. We now present a case of amiodarone-induced hyperthyroidism complicated by isolated right heart failure and pulmonary hypertension that resolved with treatment of hyperthyroidism. Detailed quantitative echocardiography enables improved understanding of the haemodynamic mechanisms underlying the condition. Copyright © 2011 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  6. Ketamine and Pulmonary Oedema-Report of Two Cases

    Directory of Open Access Journals (Sweden)

    S Parthasarathy

    2009-01-01

    Full Text Available Perioperative pulmonary oedema is one of the most challenging complications faced by anaesthesiologists. In most of the instances, coronary artery disease, valvular heart diseases, hypertension may precipitate pulmonary oedema due to increased hydrostatic pressure while acid aspiration, airway obstruction may cause it due to increased vascular permeability. In a few instances, acute pulmonary oedema can present in an otherwise healthy patient to cause diagnostic difficulties. We report two such cases of intra operative pulmonary oedema with the use of ketamine which were identified and managed successfully. The most probable cause is also described.

  7. Influence of Pulmonary Hypertension on Patients With Idiopathic Pulmonary Fibrosis Awaiting Lung Transplantation.

    Science.gov (United States)

    Hayes, Don; Black, Sylvester M; Tobias, Joseph D; Kirkby, Stephen; Mansour, Heidi M; Whitson, Bryan A

    2016-01-01

    The influence of varying levels of pulmonary hypertension (PH) on survival in idiopathic pulmonary fibrosis is not well defined. The United Network for Organ Sharing database was queried from 2005 to 2013 to identify first-time lung transplant candidates listed for lung transplantation who were tracked from waitlist entry date until death or censoring to determine the influence of PH on patients with advanced lung disease. Using data for right heart catheterization measurements, mild PH was defined as mean pulmonary artery pressure of 25 mm Hg or more, and severe as 35 mm Hg or more. Of 6,657 idiopathic pulmonary fibrosis patients, 6,651 were used for univariate analysis, 6,126 for Kaplan-Meier survival function, 6,013 for multivariate Cox models, and 5,186 (mild PH) and 2,014 (severe PH) for propensity score matching, respectively. Univariate Cox proportional hazards analysis found significant differences in survival for mild PH (hazard ratio [HR] 1.689, 95% confidence interval [CI]: 1.434 to 1.988, p idiopathic pulmonary fibrosis awaiting lung transplantation, so referral should be considered early in the disease course. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  8. The flavonoid quercetin reverses pulmonary hypertension in rats.

    Directory of Open Access Journals (Sweden)

    Daniel Morales-Cano

    Full Text Available Quercetin is a dietary flavonoid which exerts vasodilator, antiplatelet and antiproliferative effects and reduces blood pressure, oxidative status and end-organ damage in humans and animal models of systemic hypertension. We hypothesized that oral quercetin treatment might be protective in a rat model of pulmonary arterial hypertension. Three weeks after injection of monocrotaline, quercetin (10 mg/kg/d per os or vehicle was administered for 10 days to adult Wistar rats. Quercetin significantly reduced mortality. In surviving animals, quercetin decreased pulmonary arterial pressure, right ventricular hypertrophy and muscularization of small pulmonary arteries. Classic biomarkers of pulmonary arterial hypertension such as the downregulated expression of lung BMPR2, Kv1.5, Kv2.1, upregulated survivin, endothelial dysfunction and hyperresponsiveness to 5-HT were unaffected by quercetin. Quercetin significantly restored the decrease in Kv currents, the upregulation of 5-HT2A receptors and reduced the Akt and S6 phosphorylation. In vitro, quercetin induced pulmonary artery vasodilator effects, inhibited pulmonary artery smooth muscle cell proliferation and induced apoptosis. In conclusion, quercetin is partially protective in this rat model of PAH. It delayed mortality by lowering PAP, RVH and vascular remodeling. Quercetin exerted effective vasodilator effects in isolated PA, inhibited cell proliferation and induced apoptosis in PASMCs. These effects were associated with decreased 5-HT2A receptor expression and Akt and S6 phosphorylation and partially restored Kv currents. Therefore, quercetin could be useful in the treatment of PAH.

  9. Pulmonary circulatory effects of norepinephrine in newborn infants with persistent pulmonary hypertension.

    Science.gov (United States)

    Tourneux, Pierre; Rakza, Thameur; Bouissou, Antoine; Krim, Gérard; Storme, Laurent

    2008-09-01

    To evaluate the respiratory and the pulmonary circulatory effects of norepinephrine in newborn infants with persistent pulmonary hypertension (PPHN)-induced cardiac dysfunction. Inclusion criteria were: 1) Newborn infants >35 weeks gestational age; 2) PPHN treated with inhaled nitric oxide; and 3) symptoms of circulatory failure despite adequate fluid resuscitation. Lung function and pulmonary hemodynamic variables assessed with Doppler echocardiography were recorded prospectively before and after starting norepinephrine. Eighteen newborns were included (gestational age: 37 +/- 3 weeks; birth weight: 2800 +/- 700 g). After starting norepinephrine, systemic pressure and left ventricular output increased respectively from 33 +/- 4 mm Hg to 49 +/- 4 mm Hg and from 172 +/- 79 mL/kg/min to 209+/-90 mL/kg/min (P ventilatory variables have not been changed, the post-ductal transcutaneous arterial oxygen saturation increased from 89% +/- 1% to 95% +/- 4%, whereas the oxygen need decreased from 51% +/- 24% to 41% +/- 20% (P newborn infants with PPHN through a decrease in pulmonary/systemic artery pressure ratio and improved cardiac performance.

  10. Chronic Thromboembolic Pulmonary Hypertension: Pearls and Pitfalls of Diagnosis.

    Science.gov (United States)

    Memon, Humna Abid; Lin, C Huie; Guha, Ashrith

    2016-01-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by chronic obstruction of major pulmonary arteries by organized thromboembolic material. Untreated CTEPH can result in pulmonary hypertension and eventually right heart failure, yet it is the only form of pulmonary hypertension that is potentially curable with surgical or catheter-based intervention. While early diagnosis is key to increasing the likelihood of successful treatment, CTEPH remains largely underdiagnosed. This article reviews the role of echocardiogram, ventilation/perfusion scan, and other available modalities in the diagnosis of CTEPH.

  11. Gene expression of cyclin-dependent kinase inhibitors and effect of heparin on their expression in mice with hypoxia-induced pulmonary hypertension

    International Nuclear Information System (INIS)

    Yu Lunyin; Quinn, Deborah A.; Garg, Hari G.; Hales, Charles A.

    2006-01-01

    The balance between cell proliferation and cell quiescence is regulated delicately by a variety of mediators, in which cyclin-dependent kinases (CDK) and CDK inhibitors (CDKI) play a very important role. Heparin which inhibits pulmonary artery smooth muscle cell (PASMC) proliferation increases the levels of two CDKIs, p21 and p27, although only p27 is important in inhibition of PASMC growth in vitro and in vivo. In the present study we investigated the expression profile of all the cell cycle regulating genes, including all seven CDKIs (p21, p27, p57, p15, p16, p18, and p19), in the lungs of mice with hypoxia-induced pulmonary hypertension. A cell cycle pathway specific gene microarray was used to profile the 96 genes involved in cell cycle regulation. We also observed the effect of heparin on gene expression. We found that (a) hypoxic exposure for two weeks significantly inhibited p27 expression and stimulated p18 activity, showing a 98% decrease in p27 and 81% increase in p18; (b) other CDKIs, p21, p57, p15, p16, and p19 were not affected significantly in response to hypoxia; (c) heparin treatment restored p27 expression, but did not influence p18; (d) ERK1/2 and p38 were mediators in heparin upregulation of p27. This study provides an expression profile of cell cycle regulating genes under hypoxia in mice with hypoxia-induced pulmonary hypertension and strengthens the previous finding that p27 is the only CDKI involved in heparin regulation of PASMC proliferation and hypoxia-induced pulmonary hypertension

  12. Keratinocyte Growth Factor Gene Electroporation into Skeletal Muscle as a Novel Gene Therapeutic Approach for Elastase-Induced Pulmonary Emphysema in Mice

    International Nuclear Information System (INIS)

    Tobinaga, Shuichi; Matsumoto, Keitaro; Nagayasu, Takeshi; Furukawa, Katsuro; Abo, Takafumi; Yamasaki, Naoya; Tsuchiya, Tomoshi; Miyazaki, Takuro; Koji, Takehiko

    2015-01-01

    Pulmonary emphysema is a progressive disease with airspace destruction and an effective therapy is needed. Keratinocyte growth factor (KGF) promotes pulmonary epithelial proliferation and has the potential to induce lung regeneration. The aim of this study was to determine the possibility of using KGF gene therapy for treatment of a mouse emphysema model induced by porcine pancreatic elastase (PPE). Eight-week-old BALB/c male mice treated with intra-tracheal PPE administration were transfected with 80 μg of a recombinant human KGF (rhKGF)-expressing FLAG-CMV14 plasmid (pKGF-FLAG gene), or with the pFLAG gene expressing plasmid as a control, into the quadriceps muscle by electroporation. In the lung, the expression of proliferating cell nuclear antigen (PCNA) was augmented, and surfactant protein A (SP-A) and KGF receptor (KGFR) were co-expressed in PCNA-positive cells. Moreover, endogenous KGF and KGFR gene expression increased significantly by pKGF-FLAG gene transfection. Arterial blood gas analysis revealed that the PaO 2 level was not significantly reduced on day 14 after PPE instillation with pKGF-FLAG gene transfection compared to that of normal mice. These results indicated that KGF gene therapy with electroporation stimulated lung epithelial proliferation and protected depression of pulmonary function in a mouse emphysema model, suggesting a possible method of treating pulmonary emphysema

  13. Measurements of pulmonary vascular permeability with PET and gallium-68 transferrin

    International Nuclear Information System (INIS)

    Mintun, M.A.; Dennis, D.R.; Welch, M.J.; Mathias, C.J.; Schuster, D.P.

    1987-01-01

    We quantified pulmonary vascular permeability with positron emission tomography (PET) and gallium-68-( 68 Ga) labeled transferrin. Six dogs with oleic acid-induced lung injury confined to the left lower lobe, two normal human volunteers, and two patients with the adult respiratory distress syndrome (ARDS) were evaluated. Lung tissue-activity measurements were obtained from sequential 1-5 min PET scans collected over 60 min, after in vivo labeling of transferrin through intravenous administration of [ 68 Ga]citrate. Blood-activity measurements were measured from simultaneously obtained peripheral blood samples. A forward rate constant describing the movement of transferrin from pulmonary vascular to extravascular compartments, the pulmonary transcapillary escape rate (PTCER), was then calculated from these data using a two-compartment model. In dogs, PTCER was 49 +/- 18 in normal lung tissue and 485 +/- 114 10(-4) min-1 in injured lung. A repeat study in these dogs 4 hr later showed no significant change. Values in the human subjects showed similarly marked differences between normal and abnormal lung tissue. We conclude that PET will be a useful method of evaluating vascular permeability changes after acute lung injury

  14. Differential pulmonary and cardiac effects of pulmonary exposure to a panel of particulate matter-associated metals

    International Nuclear Information System (INIS)

    Wallenborn, J. Grace; Schladweiler, Mette J.; Richards, Judy H.; Kodavanti, Urmila P.

    2009-01-01

    Biological mechanisms underlying the association between particulate matter (PM) exposure and increased cardiovascular health effects are under investigation. Water-soluble metals reaching systemic circulation following pulmonary exposure are likely exerting a direct effect. However, it is unclear whether specific PM-associated metals may be driving this. We hypothesized that exposure to equimolar amounts of five individual PM-associated metals would cause differential pulmonary and cardiac effects. We exposed male WKY rats (14 weeks old) via a single intratracheal instillation (IT) to saline or 1 μmol/kg body weight of zinc, nickel, vanadium, copper, or iron in sulfate form. Responses were analyzed 4, 24, 48, or 96 h after exposure. Pulmonary effects were assessed by bronchoalveolar lavage fluid levels of total cells, macrophages, neutrophils, protein, albumin, and activities of lactate dehydrogenase, γ-glutamyl transferase, and n-acetyl glucosaminidase. Copper induced earlier pulmonary injury/inflammation, while zinc and nickel produced later effects. Vanadium or iron exposure induced minimal pulmonary injury/inflammation. Zinc, nickel, or copper increased serum cholesterol, red blood cells, and white blood cells at different time points. IT of nickel and copper increased expression of metallothionein-1 (MT-1) in the lung. Zinc, nickel, vanadium, and iron increased hepatic MT-1 expression. No significant changes in zinc transporter-1 (ZnT-1) expression were noted in the lung or liver; however, zinc increased cardiac ZnT-1 at 24 h, indicating a possible zinc-specific cardiac effect. Nickel exposure induced an increase in cardiac ferritin 96 h after IT. This data set demonstrating metal-specific cardiotoxicity is important in linking metal-enriched anthropogenic PM sources with adverse health effects.

  15. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Sawada Keisuke

    2012-03-01

    Full Text Available Abstract Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.

  16. Decision support tool for early differential diagnosis of acute lung injury and cardiogenic pulmonary edema in medical critically ill patients.

    Science.gov (United States)

    Schmickl, Christopher N; Shahjehan, Khurram; Li, Guangxi; Dhokarh, Rajanigandha; Kashyap, Rahul; Janish, Christopher; Alsara, Anas; Jaffe, Allan S; Hubmayr, Rolf D; Gajic, Ognjen

    2012-01-01

    At the onset of acute hypoxic respiratory failure, critically ill patients with acute lung injury (ALI) may be difficult to distinguish from those with cardiogenic pulmonary edema (CPE). No single clinical parameter provides satisfying prediction. We hypothesized that a combination of those will facilitate early differential diagnosis. In a population-based retrospective development cohort, validated electronic surveillance identified critically ill adult patients with acute pulmonary edema. Recursive partitioning and logistic regression were used to develop a decision support tool based on routine clinical information to differentiate ALI from CPE. Performance of the score was validated in an independent cohort of referral patients. Blinded post hoc expert review served as gold standard. Of 332 patients in a development cohort, expert reviewers (κ, 0.86) classified 156 as having ALI and 176 as having CPE. The validation cohort had 161 patients (ALI = 113, CPE = 48). The score was based on risk factors for ALI and CPE, age, alcohol abuse, chemotherapy, and peripheral oxygen saturation/Fio(2) ratio. It demonstrated good discrimination (area under curve [AUC] = 0.81; 95% CI, 0.77-0.86) and calibration (Hosmer-Lemeshow [HL] P = .16). Similar performance was obtained in the validation cohort (AUC = 0.80; 95% CI, 0.72-0.88; HL P = .13). A simple decision support tool accurately classifies acute pulmonary edema, reserving advanced testing for a subset of patients in whom satisfying prediction cannot be made. This novel tool may facilitate early inclusion of patients with ALI and CPE into research studies as well as improve and rationalize clinical management and resource use.

  17. Pulmonary capillary recruitment in response to hypoxia in healthy humans: a possible role for hypoxic pulmonary venoconstriction?

    DEFF Research Database (Denmark)

    Taylor, Bryan J; Kjaergaard, Jesper; Snyder, Eric M

    2011-01-01

    We examined mechanisms by which hypoxia may elicit pulmonary capillary recruitment in humans. On separate occasions, twenty-five healthy adults underwent exposure to intravenous saline infusion (30 ml/kg ∼ 15 min) or 17-h normobaric hypoxia ( [FIO2 = 12.5%). Cardiac output (Q) and pulmonary...... capillary blood volume (Vc) were measured before and after saline infusion and hypoxic-exposure by a rebreathing method. Pulmonary artery systolic pressure (sPpa) and left ventricular (LV) diastolic function were assessed before and after hypoxic-exposure via echocardiography. Saline infusion increased Q......Ppa and LV diastolic function. In conclusion, hypoxia-induced pulmonary capillary recruitment in humans is only partly accounted for by changes in Q, sPpa and LV diastolic function. We speculate that hypoxic pulmonary venoconstriction may play a role in such recruitment....