WorldWideScience

Sample records for acid-activated urea transporter

  1. Brucella abortus ure2 region contains an acid-activated urea transporter and a nickel transport system

    Directory of Open Access Journals (Sweden)

    García-Lobo Juan M

    2010-04-01

    Full Text Available Abstract Background Urease is a virulence factor that plays a role in the resistance of Brucella to low pH conditions, both in vivo and in vitro. Brucella contains two separate urease gene clusters, ure1 and ure2. Although only ure1 codes for an active urease, ure2 is also transcribed, but its contribution to Brucella biology is unknown. Results Re-examination of the ure2 locus showed that the operon includes five genes downstream of ureABCEFGDT that are orthologs to a nikKMLQO cluster encoding an ECF-type transport system for nickel. ureT and nikO mutants were constructed and analyzed for urease activity and acid resistance. A non-polar ureT mutant was unaffected in urease activity at neutral pH but showed a significantly decreased activity at acidic pH. It also showed a decreased survival rate to pH 2 at low concentration of urea when compared to the wild type. The nikO mutant had decreased urease activity and acid resistance at all urea concentrations tested, and this phenotype could be reverted by the addition of nickel to the growth medium. Conclusions Based on these results, we concluded that the operon ure2 codes for an acid-activated urea transporter and a nickel transporter necessary for the maximal activity of the urease whose structural subunits are encoded exclusively by the genes in the ure1 operon.

  2. Comparative transport efficiencies of urea analogues through urea transporter UT-B.

    Science.gov (United States)

    Zhao, Dan; Sonawane, N D; Levin, Marc H; Yang, Baoxue

    2007-07-01

    Expression of urea transporter UT-B confers high urea permeability to mammalian erythrocytes. Erythrocyte membranes also permeate various urea analogues, suggesting common transport pathways for urea and structurally similar solutes. In this study, we examined UT-B-facilitated passage of urea analogues and other neutral small solutes by comparing transport properties of wildtype to UT-B-deficient mouse erythrocytes. Stopped-flow light-scattering measurements indicated high UT-B permeability to urea and chemical analogues formamide, acetamide, methylurea, methylformamide, ammonium carbamate, and acrylamide, each with P(s)>5.0 x 10(-6) cm/s at 10 degrees C. UT-B genetic knockout and phloretin treatment of wildtype erythrocytes similarly reduced urea analogue permeabilities. Strong temperature dependencies of formamide, acetamide, acrylamide and butyramide transport across UT-B-null membranes (E(a)>10 kcal/mol) suggested efficient diffusion of these amides across lipid bilayers. Urea analogues dimethylurea, acryalmide, methylurea, thiourea and methylformamide inhibited UT-B-mediated urea transport by >60% in the absence of transmembrane analogue gradients, supporting a pore-blocking mechanism of UT-B inhibition. Differential transport efficiencies of urea and its analogues through UT-B provide insight into chemical interactions between neutral solutes and the UT-B pore.

  3. Urea transporters and sweat response to uremia.

    Science.gov (United States)

    Keller, Raymond W; Bailey, James L; Wang, Yanhua; Klein, Janet D; Sands, Jeff M

    2016-06-01

    In humans, urea is excreted in sweat, largely through the eccrine sweat gland. The urea concentration in human sweat is elevated when compared to blood urea nitrogen. The sweat urea nitrogen (UN) of patients with end-stage kidney disease (ESRD) is increased when compared with healthy humans. The ability to produce sweat is maintained in the overwhelming majority of ESRD patients. A comprehensive literature review found no reports of sweat UN neither in healthy rodents nor in rodent models of chronic kidney disease (CKD). Therefore, this study measured sweat UN concentrations in healthy and uremic rats. Uninephrectomy followed by renal artery ligation was used to remove 5/6 of renal function. Rats were then fed a high-protein diet to induce uremia. Pilocarpine was used to induce sweating. Sweat droplets were collected under oil. Sweat UN was measured with a urease assay. Serum UN was measured using a fluorescent ortho-pthalaldehyde reaction. Immunohistochemistry (IHC) was accomplished with a horseradish peroxidase and diaminobenzidine technique. Sweat UN in uremic rats was elevated greater than two times compared to healthy pair-fed controls (220 ± 17 and 91 ± 15 mmol/L, respectively). Post hoc analysis showed a significant difference between male and female uremic sweat UN (279 ± 38 and 177 ± 11 mmol/L, respectively.) IHC shows, for the first time, the presence of the urea transporters UT-B and UT-A2 in both healthy and uremic rat cutaneous structures. Future studies will use this model to elucidate how rat sweat UN and other solute excretion is altered by commonly prescribed diuretics.

  4. Mathematical modeling of urea transport in the kidney.

    Science.gov (United States)

    Layton, Anita T

    2014-01-01

    Mathematical modeling techniques have been useful in providing insights into biological systems, including the kidney. This article considers some of the mathematical models that concern urea transport in the kidney. Modeling simulations have been conducted to investigate, in the context of urea cycling and urine concentration, the effects of hypothetical active urea secretion into pars recta. Simulation results suggest that active urea secretion induces a "urea-selective" improvement in urine concentrating ability. Mathematical models have also been built to study the implications of the highly structured organization of tubules and vessels in the renal medulla on urea sequestration and cycling. The goal of this article is to show how physiological problems can be formulated and studied mathematically, and how such models may provide insights into renal functions.

  5. Active urea transport in lower vertebrates and mammals.

    Science.gov (United States)

    Bankir, Lise

    2014-01-01

    Some unicellular organisms can take up urea from the surrounding fluids by an uphill pumping mechanism. Several active (energy-dependent) urea transporters (AUTs) have been cloned in these organisms. Functional studies show that active urea transport also occurs in elasmobranchs, amphibians, and mammals. In the two former groups, active urea transport may serve to conserve urea in body fluids in order to balance external high ambient osmolarity or prevent desiccation. In mammals, active urea transport may be associated with the need to either store and/or reuse nitrogen in the case of low nitrogen supply, or to excrete nitrogen efficiently in the case of excess nitrogen intake. There are probably two different families of AUTs, one with a high capacity able to establish only a relatively modest transepithelial concentration difference (renal tubule of some frogs, pars recta of the mammalian kidney, early inner medullary collecting duct in some mammals eating protein-poor diets) and others with a low capacity but able to maintain a high transepithelial concentration difference that has been created by another mechanism or in another organ (elasmobranch gills, ventral skin of some toads, and maybe mammalian urinary bladder). Functional characterization of these transporters shows that some are coupled to sodium (symports or antiports) while others are sodium-independent. In humans, only one genetic anomaly, with a mild phenotype (familial azotemia), is suspected to concern one of these transporters. In spite of abundant functional evidence for such transporters in higher organisms, none have been molecularly identified yet.

  6. Structure and permeation mechanism of a mammalian urea transporter

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Elena J.; Cao, Yu; Enkavi, Giray; Quick, Matthias; Pan, Yaping; Tajkhorshid, Emad; Zhou, Ming (UIUC); (Columbia)

    2012-09-17

    As an adaptation to infrequent access to water, terrestrial mammals produce urine that is hyperosmotic to plasma. To prevent osmotic diuresis by the large quantity of urea generated by protein catabolism, the kidney epithelia contain facilitative urea transporters (UTs) that allow rapid equilibration between the urinary space and the hyperosmotic interstitium. Here we report the first X-ray crystal structure of a mammalian UT, UT-B, at a resolution of 2.36 {angstrom}. UT-B is a homotrimer and each protomer contains a urea conduction pore with a narrow selectivity filter. Structural analyses and molecular dynamics simulations showed that the selectivity filter has two urea binding sites separated by an approximately 5.0 kcal/mol energy barrier. Functional studies showed that the rate of urea conduction in UT-B is increased by hypoosmotic stress, and that the site of osmoregulation coincides with the location of the energy barrier.

  7. Urea Transporter Inhibitors: En Route to New Diuretics

    Science.gov (United States)

    Sands, Jeff M.

    2013-01-01

    Summary A selective urea transporter UT-A1 inhibitor would be a novel type of diuretic, likely with less undesirable side-effects than conventional diureticssince it acts on the last portion of the nephron. Esteva-Font et al. (2013) develop suchan inhibitor by using a clever high-throughput screening assay, and document its selectivity. . PMID:24210002

  8. Evolution of urea transporters in vertebrates: adaptation to urea's multiple roles and metabolic sources.

    Science.gov (United States)

    LeMoine, Christophe M R; Walsh, Patrick J

    2015-06-01

    In the two decades since the first cloning of the mammalian kidney urea transporter (UT-A), UT genes have been identified in a plethora of organisms, ranging from single-celled bacteria to metazoans. In this review, focusing mainly on vertebrates, we first reiterate the multiple catabolic and anabolic pathways that produce urea, then we reconstruct the phylogenetic history of UTs, and finally we examine the tissue distribution of UTs in selected vertebrate species. Our analysis reveals that from an ancestral UT, three homologues evolved in piscine lineages (UT-A, UT-C and UT-D), followed by a subsequent reduction to a single UT-A in lobe-finned fish and amphibians. A later internal tandem duplication of UT-A occurred in the amniote lineage (UT-A1), followed by a second tandem duplication in mammals to give rise to UT-B. While the expected UT expression is evident in excretory and osmoregulatory tissues in ureotelic taxa, UTs are also expressed ubiquitously in non-ureotelic taxa, and in tissues without a complete ornithine-urea cycle (OUC). We posit that non-OUC production of urea from arginine by arginase, an important pathway to generate ornithine for synthesis of molecules such as polyamines for highly proliferative tissues (e.g. testis, embryos), and neurotransmitters such as glutamate for neural tissues, is an important evolutionary driving force for the expression of UTs in these taxa and tissues.

  9. Transgenic Restoration of Urea Transporter A1 Confers Maximal Urinary Concentration in the Absence of Urea Transporter A3.

    Science.gov (United States)

    Klein, Janet D; Wang, Yanhua; Mistry, Abinash; LaRocque, Lauren M; Molina, Patrick A; Rogers, Richard T; Blount, Mitsi A; Sands, Jeff M

    2016-05-01

    Urea has a critical role in urinary concentration. Mice lacking the inner medullary collecting duct (IMCD) urea transporter A1 (UT-A1) and urea transporter A3 (UT-A3) have very low levels of urea permeability and are unable to concentrate urine. To investigate the role of UT-A1 in the concentration of urine, we transgenically expressed UT-A1 in knockout mice lacking UT-A1 and UT-A3 using a construct with a UT-A1 gene that cannot be spliced to produce UT-A3. This construct was inserted behind the original UT-A promoter to yield a mouse expressing only UT-A1 (UT-A1(+/+)/UT-A3(-/-)). Western blot analysis demonstrated UT-A1 in the inner medulla of UT-A1(+/+)/UT-A3(-/-) and wild-type mice, but not in UT-A1/UT-A3 knockout mice, and an absence of UT-A3 in UT-A1(+/+)/UT-A3(-/-) and UT-A1/UT-A3 knockout mice. Immunohistochemistry in UT-A1(+/+)/UT-A3(-/-) mice also showed negative UT-A3 staining in kidney and other tissues and positive UT-A1 staining only in the IMCD. Urea permeability in isolated perfused IMCDs showed basal permeability in the UT-A1(+/+)/UT-A3(-/-) mice was similar to levels in wild-type mice, but vasopressin stimulation of urea permeability in wild-type mice was significantly greater (100% increase) than in UT-A1(+/+)/UT-A3(-/-) mice (8% increase). Notably, basal urine osmolalities in both wild-type and UT-A1(+/+)/UT-A3(-/-) mice increased upon overnight water restriction. We conclude that transgenic expression of UT-A1 restores basal urea permeability to the level in wild-type mice but does not restore vasopressin-stimulated levels of urea permeability. This information suggests that transgenic expression of UT-A1 alone in mice lacking UT-A1 and UT-A3 is sufficient to restore urine-concentrating ability.

  10. Cortisol-sensitive urea transport across the gill basolateral membrane of the gulf toadfish (Opsanus beta).

    Science.gov (United States)

    Rodela, Tamara M; Gilmour, Kathleen M; Walsh, Patrick J; McDonald, M Danielle

    2009-08-01

    Gulf toadfish (Opsanus beta) use a unique pulsatile urea excretion mechanism that allows urea to be voided in large pulses via the periodic insertion or activation of a branchial urea transporter. The precise cellular and subcellular location of the facilitated diffusion mechanism(s) remains unclear. An in vitro basolateral membrane vesicle (BLMV) preparation was used to test the hypothesis that urea movement across the gill basolateral membrane occurs through a cortisol-sensitive carrier-mediated mechanism. Toadfish BLMVs demonstrated two components of urea uptake: a linear element at high external urea concentrations, and a phloretin-sensitive saturable constituent (K(m) = 0.24 mmol/l; V(max) = 6.95 micromol x mg protein(-1) x h(-1)) at low urea concentrations ( 2, further suggestive of carrier-mediated processes. Our data provide evidence that a basolateral urea facilitated transporter accelerates the movement of urea between the plasma and gills to enable the pulsatile excretion of urea. Furthermore, in vivo infusion of cortisol caused a significant 4.3-fold reduction in BLMV urea transport capacity in lab-crowded fish, suggesting that cortisol inhibits the recruitment of urea transporters to the basolateral membrane, which may ultimately affect the size of the urea pulse event in gulf toadfish.

  11. Mice lacking urea transporter UT-B display depression-like behavior.

    Science.gov (United States)

    Li, Xin; Ran, Jianhua; Zhou, Hong; Lei, Tianluo; Zhou, Li; Han, Jingyan; Yang, Baoxue

    2012-02-01

    Urea transporter B is one of urea transporters that selectively transport urea driven by urea gradient across membrane and expressed abundantly in brain. To determine the physiological role of UT-B in brain, UT-B localization, urea concentration, tissue morphology of brain, and behavioral phenotypes were studied in UT-B heterozygous mice via UT-B null mice. UT-B mRNA was expressed in olfactory bulb, cortex, caudate nucleus, hippocampus and hypothalamus of UT-B heterozygous mice. UT-B null mice exhibited depression-like behavior, with urea accumulation, nitric oxide reduction, and selective neuronal nitric oxide synthase level increase in hippocampus. After acute urea loading, the urea level increased, NO production decreased in hippocampus from both types of mice. Moreover, urea level was higher, and NO concentration was lower consistently in UT-B null hippocampus than that in heterozygous hippocampus. In vitro, 25 mM urea inhibited NO production too. Furthermore, UT-B knockout induced a long-lasting notable decrease in regional cerebral blood flow and altered morphology, such as loss of neurons in CA3 region, swelling, and membranous myelin-like structure formation within myelinated and unmyelinated fibers in hippocampus. These results suggest that urea accumulation in the hippocampus induced by UT-B deletion can cause depression-like behavior, which possibly attribute to disturbance in NOS/NO system.

  12. An evaluation of twelve nested models of transperitoneal transport of urea

    DEFF Research Database (Denmark)

    Graff, J; Fugleberg, S; Joffe, P;

    1995-01-01

    Models of transperitoneal urea transport are generally based on the one-compartment assumption, i.e. that the plasma water urea concentration in the peritoneal capillary bed is equal to the plasma water urea concentration in the peripheral veins. The aim of this study was to investigate...... the mechanism(s) of transperitoneal urea transport and to test the one-compartment assumption for urea. A total of 12 nested models were formulated and validated on the basis of experimental results obtained from 23 non-diabetic patients undergoing peritoneal dialysis. The validation procedure demonstrated...... that transperitoneal transport of urea probably involves diffusion, non-lymphatic convection and lymphatic convection. It was furthermore demonstrated that the inclusion of lymphatic convection changes the mass transfer area coefficient considerably. Finally, no deviation from the one-compartment assumption...

  13. Urea transporter proteins as targets for small-molecule diuretics

    Science.gov (United States)

    Esteva-Font, Cristina; Anderson, Marc O.; Verkman, Alan S.

    2016-01-01

    Conventional diuretics such as furosemide and thiazides target salt transporters in kidney tubules, but urea transporters (UTs) have emerged as alternative targets. UTs are a family of transmembrane channels expressed in a variety of mammalian tissues, in particular the kidney. UT knockout mice and humans with UT mutations exhibit reduced maximal urinary osmolality, demonstrating that UTs are necessary for the concentration of urine. Small-molecule screening has identified potent and selective inhibitors of UT-A, the UT protein expressed in renal tubule epithelial cells, and UT-B, the UT protein expressed in vasa recta endothelial cells. Data from UT knockout mice and from rodents administered UT inhibitors support the diuretic action of UT inhibition. The kidney-specific expression of UT-A1, together with high selectivity of the small-molecule inhibitors, means that off-target effects of such small-molecule drugs should be minimal. This Review summarizes the structure, expression and function of UTs, and looks at the evidence supporting the validity of UTs as targets for the development of salt-sparing diuretics with a unique mechanism of action. UT-targeted inhibitors may be useful alone or in combination with conventional diuretics for therapy of various oedemas and hyponatraemias, potentially including those refractory to treatment with current diuretics. PMID:25488859

  14. Differential protein abundance and function of UT-B urea transporters in human colon.

    Science.gov (United States)

    Collins, D; Winter, D C; Hogan, A M; Schirmer, L; Baird, A W; Stewart, G S

    2010-03-01

    Facilitative UT-B urea transporters enable the passage of urea across cell membranes. Gastrointestinal urea transporters are thought to play a significant role in the urea nitrogen salvaging process that occurs between mammalian hosts and their gut bacteria. This study investigated the expression of UT-B urea transporters in different segments of human colon. Immunoblot analysis showed that human colon expressed a 35-kDa glycosylated UT-B protein in the colonic mucosa. The 35-kDa UT-B transporter was predominantly located in plasma membrane-enriched samples (P UT-B transporters were located throughout colonocytes situated in the upper portion of the colonic crypts. Bidirectional trans-epithelial urea transport was significantly greater in the ascending colon than the descending colon (P UT-B protein in different sections of the human colon, strongly correlating to regions that contain the largest populations of intestinal bacteria. This study suggests an important role for UT-B urea transporters in maintaining the symbiotic relationship between humans and their gut bacteria.

  15. Short communication: Assessing urea transport from milk to blood in dairy cows

    NARCIS (Netherlands)

    Spek, J.W.; Dijkstra, J.; Borne, van den J.J.G.C.; Bannink, A.

    2012-01-01

    The concentration of urea in milk (MUC) has emerged as a potentially useful tool to predict urinary N excretion. Various factors may affect the relationship between MUC and urinary N excretion, including transport characteristics of urea from blood to milk and vice versa. The main objective of this

  16. Vasopressin regulation of the renal UT-A3 urea transporter.

    Science.gov (United States)

    Stewart, G S; Thistlethwaite, A; Lees, H; Cooper, G J; Smith, Craig

    2009-03-01

    Facilitative urea transporters in the mammalian kidney play a vital role in the urinary concentrating mechanism. The urea transporters located in the renal inner medullary collecting duct, namely UT-A1 and UT-A3, are acutely regulated by the antidiuretic hormone vasopressin. In this study, we investigated the vasopressin regulation of the basolateral urea transporter UT-A3 using an MDCK-mUT-A3 cell line. Within 10 min, vasopressin stimulates urea flux through UT-A3 transporters already present at the plasma membrane, via a PKA-dependent process. Within 1 h, vasopressin significantly increases UT-A3 localization at the basolateral membrane, causing a further increase in urea transport. While the basic trafficking of UT-A3 to basolateral membranes involves both protein kinase C and calmodulin, its regulation by vasopressin specifically occurs through a casein kinase II-dependent pathway. In conclusion, this study details the effects of vasopressin on UT-A3 urea transporter function and hence its role in regulating urea permeability within the renal inner medullary collecting duct.

  17. Short communication: urea transporter protein UT-B in the bovine parotid gland.

    Science.gov (United States)

    Dix, L; Ward, D T; Stewart, G S

    2013-03-01

    Ruminant nutrition relies upon the symbiotic relationship that exists with microbial populations in the rumen. Urea transported across the ruminal epithelia and secreted by the salivary glands is a key source of nitrogen for microbial growth in the rumen. As ruminal urea transport can be mediated by specific UT-B urea transporters, this study investigated whether UT-B urea transporters were also present in the bovine salivary gland. Western blotting experiments detected only small amounts of UT-B protein in whole-cell lysate from the bovine parotid gland. In contrast, strong 32 to 34 and 40 kDa UT-B proteins were detected in parotid plasma membrane-enriched protein, showing the importance of using enriched samples. These signals were also detected in rumen and correspond to bovine UT-B1 and UT-B2 urea transporters, respectively. Further immunolocalization studies identified that these proteins were located in the ductal system of the parotid gland. This study, therefore, confirmed the presence of UT-B urea transporter protein in the bovine parotid salivary gland.

  18. Urearetics: a small molecule screen yields nanomolar potency inhibitors of urea transporter UT-B.

    Science.gov (United States)

    Levin, Marc H; de la Fuente, Ricardo; Verkman, A S

    2007-02-01

    Functional studies in knockout mice indicate a critical role for urea transporters (UTs) in the urinary concentrating mechanism and in renal urea clearance. However, potent and specific urea transport blockers have not been available. Here, we used high-throughput screening to discover high-affinity, small molecule inhibitors of the UT-B urea transporter. A collection of 50,000 diverse, drug-like compounds was screened using a human erythrocyte lysis assay based on UT-B-facilitated acetamide transport. Primary screening yielded approximately 30 UT-B inhibitors belonging to the phenylsulfoxyoxazole, benzenesulfonanilide, phthalazinamine, and aminobenzimidazole chemical classes. Screening of approximately 700 structurally similar analogs gave many active compounds, the most potent of which inhibited UT-B urea transport with an EC50 of approximately 10 nM, and approximately 100% inhibition at higher concentrations. Phenylsulfoxyoxazoles and phthalazinamines also blocked rodent UT-B and had good UT-B vs. UT-A specificity. The UT-B inhibitors did not reduce aquaporin-1 (AQP1)-facilitated water transport. In AQP1-null erythrocytes, "chemical UT-B knockout" by UT-B inhibitors reduced by approximately 3-fold UT-B-mediated water transport, supporting an aqueous pore pathway through UT-B. UT-B inhibitors represent a new class of diuretics, "urearetics," which are predicted to increase renal water and solute clearance in water-retaining states.

  19. Ubiquitination regulates the plasma membrane expression of renal UT-A urea transporters.

    Science.gov (United States)

    Stewart, Gavin S; O'Brien, Jennifer H; Smith, Craig P

    2008-07-01

    The renal UT-A urea transporters UT-A1, UT-A2, and UT-A3 are known to play an important role in the urinary concentrating mechanism. The control of the cellular localization of UT-A transporters is therefore vital to overall renal function. In the present study, we have investigated the effect of ubiquitination on UT-A plasma membrane expression in Madin-Darby canine kidney (MDCK) cell lines expressing each of the three renal UT-A transporters. Inhibition of the ubiquitin-proteasome pathway caused an increase in basal transepithelial urea flux across MDCK-rat (r)UT-A1 and MDCK-mouse (m)UT-A2 monolayers (P UT-A transporter expression in the plasma membrane (P UT-A3 expression in the plasma membrane (P UT-A urea transporters, but that this is not the mechanism primarily used by vasopressin to produce its physiological effects.

  20. Epac regulates UT-A1 to increase urea transport in inner medullary collecting ducts.

    Science.gov (United States)

    Wang, Yanhua; Klein, Janet D; Blount, Mitsi A; Martin, Christopher F; Kent, Kimilia J; Pech, Vladimir; Wall, Susan M; Sands, Jeff M

    2009-09-01

    Urea plays a critical role in the concentration of urine, thereby regulating water balance. Vasopressin, acting through cAMP, stimulates urea transport across rat terminal inner medullary collecting ducts (IMCD) by increasing the phosphorylation and accumulation at the apical plasma membrane of UT-A1. In addition to acting through protein kinase A (PKA), cAMP also activates Epac (exchange protein activated by cAMP). In this study, we tested whether the regulation of urea transport and UT-A1 transporter activity involve Epac in rat IMCD. Functional analysis showed that an Epac activator significantly increased urea permeability in isolated, perfused rat terminal IMCD. Similarly, stimulating Epac by adding forskolin and an inhibitor of PKA significantly increased urea permeability. Incubation of rat IMCD suspensions with the Epac activator significantly increased UT-A1 phosphorylation and its accumulation in the plasma membrane. Furthermore, forskolin-stimulated cAMP significantly increased ERK 1/2 phosphorylation, which was not prevented by inhibiting PKA, indicating that Epac mediated this phosphorylation of ERK 1/2. Inhibition of MEK 1/2 phosphorylation decreased the forskolin-stimulated UT-A1 phosphorylation. Taken together, activation of Epac increases urea transport, accumulation of UT-A1 at the plasma membrane, and UT-A1 phosphorylation, the latter of which is mediated by the MEK-ERK pathway.

  1. Modulation of sheep ruminal urea transport by ammonia and pH.

    Science.gov (United States)

    Lu, Zhongyan; Stumpff, Friederike; Deiner, Carolin; Rosendahl, Julia; Braun, Hannah; Abdoun, Khalid; Aschenbach, Jörg R; Martens, Holger

    2014-09-01

    Ruminal fermentation products such as short-chain fatty acids (SCFA) and CO2 acutely stimulate urea transport across the ruminal epithelium in vivo, whereas ammonia has inhibitory effects. Uptake and signaling pathways remain obscure. The ruminal expression of SLC14a1 (UT-B) was studied using polymerase chain reaction (PCR). The functional short-term effects of ammonia on cytosolic pH (pHi) and ruminal urea transport across native epithelia were investigated using pH-sensitive microelectrodes and via flux measurements in Ussing chambers. Two variants (UT-B1 and UT-B2) could be fully sequenced from ovine ruminal cDNA. Functionally, transport was passive and modulated by luminal pH in the presence of SCFA and CO2, rising in response to luminal acidification to a peak value at pH 5.8 and dropping with further acidification, resulting in a bell-shaped curve. Presence of ammonia reduced the amplitude, but not the shape of the relationship between urea flux and pH, so that urea flux remained maximal at pH 5.8. Effects of ammonia were concentration dependent, with saturation at 5 mmol/l. Clamping the transepithelial potential altered the inhibitory potential of ammonia on urea flux. Ammonia depolarized the apical membrane and acidified pHi, suggesting that, at physiological pH (urea transport. We conclude that transport of urea across the ruminal epithelium involves proteins subject to rapid modulation by manipulations that alter pHi and the cytosolic concentration of NH4 (+). Implications for epithelial and ruminal homeostasis are discussed.

  2. Mechanisms of molecular transport through the urea channel of Helicobacter pylori

    Science.gov (United States)

    McNulty, Reginald; Ulmschneider, Jakob P.; Luecke, Hartmut; Ulmschneider, Martin B.

    2013-12-01

    Helicobacter pylori survival in acidic environments relies on cytoplasmic hydrolysis of gastric urea into ammonia and carbon dioxide, which buffer the pathogen’s periplasm. Urea uptake is greatly enhanced and regulated by HpUreI, a proton-gated inner membrane channel protein essential for gastric survival of H. pylori. The crystal structure of HpUreI describes a static snapshot of the channel with two constriction sites near the center of the bilayer that are too narrow to allow passage of urea or even water. Here we describe the urea transport mechanism at atomic resolution, revealed by unrestrained microsecond equilibrium molecular dynamics simulations of the hexameric channel assembly. Two consecutive constrictions open to allow conduction of urea, which is guided through the channel by interplay between conserved residues that determine proton rejection and solute selectivity. Remarkably, HpUreI conducts water at rates equivalent to aquaporins, which might be essential for efficient transport of urea at small concentration gradients.

  3. Effects of dietary fibre and protein on urea transport across the cecal mucosa of piglets.

    Science.gov (United States)

    Stumpff, F; Lodemann, U; Van Kessel, A G; Pieper, R; Klingspor, S; Wolf, K; Martens, H; Zentek, J; Aschenbach, J R

    2013-12-01

    In ruminants, gastrointestinal recycling of urea is acutely enhanced by fibre-rich diets that lead to high ruminal concentration of short chain fatty acids (SCFA), while high ammonia has inhibitory effects. This study attempted to clarify if urea flux to the porcine cecum is similarly regulated. Thirty-two weaned piglets were fed diets containing protein (P) of poor prececal digestibility and fibre (F) at high (H) or low levels (L) in a 2 × 2 factorial design. After slaughter, cecal content was analyzed and the cecal mucosa incubated in Ussing chambers to measure the effect of pH, SCFA and NH4 (+) on the flux rates of urea, short-circuit current (I sc) and tissue conductance (G t). NH4 (+) significantly enhanced I sc (from 0.5 ± 0.2 to 1.2 ± 0.1 μEq cm(-2) h(-1)). No acute effects of SCFA or ammonia on urea flux were observed. Tissue conductance was significantly lower in the high dietary fibre groups irrespective of the protein content. Only the HP-LF group emerged as different from all others in terms of urea flux (74 ± 6 versus 53 ± 3 nmol cm(-2) h(-1)), associated with higher cecal ammonia concentration and reduced fecal consistency. The data suggest that as in the rumen, uptake of ammonia by the cecum may involve electrogenic transport of the ionic form (NH4 (+)). In contrast to findings in the rumen, neither a high fibre diet nor acute addition of SCFA enhanced urea transport across the pig cecum. Instead, a HP-LF diet had stimulatory effects. A potential role for urea recycling in stabilizing luminal pH is discussed.

  4. Thienoquinolins exert diuresis by strongly inhibiting UT-A urea transporters.

    Science.gov (United States)

    Ren, Huiwen; Wang, Yanhua; Xing, Yongning; Ran, Jianhua; Liu, Ming; Lei, Tianluo; Zhou, Hong; Li, Runtao; Sands, Jeff M; Yang, Baoxue

    2014-12-15

    Urea transporters (UT) play an important role in the urine concentration mechanism by mediating intrarenal urea recycling, suggesting that UT inhibitors could have therapeutic use as a novel class of diuretic. Recently, we found a thienoquinolin UT inhibitor, PU-14, that exhibited diuretic activity. The purpose of this study was to identify more potent UT inhibitors that strongly inhibit UT-A isoforms in the inner medullary collecting duct (IMCD). Efficient thienoquinolin UT inhibitors were identified by structure-activity relationship analysis. Urea transport inhibition activity was assayed in perfused rat terminal IMCDs. Diuretic activity of the compound was determined in rats and mice using metabolic cages. The results show that the compound PU-48 exhibited potent UT-A inhibition activity. The inhibition was 69.5% with an IC50 of 0.32 μM. PU-48 significantly inhibited urea transport in perfused rat terminal IMCDs. PU-48 caused significant diuresis in UT-B null mice, which indicates that UT-A is the target of PU-48. The diuresis caused by PU-48 did not change blood Na(+), K(+), or Cl(-) levels or nonurea solute excretion in rats and mice. No toxicity was detected in cells or animals treated with PU-48. The results indicate that thienoquinolin UT inhibitors induce a diuresis by inhibiting UT-A in the IMCD. This suggests that they may have the potential to be developed as a novel class of diuretics with fewer side effects than classical diuretics.

  5. MDM2 E3 ubiquitin ligase mediates UT-A1 urea transporter ubiquitination and degradation.

    Science.gov (United States)

    Chen, Guangping; Huang, Haidong; Fröhlich, Otto; Yang, Yuan; Klein, Janet D; Price, S Russ; Sands, Jeff M

    2008-11-01

    UT-A1 is the primary urea transporter in the apical plasma membrane responsible for urea reabsorption in the inner medullary collecting duct. Although the physiological function of UT-A1 has been well established, the molecular mechanisms that regulate its activity are less well understood. Analysis of the UT-A1 amino acid sequence revealed a potential MDM2 E3 ubiquitin ligase-binding motif in the large intracellular loop of UT-A1, suggesting that UT-A1 urea transporter protein may be regulated by the ubiquitin-proteasome pathway. Here, we report that UT-A1 is ubiquitinated and degraded by the proteasome but not the lysosome proteolytic pathway. Inhibition of proteasome activity causes UT-A1 cell surface accumulation and concomitantly increases urea transport activity. UT-A1 interacts directly with MDM2; the binding site is located in the NH2-terminal p53-binding region of MDM2. MDM2 mediates UT-A1 ubiquitination both in vivo and in vitro. Overexpression of MDM2 promotes UT-A1 degradation. The mechanism is likely to be physiologically important as UT-A1 ubiquitination was identified in kidney inner medullary tissue. The ubiquitin-proteasome degradation pathway provides an important novel mechanism for UT-A1 regulation.

  6. The UT-A1 urea transporter interacts with snapin, a SNARE-associated protein.

    Science.gov (United States)

    Mistry, Abinash C; Mallick, Rickta; Fröhlich, Otto; Klein, Janet D; Rehm, Armin; Chen, Guangping; Sands, Jeff M

    2007-10-12

    The UT-A1 urea transporter mediates rapid transepithelial urea transport across the inner medullary collecting duct and plays a major role in the urinary concentrating mechanism. To transport urea, UT-A1 must be present in the plasma membrane. The purpose of this study was to screen for UT-A1-interacting proteins and to study the interactions of one of the identified potential binding partners with UT-A1. Using a yeast two-hybrid screen of a human kidney cDNA library with the UT-A1 intracellular loop (residues 409-594) as bait, we identified snapin, a ubiquitously expressed SNARE-associated protein, as a novel UT-A1 binding partner. Deletion analysis indicated that the C-terminal coiled-coil domain (H2) of snapin is required for UT-A1 interaction. Snapin binds to the intracellular loop of UT-A1 but not to the N- or C-terminal fragments. Glutathione S-transferase pulldown experiments and co-immunoprecipitation studies verified that snapin interacts with native UT-A1, SNAP23, and syntaxin-4 (t-SNARE partners), indicating that UT-A1 participates with the SNARE machinery in rat kidney inner medulla. Confocal microscopic analysis of immunofluorescent UT-A1 and snapin showed co-localization in both the cytoplasm and in the plasma membrane. When we co-injected UT-A1 with snapin cRNA in Xenopus oocytes, urea influx was significantly increased. In the absence of snapin, the influx was decreased when UT-A1 was combined with t-SNARE components syntaxin-4 and SNAP23. We conclude that UT-A1 may be linked to the SNARE machinery via snapin and that this interaction may be functionally and physiologically important for urea transport.

  7. New advances in urea transporter UT-A1 membrane trafficking.

    Science.gov (United States)

    Chen, Guangping

    2013-05-21

    The vasopressin-regulated urea transporter UT-A1, expressed in kidney inner medullary collecting duct (IMCD) epithelial cells, plays a critical role in the urinary concentrating mechanisms. As a membrane protein, the function of UT-A1 transport activity relies on its presence in the plasma membrane. Therefore, UT-A1 successfully trafficking to the apical membrane of the polarized epithelial cells is crucial for the regulation of urea transport. This review summarizes the research progress of UT-A1 regulation over the past few years, specifically on the regulation of UT-A1 membrane trafficking by lipid rafts, N-linked glycosylation and a group of accessory proteins.

  8. Urea and NaCl regulate UT-A1 urea transporter in opposing directions via TonEBP pathway during osmotic diuresis.

    Science.gov (United States)

    Kim, Yu-Mi; Kim, Wan-Young; Lee, Hyun-Wook; Kim, Jin; Kwon, H Moo; Klein, Janet D; Sands, Jeff M; Kim, Dongun

    2009-01-01

    In our previous studies of varying osmotic diuresis, UT-A1 urea transporter increased when urine and inner medullary (IM) interstitial urea concentration decreased. The purposes of this study were to examine 1) whether IM interstitial tonicity changes with different urine urea concentrations during osmotic dieresis and 2) whether the same result occurs even if the total urinary solute is decreased. Rats were fed a 4% high-salt diet (HSD) or a 5% high-urea diet (HUD) for 2 wk and compared with the control rats fed a regular diet containing 1% NaCl. The urine urea concentration decreased in HSD but increased in HUD. In the IM, UT-A1 and UT-A3 urea transporters, CLC-K1 chloride channel, and tonicity-enhanced binding protein (TonEBP) transcription factor were all increased in HSD and decreased in HUD. Next, rats were fed an 8% low-protein diet (LPD) or a 0.4% low-salt diet (LSD) to decrease the total urinary solute. Urine urea concentration significantly decreased in LPD but significantly increased in LSD. Rats fed the LPD had increased UT-A1 and UT-A3 in the IM base but decreased in the IM tip, resulting in impaired urine concentrating ability. The LSD rats had decreased UT-A1 and UT-A3 in both portions of the IM. CLC-K1 and TonEBP were unchanged by LPD or LSD. We conclude that changes in CLC-K1, UT-A1, UT-A3, and TonEBP play important roles in the renal response to osmotic diuresis in an attempt to minimize changes in plasma osmolality and maintain water homeostasis.

  9. A small molecule screen identifies selective inhibitors of urea transporter UT-A.

    Science.gov (United States)

    Esteva-Font, Cristina; Phuan, Puay-Wah; Anderson, Marc O; Verkman, A S

    2013-10-24

    Urea transporter (UT) proteins, including UT-A in kidney tubule epithelia and UT-B in vasa recta microvessels, facilitate urinary concentrating function. A screen for UT-A inhibitors was developed in MDCK cells expressing UT-A1, water channel aquaporin-1, and YFP-H148Q/V163S. An inwardly directed urea gradient produces cell shrinking followed by UT-A1-dependent swelling, which was monitored by YFP-H148Q/V163S fluorescence. Screening of ~90,000 synthetic small molecules yielded four classes of UT-A1 inhibitors with low micromolar half-maximal inhibitory concentration that fully and reversibly inhibited urea transport by a noncompetitive mechanism. Structure-activity analysis of >400 analogs revealed UT-A1-selective and UT-A1/UT-B nonselective inhibitors. Docking computations based on homology models of UT-A1 suggested inhibitor binding sites. UT-A inhibitors may be useful as diuretics ("urearetics") with a mechanism of action that may be effective in fluid-retaining conditions in which conventional salt transport-blocking diuretics have limited efficacy.

  10. Nanomolar potency and metabolically stable inhibitors of kidney urea transporter UT-B.

    Science.gov (United States)

    Anderson, Marc O; Zhang, Jicheng; Liu, Yan; Yao, Chenjuan; Phuan, Puay-Wah; Verkman, A S

    2012-06-28

    Urea transporters, which include UT-B in kidney microvessels, are potential targets for development of drugs with a novel diuretic ('urearetic') mechanism. We recently identified, by high-throughput screening, a triazolothienopyrimidine UT-B inhibitor, 1, that selectively and reversibly inhibited urea transport with IC(50) = 25.1 nM and reduced urinary concentration in mice ( Yao et al. J. Am. Soc. Nephrol. , in press ). Here, we analyzed 273 commercially available analogues of 1 to establish a structure-activity series and synthesized a targeted library of 11 analogues to identify potent, metabolically stable UT-B inhibitors. The best compound, {3-[4-(1,1-difluoroethyl)benzenesulfonyl]thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidin-5-yl}thiophen-2-ylmethylamine, 3k, had IC(50) of 23 and 15 nM for inhibition of urea transport by mouse and human UT-B, respectively, and ∼40-fold improved in vitro metabolic stability compared to 1. In mice, 3k accumulated in kidney and urine and reduced maximum urinary concentration. Triazolothienopyrimidines may be useful for therapy of diuretic-refractory edema in heart and liver failure.

  11. Modulation of kidney urea transporter UT-A3 activity by alpha2,6-sialylation.

    Science.gov (United States)

    Qian, Xiaoqian; Sands, Jeff M; Song, Xiang; Chen, Guangping

    2016-07-01

    Two urea transporters, UT-A1 and UT-A3, are expressed in the kidney terminal inner medullary collecting duct (IMCD) and are important for the production of concentrated urine. UT-A1, as the largest isoform of all UT-A urea transporters, has gained much attention and been extensively studied; however, the role and the regulation of UT-A3 are less explored. In this study, we investigated UT-A3 regulation by glycosylation modification. A site-directed mutagenesis verified a single glycosylation site in UT-A3 at Asn279. Loss of the glycosylation reduced forskolin-stimulated UT-A3 cell membrane expression and urea transport activity. UT-A3 has two glycosylation forms, 45 and 65 kDa. Using sugar-specific binding lectins, the UT-A3 glycosylation profile was examined. The 45-kDa form was pulled down by lectin concanavalin A (Con A) and Galant husnivalis lectin (GNL), indicating an immature glycan with a high amount of mannose (Man), whereas the 65-kDa form is a mature glycan composed of acetylglucosamine (GlcNAc) and poly-N-acetyllactosame (poly-LacNAc) that was pulled down by wheat germ agglutinin (WGA) and tomato lectin, respectively. Interestingly, the mature form of UT-A3 glycan contains significant amounts of sialic acid. We explored the enzymes responsible for directing UT-A3 sialylation. Sialyltransferase ST6GalI, but not ST3GalIV, catabolizes UT-A3 α2,6-sialylation. Activation of protein kinase C (PKC) by PDB treatment promoted UT-A3 glycan sialylation and membrane surface expression. The PKC inhibitor chelerythrine blocks ST6GalI-induced UT-A3 sialylation. Increased sialylation by ST6GalI increased UT-A3 protein stability and urea transport activity. Collectively, our study reveals a novel mechanism of UT-A3 regulation by ST6GalI-mediated sialylation modification that may play an important role in kidney urea reabsorption and the urinary concentrating mechanism.

  12. Glycoforms of UT-A3 urea transporter with poly-N-acetyllactosamine glycosylation have enhanced transport activity.

    Science.gov (United States)

    Su, Hua; Carter, Conner B; Fröhlich, Otto; Cummings, Richard D; Chen, Guangping

    2012-07-15

    Urea transporters UT-A1 and UT-A3 are both expressed in the kidney inner medulla. However, the function of UT-A3 remains unclear. Here, we found that UT-A3, which comprises only the NH(2)-terminal half of UT-A1, has a higher urea transport activity than UT-A1 in the oocyte and that this difference was associated with differences in N-glycosylation. Heterologously expressed UT-A3 is fully glycosylated with two glycoforms of 65 and 45 kDa. By contrast, UT-A1 expressed in HEK293 cells and oocytes exhibits only a 97-kDa glycosylation form. We further found that N-glycans of UT-A3 contain a large amount of poly-N-acetyllactosamine. This highly glycosylated UT-A3 is more stable and is enriched in lipid raft domains on the cell membrane. Kifunensine, an inhibitor of α-mannosidase that inhibits N-glycan processing beyond high-mannose-type N-glycans, significantly reduced UT-A3 urea transport activity. We then examined the native UT-A1 and UT-A3 glycosylation states from kidney inner medulla and found the ratio of 65 to 45 kDa in UT-A3 is higher than that of 117 to 97 kDa in UT-A1. The highly stable expression of highly glycosylated UT-A3 on the cell membrane in kidney inner medulla suggests that UT-A3 may have an important function in urea reabsorption.

  13. Triazolothienopyrimidine inhibitors of urea transporter UT-B reduce urine concentration.

    Science.gov (United States)

    Yao, Chenjuan; Anderson, Marc O; Zhang, Jicheng; Yang, Baoxue; Phuan, Puay-Wah; Verkman, A S

    2012-07-01

    Urea transport (UT) proteins facilitate the concentration of urine by the kidney, suggesting that inhibition of these proteins could have therapeutic use as a diuretic strategy. We screened 100,000 compounds for UT-B inhibition using an optical assay based on the hypotonic lysis of acetamide-loaded mouse erythrocytes. We identified a class of triazolothienopyrimidine UT-B inhibitors; the most potent compound, UTB(inh)-14, fully and reversibly inhibited urea transport with IC(50) values of 10 nM and 25 nM for human and mouse UT-B, respectively. UTB(inh)-14 competed with urea binding at an intracellular site on the UT-B protein. UTB(inh)-14 exhibited low toxicity and high selectivity for UT-B over UT-A isoforms. After intraperitoneal administration of UTB(inh)-14 in mice to achieve predicted therapeutic concentrations in the kidney, urine osmolality after administration of 1-deamino-8-D-arginine-vasopressin was approximately 700 mosm/kg H(2)O lower in UTB(inh)-14-treated mice than vehicle-treated mice. UTB(inh)-14 also increased urine output and reduced urine osmolality in mice given free access to water. UTB(inh)-14 did not reduce urine osmolality in UT-B knockout mice. In summary, these data provide proof of concept for the potential utility of UT inhibitors to reduce urinary concentration in high-vasopressin, fluid-retaining conditions. The diuretic mechanism of UT inhibitors may complement the action of conventional diuretics, which target sodium transport.

  14. UT-B Urea Transporter Localization in the Bovine Gastrointestinal Tract.

    Science.gov (United States)

    Coyle, J; McDaid, S; Walpole, C; Stewart, Gavin S

    2016-04-01

    Facilitative UT-B urea transporters play an important role in the urea nitrogen salvaging process that occurs in the gastrointestinal tract of mammals, particularly ruminants. Gastrointestinal UT-B transporters have previously been reported in various ruminant species-including cow, sheep and goat. In this present study, UT-B transporter localization was investigated in tissues throughout the bovine gastrointestinal tract. RT-PCR analysis showed that UT-B2 was the predominant UT-B mRNA transcript expressed in dorsal, ventral and cranial ruminal sacs, while alternative UT-B transcripts were present in other gastrointestinal tissues. Immunoblotting analysis detected a strong, glycosylated ~50 kDa UT-B2 protein in all three ruminal sacs. Immunolocalization studies showed that UT-B2 protein was predominantly localized to the plasma membrane of cells in the stratum basale layer of all ruminal sac papillae. In contrast, other UT-B protein staining was detected in the basolateral membranes of the surface epithelial cells lining the abomasum, colon and rectum. Overall, these findings confirm that UT-B2 cellular localization is similar in all ruminal sacs and that other UT-B proteins are located in epithelial cells lining various tissues in the bovine gastrointestinal tract.

  15. Forskolin stimulation promotes urea transporter UT-A1 ubiquitination, endocytosis, and degradation in MDCK cells.

    Science.gov (United States)

    Su, Hua; Carter, Conner B; Laur, Oskar; Sands, Jeff M; Chen, Guangping

    2012-11-01

    The adenylyl cyclase stimulator forskolin (FSK) stimulates UT-A1 phosphorylation, membrane trafficking, and urea transport activity. Here, we found that FSK stimulation induces UT-A1 ubiquitination in UT-A1 Madin-Darby canine kidney (MDCK) cells. This suggests that phosphorylation by FSK also triggers the protein degradation machinery for UT-A1. UT-A1-MDCK cells were treated with 100 μg/ml cycloheximide to inhibit protein synthesis, with or without 10 μM FSK. Total UT-A1 protein abundance was significantly reduced after FSK treatment, concomitantly ubiquitinated UT-A1 was increased. We then specifically investigated the effect of FSK on UT-A1 expressed on the cell plasma membrane. FSK treatment accelerated UT-A1 removal from the cell plasma membrane by increasing UT-A1 endocytosis as judged by biotinylation/MesNa treatment and confocal microscopy. We further found that inhibition of the clathrin-mediated endocytic pathway, but not the caveolin-mediated endocytic pathway, significantly blocks FSK-stimulated UT-A1 endocytosis. The PKA inhibitor H89 and the proteasome inhibitors MG132 and lactacystin reduced FSK-induced membrane UT-A1 reduction. Our study shows that FSK activates the UT-A1 urea transporter and the activation/phosphorylation subsequently triggers the downregulation of UT-A1, which represents an important mechanism for the cell to return to the basal conditions after vasopressin stimulation.

  16. Serosal-to-mucosal urea flux across the isolated ruminal epithelium is mediated via urea transporter-B and aquaporins when Holstein calves are abruptly changed to a moderately fermentable diet.

    Science.gov (United States)

    Walpole, M E; Schurmann, B L; Górka, P; Penner, G B; Loewen, M E; Mutsvangwa, T

    2015-02-01

    Urea transport (UT-B) proteins are known to facilitate urea movement across the ruminal epithelium; however, other mechanisms may be involved as well because inhibiting UT-B does not completely abolish urea transport. Of the aquaporins (AQP), which are a family of membrane-spanning proteins that are predominantly involved in the movement of water, AQP-3, AQP-7, and AQP-10 are also permeable to urea, but it is not clear if they contribute to urea transport across the ruminal epithelium. The objectives of this study were to determine (1) the functional roles of AQP and UT-B in the serosal-to-mucosal urea flux (Jsm-urea) across rumen epithelium; and (2) whether functional adaptation occurs in response to increased diet fermentability. Twenty-five Holstein steer calves (n=5) were assigned to a control diet (CON; 91.5% hay and 8.5% vitamin and mineral supplement) or a medium grain diet (MGD; 41.5% barley grain, 50% hay, and 8.5% vitamin and mineral) that was fed for 3, 7, 14, or 21 d. Calves were killed and ruminal epithelium was collected for mounting in Ussing chambers under short-circuit conditions and for analysis of mRNA abundance of UT-B and AQP-3, AQP-7, and AQP-10. To mimic physiologic conditions, the mucosal buffer (pH 6.2) contained no urea, whereas the serosal buffer (pH 7.4) contained 1 mM urea. The fluxes of (14)C-urea (Jsm-urea; 26 kBq/10 mL) and (3)H-mannitol (Jsm-mannitol; 37 kBq/10 mL) were measured, with Jsm-mannitol being used as an indicator of paracellular or hydrophilic movement. Serosal addition of phloretin (1 mM) was used to inhibit UT-B-mediated urea transport, whereas NiCl2 (1 mM) was used to inhibit AQP-mediated urea transport. Across treatments, the addition of phloretin or NiCl2 reduced the Jsm-urea from 116.5 to 54.0 and 89.5 nmol/(cm(2) × h), respectively. When both inhibitors were added simultaneously, Jsm-urea was further reduced to 36.8 nmol/(cm(2) × h). Phloretin-sensitive and NiCl2-sensitive Jsm-urea were not affected by diet. The

  17. CsNIP2;1 is a Plasma Membrane Transporter from Cucumis sativus that Facilitates Urea Uptake When Expressed in Saccharomyces cerevisiae and Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Lu; Yan, Jiapei; Vatamaniuk, Olena K; Du, Xiangge

    2016-03-01

    Urea is an important source of nitrogen (N) for the growth and development of plants. It occurs naturally in soils, is the major N source in agricultural fertilizers and is an important N metabolite in plants. Therefore, the identification and characterization of urea transporters in higher plants is important for the fundamental understanding of urea-based N nutrition in plants and for designing novel strategies for improving the N-use efficiency of urea based-fertilizers. Progress in this area, however, is hampered due to scarce knowledge of plant urea transporters. From what is known, urea uptake from the soil into plant roots is mediated by two types of transporters: the major intrinsic proteins (MIPs) and the DUR3 orthologs, mediating low- and high-affinity urea transport, respectively. Here we characterized a MIP family member from Cucumis sativus, CsNIP2;1, with regard to its contribution to urea transport. We show that CsNIP2;1 is a plasma membrane transporter that mediates pH-dependent urea uptake when expressed in yeast. We also found that ectopic expression of CsNIP2;1 improves growth of wild-type Arabidopsis thaliana and rescues growth and development of the atdur3-3 mutant on medium with urea as the sole N source. In addition, CsNIP2;1 is transcriptionally up-regulated by N deficiency, urea and NO3 (-). These data and results from the analyses of the pattern of CsNIP2;1 expression in A. thaliana and cucumber suggest that CsNIP2;1 might be involved in multiple steps of urea-based N nutrition, including urea uptake and internal transport during N remobilization throughout seed germination and N delivery to developing tissues.

  18. Salt-sparing diuretic action of a water-soluble urea analog inhibitor of urea transporters UT-A and UT-B in rats.

    Science.gov (United States)

    Cil, Onur; Esteva-Font, Cristina; Tas, Sadik Taskin; Su, Tao; Lee, Sujin; Anderson, Marc O; Ertunc, Mert; Verkman, Alan S

    2015-08-01

    Inhibitors of kidney urea transporter (UT) proteins have potential use as salt-sparing diuretics ('urearetics') with a different mechanism of action than diuretics that target salt transporters. To study UT inhibition in rats, we screened about 10,000 drugs, natural products and urea analogs for inhibition of rat UT-A1. Drug and natural product screening found nicotine, sanguinarine and an indolcarbonylchromenone with IC50 of 10-20 μM. Urea analog screening found methylacetamide and dimethylthiourea (DMTU). DMTU fully and reversibly inhibited rat UT-A1 and UT-B by a noncompetitive mechanism with IC50 of 2-3 mM. Homology modeling and docking computations suggested DMTU binding sites on rat UT-A1. Following a single intraperitoneal injection of 500 mg/kg DMTU, peak plasma concentration was 9 mM with t1/2 of about 10 h, and a urine concentration of 20-40 mM. Rats chronically treated with DMTU had a sustained, reversible reduction in urine osmolality from 1800 to 600 mOsm, a 3-fold increase in urine output, and mild hypokalemia. DMTU did not impair urinary concentrating function in rats on a low protein diet. Compared to furosemide-treated rats, the DMTU-treated rats had greater diuresis and reduced urinary salt loss. In a model of syndrome of inappropriate antidiuretic hormone secretion, DMTU treatment prevented hyponatremia and water retention produced by water-loading in dDAVP-treated rats. Thus, our results establish a rat model of UT inhibition and demonstrate the diuretic efficacy of UT inhibition.

  19. The N-terminal 81-aa fragment is critical for UT-A1 urea transporter bioactivity.

    Science.gov (United States)

    Huang, Haidong; Yang, Yuan; Eaton, Douglas C; Sands, Jeff M; Chen, Guangping

    2010-01-01

    The serine protease, furin, is involved in the activation of a number of proteins most notably epithelial sodium channels (ENaC). The urea transporter UT-A1, located in the kidney inner medullary collecting duct (IMCD), is important for urine concentrating ability. UT-A1's amino acid sequence has a consensus furin cleavage site (RSKR) in the N-terminal region. Despite the putative cleavage site, we find that UT-A1, either from the cytosolic or cell surface pool, is not cleaved by furin in CHO cells. This result was further confirmed by an inability of furin to cleave in vitro an (35)S-labeled UT-A1 or the 126 N-terminal UT-A1 fragment. Functionally, mutation of the furin site (R78A, R81A) does not affect UT-A1 urea transport activity. However, deletion of the 81-aa N-terminal portion does not affect UT-A1 cell surface trafficking, but seriously impair UT-A1 urea transport activity. Our results indicate that UT-A1 maturation and activation does not require furin-dependent cleavage. The N-terminal 81-aa fragment is required for proper UT-A1 urea transport activity, but its effect is not through changing UT-A1 membrane trafficking.

  20. Effects of dietary fibre and protein on urea transport across the cecal mucosa of piglets

    NARCIS (Netherlands)

    Stumpff, F.; Lodemann, U.; Kessel, A.G. van; Pieper, R.; Klingspor, S.; Wolf, K. van der; Martens, H.; Zentek, J.; Aschenbach, J.R.

    2013-01-01

    In ruminants, gastrointestinal recycling of urea is acutely enhanced by fibre-rich diets that lead to high ruminal concentration of short chain fatty acids (SCFA), while high ammonia has inhibitory effects. This study attempted to clarify if urea flux to the porcine cecum is similarly regulated. Thi

  1. Mature N-linked glycans facilitate UT-A1 urea transporter lipid raft compartmentalization.

    Science.gov (United States)

    Chen, Guangping; Howe, Ashley G; Xu, Gang; Fröhlich, Otto; Klein, Janet D; Sands, Jeff M

    2011-12-01

    The UT-A1 urea transporter is a glycoprotein with two different glycosylated forms of 97 and 117 kDa. In this study, we found the 117-kDa UT-A1 preferentially resides in lipid rafts, suggesting that the glycosylation status may interfere with UT-A1 lipid raft trafficking. This was confirmed by a site-directed mutagenesis study in MDCK cells. The nonglycosylated UT-A1 showed reduced localization in lipid rafts. By using sugar-specific binding lectins, we further found that the UT-A1 in nonlipid rafts contained a high amount of mannose, as detected by concanavalin A, while the UT-A1 in lipid rafts was the mature N-acetylglucosamine-containing form, as detected by wheat germ agglutinin. In the inner medulla (IM) of diabetic rats, the more abundant 117-kDa UT-A1 in lipid rafts was the mature glycosylation form, with high amounts of N-acetylglucosamine and sialic acid. In contrast, in the IM of normal rats, the predominant 97-kDa UT-A1 was the form enriched in mannose. Functionally, inhibition of glycosylation by tunicamycin or elimination of the glycosylation sites by mutation significantly reduced UT-A1 activity in oocytes. Taken together, our study reveals a new role of N-linked glycosylation in regulating UT-A1 activity by promoting UT-A1 trafficking into membrane lipid raft subdomains.

  2. Small GTPase Rab14 down-regulates UT-A1 urea transport activity through enhanced clathrin-dependent endocytosis.

    Science.gov (United States)

    Su, Hua; Liu, Bingchen; Fröhlich, Otto; Ma, Heping; Sands, Jeff M; Chen, Guangping

    2013-10-01

    The UT-A1 urea transporter plays an important role in the urinary concentration mechanism. However, the molecular mechanisms regarding UT-A1 trafficking, endocytosis, and degradation are still unclear. In this study, we identified the small GTPase Rab14 as a binding partner to the C terminus of UT-A1 in a yeast 2-hybrid assay. Interestingly, UT-A1 binding is preferential for the GDP-bound inactive form of Rab14. Coinjection of Rab14 in Xenopus oocytes results in a decrease of UT-A1 urea transport activity, suggesting that Rab14 acts as a negative regulator of UT-A1. We subsequently found that Rab14 reduces the cell membrane expression of UT-A1, as evidenced by cell surface biotinylation. This effect is blocked by chlorpromazine, an inhibitor of the clathrin-mediated endocytic pathway, but not by filipin, an inhibitor of the caveolin-mediated endocytic pathway. In kidney, Rab14 is mainly expressed in IMCD epithelial cells with a pattern identical to UT-A1 expression. Consistent with its role in participating in clathrin-mediated endocytosis, Rab14 localizes in nonlipid raft microdomains and codistributes with Rab5, a marker of the clathrin-mediated endocytic pathway. Taken together, our study suggests that Rab14, as a novel UT-A1 partner, may have an important regulatory function for UT-A1 urea transport activity in the kidney inner medulla.

  3. Cloning and functional characterization of a second urea transporter from the kidney of the Atlantic stingray, Dasyatis sabina.

    Science.gov (United States)

    Janech, Michael G; Fitzgibbon, Wayne R; Nowak, Mark W; Miller, Donald H; Paul, Richard V; Ploth, David W

    2006-09-01

    The cloning of cDNAs encoding facilitated urea transporters (UTs) from the kidneys of the elasmobranchs indicates that in these fish renal urea reabsorption occurs, at least in part, by passive processes. The previously described elasmobranch urea transporter clones from shark (shUT) and stingray (strUT-1) differ from each other primarily because of the COOH-terminus of the predicted strUT-1 translation product being extended by 51-amino acid residues compared with shUT. Previously, we noted multiple UT transcripts were present in stingray kidney. We hypothesized that a COOH terminally abbreviated UT isoform, homologous to shUT, would also be present in stingray kidney. Therefore, we used 5'/3' rapid amplification of cDNA ends to identify a 3'UTR-variant (strUT-1a) of the cDNA that encodes (strUT-1), as well as three, 3'UTR-variant cDNAs (strUT-2a,b,c) that encode a second phloretin-sensitive, urea transporter (strUT-2). The 5'UTR and the first 1,132 nucleotides of the predicted coding region of the strUT-2 cDNAs are identical to the strUT-1 cDNAs. The remainder of the coding region contains only five novel nucleotides. The strUT-2 cDNAs putatively encode a 379-amino acid protein, the first 377 amino acids identical to strUT-1 plus 2 additional amino acids. We conclude that 1) a second UT isoform is expressed in the Atlantic stingray and that this isoform is similar in size to the UT previously cloned from the kidney of the dogfish shark, and 2) at least five transcripts encoding the 2 stingray UTs are derived from a single gene product through alternative splicing and polyadenylation.

  4. Expression and localization of a UT-B urea transporter in the human bladder.

    Science.gov (United States)

    Walpole, C; Farrell, A; McGrane, A; Stewart, G S

    2014-11-01

    Facilitative UT-B urea transporters have been shown to play an important role in the urinary concentrating mechanism. Recent studies have now suggested a link between UT-B allelic variation and human bladder cancer risk. UT-B1 protein has been previously identified in the bladder of various mammalian species, but not yet in humans. The aim of the present study was to investigate whether any UT-B protein was present in the human bladder. First, RT-PCR results confirmed that UT-B1 was strongly expressed at the RNA level in the human bladder, whereas UT-B2 was only weakly present. Initial Western blot analysis confirmed that a novel UT-B COOH-terminal antibody detected human UT-B proteins. Importantly, this antibody detected a specific 40- to 45-kDa UT-B signal in human bladder protein. Using a peptide-N-glycosidase F enzyme, this bladder UT-B signal was deglycosylated to a core 30-kDa protein, which is smaller than the predicted size for UT-B1 but similar to many proteins reported to be UT-B1. Finally, immunolocalization experiments confirmed that UT-B protein was strongly expressed throughout all urothelium layers except for the apical membrane of the outermost umbrella cells. In conclusion, these data confirm the presence of UT-B protein within the human bladder. Further studies are now required to determine the precise nature, regulation, and physiological role of this UT-B.

  5. Application of a data assimilation method via an ensemble Kalman filter to reactive urea hydrolysis transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Juxiu Tong; Bill X. Hu; Hai Huang; Luanjin Guo; Jinzhong Yang

    2014-03-01

    With growing importance of water resources in the world, remediations of anthropogenic contaminations due to reactive solute transport become even more important. A good understanding of reactive rate parameters such as kinetic parameters is the key to accurately predicting reactive solute transport processes and designing corresponding remediation schemes. For modeling reactive solute transport, it is very difficult to estimate chemical reaction rate parameters due to complex processes of chemical reactions and limited available data. To find a method to get the reactive rate parameters for the reactive urea hydrolysis transport modeling and obtain more accurate prediction for the chemical concentrations, we developed a data assimilation method based on an ensemble Kalman filter (EnKF) method to calibrate reactive rate parameters for modeling urea hydrolysis transport in a synthetic one-dimensional column at laboratory scale and to update modeling prediction. We applied a constrained EnKF method to pose constraints to the updated reactive rate parameters and the predicted solute concentrations based on their physical meanings after the data assimilation calibration. From the study results we concluded that we could efficiently improve the chemical reactive rate parameters with the data assimilation method via the EnKF, and at the same time we could improve solute concentration prediction. The more data we assimilated, the more accurate the reactive rate parameters and concentration prediction. The filter divergence problem was also solved in this study.

  6. How renal cells handle urea.

    Science.gov (United States)

    Bagnasco, S M

    2000-01-01

    The urine concentration process requires an osmolality gradient along the renal cortico-medullary axis, with highest values in the renal papilla. NaCl and urea are the major solutes in the renal inner medulla, concentrations of urea up to 500-600 mM are found in the rat renal papilla. Urea can diffuse across cell membranes and contributes to balance intracellular and extracellular osmotic equilibrium. However, urea has perturbing effects on enzyme activity, and in concentrations above 300 mM is toxic for renal cultured cells. There is increasing evidence that urea can induce cellular responses distinct from those due to NaCl and other non-permeable solutes, including upregulation of immediate-early genes (IEGs). Urea transport by epithelial and endothelial cells is important for intra-medullary urea recycling and preservation of high urea concentration in the inner medulla. Trans-cellular movement of urea in cells expressing urea transporters may influence intracellular levels of this solute and modulate urea-induced signaling pathways. Regulation of urea transporters expression and activity can therefore be viewed as one aspect of cellular adaptation to urea. We have identified tonicity-responsive transcription as one mechanism regulating expression of the urea transporter UT-A. The short-term and long-term effects of variable extracellular urea concentration on the function of renal cells remain still unclear.

  7. Surface electrocardiogram and action potential in mice lacking urea transporter UT-B.

    Science.gov (United States)

    Meng, Yan; Zhao, Chunyan; Zhang, Xuexin; Zhao, Huashan; Guo, Lirong; Lü, Bin; Zhao, Xuejian; Yang, Baoxue

    2009-05-01

    UT-B is a urea transporter protein expressed in the kidney and in many non-renal tissues including erythrocytes, brain, heart, bladder and the testis. The objective of this study was to determine the phenotype of UT-B deletion in the heart. UT-B expression in the heart was studied in wild-type mice vs UT-B null mice by utilizing RT-PCR and Western blot. A surface electrocardiogram (ECG) recording (lead II) was measured in wild-type mice and UT-B null mice at the ages of 6, 16 and 52 weeks. For the action potential recording, the ventricular myocytes of 16 w mice were isolated and recorded by floating microelectrode method. The sodium current was recorded by the patch clamp technique. RT-PCR and Western blot showed the UT-B expression in the heart of wild-type mice. No UT-B transcript and protein was found in UT-B null mice. The ECG recording showed that the P-R interval was significantly prolonged in UT-B null mice ((43.5 +/- 4.2), (45.5 +/- 6.9) and (43.8 +/- 7.6) ms at ages of 6, 16 and 52 weeks) vs wild-type mice ((38.6 +/- 2.9), (38.7 +/- 5.6) and (38.2 +/- 7.3) ms, PUT-B null mice (52 w old). The amplitude of action potential and V (max) decreased significantly in UT-B null mice ((92.17 +/- 10.56) and (101.89 +/- 9.54) mV/s) vs those in wild-type mice (vs (110.51 +/- 10.38) and (109.53 +/- 10.64) mV/s, PUT-B null mice ((123.83 +/- 11.17) and (195.43 +/- 16.41) ms) vs that in wild-type mice ((108.27 +/- 10.85) and (171.00 +/- 15.53) ms, PUT-B null mice (-8.80 +/- 0.92) nA vs that in wild-type mice ((-5.98 +/- 1.07) nA, PUT-B deletion causes progressive heart block in mice.

  8. Surface electrocardiogram and action potential in mice lacking urea transporter UT-B

    Institute of Scientific and Technical Information of China (English)

    MENG Yan; ZHAO ChunYan; ZHANG XueXin; ZHAO HuaShan; GUO LiRong; Lü Bin; ZHAO XueJian; YANG BaoXue

    2009-01-01

    UT-B is a urea transporter protein expressed in the kidney and in many non-renal tissues including erythrocytes, brain, heart, bladder and the testis. The objective of this study was to determine the phenotype of UT-B deletion in the heart. UT-B expression in the heart was studied in wild-type mice vs UT-B null mice by utilizing RT-PCR and Western blot. A surface electrocardiogram (ECG) recording (lead Ⅱ) was measured in wild-type mice and UT-B null mice at the ages of 6, 16 and 52 weeks. For the action potential recording, the ventricular myocytes of 16 w mice were isolated and recorded by float-ing microelectrode method. The sodium current was recorded by the patch clamp technique. RT-PCR and Western blot showed the UT-B expression in the heart of wild-type mice. No UT-B transcript and protein was found in UT-B null mice. The ECG recording showed that the P-R interval was significantly prolonged in UT-B null mice ((43.5±4.2), (45.5±6.9) and (43.8±7.6) ms at ages of 6, 16 and 52 weeks) vs wild-type mice ((38.6±2.9), (38.7±5.6) and (38.2±7.3) ms, P<0.05). The atrial ventricular heart block type Ⅱ and Ⅲ only appeared in the aging UT-B null mice (52 w old). The amplitude of action potential and Vmax decreased significantly in UT-B null mice ((92.17±10.56) and (101.89±9.54) mV/s) vs those in wild-type mice (vs (110.51±10.38) and (109.53±10.64) mV/s, P<0.05). The action potential duration at 50% and 90% (APD50 and APD90) was significantly prolonged in UT-B null mice ((123.83±11.17) and (195.43±16.41) ms) vs that in wild-type mice ((108.27±10.85) and (171.00±15.53) ms, P<0.05). The maximal sodium current decreased significantly in UT-B null mice (-8.80±0.92) nA vs that in wild-type mice ((-5.98±1.07) nA, P<0.05). These results provide the first evidence that UT-B deletion causes progressive heart block in mice.

  9. Surface electrocardiogram and action potential in mice lacking urea transporter UT-B

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    UT-B is a urea transporter protein expressed in the kidney and in many non-renal tissues including erythrocytes, brain, heart, bladder and the testis. The objective of this study was to determine the phenotype of UT-B deletion in the heart. UT-B expression in the heart was studied in wild-type mice vs UT-B null mice by utilizing RT-PCR and Western blot. A surface electrocardiogram (ECG) recording (lead II) was measured in wild-type mice and UT-B null mice at the ages of 6, 16 and 52 weeks. For the action potential recording, the ventricular myocytes of 16 w mice were isolated and recorded by floating microelectrode method. The sodium current was recorded by the patch clamp technique. RT-PCR and Western blot showed the UT-B expression in the heart of wild-type mice. No UT-B transcript and protein was found in UT-B null mice. The ECG recording showed that the P-R interval was significantly prolonged in UT-B null mice ((43.5 ± 4.2), (45.5 ± 6.9) and (43.8 ± 7.6) ms at ages of 6, 16 and 52 weeks) vs wild-type mice ((38.6 ± 2.9), (38.7 ± 5.6) and (38.2 ± 7.3) ms, P<0.05). The atrial ventricular heart block type II and III only appeared in the aging UT-B null mice (52 w old). The amplitude of action potential and Vmax decreased significantly in UT-B null mice ((92.17 ± 10.56) and (101.89 ± 9.54) mV/s) vs those in wild-type mice (vs (110.51 ± 10.38) and (109.53 ± 10.64) mV/s, P<0.05). The action potential duration at 50% and 90% (APD50 and APD90) was significantly prolonged in UT-B null mice ((123.83 ± 11.17) and (195.43 ± 16.41) ms) vs that in wild-type mice ((108.27 ± 10.85) and (171.00 ± 15.53) ms, P<0.05). The maximal sodium current decreased significantly in UT-B null mice (-8.80 ± 0.92) nA vs that in wild-type mice ((-5.98 ± 1.07) nA, P<0.05). These results provide the first evidence that UT-B deletion causes progressive heart block in mice.

  10. Effects of dietary nitrogen concentration on messenger RNA expression and protein abundance of urea transporter-B and aquaporins in ruminal papillae from lactating Holstein cows

    DEFF Research Database (Denmark)

    Røjen, Betina Amdisen; Poulsen, Søren Brandt; Theil, Peter Kappel;

    2011-01-01

    To test the hypothesis that dietary N concentrations affect gut epithelial urea transport by modifying the expression of urea transporter B (UT-B) and aquaporins (AQP), the mRNA expression and protein abundance of UT-B and AQP3, AQP7, AQP8, and AQP10 were investigated in ruminal papillae from 9 l....... In conclusion, AQP3, 7, and 8 were found to be expressed in bovine rumen papillae. None of the investigated transcripts or proteins correlated to the increased rumen epithelial urea permeability observed with low dietary N concentration.......To test the hypothesis that dietary N concentrations affect gut epithelial urea transport by modifying the expression of urea transporter B (UT-B) and aquaporins (AQP), the mRNA expression and protein abundance of UT-B and AQP3, AQP7, AQP8, and AQP10 were investigated in ruminal papillae from 9...... lactating dairy cows. Ruminal papillae were harvested from cows fed low N (12.9% crude protein) and high N (17.1% crude protein) diets in a crossover design with 21-d periods. The mRNA expression was determined by real-time reverse transcription-PCR and protein abundance by immunoblotting. The m...

  11. Depolymerization of cortical actin inhibits UT-A1 urea transporter endocytosis but promotes forskolin-stimulated membrane trafficking.

    Science.gov (United States)

    Xu, Gang; Su, Hua; Carter, Conner B; Fröhlich, Otto; Chen, Guangping

    2012-04-01

    The cytoskeleton participates in many aspects of transporter protein regulation. In this study, by using yeast two-hybrid screening, we identified the cytoskeletal protein actin as a binding partner with the UT-A1 urea transporter. This suggests that actin plays a role in regulating UT-A1 activity. Actin specifically binds to the carboxyl terminus of UT-A1. A serial mutation study shows that actin binding to UT-A1's carboxyl terminus was abolished when serine 918 was mutated to alanine. In polarized UT-A1-MDCK cells, cortical filamentous (F) actin colocalizes with UT-A1 at the apical membrane and the subapical cytoplasm. In the cell surface, both actin and UT-A1 are distributed in the lipid raft microdomains. Disruption of the F-actin cytoskeleton by latrunculin B resulted in UT-A1 accumulation in the cell membrane as measured by biotinylation. This effect was mainly due to inhibition of UT-A1 endocytosis in both clathrin and caveolin-mediated endocytic pathways. In contrast, actin depolymerization facilitated forskolin-stimulated UT-A1 trafficking to the cell surface. Functionally, depolymerization of actin by latrunculin B significantly increased UT-A1 urea transport activity in an oocyte expression system. Our study shows that cortical F-actin not only serves as a structural protein, but directly interacts with UT-A1 and plays an important role in controlling UT-A1 cell surface expression by affecting both endocytosis and trafficking, therefore regulating UT-A1 bioactivity.

  12. Diuresis and reduced urinary osmolality in rats produced by small-molecule UT-A-selective urea transport inhibitors.

    Science.gov (United States)

    Esteva-Font, Cristina; Cil, Onur; Phuan, Puay-Wah; Su, Tao; Lee, Sujin; Anderson, Marc O; Verkman, A S

    2014-09-01

    Urea transport (UT) proteins of the UT-A class are expressed in epithelial cells in kidney tubules, where they are required for the formation of a concentrated urine by countercurrent multiplication. Here, using a recently developed high-throughput assay to identify UT-A inhibitors, a screen of 50,000 synthetic small molecules identified UT-A inhibitors of aryl-thiazole, γ-sultambenzosulfonamide, aminocarbonitrile butene, and 4-isoxazolamide chemical classes. Structure-activity analysis identified compounds that inhibited UT-A selectively by a noncompetitive mechanism with IC50 down to ∼1 μM. Molecular modeling identified putative inhibitor binding sites on rat UT-A. To test compound efficacy in rats, formulations and administration procedures were established to give therapeutic inhibitor concentrations in blood and urine. We found that intravenous administration of an indole thiazole or a γ-sultambenzosulfonamide at 20 mg/kg increased urine output by 3-5-fold and reduced urine osmolality by ∼2-fold compared to vehicle control rats, even under conditions of maximum antidiuresis produced by 1-deamino-8-D-arginine vasopressin (DDAVP). The diuresis was reversible and showed urea > salt excretion. The results provide proof of concept for the diuretic action of UT-A-selective inhibitors. UT-A inhibitors are first in their class salt-sparing diuretics with potential clinical indications in volume-overload edemas and high-vasopressin-associated hyponatremias.

  13. Structure-activity analysis of thiourea analogs as inhibitors of UT-A and UT-B urea transporters.

    Science.gov (United States)

    Esteva-Font, Cristina; Phuan, Puay-Wah; Lee, Sujin; Su, Tao; Anderson, Marc O; Verkman, A S

    2015-05-01

    Small-molecule inhibitors of urea transporter (UT) proteins in kidney have potential application as novel salt-sparing diuretics. The urea analog dimethylthiourea (DMTU) was recently found to inhibit the UT isoforms UT-A1 (expressed in kidney tubule epithelium) and UT-B (expressed in kidney vasa recta endothelium) with IC50 of 2-3 mM, and was shown to have diuretic action when administered to rats. Here, we measured UT-A1 and UT-B inhibition activity of 36 thiourea analogs, with the goal of identifying more potent and isoform-selective inhibitors, and establishing structure-activity relationships. The analog set systematically explored modifications of substituents on the thiourea including alkyl, heterocycles and phenyl rings, with different steric and electronic features. The analogs had a wide range of inhibition activities and selectivities. The most potent inhibitor, 3-nitrophenyl-thiourea, had an IC50 of ~0.2 mM for inhibition of both UT-A1 and UT-B. Some analogs such as 4-nitrophenyl-thiourea were relatively UT-A1 selective (IC50 1.3 vs. 10 mM), and others such as thioisonicotinamide were UT-B selective (IC50>15 vs. 2.8 mM).

  14. Phosphorylation of UT-A1 urea transporter at serines 486 and 499 is important for vasopressin-regulated activity and membrane accumulation.

    Science.gov (United States)

    Blount, Mitsi A; Mistry, Abinash C; Fröhlich, Otto; Price, S Russ; Chen, Guangping; Sands, Jeff M; Klein, Janet D

    2008-07-01

    The UT-A1 urea transporter plays an important role in the urine concentrating mechanism. Vasopressin (or cAMP) increases urea permeability in perfused terminal inner medullary collecting ducts and increases the abundance of phosphorylated UT-A1, suggesting regulation by phosphorylation. We performed a phosphopeptide analysis that strongly suggested that a PKA consensus site(s) in the central loop region of UT-A1 was/were phosphorylated. Serine 486 was most strongly identified, with other potential sites at serine 499 and threonine 524. Phosphomutation constructs of each residue were made and transiently transfected into LLC-PK1 cells to assay for UT-A1 phosphorylation. The basal level of UT-A1 phosphorylation was unaltered by mutation of these sites. We injected oocytes, assayed [14C]urea flux, and determined that mutation of these sites did not alter basal urea transport activity. Next, we tested the effect of stimulating cAMP production with forskolin. Forskolin increased wild-type UT-A1 and T524A phosphorylation in LLC-PK1 cells and increased urea flux in oocytes. In contrast, the S486A and S499A mutants demonstrated loss of forskolin-stimulated UT-A1 phosphorylation and reduced urea flux. In LLC-PK1 cells, we assessed biotinylated UT-A1. Wild-type UT-A1, S486A, and S499A accumulated in the membrane in response to forskolin. However, in the S486A/S499A double mutant, forskolin-stimulated UT-A1 membrane accumulation and urea flux were totally blocked. We conclude that the phosphorylation of UT-A1 on both serines 486 and 499 is important for activity and that this phosphorylation may be involved in UT-A1 membrane accumulation.

  15. Functional characterization of mouse urea transporters UT-A2 and UT-A3 expressed in purified Xenopus laevis oocyte plasma membranes.

    Science.gov (United States)

    Maciver, Bryce; Smith, Craig P; Hill, Warren G; Zeidel, Mark L

    2008-04-01

    Urea is a small solute synthesized by many terrestrial organisms as part of the catabolism of protein. In mammals it is transported across cellular membranes by specific urea transporter (UT) proteins that are the products of two separate, but closely related genes, referred to as UT-A and UT-B. Three major UT-A isoforms are found in the kidney, namely UT-A1, UT-A2, and UT-A3. UT-A2 is found in the thin, descending limb of the loop of Henle, whereas UT-A1 and UT-A3 are concentrated in the inner medullary collecting duct. UT-A2 and UT-A3 effectively represent two halves of the whole UT-A gene and, when joined together by 73 hydrophilic amino acids, constitute UT-A1. A biophysical characterization of mouse UT-A2 and UT-A3 was undertaken by expression in Xenopus laevis oocytes and subsequent preparation of highly enriched plasma membrane vesicles for use in stopped-flow fluorometry. Both isoforms were found to be highly specific for urea, and did not permeate water, ammonia, or other molecules closely related to urea (formamide, acetamide, methylurea, and dimethylurea). Single transporter flux rates of 46,000 +/- 10,000 and 59,000 +/- 15,000 (means +/- SE) urea molecules/s/channel for UT-A2 and UT-A3, respectively, were obtained. Overall, the UT-A2 and UT-A3 isoforms appear to have identical functional kinetics.

  16. Clinical aspects of urea cycle dysfunction and altered brain energy metabolism on modulation of glutamate receptors and transporters in acute and chronic hyperammonemia.

    Science.gov (United States)

    Natesan, Vijayakumar; Mani, Renuka; Arumugam, Ramakrishnan

    2016-07-01

    In living organisms, nitrogen arise primarily as ammonia (NH3) and ammonium (NH4(+)), which is a main component of the nucleic acid pool and proteins. Although nitrogen is essential for growth and maintenance in animals, but when the nitrogenous compounds exceeds the normal range which can quickly lead to toxicity and death. Urea cycle is the common pathway for the disposal of excess nitrogen through urea biosynthesis. Hyperammonemia is a consistent finding in many neurological disorders including congenital urea cycle disorders, reye's syndrome and acute liver failure leads to deleterious effects. Hyperammonemia and liver failure results in glutamatergic neurotransmission which contributes to the alteration in the function of the glutamate-nitric oxide-cGMP pathway, modulates the important cerebral process. Even though ammonia is essential for normal functioning of the central nervous system (CNS), in particular high concentrations of ammonia exposure to the brain leads to the alterations of glutamate transport by the transporters. Several glutamate transporters have been recognized in the central nervous system and each has a unique physiological property and distribution. The loss of glutamate transporter activity in brain during acute liver failure and hyperammonemia is allied with increased extracellular brain glutamate concentrations which may be conscientious for the cerebral edema and ultimately cell death.

  17. Urea transporters UT-A1 and UT-A3 accumulate in the plasma membrane in response to increased hypertonicity.

    Science.gov (United States)

    Blessing, Nathan W; Blount, Mitsi A; Sands, Jeff M; Martin, Christopher F; Klein, Janet D

    2008-11-01

    The UT-A1 and UT-A3 urea transporters are expressed in the terminal inner medullary collecting duct (IMCD) and play an important role in the production of concentrated urine. We showed that both hyperosmolarity and vasopressin increase urea permeability in perfused rat terminal IMCDs and that UT-A1 and UT-A3 accumulate in the plasma membrane in response to vasopressin. In this study, we investigated whether hyperosmolarity causes UT-A1 and/or UT-A3 to accumulate in the plasma membrane or represents a complimentary stimulatory pathway. Rat IMCD suspensions were incubated in 450 vs. 900 mosM solutions. We biotinylated the IMCD surface proteins, collected, and analyzed them. Membrane accumulation was assessed by Western blotting of the biotinylated protein pool probed with anti-UT-A1 or anti-UT-A3. We studied the effect of NaCl, urea, and sucrose as osmotic agents. Membrane-associated UT-A1 and UT-A3 increased relative to control levels when either NaCl (UT-A1 increased 37 +/- 6%; UT-A3 increased 46 +/- 13%) or sucrose (UT-A1 increased 81 +/- 13%; UT-A3 increased 60 +/- 8%) was used to increase osmolarity. There was no increase in membrane UT-A1 or UT-A3 when urea was added. Analogously, UT-A1 phosphorylation was increased in NaCl- and sucrose- but not in urea-based hyperosmolar solutions. Hypertonicity also increased UT-A3 phosphorylation. We conclude that the increase in the urea permeability in response to hyperosmolarity reflects both UT-A1 and UT-A3 movement to the plasma membrane and may be a direct response to tonicity. Furthermore, this movement is accompanied by, and may require, increased phosphorylation in response to hypertonicity.

  18. Descending thin limb of the intermediate loop expresses both aquaporin 1 and urea transporter A2 in the mouse kidney.

    Science.gov (United States)

    Kim, Wan-Young; Lee, Hyun-Wook; Han, Ki-Hwan; Nam, Sun-Ah; Choi, Arum; Kim, Yong-Kyun; Kim, Jin

    2016-07-01

    A new intermediate type of Henle's loop has been reported that it extends into the inner medulla and turns within the first millimeter beyond the outer medulla. This study aimed to identify the descending thin limb (DTL) of the intermediate loop in the adult C57Bl/6 mouse kidney using aquaporin 1 (AQP1) and urea transporter A2 (UT-A2) antibodies. In the upper part of the inner stripe of the outer medulla (ISOM), AQP1 was expressed strongly in the DTL with type II epithelium of the long loop, but not in type I epithelium of the short loop. The DTL of the intermediate loop exhibited weak AQP1 immunoreactivity. UT-A2 immunoreactivity was not observed in the upper part of any DTL type. AQP1 expression was similar in the upper and middle parts of the ISOM. UT-A2 expression was variable, being expressed strongly in the DTL with type I epithelium of the short loop, but not in type II epithelium of the long loop. In the innermost part of the ISOM, AQP1 was expressed only in type III epithelium of the long loop. UT-A2-positive and UT-A2-negative cells were intermingled in type I epithelium of the intermediate loop, but were not observed in type III epithelium of the long loop. UT-A2-positive DTLs of the intermediate loop extended into the UT-A2/AQP1-negative type I epithelium in the initial part of the inner medulla. These results demonstrate that the DTL of the intermediate loop is composed of type I epithelium and expresses both AQP1 and UT-A2. The functional role of the DTL of the intermediate loop may be distinct from the short or long loops.

  19. Aestivation Induces Changes in the mRNA Expression Levels and Protein Abundance of Two Isoforms of Urea Transporters in the Gills of the African Lungfish, Protopterus annectens

    Science.gov (United States)

    Chng, You R.; Ong, Jasmine L. Y.; Ching, Biyun; Chen, Xiu L.; Hiong, Kum C.; Wong, Wai P.; Chew, Shit F.; Lam, Siew H.; Ip, Yuen K.

    2017-01-01

    The African lungfish, Protopterus annectens, is ammonotelic in water despite being ureogenic. When it aestivates in mucus cocoon on land, ammonia is detoxified to urea. During the maintenance phase of aestivation, urea accumulates in the body, which is subsequently excreted upon arousal. Urea excretion involves urea transporters (UT/Ut). This study aimed to clone and sequence the ut isoforms from the gills of P. annectens, and to test the hypothesis that the mRNA and/or protein expression levels of ut/Ut isoforms could vary in the gills of P. annectens during the induction, maintenance, and arousal phases of aestivation. Two isoforms of ut, ut-a2a and ut-a2b, were obtained from the gills of P. annectens. ut-a2a consisted of 1227 bp and coded for 408 amino acids with an estimated molecular mass of 44.7 kDa, while ut-a2b consisted of 1392 bp and coded for 464 amino acids with an estimated molecular mass of 51.2 kDa. Ut-a2a and Ut-a2b of P. annectens had a closer phylogenetic relationship with Ut/UT of tetrapods than Ut of fishes. While the mRNA expression pattern of ut-a2a and ut-a2b across various tissues of P. annectens differed, the transcript levels of ut-a2a and ut-a2b in the gills were comparable, indicating that they might be equally important for branchial urea excretion during the initial arousal phase of aestivation. During the maintenance phase of aestivation, the transcript level of ut-a2a increased significantly, but the protein abundance of Ut-a2a remained unchanged in the gills of P. annectens. This could be an adaptive feature to prepare for an increase in the production of Ut-a2a upon arousal. Indeed, arousal led to a significant increase in the branchial Ut-a2a protein abundance. Although the transcript level of ut-a2b remained unchanged, there were significant increases in the protein abundance of Ut-a2b in the gills of P. annectens throughout the three phases of aestivation. The increase in the protein abundance of Ut-a2b during the maintenance

  20. Rhesus glycoprotein and urea transporter genes in rainbow trout embryos are upregulated in response to alkaline water (pH 9.7) but not elevated water ammonia.

    Science.gov (United States)

    Sashaw, Jessica; Nawata, Michele; Thompson, Sarah; Wood, Chris M; Wright, Patricia A

    2010-03-01

    Recent studies have shown that genes for the putative ammonia transporter, Rhesus glycoproteins (Rh) and the facilitated urea transporter (UT) are expressed before hatching in rainbow trout (Oncorhychus mykiss Walbaum) embryos. We tested the hypothesis that Rh and UT gene expressions are regulated in response to environmental conditions that inhibit ammonia excretion during early life stages. Eyed-up embryos (22 days post-fertilization (dpf)) were exposed to control (pH 8.3), high ammonia (1.70 mmol l(-1) NH4HCO3) and high pH (pH 9.7) conditions for 48h. With exposure to high water ammonia, ammonia excretion rates were reversed, tissue ammonia concentration was elevated by 9-fold, but there were no significant changes in mRNA expression relative to control embryos. In contrast, exposure to high water pH had a smaller impact on ammonia excretion rates and tissue ammonia concentrations, whereas mRNA levels for the Rhesus glycoprotein Rhcg2 and urea transporter (UT) were elevated by 3.5- and 5.6-fold, respectively. As well, mRNAs of the genes for H+ATPase and Na+/H+ exchanger (NHE2), associated with NH3 excretion, were also upregulated by 7.2- and 13-fold, respectively, in embryos exposed to alkaline water relative to controls. These results indicate that the Rhcg2, UT and associated transport genes are regulated in rainbow trout embryos, but in contrast to adults, there is no effect of high external ammonia at this stage of development.

  1. Modeling of Calcite Precipitation Driven by Bacteria-facilitated Urea Hydrolysis in A Flow Column Using A Fully Coupled, Fully Implicit Parallel Reactive Transport Simulator

    Science.gov (United States)

    Guo, L.; Huang, H.; Gaston, D.; Redden, G. D.

    2009-12-01

    One approach for immobilizing subsurface metal contaminants involves stimulating the in situ production of mineral phases that sequester or isolate contaminants. One example is using calcium carbonate to immobilize strontium. The success of such approaches depends on understanding how various processes of flow, transport, reaction and resulting porosity-permeability change couple in subsurface systems. Reactive transport models are often used for such purpose. Current subsurface reactive transport simulators typically involve a de-coupled solution approach, such as operator-splitting, that solves the transport equations for components and batch chemistry sequentially, which has limited applicability for many biogeochemical processes with fast kinetics and strong medium property-reaction interactions. A massively parallel, fully coupled, fully implicit reactive transport simulator has been developed based on a parallel multi-physics object oriented software environment computing framework (MOOSE) developed at the Idaho National Laboratory. Within this simulator, the system of transport and reaction equations is solved simultaneously in a fully coupled manner using the Jacobian Free Newton-Krylov (JFNK) method with preconditioning. The simulator was applied to model reactive transport in a one-dimensional column where conditions that favor calcium carbonate precipitation are generated by urea hydrolysis that is catalyzed by urease enzyme. Simulation results are compared to both laboratory column experiments and those obtained using the reactive transport simulator STOMP in terms of: the spatial and temporal distributions of precipitates and reaction rates and other major species in the reaction system; the changes in porosity and permeability; and the computing efficiency based on wall clock simulation time.

  2. Urea: new questions about an ancient solute.

    Science.gov (United States)

    Bagnasco, S M

    2000-01-01

    Urea recycling and counter-current exchange within the renal tubular, vascular and interstitial compartments help maintain high levels of this solute in the renal medulla, that are crucial for the production of concentrated urine. The role of urea in physiological and pathological conditions is still unclear, although new information is becoming available. Several urea transporters have been identified that mediate facilitated transport of urea across biological membranes in the mammalian kidney, in amphibians, and in elasmobranchs. Evidence that urea transporters may be expressed in other mammalian organs is also beginning to emerge. The mechanisms involved in the regulation of urea transport are incompletely understood. In this respect, the structural and functional characterization of individual transporters is providing the basis to identify specific regulatory factors. Urea can be viewed as a perturbing osmolyte in the renal inner medulla, and the mechanisms of adaptation of renal cells to high concentration of this destabilizing solute are being investigated. Urea-specific signaling pathways have been identified, that could contribute to clarify how cells handle urea.

  3. 1,1-Difluoroethyl-substituted triazolothienopyrimidines as inhibitors of a human urea transport protein (UT-B): new analogs and binding model.

    Science.gov (United States)

    Liu, Y; Esteva-Font, C; Yao, C; Phuan, P W; Verkman, A S; Anderson, M O

    2013-06-01

    The kidney urea transport protein UT-B is an attractive target for the development of small-molecule inhibitors with a novel diuretic ('urearetic') action. Previously, two compounds in the triazolothienopyrimidine scaffold (1a and 1c) were reported as UT-B inhibitors. Compound 1c incorporates a 1,1-difluoroethyl group, which affords improved microsomal stability when compared to the corresponding ethyl-substituted compound 1a. Here, a small focused library (4a-4f) was developed around lead inhibitor 1c to investigate the requirement of an amidine-linked thiophene in the inhibitor scaffold. Two compounds (4a and 4b) with nanomolar inhibitory potency (IC50≈40 nM) were synthesized. Computational docking of lead structure 1c and 4a-4f into a homology model of the UT-B cytoplasmic surface suggested binding with the core heterocycle buried deep into the hydrophobic pore region of the protein.

  4. Caveolin-1 directly interacts with UT-A1 urea transporter: the role of caveolae/lipid rafts in UT-A1 regulation at the cell membrane.

    Science.gov (United States)

    Feng, Xiuyan; Huang, Haidong; Yang, Yuan; Fröhlich, Otto; Klein, Janet D; Sands, Jeff M; Chen, Guangping

    2009-06-01

    The cell plasma membrane contains specialized microdomains called lipid rafts which contain high amounts of sphingolipids and cholesterol. Lipid rafts are involved in a number of membrane protein functions. The urea transporter UT-A1, located in the kidney inner medullary collecting duct (IMCD), is important for urine concentrating ability. In this study, we investigated the possible role of lipid rafts in UT-A1 membrane regulation. Using sucrose gradient cell fractionation, we demonstrated that UT-A1 is concentrated in the caveolae-rich fraction both in stably expressing UT-A1 HEK293 cells and in freshly isolated kidney IMCD suspensions. In these gradients, UT-A1 at the cell plasma membrane is codistributed with caveolin-1, a major component of caveolae. The colocalization of UT-A1 in lipid rafts/caveolae was further confirmed in isolated caveolae from UT-A1-HEK293 cells. The direct association of UT-A1 and caveolin-1 was identified by immunoprecipitation and GST pull-down assay. Examination of internalized UT-A1 in pEGFP-UT-A1 transfected HEK293 cells fluorescent overlap with labeled cholera toxin subunit B, a marker of the caveolae-mediated endocytosis pathway. Disruption of lipid rafts by methyl-beta-cyclodextrin or knocking down caveolin-1 by small-interference RNA resulted in UT-A1 cell membrane accumulation. Functionally, overexpression of caveolin-1 in oocytes decreased UT-A1 urea transport activity and UT-A1 cell surface expression. Our results indicate that lipid rafts/caveolae participate in UT-A1 membrane regulation and this effect is mediated via a direct interaction of caveolin-1 with UT-A1.

  5. Functional characterization of the central hydrophilic linker region of the urea transporter UT-A1: cAMP activation and snapin binding.

    Science.gov (United States)

    Mistry, Abinash C; Mallick, Rickta; Klein, Janet D; Sands, Jeff M; Fröhlich, Otto

    2010-06-01

    Of the three major protein variants produced by the UT-A gene (UT-A1, UT-A2, and UT-A3) UT-A1 is the largest. It contains UT-A3 as its NH(2)-terminal half and UT-A2 as its COOH-terminal half. When being part of UT-A1, UT-A3 and UT-A2 are joined by a segment, Lp, whose central part, Lc, is not part of UT-A3 or UT-A2 but is present only in UT-A1. Lc contains the phosphorylation sites S486 and S499 that are involved in protein kinase A-dependent activation, as well as the binding site for snapin, a protein involved in soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE)-mediated vesicle trafficking and fusion to the plasma membrane. We attached Lc to UT-A2 and UT-A3 to test how these phosphorylation sites influenced their urea transport activity. Adding Lc to UT-A2 conferred stimulation by cAMP to the cAMP-unresponsive UT-A2, and adding Lc to UT-A3 did not further enhance its already existing cAMP response. These findings suggest that the responsiveness to vasopressin that is observed with UT-A1 can be introduced into the unresponsive UT-A2 variant through the Lc segment that is unique to UT-A1. In UT-A3, however, the Lc segment plays no significant role in its activation by cAMP. In addition, the Lc segment also gave UT-A2 the ability to bind snapin and, in Xenopus oocytes, to be stimulated in its urea transport activity by snapin and syntaxins 3 and 4, in the same way as UT-A1.

  6. H+, Water and Urea Transport in the Inner Medullary Collecting Duct and Their Role in the Prevention and Pathogenesis of Renal Stone Disease

    Science.gov (United States)

    Wall, Susan M.; Klein, Janet D.

    2008-09-01

    The inner medullary collecting duct (IMCD) is the final site within the kidney for the reabsorption of urea, water and electrolytes and for the secretion of H+ before the luminal fluid becomes the final urine. Transporters expressed in the IMCD contribute to the generation of the large ion gradients that exist between the interstitium and the collecting duct lumen. Thus, the luminal fluid within the human IMCD can reach an osmolality of 1200 mOsm/kg H2O and a pH of 4. This ability of the human nephron to concentrate and acidify the urine might predispose to stone formation. However, under treatment conditions that predispose to stone formation, such as during hypercalciuria, the kidney mitigates stone formation by reducing solute concentration by reducing H2O reabsorption. Moreover, the kidney attenuates stone formation by tightly controlling acid-base balance, which prevents the bone loss, hypocitraturia and hypercalciuria observed during metabolic acidosis by augmenting net H+ excretion by tightly regulating H+ transporter function and through luminal buffering, particularly with NH3. This article will review the ion transporters present in the mammalian IMCD and their role in the prevention and in the pathogenesis of renal stone formation.

  7. Orphan drugs in development for urea cycle disorders: current perspectives

    Directory of Open Access Journals (Sweden)

    Häberle J

    2014-09-01

    Full Text Available Johannes Häberle,1 Shawn E McCandless2 1Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; 2Center for Human Genetics, University Hospitals Case Medical Center, and Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA Abstract: The urea cycle disorders are caused by deficiency of one of the six hepatic enzymes or two transporters involved in detoxification of ammonia. The resulting hyperammonemia causes severe brain injury unless aggressive steps are taken to reduce the accumulation of ammonia, which is thought to be the most toxic metabolite. This review describes the current state of chronic management of urea cycle disorders, focusing on new and emerging therapies. Management strategies include the mainstay of treatment, namely dietary protein restriction and supplementation with l-arginine or l-citrulline. Several currently approved medications utilize and enhance alternative pathways of waste nitrogen excretion (sodium benzoate, sodium phenylacetate, sodium phenylbutyrate in several formulations, and glycerol phenylbutyrate, working through conjugation of the drug to either glycine (in the case of benzoate or glutamine, the products of which are excreted in the urine. Carglumic acid activates the first committed step of conversion of ammonia to urea, carbamoylphosphate synthetase, and thus effectively treats defective synthesis of the endogenous activator, N-acetylglutamate, whether due to genetic defects or biochemical inhibition of the N-acetylglutamate synthase enzyme. Approaches to neuroprotection during episodes of hyperammonemia are discussed, including the use of controlled hypothermia (brain cooling, as well as proposed, but as yet untested, pharmacologic therapies. Finally, cell-based therapies, including liver transplantation, infusion of fresh or cryopreserved hepatocytes, use of stem cells, and new approaches to gene

  8. Niflumic acid activates additional currents of the human glial L-glutamate transporter EAAT1 in a substrate-dependent manner.

    Science.gov (United States)

    Takahashi, Kanako; Ishii-Nozawa, Reiko; Takeuchi, Koichi; Nakazawa, Ken; Sekino, Yuko; Sato, Kaoru

    2013-01-01

    The astrocytic L-glutamate (L-Glu) transporter EAAT1 participates in the removal of L-Glu from the synaptic cleft and maintenance of non-toxic concentrations in the extracellular fluid. We have shown that niflumic acid (NFA), a non-steroidal anti-inflammatory drug (NSAIDs), alters L-Glu-induced EAAT1 currents in a voltage-dependent manner using the two-electrode voltage clamp technique in Xenopus oocytes expressing EAAT1. In this study, we characterised the effects of NFA on each type of ion-flux through EAAT1. NFA modulated currents induced by both L-Glu and L-aspartate (L-Asp) in a voltage-dependent manner. Ion-substitution experiments revealed that the activation of additional H(+) conductance was involved in the modulation of currents induced by L-Asp and L-Glu, but Cl(-) was involved only with the L-Asp currents. NFA activated additional currents of EAAT1 in a substrate-dependent manner.

  9. Physiological and transcriptomic aspects of urea uptake and assimilation in Arabidopsis plants.

    Science.gov (United States)

    Mérigout, Patricia; Lelandais, Maud; Bitton, Frédérique; Renou, Jean-Pierre; Briand, Xavier; Meyer, Christian; Daniel-Vedele, Françoise

    2008-07-01

    Urea is the major nitrogen (N) form supplied as fertilizer in agriculture, but it is also an important N metabolite in plants. Urea transport and assimilation were investigated in Arabidopsis (Arabidopsis thaliana). Uptake studies using (15)N-labeled urea demonstrated the capacity of Arabidopsis to absorb urea and that the urea uptake was regulated by the initial N status of the plants. Urea uptake was stimulated by urea but was reduced by the presence of ammonium nitrate in the growth medium. N deficiency in plants did not affect urea uptake. Urea exerted a repressive effect on nitrate influx, whereas urea enhanced ammonium uptake. The use of [(15)N]urea and [(15)N]ammonium tracers allowed us to show that urea and ammonium assimilation pathways were similar. Finally, urea uptake was less efficient than nitrate uptake, and urea grown-plants presented signs of N starvation. We also report the first analysis, to our knowledge, of Arabidopsis gene expression profiling in response to urea. Our transcriptomic approach revealed that nitrate and ammonium transporters were transcriptionally regulated by urea as well as key enzymes of the glutamine synthetase-glutamate synthase pathway. AtDUR3, a high-affinity urea transporter in Arabidopsis, was strongly up-regulated by urea. Moreover, our transcriptomic data suggest that other genes are also involved in urea influx.

  10. Activation of the cAMP/PKA pathway induces UT-A1 urea transporter monoubiquitination and targets it for lysosomal degradation.

    Science.gov (United States)

    Su, Hua; Chen, Minguang; Sands, Jeff M; Chen, Guangping

    2013-12-15

    Regulation of urea transporter UT-A1 in the kidney is important for the urinary concentrating mechanism. We previously reported that activation of the cAMP/PKA pathway by forskolin (FSK) leads to UT-A1 ubiquitination, endocytosis, and degradation. In this study, we discovered that FSK-induced UT-A1 ubiquitination is monoubiquitination as judged by immunoblotting with specific ubiquitin antibodies to the different linkages of the ubiquitin chain. UT-A1 monoubiquitination induced by FSK was processed mainly on the cell plasma membrane. Monoubiquitination facilitates UT-A1 endocytosis, and internalized UT-A1 is accumulated in the early endosome. Inhibition of ubiquitination by E1 ubiquitin-activating enzyme inhibitor PYR-41 significantly reduced FSK-induced UT-A1 endocytosis and degradation. Interestingly, FSK-stimulated UT-A1 degradation occurs through a lysosomal protein degradation system. We further found that the PKA phosphorylation sites of UT-A1 at Ser486 and Ser499 are required for FSK-induced UT-A1 monoubiquitination. The physiological significance was confirmed using rat kidney inner medullary collecting duct suspensions, which showed that vasopressin treatment promotes UT-A1 ubiquitination. We conclude that unlike under basal conditions in which UT-A1 is subject to polyubiquitination and proteasome-mediated protein degradation, activation of UT-A1 by FSK induces UT-A1 monoubiquitination and protein lysosomal degradation.

  11. Phosphorylation of UT-A1 on serine 486 correlates with membrane accumulation and urea transport activity in both rat IMCDs and cultured cells.

    Science.gov (United States)

    Klein, Janet D; Blount, Mitsi A; Fröhlich, Otto; Denson, Chad E; Tan, Xiaoxiao; Sim, Jae H; Martin, Christopher F; Sands, Jeff M

    2010-04-01

    Vasopressin is the primary hormone regulating urine-concentrating ability. Vasopressin phosphorylates the UT-A1 urea transporter in rat inner medullary collecting ducts (IMCDs). To assess the effect of UT-A1 phosphorylation at S486, we developed a phospho-specific antibody to S486-UT-A1 using an 11 amino acid peptide antigen starting from amino acid 482 that bracketed S486 in roughly the center of the sequence. We also developed two stably transfected mIMCD3 cell lines: one expressing wild-type UT-A1 and one expressing a mutated form of UT-A1, S486A/S499A, that is unresponsive to protein kinase A. Forskolin stimulates urea flux in the wild-type UT-A1-mIMCD3 cells but not in the S486A/S499A-UT-A1-mIMCD3 cells. The phospho-S486-UT-A1 antibody identified UT-A1 protein in the wild-type UT-A1-mIMCD3 cells but not in the S486A/S499A-UT-A1-mIMCD3 cells. In rat IMCDs, forskolin increased the abundance of phospho-S486-UT-A1 (measured using the phospho-S486 antibody) and of total UT-A1 phosphorylation (measured by (32)P incorporation). Forskolin also increased the plasma membrane accumulation of phospho-S486-UT-A1 in rat IMCD suspensions, as measured by biotinylation. In rats treated with vasopressin in vivo, the majority of the phospho-S486-UT-A1 appears in the apical plasma membrane. In summary, we developed stably transfected mIMCD3 cell lines expressing UT-A1 and an S486-UT-A1 phospho-specific antibody. We confirmed that vasopressin increases UT-A1 accumulation in the apical plasma membrane and showed that vasopressin phosphorylates UT-A1 at S486 in rat IMCDs and that the S486-phospho-UT-A1 form is primarily detected in the apical plasma membrane.

  12. Hereditary urea cycle abnormality

    Science.gov (United States)

    ... vitro so the specific genetic cause is known. Teamwork between parents, the affected child, and doctors can help prevent severe illness. Alternative Names Abnormality of the urea cycle - hereditary; Urea cycle - hereditary abnormality Images Male urinary system Urea cycle References Lichter-Konecki ...

  13. Internalization of UT-A1 urea transporter is dynamin dependent and mediated by both caveolae- and clathrin-coated pit pathways.

    Science.gov (United States)

    Huang, Haidong; Feng, Xiuyan; Zhuang, Jieqiu; Fröhlich, Otto; Klein, Janet D; Cai, Hui; Sands, Jeff M; Chen, Guangping

    2010-12-01

    Dynamin is a large GTPase involved in several distinct modes of cell endocytosis. In this study, we examined the possible role of dynamin in UT-A1 internalization. The direct relationship of UT-A1 and dynamin was identified by coimmunoprecipitation. UT-A1 has cytosolic NH(2) and COOH termini and a large intracellular loop. Dynamin specifically binds to the intracellular loop of UT-A1, but not the NH(2) and COOH termini. In cell surface biotinylation experiments, coexpression of dynamin and UT-A1 in HEK293 cells resulted in a decrease of UT-A1 cell surface expression. Conversely, cells expressing dynamin mutant K44A, which is deficient in GTP binding, showed an increased accumulation of UT-A1 protein on the cell surface. Cell plasma membrane lipid raft fractionation experiments revealed that blocking endocytosis with dynamin K44A causes UT-A1 protein accumulation in both the lipid raft and nonlipid raft pools, suggesting that both caveolae- and clathrin-mediated mechanisms may be involved in the internalization of UT-A1. This was further supported by 1) small interfering RNA to knock down either caveolin-1 or μ2 reduced UT-A1 internalization in HEK293 cells and 2) inhibition of either the caveolae pathway by methyl-β-cyclodextrin or the clathrin pathway by concanavalin A caused UT-A1 cell membrane accumulation. Functionally, overexpression of dynamin, caveolin, or μ2 decreased UT-A1 urea transport activity and decreased UT-A1 cell surface expression. We conclude that UT-A1 endocytosis is dynamin-dependent and mediated by both caveolae- and clathrin-coated pit pathways.

  14. 缩短1620t/dCO_2气提尿素工艺熔融尿液泵倒运时间%Shortening Transport Time of Melting Urea Liquid Pump in 1620T/D Carbon Dioxide Gas Stripping Urea Process

    Institute of Scientific and Technical Information of China (English)

    肖锡骏

    2012-01-01

    From the daily maintenance of production, through a simple technical improvement, the problem of evaporation system to transport device needed to stop melt urea pump was solved. Through transporting melt urea pump online, the transportation time was shortened, evaporation circulating long time was uret was reduced, consumption of steam and CO2 was decreased, with improved quality pass, reduced production cost. avoided, generation of bi- of product and percent of%从日常生产维护出发,通过技术改造解决了装置需停蒸发系统才能倒运熔融尿液泵的难题,通过在线倒运熔融尿液泵,缩短了倒运时间,避免了蒸发长时间打循环,减少成品缩二脲的生成,降低了蒸汽耗量和CO2耗量,提高了产品质量合格率,降低了生产成本。

  15. Ammonia and urea permeability of mammalian aquaporins

    DEFF Research Database (Denmark)

    Litman, Thomas; Søgaard, Rikke; Zeuthen, Thomas

    2009-01-01

    The human aquaporins,AQP3,AQP7, AQP8,AQP9, and possibly AQP10, are permeable to ammonia, and AQP7, AQP9, and possibly AQP3, are permeable to urea. In humans, these aquaporins supplement the ammonia transport of the Rhesus (Rh) proteins and the urea transporters (UTs). The mechanism by which...... ammonium is transported by aquaporins is not fully resolved. A comparison of transport equations, models, and experimental data shows that ammonia is transported in its neutral form, NH(3). In the presence of NH(3), the aquaporin stimulates H(+) transport. Consequently, this transport of H(+) is only...... significant at alkaline pH. It is debated whether the H(+) ion passes via the aquaporin or by some external route; the investigation of this problem requires the aquaporin-expressing cell to be voltage-clamped. The ammonia-permeable aquaporins differ from other aquaporins by having a less restrictive aromatic...

  16. The permeability of red blood cells to chloride, urea and water

    DEFF Research Database (Denmark)

    Brahm, Jesper

    2013-01-01

    This study extends permeability (P) data on chloride, urea and water in red blood cells (RBC), and concludes that the urea transporter (UT-B) does not transport water. P of chick, duck, Amphiuma means, dog and human RBC to (36)Cl(-), (14)C-urea and (3)H2O was determined under self...

  17. Living with urea stress

    Indian Academy of Sciences (India)

    Laishram R Singh; Tanveer Ali Dar; Faizan Ahmad

    2009-06-01

    Intracellular organic osmolytes are present in certain organisms adapted to harsh environments. These osmolytes protect intracellular macromolecules against denaturing environmental stress. In contrast to the usually benign effects of most organic osmolytes, the waste product urea is a well-known perturbant of macromolecules. Although urea is a perturbing solute which inhibits enzyme activity and stability, it is employed by some species as a major osmolyte. The answer to this paradox was believed to be the discovery of protective osmolytes (methylamines). We review the current state of knowledge on the various ways of counteracting the harmful effects of urea in nature and the mechanisms for this. This review ends with the mechanistic idea that cellular salt (KCl/NaCl) plays a crucial role in counteracting the effects of urea, either by inducing required chaperones or methylamines, or by thermodynamic interactions with urea-destabilised proteins. We also propose future opportunities and challenges in the field.

  18. Ethylated Urea - Ether - Modified Urea - Formaldehyde Resins,

    Directory of Open Access Journals (Sweden)

    Mathew Obichukwu EDOGA

    2006-07-01

    Full Text Available First, phenol - formaldehyde (PF and urea - formaldehyde (UFII resins were separately conventionally prepared in our laboratory. Also, UF resin synthesized from the acid modified synthesis procedure was synthesized in a purely acid medium of pH 1.0, FU molar ratio of 1.0 and at 50oC (one-stage acid modified-synthesis procedure. Subsequently, the UF resin II was modified during synthesis by incorporating ethylated urea-ether (EUER (i.e. UFIII and glycerol (GLYC (i.e. UFV cured with and without acid curing agent. The structural and physicochemical analyses of the various resin samples were carried out.The results showed that the unmodified UF resin (UF II synthesized in acid medium of pH 1.0, F/U molar ratio 1.0, and at 50oC, cured in absence of acid curing catalyst, showed features in their spectra which are consistent with a tri-, and/or tetra-substituted urea in the reaction to give a 3 - dimensional network cured UF resin. Modification of the UF resin(UF II with ethylated urea-ether and glycerol to produce UF resins III and respectively V prominently increased the absorbance of methylene and ether groups in the spectra which are consistent with increased hydrophobicity and improved hydrolytic stability. For the conventional UF resin (UF I, the only clear distinction between spectra for the UF resin II and UF resins (III/V is the presence of diminished peaks for methylene groups at 2.2 ppm. The relationship between the logarithmic viscosity of cured PF resin with time showed continuos dependence of viscosity with time during cure up to 70 minutes. Similar trends were shown by UF resins (III/V, cured in absence of acid catalyst. In contrast, the conventional UF resins I and UF IV (i.e. UF II cured with NH4CL showed abrupt discontinuity in viscosity with time just after about 20 minutes of cure.

  19. Molecular evolution of urea amidolyase and urea carboxylase in fungi

    Directory of Open Access Journals (Sweden)

    Harris Steven D

    2011-03-01

    Full Text Available Abstract Background Urea amidolyase breaks down urea into ammonia and carbon dioxide in a two-step process, while another enzyme, urease, does this in a one step-process. Urea amidolyase has been found only in some fungal species among eukaryotes. It contains two major domains: the amidase and urea carboxylase domains. A shorter form of urea amidolyase is known as urea carboxylase and has no amidase domain. Eukaryotic urea carboxylase has been found only in several fungal species and green algae. In order to elucidate the evolutionary origin of urea amidolyase and urea carboxylase, we studied the distribution of urea amidolyase, urea carboxylase, as well as other proteins including urease, across kingdoms. Results Among the 64 fungal species we examined, only those in two Ascomycota classes (Sordariomycetes and Saccharomycetes had the urea amidolyase sequences. Urea carboxylase was found in many but not all of the species in the phylum Basidiomycota and in the subphylum Pezizomycotina (phylum Ascomycota. It was completely absent from the class Saccharomycetes (phylum Ascomycota; subphylum Saccharomycotina. Four Sordariomycetes species we examined had both the urea carboxylase and the urea amidolyase sequences. Phylogenetic analysis showed that these two enzymes appeared to have gone through independent evolution since their bacterial origin. The amidase domain and the urea carboxylase domain sequences from fungal urea amidolyases clustered strongly together with the amidase and urea carboxylase sequences, respectively, from a small number of beta- and gammaproteobacteria. On the other hand, fungal urea carboxylase proteins clustered together with another copy of urea carboxylases distributed broadly among bacteria. The urease proteins were found in all the fungal species examined except for those of the subphylum Saccharomycotina. Conclusions We conclude that the urea amidolyase genes currently found only in fungi are the results of a horizontal

  20. Acidic pH and short-chain fatty acids activate Na+ transport but differentially modulate expression of Na+/H+ exchanger isoforms 1, 2, and 3 in omasal epithelium.

    Science.gov (United States)

    Lu, Zhongyan; Yao, Lei; Jiang, Zhengqian; Aschenbach, Jörg R; Martens, Holger; Shen, Zanming

    2016-01-01

    Low sodium content in feed and large amounts of salivary sodium secretion are essential requirements to efficient sodium reabsorption in the dairy cow. It is already known that Na(+)/H(+) exchange (NHE) of the ruminal epithelium plays a key role in Na(+) absorption, and its function is influenced by the presence of short-chain fatty acids (SCFA) and mucosal pH. By contrast, the functional role and regulation of NHE in omasal epithelium have not been completely understood. In the present study, we used model studies in small ruminants (sheep and goats) to investigate NHE-mediated Na(+) transport and the effects of pH and SCFA on NHE activity in omasal epithelium and on the expression of NHE isoform in omasal epithelial cells. Conventional Ussing chamber technique, primary cell culture, quantitative PCR, and Western blot were used. In native omasal epithelium of sheep, the Na(+) transport was electroneutral, and it was inhibited by the specific NHE3 inhibitor 3-[2-(3-guanidino-2-methyl-3-oxo-propenyl)-5-methyl-phenyl]-N-isopropylidene-2-methyl-acrylamide dihydrochloride, which decreased mucosal-to-serosal, serosal-to-mucosal, and net flux rates of Na(+) by 80% each. The application of low mucosal pH (6.4 or 5.8) in the presence of SCFA activated the Na(+) transport across omasal epithelium of sheep compared with that at pH 7.4. In cultured omasal epithelial cells of goats, mRNA and protein of NHE1, NHE2, and NHE3 were detected. The application of SCFA increased NHE1 mRNA and protein expression, which was most prominent when the culture medium pH decreased from 7.4 to 6.8. At variance, the mRNA and protein expression of NHE2 and NHE3 were decreased with low pH and SCFA, which was contrary to the published data from ruminal epithelial studies. In conclusion, this paper shows that (1) NHE1, NHE2, and NHE3 are expressed in omasal epithelium; (2) NHE3 mediates the major portion of transepithelial Na(+) transport in omasal epithelium; and (3) SCFA and acidic pH acutely

  1. Functional inhibition of urea transporter UT-B enhances endothelial-dependent vasodilatation and lowers blood pressure via L-arginine-endothelial nitric oxide synthase-nitric oxide pathway

    Science.gov (United States)

    Sun, Yi; Lau, Chi-Wai; Jia, Yingli; Li, Yingjie; Wang, Weiling; Ran, Jianhua; Li, Fei; Huang, Yu; Zhou, Hong; Yang, Baoxue

    2016-01-01

    Mammalian urea transporters (UTs), UT-A and UT-B, are best known for their role in urine concentration. UT-B is especially distributed in multiple extrarenal tissues with abundant expression in vascular endothelium, but little is known about its role in vascular function. The present study investigated the physiological significance of UT-B in regulating vasorelaxations and blood pressure. UT-B deletion in mice or treatment with UT-B inhibitor PU-14 in Wistar-Kyoto rats (WKYs) and spontaneous hypertensive rats (SHRs) reduced blood pressure. Acetylcholine-induced vasorelaxation was significantly augmented in aortas from UT-B null mice. PU-14 concentration-dependently produced endothelium-dependent relaxations in thoracic aortas and mesenteric arteries from both mice and rats and the relaxations were abolished by Nω-nitro-L-arginine methyl ester. Both expression and phosphorylation of endothelial nitric oxide synthase (eNOS) were up-regulated and expression of arginase I was down-regulated when UT-B was inhibited both in vivo and in vitro. PU-14 induced endothelium-dependent relaxations to a similar degree in aortas from 12 weeks old SHRs or WKYs. In summary, here we report for the first time that inhibition of UT-B plays an important role in regulating vasorelaxations and blood pressure via up-regulation of L-arginine-eNOS-NO pathway, and it may become another potential therapeutic target for the treatment of hypertension. PMID:26739766

  2. Functional inhibition of urea transporter UT-B enhances endothelial-dependent vasodilatation and lowers blood pressure via L-arginine-endothelial nitric oxide synthase-nitric oxide pathway.

    Science.gov (United States)

    Sun, Yi; Lau, Chi-Wai; Jia, Yingli; Li, Yingjie; Wang, Weiling; Ran, Jianhua; Li, Fei; Huang, Yu; Zhou, Hong; Yang, Baoxue

    2016-01-07

    Mammalian urea transporters (UTs), UT-A and UT-B, are best known for their role in urine concentration. UT-B is especially distributed in multiple extrarenal tissues with abundant expression in vascular endothelium, but little is known about its role in vascular function. The present study investigated the physiological significance of UT-B in regulating vasorelaxations and blood pressure. UT-B deletion in mice or treatment with UT-B inhibitor PU-14 in Wistar-Kyoto rats (WKYs) and spontaneous hypertensive rats (SHRs) reduced blood pressure. Acetylcholine-induced vasorelaxation was significantly augmented in aortas from UT-B null mice. PU-14 concentration-dependently produced endothelium-dependent relaxations in thoracic aortas and mesenteric arteries from both mice and rats and the relaxations were abolished by N(ω)-nitro-L-arginine methyl ester. Both expression and phosphorylation of endothelial nitric oxide synthase (eNOS) were up-regulated and expression of arginase I was down-regulated when UT-B was inhibited both in vivo and in vitro. PU-14 induced endothelium-dependent relaxations to a similar degree in aortas from 12 weeks old SHRs or WKYs. In summary, here we report for the first time that inhibition of UT-B plays an important role in regulating vasorelaxations and blood pressure via up-regulation of L-arginine-eNOS-NO pathway, and it may become another potential therapeutic target for the treatment of hypertension.

  3. High and Low Affinity Urea Root Uptake: Involvement of NIP5;1.

    Science.gov (United States)

    Yang, Huayiu; Menz, Jochen; Häussermann, Iris; Benz, Martin; Fujiwara, Toru; Ludewig, Uwe

    2015-08-01

    Urea is the most widespread nitrogen (N) fertilizer worldwide and is rapidly degraded in soil to ammonium by urease. Ammonium is either taken up by plant roots or is further processed to nitrate by soil microorganisms. However, urea can be taken up by roots and is further degraded to ammonium by plant urease for assimilation. When urea is supplied under sterile conditions, it acts as a poor N source for seedlings or adult Arabidopsis thaliana plants. Here, the gene expression of young seedlings exposed to urea and ammonium nitrate nutrition was compared. Several primary metabolism and transport genes, including those for nitrate and urea, were differentially expressed in seedlings. However, urease and most major intrinsic proteins were not differentially expressed, with the exception of NIP6;1, a urea-permeable channel, which was repressed. Furthermore, little overlap with the gene expression with ammonium as the sole N source was observed, confirming that pure urea nutrition is not associated with the ammonium toxicity syndrome in seedlings. The direct root uptake of urea was increased under boron deficiency, in both the high and low affinity range. This activity was entirely mediated by the NIP5;1 channel, which was confirmed to transport urea when expressed in oocytes. The uptake of urea in the high and low affinity range was also determined for maize and wheat roots. The urea uptake by maize roots was only about half that of wheat, but was not stimulated by boron deficiency or N deficiency in either species. This analysis identifies novel components of the urea uptake systems in plants, which may become agronomically relevant to urea uptake and utilization, as stabilized urea fertilizers become increasingly popular.

  4. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion.

    Science.gov (United States)

    Weiner, I David; Mitch, William E; Sands, Jeff M

    2015-08-07

    Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance.

  5. National Urea Cycle Disorders Foundation

    Science.gov (United States)

    ... triggers undiagnosed fatal urea cycle disorder in Tennessee wife and teacher. Story . More information about bariatric surgery ... with sodium phenylbutyrate may decrease liver dysfunction in patients with ASA. Details "IN TRIBUTE TO HER SON, ...

  6. Improving long term outcomes in urea cycle disorders-report from the Urea Cycle Disorders Consortium.

    Science.gov (United States)

    Waisbren, Susan E; Gropman, Andrea L; Batshaw, Mark L

    2016-07-01

    The Urea Cycle Disorders Consortium (UCDC) has conducted, beginning in 2006, a longitudinal study (LS) of eight enzyme deficiencies/transporter defects associated with the urea cycle. These include N-acetylglutamate synthase deficiency (NAGSD); Carbamyl phosphate synthetase 1 deficiency (CPS1D); Ornithine transcarbamylase deficiency (OTCD); Argininosuccinate synthetase deficiency (ASSD) (Citrullinemia); Argininosuccinate lyase deficiency (ASLD) (Argininosuccinic aciduria); Arginase deficiency (ARGD, Argininemia); Hyperornithinemia, hyperammonemia, homocitrullinuria (HHH) syndrome (or mitochondrial ornithine transporter 1 deficiency [ORNT1D]); and Citrullinemia type II (mitochondrial aspartate/glutamate carrier deficiency [CITRIN]). There were 678 UCD patients enrolled in 14 sites in the U.S., Canada, and Europe at the writing of this paper. This review summarizes findings of the consortium related to outcome, focusing primarily on neuroimaging findings and neurocognitive function. Neuroimaging studies in late onset OTCD offered evidence that brain injury caused by biochemical dysregulation may impact functional neuroanatomy serving working memory processes, an important component of executive function and regulation. Additionally, there were alteration in white mater microstructure and functional connectivity at rest. Intellectual deficits in OTCD and other urea cycle disorders (UCD) vary. However, when neuropsychological deficits occur, they tend to be more prominent in motor/performance areas on both intelligence tests and other measures. In some disorders, adults performed significantly less well than younger patients. Further longitudinal follow-up will reveal whether this is due to declines throughout life or to improvements in diagnostics (especially newborn screening) and treatments in the younger generation of patients.

  7. Evaporation of urea at atmospheric pressure.

    Science.gov (United States)

    Bernhard, Andreas M; Czekaj, Izabela; Elsener, Martin; Wokaun, Alexander; Kröcher, Oliver

    2011-03-31

    Aqueous urea solution is widely used as reducing agent in the selective catalytic reduction of NO(x) (SCR). Because reports of urea vapor at atmospheric pressure are rare, gaseous urea is usually neglected in computational models used for designing SCR systems. In this study, urea evaporation was investigated under flow reactor conditions, and a Fourier transform infrared (FTIR) spectrum of gaseous urea was recorded at atmospheric pressure for the first time. The spectrum was compared to literature data under vacuum conditions and with theoretical spectra of monomolecular and dimeric urea in the gas phase calculated with the density functional theory (DFT) method. Comparison of the spectra indicates that urea vapor is in the monomolecular form at atmospheric pressure. The measured vapor pressure of urea agrees with the thermodynamic data obtained under vacuum reported in the literature. Our results indicate that considering gaseous urea will improve the computational modeling of urea SCR systems.

  8. Imaging Renal Urea Handling in Rats at Millimeter Resolution using Hyperpolarized Magnetic Resonance Relaxometry

    Science.gov (United States)

    Reed, Galen D.; von Morze, Cornelius; Verkman, Alan S.; Koelsch, Bertram L.; Chaumeil, Myriam M.; Lustig, Michael; Ronen, Sabrina M.; Bok, Robert A.; Sands, Jeff M.; Larson, Peder E. Z.; Wang, Zhen J.; Larsen, Jan Henrik Ardenkjær; Kurhanewicz, John; Vigneron, Daniel B.

    2016-01-01

    In vivo spin spin relaxation time (T2) heterogeneity of hyperpolarized [13C,15N2]urea in the rat kidney was investigated. Selective quenching of the vascular hyperpolarized 13C signal with a macromolecular relaxation agent revealed that a long-T2 component of the [13C,15N2]urea signal originated from the renal extravascular space, thus allowing the vascular and renal filtrate contrast agent pools of the [13C,15N2]urea to be distinguished via multi-exponential analysis. The T2 response to induced diuresis and antidiuresis was performed with two imaging agents: hyperpolarized [13C,15N2]urea and a control agent hyperpolarized bis-1,1-(hydroxymethyl)-1-13C-cyclopropane-2H8. Large T2 increases in the inner-medullar and papilla were observed with the former agent and not the latter during antidiuresis. Therefore, [13C,15N2]urea relaxometry is sensitive to two steps of the renal urea handling process: glomerular filtration and the inner-medullary urea transporter (UT)-A1 and UT-A3 mediated urea concentrating process. Simple motion correction and subspace denoising algorithms are presented to aid in the multi exponential data analysis. Furthermore, a T2-edited, ultra long echo time sequence was developed for sub-2 mm3 resolution 3D encoding of urea by exploiting relaxation differences in the vascular and filtrate pools. PMID:27570835

  9. Morphological and functional characteristics of the kidney of cartilaginous fishes: with special reference to urea reabsorption.

    Science.gov (United States)

    Hyodo, Susumu; Kakumura, Keigo; Takagi, Wataru; Hasegawa, Kumi; Yamaguchi, Yoko

    2014-12-15

    For adaptation to high-salinity marine environments, cartilaginous fishes (sharks, skates, rays, and chimaeras) adopt a unique urea-based osmoregulation strategy. Their kidneys reabsorb nearly all filtered urea from the primary urine, and this is an essential component of urea retention in their body fluid. Anatomical investigations have revealed the extraordinarily elaborate nephron system in the kidney of cartilaginous fishes, e.g., the four-loop configuration of each nephron, the occurrence of distinct sinus and bundle zones, and the sac-like peritubular sheath in the bundle zone, in which the nephron segments are arranged in a countercurrent fashion. These anatomical and morphological characteristics have been considered to be important for urea reabsorption; however, a mechanism for urea reabsorption is still largely unknown. This review focuses on recent progress in the identification and mapping of various pumps, channels, and transporters on the nephron segments in the kidney of cartilaginous fishes. The molecules include urea transporters, Na(+)/K(+)-ATPase, Na(+)-K(+)-Cl(-) cotransporters, and aquaporins, which most probably all contribute to the urea reabsorption process. Although research is still in progress, a possible model for urea reabsorption in the kidney of cartilaginous fishes is discussed based on the anatomical features of nephron segments and vascular systems and on the results of molecular mapping. The molecular anatomical approach thus provides a powerful tool for understanding the physiological processes that take place in the highly elaborate kidney of cartilaginous fishes.

  10. Urea hydrolysis and calcium carbonate reaction fronts

    Science.gov (United States)

    Fox, D. T.; Redden, G. D.; Henriksen, J.; Fujita, Y.; Guo, L.; Huang, H.

    2010-12-01

    The mobility of toxic or radioactive metal contaminants in subsurface environments can be reduced by the formation of mineral precipitates that form co-precipitates with the contaminants or that isolate them from the mobile fluid phase. An engineering challenge is to control the spatial distribution of precipitation reactions with respect to: 1) the location of a contaminant, and 2) where reactants are introduced into the subsurface. One strategy being explored for immobilizing contaminants, such as Sr-90, involves stimulating mineral precipitation by forming carbonate ions and hydroxide via the in situ, microbially mediated hydrolysis of urea. A series of column experiments have been conducted to explore how the construction or design of such an in situ reactant production strategy can affect the temporal and spatial distribution of calcium carbonate precipitation, and how the distribution is coupled to changes in permeability. The columns were constructed with silica gel as the porous media. An interval midway through the column contained an adsorbed urease enzyme in order to simulate a biologically active zone. A series of influent solutions were injected to characterize hydraulic properties of the column (e.g., bromide tracer), profiles of chemical conditions and reaction products as the enzyme catalyzes urea hydrolysis (e.g., pH, ammonia, urea), and changes that occur due to CaCO3 precipitation with the introduction of a calcium+urea solutions. In one experiment, hydraulic conductivity was reduced as precipitate accumulated in a layer within the column that had a higher fraction of fine grained silica gel. Subsequent reduction of permeability and flow (for a constant head condition) resulted in displacement of the hydrolysis and precipitation reaction profiles upstream. In another experiment, which lacked the physical heterogeneity (fine grained layer), the precipitation reaction did not result in loss of permeability or flow velocity and the reaction profile

  11. 40 CFR 721.9928 - Urea, tetraethyl-.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Urea, tetraethyl-. 721.9928 Section... Substances § 721.9928 Urea, tetraethyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as urea, tetraethyl- (PMN P-94-1017; CAS No. 1187-03-7)...

  12. 40 CFR 721.9892 - Alkylated urea.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under...

  13. Passive water and urea permeability of a human Na(+)-glutamate cotransporter expressed in Xenopus oocytes

    DEFF Research Database (Denmark)

    Macaulay, Nanna; Gether, Ulrik; Klærke, Dan Arne

    2002-01-01

    with mannitol. Apparently, the properties of the pore are not uniform along its length. The outer section may accommodate urea and glycerol in an osmotically active form, giving rise to larger water fluxes. The physiological role of EAAT1 for water homeostasis in the central nervous system is discussed....... to the K(0.5) value for glutamate activation of transport. The specific inhibitor DL-threo-beta-benzyloxyaspartate (TBOA) reduced the EAAT1-specific L(p) to 72 %. EAAT1 supported passive fluxes of [(14)C]urea and [(14)C]glycerol. The [(14)C]urea flux was increased in the presence of glutamate. The data...... suggest that the permeability depends on the conformational equilibrium of the EAAT1. At positive potentials and in the presence of Na(+) and glutamate, the pore is enlarged and water and urea penetrate more readily. The L(p) was larger when measured with urea or glycerol as osmolytes as compared...

  14. Autotrophic ammonia oxidation at low pH through urea hydrolysis.

    Science.gov (United States)

    Burton, S A; Prosser, J I

    2001-07-01

    Ammonia oxidation in laboratory liquid batch cultures of autotrophic ammonia oxidizers rarely occurs at pH values less than 7, due to ionization of ammonia and the requirement for ammonium transport rather than diffusion of ammonia. Nevertheless, there is strong evidence for autotrophic nitrification in acid soils, which may be carried out by ammonia oxidizers capable of using urea as a source of ammonia. To determine the mechanism of urea-linked ammonia oxidation, a ureolytic autotrophic ammonia oxidizer, Nitrosospira sp. strain NPAV, was grown in liquid batch culture at a range of pH values with either ammonium or urea as the sole nitrogen source. Growth and nitrite production from ammonium did not occur at pH values below 7. Growth on urea occurred at pH values in the range 4 to 7.5 but ceased when urea hydrolysis was complete, even though ammonia, released during urea hydrolysis, remained in the medium. The results support a mechanism whereby urea enters the cells by diffusion and intracellular urea hydrolysis and ammonia oxidation occur independently of extracellular pH in the range 4 to 7.5. A proportion of the ammonia produced during this process diffuses from the cell and is not subsequently available for growth if the extracellular pH is less than 7. Ureolysis therefore provides a mechanism for nitrification in acid soils, but a proportion of the ammonium produced is likely to be released from the cell and may be used by other soil organisms.

  15. Studies on the acid activation of Brazilian smectitic clays

    Directory of Open Access Journals (Sweden)

    Valenzuela Díaz Francisco R.

    2001-01-01

    Full Text Available Fuller's earth and acid activated smectitic clays are largely used as bleaching earth for the industrial processing of vegetable, animal and mineral oils and waxes. The paper comments about the nomenclature used for these materials, the nature of the acid activation of smectitic clays (bentonites, activation laboratory procedures and presents a review of the acid activation of bentonites from 20 deposits from several regions of Brazil. The activated clays were tested and show good decolorizing power for soybean, castor, cottonseed, corn and sunflower oils.

  16. Urea Hydrolysis Rate in Soil Toposequences as Influenced by pH, Carbon, Nitrogen, and Soluble Metals.

    Science.gov (United States)

    Fisher, Kristin A; Meisinger, John J; James, Bruce R

    2016-01-01

    A simultaneous increase in the use of urea fertilizer and the incidence of harmful algal blooms worldwide has generated interest in potential loss pathways of urea from agricultural areas. The objective of this research was to study the rate of urea hydrolysis in soil profile toposequences sampled from the Coastal Plain (CP) and Piedmont (PM) regions of Maryland to understand native urea hydrolysis rates (UHRs) as well as the controls governing urea hydrolysis both across a landscape and with depth in the soil profile. A pH-adjustment experiment was conducted to explore the relationship between pH and urea hydrolysis because of the importance of pH to both agronomic productivity and microbial communities. Soils were sampled from both A and B horizons along transects containing an agricultural field (AG), a grassed field border (GB), and a perennially vegetated zone adjacent to surface water. On average, the A-horizon UHRs were eight times greater than corresponding B-horizon rates, and within the CP, the riparian zone (RZ) soils hydrolyzed urea faster than the agricultural soils. The pH adjustment of these soils indicated the importance of organic-matter-related factors (C, N, extractable metals) in determining UHR. These results suggest that organic-matter-rich RZ soils may be valuable in mitigating losses of urea from neighboring fields. Additional field-scale urea hydrolysis studies would be valuable to corroborate the mechanisms described herein and to explore the conditions affecting the fate and transport of urea in agroecosystems.

  17. Understanding strategy of nitrate and urea assimilation in a Chinese strain of Aureococcus anophagefferens through RNA-seq analysis.

    Directory of Open Access Journals (Sweden)

    Hong-Po Dong

    Full Text Available Aureococcus anophagefferens is a harmful alga that dominates plankton communities during brown tides in North America, Africa, and Asia. Here, RNA-seq technology was used to profile the transcriptome of a Chinese strain of A. anophagefferens that was grown on urea, nitrate, and a mixture of urea and nitrate, and that was under N-replete, limited and recovery conditions to understand the molecular mechanisms that underlie nitrate and urea utilization. The number of differentially expressed genes between urea-grown and mixture N-grown cells were much less than those between urea-grown and nitrate-grown cells. Compared with nitrate-grown cells, mixture N-grown cells contained much lower levels of transcripts encoding proteins that are involved in nitrate transport and assimilation. Together with profiles of nutrient changes in media, these results suggest that A. anophagefferens primarily feeds on urea instead of nitrate when urea and nitrate co-exist. Furthermore, we noted that transcripts upregulated by nitrate and N-limitation included those encoding proteins involved in amino acid and nucleotide transport, degradation of amides and cyanates, and nitrate assimilation pathway. The data suggest that A. anophagefferens possesses an ability to utilize a variety of dissolved organic nitrogen. Moreover, transcripts for synthesis of proteins, glutamate-derived amino acids, spermines and sterols were upregulated by urea. Transcripts encoding key enzymes that are involved in the ornithine-urea and TCA cycles were differentially regulated by urea and nitrogen concentration, which suggests that the OUC may be linked to the TCA cycle and involved in reallocation of intracellular carbon and nitrogen. These genes regulated by urea may be crucial for the rapid proliferation of A. anophagefferens when urea is provided as the N source.

  18. The urease inhibitor NBPT negatively affects DUR3-mediated uptake and assimilation of urea in maize roots

    Directory of Open Access Journals (Sweden)

    Laura eZanin

    2015-11-01

    Full Text Available Despite the widespread use of urease inhibitors in agriculture, little information is available on their effect on nitrogen uptake and assimilation. Aim of this work was to study, at physiological and transcriptional level, the effects of NBPT on urea nutrition in hydroponically grown maize plants. Presence of NBPT in the nutrient solution limited the capacity of plants to utilize urea as a N-source; this was shown by a decrease in urea uptake rate and 15N accumulation. Noteworthy, these negative effects were evident only when plants were fed with urea, as NBPT did not alter 15N accumulation in nitrate-fed plants. NBPT also impaired the growth of Arabidopsis plants when urea was used as N-source, while having no effect on plants grown with nitrate or ammonium.This response was related, at least in part, to a direct effect of NBPT on the high affinity urea transport system. Impact of NBPT on urea uptake was further evaluated using lines of Arabidopsis overexpressing ZmDUR3 and dur3-knockout; results suggest that not only transport but also urea assimilation could be compromised by the inhibitor. This hypothesis was reinforced by an over-accumulation of urea and a decrease in ammonium concentration in NBPT-treated plants. Furthermore, transcriptional analyses showed that in maize roots NBPT treatment severely impaired the expression of genes involved in the cytosolic pathway of ureic-N assimilation and ammonium transport. NBPT also limited the expression of a gene coding for a transcription factor highly induced by urea and possibly playing a crucial role in the regulation of its acquisition.This work provides evidence that NBPT can heavily interfere with urea nutrition in maize plants, limiting influx as well as the following assimilation pathway.

  19. The Urease Inhibitor NBPT Negatively Affects DUR3-mediated Uptake and Assimilation of Urea in Maize Roots.

    Science.gov (United States)

    Zanin, Laura; Tomasi, Nicola; Zamboni, Anita; Varanini, Zeno; Pinton, Roberto

    2015-01-01

    Despite the widespread use of urease inhibitors in agriculture, little information is available on their effect on nitrogen (N) uptake and assimilation. Aim of this work was to study, at physiological and transcriptional level, the effects of N-(n-butyl) thiophosphoric triamide (NBPT) on urea nutrition in hydroponically grown maize plants. Presence of NBPT in the nutrient solution limited the capacity of plants to utilize urea as a N-source; this was shown by a decrease in urea uptake rate and (15)N accumulation. Noteworthy, these negative effects were evident only when plants were fed with urea, as NBPT did not alter (15)N accumulation in nitrate-fed plants. NBPT also impaired the growth of Arabidopsis plants when urea was used as N-source, while having no effect on plants grown with nitrate or ammonium. This response was related, at least in part, to a direct effect of NBPT on the high affinity urea transport system. Impact of NBPT on urea uptake was further evaluated using lines of Arabidopsis overexpressing ZmDUR3 and dur3-knockout; results suggest that not only transport but also urea assimilation could be compromised by the inhibitor. This hypothesis was reinforced by an over-accumulation of urea and a decrease in ammonium concentration in NBPT-treated plants. Furthermore, transcriptional analyses showed that in maize roots NBPT treatment severely impaired the expression of genes involved in the cytosolic pathway of ureic-N assimilation and ammonium transport. NBPT also limited the expression of a gene coding for a transcription factor highly induced by urea and possibly playing a crucial role in the regulation of its acquisition. This work provides evidence that NBPT can heavily interfere with urea nutrition in maize plants, limiting influx as well as the following assimilation pathway.

  20. Urea in Weaver Ant Feces

    DEFF Research Database (Denmark)

    Vidkjaer, Nanna H.; Wollenweber, Bernd; Jensen, Karl-Martin V.;

    2016-01-01

    investigate the interactions of weaver ants with the host plants with respect to plant nutrition. Here, we report the identification and quantification of urea, a highly effective foliar nutrient present in the fecal depositions of O. smaragdina. Feces samples obtained from six O. smaragdina colonies were......Weaver ants are tropical insects that nest in tree canopies, and for centuries these ants have been used for pest control in tropical orchards. Trees hosting weaver ants might benefit not only from the pest protective properties of these insects but also an additional supply of nutrients from ant...

  1. 21 CFR 184.1923 - Urea.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Urea. 184.1923 Section 184.1923 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1923 Urea. (a) Urea (CO(NH2)2, CAS Reg. No. 57-13-6) is the diamide...

  2. Urea and its formation in coelacanth liver.

    Science.gov (United States)

    Brown, G W; Brown, S G

    1967-02-01

    Urea occurs in liver of the coelacanth Latimeria chalumnae to the extent of about 1.7 percent by weight. It was determined quantitatively by reaction with 1-phenyl-1,2-propanedione-2-oxime (Archibald reagent) and by measurement of ammonia released upon treatment with urease. Arginase and ornithine carbamoyltransferase, enzymes instrumental in the formation of urea in typical ureotelic vertebrates, occur in homogenates of coelacanth liver. Formed in part by the ornithine-urea cycle, urea may have an osmoregulatory function in the coelacanth as it has in elasmobranchs.

  3. [Urea formation in the after operational liver].

    Science.gov (United States)

    Savilov, P N

    2016-01-01

    The effect of resection of the left lobe of the liver (LR, 15-20% og the organ weight) on hepatic urea formation was investigated in 84 albino rats. The objects of study were the surgery left (LLP), inoperable middle (MLP) lobe of the liver, blood (aorta, v. hepatica, v. porta) and choledochal bile. They studied the urea content. Arginase activity was examined in liver homogenate. On the day 3 and day 7 after resection reduced arginase activity was detected. LR caused a decrease of urea in v. hepatica, but increased urea content in the arterial blood and v. porta. Increase in bile urea on day 7 it was replaced by a decrease observed on day 14 of the postsurgery period. The concentration of urea in the liver on the 3rd day after LR was below the norm, and on the 7th and 14th day was within it. The results indicate a violation of urea operated by hepatocytes of the liver and extrahepatic activation mechanisms of the formation of urea.

  4. Urea synthesis in patients with chronic pancreatitis

    DEFF Research Database (Denmark)

    Hamberg, Ole; Sonne, J; Larsen, S

    2001-01-01

    Up-regulation of urea synthesis by amino acids and dietary protein intake may be impaired in patients with chronic pancreatitis (CP) due to the reduced glucagon secretion. Conversely, urea synthesis may be increased as a result of the chronic inflammation. The aims of the study were to determine...

  5. Transcriptomic analysis highlights reciprocal interactions of urea and nitrate for nitrogen acquisition by maize roots.

    Science.gov (United States)

    Zanin, Laura; Zamboni, Anita; Monte, Rossella; Tomasi, Nicola; Varanini, Zeno; Cesco, Stefano; Pinton, Roberto

    2015-03-01

    Even though urea and nitrate are the two major nitrogen (N) forms applied as fertilizers in agriculture and occur concomitantly in soils, the reciprocal influence of these two N sources on the mechanisms of their acquisition are poorly understood. Therefore, molecular and physiological aspects of urea and nitrate uptake were investigated in maize (Zea mays), a crop plant consuming high amounts of N. In roots, urea uptake was stimulated by the presence of urea in the external solution, indicating the presence of an inducible transport system. On the other hand, the presence of nitrate depressed the induction of urea uptake and, at the same time, the induction of nitrate uptake was depressed by the presence of urea. The expression of about 60,000 transcripts of maize in roots was monitored by microarray analyses and the transcriptional patterns of those genes involved in nitrogen acquisition were analyzed by real-time reverse transcription-PCR (RT-PCR). In comparison with the treatment without added N, the exposure of maize roots to urea modulated the expression of only very few genes, such as asparagine synthase. On the other hand, the concomitant presence of urea and nitrate enhanced the overexpression of genes involved in nitrate transport (NRT2) and assimilation (nitrate and nitrite reductase, glutamine synthetase 2), and a specific response of 41 transcripts was determined, including glutamine synthetase 1-5, glutamine oxoglutarate aminotransferase, shikimate kinase and arogenate dehydrogenase. Also based on the real-time RT-PCR analysis, the transcriptional modulation induced by both sources might determine an increase in N metabolism promoting a more efficient assimilation of the N that is taken up.

  6. Ammonia volatilization from coated urea forms

    Directory of Open Access Journals (Sweden)

    Carlos Antonio Costa do Nascimento

    2013-08-01

    Full Text Available Nitrogen fertilization is a major component of the cost of agricultural production, due to the high cost and low efficiency of fertilizers. In the case of urea, the low efficiency is mainly due to losses by volatilization, which are more pronounced in cultivation systems in which plant residues are left on the soil. The objective of this work was to compare the influence of urea coated with sulfur or boric acid and copper sulfate with conventional N fertilizers on N volatilization losses in sugar cane harvested after stubble burning. The sources urea, sulfur-coated urea, urea coated with boric acid and copper sulfate, as well as nitrate and ammonium sulfate, were tested at amounts containing N rates of 120 kg ha-1 N. The integration of new technologies in urea fertilization can reduce N losses by volatilization. These losses were most reduced when using nitrate and ammonium sulfate. The application of a readily acidified substance (boric acid to urea was more efficient in reducing volatilization losses and nutrient removal by sugar cane than that of a substance with gradual acidification (elemental sulfur.

  7. Release Kinetics of Urea from Polymer Coated Urea and Its Relationship with Coating Penetrability

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-jun; WU Zhi-jie; CHEN Li-jun; LIANG Wen-ju

    2003-01-01

    Four kinds of polymer coated urea (PCU) were put in distilled water at 30C to determine the variation of coating penetrability and give a precise description of the urea release kinetics. The urea release from PCU could be divided into four stages: lag stage, swell stage, steady stage and decay stage. The release rate coefficient K, a measure of coating penetrability, was linearly increased at swell stage, but almost not variable at steady stage. At decay stage, the relation of K to time t could be described by the equation K= mtn-1(where m and n are the coefficients). When n>1, the coating penetrability was gradually increased, and the urea release from PCU was accelerated; when n=1, the coating penetrability was steady, and the urea release from PCU obeyed the first-order kinetics; and when n<1, the coating penetrability was gradually decreased,and the urea release from PCU was delayed, resulting in a significant "tailing effect".

  8. Urea and deuterium mixtures at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, M., E-mail: m.donnelly-2@sms.ed.ac.uk; Husband, R. J.; Frantzana, A. D.; Loveday, J. S. [Centre for Science at Extreme Conditions and School of Physics and Astronomy, The University of Edinburgh, Erskine Williamson Building, Peter Guthrie Tait Road, The King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Bull, C. L. [ISIS, Rutherford Appleton Laboratory, Oxford Harwell, Didcot OX11 0QX (United Kingdom); Klotz, S. [IMPMC, CNRS UMR 7590, Université P and M Curie, 4 Place Jussieu, 75252 Paris (France)

    2015-03-28

    Urea, like many network forming compounds, has long been known to form inclusion (guest-host) compounds. Unlike other network formers like water, urea is not known to form such inclusion compounds with simple molecules like hydrogen. Such compounds if they existed would be of interest both for the fundamental insight they provide into molecular bonding and as potential gas storage systems. Urea has been proposed as a potential hydrogen storage material [T. A. Strobel et al., Chem. Phys. Lett. 478, 97 (2009)]. Here, we report the results of high-pressure neutron diffraction studies of urea and D{sub 2} mixtures that indicate no inclusion compound forms up to 3.7 GPa.

  9. Surface modified silicon nanochannel for urea sensing

    CERN Document Server

    Chen, Yu; Hong, Mi; Erramilli, Shyamsunder; Mohanty, Pritiraj

    2008-01-01

    Silicon nanowires have been surface functionalized with the enzyme urease for biosensor applications to detect and quantify urea concentration. The device is nanofabricated from a silicon on insulator (SOI) wafer with a top down lithography approach. The differential conductance of silicon nanowires can be tuned for optimum performance using the source drain bias voltage, and is sensitive to urea at low concentration. The experimental results show a linear relationship between surface potential change and urea concentration in the range of 0.1 to 0.68 mM. The sensitivity of our devices shows high reproducibility with time and different measurement conditions. The nanowire urea biosensor offers the possibility of high quality, reusable enzyme sensor array integration with silicon based circuits.

  10. High nonlinear optical anisotropy of urea nanofibers

    Science.gov (United States)

    Isakov, D.; de Matos Gomes, E.; Belsley, M.; Almeida, B.; Martins, A.; Neves, N.; Reis, R.

    2010-07-01

    Nanofibers consisting of the optically nonlinear organic molecule urea embedded in both poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA) polymers were produced by the electrospinning technique. The second-harmonic generation produced by aligned fiber mats of these materials displays a strong dependence on the polarization of the incident light. In PVA-urea nanofibers the effectiveness in generating of the second-harmonic light is as high as that of a pure urea powder with an average grain size of 110 μm. The results suggest that single crystalline urea nanofibers were achieved with a long-range crystalline order extending into the range of 2-4 μm with PVA as the host polymer.

  11. Detection of Interstellar Urea with Carma

    Science.gov (United States)

    Kuo, H.-L.; Snyder, L. E.; Friedel, D. N.; Looney, L. W.; McCall, B. J.; Remijan, A. J.; Lovas, F. J.; Hollis, J. M.

    2010-06-01

    Urea, a molecule discovered in human urine by H. M. Rouelle in 1773, has a significant role in prebiotic chemistry. Previous BIMA observations have suggested that interstellar urea [(NH_2)_2CO] is a compact hot core molecule such as other large molecules, e.g. methyl formate and acetic acid (2009, 64th OSU Symposium On Molecular Spectroscopy, WI05). We have conducted an extensive search for urea toward the high mass hot molecular core Sgr B2(N-LMH) using CARMA and the IRAM 30 m. Because the spectral lines of heavy molecules like urea tend to be weak and hot cores display lines from a wide range of molecules, a major problem in identifying urea lines is confusion with lines of other molecules. Therefore, it is necessary to detect a number of urea lines and apply sophisticated statistical tests before having confidence in an identification. The 1 mm resolution of CARMA enables favorable coupling of the source size and synthesized beam size, which was found to be essential for the detection of weak signals. The 2.5^"×2^" synthesized beam of CARMA significantly resolves out the contamination by extended emission and reveals the eight weak urea lines that were previously blended with nearby transitions. Our analysis indicates that these lines are likely to be urea since the resulting observed line frequencies are coincident with a set of overlapping connecting urea lines, and the observed line intensities are consistent with the expected line strengths of urea. In addition, we have developed a new statistical approach to examine the spatial correlation between the observed lines by applying the Student T-test to the high resolution channel maps obtained from CARMA. The T-test shows similar spatial distributions from all eight candidate lines, suggesting a common molecular origin, urea. Our T-test method could have a broad impact on the next generation of arrays, such as ALMA, because the new arrays will require a method to systematically determine the credibility of

  12. Theoretical and NMR experimental insights on urea, thiourea and diindolyurea as fluoride carriers

    Science.gov (United States)

    Mendonça, João Guilherme P.; Silla, Josué M.; Andrade, Laize A. F.; Fernandes, Sergio A.; Cormanich, Rodrigo A.; Freitas, Matheus P.

    2016-06-01

    Urea and thiourea derivatives are widely known as anion transporters. The pristine urea and thiourea compounds were theoretically and spectroscopically evaluated as fluoride ligands, since transportation of F- is involved in many biochemical processes and this anion is suitable to be analyzed through NMR. Conformational changes induced by anions can be useful to probe ligand-anion complexation, but urea and thiourea do not undergo conformational isomerization. Thus, diindolylurea (DIU) was computationally investigated to search for its conformational preferences upon complexation with fluoride. Overall, the NMR proton signal for urea and thiourea moved downfield and broadened upon addition of one equivalent of fluoride anion in DMSO solution, indicating complexation. The 19F signal for the thiourea-F- mixture also shifted relative to the anion source. However, a J(N)H,F coupling constant was not observed, probably because of entropy and bulk solvation effects. In addition, the conformational preference of DIU changed drastically after simulated complexation with fluoride, in agreement with previous studies with other anions. This confirms the potential of urea derivatives as fluoride carriers.

  13. Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays.

    Science.gov (United States)

    Krutpijit, Chadaporn; Jongsomjit, Bunjerd

    2016-01-01

    In the present study, the catalytic dehydration of ethanol to obtain ethylene over montmorillonite clays (MMT) with mineral acid activation including H2SO4 (SA-MMT), HCl (HA-MMT) and HNO3 (NA-MMT) was investigated at temperature range of 200 to 400°C. It revealed that HA-MMT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. At 400°C, the HA-MMT yielded 82% of ethanol conversion having 78% of ethylene yield. At lower temperature (i.e. 200 to 300°C), diethyl ether (DEE) was a major product. The highest activity obtained from HA-MMT can be attributed to an increase of weak acid sites and acid density by the activation of MMT with HCl. It can be also proven by various characterization techniques that in most case, the main structure of MMT did not alter by acid activation (excepted for NA-MMT). Upon the stability test for 72 h during the reaction, the MMT and HA-MMT showed only slight deactivation due to carbon deposition. Hence, the acid activation of MMT by HCl is promising to enhance the catalytic dehydration of ethanol.

  14. Liquid chromatographic determination of urea in water-soluble urea-formaldehyde fertilizer products and in aqueous urea solutions: collaborative study.

    Science.gov (United States)

    Hojjatie, Michael M; Abrams, Dean E; Parham, Thomas M; Balthrop, J; Beine, R; Dickinson, V; Hartshorn, J; Herald, S; Latimer, G; Padmore, J; Pleasants, S; Riter, K; Roser, R; Schmunck, G; Sensmeier, R; Smith, V; Taylor, L; Volgas, G

    2004-01-01

    Water soluble urea-formaldehyde (UF) fertilizers, manufactured by complex reaction of urea and formaldehyde, typically contain varying amounts of unreacted urea. A liquid chromatography method for the analysis of urea in these products, and in aqueous urea solutions, was collaboratively studied. An amine chromatography column was used to separate the unreacted urea from numerous UF reaction products present in these liquid fertilizers. Unreacted urea was determined by using external urea standards with UV detection at 195 nm. The standards and test samples were prepared in the mobile phase of 85% (v/v) acetonitrile in water. Ten laboratories analyzed 5 different UF-based commercial products containing unreacted urea in the range of 6 to 17% by weight, and 5 different concentrations of urea in water equivalent to commercial products of that nature. The aqueous urea solutions contained 2-20% urea (w/w). The range of s(R) values for the 5 UF-based commercial fertilizers was 0.49-1.02 and the %RSD(R) was 1.94-6.14. The s(R) range for the 5 urea solutions was 0.10 to 0.79 and the %RSD(R) range was 2.54 to 4.88. The average recovery of urea from the aqueous urea solutions was 96-103%. Therefore, this method is capable of monitoring urea nitrogen manufacturers' label claims and total nitrogen claims in those cases where urea is the sole source of plant food nitrogen. Based on the collaborative study data, the authors recommend this method be approved for AOAC Official First Action status.

  15. Synthesis and Characterization of Branched Poly(ester urea)s with Different Branch Density

    Science.gov (United States)

    Yu, Jiayi; Becker, Matthew

    2015-03-01

    A new class of L-phenylalanine-based poly(ester urea)s (PEU) was developed that possess tunable mechanical properties, water uptake ability and degradation rates. Our preliminary data has shown that 1,6-hexanediol L - phenylalanine-based poly(ester urea)s possesses an elastic modulus nearly double that of poly(lactic acid). My work details the synthesis of a series of L - phenylalanine-based poly(ester urea)s possessing a variation in diol chain length and in branch density and shows how these subtle structural differences influence the mechanical properties and in vitro biodegradation rates. The elastic moduli span a range of values that overlap with several currently clinically available degradable polymers. Increasingly the diol chain lengths increases the amount of flexible segment in the chemical structure, which results in reduced elastic modulus values and increased values of elongation at break. Increasing the amount of branch monomer incorporated into the system reduces the molecular entanglement, which also results in decreased elastic modulus values and increased values of elongation at break. The L - phenylalanine-based poly(ester urea)s also exhibited a diol length dependent degradation process that varied between 1-5 % over 16 weeks. Compared with PLLA, PEUs degrade more quickly and the rate can be tuned by changing the diol chain length. PEUs absorb more water and the water uptake ability can be tuned by changing the branch density. This work was supported by Akron Functional Materials Center.

  16. Standardization of the TRUE Test imidazolidinyl urea and diazolidinyl urea patches

    DEFF Research Database (Denmark)

    Agner, T; Andersen, Klaus Ejner; Björkner, B;

    2001-01-01

    The preservatives imidazolidinyl urea (IMID, Germall 115) and diazolidinyl urea (DU, Germall II) are commonly used in cosmetic products and are well-known sensitizers. The aim of the present study was to establish the optimal patch test concentration in hydrophilic dried-in vehicle (TRUE Test...

  17. Acinetobacter baumannii Coordinates Urea Metabolism with Metal Import To Resist Host-Mediated Metal Limitation

    Directory of Open Access Journals (Sweden)

    Lillian J. Juttukonda

    2016-09-01

    Full Text Available During infection, bacterial pathogens must adapt to a nutrient metal-limited environment that is imposed by the host. The innate immune protein calprotectin inhibits bacterial growth in vitro by chelating the divalent metal ions zinc (Zn2+, Zn and manganese (Mn2+, Mn, but pathogenic bacteria are able to cause disease in the presence of this antimicrobial protein in vivo. One such pathogen is Acinetobacter baumannii, a Gram-negative bacterium that causes pneumonia and bloodstream infections that can be complicated by resistance to multiple antibiotics. A. baumannii inhibition by calprotectin is dependent on calprotectin Mn binding, but the mechanisms employed by A. baumannii to overcome Mn limitation have not been identified. This work demonstrates that A. baumannii coordinates transcription of an NRAMP family Mn transporter and a urea carboxylase to resist the antimicrobial activities of calprotectin. This NRAMP family transporter facilitates Mn accumulation and growth of A. baumannii in the presence of calprotectin. A. baumannii is found to utilize urea as a sole nitrogen source, and urea utilization requires the urea carboxylase encoded in an operon with the NRAMP family transporter. Moreover, urea carboxylase activity is essential for calprotectin resistance in A. baumannii. Finally, evidence is provided that this system combats calprotectin in vivo, as deletion of the transporter impairs A. baumannii fitness in a mouse model of pneumonia, and this fitness defect is modulated by the presence of calprotectin. These findings reveal that A. baumannii has evolved mechanisms to subvert host-mediated metal sequestration and they uncover a connection between metal starvation and metabolic stress.

  18. Imaging Renal Urea Handling in Rats at Millimeter Resolution using Hyperpolarized Magnetic Resonance Relaxometry

    CERN Document Server

    Reed, Galen D; Verkman, Alan S; Koelsch, Bertram L; Chaumeil, Myriam M; Lustig, Michael; Ronen, Sabrina M; Sands, Jeff M; Larson, Peder E Z; Wang, Zhen J; Larsen, Jan Henrik Ardenkjær; Vigneron, Daniel B

    2015-01-01

    \\textit{In vivo} spin spin relaxation time ($T_2$) heterogeneity of hyperpolarized \\textsuperscript{13}C urea in the rat kidney was investigated. Selective quenching of the vascular hyperpolarized \\textsuperscript{13}C signal with a macromolecular relaxation agent revealed that a long-$T_2$ component of the \\textsuperscript{13}C urea signal originated from the renal extravascular space, thus allowing the vascular and renal filtrate contrast agent pools of the \\textsuperscript{13}C urea to be distinguished via multi-exponential analysis. The $T_2$ response to induced diuresis and antidiuresis was performed with two imaging agents: hyperpolarized \\textsuperscript{13}C urea and a control agent hyperpolarized bis-1,1-(hydroxymethyl)-1-\\textsuperscript{13}C-cyclopropane-$^2\\textrm{H}_8$. Large $T_2$ increases in the inner-medullar and papilla were observed with the former agent and not the latter during antidiuresis suggesting that $T_2$ relaxometry may be used to monitor the inner-medullary urea transporter (UT)-...

  19. Stability of urea in solution and pharmaceutical preparations.

    Science.gov (United States)

    Panyachariwat, Nattakan; Steckel, Hartwig

    2014-01-01

    The stability of urea in solution and pharmaceutical preparations was analyzed as a function of temperature (25°-60°C), pH (3.11-9.67), and initial urea concentration (2.5%-20%). This study was undertaken to (i) obtain more extensive, quantitative information relative to the degradation of urea in both aqueous and non-aqueous solutions and in pharmaceutical preparations, and (ii) test the effects of initial urea concentration, pH, buffer, and temperature values on urea degradation. The stability analysis shows that urea is more stable at the pH range of 4-8 and the stability of urea decreases by increase in temperature for all pH values. Within the experimental range of temperature and initial urea concentration values, the lowest urea degradation was found with lactate buffer pH 6.0. The urea decomposition rate in solution and pharmaceutical preparations shows the dependence of the initial urea concentrations. At higher initial urea concentrations, the rate of degradation is a decreasing function with time. This suggests that the reverse reaction is a factor in the degradation of concentrated urea solution. For non-aqueous solvents, isopropanol showed the best effort in retarding the decomposition of urea. Since the losses in urea is directly influenced by its stability at a given temperature and pH, the stability analysis of urea by the proposed model can be used to prevent the loss and optimize the operating condition for urea-containing pharmaceutical preparations.

  20. Hydroponics versus field lysimeter studies of urea, ammonium and nitrate uptake by oilseed rape (Brassica napus L.).

    Science.gov (United States)

    Arkoun, Mustapha; Sarda, Xavier; Jannin, Laëtitia; Laîné, Philippe; Etienne, Philippe; Garcia-Mina, José-Maria; Yvin, Jean-Claude; Ourry, Alain

    2012-09-01

    N-fertilizer use efficiencies are affected by their chemical composition and suffer from potential N-losses by volatilization. In a field lysimeter experiment, (15)N-labelled fertilizers were used to follow N uptake by Brassica napus L. and assess N-losses by volatilization. Use of urea with NBPT (urease inhibitor) showed the best efficiency with the lowest N losses (8% of N applied compared with 25% with urea alone). Plants receiving ammonium sulphate, had similar yield achieved through a better N mobilization from vegetative tissues to the seeds, despite a lower N uptake resulting from a higher volatilization (43% of applied N). Amounts of (15)N in the plant were also higher when plants were fertilized with ammonium nitrate but N-losses reached 23% of applied N. In parallel, hydroponic experiments showed a deleterious effect of ammonium and urea on the growth of oilseed rape. This was alleviated by the nitrate supply, which was preferentially taken up. B. napus was also characterized by a very low potential for urea uptake. BnDUR3 and BnAMT1, encoding urea and ammonium transporters, were up-regulated by urea, suggesting that urea-grown plants suffered from nitrogen deficiency. The results also suggested a role for nitrate as a signal for the expression of BnDUR3, in addition to its role as a major nutrient. Overall, the results of the hydroponic study showed that urea itself does not contribute significantly to the N nutrition of oilseed rape. Moreover, it may contribute indirectly since a better use efficiency for urea fertilizer, which was further increased by the application of a urease inhibitor, was observed in the lysimeter study.

  1. Role of urea on recombinant Apo A-I stability and its utilization in anion exchange chromatography.

    Science.gov (United States)

    Angarita, Monica; Arosio, Paolo; Müller-Späth, Thomas; Baur, Daniel; Falkenstein, Roberto; Kuhne, Wolfgang; Morbidelli, Massimo

    2014-08-08

    Apolipoprotein A-I (Apo A-I) is an important lipid-binding protein involved in the transport and metabolism of cholesterol. High protein purity, in particular with respect to endotoxins is required for therapeutic applications. The use of urea during the purification process of recombinant Apo A-I produced in Escherichia coli has been suggested so as to provide high endotoxin clearance. In this work, we show that urea can be used as a sole modifier during the ion exchange chromatographic purification of Apo A-I and we investigate the molecular mechanism of elution by correlating the effect of urea on self-association, conformation and adsorption equilibrium properties of a modified model Apo A-I. In the absence of urea the protein was found to be present as a population of oligomers represented mainly by trimers, hexamers and nonamers. The addition of urea induced oligomer dissociation and protein structure unfolding. We correlated the changes in protein association and conformation with variations of the adsorption equilibrium of the protein on a strong anion exchanger. It was confirmed that the adsorption isotherms, described by a Langmuir model, were dependent on both protein and urea concentrations. Monomers, observed at low urea concentration (0.5M), were characterized by larger binding affinity and adsorption capacity compared to both protein oligomers (0M) and unfolded monomers (2-8M). The reduction of both the binding strength and maximum adsorption capacity at urea concentrations larger than 0.5M explains the ability of urea of inducing elution of the protein from the ion exchange resin. The dissociation of the protein complexes occurring during the elution could likely be the origin of the effective clearance of endotoxins originally trapped inside the oligomers.

  2. Functional materials from self-assembled bis-urea macrocycles.

    Science.gov (United States)

    Shimizu, Linda S; Salpage, Sahan R; Korous, Arthur A

    2014-07-15

    CONSPECTUS: This Account highlights the work from our laboratories on bis-urea macrocycles constructed from two C-shaped spacers and two urea groups. These simple molecular units assembled with high fidelity into columnar structures guided by the three-centered urea hydrogen bonding motif and aryl stacking interactions. Individual columns are aligned and closely packed together to afford functional and homogeneous microporous crystals. This approach allows for precise and rational control over the dimensions of the columnar structure simply by changing the small molecular unit. When the macrocyclic unit lacks a cavity, columnar assembly gives strong pillars. Strong pillars with external functional groups such as basic lone pairs can expand like clays to accept guests between the pillars. Macrocycles that contain sizable interior cavities assemble into porous molecular crystals with aligned, well-defined columnar pores that are accessible to gases and guests. Herein, we examine the optimal design of the macrocyclic unit that leads to columnar assembly in high fidelity and probe the feasibility of incorporating a second functional group within the macrocycles. The porous molecular crystals prepared through the self-assembly of bis-urea macrocycles display surface areas similar to zeolites but lower than MOFs. Their simple one-dimensional channels are well-suited for studying binding, investigating transport, diffusion and exchange, and monitoring the effects of encapsulation on reaction mechanism and product distribution. Guests that complement the size, shape, and polarity of the channels can be absorbed into these porous crystals with repeatable stoichiometry to form solid host-guest complexes. Heating or extraction with an organic solvent enables desorption or removal of the guest and subsequent recovery of the solid host. Further, these porous crystals can be used as containers for the selective [2 + 2] cycloadditions of small enones such as 2-cyclohexenone or 3

  3. Urea Decomposition Method to Synthesize Hydrotalcites

    Institute of Scientific and Technical Information of China (English)

    Piao Ping YANG; Jian Feng YU; Tong Hao WU; Guo Zong LIU; Tae Sun CHANG; Dong Koo LEE; Deug Hee CHO

    2004-01-01

    The urea decomposition property at high temperature has been used to control the pH value in the synthesis of layer compounds. The hydrotalcites of Mg-Al and Ni-Al with high crystallinity were synthesized by using this property.

  4. Facile Synthesis of Ureas in Ionic Liquid

    Institute of Scientific and Technical Information of China (English)

    Wei Xing QIAN; Feng Yang JU; Yong Min ZHANG; Wei Liang BAO

    2004-01-01

    The reaction of isocyanates with aliphatic and aromatic amines in the 1-n-butyl-3- methylimidazolium tetrafluoroborate (bmimBF4) ionic liquid in good to excellent yields is described. Due to its insolubility, the desired urea solids could be recovered by simple filtration from the ionic liquid after reaction.

  5. Urea retranslocation from senescing Arabidopsis leaves is promoted by DUR3-mediated urea retrieval from leaf apoplast.

    Science.gov (United States)

    Bohner, Anne; Kojima, Soichi; Hajirezaei, Mohammad; Melzer, Michael; von Wirén, Nicolaus

    2015-02-01

    In plants, urea derives either from root uptake or protein degradation. Although large quantities of urea are released during senescence, urea is mainly seen as a short-lived nitrogen (N) catabolite serving urease-mediated hydrolysis to ammonium. Here, we investigated the roles of DUR3 and of urea in N remobilization. During natural leaf senescence urea concentrations and DUR3 transcript levels showed a parallel increase with senescence markers like ORE1 in a plant age- and leaf age-dependent manner. Deletion of DUR3 decreased urea accumulation in leaves, whereas the fraction of urea lost to the leaf apoplast was enhanced. Under natural and N deficiency-induced senescence DUR3 promoter activity was highest in the vasculature, but was also found in surrounding bundle sheath and mesophyll cells. An analysis of petiole exudates from wild-type leaves revealed that N from urea accounted for >13% of amino acid N. Urea export from senescent leaves further increased in ureG-2 deletion mutants lacking urease activity. In the dur3 ureG double insertion line the absence of DUR3 reduced urea export from leaf petioles. These results indicate that urea can serve as an early metabolic marker for leaf senescence, and that DUR3-mediated urea retrieval contributes to the retranslocation of N from urea during leaf senescence.

  6. 76 FR 15339 - Solid Urea From Russia and Ukraine

    Science.gov (United States)

    2011-03-21

    ... COMMISSION Solid Urea From Russia and Ukraine AGENCY: United States International Trade Commission. ACTION... orders on solid urea from Russia and Ukraine. SUMMARY: The Commission hereby gives notice that it will...)) to determine whether revocation of the antidumping duty orders on solid urea from Russia and...

  7. Synthesis and Bioactivity of Novel Fluorinated Heteroaromatic Ureas

    Institute of Scientific and Technical Information of China (English)

    Xin Jian SONG; Xiao Hong TAN; Yan Gang WANG

    2006-01-01

    In order to find new urea cytokinins, a series of novel fluorinated heteroaromatic ureas have been designed and synthesized. The crystal structure of 3g was further determined by single crystal X-ray diffraction to obtain the structural feature of this class of urea compounds. The preliminary bioassay showed that some title compounds have good cytokinin activity.

  8. 75 FR 74746 - Solid Urea From Russia and Ukraine

    Science.gov (United States)

    2010-12-01

    ... COMMISSION Solid Urea From Russia and Ukraine AGENCY: United States International Trade Commission. ACTION: Institution of five-year reviews concerning the antidumping duty orders on solid urea from Russia and Ukraine... antidumping duty orders on solid urea from Russia and Ukraine would be likely to lead to continuation...

  9. 76 FR 77015 - Solid Urea From Russia and Ukraine

    Science.gov (United States)

    2011-12-09

    ... COMMISSION Solid Urea From Russia and Ukraine Determination On the basis of the record \\1\\ developed in the... antidumping duty orders on solid urea from Russia and Ukraine would be likely to lead to continuation or... 2011), entitled Solid Urea from Russia and Ukraine: Investigation Nos. 731-TA- 340-E and 340-H...

  10. 21 CFR 176.320 - Sodium nitrate-urea complex.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate-urea complex. 176.320 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.320 Sodium nitrate-urea complex. Sodium nitrate-urea complex may be safely used as a component of articles intended for use in...

  11. Penentuan Rute Pengiriman Pupuk Urea Bersubsidi di Karanganyar

    Directory of Open Access Journals (Sweden)

    Yusuf Priyandari

    2011-01-01

    Full Text Available This paper develops a vehicle routing problem (VRP model for determining the routes in urea fertilizer distribution from a depot to retailers. The distribution is done in work days which uses trucks, each truck can serve more than one route (multiple trips, and each retailer has a time window. The vehicle routing model is built in a mixed integer linear programming (MILP and the objective function is minimizing total transportation cost. The distances from the distributor to retailers and inter-retailers do not use Euclidian approach but the road network on a digital map in order to make the route solution is more realistic. Historical distribution data was used to test the model. The result shows that the model can minimize the cost about 2.28% which is compared to the original routes.

  12. Reconsidering the Lack of Urea Toxicity in Dialysis Patients.

    Science.gov (United States)

    Massy, Ziad A; Pietrement, Christine; Touré, Fatouma

    2016-09-01

    Urea is an old uremic toxin which has been used for many years as a global biomarker of CKD severity and dialysis adequacy. Old studies were not in favor of its role as a causal factor in the pathogenesis of complications associated with the uremic state. However, recent experimental and clinical evidence is compatible with both direct and indirect toxicity of urea, particularly via the deleterious actions of urea-derived carbamylated molecules. Further studies are clearly needed to explore the potential relevance of urea-related CKD complications for patient management, in particular the place of new therapeutic strategies to prevent urea toxicity.

  13. Acid activation mechanism of the influenza A M2 proton channel.

    Science.gov (United States)

    Liang, Ruibin; Swanson, Jessica M J; Madsen, Jesper J; Hong, Mei; DeGrado, William F; Voth, Gregory A

    2016-10-24

    The homotetrameric influenza A M2 channel (AM2) is an acid-activated proton channel responsible for the acidification of the influenza virus interior, an important step in the viral lifecycle. Four histidine residues (His37) in the center of the channel act as a pH sensor and proton selectivity filter. Despite intense study, the pH-dependent activation mechanism of the AM2 channel has to date not been completely understood at a molecular level. Herein we have used multiscale computer simulations to characterize (with explicit proton transport free energy profiles and their associated calculated conductances) the activation mechanism of AM2. All proton transfer steps involved in proton diffusion through the channel, including the protonation/deprotonation of His37, are explicitly considered using classical, quantum, and reactive molecular dynamics methods. The asymmetry of the proton transport free energy profile under high-pH conditions qualitatively explains the rectification behavior of AM2 (i.e., why the inward proton flux is allowed when the pH is low in viral exterior and high in viral interior, but outward proton flux is prohibited when the pH gradient is reversed). Also, in agreement with electrophysiological results, our simulations indicate that the C-terminal amphipathic helix does not significantly change the proton conduction mechanism in the AM2 transmembrane domain; the four transmembrane helices flanking the channel lumen alone seem to determine the proton conduction mechanism.

  14. Milk Urea Dynamics during its Transformation into Yogurt

    Directory of Open Access Journals (Sweden)

    Cornelia Vintila

    2011-10-01

    Full Text Available The purpose of our work was to evaluate in what measure milk urea concentration stays in processed yogurt and in what measure urea dose influences its quality. We added known amounts of urea into milk destined to yogurt processing in order to obtain probes with concentrations from 0,5 to 28 mg/ 100 ml milk. Obtained results lead us to the conclusion that milk urea decreases dramatically until the finishing of the process of milk coagulation and its transformation into yogurt. All probes which contained higher amounts of urea than 6 mg/ 100 ml milk, urea totally disappeared from yogurt before 48 hours of keeping. Milk coagulation time and its transformation to yogurt is reduced proportional with urea concentration in milk.

  15. Determination of urea kinetics by isotope dilution with [C-13]urea and gas chromatography isotope ratio mass spectrometry (GC-IRMS) analysis

    NARCIS (Netherlands)

    Kloppenburg, Wybe; Wolthers, BG; Stellaard, F; Elzinga, H; Tepper, T; deJong, PE; Huisman, RM

    1997-01-01

    1. Stable urea isotopes can be used to study urea kinetics in humans, The use of stable urea isotopes far studying urea kinetic parameters in humans on a large scale is hampered by the high costs of the labelled material, We devised a urea dilution for measurement of the distribution volume, product

  16. Quantum crystallographic charge density of urea

    OpenAIRE

    Wall, Michael E.

    2015-01-01

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crys...

  17. Analysis of urea distribution volume in hemodialysis.

    Science.gov (United States)

    Maduell, F; Sigüenza, F; Caridad, A; Miralles, F; Serrato, F

    1994-01-01

    According to the urea kinetic model it is considered that the urea distribution volume (V) is that of body water, and that it is distributed in only one compartment. Since the V value is different to measure, it is normal to use 58% of body weight, in spite of the fact that it may range from 35 to 75%. In this study, we have calculated the value of V by using an accurate method based on the total elimination of urea from the dialysate. We have studied the V, and also whether the different dialysis characteristics modify it. Thirty-five patients were included in this study, 19 men and 16 women, under a chronic hemodialysis programme. The dialysate was collected in a graduated tank, and the concentration of urea in plasma and in dialysate were determined every hour. Every patient received six dialysis sessions, changing the blood flow (250 or 350 ml/min), the ultrafiltration (0.5 or 1.5 l/h), membrane (cuprophane or polyacrylonitrile) and/or buffer (bicarbonate or acetate). At the end of the hemodialysis session, the V value ranged from 43 to 72% of body weight; nevertheless, this value was practically constant in every patient. The V value gradually increased throughout the dialysis session, 42.1 +/- 6.9% of body weight in the first hour, 50.7 +/- 7.5% in the second hour and 55.7 +/- 7.9% at the end of the dialysis session. The change of blood flow, ultrafiltration, membrane or buffer did not alter the results. The V value was significantly higher in men in comparison with women, 60.0 +/- 6.6% vs. 50.5 +/- 5.9% of body weight (p < 0.001).

  18. ADSORPTION FROM AQUEOUS SOLUTION ONTO NATURAL AND ACID ACTIVATED BENTONITE

    Directory of Open Access Journals (Sweden)

    Laila Al-Khatib

    2012-01-01

    Full Text Available Dyes have long been used in dyeing, paper and pulp, textiles, plastics, leather, paint, cosmetics and food industries. Nowadays, more than 100,000 commercial dyes are available with a total production of 700,000 tones manufactured all over the world annually. About 10-15% of dyes are being disposed off as a waste into the environment after dyeing process. This poses certain hazards and environmental problems. The objective of this study is to investigate the adsorption behavior of Methylene Blue (MB from aqueous solution onto natural and acid activated Jordanian bentonite. Both bentonites are firstly characterized using XRD, FTIR and SEM techniques. Then batch adsorption experiments were conducted to investigate the effect of initial MB concentration, contact time, pH and temperature. It was found that the percentage of dye removal was improved from 75.8% for natural bentonite to reach 99.6% for acid treated bentonite. The rate of MB removal followed the pseudo second order model with a high correlation factor. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. The Langmuir isotherm model was found more representative. The results indicate that bentonite could be employed as a low cost adsorbent in wastewater treatment for the removal of colour and dyes.

  19. Urea Induced Denaturation of Pre-Q1 Riboswitch

    Science.gov (United States)

    Yoon, Jeseong; Thirumalai, Devarajan; Hyeon, Changbong

    2013-01-01

    Urea, a polar molecule with a large dipole moment, not only destabilizes the folded RNA structures, but can also enhance the folding rates of large ribozymes. Unlike the mechanism of urea-induced unfolding of proteins, which is well understood, the action of urea on RNA has barely been explored. We performed extensive all atom molecular dynamics (MD) simulations to determine the molecular underpinnings of urea-induced RNA denaturation. Urea displays its denaturing power in both secondary and tertiary motifs of the riboswitch (RS) structure. Our simulations reveal that the denaturation of RNA structures is mainly driven by the hydrogen bonds and stacking interactions of urea with the bases. Through detailed studies of the simulation trajectories, we found that geminate pairs between urea and bases due to hydrogen bonds and stacks persist only ~ (0.1-1) ns, which suggests that urea-base interaction is highly dynamic. Most importantly, the early stage of base pair disruption is triggered by penetration of water molecules into the hydrophobic domain between the RNA bases. The infiltration of water into the narrow space between base pairs is critical in increasing the accessibility of urea to transiently disrupted bases, thus allowing urea to displace inter base hydrogen bonds. This mechanism, water-induced disruption of base-pairs resulting in the formation of a "wet" destabilized RNA followed by solvation by urea, is the exact opposite of the two-stage denaturation of proteins by urea. In the latter case, initial urea penetration creates a dry-globule, which is subsequently solvated by water penetration leading to global protein unfolding. Our work shows that the ability to interact with both water and polar, non-polar components of nucleotides makes urea a powerful chemical denaturant for nucleic acids.

  20. Variation of milk urea in dairy cattle : a study on factors that affect the relationship between urea concentration in milk and urea excretion in urine

    NARCIS (Netherlands)

    Spek, J.W.

    2013-01-01

    The aim of this thesis was to increase the applicability of milk urea nitrogen concentration (MUN) as a predictor of urinary urea nitrogen excretion (UUN) by identifying and quantifying factors that can explain variation in MUN that is not related to UUN. A literature study was conducted in order to

  1. Final report of the safety assessment of Urea.

    Science.gov (United States)

    2005-01-01

    Although Urea is officially described as a buffering agent, humectant, and skin-conditioning agent-humectant for use in cosmetic products, there is a report stating that Urea also is used in cosmetics for its desquamating and antimicrobial action. In 2001, the Food and Drug Administration (FDA) reported that Urea was used in 239 formulations. Concentrations of use for Urea ranged from 0.01% to 10%. Urea is generally recognized as safe by FDA for the following uses: side-seam cements for food contact; an inhibitor or stabilizer in pesticide formulations and formulations applied to animals; internal sizing for paper and paperboard and surface sizing and coating of paper and paper board that contact water-in-oil dairy emulsions, low-moisture fats and oils, moist bakery products, dry solids with surface containing no free fats or oil, and dry solids with the surface of fat or oil; and to facilitate fermentation of wine. Urea is the end product of mammalian protein metabolism and the chief nitrogenous compound of urine. Urea concentrations in muscle, liver, and fetuses of rats increased after a subcutaneous injection of Urea. Urea diffused readily through the placenta and into other maternal and fetal organs. The half-life of Urea injected into rabbits was on the order of several hours, and the reutilization rate was 32.2% to 88.8%. Urea given to rats by a bolus injection or continuous infusion resulted in distribution to the following brain regions: frontal lobe, caudate nucleus, hippocampus, thalamus plus hypothalamus, pons and white matter (corpus callosum). The permeability constant after treatment with Urea of whole skin and the dermis of rabbits was 2.37 +/- 0.13 (x 10(6)) and 1.20 +/- 0.09 (x10(3)) cm/min, respectively. The absorption of Urea across normal and abraded human skin was 9.5% +/- 2.3% and 67.9% +/- 5.6%, respectively. Urea increased the skin penetration of other compounds, including hydrocortisone. No toxicity was observed for Urea at levels as high

  2. Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori.

    Science.gov (United States)

    Strugatsky, David; McNulty, Reginald; Munson, Keith; Chen, Chiung-Kuang; Soltis, S Michael; Sachs, George; Luecke, Hartmut

    2013-01-10

    Half the world's population is chronically infected with Helicobacter pylori, causing gastritis, gastric ulcers and an increased incidence of gastric adenocarcinoma. Its proton-gated inner-membrane urea channel, HpUreI, is essential for survival in the acidic environment of the stomach. The channel is closed at neutral pH and opens at acidic pH to allow the rapid access of urea to cytoplasmic urease. Urease produces NH(3) and CO(2), neutralizing entering protons and thus buffering the periplasm to a pH of roughly 6.1 even in gastric juice at a pH below 2.0. Here we report the structure of HpUreI, revealing six protomers assembled in a hexameric ring surrounding a central bilayer plug of ordered lipids. Each protomer encloses a channel formed by a twisted bundle of six transmembrane helices. The bundle defines a previously unobserved fold comprising a two-helix hairpin motif repeated three times around the central axis of the channel, without the inverted repeat of mammalian-type urea transporters. Both the channel and the protomer interface contain residues conserved in the AmiS/UreI superfamily, suggesting the preservation of channel architecture and oligomeric state in this superfamily. Predominantly aromatic or aliphatic side chains line the entire channel and define two consecutive constriction sites in the middle of the channel. Mutation of Trp 153 in the cytoplasmic constriction site to Ala or Phe decreases the selectivity for urea in comparison with thiourea, suggesting that solute interaction with Trp 153 contributes specificity. The previously unobserved hexameric channel structure described here provides a new model for the permeation of urea and other small amide solutes in prokaryotes and archaea.

  3. New potent calcimimetics: II. Discovery of benzothiazole trisubstituted ureas.

    Science.gov (United States)

    Deprez, Pierre; Temal, Taoues; Jary, Hélène; Auberval, Marielle; Lively, Sarah; Guédin, Denis; Vevert, Jean-Paul

    2013-04-15

    Following the identification of trisubstituted ureas as a promising new chemical series of allosteric modulators of the calcium sensing receptor (CaSR), we further explored the SAR around the urea substitution, leading to the discovery of benzothiazole urea compound 13. This compound is a potent calcimimetic with an EC50=20 nM (luciferase assay). Evaluated in an in vivo model of chronic renal failure (short term and long term in 5/6 nephrectomized rats), benzothiazole urea 13 significantly decreased PTH levels after oral administration while keeping calcemia within the normal range.

  4. Pengolahan Limbah Cair Pabrik Pupuk Urea Menggunakan Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    Darmadi Darmadi

    2014-06-01

    Full Text Available Limbah cair pabrik pupuk urea terdiri dari urea dan amonium yang masing-masing mempunyai konsentrasi berkisar antara 1500-10000 ppm dan 400-3000 ppm. Konsentrasi urea yang tinggi di dalam badan air dapat menyebabkan blooming algae dalam ekosistem tersebut yang dapat mengakibatkan kehidupan biota air lain terserang penyakit. Peristiwa ini terjadi karena kurangnya nutrisi bagi biota air dan sedikitnya sinar matahari yang dapat menembusi permukaan air. Disamping kedua hal tersebut di atas, algae juga dapat memproduksi senyawa beracun bagi biota air dan manusia. Penelitian ini bertujuan untuk mengolah urea menggunakan oksidasi konvensional (H2O2 dan Advanced Oxidation Processes (kombinasi H2O2-Fe2+ pada pH 5 dengan parameter yang digunakan adalah variasi konsen-trasi awal H2O2  dan konsentrasi Fe2+. Hasil percobaan menunjukkan bahwa penurunan konsentrasi urea tertinggi diperoleh pada penggunaan reagen fenton (8000 ppm H2O2 dan 500 ppm Fe2+, yaitu dapat menurunkan urea dari konsentrasi awal urea 2566,145 ppm menjadi 0 ppm. Kinetika reaksi dekomposisi urea menjadi amonium dan amonium menjadi nitrit dan nitrat yang diuji mengikuti laju kinetika reaksi orde 1 (satu terhadap urea dan orde satu terhadap amonium dengan konstanta laju reaksi masing-masing k1 = 0,019 dan k2 = 0,022 min-1.

  5. Sites of pH regulation of the urea channel of Helicobacter pylori.

    Science.gov (United States)

    Weeks, D L; Sachs, G

    2001-06-01

    Helicobacter pylori (Hp) and Streptococcus salivarius (Ss) require intrabacterial urease for acid resistance and express a urea channel, UreI. The presence of UreI was shown to increase urea permeability approximately 300-fold over that of a non-polar ureI deletion mutant. Expression of SsUreI in Xenopus oocytes increased urea uptake pH independently, whereas HpUreI shows an acidic pH dependence, half-maximal at pH 6.0. Mutagenesis of all histidines, aspartates, glutamates and the lysine in the periplasmic domain of HpUreI showed that His-123, His-131, Asp-129, Asp-140, Glu-138 and Lys-132 in the second periplasmic loop (PL2) and His-193 in the C-terminus (Ct) were important for activation of transport. With the exception of a lysine that was shown to substitute for His-193 in HpUreI, these charged amino acids are absent in SsUreI. A chimera in which PL1 of HpUreI was replaced by PL1 of SsUreI retained activity at acidic pH and gained partial activity at neutral pH. Exchange of PL2 inactivated transport, whereas exchange of Ct had no effect. Chimeras, in which either PL1 or PL2 of HpUreI replaced those of SsUreI, retained wild-type transport, but replacement of the Ct or both loops inactivated transport. PL1 appears to be important for restricting transport through HpUreI at neutral pH, whereas protonation of three histidines in PL2 and Ct and the presence of three dicarboxylic amino acids in PL2 appears to be necessary to activate HpUreI at acidic pH.

  6. Nitrogen Cycling and Losses Under Rice-Wheat Rotations with Coated Urea and Urea in the Taihu Lake Region

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Zhi; ZHU Jian-Guo; GAO Ren; H. YASUKAZU; FENG Ke

    2007-01-01

    A lysimeter experiment with undisturbed soil profiles was carried out to study nitrogen cycling and losses in a paddy soil with applications of coated urea and urea under a rice-wheat rotation system in the Taihu Lake region from 2001 to 2003. Treatments for rice and wheat included urea at conventional, 300 (rice) and 250 (wheat) kg N ha-1, and reduced levels, 150 (rice) and 125 (wheat) kg N ha-1, coated urea at two levels, 100 (rice) and 75 (wheat) kg N ha-1, and 150(rice) and 125 (wheat) kg N ha-1, and a control with no nitrogen arranged in a completely randomized design. The results under two rice-wheat rotations showed that N losses through both NH3 volatilization and runoff in the coated urea treatments were much lower than those in the urea treatments. In the urea treatments N runoff losses were significantly (P < 0.001) positively correlated (r = 0.851) with applied N. N concentration in surface water increased rapidly to maximum two days after urea application and then decreased quickly. However, if there was no heavy rain within five days of fertilizer application, the likelihood of N loss by runoff was not high. As the treatments showed little difference in N loss via percolation, nitrate N in the groundwater of the paddy fields was not directly related to N leaching. The total yieldof the two rice-wheat rotations in the treatment of coated urea at 50% conventional level was higher than that in the treatment of urea at the conventional level. Thus, coated urea was more favorable to rice production and environmental protection than urea.

  7. Nickel hydroxide modified electrodes for urea determination

    Directory of Open Access Journals (Sweden)

    Luiz Henrique Dall´Antonia

    2007-03-01

    Full Text Available Nickel hydroxide films were prepared by electrodeposition from a solution Ni(NO32 0,05 mol L ?¹ on ITO electrodes (Tin oxide doped with Indium on PET-like plastic film, applying a current of - 0,1 A cm ?² during different time intervals between 1800 and 7200 s. The electrochemical behavior of the nickel hydroxide electrode was investigated through a cyclic voltammogram, in NaOH 1,0 mol L ?¹, where it was observed two peaks in the profile in 0,410 and 0,280 V, corresponding to redox couple Ni(II/Ni(III. A sensor for urea presenting a satisfactory answer can be obtained when, after the deposit of the film of Ni(OH2 on the electrode of nickel, it is immersed in a solution of NaOH 1,0 mol L ?¹ and applying a potential of + 0,435 V, where the maximum of the anodic current occurs in the cyclic voltammogram. Analyzing the results it can be observed that, for a range of analite concentration between 5 to 50 m mol L ?¹, the behavior is linear and the sensibility found was of 20,3 mA cm?² (mol L?¹?¹, presenting reproducibility confirming the nickel hydroxide electrodes utilization for the determination of urea.

  8. Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells.

    Science.gov (United States)

    Zhu, Xiaojiao; Dou, Xinyu; Dai, Jun; An, Xingda; Guo, Yuqiao; Zhang, Lidong; Tao, Shi; Zhao, Jiyin; Chu, Wangsheng; Zeng, Xiao Cheng; Wu, Changzheng; Xie, Yi

    2016-09-26

    The direct urea fuel cell (DUFC) is an important but challenging renewable energy production technology, it offers great promise for energy-sustainable developments and mitigating water contamination. However, DUFCs still suffer from the sluggish kinetics of the urea oxidation reaction (UOR) owing to a 6 e(-) transfer process, which poses a severe hindrance to their practical use. Herein, taking β-Ni(OH)2 nanosheets as the proof-of-concept study, we demonstrated a surface-chemistry strategy to achieve metallic Ni(OH)2 nanosheets by engineering their electronic structure, representing a first metallic configuration of transition-metal hydroxides. Surface sulfur incorporation successfully brings synergetic effects of more exposed active sites, good wetting behavior, and effective electron transport, giving rise to greatly enhanced performance for UOR. Metallic nanosheets exhibited a much higher current density, smaller onset potential and stronger durability.

  9. Effect of urea and urea-gamma treatments on cellulose degradation of Thai rice straw and corn stalk

    Energy Technology Data Exchange (ETDEWEB)

    Banchorndhevakul, Siriwattana E-mail: siriwatt@ji-net.com

    2002-08-01

    Cellulose degradation of 20% urea treated and 20% urea-10 kGy gamma treated Thai rice straw and corn stalk showed that combination effect of urea and gamma radiation gave a higher % decrease in neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, and lignin and cutin in comparison with urea effect only for both room temperature storage and room temperature +258 K storage. The results also indicated that cellulose degradation proceeded with time, even at 258 K. A drastic drop to less than half of the original contents in NDF, ADF, and ADL could not be obtained in this study.

  10. In-situ catalytic synthesis of ammonia from urea in a semi-batch reactor for safe utilization in thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    J.N. Sahu; A.V. Patwardhan; B.C. Meikap [Indian Institute of Technology (IIT), Kharagpur (India). Department of Chemical Engineering

    2010-05-15

    Urea as the source of ammonia for the flue gas conditioning/NOx reduction system in thermal power plant has the obvious advantages that no ammonia shipping, handling and storage is required. The process of this invention minimizes the risks and hazards associated with the transport, storage and use of anhydrous and aqueous ammonia, as ammonia is a highly volatile noxious material. But no such rapid urea conversion process is available as per requirement of high conversion in shorter time, so here we study the catalytic hydrolysis of urea for fast conversion in a semi-batch reactors. The catalysts used in this study are: TiO{sub 2}, fly ash, mixture of Ni and Fe and Al{sub 2}O{sub 3}.A number of experiments was carried out in a semi-batch reactor at different catalyst doses, temperatures and concentration of urea solution from 10 to 30% by weight and equilibrium study has been made.

  11. Nitrification and Anammox with urea as the energy source

    NARCIS (Netherlands)

    Sliekers, A.O.; Haaijer, S.C.M.; Schmid, M.C.; Harhangi, R.H.; Verwegen, K.; Kuenen, J.G.; Jetten, M.S.M.

    2004-01-01

    Urea is present in many ecosystems and can be used as an energy source by chemolithotrophic aerobic ammonia oxidizing bacteria (AOB). Thus the utilization of urea in comparison to ammonia, by AOB as well as anaerobic ammonia oxidizing (Anammox) bacteria was investigated, using enrichments cultures,

  12. 21 CFR 862.1770 - Urea nitrogen test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urea nitrogen test system. 862.1770 Section 862.1770 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... measure urea nitrogen (an end-product of nitrogen metabolism) in whole blood, serum, plasma, and...

  13. 40 CFR 721.9925 - Aminoethylethylene urea methacrylamide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aminoethylethylene urea methacrylamide... Substances § 721.9925 Aminoethylethylene urea methacrylamide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aminoethylethylene...

  14. Solid and solution phase combinatorial synthesis of ureas

    NARCIS (Netherlands)

    Nieuwenhuijzen, JW; Conti, PGM; Ottenheijm, HCJ; Linders, JTM

    1998-01-01

    An efficient parallel synthesis of ureas based on amino acids is described, both in solution and on solid phase. 1,1'-Carbonylbisbenzotriazole 2 is used as the coupling reagent. The ureas 5 and 10 were obtained in high yield (80-100%) and purity (71-97%). (C) 1998 Elsevier Science Ltd. All rights re

  15. Urea enhances the photodynamic efficiency of methylene blue.

    Science.gov (United States)

    Nuñez, Silvia C; Yoshimura, Tania M; Ribeiro, Martha S; Junqueira, Helena C; Maciel, Cleiton; Coutinho-Neto, Maurício D; Baptista, Maurício S

    2015-09-01

    Methylene blue (MB) is a well-known photosensitizer used mostly for antimicrobial photodynamic therapy (APDT). MB tends to aggregate, interfering negatively with its singlet oxygen generation, because MB aggregates lean towards electron transfer reactions, instead of energy transfer with oxygen. In order to avoid MB aggregation we tested the effect of urea, which destabilizes solute-solute interactions. The antimicrobial efficiency of MB (30 μM) either in water or in 2M aqueous urea solution was tested against a fungus (Candida albicans). Samples were kept in the dark and irradiation was performed with a light emitting diode (λ = 645 nm). Without urea, 9 min of irradiation was needed to achieve complete microbial eradication. In urea solution, complete eradication was obtained with 6 min illumination (light energy of 14.4 J). The higher efficiency of MB/urea solution was correlated with a smaller concentration of dimers, even in the presence of the microorganisms. Monomer to dimer concentration ratios were extracted from the absorption spectra of MB solutions measured as a function of MB concentration at different temperatures and at different concentrations of sodium chloride and urea. Dimerization equilibrium decreased by 3 and 6 times in 1 and 2M urea, respectively, and increased by a factor of 6 in 1M sodium chloride. The destabilization of aggregates by urea seems to be applied to other photosensitizers, since urea also destabilized aggregation of Meso-tetra(4-n-methyl-pyridyl)porphyrin, which is a positively charged porphyrin. We showed that urea destabilizes MB aggregates mainly by causing a decrease in the enthalpic gain of dimerization, which was exactly the opposite of the effect of sodium chloride. In order to understand this phenomenon at the molecular level, we computed the free energy for the dimer association process (ΔG(dimer)) in aqueous solution as well as its enthalpic component in aqueous and in aqueous/urea solutions by molecular dynamics

  16. Reduced urea flux across the blood-testis barrier and early maturation in the male reproductive system in UT-B-null mice.

    Science.gov (United States)

    Guo, Lirong; Zhao, Dan; Song, Yuanlin; Meng, Yan; Zhao, Huashan; Zhao, Xuejian; Yang, Baoxue

    2007-07-01

    A urea-selective urine-concentrating defect was found in transgenic mice deficient in urea transporter (UT)-B. To determine the role of facilitated urea transport in extrarenal organs expressing UT-B, we studied the kinetics of [(14)C]urea distribution in UT-B-null mice versus wild-type mice. After renal blood flow was disrupted, [(14)C]urea distribution was selectively reduced in testis in UT-B-null mice. Under basal conditions, total testis urea content was 335.4 +/- 43.8 microg in UT-B-null mice versus 196.3 +/- 18.2 microg in wild-type mice (P UT-B-null mice (6.6 +/- 0.8 mg/g body wt) was significantly greater than in wild-type mice (4.2 +/- 0.8 mg/g body wt). Elongated spermatids were observed earlier in UT-B-null mice compared with wild type mice on day 24 versus day 32, respectively. First breeding ages in UT-B knockout males (48 +/- 3 days) were also significantly earlier than that in wild-type males (56 +/- 2 days). In competing mating tests with wild-type males and UT-B-null males, all pups carried UT-B-targeted genes, which indicates that all pups were produced from breeding of UT-B-null males. Experiments of the expression of follicle-stimulating hormone receptor (FSHR) and androgen binding protein (ABP) indicated that the development of Sertoli cells was also earlier in UT-B-null mice than that in wild-type mice. These results suggest that UT-B plays an important role in eliminating urea produced by Sertoli cells and that UT-B deletion causes both urea accumulation in the testis and early maturation of the male reproductive system. The UT-B knockout mouse may be a useful experimental model to define the molecular mechanisms of early puberty.

  17. The nutritional management of urea cycle disorders.

    Science.gov (United States)

    Leonard, J V

    2001-01-01

    Diet is one of the mainstays of the treatment of patients with urea cycle disorders. The protein intake should be adjusted to take account of the inborn error and its severity and the patient's age, growth rate, and individual preferences. Currently, the widely used standards for protein intake are probably more generous than necessary, particularly for those with the more severe variants. Most patients, except those with arginase deficiency, will need supplements of arginine, but the value of other supplements including citrate and carnitine is unclear. Any patient on a low-protein diet should be monitored clinically and with appropriate laboratory tests. All should have an emergency (crisis) regimen to prevent decompensation during periods of metabolic stress.

  18. Hydrolyzable polyureas bearing hindered urea bonds.

    Science.gov (United States)

    Ying, Hanze; Cheng, Jianjun

    2014-12-10

    Hydrolyzable polymers are widely used materials that have found numerous applications in biomedical, agricultural, plastic, and packaging industrials. They usually contain ester and other hydrolyzable bonds, such as anhydride, acetal, ketal, or imine, in their backbone structures. Here, we report the first design of hydrolyzable polyureas bearing dynamic hindered urea bonds (HUBs) that can reversibly dissociate to bulky amines and isocyanates, the latter of which can be further hydrolyzed by water, driving the equilibrium to facilitate the degradation of polyureas. Polyureas bearing 1-tert-butyl-1-ethylurea bonds that show high dynamicity (high bond dissociation rate), in the form of either linear polymers or cross-linked gels, can be completely degraded by water under mild conditions. Given the simplicity and low cost for the production of polyureas by simply mixing multifunctional bulky amines and isocyanates, the versatility of the structures, and the tunability of the degradation profiles of HUB-bearing polyureas, these materials are potentially of very broad applications.

  19. Effects of nitrogen supply on inter-organ fluxes of urea-N and renal urea-N kinetics in lactating Holstein cows

    DEFF Research Database (Denmark)

    Røjen, Betina Amdisen; Theil, Peter Kappel; Kristensen, Niels Bastian

    2011-01-01

    The effects of decreasing ruminal urea infusion in lactating dairy cows fed a basal diet deficient in rumen degradable protein on inter-organ urea-N fluxes, epithelial urea-N extraction, and renal urea-N kinetics were investigated. Eight Danish Holstein cows fitted with a ruminal cannula...... and permanent indwelling catheters in the major splanchnic blood vessels and the gastrosplenic vein were used. The cows were randomly allocated to a triplicate incomplete 3 × 3 Latin square design with 14-d periods. Treatments were continuous ventral ruminal infusion of water, 4.1 g of feed urea/kg of dry...... matter intake, and 8.5 g of feed urea/kg of dry matter intake. Dry matter intake and milk yield decreased linearly with decreasing urea infusion. Arterial blood urea-N and ruminal ammonia concentrations decreased linearly with decreasing urea infusion. In absolute amounts, the urea-N recycling did...

  20. Hydrogen bonding of formamide, urea, urea monoxide and their thio-analogs with water and homodimers

    Indian Academy of Sciences (India)

    Damanjit Kaur; Shweta Khanna

    2014-11-01

    Ab initio and DFT methods have been employed to study the hydrogen bonding ability of formamide, urea, urea monoxide, thioformamide, thiourea and thiourea monoxide with one water molecule and the homodimers of the selected molecules. The stabilization energies associated with themonohydrated adducts and homodimers’ formation were evaluated at B3LYP/6-311++G** and MP2/6-311++G∗∗ levels. The energies were corrected for zero-point vibrational energies and basis set superposition error using counterpoise method. Atoms in molecules study has been carried out in order to characterize the hydrogen bonds through the changes in electron density and laplacian of electron density. A natural energy decomposition and natural bond orbital analysis was performed to understand the nature of hydrogen bonding.

  1. A review of factors influencing milk urea concentration and its relationship with urinary urea excretion in lactating dairy cattle

    NARCIS (Netherlands)

    Spek, J.W.; Dijkstra, J.; Duinkerken, van G.; Bannink, A.

    2013-01-01

    Milk urea nitrogen (MUN) concentration in dairy cows may serve as an on-farm indicator to guide nutritional strategies and to help reduce emissions of nitrogen (N) to the environment. Excretion of urinary urea nitrogen (UUN) is positively related to MUN, but the relationship is highly variable. The

  2. Influence of milk urea concentration on fractional urea disappearance rate from milk to blood plasma in dairy cows

    NARCIS (Netherlands)

    Spek, J.W.; Dijkstra, J.; Bannink, A.

    2016-01-01

    The relationship between milk urea nitrogen (MUN; mg of N/dL) and urinary N excretion is affected, among others, by diurnal dynamics in MUN, which in turn is largely influenced by feed intake pattern and characteristics of urea transfer from blood plasma to milk and vice versa. This study aimed t

  3. Ammonia and urea excretion in the swimming crab Portunus trituberculatus exposed to elevated ambient ammonia-N.

    Science.gov (United States)

    Ren, Qin; Pan, Luqing; Zhao, Qun; Si, Lingjun

    2015-09-01

    In the present study of the swimming crab Portunus trituberculatus exposed to 0, 1, and 5 mg L(-1) NH4Cl, the effects of ammonia exposure on ammonia and urea content in hemolymph; activity of H(+)-ATPase (subunit A) and Na(+)/K(+)-ATPase (α-subunit) (NKA) in gills; mRNA expression levels of the crustacean Rh-like ammonia transporter (Rh), K(+) Channel, Na(+)/K(+)/2Cl(-) co-transporter (NKCC), Na(+)/H(+)-exchanger (NHE), urea transporter (UT) and vesicle associated membrane protein (VAMP) in gills were investigated. The ultrastructure of gills was also evaluated. All these results in this study showed a dose-dependent effect with ammonia exposure concentration. The data displayed a significant increase in hemolymph ammonia and urea concentrations under ammonia exposure. The up-regulation of Rh mRNA together with up-regulation of K(+)-channel mRNA, NKA activity, down-regulation of NKCC and NHE mRNA suggested a coordinated protective response to maintain a relatively low ammonia concentration in the body fluids during ambient ammonia exposure. The up-regulation of VAMP, H(+)-ATPase activity along with the ultrastructure of gills suggested a mechanism of exocytotic ammonia excretion that may exit in the gill of P. trituberculatus. An increased production of urea and the up-regulated expression of UT suggested that the crab can detoxify elevated ammonia levels in the body fluids into urea when pathways of ammonia excretion are decreased after long term ammonia exposure.

  4. The urea carboxylase and allophanate hydrolase activities of urea amidolyase are functionally independent.

    Science.gov (United States)

    Lin, Yi; Boese, Cody J; St Maurice, Martin

    2016-10-01

    Urea amidolyase (UAL) is a multifunctional biotin-dependent enzyme that contributes to both bacterial and fungal pathogenicity by catalyzing the ATP-dependent cleavage of urea into ammonia and CO2 . UAL is comprised of two enzymatic components: urea carboxylase (UC) and allophanate hydrolase (AH). These enzyme activities are encoded on separate but proximally related genes in prokaryotes while, in most fungi, they are encoded by a single gene that produces a fusion enzyme on a single polypeptide chain. It is unclear whether the UC and AH activities are connected through substrate channeling or other forms of direct communication. Here, we use multiple biochemical approaches to demonstrate that there is no substrate channeling or interdomain/intersubunit communication between UC and AH. Neither stable nor transient interactions can be detected between prokaryotic UC and AH and the catalytic efficiencies of UC and AH are independent of one another. Furthermore, an artificial fusion of UC and AH does not significantly alter the AH enzyme activity or catalytic efficiency. These results support the surprising functional independence of AH from UC in both the prokaryotic and fungal UAL enzymes and serve as an important reminder that the evolution of multifunctional enzymes through gene fusion events does not always correlate with enhanced catalytic function.

  5. Synthesis of aluminum nitride nanoparticles by a facile urea glass route and influence of urea/metal molar ratio

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhifang; Wan, Yizao [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Xiong, Guangyao [School of Mechanical and Electrical Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013 (China); Guo, Ruisong [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Luo, Honglin, E-mail: hlluo@tju.edu.cn [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2013-09-01

    Attention toward nanosized aluminum nitride (AlN) was rapidly increasing due to its physical and chemical characteristics. In this work, nanocrystalline AlN particles were prepared via a simple urea glass route. The effect of the urea/metal molar ratio on the crystal structure and morphology of nanocrystalline AlN particles was studied using X-ray powder diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results revealed that the morphology and the crystal structure of AlN nanoparticles could be controlled by adjusting the urea/metal ratio. Furthermore, a mixture of Al{sub 2}O{sub 3} and h-AlN was detected at the urea/metal molar ratio of 4 due to the inadequate urea content. With increasing the molar ratio, the pure h-AlN was obtained. In addition, the nucleation and growth mechanisms of AlN nanocrystalline were proposed.

  6. The Effects of Acid Activation on the Thermal Properties of Polyvinylpyrrolidone and Organoclay Composites

    Directory of Open Access Journals (Sweden)

    F. Kooli

    2015-01-01

    Full Text Available The thermal stabilities of polyvinylpyrrolidone-organoclays or organo-acid-activated clay composites prepared by chemical exchange reactions were assessed. The raw clay mineral was acid-activated prior to expansion by cetyltrimethylammonium surfactants. The acid activation process affected the intercalated amount of cetyltrimethylammonium cations in the resulting organoclays and, thus, the amount of polyvinylpyrrolidone in the composite. The content of cetyltrimethylammonium cations decreased with the extent of acid activation. The organophilic modification of the clay mineral was an important step in the intercalation of the polyvinylpyrrolidone molecules and, thus, in the expansion of the silicate sheets from 3.80 nm to 4.20 nm. The composites exhibited better crystalline order with intense reflections at lower angles. The thermal stability of organoclays, acid-activated clays, and composites was studied using thermogravimetric analysis and in situ X-ray diffraction. The decomposition of intercalated surfactants occurred at lower temperatures relative to the neat surfactant salt, and the basal spacing of the organoclays (or acid-activated clays shrunk to 2.0 nm at 215°C. However, the basal spacing of composites exhibited better stability and collapsed to 2.0 nm at 300°C. This type of material could offer an alternative stable product for engineering purposes in the design of new composites.

  7. Methodology for concurrent determination of urea kinetics and the capture of recycled urea nitrogen by ruminal microbes in cattle.

    Science.gov (United States)

    Wickersham, T A; Titgemeyer, E C; Cochran, R C

    2009-03-01

    We measured the incorporation of recycled urea-nitrogen (N) by ruminal microbes, using five ruminally and duodenally fistulated steers (237 kg) fed low-quality grass hay (47 g crude protein/kg dry matter (DM)). Three received 1 kg/day of soybean meal (SBM) and two received no supplemental protein (control). The experiment was 15 days long. Background enrichments of 15N were measured on day 9 and continuous jugular infusion of 0.12 g/day [15N15N]urea began on day 10. Daily samples of urine, feces, ruminal bacteria and duodenal digesta from days 10 through 14 were used to determine plateaus in 15N enrichment. Duodenal and bacterial samples collected on day 15 were used to measure duodenal N flows. Bacterial N flow was calculated as duodenal N flow multiplied by duodenal 15N enrichment divided by bacterial 15N enrichment. Bacterial N from recycled urea-N was calculated as bacterial N flow multiplied by bacterial 15N enrichment divided by urinary urea 15N enrichment. Urinary enrichment of [15N15N]urea plateaued within 24 h, whereas 14N15N urea plateaued within 48 h of [15N15N]urea infusion. Bacteria reached a plateau in 15N enrichment within 24 h and duodenal samples within 48 h. Urea production was 17.6 g of urea-N/day for control and 78.0 g/day for SBM. Gut entry was 0.99 g of urea-N/g of urea-N produced for control and 0.87 g/g for SBM. Incorporation of recycled N into microbial N was 9.0 g of N/day for control and 23.0 g/day for SBM. Recycled urea-N accounted for 0.33 g of N/g of microbial N at the duodenum for control and 0.27 g/g for SBM. Our methods allowed measurement of incorporation of recycled urea-N into ruminal microbial N.

  8. Efficacy of Dietary Urea-Impregnated Zeolite in Improving Rumen Fermentation Characteristics of Local Lamb

    Directory of Open Access Journals (Sweden)

    D. Kardaya

    2012-12-01

    Full Text Available A research on dietary inclusion of urea-impregnated zeolite as slow-release urea (SRU agent had been conducted to reveal its effect on ruminal fermentation characteristics in local lambs. The research used 24 heads of 7-8 mo old of local male lambs with (20.12±2.1 kg BW designed upon a randomized block design. Treatments consisted of diets contained no urea, urea, zeolite, and urea-impregnated zeolite. The collected data was analyzed with UNIANOVA and Duncan’s multiple-range test. Results indicated that feeding no urea, zeolite, or urea-impregnated zeolite ration produced lower ruminal ammonia nitrogen than feeding urea ration (P<0.05. Feeding zeolite ration produced lower ruminal pH than feeding urea ration (P<0.05. Despite total VFAs were similar across the treatments, feeding urea-impregnated zeolite ration produced lower ruminal acetate, acetate to propionate ratio, or methane production than feeding urea ration (P<0.05. Feeding urea ration produced the lowest molar proportion of branch-chained VFAs (P<0.05. Feeding urea ration produced higher plasma urea concentration than feeding no urea ration (2.75 mM vs. 2.16 mM; P<0.05. In conclusion, zeolite or urea-impregnated zeolite as slow-release ammonia or SRU agent was potential in decreasing ruminal ammonia, pH, acetate to propionate ratio, methane, and maintaining low plasma urea within its physiological range.

  9. Quantum crystallographic charge density of urea.

    Science.gov (United States)

    Wall, Michael E

    2016-07-01

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the data is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. The results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.

  10. Quantum crystallographic charge density of urea

    Science.gov (United States)

    Wall, Michael E.

    2016-01-01

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the data is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. The results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement. PMID:27437111

  11. Quantum crystallographic charge density of urea

    Directory of Open Access Journals (Sweden)

    Michael E. Wall

    2016-07-01

    Full Text Available Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the data is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. The results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.

  12. Predictive model for segmented poly(urea

    Directory of Open Access Journals (Sweden)

    Frankl P.

    2012-08-01

    Full Text Available Segmented poly(urea has been shown to be of significant benefit in protecting vehicles from blast and impact and there have been several experimental studies to determine the mechanisms by which this protective function might occur. One suggested route is by mechanical activation of the glass transition. In order to enable design of protective structures using this material a constitutive model and equation of state are needed for numerical simulation hydrocodes. Determination of such a predictive model may also help elucidate the beneficial mechanisms that occur in polyurea during high rate loading. The tool deployed to do this has been Group Interaction Modelling (GIM – a mean field technique that has been shown to predict the mechanical and physical properties of polymers from their structure alone. The structure of polyurea has been used to characterise the parameters in the GIM scheme without recourse to experimental data and the equation of state and constitutive model predicts response over a wide range of temperatures and strain rates. The shock Hugoniot has been predicted and validated against existing data. Mechanical response in tensile tests has also been predicted and validated.

  13. Urea determination using pH-enzyme electrode.

    Science.gov (United States)

    Koncki, R; Chudzik, A; Walcerz, I

    1999-10-01

    A pH-membrane electrode with n-tridodecylamine (TDDA) as the hydrogen-ion-selective ionophore was used for the construction of a potentiometric biosensor for urea determination. The electrode was enzymatically modified by covalent binding of urease molecules directly to the surface of the potentiometric membrane. Incorporation of the urea biosensor into simple double-channel flow injection analysis (FIA) system allows reproducible urea determination in a millimolar range of concentration. The utility and limitations of the presented biosensor-FIA system for analysis of various real samples has been investigated. The system can be useful for some biomedical and pharmaceutical applications such as analyses of urine, posthaemodialysis fluid and extracts from pharmaceutical ointments containing urea.

  14. Influence of Ficoll on urea induced denaturation of fibrinogen

    Science.gov (United States)

    Sankaranarayanan, Kamatchi; Meenakshisundaram, N.

    2016-03-01

    Ficoll is a neutral, highly branched polymer used as a molecular crowder in the study of proteins. Ficoll is also part of Ficoll-Paque used in biology laboratories to separate blood to its components (erythrocytes, leukocytes etc.,). Role of Ficoll in the urea induced denaturation of protein Fibrinogen (Fg) has been analyzed using fluorescence, circular dichroism, molecular docking and interfacial studies. Fluorescence studies show that Ficoll prevents quenching of Fg in the presence of urea. From the circular dichroism spectra, Fg shows conformational transition to random coil with urea of 6 M concentration. Ficoll helps to shift this denaturation concentration to 8 M and thus constraints by shielding Fg during the process. Molecular docking studies indicate that Ficoll interacts favorably with the protein than urea. The surface tension and shear viscosity analysis shows clearly that the protein is shielded by Ficoll.

  15. Uranium stripping from tributyl phosphate by urea solutions

    Science.gov (United States)

    Skripchenko, S. Yu.; Titova, S. M.; Smirnov, A. L.; Rychkov, V. N.

    2016-09-01

    The process of uranium stripping from tri-n-butyl phosphate in kerosene by urea solutions was investigated at the volume ratio of the organic and aqueous phases of (1-10) : 1 in the temperature range of 20-60 °C. The stripping of uranium from a loaded organic phase increased with increasing urea content in the solution and with increasing temperature. Maximum recovery of uranium from tributyl phosphate was obtained using a solution that contained 8-12 mol/l of urea. The application of a urea solution for uranium stripping resulted in the strip product solution containing 200-240 g/L of uranium. The process of uranium stripping by dilute nitric acid was also investigated. Results of uranium stripping by the two methods are compared and discussed.

  16. Deprotection of oximes using urea nitrate under microwave irradiation

    Indian Academy of Sciences (India)

    P T Perumal; M Anniyappan; D Muralidharan

    2004-08-01

    A new mild and efficient method for the cleavage of oximes to carbonyl compounds using readily available urea nitrate in acetonitrile-water (95 : 5), under microwave irradiation within 2 min, in good yields is reported.

  17. Highly sensitive urea sensing with ion-irradiated polymer foils

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Dietmar, E-mail: fink@daad-alumni.de [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico, D.F. (Mexico); Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Rez (Czech Republic); Munoz Hernandez, Gerardo [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico, D.F. (Mexico); Division de Ciencias Naturales e Ingenieria, Universidad Autonoma Metropolitana-Cuajimalpa, Pedro Antonio de los Santos 84, Col. Sn. Miguel Chapultepec, C.P. 11850, Mexico, D.F. (Mexico); Alfonta, Lital, E-mail: alfontal@bgu.ac.il [Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2012-02-15

    Recently we prepared urea-sensors by attaching urease to the inner walls of etched ion tracks within thin polymer foil. Here, alternative track-based sensor configurations are examined where the enzyme remained in solution. The conductivities of systems consisting of two parallel irradiated polymer foils and confining different urea/urease mixtures in between were examined. The correlations between conductivity and urea concentration differed strongly for foils with unetched and etched tracks, which points at different sensing mechanisms - tentatively attributed to the adsorption of enzymatic reaction products on the latent track entrances and to the enhanced conductivity of reaction product-filled etched tracks, respectively. All examined systems enable in principle, urea sensing. They point at the possibility of sensor cascade construction for more sensitive or selective sensor systems.

  18. Exploring the cocrystallization potential of urea and benzamide.

    Science.gov (United States)

    Cysewski, Piotr; Przybyłek, Maciej; Ziółkowska, Dorota; Mroczyńska, Karina

    2016-05-01

    The cocrystallization landscape of benzamide and urea interacting with aliphatic and aromatic carboxylic acids was studied both experimentally and theoretically. Ten new cocrystals of benzamide were synthesized using an oriented samples approach via a fast dropped evaporation technique. Information about types of known bi-component cocrystals augmented with knowledge of simple binary eutectic mixtures was used for the analysis of virtual screening efficiency among 514 potential pairs involving aromatic carboxylic acids interacting with urea or benzamide. Quantification of intermolecular interaction was achieved by estimating the excess thermodynamic functions of binary liquid mixtures under supercooled conditions within a COSMO-RS framework. The smoothed histograms suggest that slightly more potential pairs of benzamide are characterized in the attractive region compared to urea. Finally, it is emphasized that prediction of cocrystals of urea is fairly direct, while it remains ambiguous for benzamide paired with carboxylic acids. The two known simple eutectics of urea are found within the first two quartiles defined by excess thermodynamic functions, and all known cocrystals are outside of this range belonging to the third or fourth quartile. On the contrary, such a simple separation of positive and negative cases of benzamide miscibility in the solid state is not observed. The difference in properties between urea and benzamide R2,2(8) heterosynthons is also documented by alterations of substituent effects. Intermolecular interactions of urea with para substituted benzoic acid analogues are stronger compared to those of benzamide. Also, the amount of charge transfer from amide to aromatic carboxylic acid and vice versa is more pronounced for urea. However, in both cases, the greater the electron withdrawing character of the substituent, the higher the binding energy, and the stronger the supermolecule polarization via the charge transfer mechanism.

  19. Digestibility of pelleted rations containing diverse potato flour and urea

    Directory of Open Access Journals (Sweden)

    Isabel Martinele

    2015-11-01

    Full Text Available The aim of this study was to evaluate ruminal in situ degradability and in vitro digestibility of dry matter (DM in concentrate supplements containing diverse potato flour pelletized with urea (0%, 4%, 8%, and 12% DM. Samples of feeds were incubated for 0, 2, 4, 8, 12, 24, 36, and 48h in the rumen of four fistulated sheep. Level of urea added had no significant effect (P>;0.05 on the soluble fraction (a or potentially degradable fraction (b of the pellets and ranged from 2.1% to 12.2% and 72.9% to 87.5%, respectively. Quadratic effects (P=0.03 of the rate of degradation of fraction "b" ranged from 4.75% h-1to 7.39% h-1; the estimated maximum value at 7.4% h-1was obtained when 5.9% urea was added to the pellet. Quadratic effects (P≤0.02 of the level of urea added to the pellets on the effective degradability (ED of DM were evaluated after considering rumen passage rates of 2.5% h-1and 8% h-1; the maximum values of ED calculated under these rumen passage rates were estimated at 6.3% to 7.3% urea in the pellets. The in vitro digestibility of DM of the pellets showed a quadratic effect (P=0.02 at different levels of urea, with a maximum value of 96.9% achieved when 7.9% urea was added to the pellets. Our results suggest that the addition of 6-8% urea to pelleted feed promotes an increase in the in vitro digestibility and ED of DM.

  20. NiO nanoparticle-based urea biosensor.

    Science.gov (United States)

    Tyagi, Manisha; Tomar, Monika; Gupta, Vinay

    2013-03-15

    NiO nanoparticles (NiO-NPs) have been exploited successfully for the fabrication of a urea biosensor. A thin film of NiO nanoparticles deposited on an indium tin oxide (ITO) coated glass substrate serves as an efficient matrix for the immobilisation of urease (Ur), the specific enzyme for urea detection. The prepared bioelectrode (Ur/NiO-NP/ITO/glass) is utilised for urea sensing using cyclic voltammetry and UV-visible spectroscopy. NiO nanoparticles act as electro-catalytic species that are based on the shuttling of electrons between Ni(2+) and Ni(3+) in the octahedral site and result in an enhanced electrochemical current response. The prepared bioelectrode (Ur/NiO-NPs/ITO/glass) exhibits a high sensitivity of 21.3 μA/(mM (*) cm(2)) and a good linearity in a wide range (0.83-16.65 Mm) of urea concentrations with fast response time of 5s. The low value of the Michaelis-Menten constant (K(m)=0.34 mM) indicates the high affinity of Ur towards the analyte (urea). The high catalytic activity, along with the redox behaviour of NiO-NPs, makes it an efficient matrix for the realisation of a urea biosensor.

  1. Discovery of enantioselectivity of urea inhibitors of soluble epoxide hydrolase.

    Science.gov (United States)

    Manickam, Manoj; Pillaiyar, Thanigaimalai; Boggu, PullaReddy; Venkateswararao, Eeda; Jalani, Hitesh B; Kim, Nam-Doo; Lee, Seul Ki; Jeon, Jang Su; Kim, Sang Kyum; Jung, Sang-Hun

    2016-07-19

    Soluble epoxide hydrolase (sEH) hydrolyzes epoxyeicosatrienoic acids (EETs) in the metabolic pathway of arachidonic acid and has been considered as an important therapeutic target for chronic diseases such as hypertension, diabetes and inflammation. Although many urea derivatives are known as sEH inhibitors, the enantioselectivity of the inhibitors is not highlighted in spite of the stereoselective hydrolysis of EETs by sEH. In an effort to explore the importance of enantioselectivity in the urea scaffold, a series of enantiomers with the stereocenter adjacent to the urea nitrogen atom were prepared. The selectivity of enantiomers of 1-(α-alkyl-α-phenylmethyl)-3-(3-phenylpropyl)ureas showed wide range differences up to 125 fold with the low IC50 value up to 13 nM. The S-configuration with planar phenyl and small alkyl groups at α-position is crucial for the activity and selectivity. However, restriction of the free rotation of two α-groups with indan-1-yl or 1,2,3,4-tetrahydronaphthalen-1-yl moiety abolishes the selectivity between the enantiomers, despite the increase in activity up to 13 nM. The hydrophilic group like sulfonamido group at para position of 3-phenylpropyl motif of 1-(α-alkyl-α-phenylmethyl-3-(3-phenylpropyl)urea improves the activity as well as enantiomeric selectivity. All these ureas are proved to be specific inhibitor of sEH without inhibition against mEH.

  2. Urea-induced oxidative damage in Elodea densa leaves.

    Science.gov (United States)

    Maleva, Maria; Borisova, Galina; Chukina, Nadezda; Prasad, M N V

    2015-09-01

    Urea being a fertilizer is expected to be less toxic to plants. However, it was found that urea at 100 mg L(-1) caused the oxidative stress in Elodea leaves due to the formation of reactive oxygen species (ROS) and lipid peroxidation that are known to stimulate antioxidant pathway. Urea at a concentration of 500 and 1000 mg L(-1) decreased low-molecular-weight antioxidants. In this case, the antioxidant status of plants was supported by the activity of antioxidant enzymes such as superoxide dismutase and guaiacol peroxidase. A significant increase in the soluble proteins and -SH groups was observed with high concentrations of urea (30-60 % of control). Thus, the increased activity of antioxidant enzymes, low-molecular-weight antioxidants, and induced soluble protein thiols are implicated in plant resistance to oxidative stress imposed by urea. We found that guaiacol peroxidase plays an important role in the removal of the peroxide in Elodea leaves exposed to 1000 mg L(-1)of urea.

  3. Radiopaque, iodine functionalized, phenylalanine-based poly(ester urea)s.

    Science.gov (United States)

    Li, Shan; Yu, Jiayi; Wade, Mary Beth; Policastro, Gina M; Becker, Matthew L

    2015-02-01

    The synthesis and characterization of iodine-functionalized phenylalanine-based poly(ester urea)s (PEUs) are reported. 4-Iodo-L-phenylalanine and L-phenylalanine were separately reacted with 1,6-hexanediol to produce two monomers, bis-4-I-L-phenylalanine-1,6-hexanediol-diester (1-IPHE-6 monomer) and bis-L-phenylalanine-1,6-hexanediol-diester (1-PHE-6 monomer). By varying the feed ratio of the 1-IPHE-6 and 1-PHE-6 monomers, the copolymer composition was modulated resulting in a wide variation in thermal, mechanical and radiopacity properties. Microcomputed tomography (μ-CT) projections demonstrate that increasing iodine content results in greater X-ray contrast. Compression tests of dry and wet porous scaffolds indicate that the poly(1-IPHE-6)0.24-co-poly(1-PHE-6)0.76 material results in the highest compression modulus. MC3T3 cell viability and spreading studies show PEUs are nontoxic to cells. As most medical device procedures require placement verification via fluoroscopic imaging, materials that possess inherent X-ray contrast are valuable for a number of applications.

  4. Effect of Urea Concentration on the Viscosity and Thermal Stability of Aqueous NaOH/Urea Cellulose Solutions

    Directory of Open Access Journals (Sweden)

    Tim Huber

    2016-01-01

    Full Text Available Aqueous solutions of sodium hydroxide (NaOH and urea are a known and versatile solvent for cellulose. The dissolution of cellulose occurs at subambient temperatures through the formation of a cellulose-NaOH-urea “inclusion complex” (IC. NaOH and urea form a hydrate layer around the cellulose chains preventing chain agglomeration. Urea is known to stabilize the solution but its direct role is unknown. Using viscometry and quartz crystal microbalance with dissipation monitoring (QCM-D it could be shown that the addition of urea reduced the solutions viscosity of the tested solutions by almost 40% and also increased the gelation temperature from approximately 40°C to 90°C. Both effects could also be observed in the presence of additional cellulose powder serving as a physical cross-linker. Using Fourier transform infrared (FTIR spectroscopy during heating, it could be shown that a direct interaction occurs between urea and the cellulose molecules, reducing their ability to form hydrogen bonds with neighbouring chains.

  5. Preparation of Urea Nitrogen Adsorbent of Complex Type and Adsorption Capacity of Urea Nitrogen onto the Adsorbent

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The urea nitroge n adsorbent of complex type, which consists of chitosan coated dialdehyde cellulose (CDAC) and immobilized urease in gelatin membrane (IE), was prepared. The cellulose, the dialdehyde cellulose (DAC) and the CDAC were characterized by scanning electronic microscope. The results indicate that the cellulose C2-C3 bond was broken under the oxidation of periodate and it was oxidated to DAC. The DAC was coated with chitosan and the CDAC was obtained. The adsorption of urea nitrogen onto the adsorbent in Na2HPO4-NaH2PO4 buffer solution was studied in batch system. The effects of the experiment parameters, including degree of oxidation of CDAC, initial urea nitrogen concentration, pH and temperature, on the adsorption capacity of urea nitrogen onto the adsorbent at CDAC/IE weight ratio 10:1 were investigated. The results indicate that these parameters affected significantly the adsorption capacity. The adsorption capacity of urea nitrogen onto the adsorbent was 36.7 mg/g at the degree of oxidation of CDAC 88%, initial urea nitrogen concentration 600 mg/L, pH 7.4 and temperature 37 ℃.

  6. Numerical Simulations of Urea Hydrolysis and Calcite Precipitation in Porous Media Using STOMP

    Energy Technology Data Exchange (ETDEWEB)

    Luanjing Guo; Hai Huang; Bill X. Hu

    2010-11-01

    Subsurface radionuclide and trace metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE’s greatest challenges for long-term stewardship. One promising in situ immobilization approach of these contaminants is engineered mineral (co)precipitation of calcite driven by urea hydrolysis that is catalyzed by enzyme urease. The tight nonlinear coupling among flow, transport, reaction and reaction-induced property changes of media of this approach was studied by reactive transport simulations with systematically increasing level of complexities of reaction network and physical/chemical heterogeneities using a numerical simulator named STOMP. Sensitivity studies on the reaction rates of both urea hydrolysis and calcite precipitation are performed via controlling urease enzyme concentration and precipitation rate constant according to the rate models employed. We have found that the rate of ureolysis is a dominating factor in the amount of precipitated mineral; however, the spatial distribution of the precipitates depends on both rates of ureolysis and calcite precipitation. A maximum 5% reduction in the porosity was observed within the simulation time period of 6 pore volumes in our 1-dimensional (1D) column simulations. When a low permeability inclusion is considered in the 2D simulations, the altered flow fields redistribute mineral forming constituents, leading to a distorted precipitation reaction front. The simulations also indicate that mineral precipitation occurs along the boundary of the low permeability zone, which implies that contaminants in the low permeability zone could be encapsulated and isolated from the flow paths.

  7. Metabolic Induction of Lactic Acid Bacteria for Urea Removal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Su-ai; BAI Yu; LI Dong-xia; CHEN Bo-li; SONG Cun-jiang; QIAO Ming-qiang; KONG De-ling; YU Yao-ting

    2009-01-01

    Objective:This study aims to induce nonpathogenic bacteria for urea removal as a potential treatment in renal failure. Methods:Lactococus lactis MG1363 was induced by repeated exposure to urea-rich culture media, the ability to remove urea from the media was evaluated. The effect of gastroenteric environment, such as low pH, bile salt and antiagonistic properties were investigated.The antimicrobial activities on pathogenic E.coli and S.aureus in the intestinal tract and the antibiotic tolerance of the induced bacteria were also studied.Results: Induced bacteria of 50 generations could decrease the urea level from 40.01 mg/dL to 32.99 mg/dL after 24 h. The bacteria could grow after treatment at pH3.0 for 2 h and in 0.1% bile salt for 6 h, and the urea removal activity was retained in such simulated gastroenteric environment. The removal of urea was significantly enhanced to 35.8% by addition of Ni2+ to the culture medium at neutral pH. It was also found that the induced bacteria could inhibit the growth of E.coli and S.aureus, and tolerate ampicillin,gentamicin,roxithromycin,tetracycline and cefradine. The safety tests were performed by feeding normal rats with either Lactococus lactis MG1363 or induced Lactococus lactis MG1363. The two materials did not cause any changes in blood cells, blood biochemical indexes and body weight. Conclusion: These results suggest that the induced Lactococus lactis MG1363 has the potential as an oral therapy for the removal of urea in patients with renal failure.

  8. Application of acid-activated Bauxsol for wastewater treatment with high phosphate concentration: Characterization, adsorption optimization, and desorption behaviors.

    Science.gov (United States)

    Ye, Jie; Cong, Xiangna; Zhang, Panyue; Zeng, Guangming; Hoffmann, Erhard; Liu, Yang; Wu, Yan; Zhang, Haibo; Fang, Wei; Hahn, Hermann H

    2016-02-01

    Acid-activated Bauxsol was applied to treat wastewater with high phosphate concentration in a batch adsorption system in this paper. The effect of acid activation on the change of Bauxsol structure was systematically investigated. The mineralogical inhomogeneity and intensity of Bauxsol decreased after acid activation, and FeCl3·2H2O and Al(OH)3 became the dominant phases of acid-activated Bauxsol adsorption. Moreover, the BET surface area and total pore volume of Bauxsol increased after acid activation. Interaction of initial solution pH and adsorption temperature on phosphate adsorption onto acid-activated Bauxsol was investigated by using response surface methodology with central composite design. The maximum phosphate adsorption capacity of 192.94 mg g(-1) was achieved with an initial solution pH of 4.19 and an adsorption temperature of 52.18 °C, which increased by 7.61 times compared with that of Bauxsol (22.40 mg g(-1)), and was higher than other adsorbents. Furthermore, the desorption studies demonstrated that the acid-activated Bauxsol was successfully regenerated with 0.5 mol L(-1) HCl solution. The adsorption capacity and desorption efficiency of acid-activated Bauxsol maintained at 80.48% and 93.02% in the fifth adsorption-desorption cycle, respectively, suggesting that the acid-activated Bauxsol could be repeatedly used in wastewater treatment with high phosphate concentration.

  9. Ocean urea fertilization for carbon credits poses high ecological risks.

    Science.gov (United States)

    Glibert, Patricia M; Azanza, Rhodora; Burford, Michele; Furuya, Ken; Abal, Eva; Al-Azri, Adnan; Al-Yamani, Faiza; Andersen, Per; Anderson, Donald M; Beardall, John; Berg, G Mine; Brand, Larry; Bronk, Deborah; Brookes, Justin; Burkholder, Joann M; Cembella, Allan; Cochlan, William P; Collier, Jackie L; Collos, Yves; Diaz, Robert; Doblin, Martina; Drennen, Thomas; Dyhrman, Sonya; Fukuyo, Yasuwo; Furnas, Miles; Galloway, James; Granéli, Edna; Ha, Dao Viet; Hallegraeff, Gustaaf; Harrison, John; Harrison, Paul J; Heil, Cynthia A; Heimann, Kirsten; Howarth, Robert; Jauzein, Cécile; Kana, Austin A; Kana, Todd M; Kim, Hakgyoon; Kudela, Raphael; Legrand, Catherine; Mallin, Michael; Mulholland, Margaret; Murray, Shauna; O'Neil, Judith; Pitcher, Grant; Qi, Yuzao; Rabalais, Nancy; Raine, Robin; Seitzinger, Sybil; Salomon, Paulo S; Solomon, Caroline; Stoecker, Diane K; Usup, Gires; Wilson, Joanne; Yin, Kedong; Zhou, Mingjiang; Zhu, Mingyuan

    2008-06-01

    The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed.

  10. Urea cycle disorders: brain MRI and neurological outcome

    Energy Technology Data Exchange (ETDEWEB)

    Bireley, William R. [University of Colorado, Department of Radiology, Aurora, CO (United States); Van Hove, Johan L.K. [University of Colorado, Department of Genetics and Inherited Metabolic Diseases, Aurora, CO (United States); Gallagher, Renata C. [Children' s Hospital Colorado, Department of Genetics and Inherited Metabolic Diseases, Aurora, CO (United States); Fenton, Laura Z. [Children' s Hospital Colorado, Department of Pediatric Radiology, Aurora, CO (United States)

    2012-04-15

    Urea cycle disorders encompass several enzyme deficiencies that can result in cerebral damage, with a wide clinical spectrum from asymptomatic to severe. The goal of this study was to correlate brain MRI abnormalities in urea cycle disorders with clinical neurological sequelae to evaluate whether MRI abnormalities can assist in guiding difficult treatment decisions. We performed a retrospective chart review of patients with urea cycle disorders and symptomatic hyperammonemia. Brain MRI images were reviewed for abnormalities that correlated with severity of clinical neurological sequelae. Our case series comprises six urea cycle disorder patients, five with ornithine transcarbamylase deficiency and one with citrullinemia type 1. The observed trend in distribution of brain MRI abnormalities as the severity of neurological sequelae increased was the peri-insular region first, extending into the frontal, parietal, temporal and, finally, the occipital lobes. There was thalamic restricted diffusion in three children with prolonged hyperammonemia. Prior to death, this site is typically reported to be spared in urea cycle disorders. The pattern and extent of brain MRI abnormalities correlate with clinical neurological outcome in our case series. This suggests that brain MRI abnormalities may assist in determining prognosis and helping clinicians with subsequent treatment decisions. (orig.)

  11. Ocean Urea Fertilization for Carbon Credits Poses High Ecological Risks

    Science.gov (United States)

    Glibert, Patricia M.; Azanza, Rhodora; Burford, Michele; Furuya, Ken; Abal, Eva; Al-Azri, Adnan; Al-Yamani, Faiza; Andersen, Per; Beardall, John; Berg, G. Mine; Brand, Larry; Bronk, Deborah; Brookes, Justin; Burkholder, JoAnn M.; Cembella, Allan; Cochlan, William P.; Collier, Jackie; Collos, Yves; Diaz, Robert; Doblin, Martina; Drennen, Thomas; Dyhrman, Sonya; Fukuyo, Yasuwo; Furnas, Miles; Galloway, James; Granéli, Edna; Ha, Dao Viet; Hallegraeff, Gustaaf; Harrison, John; Harrison, Paul J.; Heil, Cynthia A.; Heimann, Kirsten; Howarth, Robert; Jauzein, Cécile; Kana, Austin A.; Kana, Todd M.; Kim, Hakgyoon; Kudela, Raphael; Legrand, Catherine; Mallin, Michael; Mulholland, Margaret; Murray, Shauna; O’Neil, Judith; Pitcher, Grant; Qi, Yuzao; Rabalais, Nancy; Raine, Robin; Seitzinger, Sybil; Solomon, Caroline; Stoecker, Diane K.; Usup, Gires; Wilson, Joanne; Yin, Kedong; Zhou, Mingjiang; Zhu, Mingyuan

    2017-01-01

    The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed. PMID:18439628

  12. Hydrotropic Solubilization by Urea Derivatives: A Molecular Dynamics Simulation Study

    Directory of Open Access Journals (Sweden)

    Yong Cui

    2013-01-01

    Full Text Available Hydrotropy is a phenomenon where the presence of a large quantity of one solute enhances the solubility of another solute. The mechanism of this phenomenon remains a topic of debate. This study employed molecular dynamics simulation to investigate the hydrotropic mechanism of a series of urea derivatives, that is, urea (UR, methylurea (MU, ethylurea (EU, and butylurea (BU. A poorly water-soluble compound, nifedipine (NF, was used as the model solute that was solubilized. Structural, dynamic, and energetic changes upon equilibration were analyzed to supply insights to the solubilization mechanism. The study demonstrated that NF and urea derivatives underwent significant nonstoichiometric molecular aggregation in the aqueous solution, a result consistent with the self-aggregation of urea derivatives under the same conditions. The analysis of hydrogen bonding and energy changes revealed that the aggregation was driven by the partial restoration of normal water structure. The energetic data also suggested that the promoted solubilization of NF is favored in the presence of urea derivatives. While the solutes aggregated to a varying degree, the systems were still in single-phase liquid state as attested by their active dynamics.

  13. Porous Cross-Linked Polyimide-Urea Networks

    Science.gov (United States)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)

    2015-01-01

    Porous cross-linked polyimide-urea networks are provided. The networks comprise a subunit comprising two anhydride end-capped polyamic acid oligomers in direct connection via a urea linkage. The oligomers (a) each comprise a repeating unit of a dianhydride and a diamine and a terminal anhydride group and (b) are formulated with 2 to 15 of the repeating units. The subunit was formed by reaction of the diamine and a diisocyanate to form a diamine-urea linkage-diamine group, followed by reaction of the diamine-urea linkage-diamine group with the dianhydride and the diamine to form the subunit. The subunit has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups. The subunit has been chemically imidized to yield the porous cross-linked polyimide-urea network. Also provided are wet gels, aerogels, and thin films comprising the networks, and methods of making the networks.

  14. The Formation and characteristics of Acrylonitrile/Urea Inclusion Compound

    CERN Document Server

    Zou, Jun-Ting; Pang, Wen-Min; Shi, Lei; Lu, Fei

    2012-01-01

    The formation process and composition of the acrylonitrile/urea inclusion compounds (AN/UIC) with different aging times and AN/urea molar feed ratios are studied by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). It is suggested that DSC could be one of the helpful methods to determine the guest/host ratio and the heat of decomposition. Meanwhile, the guest/host ratio and heat of deformation are obtained, which are 1.17 and 5361.53 J/mol, respectively. It is found that the formation of AN/UIC depends on the aging time. The formation process ends after enough aging time and the composition of AN/UIC becomes stable. It is suggested AN molecules included in urea canal lattice may be packed flat against each other. XRD results reveal that once AN molecules enter urea lattice, AN/UIC are formed, which possess the final structure. When AN molecules are sufficient, the content of AN/UIC increased as aging time prolonging until urea tunnels are saturated by AN.

  15. Modeling and measurement of boiling point elevation during water vaporization from aqueous urea for SCR applications

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Ho Jin; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of)

    2016-03-15

    Understanding of water vaporization is the first step to anticipate the conversion process of urea into ammonia in the exhaust stream. As aqueous urea is a mixture and the urea in the mixture acts as a non-volatile solute, its colligative properties should be considered during water vaporization. The elevation of boiling point for urea water solution is measured with respect to urea mole fraction. With the boiling-point elevation relation, a model for water vaporization is proposed underlining the correction of the heat of vaporization of water in the urea water mixture due to the enthalpy of urea dissolution in water. The model is verified by the experiments of water vaporization as well. Finally, the water vaporization model is applied to the water vaporization of aqueous urea droplets. It is shown that urea decomposition can begin before water evaporation finishes due to the boiling-point elevation.

  16. Improving ammonium and nitrate release from urea using clinoptilolite zeolite and compost produced from agricultural wastes.

    Science.gov (United States)

    Omar, Latifah; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad

    2015-01-01

    Improper use of urea may cause environmental pollution through NH3 volatilization and NO3 (-) leaching from urea. Clinoptilolite zeolite and compost could be used to control N loss from urea by controlling NH4 (+) and NO3 (-) release from urea. Soil incubation and leaching experiments were conducted to determine the effects of clinoptilolite zeolite and compost on controlling NH4 (+) and NO3 (-) losses from urea. Bekenu Series soil (Typic Paleudults) was incubated for 30, 60, and 90 days. A soil leaching experiment was conducted for 30 days. Urea amended with clinoptilolite zeolite and compost significantly reduced NH4 (+) and NO3 (-) release from urea (soil incubation study) compared with urea alone, thus reducing leaching of these ions. Ammonium and NO3 (-) leaching losses during the 30 days of the leaching experiment were highest in urea alone compared with urea with clinoptilolite zeolite and compost treatments. At 30 days of the leaching experiment, NH4 (+) retention in soil with urea amended with clinoptilolite zeolite and compost was better than that with urea alone. These observations were because of the high pH, CEC, and other chemical properties of clinoptilolite zeolite and compost. Urea can be amended with clinoptilolite zeolite and compost to improve NH4 (+) and NO3 (-) release from urea.

  17. Improving Ammonium and Nitrate Release from Urea Using Clinoptilolite Zeolite and Compost Produced from Agricultural Wastes

    Directory of Open Access Journals (Sweden)

    Latifah Omar

    2015-01-01

    Full Text Available Improper use of urea may cause environmental pollution through NH3 volatilization and NO3- leaching from urea. Clinoptilolite zeolite and compost could be used to control N loss from urea by controlling NH4+ and NO3- release from urea. Soil incubation and leaching experiments were conducted to determine the effects of clinoptilolite zeolite and compost on controlling NH4+ and NO3- losses from urea. Bekenu Series soil (Typic Paleudults was incubated for 30, 60, and 90 days. A soil leaching experiment was conducted for 30 days. Urea amended with clinoptilolite zeolite and compost significantly reduced NH4+ and NO3- release from urea (soil incubation study compared with urea alone, thus reducing leaching of these ions. Ammonium and NO3- leaching losses during the 30 days of the leaching experiment were highest in urea alone compared with urea with clinoptilolite zeolite and compost treatments. At 30 days of the leaching experiment, NH4+ retention in soil with urea amended with clinoptilolite zeolite and compost was better than that with urea alone. These observations were because of the high pH, CEC, and other chemical properties of clinoptilolite zeolite and compost. Urea can be amended with clinoptilolite zeolite and compost to improve NH4+ and NO3- release from urea.

  18. STUDY ON NOVEL SORBENT FOR REMOVAL OF UREA COMPLEX SORPTION OF UREA BY MEANS OF ALGINATE—Cu(Ⅱ) COMPLEX

    Institute of Scientific and Technical Information of China (English)

    ZHAOXiaobin; HEBinglin

    1992-01-01

    Alginate-Cu(Ⅱ)complex beads or membranes were prepared for removal of urea.The mechanism of sorption of urea was identified by UV-Visible spectra,FT-IR spectra and Far-Infrared spectra.The factors affecting the urea sorption capacity were discussed in detail.Results showed that the Alginate-Cu(Ⅱ)complex sorbent can sorb about 60 my urea per gram of sorbent at 37℃ and the concentration of urea was 130mg/100ml in Na2HPO4 and NaH2PO4 buffer solution(pH=7.0).

  19. Substituted urea derivatives: a potent class of antidepressant agents.

    Science.gov (United States)

    Perveen, Shahnaz; Mustafa, Sana; Khan, Muhammad A; Dar, Ahsana; Khan, Khalid M; Voelter, Wolfgang

    2012-05-01

    A series of fourteen (14) N-nitrophenyl-N'-(alkyl/aryl)urea and symmetrical 1,3-disubstituted urea derivatives were synthesized and evaluated for their antidepressant activity in mice. Among them, N-(4-nitrophenyl)-N'-(1'-phenylethyl)urea (1), demonstrated profound antidepressant property as reflected by significant reduction in the immobility time (89.83%), whereas compounds 2-6 showed activity values between 36 to 59% which were also larger than the standard phenelzine. Compounds 7-9 were less effective in reducing the immobility period of mice 26.20 to 31.01%). This variable magnitude of antidepressant activity appears to be related to the position of the nitro group to the parent molecules 1, 2, and 8. Compound 1 with the nitro group at para position showed to be the most effective antidepressant. However, the activity declined, if the nitro is attached to ortho and meta positions.

  20. Biosensor Urea Berbasis Biopolimer Khitin Sebagai Matriks Immobilisasi

    Directory of Open Access Journals (Sweden)

    Nazruddin Nazaruddin

    2007-06-01

    Full Text Available Penelitian tentang biosensor urea menggunakan biopolimer khitin sebagai matriks immobilisasi telah dilakukan. Penelitian ini dilakukan untuk mengetahui kinerja biosensor yang dihasilkan yang meliputi sensitivitas, trayek pengukuran, limit deteksi, waktu respon, koefisien selektifitas, dan waktu hidup. Penelitian meliputi beberapa tahap yaitu pembuatan membran polimer khitin dan immobilisasi enzim urease, pelekatan membran khitin pada elektroda pH, dan pengukuran parameter kinerja elektroda. Hasil pengukuran menunjukkan sensitivitas biosensor urea berbasis membran khitin adalah 19,11 mV/dekade, trayek pengukuran 10-4 – 10-8 M, limit deteksi 10-8 M, waktu respon 3,10–6,02 menit, dengan urutan kekuatan ion penggangu: NH4Cl > NaCl > CH3COONa > campuran garam > KCl > CaCl2 > asam askorbat. Kata kunci: biosensor, immobilisasi, khitin, urea

  1. Android integrated urea biosensor for public health awareness

    Directory of Open Access Journals (Sweden)

    Pranali P. Naik

    2015-03-01

    Full Text Available Integration of a biosensor with a wireless network on the Android 4.2.1 (Jelly Bean platform has been demonstrated. The present study reports an android integrated user friendly Flow injection analysis-Enzyme thermistor (FIA-ET urea biosensor system. This android-integrated biosensor system will facilitate enhanced consumer health and awareness alongside abridging the gap between the food testing laboratory and the concerned higher authorities. Data received from a flow injection mode urea biosensor has been exploited as an integration point among the analyst, the food consumer and the responsible higher authorities. Using the urea biosensor as an example, an alarm system has also been demonstrated both graphically and through text message on a mobile handset. The presented sensor integrated android system will also facilitate decision making support system in various fields of food quality monitoring and clinical analysis.

  2. Waste-to-Chemicals for a Circular Economy: The Case of Urea Production (Waste-to-Urea).

    Science.gov (United States)

    Antonetti, Elena; Iaquaniello, Gaetano; Salladini, Annarita; Spadaccini, Luca; Perathoner, Siglinda; Centi, Gabriele

    2017-03-09

    The economics and environmental impact of a new technology for the production of urea from municipal solid waste, particularly the residue-derived fuel (RdF) fraction, is analyzed. Estimates indicate a cost of production of approximately €135 per ton of urea (internal rate of return more than 10 %) and savings of approximately 0.113 tons of CH4 and approximately 0.78 tons of CO2 per ton of urea produced. Thus, the results show that this waste-to-urea (WtU) technology is both economically valuable and environmentally advantageous (in terms of saving resources and limiting carbon footprint) for the production of chemicals from municipal solid waste in comparison with both the production of urea with conventional technology (starting from natural gas) and the use of RdF to produce electrical energy (waste-to-energy). A further benefit is the lower environmental impact of the solid residue produced from RdF conversion. The further benefit of this technology is the possibility to realize distributed fertilizer production.

  3. The fate of ingested [sup 14]C-urea in the urea breath test for Helicobacter pylori infection

    Energy Technology Data Exchange (ETDEWEB)

    Munster, D.J.; Chapman, B.A.; Burt, M.J.; Dobbs, B.R.; Allardyce, R.A.; Bagshaw, P.F.; Troughton, W.D.; Cook, H.B. (Christchurch Hospital (New Zealand))

    1993-08-01

    The metabolic fate of the radioactive carbon in the [sup 14]C-urea breath test for Helicobacter pylori was investigated in 18 subjects. After ingestion of labelled urea, breath was sampled for 24 h, and urine was collected for 3 days. Subjects were designated high or low expirers on the basis of their breath counts, and this agreed well with H. pylori serologic analyses. When given 185 or 37 kBq of [sup 14]C-urea, 51% of the label was recovered from the breath of high expirers, and 7% from the breath of low expirers. The mean combined urinary and breath recovery for high expirers was 86%, and for low expirers it was 97%. It is concluded that the long-term retention of [sup 14]C from ingested [sup 14]C-urea is low. The results enable a more accurate estimation to be made of radiation exposure resulting from the [sup 14]C-urea breath test. 16 refs., 3 figs., 2 tabs.

  4. Biodegraded and Polyurethane Drape-formed Urea Fertilizer

    Institute of Scientific and Technical Information of China (English)

    WANG Yong; LI Jian; CHEN Xiaoyao

    2005-01-01

    Natural water absorbent konjac flour participates in synthesizing biodegraded and polyurethane foamed drape, which is used to release urea slowly.The experimental results indicate that the slowly-releasing velocity of urea nitrogen and the degrading velocity of the drape can be controlled by regulating the thicknesses of drapes, the amount of konjac flour and the water content. In addition, the biodegradability of the drape was investigated by burying the specimens in earth afterwards,and results show this drape can be degraded naturally.

  5. Urea- and Thiourea-Catalyzed Aminolysis of Carbonates.

    Science.gov (United States)

    Blain, Marine; Yau, Honman; Jean-Gérard, Ludivine; Auvergne, Rémi; Benazet, Dominique; Schreiner, Peter R; Caillol, Sylvain; Andrioletti, Bruno

    2016-08-23

    The aminolysis of (poly)carbonates by (poly)amines provides access to non-isocyanate polyurethanes (NIPUs) that are toxic-reagent-free analogues of polyurethanes (PUs). Owing to their low reactivity, the ring opening of cyclic carbonates requires the use of a catalyst. Herein, we report that the more available and cheaper ureas could advantageously be used for catalyzing the formation of NIPUs at the expense of the thiourea analogues. In addition, we demonstrate a medium-range pKa of the (thio)urea and an unqeual substitution pattern is critical for controlling the efficiency of the carbonate opening.

  6. pH-Dependent urea-induced unfolding of stem bromelain: unusual stability against urea at neutral pH.

    Science.gov (United States)

    Ahmad, B; Rathar, G M; Varshney, A; Khan, R H

    2009-12-01

    Equilibrium unfolding of stem bromelain (SB) with urea as a denaturant has been monitored as a function of pH using circular dichroism and fluorescence emission spectroscopy. Urea-induced denaturation studies at pH 4.5 showed that SB unfolds through a two-state mechanism and yields DeltaG (free energy difference between the fully folded and unfolded forms) of approximately 5.0 kcal/mol and C(m) (midpoint of the unfolding transition) of approximately 6.5 M at 25 degrees C. Very high concentration of urea (9.5 M) provides unusual stability to the protein with no more structural loss and transition to a completely unfolded state.

  7. Hydrothermally treated oil palm empty fruit bunch cellulose with urea and its dissolution in NaOH-Urea solvent system

    Science.gov (United States)

    Baharin, Khairunnisa Waznah; Zakaria, Sarani; Gan, Sinyee; Jaafar, Sharifah Nabihah Syed; Chia, Chin Hua

    2016-11-01

    Cellulose from Oil Palm Empty fruit bunch (OPEFB) fiber was hydrothermally treated by using autoclave which is immersed in an oil bath at 160 °C for 6 h. OPEFB cellulose was mixed with aqueous urea and stirred for 30 min to obtain a homogenous mixture before transferred into the autoclave. The effect of different cellulose to urea mass ratio (1:4, 1:6 and 1:8) on the molecular weight, degree of polymerization and solubility of the treated cellulose dissolved in NaOH and urea solvent system was studied. The result shows that the solubility of cellulose from OPEFB fiber increased while the molecular weight of cellulose decreased due to the pretreatment done on the OPEFB fiber.

  8. Preparation and characterization of 3-aminopropyl-triethoxysilane grafted montmorillonite and acid-activated montmorillonite

    Institute of Scientific and Technical Information of China (English)

    SHEN Wei; HE HongPing; ZHU JianXi; YUAN Peng; MA YueHong; LIANG XiaoLiang

    2009-01-01

    3-aminopropyltriethoxysilane grafted montmorilionites were synthesized with montmorillonite, acid-activated montmorillonites and 3-aminopropyltriethoxysilane in ethanol-water mixture. The resulting products were investigated using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TG). XRD patterns demonstrated that silane was intercalated into the montmorillonite gallery, indicated by increasing basal spacings. These intercalated silanes proba-bly adopt bilayer arrangement models within the montmorillonite and acid-activated montmorillonites interlayer spaces. TG and DTG curves indicate that acidification results in a decrease of the thermal stability of the resultant montmorillonites. Silane grafting leads to a surface property transformation of montmorillonite from hydrophilicity to lipophilicity and an increase of the thermal stability of the con-densed silanes.

  9. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob

    Energy Technology Data Exchange (ETDEWEB)

    Sych, N.V.; Trofymenko, S.I.; Poddubnaya, O.I.; Tsyba, M.M. [Institute for Sorption and Endoecology Problems, National Academy of Sciences of Ukraine, 13 General Naumov St., 03164 Kyiv (Ukraine); Sapsay, V.I.; Klymchuk, D.O. [M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkivska St., 01601 Kyiv (Ukraine); Puziy, A.M., E-mail: alexander.puziy@ispe.kiev.ua [Institute for Sorption and Endoecology Problems, National Academy of Sciences of Ukraine, 13 General Naumov St., 03164 Kyiv (Ukraine)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Phosphoric acid activation results in formation of carbons with acidic surface groups. Black-Right-Pointing-Pointer Maximum amount of surface groups is introduced at impregnation ratio 1.25. Black-Right-Pointing-Pointer Phosphoric acid activated carbons show high capacity to copper. Black-Right-Pointing-Pointer Phosphoric acid activated carbons are predominantly microporous. Black-Right-Pointing-Pointer Maximum surface area and pore volume achieved at impregnation ratio 1.0. - Abstract: Active carbons have been prepared from corncob using chemical activation with phosphoric acid at 400 Degree-Sign C using varied ratio of impregnation (RI). Porous structure of carbons was characterized by nitrogen adsorption and scanning electron microscopy. Surface chemistry was studied by IR and potentiometric titration method. It has been shown that porosity development was peaked at RI = 1.0 (S{sub BET} = 2081 m{sup 2}/g, V{sub tot} = 1.1 cm{sup 3}/g), while maximum amount of acid surface groups was observed at RI = 1.25. Acid surface groups of phosphoric acid activated carbons from corncob includes phosphate and strongly acidic carboxylic (pK = 2.0-2.6), weakly acidic carboxylic (pK = 4.7-5.0), enol/lactone (pK = 6.7-7.4; 8.8-9.4) and phenol (pK = 10.1-10.7). Corncob derived carbons showed high adsorption capacity to copper, especially at low pH. Maximum adsorption of methylene blue and iodine was observed for carbon with most developed porosity (RI = 1.0).

  10. New urea-absorbing polymers for artificial kidney machines

    Science.gov (United States)

    Mueller, W. A.; Hsu, G. C.; Marsh, H. E., Jr.

    1975-01-01

    Etherified polymer is made from modified cellulose derivative which is reacted with periodate. It will absorb 2 grams of urea per 100 grams of polymer. Indications are that polymers could be used to help remove uremic wastes in artificial kidneys, or they could be administered orally as therapy for uremia.

  11. Synthesis, Characterization, and Sensitivity Analysis of Urea Nitrate (UN)

    Science.gov (United States)

    2015-04-01

    Wolf E, Tamiri T. Recovery and deterction of urea nitrate in traces. Journal of Forensic Science. 2007;52:1284. 5. Oxley JC, Smith JL, Naik S. Moran...reagents. Indian Journal of Chemistry . Section A: Inorganic, Bioinorgainc, Phsical, Theoretical & Anlystical Chemistry . 2004;43A:307. 8. Oxley J, Smith JL

  12. Urea in sugarcane-based diets for dairy cows

    Directory of Open Access Journals (Sweden)

    Alberto Magno Ferreira Santiago

    2013-06-01

    Full Text Available We evaluated the effect of adding four levels (0, 4, 8 and 12 g/kg, as fed of a mixture (9:1 of urea and ammonium sulfate (UAs to sugarcane on feed intake and digestibility, productive performance and metabolism of nitrogen compounds of dairy cows. Twelve multiparous Holstein cows (12.6±0.5 kg/d of milk, 225±90 days in milk were distributed in three 4 × 4 Latin squares, receiving diets with the same amount of nitrogen (125 g crude protein/kg of dry matter. Concentrate feed was supplied at a ratio of 1 kg for each 3 kg of milk produced. The sugarcane presented 21.9 ºBrix. The level of UAs did not affect intake, total digestibility of diet components, milk production or milk components. Increasing UAs level linearly increased concentration of plasma urea nitrogen (PUN, urinary excretion of nitrogen and contribution of non-urea nitrogen in the urinary excretion and linearly reduced milk production/urinary excretion of nitrogen ratio. In spite of the linear increase of PUN with increased urea, the maximum value observed (14.31 mg/dL was below the threshold value of 20 mg/dL, above which reproductive function may be compromised. In diets with sugarcane for dairy cows with production below 15 kg/day, the UAs level may be raised from 0 to 12 g/kg natural matter without impairing performance.

  13. Prebiotic formation of polyamino acids in molten urea

    Science.gov (United States)

    Mita, H.; Nomoto, S.; Terasaki, M.; Shimoyama, A.; Yamamoto, Y.

    2005-04-01

    It is important for research into the origins of life to elucidate polyamino acid formation under prebiotic conditions. Only a limited set of amino acids has been reported to polymerize thermally. In this paper we demonstrate a novel thermal polymerization mechanism in a molten urea of alkylamino acids (i.e. glycine, alanine, β-alanine, α-aminobutyric acid, valine, norvaline, leucine and norleucine), which had been thought to be incapable of undergoing thermal polymerization. Also, aspartic acid was found to polymerize in molten urea at a lower temperature than that at which aspartic acid alone had previously been thermally polymerized. Individual oligomers produced in heating experiments on urea-amino acid mixtures were analysed using a liquid chromatograph mass spectrometer. Major products in the reaction mixture were three different types of polyamino acid derivatives: N-carbamoylpolyamino acids, polyamino acids containing a hydantoin ring at the N-terminal position and unidentified derivatives with molecular weights that were greater by 78 than those of the corresponding peptide forms. The polymerization reaction occurred by taking advantage of the high polarity of molten urea as well as its dehydrating ability. Under the presumed prebiotic conditions employed here, many types of amino acids were thus revealed to undergo thermal polymerization.

  14. Urea modified cottonseed protein adhesive for wood composite products

    Science.gov (United States)

    Cottonseed protein has the potential to be used as renewable and environmentally friendly adhesives in wood products industry. However, the industry application was limited by its low mechanical properties, low water resistance and viscosity. In this work, urea modified cottonseed protein adhesive w...

  15. Effect of Urea on Activity and Conformation of a Glycoprotein

    Institute of Scientific and Technical Information of China (English)

    WEI Xiang; WANG Xiaoyun; ZHOU Bo; ZHOU Haimeng

    2006-01-01

    The changes of the activity and conformation of Aspergillus niger phytase in urea were detected by farultraviolet circular dichroism (CD) spectra, fluorescence spectra, and enzyme activity assays. The results show that no enzyme activity can be detected after phytase is incubated for 10 h in 3.0 mol/L urea, even though at this urea concentration, less than 20% of the tertiary and secondary structures in the native enzyme changed. The inactivation reaction kinetics is found to be a monophasic first-order reaction, but the unfolding is a biphasic process consisting of two first-order reactions. The inactivation rates of the free enzyme and the substrate-enzyme complex are much faster than the conformational changes during urea denaturation. All of the results indicate that, as a glycoprotein, phytase's activity is strongly dependent on its conformational integrity. The phytase active sites seem to be located in a limited region in the molecule and display more conformational fragility and flexibility to denaturants than enzyme molecular structure as a whole.

  16. Tailoring of analytical performances of urea biosensors using nanomaterials

    Science.gov (United States)

    Nouira, W.; Barhoumi, H.; Maaref, A.; Jaffrézic Renault, N.; Siadat, M.

    2013-03-01

    This paper is a contribution to the study of enzymatic sensors based on nanoparticles of iron oxide (FeNPs). Urease enzyme was immobilized on FeNPs using layer-by-layer (LbL) deposition method. FeNPs were first coated with polyelectrolytes (PE): Poly (allylamine hydrochloride), PAH and Poly (sodium 4-styrenesulfonate), PSS for enzyme immobilization and then with enzyme. It has been confirmed through zeta potential measurements of FeNPs that the enzyme is immobilized on the surface. We evaluated the sensitivity of biosensors for urea by potentiometric and capacitive measurements on silicon / silica / FeNP-LBL-urease structures. The recorded capacity-potential curves (C-V) show a significant shift of flat band potential towards negative potentials in the presence of urea, the observed values of sensitivity vary between 30 and 40 mV/p[urea]. It has been shown that the proposed method for the immobilization of urease can increase the dynamic range of urea detection (10-4M to 10-1M) compared to the immobilization of urease without FeNP (10-3.5 M to 10-2.5 M). When the number of PAH-PSS layers was increased the sensitivity of detection was modified. This effect is due to partial inhibition of the enzyme in presence of FeNPs, which was shown by measurements in homogeneous phase.

  17. Reduction in slow intercompartmental clearance of urea during dialysis

    Energy Technology Data Exchange (ETDEWEB)

    Bowsher, D.J.; Krejcie, T.C.; Avram, M.J.; Chow, M.J.; Del Greco, F.; Atkinson, A.J. Jr.

    1985-04-01

    The kinetics of urea and inulin were analyzed in five anesthetized dogs during sequential 2-hour periods before, during, and after hemodialysis. The distribution of both compounds after simultaneous intravenous injection was characterized by three-compartment models, and the total volumes of urea (0.66 +/- 0.05 L/kg) and inulin (0.19 +/- 0.01 L/kg) distribution were similar to expected values for total body water and extravascular space, respectively. Intercompartmental clearances calculated before dialysis were used to estimate blood flows to the fast and slow equilibrating compartments. In agreement with previous results, the sum of these flows was similar to cardiac output, averaging 101% of cardiac output measured before dialysis (range 72% to 135%). Dialysis was accompanied by reductions in the slow intercompartmental clearances of urea (81%) and inulin (47%), which reflected a 90% attenuation in blood flow supplying the slow equilibrating compartments. This was estimated to result in a 10% average reduction in the efficiency with which urea was removed by dialysis (range 2.0% to 16.4%). Mean arterial pressure fell by less than 5% during dialysis, but total peripheral resistance increased by 47% and cardiac output fell by 35%. In the postdialysis period, total peripheral resistance and cardiac output returned toward predialysis values, but blood flow to the slow equilibrating peripheral compartment was still reduced by 80%. These changes parallel activation of the renin-angiotensin system, but further studies are required to establish causality.

  18. New biomedical polyurethane ureas with high tear strengths

    NARCIS (Netherlands)

    deGroot, JH; deVrijer, R; Wildeboer, BS; Spaans, CS; Pennings, AJ

    1997-01-01

    Biodegradable polyurethanes ureas (PUU) were synthesized by a two step polymerization. First a poly (epsilon-caprolactone) prepolymer was terminated with three different diisocyanates: lysinediisocyanate (LDI), 1,6-hexanediisocyanate (HDI) and 1,4-butanediisocyanate (BDI). Second the prepolymers wer

  19. Dietary management of urea cycle disorders : European practice

    NARCIS (Netherlands)

    Adam, S.; Almeida, M. F.; Assoun, M.; Baruteau, J.; Bernabei, S. M.; Bigot, S.; Champion, H.; Daly, A.; Dassy, M.; Dawson, S.; Dixon, M.; Dokoupil, K.; Dubois, S.; Dunlop, C.; Evans, S.; Eyskens, F.; Faria, A.; Favre, E.; Ferguson, C.; Goncalves, C.; Gribben, J.; Heddrich-Ellerbrok, M.; Jankowski, C.; Janssen-Regelink, R.; Jouault, C.; Laguerre, C.; Le Verge, S.; Link, R.; Lowry, S.; Luyten, K.; MacDonald, A.; Maritz, C.; McDowell, S.; Meyer, U.; Micciche, A.; Robertson, L. V.; Rocha, J. C.; Rohde, C.; Saruggia, I.; Sjoqvist, E.; Stafford, J.; Terry, A.; Thom, R.; Vande Kerckhove, K.; van Rijn, M.; van Teeffelen-Heithoff, A.; van Wegberg, A.; van Wyk, K.; Vasconcelos, C.; Vestergaard, H.; Webster, D.; White, F. J.; Wildgoose, J.; Zweers, H.; Robert, M.

    2013-01-01

    Background: There is no published data comparing dietary management of urea cycle disorders (UCD) in different countries. Methods: Cross-sectional data from 41 European Inherited Metabolic Disorder (IMD) centres (17 UK, 6 France, 5 Germany, 4 Belgium, 4 Portugal, 2 Netherlands, 1 Denmark, 1 Italy, 1

  20. Dietary management of urea cycle disorders: European practice.

    NARCIS (Netherlands)

    Adam, S.; Almeida, M.F.; Assoun, M.; Baruteau, J.; Bernabei, S.M.; Bigot, S.; Champion, H.; Daly, A.; Dassy, M.; Dawson, S.; Dixon, M.; Dokoupil, K.; Dubois, S.; Dunlop, C.; Evans, S.; Eyskens, F.; Faria, A.; Favre, E.; Ferguson, C.; Goncalves, C.; Gribben, J.; Heddrich-Ellerbrok, M.; Jankowski, C.; Janssen-Regelink, R.; Jouault, C.; Laguerre, C.; Verge, S. Le; Link, R.; Lowry, S.; Luyten, K.; Macdonald, A.; Maritz, C.; McDowell, S.; Meyer, U.; Micciche, A.; Robert, M.; Robertson, L.V.; Rocha, J.C.; Rohde, C.; Saruggia, I.; Sjoqvist, E.; Stafford, J.; Terry, A.; Thom, R.; nde Kerckhove, K. Va; Rijn, M. van de; Teeffelen-Heithoff, A. van; Wegberg, A.v.; Wyk, K. van; Vasconcelos, C.; Vestergaard, H.; Webster, D.; White, F.J.; Wildgoose, J.; Zweers, H.

    2013-01-01

    BACKGROUND: There is no published data comparing dietary management of urea cycle disorders (UCD) in different countries. METHODS: Cross-sectional data from 41 European Inherited Metabolic Disorder (IMD) centres (17 UK, 6 France, 5 Germany, 4 Belgium, 4 Portugal, 2 Netherlands, 1 Denmark, 1 Italy, 1

  1. Encapsulated Urea-Kaolinite Nanocomposite for Controlled Release Fertilizer Formulations

    Directory of Open Access Journals (Sweden)

    Siafu Ibahati Sempeho

    2015-01-01

    Full Text Available Urea controlled release fertilizer (CRF was prepared via kaolinite intercalation followed by gum arabic encapsulation in an attempt to reduce its severe losses associated with dissolution, hydrolysis, and diffusion. Following the beneficiation, the nonkaolinite fraction decreased from 39.58% to 0.36% whereas the kaolinite fraction increased from 60.42% to 99.64%. The X-ray diffractions showed that kaolinite was a major phase with FCC Bravais crystal lattice with particle sizes ranging between 14.6 nm and 92.5 nm. The particle size varied with intercalation ratios with methanol intercalated kaolinite > DMSO-kaolinite > urea-kaolinite (KPDMU. Following intercalation, SEM analysis revealed a change of order from thick compact overlapping euhedral pseudohexagonal platelets to irregular booklets which later transformed to vermiform morphology and dispersed euhedral pseudohexagonal platelets. Besides, dispersed euhedral pseudohexagonal platelets were seen to coexist with blocky-vermicular booklets. In addition, a unique brain-form agglomeration which transformed into roundish particles mart was observed after encapsulation. The nanocomposites decomposed between 48 and 600°C. Release profiles showed that 100% of urea was released in 97 hours from KPDMU while 87% was released in 150 hours from the encapsulated nanocomposite. The findings established that it is possible to use Pugu kaolinite and gum arabic biopolymer to prepare urea CRF formulations.

  2. Photoresponsive dithienylethene-urea-based organogels with "reversed" behavior

    NARCIS (Netherlands)

    Akazawa, Masako; Uchida, Kingo; de Jong, Jaap J. D.; Areephong, Jetsuda; Stuart, Marc; Caroli, Giuseppe; Browneb, Wesley R.; Feringa, Ben L.; Browne, Wesley R.

    2008-01-01

    Dithienylperhydrocyclopentene-bisurea-based low molecular weight gelators are described that function as photoresponsive organogels that show a remarkable gel-to-liquid transition upon irradiation. The two series of derivatives, with and without alkyl spacers between the urea hydrogen bonding groups

  3. Removal of fluoride in aqueous solution by adsorption on acid activated water treatment sludge

    Science.gov (United States)

    Vinitnantharat, Soydoa; Kositchaiyong, Sriwilai; Chiarakorn, Siriluk

    2010-06-01

    This paper reports the use of a pellet of adsorbent made from water treatment sludge (S) and acid activated water treatment sludge (SH) for removal of fluoride in the batch equilibration technique. The influence of pH, adsorbent dosage, temperature and effect of other ions were employed to find out the feasibility of acid activated adsorbent to remove fluoride to the permissible concentration of 0.7 mg/L. The results from the adsorption isotherm followed both Langmuir and Freundlich models and the highest fluoride removal was found for adsorbent activated with acetic acid at 2.0 mol/L. The optimum adsorbent dosage was found at 40 g/L, 0.01 mol/L acid activated adsorbent which was able to adsorb fluoride from 10 down to 0.11 mg/L. The adsorption capacity was decreased when the temperature increased. This revealed that the adsorption of fluoride on SH was exothermic. In the presence of nitrate and carbonate ions in the aqueous solution, fluoride removal efficiency of SH decreased from 94.4% to 86.6% and 90.8%, respectively. However, there is no significant effect in the presence of sulfate and chloride ions.

  4. Acid activated montmorillonite as catalysts in methyl esterification reactions of lauric acid.

    Science.gov (United States)

    Zatta, Leandro; Ramos, Luiz Pereira; Wypych, Fernando

    2012-01-01

    The catalytic activity of acid activated montmorillonite in the esterification of free fatty acids (FFA) is reported. Standard Montmorillonite (MMT) type STx-1 provided by the Clay Mineral Society repository was activated using phosphoric, nitric and sulphuric acids under different conditions and the resulting materials were characterized and evaluated as catalysts in the methyl esterification of lauric acid. Blank reactions carried out in the absence of any added catalyst presented conversions of 32.64, 69.79 and 79.23%, for alcohol:lauric acid molar ratios of 60:1, 12:1 and 6:1, respectively. In the presence of the untreated clay and using molar ratios of 12:1 and 6:1 with 12% of catalyst, conversions of 70.92 and 82.30% were obtained, respectively. For the acid activated clays, conversions up to 93.08% of lauric acid to methyl laurate were obtained, much higher than those observed for the thermal conversion or using untreated montmorillonite. Relative good correlations were observed between the catalytic activity and the development of acid sites and textural properties of the resulting materials. Therefore, a simple acid activation was able to improve the catalytic activity and produce clay catalysts that are environmental friendly, cost effective, noncorrosive and reusable.

  5. Calcination/acid-activation treatment of an anodic oxidation TiO2/Ti film catalyst

    Institute of Scientific and Technical Information of China (English)

    YAO Zhongping; JIANG Yanli; JIANG Zhaohua; ZHU Hongkui; BAI Xuefeng

    2009-01-01

    The aim of this work was to investigate the effects of calcination/acid-activation on the composition, structure, and photocatalytic (PC) re-duction property of an anodic oxidation TiO2/Ti film catalyst. The surface morphology and phase composition were examined by scanning electron microscopy and X-ray diffraction. The catalytic property of the film catalysts was evaluated through the removal rate of potassium chromate during the PC reduction process. The results showed that the film catalysts were composed of anatase and mtile TiO2 with a mi-cro-porous surface structure. The calcination treatment increased the content of TiO2 in the film, changed the relative ratio of anatase and rutile TiO2, and decreased the size of the micro pores of the film cat.a/ysts. The removal rate of potassium chromate was related to the tech-nique parameters of calcination/acid-activation treatment. When the anodic oxidation TiO2Ti film catalyst was calcined at 873 K for 30 min and then acid-activated in the concentrated H2SO4 for 60 min, it presented the highest catalytic property, with the removal rate of potassium chromate of 96.3% during the PC reduction process under the experimental conditions.

  6. Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells

    Directory of Open Access Journals (Sweden)

    Mokhlesur M. Rahman

    2014-05-01

    Full Text Available In this work, batch adsorption experiments were carried out to investigate the suitability of prepared acid activated carbons in removing heavy metal ions such as nickel(II, lead(II and chromium(VI. Acid activated carbons were obtained from oil palm and coconut shells using phosphoric acid under similar activation process while the differences lie either in impregnation condition or in both pretreatment and impregnation conditions. Prepared activated carbons were modified by dispersing hydrated iron oxide. The adsorption equilibrium data for nickel(II and lead(II were obtained from adsorption by the prepared and commercial activated carbons. Langmuir and Freundlich models fit the data well. Prepared activated carbons showed higher adsorption capacity for nickel(II and lead(II. The removal of chromium(VI was studied by the prepared acid activated, modified and commercial activated carbons at different pH. The isotherms studies reveal that the prepared activated carbon performs better in low concentration region while the commercial ones in the high concentration region. Thus, a complete adsorption is expected in low concentration by the prepared activated carbon. The kinetics data for Ni(II, Pb(II and Cr(VI by the best selected activated carbon fitted very well to the pseudo-second-order kinetic model.

  7. Nitrogen utilization and transformation in red soil fertilized with urea and ryegrass

    Institute of Scientific and Technical Information of China (English)

    WuGang; HeZhen-Li

    1998-01-01

    The influence of fertilization with urea and ryegrass on nitrogen utilization and transformation in red soil has been studied by using 15N tracer method.When urea and ryegrass were applied alone or in combination,the percentage of N uptaken by ryegrass from labelled urea was 3 and 1.7 times that from labelled ryegrass for the application rate of 200mgN.kg-1 and 100mgN.kg-1,respectively;combining application of ryegrass and ureareduced uptake of urea N and increased uptake of ryegrass N by ryegrass plant,but the percentage of N residued in soil increased for urea and decreased for ryegrass.when urea and ryegrass were applied alone,the percentage of N residued in soil from labelled ryegrass was more than 69% while that from labelled urea was less than 25%,and much more ryegrass N was incorporated into humus than urea N.

  8. Synthesis and Performance of Polyurethane Coated Urea as Slow/controlled Release Fertilizer

    Institute of Scientific and Technical Information of China (English)

    LI Qingshan; WU Shu; RU Tiejun; WANG Limin; XING Guangzhong; WANG Jinming

    2012-01-01

    Polyurethane coated urea slow/controlled release fertilizer was prepared based on urea granules,isocyanate,polyols and paraffin.Isocyanate reacted with polyols to synthesize the polyurethane skin layer on urea granules surface.Paraffin serves as a lubricant during syntheses of polyurethane skin layers.The structure and nutrient release characteristics of the polyurethane skin layers were investigated by FTIR,SEM and TG.Urea nitrogen slow-release behavior of the polyurethane coated urea was tested.The experimental results indicated that compact and dense polyurethane skin layers with a thickness of 10-15 μm were formed on urea surface,the urea nitrogen slow-release time can reach 40-50 days.Paraffin proves to play a key role in inhibiting water to penetrate into urea,but excessive addition would decrease the polyurethane crosslinking density.

  9. Effects of slow-release urea on ruminal digesta characteristics and growth performance in beef steers

    DEFF Research Database (Denmark)

    Taylor-Edwards, C C; Hibbard, G; Kitts, S E;

    2009-01-01

    Two experiments were conducted to evaluate the effects of slow urea (SRU) versus feed-grade urea on ruminal metabolite characteristics in steers and DMI, gain, and G:F in growing beef steers.......Two experiments were conducted to evaluate the effects of slow urea (SRU) versus feed-grade urea on ruminal metabolite characteristics in steers and DMI, gain, and G:F in growing beef steers....

  10. SERUM AND PAROTID FLUIS UREA-LEVELS IN UNREALOADED HEALTHY YOUNG ADULTS

    Science.gov (United States)

    Forty-four healthy young adult male subjects were given oral doses of urea, and parotid fluid and serum urea levels were studied for 1 to 3 hours. A...highly significant correlation between urea in serum and in parotid fluid (r equals 0.982) was found. The indication was that, with flow rate...carefully controlled, parotid fluid could be used interchangeably with serum in urea determination, regardless of the magnitude of the blood concentration. (Author)

  11. 76 FR 35405 - Solid Urea From the Russian Federation: Preliminary Results of Antidumping Duty Administrative...

    Science.gov (United States)

    2011-06-17

    ... International Trade Administration Solid Urea From the Russian Federation: Preliminary Results of Antidumping... review of the antidumping duty order on solid urea from the Russian Federation (Russia). The review... solid urea from the Union of Soviet Socialist Republics (Soviet Union). See Antidumping Duty Order;...

  12. Comparison of amino acid oxidation and urea metabolism in haemodialysis patients during fasting and meal intake

    NARCIS (Netherlands)

    Veeneman, JM; Kingma, HA; Stellaard, F; de Jong, PE; Reijngoud, DJ; Huisman, RM

    2004-01-01

    Background. The PNA (protein equivalent of nitrogen appearance) is used to calculate protein intake from urea kinetics. One of the essential assumptions in the calculation of PNA is that urea accumulation in haemodialysis (HD) patients is equivalent to amino acid oxidation. However, urea is hydrolys

  13. 75 FR 51440 - Solid Urea from the Russian Federation: Final Results of Antidumping Duty Administrative Review

    Science.gov (United States)

    2010-08-20

    ... International Trade Administration Solid Urea from the Russian Federation: Final Results of Antidumping Duty... of the administrative review of the antidumping duty order on solid urea from the Russian Federation. The solid urea subject to this review was produced and exported by MCC EuroChem (EuroChem). The...

  14. GC-MS DETERMINATION OF RATIOS OF STABLE-ISOTOPE LABELED TO NATURAL UREA USING [(CN2)-C-13-N-15]UREA FOR STUDYING UREA KINETICS IN SERUM AND AS A MEANS TO VALIDATE ROUTINE METHODS FOR THE QUANTITATIVE ASSAY OF UREA IN DIALYSATE

    NARCIS (Netherlands)

    WOLTHERS, BG; TEPPER, T; WITHAG, A; NAGEL, GT; DEHAAN, THY; VANLEEUWEN, JJ; STEGEMAN, CA; HUISMAN, RM

    1994-01-01

    A GC-MS determination of urea in serum or spent dialysate is described, using (CN2)-C-13-N-15-labelled urea and assaying the area ratio of labelled to natural urea by mass fragmentographic monitoring of fragments m/e 153 and 156, after its eventual conversion into the trimethylsilylether-derivative

  15. 78 FR 46571 - Solid Urea From the Russian Federation: Preliminary Results of Antidumping Duty Administrative...

    Science.gov (United States)

    2013-08-01

    ... International Trade Administration Solid Urea From the Russian Federation: Preliminary Results of Antidumping... review of the antidumping duty order on solid urea from the Russian Federation (Russia). The period of...: Scope of the Order The merchandise subject to the order is solid urea. The product is...

  16. 75 FR 51055 - Propionic Acid and Salts, and Urea Sulfate; Registration Review Proposed Decisions; Notice of...

    Science.gov (United States)

    2010-08-18

    ... AGENCY Propionic Acid and Salts, and Urea Sulfate; Registration Review Proposed Decisions; Notice of... urea sulfate and opens a public comment period on the proposed decisions. Registration review is EPA's.... Urea sulfate is used as a desiccant on ] cotton. No food crop uses remain and all tolerances for...

  17. 78 FR 67335 - Solid Urea From the Russian Federation: Final Results of Antidumping Duty Administrative Review...

    Science.gov (United States)

    2013-11-12

    ... International Trade Administration Solid Urea From the Russian Federation: Final Results of Antidumping Duty... duty order on solid urea from the Russian Federation (Russia). For the final results, we continue to... solid urea from Russia.\\1\\ We invited interested parties to comment on the Preliminary Results....

  18. 40 CFR 418.30 - Applicability; description of the urea subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the urea...) EFFLUENT GUIDELINES AND STANDARDS FERTILIZER MANUFACTURING POINT SOURCE CATEGORY Urea Subcategory § 418.30 Applicability; description of the urea subcategory. The provisions of this subpart are applicable to...

  19. 75 FR 78243 - Propionic Acid and Salts, Urea Sulfate, Methidathion, and Methyl Parathion; Registration Review...

    Science.gov (United States)

    2010-12-15

    ... AGENCY Propionic Acid and Salts, Urea Sulfate, Methidathion, and Methyl Parathion; Registration Review... pesticides propionic acid and salts, case no. 4078, urea sulfate, case no. 7213, methidathion, case no. 0034... pesticides in the table below--propionic acid and salts, case 4078, urea sulfate, case no. 7213,...

  20. 21 CFR 177.1900 - Urea-formaldehyde resins in molded articles.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Urea-formaldehyde resins in molded articles. 177... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1900 Urea-formaldehyde resins in molded articles. Urea-formaldehyde resins may be safely used as the food-contact...

  1. 40 CFR 721.9920 - Urea, (hexahydro-6-methyl-2-oxopyrimidinyl)-.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Urea, (hexahydro-6-methyl-2... Specific Chemical Substances § 721.9920 Urea, (hexahydro-6-methyl-2-oxopyrimidinyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance urea,...

  2. 76 FR 66690 - Solid Urea From the Russian Federation: Final Results of Antidumping Duty Administrative Review

    Science.gov (United States)

    2011-10-27

    ... International Trade Administration Solid Urea From the Russian Federation: Final Results of Antidumping Duty... of the administrative review of the antidumping duty order on solid urea from the Russian Federation. The solid urea subject to this review was produced and exported by MCC EuroChem (EuroChem). The...

  3. 76 FR 78885 - Solid Urea From the Russian Federation and Ukraine: Continuation of Antidumping Duty Orders

    Science.gov (United States)

    2011-12-20

    ... International Trade Administration Solid Urea From the Russian Federation and Ukraine: Continuation of... International Trade Commission (ITC) that revocation of the antidumping duty orders on solid urea from the... orders on solid urea from Russia and Ukraine,\\1\\ pursuant to section 751(c) of the Tariff Act of 1930,...

  4. Use of natural and biobased materials for controlled-release of urea in water: Environmental applications

    Science.gov (United States)

    Urea pearls were encapsulated in cloisite-based matrices using different natural materials (lignin, beeswax and latex) to control the release of urea over time. It was found that all cloisite-based fertilizer tablets showed better release profiles than neat urea tablets. The best release profile was...

  5. Hyperpolarized (13) C,(15) N2 -Urea MRI for assessment of the urea gradient in the porcine kidney

    DEFF Research Database (Denmark)

    Hansen, Esben S S; Stewart, Neil J; Wild, Jim M;

    2016-01-01

    function in healthy porcine kidneys resembling the human physiology. METHODS: Five healthy female Danish domestic pigs (weight 30 kg) were scanned at 3 Tesla (T) using a (13) C 3D balanced steady-state MR pulse sequence following injection of hyperpolarized (13) C,(15) N2 -urea via a femoral vein catheter...

  6. Speed associated with plasma pH, oxygen content, total protein and urea in an 80 km race.

    Science.gov (United States)

    Hoffman, R M; Hess, T M; Williams, C A; Kronfeld, D S; Griewe-Crandell, K M; Waldron, J E; Graham-Thiers, P M; Gay, L S; Splan, R K; Saker, K E; Harris, P A

    2002-09-01

    To test the hypothesis that endurance performance may be related quantitatively to changes in blood, we measured selected blood variables then determined their reference ranges and associations with speed during an 80 km race. The plan had 46 horses in a 2 x 2 factorial design testing a potassium-free electrolyte mix and a vitamin supplement. Blood samples were collected before the race, at 21, 37, 56 and 80 km, and 20 min after finishing, for assay of haematocrit, plasma pH, pO2, pCO2, [Na+], [K+], [Ca++], [Mg++], [Cl-], lactate, glucose, urea, cortisol, alpha-tocopherol, ascorbate, creatine kinase, aspartate amino transferase, lipid hydroperoxides, total protein, albumin and creatinine, and erythrocyte glutathione and glutathione peroxidase. Data from 34 finishers were analysed statistically. Reference ranges for resting and running horses were wide and overlapping and, therefore, limiting with respect to evaluation of individual horses. Speed correlations were most repeatable, with variables reflecting blood oxygen transport (enabling exercise), acidity and electrolytes (limiting exercise) and total protein (enabling then, perhaps, limiting). Stepwise regressions also included plasma urea concentration (limiting). The association of speed with less plasma acidity and urea suggests the potential for fat adaptation and protein restriction in endurance horses, as found previously in Arabians performing repeated sprints. Conditioning horses fed fat-fortified and protein-restricted diets may not only improve performance but also avoid grain-associated disorders.

  7. Combinatorial Effects of Aromatic 1,3-Disubstituted Ureas and Fluoride on In vitro Inhibition of Streptococcus mutans Biofilm Formation.

    Science.gov (United States)

    Kaur, Gurmeet; Balamurugan, P; Uma Maheswari, C; Anitha, A; Princy, S Adline

    2016-01-01

    Dental caries occur as a result of disequilibrium between acid producing pathogenic bacteria and alkali generating commensal bacteria within a dental biofilm (dental plaque). Streptococcus mutans has been reported as a primary cariogenic pathogen associated with dental caries. Emergence of multidrug resistant as well as fluoride resistant strains of S. mutans due to over use of various antibiotics are a rising problem and prompted the researchers worldwide to search for alternative therapies. In this perspective, the present study was aimed to screen selective inhibitors against ComA, a bacteriocin associated ABC transporter, involved in the quorum sensing of S. mutans. In light of our present in silico findings, 1,3-disubstituted urea derivatives which had better affinity to ComA were chemically synthesized in the present study for in vitro evaluation of S. mutans biofilm inhibition. The results revealed that 1,3-disubstituted urea derivatives showed good biofilm inhibition. In addition, synthesized compounds exhibited potent synergy with a very low concentration of fluoride (31.25-62.5 ppm) in inhibiting the biofilm formation of S. mutans without affecting the bacterial growth. Further, the results were supported by confocal laser scanning microscopy. On the whole, from our experimental results we conclude that the combinatorial application of fluoride and disubstituted ureas has a potential synergistic effect which has a promising approach in combating multidrug resistant and fluoride resistant S. mutans in dental caries management.

  8. Evaluation of the Determination of Free Urea in Water-Soluble Liquid Fertilizers Containing Urea and Ureaforms by Urease and HPLC Methods.

    Science.gov (United States)

    Hojjatie, Michael M; Abrams, Dean

    2015-01-01

    Currently there are three AOAC Official Methods for the determination of urea in fertilizers. AOAC Official Method 959.03, Urea in Fertilizers, Urease Method, First Action 1959, Final Action 1960, is based on the use of fresh commercial 1% urease solution, or preparation of such solution from urease powder in water, or from jack bean meal in water. AOAC Official Method 983.01, Urea and Methyleneureas (Water-Soluble) in Fertilizers, First Action 1983, Final Action 1984, is based on LC with a refractive index detector using water as the mobile phase and a C18 column. AOAC Official Method 2003.14, Determination of Urea in Water- Soluble Urea-Formaldehyde Fertilizer Products and in Aqueous Urea Solutions, First Action 2003, Final Action 2008, is based on LC with a UV detector using acetonitrile-water (85+15, v/v) mobile phase and a propylamine column. The urea method, AOAC Official Method 959.03, is very much dependent on the nature of the urease enzyme. The method was developed in 1960 and used for simple urea fertilizer solutions. With the advent of complex fertilizer compositions, especially with the class of liquid triazone fertilizers and water-soluble urea forms, the analyses of free urea in these fertilizers by the urease method is often inaccurate and inconsistent. AOAC Official Method 983.01 is not always reliable due to the interference of some of the components of these fertilizers, and due to the fact that the use of water as the mobile phase does not always separate the free urea from other components. AOAC Official Method 2003.14 was subjected to ring test studies that showed it could be used for the determination of "free urea" in these classes of fertilizers with good accuracy and precision.

  9. Alcoholic Hepatitis Markedly Decreases the Capacity for Urea Synthesis.

    Directory of Open Access Journals (Sweden)

    Emilie Glavind

    Full Text Available Data on quantitative metabolic liver functions in the life-threatening disease alcoholic hepatitis are scarce. Urea synthesis is an essential metabolic liver function that plays a key regulatory role in nitrogen homeostasis. The urea synthesis capacity decreases in patients with compromised liver function, whereas it increases in patients with inflammation. Alcoholic hepatitis involves both mechanisms, but how these opposite effects are balanced remains unclear. Our aim was to investigate how alcoholic hepatitis affects the capacity for urea synthesis. We related these findings to another measure of metabolic liver function, the galactose elimination capacity (GEC, as well as to clinical disease severity.We included 20 patients with alcoholic hepatitis and 7 healthy controls. The urea synthesis capacity was quantified by the functional hepatic nitrogen clearance (FHNC, i.e., the slope of the linear relationship between the blood α-amino nitrogen concentration and urea nitrogen synthesis rate during alanine infusion. The GEC was determined using blood concentration decay curves after intravenous bolus injection of galactose. Clinical disease severity was assessed by the Glasgow Alcoholic Hepatitis Score and Model for End-Stage Liver Disease (MELD score.The FHNC was markedly decreased in the alcoholic hepatitis patients compared with the healthy controls (7.2±4.9 L/h vs. 37.4±6.8 L/h, P<0.01, and the largest decrease was observed in those with severe alcoholic hepatitis (4.9±3.6 L/h vs. 9.9±4.9 L/h, P<0.05. The GEC was less markedly reduced than the FHNC. A negative correlation was detected between the FHNC and MELD score (rho = -0.49, P<0.05.Alcoholic hepatitis markedly decreases the urea synthesis capacity. This decrease is associated with an increase in clinical disease severity. Thus, the metabolic failure in alcoholic hepatitis prevails such that the liver cannot adequately perform the metabolic up-regulation observed in other stressful

  10. Alcoholic Hepatitis Markedly Decreases the Capacity for Urea Synthesis

    Science.gov (United States)

    Glavind, Emilie; Aagaard, Niels Kristian; Grønbæk, Henning; Møller, Holger Jon; Orntoft, Nikolaj Worm; Vilstrup, Hendrik; Thomsen, Karen Louise

    2016-01-01

    Background and Aim Data on quantitative metabolic liver functions in the life-threatening disease alcoholic hepatitis are scarce. Urea synthesis is an essential metabolic liver function that plays a key regulatory role in nitrogen homeostasis. The urea synthesis capacity decreases in patients with compromised liver function, whereas it increases in patients with inflammation. Alcoholic hepatitis involves both mechanisms, but how these opposite effects are balanced remains unclear. Our aim was to investigate how alcoholic hepatitis affects the capacity for urea synthesis. We related these findings to another measure of metabolic liver function, the galactose elimination capacity (GEC), as well as to clinical disease severity. Methods We included 20 patients with alcoholic hepatitis and 7 healthy controls. The urea synthesis capacity was quantified by the functional hepatic nitrogen clearance (FHNC), i.e., the slope of the linear relationship between the blood α-amino nitrogen concentration and urea nitrogen synthesis rate during alanine infusion. The GEC was determined using blood concentration decay curves after intravenous bolus injection of galactose. Clinical disease severity was assessed by the Glasgow Alcoholic Hepatitis Score and Model for End-Stage Liver Disease (MELD) score. Results The FHNC was markedly decreased in the alcoholic hepatitis patients compared with the healthy controls (7.2±4.9 L/h vs. 37.4±6.8 L/h, P<0.01), and the largest decrease was observed in those with severe alcoholic hepatitis (4.9±3.6 L/h vs. 9.9±4.9 L/h, P<0.05). The GEC was less markedly reduced than the FHNC. A negative correlation was detected between the FHNC and MELD score (rho = -0.49, P<0.05). Conclusions Alcoholic hepatitis markedly decreases the urea synthesis capacity. This decrease is associated with an increase in clinical disease severity. Thus, the metabolic failure in alcoholic hepatitis prevails such that the liver cannot adequately perform the metabolic up

  11. Effect of time duration of ruminal urea infusions on ruminal ammonia concentrations and portal-drained visceral extraction of arterial urea-N in lactating Holstein cows

    DEFF Research Database (Denmark)

    Røjen, Betina Amdisen; Kristensen, Niels Bastian

    2012-01-01

    concentration was observed. The portal flux of urea-N was not affected by treatment (i.e., even the combination of low ruminal ammonia and high arterial urea-N concentration with 6-h INF was not used by the cow to increase the uptake of urea-N across the PDV). Arterial urea-N extraction across the PDV......The effects of a 6 versus 24h ruminal urea infusion in lactating dairy cows fed a basal diet deficient in N on ruminal ammonia concentration, arterial urea-N concentration, net portal-drained viscera (PDV) urea-N flux, arterial urea-N extraction across the PDV, and renal urea-N kinetics were...... investigated. Three Danish Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in major splanchnic blood vessels were randomly allocated to a 3 × 3 Latin square design with 21-d periods. Treatments were ventral ruminal infusion of water for 24h (water INF), 24-h infusion of 15g...

  12. Chelate effects in sulfate binding by amide/urea-based ligands.

    Science.gov (United States)

    Jia, Chuandong; Wang, Qi-Qiang; Begum, Rowshan Ara; Day, Victor W; Bowman-James, Kristin

    2015-07-01

    The influence of chelate and mini-chelate effects on sulfate binding was explored for six amide-, amide/amine-, urea-, and urea/amine-based ligands. Two of the urea-based hosts were selective for SO4(2-) in water-mixed DMSO-d6 systems. Results indicated that the mini-chelate effect provided by a single urea group with two NH binding sites appears to provide enhanced binding over two amide groups. Furthermore, additional urea binding sites incorporated into the host framework appeared to overcome to some extent competing hydration effects with increasing water content.

  13. Effect of urea on protein separation by ion-exchange chromatography.

    Science.gov (United States)

    Khademi, Fatemeh; Mostafaie, Ali

    2010-05-01

    Ion-exchange chromatography (IEC) is the most frequently used chromatographic technique for the separation of proteins and peptides. In this article, the effects of urea on IEC separation of kiwifruit actinidin, egg white and urinary proteins were examined. The purity and relative amount of each protein in different conditions (in the presence or absence of urea) were compared with each other. The three parameters, including resolution, selectivity and efficiency of column in the presence of urea, were calculated and compared with the absence of urea. The results revealed that urea improved the purity of proteins and the resolution, selectivity and efficiency of IEC in separation of studied proteins.

  14. Salting-Out of Methane in the Aqueous Solutions of Urea and Glycine-Betaine.

    Science.gov (United States)

    Dixit, Mayank Kumar; Siddique, Asrar A; Tembe, B L

    2015-08-27

    We have studied the hydrophobic association and solvation of methane molecules in aqueous solutions of urea and glycine betaine (GB). We have calculated the potentials of mean force (PMFs) between methane molecules in water, aqueous GB, aqueous urea and aqueous urea-GB mixtures. The PMFs and equilibrium constants indicate that both urea and GB increase the hydrophobic association of methane. Calculation of thermodynamic parameters shows that the association of methane is stabilized by entropy whereas solvation is favored by enthalpy. In the case of the water-urea-GB mixture, both hydrophobic association and solvation are stabilized by entropy. From the investigation of radial distribution functions, running coordination numbers and excess coordination numbers, we infer that both urea and GB are preferentially excluded from methane surface in the mixtures of osmolytes and methane is preferentially solvated by water molecules in all the mixtures. The favorable exclusion of both urea and GB from the methane surface suggests that both urea and GB increase the interaction between methane molecules, i.e., salting-out of methane. We observe that addition of both urea and GB to water enhances local water structure. The calculated values of diffusion constants of water also suggest enhanced water-water interactions in the presence of urea and GB. The calculated free energies of methane in these mixtures show that methane is less soluble in the mixtures of urea and GB than in water. The data on solvation free energies support the observations obtained from the PMFs of methane molecules.

  15. Polar or apolar--the role of polarity for urea-induced protein denaturation.

    Directory of Open Access Journals (Sweden)

    Martin C Stumpe

    2008-11-01

    Full Text Available Urea-induced protein denaturation is widely used to study protein folding and stability; however, the molecular mechanism and driving forces of this process are not yet fully understood. In particular, it is unclear whether either hydrophobic or polar interactions between urea molecules and residues at the protein surface drive denaturation. To address this question, here, many molecular dynamics simulations totalling ca. 7 micros of the CI2 protein in aqueous solution served to perform a computational thought experiment, in which we varied the polarity of urea. For apolar driving forces, hypopolar urea should show increased denaturation power; for polar driving forces, hyperpolar urea should be the stronger denaturant. Indeed, protein unfolding was observed in all simulations with decreased urea polarity. Hyperpolar urea, in contrast, turned out to stabilize the native state. Moreover, the differential interaction preferences between urea and the 20 amino acids turned out to be enhanced for hypopolar urea and suppressed (or even inverted for hyperpolar urea. These results strongly suggest that apolar urea-protein interactions, and not polar interactions, are the dominant driving force for denaturation. Further, the observed interactions provide a detailed picture of the underlying molecular driving forces. Our simulations finally allowed characterization of CI2 unfolding pathways. Unfolding proceeds sequentially with alternating loss of secondary or tertiary structure. After the transition state, unfolding pathways show large structural heterogeneity.

  16. The effect of urea pretreatment on the formaldehyde emission and properties of straw particleboard

    Institute of Scientific and Technical Information of China (English)

    Hojat Hematabadi; Rabi Behrooz

    2012-01-01

    For manufacturing low-formaldehyde emission particleboard from wheat straw and urea-formaldehyde (UF) resins using urea treatment for indoor environments,we investigated the influence of urea treatment on the formaldehyde emission,physical and mechanical properties of the manufactured particleboard.Wheat straws were treated at three levels of urea concentration (5%,10%,15%) and 95℃ as holding temperature.Wheat straw particleboards were manufactured using hot press at 180℃ and 3 MPa with two types of UF adhesive (UF-45,UF-91).Then the formaldehyde emission values,physical properties and mechanical properties were considered.The results show that the formaldehyde emission value was decreased by increasing urea concentration.Furthermore,the results indicate that the specimens under urea treatment have better mechanical and physical properties compared with control specimens.Also specimens under urea treatment at 10% concentration and UF-91 type adhesive have the most optimum physical and mechanical strength.

  17. Data of 1H/13C NMR spectra and degree of substitution for chitosan alkyl urea

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2016-06-01

    Full Text Available The data shown in this article are related to the subject of an article in Carbohydrate Polymers, entitled “Synthesis and characterization of chitosan alkyl urea” [1]. 1H NMR and 13C NMR spectra of chitosan n-octyl urea, chitosan n-dodecyl urea and chitosan cyclohexyl urea are displayed. The chemical shifts of proton and carbon of glucose skeleton in these chitosan derivatives are designated in detail. Besides, 1H NMR spectra of chitosan cyclopropyl urea, chitosan tert-butyl urea, chitosan phenyl urea and chitosan N,N-diethyl urea and the estimation of the degree of substitution are also presented. The corresponding explanations can be found in the above-mentioned article.

  18. Urea sensors based on PVC membrane pH electrode.

    Science.gov (United States)

    Głab, S; Koncki, R; Kopczewska, E; Wałcerz, I; Hulanicki, A

    1994-07-01

    Several procedures of urease immobilization on the surface of the polymeric membrane pH electrode with tri-n-dodecylamine as a neutral carrier were compared. The best results were obtained for the urea sensor with covalently bound urease. The sensor characteristics including the effect of buffer, pH and concentration and the effect of stirring rate are presented. These effects are in good agreement with theoretical expectations.

  19. Reverse osmosis membrane of high urea rejection properties. [water purification

    Science.gov (United States)

    Johnson, C. C.; Wydeven, T. J. (Inventor)

    1980-01-01

    Polymeric membranes suitable for use in reverse osmosis water purification because of their high urea and salt rejection properties are prepared by generating a plasma of an unsaturated hydrocarbon monomer and nitrogen gas from an electrical source. A polymeric membrane is formed by depositing a polymer of the unsaturated monomer from the plasma onto a substrate, so that nitrogen from the nitrogen gas is incorporated within the polymer in a chemically combined form.

  20. A stochastic model for an urea decomposition system

    Directory of Open Access Journals (Sweden)

    VSS Yadavalli

    2005-12-01

    Full Text Available Availability is an important measure in describing the performance of a system. The availability of a decomposition process in an urea production system in the fertilizer industry is considered in this paper. The system contains four subsystems and is supported by a standby unit. An estimation study of the steady state availability of the system is performed and illustrated by means of a numerical example.

  1. Encapsulated Urea-Kaolinite Nanocomposite for Controlled Release Fertilizer Formulations

    OpenAIRE

    Siafu Ibahati Sempeho; Hee Taik Kim; Egid Mubofu; Alexander Pogrebnoi; Godlisten Shao; Askwar Hilonga

    2015-01-01

    Urea controlled release fertilizer (CRF) was prepared via kaolinite intercalation followed by gum arabic encapsulation in an attempt to reduce its severe losses associated with dissolution, hydrolysis, and diffusion. Following the beneficiation, the nonkaolinite fraction decreased from 39.58% to 0.36% whereas the kaolinite fraction increased from 60.42% to 99.64%. The X-ray diffractions showed that kaolinite was a major phase with FCC Bravais crystal lattice with particle sizes ranging betwee...

  2. Mechanism of Microencapsulation with Urea-Formaldehyde Polymer

    OpenAIRE

    Rochmadi .; Agus Prasetya; Wahyu Hasokowati

    2010-01-01

    Problem statement: Microcapsule is one of important fine chemical products in the current chemical industries. Better understanding of microencapsulation process is useful to properly design of microcapsule with specific characteristics. The aim of this research is to study the mechanism of Urea-Formaldehyde (UF) microcapsules formation. Approach: Microcapsule was prepared in two steps. The first step was the preparation of oil in water emulsion, which was carried out by mixing of UF pre-poly...

  3. Synthesis and characterization of alternating poly(amide urea)s and poly(amide urethane urethane)s from ε-caprolactam, diamines, and diphenyl carbonate or ethylene carbonate

    NARCIS (Netherlands)

    Ubaghs, Luc; Sharma, Bhaskar; Keul, Helmut; Höcker, Hartwig; Loontjens, Ton; Benthem, Rolf van

    2003-01-01

    Alternating poly(amide urea)s from ε-caprolactam, diamines H2N-(CH2)x-NH2 (x = 2 - 4), and diphenyl carbonate were prepared in two steps. The microstructure of the poly(amide urea)s, as determined by means of 1H NMR spectroscopy, reveals a strictly alternating sequence of the building blocks. The mo

  4. Effect of urea on degradation of terbuthylazine in soil.

    Science.gov (United States)

    Caracciolo, Anna Barra; Giuliano, Giuseppe; Grenni, Paola; Cremisini, Carlo; Ciccoli, Roberto; Ubaldi, Carla

    2005-05-01

    Pesticide and nitrate contamination of soil and groundwater from agriculture is an environmental and public health concern worldwide. The herbicide terbuthylazine (CBET) has replaced atrazine in Italy and in many other countries because the use of the latter has been banned because of its adverse environmental impacts. Unlike atrazine, knowledge about the fate of CBET in soil is still not extensive, especially regarding its transformation products, but recent monitoring data show its occurrence and that of its main metabolite, desethyl-terbuthylazine (CBAT), in groundwater above the limit of 0.1 microg/L established by European Union Directive and Italian legislation. The objective of this work was to investigate if the presence of the fertilizer urea affects CBET degradation in the soil. Laboratory CBET degradation experiments in the presence/absence of urea were performed with microbiologically active soil and sterilized soil. Terbuthylazine degradation rates under the different experimental conditions were assessed, and the formation, degradation, and transformation of the metabolite CBAT were also studied. Terbuthylazine degradation was affected by the presence of urea, in terms both of a higher disappearance time of 50% of the initial concentration and of a lower amount of CBAT formed. These findings have practical implications for the real-life assessment of the environmental fate of triazine herbicides in agricultural areas since these herbicides are frequently applied to soils receiving ureic fertilizers.

  5. Differential stability of the bovine prion protein upon urea unfolding

    Science.gov (United States)

    Julien, Olivier; Chatterjee, Subhrangsu; Thiessen, Angela; Graether, Steffen P; Sykes, Brian D

    2009-01-01

    Prion diseases, or transmissible spongiform encephalopathies, are a group of infectious neurological diseases associated with the structural conversion of an endogenous protein (PrP) in the central nervous system. There are two major forms of this protein: the native and noninfectious cellular form, PrPC; and the misfolded, infectious, and proteinase K-resistant form, PrPSc. The C-terminal domain of PrPC is mainly α-helical in structure, whereas PrPSc in known to aggregate into an assembly of β-sheets, forming amyloid fibrils. To identify the regions of PrPC potentially involved in the initial steps of the conversion to the infectious conformation, we have used high-resolution NMR spectroscopy to characterize the stability and structure of bovine recombinant PrPC (residues 121 to 230) during unfolding with the denaturant urea. Analysis of the 800 MHz 1H NMR spectra reveals region-specific information about the structural changes occurring upon unfolding. Our data suggest that the dissociation of the native β-sheet of PrPC is a primary step in the urea-induced unfolding process, while strong hydrophobic interactions between helices α1 and α3, and between α2 and α3, stabilize these regions even at very high concentrations of urea. PMID:19693935

  6. Synthesis of dimethyl carbonate from urea and methanol

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, M.; Kalevaru, V.N.; Martin, A. [Rostock Univ. (Germany). Leibniz Institute for Catalysis; Mueller, K.; Arlt, W. [Erlangen-Nuernberg Univ. (Germany); Strautmann, J.; Kruse, D. [Evonik Industries AG, Marl (Germany). Creavis Technologies and Innovation

    2012-07-01

    Alcoholation of urea with methanol to produce dimethyl carbonate (DMC) is an interesting approach from both the ecological and economical points of view because the urea synthesis usually occurs by the direct use of carbon dioxide. Literature survey reveals that metal oxide catalysts for instance MgO, ZnO, etc. or polyphosphoric acids are mostly used as catalysts for this reaction. In this contribution, we describe the application of ZnO, MgO, CaO, TiO{sub 2}, ZrO{sub 2} or Al{sub 2}O{sub 3} catalysts for the above mentioned reaction. The catalytic activity of different metal oxides towards DMC synthesis was checked and additionally a comparison of achieved conversions with that of predictions made by thermodynamic calculations was also carried out. The achieved conversions are in good agreement with those of calculated ones. The test results reveal that the reaction pressure and temperature have a strong influence on the formation of DMC. Higher reaction pressure improved the yield of DMC. Among different catalysts investigated, ZnO displayed the best performance. The conversion of urea in most cases is close to 100 % and methyl carbamate MC is the major product of the reaction. A part of MC is subsequently converted to DMC, which however depends upon the reaction conditions applied and nature of catalyst used. From the best case, a DMC yield of ca. 8 % could be successfully achieved over ZnO catalyst. (orig.)

  7. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    Directory of Open Access Journals (Sweden)

    Das G

    2015-08-01

    Full Text Available Gautam Das, Hyon Hee Yoon Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do, South Korea Abstract: An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 µA·cm-2·mM-1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. Keywords: electrochemical deposition, sulfonated graphene oxide, urease

  8. Antibacterial kaolinite/urea/chlorhexidine nanocomposites: Experiment and molecular modelling

    Energy Technology Data Exchange (ETDEWEB)

    Holešová, Sylva, E-mail: sylva.holesova@vsb.cz [Nanotechnology Centre, VŠB – Technical University of Ostrava, 17.listopadu 15/2172, CZ-708 33 Ostrava, Poruba (Czech Republic); IT4Innovations Centre of Excellence, VŠB – Technical University of Ostrava, 17.listopadu 15/2172, CZ-708 33 Ostrava, Poruba (Czech Republic); Valášková, Marta; Hlaváč, Dominik [Nanotechnology Centre, VŠB – Technical University of Ostrava, 17.listopadu 15/2172, CZ-708 33 Ostrava, Poruba (Czech Republic); IT4Innovations Centre of Excellence, VŠB – Technical University of Ostrava, 17.listopadu 15/2172, CZ-708 33 Ostrava, Poruba (Czech Republic); Madejová, Jana [Institute of Inorganic Chemistry, SAS, Dúbravská cesta 9, SK-845 36 Bratislava (Slovakia); Samlíková, Magda; Tokarský, Jonáš [Nanotechnology Centre, VŠB – Technical University of Ostrava, 17.listopadu 15/2172, CZ-708 33 Ostrava, Poruba (Czech Republic); IT4Innovations Centre of Excellence, VŠB – Technical University of Ostrava, 17.listopadu 15/2172, CZ-708 33 Ostrava, Poruba (Czech Republic); Pazdziora, Erich [Institute of Public Health Ostrava, Centre of Clinical Laboratories, Partyzánské náměstí 7, CZ-702 00 Ostrava (Czech Republic)

    2014-06-01

    Clay minerals are commonly used materials in pharmaceutical production both as inorganic carriers or active agents. The purpose of this study is the preparation and characterization of clay/antibacterial drug hybrids which can be further included in drug delivery systems for treatment oral infections. Novel nanocomposites with antibacterial properties were successfully prepared by ion exchange reaction from two types of kaolinite/urea intercalates and chlorhexidine diacetate. Intercalation compounds of kaolinite were prepared by reaction with solid urea in the absence of solvents (dry method) as well as with urea aqueous solution (wet method). The antibacterial activity of two prepared samples against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa was evaluated by finding the minimum inhibitory concentration (MIC). Antibacterial studies of both samples showed the lowest MIC values (0.01%, w/v) after 1 day against E. faecalis, E. coli and S. aureus. A slightly worse antibacterial activity was observed against P. aeruginosa (MIC 0.12%, w/v) after 1 day. Since samples showed very good antibacterial activity, especially after 1 day of action, this means that these samples can be used as long-acting antibacterial materials. Prepared samples were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The experimental data are supported by results of molecular modelling.

  9. Urochloa ruziziensis responses to sources and doses of urea

    Directory of Open Access Journals (Sweden)

    João E. S. Lima

    2016-05-01

    Full Text Available ABSTRACT The use of products that promote reduction of nitrogen (N losses from the urea fertilizer can contribute to increasing its use efficiency in forage grasses. This study aimed to evaluate the effects of N sources and doses on the growth of Urochloa ruziziensis. The experiment was carried out in the growing season of 2007/2008 in Santo Antônio de Goiás-GO, in a Brazilian Oxisol. A completely randomized block was used, with four replicates in a factorial scheme, corresponding to two N sources (conventional urea and urea with urease inhibitor and five N doses (0, 50, 100, 200 and 300 kg ha-1, divided into equal applications in five periods (Nov 14 to Dec 13, Dec 14 to Jan 12, Jan 13 to Feb 11 - rainy season, Mar 24 to Apr 22 and Jul 10 to Aug 08 - dry season. The effects of the treatments were evaluated for: shoot dry matter, tiller density, total N content in the leaves and relative chlorophyll content. N fertilizer sources did not affect the evaluated variables; however, N fertilization allowed linear increases in all variables with higher values during the rainy period. The relative chlorophyll content in U. ruziziensis had positive correlation with its dry matter productivity.

  10. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite.

    Science.gov (United States)

    Das, Gautam; Yoon, Hyon Hee

    2015-01-01

    An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 (μA · cm(-2)·mM(-1). The biosensor achieved a broad linear range of detection (0.12-12.3 mM) with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity) after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection.

  11. Improvement of Egyptian vacuum distillates by urea dewaxing

    Directory of Open Access Journals (Sweden)

    Ehssan M.R. Nassef

    2015-09-01

    Full Text Available The dewaxing of paraffinic lube stocks is an essential step in the production of lubricants to improve the operability of machines especially in winter. The present work deals with study of the urea dewaxing process of two types of Egyptian vacuum distillates. The effect of different compositions of methanol to water saturated with urea and yield of the oil, percent of wax, pour point, refractive index, viscosity, viscosity index and specific gravity of the oil produced from the two types of distillates (I and II were evaluated. The operating conditions of the urea adduct formation with n-paraffins using methanol to water mixture achieved the best pour point at −3.88 °C from an initial temperature of 4.4 °C for distillate I at (25/75 methanol to water. At the same ratio of methanol to water the best specific gravity of oil produced changed from 0.865 to 0.867, with viscosity index of 80. Percent yield of 50% for oil and percent wax of 50% were obtained. Results for distillate II, of higher specific gravity, are comparatively higher than those for distillate I. Experiments were carried out at room temperature.

  12. Influence of papain urea copper chlorophyllin on wound matrix remodeling.

    Science.gov (United States)

    Telgenhoff, Dale; Lam, Kan; Ramsay, Sarah; Vasquez, Valerie; Villareal, Kristine; Slusarewicz, Paul; Attar, Paul; Shroot, Braham

    2007-01-01

    The purpose of this study was to examine the dermal and epidermal alterations associated with wound healing in wounds treated with papain urea copper chlorophyllin (PUC), papain-urea, copper chlorophyllin, or urea base ointment and compare these with moist wound care using a porcine full-thickness infected wound model. All the wounds were evaluated postsurgery for erythema, transepidermal water loss, microscopic morphology, and changes in protein expression. Examination of stained paraffin sections revealed an increase in the number of keratinocytes present in the epidermis of the PUC and papain-treated pigs, relative to moist control. This increase in keratinocyte number corresponded to an increase in the movement of the keratinocytes into the underlying dermis in the form of rete pegs. In the dermis, there appeared to be an increase in blood vessel formation, collagen I deposition, and mature collagen in the papain and PUC treated tissues. The quality of healing appears to be enhanced based on the number of keratinocytes present in the epidermis, the extensive rete peg formation, the increase in vasculature, and the increase in collagen birefringence.

  13. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    Science.gov (United States)

    Das, Gautam; Yoon, Hyon Hee

    2015-01-01

    An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 (μA · cm−2·mM−1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM) with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity) after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. PMID:26346240

  14. Short-Term Treatment with the Urease Inhibitor N-(n-Butyl) Thiophosphoric Triamide (NBPT) Alters Urea Assimilation and Modulates Transcriptional Profiles of Genes Involved in Primary and Secondary Metabolism in Maize Seedlings

    Science.gov (United States)

    Zanin, Laura; Venuti, Silvia; Tomasi, Nicola; Zamboni, Anita; De Brito Francisco, Rita M.; Varanini, Zeno; Pinton, Roberto

    2016-01-01

    To limit nitrogen (N) losses from the soil, it has been suggested to provide urea to crops in conjunction with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT). However, recent studies reported that NBPT affects urea uptake and urease activity in plants. To shed light on these latter aspects, the effects of NBPT were studied analysing transcriptomic and metabolic changes occurring in urea-fed maize seedlings after a short-term exposure to the inhibitor. We provide evidence that NBPT treatment led to a wide reprogramming of plant metabolism. NBPT inhibited the activity of endogenous urease limiting the release and assimilation of ureic-ammonium, with a simultaneous accumulation of urea in plant tissues. Furthermore, NBPT determined changes in the glutamine, glutamate, and asparagine contents. Microarray data indicate that NBPT affects ureic-N assimilation and primary metabolism, such as glycolysis, TCA cycle, and electron transport chain, while activates the phenylalanine/tyrosine-derivative pathway. Moreover, the expression of genes relating to the transport and complexation of divalent metals was strongly modulated by NBPT. Data here presented suggest that when NBPT is provided in conjunction with urea an imbalance between C and N compounds might occur in plant cells. Under this condition, root cells also seem to activate a response to maintain the homeostasis of some micronutrients. PMID:27446099

  15. Short-Term Treatment with the Urease Inhibitor N-(n-Butyl) Thiophosphoric Triamide (NBPT) Alters Urea Assimilation and Modulates Transcriptional Profiles of Genes Involved in Primary and Secondary Metabolism in Maize Seedlings.

    Science.gov (United States)

    Zanin, Laura; Venuti, Silvia; Tomasi, Nicola; Zamboni, Anita; De Brito Francisco, Rita M; Varanini, Zeno; Pinton, Roberto

    2016-01-01

    To limit nitrogen (N) losses from the soil, it has been suggested to provide urea to crops in conjunction with the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT). However, recent studies reported that NBPT affects urea uptake and urease activity in plants. To shed light on these latter aspects, the effects of NBPT were studied analysing transcriptomic and metabolic changes occurring in urea-fed maize seedlings after a short-term exposure to the inhibitor. We provide evidence that NBPT treatment led to a wide reprogramming of plant metabolism. NBPT inhibited the activity of endogenous urease limiting the release and assimilation of ureic-ammonium, with a simultaneous accumulation of urea in plant tissues. Furthermore, NBPT determined changes in the glutamine, glutamate, and asparagine contents. Microarray data indicate that NBPT affects ureic-N assimilation and primary metabolism, such as glycolysis, TCA cycle, and electron transport chain, while activates the phenylalanine/tyrosine-derivative pathway. Moreover, the expression of genes relating to the transport and complexation of divalent metals was strongly modulated by NBPT. Data here presented suggest that when NBPT is provided in conjunction with urea an imbalance between C and N compounds might occur in plant cells. Under this condition, root cells also seem to activate a response to maintain the homeostasis of some micronutrients.

  16. Urea coated with oxidized charcoal reduces ammonia volatilization

    Directory of Open Access Journals (Sweden)

    Diogo Mendes de Paiva

    2012-08-01

    Full Text Available Urea is the most consumed nitrogen fertilizer in the world. However, its agronomic and economic efficiency is reduced by the volatilization of NH3, which can reach 78 % of the applied nitrogen. The coating of urea granules with acidic compounds obtained by charcoal oxidation has the potential to reduce the volatilization, due to the acidic character, the high buffering capacity and CEC. This work aimed to evaluate the effect of HNO3-oxidized carbon on the control of NH3 volatilization. These compounds were obtained by oxidation of Eucalyptus grandis charcoal, produced at charring temperatures of 350 and 450 ºC, with 4.5 mol L-1 HNO3. The charcoal was oxidized by solubilization in acidic or alkaline medium, similar to the procedure of soil organic matter fractionation (CHox350 and CHox450. CHox was characterized by C, H, O, N contents and their respective atomic relations, by the ratio E4 (absorbance 465 nm by E6 (absorbance 665 nm, and by active acidity and total acidity (CEC. The inhibitory effect of CHox on the urease activity of Canavalia ensiformis was assessed in vitro. The NH3 volatilization from urea was evaluated with and without coating of oxidized charcoal (U-CHox350 or U-CHox450 in a closed system with continuous air flow. The pH of both CHox was near 2.0, but the total acidity of CHox350 was higher, 72 % of which was attributed to carboxylic groups. The variation in the ionization constants of CHox350 was also greater. The low E4/E6 ratios characterize the high stability of the compounds in CHox. CHox did not inhibit the urease activity in vitro, although the maximum volatilization peak from U-CHox450 and U-CHox350 occurred 24 h after that observed for uncoated urea. The lowest volatilization rate was observed for U-CHox350 as well as a 43 % lower total amount of NH3 volatilized than from uncoated urea.

  17. Equilibrium studies on hydrolysis of urea in a semi-batch reactor for production of ammonia to reduce hazardous pollutants from flue gases

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, J.N.; Mahalik, K.K.; Patwardhan, A.V. [Department of Chemical Engineering, Indian Institute of Technology (IIT) Kharagpur, P.O. Kharagpur Technology, Kharagpur, West Bengal 721302 (India); Meikap, B.C., E-mail: bcmeikap@iitkgp.ac.in [Department of Chemical Engineering, Indian Institute of Technology (IIT) Kharagpur, P.O. Kharagpur Technology, Kharagpur, West Bengal 721302 (India)

    2009-05-30

    The increasing environmental awareness and the mandate of the pollution control agencies in various part of country for lowering emission of air pollutants such as CO{sub 2}, NO{sub x}, SO{sub 2} and fly ash emissions, has increased the urgency for reviewing options and alternatives to accomplish the above objective. The addition of ammonia into the flue gas stream as a conditioning agent is found to be used in recent years for the reduction of air pollutants. Flue gas conditioning requires in situ generation of ammonia as the transportation and storage of anhydrous ammonia is hazardous in nature. The equilibrium study on hydrolysis of urea was done in a semi-batch glass reactor to investigate the effect of reaction temperature, initial feed concentration and stirring speed on ammonia production. Few experiments were carried out in a semi-batch reactor at atmospheric pressure by using different concentration of urea solution from 10 to 40 wt% of urea to water and equilibrium study has been done. The study reveals that conversion increases exponentially with an increase in temperature but the conversion decreases with increase in the inlet feed concentration of urea solution. Furthermore, the effect of stirring speed on conversion has also been studied and it found that conversion increases with increase in stirring speed.

  18. Catalytic hydrolysis of urea with fly ash for generation of ammonia in a batch reactor for flue gas conditioning and NOx reduction

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, J.N.; Gangadharan, P.; Patwardhan, A.V.; Meikap, B.C. [Indian Institute of Technology, Kharagpur (India). Dept. of Chemical Engineering

    2009-01-15

    Ammonia is a highly volatile noxious material with adverse physiological effects, which become intolerable even at very low concentrations and present substantial environmental and operating hazards and risk. Yet ammonia has long been known to be used for feedstock of flue gas conditioning and NOx reduction. Urea as the source of ammonia for the production of ammonia has the obvious advantages that no ammonia shipping, handling, and storage is required. The process of this invention minimizes the risks and hazards associated with the transport, storage, and use of anhydrous and aqueous ammonia. Yet no such rapid urea conversion process is available as per requirement of high conversion in shorter time, so here we study the catalytic hydrolysis of urea for fast conversion in a batch reactor. The catalyst used in this study is fly ash, a waste material originating in great amounts in combustion processes. A number of experiments were carried out in a batch reactor at different catalytic doses, temperatures, times, and at a constant concentration of urea solution 10% by weight, and equilibrium and kinetic studies have been made.

  19. Effect of dietary nitrogen content and intravenous urea infusion on ruminal and portal-drained visceral extraction of arterial urea in lactating Holstein cows

    DEFF Research Database (Denmark)

    Kristensen, Niels Bastian; Storm, Adam Christian; Larsen, Mogens

    2010-01-01

    Urea extraction across ruminal and portal-drained visceral (PDV) tissues were investigated using 9 rumen-cannulated and multi-catheterized lactating dairy cows adapted to low-N (12.9% crude protein) and high-N (17.1% crude protein) diets in a crossover design. The interaction between adaptation...... to dietary treatments and blood plasma concentrations of urea was studied by dividing samplings into a 2.5-h period without urea infusion followed by a 2.5-h period with primed continuous intravenous infusion of urea (0.493 ± 0.012 mmol/kg of BW per h). Cows were sampled at 66 ± 14 and 68 ± 12 d in milk...... and produced 42 ± 1 and 36 ± 1 kg of milk/d with the high-N and low-N diets, respectively. The arterial blood urea concentration before urea infusion was 1.37 and 4.09 ± 0.18 mmol/L with low-N and high-N, respectively. Dietary treatment did not affect the urea infusion-induced increase in arterial urea...

  20. Enhancing the Urea-N Use Efficiency in Maize (Zea mays Cultivation on Acid Soils using Urea Amended with Zeolite and TSP

    Directory of Open Access Journals (Sweden)

    Osumanu H. Ahmed

    2009-01-01

    Full Text Available Problem Statement: Ammonia loss significantly reduces urea-N use efficiency in crop production. Efforts to reduce ammonia loss are laboratory oriented, as such limited in reflecting actual field conditions. This paper reports the effects of urea amended with triple superphosphate (TSP and zeolite (Clinoptilolite on soil pH, soil nitrate, soil exchangeable ammonium, dry matter production, N uptake, fresh cob production and urea-N uptake efficiency in maize (Zea mays cultivation on an acid soil in actual field conditions. Approach: The treatments evaluated were: (i Normal N, P, K application (74.34 g urea, 27.36 g TSP, 24.12 g KCl (T1, (ii Urea-TSP mixture (74.34 g urea+27.36 g TSP+24.12 g KCl (T2, (iii 74.34 g urea+27.36 g TSP+9.0 g zeolite (T3, (iv 74.34 g urea+27.36 g TSP+13.5 g zeolite (T4 and (v No fertilization (T5. Note, the same amount of 24.12 g KCl was used in T3 and T4 plots. Standard procedures were used to determine the selected chemical properties of zeolite, soil, TSP and urea. The pH of the urea, zeolite, soil and TSP were determined in a 1:2.5 soil: distilled water suspension and/or 0.01 N CaCl2 using a glass electrode. The CEC of the zeolite was determined by the CsCl method. Soil CEC was determined by leaching with 1 N ammonium acetate buffer adjusted to pH 7.0 followed by steam distillation. Soil samples at harvest were analyzed for pH using the method previously outlined. Exchangeable ammonium and nitrate at harvest were extracted from the soil samples by the method of Keeney and Nelson and the amount determined using a LACHAT Autoanalyzer. Total N of the plant tissues (stem and leaf was determined by the Micro-Kjeldhal method. Results: Urea amended with TSP and zeolite treatments and Urea only (urea without additives did not have long term effect on soil pH and accumulation of soil exchangeable ammonium and nitrate. Treatments with higher amounts of TSP and zeolite significantly increased the dry matter (stem and leaf

  1. A study on the indirect urea dosing method in the Selective Catalytic Reduction system

    Science.gov (United States)

    Brzeżański, M.; Sala, R.

    2016-09-01

    This article presents the results of studies on concept solution of dosing urea in a gas phase in a selective catalytic reduction system. The idea of the concept was to heat-up and evaporate the water urea solution before introducing it into the exhaust gas stream. The aim was to enhance the processes of urea converting into ammonia, what is the target reductant for nitrogen oxides treatment. The study was conducted on a medium-duty Euro 5 diesel engine with exhaust line consisting of DOC catalyst, DPF filter and an SCR system with a changeable setup allowing to dose the urea in liquid phase (regular solution) and to dose it in a gas phase (concept solution). The main criteria was to assess the effect of physical state of urea dosed on the NOx conversion ratio in the SCR catalyst. In order to compare both urea dosing methods a special test procedure was developed which consisted of six test steps covering a wide temperature range of exhaust gas generated at steady state engine operation condition. Tests were conducted for different urea dosing quantities defined by the a equivalence ratio. Based on the obtained results, a remarkable improvement in NOx reduction was found for gas urea application in comparison to the standard liquid urea dosing. Measured results indicate a high potential to increase an efficiency of the SCR catalyst by using a gas phase urea and provide the basis for further scientific research on this type of concept.

  2. Analysis of the Stability of Urea in Dried Blood Spots Collected and Stored on Filter Paper

    Science.gov (United States)

    Lakshmy, Ramakrishnan; Mukhopadhyay, Ashok Kumar; Jailkhani, Bansi Lal

    2013-01-01

    The ability to use dry blood spots (DBSs) on filter paper for the analysis of urea levels could be an important diagnostic tool for areas that have limited access to laboratory facilities. We developed a method for the extraction and quantification of urea from DBSs that were stored on 3M Whatman filter paper and investigated the effect of long-term storage on the level of urea in DBSs. DBSs of 4.5 mm in diameter were used for our assay, and we determined the urea levels in blood using a commercially available enzymatic kit (UV GLDH-method; Randox laboratories Ltd., UK). The DBSs on filter discs were stored at 4℃ or at 37℃ for 120 days. The mean intra- and inter-assay coefficient of variance for our method of urea extraction from dried blood was 4.2% and 6.3%, respectively. We collected 75 fresh blood samples and compared the urea content of each fresh sample with the urea content of DBSs taken from corresponding fresh blood samples. Regression analysis reported a regression coefficient (r) value of 0.97 and a recovery of urea from dried spots was 102.2%. Urea concentrations in DBSs were stable for up to 120 and 90 days when stored at 4℃ and 37℃, respectively. Our results show that urea can be stored and quantitatively recovered from small volumes of blood that was collected on filter paper. PMID:23667845

  3. Urea as a Nitrogen Source in a Black Tiger Shrimp (Penaeus monodon Closed Culture System

    Directory of Open Access Journals (Sweden)

    Supannee SUWANPAKDEE

    2010-06-01

    Full Text Available Urea [(NH22CO] is an organic compound that serves an important role in the metabolism of nitrogen-containing compound by animals. Urea is widely used in aquaculture systems. This study investigated the effects of urea on growth of Penaeus monodon. Shrimp were reared in 500 l fiber tanks. There was no exchange of water throughout the experiment. Shrimp with an average body weight of 10.99 ± 0.19 g were stocked at a density of 32 shrimp/m2 in 20 ppt diluted seawater and fed with 38 % protein diet for 9 weeks. Urea was added into the culture tanks at a concentration of 1.25 ppm once a week. The results show that urea slightly affects growth and survival of shrimp. Shrimp reared in the culture pond with added urea had a marginal better growth rate (p > 0.05 while the survival rate was significantly higher than the control group (p < 0.05. The urea in the closed culture tanks was shown to reduce the toxicity of ammonia in soil and promoted growth of plankton communities. Adding urea has no effect on water quality. This study concluded that urea is a potential nitrogen source in closed culture systems when the nitrogen input through the feeding regime is limited. It suggests that urea should be added at a concentration of 1.25 ppm once a week into culture systems with limiting nitrogen sources.

  4. Synergistic behavior of glycine betaine-urea mixture: A molecular dynamics study

    Science.gov (United States)

    Kumar, Narendra; Kishore, Nand

    2013-09-01

    Glycine betaine (GB) is one of the most important osmolyte which is known to stabilize proteins as well as counteract the denaturing effect of urea. There have been many studies indicating protein stabilization and counteraction of the effect of urea by GB. However, the exact mechanism of counteraction is still debated and is of important research interest. In this study, distribution functions, hydrogen bonds, and energetics were analysed to understand different interactions between GB and urea, and their solvation properties in presence of each other. The results show that in the GB-urea mixture, GB acted as a stronger osmolyte and urea became a weaker denaturing agent than its individual counterparts. The increase in the solvation of urea and GB in GB-urea mixture and their mutual interactions through hydrogen bonding and coulombic energy resulted in more involvement of GB and urea with solvent as well as with themselves. This might result in the increase of the exclusion of GB from protein surface and decrease in the protein-urea interactions in the mixture. This synergistic behavior might be the prime reason for the counteraction of denaturing effect of urea by GB.

  5. Effect of nickel nutrition on yield, urea accumulation and urease enzyme activity of lettuce

    Directory of Open Access Journals (Sweden)

    M. Afyuni

    2011-04-01

    Full Text Available Although nickel (Ni is known as an essential element for higher plants, the biological effects of this nutrient on growth, yield, and N metabolism of some plants, particularly leafy vegetables, is still unknown. Therefore, this study was carried out to investigate the effects of Ni and urea nutrition on the growth and yield of lettuce (Lactuca sativa L. cv. Baker and urea accumulation in plant tissues. In this study, nitrogen was supplied from the source of urea or ammonium nitrate at three levels (5, 10 and 20 mM and Ni was supplied in the form of NiCl2 at two levels (0 and 0.04 µM. The plants were harvested 6 weeks after transplanting and the fresh weight of shoots and roots were determined. The shoots urea concentration and activity of urease enzyme in the leaves were also measured. The results indicated that shoots fresh weight of the urea-fed plants increased with increasing urea concentration in the nutrient solution. Addition of Ni to the nutrient solution significantly promoted the root and shoots fresh weight of urea-fed plants, regardless of N level. Ni nutrition significantly increased the urease activity in the lettuce leaves and as a result, reduced urea accumulation in the shoots and toxicity effects of urea. Therefore, it seems that urea in combination with Ni can successfully be used in production of lettuce in soilless culture systems.

  6. ENSURING THE AVAILABILITY AND RELIABILITY OF UREA DOSING FOR ON-ROAD AND NON-ROAD

    Energy Technology Data Exchange (ETDEWEB)

    Barton, G; Lonsdale, B

    2003-08-24

    The purpose of this presentation is to address two important issues. The first issue is nationwide availability of urea. The second is assurance by the engine maker that the engine cannot operate without urea. In regard to the first issue, North American urea production can support SCR needs for the Heavy Duty truck industry. The existing distribution methods, pathways and technology could be utilized for urea supply with no new invention required. Urea usage and storage capacity on vehicles would support long distances between tank refills, as SCR could be initially rolled out with a limited infrastructure. The price of urea should be less than diesel fuel and urea SCR should have a fuel economy advantage over competing technologies. It can be in place by 2007. In regard to the second issue, sensor technology exists to monitor urea tank level and verify that the fluid in the tank is urea. NOx sensors are available to monitor tailpipe NOx, ensuring the entire SCR system is functioning properly, and inferring that urea is in the system. The monitoring system could be used to monitor compliance, record faults, and initiate enforcement actions as necessary. The monitoring system could initiate actions to encourage compliance.

  7. Fate of Urea Nitrogen Applied to Rape Grown on a Red Soil and Efficiency of Urea in Raising Rape Yield

    Institute of Scientific and Technical Information of China (English)

    CAIGUI-XIN; WUYI-WEI; 等

    1995-01-01

    Fate of urea nitrogen(N) applied to rape grown on a red soil was investigated by the 15N mass balance technique.and efficiency of urea and effect of nutrients balance in raising rape yield were investigated in a field plot experiment.One hundred and thirty -eight kg N/ha,86kg N/ha as basal dressing and 52 kg N/ha as top dressing,was applied with band application technique.The experiment was conducted in the southeast of china ,near Yingtan City,Jianxi Province.Results from 15N mass balance study showed that when urea urea was applied as basal dressing the plant recovery was 44.0% of the applied N for Treatment T (with application of N,P,K,B and lime),Plant recoveries were 38.0%-40.5% for Treatments-K,-B-lime and+RS(without application of K,B or lime as well as with additional rice straw compared with Teatment T),which were not significantly different from Treatment T.In contrast ,plant recovery was only 5.1% for Treatment-P(without application of P), indicating that P was the factor limiting N uptake by rape.However,N remaining in 0-0.30 m soil was high up to 71.6% for Treatment-P,while the corresponding data were 33.0%-42.6% for the other treatments.The total recovery of applied N(including plant recovery and N remaining in 0-0.60 m soil) was 91.5% for Treatment T when urea was applied as basal dressing,while almost all the applied N was recovered when ureawas applied as top drssing,It was suggested that N loss was greatly controlled by using band application method in this experiment.Results from the field plot experiment field plot experiment showed that N supply capacity of this red soil was very low,and the efficiency of the applied N was quite high,7.1kg rape seed was increased by application of one kg N for Treatment T.Nitrogen and phosphorus were the key factors limiting rape yield,and the yield was very low when neither of them was applied.The yield in Treatment-K was significantly lower than that in Treatment T,With the former accounting for 77% of the

  8. Salivary concentrations of urea released from a chewing gum containing urea and how these affect the urea content of gel-stabilized plaques and their pH after exposure to sucrose.

    Science.gov (United States)

    Dawes, C; Dibdin, G H

    2001-01-01

    The objectives were to: (1) determine the salivary concentrations of urea during 20 min chewing of a sugar-free gum containing 30 mg of urea; (2) measure the degree to which this urea would diffuse into a gel-stabilized plaque; (3) study the effect of the urea on the fall and subsequent rise in pH (Stephan curve) on exposure to 10% sucrose for 1 min; (4) model the measurements 2 and 3 mathematically. In point 1, the salivary urea concentration of the 12 subjects peaked at 47 mmol/l in the first 2 min of gum chewing, falling within 15 min to the unstimulated salivary concentration of 3.4 mmol/l. Recovery of urea from the saliva averaged 81.5%. 'Plaques' of 1% agarose or 67% dead bacteria in agarose accumulated urea from the saliva roughly as expected, whereas those plaques containing 8% live and 59% dead Streptococcus vestibularis showed negligible accumulation. Computer modelling showed this difference to be due to urease of live bacteria breaking down the urea as rapidly as it entered the plaque. Simulation of the effect of gum chewing subsequent to initiation of a Stephan curve in the latter type of plaque showed a rapid rise in pH but then a fall again on return to unstimulated conditions. This fall had not been seen in previous studies, with Streptococcus oralis, nor was it predicted by the computer modelling. Neither experimental simulation nor computer modelling suggested that chewing urea-containing gum before exposure to sucrose would have any effect on a subsequent Stephan curve. Thus chewing gum is only likely to inhibit caries when it is chewed after consumption of fermentable carbohydrate, rather than before.

  9. Effect of urea addition on giant reed ensilage and subsequent methane production by anaerobic digestion.

    Science.gov (United States)

    Liu, Shan; Ge, Xumeng; Liew, Lo Niee; Liu, Zhe; Li, Yebo

    2015-09-01

    The effect of urea addition on giant reed ensilage and sequential anaerobic digestion (AD) of the ensiled giant reed was evaluated. The dry matter loss during ensilage (up to 90 days) with or without urea addition was about 1%. Addition of 2% urea enhanced production of lactic acid by about 4 times, and reduced production of propionic acid by 2-8 times. Besides, urea addition reduced degradation of cellulose and hemicellulose, and increased degradation of lignin in giant reed during ensilage. Ensilage with or without urea addition had no significant effects on the enzymatic digestibility of giant reed, but ensilage with urea addition achieved a cumulative methane yield of 173 L/kg VS, which was 18% higher than that of fresh giant reed. The improved methane yield of giant reed could be attributed to the production of organic acids and ethanol during ensilage.

  10. Effect of slow-release urea on soil nematode community structure in a Chinese soybean field

    Institute of Scientific and Technical Information of China (English)

    Xuekun HOU; Ruichang ZHAI

    2009-01-01

    The effect of slow-release urea on soil nematode community structure was investigated in a soybean field in northeast China.Three treatments,no urea (CK),conventional urea (U) and slow-release urea (SRU),were arranged in a completely random design.The results show that the abundance of total nematodes was significantly higher in SRU than in CK and U.Significant differences in the abundance of bacterivores with colonizer-persister (cp) values 2-3,fungivores with cp 2 and herbivores with cp 3 were found among different treatments.Forty-one genera were identified,of which Acrobeloides,Aphelenchus and Heterodera were dominant.Soil nematode guilds and genera exhibited different responses to slow-release urea.The most trophic groups and genera had greater abundances in SRU than in CK and U.Slow-release urea had a positive effect on soil nematode community structure.

  11. Regulation of urea synthesis during the acute phase response in rats

    DEFF Research Database (Denmark)

    Thomsen, Karen Louise; Jessen, Niels; Buch Møller, Andreas

    2013-01-01

    of the tumor necrosis factor-α (TNF-α)-induced acute-phase response in rats. We used four methods to study the regulation of urea synthesis: We examined urea cycle enzyme mRNA levels in liver tissue, the hepatocyte urea cycle enzyme proteins, the in vivo capacity of urea-N synthesis (CUNS), and known humoral...... regulators of CUNS at 1, 3, 24, and 72 h after TNF-α injection (25 μg/kg iv rrTNF-α) in rats. Serum acute-phase proteins and their liver mRNA levels were also measured. The urea cycle enzyme mRNA levels acutely decreased and then gradually normalized, whereas the urea cycle enzyme proteins remained...

  12. Kinetic barriers in the isomerization of substituted ureas: implications for computer-aided drug design

    Science.gov (United States)

    Loeffler, Johannes R.; Ehmki, Emanuel S. R.; Fuchs, Julian E.; Liedl, Klaus R.

    2016-05-01

    Urea derivatives are ubiquitously found in many chemical disciplines. N, N'-substituted ureas may show different conformational preferences depending on their substitution pattern. The high energetic barrier for isomerization of the cis and trans state poses additional challenges on computational simulation techniques aiming at a reproduction of the biological properties of urea derivatives. Herein, we investigate energetics of urea conformations and their interconversion using a broad spectrum of methodologies ranging from data mining, via quantum chemistry to molecular dynamics simulation and free energy calculations. We find that the inversion of urea conformations is inherently slow and beyond the time scale of typical simulation protocols. Therefore, extra care needs to be taken by computational chemists to work with appropriate model systems. We find that both knowledge-driven approaches as well as physics-based methods may guide molecular modelers towards accurate starting structures for expensive calculations to ensure that conformations of urea derivatives are modeled as adequately as possible.

  13. Urease-independent chemotactic responses of Helicobacter pylori to urea, urease inhibitors, and sodium bicarbonate.

    OpenAIRE

    Mizote, T; Yoshiyama, H; T. Nakazawa

    1997-01-01

    Helicobacter pylori CPY3401 and an isogenic urease-negative mutant, HPT73, showed chemotactic responses to urea, flurofamide (a potent urease inhibitor), and sodium bicarbonate. Since urea and sodium bicarbonate are secreted through the gastric epithelial surface and hydrolysis of urea by urease on the bacterial surface is essential for colonization, the chemotactic response of H. pylori may be crucial for its colonization and persistence in the stomach.

  14. Effects of Urea and Copper Sulphate on Some Serum Biochemical and Meat Parameters in Broiler Chicken

    Directory of Open Access Journals (Sweden)

    A. Rasool, M. Tariq Javed*, Masood Akhtar1, S. Shabbir Bhatti, M. N. Shahzad and Riaz Hussain2

    2013-01-01

    Full Text Available In this study we analysed some of the serum enzymes, urea and creatinine to understand the pathological changes occurring in different organs of broilers due to urea and copper. The feeding for 15 days at or higher than 2% urea + 1gm copper sulphate caused significant rise in serum ALT, AST, AKP and creatinine. With further increase in time of 15 days, the levels of urea and LDH also increased significantly, this was seen even in birds fed 1% urea + 250 mg copper sulphate. We found increase in serum urea even in 1% urea fed birds and in all other groups where combination was used, however, serum creatinine increased significantly (P<0.05 only in birds fed 2% urea+1 gm copper sulphate or higher than these levels. The combined use of urea and copper sulphate resulted in changes in moisture, ash, crude protein and potassium in thigh and breast meat of broilers. The results of the present study suggest damaging effects of higher levels of urea and copper, alone or together and change in meat quality with lower protein contents and higher salt levels in meat of broilers. Thus the use of urea and copper sulphate together is not recommended in broilers, especially at 1% urea and 250mg copper sulphate or higher. The results of the study can be helpful to poultry farmers, pathologists and nutritionists who are involved in augmentation the meat quality and also to general public with special reference to people having hypertension as the meat salt levels may be higher with use of the these compounds in the broiler ration.

  15. Solution Properties of Soy Protein in DMSO/Urea Solvent System

    Institute of Scientific and Technical Information of China (English)

    XIAO Ru; YIN Duan; JIN Xin; SUN Gang

    2008-01-01

    Solution properties of 7S globulins (7S), 11S globulins (11S) and soy protein isolates (SPI) in dimethylsulfoxide ( DMSO )/urea solvent system were studied by intrinsic viscosity and particle size distributions.The results showed that the existence of urea was the main reason for the denaturation and solubility of soy protein in the system, and the effects were more obvious with increasing of urea concentration in solutions.Suitably dissolution temperature and time contributed to the solubility of soy proteins.

  16. Urea production in long-term cultures of adult rat hepatocytes.

    Science.gov (United States)

    Sierra-Santoyo, A; López, M L; Hernández, A; Mendoza-Figueroa, T

    1994-04-01

    To study the functionality of the urea cycle in long-term cultures of adult rat hepatocytes, urea production and the activity of two urea cycle enzymes were measured in hepatocytes cultured on 3T3 cells for 15 days. Urea production was also measured in cultures maintained with medium containing either 0.4 mm arginine or 0.4 mm ornithine and in cultures exposed to different concentrations of NH(4)Cl, an in vivo inducer of urea production. In hepatocytes seeded on 3T3 cells, urea production decreased gradually to 50% of the initial value after 15 days. Urea production was similar in 3T3-hepatocyte cultures maintained for 11 days with medium containing ornithine or arginine. Hepatocytes exposed for 24 hr to 1, 3 and 5 mm NH(4)Cl showed an average increase in urea production of 25, 50 and 69%, respectively, above that of unexposed cultures over 15 days. Ornithine transcarbamylase (OTC) activity decreased by 84% after 5 days in culture and remained constant thereafter, while arginase activity remained constant over 15 days. In contrast, in hepatocytes seeded on plastic substratum, urea production decreased to 24% of the initial value after 8 days in culture. OTC and arginase activities also decreased to 13 and 10% of their initial values after 8 days in culture. These results show that 3T3-hepatocyte cultures from adult rats produce urea from ornithine and/or arginine for at least 15 days and respond to an inducer of urea production as in vivo. They also show that these cultures have decreasing and constant levels of OTC and arginase activities, respectively, owing probably to an adaptative response dependent on substrate concentrations and hormonal regulation. These findings also suggest that 3T3-hepatocyte cultures are a suitable in vitro system to study urea production, its regulation by substrates and hormones and its alteration by drugs and toxic chemicals.

  17. Sodium Phenylbutyrate Decreases Plasma Branched-Chain Amino Acids in Patients with Urea Cycle Disorders

    OpenAIRE

    Burrage, Lindsay C.; Jain, Mahim; Gandolfo, Laura; Lee, Brendan H.; Nagamani, Sandesh CS

    2014-01-01

    Sodium phenylbutyrate (NaPBA) is a commonly used medication for the treatment of patients with urea cycle disorders (UCDs). Previous reports involving small numbers of patients with UCDs have shown that NaPBA treatment can result in lower plasma levels of the branched-chain amino acids (BCAA) but this has not been studied systematically. From a large cohort of patients (n=553) with UCDs enrolled in Longitudinal Study of Urea Cycle Disorders, a collaborative multicenter study of the Urea Cycle...

  18. Silicone Doped Chitosan-Acrylamide Coencapsulated Urea Fertilizer: An Approach to Controlled Release Fertilizers

    OpenAIRE

    Sempeho Ibahati Siafu

    2017-01-01

    In the absence of special management practices, urea is known to undergo chemical transformations resulting in severe losses (≈60–70%) of total fertilizer applied. In an attempt to design urea controlled release fertilizers in order to counterbalance the 60–70% loss, urea was cross-linked with chitosan and acrylamide under refluxed in situ copolymerization technique; the procedures were repeated with silicone doping prior cross-linking with MBA. The particles were characterized with FTIR/ATR,...

  19. Intercalation of urea into kaolinite for preparation of controlled release fertilizer

    OpenAIRE

    Mahdavi Fariba; Abdul Rashid Suraya; Khanif Yusop Mohd

    2014-01-01

    In this study urea was intercalated between layers of kaolinite by dry grinding technique to be used for preparing controlled release fertilizer. X-ray powder diffraction (XRPD) patterns confirmed the intercalation of urea into kaolinite by the significant expansion of the basal spacing of kaolinite layers from 0.710 nm to 1.090 nm. Fourier transform infrared spectroscopy (FT-IR) also confirmed the hydrogen bonding between urea and kaolinite. Based on CHNS ...

  20. Effects of urea on the olfactory reception in zebrafish (Danio rerio

    Directory of Open Access Journals (Sweden)

    Lorenzo Gallus

    2016-06-01

    Full Text Available The effects of uremia on human olfactory functions have been clinically evaluated in various studies, even if to date it is not completely clarified which uremic toxins mediate these processes. Surprisingly, the role of the main molecule involved in uremia, urea indeed, has not been adequately investigated as other possible molecules may also be involved in uremic anosmia. The effects of urea on the olfaction have been evaluated in some clinical studies, but this is the first attempt to determine a direct action of urea on the olfactory epithelium of a vertebrate. Danio rerio adults were exposed to urea in different experiments to assess the effects on olfactory sensitivity and signal transduction. The analysis of the swimming speed has been used to evaluate the response to hypoxanthine 3-N-oxide (H3NO, a molecule that is known to elicit an olfactory-mediated alarm reaction in D. rerio. The presence and distribution of the G protein alpha subunit coupled to the olfactory receptors (Gαolf has been immunohistochemically investigated in the olfactory epithelium of control and urea-exposed D. rerio. Our findings showed that urea alters the response to H3NO of D. rerio with a quite rapid and reversible effect that appears to be independent from a mere interference of urea on the receptor-ligand binding. The Gαolf protein resulted increases after urea treatment, suggesting an effect of urea on its expression or degradation.

  1. Optical Tweezers Analysis of Double-Stranded DNA Denaturation in the Presence of Urea

    Science.gov (United States)

    Zhu, Chunli; Li, Jing

    2016-09-01

    Urea is a kind of denaturant prone to form hydrogen bonds with the electronegative centers of the nitrogenous bases, threatening the stability of hydrogen bonds between DNA base pairs. In this paper, the stability and stiffness of DNA double helix influenced by urea are investigated at single-molecule level using optical tweezers. Experimental results show that DNA's double helix stability and stiffness both decrease with increasing urea concentration. In addition, the re-forming of ruptured hydrogen bonds between the base pairs is blocked by urea as the tension on DNA is released.

  2. Concomitant polymorphs of 1,3-bis(3-fluorophenyl)urea.

    Science.gov (United States)

    Capacci-Daniel, Christina A; Bertke, Jeffery A; Dehghan, Shoaleh; Hiremath-Darji, Rupa; Swift, Jennifer A

    2016-09-01

    Hydrogen bonding between urea functionalities is a common structural motif employed in crystal-engineering studies. Crystallization of 1,3-bis(3-fluorophenyl)urea, C13H10F2N2O, from many solvents yielded concomitant mixtures of at least two polymorphs. In the monoclinic form, one-dimensional chains of hydrogen-bonded urea molecules align in an antiparallel orientation, as is typical of many diphenylureas. In the orthorhombic form, one-dimensional chains of hydrogen-bonded urea molecules have a parallel orientation rarely observed in symmetrically substituted diphenylureas.

  3. 车用Urea-SCR技术面临的问题%The Problems Faced with Vehicle Urea-SCR Technology

    Institute of Scientific and Technical Information of China (English)

    王丙朝

    2008-01-01

    文章简述了Urea-SCR系统的组成和基本原理,提出目前将其应用到车辆上所面临的问题.主要的问题是在保持良好活性的同时如何减少催化剂体积、优化尿素喷射控制策略、减少氨泄露和提高催化剂的高温稳定性等.

  4. New benzimidazole-2-urea derivates as tubulin inhibitors.

    Science.gov (United States)

    Wang, Wenna; Kong, Dexin; Cheng, Huimin; Tan, Li; Zhang, Zhang; Zhuang, Xiaoxi; Long, Huoyou; Zhou, Yang; Xu, Yong; Yang, Xiaohong; Ding, Ke

    2014-09-01

    Emerging drug resistance and other drawbacks limit tubulin inhibitors' therapeutic applications and developing novel tubulin inhibitors still attracts intensive efforts. We describe the discovery and structure-activity relationship study of a series of benzimidazole-2-urea derivatives as novel β tubulin inhibitors. The representative compound 6o potently suppressed the proliferation of a panel of human cancer cells (NCI-H460, Colo205, K562, A431, HepG2, Hela, MDA-MB-435S) with IC50 values of 0.040, 0.050, 0.006, 0.026, 1.774, 0.452 and 0.052 μM, respectively. Compound 6o obviously inhibited NCI-H460 spindles formation and induced cell cycle arrest at G2/M phase at 0.10 μM. Computational study suggested that 6o interacts with β tubulin in a novel binding mode. Our results suggested that benzimidazole-2-urea derivatives might be promising tubulin inhibitors with novel binding mode for further development.

  5. An overview on the potential of natural products as ureas

    Directory of Open Access Journals (Sweden)

    Luzia V. Modolo

    2015-01-01

    Full Text Available Ureases, enzymes that catalyze urea hydrolysis, have received considerable attention for their impact on living organisms’ health and life quality. On the one hand, the persistence of urease activity in human and animal cells can be the cause of some diseases and pathogen infections. On the other hand, food production can be negatively affected by ureases of soil microbiota that, in turn, lead to losses of nitrogenous nutrients in fields supplemented with urea as fertilizer. In this context, nature has proven to be a rich resource of natural products bearing a variety of scaffolds that decrease the ureolytic activity of ureases from different organisms. Therefore, this work compiles the state-of-the-art researches focused on the potential of plant natural products (present in extracts or as pure compounds as urease inhibitors of clinical and/or agricultural interests. Emphasis is given to ureases of Helicobacter pylori, Canavalia ensiformis and soil microbiota although the active site of this class of hydrolases is conserved among living organisms.

  6. Nanoscale Structure of Urethane/Urea Elastomeric Films

    Science.gov (United States)

    Reis, Dennys; Trindade, Ana C.; Godinho, Maria Helena; Silva, Laura C.; do Carmo Gonçalves, Maria; Neto, Antônio M. Figueiredo

    2017-02-01

    The nanostructure of urethane/urea elastomeric membranes was investigated by small-angle X-ray scattering (SAXS) in order to establish relationships between their structure and mechanical properties. The networks were made up of polypropylene oxide (PPO) and polybutadiene (PB) segments. The structural differences were investigated in two types of membranes with the same composition but with different thermal treatment after casting. Type I was cured at 70-80 °C and type II at 20 °C. Both membranes showed similar phase separation by TEM, with nanodomains rich in PB or PPO and 25 nm dimensions. The main difference between type I and type II membranes was found by SAXS. The type I membrane spectra showed, besides a broad band at a 27-nm q value (modulus of the scattering vector), an extra band at 6 nm, which was not observed in the type II membrane. The SAXS spectra were interpreted in terms of PPO, PB soft segments, and urethane/urea links, as well as hard moiety segregation in the reaction medium. This additional segregation ( q = 7 nm), although subtle, results in diverse mechanical behavior of in both membranes.

  7. A Urea Potentiometric Biosensor Based on a Thiophene Copolymer

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan (Kevin Lai

    2017-03-01

    Full Text Available A potentiometric enzyme biosensor is a convenient detector for quantification of urea concentrations in industrial processes, or for monitoring patients with diabetes, kidney damage or liver malfunction. In this work, poly(3-hexylthiophene-co-3-thiopheneacetic acid (P(3HT-co-3TAA was chemically synthesized, characterized and spin-coated onto conductive indium tin oxide (ITO glass electrodes. Urease (Urs was covalently attached to the smooth surface of this copolymer via carbodiimide coupling. The electrochemical behavior and stability of the modified Urs/P(3HT-co-3TAA/ITO glass electrode were investigated by cyclic voltammetry, and the bound enzyme activity was confirmed by spectrophotometry. Potentiometric response studies indicated that this electrode could determine the concentration of urea in aqueous solutions, with a quasi-Nernstian response up to about 5 mM. No attempt was made to optimize the response speed; full equilibration occurred after 10 min, but the half-time for response was typically <1 min.

  8. Soybean oil-isosorbide-based waterborne polyurethane-urea dispersions.

    Science.gov (United States)

    Xia, Ying; Larock, Richard C

    2011-03-21

    A series of soybean oil-based amide diol-isosorbide waterborne polyurethane-urea (PUU) dispersions have been successfully prepared, with amounts of isosorbide ranging from 0 to 20 wt % of the total diol content. The thermal and mechanical properties of the resulting PUU films have been characterized by dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, and mechanical testing. The results reveal that the glass transition temperature is increased with increased amounts of isosorbide, and the mechanical properties are improved significantly with the incorporation of isosorbide. For example, the Young's modulus increases from 2.3 to 63 MPa and the ultimate tensile strength increases from 0.7 to 8.2 MPa when the isosorbide amount is increased from 0 to 20 wt %. The thermal stability decreases slightly with the incorporation of isosorbide. This work provides a new way of utilizing biorenewable materials, such as isosorbide and a soybean oil-based amide diol, for the preparation of high-performance polyurethane-urea coatings.

  9. Platelet adhesion to polyurethane urea under pulsatile flow conditions.

    Science.gov (United States)

    Navitsky, Michael A; Taylor, Joshua O; Smith, Alexander B; Slattery, Margaret J; Deutsch, Steven; Siedlecki, Christopher A; Manning, Keefe B

    2014-12-01

    Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s(-1). The aim of the current work is to determine the properties of platelet adhesion to the polyurethane urea surface as a function of time-varying shear exposure. A rotating disk system was used to study the influence of steady and pulsatile flow conditions (e.g., cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments were conducted with the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk was rotated in platelet-rich bovine plasma for 2 h, with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow was found to decay exponentially with increasing shear rate. Adhesion levels were found to depend upon peak platelet flux and shear rate, regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices.

  10. Transepithelial water and urea permeabilities of isolated perfused Munich-Wistar rat inner medullary thin limbs of Henle's loop.

    Science.gov (United States)

    Nawata, C Michele; Evans, Kristen K; Dantzler, William H; Pannabecker, Thomas L

    2014-01-01

    To better understand the role that water and urea fluxes play in the urine concentrating mechanism, we determined transepithelial osmotic water permeability (Pf) and urea permeability (Purea) in isolated perfused Munich-Wistar rat long-loop descending thin limbs (DTLs) and ascending thin limbs (ATLs). Thin limbs were isolated either from 0.5 to 2.5 mm below the outer medulla (upper inner medulla) or from the terminal 2.5 mm of the inner medulla. Segment types were characterized on the basis of structural features and gene expression levels of the water channel aquaporin 1, which was high in the upper DTL (DTLupper), absent in the lower DTL (DTLlower), and absent in ATLs, and the Cl-(1) channel ClCK1, which was absent in DTLs and high in ATLs. DTLupper Pf was high (3,204.5 ± 450.3 μm/s), whereas DTLlower showed very little or no osmotic Pf (207.8 ± 241.3 μm/s). Munich-Wistar rat ATLs have previously been shown to exhibit no Pf. DTLupper Purea was 40.0 ± 7.3 × 10(-5) cm/s and much higher in DTLlower (203.8 ± 30.3 × 10(-5) cm/s), upper ATL (203.8 ± 35.7 × 10(-5) cm/s), and lower ATL (265.1 ± 49.8 × 10(-5) cm/s). Phloretin (0.25 mM) did not reduce DTLupper Purea, suggesting that Purea is not due to urea transporter UT-A2, which is expressed in short-loop DTLs and short portions of some inner medullary DTLs close to the outer medulla. In summary, Purea is similar in all segments having no osmotic Pf but is significantly lower in DTLupper, a segment having high osmotic Pf. These data are inconsistent with the passive mechanism as originally proposed.

  11. Urea's action on the hydrophobic interaction in physical and biophysical systems

    Science.gov (United States)

    Berne, B. J.

    2009-03-01

    For more than a century, urea has been commonly used as an agent for denaturing proteins. However, the mechanism behind its denaturing power is still not well understood. The mechanism of denaturation of proteins by urea is explored using all-atom microseconds molecular dynamics simulations of hen lysozyme generated on BlueGene/L. Accumulation of urea around lysozyme shows that water molecules are expelled from the first hydration shell of the protein. We observe a two stage penetration of the protein, with urea penetrating the hydrophobic core before water, forming a ``dry globule." The direct dispersion interaction between urea and the protein backbone and sidechains is stronger than for water, which gives rise to the intrusion of urea into the protein interior and also to urea's preferential binding to all regions of the protein. This is augmented by preferential hydrogen bond formation between the urea carbonyl and the backbone amides which contributes to the breaking of intra-backbone hydrogen bonds. Our study supports the ``direct interaction mechanism" whereby urea has a stronger dispersion interaction with protein than water. We also show by molecular dynamics simulations that a 7 M aqueous urea solution unfolds a chain of purely hydrophobic groups which otherwise adopts a compact structure in pure water. The unfolding process arises due to a weakening of hydrophobic interactions between the polymer groups. Again the action of urea is found to be direct, through its preferential binding to the polymer or plates. It is, therefore, acting like a surfactant capable of forming hydrogen bonds with the solvent. The preferential binding and the consequent weakened hydrophobic interactions are driven by enthalpy and are related to the difference in the strength of the attractive dispersion interactions of urea and water with the polymer chain or plate. We also show that the indirect mechanism, in which urea acts as a chaotrope, is not a likely cause of urea

  12. EFFECT OF UREA WITH NUTRISPHERE-N POLYMER IN FALL AND SPRING NITROGEN APPLICATIONS FOR CORN

    Directory of Open Access Journals (Sweden)

    Pawel Wiatrak

    2014-01-01

    Full Text Available Polymer coated urea may be a viable option to improve Nitrogen (N uptake and corn (Zea mays L. grain yields, especially in areas with relatively high soil N loss. The objective of this study was to evaluate the effect of two urea application timings (fall and spring and three N rates (90, 180 and 270 kg N ha-1 with and without Nutrisphere-N polymer on irrigated corn near Scandia, KS from 2006 to 2008. Compared to uncoated N, urea coated with Nutrisphere-N improved grain yields by 18.3% with applications of 180 kg N ha-1 in the fall. Application of urea with Nutrisphere-N in the spring produced similar grain yields for treatments with and without Nutrisphere-N. Corn ear-leaf content was highest with urea applied at 90 kg N ha-1 in the fall and urea coated with Nutrisphere-N at 180 and 240 kg N ha-1 in the fall and spring. Grain N content was highest from urea coated with Nutrisphere-N application at 270 kg N ha-1 in the fall and spring. Compared to untreated urea, Nutrisphere-N improved grain N removal by 29.6% at 180 kg N ha-1 applied in the fall. Spring urea application with Nutrisphere-N produced similar grain N removal compared to urea without Nutrisphere-N. Generally, adding Nutrisphere-N to urea fertilizer may help improve N content in leaves and grain and increase grain yields of corn, especially with the fall N applications having higher potential of soil N loss.

  13. Effects of Controlled Release Urea on Wheat Yield and Nitrogen Utilization Efficiency Under Different Applied Conditions

    Directory of Open Access Journals (Sweden)

    XIA Wei-guang

    2014-02-01

    Full Text Available The field trial was conducted to study the effects of different nitrogen fertilizer applications on winter wheat yield, nitrogen utilization efficiency and economic benefit. 7 treatments were designed as CK(no nitrogen fertilizer applied, 100%PU10/0(conventional urea applied before sowing, N rate was 240 kg·hm-2, 100%PU6/4(conventional urea applied before sowing and at jointing with the ratio of 6∶4, N rate was 240 kg·hm-2, 80%PU6/4(conventional urea applied before sowing and at jointing with the ratio of 6∶4, N rate was 192 kg·hm-2, 100%CRU(resin coated controlled release urea applied before sowing, N rate was 240 kg·hm-2, 80%CRU(resin coated controlled release urea applied before sowing, N rate was 192 kg·hm-2, and 40%CRU+40%PU(resin coated controlled release urea and conventional urea applied before sowing, N rate was 192 kg·hm-2. The results showed that no matter on the efficiency of yield or that of nitrogen, resin coated controlled-release urea(CRU was better when compared with conventional urea(PU. Especially, the combined application treatment(40%CRU+40%PUwas the best with achieving the highest wheat yield of 7 709 kg·hm-2, the highest N fertilizer utilization efficiency of 36.44% and the maximum net income of 15 946 yuan·hm-2. And it could not only increase winter wheat yield with reducing the nitrogen fertilizer application, but also improve N fertilizer utilization efficiency and owe the highest ratio of output to input. Therefore, the combined application of the resin coated controlled-release urea and conventional urea(40%CRU+40%PUwas the optimal nitrogen fertilizer treatment under the conditions of this experiment.

  14. Evaluation of carbon dioxide emission factor from urea during rice cropping season: A case study in Korean paddy soil

    Science.gov (United States)

    Kim, Gil Won; Jeong, Seung Tak; Kim, Gun Yeob; Kim, Pil Joo; Kim, Sang Yoon

    2016-08-01

    Fertilization with urea can lead to a loss of carbon dioxide (CO2) that was fixed during the industrial production process. The extent of atmospheric CO2 removal from urea manufacturing was estimated by the Industrial Processes and Product Use sector (IPPU sector). On its basis, the Intergovernmental Panel on Climate Change (IPCC) has proposed a value of 0.2 Mg C per Mg urea (available in 2006 revised IPCC guidelines for greenhouse gas inventories), which is the mass fractions of C in urea, as the CO2 emission coefficient from urea for the agricultural sector. Notably, due to the possibility of bicarbonate leaching to waters, all C in urea might not get released as CO2 to the atmosphere. Hence, in order to provide an accurate value of the CO2 emission coefficient from applied urea in the rice ecosystem, the CO2 emission factors were characterized under different levels of 13C-urea applied paddy field in the current study. The total CO2 fluxes and rice grain yields increased significantly with increasing urea application (110-130 kg N ha-1) and thereafter, decreased. However, with increasing 13C-urea application, a significant and proportional increase of the 13CO2sbnd C emissions from 13C-urea was also observed. From the relationships between urea application levels and 13CO2sbnd C fluxes from 13C-urea, the CO2sbnd C emission factor from urea was estimated to range between 0.0143 and 0.0156 Mg C per Mg urea. Thus, the CO2sbnd C emission factor of this study is less than that of the value proposed by IPCC. Therefore, for the first time, we propose to revise the current IPCC guideline value of CO2sbnd C emission factor from urea as 0.0143-0.0156 Mg C per Mg urea for Korean paddy soils.

  15. MICROWAVE ASSISTED PREPARATION OF CYCLIC UREAS FROM DIAMINES IN THE PRESENCE OF ZNO

    Science.gov (United States)

    A microwave-assisted facile method for the preparation of various ureas, cyclic ureas, and urethanes has been developed that affords nearly quantitative yield of products at 120 degrees C (150 W), 71 kPa within 10 min using ZnO as a catalyst. The enhanced selectivity in this rea...

  16. Effect of abomasal glucose infusion on alanine metabolism and urea production in sheep.

    Science.gov (United States)

    Obitsu, T; Bremner, D; Milne, E; Lobley, G E

    2000-08-01

    The effect of abomasal infusion of glucose (120 kJ/d per kg body weight (BW)0.75, 758 mmol/d) on urea production, plasma alanine-N flux rate and the conversion of alanine-N to urea was studied in sheep offered a low-N diet at limited energy intake (500 kJ/d per kg BW0.75), based on hay and grass pellets. Glucose provision reduced urinary N (P = 0.040) and urea (P = 0.009) elimination but this was offset by poorer N digestibility. Urea-N production was significantly reduced (822 v. 619 mmol/d, P = 0.024) by glucose while plasma alanine-N flux rate was elevated (295 v. 342 mmol/d, P = 0.011). The quantity of urea-N derived from alanine tended to be decreased by glucose (127 v. 95 mmol/d) but the fraction of urea production from alanine was unaltered (15%). Plasma urea and alanine concentrations (plus those of the branched chain amino acids) decreased in response to exogenous glucose, an effect probably related to enhanced anabolic usage of amino acids and lowered urea production.

  17. Spectroscopic and MD simulation studies on unfolding processes of mitochondrial carbonic anhydrase VA induced by urea.

    Science.gov (United States)

    Idrees, Danish; Prakash, Amresh; Haque, Md Anzarul; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-09-01

    Carbonic anhydrase VA (CAVA) is primarily expressed in the mitochondria and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis and neuronal transmission. To understand the biophysical properties of CAVA, we carried out a reversible urea-induced isothermal denaturation at pH 7.0 and 25°C. Spectroscopic probes, [θ]222 (mean residue ellipticity at 222 nm), F344 (Trp-fluorescence emission intensity at 344 nm) and Δε280 (difference absorption at 280 nm) were used to monitor the effect of urea on the structure and stability of CAVA. The urea-induced reversible denaturation curves were used to estimate [Formula: see text], Gibbs free energy in the absence of urea; Cm, the mid-point of the denaturation curve, i.e. molar urea concentration ([urea]) at which ΔGD = 0; and m, the slope (=∂ΔGD/∂[urea]). Coincidence of normalized transition curves of all optical properties suggests that unfolding/refolding of CAVA is a two-state process. We further performed 40 ns molecular dynamics simulation of CAVA to see the dynamics at different urea concentrations. An excellent agreement was observed between in silico and in vitro studies.

  18. Theoretical studies of urea adsorption on single wall boron-nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chermahini, Alireza Najafi, E-mail: anajafi@cc.iut.ac.ir [Department of Chemistry, Isfahan University of Technology, Isfahan, 841543111, Islamic Republic of Iran (Iran, Islamic Republic of); Teimouri, Abbas [Chemistry Department, Payame Noor University, 19395-4697, Tehran, Islamic Republic of Iran (Iran, Islamic Republic of); Farrokhpour, Hossein [Department of Chemistry, Isfahan University of Technology, Isfahan, 841543111, Islamic Republic of Iran (Iran, Islamic Republic of)

    2014-11-30

    Graphical abstract: - Highlights: • DFT base investigations of urea molecule with various type of armchair BNNTs studied. • The adsorption of urea molecule is observed to be exothermic and physical in nature. • The most effective interaction occurs when urea located inside of BNNTs. • The electronic analysis indicated ΔE{sub g} values changed after urea adsorption. - Abstract: Surface modification of a boron nitride nanotube (BNNT) with urea molecule was investigated in terms of its energetic, geometric, and electronic properties using B3LYP and PW91 density functionals. In this investigation, various armchair (n,n) nanotubes, where n = 5, 6, 7 have been used. Two different interaction modes, including interaction with outer layer and inner layer of tube were studied. The results indicated that the adsorption of single urea molecule in all of its configurations is observed to be exothermic and physical in nature. Interestingly, the adsorption energy for the most stable configuration of urea was observed when the molecule located inside of the nanotube. Besides, the adsorption of urea on BNNTs changes the conductivity of nanotube.

  19. Cyclohexane bis-urea compounds for the gelation of water and aqueous solutions

    NARCIS (Netherlands)

    de Loos, M; Friggeri, A; van Esch, J; Kellogg, RM; Feringa, Bernard

    2005-01-01

    A new class of efficient hydrogelators has been developed by a simple modification of the peripheral substituents of cyclohexane bis-urea organogelators with hydrophilic hydroxy or amino functionalities. These bis-urea hydrogelators were synthesised in two or three steps using an alternative procedu

  20. Extended structure design with simple molybdenum oxide building blocks and urea as a directing agent

    NARCIS (Netherlands)

    Veen, S.J.; Roy, S.; Filinchuk, Y.; Chernyshov, D.; Petukhov, A.V.; Versluijs-Helder, M.; Broersma, A.; Soulimani, F.; Visser, T.; Kegel, W.K.

    2008-01-01

    We report here a simple one-pot directed synthesis of an oxomolybdate urea composite in which elementary molybdenum oxide building blocks are linked together with the aid of urea. This type of directed material design resulted in large rod-like crystals of an inorganic-organic hybrid extended struct

  1. Synthesis of urea in cometary model ices and implications for Comet 67P/Churyumov-Gerasimenko.

    Science.gov (United States)

    Förstel, M; Maksyutenko, P; Jones, B M; Sun, B-J; Chang, A H H; Kaiser, R I

    2016-01-14

    Urea is considered a fundamental building block in prebiotic chemistry. Its formation on early Earth has not yet been explained satisfactorily and exogenous delivery has been considered. We report on the synthesis along with the first online and in situ identification of urea after exposing inorganic ices to ionizing radiation.

  2. Nitrogen digestion and urea recycling in Hokkaido native horses fed hay-based diets.

    Science.gov (United States)

    Obitsu, Taketo; Hata, Hiroshi; Taniguchi, Kohzo

    2015-02-01

    Nitrogen (N) digestion and urea-N metabolism in Hokkaido native horses fed roughage-based diets containing different types and levels of protein sources were studied. Horses (173 ± 4.8 kg) fitted with an ileum cannula were fed four diets consisting of 100% timothy hay (TH), 88% TH and 12% soybean meal (SBM), 79% TH and 21% SBM, and 51% TH and 49% alfalfa hay at 2.2% of body weight. Dietary protein content varied from 5% to 15% of dry matter. Apparent N digestibilities in the pre-cecum and total tract for the TH diet were lower than those for other diets. However, the proportion of post-ileum N digestion to N intake was not affected by the diets. Urea-N production was linearly related to N intake, but gut urea-N entry was not affected by the diets. The proportion of gut urea-N entry to urea-N production tended to be higher for the TH diet (57%) than the two SBM diets (39%). Anabolic use of urea-N entering the gut was not affected by the diets (20-36% of gut urea-N entry). These results indicate that urea-N recycling provides additional N sources for microbial fermentation in the hindgut of Hokkaido native horses fed low-quality roughages.

  3. 40 CFR 721.6440 - Polyamine urea-for-malde-hyde condensate (specific name).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyamine urea-for-malde-hyde condensate (specific name). 721.6440 Section 721.6440 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.6440 Polyamine urea-for-malde-hyde...

  4. Rumen metabolism of swamp buffaloes fed rice straw supplemented with cassava hay and urea.

    Science.gov (United States)

    Ampapon, Thiwakorn; Wanapat, Metha; Kang, Sungchhang

    2016-04-01

    The objectives of this experiment were to investigate effects of cassava hay (CH) and urea (U) supplementation on feed intake, digestibility, rumen fermentation, and microbial protein synthesis of swamp buffaloes fed on rice straw. Four rumen-fistulated swamp buffaloes, 365 ± 15.0 kg, were randomly assigned according to a 4 × 4 Latin square design to receive four dietary treatments: T1 = CH 400 g/head/day + U 0 g/head/day, T2 = CH + U 30 g/head/day, T3 = CH + U 60 g/head/day, and T4 = CH + U 90 g/head/day, respectively. Results revealed that feed intake was not affected while nutrient digestibilities were increased (P urea supplementation, whereas ammonia nitrogen (NH3-N) and blood urea nitrogen were increased with urea supplement (P urea supplement (P urea supplement, while bacterial population particularly those of proteolytic, cellulolytic, and amylolytic bacteria and efficiency of microbial nitrogen synthesis were linearly increased (P urea and cassava hay for buffaloes fed rice straw improved rumen ecology and increased fermentation end products and microbial protein synthesis while reducing protozoal populations and methane production. Urea supplements of 60-90 g/head/day when fed with cassava hay are recommended for swamp buffaloes consuming rice straw.

  5. A method for estimation of urea using ammonia electrode and its applicability to milk samples.

    Science.gov (United States)

    Sharma, Rajan; Rajput, Yudhishthir S; Kaur, Sumandeep; Tomar, Sudhir K

    2008-11-01

    A method for the estimation of urea in milk using ammonia electrode is described. Urea is first degraded by urease enzyme into ammonium ion and carbon dioxide at neutral pH. The ammonium ion is then converted into ammonia at alkaline pH. A linear inverse relationship was observed between logarithmic concentration of ammonia or urea and electrode response. Repeatability, expressed as a coefficient of variation, was 1.77% at a level of 8.92 mm-urea in milk. The method was validated in milk samples spiked with between 2 x 10-3 and 10 x 10-3 m-urea and recovery of added urea was quantitative. Whereas, preservative sodium azide at 0.5 g/l or 2 g/l level did not affect results, lower values of urea concentration in presence of Bronopol at 0.5 g/l were observed. Urea levels in milk samples estimated by this method were comparable to standard enzymatic method. The method is simple, fast and is not prone to interference from other milk constituents.

  6. Properties of Urea-Doped Ice in the CRREL Test Basin,

    Science.gov (United States)

    1983-03-01

    interaction. Urea-doped ice allows a model modulus. ARCTEC, Inc., Columbia, Maryland. scale as low as 1/40, and practically eliminates cor- Michel , B...the growth International POAC Conference, pp. 741-752. process of urea ice and its two-layer structure, in Sandell , D.A. (1981) Carbamide ice growth

  7. High molecular weight polyurethanes and a polyurethane urea based on 1,4-butanediisocyanate

    NARCIS (Netherlands)

    Spaans, CJ; de Groot, JH; Dekens, FG; Pennings, AJ

    1998-01-01

    New biomedical polyurethanes and a polyurethane urea based on epsilon-caprolactone and 1,4-butanediisocyanate have been developed. On degradation, only non-toxic products are produced. The polyurethane urea with poly(epsilon-caprolactone) soft segments and butanediisocyanate/butanediamine hard segme

  8. Urea-induced Inactivation and Unfolding of Recombinant Phospholipid Hydroperoxide Glutathione Peroxidase from Oryza sativa

    Institute of Scientific and Technical Information of China (English)

    WANG Feng; ZHOU Hui-ping; KONG Bao-hua; FAN Jing-hua; CHEN Hai-ru; LIU Jin-yuan

    2007-01-01

    Phospholipid hydroperoxide glutathione peroxidase is an antioxidant enzyme that has the highest capability of reducing membrane-bound hydroperoxy lipids as compared to free organic and inorganic hydroperoxides amongst the glutathione peroxidases. In this study, urea-induced effects on the inactivation and unfolding of a recombinant phospholipid hydroperoxide glutathione peroxidase(PHGPx) from Oryza sativa were investigated by means of circular dichroism and fluorescence spectroscopy. With the increase of urea concentration, the residual activity of OsPHGPx decreasea correspondingly. When the urea concentration is above 5.0 mol/L, there was no residual activity. In addition,the observed changes in intrinsic tryptophan fluorescence, the binding of the hydrophobic fluorescence probe ANS,and the far UV CD describe a common dependence on the concentration of urea suggesting that the conformational features of the native OsPHGPx are lost in a highly cooperative single transition. The unfolding process comprises of three zones: the native base-line zone between 0 and 2.5 mol/L urea, the transition zone between 2.5 and 5.5 mol/L urea, and the denatured base-line zone above 5.5 mol/L urea. The transition zone has a midpoint at about 4.0 mol/L urea.

  9. Salting-out of methane in the aqueous solutions of urea and sarcosine

    Indian Academy of Sciences (India)

    M K Dixit; Anupam Chatterjee; B L Tembe

    2016-04-01

    Hydrophobic association and solvation of methane molecules in aqueous solutions of urea and sarcosine (sa) have been studied using MD simulations. The potentials of mean force (PMFs) between methane molecules in water, water-sa, water-urea and water-urea-sa mixtures show an enhancement of methane association on the addition of these osmolytes. These observations are well supported by calculation of equilibrium constants. Calculation of thermodynamic parameters shows that the association of methane is stabilized by entropy and favored by enthalpy. The hydrophobic solvation of methane is stabilized by enthalpy and destabilized by entropy. The calculated solvation free energies of methane in these mixtures show that methane is less soluble in the mixtures of urea and sarcosine than in water. The solubility is the least in the water-urea-sa mixture. Analysis of distributions of solvent and co-solvent around methane suggests that the local densities of both urea and sarcosine are diminished around the methane in the mixtures of these osmolytes. The selective reduction of both urea and sarcosine from methane surface suggests that both urea and sarcosine push methane molecules towards water and increase the interaction between methane molecules i.e., salting-out of methane.

  10. An Efficient and Green Procedure for the Knoevenagel Condensation Catalyzed by Urea

    Institute of Scientific and Technical Information of China (English)

    孙崎; 史兰香; 葛泽梅; 程铁明; 李润涛

    2005-01-01

    An efficient and green procedure for the urea catalyzed Knoevenagel condensation was developed. In the presence of a catalytic ammount of urea, stoichiometric aldehyde and active methylene compound reacted under sol-vent-free conditions at 100℃ for 5-60 min to give nearly quantitative yield of product.

  11. Psilocin, psilocybin, serotonin and urea in Panaeolus cyanescens from various origin

    NARCIS (Netherlands)

    Stijve, T.

    1992-01-01

    The occurrence of tryptamine derivatives and urea in Panaeolus cyanescens, also known as Copelandia cyanescens, from Australia, Hawaii and Thailand was investigated. All 70 collections contained psilocin, serotonin and urea. Those from Hawaii were also relatively rich in psilocybin, whereas the spec

  12. [Conductometric microdosage of blood and urine urea by use of a semi-automatic analyser].

    Science.gov (United States)

    Hanss, M; Policard, C; Pre, J

    1977-01-01

    The authors present the principle of a new method of urea estimation based on conductimetry. Its results are compared with those given by the colorimetric method using diacetylmonoxime. Correlation of the results was satisfactory. With the apparatus studied, it was possible to estimate very simply plasma and urinary urea with low volume samples 10 microliter). The titration took 30 seconds.

  13. Patchy Supramolecular Bottle-Brushes Formed by Solution Self-Assembly of Bis(urea)s and Tris(urea)s Decorated by Two Incompatible Polymer Arms.

    Science.gov (United States)

    Catrouillet, Sylvain; Bouteiller, Laurent; Boyron, Olivier; Lorthioir, Cédric; Nicol, Erwan; Pensec, Sandrine; Colombani, Olivier

    2016-09-01

    In an attempt to design urea-based Janus nanocylinders through a supramolecular approach, nonsymmetrical bis(urea)s and tris(urea)s decorated by two incompatible polymer arms, namely, poly(styrene) (PS) and poly(isobutylene) (PIB), were synthesized using rather straightforward organic and polymer chemistry techniques. Light scattering experiments revealed that these molecules self-assembled in cyclohexane by cooperative hydrogen bonds. The extent of self-assembly was limited for the bis(urea)s. On the contrary, reasonably anisotropic 1D structures (small nanocylinders) could be obtained with the tris(urea)s (Nagg ∼ 50) which developed six cooperative hydrogen bonds per molecule. (1)H transverse relaxation measurements and NOESY NMR experiments in cyclohexane revealed that perfect Janus nanocylinders with one face consisting of only PS and the other of PIB were not obtained. Nevertheless, phase segregation between the PS and PIB chains occurred to a large extent, resulting in patchy cylinders containing well separated domains of PIB and PS chains. Reasons for this behavior were proposed, paving the way to improve the proposed strategy toward true urea-based supramolecular Janus nanocylinders.

  14. Electrochemical behavior of H3PW12O40/ acid-activated bentonite powders

    Directory of Open Access Journals (Sweden)

    Mojović Zorica

    2012-01-01

    Full Text Available Electrochemical behavior of 12-tungstophosphoric acid (HPW/acid-activated bentonite (AAB powders with various loadings of HPW was investigated. The physicochemical properties of the prepared powders were examined by X-ray powder diffraction, nitrogen adsorption-desorption isotherms, atomic force microscopy and cyclic voltammetry measurements. The results indicated that the prepared powders are composed mainly of oriented domains of large rock blocks, probably resulting from a preferable deposition of bentonite particles having a face-to-face interaction. The particles had a mainly disordered mesoporous structure with a pore volume that varied according to the pore size in the range of 2-50 nm. In addition, the particles had crystallite size between 4.9 and 9.0 nm. The electrocatalytic activities of prepared HPW/Aelectrodes were studied in the oxidation of NO2-ions and the results revealed that the electrodes possessed relatively higher nitrite oxidation currents than Aelectrode. The best electroactivity was observed for HPW3/Aelectrode (AAB+20 wt. % HPW and the limit of detection (3σ was determined as 8 μM.

  15. Adsorptive desulfurization of model oil using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaq

    2017-02-01

    Full Text Available The present research work focuses on a novel ultraclean desulfurization process of model oil by the adsorption method using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent. The parameters investigated are effect of contact time, adsorbent dose, initial dibenzothiophene (DBT concentration and temperature. Experimental tests were conducted in batch process. Pseudo first and second order kinetic equations were used to examine the experimental data. It was found that pseudo second order kinetic equation described the data of the DBT adsorption onto all types of adsorbents very well. The isotherm data were analyzed using Langmuir and Freundlich isotherm models. The Langmuir isotherm model fits the data very well for the adsorption of DBT onto all three forms of adsorbents. The adsorption of DBT was also investigated at different adsorbent doses and was found that the percentage adsorption of DBT was increased with increasing the adsorbent dose, while the adsorption in mg/g was decreased with increasing the adsorbent dose. The prepared adsorbents were analyzed by scanning electron microscopy (SEM, energy dispersive X-ray spectrometry (EDX and X-ray diffraction (XRD.

  16. FRACTAL ANALYSIS OF PHYSICAL ADSORPTION ON SURFACES OF ACID ACTIVATED BENTONITES FROM SERBIA

    Directory of Open Access Journals (Sweden)

    Ljiljana Rožić

    2008-11-01

    Full Text Available Solid surfaces are neither ideally regular, that is, morphological and energeticcally homogeneous, nor are they fully irregular or fractal. Instead, real solid surfaces exhibit a limited degree of organization quantified by the fractal dimension, D. Fractal analysis was applied to investigate the effect of concentrations of HCl solutions on the structural and textural properties of chemically activated bentonite from southern Serbia. Acid treatment of bentonites is applied in order to remove impurities and various exchangeable cations from bentonite clay. Important physical changes in acid-activated smectite are the increase of the specific surface area and of the average pore volume, depending on acid strength, time and temperature of a treatment. On the basis of the sorption-structure analysis, the fractal dimension of the bentonite surfaces was determined by Mahnke and Mögel method. The fractal dimension evaluated by this method was 2.11 for the AB3 and 1.94 for the AB4.5 sample. The estimation of the values of the fractal dimension of activated bentonites was performed in the region of small pores, 0.5 nm < rp < 2 nm.

  17. Preparation, Characterization and Methylene Blue Dye Adsorption Ability of Acid Activated-Natural Zeolite

    Science.gov (United States)

    Saputra, O. A.; Prameswari, M. D.; Kinanti, V. T. D.; Mayasari, O. D.; Sutarni, Y. D.; Apriany, K.; Lestari, W. W.

    2017-02-01

    The aim of this research was to prepare an acid-activated natural zeolite (Ac-Zeo) as a low-cost adsorbent material and to investigate their ability on methylene blue dye removal in aqueous solution. The natural zeolite was activated using hydrochloric acid and the final product was characterized using Fourier transform infra-red (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The adsorption process was carried out using the batch method. Some parameters like pH condition, contact time and varied dye initial concentration were studied to determine the adsorption ability of Ac-Zeo. In this study, kinetic adsorption was evaluated using pseudo-second order model approach and found that the kinetic adsorption rate constanta (k) and adsorption capacity at equilibrium are 0.1872 mg.g-1.min-1 and 14.94 mg.g-1, respectively. Moreover, Langmuir, Freundlich, and Dubinin–Kaganer–Radushkevich isotherm adsorption models as well as sorption mechanism were studied in this research.

  18. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors.

    Science.gov (United States)

    Tunaru, Sorin; Althoff, Till F; Nüsing, Rolf M; Diener, Martin; Offermanns, Stefan

    2012-06-01

    Castor oil is one of the oldest drugs. When given orally, it has a laxative effect and induces labor in pregnant females. The effects of castor oil are mediated by ricinoleic acid, a hydroxylated fatty acid released from castor oil by intestinal lipases. Despite the wide-spread use of castor oil in conventional and folk medicine, the molecular mechanism by which ricinoleic acid acts remains unknown. Here we show that the EP(3) prostanoid receptor is specifically activated by ricinoleic acid and that it mediates the pharmacological effects of castor oil. In mice lacking EP(3) receptors, the laxative effect and the uterus contraction induced via ricinoleic acid are absent. Although a conditional deletion of the EP(3) receptor gene in intestinal epithelial cells did not affect castor oil-induced diarrhea, mice lacking EP(3) receptors only in smooth-muscle cells were unresponsive to this drug. Thus, the castor oil metabolite ricinoleic acid activates intestinal and uterine smooth-muscle cells via EP(3) prostanoid receptors. These findings identify the cellular and molecular mechanism underlying the pharmacological effects of castor oil and indicate a role of the EP(3) receptor as a target to induce laxative effects.

  19. Mechanism of lead immobilization by oxalic acid-activated phosphate rocks

    Institute of Scientific and Technical Information of China (English)

    Guanjie Jiang; Yonghong Liu; Li Huang; Qingling Fu; Youjun Deng; Hongqing Hu

    2012-01-01

    Lead (Pb) chemical fixation is an important environmental aspect for human health.Phosphate rocks (PRs) were utilized as an adsorbent to remove Pb from aqueous solution.Raw PRs and oxalic acid-activated PRs (APRs) were used to investigate the effect of chemical modification on the Pb-binding capacity in the pH range 2.0-5.0.The Pb adsorption rate of all treatments above pH 3.0 reached 90%.The Pb binding on PRs and APRs was pH-independent,except at pH 2.0 in activated treatments.The X-ray diffraction analysis confirmed that the raw PRs formed cerussite after reacting with the Pb solution,whereas the APRs formed pyromorphite.The Fourier Transform Infrared spectroscopy analysis indicated that carbonate (CO2-3) in raw PRs and phosphate (PO3-4 ) groups in APRs played an important role in the Pb-binding process.After adsorption,anomalous block-shaped particles were observed by scanning electron microscopy with energy dispersive spectroscopy.The X-ray photoelectron spectroscopy data further indicated that both chemical and physical reactions occurred during the adsorption process according to the binding energy.Because of lower solubility of pyromorphite compared to cerussite,the APRs are more effective in immobilizing Pb than that of PRs.

  20. Chemodetection and Destruction of Host Urea Allows Helicobacter pylori to Locate the Epithelium.

    Science.gov (United States)

    Huang, Julie Y; Sweeney, Emily Goers; Sigal, Michael; Zhang, Hai C; Remington, S James; Cantrell, Michael A; Kuo, Calvin J; Guillemin, Karen; Amieva, Manuel R

    2015-08-12

    The gastric pathogen Helicobacter pylori interacts intimately with the gastric mucosa to avoid the microbicidal acid in the stomach lumen. The cues H. pylori senses to locate and colonize the gastric epithelium have not been well defined. We show that metabolites emanating from human gastric organoids rapidly attract H. pylori. This response is largely controlled by the bacterial chemoreceptor TlpB, and the main attractant emanating from epithelia is urea. Our previous structural analyses show that TlpB binds urea with high affinity. Here we demonstrate that this tight binding controls highly sensitive responses, allowing detection of urea concentrations as low as 50 nM. Attraction to urea requires that H. pylori urease simultaneously destroys the signal. We propose that H. pylori has evolved a sensitive urea chemodetection and destruction system that allows the bacterium to dynamically and locally modify the host environment to locate the epithelium.

  1. Vetiver grass is capable of removing TNT from soil in the presence of urea

    Energy Technology Data Exchange (ETDEWEB)

    Das, Padmini [Department of Earth and Environmental Studies, Montclair State University, One Normal Avenue, Montclair, NJ 07104 (United States); Datta, Rupali [Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931 (United States); Makris, Konstantinos C., E-mail: konstantinos.makris@cut.ac.c [Cyprus International Institute for Environmental and Public Health in Association with Harvard School Of Public Health, Cyprus University of Technology, Limassol (Cyprus); Sarkar, Dibyendu [Department of Earth and Environmental Studies, Montclair State University, One Normal Avenue, Montclair, NJ 07104 (United States)

    2010-05-15

    The high affinity of vetiver grass for 2,4,6 trinitrotoluene (TNT) and the catalytic effectiveness of urea in enhancing plant uptake of TNT in hydroponic media we earlier demonstrated were further illustrated in this soil-pot-experiment. Complete removal of TNT in urea-treated soil was accomplished by vetiver at the low initial soil-TNT concentration (40 mg kg{sup -1}), masking the effect of urea. Doubling the initial TNT concentration (80 mg kg{sup -1}) significantly (p < 0.002) increased TNT removal by vetiver, in the presence of urea. Without vetiver grass, no significant (p = 0.475) change in the soil-TNT concentrations was observed over a period of 48 days, suggesting that natural attenuation of soil TNT could not explain the documented TNT disappearance from soil. - Vetiver grass in the presence of urea effectively removes TNT from soil.

  2. INFLUENCE OF ENVIRONMENTAL AND GENETICAL FACTORS ON UREA CONTENT IN HOLSTEIN BREED COWS MILK

    Directory of Open Access Journals (Sweden)

    Draženko Budimir

    2014-12-01

    Full Text Available The aims of this paper were to determine to which extent the environmental factors (order and stadium of lactation, age with the first calving, calving season, region and herd have the influence on the content of urea in milk, and connection of urea content in milk with other features of milk production with cows. The largest share of urea content in milk was recorded in the first lactation, in the period between 110 and 140 days, when it was around 23.6 mg/100 ml. In the end of the first lactation the average urea content in milk was around 21.6 mg/100 ml. The second lactation is chara¬cterized by somewhat bigger urea content, in the period immediately after calving when the highest values from all tracked lactations was recorded. The age of cows with their first calving also had an impact on urea con¬tent in milk. Cows that calved in the age from 24th to 26th month had the highest value of urea content, being 23.2 mg/100 ml for the stated period. The lowest value of urea content was recorded with cows that calved in the age of 18 months and it was below 20 mg/100 ml. Season of calving also influenced the urea content in milk. In winter season 2004 the lowest values of urea content in milk were recorded while in the autumn sea¬son of the same year the highest urea content in milk was measured (24 mg/100 ml. In the following calving season increase of urea content in milk followed. The differences in urea content in milk were determined between the counties. The highest value of heritabi-lity (0.08 was estimated by the model where, as a comparison group, the interaction between the herds and control day was used. In the research the share of variability was explained by the interaction herd-control day and it was 67%, while 25% of variability of urea con¬tent in milk remained unexplained. This model was used when estimating the breeding values. A model was also tested where the influence of herd was used as a comparison group, and by this

  3. Discovery of nitroaryl urea derivatives with antiproliferative properties.

    Science.gov (United States)

    Wróbel, Tomasz M; Kiełbus, Michał; Kaczor, Agnieszka A; Kryštof, Vladimír; Karczmarzyk, Zbigniew; Wysocki, Waldemar; Fruziński, Andrzej; Król, Sylwia K; Grabarska, Aneta; Stepulak, Andrzej; Matosiuk, Dariusz

    2016-08-01

    A series of urea derivatives bearing nitroaryl moiety has been synthesized and assayed for their potential antiproliferative activities. Some of the tested compounds displayed activity in RK33 laryngeal cancer cells and TE671 rhabdomyosarcoma cells while being generally less toxic to healthy HSF human fibroblasts cells. One compound was demonstrated to be a moderate CDK2 inhibitor with IC50 = 14.3 µM. Its structure was solved by an X-ray crystallography and molecular modelling was performed to determine structure-activity relationship. Obtained compounds constitute novel structures and generally demonstrated greater cytotoxicity in comparison to cisplatin. This study offers new structural motifs with potential for further development.

  4. Thin-film conductometric biosensors for glucose and urea determination.

    Science.gov (United States)

    Shul'ga, A A; Soldatkin, A P; El'skaya, A V; Dzyadevich, S V; Patskovsky, S V; Strikha, V I

    1994-01-01

    The characteristics of the developed conductometric biosensors for urea and glucose determination are described. Conductometric transducers based on thin-film interdigitated metal (Au, Cr, Cu, Ni) electrodes were studied, and enzymes urease and glucose oxidase were used for the selective membranes formation on the chips having gold electrodes. The influence of ionic strength and buffer capacity of the samples on the biosensors response in kinetic and steady-state modes of measurements was thoroughly tested. It was shown that the kinetic response of the sensors does not depend on the buffer capacity of the analyzed sample. In basic features the performance of the developed biosensors is rather close to that of respective enzyme field effect transistor, though the former are much superior when the technological complexity of the transducer itself is considered and taking into account that conductometric sensors require no reference electrode.

  5. Deposits from Creams Containing 20% (w/w) Urea and Suppression of Crystallization (Part 2): Novel Analytical Methods of Urea Accumulated in the Stratum Corneum by Tape stripping and Colorimetry.

    Science.gov (United States)

    Goto, Norio; Morita, Yutaka; Terada, Katsuhide

    2016-01-01

    The transfer of urea from a urea formulation to the stratum corneum varies with the formulation base and form, and impacts the formulation's therapeutic effect. Consequently, determining the amount of urea transferred is essential for developing efficient formulations. This study assessed a simple method for measuring the amount of urea accumulated in the stratum corneum. Conventional methods rely on labeling urea used in the formulation with radiocarbon ((14)C) or other radioactive isotopes (RIs), retrieving the transferred urea from the stratum corneum by tape stripping, then quantitating the urea. The handling and use of RIs, however, is subject to legal regulation and can only be performed in sanctioned facilities, so methods employing RIs are neither simple nor convenient. We therefore developed a non-radiolabel method "tape stripping-colorimetry (T-C)" that combines tape stripping with colorimetry (urease-glutamate dehydrogenase (GLDH)) for the quantitative measurement of urea. Urea in the stratum corneum is collected by tape stripping and measured using urease-GLDH, which is commonly used to measure urea nitrogen in blood tests. The results indicate that accurate urea measurement by the T-C method requires the application of 1400 mg (on hairless rats) of a 20% urea solution on a 50 cm(2) (5×10 cm) area. Further, we determined the amount of urea accumulated in the stratum corneum using formulations with different urea concentrations, and the time course of urea accumulation from formulations differing in the rate of urea crystallization. We demonstrate that the T-C method is simple and convenient, with no need for (14)C or other RIs.

  6. EXCRECION FRACCIONAL DE UREA BAJA EN HIPONATREMIA INDUCIDA POR HIPOTIROIDISMO

    Directory of Open Access Journals (Sweden)

    Musso CG

    2005-02-01

    Full Text Available ABSTRACTHypothyroidism can cause disturbance of renal hemodinamics, kidney histology, water and electrolyte metabolism, being hyponatremia and glomerular filtration reduction their low prevalent but most significant consequences. All these changes are largely corrected by substitution of exogenous thyroid hormone.Fractional excretion of urea (FEU is a useful index in the evaluation of hyponatremia. However, it was not still reported in the literature the FEU value in hyponatremia induced by hypothyroidism. Because of that we presented a case report showing that the value of FEU and fractional excretion of sodium (FENa were low (FEU: 29% and high (FENa: 2.2 % respectively in a severe hypothyroid patient. Treatment based on thyroid hormone normalized both indeces.RESUMEN:El hipotiroidismo puede causar alteraciones del metabolismo del agua, los electrolitos, la hemodinamia e histología renales, siendo la hiponatremia y la reducción del filtrado glomerular sus consecuencias más significativas, pero poco prevalentes. Todos estos cambios son corregibles con el suministro de hormona tiroidea exógena.La excreción fraccional de urea (EFU es un índice útil en la evaluación de la hiponatremia, pero no se ha descripto aun el valor que este índice alcanza en la hiponatremia inducida por hipotiroidismo. En el presente reporte mostramos que la EFU y excreción fraccional de sodio (EFNa fueron baja (EFU: 29% y alta (EFNa: 2.2% respectivamente en un paciente que padecía hipotiroidismo severo. El tratamiento con hormona tiroidea normalizó el valor de ambos índices.

  7. Down-regulation of Hepatic Urea Synthesis by Oxypurines

    Science.gov (United States)

    Nissim, Itzhak; Horyn, Oksana; Nissim, Ilana; Daikhin, Yevgeny; Caldovic, Ljubica; Barcelona, Belen; Cervera, Javier; Tuchman, Mendel; Yudkoff, Marc

    2011-01-01

    We previously reported that isobutylmethylxanthine (IBMX), a derivative of oxypurine, inhibits citrulline synthesis by an as yet unknown mechanism. Here, we demonstrate that IBMX and other oxypurines containing a 2,6-dione group interfere with the binding of glutamate to the active site of N-acetylglutamate synthetase (NAGS), thereby decreasing synthesis of N-acetylglutamate, the obligatory activator of carbamoyl phosphate synthase-1 (CPS1). The result is reduction of citrulline and urea synthesis. Experiments were performed with 15N-labeled substrates, purified hepatic CPS1, and recombinant mouse NAGS as well as isolated mitochondria. We also used isolated hepatocytes to examine the action of various oxypurines on ureagenesis and to assess the ameliorating affect of N-carbamylglutamate and/or l-arginine on NAGS inhibition. Among various oxypurines tested, only IBMX, xanthine, or uric acid significantly increased the apparent Km for glutamate and decreased velocity of NAGS, with little effect on CPS1. The inhibition of NAGS is time- and dose-dependent and leads to decreased formation of the CPS1-N-acetylglutamate complex and consequent inhibition of citrulline and urea synthesis. However, such inhibition was reversed by supplementation with N-carbamylglutamate. The data demonstrate that xanthine and uric acid, both physiologically occurring oxypurines, inhibit the hepatic synthesis of N-acetylglutamate. An important and novel concept emerging from this study is that xanthine and/or uric acid may have a role in the regulation of ureagenesis and, thus, nitrogen homeostasis in normal and disease states. PMID:21540182

  8. LOW FRACTIONAL EXCRETION OF UREA IN HYPOTHYROIDISM INDUCED HYPONATREMIA

    Directory of Open Access Journals (Sweden)

    Algranati L

    2005-01-01

    Full Text Available RESUMEN:El hipotiroidismo puede causar alteraciones del metabolismo del agua, los electrolitos, la hemodinamia e histología renales, siendo la hiponatremia y la reducción del filtrado glomerular sus consecuencias más significativas, pero poco prevalentes. Todos estos cambios son corregibles con el suministro de hormona tiroidea exógena.La excreción fraccional de urea (EFU es un índice útil en la evaluación de la hiponatremia, pero no se ha descripto aun el valor que este índice alcanza en la hiponatremia inducida por hipotiroidismo. En el presente reporte mostramos que la EFU y excreción fraccional de sodio (EFNa fueron baja (EFU: 29% y alta (EFNa: 2.2% respectivamente en un paciente que padecía hipotiroideo severo. El tratamiento con hormona tiroidea normalizó el valor de ambos índices.ABSTRACTHypothyroidism can cause disturbance of renal hemodinamics, kidney histology, water and electrolyte metabolism, being hyponatremia and glomerular filtration reduction their low prevalent but most significant consequences. All these changes are largely corrected by substitution of exogenous thyroid hormone.Fractional excretion of urea (FEU is a useful index in the evaluation of hyponatremia. However, it was not still reported in the literature the FEU value in hyponatremia induced by hypothyroidism. Because of that we presented a case report showing that the value of FEU and fractional excretion of sodium (FENa were low (FEU: 29% and high (FENa: 2.2 % respectively in a severe hypothyroid patient. Treatment based on thyroid hormone normalized both indeces.

  9. Lamprey parasitism of sharks and teleosts: high capacity urea excretion in an extant vertebrate relic.

    Science.gov (United States)

    Wilkie, Michael P; Turnbull, Steven; Bird, Jonathan; Wang, Yuxiang S; Claude, Jaime F; Youson, John H

    2004-08-01

    We observed 10 sea lampreys (Petromyzon marinus) parasitizing basking sharks (Cetorhinus maximus), the world's second largest fish, in the Bay of Fundy. Due to the high concentrations of urea in the blood and tissues of ureosmotic elasmobranchs, we hypothesized that sea lampreys would have mechanisms to eliminate co-ingested urea while feeding on basking sharks. Post-removal urea excretion rates (J(Urea)) in two lampreys, removed from separate sharks by divers, were initially 450 ( approximately 9000 micromol N kg-1 h-1) and 75 times ( approximately 1500 micromol N kg-1 h-1) greater than basal (non-feeding) rates ( approximately 20 micromol N kg-1 h-1). In contrast, J(Urea) increased by 15-fold after parasitic lampreys were removed from non-ureosmotic rainbow trout (Oncorhynchus mykiss). Since activities of the ornithine urea cycle (OUC) enzymes, carbamoyl phosphate synthetase III (CPSase III) and ornithine carbamoyl transferase (OCT) were relatively low in liver and below detection in intestine and muscle, it is unlikely that the excreted urea arose from de novo urea synthesis. Measurements of arginase activity suggested that hydrolysis of dietary arginine made a minor contribution to J(Urea.). Post-feeding ammonia excretion rates (J(Amm)) were 15- to 25-fold greater than basal rates in lampreys removed from both basking sharks and rainbow trout, suggesting that parasitic lampreys have a high capacity to deaminate amino acids. We conclude that the sea lamprey's ability to penetrate the dermal denticle armor of sharks, to rapidly excrete large volumes of urea and a high capacity to deaminate amino acids, represent adaptations that have contributed to the evolutionary success of these phylogenetically ancient vertebrates.

  10. Design and implementation of mixing chambers to improve thermal decomposition of urea for NOX abatement

    KAUST Repository

    Lee, Junggil

    2012-10-01

    Urea-selective catalytic reduction (SCR) has been reported as the most promising technique for adherence to NOX emissions regulations. In the urea-SCR process, NH3 is generated by urea thermal decomposition and hydrolysis and is then used as a reductant of NOX in the SCR catalyst. Therefore, improving the NOX conversion efficiency of urea-SCR requires enhancement of thermal decomposition upstream of the SCR catalyst. In the present work, two types of mixing chambers were designed and fabricated to improve urea thermal decomposition, and experiments with and without a mixing chamber were carried out to analyze thermal-decomposition characteristics of urea in the exhaust pipe with respect to inlet velocity (4-12μm/s) and temperature (350°C-500°C). Urea thermal decomposition is greatly enhanced at higher gas temperatures. At an inlet velocity of 6μm/s in the A-type mixing chamber, NH3 concentrations generated along the exhaust pipe were about 171% and 157% greater than those without the mixing chamber for inlet temperatures of 400°C and 500°C, respectively. In the case of the B-type mixing chamber, NH3 concentrations generated at inlet temperatures of 400°C and 500°C were about 147% and 179% greater than those without the mixing chamber, respectively. Note that the implementation of mixing chambers significantly enhanced conversion of urea to NH3 because it increased the residence time of urea in the exhaust pipe and improved mixing between urea and exhaust gas. © 2012, Mary Ann Liebert, Inc.

  11. Effect of urea on formation of hydroxyapatite through double-step hydrothermal processing

    Energy Technology Data Exchange (ETDEWEB)

    Parthiban, S. Prakash, E-mail: prakashparthiban@gmail.com; Kim, Ill Yong; Kikuta, Koichi; Ohtsuki, Chikara

    2011-10-10

    The effect of urea on the formation of hydroxyapatite (HAp) was studied by employing the double-step hydrothermal processing of a powder mixture of beta-tricalcium phosphate ({beta}-TCP) and dicalcium phosphate dihydrate (DCPD). Co-existence of urea was found to sustain morphology of HAp crystals in the compacts under an initial concentration of 2 mol dm{sup -3} and less. Homogenous morphology of needle-like crystals was observed on the compacts carbonated owing to decomposition of urea. Carbonate ions (CO{sub 3}{sup 2-}) was found to be substituted in both the phosphate and hydroxide sites of HAp lattice. The synthesized HAp was calcium deficient, as it had a Ca/P atomic ratio of 1.62 and the phase was identified as calcium deficient hydroxyapatite (CDHA). The release of CO{sub 3}{sup 2-} ions from urea during the hydrothermal treatment determined the morphology of the CDHA in the compacts. The usage of urea in the morphological control of carbonate-substituted HAp (CHAp) employing the double-step hydrothermal method is established. Highlights: {yields} Carbonate substituted hydroxyapatite (CHAp) compacts were developed by a new method, namely double-step hydrothermal processing. {yields} CHAp compacts with uniform micromorphology were obtained by using urea as solvent. {yields} Morphology was sustained even at higher concentration of urea, which emphasized the versatility of urea. {yields} Homogenous morphology of CHAp compacts were obtained for higher concentration of urea. Pores were also formed at higher concentration on the CHAp compacts. {yields} The slow dissociation of urea under hydrothermal conditions is the reason for morphology control.

  12. Treatment of the syndrome of inappropriate secretion of antidiuretic hormone by urea.

    Science.gov (United States)

    Decaux, G; Brimioulle, S; Genette, F; Mockel, J

    1980-07-01

    Recent data have shown the role of urea in the urinary concentrating mechanism. We studied the effects of exogenous urea administration in hyponatremia associated with the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). In 20 patients with SIADH, we observed a positive correlation between serum sodium and blood urea levels (r = 0.65; p less than 0.01). In one patient with an oat cell carcinoma and SIADH-induced hyponatremia, we observed the same positive correlation (r = 0.80; p less than 0.01) but also a negative one between the excreted fraction of filtered sodium and urinary urea (r = -0.67; p less than 0.001). The short-term administration of low doses of urea (4 to 10 g) resulted in correcting the "salt-losing" tendency of this patient. Longer term administration of high doses of urea (30 g/day) was attempted with the same patient as well as with a healthy volunteer subject with Pitressin-induced SIADH. in both patients, urea treatment lowered urinary sodium excretion as long as hyponatremia was significant (less than 130 meq/liter). Urea treatment also induced a persistent osmotic diuresis, allowing a normal daily intake of water despite SIADH. This was clearly shown during the long-term treatment of a third patient with SIADH who was taking 30 g urea/day during 11 weeks. It is concluded that urea is a good alternative in the treatment of patients with SIADH who presented with persistent hyponatremia despite the restriction of water intake.

  13. Influence of slow-release urea on nitrogen balance and portal-drained visceral nutrient flux in beef steers

    DEFF Research Database (Denmark)

    Taylor-Edwards, C C; Elam, N A; Kitts, S E;

    2009-01-01

    Two experiments were conducted to evaluate the effects of slow-release urea (SRU) versus feed-grade urea on portal-drained visceral (PDV) nutrient flux, nutrient digestibility, and total N balance in beef steers....

  14. Effects of Controlled-Release Urea on Grain Yield of Spring Maize, Nitrogen Use Efficiency and Nitrogen Balance

    OpenAIRE

    JI Jing-hong; Li, Yu-Ying; Liu, Shuang-Quan; TONG Yu-xin; REN Gui-lin; Li, Jie; Liu,Ying; ZHANG Ming-yi

    2017-01-01

    The effects of mixing controlled-released urea (CRU) (release period of resin coated urea is 90 days) and urea (U) on maize yield, nitrogen use efficiency and nitrogen balance were studied by 4 plot experiments (site:Shuangcheng, Binxian, Harbin and Zhaoyuan) in two years (from year 2011 to 2012) to clarify the effect of controlled release urea on spring maize and soil nitrogen balance. Results were as follow:Spring maize yield and nitrogen absorption were increased with the increasing nitrog...

  15. HIPERAMONEMIA NEONATAL CAUSADA POR DEFECTOS DEL CICLO DE LA UREA Neonatal hyperammonemia in urea cycle disorders patients

    Directory of Open Access Journals (Sweden)

    Yolanda Cifuentes C

    2010-12-01

    Full Text Available Los defectos del ciclo de la úrea se deben a deficiencias de diferentes enzimas; las manifestaciones clínicas son similares y están relacionadas con la hiperamonemia. Se presentan las historias clínicas de tres neonatos a término, sin evidencia de alteración al nacimiento. Se les detectó hiperamonemia y se sospechó enfermedad metabólica. La cromatografía de aminoácidos sugirió defectos del ciclo de la úrea. El manejo incluyó dieta con restricción de proteínas, administración de benzoato de sodio, exsanguinotransfusión y diálisis peritoneal pese a lo cual fallecieron. Se revisan las causas de hiperamonemia en el neonato y se propone una secuencia para su diagnósticoThe urea cycle disorders result from deficiency of activity of enzymes N-acetyl glutamate synthetase, carbamyl phosphate synthase, ornithine transcarbamylase, argininosuccinic acid synthetase, argininosuccinic acid lyase and arginase. Except for the last one, the clinical features are similar and related with the hiperammonaemia. It reports three full term, newborn cases, they had encephalopathy and needed respiratory support after be well in neonatal period. They had hyperammonemia as inborn error. The thin layer amino acids chromatography showed alanine and glutamine, in the siblings appeared citruline, suggesting urea cycle disorders. Despite protein restriction diet, sodium benzoate administration, blood exchange and peritoneal dialysis,babies died. High argininosuccinic acid levels in the first case and high citrulline levels with argininosuccinic acid absence in the third case, which was diagnosed as argininosuccinic aciduria with citrullinemia. This report provide an overview of neonatal hyperammonemia causes and propose a secuency for diagnosis

  16. [The determination of the urea content in cow's milk with the help of the dry chemical system Reflotron].

    Science.gov (United States)

    Staudacher, G

    1989-01-01

    The dry chemistry laboratory unit "Reflotron" (Boehringer Mannheim) is tested for its efficacy in the determination of urea in dairy milk with the test Urea. It gives reliable results. The system is easy to handle. The storage of milk is of no influence on the level of urea.

  17. 76 FR 19747 - Solid Urea From the Russian Federation and Ukraine: Final Results of the Expedited Sunset Reviews...

    Science.gov (United States)

    2011-04-08

    ... International Trade Administration Solid Urea From the Russian Federation and Ukraine: Final Results of the...) initiated the third sunset reviews of the antidumping duty orders on solid urea from the Russian Federation... the notice of initiation of the sunset reviews of the antidumping duty orders \\1\\ on solid urea...

  18. 75 FR 69065 - Draft Toxicological Review of Urea: In Support of Summary Information on the Integrated Risk...

    Science.gov (United States)

    2010-11-10

    ... AGENCY Draft Toxicological Review of Urea: In Support of Summary Information on the Integrated Risk... the draft human health assessment titled, ``Toxicological Review of Urea: In Support of Summary... workshop on the draft assessment for Urea will be held via teleconference on December 13, 2010,...

  19. 76 FR 23835 - Solid Urea From Russia and Ukraine; Scheduling of Full Five-Year Reviews Concerning the...

    Science.gov (United States)

    2011-04-28

    ... COMMISSION Solid Urea From Russia and Ukraine; Scheduling of Full Five-Year Reviews Concerning the Antidumping Duty Orders on Solid Urea From Russia and Ukraine AGENCY: United States International Trade... whether revocation of the antidumping duty orders on solid urea from Russia and Ukraine would be likely...

  20. Altered Nitrogen Balance and Decreased Urea Excretion in Male Rats Fed Cafeteria Diet Are Related to Arginine Availability

    Directory of Open Access Journals (Sweden)

    David Sabater

    2014-01-01

    rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability.

  1. Protein internal flexibility and global stability: effect of urea on hydrogen exchange rates of bovine pancreatic trypsin inhibitor.

    Science.gov (United States)

    Kim, K S; Woodward, C

    1993-09-21

    The hydrogen isotope exchange kinetics of buried NH protons in bovine pancreatic trypsin inhibitor (BPTI) was measured in 8 M urea at 30 degrees C and pH 3.5. The data were analyzed by the two-process model in which slower exchanging protons utilize an unfolding mechanism and more rapidly exchanging protons exchange from the folded state. Urea accelerates the set of protons exchanging by the unfolding mechanism, all of which have approximately the same exchange rate constants in urea. For protons in this set, the ratio of exchange rate constants in the presence and absence of urea is used to estimate delta delta G(0-->8M urea) = 6.6 kcal/mol. For the set of protons exchanging from the folded state, 8 M urea either has no effect or slows exchange. Slowing of exchange by urea implies binding of urea to sites at or near the exchanging proton. Some buried protons exchanging from the folded state have diminished rates in 8 M urea, meaning that urea is accessible to these buried sites. Several unassigned side-chain NH's of arginine or lysine are highly protected from exchange by urea, suggesting that they are the location of urea binding sites on the surface of the molecule.

  2. Combinatorial effects of aromatic 1,3 – disubstituted ureas and fluoride on in vitro inhibition of Streptococcus mutans biofilm formation

    Directory of Open Access Journals (Sweden)

    Gurmeet eKaur

    2016-06-01

    Full Text Available Dental caries occurs as a result of disequilibrium between acid producing pathogenic bacteria and alkali generating commensal bacteria within a dental biofilm (dental plaque. S. mutans has been reported as a primary cariogenic pathogen associated with dental caries. Emergence of multidrug resistant as well as fluoride resistant strains of Streptococcus mutans due to over usage of various antibiotics is a rising problem and prompted the researchers worldwide to search for alternative therapies. In this perspective, the present study was aimed to screen selective inhibitors against ComA, a bacteriocin associated ABC transporter, involved in the quorum sensing of S. mutans. In light of our previous in silico findings, 1,3- disubstituted urea derivatives which had better affinity to ComA were chemically synthesized in the present study for in vitro evaluation of S. mutans biofilm inhibition. The results revealed that 1,3- disubstituted urea derivatives showed good biofilm inhibition. In addition, the synthesized compounds exhibited potent synergy with a very low concentration of fluoride (31.25 ppm to 62.5 ppm in inhibiting the biofilm formation of S. mutans without affecting the bacterial growth. Further, the results were confirmed by confocal laser scanning microscopy. On the whole, from our experimental results we conclude that the combinatorial application of fluoride and disubstituted ureas has a potential synergistic effect which has a promising approach in combating multidrug resistant and fluoride resistant S. mutans in dental caries management.

  3. Urease inhibitor (NBPT and efficiency of single or split application of urea in wheat crop

    Directory of Open Access Journals (Sweden)

    Marcelo Curitiba Espindula

    2014-04-01

    Full Text Available NBPT (N-(n-butyl thiophosphoric triamide, a urease inhibitor, has been reported as one of the most promising compounds to maximize urea nitrogen use in agricultural systems. The objective of this study was to evaluate the performance of irrigated wheat fertilized with urea or urea + NBPT as single or split application. The experiment was conducted from June to October 2006 in Viçosa, MG, Brazil. The experimental design followed a 2×2 factorial scheme, in which urea or urea + NBPT were combined with two modes of application: full dose at sowing (60kg ha-1 or split (20kg ha-1 at sowing + 40kg ha-1 as topdressing at tillering, in randomized blocks with ten replications. The split application of nitrogen fertilization does not improve the yield wheat under used conditions. The use of urease inhibitor improves the grain yield of wheat crop when urea is applied in topdressing at tillering, but its use does not promote difference when urea is applied in the furrow at planting.

  4. Urea degradation rates by size-fractionated plankton populations in a temperate estuary

    Science.gov (United States)

    Savidge, G.; Johnston, J. P.

    1987-04-01

    The distribution of the rates of remineralisation and assimilation of labelled urea by bacteria was determined in a temperate estuary in winter and related to the activities of planktonic populations separated by filtration into a large fraction (LF > 3 μm) and small fractions (SF urea concentrations, whereas corresponding relationships between the LF in situ and urea concentrations were inconsistent. A series of comparable artificial dilution experiments demonstrated consistent effects of salinity on rates of urea remineralisation with opposing relationships observed for the LF and SF. However interpretation of the data obtained from the in situ samples in relation to those obtained experimentally indicated only minimal control of the in situ rates of urea remineralisation by salinity, thus confirming the greater influence on these rates of the ambient urea concentrations. Remineralisation activity was approximately an order of magnitude greater than the assimilation activity with no clear trends being shown between assimilation rates and environmental variables. Highest ambient concentrations of urea were consistently recorded adjacent to the freshwater inflow.

  5. [Degradation of urea and ethyl carbamate in Chinese Rice wine by recombinant acid urease].

    Science.gov (United States)

    Zhou, Jianli; Kang, Zhen; Liu, Qingtao; Du, Guocheng; Chen, Jian

    2016-01-01

    Ethyl carbamate (EC) as a potential carcinogen commonly exists in traditional fermented foods. It is important eliminate urea that is the precursors of EC in many fermented foods, including Chinese Rice wine. On the basis of achieving high-level overexpression of food-grade ethanol-resistant acid urease, we studied the hydrolysis of urea and EC with the recombinant acid urease. Recombinant acid urease showed degraded urea in both the simulated system with ethanol and Chinese Rice wine (60 mg/L of urea was completely degraded within 25 h), indicating that the recombinant enzyme is suitable for the elimination of urea in Chinese Rice wine. Although recombinant acid urease also has degradation catalytic activity on EC, no obvious degradation of EC was observed. Further investigation results showed that the Km value for urea and EC of the recombinant acid urease was 0.7147 mmol/L and 41.32 mmol/L, respectively. The results provided theoretical foundation for realizing simultaneous degradation of urea and EC.

  6. Urea-SCR Temperature Investigation for NOx Control of Diesel Engine

    Directory of Open Access Journals (Sweden)

    Asif Muhammad

    2015-01-01

    Full Text Available SCR (selective catalytic reduction system is continuously being analyzed by many researchers worldwide on various concerns due to the stringent nitrogen oxides (NOx emissions legislation for heavy-duty diesel engines. Urea-SCR includes AdBlue as urea source, which subsequently decomposes to NH3 (ammonia being the reducing agent. Reaction temperature is a key factor for the performance of urea-SCR system, as urea decomposition rate is sensitive to a specific temperature range. This particular study was directed to investigate the temperature of the SCR system in diesel engine with the objective to confirm that whether the appropriate temperature is attained for occurrence of urea based catalytic reduction or otherwise and how the system performs on the prescribed temperature range. Diesel engine fitted with urea-SCR exhaust system has been operated on European standard cycle for emission testing to monitor the temperature and corresponding nitrogen oxides (NOx values on specified points. Moreover, mathematical expressions for approximation of reaction temperature are also proposed which are derived by applying energy conservation principal and gas laws. Results of the investigation have shown that during the whole testing cycle system temperature has remained in the range where urea-SCR can take place with best optimum rate and the system performance on account of NOx reduction was exemplary as excellent NOx conversion rate is achieved. It has also been confirmed that selective catalytic reduction (SCR is the best suitable technology for automotive engine-out NOx control.

  7. Slow release coating remedy for nitrogen loss from conventional urea: a review.

    Science.gov (United States)

    Naz, Muhammad Yasin; Sulaiman, Shaharin Anwar

    2016-03-10

    Developing countries are consuming major part of the global urea production with an anticipated nitrogen use efficiency of 20 to 35%. The release of excess nitrogen in the soil is not only detrimental to the environment but also lessens the efficiency of the conventional urea. The urea performance can be enhanced by encapsulating it with slow release coating materials and synchronizing the nutrients' release with the plant up-taking. However, the present cost of most of the coated fertilizers is considerably higher than the conventional fertilizers. The high cost factor prevents their widespread use in mainstream agriculture. This paper documents a review of literature related to the global urea market, issues pertaining to the conventional urea use, natural and synthetic materials for slow release urea and fluidized bed spray coating process. The aim of the current review is to develop technical understanding of the conventional and non-conventional coating materials and associated spray coating mechanism for slow release urea production. The study also investigated the potential of starch as the coating material in relation to the coatings tested previously for controlled release fertilizers.

  8. The structural basis of urea-induced protein unfolding in β-catenin.

    Science.gov (United States)

    Wang, Chao; Chen, Zhongzhou; Hong, Xia; Ning, Fangkun; Liu, Haolin; Zang, Jianye; Yan, Xiaoxue; Kemp, Jennifer; Musselman, Catherine A; Kutateladze, Tatinna G; Zhao, Rui; Jiang, Chengyu; Zhang, Gongyi

    2014-11-01

    Although urea and guanidine hydrochloride are commonly used to denature proteins, the molecular underpinnings of this process have remained unclear for a century. To address this question, crystal structures of β-catenin were determined at various urea concentrations. These structures contained at least 105 unique positions that were occupied by urea molecules, each of which interacted with the protein primarily via hydrogen bonds. Hydrogen-bond competition experiments showed that the denaturing effects of urea were neutralized when polyethylene glycol was added to the solution. These data suggest that urea primarily causes proteins to unfold by competing and disrupting hydrogen bonds in proteins. Moreover, circular-dichroism spectra and nuclear magnetic resonance (NMR) analysis revealed that a similar mechanism caused protein denaturation in the absence of urea at pH levels greater than 12. Taken together, the results led to the conclusion that the disruption of hydrogen bonds is a general mechanism of unfolding induced by urea, high pH and potentially other denaturing agents such as guanidine hydrochloride. Traditionally, the disruption of hydrophobic interactions instead of hydrogen bonds has been thought to be the most important cause of protein denaturation.

  9. Mechanism of Selective Desulphurization in Iron Ore Sintering Process by Adding Urea

    Science.gov (United States)

    Long, Hongming; Wu, Xuejian; Chun, Tiejun; Li, Jiaxin; Wang, Ping; Meng, Qingmin; Di, Zhanxia; Zhang, Xiangyang

    2017-02-01

    Iron ore sintering is an important part during the ironmaking process, and a large amount of SO2 is also generated. Our previous research shows that it is an effective way to reduce SO2 content of flue gas by adding urea to a special sintering material zone position. In this paper, the mechanism of selective desulphurization by adding urea during the iron ore sintering was carried out. The results show that 88.14 % desulphurization rate was obtained with the addition of 0.05 % urea particles at 100 mm height from the feed bottom. During the sintering process, when drying zone reached the added position of urea, large amounts of NH3 were generated by urea decomposition, and then reacted with SO2 to produce (NH4)2SO4 in the wetting zone. With the accumulated desulphurization reactions during the sintering, the low SO2 emission in the flue gas was achieved. Moreover, the addition of urea in the bottom zone avoided the ammonia present in the sintering ore and promoted the urea utilization efficiency.

  10. The effects of urea, guanidinium chloride and sorbitol on porphyrin aggregation: Molecular dynamics simulation

    Indian Academy of Sciences (India)

    Maryam Ghadamgahi; Davood Ajloo

    2013-05-01

    This paper compares the inhibition effect of porphyrin aggregation in the presence of urea, guanidinium chloride (Gdn) and sorbitol by molecular dynamics simulation. It demonstrates that porphyrin aggregation increases in sorbitol, but decreases towards addition of urea and Gdn. It shows that urea, Gdn and sorbitol can have a large effect — positive or negative, depending on the concentration — on the aggregation of the porphyrin. The effect of urea, Gdn and sorbitol on porphyrin aggregation has been inferred from the effect of these solutes on the hydration layer of porphyrin. It appears that the Gdn is more suitable than urea for decreasing the hydration layer of porphyrin while several osmolites like sorbitol are known to increase hydration layer and thus might stabilize the porphyrin aggregation. Results of radial distribution function (RDF), distributed atoms or molecules around target species, indicated that the increase and exclusion of solvent around porphyrin by osmolytes and Gdn would affect significantly on porphyrin aggregation. There was a sizeable difference in potency between the Gdn and urea, with the urea being less potent to decrease hydration layer and porphyrin aggregation.

  11. The improvement of rice straw quality by urea-molasses treatment

    Directory of Open Access Journals (Sweden)

    Tambak Manurung

    1996-03-01

    Full Text Available A study was conducted in Balai Penelitian Temak Bogor to evaluate the effect of urea-molasses treatment on the quality of rice straw . Five levels of urea were 0%, 0.5%, 1%, 1 .5% and 2% and 4 levels of molasses were 0%, I%, 2% and 3%. The study was conducted based on factorial completely randomized design with 3 replications . Urea and molasses were mixed with 5 kg chopped rice straw and stored for 21 days in plastic bag . Parameters observed were dry matter, organic matter, crude protein, crude fibre, and silica contents . Nutritive value of rice straw was measured by proximate analysis and its nutrient digestibility by in-vitro using rumen liquid of fistulated Ongole-crossed cattle . The results showed that urea and molasses treatment on rice straw decreased the dry matter and silica contents but increased the crude protein content of rice straw (P<0 .01. Dry matter and organic matter digestibility of rice straw didn't show the significant different among urea treatment but highly significant increased (P<0.01 by the molasses treatment. It was concluded that urea and molasses treatment on rice straw could improve the quality so that by the levels of 1 .5% urea and 3% molasses produced the similar quality with napier grass .

  12. Charge-signal multiplication mediated by urea wires inside Y-shaped carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Mei; Liu, Zengrong [Department of Mathematics, and Institute of Systems Biology, Shanghai University, Shanghai 200444 (China); He, Bing [School of Computer Engineering and Science, Shanghai University, Shanghai 200444 (China); Xiu, Peng, E-mail: xiupeng2011@zju.edu.cn, E-mail: ystu@shu.edu.cn [Department of Engineering Mechanics, and Soft Matter Research Center, Zhejiang University, Hangzhou 310027 (China); Tu, Yusong, E-mail: xiupeng2011@zju.edu.cn, E-mail: ystu@shu.edu.cn [Department of Mathematics, and Institute of Systems Biology, Shanghai University, Shanghai 200444 (China); College of Physics Science and Technology, Yangzhou University, Yangzhou 225009 (China)

    2014-07-28

    In previous studies, we reported molecular dynamics (MD) simulations showing that single-file water wires confined inside Y-shaped single-walled carbon nanotubes (Y-SWNTs) held strong and robust capability to convert and multiply charge signals [Y. S. Tu, P. Xiu, R. Z. Wan, J. Hu, R. H. Zhou, and H. P. Fang, Proc. Natl. Acad. Sci. U.S.A. 106, 18120 (2009); Y. Tu, H. Lu, Y. Zhang, T. Huynh, and R. Zhou, J. Chem. Phys. 138, 015104 (2013)]. It is fascinating to see whether the signal multiplication can be realized by other kinds of polar molecules with larger dipole moments (which make the experimental realization easier). In this article, we use MD simulations to study the urea-mediated signal conversion and multiplication with Y-SWNTs. We observe that when a Y-SWNT with an external charge of magnitude 1.0 e (the model of a signal at the single-electron level) is solvated in 1 M urea solutions, urea can induce drying of the Y-SWNT and fill its interiors in single-file, forming Y-shaped urea wires. The external charge can effectively control the dipole orientation of the urea wire inside the main channel (i.e., the signal can be readily converted), and this signal can further be multiplied into 2 (or more) output signals by modulating dipole orientations of urea wires in bifurcated branch channels of the Y-SWNT. This remarkable signal transduction capability arises from the strong dipole-induced ordering of urea wires under extreme confinement. We also discuss the advantage of urea as compared with water in the signal multiplication, as well as the robustness and biological implications of our findings. This study provides the possibility for multiplying signals by using urea molecules (or other polar organic molecules) with Y-shaped nanochannels and might also help understand the mechanism behind signal conduction in both physical and biological systems.

  13. Disruption of bovine oocytes and preimplantation embryos by urea and acidic pH.

    Science.gov (United States)

    Ocon, O M; Hansen, P J

    2003-04-01

    Feeding cattle diets high in degradable crude protein (CP) or in excess of requirements can reduce fertility and lower uterine pH. Objectives were to determine direct effects of urea and acidic pH during oocyte maturation and embryonic development. For experiment 1, oocytes were matured in medium containing 0, 5, 7.5, or 10 mM urea (0, 14, 21, or 28 mg/dl urea nitrogen, respectively). Cleavage rate was not reduced by any concentration of urea. However, the proportion of oocytes developing to the blastocyst stage at d 8 after insemination was reduced by 7.5 mM urea. In addition, the proportion of cleaved oocytes becoming blastocysts was decreased by 5 and 7.5 mM urea. For experiment 2, putative zygotes were collected -9 h after insemination and cultured in modified Potassium Simplex Optimized Medium (KSOM). Urea did not reduce the proportion of oocytes developing to the blastocyst stage, although 10 mM urea reduced cleavage rate slightly. For experiment 3, dimethadione (DMD), a weak nonmetabolizable acid, was used to decrease culture medium pH. Putative zygotes were cultured in modified KSOM containing 0, 10, 15, or 20 mM DMD for 8 d. DMD reduced cleavage rate at 15 and 20 mM and development to the blastocyst stage at all concentrations. Results support the idea that feeding diets rich in highly degradable CP compromises fertility through direct actions of urea on the oocyte and through diet-induced alterations in uterine pH.

  14. Effects of plasma total ammonia content and pH on urea excretion in Nile tilapia.

    Science.gov (United States)

    McKenzie, D J; Piraccini, G; Felskie, A; Romano, P; Bronzi, P; Bolis, C L

    1999-01-01

    Nile tilapia (Oreochromis niloticus) were infused with ammonium salts, acid, and base to investigate the effects of changes in arterial plasma total ammonia content (Tamm) and pH (pHa) on plasma urea-nitrogen (urea-N) levels and urea-N excretory fluxes (Jurea-N). The tilapia did not possess a functional hepatic ornithine urea-cycle (no significant carbamyl phosphate synthetase III activity). Infused substances were dissolved in a saline vehicle and injected twice (5 mL kg-1), the first infusion to "prime" the animal and promote a more marked response to the second infusion, given 2.5 h later. The results reported are those of the second infusion. Infusion of 200 mM NH4Cl increased Tamm, reduced pHa, and increased plasma urea-N and Jurea-N. Two hundred mM NH4HCO3 increased Tamm and arterial plasma total CO2 content (TaCO2), reduced pHa, and increased Jurea-N. Fifty mM HCl reduced pHa but had no effects on urea dynamics. Fifty mM NaOH increased pHa, plasma urea-N levels, and Jurea-N. Two hundred mM NaHCO3 increased pHa, TaCO2, plasma urea-N levels, and Jurea-N. Infusion of the saline vehicle was without effect. The results indicate that ammonia loading and plasma alkalosis both stimulate urea excretion in uricolytic fish. The responses to hyperammonemia or alkalosis were not modified when combined with elevated plasma bicarbonate levels.

  15. Effect of nitrogen intake on urea appearance in patients receiving total parenteral nutrition and hemodialysis.

    Science.gov (United States)

    Mirtallo, J M; Fabri, P J

    1984-01-01

    Hemodialysis results in significant amino acid and protein losses and increases the patient's need for, and tolerance to, standard doses of protein. Since urea accumulation increases proportionately with increasing doses of protein in patients with normal renal function, urea accumulation may result when protein intake is increased to offset losses occurring in the dialysate. As a consequence, an increased requirement for dialysis may occur that might be poorly tolerated by the critically ill patient. This study was designed to determine the relationship between nitrogen intake and urea appearance in five patients requiring hemodialysis and total parenteral nutrition. Daily caloric and nitrogen intakes were determined. Urea appearance was calculated from measures of urine urea nitrogen excretion and daily body urea accumulation. Results of 108 measurements in treatment courses ranging from 23-79 days found that the average caloric intake (1984 +/- 55 calories/d) and nitrogen intake (11.0 +/- 0.4 g/d) resulted in a positive nitrogen balance (0.8 +/- 0.4 g/d) and a urea appearance rate of 9.4 +/- 0.8 g/d. Nitrogen intake correlated both with urea appearance (r = 0.59, p less than 0.001) and nitrogen balance (r = 0.49, p less than 0.001). Positive nitrogen balance was associated with improvements in measures of total iron binding capacity (p less than 0.05). Nitrogen intake directly relates to urea appearance, and positive nitrogen balance can be achieved without increasing dialysis requirements. In this group of patients, 28.3 calories per kg ideal body weight and 0.8 g of protein per kg ideal body weight were required to achieve nitrogen equilibrium.

  16. Enhanced-efficiency fertilizers in nitrous oxide emissions from urea applied to sugarcane.

    Science.gov (United States)

    Soares, Johnny R; Cantarella, Heitor; Vargas, Vitor P; Carmo, Janaina B; Martins, Acácio A; Sousa, Rafael M; Andrade, Cristiano A

    2015-03-01

    The environmental benefits of producing biofuels from sugarcane have been questioned due to greenhouse gas emissions during the biomass production stage, especially nitrous oxide (NO) associated with nitrogen (N) fertilization. The objective of this work was to evaluate the use of nitrification inhibitors (NIs) dicyandiamide (DCD) and 3,4 dimethylpyrazole phosphate (DMPP) and a controlled-release fertilizer (CRF) to reduce NO emissions from urea, applied at a rate of 120 kg ha of N. Two field experiments in ratoon cycle sugarcane were performed in Brazil. The treatments were (i) no N (control), (ii) urea, (iii) urea+DCD, (iv) urea+DMPP, and (v) CRF. Measurements of NO fluxes were performed using static chambers with four replications. The measurements were conducted three times per week during the first 3 mo and biweekly afterward for a total of 217 and 382 d in the first and second seasons, respectively. The cumulative NO-N emissions in the first ratoon cycle were 1098 g ha in the control treatment and 1924 g ha with urea (0.7% of the total N applied). Addition of NIs to urea reduced NO emissions by more than 90%, which did not differ from those of the plots without N. The CRF treatment showed NO emissions no different from those of urea. The results were similar in the second ratoon: the treatment with urea showed NO emissions of 0.75% of N applied N. Application of NIs resulted in a strong reduction in NO emissions, but CRF increased emissions compared with urea. We therefore conclude that both NIs can be options for mitigation of greenhouse gas emission in sugarcane used for bioenergy.

  17. A coupled-enzyme equilibrium method for measuring urea in serum: optimization and evaluation of the AACC study group on urea candidate reference method.

    Science.gov (United States)

    Sampson, E J; Baird, M A; Burtis, C A; Smith, E M; Witte, D L; Bayse, D D

    1980-06-01

    We describe a coupled-enzyme equilibrium method for measuring urea in serum, which is performed on supernates prepared by treating each specimen with Ba(OH)2 and ZnSO4 (Somogyi reagent). Analytical recovery of [14C]urea added to a variety of matrices was essentially complete (mean, 100.6%) for the supernates after precipitation. Nine variables were univariately examined in arriving at the reaction conditions for the method: glutamate dehydrogenase, urease, 2-oxoglutarate, ADP, Tris . HCI, NADH, EDTA, pH, and temperature. The reagent is stable for at least 48 days at--20 degrees C and for 23 days at 4 degrees C. Mean analytical recovery of urea (14 mmol/L) added to seven different specimens (three different matrices) was 100.8%. The analytical linear range of the method extends to 30 mmol of urea per liter. Of 22 potential interferents, only bilirubin at 1 mmol/L (580 mg/L), hemoglobin at 10 g/L, and hydroxyurea at 6 mmol/L showed more than 2% interference. We discuss precision and effects of specimen dilution, and compare results for 100 human serum specimens with those measured for the same specimens with four other urea methods. We examined the effects of measuring a blank, consisting of sample and reagent without urease, with each specimen.

  18. Urea for management of the syndrome of inappropriate secretion of ADH: A systematic review.

    Science.gov (United States)

    de Solà-Morales, Oriol; Riera, Maribel

    2014-11-01

    Urea has been recently proposed for the management of hyponatremia linked to the syndrome of inappropriate secretion of ADH (SIADH). The objective of the study was to review the levels of evidence for treatment of hyponatremia associated with SIADH with urea. We performed a: systematic review of experimental trials and grading according to SIGN. No clinical trials were found. The 6 studies analysed had methodological limitations and were prone to biases. In conclusion, there is no evidence to support the efficacy of urea for the treatment of hyponatremia following SIADH.

  19. PRODUCTION OF HIGH DENSITY PARTICLEBOARD USING MELAMINE-UREA-FORMALDEHYDE RESIN

    Directory of Open Access Journals (Sweden)

    Setsuo Iwakiri

    2005-12-01

    Full Text Available This research was developed aiming to evaluate the effects of board density and melamine-urea-formaldehyde resin onthe properties of particleboard for semi-structural applications. The boards were manufactured with nominal density of 0.65 g/cm³and 0.90 g/cm³ using urea-formaldehyde resin as control and melamine-urea-formaldehyde. The results showed a better dimensionallystability and mechanical properties of the boards manufactured with higher density and MUF resin content. The fine furnish usedfor external layer of particleboard in the industrial process, could be used for high density homogeneous board to semi-strucuturaluses, such as flooring applications.

  20. Study on Sythesis of Crosslinked Chitosan Prolymer and Its Use in the Removal of Urea

    Institute of Scientific and Technical Information of China (English)

    ZhangYuehua; ZhangYan; 等

    1994-01-01

    A novel bead from of ploymer of high sorption capacity for urea were obtained by the reaction of glutaric dialdehyde with chitosan dispersed in acetic acid solution.The sorption capacity reached-82.0mg/g sorbent at 37℃ and pH7.4 The concentration of urea in the buffer solution was 1300 mg/l.The sorption of urea was related to the degree of crosslinking of the sorbent,concentration ofurea,ionic strength and temperature.

  1. Thermodynamic functions of formation of n-alkane complexes with crystalline urea

    Energy Technology Data Exchange (ETDEWEB)

    Tolmachev, V.V.; Semenov, L.V.; Gaile, A.A.; Proskuryakov, V.A.

    1987-07-10

    For optimization of the conditions of deparaffination of petroleum fractions with the aid of urea, with the composition of the feedstock taken into account, it is important to know the equilibrium constants of formation of complexes of urea with n-alkanes differing in the number of carbon atoms in their molecules, as functions of temperature. In this investigation they obtained experimental data necessary for calculating the thermodynamic functions of formation of n-alkane complexes with crystalline urea up to the decomposition temperature, using Kirchhoff's equations.

  2. The improvement of rice straw quality by urea-molasses treatment

    OpenAIRE

    Tambak Manurung; Muhammad Zulbardi

    1996-01-01

    A study was conducted in Balai Penelitian Temak Bogor to evaluate the effect of urea-molasses treatment on the quality of rice straw . Five levels of urea were 0%, 0.5%, 1%, 1 .5% and 2% and 4 levels of molasses were 0%, I%, 2% and 3%. The study was conducted based on factorial completely randomized design with 3 replications . Urea and molasses were mixed with 5 kg chopped rice straw and stored for 21 days in plastic bag . Parameters observed were dry matter, organic matter, crude protein, c...

  3. Effects of Controlled Release Urea on Wheat Yield and Nitrogen Utilization Efficiency Under Different Applied Conditions

    OpenAIRE

    XIA Wei-guang; Wu, Ji; GAO Feng-me; WANG, YUN-QING; GUO Xi-sheng

    2014-01-01

    The field trial was conducted to study the effects of different nitrogen fertilizer applications on winter wheat yield, nitrogen utilization efficiency and economic benefit. 7 treatments were designed as CK(no nitrogen fertilizer applied), 100%PU10/0(conventional urea applied before sowing, N rate was 240 kg·hm-2), 100%PU6/4(conventional urea applied before sowing and at jointing with the ratio of 6∶4, N rate was 240 kg·hm-2), 80%PU6/4(conventional urea applied before sowing and at jointing w...

  4. Study on the Formation of Urea or Salt Induced Vesicles in Built-system Surfactant

    Institute of Scientific and Technical Information of China (English)

    Chang Gang HU; Hui XIE; Gan Zuo LI; Ya AN; Zhong Ni WANG; Xiao Yi ZHANG; Jing Ping TIAN

    2005-01-01

    The spontaneous formation of vesicles in the aqueous of cationic surfactant phosphate(PTA) and anionic surfactant sodium dodecyl sulfate (SDS) at certain mixing ratios have obtained1.The addition of urea or NaI will expand the range of spontaneous vesicle formation. The fact is demonstrated by negative-staining transmission electron microscope(TEM) and dynamic light scattering(DLS) methods. The phenomenon especially in the part of urea is reported by us at first.Mechanism of urea/NaI-induced vesicles formation is discussed from the viewpoint of the molecular geometry packing parameter f, conformation and interaction.

  5. Diversifying the solid state and lyotropic phase behavior of nonionic urea-based surfactants.

    Science.gov (United States)

    Fong, Celesta; Wells, Darrell; Krodkiewska, Irena; Weerawardeena, Asoka; Booth, Jamie; Hartley, Patrick G; Drummond, Calum J

    2007-09-13

    The solid state and lyotropic phase behavior of 10 new nonionic urea-based surfactants has been characterized. The strong homo-urea interaction, which can prevent urea surfactants from forming lyotropic liquid crystalline phases, has been ameliorated through the use of isoprenoid hydrocarbon tails such as phytanyl (3,7,11,15-tetramethyl-hexadecyl) and hexahydrofarnesyl (3,7,11-trimethyl-dodecyl) or the oleyl chain (cis-octadec-9-enyl). Additionally, the urea head group was modified by attaching either a hydroxy alkyl (short chain alcohol) moiety to one of the nitrogens of the urea or by effectively "doubling" the urea head group by replacing it with a biuret head group. The solid state phase behavior, including the liquid crystal-isotropic liquid, polymorphic, and glass transitions, is interpreted in terms of molecular geometries and probable hydrogen-bonding interactions. Four of the modified urea surfactants displayed ordered lyotropic liquid crystalline phases that were stable in excess water at both room and physiological temperatures, namely, 1-(2-hydroxyethyl)-1-oleyl urea (oleyl 1,1-HEU) with a 1D lamellar phase (Lalpha), 1-(2-hydroxyethyl)-3-phytanyl urea (Phyt 1,3-HEU) with a 2D inverse hexagonal phase (HII), and 1-(2-hydroxyethyl)-1-phytanyl urea (Phyt 1,1-HEU) and 1-(2-hydroxyethyl)-3-hexahydrofarnesyl urea (Hfarn 1,3-HEU) with a 3D bicontinuous cubic phase (QII). Phyt 1,1-HEU exhibited rich mesomorphism (QII1, QII2, Lalpha, LU, and HII), as did one other surfactant, oleyl 1,3-HEU (QII1, QII2, Lalpha, LU, and HII), in the study group. LU is an unusual phase which is mobile and isotropic but possesses shear birefringence, and has been very tentatively assigned as an inverse sponge phase. Three other surfactants exhibited a single lyotropic liquid crystalline phase, either Lalpha or HII, at temperatures >50 degrees C. The 10 new surfactants are compared with other recently reported nonionic urea surfactants. Structure-property correlations are examined for

  6. Actual Therapeutic Indication of an Old Drug: Urea for Treatment of Severely Symptomatic and Mild Chronic Hyponatremia Related to SIADH

    Directory of Open Access Journals (Sweden)

    Guy Decaux

    2014-09-01

    Full Text Available Oral urea has been used in the past to treat various diseases like gastric ulcers, liver metastases, sickle cell disease, heart failure, brain oedema, glaucoma, Meniere disease, etc. We have demonstrated for years, the efficacy of urea to treat euvolemic (SIADH or hypervolemic hyponatremia. We briefly describe the indications of urea use in symptomatic and paucisymptomatic hyponatremic patients. Urea is a non-toxic, cheap product, and protects against osmotic demyelinating syndrome (ODS in experimental studies. Prospective studies showing the benefit to treat mild chronic hyponatremia due to SIADH and comparing water restriction, urea, high ceiling diuretics, and antivasopressin antagonist antagonist should be done.

  7. Plasticizing effect of choline chloride/urea eutectic-based ionic liquid on physicochemical properties of agarose films

    Directory of Open Access Journals (Sweden)

    Ahmad Adlie Shamsuri

    2012-11-01

    Full Text Available Agarose films were formed with the addition of 30 to 70 wt% choline chloride/urea eutectic-based ionic liquid (ChCl/Urea. The ChCl/Urea was prepared through complexation at a 1:2 mole ratio. The films were prepared by dissolving ChCl/Urea in distilled water followed by dispersion of the agarose at 95 °C. The solution was gelled at room temperature, and the formed gel was dried in an oven overnight at 70 °C. Mechanical testing indicated that the agarose film containing 60 wt% ChCl/Urea had higher tensile extension and tensile strain at break compared to the pristine agarose film. The addition of ChCl/Urea also reduced the glass transition temperature (Tg of agarose films. Cross-section SEM images of the agarose films showed that surface roughness disappeared with the incorporation of ChCl/Urea. FTIR spectra confirmed the presence of intermolecular hydrogen bonding between agarose and ChCl/Urea. XRD patterns demonstrated that an amorphous phase was obtained when ChCl/Urea was added. Agarose films containing more ChCl/Urea exhibited higher transparency, as measured by a UV-Vis spectrometer. In summary, the physicochemical properties of agarose films were evidently affected by the incorporation of the ChCl/Urea as a plasticizing agent.

  8. Phase Separation in Poly(urethane urea) Multiblock Copolymers

    Science.gov (United States)

    Garrett, J. T.; Xu, R.; Cho, J.; Runt, J.

    2002-03-01

    The current paper is a continuation of our research on microdomain morphology and phase separation of model poly(urethane urea) copolymers, complimenting our previous AFM and small-angle x-ray scattering studies. Phase transitions were monitored using both dynamic mechanical analysis and DSC, taking care to keep the temperature below where chemical degradation becomes significant. Surprisingly, soft phase Tgs were found to consistently decrease in temperature with increasing hard segment content in the copolymers. This is seemingly in contrast with an increase in unlike segment mixing in the domains with increasing hard segment content, as determined from SAXS. Several possible explanations for this behavior are proposed. The nature of the hard domains was also characterized using wide-angle x-ray diffraction experiments. Evidence of very weak crystalline diffraction peak(s) where found, superimposed on the amorphous halo. Finally, we also evaluated the sensitivity of Fourier transform infrared spectroscopy to hard/soft segment phase separation in these systems.

  9. Ammonium nitrogen in fetuses of urea-treated sheep.

    Science.gov (United States)

    Yelverton, C C; Roller, M H; Swanson, R N

    1975-02-01

    Eight pregnant Southdown ewes were treated (by drench) with 12.5 ml of 3.3 M urea solution per kilogram of body weight, and ammonium nitrogen concentrations of blood and tissues of these ewes and their fetuses were measured and compared with those of control ewes (given water by drench) and their fetuses. Blood ammonium nitrogen (BAN) and tissue ammonium nitrogen (TAN) concentrations for liver, kidney, spleen, and muscle of ewes and fetuses were determined by an ion-exchange procedure. Samples of blood were collected before treatment, at 30, 90 and 150 minutes after treatment, and at death of the dam. The principal ewes had increasing BAN concentrations with time after drench, and their fetuses had significantly greater (P less than 0.01) BAN concentrations than fetuses from control ewes. All fetuses were alive after death of the dams and had lower TAN values than their dams. The differences in ammonia concentrations between ewes and fetuses were larger in the principal group than in the control group. Except for ewe muscle and fetal liver, all tissues of principals had significantly greater (P less than 0.01) TAN concentrations than those of controls. Muscle of principal ewes and hepatic tissues of their fetuses had greater (P less than 0.05) TAN concentrations than those of control ewes and their fetuses.

  10. Dynamic Flow Control Strategies of Vehicle SCR Urea Dosing System

    Institute of Scientific and Technical Information of China (English)

    LIN Wei; ZHANG Youtong; ASIF Malik

    2015-01-01

    Selective Catalyst Reduction(SCR) Urea Dosing System(UDS) directly affects the system accuracy and the dynamic response performance of a vehicle. However, the UDS dynamic response is hard to keep up with the changes of the engine’s operating conditions. That will lead to low NOX conversion efficiency or NH3 slip. In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions, an advanced control strategy based on an air-assisted volumetric UDS is presented. It covers the methods of flow compensation and switching working conditions. The strategy is authenticated on an UDS and tested in different dynamic conditions. The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS. The inject deviation range is improved from being between–8%and 10%to–4%and 2%and became more stable than before, and the dynamic response time was shortened from 200 ms to 150 ms . The ETC cycle result shows that after using the new strategy the NH3 emission is reduced by 60%, and the NOX emission remains almost unchanged. The trade-off between NOX conversion efficiency and NH3 slip is mitigated. The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine’s operating conditions quickly.

  11. A novel urea conductometric biosensor based on zeolite immobilized urease.

    Science.gov (United States)

    Kirdeciler, Salih Kaan; Soy, Esin; Oztürk, Seçkin; Kucherenko, Ivan; Soldatkin, Oleksandr; Dzyadevych, Sergei; Akata, Burcu

    2011-09-15

    A new approach was developed for urea determination where a thin film of silicalite and zeolite Beta deposited onto gold electrodes of a conductometric biosensor was used to immobilize the enzyme. Biosensor responses, operational and storage stabilities were compared with results obtained from the standard membrane methods for the same measurements. For this purpose, different surface modification techniques, which are simply named as Zeolite Membrane Transducers (ZMTs) and Zeolite Coated Transducers (ZCTs) were compared with Standard Membrane Transducers (SMTs). Silicalite and zeolite Beta with Si/Al ratios 40, 50 and 60 were used to modify the conductometric electrodes and to study the biosensor responses as a function of changing zeolitic parameters. During the measurements using ZCT electrodes, there was no need for any cross-linker to immobilize urease, which allowed the direct evaluation of the effect of changing Si/Al ratio for the same type of zeolite on the biosensor responses for the first time. It was seen that silicalite and zeolite Beta added electrodes in all cases lead to increased responses with respect to SMTs. The responses obtained from ZCTs were always higher than ZMTs as well. The responses obtained from zeolite Beta modified ZMTs and ZCTs increased as a function of increasing Si/Al ratio, which might be due to the increased hydrophobicity and/or the acid strength of the medium.

  12. Property of nano-SiO2/urea formaldehyde resin

    Institute of Scientific and Technical Information of China (English)

    Lin Qiaojia; Yang Guidi; Liu Jinghong; Rao Jiuping

    2006-01-01

    In this paper,we discuss the effects of a nanometer silicon dioxide (nano-SiO2) coupling agent,dispersal methods and the amount of nano-SiO2/urea formaldehyde resin.The results of our study indicate that when nano-SiO2,using KH-550 silane as a coupling agent,was added to UF resin by discontinuous ultrasonic vibration its properties improved effectively.When the content of nano-SiO2 was below 1.5%, the amount of free formaldehyde decreased,and the viscosity and bonding strength of resin increased with an increase in the added nano-SiO2,which did not prolong the curing time.The performance indices of plywood,particleboard and medium density fiberboard (MDF),hot-pressed by nano-SiO2 (I%)/UF resin (F/U molar ratio=l.2), exceeded the requirements of the National Standard. Their free formaldehyde emission reached E1 grade.Finally,we analyzed the mechanism of the strengthening effects of nano-SiO2 on UF resin by means of infrared spectrum analysis and X-ray photoelectronic spectrum (XPS).

  13. Urea recycling contributes to nitrogen retention in calves fed milk replacer and low-protein solid feed

    DEFF Research Database (Denmark)

    Berends, Harma; van den Borne, Joost J G C; Røjen, Betina A.;

    2014-01-01

    Urea recycling, with urea originating from catabolism of amino acids and hepatic detoxification of ammonia, is particularly relevant for ruminant animals, in which microbial protein contributes substantially to the metabolizable protein supply. However, the quantitative contribution of urea...... recycling to protein anabolism in calves during the transition from preruminants (milk-fed calves) to ruminants [solid feed (SF)-fed calves] is unknown. The aim of this study was to quantify urea recycling in milk-fed calves when provided with low-protein SF. Forty-eight calves [164 ± 1.6 kg body weight (BW......)] were assigned to 1 of 4 SF levels [0, 9, 18, and 27 g of dry matter (DM) SF · kg BW2-0.75 . d-1] provided in addition to an identical amount of milk replacer. Urea recycling was quantified after a 24-h intravenous infusion of [15N2]urea by analyzing urea isotopomers in 68-h fecal and urinary...

  14. Electrochemical Performance of Solid Polymer Electrolyte PEO20-LiTf-Urea1.s

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ding; YAN Hui; ZHANG Huan; QI Lu

    2011-01-01

    A new solid polymer electrolyte PEO20-LiTf-Urea1.5 was prepared by solution casting technique. The energy of frontier orbitals for the components of the electrolyte was predicted by quantum chemistry calculations, and TG stability and electrochemical features were measured. Urea exhibited a lower HOMO energy than PEO, implying its enhanced stability against electrochemical oxidation. Experimentally addition of urea increases the ionic conductivity, which guarantees conductivity requirement for lithium ion batteries. It also results in significant improved electrochemical stability with good thermal stability. Favorable lithium stripping/plating performance is yielded, and it confirms the good stability of the solid electrolyte interphase for the PEO20-LiTf-Urea1.5 system.

  15. Joint effects of acetochlor and urea on germinating characteristics of crop seeds

    Institute of Scientific and Technical Information of China (English)

    XIAO; Hong; ZHOU; Qixing; Lena; Q.; Ma

    2005-01-01

    In order to evaluate ecological risk of agrochemicals in common use, joint toxic effects of acetochlor and urea on germinating characteristics of Chinese cabbage (Brassica Pekinensis Rupr) seeds were investigated using the water-culture method and the soil-culture method. The results indicatedthat excessive application of acetochlor and urea, when the coninhibitory effects on the rate of seed germination, root elongation and hypocotyl length of Chinese cabbage. The inhibitory rate of the germinating characteristics of Chinese cabbage seeds was significantly increased with an increase in the concentration of acetochlor or urea. The two agrochemicals in water had a stronger toxicity than these in the soil at the same concentration.Among the three indexes, hypocotyl length was the most sensitive to the toxicity of acetochlor and urea.

  16. Raman, IR and DFT studies of mechanism of sodium binding to urea catalyst

    Science.gov (United States)

    Kundu, Partha P.; Kumari, Gayatri; Chittoory, Arjun K.; Rajaram, Sridhar; Narayana, Chandrabhas

    2015-12-01

    Bis-camphorsulfonyl urea, a newly developed hydrogen bonding catalyst, was evaluated in an enantioselective Friedel-Crafts reaction. We observed that complexation of the sulfonyl urea with a sodium cation enhanced the selectivity of reactions in comparison to reactions performed with urea alone. To understand the role of sodium cation, we performed Infrared and Raman spectroscopic studies. The detailed band assignment of the molecule was made by calculating spectra using Density Functional theory. Our studies suggest that the binding of the cation takes place through the oxygen atoms of carbonyl and sulfonyl groups. Natural Bond Orbital (NBO) analysis shows the expected charge distribution after sodium binding. The changes in the geometrical parameter and charge distribution are in line with the experimentally observed spectral changes. Based on these studies, we conclude that binding of the sodium cation changes the conformation of the sulfonyl urea to bring the chiral camphor groups closer to the incipient chiral center.

  17. EFFECT OF MILK UREA AND PROTEIN LEVELS ON FERTILITY INDICES IN COWS

    Directory of Open Access Journals (Sweden)

    Malgorzata JANKOWSKA

    2011-01-01

    Full Text Available An analysis of the effect of milk urea and protein levels in four consecutive lactations on fertility indices of Blackand- White Polish Holstein-Friesian cows, milk recorded in the Kujawsko-Pomorskie province has been made. Poorer fertility indices were found in first-calf heifers and second lactation cows receiving energy-deficient diets and in older (third and fourth lactation cows receiving excess dietary protein and energy. Best fertility was found in young cows fed excess protein (>3.60% regardless of milk urea levels, and in older cows having lower and optimum levels regardless of protein levels. Cow fertility is differentiated more by milk protein levels than by urea content. Fertility parameters were poorer in first and second lactation cows than in older cows. The coefficients of correlation between milk urea and protein levels and fertility indices were very low, with the only significant differences between protein content vs. calving interval and reproductive rest period.

  18. Label-free and pH-sensitive colorimetric materials for the sensing of urea

    Science.gov (United States)

    Li, Lu; Long, Yue; Gao, Jin-Ming; Song, Kai; Yang, Guoqiang

    2016-02-01

    This communication demonstrates a facile method for naked-eye detection of urea based on the structure color change of pH-sensitive photonic crystals. The insertion of urease provides excellent selectivity over other molecules. The detection of urea in different concentration ranges could be realized by changing the molar ratio between the functional monomer and cross-linker.This communication demonstrates a facile method for naked-eye detection of urea based on the structure color change of pH-sensitive photonic crystals. The insertion of urease provides excellent selectivity over other molecules. The detection of urea in different concentration ranges could be realized by changing the molar ratio between the functional monomer and cross-linker. Electronic supplementary information (ESI) available: Materials and chemicals, characterization, experimental details, and SEM images. See DOI: 10.1039/c5nr07690k

  19. EXPERIMENTAL INVESTIGATION OF HEAT STORAGE CHARACTERISTIC OF UREA AND BORAX SALT GRADIENT SOLAR PONDS

    Directory of Open Access Journals (Sweden)

    Hüseyin KURT

    2006-03-01

    Full Text Available Salt gradient solar ponds are simple and low cost solar energy system for collecting and storing solar energy. In this study, heat storage characteristic of urea and borax solutions in the solar pond were examined experimentally. Establishing density gradients in different concentration, variations in the temperature and density profiles were observed in four different experiments. Maximum storage temperatures were measured as 28ºC and 36 ºC for the ponds with urea and borax solution, respectively. The temperature difference between the bottom and the surface of the pond were measured as 13 ºC for urea and 17 ºC for borax- solutions. According to these results, heat storage characteristic of the solar pond with borax solution was found to be better than urea solution.

  20. A pilot-scale study of selective desulfurization via urea addition in iron ore sintering

    Science.gov (United States)

    Long, Hong-ming; Wu, Xue-jian; Chun, Tie-jun; Di, Zhan-xia; Wang, Ping; Meng, Qing-min

    2016-11-01

    The iron ore sintering process is the main source of SO2 emissions in the iron and steel industry. In our previous research, we proposed a novel technology for reducing SO2 emissions in the flue gas in the iron ore sintering process by adding urea at a given distance from the sintering grate bar. In this paper, a pilot-scale experiment was carried out in a commercial sintering plant. The results showed that, compared to the SO2 concentration in flue gas without urea addition, the SO2 concentration decreased substantially from 694.2 to 108.0 mg/m3 when 0.10wt% urea was added. NH3 decomposed by urea reacted with SO2 to produce (NH4)2SO4, decreasing the SO2 concentration in the flue gas.

  1. Concentration of α-Linoleic Acid of Perilla Oil by Gradient Cooling Urea Inclusion

    Institute of Scientific and Technical Information of China (English)

    GU Hai-bo; MA Xue-yi; WU Jing-bo; ZHANG Qi; YUAN Wen-bing; CHEN Yi-ping

    2009-01-01

    In this study,production of α-linoleic acid concentrated from crude perilla oil by gradient cooling urea inclusion was optimized.The fatty acid composition was determined after ethyl esterification by gas chromatography (GC).In this process,orthogonal experiment was carried out.Under optimum conditions,the maximum amount of α-linoleic acid (91.5%) was obtained at a urea to fatty acid ratio of 3,a solvent to fatty acids ratio of 7,a reaction temperature of 348 K and a crystallization time of 690 min.A simple method of gradient cooling urea inclusion was used to purify α-Iinolenie acid by using urea to form inclusion complexes with the saturated and the less unsaturated fatty acids,which enhanced the purity of α-iinoleic acid ethyl ester by above 90%.

  2. Numerical analysis of NOx reduction for compact design in marine urea-SCR system

    Directory of Open Access Journals (Sweden)

    Choi Cheolyong

    2015-11-01

    Full Text Available In order to design a compact urea selective catalytic reduction system, numerical simulation was conducted by computational fluid dynamics tool. A swirl type static mixer and a mixing chamber were considered as mixing units in the system. It had great influence on flow characteristics and urea decomposition into ammonia. The mixer caused flow recirculation and high level of turbulence intensity, and the chamber increased residence time of urea-water-solution injected. Because of those effects, reaction rates of urea decomposition were enhanced in the region. When those mixing units were combined, it showed the maximum because the recirculation zone was significantly developed. NH3 conversion was maximized in the zone due to widely distributed turbulence intensity and high value of uniformity index. It caused improvement of NOx reduction efficiency of the system. It was possible to reduce 55% length of the chamber and connecting pipe without decrease of NOx reduction efficiency.

  3. Numerical analysis of NOx reduction for compact design in marine urea-SCR system

    Science.gov (United States)

    Choi, Cheolyong; Sung, Yonmo; Choi, Gyung Min; Kim, Duck Jool

    2015-11-01

    In order to design a compact urea selective catalytic reduction system, numerical simulation was conducted by computational fluid dynamics tool. A swirl type static mixer and a mixing chamber were considered as mixing units in the system. It had great influence on flow characteristics and urea decomposition into ammonia. The mixer caused flow recirculation and high level of turbulence intensity, and the chamber increased residence time of urea-water-solution injected. Because of those effects, reaction rates of urea decomposition were enhanced in the region. When those mixing units were combined, it showed the maximum because the recirculation zone was significantly developed. NH3 conversion was maximized in the zone due to widely distributed turbulence intensity and high value of uniformity index. It caused improvement of NOx reduction efficiency of the system. It was possible to reduce 55% length of the chamber and connecting pipe without decrease of NOx reduction efficiency.

  4. Vetiver grass is capable of removing TNT from soil in the presence of urea.

    Science.gov (United States)

    Das, Padmini; Datta, Rupali; Makris, Konstantinos C; Sarkar, Dibyendu

    2010-05-01

    The high affinity of vetiver grass for 2,4,6 trinitrotoluene (TNT) and the catalytic effectiveness of urea in enhancing plant uptake of TNT in hydroponic media we earlier demonstrated were further illustrated in this soil-pot-experiment. Complete removal of TNT in urea-treated soil was accomplished by vetiver at the low initial soil-TNT concentration (40 mg kg(-1)), masking the effect of urea. Doubling the initial TNT concentration (80 mg kg(-1)) significantly (pvetiver, in the presence of urea. Without vetiver grass, no significant (p=0.475) change in the soil-TNT concentrations was observed over a period of 48 days, suggesting that natural attenuation of soil TNT could not explain the documented TNT disappearance from soil.

  5. Urea for long-term treatment of syndrome of inappropriate secretion of antidiuretic hormone.

    Science.gov (United States)

    Decaux, G; Genette, F

    1981-10-24

    The efficacy of oral urea in producing a sufficiently high osmotic diuresis was tested in seven patients with the syndrome of inappropriate secretion of antidiuretic hormone. In all patients urea corrected the hyponatraemia despite a normal fluid intake. Five patients were controlled (serum sodium concentration greater than 128 mmol(mEq)/1) with a dose of 30 g urea daily, and two with 60 g daily. The patients who needed 30 g drank 1-2 1 of fluid daily, while those who needed 60 g drank up to 3.1 per day. No major side effects were noted, even after treatment periods of up to 270 days. These findings suggest that urea is a safe and efficacious treatment of the syndrome of inappropriate secretion of antidiuretic hormone.

  6. The Kinetics of Urea in the Body after Liver Resection in the Experiment

    Directory of Open Access Journals (Sweden)

    P. N. Savilov

    2016-01-01

    Full Text Available Purpose. To study urea kinetics in the body after liver resection in the experiment.Material and Methods. Experiments were carried out on 45 white female rats weighing between 180 g and 220 g. Liver resection (LR was performed under ester anesthesia, wherein 15—20% of the organ weight was removed. Urea content was studied in biological fluids (arterial blood, venous — v.porta, v.hepatica, v.renalis — blood, choledochal bile, urine, and tissues of visceral organs (the thyroid gland, lungs, heart, liver, kidneys, spleen, stomach, intestine on days 3, 7, and 14 after LR. Results. LR, while reducing the urea content in the v. hepatica blood, does not lead to similar changes in the arterial blood. This is accompanied by increased urea reabsorption in kidneys and higher v.porta blood urea content, which, depending on the postoperative time, results either from reduced urea excretion into the small intestine lumen or from its greater production by enterocytes followed by metabolite intake into the portal blood flow. The urea intake from hepatocytes into the hepatic bile ducts did not change on day 3 after LR; however, it increased on day 7 and slowed down on day 14. LR caused no changes in the gastric tissues urea content; never theless, it led to its increased content in the duodenal and colonic tissues. Without affecting the cardiac muscleurea content, LR entailed its increase in the lungs and thyroid gland on postoperative days 3, 7, and 14. At the background of absence of similar changes in the arterial blood data indicates promotion of urea production by the cells of these organs or metabolite retention therein.Conclusions. LR not only changes urea kinetics in the portal system organs, but also activates extrahepatic mechanisms aimed at preventing development of the arterial blood urea deficit because of its abnormal intake from the resected organ into the central blood flow.

  7. Preparation and Characterization of Bio-Oil Modified Urea-Formaldehyde Wood Adhesives

    OpenAIRE

    Ben Li; Ji-Zong Zhang; Xue-Yong Ren; Jian-min Chang; Jin-sheng Gou

    2014-01-01

    Wood-derived bio-oil was used to decrease formaldehyde emissions from urea-formaldehyde (UF) resin during the process of making three-layered plywood. The obtained bio-oil urea formaldehyde (BUF) resins were characterized by their physical, chemical, and mechanical properties (e.g., viscosity, solid content, pH value, shelf life, formaldehyde emissions, and bonding strength), analyzed for their specifications, and characterized with Fourier transform infrared spectroscopy and thermogravimetri...

  8. Removal of urea in a wearable dialysis device: a reappraisal of electro-oxidation.

    Science.gov (United States)

    Wester, Maarten; Simonis, Frank; Lachkar, Nadia; Wodzig, Will K; Meuwissen, Frank J; Kooman, Jeroen P; Boer, Walther H; Joles, Jaap A; Gerritsen, Karin G

    2014-12-01

    A major challenge for a wearable dialysis device is removal of urea, as urea is difficult to adsorb while daily production is very high. Electro-oxidation (EO) seems attractive because electrodes are durable, small, and inexpensive. We studied the efficacy of urea oxidation, generation of chlorine by-products, and their removal by activated carbon (AC). EO units were designed. Three electrode materials (platinum, ruthenium oxide, and graphite) were compared in single pass experiments using urea in saline solution. Chlorine removal by AC in series with EO by graphite electrodes was tested. Finally, urea-spiked bovine blood was dialyzed and dialysate was recirculated in a dialysate circuit with AC in series with an EO unit containing graphite electrodes. Platinum electrodes degraded more urea (21 ± 2 mmol/h) than ruthenium oxide (13 ± 2 mmol/h) or graphite electrodes (13 ± 1 mmol/h). Chlorine generation was much lower with graphite (13 ± 4 mg/h) than with platinum (231 ± 22 mg/h) or ruthenium oxide electrodes (129 ± 12 mg/h). Platinum and ruthenium oxide electrodes released platinum (4.1 [3.9-8.1] umol/h) and ruthenium (83 [77-107] nmol/h), respectively. AC potently reduced dialysate chlorine levels to Urea was removed from blood by EO at constant rate (9.5 ± 1.0 mmol/h). EO by graphite electrodes combined with AC shows promising urea removal and chlorine release complying with Association for the Advancement of Medical Instrumentation standards, and may be worth further exploring for dialysate regeneration in a wearable system.

  9. Anthropogenic loads and biogeochemical role of urea in the Gulf of Trieste.

    Science.gov (United States)

    Cozzi, Stefano; Mistaro, Andrea; Sparnocchia, Stefania; Colugnati, Luigi; Bajt, Oliver; Toniatti, Loredana

    2014-09-15

    In order to assess the role of urea in the Gulf of Trieste, oceanographic data collected from 2002 to 2011 were analyzed together with ancillary ambient information and compared to past studies. The recent levels of urea found in these coastal waters (median = 1.1 μM N, maximum value = 19.7 μM N) are often high and similar to those reported in the early 1980s. A preliminary estimate of the external inputs indicated that this enrichment in urea is mainly due to emissions from urban sewage systems, whereas the contributions of rivers and atmospheric deposition are scarce. As a consequence, urea appears to be a reliable tracer of the diffusion of wastewaters in the coastal marine environment, more specific and sensitive than other nutrients, with a behavior that also reflects the technology of the treatment plants. The stability of urea levels over the last three decades suggests that the upgrade of wastewater treatment technologies was probably balanced by the concomitant increase of the anthropogenic pressure in the area (477,000 to 1,300,000 inhabitant equivalent). Budget estimates on the gulf-wide scale indicate that urea (177-530 t N) is not negligible compared to dissolved inorganic nitrogen (409-919 t N) and that it can constitute up to 56% of the nitrogen available for plankton growth. A large accumulation of urea can occur during summer periods characterized by stable weather conditions and weak circulation, whereas a biologically mediated degradation to ammonium is observed in autumn in concomitance to a strong shift of the marine ecosystem toward heterotrophic conditions. These processes, together with a potential competition between phytoplankton and bacteria for the utilization of this nitrogen form, suggest that the biogeochemical role of urea should be better investigated in mid-latitude coastal zones subjected to highly variable ambient conditions and to overloads of this compound.

  10. Polymer Coated Urea in Turfgrass Maintains Vigor and Mitigates Nitrogen's Environmental Impacts

    OpenAIRE

    LeMonte, Joshua J.; Jolley, Von D.; Summerhays, Jeffrey S.; Richard E Terry; Hopkins, Bryan G.

    2016-01-01

    Polymer coated urea (PCU) is a N fertilizer which, when added to moist soil, uses temperature-controlled diffusion to regulate N release in matching plant demand and mitigate environmental losses. Uncoated urea and PCU were compared for their effects on gaseous (N2O and NH3) and aqueous (NO3(-)) N environmental losses in cool season turfgrass over the entire PCU N-release period. Field studies were conducted on established turfgrass sites with mixtures of Kentucky bluegrass (Poa pratensis L.)...

  11. Towards new green high energy materials. Computational chemistry on nitro-substituted urea.

    Science.gov (United States)

    Wagner, Rachelle R; Ball, David W

    2011-11-01

    As part of a series of studies on new potential green high energy materials, we have calculated the structures and properties of a series of nitro-substituted urea molecules. Our results indicate that nitrated urea molecules have specific enthalpies of decomposition commensurate with current high energy materials. At the same time, they are all low in carbon, suggesting an application as a "green" high energy material.

  12. Mechanical and Thermal Properties of Poly(urethane urea) Nanocomposites Prepared with Diamine-Modified Laponite

    OpenAIRE

    2008-01-01

    Nanocomposites based on segmented poly(urethane urea) were prepared by reacting a poly(diisocyanate) with diamine-modified Laponite-RD nanoparticles that served as a chain extender. The nanocomposites were prepared at a constant NH2 to NCO mole ratio of 0.95, while varying the fraction of diamine-modified Laponite relative to the free diamine chain extender. Compared to neat poly(urethane urea), all nanocomposites showed increased tensile strength and elongation at break. As Laponite loading ...

  13. Urea-temperature phase diagrams capture the thermodynamics of denatured state expansion that accompany protein unfolding.

    Science.gov (United States)

    Tischer, Alexander; Auton, Matthew

    2013-09-01

    We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea-temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea-temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of ΔH0 and ΔCP0 that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions.

  14. Effect of foliar application of urea and planofix on the foliage yield of coriander

    Directory of Open Access Journals (Sweden)

    Abdur Rakib

    2015-06-01

    Full Text Available An experiment on coriander (Coriandrum sativum L. was conducted at the experimental field of Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU, Gazipur during November 2012 to April 2013 to find out the suitable foliar doses and application frequency of urea and planofix (NAA. The experiment was laid out in factorial randomized complete block design with three replications. The treatment consisted of six foliar dozes viz. T1 (Tap water as control, T2 (0.10 % urea, T3 (0.25 % urea, T4 (0.40 % urea, T5 (5 ppm planofix and T6 (10 ppm planofix and three application frequencies viz. F1 [20 days after sowing (20 DAS], F2 (30 DAS and F3 (20 and 30 DAS. Maximum foliage yield (6.94 t/ha was recorded in 10 ppm planofix coupled with it’s twice application at 20 and 30 DAS which was closely followed the foliage yield (6.33 t/ha by 5 ppm planofix with the same application frequency. The foliage yield was increased with the increase in urea concentration. The highest foliage yield (5.37 t/ha was also recorded from twice application of urea and planofix at 20 and 30 DAS, respectively. Planofix 10 ppm with its twice application at 20 and 30 DAS gave the highest benefit-cost of ration 2.51.

  15. Rates of urea with or without urease inhibitor for topdressing wheat

    Directory of Open Access Journals (Sweden)

    Marcelo Curitiba Espindula

    2013-06-01

    Full Text Available The urease inhibitor NBPT(N-(n-butyl thiophosphoric triamide is a management alternative to increase urea efficiency in topdressing because it reduces NH3 volatilization. The objective of this study was to evaluate N recovery and yield performance of wheat (Triticum aestivum L. 'BRS 254' fertilized with different urea or urea + NBPT rates in topdressing. The experiment was conducted from May to September 2007 in Vicosa, Minas Gerais, Brazil. Treatments followed a 5 x 2 + 1 factorial design consisting of five N fertilizer rates (30, 60, 90, 120, and 150 kg ha-1 as urea or urea + NBPT (Agrotain® applied as topdressing and a control without N. The experiment was a randomized complete block design with four replicates. Adding NBPT to urea resulted in better N utilization by wheat plants. The 100 kg N ha-1 topdressing rate provided the best apparent N recovery by wheat plants, whereas 90 kg ha-1 provided the best N use efficiency.

  16. Urea decreases specific ion effects on the LCST of PMMA-block-PDMAEMA aggregates

    Directory of Open Access Journals (Sweden)

    João Carlos Perbone de Souza

    2014-12-01

    Full Text Available Urea is a well-known additive used as a mild protein denaturant. The effect of urea on proteins, micellar systems and other colloids is still under debate. In particular, urea has shown interesting effects on the ion binding in systems like charged micelles, vesicles or Langmuir-Blodgett films. The urea effect on polymeric aggregates in water is still an open field. For instance, the additive may affect properties such as cmc, LCST, UCST and others. In particular, LCST is a property that can be very convenient for designing smart systems that respond to temperature. Previous studies have indicated that the LCST of positive charged copolymers aggregates based on poly[N-dimethyl(ethylamine methacrylate], PDMAEMA, can be nicely modulated by anions in aqueous solution and such phenomenon depends on the nature of the anion present. In this work, it has been demonstrated that urea also affects the LCST of PMMA-block-PDMAEMA aggregates in aqueous solution. In addition, in the presence of high concentrations of the additive, the specific behavior of the anions is lost, supporting the general mechanism of urea reducing the differences on ion binding to surfaces in aqueous solutions. To the best of our knowledge, this is the first time those phenomena are shown in polymer micelles.

  17. Polymer Coated Urea in Turfgrass Maintains Vigor and Mitigates Nitrogen's Environmental Impacts

    Science.gov (United States)

    LeMonte, Joshua J.; Jolley, Von D.; Summerhays, Jeffrey S.; Terry, Richard E.; Hopkins, Bryan G.

    2016-01-01

    Polymer coated urea (PCU) is a N fertilizer which, when added to moist soil, uses temperature-controlled diffusion to regulate N release in matching plant demand and mitigate environmental losses. Uncoated urea and PCU were compared for their effects on gaseous (N2O and NH3) and aqueous (NO3-) N environmental losses in cool season turfgrass over the entire PCU N-release period. Field studies were conducted on established turfgrass sites with mixtures of Kentucky bluegrass (Poa pratensis L.) and perennial ryegrass (Lolium perenne L.) in sand and loam soils. Each study compared 0 kg N ha-1 (control) to 200 kg N ha-1 applied as either urea or PCU (Duration 45CR®). Application of urea resulted in 127–476% more evolution of measured N2O into the atmosphere, whereas PCU was similar to background emission levels from the control. Compared to urea, PCU reduced NH3 emissions by 41–49% and N2O emissions by 45–73%, while improving growth and verdure compared to the control. Differences in leachate NO3- among urea, PCU and control were inconclusive. This improvement in N management to ameliorate atmospheric losses of N using PCU will contribute to conserving natural resources and mitigating environmental impacts of N fertilization in turfgrass. PMID:26764908

  18. Quantifying creatinine and urea in human urine through Raman spectroscopy aiming at diagnosis of kidney disease

    Science.gov (United States)

    Saatkamp, Cassiano Junior; de Almeida, Maurício Liberal; Bispo, Jeyse Aliana Martins; Pinheiro, Antonio Luiz Barbosa; Fernandes, Adriana Barrinha; Silveira, Landulfo, Jr.

    2016-03-01

    Due to their importance in the regulation of metabolites, the kidneys need continuous monitoring to check for correct functioning, mainly by urea and creatinine urinalysis. This study aimed to develop a model to estimate the concentrations of urea and creatinine in urine by means of Raman spectroscopy (RS) that could be used to diagnose kidney disease. Midstream urine samples were obtained from 54 volunteers with no kidney complaints. Samples were subjected to a standard colorimetric assay of urea and creatinine and submitted to spectroscopic analysis by means of a dispersive Raman spectrometer (830 nm, 350 mW, 30 s). The Raman spectra of urine showed peaks related mainly to urea and creatinine. Partial least squares models were developed using selected Raman bands related to urea and creatinine and the biochemical concentrations in urine measured by the colorimetric method, resulting in r=0.90 and 0.91 for urea and creatinine, respectively, with root mean square error of cross-validation (RMSEcv) of 312 and 25.2 mg/dL, respectively. RS may become a technique for rapid urinalysis, with concentration errors suitable for population screening aimed at the prevention of renal diseases.

  19. Structural basis of urea-induced unfolding: Unraveling the folding pathway of hemochromatosis factor E.

    Science.gov (United States)

    Khan, Parvez; Prakash, Amresh; Haque, Md Anzarul; Islam, Asimul; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2016-10-01

    Hereditary hemochromatosis factor E (HFE) is a type 1 transmembrane protein, and acts as a negative regulator of iron-uptake. The equilibrium unfolding and conformational stability of the HFE protein was examined in the presence of urea. The folding and unfolding transitions were monitored with the help of circular dichroism (CD), intrinsic fluorescence and absorption spectroscopy. Analysis of transition curves revealed that the folding of HFE is not a two-state process. However, it involved stable intermediates. Transition curves (plot of fluorescence (F346) and CD signal at 222nm (θ222) versus [Urea], the molar urea concentration) revealed a biphasic transition with midpoint (Cm) values at 2.88M and 4.95M urea. Whereas, absorption analysis shows one two-state transition centered at 2.96M. To estimate the protein stability, denaturation curves were analyzed for Gibbs free energy change in the absence of urea (ΔGD(0)) associated with the equilibrium of denaturation exist between native state↔denatured state. The intermediate state was further characterized by hydrophobic probe, 1-anilinonaphthalene-8-sulfonic acid (ANS-binding). For seeing the effect of urea on the structure and dynamics of HFE, molecular dynamics simulation for 60ns was also performed. A clear correspondence was established between the in vitro and in silico studies.

  20. Numerical Investigation of Urea Freezing and Melting Characteristics Using Coolant Heater

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Yeop; Kim, Nam Il; Kim, Man Young [Chounbuk Nat' l Univ., Jeonju (Korea, Republic of); Park, Yun Beom [Jeju College of Technology, Jeju (Korea, Republic of)

    2013-08-15

    UREA-SCR technology is known as one of the powerful NOx reduction systems for vehicles as well as stationary applications. For its consistent and reliable operation in vehicle applications, however, the freezing and melting of the urea solution in cold environments have to be resolved. In this study, therefore, a numerical study of three-dimensional unsteady problems was analyzed to understand the urea freezing and heating phenomena and heat transfer characteristics in terms of urea liquid volume fraction, temperature profiles, and phase change behavior in urea solutions with time by using the commercial software Fluent 6.3. As a result, it was found that the freezing phenomenon proceeds with a phase change from the tank wall to the center, whereas the melting phenomenon occurs faster in the upper part of the storage tank by natural convection and in the adjacent part of the coolant pipe than in other parts. Furthermore, approximately 190s were required to obtain 1a of urea solution using a 4-coiled coolant heater under conditions of 70 .deg. C and 200 L/h.

  1. Roles of urea and TMAO on the interaction between extended non-polar peptides

    Science.gov (United States)

    Su, Zhaoqian; Dias, Cristiano

    Urea and trimethylamine n-oxide (TMAO) are small molecules known to destabilize and stabilize, respectively, the structure of proteins when added to aqueous solution. To unravel the molecular mechanisms of these cosolvents on protein structure we perform explicit all-atom molecular dynamics simulations of extended poly-alanine and polyleucine dimers. We use an umbrella sampling protocol to compute the potential of mean force (PMF) of dimers at different concentrations of urea and TMAO. We find that the large non-polar side chain of leucine is affected by urea whereas backbone atoms and alanine's side chain are not. Urea is found to occupy positions between leucine's side chains that are not accessible to water. This accounts for extra Lennard-Jones bonds between urea and side chains that favors the unfolded state. These bonds compete with urea-solvent interactions that favor the folded state. The sum of these two energetic terms provide the enthalpic driving force for unfolding. We show here that this enthalpy correlate with the potential of mean force of poly-leucine dimers. Moreover, the framework developed here is general and may be used to provide insights into effects of other small molecules on protein interactions. The effect of the TMAO will be in the presentation. Department of Physics, University Heights, Newark, New Jersey, 07102-1982.

  2. Effect of Enhancing Urea-Humic Acid Mixture with Refined Acid Sulphate Soil

    Directory of Open Access Journals (Sweden)

    Mohd T.M. Yusuff

    2009-01-01

    Full Text Available Problem statement: Acid Sulphate Soil (ASS is a problem soil partly because of its high acidity. This low pH could be exploited to reduce ammonia loss from urea by reducing soil microsite pH. The use Humic Acid (HA to control ammonia loss from urea has been reported but the cost of this material is high. This laboratory study compared the effect of enhancing urea-humic acid mixtures with acid sulphate soil on NH3 loss, pH, exchangeable ammonium and available nitrate contents. Approach: Humic acid, acid sulfate soil and soil used in the incubation study were analyzed for selected soil physical-chemical properties using standard procedures. Urea-HA-ASS mixtures were prepared and ammonia volatilization of the mixtures was evaluated by the closed-dynamic air flow system. The treatments were evaluated in a randomized complete block design with 3 replications. Standard procedures were used to determine ammonia loss, soil pH, exchangeable ammonium and available nitrate at 22 days of incubation. Data obtained were analyzed using analysis of variance and Duncan's test using Statistical Analysis System (SAS version 9.2. Results: Urea amended with 0.75 g ASS significantly reduced ammonia volatilization. Although the use of appropriate amount of acid sulphate soil to control ammonia loss is possible, excessive use of this material is not recommended because of Fe in it. Conclusion: Urea amended with 0.75 g ASS reduced ammonia.

  3. Application of lime and urea and its effect on development of Phythophthora palmivora.

    Directory of Open Access Journals (Sweden)

    Sakti Widyanta Pratama

    2015-03-01

    Full Text Available Black pod rot disease (BPRD which is caused by Phytophthora palmivora is one of the main diseases of cocoa cultivations particularly in plantations with wet climate. Black pod rot can develop rapidly under high humidity environments, particularly during rainy seasons. This disease can cause loss of harvest of up to 46.63% in East Java. The various control efforts attempted so far have not resulted in significant improvements. Urea, in addition to functioning as fertilizer, can also produce the ammonia gas which is believed to be able to suppress black pod rot. This research aims to determine the effectiveness of black pod rot control using the combination of lime and urea. This research was conducted from June to September 2013. The materials used in test included sterile soil, black pod rot infected cocoa, urea, and agricultural lime. Observation results showed that ammonia could form from urea. Lime can increase the speed of the formation. The ammonia gas forming from 0.06% urea and 0.3% lime can control the P. palmivora fungus inside the soil. Key words: Pod rot, P. palmivora, urea, lime, ammonia

  4. Estimating urea volume in amputees on peritoneal dialysis by modified anthropometric formulas.

    Science.gov (United States)

    Tzamaloukas, A H; Murata, G H

    1996-01-01

    Body composition determines body water content (the fraction body water/body weight). With developing obesity, body weight and body water increase, but body water content decreases. The anthropometric formulas for urea volume (body water) for Kt/V computations in nonamputated peritoneal dialysis subjects reflect this fundamental rule of body composition. However, the use of uncorrected anthropometric formulas in amputees provides body water content estimates inconsistent with the estimates of body composition obtained from nutritional assessment. Corrected estimates of urea volume can be obtained in three steps: (1) The non-amputated weight at the same body composition is computed by dividing the weight at the urea kinetic study (postamputation) by (1-the fractional weight loss from the amputation); (2) body water and body water content at this nonamputated weight are obtained from the appropriate anthropometric formula; (3) at the time of the urea kinetic study, post-amputation, body water is equal to the estimate of body water content obtained from step 2 times the body weight at the urea kinetic study. The corrected estimates of urea volume provide body water content values agreeing with the estimates from nutritional assessment.

  5. Polarization effects on the electric properties of urea and thiourea molecules in solid phase

    Energy Technology Data Exchange (ETDEWEB)

    Santos, O. L.; Fonseca, T. L., E-mail: tertius@ufg.br; Sabino, J. R.; Georg, H. C.; Castro, M. A. [Instituto de Física, Universidade Federal de Goiás, Campus Samambaia, 74.690-900 Goiânia, GO (Brazil)

    2015-12-21

    We present theoretical results for the dipole moment, linear polarizability, and first hyperpolarizability of the urea and thiourea molecules in solid phase. The in-crystal electric properties were determined by applying a supermolecule approach in combination with an iterative electrostatic scheme, in which the surrounding molecules are represented by point charges. It is found for both urea and thiourea molecules that the influence of the polarization effects is mild for the linear polarizability, but it is marked for the dipole moment and first hyperpolarizability. The replacement of oxygen atoms by sulfur atoms increases, in general, the electric responses. Our second-order Møller–Plesset perturbation theory based iterative scheme predicts for the in-crystal dipole moment of urea and thiourea the values of 7.54 and 9.19 D which are, respectively, increased by 61% and 58%, in comparison with the corresponding isolated values. The result for urea is in agreement with the available experimental result of 6.56 D. In addition, we present an estimate of macroscopic quantities considering explicit unit cells of urea and thiourea crystals including environment polarization effects. These supermolecule calculations take into account partially the exchange and dispersion effects. The results illustrate the role played by the electrostatic interactions on the static second-order nonlinear susceptibility of the urea crystal.

  6. Effect of urea on synthesis of aluminum nitride powders from aluminum nitrate and glucose

    Institute of Scientific and Technical Information of China (English)

    秦明礼; 曲选辉; 林健凉; 肖平安; 汤春峰; 祝宝军; 雷长明

    2003-01-01

    AlN powders were synthesized by carbothermal reduction method from aluminum nitrate and glucose.The effect of urea on the preparation and nitridation of the precursors was studied. It is found that urea can affectthe morphology and composition of the precursor as well as the nitridation process. During the nitridation process ofthe precursor prepared without urea, α-A12 O3 and A1ON are detected and a high temperature(1600 ℃ ) is needed fora complete conversion. While for the precursor prepared with urea, a complete conversion is got at a relatively lowtemperature(1 400 ℃ ) and AlN is synthesized directly from γ-Al2 O3, with no sign of the formation of α-Al2 O3 andAlON. AlN powders synthesized from the precursor prepared without urea agglomerate badly, while the powderssynthesized from the precursor prepared with urea are soft aggregates of fine particle, which can be easily dispersed.

  7. Quantifying creatinine and urea in human urine through Raman spectroscopy aiming at diagnosis of kidney disease.

    Science.gov (United States)

    Saatkamp, Cassiano Junior; de Almeida, Maurício Liberal; Bispo, Jeyse Aliana Martins; Pinheiro, Antonio Luiz Barbosa; Fernandes, Adriana Barrinha; Silveira, Landulfo

    2016-03-01

    Due to their importance in the regulation of metabolites, the kidneys need continuous monitoring to check for correct functioning, mainly by urea and creatinine urinalysis. This study aimed to develop a model to estimate the concentrations of urea and creatinine in urine by means of Raman spectroscopy (RS) that could be used to diagnose kidney disease. Midstream urine samples were obtained from 54 volunteers with no kidney complaints. Samples were subjected to a standard colorimetric assay of urea and creatinine and submitted to spectroscopic analysis by means of a dispersive Raman spectrometer (830 nm, 350 mW, 30 s). The Raman spectra of urine showed peaks related mainly to urea and creatinine. Partial least squares models were developed using selected Raman bands related to urea and creatinine and the biochemical concentrations in urine measured by the colorimetric method, resulting in r = 0.90 and 0.91 for urea and creatinine, respectively, with root mean square error of cross-validation (RMSEcv) of 312 and 25.2 mg/dL, respectively. RS may become a technique for rapid urinalysis, with concentration errors suitable for population screening aimed at the prevention of renal diseases.

  8. Influence of urea on microstructure and optical properties of YPO4:Eu3+ phosphors

    Institute of Scientific and Technical Information of China (English)

    XIAO Junjie; GAO Yongyi; ZHANG Jie; LIU Yunxin; YANG Qibin

    2012-01-01

    YPO4:Eu3+ phosphors were synthesized by solution coprecipitation method assisted by urea in the precursor reaction solution.X-ray diffraction spectral analysis showed that the samples synthesized with urea had smaller particle size and lower crystallinity than those samples synthesized without urea.Moreover,the calculated strain result indicated that the Eu3+ site in the former exhibited a lower crystal field symmetry-than that in the latter.Hence,the influence of crystal field symmetry dominated luminescence efficiency rather than crystallinity because the luminescence intensity observed in Eu0.05Y0.95PO4 synthesized with 1.0 g urea was six-fold higher than that of the as-synthesized sample.With increased concentration of Eu3+ ion,the luminescence intensity initially increased,and then subsequently decreased as the concentration of Eu3+ ion exceeded 12 mol.% due to concentration quenching.The optimal condition for YPO4:Eu3+ phosphor was Eu0.12Y0.88PO4 with 1.0 g urea added in the precursor.The luminescence intensity of the optimal condition was again enhanced 1.6-fold relative to that of Eu0.05Y0.95PO4 synthesized with 1.0 g urea.

  9. Urea biosensor based on an extended-base bipolar junction transistor.

    Science.gov (United States)

    Sun, Tai-Ping; Shieh, Hsiu-Li; Liu, Chun-Lin; Chen, Chung-Yuan

    2014-01-01

    In this study, a urea biosensor was prepared by the immobilization of urease onto the sensitive membrane of an extended-base bipolar junction transistor. The pH variation was used to detect the concentration of urea. The SnO2/ITO glass, fabricated by sputtering SnO2 on the conductive ITO glass, was used as a pH-sensitive membrane, which was connected with a commercial bipolar junction transistor device. The gels, fabricated by the poly vinyl alcohol with pendent styrylpyridinium groups, were used to immobilize the urease. This readout circuit, fabricated in a 0.35-um CMOS 2P4M process, operated at 3.3V supply voltage. This circuit occupied an area of 1.0 mm × 0.9 mm. The dynamic range of the urea biosensor was from 1.4 to 64 mg/dl at the 10 mM phosphate buffer solution and the sensitivity of this range was about 65.8 mV/pUrea. The effect of urea biosensors with different pH values was considered, and the characteristics of urea biosensors based on EBBJT were described.

  10. Polarization effects on the electric properties of urea and thiourea molecules in solid phase

    Science.gov (United States)

    Santos, O. L.; Fonseca, T. L.; Sabino, J. R.; Georg, H. C.; Castro, M. A.

    2015-12-01

    We present theoretical results for the dipole moment, linear polarizability, and first hyperpolarizability of the urea and thiourea molecules in solid phase. The in-crystal electric properties were determined by applying a supermolecule approach in combination with an iterative electrostatic scheme, in which the surrounding molecules are represented by point charges. It is found for both urea and thiourea molecules that the influence of the polarization effects is mild for the linear polarizability, but it is marked for the dipole moment and first hyperpolarizability. The replacement of oxygen atoms by sulfur atoms increases, in general, the electric responses. Our second-order Møller-Plesset perturbation theory based iterative scheme predicts for the in-crystal dipole moment of urea and thiourea the values of 7.54 and 9.19 D which are, respectively, increased by 61% and 58%, in comparison with the corresponding isolated values. The result for urea is in agreement with the available experimental result of 6.56 D. In addition, we present an estimate of macroscopic quantities considering explicit unit cells of urea and thiourea crystals including environment polarization effects. These supermolecule calculations take into account partially the exchange and dispersion effects. The results illustrate the role played by the electrostatic interactions on the static second-order nonlinear susceptibility of the urea crystal.

  11. Metal-Free Conversion of Carboxamides to Ureas Using Tertiary Amines and Iodosylmesitylene

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hoon; Chang, Suk Bok [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2010-03-15

    A new synthetic route has been developed for the preparation of ureas from the reaction of carboxamides with tertiary amines with the use of iodosylmesitylene as a stoichiometric oxidant. Although the reaction proceeds under the mild conditions to afford urea products in moderate yields, further optimization studies are required to improve the reaction efficiency and regioselectivity in the dealkylative pathway. Ureas are recognized as an important synthetic building unit, finding a wide range of applications in the preparation of agrochemicals, petrochemicals, and pharmaceuticals. In addition, hydrogen bond-mediated communication between ureas and certain types of compounds is an important structural motif in asymmetric catalysis, molecular recognition, and crystal engineering. Although numerous procedures have been developed for the urea synthesis, the most commonly employed strategy involves the reaction of amine precursors with phosgene, or its surrogates, isocyanates, or carbamates. Whereas these traditional methods are operative under conventional reaction conditions, they often lead to incomplete conversion. Additional drawback of these protocols is that unsymmetric ureas are difficult to prepare in many cases.

  12. Degradation mechanism and thermal stability of urea nitrate below the melting point

    Energy Technology Data Exchange (ETDEWEB)

    Desilets, Sylvain, E-mail: sylvain.desilets@drdc-rddc.gc.ca [Defence R and D Canada, Valcartier, 2459 Pie-XI Blvd North, Val-Belair, Quebec, Canada G3J 1X5 (Canada); Brousseau, Patrick; Chamberland, Daniel [Defence R and D Canada, Valcartier, 2459 Pie-XI Blvd North, Val-Belair, Quebec, Canada G3J 1X5 (Canada); Singh, Shanti; Feng, Hongtu; Turcotte, Richard [Canadian Explosives Research Laboratory, 1 Haanel Dr. Ottawa, Quebec, Canada K1A 1M1 (Canada); Anderson, John [Defence R and D Canada, Suffield, Box 4000, stn Main, Medicine Hat, Alberta, Canada T1A 8K6 (Canada)

    2011-07-10

    Highlights: {yields} Decomposition mechanism of urea nitrate. {yields} Spectral characterization of the decomposition mechanism. {yields} Thermal stability of urea nitrate at 50, 70 and 100 {sup o}C. {yields} Chemical balance of decomposed products released. - Abstract: Aging and degradation of urea nitrate below the melting point, at 100 {sup o}C, was studied by using thermal analysis and spectroscopic methods including IR, Raman, {sup 1}H and {sup 13}C NMR techniques. It was found that urea nitrate was completely degraded after 72 h at 100 {sup o}C into a mixture of solids (69%) and released gaseous species (31%). The degradation mechanism below the melting point was clearly identified. The remaining solid mixture was composed of ammonium nitrate, urea and biuret while unreacted residual nitric and isocyanic acids as well as traces of ammonia were released as gaseous species at 100 {sup o}C. The thermal stability of urea nitrate, under extreme storage conditions (50 {sup o}C), was also examined by isothermal nano-calorimetry.

  13. Rheology and gel point of the enzymatic hydrolysis of urea in the presence of urease

    Science.gov (United States)

    Serrato-Millán, R.; Medina-Torres, L.; Calderas, F.; España-Sánchez, B. L.; Estevez, M.; Hernandez-Martínez, A. R.; Cruz-Soto, M.; Sánchez, I. C.; Gómez-García, R.; Sánchez-Betancourt, I.; Velasquillo-Martínez, M. C.; Luna-Bárcenas, G.

    2017-02-01

    This study reports on the rheology of the gelation kinetics of raw chitosan (CTS) solutions (2% w/v) produced by enzymatic hydrolysis of urea at different urea concentrations (40, 50, 60, 80, and 100 mM) in the presence of urease at 1 U/mL. Viscoelastic parameters and pH values were evaluated during gelation process and the rheological properties of CTS hydrogels produced were monitored after 24 h at 37°C to simulate human body temperatures. pH measurements suggest that above some critical urea concentration (50 mM) the time required ( t gel ) to reach the critical pH gelation shows no dependence on urea concentration ( t gel was ca. 70 minutes). Above 50 mM of urea concentration, CTS hydrogels exhibit an elastic modulus G' higher than the viscous modulus G″ with no frequency dependence characteristic of a gel behavior. Gelation kinetics analyzed by rheology suggest that the G' ( i.e., structure) development depends on urea concentration during solution neutralization.

  14. Nitrogen fertilization in corn with urea coated with different sources of polymers

    Directory of Open Access Journals (Sweden)

    Márcio Valderrama

    2014-02-01

    Full Text Available In view of theoretic increase in efficiency of nitrogen fertilizers for controlled release, this study aimed to evaluate the effect of nitrogen, using conventional urea and ureas coated by different polymers, in the leaf N content, leaf chlorophyll index, components production and grain yield of irrigated corn in growing season and second crop in the savannah region. The experiments were conducted at experimental area belonging to UNESP – Ilha Solteira, located in Selvíria – MS in a dystrophic Red Latosol (Haplustox, clayey texture. The statistical design was randomized blocks, with four repetitions, in a 4 x 4 factorial arrangement, being four nitrogen doses (0, 40, 80 and 120 kg ha-1 applied at sidedressing and four urea sources (a conventional urea and three coated with polymers in different compositions and concentrations. The coated ureas are not efficient under the soil and climate conditions studied of the savanna, because they provided results similar to the conventional urea for the production components and grain yield of corn in the first and second crop. The increment of nitrogen doses increase linearly the leaf N content and grain yield of corn in the first and second crop.

  15. Utilization of oriented crystal growth for screening of aromatic carboxylic acids cocrystallization with urea

    Science.gov (United States)

    Przybyłek, Maciej; Ziółkowska, Dorota; Kobierski, Mirosław; Mroczyńska, Karina; Cysewski, Piotr

    2016-01-01

    The possibility of molecular complex formation in the solid state of urea with benzoic acid analogues was measured directly on the crystallite films deposited on the glass surface using powder X-ray diffractometry (PXRD). Obtained solid mixtures were also analyzed using Fourier transform infrared spectroscopy (FTIR). The simple droplet evaporation method was found to be efficient, robust, fast and cost-preserving approach for first stage cocrystal screening. Additionally, the application of orientation effect to cocrystal screening simplifies the analysis due to damping of majority of diffraction signals coming from coformers. During validation phase the proposed approach successfully reproduced both positive cases of cocrystallization (urea:salicylic acid and urea:4-hydroxy benzoic acid) as well as pairs of co-formers immiscible in the solid state (urea:benzoic acid and urea:acetylsalicylic acids). Based on validated approach new cocrystals of urea were identified in complexes with 3-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid and 3,5-dihydroxybenzoic acid. In all cases formation of multicomponent crystal phase was confirmed by the appearance of new reflexes on the diffraction patterns and FTIR absorption band shifts of O-H and N-H groups.

  16. Intercalation of urea into kaolinite for preparation of controlled release fertilizer

    Directory of Open Access Journals (Sweden)

    Mahdavi Fariba

    2014-01-01

    Full Text Available In this study urea was intercalated between layers of kaolinite by dry grinding technique to be used for preparing controlled release fertilizer. X-ray powder diffraction (XRPD patterns confirmed the intercalation of urea into kaolinite by the significant expansion of the basal spacing of kaolinite layers from 0.710 nm to 1.090 nm. Fourier transform infrared spectroscopy (FT-IR also confirmed the hydrogen bonding between urea and kaolinite. Based on CHNS elemental analysis, 20% (wt. urea was intercalated between kaolinite layers. The urea-intercalated kaolinite was mixed with hydroxypropyl methylcellulose (HPMC binder and was granulated to prepare the nitrogen-based controlled release fertilizer. To study the nitrogen release behavior of granules, ultraviolet/visible (UV-Vis spectroscopy was used through the diacetyl monoxime (DAM colorimetric method. The result of UV-Vis spectroscopy showed that intercalation of urea into kaolinite decreased the nitrogen release from 25.50 to 13.66 % after 24 hours and from 98.15 to 70.01% after 30 days incubation in water. According to the results, the prepared controlled release fertilizer (CRF behaved according to the standard for CRFs.

  17. Polymer Coated Urea in Turfgrass Maintains Vigor and Mitigates Nitrogen's Environmental Impacts.

    Directory of Open Access Journals (Sweden)

    Joshua J LeMonte

    Full Text Available Polymer coated urea (PCU is a N fertilizer which, when added to moist soil, uses temperature-controlled diffusion to regulate N release in matching plant demand and mitigate environmental losses. Uncoated urea and PCU were compared for their effects on gaseous (N2O and NH3 and aqueous (NO3(- N environmental losses in cool season turfgrass over the entire PCU N-release period. Field studies were conducted on established turfgrass sites with mixtures of Kentucky bluegrass (Poa pratensis L. and perennial ryegrass (Lolium perenne L. in sand and loam soils. Each study compared 0 kg N ha(-1 (control to 200 kg N ha(-1 applied as either urea or PCU (Duration 45CR®. Application of urea resulted in 127-476% more evolution of measured N2O into the atmosphere, whereas PCU was similar to background emission levels from the control. Compared to urea, PCU reduced NH3 emissions by 41-49% and N2O emissions by 45-73%, while improving growth and verdure compared to the control. Differences in leachate NO3(- among urea, PCU and control were inconclusive. This improvement in N management to ameliorate atmospheric losses of N using PCU will contribute to conserving natural resources and mitigating environmental impacts of N fertilization in turfgrass.

  18. Preparation, Characterization and Release of Urea from Wheat Gluten Electrospun Membranes

    Directory of Open Access Journals (Sweden)

    Ana Irene Ledesma-Osuna

    2012-12-01

    Full Text Available Homogeneous and thin porous membranes composed of oriented fibers were obtained from wheat gluten (WG using the electrospinning technique. SEM micrographs showed an asymmetric structure and some porosity, which, in addition to a small thickness of 40 mm, are desirable characteristics for the membranes’ potential application in release systems. The membranes were loaded with urea to obtain pastilles. FT-IR and DSC studies confirmed the existence of interactions via hydrogen bonding between urea and WG proteins. The pastilles were studied as prolonged-released systems of urea in water. The release of urea during the first 10 min was very fast; then, the rate of release decreased as it reached equilibrium at 300 min, with a total of »98% urea released. TGA analysis showed that the release system obtained is thermally stable up to a temperature of 117 °C. It was concluded that a prolonged-release system of urea could be satisfactorily produced using WG fibers obtained by electrospinning for potential application in agricultural crops.

  19. GLUTAMINE AND HYPERAMMONEMIC CRISES IN PATIENTS WITH UREA CYCLE DISORDERS

    Science.gov (United States)

    Lee, B.; Diaz, G.A.; Rhead, W.; Lichter-Konecki, U.; Feigenbaum, A.; Berry, S.A.; Le Mons, C.; Bartley, J.; Longo, N.; Nagamani, S.C.; Berquist, W.; Gallagher, R.C.; Harding, C.O.; McCandless, S.E.; Smith, W.; Schulze, A.; Marino, M.; Rowell, R.; Coakley, D.F.; Mokhtarani, M.; Scharschmidt, B.F.

    2016-01-01

    Blood ammonia and glutamine levels are used as biomarkers of control in patients with urea cycle disorders (UCDs). This study was undertaken to evaluate glutamine variability and utility as a predictor of hyperammonemic crises (HACs) in UCD patients. Methods The relationships between glutamine and ammonia levels and the incidence and timing of HACs were evaluated in over 100 adult and pediatric UCD patients who participated in clinical trials of glycerol phenylbutyrate. Results The median (range) intra-subject 24-hour coefficient of variation for glutamine was 15% (8–29%) as compared with 56% (28%–154%) for ammonia, and the correlation coefficient between glutamine and concurrent ammonia levels varied from 0.17 to 0.29. Patients with baseline (fasting) glutamine values >900 µmol/L had higher baseline ammonia levels (mean [SD]: 39.6 [26.2] µmol/L) than patients with baseline glutamine ≤900 µmol/L (26.6 [18.0] µmol/L). Glutamine values >900 µmol/L during the study were associated with an approximately 2-fold higher HAC risk (odds ratio [OR]=1.98; p=0.173). However, glutamine lost predictive significance (OR=1.47; p=0.439) when concomitant ammonia was taken into account, whereas the predictive value of baseline ammonia ≥ 1.0 upper limit of normal (ULN) was highly statistically significant (OR=4.96; p=0.013). There was no significant effect of glutamine >900 µmol/L on time to first HAC crisis (hazard ratio [HR]=1.14; p=0.813), but there was a significant effect of baseline ammonia ≥ 1.0 ULN (HR=4.62; p=0.0011). Conclusions The findings in this UCD population suggest that glutamine is a weaker predictor of HACs than ammonia and that the utility of the predictive value of glutamine will need to take into account concurrent ammonia levels. PMID:26586473

  20. Hydrodesulfurization catalyst prepared by urea-matrix combustion method

    Institute of Scientific and Technical Information of China (English)

    Dongmei Jiao; Yeyong Ma; Fahai Cao

    2012-01-01

    Co-Mo/γ-Al2O3-TiO2 hydrodesulfurization (HDS) catalyst samples prepared by a urea matrix combustion (UMxC) method,were evaluated in a stainless tubular fixed-bed reactor,with thiophene,benzothiophene and dibenzothiophene in xylene as model feedstocks.The samples were pre-sulfurized using a cyclohexane solution of 3% CS2 and then tested for the HDS reaction.The test results were compared with catalysts prepared by conventional methods involving sequential impregnation (SI) and co-impregnation (CI).The catalysts were characterized using X-ray diffraction (XRD),laser Raman spectroscopy (LRS),high resolution transmission electron microscopy (HRTEM) and N2 physisorption,showing that the UMxC catalyst had higher pore volume and surface area than those prepared by the CI and SI methods.The UMxC method increased metal loading and avoided formation of inert phase,e.g.,β-CoMoO4,for the HDS reaction,suggesting that UMxC method is superior to the conventional impregnation techniques.TiO2 promoter made particles on the catalyst surface closer and alleviated the interaction between molybdenum oxide and the support,and facilitated the formation of well-dispersed Co- and Mo-oxo species on catalyst surface,thus resulting in higher HDS catalytic activity than pure -γ-Al2O3 support without modifiers.Consequently,the addition of TiO2 obviously improved the HDS conversion of dibenzothiophene.

  1. Mechanism of Microencapsulation with Urea-Formaldehyde Polymer

    Directory of Open Access Journals (Sweden)

    Rochmadi

    2010-01-01

    Full Text Available Problem statement: Microcapsule is one of important fine chemical products in the current chemical industries. Better understanding of microencapsulation process is useful to properly design of microcapsule with specific characteristics. The aim of this research is to study the mechanism of Urea-Formaldehyde (UF microcapsules formation. Approach: Microcapsule was prepared in two steps. The first step was the preparation of oil in water emulsion, which was carried out by mixing of UF pre-polymer solution with refined palm oil at 50-70°C, using high speed homogenizer. The second step was microcapsule shell formation, where the pH of emulsion was adjusted to 3 and the process was run for 3-6 h. At the end of the process, the microcapsule product was cooled with ice and distilled water, filtered, washed and finally dried at 40°C under vacuum condition. The diameter and size distribution of the microcapsule product was measured using optical microscope. Results: Microcapsule with the diameter of 20-220 µm, together with UF micro particles. Conclusion: UF polymerization reaction took place simultaneously in the solution and at the microcapsule surface. UF reaction in the solution produced UF polymer micro particles, while UF reaction at the microcapsule surface forms microcapsule shell. The UF polymer micro particles precipitated in the form of fine powder, attach to the microcapsule shell. Higher microencapsulation temperature reduced the amount of microcapsule product and increased the amount of micro particles. The microcapsule diameter distribution shifts to smaller diameter and the average diameter Davg tends to decrease as the homogenization and microencapsulation time increase. Based on oil and resin efficiencies as well as microcapsule characteristics, the process is best conducted at 50°C, 30 min of homogenization and 3 h of microencapsulation time.

  2. Synthesis and characterization of pure, urea and thiourea doped organic NLO L-arginine trifluoroacetate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Prasanyaa, T. [Department of Physics, Karunya University, Coimbatore 641 114, Tamilnadu (India); Haris, M., E-mail: mharis8@yahoo.com [Department of Physics, Karunya University, Coimbatore 641 114, Tamilnadu (India); Mathivanan, V. [Department of Physics, Karunya University, Coimbatore 641 114, Tamilnadu (India); Department of Physics, United Institute of Technology, Coimbatore (India); Senthilkumar, M. [Department of Physics, Karunya University, Coimbatore 641 114, Tamilnadu (India); Mahalingam, T. [Department of Electrical and Computer Engineering, Ajou University, Suwon 443-749 (Korea, Republic of); Jayaramakrishnan, V. [Department of Physics, P.S.G. College of Arts and Science, Coimbatore 641 014, Tamilnadu (India)

    2014-10-15

    Optically transparent L-arginine trifluoroacetate (LATF) single crystals by doping with organic materials urea and thiourea were grown by slow solvent evaporation technique. Powder X-ray diffraction confirms improvement in the crystalline quality for urea doped crystals. Urea doping in LATF also improves the percentage of transmittance. The vibrational frequencies of the grown crystals were assigned by Fourier Transform infrared spectroscopy. The thermal analysis (TG/DTA) indicated the better thermal stability for urea doped LATF crystals. EDAX analysis was carried out to calculate the percentage of elements present in doped and pure LATF. The hardness has been remarkably improved on urea and thiourea doped LATF crystals. The second harmonic generation (SHG) analysis showed 2.5 times than standard KDP for pure LATF and 2.2, 2.07 times than KDP for urea and thiourea doped LATF. - Highlights: • Urea doped LATF crystals enhances the structural and crystalline quality. • Urea doping enhances optical transparency and thermal stability. • Urea and thiourea doping in LATF improves the hardness. • SHG efficiency of urea, thiourea doped LATF are 2.2 and 2.07 times greater than KDP.

  3. Model Dependency of TMAO's Counteracting Effect Against Action of Urea: Kast Model versus Osmotic Model of TMAO.

    Science.gov (United States)

    Borgohain, Gargi; Paul, Sandip

    2016-03-10

    Classical molecular dynamics simulation of GB1 peptide (a 16-residue β-hairpin) in different osmotic environments is studied. Urea is used for denaturation of the peptide, and trimethylamine-N-oxide (TMAO) is used to offset the effect of urea. Protein-urea electrostatic interactions are found to play a major role in protein-denaturation. To emphasize on protein protecting action of TMAO against urea, two different models of TMAO are used, viz., the Kast model and the Osmotic model. We observe that the Osmotic model of TMAO gives the best protection to counteract urea's action when used in ratio 1:2 of urea:TMAO (i.e., reverse ratio). This is because the presence of TMAO makes urea-protein electrostatic interactions more unfavorable. Preferential solvation of TMAO molecules by urea (and water) molecules is also observed, which causes depletion in the number of urea molecules in the vicinity of the protein. The calculations of intraprotein hydrogen bonds between different residues of protein further reveal the breaking of backbone hydrogen bonds of residues 2 and 15 in the presence of urea, and the same is preserved in the presence of TMAO. Free energy landscapes show that the narrowest distribution is obtained for the osmotic TMAO model when used in reverse ratio.

  4. Mechanistic insights into osmolyte action in protein stabilization under harsh conditions: N-methylacetamide in glycine betaine-urea mixture

    Science.gov (United States)

    Kumar, Narendra; Kishore, Nand

    2014-10-01

    Glycine betaine (GB), a small naturally occurring osmolyte, stabilizes proteins and counteracts harsh denaturing conditions such as extremes of temperature, cellular dehydration, and presence of high concentration of urea. In spite of several studies on understanding mechanism of protein stabilization and counteraction of these harsh conditions by osmolytes, studies centred on GB, one of the most important osmolyte, are scarce, hence, there is need for more investigations. To explore mechanism of protein stabilization and counteraction of denaturing property of urea by GB, molecular dynamics studies of N-methylacetamide (NMA), a model peptide representing denatured state of a protein, in the presence of GB, urea, and GB-urea mixture were carried out. The results show that GB and urea work such that the strength of GB as a protecting osmolyte is increased and the denaturing ability of urea is decreased in the GB-urea mixture. It can be inferred that GB counteracts urea by decreasing its hydrophobic interactions with proteins. The mutual interactions between GB and urea also play an important role in protein stabilization. This study provides insights on osmolyte induced counteraction of denaturing property of urea.

  5. DETERMINATION OF PROTEIN CATABOLIC RATE IN PATIENTS ON CHRONIC INTERMITTENT HEMODIALYSIS - UREA OUTPUT MEASUREMENTS COMPARED WITH DIETARY-PROTEIN INTAKE AND WITH CALCULATION OF UREA GENERATION RATE

    NARCIS (Netherlands)

    STEGEMAN, CA; HUISMAN, RM; DEROUW, B; JOOSTEMA, A; DEJONG, PE

    1995-01-01

    We assessed the agreement between different methods of determining protein catabolic rate (PCR) in hemodialysis patients and the possible influence of postdialysis urea rebound and the length of the interdialytic interval on the PCR determination. Protein catabolic rate derived from measured total u

  6. A capacitive biosensor for ultra-trace level urea determination based on nano-sized urea-imprinted polymer receptors coated on graphite electrode surface.

    Science.gov (United States)

    Alizadeh, Taher; Akbari, Aezam

    2013-05-15

    A novel urea biosensor based on capacitive detection was developed using nano-sized molecularly imprinted polymers (nano-MIP). The sensitive layer was created by casting a thin layer of poly (vinyl chloride) (PVC)/nano-MIP composite on a graphite electrode surface. Cyclic voltammetry and impedance spectroscopy were used to monitor the electrode surface modification. The insulating properties of the layer were studied in the presence of K3Fe(CN)6/K4Fe(CN)6 redox couple by AC impedance measurements. The proposed capacitive sensor exhibited good selectivity for urea, compared to the chemicals with high resemblance to urea. The repeatability of the senor was found to be satisfactory. Very wide dynamic linear range (1×10(-11)-1×10(-4)M) as well as an ultra-trace detection limit equal to 5 picomolar was obtained for the sensor. The relevant experiments indicated satisfactory repeatability and reproducibility for the developed sensor. The results from sample analysis confirmed the applicability of the MIP-based sensor to quantitative analysis of urea in real samples.

  7. The Contribution of Azolla and Urea in Lowland Rice Growth Production for Three Consecutive Seasons

    Directory of Open Access Journals (Sweden)

    EL. Sisworo

    2008-01-01

    Full Text Available Three field experiments have been carried out in three consecutive seasons namely wet season (120 days, dry season (120 days, wet season (120 days at Pusakanegara. The purpose of this experiment is to test whether urea combined with Azolla could increase lowland rice production and soil quality. The experimental plots have a size of 20 m2 and in each experimental plot an isotope plot was placed with a size of 1 m2. The isotope plots were used to apply labeled 15N urea. Treatments conducted were lowland varieties: Atomita I (V1 and IR-64 (V2; several levels of urea and Azolla : Pu1 = urea-tablets + an Azolla cover (Azc, Pu2 = urea-tablets + Azolla incorporated (Azi , Pu3 = urea-prill + Azc , Pu4 = urea-prill + Azi; seasons : Ss 1 = wet season, Ss2 = dry season, Ss3 = wet season. The experimental design used was a factorial experiment in a Randomized Block Design, where each treatment was replicated four times. Parameters used were, dry weight of straw (St, grain (G, plant (P1 = St + G in kg/ha; N-total percentage (% N-to of St and G, percentage N-derived from urea + Az (% N-Pu of St and G; percentage N-derived from soil (% N-S of St and G; uptake of N-Pu and N-S in St, G and P1. Some results of these experiment were, N-Pu play a less important role in growth of lowland crop expressed in several parameters compared to N-soil. The form of N-urea in tablets are superior to that the form of urea in prills. For the last product of lowland rice which is grain obviously V1 (Atomita-1 is better than V2 (IR-64 expressed in t/ha. The progress of seasons showed clearly that there is an N accumulation which might be the increase of soil organic matter (SOM and that means there is an increase in soil quality in the view point of N

  8. Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, Todd James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  9. 13C-urea and15N2-urea : Elegant markers to define location and kinetics of in vivo release from a colon-targeted delivery device in men

    NARCIS (Netherlands)

    Schellekens, R.C.A.; Olsder, G.; Maurer, M.; Kosterink, J.; Woerdenbach, H.J.; Wutzke, K.D.; Frijlink, H.W.; Stellaard, F.

    2010-01-01

    Background:13C-urea may be a suitable marker to assess the in vivo fate of colon-targeted dosage forms given by mouth. Release in the colon would lead to fermentation of13C-urea into13CO2and excretion of13CO2in breath, release in the small intestine to detection of13C-urea in blood and urine. The di

  10. Greenhouse gas mitigation in rice-wheat system with leaf color chart-based urea application.

    Science.gov (United States)

    Bhatia, Arti; Pathak, Himanshu; Jain, Niveta; Singh, Pawan K; Tomer, Ritu

    2012-05-01

    Conventional blanket application of nitrogen (N) fertilizer results in more loss of N from soil system and emission of nitrous oxide, a greenhouse gas (GHG). The leaf color chart (LCC) can be used for real-time N management and synchronizing N application with crop demand to reduce GHG emission. A 1-year study was carried out to evaluate the impact of conventional and LCC-based urea application on emission of nitrous oxide, methane, and carbon dioxide in a rice-wheat system of the Indo-Gangetic Plains of India. Treatments consisted of LCC scores of ≤4 and 5 for rice and wheat and were compared with conventional fixed-time N splitting schedule. The LCC-based urea application reduced nitrous oxide emission in rice and wheat. Application of 120 kg N per hectare at LCC ≤ 4 decreased nitrous oxide emission by 16% and methane by 11% over the conventional split application of urea in rice. However, application of N at LCC ≤ 5 increased nitrous oxide emission by 11% over the LCC ≤ 4 treatment in rice. Wheat reduction of nitrous oxide at LCC ≤ 4 was 18% as compared to the conventional method. Application of LCC-based N did not affect carbon dioxide emission from soil in rice and wheat. The global warming potential (GWP) were 12,395 and 13,692 kg CO(2) ha(-1) in LCC ≤ 4 and conventional urea application, respectively. Total carbon fixed in conventional urea application in rice-wheat system was 4.89 Mg C ha(-1) and it increased to 5.54 Mg C ha(-1) in LCC-based urea application (LCC ≤ 4). The study showed that LCC-based urea application can reduce GWP of a rice-wheat system by 10.5%.

  11. Revealing the Mechanistic Pathway of Acid Activation of Proton Pump Inhibitors To Inhibit the Gastric Proton Pump: A DFT Study.

    Science.gov (United States)

    Jana, Kalyanashis; Bandyopadhyay, Tusar; Ganguly, Bishwajit

    2016-12-29

    Acid-related gastric diseases are associated with disorder of digestive tract acidification due to the acid secretion by gastric proton pump, H(+),K(+)-ATPase. Omeprazole is one of the persuasive irreversible inhibitor of the proton pump H(+),K(+)-ATPase. However, the reports on the mechanistic pathway of irreversible proton pump inhibitors (PPIs) on the acid activation and formation of disulfide complex are scarce in the literature. We have examined the acid activation PPIs, i.e., timoprazole, S-omeprazole and R-omeprazole using M062X/6-31++G(d,p) in aqueous phase with SMD solvation model. The proton pump inhibitor is a prodrug and activated in the acidic canaliculi of the gastric pump H(+),K(+)-ATPase to sulfenic acid which can either form another acid activate intermediate sulfenamide or a disulfide complex with cysteine amino acid of H(+),K(+)-ATPase. The quantum chemical calculations suggest that the transition state (TS5) for the disulfide complex formation is the rate-determining step of the multistep acid inhibition process by PPIs. The free energy barrier of TS5 is 5.5 kcal/mol higher for timoprazole compared to the S-omeprazole. The stability of the transition state for the formation of disulfide bond between S-omeprazole and cysteine amino acid of H(+),K(+)-ATPase is governed by inter- and intramolecular hydrogen bonding. The disulfide complex for S-omeprazole is thermodynamically more stable by 4.5 kcal/mol in aqueous phase compared to disulfide complex of timoprazole, which corroborates the less efficacy of timoprazole as irreversible PPI for acid inhibition process. It has been speculated that sulfenic acid can either form sulfenamide or a stable disulfide complex with cysteine amino acid residue of H(+),K(+)-ATPase. The M062X/6-31++G(d,p) level of theory calculated results reveal that the formation of tetra cyclic sulfenamide is unfavored by ∼17 kcal/mol for S-omeprazole and 11.5 kcal/mol for timoprazole compared to the disulfide complex formation

  12. BASIC AMINO ACID CARRIER 2 gene expression modulates arginine and urea content and stress recovery in Arabidopsis leaves.

    Directory of Open Access Journals (Sweden)

    Séverine ePlanchais

    2014-07-01

    Full Text Available In plants, basic amino acids are important for the synthesis of proteins and signaling molecules and for nitrogen recycling. The Arabidopsis nuclear gene BASIC AMINO ACID CARRIER 2 (BAC2 encodes a mitochondria-located carrier that transports basic amino acids in vitro. We present here an analysis of the physiological and genetic function of BAC2 in planta. When BAC2 is overexpressed in vivo, it triggers catabolism of arginine, a basic amino acid, leading to arginine depletion and urea accumulation in leaves. BAC2 expression was known to be strongly induced by stress. We found that compared to wild type plants, bac2 null mutants (bac2-1 recover poorly from hyperosmotic stress when restarting leaf expansion. The bac2-1 transcriptome differs from the wild-type transcriptome in control conditions and under hyperosmotic stress. The expression of genes encoding stress-related transcription factors, arginine metabolism enzymes, and transporters is particularly disturbed in bac2-1, and in control conditions, the bac2-1 transcriptome has some hallmarks of a wild-type stress transcriptome. The BAC2 carrier is therefore involved in controlling the balance of arginine and arginine-derived metabolites and its associated amino acid metabolism is physiologically important in equipping plants to respond to and recover from stress.

  13. Modeling milk urea of Walloon dairy cows in management perspectives.

    Science.gov (United States)

    Bastin, C; Laloux, L; Gillon, A; Miglior, F; Soyeurt, H; Hammami, H; Bertozzi, C; Gengler, N

    2009-07-01

    The aim of this study was to develop an adapted random regression test-day model for milk urea (MU) and to study the possibility of using predictions and solutions given by the model for management purposes. Data included 607,416 MU test-day records of first-lactation cows from 632 dairy herds in the Walloon Region of Belgium. Several advanced features were used. First, to detect the herd influence, the classical herd x test-day effect was split into 3 new effects: a fixed herd x year effect, a fixed herd x month-period effect, and a random herd test-day effect. A fixed time period regression was added in the model to take into account the yearly oscillations of MU on a population scale. Moreover, first autoregressive processes were introduced and allowed us to consider the link between successive test-day records. The variance component estimation indicated that large variance was associated with the random herd x test-day effect (48% of the total variance), suggesting the strong influence of herd management on the MU level. The heritability estimate was 0.13. By comparing observed and predicted MU levels at both the individual and herd levels, target ranges for MU concentrations were defined to take into account features of each cow and each herd. At the cow level, an MU record was considered as deviant if it was 400 mg/L (target range used in the field) and if the prediction error was >50 mg/L (indicating a significant deviation from the expected level). Approximately 7.5% of the MU records collected between June 2007 and May 2008 were beyond these thresholds. This combination allowed for the detection of potentially suspicious cows. At the herd level, the expected MU level was considered as the sum of the solutions for specific herd effects. A herd was considered as deviant from its target range when the prediction error was greater than the standard deviation of MU averaged by herd test day. Results showed that 6.7% of the herd test-day MU levels between June

  14. Chamber transport

    Energy Technology Data Exchange (ETDEWEB)

    OLSON,CRAIG L.

    2000-05-17

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  15. Evaluation of Urea-motility-indole medium for recognition and differentiation of Salmonella and Shigella species in stool cultures.

    OpenAIRE

    Rosa Fraile, M; Vega Aleman, D; Fernandez Gutierrez, C

    1980-01-01

    A semisolid urea-motility-indole medium designed for detection in Enterobacteriaceae of urease activity, motility, and indole production in one tube was prepared and evaluated. The formulation of the medium was similar to that of Christensen urea agar, but the agar concentration was 0.2%, and 1% tryptone was added. Results with 687 strains of Enterobacteriaceae were the same as those obtained with standard test media (98% overall agreement). The urea-motility-indole medium was also used in co...

  16. Optimization of Urea Based Protein Extraction from Formalin-Fixed Paraffin-Embedded Tissue for Shotgun Proteomics

    OpenAIRE

    Luebker, Stephen A.; Koepsell, Scott A.

    2016-01-01

    Urea based protein extraction of formalin-fixed paraffin-embedded (FFPE) tissue provides the most efficient workflow for proteomics due to its compatibility with liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). This study optimizes the use of urea for proteomic analysis of clinical FFPE tissue. A series of protein extraction conditions manipulating temperature and buffer composition were compared to reduce carbamylation introduced by urea and increase pro...

  17. Effects of Controlled-Release Urea on Grain Yield of Spring Maize, Nitrogen Use Efficiency and Nitrogen Balance

    Directory of Open Access Journals (Sweden)

    JI Jing-hong

    2017-03-01

    Full Text Available The effects of mixing controlled-released urea (CRU (release period of resin coated urea is 90 days and urea (U on maize yield, nitrogen use efficiency and nitrogen balance were studied by 4 plot experiments (site:Shuangcheng, Binxian, Harbin and Zhaoyuan in two years (from year 2011 to 2012 to clarify the effect of controlled release urea on spring maize and soil nitrogen balance. Results were as follow:Spring maize yield and nitrogen absorption were increased with the increasing nitrogen fertilizer. Compared with applying urea treatment, applying CRU could increase yield, nitrogen absorption, nitrogen use efficiency, agriculture efficiency of nitrogen and nitrogen contribution rate. Under the same amount of nitrogen (100%, 75%, 50%, compared with 100% U as basic fertilizer treatment, maize yield of 100% CRU treatment increased 391, 427, 291 kg·hm-2, nitrogen use efficiency increased by 5.9%,4.9% and 5.1%, agriculture efficiency of nitrogen increased 2.0, 2.6, 2.6 kg·kg-1, and nitrogen contribution rate increased 2.7%, 3.1% and 2.4%, respectively. The value of maize yield, nitrogen absorption, nitrogen use efficiency and agriculture efficiency of nitrogen between the treatment four (40% urea as basic fertilizer+60% urea as topdressing and treatment five (40% urea plus 60% controlled release urea as basic fertilizer were similar. Apparent profit and loss of nitrogen decreased with the increase of nitrogen nitrogen fertilizer. Nitrogen apparent loss by applying 100% controlled release urea was reduced of 15.0 kg·hm-2 than applying 100% U treatment;Nitrogen apparent loss amount was decreased of 23.9 kg·hm-2 under treatment five. The method of mixing 40% urea and 60% controlled release urea should be applied in maize production in Heilongjiang Province.

  18. New urea biosensor based on urease enzyme obtained from Helycobacter pylori.

    Science.gov (United States)

    Dindar, Bahar; Karakuş, Emine; Abasıyanık, Fatih

    2011-11-01

    The urease enzyme of Helicobacter pylori was isolated from biopsy sample obtained from antrum big curvature cell extracts. A new urea biosensor was prepared by immobilizing urease enzyme isolated from Helicobacter pylori on poly(vinylchloride) (PVC) ammonium membrane electrode by using nonactine as an ammonium ionophore. The effect of pH, buffer concentration, and temperature for the biosensor prepared with urease from H. pylori were obtained as 6.0, 5 mM, and 25 °C, respectively. We also investigated urease concentration, stirring rate, and enzyme immobilization procedures in response to urea of the enzyme electrode. The linear working range of the biosensor extends from 1 × 10(-5) to 1 × 10(-2) M and they showed an apparent Nernstian response within this range. Urea enzyme electrodes prepared with urease enzymes obtained from H. pylori and Jack bean based on PVC membrane ammonium-selective electrode showed very good analytical parameters: high sensitivity, dynamic stability over 2 months with less decrease of sensitivity, response time 1-2 min. The analytical characteristics were investigated and were compared those of the urea biosensor prepared with urease enzyme isolated from Jack bean prepared at the same conditions. It was observed that rapid determinations of human serum urea amounts were also made possible with both biosensors.

  19. Synthesis of Mo and W carbide and nitride nanoparticles via a simple "urea glass" route.

    Science.gov (United States)

    Giordano, Cristina; Erpen, Christian; Yao, Weitang; Antonietti, Markus

    2008-12-01

    A simple, inexpensive, and versatile route for the synthesis of metal nitrides and carbides (such as Mo2N, Mo2C, W2N and WC) nanoparticles was set up. For the first time, metal carbides were obtained using urea as carbon-source. MoCl5 and WCl4 are in a first step contacted with alcohols and an appropriate amount of urea to form a polymer-like, glassy phase, which acts as the starting product for further conversions. Just by heating this phase it was possible to prepare either molybdenum and tungsten nitrides or carbides simply by changing the metal precursor/urea molar ratio. In this procedure, urea plays a double role as a nitrogen/carbon source and stabilizing agent (necessary for the nanoparticle dispersion). Molybdenum and tungsten nitride and carbides synthesized are almost pure and highly crystalline. Sizes estimated by WAXS range around 20 and 4 nm in diameter for Mo and W nitrides or carbides, respectively. The specific surface area was found between 10 and 80 m2/g, depending on the metal and the initial ratio of metal precursor to urea.

  20. Corrosion of stainless steels in simulated diesel exhaust environment with urea

    Energy Technology Data Exchange (ETDEWEB)

    Nockert, J.; Nyborg, L.; Norell, M. [Department of Materials and Manufacturing Technology, Chalmers University of Technology, 41296 Goeteborg (Sweden)

    2012-05-15

    Laboratory exposures have been performed simulating a selective catalytic reduction (SCR) system with urea injection for NO{sub x} reduction in diesel exhaust after-treatment. The corrosion behaviour of three ferritic and one austenitic stainless steel was examined using X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Continuous exposure to condensate did not cause any corrosion. Results show that cyclic interaction between high temperature and condensation aggravates the corrosion compared to isothermal exposure at 450 C. All ferritic alloys exhibited more or less the same behaviour, while the austenitic steel performed better. In fact, the presence of urea decreased the corrosion compared to the environment without urea. The cyclic samples exposed with urea displayed iron sulphate on the surface. The sulphate appeared to decrease the oxide thickness. A sulphur enrichment in the form of sulphide also occurred in the inner chromium-rich oxides of all cyclically exposed samples, both with and without urea. Thus, sulphidation is presumed to be involved in the corrosion process. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Measurements of liquid film thickness, concentration, and temperature of aqueous urea solution by NIR absorption spectroscopy

    Science.gov (United States)

    Pan, R.; Jeffries, J. B.; Dreier, T.; Schulz, C.

    2016-01-01

    A multi-wavelength near-infrared (NIR) diode laser absorption sensor has been developed and demonstrated for real-time monitoring of the thickness, solute concentration, and temperature of thin films of urea-water solutions. The sensor monitors the transmittance of three near-infrared diode lasers through the thin liquid film. Film thickness, urea mass fraction, and liquid temperature were determined from measured transmittance ratios of suitable combinations of lasers. Available laser wavelengths were selected depending on the variation of the NIR absorption spectrum of the solution with temperature and solute concentration. The spectral database was measured by a Fourier transform infrared spectrometer in the range 5500-8000 cm-1 for urea solutions between 5 and 40 wt% and temperatures between 298 and 338 K. A prototype sensor was constructed, and the sensor concept was first validated with measurements using a calibration cell providing liquid layers of variable thickness (200-1500 µm), urea mass fraction (5-40 wt%) and temperature (298-318 K). Temporal variations of film thickness and urea concentration were captured during the constant-temperature evaporation of a liquid film deposited on an optically polished heated quartz flat.

  2. Urea denaturation of barnase: pH dependence and characterization of the unfolded state.

    Science.gov (United States)

    Pace, C N; Laurents, D V; Erickson, R E

    1992-03-17

    To investigate the pH dependence of the conformational stability of barnase, urea denaturation curves were determined over the pH range 2-10. The maximum conformational stability of barnase is 9 kcal mol-1 and occurs between pH 5 and 6. The dependence of delta G on urea concentration increases from 1850 cal mol-1 M-1 at high pH to about 3000 cal mol-1 M-1 near pH 3. This suggests that the unfolded conformations of barnase become more accessible to urea as the net charge on the molecule increases. Previous studies suggested that in 8 M urea barnase unfolds more completely than ribonuclease T1, even with the disulfide bonds broken [Pace, C.N., Laurents, D. V., & Thomson, J.A. (1990) Biochemistry 29, 2564-2572]. In support of this, solvent perturbation difference spectroscopy showed that in 8 M urea the Trp and Tyr residues in barnase are more accessible to perturbation by dimethyl sulfoxide than in ribonuclease T1 with the disulfide bonds broken.

  3. pH gradients induced by urea metabolism in 'artificial mouth' microcosm plaques.

    Science.gov (United States)

    Sissons, C H; Wong, L; Hancock, E M; Cutress, T W

    1994-06-01

    Evidence was sought for urea-induced pH gradients in dental plaque microcosm biofilms cultured from the mixed salivary bacteria in a multi plaque 'artificial mouth'. Application of 500 mmol/l urea for short periods (6 min) to 5-8 mm maximum-thickness plaques induced intraplaque pH gradients of up to 0.7 pH units with the surface alkaline relative to the inner plaque. These pH gradients persisted for more than 5 h in the absence of a flow of fluid. With 30-min urea applications and a flow of a basal medium containing mucin (BMM, pH 7.0), the pH of the inner (deeper) plaque regions also increased. Although the pH gradient initially formed was alkaline at the plaque surface, the BMM flow lowered the surface pH to neutrality whilst the inner layers were still alkaline, thereby reversing the pH gradient. In thick microcosm dental plaques, urea-induced pH gradients can therefore form and last many hours. They probably result from the significant time taken for urea to penetrate to the inner layers of plaque, its rapid metabolism by the outer plaque layers, and a rate-limiting clearance of ammonia. Even a slow BMM flow over the plaque greatly increased the rate of return to the resting pH, causing the gradients to change polarity.

  4. Application of lime and urea and its effect on development of Phythophthora palmivora.

    Directory of Open Access Journals (Sweden)

    Sakti Widyanta Pratama

    2015-04-01

    Full Text Available Black pod rot disease (BPRD which is caused by Phytophthora palmivora is one of the main diseases of cocoa cultivations particularly in plantations with wet climate. Black pod rot can develop rapidly under high humidity environments, particularly during rainy seasons. This disease can cause loss of harvest of up to 46.63% in East Java. The various control efforts attempted so far have not resulted in significant improvements. Urea, in addition to functioning as fertilizer, can also produce the ammonia gas which is believed to be able to suppress black pod rot. This research aims to determine the effectiveness of black pod rot control using the combination of lime and urea. This research was conducted from June to September 2013. The materials used in test included sterile soil, black pod rot infected cocoa, urea, and agricultural lime. Observation results showed that ammonia could form from urea. Lime can increase the speed of the formation. The ammonia gas forming from 0.06% urea and 0.3% lime can control the P. palmivora fungus inside the soil.

  5. Post-dialysis urea concentration: comparison between one- compartment model and two-compartment model

    Science.gov (United States)

    Tamrin, N. S. Ahmad; Ibrahim, N.

    2014-11-01

    The reduction of the urea concentration in blood can be numerically projected by using one-compartment model and two-compartment model with no variation in body fluid. This study aims to compare the simulated values of post-dialysis urea concentration for both models with the clinical data obtained from the hospital. The clinical assessment of adequacy of a treatment is based on the value of Kt/V. Further, direct calculation using clinical data and one-compartment model are presented in the form of ratio. It is found that the ratios of postdialysis urea concentration simulated using two-compartment model are higher compared to the ratios of post-dialysis urea concentration using one-compartment model. In addition, most values of post-dialysis urea concentration simulated using two-compartment model are much closer to the clinical data compared to values simulated using one-compartment model. Kt/V values calculated directly using clinical data are found to be higher than Kt/V values derived from one-compartment model.

  6. Association of Continuous-Equivalent Urea Clearances with Death Risk in Intermittent Hemodialysis

    Directory of Open Access Journals (Sweden)

    Aarne Vartia

    2016-01-01

    Full Text Available Background. Several reports describe favorable results from frequent hemodialysis, but due to the lack of unequivocal dose measures it is not clear whether the benefits are due to more efficient toxin removal or other factors. Methods. The associations with death risk of six continuous-equivalent urea clearance measures were compared in 57 conventional in-center hemodialysis treatment periods of 51 patients, together 114 patient years. The double pool dose measures were calculated with the Solute-Solver program and separately scaled to urea distribution volume or normalized with body surface area. Results. Mortality associated significantly with equivalent renal urea clearance (EKR scaled to urea distribution volume (V (p=0.033 and with EKR normalized with body surface area (BSA (p=0.044 but not with V-scaled (p=0.059 nor BSA-normalized (p=0.183 standard clearance (stdK. Women had significantly higher normalized protein catabolic rate (nPCR, EKR/V, and stdK/V than men but slightly lower BSA-normalized dose measures and lower mortality. Protein catabolic rate and dialysis dose correlated positively with each other and with survival. Conclusions. The prognostically most valid continuous-equivalent clearance in the present material was EKR/V, calculated from double pool urea generation rate, distribution volume, and time-averaged concentration.

  7. An optimized and simplified method for analysing urea and ammonia in freshwater aquaculture systems

    DEFF Research Database (Denmark)

    Larsen, Bodil Katrine; Dalsgaard, Anne Johanne Tang; Pedersen, Per Bovbjerg

    2015-01-01

    This study presents a simple urease method for analysis of ammonia and urea in freshwater aquaculture systems. Urea is hydrolysed into ammonia using urease followed by analysis of released ammonia using the salicylate-hypochlorite method. The hydrolysis of urea is performed at room temperature...... and without addition of a buffer. A number of tests were performed on water samples obtained from a commercial rainbow trout farm to determine the optimal urease concentration and time for complete hydrolysis. One mL of water sample was spiked with 1.3 mL urea at three different concentrations: 50 lg L 1, 100...... lg L 1 and 200 lg L 1 urea-N. In addition, five concentrations of urease were tested, ranging from 0.1 U mL 1 to 4 U mL 1. Samples were hydrolysed for various time periods ranging from 5 to 120 min. A urease concentration of 0.4 U mL 1 and a hydrolysis period of 120 min gave the best results, with 99...

  8. Chronocoulometric determination of urea in human serum using an inkjet printed biosensor.

    Science.gov (United States)

    Suman; O'Reilly, Emmet; Kelly, Michele; Morrin, Aoife; Smyth, Malcolm R; Killard, Anthony J

    2011-07-04

    A biosensor for the determination of urea in human serum was fabricated using a combination of inkjet printed polyaniline nanoparticles and inkjet printed urease enzyme deposited sequentially onto screen-printed carbon paste electrodes. Chronocoulometry was used to measure the decomposition of urea via the doping of ammonium at the polyaniline-modified electrode surface at -0.3 V vs. Ag/AgCl. Ammonium could be measured in the range from 0.1 to 100 mM. Urea could be measured by the sensor in the range of 2-12 mM (r(2)=0.98). The enzyme biosensor was correlated against a spectrophotometric assay for urea in 15 normal human serum samples which yielded a correlation coefficient of 0.85. Bland-Altman plots showed that in the range of 5.8-6.6 mM urea, the developed sensor had an average positive experimental bias of 0.12 mM (<2% RSD) over the reference method.

  9. Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate.

    Science.gov (United States)

    Saeedfar, Kasra; Heng, Lee Yook; Ling, Tan Ling; Rezayi, Majid

    2013-12-06

    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10-3 M to 8.28 × 10-5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.

  10. A biosensor for urea from succinimide-modified acrylic microspheres based on reflectance transduction.

    Science.gov (United States)

    Ulianas, Alizar; Heng, Lee Yook; Ahmad, Musa

    2011-01-01

    New acrylic microspheres were synthesised by photopolymerisation where the succinimide functional group was incorporated during the microsphere preparation. An optical biosensor for urea based on reflectance transduction with a large linear response range to urea was successfully developed using this material. The biosensor utilized succinimide-modified acrylic microspheres immobilized with a Nile blue chromoionophore (ETH 5294) for optical detection and urease enzyme was immobilized on the surface of the microspheres via the succinimide groups. No leaching of the enzyme or chromoionophore was observed. Hydrolysis of the urea by urease changes the pH and leads to a color change of the immobilized chromoionophore. When the color change was monitored by reflectance spectrophotometry, the linear response range of the biosensor to urea was from 0.01 to 1,000 mM (R2 = 0.97) with a limit of detection of 9.97 μM. The biosensor response showed good reproducibility (relative standard deviation = 1.43%, n = 5) with no interference by major cations such as Na+, K+, NH4+ and Mg2+. The use of reflectance as a transduction method led to a large linear response range that is better than that of many urea biosensors based on other optical transduction methods.

  11. Reduction of Ammonia Loss from Urea through Mixing with Humic Acids Isolated from Peat Soil (Saprists

    Directory of Open Access Journals (Sweden)

    Regis Bernard

    2009-01-01

    Full Text Available Problem statement: Application of urea as a source of nitrogen fertilizer has an adverse effect on ammoniacal loss to the environment. This study was conducted to reduce ammonia loss from urea by mixing with Humic Acids (HA isolated from Saprists peat. Approach: The effects of urea amended with four different amounts of humic acids, 0.25, 0.50, 0.75 and 1.00 g were evaluated in laboratory conditions using a closed dynamic air flow system. The mineral soil that was used as medium for the study was Bekenu series (typic paleudults. Amnonia loss, soil pH, exchangeable ammonium, available nitrate, exchangeable K, Ca, Mg and Na were determined using standard procedures. Results: All the treatments with HA significantly reduced ammoinia loss compared to urea alone. Increasing the amount of HA also significantly retained soil exchangeable ammonium and available nitrate. Treatments with HA had no significant effect on the concentrations of Mg, K and Ca, except for Na. The effect of HA in the mixtures on ammonia loss was related to their effect on the formation of ammonium over ammonia. Conclusion: Surface-applied urea fertilizer efficiency could be increased when coated with 1.00 g of HA.

  12. Swelling characterization of gamma-radiation induced crosslinked acrylamide/maleic acid hydrogels in urea solutions

    Energy Technology Data Exchange (ETDEWEB)

    Karadag, Erdener [Department of Chemistry, Fen-Edebiyat Faculty, Adnan Menderes University, TR09010 Aydin (Turkey)]. E-mail: ekaradag@adu.edu.tr; Uzuem, Omer Baris [Department of Chemistry, Fen-Edebiyat Faculty, Adnan Menderes University, TR09010 Aydin (Turkey); Saraydin, Dursun [Department of Chemistry, Cumhuriyet University, 58140 Sivas (Turkey); Gueven, Olgun [Department of Chemistry, Hacettepe University, 06532 Beytepe, Ankara (Turkey)

    2006-07-01

    Swelling behaviors of crosslinked acrylamide/maleic acid (CAMA) hydrogels synthesized by gamma-radiation crosslinking of acrylamide and maleic acid in aqueous urea solutions were investigated. CAMA hydrogels containing different amounts of maleic acid were obtained in the form of rods via a radiation technique. Swelling experiments were performed in two different urea concentrations at 25 {sup o}C, gravimetrically. The hydrogels showed enormous swelling in aqueous medium and displayed swelling characteristics that were highly dependent on the chemical composition of the hydrogels and irradiation dose. Diffusion behavior and some swelling kinetics parameters were investigated. The values of the swelling percent of CAMA hydrogels were between 935% and 5212%, while the values of the swelling percent of acrylamide hydrogels were between 669% and 923%. The difference of the concentrations of urea solutions was not affected by the swelling properties of the hydrogel systems. Urea/water diffusion into hydrogels was found to be non-Fickian in character. Equilibrium urea/water contents of the hydrogel systems were changed between 0.8699 and 0.9812.

  13. A Biosensor for Urea from Succinimide-Modified Acrylic Microspheres Based on Reflectance Transduction

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2011-08-01

    Full Text Available New acrylic microspheres were synthesised by photopolymerisation where the succinimide functional group was incorporated during the microsphere preparation. An optical biosensor for urea based on reflectance transduction with a large linear response range to urea was successfully developed using this material. The biosensor utilized succinimide-modified acrylic microspheres immobilized with a Nile blue chromoionophore (ETH 5294 for optical detection and urease enzyme was immobilized on the surface of the microspheres via the succinimide groups. No leaching of the enzyme or chromoionophore was observed. Hydrolysis of the urea by urease changes the pH and leads to a color change of the immobilized chromoionophore. When the color change was monitored by reflectance spectrophotometry, the linear response range of the biosensor to urea was from 0.01 to 1,000 mM (R2 = 0.97 with a limit of detection of 9.97 mM. The biosensor response showed good reproducibility (relative standard deviation = 1.43%, n = 5 with no interference by major cations such as Na+, K+, NH4+ and Mg2+. The use of reflectance as a transduction method led to a large linear response range that is better than that of many urea biosensors based on other optical transduction methods.

  14. Urea hydrolysis and recovery of nitrogen and phosphorous as MAP from stale human urine

    Institute of Scientific and Technical Information of China (English)

    LIU Zhigang; ZHAO Qingliang; WANG Kun; LEE Duujong; QIU Wei; WANG Jianfang

    2008-01-01

    Laboratory-scale tests for magnesium ammonium phosphate (MAP) precipitation following urea hydrolysis of human urine were conducted using orthogonal experiment design. The effects of initial pH, temperature and the volumetric ratios of stale urine to fresh urine, on urea hydrolysis in urine were studied to determine the final hydrolysis time to recover most nitrogen from separated human urine by MAP. With a volumetric ratio of stale to fresh urine >10% and at temperature of 20℃ and above, urea hydrolysis could be completed in two days. Alkaline pH inhibited urea hydrolysis progress. The final pHs were all around 9.0 following urine hydrolysis, while the suspension pH might act as an indicator to detect the start and extent of urea hydrolysis. Over 95% of ammonium nitrogen and over 85% of phosphorus from hydrolyzed urine as MAP precipitate were obtained using MgCl2·6H2O and Na2HPO4·12H2O as precipitation agents at pH 8.5, molar ratio of Mg2+:NH4+-N:PO43--P at (1.2--1.3):1:1, mixing speed of 120 r/min, and precipitation time and reaction time of 3 h and 15 min, respectively. The precipitate has a structure resembling pure MAP crystal.

  15. Glycerol and urea can be used to increase skin permeability in reduced hydration conditions.

    Science.gov (United States)

    Björklund, Sebastian; Engblom, Johan; Thuresson, Krister; Sparr, Emma

    2013-12-18

    The natural moisturizing factor (NMF) is a group of hygroscopic molecules that is naturally present in skin and protects from severe drying. Glycerol and urea are two examples of NMF components that are also used in skin care applications. In the present study, we investigate the influence of glycerol and urea on the permeability of a model drug (metronidazole, Mz) across excised pig skin membranes at different hydrating conditions. The degree of skin hydration is regulated by the gradient in water activity across the membrane, which in turn depends on the water activity of the formulation in contact with the skin membrane. Here, we determine the water activity of all formulations employed using an isothermal calorimetric method. Thus, the gradient in water activity is controlled by a novel experimental set-up with well-defined boundary conditions on both sides of the skin membrane. The results demonstrate that glycerol and urea can retain high steady state flux of Mz across skin membranes at dehydrating conditions, which otherwise would decrease the permeability due to dehydration. X-ray diffraction measurements are performed to give insight into the effects of glycerol and urea on SC molecular organization. The novel steady state flux results can be related to the observation that water, glycerol, and urea all affect the structural features of the SC molecular components in a similar manner.

  16. Ammonia volatilization and yield components after application of polymer-coated urea to maize

    Directory of Open Access Journals (Sweden)

    Eduardo Zavaschi

    2014-08-01

    Full Text Available A form of increasing the efficiency of N fertilizer is by coating urea with polymers to reduce ammonia volatilization. The aim of this study was to evaluate the effect of polymer-coated urea on the control of ammonia volatilization, yield and nutritional characteristics of maize. The experiment was carried out during one maize growing cycle in 2009/10 on a Geric Ferralsol, inUberlândia, MG, Brazil. Nitrogen fertilizers were applied as topdressing on the soil surface in the following urea treatments: polymer-coated urea at rates of 45, 67.5 and 90 kg ha-1 N and one control treatment (no N, in randomized blocks with four replications. Nitrogen application had a favorable effect on N concentrations in leaves and grains, Soil Plant Analysis Development (SPAD chlorophyll meter readings and on grain yield, where as coated urea had no effect on the volatilization rates, SPAD readings and N leaf and grain concentration, nor on grain yield in comparison to conventional fertilization.

  17. Bioelectrochemical degradation of urea at platinized boron doped diamond electrodes for bioregenerative systems

    Science.gov (United States)

    Nicolau, Eduardo; González-González, Ileana; Flynn, Michael; Griebenow, Kai; Cabrera, Carlos R.

    2009-10-01

    The recovery of potable water from space mission wastewater is critical for the life support and environmental health of crew members in long-term missions. NASA estimates reveal that at manned space missions 1.91 kg/person day of urine is produced, with urea and various salts as its main components. In this research we explore the utilization of urease (EC 3.5.1.5, 15,000 U/g) along with a platinized boron doped diamond electrode (Pt-BDD) to degrade urea. Urea is directly degraded to nitrogen by the in situ utilization of the reaction products as a strategy to increase the amount of clean water in future space expeditions. The biochemical reaction of urease produces ammonia and carbon dioxide from urea. Thereafter, ammonia is electrooxidized at the interface of the Pt-BDD producing molecular nitrogen. The herein presented system has been proven to have 20% urea conversion efficiency. This research has potential applications for future long-term space missions since the reaction byproducts could be used for a biomass subsystem (in situ resource recovery), while generating electricity from the same process.

  18. Determination of parotid urea secretion in sheep by means of ultrasonic flow probes and a multifactorial regression analysis.

    Science.gov (United States)

    Cirio, A; Méot, F; Delignette-Muller, M L; Boivin, R

    2000-02-01

    For determination of the dynamics of parotid urea secretion in conscious sheep, a previously standardized transit time ultrasonic flow metering system was used to measure bilateral parotid flow. Six ewes fed for ad libitum consumption were prepared under halothane anesthesia with ultrasonic probes around both parotid ducts; these ducts were also cannulated orally. After probe encapsulation (8 d), parotid flows were recorded during 24 h, and samples of saliva and blood for urea determination were obtained hourly. Jaw movements were recorded by means of a submandibular balloon to monitor feeding behavior. Urea concentration in parotid saliva was 60 to 74% of that in plasma (a positive linear correlation existed) and was poorly influenced by the parotid flow. The amount of urea secreted with parotid saliva was directly related to the salivation rate. To calculate the urea secretion in parotid saliva, a multiple linear regression model was developed from computer-calculated parotid flows over 1-min periods and plasma urea concentration. The model was accurate because the plot of calculated vs measured values was not significantly different from the line of identity. The daily parotid urea N varied from .35 to 1.02 g among ewes. The higher urea secretion rate found during rumination and eating (1.32+/-.42 and .98 +/-.33 mg/min, respectively) vs. during rest (.60+/-.39 mg/ min, Pprecise measurements of parotid urea secretion without disturbing the animal or altering the physiological regulation of salivary secretion.

  19. Ammonia volatilization and availability of Cu, Zn induced by applications of urea with and without coating in soils

    Institute of Scientific and Technical Information of China (English)

    Zhaohui Jiang; Qingru Zeng; Boqing Tie; Bohan Liao; Hejie Pi; Xiaoyou Feng; Yulin Sun

    2012-01-01

    Ammonia volatilization and the distribution of Cu and Zn were investigated in two types of soil treated with coated and uncoated urea.The rate of ammonia volatilization in two weeks after fertilizing with coated urea was 8% in soil 1 (soil derived from river alluvial deposits in Dongting Lake Plain) and 5.15% in soil 2 (red soil derived from quaternary red clay),about half the rates observed when fertilizing with common urea,implying that the hydrolysis speed of the coated urea was lower than for common urea,and that the coated urea can increase nitrogen use efficacy.As for the availability of Cu and Zn,their concentrations decreased in the first week after fertilization,and then increased,which was contrary to the effect of treatment on soil pH.For example,when the pH was 7.99,there was 0.79 mg/kg exchangeable Cu and 0.85 mg/kg exchangeable Zn in the soil derived from river alluvial deposits in Dongting Lake Plain.However,the concentrations of exchangeable Cu and Zn were generally lower for the common urea treatments than those with the coated urea because the peak pH for the common urea treatment was greater.The concentrations of these elements correlated well with pH in the range 4-8 in second order polynomial fits.

  20. A novel acid-stable, acid-active beta-galactosidase potentially suited to the alleviation of lactose intolerance.

    Science.gov (United States)

    O'Connell, Shane; Walsh, Gary

    2010-03-01

    Extracellular beta-galactosidase produced by a strain of Aspergillus niger van Tiegh was purified to homogeneity using a combination of gel filtration, ion-exchange, chromatofocusing, and hydrophobic interaction chromatographies. The enzyme displayed a temperature optimum of 65 degrees C and a low pH optimum of between 2.0 and 4.0. The monomeric glycosylated enzyme displayed a molecular mass of 129 kDa and an isoelectric point of 4.7. Protein database similarity searching using mass spectrometry-derived sequence data indicate that the enzyme shares homology with a previously sequenced A. niger beta-galactosidase. Unlike currently commercialised products, the enzyme displayed a high level of stability when exposed to simulated gastric conditions in vitro, retaining 68+/-2% of original activity levels. This acid-stable, acid-active beta-galactosidase was formulated, along with a neutral beta-galactosidase from Kluyveromyces marxianus DSM5418, in a novel two-segment capsule system designed to ensure delivery of enzymes of appropriate physicochemical properties to both stomach and small intestine. When subjected to simulated full digestive tract conditions, the twin lactase-containing capsule hydrolyzed, per unit activity, some 3.5-fold more lactose than did the commercial supplemental enzyme. The acid-stable, acid-active enzyme, along with the novel two-segment delivery system, may prove beneficial in the more effective treatment of lactose intolerance.

  1. Response surface modeling of acid activation of raw diatomite using in sunflower oil bleaching by: Box-Behnken experimental design.

    Science.gov (United States)

    Larouci, M; Safa, M; Meddah, B; Aoues, A; Sonnet, P

    2015-03-01

    The optimum conditions for acid activation of diatomite for maximizing bleaching efficiency of the diatomite in sun flower oil treatment were studied. Box-Behnken experimental design combining with response surface modeling (RSM) and quadratic programming (QP) was employed to obtain the optimum conditions of three independent variables (acid concentration, activation time and solid to liquid) for acid activation of diatomite. The significance of independent variables and their interactions were tested by means of the analysis of variance (ANOVA) with 95 % confidence limits (α = 0.05). The optimum values of the selected variables were obtained by solving the quadratic regression model, as well as by analyzing the response surface contour plots. The experimental conditions at this global point were determined to be acid concentration = 8.963 N, activation time = 11.9878 h, and solid to liquid ratio = 221.2113 g/l, the corresponding bleaching efficiency was found to be about 99 %.

  2. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    Directory of Open Access Journals (Sweden)

    Gao Qianqian

    2012-03-01

    Full Text Available Abstract Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS, have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene.

  3. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential.

    Science.gov (United States)

    Desbois, Andrew P; Smith, Valerie J

    2010-02-01

    Amongst the diverse and potent biological activities of free fatty acids (FFAs) is the ability to kill or inhibit the growth of bacteria. The antibacterial properties of FFAs are used by many organisms to defend against parasitic or pathogenic bacteria. Whilst their antibacterial mode of action is still poorly understood, the prime target of FFA action is the cell membrane, where FFAs disrupt the electron transport chain and oxidative phosphorylation. Besides interfering with cellular energy production, FFA action may also result from the inhibition of enzyme activity, impairment of nutrient uptake, generation of peroxidation and auto-oxidation degradation products or direct lysis of bacterial cells. Their broad spectrum of activity, non-specific mode of action and safety makes them attractive as antibacterial agents for various applications in medicine, agriculture and food preservation, especially where the use of conventional antibiotics is undesirable or prohibited. Moreover, the evolution of inducible FFA-resistant phenotypes is less problematic than with conventional antibiotics. The potential for commercial or biomedical exploitation of antibacterial FFAs, especially for those from natural sources, is discussed.

  4. Effects of Fishmeal or Urea Supplementation on Ruminal Fibre Digestion and Passage Kinetics in Bali Cows

    DEFF Research Database (Denmark)

    I.G.N, Jelantik; C., Leo-Penu; J., Jeremias;

    2010-01-01

    libitum access to grass hay or supplemented daily with two levels of urea, i.e. 38 and 74 g, or two levels of fishmeal, i.e. 156 and 312 g. The measured parameters included were intake and apparent digestibility of DM and NDF, in sacco ruminal fibre degradation, and in vivo ruminal NDF digestion...... and passage kinetics. Intakes of DM and NDF were significantly improved by supplementation of both urea and fishmeal with fishmeal exerted a better effect at low level of supplementation. The increase of intake was mainly associated with the significant increase of rumen in sacco degradation of NDF. However......Five non-pregnant Bali cows were used in a 5x5 latin square experimental design with the objective to study the effects of supplementation of graded levels of urea or fishmeal on fibre intake and digestion kinetics in Bali cows consuming low quality tropical grass hay. The animals were given ad...

  5. A comparison of nitrogen utilization and urea metabolism between Tibetan and fine-wool sheep.

    Science.gov (United States)

    Zhou, J W; Mi, J D; Titgemeyer, E C; Guo, X S; Ding, L M; Wang, H C; Qiu, Q; Li, Z P; Long, R J

    2015-06-01

    To study metabolic adaptation to harsh foraging conditions, an experiment was conducted to characterize and quantify N utilization efficiency and urea metabolism in Tibetan and fine-wool sheep fed 4 levels of dietary N (11.0, 16.7, 23.1, and 29.2 g N/kg DM) in 2 concurrent 4 × 4 Latin square designs. Urea kinetics were determined using continuous intrajugular infusions of 15N15N-urea. Urinary excretions of total N and urea N increased linearly (P < 0.001) with dietary N and were not different between breeds (P ≥ 0.37). Fecal N excretion increased with dietary N for Tibetan sheep but not for fine-wool sheep (linear dietary N × breed; P < 0.05). Nitrogen retention (both amount per day and percentage of N intake) increased with increasing dietary N concentration (P < 0.001), and the rates of increase were greater in fine-wool than in Tibetan sheep (linear dietary N × breed and cubic dietary N × breed; P < 0.05). In Tibetan sheep, N retention as a percentage of intake was greatest for diets containing 16.7 g N/kg DM, whereas it was maximal for fine-wool sheep when the diet contained 23.1 g N/kg DM. Urea N entry rate, urea N recycled to the gastrointestinal tract (GIT), and urea N returned to the ornithine cycle all increased with dietary N (P < 0.05), and all were greater in Tibetan than fine-wool sheep for the 11.0 g N/kg DM diet but were greater in fine-wool than Tibetan sheep for the diet with 29.2 g N/kg DM (linear dietary N × breed; P < 0.05). Urea N excreted in feces, both amount and fraction of GIT entry rate, was less in Tibetan than fine-wool sheep for the 11.0 and 16.7 g N/kg DM diets but similar for diets with 23.1 or 29.2 g N/kg DM (linear dietary N × breed; P < 0.01). For the lowest-protein diet, the fraction of urea N production recycled to the GIT was greater in the Tibetan than fine-wool sheep (88% vs. 82%), but for the diet with 29.2 g N/kg DM it was greater for fine-wool than Tibetan sheep (46% vs. 39%; linear dietary N × breed; P < 0

  6. Simultaneous removal of SO{sub 2} and NOx by wet scrubbing using urea solution

    Energy Technology Data Exchange (ETDEWEB)

    Fang, P.; Cen, C.P.; Tang, Z.X.; Zhong, P.Y.; Chen, D.S.; Chen, Z.H. [MEP, Guangzhou (China)

    2011-03-15

    The experiments were performed in a countercurrent packed column in a continuous mode to study the absorption of NOx and SO{sub 2} in urea solutions. On the basis of high SO{sub 2} removal efficiency, the NOx removal efficiencies under various experimental conditions were emphatically measured. The various influencing factors, such as urea concentration, temperature, initial pH value, oxidation degree of nitrogen oxides, SO{sub 2} concentration and additive on removal efficiencies of NOx were studied experimentally, and the optimal conditions were established. The reaction products were analyzed, and reaction mechanism and total chemical reaction equations for simultaneous desulfurization and denitration using urea solution were deduced. Molar reaction enthalpy, molar formation Gibbs function and chemical reaction equilibrium constant were calculated by thermodynamic methods. The calculation results show that the simultaneous desulfurization and denitration are available, and the removal efficiencies are 100% nearly.

  7. Stability of guest molecules in urea canal complexes by canal polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Fumio; Makuuchi, Keizo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1995-03-01

    It was found that various organic materials are attracted into urea canal by hexanediol diacrylate (HDDA) and long chain compounds. This means that materials which does not form complex by itself are induced in canal by HDDA and long chain compounds. To include with stability perfumes, insecticides, attractants and repellents in urea canal, leaf alcohol was used as a model compound for guest molecules in the canal. The leaf alcohol from the canal released gradually over many days and the release was inhibited for 15 days by long chain compounds and for 30 days by polymerized HDDA after irradiation. After releasing, the leaf alcohol in the canal remained 25 % stable for long chain compounds and 40 % for polymerized HDDA. The dose required for stabilization of leaf alcohol in the urea canal by canal polymerization of HDDA was 30 kGy. (author).

  8. A Facile, Choline Chloride/Urea Catalyzed Solid Phase Synthesis of Coumarins via Knoevenagel Condensation

    Directory of Open Access Journals (Sweden)

    Hosanagara N. Harishkumar

    2011-01-01

    Full Text Available The influence of choline chloride/urea ionic liquid in solid phase on the Knoevenagel condensation is demonstrated. The active methylene compounds such as meldrum’s acid, diethylmalonate, ethyl cyanoacetate, dimethylmalonate, were efficiently condensed with various salicylaldehydes in presence of choline chloride/urea ionic liquid without using any solvents or additional catalyst. The reaction is remarkably facile because of the air and water stability of the catalyst, and needs no special precautions. The reactions were completed within 1hr with excellent yields (95%. The products formed were sufficiently pure, and can be easily recovered. The use of ionic liquid choline chloride/urea in solid phase offered several significant advantages such as low cost, greater selectivity and easy isolation of products.

  9. Extended structure design with simple molybdenum oxide building blocks and urea as a directing agent.

    Science.gov (United States)

    Veen, Sandra J; Roy, Soumyajit; Filinchuk, Yaroslav; Chernyshov, Dmitry; Petukhov, Andrei V; Versluijs-Helder, Marjan; Broersma, Alfred; Soulimani, Fouad; Visser, Tom; Kegel, Willem K

    2008-08-04

    We report here a simple one-pot directed synthesis of an oxomolybdate urea composite in which elementary molybdenum oxide building blocks are linked together with the aid of urea. This type of directed material design resulted in large rod-like crystals of an inorganic-organic hybrid extended structure of {MoO 3(NH 2-CO-NH 2)} infinity consisting of right- and left-handed helical units. In the crystal structure urea acts both as a glue that links the inorganic molybdenum units into a helix and as a supramolecular linker for the stabilization of the crystal structure as a whole. This type of molecular topology resulted in an unexpectedly high thermal stability.

  10. Homogeneous dispersion of gallium nitride nanoparticles in a boron nitride matrix by nitridation with urea.

    Science.gov (United States)

    Kusunose, Takafumi; Sekino, Tohru; Ando, Yoichi

    2010-07-01

    A Gallium Nitride (GaN) dispersed boron nitride (BN) nanocomposite powder was synthesized by heating a mixture of gallium nitrate, boric acid, and urea in a hydrogen atmosphere. Before heat treatment, crystalline phases of urea, boric acid, and gallium nitrate were recognized, but an amorphous material was produced by heat treatment at 400 degrees C, and then was transformed into GaN and turbostratic BN (t-BN) by further heat treatment at 800 degrees C. TEM obsevations of this composite powder revealed that single nanosized GaN particles were homogeneously dispersed in a BN matrix. Homogeneous dispersion of GaN nanoparticles was thought to be attained by simultaneously nitriding gallium nitrate and boric acid to GaN and BN with urea.

  11. Modulation of the gut microbiota with antibiotic treatment suppresses whole body urea production in neonatal pigs

    DEFF Research Database (Denmark)

    Puiman, Patrycja; Stoll, Barbara; Mølbak, Lars

    2013-01-01

    administered antibiotics, or probiotics affects whole body nitrogen and amino acid turnover. We quantified whole body urea kinetics, threonine fluxes, and threonine disposal into protein, oxidation, and tissue protein synthesis with stable isotope techniques. Compared with controls, antibiotics reduced...... the number and diversity of bacterial species in the distal small intestine (SI) and colon. Antibiotics decreased plasma urea concentrations via decreased urea synthesis. Antibiotics elevated threonine plasma concentrations and turnover, as well as whole body protein synthesis and proteolysis. Antibiotics...... in the proximal SI but not in other tissues. In conclusion, modulation of the gut microbiota by antibiotics and probiotics reduced hepatic ureagenesis and intestinal protein synthesis, but neither altered whole body net threonine balance. These findings suggest that changes in amino acid and nitrogen metabolism...

  12. A theoretical study on the water-mediated asynchronous addition between urea and formaldehyde

    Institute of Scientific and Technical Information of China (English)

    Tao-Hong Li; Xiao-Guang Xie; Guan-Ben Du

    2013-01-01

    The reaction between urea and formaldehyde in water solution was theoretically investigated by using B3LYP and MP2 methods,It was found that the addition of the nitrogen atom in urea to the carbonyl group in formaldehyde precedes the proton transfer and the proton migration from water to the carbonyl group occurs before the proton abstraction from the nitrogen,With one or two water molecules involved in the TS,the activation energy barrier is lowered compared to the TS of the mechanism with no water participation.The energy change along the reaction coordinate clearly shows that a zwitterionic-like intermediate does not exist on the PES.The reaction between urea and formaldehyde occurs in a concerted mechanism but with asynchronous characters.This is different from the stepwise mechanism recently found for the amination reactions of formaldehyde.

  13. Study on the removal of urea in wastewater using Fenton reagent

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The great amount of NH3-N produced in biological hydrolysis process of high concentration urea can inhibit the growth of microorganisms. In allusion to this problem, the Fenton reagent was used to treat high concentration urea wastewater. And the optimum conditions of this experiment were employed as follows: Fe (Ⅱ) -H2O2mole ratio was 1/3.53, H2O2 was 4 mL (corresponding to 35.30 mmol) , pH was 3.0 -3.5. Then the experiment shows that the urea concentration decreases from 500 mg/L to less than 2 mg/L, or is even not detected; under the same dose of H2O2 , repetitious addition does better than one-off addition; the reaction time within one minute or to be prolonged has little influence on removal effect. The results verify feasibility of this method.

  14. When does TMAO fold a polymer chain and urea unfold it?

    CERN Document Server

    Mondal, Jagannath; Berne, B J

    2013-01-01

    Longstanding mechanistic questions about the role of protecting osmolyte trimethylamine N- oxide (TMAO) which favors protein folding and the denaturing osmolyte urea are addressed by studying their effects on the folding of uncharged polymer chains. Using atomistic molecular dynamics simulations, we show that 1-M TMAO and 7-M urea solutions act dramatically differently on these model polymer chains. Their behaviors are sensitive to the strength of the attractive dispersion interactions of the chain with its environment: when these dispersion interactions are high enough, TMAO suppresses the formation of extended conformations of the hydrophobic polymer as compared to water, while urea promotes formation of extended conformations. Similar trends are observed experimentally on real protein systems. Quite surprisingly, we find that both protecting and denaturing osmolytes strongly interact with the polymer, seemingly in contrast with existing explanations of the osmolyte effect on proteins. We show that what rea...

  15. Interlayer-type Crystal Structure of N-(1-Adamantyl)urea

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The crystal structure of N-(1-adamantyl)urea (tricyclo[3,3,1,13,7]decan-1-urea, C11H18N2O) has been determined by X-ray diffraction. The crystal belongs to the monoclinic system, space group P21/c with a = 13.070(2), b = 8.942(1), c = 9.390(1)(A), β = 109.819(8)°, V = 1032.5(2)(A)3, Mr = 194.27, Z = 4, Dc = 1.250 g/cm3, μ= 0.081 mm-1, F(000) = 424, R = 0.0427 and wR = 0.1076 for 1105 observed reflections with I > 2σ(I). The structure of the title compound consists of an adamantly cage which is a stable tricyclo structure with chair conformation and the substituted urea forms the interlayer-type crystal structure via hydrogen bonds between the molecules.

  16. A Role for Cytosolic Fumarate Hydratase in Urea Cycle Metabolism and Renal Neoplasia

    Directory of Open Access Journals (Sweden)

    Julie Adam

    2013-05-01

    Full Text Available The identification of mutated metabolic enzymes in hereditary cancer syndromes has established a direct link between metabolic dysregulation and cancer. Mutations in the Krebs cycle enzyme, fumarate hydratase (FH, predispose affected individuals to leiomyomas, renal cysts, and cancers, though the respective pathogenic roles of mitochondrial and cytosolic FH isoforms remain undefined. On the basis of comprehensive metabolomic analyses, we demonstrate that FH1-deficient cells and tissues exhibit defects in the urea cycle/arginine metabolism. Remarkably, transgenic re-expression of cytosolic FH ameliorated both renal cyst development and urea cycle defects associated with renal-specific FH1 deletion in mice. Furthermore, acute arginine depletion significantly reduced the viability of FH1-deficient cells in comparison to controls. Our findings highlight the importance of extramitochondrial metabolic pathways in FH-associated oncogenesis and the urea cycle/arginine metabolism as a potential therapeutic target.

  17. Photocatalytic synthesis of urea from in situ generated ammonia and carbon dioxide.

    Science.gov (United States)

    Srinivas, Basavaraju; Kumari, Valluri Durga; Sadanandam, Gullapelli; Hymavathi, Chilumula; Subrahmanyam, Machiraju; De, Bhudev Ranjan

    2012-01-01

    TiO(2) and Fe-titanate (different wt%) supported on zeolite were prepared by sol-gel and solid-state dispersion methods. The photocatalysts prepared were characterized by X-ray diffraction, scanning electron microscopy and ultraviolet (UV)-visible diffuse reflectance spectroscopy techniques. Photocatalytic reduction of nitrate in water and isopropanol/oxalic acid as hole scavengers are investigated in a batch reactor under UV illumination. The yield of urea increased notably when the catalysts were supported on zeolite. The Fe-titanate supported catalyst promotes the charge separation that contributes to an increase in selective formation of urea. The product formation is because of the high adsorption of in situ generated CO(2) and NH(3) over shape-selective property of the zeolite in the composite photocatalyst. The maximum yield of urea is found to be 18 ppm while 1% isopropanol containing solution over 10 wt% Fe-titanate/HZSM-5 photocatalyst was used.

  18. A role for cytosolic fumarate hydratase in urea cycle metabolism and renal neoplasia.

    Science.gov (United States)

    Adam, Julie; Yang, Ming; Bauerschmidt, Christina; Kitagawa, Mitsuhiro; O'Flaherty, Linda; Maheswaran, Pratheesh; Özkan, Gizem; Sahgal, Natasha; Baban, Dilair; Kato, Keiko; Saito, Kaori; Iino, Keiko; Igarashi, Kaori; Stratford, Michael; Pugh, Christopher; Tennant, Daniel A; Ludwig, Christian; Davies, Benjamin; Ratcliffe, Peter J; El-Bahrawy, Mona; Ashrafian, Houman; Soga, Tomoyoshi; Pollard, Patrick J

    2013-05-30

    The identification of mutated metabolic enzymes in hereditary cancer syndromes has established a direct link between metabolic dysregulation and cancer. Mutations in the Krebs cycle enzyme, fumarate hydratase (FH), predispose affected individuals to leiomyomas, renal cysts, and cancers, though the respective pathogenic roles of mitochondrial and cytosolic FH isoforms remain undefined. On the basis of comprehensive metabolomic analyses, we demonstrate that FH1-deficient cells and tissues exhibit defects in the urea cycle/arginine metabolism. Remarkably, transgenic re-expression of cytosolic FH ameliorated both renal cyst development and urea cycle defects associated with renal-specific FH1 deletion in mice. Furthermore, acute arginine depletion significantly reduced the viability of FH1-deficient cells in comparison to controls. Our findings highlight the importance of extramitochondrial metabolic pathways in FH-associated oncogenesis and the urea cycle/arginine metabolism as a potential therapeutic target.

  19. Synthesis of propylene carbonate from urea and 1,2-propanediol

    Institute of Scientific and Technical Information of China (English)

    Zhi Wen Gao; Shou Feng Wang; Chun Gu Xia

    2009-01-01

    The production of propylene carbonate(PC)from urea and 1,2-propanediol(PG)was investigated in a batch process.The catalytic performances of zinc chloride and magnesium chloride were investigated for this reaction system.The influences of various operation conditions on the PC yield were explored.In this work,MgCl2 and ZnCl2 showed the excellent catalytic activity toward PC synthesis,and the yields of propylene carbonate reached 96.5% and 92.4%,respectively.The optimum reaction conditions were as follows:ethanol/urea molar ratio of 4,catalyst concentration of 1.5%,reaction temperature of 160 ℃,reaction time of 3 h,respectively.The route from urea and 1,2-propanediol shows advantages,such as mild reaction condition and safe operation.The catalytic system is environmentally benign.

  20. Comparison between conformational change and inactivation rates of aminoacylase during denaturation in urea solutions

    Institute of Scientific and Technical Information of China (English)

    王洪睿; 王希成; 张彤; 周海梦

    1995-01-01

    The kinetic method of the substrate reaction in the presence of mactivator previously described by Tsou has been applied to the determination of inactivation rates of aminoacylase during denaturation in urea solutions. The protective effect of substrate on the inactivation of aminoacylase by urea has been investigated. Simultaneously, the comparison between conformational change and inactivation rates of enzyme in the urea solutions of different concentrations has been studied. Results obtained show that the inactivation rate constants of the enzyme are larger than the rate constants of conformational changes. The present results show that the active site of metal enzyme-aminoacylase is also located in a limited and flexible region of the molecule that is more sensitive to denaturants than the enzyme as a whole.