WorldWideScience

Sample records for acid treatment enhances

  1. Enhancing the crystalline degree of carbon nanotubes by acid treatment, air oxidization and heat treatment

    Institute of Scientific and Technical Information of China (English)

    Chensha Li; Baoyou Zhang; Xingjuan Chen; Xiaoqing Hu; Ji Liang

    2005-01-01

    Three approaches of treating carbon nanotubes (CNTs) including acid treatment, air oxidization and heat treatment at high temperature were studied to enhance the crystalline degree of carbon nanotubes. High temperature heat-treatment elevates the crystalline degree of carbon nanotubes. Acid treatment removes parts of amorphous carbonaceous matter through its oxidization effect.Air oxidization disperses carbon nanotubes and amorphous carbonaceous matter. The treatment of combining acid treatment with heat-treatment further elevates the crystalline degree of carbon nanotubes comparing with acid treatment or heat-treatment. The combination of the three treatments creates the thorough effects of enhancing the crystalline degree of carbon nanotubes.

  2. Enhancement of the ferromagnetic order of graphite after sulphuric acid treatment

    OpenAIRE

    Barzola-Quiquia, J.; W. Böhlmann; Esquinazi, P.; Schadewitz, A.; Ballestar, A.; Dusari, S.; Schultze-Nobre, L.; Kersting, B.

    2011-01-01

    We have studied the changes in the ferromagnetic behavior of graphite powder and graphite flakes after treatment with diluted sulphuric acid. We show that this kind of acid treatment enhances substantially the ferromagnetic magnetization of virgin graphite micrometer size powder as well as in graphite flakes. The anisotropic magnetoresistance (AMR) amplitude at 300 K measured in a micrometer size thin graphite flake after acid treatment reaches values comparable to polycrystalline cobalt.

  3. Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe 2 by Hydrohalic Acid Treatment

    KAUST Repository

    Han, Hau-Vei

    2015-12-30

    Atomically thin two-dimensional transition-metal dichalcogenides (TMDCs) have attracted much attention recently due to their unique electronic and optical properties for future optoelectronic devices. The chemical vapor deposition (CVD) method is able to generate TMDCs layers with a scalable size and a controllable thickness. However, the TMDC monolayers grown by CVD may incorporate structural defects, and it is fundamentally important to understand the relation between photoluminescence and structural defects. In this report, point defects (Se vacancies) and oxidized Se defects in CVD-grown MoSe2 monolayers are identified by transmission electron microscopy and X-ray photoelectron spectroscopy. These defects can significantly trap free charge carriers and localize excitons, leading to the smearing of free band-to-band exciton emission. Here, we report that the simple hydrohalic acid treatment (such as HBr) is able to efficiently suppress the trap-state emission and promote the neutral exciton and trion emission in defective MoSe2 monolayers through the p-doping process, where the overall photoluminescence intensity at room temperature can be enhanced by a factor of 30. We show that HBr treatment is able to activate distinctive trion and free exciton emissions even from highly defective MoSe2 layers. Our results suggest that the HBr treatment not only reduces the n-doping in MoSe2 but also reduces the structural defects. The results provide further insights of the control and tailoring the exciton emission from CVD-grown monolayer TMDCs.

  4. Enhancement of the Electrical Properties of CVD-Grown Graphene with Ascorbic Acid Treatment

    Science.gov (United States)

    Tang, Chunmiao; Chen, Zhiying; Zhang, Haoran; Zhang, Yaqian; Zhang, Yanhui; Sui, Yanping; Yu, Guanghui; Cao, Yijiang

    2016-02-01

    Ascorbic acid was used to modify to chemical vapor deposition (CVD)-grown graphene films transferred onto SiO2 substrate. Residual polymer (polymethyl methacrylate), Fe3+, Cl-, H2O, and O2 affected the electrical and thermal properties on graphene during the transfer or device fabrication processes. Exposure of transferred graphene to ascorbic acid resulted in significantly enhanced electrical properties with increased charge carrier mobility. All devices exhibited more than 30% improvement in room temperature carrier mobility in air. The carrier mobility of the treated graphene did not significantly decrease in 21 days. This result can be attributed to electron donation to graphene through the -OH functional group in ascorbic acid that is absorbed in graphene. This work provides a method to enhance the electrical properties of CVD-grown graphene.

  5. Disinfection efficiency of peracetic acid, UV and ozone after enhanced primary treatment of municipal wastewater.

    Science.gov (United States)

    Gehr, Ronald; Wagner, Monika; Veerasubramanian, Priya; Payment, Pierre

    2003-11-01

    The City of Montreal Wastewater Treatment Plant uses enhanced physicochemical processes (ferric and/or alum coagulation) for suspended solids and phosphorus removal. The objective of this study was to assess the ability of peracetic acid (PAA), UV, or ozone to inactivate the indicator organisms fecal coliforms, Enterococci, MS-2 coliphage, or Clostridium perfringens in the effluent from this plant. PAA doses to reach the target fecal coliform level of 9000 CFU/100mL exceeded 6 mg/L; similar results were obtained for enterococci, and no inactivation of Clostridium perfringens was observed. However a 1-log reduction of MS-2 occurred at PAA doses of 1.5 mg/L and higher. It was expected that this effluent would have a high ozone demand, and would require relatively high UV fluences, because of relatively high effluent COD, iron and suspended solids concentrations, and low UV transmittance. This was confirmed herein. For UV, the inactivation curve for fecal coliforms showed the typical two-stage shape, with the target of 1000 CFU/100 mL (to account for photoreactivation) occurring in the asymptote zone at fluences >20 mJ/cm(2). In contrast, inactivation curves for MS-2 and Clostridium perfringens were linear. Clostridium perfringens was the most resistant organism. For ozone, inactivation was already observed before any residuals could be measured. The transferred ozone doses to reach target fecal coliform levels ( approximately 2-log reduction) were 30-50 mg/L. MS-2 was less resistant, but Clostridium perfringens was more resistant than fecal coliforms. The different behaviour of the four indicator organisms studied, depending on the disinfectant, suggests that a single indicator organism might not be appropriate. The required dose of any of the disinfectants is unlikely to be economically viable, and upstream changes to the plant will be needed.

  6. Combined humic acid adsorption and enhanced Fenton processes for the treatment of naphthalene dye intermediate wastewater.

    Science.gov (United States)

    Gu, Lin; Zhu, Nanwen; Wang, Liang; Bing, Xiaoxiao; Chen, Xiaoliang

    2011-12-30

    In this work, an humic acid adsorption with an enhanced Fenton oxidation was employed to treat the real effluent originating from the 1-diazo-2-naphthol-4-sulfonic acid (1,2,4-Acid) production plant. In a first step, humic acid with MgSO(4) was selected as adsorbent and precipitant for physicochemical pretreatment, the synergetic effect had led to 39% of COD removal and 89% of colour removal. A multi-staged Fenton oxidation process with inner circulation was introduced subsequently. The TOC, COD, 1,2,4-Acid, NH(4)(+)-N, SS and colour were reduced from 3024 mg/L, 12,780 mg/L, 9103 mg/L, 110 mg/L, 240 mg/L and 25,600 (multiple) to 46 mg/L, 210 mg/L, 21 mg/L, 16 mg/L, 3 mg/L and 25 through the combined process, respectively. Hydrogen peroxide consumed per kg COD had saved up to 36% when two-staged Fenton process with inner circulation (flow-back to influent ratio: 3) was applied. Influence of H(2)O(2) concentration, flow-back to influent ratio and staged Fenton mode were investigated in detail in order to find out the optimal operating parameters. The kinetics of 1,2,4-Acid degradation by two-staged Fenton process was investigated. The evolution of the main intermediates during the degradation process was conducted using the LC-(ESI)-TOF-MS technique, and the results showed a staged degradation pathway from the ring opening of naphthalene compounds to the formation of benzene compounds and carboxyl acids. The combined process had been proved effective in both technical and economic aspects.

  7. Enhanced photocatalytic activity of nanotube-like titania by sulfuric acid treatment

    Institute of Scientific and Technical Information of China (English)

    YANG Shao-gui; QUAN Xie; LI Xin-yong; FANG Ning; ZHANG Ning; ZHAO Hui-min

    2005-01-01

    The TiO2 nanotube sample was prepared via a NaOH solution in a Teflon vessel at 150℃. The as-prepared nanotubes were then treated with H2 SO4 solutions. The TiO2 nanotube has a crystalline structure with open-ended and multiwall morphologies. The TiO2 nanotubes before and after surface acid treatment were characterized by X-ray diffraction (XRD), scanning electron microscopy(SEM),transmission electron microscopy (TEM) and UV-VIS dispersive energy spectrophotometry (DRS). The photocatalytic activity of the samples was evaluated by photocatalytic degradation of acid orange Ⅱ in aqueous solutions. It was found that the order of photocatalytic activity was as follows: TiO2 nanotubes treated with 1.0 mol/L H2 SO4 solution (TiO2(1.0M H2SO4) nanotubes) > TiO2 nanotubes treated with 0.2 mol/L H2SO4 solution (TiO2(0.2MH2SO4) nanotubes) > TiO2 nanotubes > TiO2 powder. This was attributed to the fact that TiO2 nanotubes treated with H2 SO4 was composed of smaller particles and had higher specific surface areas. Furthermore, the smaller TiO2 particles were beneficial to the transfer and separation of photo-generated electrons and holes in the inner of and on the surface of TiO2 particles and reduced the recombination of photo-generated electrons and holes. Acid treatment was particularly effective for TiO2 nanotubes, this increase in activity was correlated with the concentration of H2 O4 solution.

  8. Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry.

    Science.gov (United States)

    Valero, Daniel; Díaz-Mula, Huertas M; Zapata, Pedro Javier; Castillo, Salvador; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María

    2011-05-25

    Sweet cherry cultivars ('Cristalina' and 'Prime Giant') harvested at commercial ripening stage were treated with salicylic acid (SA), acetylsalicylic acid (ASA) or oxalic acid (OA) at 1 mM and then stored for 20 days under cold temperature. Results showed that all treatments delayed the postharvest ripening process, manifested by lower acidity, color changes and firmness losses, and maintained quality attributes for longer periods than controls. In addition, total phenolics, anthocyanins and antioxidant activity increased in untreated fruit during the first 10 days of storage and then decreased, while in fruits of all treatments, these parameters increased continuously during storage without significant differences among treatments. Thus, postharvest treatments with natural compounds, such as SA, ASA or OA, could be innovative tools to extend the storability of sweet cherry with higher content of bioactive compounds and antioxidant activity as compared with control fruits. PMID:21506518

  9. Enhanced suppression of tumor growth by concomitant treatment of human lung cancer cells with suberoylanilide hydroxamic acid and arsenic trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Chia-Wen [Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan (China); Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan (China); Yao, Ju-Hsien [Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan (China); Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan (China); Chang, Shih-Yu [Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan (China); Lee, Pei-Chih [Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan (China); Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan (China); Lee, Te-Chang, E-mail: bmtcl@ibms.sinica.edu.tw [Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan (China); Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan (China)

    2011-11-15

    The efficacy of arsenic trioxide (ATO) against acute promyelocytic leukemia (APL) and relapsed APL has been well documented. ATO may cause DNA damage by generating reactive oxygen intermediates. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, modulates gene and protein expression via histone-dependent or -independent pathways that may result in chromatin decondensation, cell cycle arrest, differentiation, and apoptosis. We investigated whether ATO and SAHA act synergistically to enhance the death of cancer cells. Our current findings showed that combined treatment with ATO and SAHA resulted in enhanced suppression of non-small-cell lung carcinoma in vitro in H1299 cells and in vivo in a xenograft mouse model. Flow cytometric analysis of annexin V+ cells showed that apoptotic cell death was significantly enhanced after combined treatment with ATO and SAHA. At the doses used, ATO did not interfere with cell cycle progression, but SAHA induced p21 expression and led to G1 arrest. A Comet assay demonstrated that ATO, but not SAHA, induced DNA strand breaks in H1299 cells; however, co-treatment with SAHA significantly increased ATO-induced DNA damage. Moreover, SAHA enhanced acetylation of histone H3 and sensitized genomic DNA to DNase I digestion. Our results suggest that SAHA may cause chromatin relaxation and increase cellular susceptibility to ATO-induced DNA damage. Combined administration of SAHA and ATO may be an effective approach to the treatment of lung cancer. -- Highlights: Black-Right-Pointing-Pointer ATO and SAHA are therapeutic agents with different action modes. Black-Right-Pointing-Pointer Combination of ATO and SAHA synergistically inhibits tumor cell growth. Black-Right-Pointing-Pointer SAHA loosens chromatin structure resulting in increased sensitivity to DNase I. Black-Right-Pointing-Pointer ATO-induced DNA damage and apoptosis are enhanced by co-treatment with SAHA.

  10. O-6-methylguanine-deoxyribonucleic acid methyltransferase methylation enhances response to temozolomide treatment in esophageal cancer

    Directory of Open Access Journals (Sweden)

    Rifat Hasina

    2013-01-01

    Full Text Available Background: World-wide, esophageal cancer is a growing epidemic and patients frequently present with advanced disease that is surgically inoperable. Hence, chemotherapy is the predominate treatment. Cytotoxic platinum compounds are mostly used, but their efficacy is only moderate. Newer alkylating agents have shown promise in other tumor types, but little is known about their utility in esophageal cancer. Methods: We utilized archived human esophageal cancer samples and esophageal cancer cell lines to evaluate O-6-methylguanine-deoxyribonucleic acid methyltransferase (MGMT hypermethylation status and determined sensitivity to the alkylating drug temozolomide (TMZ. Immunoblot analysis was performed to determine MGMT protein expression in cell lines. To assess and confirm the effect of TMZ treatment in a methylated esophageal cancer cell line in vivo, a mouse flank xenograft tumor model was utilized. Results: Nearly 71% (12/17 of adenocarcinoma and 38% (3/8 of squamous cell carcinoma (SCC patient samples were MGMT hypermethylated. Out of four adenocarcinoma and nine SCC cell lines tested, one of each histology was hypermethylated. Immunoblot analyses confirmed that hypermethylated cell lines did not express the MGMT protein. In vitro cell viability assays showed the methylated Kyse-140 and FLO cells to be sensitive to TMZ at an IC 50 of 52-420 μM, whereas unmethylated cells Kyse-410 and SKGT-4 did not respond. In an in vivo xenograft tumor model with Kyse-140 cells, which are MGMT hypermethylated, TMZ treatment abrogated tumor growth by more than 60%. Conclusion: MGMT methylation may be an important biomarker in subsets of esophageal cancers and targeting by TMZ may be utilized to successfully treat these patients.

  11. Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating

    Energy Technology Data Exchange (ETDEWEB)

    Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju; Kim, Hye-Lee; Park, Jong-Chul [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Jin Lee, Seung [Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Kim, Bong-Jin; Wang, Kang-Kyun; Kim, Yong-Rok [Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)

    2013-08-21

    Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion and maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH{sub 2} (399.70 eV) was increased significantly and –N=CH (400.80 eV) and –NH{sub 3}{sup +} (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic.

  12. Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating

    Science.gov (United States)

    Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju; Kim, Hye-Lee; Jin Lee, Seung; Kim, Bong-Jin; Wang, Kang-Kyun; Kim, Yong-Rok; Park, Jong-Chul

    2013-08-01

    Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion and maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH2 (399.70 eV) was increased significantly and -N=CH (400.80 eV) and -NH3+ (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic.

  13. Effectiveness of Alkali-Acid Treatment in Enhancement the Adsorption Capacity for Rice Straw: The Removal of Methylene Blue Dye

    OpenAIRE

    Nady A. Fathy; El-Shafey, Ola I.; Khalil, Laila B.

    2013-01-01

    The effectiveness of alkali-acid modification in enhancement the adsorption capacity of rice straw (RS) for removing a basic dye was studied. The obtained adsorbents were characterized by slurry pH, pHPZC, iodine number, methylene blue number, FTIR, and SEM analyses. Adsorption of methylene blue (MB) was described by the Langmuir, Freundlich, Tempkin, and Redlich-Peterson isotherm models. Effects of contact time, initial concentration of MB dye, pH of solution, adsorbent dose, salt concentrat...

  14. Enhanced conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film by acid treatment for indium tin oxide-free organic solar cells

    Science.gov (United States)

    Lin, Chun-Chiao; Huang, Chih-Kuo; Hung, Yu-Chieh; Chang, Mei-Ying

    2016-08-01

    An acid treatment is used in the enhancement of the conductivity of the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) thin film, which is often used as the anode in organic solar cells. There are three types of acid treatment for PEDOT:PSS thin film: hydrochloric, sulfuric, and phosphoric acid treatments. In this study, we examine and compare these three ways with each other for differences in conductivity. Hydrochloric acid results in the highest conductivity enhancement, from 0.3 to 1109 S/cm. We also discuss the optical transmittance, conductivity, surface roughness, surface morphology, and stability, as well as the factors that can influence device efficiency. The devices are fabricated using an acid-treated PEDOT:PSS thin film as the anode. The highest power conversion efficiency was 1.32%, which is a large improvement over that of the unmodified organic solar cell (0.21%). It is comparable to that obtained when using indium tin oxide (ITO) as an electrode, ca. 1.46%.

  15. Enhancing methane production from waste activated sludge using combined free nitrous acid and heat pre-treatment.

    Science.gov (United States)

    Wang, Qilin; Jiang, Guangming; Ye, Liu; Yuan, Zhiguo

    2014-10-15

    Methane production from anaerobic digestion of waste activated sludge (WAS) is often limited by the slow degradation and poor substrate availability of WAS. Our previous study revealed that WAS pre-treatment using free nitrous acid (FNA, i.e. HNO2) is an economically feasible and environmentally friendly method for promoting methane production. In order to further improve methane production from WAS, this study presents a novel strategy based on combined FNA and heat pre-treatment. WAS from a full-scale plant was treated for 24 h with FNA alone (0.52-1.43 mg N/L at 25 °C), heat alone (35, 55 and 70 °C), and FNA (0.52-1.11 mg N/L) combined with heat (35, 55 and 70 °C). The pre-treated WAS was then used for biochemical methane potential tests. Compared to the control (no FNA or heat pre-treatment of WAS), biochemical methane potential of the pre-treated WAS was increased by 12-16%, 0-6%, 17-26%, respectively; hydrolysis rate was improved by 15-25%, 10-25%, 20-25%, respectively, for the three types of pre-treatment. Heat pre-treatment at 55 and 70 °C, independent of the presence or absence of FNA, achieved approximately 4.5 log inactivation of pathogens (in comparison to ∼1 log inactivation with FNA treatment alone), thus capable of producing Class A biosolids. The combined FNA and heat pre-treatment is an economically and environmentally attractive technology for the pre-treatment of WAS prior to anaerobic digestion, particularly considering that both FNA and heat can be produced as by-products of anaerobic sludge digestion.

  16. Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown

    Science.gov (United States)

    Zhang, Tingting; Wang, Qilin; Ye, Liu; Batstone, Damien; Yuan, Zhiguo

    2015-11-01

    This study presents a novel pre-treatment strategy using combined free nitrous acid (FNA i.e. HNO2) and hydrogen peroxide (H2O2) to enhance methane production from WAS, with the mechanisms investigated bio-molecularly. WAS from a full-scale plant was treated with FNA alone (1.54 mg N/L), H2O2 alone (10-80 mg/g TS), and their combinations followed by biochemical methane potential tests. Combined FNA and H2O2 pre-treatment substantially enhanced methane potential of WAS by 59-83%, compared to 13-23% and 56% with H2O2 pre-treatment alone and FNA pre-treatment alone respectively. Model-based analysis indicated the increased methane potential was mainly associated with up to 163% increase in rapidly biodegradable fraction with combined pre-treatment. The molecular weight distribution and chemical structure analyses revealed the breakdown of soluble macromolecules with the combined pre-treatment caused by the deamination and oxidation of the typical functional groups in proteins, polysaccharides and phosphodiesters. These changes likely improved the biodegradability of WAS.

  17. Evaluation of seed and seedling emergence enhancement of some population of Sahandy savory (Satureja sahendica) by gibberlic acid, potasium nitrate, pre-cooling, physical and chemical scarification treatment.

    Science.gov (United States)

    Alizadeh, M A; Arab, H A; Tabaie, R; Nasiri, M

    2013-10-15

    In greenhouse experiment, the seed samples of 3 populations were treated with treatments including: cold stratification, Gibberlic Acid (50 ppm and 100 ppm), Potassium nitrate (0.2%, 0.4%), physical scarification (sand paper), chemical scarification (Ethylic alcohol 70%) and distilled water (control), then these treated seed samples were sown in pots as randomize design with three replication. The germination characteristics including: germination percentage, speed of germination, length of root and shoot, seedling length, ratio of root length by shoot length, vigor index, fresh weight arid dry weight, ratio of dry weight by fresh weight were evaluated during 45 days of experiment. Comparing between three populations of Sahandy savory, seed germination characteristics of the Ghazvin population was higher than the other two populations. According to effect of treatment on germination seed characteristics, the species of savory and their population, it was concluded that effect of Gibberlic Acid and Potassium nitrate was higher than physical scarification and chemical scarification comparing with control. With more effective of gibberlic acid and KNO3 and cold treatment on seed germination enhancement of the population, it was clarified that the type of dormancy of some population of Sahandy savory was physiological dormancy. PMID:24506025

  18. Gamma aminobutyric acid B and 5-hydroxy tryptamine 2A receptors functional regulation during enhanced liver cell proliferation by GABA and 5-HT chitosan nanoparticles treatment.

    Science.gov (United States)

    Shilpa, Joy; Pretty, Mary Abraham; Anitha, Malat; Paulose, Cheramadathikudyil Skaria

    2013-09-01

    Liver is one of the major organs in vertebrates and hepatocytes are damaged by many factors. The liver cell maintenance and multiplication after injury and treatment gained immense interest. The present study investigated the role of Gamma aminobutyric acid (GABA) and serotonin or 5-hydroxytryptamine (5-HT) coupled with chitosan nanoparticles in the functional regulation of Gamma aminobutyric acid B and 5-hydroxy tryptamine 2A receptors mediated cell signaling mechanisms, extend of DNA methylation and superoxide dismutase activity during enhanced liver cell proliferation. Liver injury was achieved by partial hepatectomy of male Wistar rats and the GABA and 5-HT chitosan nanoparticles treatments were given intraperitoneally. The experimental groups were sham operated control (C), partially hepatectomised rats with no treatment (PHNT), partially hepatectomised rats with GABA chitosan nanoparticle (GCNP), 5-HT chitosan nanoparticle (SCNP) and a combination of GABA and 5-HT chitosan nanoparticle (GSCNP) treatments. In GABA and 5-HT chitosan nanoparticle treated group there was a significant decrease (PGABA and 5-HT chitosan nanoparticles induced liver cell proliferation which has therapeutic significance in liver disease management.

  19. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: enhanced removal of aromatic amines.

    Science.gov (United States)

    Koupaie, E Hosseini; Moghaddam, M R Alavi; Hashemi, S H

    2011-11-15

    The application of aerobic moving bed biofilm process as post-treatment of anaerobically degraded azo dye Acid Red 18 was investigated in this study. The main objective of this work was to enhance removal of anaerobically formed the dye aromatic metabolites. Three separate sequential treatment systems were operated with different initial dye concentrations of 100, 500 and 1000 mg/L. Each treatment system consisted of an anaerobic sequencing batch reactor (An-SBR) followed by an aerobic moving bed sequencing batch biofilm reactor (MB-SBBR). Up to 98% of the dye decolorization and more than 80% of the COD removal occurred anaerobically. The obtained results suggested no significant difference in COD removal as well as the dye decolorization efficiency using three An-SBRs receiving different initial dye concentrations. Monitoring the dye metabolites through HPLC suggested that more than 80% of anaerobically formed 1-naphthylamine-4-sulfonate was completely removed in the aerobic biofilm reactors. Based on COD analysis results, at least 65-72% of the dye total metabolites were mineralized during the applied treatment systems. According to the measured biofilm mass and also based on respiration-inhibition test results, increasing the initial dye concentration inhibited the growth and final mass of the attached-growth biofilm in MB-SBBRs.

  20. Enhancement of colposcopic image by sulphosalicylic acid.

    Directory of Open Access Journals (Sweden)

    Khilnani P

    1993-01-01

    Full Text Available Acetic acid is used conventionally for enhancement of the colposcopic image. We used sulphosalicylic acid instead of acetic acid in 50 normal cases. The normal appearance was enhanced in all cases. The image was also enhanced in 70% cases of cervical intraepithelial neoplasia and 90% cases of cervical condyloma accuminata. The image was not inferior to that with acetic acid in any of the cases.

  1. Retinoic acid and cancer treatment

    OpenAIRE

    Chen, Mei-Chih; Hsu, Shih-Lan; Lin, Ho; Yang, Tsung-Ying

    2014-01-01

    Retinoic acid which belongs to the retinoid class of chemical compounds is an important metabolite of vitamin A in diets. It is currently understood that retinoic acid plays important roles in cell development and differentiation as well as cancer treatment. Lung, prostate, breast, ovarian, bladder, oral, and skin cancers have been demonstrated to be suppressed by retinoic acid. Our results also show that low doses and high doses of retinoic acid may respectively cause cell cycle arrest and a...

  2. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: Enhanced removal of aromatic amines

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Koupaie, E., E-mail: ehssan.hosseini.k@gmail.com [Civil and Environmental Engineering Department, Amirkabir University of Technology (AUT), Hafez Ave., Tehran 15875-4413 (Iran, Islamic Republic of); Alavi Moghaddam, M.R., E-mail: alavim@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology (AUT), Hafez Ave., Tehran 15875-4413 (Iran, Islamic Republic of); Hashemi, S.H., E-mail: h_hashemi@sbu.ac.ir [Environmental Science Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2011-11-15

    Highlights: {yields} Biofilm process was applied as post-treatment of anaerobically degraded an azo dye. {yields} More than 65% of the dye total metabolites was completely mineralized. {yields} Based on HPLC analysis, more than 80% of 1-naphthylamine-4-sulfonate was removed. {yields} Inhibition of biofilm growth was increased with increasing the initial dye concentration. {yields} Considerable porous morphology was observed in the SEM photographs of the biofilm. - Abstract: The application of aerobic moving bed biofilm process as post-treatment of anaerobically degraded azo dye Acid Red 18 was investigated in this study. The main objective of this work was to enhance removal of anaerobically formed the dye aromatic metabolites. Three separate sequential treatment systems were operated with different initial dye concentrations of 100, 500 and 1000 mg/L. Each treatment system consisted of an anaerobic sequencing batch reactor (An-SBR) followed by an aerobic moving bed sequencing batch biofilm reactor (MB-SBBR). Up to 98% of the dye decolorization and more than 80% of the COD removal occurred anaerobically. The obtained results suggested no significant difference in COD removal as well as the dye decolorization efficiency using three An-SBRs receiving different initial dye concentrations. Monitoring the dye metabolites through HPLC suggested that more than 80% of anaerobically formed 1-naphthylamine-4-sulfonate was completely removed in the aerobic biofilm reactors. Based on COD analysis results, at least 65-72% of the dye total metabolites were mineralized during the applied treatment systems. According to the measured biofilm mass and also based on respiration-inhibition test results, increasing the initial dye concentration inhibited the growth and final mass of the attached-growth biofilm in MB-SBBRs.

  3. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: Enhanced removal of aromatic amines

    International Nuclear Information System (INIS)

    Highlights: → Biofilm process was applied as post-treatment of anaerobically degraded an azo dye. → More than 65% of the dye total metabolites was completely mineralized. → Based on HPLC analysis, more than 80% of 1-naphthylamine-4-sulfonate was removed. → Inhibition of biofilm growth was increased with increasing the initial dye concentration. → Considerable porous morphology was observed in the SEM photographs of the biofilm. - Abstract: The application of aerobic moving bed biofilm process as post-treatment of anaerobically degraded azo dye Acid Red 18 was investigated in this study. The main objective of this work was to enhance removal of anaerobically formed the dye aromatic metabolites. Three separate sequential treatment systems were operated with different initial dye concentrations of 100, 500 and 1000 mg/L. Each treatment system consisted of an anaerobic sequencing batch reactor (An-SBR) followed by an aerobic moving bed sequencing batch biofilm reactor (MB-SBBR). Up to 98% of the dye decolorization and more than 80% of the COD removal occurred anaerobically. The obtained results suggested no significant difference in COD removal as well as the dye decolorization efficiency using three An-SBRs receiving different initial dye concentrations. Monitoring the dye metabolites through HPLC suggested that more than 80% of anaerobically formed 1-naphthylamine-4-sulfonate was completely removed in the aerobic biofilm reactors. Based on COD analysis results, at least 65-72% of the dye total metabolites were mineralized during the applied treatment systems. According to the measured biofilm mass and also based on respiration-inhibition test results, increasing the initial dye concentration inhibited the growth and final mass of the attached-growth biofilm in MB-SBBRs.

  4. Elimination of radiocontrast agent diatrizoic acid by photo-Fenton process and enhanced treatment by coupling with electro-Fenton process.

    Science.gov (United States)

    Bocos, Elvira; Oturan, Nihal; Pazos, Marta; Sanromán, M Ángeles; Oturan, Mehmet A

    2016-10-01

    The removal of radiocontrast agent diatrizoic acid (DIA) from water was performed using photo-Fenton (PF) process. First, the effect of H2O2 dosage on mineralization efficiency was determined using ultraviolet (UV) irradiation. The system reached a maximum mineralization degree of 60 % total organic carbon (TOC) removal at 4 h with 20 mM initial H2O2 concentration while further concentration values led to a decrease in TOC abatement efficiency. Then, the effect of different concentrations of Fenton's reagents was studied for homogeneous Fenton process. Obtained results revealed that 0.25 mM Fe(3+) and 20 mM H2O2 were the best conditions, achieving 80 % TOC removal efficiency at 4 h treatment. Furthermore, heterogeneous PF treatment was developed using iron-activated carbon as catalyst. It was demonstrated that this catalyst is a promising option, reaching 67 % of TOC removal within 4 h treatment without formation of iron leachate in the medium. In addition, two strategies of enhancement for process efficiency are proposed: coupling of PF with electro-Fenton (EF) process in two ways: photoelectro-Fenton (PEF) or PF followed by EF (PF-EF) treatments, achieving in both cases the complete mineralization of DIA solution within only 2 h. Finally, the Microtox tests revealed the formation of more toxic compounds than the initial DIA during PF process, while, it was possible to reach total mineralization by both proposed alternatives (PEF or PF-EF) and thus to remove the toxicity of DIA solution.

  5. Essential fatty acids as transdermal penetration enhancers

    OpenAIRE

    Van Zyl, Lindi; du Preez, Jan; Gerber, Minja; Du Plessis, Jeanetta; Viljoen, Joe

    2015-01-01

    The aim of this study was to investigate the effect of different penetration enhancers, containing essential fatty acids (EFAs), on the transdermal delivery of flurbiprofen. Evening primrose oil (EPO), vitamin F and Pheroid™ technology all contain fatty acids and were compared using a cream-based formulation. This selection was to ascertain whether EFAs solely, or EFAs in a Pheroid™ delivery system, would have a significant increase in the transdermal delivery of a compound. Membrane release ...

  6. Enhanced coagulation-photocatalytic treatment of Acid red 73 dye and real textile wastewater using UVA/synthesized MgO nanoparticles.

    Science.gov (United States)

    Jorfi, Sahand; Barzegar, Gelavizh; Ahmadi, Mehdi; Darvishi Cheshmeh Soltani, Reza; Alah Jafarzadeh Haghighifard, Nemat; Takdastan, Afshin; Saeedi, Reza; Abtahi, Mehrnoosh

    2016-07-15

    Sequencing coagulation - photocatalytic degradation using UVA/MgO nanoparticles process was investigated for Acid red 73dye removal and then treatment of a real textile wastewater. Effective operational parameters including pH and coagulant and photocatalyst dosage were studied in synthetic wastewater and then the process was applied for real wastewater. Both coagulation and photocatalytic processes were pH dependent. At coagulant dosage of 200 mg/L and initial pH of 6, the dye concentration decreased from 200 to 31 mg/L. Complete removal of AR73 was observed with MgO nanoparticles of 0.8 g/L, initial pH of 5 and reaction time of 60 min. Langmuir-Hinshelwood model was well fitted with removal results (R(2): 0.939-0.988 for different initial dye concentration). In the case of real textile wastewater, the sequence coagulation-UVA/MgO nanoparticles photocatalytic degradation yielded considerable total COD and TOC removal 98.3% and 86.9%respectively, after 300 min. PMID:27086271

  7. Extracorporeal treatment for valproic acid poisoning

    DEFF Research Database (Denmark)

    Ghannoum, Marc; Laliberté, Martin; Nolin, Thomas D;

    2015-01-01

    BACKGROUND: The EXtracorporeal TReatments In Poisoning (EXTRIP) workgroup presents its systematic review and clinical recommendations on the use of extracorporeal treatment (ECTR) in valproic acid (VPA) poisoning. METHODS: The lead authors reviewed all of the articles from a systematic literature...

  8. Enhancing Biological Wastewater Treatment with Chitosan

    Institute of Scientific and Technical Information of China (English)

    陈亮; 陈东辉; 朱珺

    2003-01-01

    Chitin and chitosan have been applied to biological wastewater treatment.From a number of parallel comparison experiments,it can be concluded that the application of chitin and chitosan can both enhance the biological treatment,besides which chitosan is more efficient than chitin.The study on the enhancement mechanism reveals the difference between the two additives:chitosan improves the sludge structure and settlibility,while chitin acts as a kind of carrier for microorganism in the biological treatment system.

  9. Coke dust enhances coke plant wastewater treatment.

    Science.gov (United States)

    Burmistrz, Piotr; Rozwadowski, Andrzej; Burmistrz, Michał; Karcz, Aleksander

    2014-12-01

    Coke plant wastewater contain many toxic pollutants. Despite physico-chemical and biological treatment this specific type of wastewater has a significant impact on environment and human health. This article presents results of research on industrial adsorptive coke plant wastewater treatment. As a sorbent the coke dust, dozen times less expensive than pulverized activated carbon, was used. Treatment was conducted in three scenarios: adsorptive after full treatment with coke dust at 15 g L(-1), biological treatment enhanced with coke dust at 0.3-0.5 g L(-1) and addition of coke dust at 0.3 g L(-1) prior to the biological treatment. The enhanced biological treatment proved the most effective. It allowed additional removal of 147-178 mg COD kg(-1) of coke dust. PMID:25113994

  10. Magnetic Separator Enhances Treatment Possibilities

    Science.gov (United States)

    2008-01-01

    Since the earliest missions in space, NASA specialists have performed experiments in low gravity. Protein crystal growth, cell and tissue cultures, and separation technologies such as electrophoresis and magnetophoresis have been studied on Apollo 14, Apollo 16, STS-107, and many other missions. Electrophoresis and magnetophoresis, respectively, are processes that separate substances based on the electrical charge and magnetic field of a molecule or particle. Electrophoresis has been studied on over a dozen space shuttle flights, leading to developments in electrokinetics, which analyzes the effects of electric fields on mass transport (atoms, molecules, and particles) in fluids. Further studies in microgravity will continue to improve these techniques, which researchers use to extract cells for various medical treatments and research.

  11. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  12. Surgical Webcast for Treatment of Acid Reflux

    Medline Plus

    Full Text Available ... Webcast for Treatment of Acid Reflux Shawnee Mission Medical Center Shawnee Mission, Kansas May 21, 2009 Welcome ... OR-Live” webcast presentation live from Shawnee Mission Medical Center in Merriam, Kansas. During the program it’s ...

  13. Study of Valproic Acid-Enhanced Hepatocyte Steatosis

    Directory of Open Access Journals (Sweden)

    Renin Chang

    2016-01-01

    Full Text Available Valproic acid (VPA is one of the most widely used antiepilepsy drugs. However, several side effects, including weight gain and fatty liver, have been reported in patients following VPA treatment. In this study, we explored the molecular mechanisms of VPA-induced hepatic steatosis using FL83B cell line-based in vitro model. Using fluorescent lipid staining technique, we found that VPA enhanced oleic acid- (OLA- induced lipid accumulation in a dose-dependent manner in hepatocytes; this may be due to upregulated lipid uptake, triacylglycerol (TAG synthesis, and lipid droplet formation. Real-time PCR results showed that, following VPA treatment, the expression levels of genes encoding cluster of differentiation 36 (Cd36, low-density lipoprotein receptor-related protein 1 (Lrp1, diacylglycerol acyltransferase 2 (Dgat2, and perilipin 2 (Plin2 were increased, that of carnitine palmitoyltransferase I a (Cpt1a was not affected, and those of acetyl-Co A carboxylase α (Acca and fatty acid synthase (Fasn were decreased. Furthermore, using immunofluorescence staining and flow cytometry analyses, we found that VPA also induced peroxisome proliferator-activated receptor γ (PPARγ nuclear translocation and increased levels of cell-surface CD36. Based on these results, we propose that VPA may enhance OLA-induced hepatocyte steatosis through the upregulation of PPARγ- and CD36-dependent lipid uptake, TAG synthesis, and lipid droplet formation.

  14. Treatment of broiler litter with organic acids.

    Science.gov (United States)

    Ivanov, I E

    2001-04-01

    Experiments for treatment of contaminated broiler litter with citric, tartaric and salicylic acids were performed. At days 2 and 6 after the treatment, pH values (using a pH-meter), the ammonia concentrations (titration with 0.1 N HCl) and the microbial cells counts were determined in both experimental and control specimens of litter. The cost of acidification of litter was also determined. Our studies showed that the treatment of the contaminated litter with 5 per cent citric acid, 4 per cent tartaric acid and 1.5 per cent salicylic acid created an acid medium with pH under 5.0 and thus reduced the microbial counts to 2.2 x 10(3)colony forming units per gram manure litter. The treatment reduced the content of ammonia in the litter and in the air under the hygienic limits, i.e. 25-50 ppm. The cost of acidification of litter with these organic acids amounted to 0.1 $ per bird and 1.5 $ per 15 birds on one square metre in a growth period of 50 days. PMID:11356097

  15. Enhancing the bioactivity of Poly(lactic-co-glycolic acid scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model

    Directory of Open Access Journals (Sweden)

    Wang DX

    2013-05-01

    Full Text Available De-Xin Wang,1,* Yao He,2,* Long Bi1,* Ze-Hua Qu,2 Ji-Wei Zou,1 Zhen Pan,2 Jun-Jun Fan,1 Liang Chen,2 Xin Dong,1 Xiang-Nan Liu,2 Guo-Xian Pei,1 Jian-Dong Ding,21Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China; 2State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, People's Republic of China*These authors contributed equally to this workPurpose: Poly(lactic-co-glycolic acid (PLGA is excellent as a scaffolding matrix due to feasibility of processing and tunable biodegradability, yet the virgin scaffolds lack osteoconduction and osteoinduction. In this study, nano-hydroxyapatite (nHA was coated on the interior surfaces of PLGA scaffolds in order to facilitate in vivo bone defect restoration using biomimetic ceramics while keeping the polyester skeleton of the scaffolds.Methods: PLGA porous scaffolds were prepared and surface modification was carried out by incubation in modified simulated body fluids. The nHA coated PLGA scaffolds were compared to the virgin PLGA scaffolds both in vitro and in vivo. Viability and proliferation rate of bone marrow stromal cells of rabbits were examined. The constructs of scaffolds and autogenous bone marrow stromal cells were implanted into the segmental bone defect in the rabbit model, and the bone regeneration effects were observed.Results: In contrast to the relative smooth pore surface of the virgin PLGA scaffold, a biomimetic hierarchical nanostructure was found on the surface of the interior pores of the nHA coated PLGA scaffolds by scanning electron microscopy. Both the viability and proliferation rate of the cells seeded in nHA coated PLGA scaffolds were higher than those in PLGA scaffolds. For bone defect repairing, the radius defects had, after 12 weeks implantation of nHA coated PLGA scaffolds, completely recuperated with significantly better bone formation than in

  16. Enhanced integrated nonthermal treatment system study

    Energy Technology Data Exchange (ETDEWEB)

    Biagi, C.; Schwinkendorf, B.; Teheranian, B.

    1997-02-01

    The purpose of the Enhanced Nonthermal Treatment Systems (ENTS) study is to evaluate alternative configurations of one of the five systems evaluated in the Integrated Nonthermal Treatment Systems (INTS) study. Five alternative configurations are evaluated. Each is designed to enhance the final waste form performance by replacing grout with improved stabilization technologies, or to improve system performance by improving the destruction efficiency for organic contaminants. AU enhanced systems are alternative configurations of System NT-5, which has the following characteristics: Nonthermal System NT-5: (1) catalytic wet oxidation (CWO) to treat organic material including organic liquids, sludges, and soft (or combustible) debris, (2) thermal desorption of inorganic sludge and process residue, (3) washing of soil and inorganic debris with treatment by CWO of removed organic material, (4) metal decontamination by abrasive blasting, (5) stabilization of treated sludge, soil, debris, and untreated debris with entrained contamination in grout, and (6) stabilization of inorganic sludge, salts and secondary waste in polymer. System NT-5 was chosen because it was designed to treat combustible debris thereby minimizing the final waste form volume, and because it uses grout for primary stabilization. The enhanced nonthermal systems were studied to determine the cost and performance impact of replacing grout (a commonly used stabilization agent in the DOE complex) with improved waste stabilization methods such as vitrification and polymer.

  17. Enhanced integrated nonthermal treatment system study

    International Nuclear Information System (INIS)

    The purpose of the Enhanced Nonthermal Treatment Systems (ENTS) study is to evaluate alternative configurations of one of the five systems evaluated in the Integrated Nonthermal Treatment Systems (INTS) study. Five alternative configurations are evaluated. Each is designed to enhance the final waste form performance by replacing grout with improved stabilization technologies, or to improve system performance by improving the destruction efficiency for organic contaminants. AU enhanced systems are alternative configurations of System NT-5, which has the following characteristics: Nonthermal System NT-5: (1) catalytic wet oxidation (CWO) to treat organic material including organic liquids, sludges, and soft (or combustible) debris, (2) thermal desorption of inorganic sludge and process residue, (3) washing of soil and inorganic debris with treatment by CWO of removed organic material, (4) metal decontamination by abrasive blasting, (5) stabilization of treated sludge, soil, debris, and untreated debris with entrained contamination in grout, and (6) stabilization of inorganic sludge, salts and secondary waste in polymer. System NT-5 was chosen because it was designed to treat combustible debris thereby minimizing the final waste form volume, and because it uses grout for primary stabilization. The enhanced nonthermal systems were studied to determine the cost and performance impact of replacing grout (a commonly used stabilization agent in the DOE complex) with improved waste stabilization methods such as vitrification and polymer

  18. Enhanced Biocide Mitigation of Field Biofilm Consortia by a Mixture of D-Amino Acids

    OpenAIRE

    Li, Yingchao; Jia, Ru; Al-Mahamedh, Hussain H.; Xu, Dake; Gu, Tingyue

    2016-01-01

    Microbiologically influenced corrosion (MIC) is a major problem in the oil and gas industry as well as in many other industries. Current treatment methods rely mostly on pigging and biocide dosing. Biocide resistance is a growing concern. Thus, it is desirable to use biocide enhancers to improve the efficacy of existing biocides. D-Amino acids are naturally occurring. Our previous work demonstrated that some D-amino acids are biocide enhancers. Under a biocide stress of 50 ppm (w/w) hydroxyme...

  19. Bacterial Cyanuric Acid Hydrolase for Water Treatment.

    Science.gov (United States)

    Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

    2015-10-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation.

  20. Enhanced corrosion resistance of phytic acid coated magnesium by stearic acid treatment%硬脂酸处理提高植酸包覆镁的耐腐蚀性能

    Institute of Scientific and Technical Information of China (English)

    R.K.GUPTA; K.MENSAH-DARKWA; J.SANKAR; D.KUMAR

    2013-01-01

    将镁浸泡在植酸溶液中,在其表面形成一层化学转化膜.然后再将其浸泡在硬脂酸溶液中以改善植酸转化膜的显微组织和抗腐蚀性能.经过硬脂酸溶液浸泡处理后,转化膜未出现裂纹,试样表面变得光滑.采用电化学方法研究其腐蚀行为.结果表明,经硬脂酸溶液浸泡处理的试样比未经浸泡处理的和没有转化膜的试样具有更高的耐腐蚀性能.因此,硬脂酸溶液处理能够增强镁的耐腐蚀性能.%A green chemical conversion coating for magnesium was obtained with a phytic acid solution.The microstructure and corrosion properties of phytic acid conversion coated magnesium were further improved by soaking in stearic acid solution.The phytic acid conversion coated magnesium after soaking in the stearic acid showed no micro-cracks and the surface became very smooth.The corrosion behavior of the uncoated and coated magnesium samples was studied by electrochemical methods.The corrosion resistance of the stearic acid treated sample was much higher than that of phytic acid conversion coated magnesium or uncoated magnesium.The electrochemical results indicated that the stearic acid treated coating provided effective corrosion protection to the magnesium sample.

  1. Enhancement of mononuclear procoagulant activity by platelet 12-hydroxyeicosatetraenoic acid.

    OpenAIRE

    Lorenzet, R; Niemetz, J; Marcus, A J; Broekman, M J

    1986-01-01

    Platelets induce generation of procoagulant tissue factor activity (TFa) by mononuclear leukocytes, and also enhance the TFa induced by endotoxin. Our present investigation demonstrated that arachidonic acid, which by itself had no effect on mononuclear TFa, greatly enhanced platelet-induced TFa. The effect was concentration dependent for both platelets and arachidonate (1-20 microM); other fatty acids tested were inactive. The enhancing effect of arachidonate was more pronounced if platelets...

  2. DICOR surface treatments for enhanced bonding.

    Science.gov (United States)

    Bailey, L F; Bennett, R J

    1988-06-01

    Treatments for preparing castable ceramic surfaces for enhanced bonding to specially formulated resin-based cements were examined. An ammonium bifluoride etch combined with gamma-methacryloxypropyl-trimethoxysilane produced shear bond strengths higher than when an ammonium bifluoride treatment was used alone. The method of curing the silane was highly significant in the contribution to the cement/substrate bond strength, with the heat-cure producing the highest values. Long-term water storage tests indicated that the cement bond with etch plus silane-treated castable ceramic surfaces (whether heat or chemically cured silane was used) demonstrated no significant decrease in strength after a one-year period.

  3. Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films

    KAUST Repository

    Kumar, Sarath

    2015-11-24

    We report the high temperature thermoelectric properties of solution processed pristine and sulphuric acid treated poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (or PEDOT:PSS) films. The acid treatment is shown to simultaneously enhance the electrical conductivity and Seebeck coefficient of the metal-like films, resulting in a five-fold increase in thermoelectric power factor (0.052 W/m. K ) at 460 K, compared to the pristine film. By using atomic force micrographs, Raman and impedance spectra and using a series heterogeneous model for electrical conductivity, we demonstrate that acid treatment results in the removal of PSS from the films, leading to the quenching of accumulated charge-induced energy barriers that prevent hopping conduction. The continuous removal of PSS with duration of acid treatment also alters the local band structure of PEDOT:PSS, resulting in simultaneous enhancement in Seebeck coefficient.

  4. Enhanced Eryptosis Following Exposure to Carnosic Acid

    Directory of Open Access Journals (Sweden)

    Katja Stockinger

    2015-11-01

    Full Text Available Background/Aims: The phenolic abietane diterpene component of rosemary and sage, carnosic acid, may either induce or inhibit apoptosis of nucleated cells. The mechanisms involved in the effects of carnosic acid include altered mitochondrial function and gene expression. Human erythrocytes lack mitochondria and nuclei but are nevertheless able to enter suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Cellular mechanisms involved in the stimulation of eryptosis include oxidative stress, increase of cytosolic Ca2+ activity ([Ca2+]i, and ceramide formation. The present study explored, whether and how carnosic acid induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to carnosic acid significantly increased the percentage of annexin-V-binding cells (2.5 µg/ml, significantly decreased forward scatter (10 µg/ml, significantly increased Fluo3 fluorescence (10 µg/ml, significantly increased ceramide abundance (10 µg/ml, significantly increased hemolysis (10 µg/ml, but significantly decreased DCFDA fluorescence (10 µg/ml. The effect of carnosic acid on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusion: Carnosic acid triggers cell shrinkage and phospholipid scrambling of the human erythrocyte cell membrane, an effect paralleled by and/or in part due to Ca2+ entry and increased ceramide abundance.

  5. Enhanced Acid/Base Catalysis in High Temperature Liquid Water

    Institute of Scientific and Technical Information of China (English)

    Xiu Yang LU; Qi JING; Zhun LI; Lei YUAN; Fei GAO; Xin LIU

    2006-01-01

    Two novel and environmentally benign solvent systems, organic acids-enriched high temperature liquid water (HTLW) and NH3-enriched HTLW, were developed, which can enhance the reaction rate of acid/base-catalyzed organic reactions in HTLW. We investigated the decomposition of fructose in organic acids-enriched HTLW, hydrolysis of cinnamaldehyde and aldol condensation of phenylaldehyde with acetaldehyde in NH3-enriched HTLW. The experimental results demonstrated that organic acids-enriched or NH3-enriched HTLW can greatly accelerate acid/base-catalyzed organic reactions in HTLW.

  6. Enhanced biomethanation of kitchen waste by different pre-treatments.

    Science.gov (United States)

    Ma, Jingxing; Duong, Thu Hang; Smits, Marianne; Verstraete, Willy; Carballa, Marta

    2011-01-01

    Five different pre-treatments were investigated to enhance the solubilisation and anaerobic biodegradability of kitchen waste (KW) in thermophilic batch and continuous tests. In the batch solubilisation tests, the highest and the lowest solubilisation efficiency were achieved with the thermo-acid and the pressure-depressure pre-treatments, respectively. However, in the batch biodegradability tests, the highest cumulative biogas production was obtained with the pressure-depressure method. In the continuous tests, the best performance in terms of an acceptable biogas production efficiency of 60% and stable in-reactor CODs and VFA concentrations corresponded to the pressure-depressure reactor, followed by freeze-thaw, acid, thermo-acid, thermo and control. The maximum OLR (5 g COD L(-1) d(-1)) applied in the pressure-depressure and freeze-thaw reactors almost doubled the control reactor. From the overall analysis, the freeze-thaw pre-treatment was the most profitable process with a net potential profit of around 11.5 € ton(-1) KW.

  7. Separation of amino acid enantiomers by micelle-enhanced ultrafiltration

    NARCIS (Netherlands)

    Bruin, de T.J.M.; Marcelis, A.T.M.; Zuilhof, H.; Rodenburg, L.M.; Overdevest, P.E.M.; Padt, van der A.; Sudhölter, E.J.R.

    2000-01-01

    A Micelle-enhanced ultrafiltration (MEUF) separation process was investigated that can potentially be used for large-scale enantioseparations. Copper(II)-amino acid derivatives dissolved in nonionic surfactant micelles were used as chiral selectors for the separation of dilute racemic amino acids so

  8. Trehalose accumulation enhances tolerance of Saccharomyces cerevisiae to acetic acid.

    Science.gov (United States)

    Yoshiyama, Yoko; Tanaka, Koichi; Yoshiyama, Kohei; Hibi, Makoto; Ogawa, Jun; Shima, Jun

    2015-02-01

    Trehalose confers protection against various environmental stresses on yeast cells. In this study, trehalase gene deletion mutants that accumulate trehalose at high levels showed significant stress tolerance to acetic acid. The enhancement of trehalose accumulation can thus be considered a target in the breeding of acetic acid-tolerant yeast strains.

  9. Nanopharmaceutical Approach for Enhanced Anti-cancer Activity of Betulinic Acid in Lung-cancer Treatment via Activation of PARP: Interaction with DNA as a Target -Anti-cancer Potential of Nano-betulinic Acid in Lung Cancer-

    Directory of Open Access Journals (Sweden)

    Jayeeta Das

    2016-03-01

    Full Text Available Objectives: This study examined the relative efficacies of a derivative of betulinic acid (dBA and its poly (lactide- co-glycolide (PLGA nano-encapsulated form in A549 lung cancer cells in vivo and in co-mutagen [sodium arsenite (SA + benzo]undefined[a]pyrene (BaP]-induced lung cancer in mice in vivo. Methods: dBA was loaded with PLGA nanoparticles by using the standard solvent displacement method. The sizes and morphologies of nano-dBA (NdBA were determined by using transmission electron microscopy (TEM, and their intracellular localization was verified by using confocal microscopy. The binding and interaction of NdBA with calf thymus deoxyribonucleic acid (CT-DNA as a target were analyzed by using conventional circular dichroism (CD and melting temperature (Tm profile data. Apoptotic signalling cascades in vitro and in vivo were studied by using an enzyme-linked immunosorbent assay (ELISA; the ability of NdBA to cross the blood-brain barrier (BBB was also examined. The stage of cell cycle arrest was confirmed by using a fluorescence-activated cell-sorting (FACS data analysis. Results: The average size of the nanoparticles was ~ 110 nm. Confocal microscopy images confirmed the presence of NdBA in the cellular cytoplasm. The bio-physical properties of dBA and NdBA ascertained from the CD and the Tm profiles revealed that NdBA had greater interaction with the target DNA than dBA did. Both dBA and NdBA arrested cell proliferation at G0/G1, NdBA showing the greater effect. NdBA also induced a greater degree of cytotoxicity in A549 cells, but it had an insignificant cytotoxic effect in normal L6 cells. The results of flow cytometric, cytogenetial and histopathological studies in mice revealed that NdBA caused less nuclear condensation and DNA damage than dBA did. TEM images showed the presence of NdBA in brain samples of NdBA fed mice, indicating its ability to cross the BBB. Conclusion: Thus, compared to dBA, NdBA appears to have greater

  10. Enhanced anaerobic biological treatment of phenolic wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Kindzierski, W.B.

    1989-01-01

    The combined treatment requirements for a high strength phenolic wastewater were examined in batch and semicontinuous anaerobic methanogenic bioassays. Solvent extraction pretreatment and in-situ addition of activated carbon during anaerobic treatment were effective in removing phenol from a coal liquefaction wastewater from the H-coal process. The selective pH adjustment of high strength phenolic wastewater followed by diisopropyl ether extraction reduced the phenolic concentration to non-inhibitory levels, and removed non-phenolic inhibitory compounds. The weakly acid nature of phenol and substituted phenols allows for their selective removal by solvent extraction. Anaerobic bacteria were able to degrade phenol in the solvent extracted wastwater, however, the bacteria exhibited instability under semicontinuous feeding conditions. The addition of activated carbon to the stressed phenol-degrading cultures improved their ability to remove phenol from solution. Further investigation into the role activated carbon performed during anaerobic phenol treatment demonstrated its importance as a biological support, in addition to providing adsorptive capacity for organic (including inhibitory) compounds. The similar study of other support materials (ion exchange resins) which did not possess an adsorptive capacity for organic compounds supported these findings. Excellent agreement was demonstrated among physical evaluation methods, performance bioassays, radiolabelled cell adsorption studies, and scanning electron microscopy observations in judging the value of the materials as biological supports.

  11. Removal of coagulant aluminum from water treatment residuals by acid.

    Science.gov (United States)

    Okuda, Tetsuji; Nishijima, Wataru; Sugimoto, Mayo; Saka, Naoyuki; Nakai, Satoshi; Tanabe, Kazuyasu; Ito, Junki; Takenaka, Kenji; Okada, Mitsumasa

    2014-09-01

    Sediment sludge during coagulation and sedimentation in drinking water treatment is called "water treatment residuals (WTR)". Polyaluminum chloride (PAC) is mainly used as a coagulant in Japan. The recycling of WTR has been desired; one method for its reuse is as plowed soil. However, WTR reuse in this way is inhibited by the aluminum from the added PAC, because of its high adsorption capacity for phosphate and other fertilizer components. The removal of such aluminum from WTR would therefore be advantageous for its reuse as plowed soil; this research clarified the effect of acid washing on aluminum removal from WTR and on plant growth in the treated soil. The percentage of aluminum removal from raw WTR by sulphuric acid solution was around 90% at pH 3, the percentage decreasing to 40% in the case of a sun-dried sample. The maximum phosphate adsorption capacity was decreased and the available phosphorus was increased by acid washing, with 90% of aluminum removal. The enhancement of Japanese mustard spinach growth and the increased in plant uptake of phosphates following acid washing were observed.

  12. Enhance decarboxylation reaction of carboxylic acids in clay minerals

    International Nuclear Information System (INIS)

    Clay minerals are important constituents of the Earth's crust. These minerals catalyze reactions in several ways: by energy transfer processes, redox reactions, stabilization of intermediates and by Broensted or Lewis acidity behavior. Important set of organic reactions can be improved in the precedence of clay minerals. Besides the properties of clays to catalyze chemical reactions, it is possible to enhance some of its reactions by using ionizing radiation. The phenomenon of radiation-induced catalysis may be connected with ionizing process in the solid and with the trapped non-equilibrium charge carriers. In this paper we are reporting the decarboxylation reaction of carboxylic acids catalyzed by clay and by irradiation of the system acid-clay. We studied the behaviour of several carboxylic acids and analyzed them by gas chromatography, X-ray and infrared spectroscopy. The results showed that decarboxylation of the target compound is the dominating pathway. The reaction is enhanced by gamma radiation in several orders of magnitude. (author)

  13. Clavulanic acid increases dopamine release in neuronal cells through a mechanism involving enhanced vesicle trafficking

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2011-01-01

    Clavulanic acid is a CNS-modulating compound with exceptional blood-brain barrier permeability and safety profile. Clavulanic acid has been proposed to have anti-depressant activity and is currently entering Phase IIb clinical trials for the treatment of Major Depressive Disorder (MDD). Studies have also shown that clavulanic acid suppresses anxiety and enhances sexual functions in rodent and primate models by a mechanism involving central nervous system (CNS) modulation, although its detailed mechanism of action has yet to be elucidated. To further examine its potential as a CNS modulating agent as well as its mechanism of action, we investigated the effects of clavulanic acid in neuronal cells. Our results indicate that clavulanic acid enhances dopamine release in PC12 and SH-SY5Y cells without affecting dopamine synthesis. Furthermore, using affinity chromatography we were able to identify two proteins, Munc18-1 and Rab4 that potentially bind to clavulanic acid and play a critical role in neurosecretion and the vesicle trafficking process. Consistent with this result, an increase in the translocation of Munc18-1 and Rab4 from the cytoplasm to the plasma membrane was observed in clavulanic acid treated cells. Overall, these data suggest that clavulanic acid enhances dopamine release in a mechanism involving Munc18-1 and Rab4 modulation and warrants further investigation of its therapeutic use in CNS disorders, such as depression. PMID:21964384

  14. Clavulanic acid increases dopamine release in neuronal cells through a mechanism involving enhanced vesicle trafficking.

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2011-10-24

    Clavulanic acid is a CNS-modulating compound with exceptional blood-brain barrier permeability and safety profile. Clavulanic acid has been proposed to have anti-depressant activity and is currently entering Phase IIb clinical trials for the treatment of Major Depressive Disorder (MDD). Studies have also shown that clavulanic acid suppresses anxiety and enhances sexual functions in rodent and primate models by a mechanism involving central nervous system (CNS) modulation, although its detailed mechanism of action has yet to be elucidated. To further examine its potential as a CNS modulating agent as well as its mechanism of action, we investigated the effects of clavulanic acid in neuronal cells. Our results indicate that clavulanic acid enhances dopamine release in PC12 and SH-SY5Y cells without affecting dopamine synthesis. Furthermore, using affinity chromatography we were able to identify two proteins, Munc18-1 and Rab4 that potentially bind to clavulanic acid and play a critical role in neurosecretion and the vesicle trafficking process. Consistent with this result, an increase in the translocation of Munc18-1 and Rab4 from the cytoplasm to the plasma membrane was observed in clavulanic acid treated cells. Overall, these data suggest that clavulanic acid enhances dopamine release in a mechanism involving Munc18-1 and Rab4 modulation and warrants further investigation of its therapeutic use in CNS disorders, such as depression.

  15. Acid tolerance response (ATR) of microbial communities during the enhanced biohydrogen process via cascade acid stress.

    Science.gov (United States)

    Lin, Xiaoqin; Xia, Yan; Yan, Qun; Shen, Wei; Zhao, Mingxing

    2014-03-01

    Enhanced biohydrogen production via cascade acid stress on microbial communities, structure patterns of the microbial communities revealed by PLFAs, and the succession of biohydrogen related species against cascade acid stress were all investigated. It was found that hydrogen production could be improved from 48.7 to 79.4mL/gVS after cascade acid stress. In addition, the Gram negative (G(-)) bacteria were found to be more tolerant to organic acids than those of the Gram positive (G(+)) bacteria, regardless of the dominance of G(+) bacteria within the microbial communities. Moreover, Clostridium butyricum, Clostridium aciditolerans and Azospira oryzae, were proved to be enriched, and then might play indispensable roles for the enhanced biohydrogen production after cascade acid stress, as which were responsible for the biohydrogen accumulation, acid tolerance and nitrogen removal, respectively.

  16. Gibberellic Acid enhancement of DNA turnover in barley aleurone cells.

    Science.gov (United States)

    Taiz, L; Starks, J E

    1977-08-01

    When imbibed, deembryonated halfseeds from barley (Hordeum vulgare L., var. Himalaya) are incubated in buffer, the DNA content of the aleurone layer increases 25 to 40% over a 24-hour period. In contrast, the DNA of isolated aleurone layers declines by 20% over the same time period. Gibberellic acid (GA) causes a reduction in DNA levels in both halfseed aleurone layers and isolated aleurone layers. GA also increases the specific radioactivity of [(3)H]thymidine-labeled halfseed aleurone layer DNA during the first 12 hours of treatment. Pulse-chase studies demonstrated that the newly synthesized DNA is metabolically labile.The buoyant density on CsCl density gradients of hormone-treated aleurone DNA is identical with that of DNA extracted from whole seedlings. After density-labeling halfseed DNA with 5-bromodeoxyuridine, a bimodal absorption profile is obtained in neutral CsCl. The light band (1.70 g/ml) corresponds to unsubstituted DNA, while the heavy band (1.725-1.74 g/ml) corresponds to a hybrid density-labeled species. GA increases the relative amount of the heavy (hybrid) peak in halfseed aleurone layer DNA, further suggesting that the hormone enhances semiconservative replication in halfseeds.DNA methylation was also demonstrated. Over 60% of the radioactivity from [(3)H-Me]methionine is incorporated into 5-methylcytosine. GA has no effect on the percentage distribution of label among the bases.It was concluded that GA enhances the rate of DNA degradation and DNA synthesis (turnover) in halfseeds, but primarily DNA degradation in isolated aleurone layers. Incorporation by isolated aleurone layers is due to DNA repair. Semiconservative replication apparently plays no physiological role in the hormone response, since both isolated aleurone layers and gamma-irradiated halfseeds respond normally. The hypothesis was advanced that endoreduplication and DNA degradation are means by which the seed stores and mobilizes deoxyribonucleotides for the embryo during

  17. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  18. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2014-09-30

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  19. Electroporation-enhanced delivery of nucleic acid vaccines.

    Science.gov (United States)

    Broderick, Kate E; Humeau, Laurent M

    2015-02-01

    The naked delivery of nucleic acid vaccines is notoriously inefficient, and an enabling delivery technology is required to direct efficiently these constructs intracellularly. A delivery technology capable of enhancing nucleic acid uptake in both cells in tissues and in culture is electroporation (EP). EP is a physical delivery mechanism that increases the permeability of mammalian cell membranes and allows the trafficking of large macromolecules into the cell. EP has now been used extensively in the clinic and been shown to be an effective method to increase both the uptake of the construct and the breadth and magnitude of the resulting immune responses. Excitingly, 2014 saw the announcement of the first EP-enhanced DNA vaccine Phase II trial demonstrating clinical efficacy. This review seeks to introduce the reader to EP as a technology to enhance the delivery of DNA and RNA vaccines and highlight several published clinical trials using this delivery modality.

  20. Salicylic Acid Induction of Flavonoid Biosynthesis Pathways in Wheat Varies by Treatment

    Science.gov (United States)

    Gondor, Orsolya K.; Janda, Tibor; Soós, Vilmos; Pál, Magda; Majláth, Imre; Adak, Malay K.; Balázs, Ervin; Szalai, Gabriella

    2016-01-01

    Salicylic acid is a promising compound for the reduction of stress sensitivity in plants. Although several biochemical and physiological changes have been described in plants treated with salicylic acid, the mode of action of the various treatments has not yet been clarified. The present work reports a detailed comparative study on the effects of different modes of salicylic acid application at the physiological, metabolomic, and transcriptomic levels. Seed soaking and hydroponic treatments were found to induce various changes in the protective mechanisms of wheat plants. The possible involvement of the flavonoid metabolism in salicylic acid-related stress signaling was also demonstrated. Different salicylic acid treatments were shown to induce different physiological and biochemical processes, with varying responses in the leaves and roots. Hydroponic treatment enhanced the level of oxidative stress, the expression of genes involved in the flavonoid metabolism and the amount of non-enzymatic antioxidant compounds, namely ortho-hydroxycinnamic acid and the flavonol quercetin in the leaves, while it decreased the ortho-hydroxycinnamic acid and flavonol contents and enhanced ascorbate peroxidase activity in the roots. In contrast, seed soaking only elevated the gene expression level of phenylalanine ammonia lyase in the roots and caused a slight increase in the amount of flavonols. These results draw attention to the fact that the effects of exogenous salicylic acid application cannot be generalized in different experimental systems and that the flavonoid metabolism may be an important part of the action mechanisms induced by salicylic acid.

  1. Towards energy positive wastewater treatment by sludge treatment using free nitrous acid.

    Science.gov (United States)

    Wang, Qilin; Hao, Xiaodi; Yuan, Zhiguo

    2016-02-01

    Free nitrous acid (FNA i.e. HNO2) was revealed to be effective in enhancing biodegradability of secondary sludge. Also, nitrite-oxidizing bacteria were found to be more susceptible to FNA than ammonium-oxidizing bacteria. Based on these findings, a novel FNA-based sludge treatment technology is proposed to enhance energy recovery from wastewater/sludge. Energy analysis indicated that the FNA-based technology would make wastewater treatment become an energy generating process (yielding energy at 4 kWh/PE/y; kWh/PE/y: kilowatt hours per population equivalent per year), rather than being a large energy consumer that it is today (consuming energy at 24 kWh/PE/y). Importantly, FNA required for the sludge treatment could be produced as a by-product of wastewater treatment. This proposed FNA-based technology is economically and environmentally attractive, and can be easily implemented in any wastewater treatment plants. It only involves the installation of a simple sludge mixing tank. This article presents the concept of the FNA-based technology.

  2. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    Science.gov (United States)

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA. PMID:26469934

  3. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    Science.gov (United States)

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA.

  4. Enhanced formic acid oxidation on Cu-Pd nanoparticles

    Science.gov (United States)

    Dai, Lin; Zou, Shouzhong

    Developing catalysts with high activity and high resistance to surface poisoning remains a challenge in direct formic acid fuel cell research. In this work, copper-palladium nanoparticles were formed through a galvanic replacement process. After electrochemically selective dissolution of surface Cu, Pd-enriched Cu-Pd nanoparticles were formed. These particles exhibit much higher formic acid oxidation activities than that on pure Pd nanoparticles, and they are much more resistant to the surface poisoning. Possible mechanisms of catalytic activity enhancement are briefly discussed.

  5. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    Science.gov (United States)

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  6. Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofield Treatment

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Disulfiram is being used clinically as an aid in chronic alcoholism, while nicotinic acid is one of a B-complex vitamin that has cholesterol lowering activity. The aim of present study was to investigate the impact of biofield treatment on spectral properties of disulfiram and nicotinic acid. The study was performed in two groups i.e., control and treatment of each drug. The treatment groups were received Mr. Trivedi’s biofield treatment. Subsequently, spectral properties of control and...

  7. Enhancement of nucleation during hanging drop protein crystallization using HF treatment of cover glasses

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yun-Zhu; Yin, Da-Chuan; Lu, Qin-Qin; Wang, Xi-Kai; Liu, Jun [Key Laboratory for Space Bioscience and Biotechnology, Faculty of Life Sciences, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China)

    2010-02-15

    We examined a simple approach, i.e., etching cover glasses using hydrofluoric acid (HF), to determine whether cover glass treatment enhances nucleation in hanging drop protein crystallization. Hen egg white lysozyme and proteinase K were used as the model proteins. We found that the treatment increased the success rate of crystallization. The results indicated that the simple treatment, which is easy to adopt without changing much in the hanging drop method, can be utilized as an alternative method to enhance protein crystallization screens (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. The Effect of Acid Stress Treatment on Viability and Membrane Fatty Acid Composition of Oenococcus oeni SD-2a

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wen-ying; LI Hua; WANG Hua; LI Zhong-chao; WANG Ai-lian

    2009-01-01

    To obtain ready-to-use wine malolactic starter cultures with high viability, the effects of acid stress treatments on the growth, inoculation viability, freeze-drying viability, and membrane fatty acid composition of the native Oenococcus oeni SD-2a strain were studied. The results showed that pH 3.5 and 3.2 adaptive treatments did not strongly decrease cell biomass but increased distinctly inoculation viability and freeze-drying viability. Concerning the membrane fatty acid composition, it was observed that acid stress conditions increased significantly the relative concentration of lactobacillic acid (C19cycl 1) and the unsaturated:saturated fatty acid ratio in cell membrane lipids. We assumed that acid-induced cross protective responses could be used in preparing ready-to-use O. oeni SD-2a malolactic starter cultures, and the accumulation of lactobacillic acid in the membrane of O. oeni SD-2a cells appears as an acid stress response mechanism,which might be related with the enhanced viability.

  9. Cognitive enhancement treatments for bipolar disorder

    DEFF Research Database (Denmark)

    Miskowiak, Kamilla W; Carvalho, André F; Vieta, Eduard;

    2016-01-01

    Cognitive dysfunction is an emerging treatment target in bipolar disorder (BD). Several trials have assessed the efficacy of novel pharmacological and psychological treatments on cognition in BD but the findings are contradictory and unclear. A systematic search following the PRISMA guidelines...

  10. The Enhancement of Catharanthine Content in Catharanthus roseus Callus Culture Treated with Naphtalene Acetic Acid

    Directory of Open Access Journals (Sweden)

    DINGSE PANDIANGAN

    2006-09-01

    Full Text Available The research aim was to examine the enhancement of catharanthine content in Catharanthus roseus callus culture added with different concentration of Naphtalene Acetic Acid (NAA. NAA treatment produced callus that formed hairy roots. Fresh and dry weight of callus increased as the increasing of NAA concentration. The catharanthine content of C. roseus callus culture was increased by adding NAA as well. The highest catharanthine content was found in 2.5 ppm NAA added callus.

  11. The Enhancement of Catharanthine Content in Catharanthus roseus Callus Culture Treated with Naphtalene Acetic Acid

    OpenAIRE

    DINGSE PANDIANGAN; NELSON NAINGGOLAN

    2006-01-01

    The research aim was to examine the enhancement of catharanthine content in Catharanthus roseus callus culture added with different concentration of Naphtalene Acetic Acid (NAA). NAA treatment produced callus that formed hairy roots. Fresh and dry weight of callus increased as the increasing of NAA concentration. The catharanthine content of C. roseus callus culture was increased by adding NAA as well. The highest catharanthine content was found in 2.5 ppm NAA added callus.

  12. Lowering of phytic acid content by enhancement of phytase and acid phosphatase activities during sunflower germination

    OpenAIRE

    Juliana da Silva Agostini; Rosicler Balduíno Nogueira; Elza Iouko Ida

    2010-01-01

    The objective of this work was to investigate the germination of hybrid sunflowers BRS191 and C11 as a means of lowering phytic acid (PA) content by enhancing the activity of endogenous phytase and acid phosphatase. The concentration of PA in hybrid sunflower achenes varied from 2.16 to 2.83g/100g of sample (p < 0.05). The phytase and acid phosphatase activities of sunflowers BRS191 and C11 were the highest on the 4th and 5th days of germination, respectively, with the release of the phosphor...

  13. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  14. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  15. Polyunsaturated fatty acids for multiple sclerosis treatment

    Directory of Open Access Journals (Sweden)

    Monserrat Kong-González

    2015-01-01

    Full Text Available INTRODUCTION Fatty acids have an important role in structure and function of the nervous system. Recently, epidemiologic studies on neurodegenerative disorders have evaluated the usefulness of polyunsaturated fatty acids on multiple sclerosis. OBJECTIVE To examine recent studies, clinical trials, and reviews on the therapeutic effect of polyunsaturated fatty acids in multiple sclerosis. METHODS We conducted a search in MEDLINE/PubMed and Cochrane Library with the terms "fatty acids", "omega-3" and "omega-6" in combination with "multiple sclerosis". Articles were selected according to their relevance on the topic. RESULTS Epidemiologic studies have shown benefits of dietary supplementation with polyunsaturated fatty acids -especially omega-3- in relation to inflammatory, autoimmune and neurodegenerative disorders. In contrast, the studies do not show a beneficial effect of polyunsaturated fatty acids in multiple sclerosis. However, there are limitations related to design and sample issues in these studies CONCLUSIONS There is some evidence of a protective effect of polyunsaturated fatty acids on the risk of multiple sclerosis. Despite this, to date controlled trials have not produced definite results on the benefits of supplementation with polyunsaturated fatty acids in patients with multiple sclerosis. Any potential benefit will have to be confirmed in the long term.

  16. Behavioral Therapy, Incentives Enhance Addiction Treatment

    Science.gov (United States)

    ... who are trying to end their addiction to marijuana can benefit from a treatment program that combines motivational incentives with cognitive-behavioral therapy. "Marijuana remains one of the most widely used drugs ...

  17. Enhancing Chlorination Fundamentals for Water Treatment Technology IV Course Using On-Line Multi-Media

    OpenAIRE

    Masengo Ilunga

    2015-01-01

    The current paper demonstrates the use of on-line multi-media, i.e. "chlorination of natural waters" and "dissociation of weak acids" from Merlot database, to enhance teaching and learning for Water Treatment Technology IV course material. This database focuses on fundamental concepts for chlorination as one of the most prominent disinfection treatment technology processes in the world and in South Africa. The course is part of the curriculum for the bachelor of technology degree in civil eng...

  18. Ultrasound Microbubble Treatment Enhances Clathrin-Mediated Endocytosis and Fluid-Phase Uptake through Distinct Mechanisms.

    Science.gov (United States)

    Fekri, Farnaz; Delos Santos, Ralph Christian; Karshafian, Raffi; Antonescu, Costin N

    2016-01-01

    Drug delivery to tumors is limited by several factors, including drug permeability of the target cell plasma membrane. Ultrasound in combination with microbubbles (USMB) is a promising strategy to overcome these limitations. USMB treatment elicits enhanced cellular uptake of materials such as drugs, in part as a result of sheer stress and formation of transient membrane pores. Pores formed upon USMB treatment are rapidly resealed, suggesting that other processes such as enhanced endocytosis may contribute to the enhanced material uptake by cells upon USMB treatment. How USMB regulates endocytic processes remains incompletely understood. Cells constitutively utilize several distinct mechanisms of endocytosis, including clathrin-mediated endocytosis (CME) for the internalization of receptor-bound macromolecules such as Transferrin Receptor (TfR), and distinct mechanism(s) that mediate the majority of fluid-phase endocytosis. Tracking the abundance of TfR on the cell surface and the internalization of its ligand transferrin revealed that USMB acutely enhances the rate of CME. Total internal reflection fluorescence microscopy experiments revealed that USMB treatment altered the assembly of clathrin-coated pits, the basic structural units of CME. In addition, the rate of fluid-phase endocytosis was enhanced, but with delayed onset upon USMB treatment relative to the enhancement of CME, suggesting that the two processes are distinctly regulated by USMB. Indeed, vacuolin-1 or desipramine treatment prevented the enhancement of CME but not of fluid phase endocytosis upon USMB, suggesting that lysosome exocytosis and acid sphingomyelinase, respectively, are required for the regulation of CME but not fluid phase endocytosis upon USMB treatment. These results indicate that USMB enhances both CME and fluid phase endocytosis through distinct signaling mechanisms, and suggest that strategies for potentiating the enhancement of endocytosis upon USMB treatment may improve targeted

  19. The Hip Functional Retrieval after Elective Surgery May Be Enhanced by Supplemented Essential Amino Acids

    Directory of Open Access Journals (Sweden)

    Eleonora Baldissarro

    2016-01-01

    Full Text Available It is not known whether postsurgery systemic inflammation and plasma amino acid abnormalities are still present during rehabilitation of individuals after elective hip arthroplasty (EHA. Sixty subjects (36 females; age 66.58±8.37 years were randomized to receive 14-day oral EAAs (8 g/day or a placebo (maltodextrin. At admission to and discharge from the rehabilitation center, serum C-reactive protein (CRP and venous plasma amino acid concentrations were determined. Post-EHA hip function was evaluated by Harris hip score (HHS test. Ten matched healthy subjects served as controls. At baseline, all patients had high CRP levels, considerable reduction in several amino acids, and severely reduced hip function (HHS 40.78±2.70 scores. After treatment, inflammation decreased both in the EAA group and in the placebo group. Only EAA patients significantly improved their levels of glycine, alanine, tyrosine, and total amino acids. In addition, they enhanced the rate of hip function recovery (HHS (from baseline 41.8±1.15 to 76.37±6.6 versus baseline 39.78±4.89 to 70.0±7.1 in placebo one; p=0.006. The study documents the persistence of inflammation and plasma amino acid abnormalities in post-EHA rehabilitation phase. EAAs enhance hip function retrieval and improve plasma amino acid abnormalities.

  20. Enhancing Residential Treatment for Drug Court Participants

    Science.gov (United States)

    Koob, Jeff; Brocato, Jo; Kleinpeter, Christine

    2011-01-01

    In this study, the authors describe and evaluate the impact of increased access to residential treatment added to traditional drug court services in Orange County, California, with a goal of increasing program retention, successful completion, and graduation rates for a high-risk drug offender population participating in drug court between January…

  1. Activation of PPARα by Fatty Acid Accumulation Enhances Fatty Acid Degradation and Sulfatide Synthesis.

    Science.gov (United States)

    Yang, Yang; Feng, Yuyao; Zhang, Xiaowei; Nakajima, Takero; Tanaka, Naoki; Sugiyama, Eiko; Kamijo, Yuji; Aoyama, Toshifumi

    2016-01-01

    Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the first reaction in the mitochondrial fatty acid β-oxidation pathway. VLCAD deficiency is associated with the accumulation of fat in multiple organs and tissues, which results in specific clinical features including cardiomyopathy, cardiomegaly, muscle weakness, and hepatic dysfunction in infants. We speculated that the abnormal fatty acid metabolism in VLCAD-deficient individuals might cause cell necrosis by fatty acid toxicity. The accumulation of fatty acids may activate peroxisome proliferator-activated receptor (PPAR), a master regulator of fatty acid metabolism and a potent nuclear receptor for free fatty acids. We examined six skin fibroblast lines, derived from VLCAD-deficient patients and identified fatty acid accumulation and PPARα activation in these cell lines. We then found that the expression levels of three enzymes involved in fatty acid degradation, including long-chain acyl-CoA synthetase (LACS), were increased in a PPARα-dependent manner. This increased expression of LACS might enhance the fatty acyl-CoA supply to fatty acid degradation and sulfatide synthesis pathways. In fact, the first and last reactions in the sulfatide synthesis pathway are regulated by PPARα. Therefore, we also measured the expression levels of enzymes involved in sulfatide metabolism and the regulation of cellular sulfatide content. The levels of these enzymes and cellular sulfatide content both increased in a PPARα-dependent manner. These results indicate that PPARα activation plays defensive and compensative roles by reducing cellular toxicity associated with fatty acids and sulfuric acid. PMID:27644403

  2. Research of the Mechanism of Enhancing Biological Treatment by Chitosan

    Institute of Scientific and Technical Information of China (English)

    CHEN Liang; QIN Bing; CHEN Dong-hui

    2006-01-01

    Chitosan of different molecular weight (M. W. ) was added into SBR bioreactor to treat domestic wastewater. From comparison of treatment efficiency, sludge activity, sludge structure etc., we revealed the mechanism that chitosan enhanced the biological treatment function of activated sludge. The results proved that, chitosan is certain to restrain the reaction of activated sludge, but it do improve the structure of sludge fiocs and increase the treatment efficiency of activated sludge. The bigger the M. W. of chitosan is, the better the efficiency of enhancing biological treatment can be.

  3. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    Science.gov (United States)

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  4. Guanidinoacetic acid as a performance-enhancing agent.

    Science.gov (United States)

    Ostojic, Sergej M

    2016-08-01

    Guanidinoacetic acid (GAA; also known as glycocyamine or guanidinoacetate) is the natural precursor of creatine, and under investigation as a novel dietary agent. It was first identified as a natural compound in humans ~80 years ago. In the 1950s, GAA's use as a therapeutic agent was explored, showing that supplemental GAA improved patient-reported outcomes and work capacity in clinical populations. Recently, a few studies have examined the safety and efficacy of GAA and suggest potential ergogenic benefits for physically active men and women. The purpose of this review is to examine possible applications of GAA supplementation for exercise performance enhancement, safety, and legislation issues. PMID:26445773

  5. Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco.

    Science.gov (United States)

    Vogel-Adghough, Drissia; Stahl, Elia; Návarová, Hana; Zeier, Juergen

    2013-11-01

    Distinct amino acid metabolic pathways constitute integral parts of the plant immune system. We have recently identified pipecolic acid (Pip), a lysine-derived non-protein amino acid, as a critical regulator of systemic acquired resistance (SAR) and basal immunity to bacterial infection in Arabidopsis thaliana. In Arabidopsis, Pip acts as an endogenous mediator of defense amplification and priming. For instance, Pip conditions plants for effective biosynthesis of the phenolic defense signal salicylic acid (SA), accumulation of the phytoalexin camalexin, and expression of defense-related genes. Here, we show that tobacco plants respond to leaf infection by the compatible bacterial pathogen Pseudomonas syringae pv tabaci (Pstb) with a significant accumulation of several amino acids, including Lys, branched-chain, aromatic, and amide group amino acids. Moreover, Pstb strongly triggers, alongside the biosynthesis of SA and increases in the defensive alkaloid nicotine, the production of the Lys catabolites Pip and α-aminoadipic acid. Exogenous application of Pip to tobacco plants provides significant protection to infection by adapted Pstb or by non-adapted, hypersensitive cell death-inducing P. syringae pv maculicola. Pip thereby primes tobacco for rapid and strong accumulation of SA and nicotine following bacterial infection. Thus, our study indicates that the role of Pip as an amplifier of immune responses is conserved between members of the rosid and asterid groups of eudicot plants and suggests a broad practical applicability for Pip as a natural enhancer of plant disease resistance.

  6. Enhanced Biocide Mitigation of Field Biofilm Consortia by a Mixture of D-Amino Acids

    Science.gov (United States)

    Li, Yingchao; Jia, Ru; Al-Mahamedh, Hussain H.; Xu, Dake; Gu, Tingyue

    2016-01-01

    Microbiologically influenced corrosion (MIC) is a major problem in the oil and gas industry as well as in many other industries. Current treatment methods rely mostly on pigging and biocide dosing. Biocide resistance is a growing concern. Thus, it is desirable to use biocide enhancers to improve the efficacy of existing biocides. D-Amino acids are naturally occurring. Our previous work demonstrated that some D-amino acids are biocide enhancers. Under a biocide stress of 50 ppm (w/w) hydroxymethyl phosphonium sulfate (THPS) biocide, 1 ppm D-tyrosine and 100 ppm D-methionine used separately successfully mitigated the Desulfovibrio vulgaris biofilm on carbon steel coupons. The data reported in this work revealed that 50 ppm of an equimolar mixture of D-methionine, D-tyrosine, D-leucine, and D-tryptophan greatly enhanced 50 ppm THPS biocide treatment of two recalcitrant biofilm consortia containing sulfate reducing bacteria (SRB), nitrate reducing bacteria (NRB), and fermentative bacteria, etc., from oil-field operations. The data also indicated that individual D-amino acids were inadequate for the biofilm consortia. PMID:27379039

  7. Enhanced Biocide Mitigation of Field Biofilm Consortia by a Mixture of D-Amino Acids.

    Science.gov (United States)

    Li, Yingchao; Jia, Ru; Al-Mahamedh, Hussain H; Xu, Dake; Gu, Tingyue

    2016-01-01

    Microbiologically influenced corrosion (MIC) is a major problem in the oil and gas industry as well as in many other industries. Current treatment methods rely mostly on pigging and biocide dosing. Biocide resistance is a growing concern. Thus, it is desirable to use biocide enhancers to improve the efficacy of existing biocides. D-Amino acids are naturally occurring. Our previous work demonstrated that some D-amino acids are biocide enhancers. Under a biocide stress of 50 ppm (w/w) hydroxymethyl phosphonium sulfate (THPS) biocide, 1 ppm D-tyrosine and 100 ppm D-methionine used separately successfully mitigated the Desulfovibrio vulgaris biofilm on carbon steel coupons. The data reported in this work revealed that 50 ppm of an equimolar mixture of D-methionine, D-tyrosine, D-leucine, and D-tryptophan greatly enhanced 50 ppm THPS biocide treatment of two recalcitrant biofilm consortia containing sulfate reducing bacteria (SRB), nitrate reducing bacteria (NRB), and fermentative bacteria, etc., from oil-field operations. The data also indicated that individual D-amino acids were inadequate for the biofilm consortia. PMID:27379039

  8. Acid mine water aeration and treatment system

    Science.gov (United States)

    Ackman, Terry E.; Place, John M.

    1987-01-01

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  9. Multifunctional Nucleic Acids for Tumor Cell Treatment

    DEFF Research Database (Denmark)

    Pofahl, Monika; Wengel, Jesper; Mayer, Günter

    2014-01-01

    We report on a multifunctional nucleic acid, termed AptamiR, composed of an aptamer domain and an antimiR domain. This composition mediates cell specific delivery of antimiR molecules for silencing of endogenous micro RNA. The introduced multifunctional molecule preserves cell targeting, anti......-proliferative and antimiR function in one 37-nucleotide nucleic acid molecule. It inhibits cancer cell growth and induces gene expression that is pathologically damped by an oncomir. These findings will have a strong impact on future developments regarding aptamer- and antimiR-related applications for tumor targeting...

  10. Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola.

    Science.gov (United States)

    Wittek, Finni; Kanawati, Basem; Wenig, Marion; Hoffmann, Thomas; Franz-Oberdorf, Katrin; Schwab, Wilfried; Schmitt-Kopplin, Philippe; Vlot, A Corina

    2015-08-01

    Folates are essential for one-carbon transfer reactions in all organisms and contribute, for example, to de novo DNA synthesis. Here, we detected the folate precursors 7,8-dihydropteroate (DHP) and 4-amino-4-deoxychorismate (ADC) in extracts from Arabidopsis thaliana plants by Fourier transform ion cyclotron resonance-mass spectrometry. The accumulation of DHP, but not ADC, was induced after infection of plants with Pseudomonas syringae delivering the effector protein AvrRpm1. Application of folic acid or the DHP precursor 7,8-dihydroneopterin (DHN) enhanced resistance in Arabidopsis to P. syringae and elevated the transcript accumulation of the salicylic acid (SA) marker gene pathogenesis-related1 in both the treated and systemic untreated leaves. DHN- and folic acid-induced systemic resistance was dependent on SA biosynthesis and signalling. Similar to SA, folic acid application locally enhanced Arabidopsis susceptibility to the necrotrophic fungus Alternaria brassicicola. Together, the data associate the folic acid pathway with innate immunity in Arabidopsis, simultaneously activating local and systemic SA-dependent resistance to P. syringae and suppressing local resistance to A. brassicicola.

  11. Citric Acid Treatment of Chronic Wounds in Animals

    Directory of Open Access Journals (Sweden)

    B.S. Nagoba,

    2011-02-01

    Full Text Available Chronic wound infections in animals not responding to conventional treatment modality are the important cause of morbidity. Infection is responsible for delayed wound healing. In the present study, an attempt was made to develop simple and effective treatment modality by using citric acid as a sole antimicrobial agent to control chronic wound infections in animals. Thirty eight cases of chronic wounds not responding to conventional treatment modalities were divided into two groups. Each group included 19 cases. In group 1, 3% citric acid solution and in group 2, 5% citric acid solution was used for local application to find out its efficacy in the treatment of chronic wound infections in animals. Citric acid was found effective in the control of all 38 cases in 7 to 20 applications. In group 1, the wounds healed in 10-20 applications. In group 2, the wounds healed in 7-15 applications. Citric acid treatment was found most effective and economical approach for the successful treatment of chronic infected wounds in animals not responding to conventional antibiotic treatment and local wound care. These results suggest that when healing of chronic wounds in animals is a matter of great concern, the value of topical agents like citric acid should not be forgotten.

  12. PREPARATION OF HOLLOW LATEX PARTICLES BY ALKALI-ACID TREATMENT

    Institute of Scientific and Technical Information of China (English)

    郝冬梅; 王新灵; 朱卫华; 唐小真; 刘成岑; 施凯

    2001-01-01

    Hollow polymer latex particles were prepared by seeded emulsion polymerization. A seed latex consisting of styrene (St), butyl acrylate(BA) copolymer was first prepared, and seeded terpolymerization of St-BA-MA(methacrylic acid) were then carried out in the absence of surfactant. Final latex was treated by a two-step treatment under alkaline and acidic conditions, thus, the particles with hollow structure were obtained. We discussed the effects of pH value, temperature and time in alkali and acid treatment processes on hollow structure within the polymer latex particles and amount of carboxylic group on particle surface. The results show that the hollow polymer latex particles with the largest hollow size can be obtained under a certain condition (pH12.5, 90°C, 3 h in alkali treatment stage and pH2.5, 85°C, 3 h in acid treatment stage).

  13. 300 Area waste acid treatment system closure plan. Revision 1

    International Nuclear Information System (INIS)

    This section provides a description of the Hanford Site, identifies the proposed method of 300 Area Waste Acid Treatment System (WATS) closure, and briefly summarizes the contents of each chapter of this plan

  14. [Advances in the research of treatment of hydrofluoric acid burn].

    Science.gov (United States)

    Wang, Xin-gang; Zhang, Yuan-hai; Han, Chun-mao

    2013-08-01

    Hydrofluoric acid (HF) is one of the most common inorganic acids used widely in industrial circle. HF not only causes cutaneous burn, but also induces systemic toxicity by its unique injury mechanism. Accurate and timely diagnosis and treatment are critical after HF burns. To date, the strategies for treating HF burns have been developed, mainly including topical treatments and systematic support. However, there is no standard treatment strategy with wide acceptance in the world. This paper presents a comprehensive overview of the advances in the research of strategies for the treatment of HF burns.

  15. Surgical Webcast for Treatment of Acid Reflux

    Medline Plus

    Full Text Available ... upper GI series and sometimes a 24-hour PH study. Typically, medical treatments can be just elevating ... causing the problem. And so a 24-hour PH is commonly done. That’s a study performed by ...

  16. Enhanced removal of 8-quinolinecarboxylic acid in an activated carbon cloth by electroadsorption in aqueous solution.

    Science.gov (United States)

    López-Bernabeu, S; Ruiz-Rosas, R; Quijada, C; Montilla, F; Morallón, E

    2016-02-01

    The effect of the electrochemical treatment (potentiostatic treatment in a filter-press electrochemical cell) on the adsorption capacity of an activated carbon cloth (ACC) was analyzed in relation with the removal of 8-quinolinecarboxylic acid pollutant from water. The adsorption capacity of an ACC is quantitatively improved in the presence of an electric field (electroadsorption process) reaching values of 96% in comparison to 55% in absence of applied potential. In addition, the cathodic treatment results in higher removal efficiencies than the anodic treatment. The enhanced adsorption capacity has been proved to be irreversible, since the removed compound remains adsorbed after switching the applied potential. The kinetics of the adsorption processes is also improved by the presence of an applied potential.

  17. 300 Area waste acid treatment system closure plan

    International Nuclear Information System (INIS)

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999

  18. 300 Area waste acid treatment system closure plan

    Energy Technology Data Exchange (ETDEWEB)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  19. Surgical Webcast for Treatment of Acid Reflux

    Medline Plus

    Full Text Available ... GI series and sometimes a 24-hour PH study. Typically, medical treatments can be just elevating the ... 24-hour PH is commonly done. That’s a study performed by Dr. Tom DeMeester originally in which ...

  20. Effect of the treatment by slightly acidic electrolyzed water on the accumulation of γ-aminobutyric acid in germinated brown millet.

    Science.gov (United States)

    Li, Xingfeng; Hao, Jianxiong; Liu, Xianggui; Liu, Haijie; Ning, Yawei; Cheng, Ruhong; Tan, Bin; Jia, Yingmin

    2015-11-01

    The accumulation of γ-aminobutyric acid and the microbial decontamination are concerned increasingly in the production of sprouts. In this work, the effect of the treatment by slightly acidic electrolyzed water on the accumulation of γ-aminobutyric acid in the germinated brown millet was evaluated by high performance liquid chromatography during germination. The results showed that slightly acidic electrolyzed water with appropriate available chlorine (15 or 30 mg/L) could promote the accumulation of γ-aminobutyric acid by up to 21% (P treatment with slightly acidic electrolyzed water could not enhance the sprouts growth of the germinated brown millet. The catalase and peroxidase activities of the germinated brown millet during germination were in agreement with the sprouts growth. Our results suggested that the accumulation of γ-aminobutyric acid was independent of the length of sprouts in germinated grains. Moreover, the treatment with slightly acidic electrolyzed water significantly reduced the microbial counts in the germinated millet (P treatment with high available chlorine concentration (15 and 30 mg/L) showed stronger anti-infection potential in the germinated brown millet than that of lower available chlorine concentration (5 mg/L). In conclusion, the treatment with slightly acidic electrolyzed water is an available approach to improve the accumulation of γ-aminobutyric acid and anti-infection potential in the germinated brown millet, and it can avoid too long millet sprouts.

  1. Enhancement of taxol-induced apoptosis by inhibition of NF-κB with ursorlic acid

    Science.gov (United States)

    Li, Yunlong; Xing, Da

    2007-05-01

    Taxol is known to inhibit cell growth and triggers significant apoptosis in various cancer cells, and activation of proliferation factor NF-κB during Taxol-induced apoptosis is regarded as a main reason resulting in tumor cells resistance to Taxol. It has been found that ursorlic acid can inhibit the activation of NF-κB. In order to study whether ursorlic acid can enhance the Taxol-induced apoptosis, we use fluorescence resonance energy transfer (FRET) technique and probe SCAT3 to compare the difference of caspase-3 activation between Taxol alone and Taxol combined ursorlic acid. With laser scanning confocal microscopy, we find that ursorlic acid, a nontoxic food component, sensitizes ASTC-a-1 cells more efficiently to Taxol-induced apoptosis by advanced activation of caspase 3. The result also suggests that there would be a synergistic effect between Taxol and ursorlic acid, and the more detailed mechanism of synergistic effect needs to be clarified further, such as the correlations among NF-κB, Akt, caspase 8, which leads to the advanced activation of caspase 3 during combined treatment of Taxol and ursorlic acid. Moreover, this may be a new way to improve Taxol-dependent tumor therapy.

  2. Self-enhanced ozonation of benzoic acid at acidic pHs.

    Science.gov (United States)

    Huang, Xianfeng; Li, Xuchun; Pan, Bingcai; Li, Hongchao; Zhang, Yanyang; Xie, Bihuang

    2015-04-15

    Ozonation of recalcitrant contaminants under acidic conditions is inefficient due to the lack of initiator (e.g., OH(-)) for ozone to produce hydroxyl radicals (HO). In this study, we reported that benzoic acid (BA), which is inert to ozone attack, underwent efficient degradation by ozone at acidic pH (2.3). The kinetics of BA degradation and ozone decomposition were both enhanced by increasing BA concentrations. Essentially, it is a HO-mediated reaction. Based on the exclusion of possible contributions of H2O2 and phenol-like intermediates for HO production, the reaction mechanism involved the formation of ozone ion ( [Formula: see text] ), which is an effective precursor of HO, was thus proposed. The hydroxycyclohexadienyl-type radicals generated during the attack of BA by HO may lead to the formation of [Formula: see text] . Meanwhile, [Formula: see text] could also be possibly formed from the reaction between ozone and organic (e.g., ROO∙) or inorganic peroxyl radicals (e.g., HO2). In addition, the hydroxylated products like phenol-like intermediates also played a positive role in HO production. Consequently, HO was produced efficiently under acidic conditions, resulting in rapid degradation of BA. This study provides a new approach for ozone activation even at acidic pHs, and broadens the knowledge of ozonation in removal of micropollutants from water. PMID:25635752

  3. Citric Acid Treatment of Chronic Wounds in Animals

    OpenAIRE

    B.S. Nagoba,; B.J. Wadher and S.P. Selkar

    2011-01-01

    Chronic wound infections in animals not responding to conventional treatment modality are the important cause of morbidity. Infection is responsible for delayed wound healing. In the present study, an attempt was made to develop simple and effective treatment modality by using citric acid as a sole antimicrobial agent to control chronic wound infections in animals. Thirty eight cases of chronic wounds not responding to conventional treatment modalities were divided into two groups. Each group...

  4. Growth factor treatment enhances vestibular hair cell renewal and results in improved vestibular function

    OpenAIRE

    Kopke, Richard D; Jackson, Ronald L; Li, Geming; Rasmussen, Mark D.; Hoffer, Michael E.; Frenz, Dorothy A.; Costello, Michael; Schultheiss, Peter; Van De Water, Thomas R.

    2001-01-01

    The vestibules of adult guinea pigs were lesioned with gentamicin and then treated with perilymphatic infusion of either of two growth factor mixtures (i.e., GF I or GF II). GF I contained transforming growth factor α (TGFα), insulin-like growth factor type one (IGF-1), and retinoic acid (RA), whereas GF II contained those three factors and brain-derived neurotrophic factor. Treatment with GF I significantly enhanced vestibular hair cell renewal in ototoxin-damaged ...

  5. Pregnancy-secreted Acid phosphatase, uteroferrin, enhances fetal erythropoiesis.

    Science.gov (United States)

    Ying, Wei; Wang, Haiqing; Bazer, Fuller W; Zhou, Beiyan

    2014-11-01

    Uteroferrin (UF) is a progesterone-induced acid phosphatase produced by uterine glandular epithelia in mammals during pregnancy and targeted to sites of hematopoiesis throughout pregnancy. The expression pattern of UF is coordinated with early fetal hematopoietic development in the yolk sac and then liver, spleen, and bone to prevent anemia in fetuses. Our previous studies suggested that UF exerts stimulatory impacts on hematopoietic progenitor cells. However, the precise role and thereby the mechanism of action of UF on hematopoiesis have not been investigated previously. Here, we report that UF is a potent regulator that can greatly enhance fetal erythropoiesis. Using primary fetal liver hematopoietic cells, we observed a synergistic stimulatory effect of UF with erythropoietin and other growth factors on both burst-forming unit-erythroid and colony-forming unit-erythroid formation. Further, we demonstrated that UF enhanced erythropoiesis at terminal stages using an in vitro culture system. Surveying genes that are crucial for erythrocyte formation at various stages revealed that UF, along with erythropoietin, up-regulated transcription factors required for terminal erythrocyte differentiation and genes required for synthesis of hemoglobin. Collectively, our results demonstrate that UF is a cytokine secreted by uterine glands in response to progesterone that promotes fetal erythropoiesis at various stages of pregnancy, including burst-forming unit-erythroid and colony-forming unit-erythroid progenitor cells and terminal stages of differentiation of hematopoietic cells in the erythroid lineage. PMID:25093463

  6. On the acidity and/or basicity of USY zeolites after basic and acid treatment

    Directory of Open Access Journals (Sweden)

    Calsavara V.

    2000-01-01

    Full Text Available The isopropanol decomposition reaction was used to evaluate the catalytic activity of ultrastable (USY zeolites with different degrees of dealumination, treated in strongly alkaline medium at various temperatures and contact times. This treatment resulted in the reinsertion of non-framework aluminium, a result of the ultrastabilization process. The samples obtained were also submitted to an acid treatment, leaching the non-framework aluminium that had not been reinserted. The results obtained at 723K showed a large reduction in the acidic activity of the alkaline-treated zeolite, as the treatment conditions became more severe (the longer the treatment time or the higher the temperature, the higher the degree of dealumination. On the other hand, treated samples displayed some isopropanol dehydrogenation activity (basic sites. However, this activity was not very significant and did not depend on the alkaline treatment or ultrastabilization conditions used. The effect of reaction temperature and acid leaching on activity is also shown.

  7. Oleic Acid: Natural variation and potential enhancement in oilseed crops.

    Science.gov (United States)

    Oleic acid is a monounsaturated omega 9 fatty acid (MUFA, C18:1) which can be found in various plant lipids and animal fats. Unlike omega 3 (a-linolenic acid, C18:3) and omega 6 (linoleic acid, C18:2) fatty acids which are essential because they cannot be synthesized by humans and must be obtained f...

  8. Amoxycillin and clavulanic acid in the treatment of urinary infection.

    Science.gov (United States)

    Al Roomi, L G; Sutton, A M; Cockburn, F; McAllister, T A

    1984-01-01

    The pharmacokinetics and clinical efficacy of amoxycillin combined with clavulanic acid in the treatment of 32 children with urinary tract infection were studied. Twenty one (80%) of 26 children with proved urinary tract infection showed a favourable clinical and bacteriological response. Fifteen of these children had amoxycillin resistant organisms and were treated successfully. In 20 children the serum and urine concentrations of amoxycillin and clavulanic acid were measured after the first oral dose. PMID:6712275

  9. Lewis acid enhanced switching of the 1,1-dicyanodihydroazulene/vinylheptafulvene photo/thermoswitch

    DEFF Research Database (Denmark)

    Parker, Christian Richard; Tortzen, Christian Gregers; Broman, Søren Lindbæk;

    2011-01-01

    Mild Lewis acids enhance the rate of the thermal conversion of vinylheptafulvene (VHF) to dihydroazulene (DHA). In the absence of light, stronger Lewis acids promote the otherwise photoinduced DHA to VHF conversion....

  10. Optimum bile acid treatment for rapid gall stone dissolution.

    OpenAIRE

    Jazrawi, R P; Pigozzi, M G; Galatola, G; Lanzini, A; Northfield, T. C.

    1992-01-01

    To determine the optimum bile acid regimen for rapid gall stone dissolution, 48 gall stone patients were divided into four groups of 12 according to stone diameter and were randomly allocated to receive one of four treatment regimens: bedtime or mealtime chenodeoxycholic acid (CDCA, 12 mg/kg/day) and bedtime or mealtime ursodeoxycholic acid (UDCA, 12 mg/kg/day). An additional 10 patients treated with a combination of CDCA plus UDCA (each 6 mg/kg/day) at bedtime were matched with the 10 patien...

  11. Ursodeoxycholic acid treatment of vanishing bile duct syndromes

    Institute of Scientific and Technical Information of China (English)

    Thomas Pusl; Ulrich Beuers

    2006-01-01

    Vanishing bile duct syndromes (VBDS) are characterized by progressive loss of small intrahepatic ducts caused by a variety of different diseases leading to chronic cholestasis, cirrhosis, and premature death from liver failure. The majority of adult patients with VBDS suffer from primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). Ursodeoxycholic acid (UDCA), a hydrophilic dihydroxy bile acid, is the only drug currently approved for the treatment of patients with PBC, and anticholestatic effects have been reported for several other cholestatic syndromes. Several potential mechanisms of action of UDCA have been proposed including stimulation of hepatobiliary secretion, inhibition of apoptosis and protection of cholangiocytes against toxic effects of hydrophobic bile acids.

  12. Erythropoietin treatment enhances muscle mitochondrial capacity in humans

    DEFF Research Database (Denmark)

    Plenge, Ulla; Belhage, Bo; Guadalupe-Grau, Amelia;

    2012-01-01

    Erythropoietin (Epo) treatment has been shown to induce mitochondrial biogenesis in cardiac muscle along with enhanced mitochondrial capacity in mice. We hypothesized that recombinant human Epo (rhEpo) treatment enhances skeletal muscle mitochondrial oxidative phosphorylation (OXPHOS) capacity...... in humans. In six healthy volunteers rhEpo was administered by sub-cutaneous injection over 8 weeks with oral iron (100 mg) supplementation taken daily. Mitochondrial OXPHOS was quantified by high-resolution respirometry in saponin-permeabilized muscle fibers obtained from biopsies of the vastus lateralis...... before and after rhEpo treatment. OXPHOS was determined with the mitochondrial complex I substrates malate, glutamate, pyruvate, and complex II substrate succinate in the presence of saturating ADP concentrations, while maximal electron transport capacity (ETS) was assessed by addition of an uncoupler...

  13. Comparison the effectiveness of pyruvic acid 50% and salicylic acid 30% in the treatment of acne

    Directory of Open Access Journals (Sweden)

    Fariba Jaffary

    2016-01-01

    Full Text Available Background: Acne vulgaris is a chronic inflammatory disease of the pilosebaceous follicles and one of the most common skin diseases. The peeling method has been recently found to be effective for acne treatment. This study aimed to compare the efficacy of pyruvic acid 50% and salicylic acid 30% peeling in the treatment of mild to moderate acne. Materials and Methods: In a prospective single-blinded clinical trial, 86 patients with acne were randomly assigned into two groups. In both groups, the routine treatment of acne (topical solution of erythromycin 4%, triclorocarban soap, and sunscreen were used twice a day for 8 weeks. In addition, salicylic acid 30% for the control group and pyruvic acid 50% for the case group were used. In both groups, acne severity index (ASI was calculated before and at week 2, 4, 6, and 8 of the treatment. Patient satisfaction was assessed at the end of the treatment. Side effects were recorded using a checklist. Results: In both groups, the reduction in the number of comedones, papules, and ASI were statistically significant (P < 0.001 in the course of treatment. However, it was not significant regarding the number of pustules (P = 0.09. None of the number of comedone, papules, pustules, and ASI was statistically different between study groups. Both treatment groups had similar side effects except for scaling in the fifth session, which was significantly lower in salicylic acid - treated patients (P = 0.015. Conclusion: Both pyruvic acid 50% and salicylic acid 30% are effective in the improvement of mild to moderate acne with no significant difference in efficacy and side effects.

  14. Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass

    OpenAIRE

    Wei Hui; Donohoe Bryon S; Vinzant Todd B; Ciesielski Peter N; Wang Wei; Gedvilas Lynn M; Zeng Yining; Johnson David K; Ding Shi-You; Himmel Michael E; Tucker Melvin P

    2011-01-01

    Abstract Background Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechan...

  15. Fenton-enhanced {gamma}-radiolysis of cyanuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, Rani [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala (India); Aravind, Usha K. [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala (India); Aravindakumar, Charuvila T. [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala (India)]. E-mail: CT-Aravindakumar@rocketmail.com

    2007-04-02

    Degradation of cyanuric acid (OOOT), a stable end product of oxidative decomposition of atrazine, is investigated in a combined field of gamma radiolysis and fenton reaction. The reaction of hydroxyl radical ({center_dot}OH) at pH 6 was carried out by irradiating N{sub 2}O saturated aqueous solutions containing OOOT (1 x 10{sup -3} mol dm{sup -3}), and this resulted only a marginal degradation (20%). However, when the same reaction was carried out in the presence of varying concentrations of ferrous sulfate ((5-10) x 10{sup -5} mol dm{sup -3}), the decay of OOOT has been enhanced to more than 80%. This decay followed a first order kinetics. Nearly similar effects were observed with another triazine derivative, 2,4-dioxohexahydro-1,3,5-triazine (DHT). Two major reaction mechanisms are proposed for the enhanced decay of OOOT. The formation of unstable hydroxyl radical adducts from the reaction of {center_dot}OH which is the result of gamma radiolysis and the Fenton reaction (resulting from the reaction of the added Fe(II) and of the H{sub 2}O{sub 2} from the radiolysis of water), is proposed as the first mechanism. The second mechanism, which is likely the major contributor to degradation, is proposed as the reaction of a nucleophilic adduct, Fe(II)OOH, which could directly react with the electron deficient triazine ring. It is highlighted that such degradation reactions must be explored for the complete degradation of the byproducts of the oxidative decomposition of atrazine.

  16. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Michinao [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Ariyoshi, Wataru [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Iwanaga, Kenjiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Okinaga, Toshinori [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Habu, Manabu [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Yoshioka, Izumi [Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan); Tominaga, Kazuhiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan)

    2011-02-25

    Research highlights: {yields} In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. {yields} MG63 cells were incubated with BMP-2 and HA for various time periods. {yields} Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. {yields} HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and

  17. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yi, E-mail: yi.luo@pfizer.com; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  18. A new enhanced antibiotic treatment for early and late syphilis.

    Science.gov (United States)

    Drago, Francesco; Ciccarese, Giulia; Broccolo, Francesco; Sartoris, Giulia; Stura, Paola; Esposito, Susanna; Rebora, Alfredo; Parodi, Aurora

    2016-06-01

    The objective of this study was to evaluate the efficacy of an enhanced treatment regimen for syphilis with the addition of doxycycline and ceftriaxone to the conventional benzathine penicillin G (BPG) treatment. Sixty-nine syphilis patients were recruited and were randomly assigned to two groups: group 1 (38 patients) received standard therapy and group 2 (31 patients) received the enhanced therapy. All patients were followed-up for at least 12 months. Patients underwent physical examination and serology every 6 months as well as echocardiography and neurological examination every year. A three- to four-fold decline in the initial Venereal Disease Research Laboratory (VDRL) titre within 6 months after therapy was considered as serological cure. At 12 months, 68% of patients in group 1 and 100% in group 2 were serologically cured (P=0.002). During follow-up, no patients in group 2 experienced complications related to syphilis. In contrast, one patient in group 1 developed neurosyphilis. In conclusion, the enhanced treatment is more effective than standard treatment and results in a higher and faster cure rate. Moreover, it provides treponemicidal antibiotic levels in the cerebrospinal fluid, thereby preventing possible late complications. PMID:27436469

  19. Role of acidic chemistries in steam treatment of aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    initiate doxide growth at the intermetallic particles while growth and corrosion performance of oxide was found tobe a function of anions type and their concentration. Further, steam treatment with phosphates exhibited better performance under acetic acid salt spray and filiform corrosion test whereas...

  20. Comparison of clindamycin 1% and benzoyl peroxide 5% gel to a novel composition containing salicylic acid, capryloyl salicylic acid, HEPES, glycolic acid, citric acid, and dioic acid in the treatment of acne vulgaris.

    Science.gov (United States)

    Baumann, Leslie S; Oresajo, Christian; Yatskayer, Margarita; Dahl, Amanda; Figueras, Kristian

    2013-03-01

    This study evaluated the tolerance and efficacy of 2 facial skin products in subjects with acne using the following acne treatments: 1) treatment A, a combination of salicylic acid, capryloyl salicylic acid, HEPES, glycolic acid, citric acid, and dioic acid, and 2) treatment B (BenzaClin®, clindamycin 1% and benzoyl peroxide 5% gel). The treatment design included the split-face application of treatment A and treatment B and the full-face application of the cleanser, moisturizer, and sunscreen. Data were collected through physician visual assessments, subject irritation questionnaires and assessments, along with clinical photography. Results showed similar tolerance and efficacy for both treatments.

  1. Erythropoietin treatment enhances mitochondrial function in human skeletal muscle

    Directory of Open Access Journals (Sweden)

    Ulla ePlenge

    2012-03-01

    Full Text Available Abstract Erythropoietin (Epo treatment has been shown to induce mitochondrial biogenesis in cardiac muscle along with enhanced mitochondrial capacity in mice. We hypothesized that recombinant human Epo (rhEpo treatment enhances skeletal muscle mitochondrial oxidative phosphorylation (OXPHOS capacity in humans. In six healthy volunteers rhEpo was administered by sub-cutaneous injection over eight weeks with oral iron (100 mg supplementation taken daily. Mitochondrial OXPHOS was quantified by high-resolution respirometry in saponin-permeabilized muscle fibers obtained from biopsies of the vastus lateralis before and after rhEpo treatment. OXPHOS was determined with the mitochondrial complex I substrates malate, glutamate, pyruvate and complex II substrate succinate in the presence of saturating ADP concentrations, while maximal electron transport capacity (ETS was assessed by addition of an uncoupler. rhEpo treatment increased OXPHOS (from 92±5 to 113±7 pmol.sec-1.mg-1 and ETS (107±4 to 143±14 pmol.sec-1.mg-1, P<0.05, demonstrating that Epo treatment induces an upregulation of OXPHOS and ETS in human skeletal muscle.

  2. Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Yuan, Xiaowei; Li, Yaxiao; Liu, Shiyang; Xia, Fei; Li, Xinzheng; Qi, Baoxiu

    2014-04-01

    IgASE1, a C₁₈ Δ(9)-specific polyunsaturated fatty acid elongase from the marine microalga Isochrysis galbana, is able to convert linoleic acid and α-linolenic acid to eicosadienoic acid and eicosatrienoic acid in Arabidopsis. Eicosadienoic acid and eicosatrienoic acid are precursors of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which are synthesized via the Δ(8) desaturation biosynthetic pathways. This study shows that the IgASE1-expressing transgenic Arabidopsis exhibited altered morphology (decreased leaf area and biomass) and enhanced drought resistance compared to wild-type plants. The transgenic Arabidopsis were hypersensitive to abscisic acid (ABA) during seed germination, post-germination growth, and seedling development. They had elevated leaf ABA levels under well-watered and dehydrated conditions and their stomata were more sensitive to ABA. Exogenous application of eicosadienoic acid and eicosatrienoic acid can mimic ABA and drought responses in the wild type plants, similar to that found in the transgenic ones. The transcript levels of genes involved in the biosynthesis of ABA (NCED3, ABA1, AAO3) as well as other stress-related genes were upregulated in this transgenic line upon osmotic stress (300 mM mannitol). Taken together, these results indicate that these two eicosapolyenoic acids or their derived metabolites can mitigate the effects of drought in transgenic Arabidopsis, at least in part, through the action of ABA.

  3. Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Yuan, Xiaowei; Li, Yaxiao; Liu, Shiyang; Xia, Fei; Li, Xinzheng; Qi, Baoxiu

    2014-04-01

    IgASE1, a C₁₈ Δ(9)-specific polyunsaturated fatty acid elongase from the marine microalga Isochrysis galbana, is able to convert linoleic acid and α-linolenic acid to eicosadienoic acid and eicosatrienoic acid in Arabidopsis. Eicosadienoic acid and eicosatrienoic acid are precursors of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which are synthesized via the Δ(8) desaturation biosynthetic pathways. This study shows that the IgASE1-expressing transgenic Arabidopsis exhibited altered morphology (decreased leaf area and biomass) and enhanced drought resistance compared to wild-type plants. The transgenic Arabidopsis were hypersensitive to abscisic acid (ABA) during seed germination, post-germination growth, and seedling development. They had elevated leaf ABA levels under well-watered and dehydrated conditions and their stomata were more sensitive to ABA. Exogenous application of eicosadienoic acid and eicosatrienoic acid can mimic ABA and drought responses in the wild type plants, similar to that found in the transgenic ones. The transcript levels of genes involved in the biosynthesis of ABA (NCED3, ABA1, AAO3) as well as other stress-related genes were upregulated in this transgenic line upon osmotic stress (300 mM mannitol). Taken together, these results indicate that these two eicosapolyenoic acids or their derived metabolites can mitigate the effects of drought in transgenic Arabidopsis, at least in part, through the action of ABA. PMID:24609499

  4. Convection-Enhanced Delivery of Carboplatin PLGA Nanoparticles for the Treatment of Glioblastoma.

    Directory of Open Access Journals (Sweden)

    Azeem Arshad

    Full Text Available We currently use Convection-Enhanced Delivery (CED of the platinum-based drug, carboplatin as a novel treatment strategy for high grade glioblastoma in adults and children. Although initial results show promise, carboplatin is not specifically toxic to tumour cells and has been associated with neurotoxicity at high infused concentrations in pre-clinical studies. Our treatment strategy requires intermittent infusions due to rapid clearance of carboplatin from the brain. In this study, carboplatin was encapsulated in lactic acid-glycolic acid copolymer (PLGA to develop a novel drug delivery system. Neuronal and tumour cytotoxicity were assessed in primary neuronal and glioblastoma cell cultures. Distribution, tissue clearance and toxicity of carboplatin nanoparticles following CED was assessed in rat and porcine models. Carboplatin nanoparticles conferred greater tumour cytotoxicity, reduced neuronal toxicity and prolonged tissue half-life. In conclusion, this drug delivery system has the potential to improve the prognosis for patients with glioblastomas.

  5. Neridronic acid for the treatment of bone metabolic diseases.

    Science.gov (United States)

    Gatti, Davide; Viapiana, Ombretta; Idolazzi, Luca; Fracassi, Elena; Adami, Silvano

    2009-10-01

    Neridronic acid (6-amino-1-idroxyesilidene-1,1-bisphosphonate) is a nitrogen-containing bisphosphonate licensed in Italy for the treatment of osteogenesis imperfecta and Paget's disease of bone. The pharmacodynamic profile is similar to that of other nitrogen-containing bisphosphonates and is characterized by its high affinity for bone tissue particularly at sites undergoing a process of remodeling. In growing children affected by osteogenesis imperfect, neridronic acid rapidly increases bone mineral density as measured by dual X-ray absortiometry and this is associated with a significant decrease in fracture cumulative number. Similar results have been obtained also in newborns ( 75% of bone turnover markers) in 95% of the patients. Neridronic acid treatment has been reported to be effective also in other skeletal diseases such as osteoporosis, algodystrophy, hypercalcemia of malignancy and bone metastasis. Neridronic acid has been developed only for parenteral use, and it is the only one used as intramuscular injection. This avoids all the limitations of oral bisphosphonates and may be offered for a home treatment with simple nursing assistance. PMID:19761412

  6. Effect of acid concentration and treatment time on acid-alcohol modified jackfruit seed starch properties.

    Science.gov (United States)

    Dutta, Himjyoti; Paul, Sanjib Kumar; Kalita, Dipankar; Mahanta, Charu Lata

    2011-09-15

    The properties of starch extracted from jackfruit (Artocarpus heterophyllus Lam.) seeds, collected from west Assam after acid-alcohol modification by short term treatment (ST) for 15-30min with concentrated hydrochloric acid and long term treatment (LT) for 1-15days with 1M hydrochloric acid, were investigated. Granule density, freeze thaw stability, solubility and light transmittance of the treated starches increased. A maximum decrease in the degree of polymerisation occurred in ST of 30min (2607.6). Jackfruit starch had 27.1±0.04% amylose content (db), which in ST initially decreased and then increased with the severity of treatment; in LT the effect was irregular. The pasting profile and granule morphology of the treated samples were severely modified. Native starch had the A-type crystalline pattern and crystalline structure increased on treatment. FTIR spectra revealed slight changes in bond stretching and bending. Colour measurement indicated that whiteness increased on treatment. Acid modified jackfruit seed starch can have applications in the food industry. PMID:25212133

  7. Omega-3 free fatty acids for the treatment of severe hypertriglyceridemia

    DEFF Research Database (Denmark)

    Kastelein, John J P; Maki, Kevin C; Susekov, Andrey;

    2014-01-01

    Omega-3 fatty acids in free fatty acid form have enhanced bioavailability, and plasma levels are less influenced by food than for ethyl ester forms.......Omega-3 fatty acids in free fatty acid form have enhanced bioavailability, and plasma levels are less influenced by food than for ethyl ester forms....

  8. Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid.

    Science.gov (United States)

    Park, Charnho; Lee, Ja Hyun; Yang, Xiaoguang; Yoo, Hah Young; Lee, Ju Hun; Lee, Soo Kweon; Kim, Seung Wook

    2016-06-01

    Chlorella vulgaris is considered as one of the potential sources of biomass for bio-based products because it consists of large amounts of carbohydrates. In this study, hydrothermal acid hydrolysis with five different acids (hydrochloric acid, nitric acid, peracetic acid, phosphoric acid, and sulfuric acid) was carried out to produce fermentable sugars (glucose, galactose). The hydrothermal acid hydrolysis by hydrochloric acid showed the highest sugar production. C. vulgaris was hydrolyzed with various concentrations of hydrochloric acid [0.5-10 % (w/w)] and microalgal biomass [20-140 g/L (w/v)] at 121 °C for 20 min. Among the concentrations examined, 2 % hydrochloric acid with 100 g/L biomass yielded the highest conversion of carbohydrates (92.5 %) into reducing sugars. The hydrolysate thus produced from C. vulgaris was fermented using the yeast Brettanomyces custersii H1-603 and obtained bioethanol yield of 0.37 g/g of algal sugars. PMID:26899601

  9. Enhancement of uranium extraction from seawater using chromic-acid-treated amidoxime adsorbent prepared by simultaneous irradiation grafting technique

    International Nuclear Information System (INIS)

    Enhancement of uranium extraction from seawater using chromic-acid-treated amidoxime adsorbent was studied. Chromic-acid-treated amidoxime fibers were synthesized based on the simultaneous irradiation grafting method at a low temperature. Low-density polyethylene (LDPE) fibers were treated with chromic acid for up to 90 minutes. After the treatment, the fibers were submerged in 60:40 acrylonitrile:methacrylic acid monomer by volume and irradiated with 40 kGy γ-ray. The maximum grafting efficiency of about 90% occurred at 20 minutes of acid treatment time, as a significant enhancement of 30% compared to the literature-reported value of about 70%. When submerged in shallow seawater with an average temperature of 30degC for 4 weeks, the amidoxime adsorbent exhibited the adsorption capacity of 2.06 g-U/kg-adsorbent, which was 37% higher than the literature-reported value. These significantly increased grafting and adsorption efficiencies were attributed to the increased surface area of chromic-acid-etched LDPE fibers. Moreover, for the submersion up to 8 weeks, the adsorption increased to 2.15 g-U/kg-adsorbent. The adsorption capacity was evaluated to reduce to about 65% after eight cycles of repeated usage. Uranium concentrations in Thailand's seawater collected at various depths and locations were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS) to be about 3 ppb everywhere. (author)

  10. Lowering of phytic acid content by enhancement of phytase and acid phosphatase activities during sunflower germination

    Directory of Open Access Journals (Sweden)

    Juliana da Silva Agostini

    2010-08-01

    Full Text Available The objective of this work was to investigate the germination of hybrid sunflowers BRS191 and C11 as a means of lowering phytic acid (PA content by enhancing the activity of endogenous phytase and acid phosphatase. The concentration of PA in hybrid sunflower achenes varied from 2.16 to 2.83g/100g of sample (p O objetivo deste trabalho foi investigar a germinação de girassóis híbridos BRS 191 e C11 com finalidade de reduzir o teor de AF e aumentar as atividades de phytases e fosfatases endógenas. A concentração do AF nos aquênios de girassóis híbridos variou de 2,16 a 2,83 g /100g de amostra (p< 0,005. As atividades de fitases e fosfatases de girassóis BRS191 e C11 foram elevadas no 4º e 5º dia de germinação, respectivamente, com liberação do fósforo necessário para o desenvolvimento da semente. Estes resultados indicam que o AF do girassol hibrido reduz e a atividade de phytase aumenta em períodos distintos da germinação, possibilitando assim a aplicação desta enzima no controle do teor de AF em cereais, melhorando o seu valor nutricional.

  11. Prolonged treatment with ursodeoxycholic acid for primary biliary cirrhosis.

    Science.gov (United States)

    Crippa, G; Cagnoni, C; Castelli, A; Concesi, C; Girometta, S; Pancotti, D; Sverzellati, E; Tacchini, G; Pierfranceschi, M G; Carrara, G C

    1995-05-01

    Eighteen patients affected with biopsy-proved primary biliary cirrhosis (PBC) (histological stage III and IV) received ursodeoxicholic acid (UDCA) 600 mg for 1 year. Signs and symptoms and biochemical tests (glutamic and oxalcetic transaminase, glutamic and pyruvic transaminase, bilirubine, gamma-glutamyl transpeptidase, alkaline phosphatase, leucine aminopeptidase, bile acids, plasma proteins electrophoresis, immunoglubulins A, G and M) and antimitochondrial antibodies were evaluated before the treatment and every four months during the treatment. The results were compared with those obtained in 8 untreated patients affected PBC. The control group of patients were comparable (as far as age, histological stage, biochemical tests are concerned) to the group who received UDCA. Bilirubine, ALP, gamma-GT and LAP decreased during the treatment with UDCA and remained lower than baseline values until the end of the observation (12 months), while no changes occurred in the untreated patients. Both in the treated and untreated group plasma protein electrophoresis, serum immunoglubulins A, G and M remained unchanged, as well as anti-mitochondrial antibody. A moderate reduction of transaminases and bile acids was observed in the group of patients receiving UDCA but it did not reach statistical significance. In 16 out of the 18 treated patients pruritus disappeared and resulted diminished in the remaining 2 patients. No significant amelioration of pruritus was observed in the patients who did not receive UDCA. In conclusion, our data show that prolonged treatment with UDCA drastically reduces pruritus and improves cholestasis biochemical tests in patients affected with symptomatic PBC.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. An optimized probucol microencapsulated formulation integrating a secondary bile acid (deoxycholic acid as a permeation enhancer

    Directory of Open Access Journals (Sweden)

    Mooranian A

    2014-09-01

    Full Text Available Armin Mooranian,1 Rebecca Negrulj,1 Nigel Chen-Tan,2 Gerald F Watts,3 Frank Arfuso,4 Hani Al-Salami11Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, 2Faculty of Science and Engineering, Curtin University, 3School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia, 4School of Biomedical Science, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, AustraliaAbstract: The authors have previously designed, developed, and characterized a novel microencapsulated formulation as a platform for the targeted delivery of therapeutics in an animal model of type 2 diabetes, using the drug probucol (PB. The aim of this study was to optimize PB microcapsules by incorporating the bile acid deoxycholic acid (DCA, which has good permeation-enhancing properties, and to examine its effect on microcapsules’ morphology, rheology, structural and surface characteristics, and excipients’ chemical and thermal compatibilities. Microencapsulation was carried out using a BÜCHI-based microencapsulating system established in the authors’ laboratory. Using the polymer sodium alginate (SA, two microencapsulated formulations were prepared: PB-SA (control and PB-DCA-SA (test at a constant ratio (1:30 and 1:3:30, respectively. Complete characterization of the microcapsules was carried out. The incorporation of DCA resulted in better structural and surface characteristics, uniform morphology, and stable chemical and thermal profiles, while size and rheological parameters remained similar to control. In addition, PB-DCA-SA microcapsules showed good excipients’ compatibilities, which were supported by data from differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray studies, suggesting

  13. [Adherence to psychopharmacological treatment: Psychotherapeutic strategies to enhance adherence].

    Science.gov (United States)

    Lencer, R; Korn, D

    2015-05-01

    Effective psychopharmacological medication with good tolerability represents the cornerstone of treatment for severe mental illness; however, the 1-year adherence rates are only approximately 50%. The term adherence emphasizes the collaborative responsibility of the clinician and the patient for a positive treatment outcome. Reasons for non-adherence are manifold and include patient-specific factors, such as self-stigmatization, lack of social and familial support, cognitive impairment and substance use besides insufficient effectiveness and the occurrence of side effects of the psychotropic drugs. To enhance adherence, both clinician and patient have to fully understand all the reasons for and against adherence to medication before a collaborative decision is made on future long-term treatment. A positive attitude towards medication critically depends on whether patients feel that the medication supports the attainment of the individual goals. PMID:25903501

  14. Omega-3 Fatty Acid Status Enhances the Prevention of Cognitive Decline by B Vitamins in Mild Cognitive Impairment.

    Science.gov (United States)

    Oulhaj, Abderrahim; Jernerén, Fredrik; Refsum, Helga; Smith, A David; de Jager, Celeste A

    2015-01-01

    A randomized trial (VITACOG) in people with mild cognitive impairment (MCI) found that B vitamin treatment to lower homocysteine slowed the rate of cognitive and clinical decline. We have used data from this trial to see whether baseline omega-3 fatty acid status interacts with the effects of B vitamin treatment. 266 participants with MCI aged ≥70 years were randomized to B vitamins (folic acid, vitamins B6 and B12) or placebo for 2 years. Baseline cognitive test performance, clinical dementia rating (CDR) scale, and plasma concentrations of total homocysteine, total docosahexaenoic and eicosapentaenoic acids (omega-3 fatty acids) were measured. Final scores for verbal delayed recall, global cognition, and CDR sum-of-boxes were better in the B vitamin-treated group according to increasing baseline concentrations of omega-3 fatty acids, whereas scores in the placebo group were similar across these concentrations. Among those with good omega-3 status, 33% of those on B vitamin treatment had global CDR scores >0 compared with 59% among those on placebo. For all three outcome measures, higher concentrations of docosahexaenoic acid alone significantly enhanced the cognitive effects of B vitamins, while eicosapentaenoic acid appeared less effective. When omega-3 fatty acid concentrations are low, B vitamin treatment has no effect on cognitive decline in MCI, but when omega-3 levels are in the upper normal range, B vitamins interact to slow cognitive decline. A clinical trial of B vitamins combined with omega-3 fatty acids is needed to see whether it is possible to slow the conversion from MCI to AD. PMID:26757190

  15. Zoledronic acid enhances Vδ2 T-lymphocyte antitumor response to human glioma cell lines.

    Science.gov (United States)

    Cimini, E; Piacentini, P; Sacchi, A; Gioia, C; Leone, S; Lauro, G M; Martini, F; Agrati, C

    2011-01-01

    Glioblastoma multiforme (GBM), the most frequent and aggressive primary brain tumor in humans, responds modestly to treatment: most patients survive less than one year after diagnosis, despite both classical and innovative treatment approaches. A recent paper focused on γδ T-cell response in GBM patients, suggesting the application of an immunomodulating strategy based on γδ T-cells which is already in clinical trials for other tumors. Human Vγ2 T-cells recognize changes in the mevalonate metabolic pathway of transformed cells by activating cytotoxic response, and by cytokine and chemokine release. Interestingly, this activation may also be induced in vivo by drugs, such as zoledronic acid, that induce the accumulation of Vγ2 T-cell ligand Isopentenyl-pyrophosphate by blocking the farnesyl pyrophosphate synthase enzyme. The aim of our work is to confirm whether bisphosphonate treatment would make glioma cell lines more susceptible to lysis by in vitro expanded γδ T-cells, improving their antitumor activity. We expanded in vitro human Vγ2 T-cells by phosphoantigen stimulation and tested their activity against glioma cell lines. Co-culture with glioma cells induced Vγ2 T-cell differentiation in effector/memory cells, killing glioma cells by the release of perforin. Interestingly, glioma cells were directly affected by zoledronic acid; moreover, treatment increased their activating ability on Vγ2 T-cells, inducing an effective antitumor cytotoxic response. Taken together, our results show that aminobisphosphonate drugs may play a dual role against GBM, by directly affecting tumor cells, and by enhancing the antitumor response of Vγ2 T-cells. Our results confirm the practicability of this approach as a new immunotherapeutic strategy for GBM treatment.

  16. Regulating acidity, porosity, and morphology of hierarchical SAPO-11 zeolite by aging treatment.

    Science.gov (United States)

    Liu, Yuxiang; Xu, Lu; Lv, Yuchao; Liu, Xinmei

    2016-10-01

    A facile method to modify pore structure, acidic character, and morphology of SAPO-11 molecular sieve was proposed. Aging treatment (e.g., microwave irradiation or lyophilization) is introduced in the preparation of dry gel. It regulates the kinetics of zeolitic nucleation and growth. X-ray diffraction, scanning electron microscopy, N2-adsorption, temperature programmed desorption, laser particle analyzer, and (29)Si MAS NMR were employed to investigate the effects of aging treatments on SAPO-11 products. The experimental results indicate that depolymerization reaction of silicon species is enhanced aged by microwave irradiation with a higher temperature (90°C). Ratio of SM 3 to SM 2 substituting mode increases producing more strong Brønsted acid sites. Lyophilization technology, as another aging method, was employed to control the morphology of SAPO-11. Nano-sized hierarchical SAPO-11 molecular sieve (200nm in length) is obtained with an oriented growth. Activity of hydroisomerization catalysts is regulated by aging treatment. Cracking reaction attributes to a high conversion nearly 87wt% for M90. The hydroisomerization reaction is enhanced for M40 due to a large proportion of moderate acid sites. PMID:27362909

  17. Treatment of hydrofluoric acid exposure to the eye

    Institute of Scientific and Technical Information of China (English)

    Katherine; Atley; Edward; Ridyard

    2015-01-01

    AIM: To review the current evidence of the treatment of hydrofluoric acid(HF) exposure to the human cornea.METHODS: A comprehensive manual search of the literature was conducted through the Ovid interface to assess the mechanism and efficacy of each irrigator through a variety of clinical cases and experimental studies.· RESULTS: Ocular exposure to HF is extremely damaging to the eye and swift recognition and decontamination with an appropriate agent forms the basis of treatment. Although there are various decontamination solutions that have efficacy against the corrosive action of HF, irrigation with Hexafluorine proved to be the most safe and effective treatment for the eye.CONCLUSION: In conclusion emergency departments could benefit from the availability of Hexafluorine for the treatment of HF ocular burns in patients.

  18. Properties of Ferrofluid Nanoparticles Prepared by Coprecipitation and Acid Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li Jian [Southwest China Normal University, Physics Department (China); Dai Dalin [Southwest China Normal University, Life-Science Department (China); Zhao Baogang; Lin Yueqiang; Liu Cenye [Southwest China Normal University, Physics Department (China)

    2002-06-15

    A new stable acid water-based CoFe{sub 2}O{sub 4} ferrofluid is prepared by coprecipitation and acid treatment. The properties of the nanoparticles forming the ferrofluid are examined by means of X-ray diffraction, vibrating sample magnetometer, scanning tunneling microscopy, transmission electron microscopy and annihilation technique. The results show that the particles are cubic CoFe{sub 2}O{sub 4} nanoparticles, which have an average diameter of 12.2 nm and are coated with a low density porous amorphous layer. The CoFe{sub 2}O{sub 4} particles in an acid aqueous medium exist in two kinds of forms, one is a single spherical particle and another is an aggregation of several spherical particles.

  19. Organising pneumonia associated with fumaric acid ester treatment for psoriasis.

    LENUS (Irish Health Repository)

    Deegan, Alexander Paul

    2012-02-01

    INTRODUCTION: We present the case of a 49-year old male who presented with dyspnoea, cough, weight loss, night sweats and general malaise. He had been on treatment with oral fumaric acid esters (FAE, Fumaderm(R); Biogen Idec GmbH, Ismaning, Germany) for 6 months. METHODS: Report of a case. RESULTS: His chest X-ray showed patchy infiltrates in the left upper lobe which failed to resolve under empiric antibiotic therapy. A computed tomography of thorax revealed bilateral, mostly peripheral foci of consolidation with air bronchograms. Transbronchial biopsies showed a pattern of organising pneumonia (OP). CONCLUSIONS: Therapy with oral prednisolone (40 mg\\/day) resulted in a rapid clinical and radiological improvement. An association of FAE and OP has not previously been reported. Please cite this paper as: Deegan AP, Kirby B, Rogers S, Crotty TB and McDonnell TJ. Organising pneumonia associated with fumaric acid ester treatment for psoriasis.

  20. Enhanced antimicrobial effect of organic acid washing against foodborne pathogens on broccoli by vacuum impregnation.

    Science.gov (United States)

    Kang, Jun-Won; Kang, Dong-Hyun

    2016-01-18

    This study was undertaken to evaluate the effect of vacuum impregnation applied to the washing process for removal of Salmonella Typhimurium and Listeria monocytogenes from broccoli surfaces. Broccoli was inoculated with the two foodborne pathogens and treated with simple dipping washing or with vacuum impregnation in 2% malic acid for 5, 10, 20, or 30 min. There were two methods of vacuum impregnation: continuous and intermittent. After 30 min of 101.3 kPa (=14.7 psi, simple dipping), 61.3 kPa (=8.9 psi), and 21.3 kPa (=3.1 psi) of continuous vacuum impregnation treatment, there were 1.6, 2.0, and 2.4 log 10 CFU/g reductions of S. Typhimurium and 1.5, 1.7, and 2.3 log 10 CFU/g reductions of L. monocytogenes, respectively. After 30 min of 101.3, 61.3, and 21.3 kPa of intermittent vacuum impregnation treatment, there were 1.5, 2.3, and 3.7 log 10 CFU/g reductions of S. Typhimurium and 1.6, 2.1, and 3.2 log 10 CFU/g reductions of L. monocytogenes, respectively. Scanning electron photomicrographs showed that bacteria tend to attach to or become entrapped in protective sites after simple wash processing (dipping). However, most bacteria were washed out of protective sites after intermittent treatment. Direct treatment of cell suspensions with vacuum impregnation showed that it had no inactivation capacity in itself since there were no significant differences (P ≥ 0.05) between the reduction rates of non- and vacuum impregnation treatment. These results demonstrate that the increased antimicrobial effect of vacuum impregnation can be attributed to increased accessibility of sanitizer and an enhanced washing effect in protected sites on produce. Color, texture and titratable acidity values of broccoli treated with intermittent vacuum impregnation in 2% malic acid for 30 min were not significantly (P ≥ 0.05) different from those of untreated samples even though a storage interval was needed for titratable acidity values to be reduced to levels comparable to those of

  1. Seed washing, exogenous application of gibberellic acid, and cold stratification enhance the germination of sweet cherry (Prunus avium L.) seed

    OpenAIRE

    Javanmard, T.; Zamani, Z; Keshavarz Afshar, R.; M. Hashemi; Struik, P. C.

    2014-01-01

    Seed germination in sweet cherry (Prunus avium L.) is a slow and lengthy process which has delayed breeding efforts. In this study, seed from ripe fruit of the sweet cherry cultivar ‘Lambert’ were collected and, after removing the endocarp, various dormancy-breaking treatments such as seed washing, the application of exogenous gibberellic acid (GA3), or cold stratification were evaluated for their ability to enhance the percentage and rate of seed germination. The results indicated that seed ...

  2. Novel Zirconia Surface Treatments for Enhanced Osseointegration: Laboratory Characterization

    Directory of Open Access Journals (Sweden)

    Ola H. Ewais

    2014-01-01

    Full Text Available Purpose. The aim of this study was to evaluate three novel surface treatments intended to improve osseointegration of zirconia implants: selective infiltration etching treatment (SIE, fusion sputtering (FS, and low pressure particle abrasion (LPPA. The effects of surface treatments on roughness, topography, hardness, and porosity of implants were also assessed. Materials and Methods. 45 zirconia discs (19 mm in diameter × 3 mm in thickness received 3 different surface treatments: selective infiltration etching, low pressure particle abrasion with 30 µm alumina, and fusion sputtering while nontreated surface served as control. Surface roughness was evaluated quantitatively using profilometery, porosity was evaluated using mercury prosimetry, and Vickers microhardness was used to assess surface hardness. Surface topography was analyzed using scanning and atomic force microscopy (α=0.05. Results. There were significant differences between all groups regarding surface roughness (F=1678, P<0.001, porosity (F=3278, P<0.001, and hardness (F=1106.158, P<0.001. Scanning and atomic force microscopy revealed a nanoporous surface characteristic of SIE, and FS resulted in the creation of surface microbeads, while LPPA resulted in limited abrasion of the surface. Conclusion. Within the limitations of the study, changes in surface characteristics and topography of zirconia implants have been observed after different surface treatment approaches. Thus possibilities for enhanced osseointegration could be additionally offered.

  3. Facile plasma-enhanced deposition of ultrathin crosslinked amino acid films for conformal biometallization.

    Science.gov (United States)

    Anderson, Kyle D; Slocik, Joseph M; McConney, Michael E; Enlow, Jesse O; Jakubiak, Rachel; Bunning, Timothy J; Naik, Rajesh R; Tsukruk, Vladimir V

    2009-03-01

    A novel method for the facile fabrication of conformal, ultrathin, and uniform synthetic amino acid coatings on a variety of practical surfaces by plasma-enhanced chemical vapor deposition is introduced. Tyrosine, which is utilized as an agent to reduce gold nanoparticles from solution, is sublimed into the plasma field and directly deposited on a variety of substrates to form a homogeneous, conformal, and robust polyamino acid coating in a one-step, solvent-free process. This approach is applicable to many practical surfaces and allows surface-induced biometallization while avoiding multiple wet-chemistry treatments that can damage many soft materials. Moreover, by placing a mask over the substrate during deposition, the tyrosine coating can be micropatterned. Upon its exposure to a solution of gold chloride, a network of gold nanoparticles forms on the surface, replicating the initial micropattern. This method of templated biometallization is adaptable to a variety of practical inorganic and organic substrates, such as silicon, glass, nitrocellulose, polystyrene, polydimethylsiloxane, polytetrafluoroethylene, polyethylene, and woven silk fibers. No special pretreatment is necessary, and the technique results in a rapid, conformal amino acid coating that can be utilized for further biometallization.

  4. Increased Production of Fatty Acids and Triglycerides in Aspergillus oryzae by Enhancing Expressions of Fatty Acid Synthesis-Related Genes

    Energy Technology Data Exchange (ETDEWEB)

    Tamano, Koichi; Bruno, Kenneth S.; Karagiosis, Sue A.; Culley, David E.; Deng, Shuang; Collett, James R.; Umemura, Myco; Koike, Hideaki; Baker, Scott E.; Machida, Masa

    2013-01-01

    Microbial production of fats and oils is being developedas a means of converting biomass to biofuels. Here we investigate enhancing expression of enzymes involved in the production of fatty acids and triglycerides as a means to increase production of these compounds in Aspergillusoryzae. Examination of the A.oryzaegenome demonstrates that it contains twofatty acid synthases and several other genes that are predicted to be part of this biosynthetic pathway. We enhancedthe expressionof fatty acid synthesis-related genes by replacing their promoters with thepromoter fromthe constitutively highly expressedgene tef1. We demonstrate that by simply increasing the expression of the fatty acid synthasegenes we successfullyincreasedtheproduction of fatty acids and triglyceridesby more than two fold. Enhancement of expression of the fatty acid pathway genes ATP-citrate lyase and palmitoyl-ACP thioesteraseincreasedproductivity to a lesser extent.Increasing expression ofacetyl-CoA carboxylase caused no detectable change in fatty acid levels. Increases in message level for each gene were monitored usingquantitative real-time RT-PCR. Our data demonstrates that a simple increase in the abundance of fatty acid synthase genes can increase the detectable amount of fatty acids.

  5. Electrokinetic removal of chromium and copper from contaminated soils by lactic acid enhancement in the catholyte

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dong-mei; Alshawabkeh Akram N; DENG Chang-fen; CANG Long; SI You-bin

    2004-01-01

    The electrokinetic removal of chromium and copper from contaminated soils by adding lactic acid in cathode chamber as an enhancing reagent was evaluated. Two sets of duplicate experiments with chromium contaminated kaolinite and with a silty soil sampled from a superfund site in California of USA and polluted by Cr and Cu, were carried out in a constant current mode. Changes of soil water content and soil pH before and after the electrokinetic experiments, and variations of voltage drop and electroosmosis flow during the treatments were examined. The results indicated that Cr, spiked as Cr(Ⅵ) in the kaolinite, was accumulated mainly in the anode chamber, and some of Cr and metal hydroxides precipitated in the soil sections in contact with the cathode, which significantly increased electrical energy consumption. Treatment of the soil collected from the site showed accumulation of large amounts of Cr and Cu in the anode chamber while none was detected in the cathode one. The results suggested that the two metals either complexed with the injected lactic acid at the cathode or existed as negatively charged complex, and electromigrated toward the anode under a voltage gradient.

  6. Caffeic acid-coated multifunctional magnetic nanoparticles for the treatment and bimodal imaging of tumours.

    Science.gov (United States)

    Lee, Jun; Kim, Kyoung Sub; Na, Kun

    2016-07-01

    Accurate theragnosis of tumour is essential for improving the life rate of tumour patients. Superparamagnetic iron oxide nanoparticles (SPIONs) have been used as both diagnostic and therapeutic agents. However, their application is often limited because of a lack of water solubility, lack of cancer treatment efficacy, and ineffective targeting of tumour cells. In this report, a double ligand (caffeic acid-polyethylene glycol-folic acid; FA-PEG-CA, caffeic acid-polyethylene glycol-pheophorbide-a; PheoA-PEG-CA) coated iron oxide nanoparticle has been fabricated that overcomes the limitations of conventional SPION. Photosensitizer and tumour targeting ligands were coated on SPION using a ligand-substitution method. We confirmed the successful substitution of oleic acid ligands with FA-PEG-CA and PheoA-PEG-CA ligands by FT-IR spectroscopy. The caffeic acid coated iron oxide nanoparticles (CAMNPs) also demonstrated high water solubility in an aqueous environment and folate-mediated active tumour targeting. The water solubility of CAMNPs was evaluated by DLS measurement and TEM images. The cytotoxicity of CAMNPs increased two-fold in MDA-MB-231 cells at a laser irradiation condition. The fabricated CAMNPs retained their ability to function as both MRI diagnostic and tumour-selective therapeutic agents. These results suggest that these efficient characteristics of CAMNPs can be incorporated into applications, thus enhancing the efficacy of clinical cancer treatment. PMID:27107705

  7. Electron beam treatment with radical scavengers/enhancers

    International Nuclear Information System (INIS)

    E-beam treatment of low level contaminated groundwater is best apt to demonstrate the role of scavengers and enhancers, respectively because groundwater already contains some scavengers as natural solutes. The action of ionizing radiation to water is known to result in the formation of ions, molecular and free radical species. For low level contaminations of groundwater (pollutant concentration aqu - and H are of interest for pollutant decomposition. The pollutants have to compete for the free radical species with the natural solutes. 10 figures are discussed. (author)

  8. Surface-enhanced infrared absorption of nucleic acids on gold substrate in FTIR reflectance mode

    Science.gov (United States)

    Dovbeshko, G. I.; Chegel, Vladimir I.; Gridina, Nina Y.; Repnytska, O. P.; Sekirin, I. V.; Shirshov, Yuri M.

    2001-06-01

    Data on surface enhanced infrared absorption (SEIRA) of nucleic acids deposited on the metal surface have been obtained in the experiment in FTIR reflectance mode. As metal surface, we used Au of 200 - 500 Angstrom thickness on quartz substrate. Roughness of Au was not greater than 50 Angstrom. In our experimental conditions, the enhancement factor of SEIRA was about 3 - 7. We obtained different enhancement factors for different vibrations of nuclei acids. Application of this method to the tumour brain nucleic acid gave a possibility to reveal some structural peculiarities of their sugar-phosphate backbone.

  9. Slagment Cement Improve the Cement Resistance Toward Acids Attack During Acidizing Treatment

    Directory of Open Access Journals (Sweden)

    Nik Khairul Irfan Bin Nik Ab. Lah.

    2013-05-01

    Full Text Available Acidizing treatment in past experience shows several zonal isolation problems after the treatment. This study presents the effect of the acid treatment toward class G cement and slagment cement as the improvement method to improve the cement resistance toward the acid. Lab experiments were conducted by immerge the respective cement cubes into 12% HCl/3% HF solution for 40 min before several analysis were conducted. Based on the result, the mass loss and compressive strength loss of the cement cubes decrease as the curing temperature and pressure increase due to more evenly distributed cement chemical composition crystal in high curing condition as shown in Scanning Electron Microscopy (SEM analysis. From X-Ray Diffraction (XRD and X-Ray Fluorescence (XRF analysis, only the first layer of the cement cubes shows chemical component change due to the reaction between the acid. This study found that, replacing class G cement to slagment cement can reduce the mass loss and compressive strength loss up to 72% and 82%, respectively.

  10. New magnetic-enhanced adsorption process for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cotten, G.B.; Navratil, J.D. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States); Sebesta, F. [Czech Tech Univ. (Czech Republic)

    1999-09-01

    Radioactive and nonradioactive metal ion and particulate species in aqueous solutions present a formidable treatment problem for the nuclear and commercial industries. An economical and highly effective system for the treatment of wastewater containing these metal species is presented that uses a new magnetic enhanced adsorption technique. The process employs low-cost magnetite (FeO{center_dot}Fe{sub 2}O{sub 3}) supported on various organic and inorganic support media, and an external magnetic field to couple the inherent sorption properties of the magnetite with a high gradient magnetic separation technique. This combination of sorption techniques offers several advantages over current filtration and ion exchange systems and removes a variety of heavy metals and radioactive species. Filtration systems do not remove ionic species, and ion exchange systems can be plugged by particulate matter, which may limit the amount of exchange sites able to be accessed.

  11. Enhancing Anaerobic Treatment of Wastewaters Containing Oleic Acid.

    NARCIS (Netherlands)

    Ching-Shyung, H.

    1997-01-01

    INTRODUCTIONLipids are one of the major organic pollutants in municipal and industrial wastewaters. Although domestic sewage typically contains about 40-100 mg/I lipids (Forster, 1992; Quéméneur and Marty, 1994), it is industrial wastewaters that are of greater concern when consider

  12. A novel approach to enhancing ganoderic acid production by Ganoderma lucidum using apoptosis induction.

    Directory of Open Access Journals (Sweden)

    Bang-Jau You

    Full Text Available Ganoderma lucidum is one of most widely used herbal medicine and functional food in Asia, and ganoderic acids (GAs are its active ingredients. Regulation of GA biosynthesis and enhancing GA production are critical to using G. lucidum as a medicine. However, regulation of GA biosynthesis by various signaling remains poorly understood. This study investigated the role of apoptosis signaling on GA biosynthesis and presented a novel approach, namely apoptosis induction, to increasing GA production. Aspirin was able to induce cell apoptosis in G. lucidum, which was identified by terminal deoxynucleotidyl transferase mediated dUPT nick end labeling assay positive staining and a condensed nuclear morphology. The maximum induction of lanosta-7,9(11, 24-trien-3α-01-26-oic acid (ganoderic acid 24, GA24 production and total GA production by aspirin were 2.7-fold and 2.8-fold, respectively, after 1 day. Significantly lower levels of GA 24 and total GAs were obtained after regular fungal culture for 1.5 months. ROS accumulation and phosphorylation of Hog-1 kinase, a putative homolog of MAPK p38 in mammals, occurred after aspirin treatment indicating that both factors may be involved in GA biosynthetic regulation. However, aspirin also reduced expression of the squalene synthase and lanosterol synthase coding genes, suggesting that these genes are not critical for GA induction. To the best of our knowledge, this is the first report showing that GA biosynthesis is linked to fungal apoptosis and provides a new approach to enhancing secondary metabolite production in fungi.

  13. Starter cultures and cattle feed manipulation enhance conjugated linoleic acid concentrations in Cheddar cheese.

    Science.gov (United States)

    Mohan, M S; Anand, S; Kalscheur, K F; Hassan, A N; Hippen, A R

    2013-04-01

    Conjugated linoleic acid (CLA) is a fatty acid (FA) that provides several health benefits to humans. The feeding of fish oil-supplemented diets to dairy cows has been extensively studied as a means to improve the CLA content in milk. Several studies have also been conducted on the ability of many microorganisms to produce CLA by utilizing substrates containing linoleic acid. In the present study, the dietary manipulated milk was used in combination with the CLA-producing culture to manufacture Cheddar cheese. The two diets fed to cattle were control and treatment diets to obtain control and treatment milk, respectively. The treatment diet containing fish oil (0.75% of dry matter) was fed to 32 dairy cows grouped in a pen for 18 d to increase the total CLA content in milk. Treatment milk had a CLA content of 1.60 g/100g of FA compared with 0.58 g/100g of FA in control milk obtained by feeding the control diet. A 2 × 2 factorial design with 3 replicates was used to test the combined effect of the CLA-producing starter culture of Lactococcus lactis (CI4b) versus a commercial CLA nonproducing cheese starter as the control culture, and type of milk (control vs. treatment milk) on CLA content in Cheddar cheese. Chemical composition (moisture, salt, fat, and protein) was not affected by the type of culture used. However, the age of the cheese affected the sensory properties and microbiological counts in the different treatments. Ripening with the CI4b culture was found to be effective in further enhancing the CLA content. The CI4b cheeses made from control milk and treatment milk contained 1.09 and 2.41 (±0.18) g of total CLA/100g of FA after 1 mo of ripening, which increased to 1.44 and 2.61 (±0.18) g of total CLA/100g of FA after 6 mo of ripening, respectively. The use of treatment milk resulted in an increase in the CLA isomers (trans-7,cis-9+cis-9,trans-11, trans-9,cis-11+cis-10,trans-12, trans-10,cis-12, cis-9,cis-11, trans-11,cis-13, cis-11,cis-13, trans-11,trans

  14. Effect of Omega-3 Fatty Acids Treatment on Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Mogoş Tiberius

    2014-12-01

    Full Text Available Background and aims: Insulin resistance (IR is a common pathogenic factor of several diseases: diabetes mellitus, the metabolic syndrome, arterial hypertension, atherosclerosis, dyslipidemia, etc. There are many therapeutic factors involved in decreasing IR. Among them we mention metformin, pioglitazone, physical activity, weight loss, diet, etc. In the last decade, there are more observations of the influence of polyunsaturated fatty acids on IR. The most powerful seem to be omega-3 fatty acids. In our study, we wanted to asses if the administration of omega-3 fatty acids is involved in modifying IR. Materials and methods: We evaluated 126 diabetic patients with IR from January 2011 until July 2014. The study was open-label and non-randomized. For the determination of IR we used the HOMA-IR method. Results: For both males and females there was a regression of HOMA-IR during the 4 weeks of treatment with omega-3 and also after 2 weeks after stopping the administration of these fatty acids. The decrease of HOMA-IR was statistically significant (p<0.05. The statistic result observed in the next 2 weeks after stopping administration of omega-3 was also significant (p<0.05.

  15. The treatments of soil Rirang by floatation and Acid leaching

    International Nuclear Information System (INIS)

    The treatments of soil Rirang by floatation and acid leaching has been carried out to increase high uranium concentrates of materials, separating associated economical minerals and to reduce the gangue minerals which bothering at chemical processing. The physical treatment has been done by ore preparation and floatation using oleic acid and pine oil, 20 % of pulp at pH 9, condition time at 5 minutes and collections of float fraction was 10 minutes. The chemical processing has been done by dynamic leaching using H2SO4 100 kg/ton, MnO2 20 kg/ton, 50 % of solid with ore size - 65 mesh, temperature at 80 oC and time of leaching was 8 hours. The result of experiments is as follows : Physical treatment by floatation shown that the concentrates of U increased at sink fraction by (1.5 - 2) times against feed sample for all the samples, and in the float fraction the recovery of molybdenite separation is 58 - 81 % and rare earths is 57 - 80 %. The result of dynamic leaching is 76 - 91 %, and recovery uranium increasing from 81.02 % (mixture samples soil before floatation) to 91.16 % ( mixture samples of float fraction)

  16. Evaluation of water treatment sludge for ameliorating acid mine waste

    Energy Technology Data Exchange (ETDEWEB)

    Van Rensburg, L.; Morgenthal, T.L. [Potchefstroom University for Christian Higher Education, Potchefstroom (South Africa). School for Environmental Science & Development

    2003-10-01

    This study investigated the liming effect of water treatment sludge on acid mine spoils. The study was conducted with sludge from a water purification plant along the Vaal River catchments in South Africa. The optimum application rate for liming acid spoils and the speed and depth with which the sludge reacted with the mine waste were investigated. Chemical analysis indicated that the sludge is suitable as a liming agent because of its alkaline pH (8.08), high bicarbonate concentration (183.03 mg L{sup -1}), and low salinity (electrical conductivity = 76 mS m(-1)). The high cation exchange capacity of 15.47 cmol{sub c} kg{sup -1} and elevated nitrate concentration (73.16 mg L{sup -1}) also increase its value as an ameliorative material. The soluble concentrations for manganese, aluminum, lead, and selenium were high at a pH of 5 although only selenium (0.83 mg L{sup -1}) warranted some concern. According to experimental results, the application of 10 Mg ha{sup -1} of sludge to acid gold tailings increased the leach water pH from 4.5 to more than 7.5 and also increased the medium pH from 2.4 to 7.5. The addition of sludge further reduced the solubility of iron, manganese, copper, and zinc in the ameliorated gold tailings, but increased the electrical conductivity. The liming tempo was highest in the coal discard profile that had a coarse particle size distribution and took the longest to move through the gold tailings that had a fine particle size distribution. Results from this study indicate that the water treatment sludge investigated is suitable as a liming agent for rehabilitation of acid mine waste.

  17. Enhanced production of polyunsaturated fatty acid docosahexaenoic acid by thraustochytrid protists

    Digital Repository Service at National Institute of Oceanography (India)

    Jain, R.; Raghukumar, S.; Chandramohan, D.

    The polyunsaturated fatty acid docosahexaenoic acid (DHA) is an important requirement in the human diet. It is also essential in the nutrition of crustaceans and aquaculture animals. Of the sources available for commercial production of DHA...

  18. Effect of low molecular weight organic acids on phosphorus adsorption by ferric-alum water treatment residuals.

    Science.gov (United States)

    Wang, Changhui; Wang, Ziyuan; Lin, Lu; Tian, Binghui; Pei, Yuansheng

    2012-02-15

    Effects of low molecular weight organic acids (LMWOAs; citric acid, oxalic acid and tartaric acid) on phosphorus (P) adsorption by ferric-alum water treatment residuals (FARs) were studied. Both batch and column experiments indicated that the effects of LMWOAs on P adsorption were closely related to adsorption time. Initially, all acids presented inhibitory function on P adsorption. The inhibition became weaker with time, eventually promoting P adsorption for citric acid and tartaric acid. In the column experiment with a 61-day duration, high P adsorption rates (>55%) were observed for the test groups containing citric acid and tartaric acid. Interestingly, higher pH likely enhanced P adsorption with the effects of LMWOAs and a distinct relationship between LMWOAs' effects on P adsorption and their concentrations was not observed. Moreover, fractionation of the adsorbed P from the FARs demonstrated that oxalic acid reduced P adsorption capacity, while citric acid and tartaric acid increased. Based on the forms of Fe and Al existing in the FARs and Fourier transform infrared spectroscopy analyses, LMWOAs can promote P adsorption through activating crystalline Fe/Al and preventing crystallization of amorphous Fe/Al to increase P adsorption sites, and can also inhibit P adsorption by competition with adsorption sites.

  19. Permeability enhancers dramatically increase zanamivir absolute bioavailability in rats: implications for an orally bioavailable influenza treatment.

    Directory of Open Access Journals (Sweden)

    Eric H Holmes

    Full Text Available We have demonstrated that simple formulations composed of the parent drug in combination with generally regarded as safe (GRAS permeability enhancers are capable of dramatically increasing the absolute bioavailability of zanamivir. This has the advantage of not requiring modification of the drug structure to promote absorption, thus reducing the regulatory challenges involved in conversion of an inhaled to oral route of administration of an approved drug. Absolute bioavailability increases of up to 24-fold were observed when Capmul MCM L8 (composed of mono- and diglycerides of caprylic/capric acids in glycerol was mixed with 1.5 mg of zanamivir and administered intraduodenally to rats. Rapid uptake (t(max of 5 min and a C(max of over 7200 ng/mL was achieved. Variation of the drug load or amount of enhancer demonstrated a generally linear variation in absorption, indicating an ability to optimize a formulation for a desired outcome such as a targeted C(max for enzyme saturation. No absorption enhancement was observed when the enhancer was given 2 hr prior to drug administration, indicating, in combination with the observed tmax, that absorption enhancement is temporary. This property is significant and aligns well with therapeutic applications to limit undesirable drug-drug interactions, potentially due to the presence of other poorly absorbed polar drugs. These results suggest that optimal human oral dosage forms of zanamivir should be enteric-coated gelcaps or softgels for intraduodenal release. There continues to be a strong need and market for multiple neuraminidase inhibitors for influenza treatment. Creation of orally available formulations of inhibitor drugs that are currently administered intravenously or by inhalation would provide a significant improvement in treatment of influenza. The very simple GRAS formulation components and anticipated dosage forms would require low manufacturing costs and yield enhanced convenience. These results

  20. Influence of fenofibrate treatment on triacylglycerides, diacylglycerides and fatty acids in fructose fed rats.

    Directory of Open Access Journals (Sweden)

    Thomas Kopf

    Full Text Available Fenofibrate (FF lowers plasma triglycerides via PPARα activation. Here, we analyzed lipidomic changes upon FF treatment of fructose fed rats. Three groups with 6 animals each were defined as control, fructose-fed and fructose-fed/FF treated. Male Wistar Unilever Rats were subjected to 10% fructose-feeding for 20 days. On day 14, fenofibrate treatment (100 mg/kg p.o. was initiated and maintained for 7 days. Lipid species in serum were analyzed using mass spectrometry (ESI-MS/MS; LC-FT-MS, GC-MS on days 0, 14 and 20 in all three groups. In addition, lipid levels in liver and intestine were determined. Short-chain TAGs increased in serum and liver upon fructose-feeding, while almost all TAG-species decreased under FF treatment. Long-chain unsaturated DAG-levels (36:1, 36:2, 36:4, 38:3, 38:4, 38:5 increased upon FF treatment in rat liver and decreased in rat serum. FAs, especially short-chain FAs (12:0, 14:0, 16:0 increased during fructose-challenge. VLDL secretion increased upon fructose-feeding and together with FA-levels decreased to control levels during FF treatment. Fructose challenge of de novo fatty acid synthesis through fatty acid synthase (FAS may enhance the release of FAs ≤ 16:0 chain length, a process reversed by FF-mediated PPARα-activation.

  1. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple.

    Science.gov (United States)

    Zhang, Ying; Shi, Xiangpeng; Li, Baohua; Zhang, Qingming; Liang, Wenxing; Wang, Caixia

    2016-09-01

    Glomerella leaf spot (GLS) caused by Glomerella cingulata is a newly emergent disease that results in severe defoliation and fruit spots in apple. Currently, there are no effective means to control this disease except for the traditional fungicide sprays. Induced resistance by elicitors against pathogens infection is a widely accepted eco-friendly strategy. In the present study, we investigated whether exogenous application of salicylic acid (SA) could improve resistance to GLS in a highly susceptible apple cultivar (Malus domestica Borkh. cv. 'Gala') and the underlying mechanisms. The results showed that pretreatment with SA, at 0.1-1.0 mM, induced strong resistance against GLS in 'Gala' apple leaves, with SA treated leaves showing significant reduction in lesion numbers and disease index. Concurrent with the enhanced disease resistance, SA treatment markedly increased the total antioxidant capacity (T-AOC) and defence-related enzyme activities, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO). As expected, SA treatment also induced the expression levels of five pathogenesis-related (PR) genes including PR1, PR5, PR8, Chitinase and β-1,3-glucanase. Furthermore, the most pronounced and/or rapid increase was observed in leaves treated with SA and subsequently inoculated with G. cingulata compared to the treatment with SA or inoculation with the pathogen. Together, these results suggest that exogenous SA triggered increase in reactive oxygen species levels and the antioxidant system might be responsible for enhanced resistance against G. cingulata in 'Gala' apple leaves. PMID:27139585

  2. Peptide Nucleic Acids Having Enhanced Binding Affinity and Sequence Specificity

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary DNA and RNA strands more strongly than a corresponding DNA strand, and exhibit increased sequence specificity and binding affinity. Methods of increasing binding affinity and sequence specificity of peptide nucleic aci...

  3. Treatment of vinasse from tequila production using polyglutamic acid.

    Science.gov (United States)

    Carvajal-Zarrabal, Octavio; Nolasco-Hipólito, Cirilo; Barradas-Dermitz, Dulce Ma; Hayward-Jones, Patricia M; Aguilar-Uscanga, Ma Guadalupe; Bujang, Kopli

    2012-03-01

    Vinasse, the wastewater from ethanol distillation, is characterised by high levels of organic and inorganic matter, high exit process temperature (ca. 90°C) and low pH (3.0-4.5). In this study, the treatment of tequila vinasse was achieved by a flocculation-coagulation process using poly-γ-glutamic acid (PGA). Results showed that the use of PGA (250-300 ppm) combined with sodium hypochlorite and sand filtration managed to remove about 70% of the turbidity and reduced chemical oxygen demand (COD) by 79.5% with the extra benefit of colour removal. PGA showed its best flocculating activity at pH 2.5-3.5 and a temperature of 30-55°C. Such a treatment may be a solution for small tequila companies for which other solutions to deal with their vinasse may not be economically affordable.

  4. Betaine and Beet Molasses Enhance L-Lactic Acid Production by Bacillus coagulans

    OpenAIRE

    Ke Xu; Ping Xu

    2014-01-01

    Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose con...

  5. Enhancing Chlorination Fundamentals for Water Treatment Technology IV Course Using On-Line Multi-Media

    Directory of Open Access Journals (Sweden)

    Masengo Ilunga

    2015-08-01

    Full Text Available The current paper demonstrates the use of on-line multi-media, i.e. "chlorination of natural waters" and "dissociation of weak acids" from Merlot database, to enhance teaching and learning for Water Treatment Technology IV course material. This database focuses on fundamental concepts for chlorination as one of the most prominent disinfection treatment technology processes in the world and in South Africa. The course is part of the curriculum for the bachelor of technology degree in civil engineering, water specialisation at the University of South Africa (Unisa. The evaluation of these Merlot learning objects shows that accessibility, interaction usability, learning goal alignment, adaptation and motivation may be achieved during learning.

  6. Degradation of fructans and production of propionic acid by Bacteroides thetaiotaomicron are enhanced by shortage of amino acids

    Directory of Open Access Journals (Sweden)

    Signe eAdamberg

    2014-12-01

    Full Text Available Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by the catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory and levan (synthesized using levansucrase from Pseudomonas syringae, two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (DP > 3. Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h, followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of D-lactate (82 ± 33 mmol/gDW occurred in parallel with extensive consumption (up to 17 mmol/gDW of amino acids, especially Ser, Thr and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will be studied in

  7. Afferent signalling from the acid-challenged rat stomach is inhibited and gastric acid elimination is enhanced by lafutidine

    Directory of Open Access Journals (Sweden)

    Holzer Peter

    2009-06-01

    Full Text Available Abstract Background Lafutidine is a histamine H2 receptor antagonist, the gastroprotective effect of which is related to its antisecretory activity and its ability to activate a sensory neuron-dependent mechanism of defence. The present study investigated whether intragastric administration of lafutidine (10 and 30 mg/kg modifies vagal afferent signalling, mucosal injury, intragastric acidity and gastric emptying after gastric acid challenge. Methods Adult rats were treated with vehicle, lafutidine (10 – 30 mg/kg or cimetidine (10 mg/kg, and 30 min later their stomachs were exposed to exogenous HCl (0.25 M. During the period of 2 h post-HCl, intragastric pH, gastric volume, gastric acidity and extent of macroscopic gastric mucosal injury were determined and the activation of neurons in the brainstem was visualized by c-Fos immunocytochemistry. Results Gastric acid challenge enhanced the expression of c-Fos in the nucleus tractus solitarii but caused only minimal damage to the gastric mucosa. Lafutidine reduced the HCl-evoked expression of c-Fos in the NTS and elevated the intragastric pH following intragastric administration of excess HCl. Further analysis showed that the gastroprotective effect of lafutidine against excess acid was delayed and went in parallel with facilitation of gastric emptying, measured indirectly via gastric volume changes, and a reduction of gastric acidity. The H2 receptor antagonist cimetidine had similar but weaker effects. Conclusion These observations indicate that lafutidine inhibits the vagal afferent signalling of a gastric acid insult, which may reflect an inhibitory action on acid-induced gastric pain. The ability of lafutidine to decrease intragastric acidity following exposure to excess HCl cannot be explained by its antisecretory activity but appears to reflect dilution and/or emptying of the acid load into the duodenum. This profile of actions emphasizes the notion that H2 receptor antagonists can protect

  8. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum.

    Science.gov (United States)

    Tesfaye, M; Temple, S J; Allan, D L; Vance, C P; Samac, D A

    2001-12-01

    Al toxicity is a severe impediment to production of many crops in acid soil. Toxicity can be reduced through lime application to raise soil pH, however this amendment does not remedy subsoil acidity, and liming may not always be practical or cost-effective. Addition of organic acids to plant nutrient solutions alleviates phytotoxic Al effects, presumably by chelating Al and rendering it less toxic. In an effort to increase organic acid secretion and thereby enhance Al tolerance in alfalfa (Medicago sativa), we produced transgenic plants using nodule-enhanced forms of malate dehydrogenase and phosphoenolpyruvate carboxylase cDNAs under the control of the constitutive cauliflower mosaic virus 35S promoter. We report that a 1.6-fold increase in malate dehydrogenase enzyme specific activity in root tips of selected transgenic alfalfa led to a 4.2-fold increase in root concentration as well as a 7.1-fold increase in root exudation of citrate, oxalate, malate, succinate, and acetate compared with untransformed control alfalfa plants. Overexpression of phosphoenolpyruvate carboxylase enzyme specific activity in transgenic alfalfa did not result in increased root exudation of organic acids. The degree of Al tolerance by transformed plants in hydroponic solutions and in naturally acid soil corresponded with their patterns of organic acid exudation and supports the concept that enhancing organic acid synthesis in plants may be an effective strategy to cope with soil acidity and Al toxicity. PMID:11743127

  9. Extrusion enhances metabolizable energy and ileal amino acids digestibility of canola meal for broiler chickens

    Directory of Open Access Journals (Sweden)

    Aljuobori Ahmed

    2014-01-01

    Full Text Available The aim of the current study was to determine the effect of extrusion process on apparent metabolizable energy (AME, crude protein (CP and amino acid (AA digestibility of canola meal (CM in broiler chickens. A total of 36, 42-day-old broilers were randomly assigned into adaptation diets (no CM or 30% CM with six replicates. After 4 days of adaptation period, on day 47, birds were allowed to consume the assay diets that contain CM or extruded canola meal (ECM as the sole source of energy and protein. Following 4 h after feeding, the birds were killed and ileal contents were collected. The results showed that ECM had greater (P<0.001 AME (10.87 vs 9.39 MJ/kg compared to CM. The extrusion also significantly enhanced apparent ileal digestibility of CP and some of AA such as Asp, Glu, Ser, Thr and Trp. In conclusion, the extrusion treatment appeared to be a practical and effective approach in enhancing the digestibility of AME, CP and some AA of CM in broiler chickens.

  10. Valproic acid induces cutaneous wound healing in vivo and enhances keratinocyte motility.

    Directory of Open Access Journals (Sweden)

    Soung-Hoon Lee

    Full Text Available BACKGROUND: Cutaneous wound healing is a complex process involving several signaling pathways such as the Wnt and extracellular signal-regulated kinase (ERK signaling pathways. Valproic acid (VPA is a commonly used antiepileptic drug that acts on these signaling pathways; however, the effect of VPA on cutaneous wound healing is unknown. METHODS AND FINDINGS: We created full-thickness wounds on the backs of C3H mice and then applied VPA. After 7 d, we observed marked healing and reduced wound size in VPA-treated mice. In the neo-epidermis of the wounds, β-catenin and markers for keratinocyte terminal differentiation were increased after VPA treatment. In addition, α-smooth muscle actin (α-SMA, collagen I and collagen III in the wounds were significantly increased. VPA induced proliferation and suppressed apoptosis of cells in the wounds, as determined by Ki67 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining analyses, respectively. In vitro, VPA enhanced the motility of HaCaT keratinocytes by activating Wnt/β-catenin, ERK and phosphatidylinositol 3-kinase (PI3-kinase/Akt signaling pathways. CONCLUSIONS: VPA enhances cutaneous wound healing in a murine model and induces migration of HaCaT keratinocytes.

  11. Ursolic acid regulates aging process through enhancing of metabolic sensor proteins level.

    Science.gov (United States)

    Bahrami, Soroush Alaghehband; Bakhtiari, Nuredin

    2016-08-01

    We previously reported that Ursolic Acid (UA) ameliorates skeletal muscle performance through satellite cells proliferation and cellular energy status. In studying the potential role of the hypothalamus in aging, we developed a strategy to pursue UA effects on the hypothalamus anti-aging proteins such as; SIRT1, SIRT6, PGC-1β and α-Klotho. In this study, we used a model of aging animals (C57BL/6). UA dissolved in Corn oil (20mg/ml) and then administrated (200mg/Kg i.p injection) to mice, twice daily for 7days. After treatment times, the mice perfused and the hypothalamus isolated for preparing of tissue to Immunofluorescence microscopy. The data illustrated that UA significantly increased SIRT1 (∼3.5±0.3 folds) and SIRT-6 (∼1.5±0.2 folds) proteins overexpression (Presults showed that UA enhanced α-Klotho (∼3.3±0.3) and PGC-1β (∼2.6±0.2 folds) proteins levels (PUA through enhancing of anti-aging biomarkers (SIRT1 and SIRT6) and PGC-1β in hypothalamus regulates aging-process and attenuates mitochondrial-related diseases. In regard to the key role of α-Klotho in aging, our data indicate that UA may be on the horizon to forestall diseases of aging.

  12. Treatment of Alkaline Stripped Effluent in Aerated Constructed Wetlands: Feasibility Evaluation and Performance Enhancement

    Directory of Open Access Journals (Sweden)

    Keli He

    2016-09-01

    Full Text Available Ammonium stripping has gained increasing interest for nitrogen recovery in anaerobically digested effluents. However, the stripped effluents often still do not meet discharge standards, having high pH and residual pollutants. Constructed wetlands (CWs are an easy to operate ecosystem and have a long history of application in treatment of wastewaters with extreme pH, such as acid mine drainage. However, knowledge of the mechanistic details involved in the use of CWs to treat high alkaline drainage, such as stripped effluent, is insufficient. This study explored the feasibility and effectiveness of using three sub-surface horizontal flow CWs to treat high alkaline stripped effluent (pH > 10. Two intensification strategies—intermittent aeration and effluent recirculation—were evaluated to enhance nitrogen depuration performance. The results show that the treatment of alkaline stripped effluent is feasible due to the high buffering capacity of the wetlands. Effluent recirculation combined with intermittent artificial aeration improves nitrogen removal, with 71% total nitrogen (TN removal. Ammonia volatilization from the surface of the wetlands in high alkaline conditions only contributed to 3% of the total removed ammonium. The microbial abundance and activity had significant diversity for the various enhancement strategies used in the constructed wetland systems. Anammox is an important process for nitrogen removal in CWs treating alkaline stripped effluent, and possible enhancements of this process should be investigated further.

  13. Enhancement of vindoline and vinblastine production in suspension-cultured cells of Catharanthus roseus by artemisinic acid elicitation.

    Science.gov (United States)

    Liu, Jinwei; Zhu, Jianhua; Tang, Le; Wen, Wei; Lv, Shuangshuang; Yu, Rongmin

    2014-01-01

    Elicitation is an important strategy to improve production of secondary metabolites in vitro. Artemisinic acid was studied as a novel elicitor to enhance the yield of terpenoid indole alkaloids in the present paper. Our results demonstrated that the concentrations of vindoline and vinblastine were increased by sixfold and twofold, respectively, compared to those of the control group after treatment with artemisinic acid. To elucidate the underlying mechanism, we investigated the gene expression of four enzymes involved in the biosynthetic pathway of vinblastine in the suspension-cultured cells of Catharanthu sroseus. RT-PCR experiment showed that artemisinic acid was able to up-regulate the transcriptions of tryptophan decarboxylase, geraniol 10-hydroxylase, tabersonine 16-hydroxylase and deacetoxyvindoline 4-hydroxylase. PMID:23864440

  14. Complications and management of breast enhancement using hyaluronic acid

    OpenAIRE

    Ishii, Hidenori; Sakata, Kazuaki

    2014-01-01

    The emergence of injectable fillers for breast enhancement has offered women several advantages, such as local anesthesia and short recovery times, among others, and the opportunity to more specifically choose breast size. Some fillers, however, have been associated with high complication rates and can be difficult to remove. This article describes the authors’ experience with a commercially available alternative technology that was initially developed for wrinkles and volume restoration, and...

  15. Retinoic acid and glycolic acid combination in the treatment of acne scars

    Directory of Open Access Journals (Sweden)

    B S Chandrashekar

    2015-01-01

    Full Text Available Introduction: Acne is a prevalent condition in society affecting nearly 80-90% of adolescents often resulting in secondary damage in the form of scarring. Retinoic acid (RA is said to improve acne scars and reduce postinflammatory hyperpigmentation while glycolic acid (GA is known for its keratolytic properties and its ability to reduce atrophic acne scars. There are studies exploring the combined effect of retinaldehyde and GA combination with positive results while the efficacy of retinoic acid and GA (RAGA combination remains unexplored. Aim: The aim of this study remains to retrospectively assess the efficacy of RAGA combination on acne scars in patients previously treated for active acne. Materials and Methods: A retrospective assessment of 35 patients using topical RAGA combination on acne scars was done. The subjects were 17-34 years old and previously treated for active acne. Case records and photographs of each patient were assessed and the acne scars were graded as per Goodman and Baron′s global scarring grading system (GSGS, before the start and after 12 weeks of RAGA treatment. The differences in the scar grades were noted to assess the improvement. Results: At the end of 12 weeks, significant improvement in acne scars was noticed in 91.4% of the patients. Conclusion: The RAGA combination shows efficacy in treating acne scars in the majority of patients, minimizing the need of procedural treatment for acne scars.

  16. Performance enhancement of phosphoric acid fuel cell using phosphosilicate gel based electrolyte

    Institute of Scientific and Technical Information of China (English)

    Kajari Kargupta; Swati Saha; Dipali Banerjee; Mrinal Seal; Saibal Ganguly

    2012-01-01

    Replacement of phosphoric acid electrolyte by phosphosilicate gel based electrolytes is proposed for performance enhancement of phosphoric acid fuel cell (PAFG).Phosphosilicate gel in paste form and in powder form is synthesized from tetraethoxysilane and orthophosphoric acid using sol-gel method for two different P/Si ratio of 5 and 1.5 respectively.Replacement of phosphoric acid electrolyte by phosphosilicate gel paste enhances the peak power generation of the fuel cell by 133% at 120 ℃ cell temperature; increases the voltage generation in the ohmic regime and extends the maximum possible load current.Polyinyl alcohol (PVA) is used to bind the phosphosilicate gel powder and to form the hybrid crosslinked gel polymer electrolyte membrane.Soaking the membrane with phosphoric acid solution,instead of that with water improves the proton conductivity of the membrane,enhances the voltage and power generation by the fuel cell and extends the maximum possible operating temperature.At lower operating temperature of 70 ℃,peak power produced by phosphosilicate gel polymer electrolyte membrane fuel cell ( PGMFC ) is increased by 40% compared to that generated by phosphoric acid fuel cell ( PAFC ).However,the performance of composite membrane diminishes as the cell temperature increases.Thus phosphosilicate gel in paste form is found to be a good alternative of phosphoric acid electrolyte at medium operating temperature range while phosphosilicate gel-PVA composite offers performance enhancement at low operating temperatures.

  17. Enhanced Photocatalytic Activity of Powders (P25 via Calcination Treatment

    Directory of Open Access Journals (Sweden)

    Guohong Wang

    2012-01-01

    Full Text Available P25 TiO2 powders were calcined at different temperatures in a muffle furnace in air. The P25 powders before and after calcination treatment were characterized with XRD FTIR, UV-visible diffuse reflectance spectra, SEM, TEM, HRTEM, and N2 adsorption-desorption measurements. The photocatalytic activity was evaluated by the photocatalytic oxidation of methyl orange aqueous solution under UV light irradiation in air. The results showed that calcination treatment obviously influenced the microstructures and photocatalytic activity of the P25 TiO2 powders. The synergistic effect of the phase structure, BET surface area, and crystallinity on the photocatalytic of TiO2 powders (P25 after calcination was investigated. An optimal calcination temperature ( was determined. The photocatalytic activity of TiO2 powders calcined at was nearly 2 times higher than that of the uncalcined P25 TiO2. The highest photocatalytic activities of the calcined samples at for 4 h might be ascribed to the enhancement of anatase crystallization and the optimal mass ratio (ca. 1 : 2 of rutile to anatase.

  18. Enhanced L-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate

    DEFF Research Database (Denmark)

    Bai, Dongmei; Li, S.Z.; Liu, Z.L.;

    2008-01-01

    -added production of a variety of bioproducts. Lactic acid can be used as a precursor for poly-lactic acid production. Although current industrial lactic acid is produced by lactic acid bacteria using enriched medium, production by Rhizopus oryzae is preferred due to its exclusive formation of the......-isomer and a simple nutrition requirement by the fungus. Production of-L-(+)-lactic acid by R. oryzae using xylose has been reported; however, its yield and conversion rate are poor compared with that of using glucose. In this study, we report an adapted R. oryzae strain HZS6 that significantly improved efficiency...... of substrate utilization and enhanced production of L-(+)-lactic acid from corncob hydrolysate. It increased L-(+)-lactic acid final concentration, yield, and volumetric productivity more than twofold compared with its parental strain. The optimized growth and fermentation conditions for Strain HZS6 were...

  19. Magnetic microparticles post-synthetically coated by hyaluronic acid as an enhanced carrier for microfluidic bioanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Holubova, Lucie [Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Knotek, Petr [Joint Laboratory of Solid State Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Palarcik, Jiri [Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Cadkova, Michaela [Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Belina, Petr [Department of Inorganic Technology, Faculty of Chemical Technology, University of Pardubice, Doubravice 41, 53210 Pardubice (Czech Republic); Vlcek, Milan [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho sq. 2, 16206 Prague (Czech Republic); Korecka, Lucie [Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic); Bilkova, Zuzana, E-mail: Zuzana.Bilkova@upce.cz [Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice (Czech Republic)

    2014-11-01

    Iron oxide based particles functionalized by bioactive molecules have been utilized extensively in biotechnology and biomedicine. Despite their already proven advantages, instability under changing reaction conditions, non-specific sorption of biomolecules on the particles' surfaces, and iron oxide leakage from the naked particles can greatly limit their application. As confirmed many times, surface treatment with an appropriate stabilizer helps to minimize these disadvantages. In this work, we describe enhanced post-synthetic surface modification of superparamagnetic microparticles varying in materials and size using hyaluronic acid (HA) in various chain lengths. Scanning electron microscopy, atomic force microscopy, phase analysis light scattering and laser diffraction are the methods used for characterization of HA-coated particles. The zeta potential and thickness of HA-layer of HA-coated Dynabeads M270 Amine were − 50 mV and 85 nm, respectively, and of HA-coated p(GMA-MOEAA)-NH{sub 2} were − 38 mV and 140 nm, respectively. The electrochemical analysis confirmed the zero leakage of magnetic material and no reactivity of particles with hydrogen peroxide. The rate of non-specific sorption of bovine serum albumin was reduced up to 50% of the naked ones. The coating efficiency and suitability of biopolymer-based microparticles for magnetically active microfluidic devices were confirmed. - Highlights: • Post-synthetic surface modification of magnetic microparticles by hyaluronic acid • Hyaluronic acid — polymer of unique physicochemical and biological characteristics • Panel of particle characterization methods was introduced. • HA-coated microparticles gain characteristics suited for microfluidic bioanalysis.

  20. Magnetic microparticles post-synthetically coated by hyaluronic acid as an enhanced carrier for microfluidic bioanalysis

    International Nuclear Information System (INIS)

    Iron oxide based particles functionalized by bioactive molecules have been utilized extensively in biotechnology and biomedicine. Despite their already proven advantages, instability under changing reaction conditions, non-specific sorption of biomolecules on the particles' surfaces, and iron oxide leakage from the naked particles can greatly limit their application. As confirmed many times, surface treatment with an appropriate stabilizer helps to minimize these disadvantages. In this work, we describe enhanced post-synthetic surface modification of superparamagnetic microparticles varying in materials and size using hyaluronic acid (HA) in various chain lengths. Scanning electron microscopy, atomic force microscopy, phase analysis light scattering and laser diffraction are the methods used for characterization of HA-coated particles. The zeta potential and thickness of HA-layer of HA-coated Dynabeads M270 Amine were − 50 mV and 85 nm, respectively, and of HA-coated p(GMA-MOEAA)-NH2 were − 38 mV and 140 nm, respectively. The electrochemical analysis confirmed the zero leakage of magnetic material and no reactivity of particles with hydrogen peroxide. The rate of non-specific sorption of bovine serum albumin was reduced up to 50% of the naked ones. The coating efficiency and suitability of biopolymer-based microparticles for magnetically active microfluidic devices were confirmed. - Highlights: • Post-synthetic surface modification of magnetic microparticles by hyaluronic acid • Hyaluronic acid — polymer of unique physicochemical and biological characteristics • Panel of particle characterization methods was introduced. • HA-coated microparticles gain characteristics suited for microfluidic bioanalysis

  1. Plasmon resonance enhancement of nonlinear properties of amino acids

    Science.gov (United States)

    de Araujo, Renato E.; Rativa, Diego; Gomes, Anderson S. L.

    2007-02-01

    Here we analyze the influence of 9 nm (mean diameter) silver particles on the nonlinear properties of intrinsic cell molecules. A novel high sensitivity thermal managed eclipse Z-scan technique with a femtosecond laser system was used to analyze the nonlinear susceptibility of water solution of fluorescent and non-fluorescent amino acids (Tryptophan, Tyrosine, Phenylalanine, Proline and Histidine) with different concentration of silver nanoparticles. The generalized Maxwell Garnett model is used to explain the behavior of the measured nonlinear refractive index with the change of the nanoparticles concentration in the sample.

  2. Duration of treatment with 5-aminosalicylic acid compounds

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The development of 5-aminosalicylic acid (5-ASA) therapy as a life long treatment for ulcerative colitis is reviewed from its origins in the 1940s to the present day. The drug was designed to treat rheumatoid arthritis, but was found helpful in the management of nine patients with ulcerative colitis. This discovery preceded the emergence of the clinical trial as a tool for assessing a new drug's efficacy; as a result it lacked scientific rigour and was selective in its presentation of results. Nevertheless it identified the future cornerstone of therapy in ulcerative colitis. In 1962, the first double blind controlled trial of sulphasalazine was conducted on 40 patients. Outcomemeasures were subjective and included symptoms and an assessment of the rectal mucosa. In 1973, the first two papers on the role of sulphasalazine in maintenance of remission were published. Both used placebo controls and had a stratified design. Outcomes were measuredusing "an intention to treat" approach. The British study of 64 patients used both subjective and objective criteria to assess outcomes. Patients on placebo had a relapse rate four times patients on active treatment and this founded the basis for a life long approach to therapy with 5-ASA compounds in ulcerative colitis. However, in 1985,a small "on demand" study of 32 patients suggested this approach might be as effective as continuous treatment.Some support for this view came from an Italian study which showed no benefit to continued treatment for those in remission for two years or more. The central problem these studies identify is that of adherence to treatment in the long-term. Few studies have considered patients' attitudes to continuous therapy and it is an area that needs further investigation.

  3. Water-dispersible ascorbic-acid-coated magnetite nanoparticles for contrast enhancement in MRI

    Science.gov (United States)

    Sreeja, V.; Jayaprabha, K. N.; Joy, P. A.

    2015-04-01

    Superparamagnetic iron oxide nanoparticles of size ~5 nm surface functionalized with ascorbic acid (vitamin C) form a stable dispersion in water with a hydrodynamic size of ~30 nm. The anti-oxidant property of ascorbic acid is retained after capping, as evidenced from the capability of converting methylene blue to its reduced leuco form. NMR relaxivity studies show that the ascorbic-acid-coated superparamagnetic iron oxide aqueous nanofluid is suitable as a contrast enhancement agent for MRI applications, coupled with the excellent biocompatibility and medicinal values of ascorbic acid.

  4. CCAAT/enhancer binding proteins alpha and epsilon cooperate with all-trans retinoic acid in therapy but differ in their antileukemic activities

    OpenAIRE

    Lee, Young-jin; Jones, Letetia C.; Timchenko, Nikolai A.; Perrotti, Danilo; Tenen, Daniel G; Kogan, Scott C.

    2006-01-01

    CCAAT/enhancer binding proteins (C/EBPs) play critical roles in myelopoiesis. Dysregulation of these proteins likely contributes to the pathogenesis of myeloid disorders characterized by a block in granulopoiesis. In one such disease, acute promyelocytic leukemia (APL), a promyelocytic leukemia–retinoic acid receptor α (PML-RARα) fusion protein is expressed as a result of a t(15;17) chromosomal translocation. Treatment of PML-RARα leukemic cells with all-trans retinoic acid (ATRA) causes them...

  5. Determination of residues in honey after treatments with formic and oxalic acid under field conditions

    OpenAIRE

    Bogdanov, Stefan; Charrière, Jean-Daniel; IMDORF, Anton; KILCHENMANN, Verena; Fluri, Peter

    2002-01-01

    International audience Formic acid and oxalic acid field trials for control of Varroa destructor were carried out in autumn according to the Swiss prescriptions during three successive years in different apiaries in Switzerland. The following parameters were determined in honey that was harvested the year after treatment: formic acid, oxalic acid and free acidity. The following range of values were found in honeys of untreated colonies: formic acid, from 17 to 284 mg/kg, n = 34; oxalic aci...

  6. The 300 area waste acid treatment system closure plan

    International Nuclear Information System (INIS)

    The 300 Area Waste Acid Treatment System (WATS) is located within operable units 300-FF-2 (source) and 300-FF-5 (groundwater), as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) . Operable units 300-FF-2 and 300-FF-5 are scheduled to be remediated using the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Remedial Investigation/Feasibility Study (RI/FS) process. Thus, any remediation of the 300 Area WATS with respect to contaminants not produced by those facilities and soils and groundwater will be deferred to the CERCLA RI/FS process. Final closure activities will be completed in 3 phases and certified in accordance with the 300 Area WATS closure plan by the Washington State Department of Ecology (Ecology) and the U.S. Environmental Protection Agency (EPA). It is anticipated that the 300 Area WATS closure would take 2 years to complete

  7. Polarographic determination of metyrosine through treatment with nitrous acid.

    Science.gov (United States)

    Aly, F A; Belal, F; el-Brashy, A

    1993-10-15

    A simple and sensitive polarographic method is described for the determination of metyrosine through treatment with nitrous acid. The different experimental parameters affecting the derivatization process, as well as the polarographic analysis were studied. The derivatization product was found to be reducible at the dropping mercury electrode over the whole pH range in Britton Robinson buffers. At pH 5, a well-defined diffusion-controlled cathodic wave was produced. The limiting current versus the concentration plot was linear over the range 8-80 mumol/l in the direct current mode with a detection limit of 0.2 mumol/l. The method was then applied to the determination of metyrosine capsules, and the results obtained were in good agreement with those given by the USP method.

  8. Aristolochic acid nephropathy: epidemiology, clinical presentation, and treatment.

    Science.gov (United States)

    Luciano, Randy L; Perazella, Mark A

    2015-01-01

    Aristolochic acid (AA) is a compound extracted from the Aristolochia species of herbs. It has been used for centuries as a remedy for various illnesses and diseases. However, in the early 1990s in the setting of a weight loss herbal remedy, AA exposure was associated with a syndrome of kidney injury, termed aristolochic acid nephropathy (AAN). This entity is marked by elevated serum creatinine, significant anemia, and histopathologic changes demonstrating a hypocellular interstitial infiltrate with severe fibrosis. Progression towards end-stage renal disease (ESRD) is rapid, with most patients having chronic kidney disease for less than 2 years. In addition, AAN is associated with a 40-45 % prevalence of urothelial carcinomas. Treatment of AAN is limited to glucocorticoids that have been shown to delay progression in non-randomized trials. As most patients progress to ESRD, need for renal replacement therapy, as either dialysis or kidney transplant, usually ensues. However, given the high malignant potential, care must be taken to minimize future development of upper urinary tract cancers by performing prophylactic bilateral nephroureterectomies and aggressive cancer surveillance. PMID:25446374

  9. Maleic acid treatment of biologically detoxified corn stover liquor.

    Science.gov (United States)

    Kim, Daehwan; Ximenes, Eduardo A; Nichols, Nancy N; Cao, Guangli; Frazer, Sarah E; Ladisch, Michael R

    2016-09-01

    Elimination of microbial and enzyme inhibitors from pretreated lignocellulose is critical for effective cellulose conversion and yeast fermentation of liquid hot water (LHW) pretreated corn stover. In this study, xylan oligomers were hydrolyzed using either maleic acid or hemicellulases, and other soluble inhibitors were eliminated by biological detoxification. Corn stover at 20% (w/v) solids was LHW pretreated LHW (severity factor: 4.3). The 20% solids (w/v) pretreated corn stover derived liquor was recovered and biologically detoxified using the fungus Coniochaeta ligniaria NRRL30616. After maleic acid treatment, and using 5 filter paper units of cellulase/g glucan (8.3mg protein/g glucan), 73% higher cellulose conversion from corn stover was obtained for biodetoxified samples compared to undetoxified samples. This corresponded to 87% cellulose to glucose conversion. Ethanol production by yeast of pretreated corn stover solids hydrolysate was 1.4 times higher than undetoxified samples, with a reduction of 3h in the fermentation lag phase. PMID:27262718

  10. Reduced Burst Release and Enhanced Oral Bioavailability in Shikimic Acid-Loaded Polylactic Acid Submicron Particles by Coaxial Electrospray.

    Science.gov (United States)

    Wang, Miaomiao; Wang, Yuanwen; Omari-Siaw, Emmanuel; Wang, Shengli; Zhu, Yuan; Xu, Ximing

    2016-08-01

    In this study, using the coaxial electrospray method, we prepared submicron particles of the water-soluble drug shikimic acid (SA) with polylactic acid (PLA) as a polymer, to reduce the burst release and enhance the oral bioavailability. In vitro release study performed in HCl solution (pH 1.2) showed that the coaxial electrospray submicron particles could reduce burst release effect and presented a sustained release profile, compared with free SA and the particles prepared by electrospray method. The absorption of SA in the intestinal tract, studied using an in situ perfusion method in rats, also revealed jejunum as the main absorptive segment followed by duodenum and ileum. Moreover, the SA-loaded particles greatly enhanced the absorption of SA in the tested intestinal segments. The intestinal absorption rate was not enhanced with increasing drug concentration (5-15 μg/mL) which suggested that active transport or facilitated diffusion could play vital role in SA absorption. In addition, the SA-loaded PLA coaxial electrospray particle exhibited a prolonged plasma circulation with enhanced bioavailability after oral administration. In all, the coaxial electrospray technique could provide notable advantages for the oral delivery of SA, thereby enhancing its clinical application.

  11. PPAR{delta} is a fatty acid sensor, which enhances mitochondrial oxidation in insulin

    DEFF Research Database (Denmark)

    Ravnskjaer, Kim; Frigerio, Francesca; Boergesen, Michael;

    2010-01-01

    RNA-mediated knockdown we demonstrate that the ability of unsaturated fatty acids to stimulate fatty acid metabolism is dependent on PPARdelta. Activation of PPARdelta increases the fatty acid oxidation potential in INS-1E beta-cells, enhances glucose-stimulated insulin secretion (GSIS) from islets, and protects GSIS...... against adverse effects on GSIS associated with prolonged fatty acid exposure. The presented results indicate that the nuclear receptor PPARdelta is a fatty acid sensor that adapts beta-cell mitochondrial function to long-term changes in unsaturated fatty acid levels. As maintenance of mitochondrial...... metabolism is essential to preserve beta-cell function, these data indicate that dietary or pharmacological activation of PPARdelta and RXR may be beneficial in the prevention of beta-cell dysfunction....

  12. Effects of gas atmospheres on poly(lactic acid) film in acrylic acid plasma treatment

    Science.gov (United States)

    Zhao, Yun; Fina, Alberto; Venturello, Alberto; Geobaldo, Francesco

    2013-10-01

    Plasma polymerized acrylic acid (AA) coatings were deposited on poly(lactic acid) (PLA) films in various gas atmospheres during the pre-treatment of PLA and the deposition of AA, respectively. Therefore, this work was twofold: the argon pretreated PLA films followed by a deposition in argon were investigated against the mixture of argon and oxygen pretreated ones under the same deposition conditions; the plasma deposition of AA operating in different atmospheres (argon, oxygen and nitrogen) was employed to modify the pretreated PLA in oxygen. Chemical and physical changes on the plasma-treated surfaces were examined using contact angle, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM) and attenuated total reflection infrared (ATR-FTIR) analysis. The results showed that the discharge gas can have a significant influence on the chemical composition of the PLA surfaces: oxygen plasmas introduced oxygen-containing groups in company with surface etching in pretreatment and deposition, while argon discharges was able to achieve much better hydrophilic behavior and high retention ratio of poly(acrylic acid) (PAA) coating before and after washing in water.

  13. Effects of gas atmospheres on poly(lactic acid) film in acrylic acid plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yun, E-mail: yun.zhaotju@yahoo.com [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy); Fina, Alberto [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino – sede di Alessandria, V. T. Michel 5, 15121 Alessandria (Italy); Venturello, Alberto; Geobaldo, Francesco [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Turin (Italy)

    2013-10-15

    Plasma polymerized acrylic acid (AA) coatings were deposited on poly(lactic acid) (PLA) films in various gas atmospheres during the pre-treatment of PLA and the deposition of AA, respectively. Therefore, this work was twofold: the argon pretreated PLA films followed by a deposition in argon were investigated against the mixture of argon and oxygen pretreated ones under the same deposition conditions; the plasma deposition of AA operating in different atmospheres (argon, oxygen and nitrogen) was employed to modify the pretreated PLA in oxygen. Chemical and physical changes on the plasma-treated surfaces were examined using contact angle, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM) and attenuated total reflection infrared (ATR-FTIR) analysis. The results showed that the discharge gas can have a significant influence on the chemical composition of the PLA surfaces: oxygen plasmas introduced oxygen-containing groups in company with surface etching in pretreatment and deposition, while argon discharges was able to achieve much better hydrophilic behavior and high retention ratio of poly(acrylic acid) (PAA) coating before and after washing in water.

  14. Salicylic acid and methyl jasmonate enhance drought tolerance in chamomile plants

    Directory of Open Access Journals (Sweden)

    Nazarli Hossein

    2014-04-01

    Full Text Available Introduction: The dried flowers of chamomile contain many terpenoids and flavonoids contributing to its medicinal properties. Salicylic acid (SA and methyl jasmonate (MeJA have antioxidant properties and function as direct radical scavengers. Two Matricaria chamomilla cultivars (Bodgold and Hungary breed seeds were used in this study to investigate the effects of exogenous application of SA and MeJA on protection against drought stress as well as on changes of malone dialdehyde (MDA and electrolyte leakage index (ELI, and the fluctuation of proline and soluble sugars content in the leaves under drought stress. Methods: The experiment was conducted in a factorial design based on randomized complete blocks with three replicates. Chamomile plants were treated by two levels of drought stress as well as two different levels of MeJA (i.e., 0.0 and 100 μM and SA (i.e., 0.0 and 0.5 mM solutions. Results: There was a dramatic drought induced increase in the MDA content (128% and ELI (49% in the leaves. Deleterious effect of drought stress was more severe in untreated plants than in treated ones. Treatments with SA and MeJA significantly improved drought tolerance in chamomile plants. These treatments effectively maintained membrane integrity, thereby retarding electrolyte leakage and membrane lipid peroxidation (MDA. Treatments with SA and MeJA were also effective in enhancing the antioxidant concentrations of proline and soluble sugars. Conclusion: The production of these antioxidants could have been part of a defence system against drought damage, reducing MDA and ELI and maintaining membrane stability.

  15. Enhanced uptake of water by oxidatively processed oleic acid

    Directory of Open Access Journals (Sweden)

    A. Asad

    2004-07-01

    Full Text Available A quartz crystal microbalance apparatus has been used to measure the room temperature uptake of water vapour by thin films of oleic acid as a function of relative humidity, both before and following exposure of the films to various partial pressures of gas phase ozone. A rapid increase in the water-sorbing ability of the film is observed as its exposure to ozone is increased, followed by a plateau region in which no additional water is taken up. In this fully-processed region the mass of water taken up by the film is about 4 times that of the unprocessed film. Infrared spectra of the films, measured after variable exposures to ozone, show dramatic increases in both the "free" and hydrogen-bonded O-H stretching regions, and a decrease in the intensity of olefinic features. These results are consistent with the formation of an oxygenated polymeric product or products, as well as the gas phase products previously identified.

  16. Application of acidic thermal treatment for one- and two-stage anaerobic digestion of sewage sludge.

    Science.gov (United States)

    Takashima, M; Tanaka, Y

    2010-01-01

    The effectiveness of acidic thermal treatment (ATT) was examined in a 106-day continuous experiment, when applied to one- or two-stage anaerobic digestion of sewage sludge (4.3% TS). The ATT was performed at 170 °C and pH 5 for 1 hour (sulfuric acid for lowering pH). The one-stage process was mesophilic at 20 days hydraulic retention time (HRT), and incorporated the ATT as pre-treatment. The two-stage process consisted of a thermophilic digester at 5 days HRT and a mesophilic digester at 15 days HRT, and incorporated the ATT as interstage-treatment. On average, VSS reduction was 48.7% for the one-stage control, 65.8% for the one-stage ATT, 52.7% for the two-stage control and 67.6% for the two-stage ATT. Therefore, VSS reduction was increased by 15-17%, when the ATT was combined in both one- and two-stage processes. In addition, the dewaterability of digested sludge was remarkably improved, and phosphate release was enhanced. On the other hand, total methane production did not differ significantly, and color generation was noted in the digested sludge solutions with the ATT. In conclusion, the anaerobic digestion with ATT can be an attractive alternative for sludge reduction, handling, and phosphorus recovery. PMID:21099053

  17. Evaluation of sugarcane bagasse acid hydrolysate treatments for xylitol production

    Energy Technology Data Exchange (ETDEWEB)

    Gurgel, P.V.; Mancilha, I.M. [Vicosa Univ., MG (Brazil). Dept. de Tecnologia de Alimentos; Furlan, S.A.; Martinez, S.E.R. [Faculdade de Engenharia Quimica de Lorena (FAENQUIL), SP (Brazil). Centro de Biotecnologia

    1998-09-01

    Acid sugarcane bagasse hydrolysate was submitted to pH shifts in order to remove toxic compounds from the medium. The hydrolysate was treated with bases containing mono-, di- or tri-valent cations and H{sub 2}SO{sub 4}, and its performance as a fermentation medium was evaluated by the production of xylitol by Candida guilliermondii FTI 20037. The use of bases containing mono-valent cations was not an efficient method of detoxification, and the use of a tri-valent cation did not show any detectable improvement in detoxification. The treated hydrolysate recovery (in volume) is greatly affected by the utilized base. Treatment using Al(OH){sub 3} and NaOH showed the best hydrolysate recovery (87.5%), while the others presented a recovery of about 45% of the original hydrolysate volume. Considering the whole process, best results were achieved by treatment using Al(OH){sub 3} and NaOH which allowed 0.55 g of xylitol produced from each gram of xylose in the raw hydrolysate. (author)

  18. EVALUATION OF SUGARCANE BAGASSE ACID HYDROLYZATE TREATMENTS FOR XYLITOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    P.V. GURGEL

    1998-09-01

    Full Text Available Acid sugarcane bagasse hydrolyzate was submitted to pH shifts in order to remove toxic compounds from the medium. The hydrolyzate was treated with bases containing mono-, di- or tri-valent cations and H2SO4, and its performance as a fermentation medium was evaluated by the production of xylitol by Candida guilliermondii FTI 20037. The use of bases containing mono-valent cations was not an efficient method of detoxification, and the use of a tri-valent cation did not show any detectable improvement in detoxification. The treated hydrolyzate recovery (in volume is greatly affected by the utilized base. Treatment using Al(OH3 and NaOH showed the best hydrolyzate recovery (87.5%, while the others presented a recovery of about 45% of the original hydrolyzate volume. Considering the whole process, best results were achieved by treatment using Al(OH3 and NaOH which allowed 0.55 g of xylitol produced from each gram of xylose in the raw hydrolyzate.

  19. Solid Lipid Nanoparticles Loaded with Retinoic Acid and Lauric Acid as an Alternative for Topical Treatment of Acne Vulgaris.

    Science.gov (United States)

    Silva, Elton Luiz; Carneiro, Guilherme; De Araújo, Lidiane Advíncula; Trindade, Mariana de Jesus Vaz; Yoshida, Maria Irene; Oréfice, Rodrigo Lambert; Farias, Luis de Macêdo; De Carvalho, Maria Auxiliadora Roque; Dos Santos, Simone Gonçalves; Goulart, Gisele Assis Castro; Alves, Ricardo José; Ferreira, Lucas Antônio Miranda

    2015-01-01

    Topical therapy is the first choice for the treatment of mild to moderate acne and all-trans retinoic acid is one of the most used drugs. The combination of retinoids and antimicrobials is an innovative approach for acne therapy. Recently, lauric acid, a saturated fatty acid, has shown strong antimicrobial activity against Propionibacterium acnes. However, topical application of retinoic acid is followed by high incidence of side-effects, including erythema and irritation. Solid lipid nanoparticles represent an alternative to overcome these side-effects. This work aims to develop solid lipid nanoparticles loaded with retinoic acid and lauric acid and evaluate their antibacterial activity. The influence of lipophilic stearylamine on the characteristics of solid lipid nanoparticles was investigated. Solid lipid nanoparticles were characterized for size, zeta potential, encapsulation efficiency, differential scanning calorimetry and X-ray diffraction. The in vitro inhibitory activity of retinoic acid-lauric acid-loaded solid lipid nanoparticles was evaluated against Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis. High encapsulation efficiency was obtained at initial time (94 ± 7% and 100 ± 4% for retinoic acid and lauric acid, respectively) and it was demonstrated that lauric acid-loaded-solid lipid nanoparticles provided the incorporation of retinoic acid. However, the presence of stearylamine is necessary to ensure stability of encapsulation. Moreover, retinoic acid-lauric acid-loaded solid lipid nanoparticles showed growth inhibitory activity against Staphylococcus epidermidis, Propionibacterium acnes and Staphylococcus aureus, representing an interesting alternative for the topical therapy of acne vulgaris. PMID:26328443

  20. Elucidating the role of ferrous ion cocatalyst in enhancing dilute acid pretreatment of lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Wei Hui

    2011-11-01

    Full Text Available Abstract Background Recently developed iron cocatalyst enhancement of dilute acid pretreatment of biomass is a promising approach for enhancing sugar release from recalcitrant lignocellulosic biomass. However, very little is known about the underlying mechanisms of this enhancement. In the current study, our aim was to identify several essential factors that contribute to ferrous ion-enhanced efficiency during dilute acid pretreatment of biomass and to initiate the investigation of the mechanisms that result in this enhancement. Results During dilute acid and ferrous ion cocatalyst pretreatments, we observed concomitant increases in solubilized sugars in the hydrolysate and reducing sugars in the (insoluble biomass residues. We also observed enhancements in sugar release during subsequent enzymatic saccharification of iron cocatalyst-pretreated biomass. Fourier transform Raman spectroscopy showed that major peaks representing the C-O-C and C-H bonds in cellulose are significantly attenuated by iron cocatalyst pretreatment. Imaging using Prussian blue staining indicated that Fe2+ ions associate with both cellulose/xylan and lignin in untreated as well as dilute acid/Fe2+ ion-pretreated corn stover samples. Analyses by scanning electron microscopy and transmission electron microscopy revealed structural details of biomass after dilute acid/Fe2+ ion pretreatment, in which delamination and fibrillation of the cell wall were observed. Conclusions By using this multimodal approach, we have revealed that (1 acid-ferrous ion-assisted pretreatment increases solubilization and enzymatic digestion of both cellulose and xylan to monomers and (2 this pretreatment likely targets multiple chemistries in plant cell wall polymer networks, including those represented by the C-O-C and C-H bonds in cellulose.

  1. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.)

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Kuglarz, Mariusz; Karakashev, Dimitar Borisov;

    2015-01-01

    in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9gL-1), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid.......The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior...

  2. Enhanced Nitrogen Availability in Karst Ecosystems by Oxalic Acid Release in the Rhizosphere

    Science.gov (United States)

    Pan, Fujing; Liang, Yueming; Zhang, Wei; Zhao, Jie; Wang, Kelin

    2016-01-01

    In karst ecosystems, a high level of CaCO3 enhances the stabilization of soil organic matter (SOM) and causes nitrogen (N) and/or phosphorus (P) limitation in plants. Oxalic acid has been suggested to be involved in the nutrient-acquisition strategy of plants because its addition can temporarily relieve nutrient limitation. Therefore, understanding how oxalic acid drives N availability may help support successful vegetation restoration in the karst ecosystems of southwest China. We tested a model suggested by Clarholm et al. (2015) where oxalate reacts with Ca bridges in SOM, thus exposing previously protected areas to enzymatic attacks in a way that releases N for local uptake. We studied the effects of oxalic acid, microbial biomass carbon (MBC), and β-1,4-N-acetylglucosaminidase (NAG) on potential N mineralization rates in rhizosphere soils of four plant species (two shrubs and two trees) in karst areas. The results showed that rhizosphere soils of shrubs grown on formerly deforested land had significantly lower oxalic acid concentrations and NAG activity than that of trees in a 200-year-old forest. The levels of MBC in rhizosphere soils of shrubs were significantly lower than those of trees in the growing season, but the measure of shrubs and trees were similar in the non-growing season; the potential N mineralization rates showed a reverse pattern. Positive relationships were found among oxalic acid, MBC, NAG activity, and potential N mineralization rates for both shrubs and trees. This indicated that oxalic acid, microbes, and NAG may enhance N availability for acquisition by plants. Path analysis showed that oxalic acid enhanced potential N mineralization rates indirectly through inducing microbes and NAG activities. We found that the exudation of oxalic acid clearly provides an important mechanism that allows plants to enhance nutrient acquisition in karst ecosystems. PMID:27252713

  3. Enhanced Nitrogen Availability in Karst Ecosystems by Oxalic Acid Release in the Rhizosphere.

    Science.gov (United States)

    Pan, Fujing; Liang, Yueming; Zhang, Wei; Zhao, Jie; Wang, Kelin

    2016-01-01

    In karst ecosystems, a high level of CaCO3 enhances the stabilization of soil organic matter (SOM) and causes nitrogen (N) and/or phosphorus (P) limitation in plants. Oxalic acid has been suggested to be involved in the nutrient-acquisition strategy of plants because its addition can temporarily relieve nutrient limitation. Therefore, understanding how oxalic acid drives N availability may help support successful vegetation restoration in the karst ecosystems of southwest China. We tested a model suggested by Clarholm et al. (2015) where oxalate reacts with Ca bridges in SOM, thus exposing previously protected areas to enzymatic attacks in a way that releases N for local uptake. We studied the effects of oxalic acid, microbial biomass carbon (MBC), and β-1,4-N-acetylglucosaminidase (NAG) on potential N mineralization rates in rhizosphere soils of four plant species (two shrubs and two trees) in karst areas. The results showed that rhizosphere soils of shrubs grown on formerly deforested land had significantly lower oxalic acid concentrations and NAG activity than that of trees in a 200-year-old forest. The levels of MBC in rhizosphere soils of shrubs were significantly lower than those of trees in the growing season, but the measure of shrubs and trees were similar in the non-growing season; the potential N mineralization rates showed a reverse pattern. Positive relationships were found among oxalic acid, MBC, NAG activity, and potential N mineralization rates for both shrubs and trees. This indicated that oxalic acid, microbes, and NAG may enhance N availability for acquisition by plants. Path analysis showed that oxalic acid enhanced potential N mineralization rates indirectly through inducing microbes and NAG activities. We found that the exudation of oxalic acid clearly provides an important mechanism that allows plants to enhance nutrient acquisition in karst ecosystems. PMID:27252713

  4. Deglacial diatom production in the tropical North Atlantic driven by enhanced silicic acid supply

    Science.gov (United States)

    Hendry, Katharine R.; Gong, Xun; Knorr, Gregor; Pike, Jennifer; Hall, Ian R.

    2016-03-01

    Major shifts in ocean circulation are thought to be responsible for abrupt changes in temperature and atmospheric CO2 during the last deglaciation, linked to variability in meridional heat transport and deep ocean carbon storage. There is also widespread evidence for shifts in biological production during these times of deglacial CO2 rise, including enhanced diatom production in regions such as the tropical Atlantic. However, it remains unclear as to whether this diatom production was driven by enhanced wind-driven upwelling or density-driven vertical mixing, or by elevated thermocline concentrations of silicic acid supplied to the surface at a constant rate. Here, we demonstrate that silicic acid supply at depth in the NE Atlantic was enhanced during the abrupt climate events of the deglaciation. We use marine sediment archives to show that an increase in diatom production during abrupt climate shifts could only occur in regions of the NE Atlantic where the deep supply of silicic acid could reach the surface. The associated changes are indicative of enhanced regional wind-driven upwelling and/or weakened stratification due to circulation changes during phases of weakened Atlantic meridional overturning. Globally near-synchronous pulses of diatom production and enhanced thermocline concentrations of silicic acid suggest that widespread deglacial surface-driven breakdown of stratification, linked to changes in atmospheric circulation, had major consequences for biological productivity and carbon cycling.

  5. TREATMENT OF SORBIC ACID MANUFACTURING WASTEWATER BY HYPERCROSSLINKED POLYMERIC ADSORBENT (NDA-150)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The treatment of sorbic acid manufacturing wastewater by NDA-150 resin wasinvestigated. The experiments show that this process is suitable for the treatment of sorbic acidmanufacturing wastewater. About 98% sorbic acid and 50% CODcr were removed under optimaloperating conditions, and 70% of sorbic acid in sorbic acid manufacturing wastewater wasreclaimed. This process makes it possible to recover valuable materials from the wastewater and toimprove the quality of effluent water.

  6. Pretreatment of corn stover with diluted acetic acid for enhancement of acidogenic fermentation.

    Science.gov (United States)

    Zhao, Xu; Wang, Lijuan; Lu, Xuebin; Zhang, Shuting

    2014-04-01

    A Box-Behnken design of response surface method was used to optimize acetic acid-catalyzed hydrothermal pretreatment of corn stover, in respect to acid concentration (0.05-0.25%), treatment time (5-15 min) and reaction temperature (180-210°C). Acidogenic fermentations with different initial pH and hydrolyzates were also measured to evaluate the optimal pretreatment conditions for maximizing acid production. The results showed that pretreatment with 0.25% acetic acid at 191°C for 7.74 min was found to be the most optimal condition for pretreatment of corn stover under which the production of acids can reach the highest level. Acidogenic fermentation with the hydrolyzate of pretreatment at the optimal condition at the initial pH=5 was shown to be butyric acid type fermentation, producing 21.84 g acetic acid, 7.246 g propionic acid, 9.170 butyric acid and 1.035 g isovaleric acid from 100g of corn stover in 900 g of water containing 2.25 g acetic acid.

  7. Para-aminobenzoic acid (PABA synthase enhances thermotolerance of mushroom Agaricus bisporus.

    Directory of Open Access Journals (Sweden)

    Zhonglei Lu

    Full Text Available Most mushrooms are thermo-sensitive to temperatures over 23°C, which greatly restricts their agricultural cultivation. Understanding mushroom's innate heat-tolerance mechanisms may facilitate genetic improvements of their thermotolerance. Agaricus bisporus strain 02 is a relatively thermotolerant mushroom strain, while strain 8213 is quite thermo-sensitive. Here, we compared their responses at proteomic level to heat treatment at 33°C. We identified 73 proteins that are differentially expressed between 02 and 8213 or induced upon heat stress in strain 02 itself, 48 of which with a known identity. Among them, 4 proteins are constitutively more highly expressed in 02 than 8213; and they can be further upregulated in response to heat stress in 02, but not in 8213. One protein is encoded by the para-aminobenzoic acid (PABA synthase gene Pabs, which has been shown to scavenge the reactive oxygen species in vitro. Pabs mRNA and its chemical product PABA show similar heat stress induction pattern as PABA synthase protein and are more abundant in 02, indicating transcriptional level upregulation of Pabs upon heat stress. A specific inhibitor of PABA synthesis impaired thermotolerance of 02, while exogenous PABA or transgenic overexpression of 02 derived PABA synthase enhanced thermotolerance of 8213. Furthermore, compared to 8213, 02 accumulated less H2O2 but more defense-related proteins (e.g., HSPs and Chitinase under heat stress. Together, these results demonstrate a role of PABA in enhancing mushroom thermotolerance by removing H2O2 and elevating defense-related proteins.

  8. Activation of ethylenediaminetetraacetic acid by a 940 nm diode laser for enhanced removal of smear layer.

    Science.gov (United States)

    Lagemann, Manfred; George, Roy; Chai, Lei; Walsh, Laurence J

    2014-08-01

    Laser enhancement of ethylenediaminetetraacetic acid with cetrimide (EDTAC) has previously been shown to increase removal of smear layer, for middle-infrared erbium lasers. This study evaluated the efficiency of EDTAC activation using a near-infrared-pulsed 940 nm laser delivered by plain fibre tips into 15% EDTAC or 3% hydrogen peroxide. Root canals in 4 groups of 10 single roots were prepared using rotary files, with controls for the presence and absence of smear layer. After laser treatment (80 mJ pulse(-1) , 50 Hz, 6 cycles of 10 s), roots were split and the apical, middle and coronal thirds of the canal were examined using scanning electron microscopy, with the area of dentine tubules determined by a validated quantitative image analysis method. Lasing EDTAC considerably improved smear layer removal, while lasing into peroxide gave minimal smear layer removal. The laser protocol used was more effective for smear layer removal than the 'gold standard' protocol using EDTAC with sodium hypochlorite (NaOCl). In addition, lasers may also provide a benefit through photothermal disinfection. Further research is needed to optimise irrigant activation protocols using near-infrared diode lasers of other wavelengths.

  9. Changes in Growth, Auxin- and Ribonucleic Acid Metabolism in Wheat Coleoptile Sections Following Pulse Treatment with Indole-3-Acetic Acid

    DEFF Research Database (Denmark)

    Truelsen, T.A.; Galston, A.W.

    1966-01-01

    Growth reactions of wbeat coleoptile sections following a brief pretreament in indole-3-acetic acid (LAA) were studied. The growth versus concentration curves 24 hours after the treatment showed a minimum value surrounded by bigber values. The minimum was never at concentrations lower than 10-5M l...... was mirroretl in effects of IAA on hte net synthesis of ribonucleic acid....

  10. A Sustainable Approach for Acid Rock Drainage Treatment using Clinoptilolite

    Science.gov (United States)

    Li, L. Y.; Xu, W.; Grace, J. R.

    2009-04-01

    Problems related to acid rock drainage (ARD) occur along many highways of British Columbia. The ARD problem at Pennask Creek along Highway 97C in the Thompson-Okanagan region is an ideal site for pilot study to investigate a possible remediation solution. The highway was opened in 1991. An ARD problem was identified in 1997. Both sides of Highway 97C are producing acidified runoff from both cut rock surface and a fractured ditch. This runoff eventually enters Pennask Creek, the largest spawning source of rainbow trout in British Columbia. The current remediation technique using limestone for ARD treatment appears to be unnecessarily expensive, to generate additional solid waste and to not be optimally effective. A soil mineral natural zeolite - clinoptilolite - which is inexpensive and locally available, has a high metal adsorption capacity and a significant buffering capacity. Moreover, the clinoptilolite materials could be back-flushed and reused on site. An earlier batch adsorption study from our laboratory demonstrated that clinoptilolite has a high adsorption capacity for Cu, Zn, Al, with adsorption concentrations 131, 158 and 215 mg/kg clinoptilolite, respectively, from ARD of pH 3.3. Removal of metals from the loaded clinoptilolite by back-flushing was found to depend on the pH, with an optimum pH range for extraction of 2.5 to 4.0 for a contact time of one hour. The rank of desorption effectiveness was EDTA > NaCl > NaNO3 > NaOAC > NaHCO3 > Na2CO3 > NaOH > Ca(OH)2. A novel process involving cyclic adsorption on clinoptilolite followed by regeneration of the sorbent by desorption is examined for the removal of heavy metals from acid rock drainage. Experimental results show that the adsorption of zinc and copper depends on the pH and on external mass transfer. Desorption is assisted by adding NaCl to the water. A slurry bubble column was able to significantly reduce the time required for both adsorption and desorption in batch tests. XRD analysis indicated

  11. Betaine and beet molasses enhance L-lactic acid production by Bacillus coagulans.

    Directory of Open Access Journals (Sweden)

    Ke Xu

    Full Text Available Lactic acid is an important chemical with various industrial applications, and it can be efficiently produced by fermentation, in which Bacillus coagulans strains present excellent performance. Betaine can promote lactic acid fermentation as an effective osmoprotectant. Here, positive effect of betaine on fermentation by B. coagulans is revealed. Betaine could enhance lactic acid production by protecting l-LDH activity and cell growth from osmotic inhibition, especially under high glucose concentrations and with poor organic nitrogen nutrients. The fermentation with 0.05 g/L betaine could produce 17.9% more lactic acid compared to the fermentation without betaine. Beet molasses, which is rich in sucrose and betaine, was utilized in a co-feeding fermentation and raised the productivity by 22%. The efficient lactic acid fermentation by B. coagulans is thus developed by using betaine and beet molasses.

  12. Mild alkaline pre-treatments loosen fibre structure enhancing methane production from biomass crops and residues

    International Nuclear Information System (INIS)

    Three ligno-cellulosic substrates representing varying levels of biodegradability (giant reed, GR; fibre sorghum, FS; barley straw, BS) were combined with mild alkaline pre-treatments (NaOH 0.05, 0.10 and 0.15 N at 25 °C for 24 h) plus untreated controls, to study pre-treatment effects on physical-chemical structure, anaerobic digestibility and methane output of the three substrates. In a batch anaerobic digestion (AD) assay (58 days; 35 °C; 4 g VS l−1), the most recalcitrant substrate (GR) staged the highest increase in cumulative methane yield: +30% with NaOH 0.15 N over 190 ml CH4 g−1 VS in untreated GR. Conversely, the least recalcitrant substrate (FS) exhibited the lowest gain (+10% over 248 ml CH4 g−1 VS), while an intermediate behaviour was shown by BS (+15% over 232 ml CH4 g−1 VS). Pre-treatments speeded AD kinetics and reduced technical digestion time (i.e., the time needed to achieve 80% methane potential), which are the premises for increased production capacity of full scale AD plants. Fibre components (cellulose, hemicellulose and acid insoluble lignin determined after acid hydrolysis) and substrate structure (Fourier transform infra-red spectroscopy and scanning electron microscopy) outlined reductions of the three fibre components after pre-treatments, supporting claims of loosened binding of lignin with cellulose and hemicellulose. Hence, mild alkaline pre-treatments were shown to improve the biodegradability of ligno-cellulosic substrates to an extent proportional to their recalcitrance. In turn, this contributes to mitigate the food vs. fuel controversy raised by the use of whole plant cereals (namely, maize) as feedstocks for biogas production. - Highlights: • Three ligno-cellulosic substrates were pre-treated with mild alkaline methods. • Giant reed pre-treated with NaOH 0.15 N showed highest increase in CH4 yield (30%). • Alkaline pre-treatments speeded process kinetics, cutting technical digestion time. • Changes

  13. Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L

    Energy Technology Data Exchange (ETDEWEB)

    Najeeb, U.; Xu, L.; Ali, Shafaqat [Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Jilani, Ghulam, E-mail: jilani@uaar.edu.pk [Department of Soil Science, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Punjab 46300 (Pakistan); Gong, H.J. [Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China); Shen, W.Q. [The University of Nottingham at Ningbo, Ningbo 315100 (China); Zhou, W.J., E-mail: wjzhou@zju.edu.cn [Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029 (China)

    2009-10-30

    Chelate-assisted phytoextraction by high biomass producing plant species enhances the removal of heavy metals from polluted environments. In this regard, Juncus effusus a wetland plant has great potential. This study evaluated the effects of elevated levels of manganese (Mn) on the vegetative growth, Mn uptake and antioxidant enzymes in J. effusus. We also studied the role of citric acid and EDTA on improving metal accumulation, plant growth and Mn toxicity stress alleviation. Three-week-old plantlets of J. effusus were subjected to various treatments in the hydroponics as: Mn (50, 100 and 500 {mu}M) alone, Mn (500 {mu}M) + citric acid (5 mM), and Mn (500 {mu}M) + EDTA (5 mM). After 2 weeks of treatment, higher Mn concentrations significantly reduced the plant biomass and height. Both citric acid and EDTA restored the plant height as it was reduced at the highest Mn level. Only the citric acid (but not EDTA) was able to recover the plant biomass weight, which was also obvious from the microscopic visualization of mesophyll cells. There was a concentration dependent increase in Mn uptake in J. effusus plants, and relatively more deposition in roots compared to aerial parts. Although both EDTA and citric acid caused significant increase in Mn accumulation; however, the Mn translocation was enhanced markedly by EDTA. Elevated levels of Mn augmented the oxidative stress, which was evident from changes in the activities of antioxidative enzymes in plant shoots. Raised levels of lipid peroxidation and variable changes in the activities of antioxidant enzymes were recorded under Mn stress. Electron microscopic images revealed several modifications in the plants at cellular and sub-cellular level due to the oxidative damage induced by Mn. Changes in cell shape and size, chloroplast swelling, increased number of plastoglobuli and disruption of thylakoid were noticed. However, these plants showed a high degree of tolerance against Mn toxicity stress, and it removed

  14. Integrated basic treatment of activated carbon for enhanced CO{sub 2} selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Adelodun, Adedeji Adebukola; Jo, Young-Min, E-mail: ymjo@khu.ac.kr

    2013-12-01

    We attempted the use of three chemical agents viz nitric acid (HN), calcium nitrate (CaN) and calcium ethanoate (CaEt) to achieve enhanced CO{sub 2} selective adsorption by activated carbon (AC). In dry phase treatment, microporous coconut shell-based carbon (CS) exhibits higher CO{sub 2} capacity than coal-based. However, upon wet-phase pre-treatment, modified CS samples showed lesser CO{sub 2} adsorption efficiency. Surface characterization with X-ray photoelectron spectroscopy confirms the presence of calcium and amine species on the samples with integrated treatment (A-CaN). These samples recorded the highest low-level CO{sub 2} capture despite calcinated CaEt-doped samples (C-CaEt) showing the highest value for pure and high level CO{sub 2} adsorption capacities. The slope and linearity values of isobaric desorption were used to estimate the proportion of CO{sub 2} chemisorbed and heterogeneity of the adsorbents’ surfaces respectively. Consequently, integrated basic impregnation provides the most efficient adsorbents for selective adsorption of both indoor and outdoor CO{sub 2} levels.

  15. Enhancing the mechanical properties of electrospun polyester mats by heat treatment

    Directory of Open Access Journals (Sweden)

    M. Kancheva

    2015-01-01

    Full Text Available Microfibrous materials with a targeted design based on poly(L-lactic acid (PLA and poly(ε-caprolactone (PCL were prepared by electrospinning and by combining electrospinning and electrospraying. Several approaches were used: (i electrospinning of a common solution of the two polymers, (ii simultaneous electrospinning of two separate solutions of PLA and PCL, (iii electrospinning of PLA solution in conjunction with electrospraying of PCL solution, and (iv alternating layer-by-layer deposition by electrospinning of separate PLA and PCL solutions. The mats were heated at the melting temperature of PCL (60°", thus achieving melting of PCL fibers/particles and thermal sealing of the fibers. The mats subjected to thermal treatment were characterized by greater mean fiber diameters and reduced values of the water contact angle compared to the pristine mats. Heat treatment of the mats affected their thermal stability and led to an increase in the crystallinity degree of PLA incorporated in the mats, whereas that of PCL was reduced. All mats were characterized by enhanced mechanical properties after thermal treatment as compared to the non-treated fibrous materials.

  16. The Histone Deacetylase Inhibitor Valproic Acid Enhances Acquisition, Extinction, and Reconsolidation of Conditioned Fear

    Science.gov (United States)

    Bredy, Timothy W.; Barad, Mark

    2008-01-01

    Histone modifications contribute to the epigenetic regulation of gene expression, a process now recognized to be important for the consolidation of long-term memory. Valproic acid (VPA), used for many years as an anticonvulsant and a mood stabilizer, has effects on learning and memory and enhances the extinction of conditioned fear through its…

  17. Enhanced lignin monomer production caused by cinnamic Acid and its hydroxylated derivatives inhibits soybean root growth.

    Directory of Open Access Journals (Sweden)

    Rogério Barbosa Lima

    Full Text Available Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H, guaiacyl (G and syringyl (S monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway in a growth chamber for 24 h. In general, the results showed that 1 cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2 cinnamic and p-coumaric acids increased p-hydroxyphenyl (H monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G content, and sinapic acid increased sinapyl (S content; 3 when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H, cinnamic acid reduced H, G and S contents; and 4 when applied in conjunction with 3,4-(methylenedioxycinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL, p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.

  18. Large neutral amino acids in the treatment of PKU : from theory to practice

    NARCIS (Netherlands)

    van Spronsen, Francjan J.; de Groot, Martijn J.; Hoeksma, Marieke; Reijngoud, Dirk-Jan; van Rijn, Margreet

    2010-01-01

    Notwithstanding the success of the traditional dietary phenylalanine restriction treatment in phenylketonuria (PKU), the use of large neutral amino acid (LNAA) supplementation rather than phenylalanine restriction has been suggested. This treatment modality deserves attention as it might improve cog

  19. 77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...

    Science.gov (United States)

    2012-02-29

    ... AGENCY 40 CFR Parts 141 and 142 Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of public... requirement in the Long Term 2 Enhanced Surface Water Treatment Rule (LT2 rule). At this meeting, EPA...

  20. Alpha-lipoic acid loaded in chitosan conduit enhances sciatic nerve regeneration in rat

    OpenAIRE

    Azizi, Saeed; Heshmatian, Behnam; AMINI, Keyvan; Raisi, Abbas; Azimzadeh, Mohammad

    2015-01-01

    Objective(s): To investigate the effect of topical administration of alpha-lipoic acid into chitosan conduit on peripheral nerve regeneration using a rat sciatic nerve transection model. Materials and Methods: Forty five Wistar rats were divided into three experimental groups randomly. A 10-mm gap of sciatic nerve was bridged with a chitosan conduit following surgical preparation and anesthesia. In treatment group, the conduit was filled with 30 µl alpha-lipoic acid (10 mg/kg/bw).It was fille...

  1. Optimization of culture media for enhancing gamma-linolenic acid production by Mucor hiemalis

    Directory of Open Access Journals (Sweden)

    Mina Mohammadi Nasr

    2016-03-01

    Full Text Available Introduction: g-linolenic acid is an essential fatty acid in human nutrition. In the present study, production of g-linolenic acid by Mucor hiemalis PTCC 5292 was evaluated in submerged fermentation. Materials and methods: The fermentation variables were chosen according to the fractional factorial design and further optimized via full factorial method. Four significant variables, glucose, peptone, ammonium nitrate and pH were selected for the optimization studies. The design consisted of total 16 runs consisting of runs at two levels for each factor with three replications of the center points. Results: The analysis of variance and three-dimensional response surface plot of effects indicated that variables were regarded to be significant for production of g-linolenic acid by Mucor hiemalis. Results indicated that fermentation at the optimum conditions (100 g/l glucose concentration; 1 g/l peptone; 1 g/l ammonium nitrate, and pH of 4.5 enhanced the g-linolenic acid production up to 709 mg/l. Discussion and conclusion: The results of this study indicated that higher g-linolenic acid yield can be achieved in a simple medium at high glucose and ammonium nitrate, low peptone concentrations and acidic pH by Mucor hiemalis PTCC 5292. This simple and low cost optimization condition of culture media can be applied for g-linolenic acid production at higher scale for pharmaceutical and nutritional industries. 

  2. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.).

    Science.gov (United States)

    Gunnarsson, Ingólfur B; Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini

    2015-04-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9 g L(-1)), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid.

  3. Enhancing Lipid Stability in Irradiated Beef Mince by Oleoresins and/ or Ascorbic Acid during Chilling Storage

    International Nuclear Information System (INIS)

    Lipid Oxidation, fatty acids profile and sensory properties of irradiated beef mince (2.5 kGy) treated with oleoresins (rosemary or ginger), ascorbic acid, or combination of ascorbic acid and oleoresins were investigated during 30 days of chilled storage. Thiobarbituric acid reactive substances (TBARS) as an indication of lipid oxidation, of irradiated control samples were significantly higher than those of non irradiated control and samples treated with rosemary and ginger oleoresins. By GC-MS analysis, it was found that the relative percentage of total saturated fatty acids (TSFA) increased in all treatments. However, the highest increase was recorded in irradiated control samples compared to non irradiated control samples. Beef mince samples treated with oleoresins (rosemary or ginger) had the best scores for discoloration and off odour. Thus, the addition of oleoresins (rosemary or ginger) to beef mince before irradiation could be an easily applied method to minimize oxidative degradation of irradiated meat

  4. Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei.

    Science.gov (United States)

    Yang, Lei; Lübeck, Mette; Ahring, Birgitte K; Lübeck, Peter S

    2016-02-01

    Aspergillus saccharolyticus exhibits great potential as a cell factory for industrial production of dicarboxylic acids. In the analysis of the organic acid profile, A. saccharolyticus was cultivated in an acid production medium using two different pH conditions. The specific activities of the enzymes, pyruvate carboxylase (PYC), malate dehydrogenase (MDH), and fumarase (FUM), involved in the reductive tricarboxylic acid (rTCA) branch, were examined and compared in cells harvested from the acid production medium and a complete medium. The results showed that ambient pH had a significant impact on the pattern and the amount of organic acids produced by A. saccharolyticus. The wild-type strain produced higher amount of malic acid and succinic acid in the pH buffered condition (pH 6.5) compared with the pH non-buffered condition. The enzyme assays showed that the rTCA branch was active in the acid production medium as well as the complete medium, but the measured enzyme activities were different depending on the media. Furthermore, a soluble NADH-dependent fumarate reductase gene (frd) from Trypanosoma brucei was inserted and expressed in A. saccharolyticus. The expression of the frd gene led to an enhanced production of succinic acid in frd transformants compared with the wild-type in both pH buffered and pH non-buffered conditions with highest amount produced in the pH buffered condition (16.2 ± 0.5 g/L). This study demonstrates the feasibility of increasing succinic acid production through the cytosolic reductive pathway by genetic engineering in A. saccharolyticus.

  5. Study on the Enhancement of Proton Affinity by N-Diisopropyloxy Phosphorylation of Amino Acid in Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    With introduction of a diisopropyloxy phosphoryl group into the N terminal of amino acids, it was found that proton affinity (PA) of amino acid was enhanced in mass spectrometry. Density functional theory calculations showed that the energy for protonation of DIPP-amino acid is lower than that of amino acid, which means PA of DIPP-AA is higher than that of corresponding amino acid. These results, coincident with our empirical results, offer a useful interpretation of experimental observations.

  6. Enhancing climate adaptation capacity for drinking water treatment facilities (supplement)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Historical water quality data of the Ohio River This dataset is associated with the following publication: Levine, A., J. Yang , and J. Goodrich. Enhancing climate...

  7. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Soyeon; Shin, Soyeon; Lim, Kyu [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of); Heo, Jun Young, E-mail: junyoung3@gmail.com [Brainscience Institute, Chungnam National University, Daejeon (Korea, Republic of); Kweon, Gi Ryang, E-mail: mitochondria@cnu.ac.kr [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-30

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  8. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    International Nuclear Information System (INIS)

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis

  9. TREATMENT AND RESOURCE REUSE OF 1,2,4-ACID PRODUCING EFFLUENT WITH MACROPOROUS POLYMERIC ADSORBENT

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The treatment and resource reuse of 1,2,4-acid producing wastewater by self-mademacroporous adsorption resin ND,A-107 was studied in this paper. Optimum adsorption anddesorption process parameters were acquired by systematically study. The polymeric resin NDA-10 7indicated good adsorption & desorption of 1,2, 4-acid in the wastewater. The removal efficiency of1,2,4-acid, CODer is about 78%, 72% respectively. It is evident that this adsorption process is anefficient treatment method for 1,2,4-acid producing wastewater. At the same time, the accumulationand resource reuse of l,2, 4-acid can be realized in this process.

  10. Treatment and prevention systems for acid mine drainage and halogenated contaminants

    Science.gov (United States)

    Jin, Song; Fallgren, Paul H.; Morris, Jeffrey M.

    2012-01-31

    Embodiments include treatments for acid mine drainage generation sources (10 perhaps by injection of at least one substrate (11) and biologically constructing a protective biofilm (13) on acid mine drainage generation source materials (14). Further embodiments include treatments for degradation of contaminated water environments (17) with substrates such as returned milk and the like.

  11. Enhancement of electrical properties of polyimide films by plasma treatment

    Science.gov (United States)

    Meddeb, A. Barhoumi; Ounaies, Z.; Lanagan, M.

    2016-04-01

    In this study, the effect of oxygen plasma treatment on the electrical and surface properties of polyimide, Kapton HN, film is investigated. The plasma treatment led to an increase in the oxygen presence on the polyimide surface and a marked surface hydrophilicity. The plasma treatment led to an increase in the dielectric breakdown and Weibull modulus as well as a remarkable reduction in the scatter of all electrical measurements. There is a significant reduction in the high field/high temperature leakage current after plasma treatment. These findings have important implications in the development and improvement of dielectric polymer capacitors.

  12. Enhanced Extracorporeal CO2 Removal by Regional Blood Acidification: Effect of Infusion of Three Metabolizable Acids.

    Science.gov (United States)

    Scaravilli, Vittorio; Kreyer, Stefan; Linden, Katharina; Belenkiy, Slava; Pesenti, Antonio; Zanella, Alberto; Cancio, Leopoldo C; Batchinsky, Andriy I

    2015-01-01

    Acidification of blood entering a membrane lung (ML) with lactic acid enhances CO2 removal (VCO2ML). We compared the effects of infusion of acetic, citric, and lactic acids on VCO2ML. Three sheep were connected to a custom-made circuit, consisting of a Hemolung device (Alung Technologies, Pittsburgh, PA), a hemofilter (NxStage, NxStage Medical, Lawrence, MA), and a peristaltic pump recirculating ultrafiltrate before the ML. Blood flow was set at 250 ml/min, gas flow (GF) at 10 L/min, and recirculating ultrafiltrate flow at 100 ml/min. Acetic (4.4 M), citric (0.4 M), or lactic (4.4 M) acids were infused in the ultrafiltrate at 1.5 mEq/min, for 2 hours each, in randomized fashion. VCO2ML was measured by the Hemolung built-in capnometer. Circuit and arterial blood gas samples were collected at baseline and during acid infusion. Hemodynamics and ventilation were monitored. Acetic, citric, or lactic acids similarly enhanced VCO2ML (+35%), from 37.4 ± 3.6 to 50.6 ± 7.4, 49.8 ± 5.6, and 52.0 ± 8.2 ml/min, respectively. Acids similarly decreased pH, increased pCO2, and reduced HCO3 of the post-acid extracorporeal blood sample. No significant effects on arterial gas values, ventilation, or hemodynamics were observed. In conclusion, it is possible to increase VCO2ML by more than one-third using any one of the three metabolizable acids. PMID:26273934

  13. Enhanced rosmarinic acid production in cultured plants of two species of Mentha.

    Science.gov (United States)

    Roy, Debleena; Mukhopadhyay, Sandip

    2012-11-01

    In the present investigation an attempt has been made to enhance rosmarinic acid level in plants, grown in vitro, of 2 species of Mentha in presence of 2 precursors in the nutrient media during culture. For in vitro culture establishment and shoot bud multiplication, MS basal media were used supplemented with different concentrations and combinations of different growth regulator like NAA (alpha-napthaleneacetic acid), BAP (6-benzylaminopurine). The medium containing NAA (0.25 mg/L) and BAP (2.5 mg/L) gave the highest potentiality of shoot formation (average 58.0 numbers of shoots) per explant for Mentha piperita L. and the medium containing BAP (2.0 mg/L) gave the highest potentiality of shoot (average 19.2 numbers of shoots) formation per explant for Mentha arvensis L. The complete plants were regenerated in above mentioned media after 8 weeks of subculture. For in vitro enhancement of rosmarinic acid production, the 2 precursors tyrosine (Tyr) and phenylalanine (Phe) were added in the nutrient media at different levels (0.5 mg/L to 15.0 mg/L). Tyrosine was found to be very effective for augmenting rosmarinic acid content in Mentha piperita L. It nearly increased the production up to 1.77 times. In case of Mentha arvensis L., phenylalanine significantly affected the production of rosmarinic acid and the production was nearly 2.03 times more than the control. No significant increase in biomass was observed after addition of these precursors indicating that the added amino acids acting as precursors for rosmarinic acid synthesis were readily utilized in producing rosmarinic acid without promoting growth. Total protein profile also revealed the presence of a specific band in polyacrylamide gel electrophoresis.

  14. The enhancement of pipemidic acid permeation into the pig urinary bladder wall.

    Science.gov (United States)

    Kerec, M; Svigelj, V; Bogataj, M; Mrhar, A

    2002-06-20

    The influence of interactions between polycarbophil and calcium on a model drug permeation into the pig urinary bladder wall was investigated. Pipemidic acid was used as a model drug. One percent w/v polycarbophil dispersion significantly increases the permeation of pipemidic acid into the urinary bladder wall. The enhanced absorption of pipemidic acid caused by polycarbophil is significantly less pronounced in polycarbophil dispersions containing calcium. The enhancement of pipemidic acid permeation into the urinary bladder wall could be due to the opening of tight junctions, which causes higher paracellular permeability. In the case of polycarbophil dispersion with calcium some carboxylic groups of polymer are already occupied with calcium, present in the dispersions. As a consequence extracellular calcium binds to polycarbophil in lower extent if compared with polycarbophil dispersion without calcium and transport is increased to a lesser degree. We concluded that the mechanism of drug absorption enhancement caused by polycarbophil could be similar for urinary bladder as described in the literature for intestinal mucosa.

  15. Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants

    KAUST Repository

    Chen, Hao

    2010-08-01

    The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over-expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE-TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map-based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant-containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed. © 2010 Blackwell Publishing Ltd.

  16. A new self-emulsifying formulation of mefenamic acid with enhanced drug dissolution

    Directory of Open Access Journals (Sweden)

    Pornsak Sriamornsak

    2015-04-01

    Full Text Available To enhance the dissolution of poorly soluble mefenamic acid, self-emulsifying formulation (SEF, composing of oil, surfactant and co-surfactant, was formulated. Among the oils and surfactants studied, Imwitor® 742, Tween® 60, Cremophore® EL and Transcutol® HP were selected as they showed maximal solubility to mefenamic acid. The ternary phase diagram was constructed to find optimal concentration that provided the highest drug loading. The droplet size after dispersion and drug dissolution of selected formulations were investigated. The results showed that the formulation containing Imwitor® 742, Tween® 60 and Transcutol® HP (10:30:60 can encapsulate high amount of mefenamic acid. The dissolution study demonstrated that, in the medium containing surfactant, nearly 100% of mefenamic acid were dissolved from SEF within 5 min while 80% of drugs were dissolved from the commercial product in 45 min. In phosphate buffer (without surfactant, 80% of drug were dissolved from the developed SEF within 5 min while only about 13% of drug were dissolved in 45 min, from the commercial product. The results suggested that the SEF can enhance the dissolution of poorly soluble drug and has a potential to enhance drug absorption and improve bioavailability of drug.

  17. Nanoparticle-enhanced fluorescence emission for non-separation assays of carbohydrates using a boronic acid-alizarin complex.

    Science.gov (United States)

    Li, Qianjin; Kamra, Tripta; Ye, Lei

    2016-03-01

    Addition of crosslinked polymer nanoparticles into a solution of a 3-nitrophenylboronic acid-alizarin complex leads to significant enhancement of fluorescence emission. Using the nanoparticle-enhanced boronic acid-alizarin system has improved greatly the sensitivity and extended the dynamic range of separation-free fluorescence assays for carbohydrates.

  18. Effect of electric field treatment on unsaturated fatty acid in crude avocado oil.

    Science.gov (United States)

    Ariza-Ortega, José Alberto; Ramírez-Moreno, Esther; Díaz-Reyes, Joel; Cruz-Cansino, Nelly del Socorro

    2014-09-01

    The objective of this study was to evaluate the stability of the fatty acids in avocado oil when the product is subjected to different conditions of electric field treatment (voltage: 5 kV cm(-1); frequency: 720 Hz; treatment time: 5, 10, 15, 20, and 25 min). Fatty acids were analyzed by Fourier transform infrared spectroscopy in the mid-infrared region. Electric field is a suitable method to preserve the oil quality and composition with minimal modifications in unsaturated fatty acids.

  19. Intrahepatic mass-forming cholangiocarcinoma: prognostic value of preoperative gadoxetic acid-enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Jieun; Chung, Yong Eun; Kim, Myeong-Jin; Choi, Jin-Young [Yonsei University, College of Medicine, Department of Radiology, Research Institute of Radiological Science, Seoul (Korea, Republic of); Nahm, Ji Hae; Park, Young Nyun [Yonsei University, College of Medicine, Department of Pathology, Seoul (Korea, Republic of); Kim, Ha Yan [Yonsei University, College of Medicine, Biostatistics Collaboration Unit, Severance Hospital, Seoul (Korea, Republic of); Kim, Kyung-Sik [Yonsei University, College of Medicine, Department of General Surgery, Seoul (Korea, Republic of)

    2016-02-15

    To assess whether gadoxetic acid-enhanced MRI could be used as a prognostic factor for intrahepatic mass-forming cholangiocarcinomas (IMCCs). Forty-one patients with pathologically proven IMCCs who underwent preoperative gadoxetic acid-enhanced MRI were included. The signal intensity of the IMCCs on hepatobiliary phase (HBP) MRI was qualitatively analyzed by two radiologists, and categorized into intermediate or hypointense groups. Analysis of clinicopathological prognostic factors and correlations of imaging and histology were also performed. Survival time and time to recurrence (TTR) were analyzed. Of the 41 IMCCs, 23 were in the intermediate group and 18 were in the hypointense group on HBP MRI. IMCCs in the intermediate group were associated with shorter survival time (P = 0.048) and TTR (P = 0.002) than the IMCCs of the hypointense group. Only the intermediate group on HBP MRI had a significantly shorter TTR on multivariate analysis (P = 0.012). The IMCCs of the intermediate group showed a tendency for more abundant tumour fibrous stroma than those of the hypointense group (P = 0.027). The enhancement of IMCCs on HBP gadoxetic acid-enhanced MRI appears to correlate with tumour aggressiveness and outcomes due to the tumour fibrous stromal component. Thus, HBP images could be a useful prognostic factor for IMCCs after surgery. (orig.)

  20. Enhanced Synthesis of Alkyl Amino Acids in Miller's 1958 H2S Experiment

    Science.gov (United States)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, James P.; Glavin, Daniel P.; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Stanley Miller's 1958 H2S-containing experiment, which included a simulated prebiotic atmosphere of methane (CH4), ammonia (NH3), carbon dioxide (CO2), and hydrogen sulfide (H2S) produced several alkyl amino acids, including the alpha-, beta-, and gamma-isomers of aminobutyric acid (ABA) in greater relative yields than had previously been reported from his spark discharge experiments. In the presence of H2S, aspariic and glutamic acids could yield alkyl amino acids via the formation of thioimide intermediates. Radical chemistry initiated by passing H2S through a spark discharge could have also enhanced alkyl amino acid synthesis by generating alkyl radicals that can help form the aldehyde and ketone precursors to these amino acids. We propose mechanisms that may have influenced the synthesis of certain amino acids in localized environments rich in H2S and lightning discharges, similar to conditions near volcanic systems on the early Earth, thus contributing to the prebiotic chemical inventory of the primordial Earth.

  1. Ligand-enhanced electrokinetic remediation of metal-contaminated marine sediments with high acid buffering capacity.

    Science.gov (United States)

    Masi, Matteo; Iannelli, Renato; Losito, Gabriella

    2016-06-01

    The suitability of electrokinetic remediation for removing heavy metals from dredged marine sediments with high acid buffering capacity was investigated. Laboratory-scale electrokinetic remediation experiments were carried out by applying two different voltage gradients to the sediment (0.5 and 0.8 V/cm) while circulating water or two different chelating agents at the electrode compartments. Tap water, 0.1 M citric acid and 0.1 M ethylenediaminetetraacetic acid (EDTA) solutions were used respectively. The investigated metals were Zn, Pb, V, Ni and Cu. In the unenhanced experiment, the acid front could not propagate due to the high acid buffering capacity of the sediments; the production of OH(-) ions at the cathode resulted in a high-pH environment causing the precipitation of CaCO3 and metal hydroxides. The use of citric acid prevented the formation of precipitates, but solubilisation and mobilisation of metal species were not sufficiently achieved. Metal removal was relevant when EDTA was used as the conditioning agent, and the electric potential was raised up to 0.8 V/cm. EDTA led to the formation of negatively charged complexes with metals which migrated towards the anode compartment by electromigration. This result shows that metal removal from sediments with high acid buffering capacity may be achieved by enhancing the electrokinetic process by EDTA addition when the acidification of the medium is not economically and/or environmentally sustainable. PMID:26490900

  2. Cognitive Treatment of Obsessions: Enhancing Dissemination with Video Components

    Science.gov (United States)

    Whittal, Maureen L.; Robichaud, Melisa; Woody, Sheila R.

    2010-01-01

    Contemporary cognitive treatment of obsessive-compulsive disorder (OCD) dates back to 1985, and rests on the premise that infrequent unwanted intrusions are essentially universal. As such, it is not the intrusion that is the focus of treatment but rather the interpretation or appraisal placed upon the intrusion. A number of cognitive domains are…

  3. Treatment of irradiated mice with high-dose ascorbic acid reduced lethality.

    Directory of Open Access Journals (Sweden)

    Tomohito Sato

    Full Text Available Ascorbic acid is an effective antioxidant and free radical scavenger. Therefore, it is expected that ascorbic acid should act as a radioprotectant. We investigated the effects of post-radiation treatment with ascorbic acid on mouse survival. Mice received whole body irradiation (WBI followed by intraperitoneal administration of ascorbic acid. Administration of 3 g/kg of ascorbic acid immediately after exposure significantly increased mouse survival after WBI at 7 to 8 Gy. However, administration of less than 3 g/kg of ascorbic acid was ineffective, and 4 or more g/kg was harmful to the mice. Post-exposure treatment with 3 g/kg of ascorbic acid reduced radiation-induced apoptosis in bone marrow cells and restored hematopoietic function. Treatment with ascorbic acid (3 g/kg up to 24 h (1, 6, 12, or 24 h after WBI at 7.5 Gy effectively improved mouse survival; however, treatments beyond 36 h were ineffective. Two treatments with ascorbic acid (1.5 g/kg × 2, immediately and 24 h after radiation, 3 g/kg in total also improved mouse survival after WBI at 7.5 Gy, accompanied with suppression of radiation-induced free radical metabolites. In conclusion, administration of high-dose ascorbic acid might reduce radiation lethality in mice even after exposure.

  4. Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 promotes systemic acquired resistance via azelaic acid and its precursor 9-oxo nonanoic acid.

    Science.gov (United States)

    Wittek, Finni; Hoffmann, Thomas; Kanawati, Basem; Bichlmeier, Marlies; Knappe, Claudia; Wenig, Marion; Schmitt-Kopplin, Philippe; Parker, Jane E; Schwab, Wilfried; Vlot, A Corina

    2014-11-01

    Systemic acquired resistance (SAR) is a form of inducible disease resistance that depends on salicylic acid and its upstream regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Although local Arabidopsis thaliana defence responses activated by the Pseudomonas syringae effector protein AvrRpm1 are intact in eds1 mutant plants, SAR signal generation is abolished. Here, the SAR-specific phenotype of the eds1 mutant is utilized to identify metabolites that contribute to SAR. To this end, SAR bioassay-assisted fractionation of extracts from the wild type compared with eds1 mutant plants that conditionally express AvrRpm1 was performed. Using high-performance liquid chromatography followed by mass spectrometry, systemic immunity was associated with the accumulation of 60 metabolites, including the putative SAR signal azelaic acid (AzA) and its precursors 9-hydroperoxy octadecadienoic acid (9-HPOD) and 9-oxo nonanoic acid (ONA). Exogenous ONA induced SAR in systemic untreated leaves when applied at a 4-fold lower concentration than AzA. The data suggest that in planta oxidation of ONA to AzA might be partially responsible for this response and provide further evidence that AzA mobilizes Arabidopsis immunity in a concentration-dependent manner. The AzA fragmentation product pimelic acid did not induce SAR. The results link the C9 lipid peroxidation products ONA and AzA with systemic rather than local resistance and suggest that EDS1 directly or indirectly promotes the accumulation of ONA, AzA, or one or more of their common precursors possibly by activating one or more pathways that either result in the release of these compounds from galactolipids or promote lipid peroxidation.

  5. Fractionation of sugarcane bagasse using a combined process of dilute acid and ionic liquid treatments.

    Science.gov (United States)

    Diedericks, Danie; van Rensburg, Eugéne; Görgens, Johann F

    2012-08-01

    Biorefineries processing lignocellulose will produce chemicals and fuels from chemical constituents, cellulose, hemicelluloses, and lignin to replace fossil-derived products. Fractionation of sugarcane bagasse into three pure streams of chemical constituents was addressed through dissolution of constituents with the ionic liquids, 1-ethyl-3-methylimidazolium acetate ([EMiM]CH(3)COO) or 1-butyl-3-methylimidazolium methyl sulfate ([BMiM]MeSO(4)). Constituents were isolated from the reaction mixture with the anti-solvents acetone (Ā), acetone-water (AW), and sodium hydroxide (NaOH). Delignification was enhanced by NaOH, although resulting in impure product streams. Xylose pre-extraction (75 % w/w) by dilute acid pretreatment, prior to ionic liquid treatment, improved lignin purity after anti-solvent separation. Fractionation efficiency of the combined process was maximized (84 %) by ionic liquid treatment at 125 °C for 120 min, resulting in 80.2 % (w/w) lignin removal and 76.5 % (w/w) lignin recovery. Ionic liquids achieved similar degrees of delignification, although fully digestible cellulose-rich solids were produced only by [EMiM]CH(3)COO treatment.

  6. Amino-Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytes

    DEFF Research Database (Denmark)

    Aili, David; Javakhishvili, Irakli; Han, Junyoung;

    2016-01-01

    A new amino-functional polybenzimidazole copolymer is synthesized by homogeneous solution condensation polymerization from a novel monomer, N,N′-bis (2,4-diaminophenyl)-1,3-diaminopropane. The copolymer readily dissolves in organic solvents and shows good film forming characteristics. To balance...... the phosphoric acid uptake and to obtain mechanically robust membranes, the amino-functional polybenzimidazole derivative is blended with high molecular weight poly [2,2′-(m-phenylene)-5,5′-bisbenzimidazole] at different ratios. Due to the high acid uptake, the homogenous blend membranes show enhanced proton...

  7. Enhancement of trichothecene mycotoxins of Fusarium oxysporum by ferulic acid aggravates oxidative damage in Rehmannia glutinosa Libosch

    Science.gov (United States)

    Li, Zhen Fang; He, Chen Ling; Wang, Ying; Li, Ming Jie; Dai, Ya Jing; Wang, Tong; Lin, Wenxiong

    2016-01-01

    Rehmannia glutinosa is an important medicinal herb that cannot be replanted in the same field due to the effects of autotoxic substances. The effects of these substances on R. glutinosa in continuous cropping systems are unknown. In the present study, bioassays revealed that R. glutinosa exhibited severe growth restriction and higher disease indices in the FO+FA (F.oxysporum pretreated with ferulic acid) treatment. The increases in the contents of MDA and H2O2 were greater in the FA+FO treatment than in the FA or FO only treatments, respectively. Consistent with this result, the enzyme activities in the seedlings increased with treatment time. To identify the main factor underlying the increased pathogenicity of FO, macroconidia and trichothecene mycotoxins coproduced by FO were separated and used to treat R. glutinosa seedlings. The MDA and H2O2 contents were similar in the seedlings treated with deoxynivalenol and in the FA+FO treatment. Quantification of the relative expression of certain genes involved in Ca2+ signal transduction pathways suggested that trichothecene mycotoxins play an important role in the increased pathogenicity of FO. In conclusion, FA not only directly enhances oxidative damage in R. glutinosa but also increases wilting symptom outbreaks by promoting the secretion of trichothecene mycotoxins by FO. PMID:27667444

  8. Fatty Acid Incubation of Myotubues from Humans with Type 2 Diabetes Leads to Enhanced Release of Beta Oxidation Products Due to Impaired Fatty Acid Oxidation

    DEFF Research Database (Denmark)

    Wensaas, Andreas J; Rustan, Arild C; Just, Marlene;

    2008-01-01

    Objective: Increased availability of fatty acids is important for accumulation of intracellular lipids and development of insulin resistance in human myotubes. It is unknown whether different types of fatty acids like eicosapentaenoic acid (EPA) or tetradecylthioacetic acid (TTA) influence...... these processes. Research Design and Methods: We examined fatty acid and glucose metabolism, and gene expression in cultured human skeletal muscle cells from control and T2D individuals after four days preincubation with EPA or TTA. Results: T2D myotubes exhibited reduced formation of CO(2) from palmitic acid (PA....... EPA markedly enhanced TAG accumulation in myotubes, more pronounced in T2D cells. TAG accumulation and fatty acid oxidation were inversely correlated only after EPA preincubation, and total level of acyl-CoA was reduced. Glucose oxidation (CO(2) formation) was enhanced and lactate production decreased...

  9. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    Science.gov (United States)

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-02-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA.

  10. Aneurysmal wall enhancement and perianeurysmal edema after endovascular treatment of unruptured cerebral aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Su, I. Chang [Toronto Western Hospital, Division of Neuroradiology, Department of Medical Imaging, Toronto, ON (Canada); Taipei Cathay General Hospital, Division of Neurosurgery, Department of Surgery, Taipei (China); Willinsky, Robert A.; Agid, Ronit [Toronto Western Hospital, Division of Neuroradiology, Department of Medical Imaging, Toronto, ON (Canada); Fanning, Noel F. [Cork University Hospital, Department of Interventional Neuroradiology, Cork (Ireland)

    2014-06-15

    Perianeurysmal edema and aneurysm wall enhancement are previously described phenomenon after coil embolization attributed to inflammatory reaction. We aimed to demonstrate the prevalence and natural course of these phenomena in unruptured aneurysms after endovascular treatment and to identify factors that contributed to their development. We performed a retrospective analysis of consecutively treated unruptured aneurysms between January 2000 and December 2011. The presence and evolution of wall enhancement and perianeurysmal edema on MRI after endovascular treatment were analyzed. Variable factors were compared among aneurysms with and without edema. One hundred thirty-two unruptured aneurysms in 124 patients underwent endovascular treatment. Eighty-five (64.4 %) aneurysms had wall enhancement, and 9 (6.8 %) aneurysms had perianeurysmal brain edema. Wall enhancement tends to persist for years with two patterns identified. Larger aneurysms and brain-embedded aneurysms were significantly associated with wall enhancement. In all edema cases, the aneurysms were embedded within the brain and had wall enhancement. Progressive thickening of wall enhancement was significantly associated with edema. Edema can be symptomatic when in eloquent brain and stabilizes or resolves over the years. Our study demonstrates the prevalence and some appreciation of the natural history of aneurysmal wall enhancement and perianeurysmal brain edema following endovascular treatment of unruptured aneurysms. Aneurysmal wall enhancement is a common phenomenon while perianeurysmal edema is rare. These phenomena are likely related to the presence of inflammatory reaction near the aneurysmal wall. Both phenomena are usually asymptomatic and self-limited, and prophylactic treatment is not recommended. (orig.)

  11. Production of Valuables Organic Acids from Organic Wastes with Hydrothermal Treatment Process

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal

    2009-06-01

    Full Text Available This article reports production of valuables organic acids from the hydrothermal treatment of representative organic wastes and compounds (i. e. domestic sludge, proteinaceous, cellulosic and plastic wastes with or without oxidant (H2O2. Organic acids such as acetic, formic, propionic, succinic and lactic acids were obtained in significant amounts. At 623 K (16.5 MPa, acetic acid of about 26 mg/g-dry waste fish entrails was obtained. This increased to 42 mg/g dry waste fish entrails in the presence of H2O2. Experiments on glucose to represent cellulosic wastes were also carried out, getting acetic acid of about 29 mg/g-glucose. The study was extended to terephthalic acid and glyceraldehyde, reaction intermediates of hydrothermal treatment of PET plastic wastes and glucose, respectively. Studies on temperature dependence of formation of organic acids showed thermal stability of acetic acid, whereas, formic acid decomposed readily under hydrothermal conditions. In general, results demonstrated that the presence of oxidants favored formation of organic acids with acetic acid being the major product. Keywords: hydrothermal treatment, organic acids, organic wastes, oxidant, supercritical water oxidation

  12. Organic acid enhanced electrodialytic extraction of lead from contaminated soil fines in suspension

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ahring, Birgitte Kiær; Ottosen, Lisbeth M.

    2007-01-01

    The implementation of soil washing technology for the treatment of heavy metal contaminated soils is limited by the toxicity and unwieldiness of the remaining heavy metal contaminated sludge. In this work, the feasibility of combining electrodialytic remediation with heterotrophic leaching...... for decontamination of the sludge was investigated. The ability of 11 organic acids to extract Pb from the fine fraction of contaminated soil (grains

  13. Surfactant enhanced disinfection of the human norovirus surrogate, tulane virus with organic acids and surfactant

    Science.gov (United States)

    Human infection with foodborne viruses can occur following consumption of contaminated food, person-to-person body contact, or release of aerosols. Combinatorial treatments of surfactants and organic acids may have synergistic or additive mechanisms to inactivate foodborne viruses and prevent outbr...

  14. Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Drews, Joanna Maria;

    2011-01-01

    treatment consistently improved the wettability. It is seen that polar functional groups were introduced at the surface by the gliding arc treatment, and that the treatment efficiency was enhanced by the ultrasonic irradiation, indicating that the adhesive property would be improved. TOF-SIMS ion images...

  15. Enhancing the efficacy of cisplatin in ovarian cancer treatment – could arsenic have a role

    Directory of Open Access Journals (Sweden)

    Helm C William

    2009-01-01

    Full Text Available Abstract Ovarian cancer affects more than 200,000 women each year around the world. Most women are not diagnosed until the disease has already metastasized from the ovaries with a resultant poor prognosis. Ovarian cancer is associated with an overall 5 year survival of little more than 50%. The mainstay of front-line therapy is cytoreductive surgery followed by chemotherapy. Traditionally, this has been by the intravenous route only but there is more interest in the delivery of intraperitoneal chemotherapy utilizing the pharmaco-therapeutic advantage of the peritoneal barrier. Despite three large, randomized clinical trials comparing intravenous with intraperitoneal chemotherapy showing improved outcomes for those receiving at least part of their chemotherapy by the intraperitoneal route. Cisplatin has been the most active drug for the treatment of ovarian cancer for the last 4 decades and the prognosis for women with ovarian cancer can be defined by the tumor response to cisplatin. Those whose tumors are innately platinum-resistant at the time of initial treatment have a very poor prognosis. Although the majority of patients with ovarian cancer respond to front-line platinum combination chemotherapy the majority will develop disease that becomes resistant to cisplatin and will ultimately succumb to the disease. Improving the efficacy of cisplatin could have a major impact in the fight against this disease. Arsenite is an exciting agent that not only has inherent single-agent tumoricidal activity against ovarian cancer cell lines but also multiple biochemical interactions that may enhance the cytotoxicity of cisplatin including inhibition of deoxyribose nucleic acid (DNA repair. In vitro studies suggest that arsenite may enhance the activity of cisplatin in other cell types. Arsenic trioxide is already used clinically to treat acute promyelocytic leukemia demonstrating its safety profile. Further research in ovarian cancer is warranted to define

  16. Effects of Enhanced Depression Treatment on Diabetes Self-Care

    OpenAIRE

    Lin, Elizabeth H. B.; Katon, Wayne; Rutter, Carolyn; Simon, Greg E.; Ludman, Evette J; Von Korff, Michael; Young, Bessie; Oliver, Malia; Ciechanowski, Paul C.; Kinder, Leslie; Walker, Edward

    2006-01-01

    PURPOSE Among patients with diabetes, major depression is associated with more diabetic complications, lower medication adherence, and poorer self-care of diabetes. We reported earlier that enhanced depression care reduces depression symptoms but not hemoglobin A1c level. This study examined effects of depression interventions on self-management among depressed diabetic patients.

  17. Plasma Treatment to Enhance Fuel Cell Water Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to further define the potential for plasma treatment technology, developed by the NASA Glenn Research Center (GRC) to modify and...

  18. Improving Outcome of Psychosocial Treatments by Enhancing Memory and Learning

    OpenAIRE

    Harvey, Allison G.; Lee, Jason; Williams, Joseph; Steven D Hollon; Walker, Matthew P.; Thompson, Monique A.; Smith, Rita

    2014-01-01

    Mental disorders are prevalent and lead to significant impairment. Progress toward establishing treatments has been good. However, effect sizes are small to moderate, gains may not persist, and many patients derive no benefit. Our goal is to highlight the potential for empirically-supported psychosocial treatments to be improved by incorporating insights from cognitive psychology and research on education. Our central question is: If it were possible to improve memory for content of sessions ...

  19. Treatment with Docosahexaenoic Acid, but Not Eicosapentaenoic Acid, Delays Ca2+-Induced Mitochondria Permeability Transition in Normal and Hypertrophied Myocardium

    OpenAIRE

    Khairallah, Ramzi J.; O'Shea, Karen M.; Brown, Bethany H.; Khanna, Nishanth; Des Rosiers, Christine; Stanley, William C.

    2010-01-01

    Intake of fish oil containing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) prevents heart failure; however, the mechanisms are unclear. Mitochondrial permeability transition pore (MPTP) opening contributes to myocardial pathology in cardiac hypertrophy and heart failure, and treatment with DHA + EPA delays MPTP opening. Here, we assessed: 1) whether supplementation with both DHA and EPA is needed for optimal prevention of MPTP opening, and 2) whether this benefit occurs in hyper...

  20. Synergistic Effect of Elicitors in Enhancement of Ganoderic Acid Production: Optimization and Gene Expression Studies

    Directory of Open Access Journals (Sweden)

    Motaharehsadat Heydarian

    2015-06-01

    Full Text Available AbstractGanoderma lucidum is one of the most well-known fungi, and has many applications in medicine. Ganoderic acid is among the valuable secondary metabolites of Ganoderma lucidum, and responsible for the inhibition of the tumor cell growth and cancer treatment. Application of ganoderic acid has been limited because of low yields of its production from Ganoderma lucidum. The present study aims to investigate the synergistic effect of elicitors including methyl jasmonate and aspirin on the production of ganoderic acid derived from Ganoderma lucidum mushroom in a shaken flasks using response surface methodology. The results showed that the optimal dose of methyl jasmonate and asprin significantly impacts on the amount of ganoderic acid production as a response (p<0.05. The proposed model predicted the maximum ganoderic acid production as 0.085 mg/ml in which the optimal concentrations obtained for methyl jasmonate and asprin were 250mM and 4.4mM, respectively. Also the influence of ganoderic acid production on the expression of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and squalene synthase (two important metabolic pathway genes in ganoderic acid was investigated, and the results showed that these genes’ expression has increased by 10 and 11 folds, respectively.  

  1. Intraluminal duodenal diverticulum: CT and gadoxetic acid-enhanced MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Myeong; Lee, Nam Kyung; Kim, Suk; Kim, Dong Uk; Kim, Tae Un [Dept. of Radiology, Pusan National University Hospital, Pusan National University School of Medicine, Busan (Korea, Republic of)

    2015-03-15

    Intraluminal duodenal diverticulum (IDD) is a rare congenital anomaly. IDD can become symptomatic in 20% to 25% of cases when complicated by intestinal obstruction, pancreatitis, or hemorrhage. We report the case of a 21-year-old female presenting with IDD mimicking duodenoduodenal intussusception. We describe the imaging features of IDD on the gadoxetic acid-enhanced magnetic resonance image as well as computed tomography.

  2. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    Science.gov (United States)

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction. PMID:27058913

  3. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    Science.gov (United States)

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction.

  4. Diagnostic efficacy of gadoxetic acid-enhanced MRI for hepatocellular carcinoma and dysplastic nodule

    Institute of Scientific and Technical Information of China (English)

    Kazuhiro Saito; Fuminori Moriyasu; Katsutoshi Sugimoto; Ryota Nishio; Toru Saguchi; Toshitaka Nagao; Junichi Taira; Soichi oichi Akata; Koichi Tokuuye

    2011-01-01

    AIM: To evaluate the relationship between the signal intensity of hepatobiliary phase images on gadoxetic acid-enhanced magnetic resonance imaging (MRI) and histological grade.METHODS: Fifty-nine patients with 82 hepatocellular lesions were evaluated retrospectively. Hepatobiliary phase images on gadoxetic acid-enhanced MRI were classified into 3 groups: low, iso or high. Angiography-assisted computed tomography (CT) findings were also classified into 3 groups: CT during arterial portography, and CT hepatic arteriography: A: iso, iso or low; B: slightly low, iso or low; and C: low, high. We correlated angiography-assisted CT, hepatobiliary phase findings during gadoxetic acid-enhanced MRI and histological grades. Furthermore, correlations between MRI findings and histological grade for each hemodynamic pattern were performed. Correlations among radiologicaland pathological findings were statistically evaluated using the chi-square test and Fisher' s exact test.RESULTS: There was a significant correlation between histological grade and hemodynamic pattern (P 0.05).CONCLUSION: Signal intensity in the hepatobiliary phase correlated with histological grade in the lesions that maintained portal blood flow, but did not correlate in lesions that showed decreased or defective portal blood flow.

  5. Effects of Acid Treatment on Dental Zirconia: An In Vitro Study.

    Directory of Open Access Journals (Sweden)

    Haifeng Xie

    Full Text Available The aim of this study was to evaluate the effects of hydrofluoric (HF acid, acetic acid, and citric acid treatments on the physical properties and structure of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP at ambient temperature. In total, 110 bar-shaped zirconia specimens were randomly assigned to 11 groups. The specimens in the control group (C received no surface treatment, while those in the Cage group were hydrothermally aged at 134°C and 0.2 MPa for 20 h. Ten specimens each were immersed at ambient temperature in 5% and 40% HF acid for 2 h (40HF0, 1 day (5HF1, 40HF1, and 5 days (5HF5, 40HF5, while 10 each were immersed at ambient temperature in 10% acetic acid and 20% citric acid for 7 (AC7, CI7 and 14 days (AC14, CI14. X-ray diffraction (XRD was used to quantitatively estimate the monoclinic phase. Furthermore, flexural strength, surface roughness, and surface Vickers hardness were measured after treatment. Scanning electron microscopy (SEM was used to characterize the surface morphology. The Cage group specimens exhibited an increased monoclinic phase and flexural strength. Furthermore, 40% HF acid immersion decreased the flexural strength and surface hardness and deteriorated the surface finish, while 5% HF acid immersion only decreased the surface hardness. All the HF acid-immersed specimens showed an etched surface texture on SEM observations, while the other groups did not. These findings suggest that the treatment of Y-TZP with 40% HF acid at ambient temperature causes potential damage, while treatment with 5% HF acid, acetic acid, and citric acid is safe.

  6. Differentiating mass-forming intrahepatic cholangiocarcinoma from atypical hepatocellular carcinoma using gadoxetic acid-enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Y.S. [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Y.K., E-mail: jmyr@dreamwiz.com [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Lee, M.W.; Kim, S.H.; Lee, W.J.; Rhim, H.C.; Lee, S.J. [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2012-08-15

    Aim: To examine the differential features of mass-forming intrahepatic cholangiocarcinoma (ICC) from atypical hypovascular hepatocellular carcinoma (HCC) on gadoxetic acid-enhanced magnetic resonance imaging (MRI). Materials and methods: The institutional review board approved this retrospective study and waived informed patient consent. Seventy patients with pathologically proven ICCs (35) and hypovascular atypical HCCs (35) who had undergone preoperative gadoxetic acid-enhanced MRI were enrolled in this study. Images were analysed for the shape of the lesions and presence of hyperintensity on the T1-weighted image (T1WI) and hypo- or hyperintense areas on the T2-weighted image (T2WI). In addition, images were analysed for the presence of linear hyperintensity or multifocal, tiny, hyperintense foci on T2WI and the presence of rim enhancement during early dynamic phases and a central enhancement with a hypointense rim (target appearance) on the 10 and 20 min hepatobiliary phase images. The significance of these findings was determined by the X{sup 2} test. Results: Univariate analysis revealed that the following significant parameters favour ICC or hypovascular HCC; the presence of T2 hypo- and hyperintense areas and target appearance on the 10 min hepatobiliary phase images favour ICC, and the presence of T2 linear hyperintensity and T2 multifocal hyperintense foci favour hypovascular HCC (p < 0.05). Multivariate analysis revealed that only target appearance on the 10 min hepatobiliary phase was predictive of ICC (p = 0.002) as 30 ICCs (85.7%) showed this feature. However, the target appearance was also observed in all six scirrhous HCCs. Conclusion: A target appearance on the 10 min hepatobiliary phase images is the best predictor for identifying mass-forming ICC at gadoxetic acid-enhanced MRI.

  7. Behavioral activation: a strategy to enhance treatment response.

    Science.gov (United States)

    Sudak, Donna M; Majeed, Muhammad H; Youngman, Branden

    2014-07-01

    Behavioral activation is an empirically validated treatment for depression pioneered in 1973 by Ferster, based on B.F. Skinner's behavioral principles. After publication of Beck's work on cognitive therapy, the boundaries of behavioral and cognitive therapies were blurred and the two now overlap substantially. Behavioral activation is also used as a stand-alone treatment and can also be effective in conjunction with antidepressant medication. Case conceptualization in behavioral activation entails an assessment of the behaviors that the patient has stopped that produce pleasure or are of importance, as well as behaviors essential to self-care. Activity monitoring, which provides treatment targets and leads to the case conceptualization in behavioral activation, consists of using charts, forms, or other prompts to track the relationship between activities and other variables (e.g., mood, enjoyment). That technique is also used to target rumination, procrastination, and avoidance and may also be helpful for patients with psychosis. PMID:25036582

  8. Synthesis of Peptide-Based Hybrid Nanobelts with Enhanced Color Emission by Heat Treatment or Water Induction.

    Science.gov (United States)

    Liu, Xingcen; Zhu, Pengli; Fei, Jinbo; Zhao, Jie; Yan, Xuehai; Li, Junbai

    2015-06-22

    We demonstrate that an inorganic lanthanide ion (Tb(3+)) or organic dye molecules were encapsulated in situ into diphenylalanine (FF) organogels by a general, simple, and efficient co-assembly process, which generated peptide-based hybrid nanobelts with a range of colored emissions. In the presence of a photosensitizer (salicylic acid), the organogel can serve as an excellent molecular-donor scaffold to investigate FRET to Tb(3+). More importantly, heat treatment or water induction instigated a morphology transition from nanofibers to nanobelts, after which the participation of guest molecules in the FF assembly was promoted and the stability and photoluminescence emission of the composite organogels were enhanced. PMID:25965918

  9. ENHANCED MOBILITY OF DENSE NONAQUEOUS-PHASE LIQUIDS (DNAPLs) USING DISSOLVED HUMIC ACIDS

    Energy Technology Data Exchange (ETDEWEB)

    EDWIN S. OLSON; JOHN R. GALLAGHER; MARC D. KURZ

    1998-10-01

    The specific objectives of this subtask are as follows: � Evaluate the suitability of using humic acids to enhance the solubility and mobility of DNAPL contaminants sorbed to soils. � Evaluate the toxicity and bioavailablity of the DNAPLs to biodegrading microorganisms. To meet the first objective, the Energy & Environmental Research Center (EERC) evaluated a set of humic acids (two) with different chemical compositions and polarities for the following: � Ability of the humates to mobilize/solubilize selected (three) DNAPLs � Mobilization/solubilization in batch soil�water experiments (one soil) � Removal rate via biotreatment with a well-established active microbial culture. The second objective was met by evaluating the inhibiting effects of a leonardite-derived humic acid on active microbial populations.

  10. Interactive enhancements of ascorbic acid and iron in hydroxyl radical generation in quinone redox cycling.

    Science.gov (United States)

    Li, Yi; Zhu, Tong; Zhao, Jincai; Xu, Bingye

    2012-09-18

    Quinones are toxicological substances in inhalable particulate matter (PM). The mechanisms by which quinones cause hazardous effects can be complex. Quinones are highly active redox molecules that can go through a redox cycle with their semiquinone radicals, leading to formation of reactive oxygen species. Electron spin resonance spectra have been reported for semiquinone radicals in PM, indicating the importance of ascorbic acid and iron in quinone redox cycling. However, these findings are insufficient for understanding the toxicity associated with quinone exposure. Herein, we investigated the interactions among anthraquinone (AQ), ascorbic acid, and iron in hydroxyl radical (·OH) generation through the AQ redox cycling process in a physiological buffer. We measured ·OH concentration and analyzed the free radical process. Our results showed that AQ, ascorbic acid, and iron have synergistic effects on ·OH generation in quinone redox cycling; i.e., ascorbyl radical oxidized AQ to semiquinone radical and started the redox cycling, iron accelerated this oxidation and enhanced ·OH generation through Fenton reactions, while ascorbic acid and AQ could help iron to release from quartz surface and enhance its bioavailability. Our findings provide direct evidence for the redox cycling hypothesis about airborne particle surface quinone in lung fluid. PMID:22891791

  11. The Effects of Different Acid Treatment and Stratification Duration on Germination of Cercis siliquastrum L. Seeds

    Directory of Open Access Journals (Sweden)

    Murat ZENCİRKİRAN

    2010-06-01

    Full Text Available In this study, the effects of acid (H2SO4 treatment and moist stratification duration on the properties of seed coat, germination rate and duration of the Cercis siliquastrum L. were investigated. The rupture force and firmness of seed coat decrease during the acid treatment and moist stratification, stratification was for more than 30 minutes of these applications. Up to this treatment, rupture force and firmness were highly decreased. Contrary to this decrease, the germination rate was increased. The decrease in rupture force and firmness of seed coat were changed limitedly after 45 minutes and over acid treatments. From the results of this study, we conclude that eight weeks of moist stratification duration was optimal after 30 minutes of acid treatment to remove the physical and physiological dormancy of the seeds of the C. siliquastrum L.

  12. Extraction process of chlorogenic acid in flos lonicerae by enzymatic treatment

    Institute of Scientific and Technical Information of China (English)

    刘佳佳; 赵国玲; 王晖; 章晓骅

    2002-01-01

    A new method of extracting chlorogenic acid from flos lonicerae, and treating the materials with enzyme before being extracted by ethanol is developed, and the optimum conditions are also investigated in detail. Three important factors, enzyme dosage, treatment time and treatment temperature are adapted to optimize the extraction process. The experimental results show that the extract yield of flos lonicerae and chlorogenic acid can be obviously increased by the cellulase treatment, 61.5 mg chlorogenic acid is obtained from 1.00 g flos lonicerae at most. The optimal temperature of enzymatic treatment is 40-50 ℃. Compared with the use of single cellulase, the combined treatment of cellulase and pectinase increase the extract yield obviously but fail to improve that of chlorogenic acid.

  13. Radio frequency plasma treatments on titanium for enhancement of bioactivity.

    NARCIS (Netherlands)

    Lopez-Heredia, M.A.; Legeay, G.; Gaillard, C.; Layrolle, P.

    2008-01-01

    Titanium and its alloys, when treated in alkali solutions, are able to form calcium phosphate coatings on their surface after immersion in supersaturated solutions. In this study, the surfaces of titanium alloy discs were modified by an alkali treatment and a radio frequency (RF) plasma procedure (1

  14. Enhancing the Efficacy of Antihypertensive Treatment with Pharmacogenomics

    Institute of Scientific and Technical Information of China (English)

    陈慧

    2004-01-01

    @@ In 2003, two newguidelines for hypertensive prevention and management have been provided by American JNC7 and European Society of Hypertension.They advocated that the physician should choose drugs following individualized treatment,which should also be followed by integrative traditional and western medicine.

  15. Simultaneous removal of ammonium and phosphate by zeolite synthesized from coal fly ash as influenced by acid treatment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bao-hua; WU De-yi; WANG Chong; HE Sheng-bing; ZHANG Zhen-jia; KONG Hai-nan

    2007-01-01

    Zeolite synthesized from fly ash (ZFA) without modification is not efficient for the purification of NH4+ and phosphate at low concentrations that occur in real effluents, despite the high potential removal capacity. To develop an effective technique to enhance the removal efficiency of ammonium and phosphate at low concentrations, ZFA was modified with acid treatment and the simultaneous removal of ammonium and phosphate in a wide range of concentration was investigated. It was seen that when compared with untreated ZFA, only the treatment by 0.01 mol/L of H2SO4 significantly improved the removal efficiency of ammonium at low initial concentrations. The behavior was well explained by the pH effect. Treatment by more concentrated H2SO4 led to the deterioration of the ZFA structure and a decrease in the cation exchange capacity. Treatment by 0.01 mol/L H2SO4 improved the removal efficiency of phosphate by ZFA at all initial P concentrations, while the treatment by concentrated H2SO4 (≥0.9 mol/L) resulted in a limited maximum phosphate immobilization capacity (PIC). It was concluded that through a previous mild acid treatment (e.g. 0.01 mol/L of H2SO4), ZFA can be used in the simultaneous removal of NH4+ and P at low concentrations simulating real effluent.

  16. Hydrothermal treatment of titanium alloys for the enhancement of osteoconductivity

    International Nuclear Information System (INIS)

    The surface wettability of implants is a crucial factor in their osteoconductivity because it influences the adsorption of cell-attached proteins onto the surface. In this study, a single-step hydrothermal surface treatment using distilled water at a temperature of 180 °C for 3 h was applied to titanium (Ti) and its alloys (Ti–6Al–4V, Ti–6Al–7Nb, Ti–29Nb–13Ta–4.6Zr, Ti–13Cr–1Fe–3Al; mass%) and compared with as-polished Ti implants and with implants produced by anodizing Ti in 0.1 M of H3PO4 with applied voltages from 0 V to 150 V at a scanning rate of 0.1 V s−1. The surface-treated samples were stored in a five time phosphate buffered saline (× 5 PBS(−)) solution to prevent increasing the water contact angle (WCA) with time. The surface characteristics were evaluated using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy, surface roughness, and contact angle measurement using a 2 μL droplet of distilled water. The relationship between WCA and osteoconductivity at various surface modifications was examined using in vivo tests. The results showed that a superhydrophilic surface with a WCA ≤ 10° and a high osteoconductivity (RB–I) of up to 50% in the cortical bone part, about four times higher than the as-polished Ti and Ti alloys, were provided by the combination of the hydrothermal surface treatment and storage in × 5 of PBS(−). - Highlights: • Hydrothermal treatment in distilled water was applied to titanium alloys. • Surface characteristics and osteoconductivity by in vivo test were evaluated. • Water contact angles of titanium alloys were decreased by hydrothermal treatment. • Osteoconductivity of titanium alloys improved notably by hydrothermal treatment after stored in × 5 of PBS (−)

  17. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy.

    Directory of Open Access Journals (Sweden)

    Yolanda Williams-Bey

    Full Text Available The omega-3 (ω3 fatty acid docosahexaenoic acid (DHA can suppress inflammation, specifically IL-1β production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1β production by limiting inflammasome activation. Exposure to DHA reduced IL-1β production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Free Fatty Acid Receptor (FFAR 4 (also known as GPR120, a G-protein coupled receptor (GPR known to bind DHA. The exposure of cells to DHA recruited the adapter protein β-arrestin1/2 to FFAR4, but not to a related lipid receptor. DHA treatment reduced the initial inflammasome priming step by suppressing the nuclear translocation of NF-κB. DHA also reduced IL-1β levels by enhancing autophagy in the cells. As a consequence macrophages derived from mice lacking the essential autophagy protein ATG7 were partially resistant to suppressive effects of DHA. Thus, DHA suppresses inflammasome activation by two distinct mechanisms, inhibiting the initial priming step and by augmenting autophagy, which limits inflammasome activity.

  18. Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza-Ticlo, D.; Tiwari, R.; Sah, A.K.; Raghukumar, C.

    enhancement in laccase production was found during treatment of colored effluents from textile, paper and pulp mill and distillery waste. Industrial effluents and synthetic dyes added to the growing culture of this fungus were decolorized to a great extent...

  19. Experimental research in leaching of copper-bearing tailings enhanced by ultrasonic treatment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jie; WU Ai-xiang; WANG Yi-ming; CHEN Xue-song

    2008-01-01

    On the basis of an experiment in ultrasonic enhanced ammonia leaching of tailings, the effect of ultrasonic waves on copper dissolution was studied. The mechanism of ultrasonic enhanced tailing leaching was analyzed and a technique of ultrasonic enhanced pipe leaching of tailings was proposed. The results show that tailings with ultrasonic treatment can leach up to 89.5% of Cu, which is 13.5% more than those without the treatment. Ultrasonic technology is capable of improving leaching rates and the overall recovery of tailing leaching. Impact waves and micro jet streams can strip and erode affected surfaces of tailing particles to create new active surfaces and disturbances can intensify mass transfer processes in "dead zones". The technique of ultrasonic enhanced pipe leaching of tailings is a combination of existing agitation enhancement with ultrasonic enhancement and can im-prove mineral recovery.

  20. Obeticholic acid for the treatment of primary biliary cirrhosis.

    Science.gov (United States)

    Trivedi, Palak J; Hirschfield, Gideon M; Gershwin, M Eric

    2016-01-01

    Primary biliary cirrhosis (PBC) is characterized by progressive nonsuppurative destruction of small bile ducts, resulting in intrahepatic cholestasis, fibrosis and ultimately end-stage liver disease. Timely intervention with ursodeoxycholic acid is associated with excellent survival, although approximately one-third of all patients fail to achieve biochemical response, signifying a critical need for additional therapeutic strategies. Obeticholic acid (OCA) is a potent ligand of the nuclear hormone receptor farnesoid X receptor (FXR). Activation of FXR inhibits bile acid synthesis and protects against toxic accumulation in models of cholestasis and facilitates hepatic regeneration in preclinical studies. Data from recent Phase II and III controlled trials suggest a therapeutic impact of OCA in PBC biochemical nonresponders, as evidenced by change in proven laboratory surrogates of long-term outcome. Dose-dependent pruritus is a common adverse effect, but may be overcome through dose-titration. Longer term studies are needed with focus on safety and long-term clinical efficacy. PMID:26549695

  1. Practical Strategies for Enhancing Adherence to Treatment Regimen in Inflammatory Bowel Disease

    OpenAIRE

    Greenley, Rachel N.; Kunz, Jennifer H.; Walter, Jennifer; Hommel, Kevin A.

    2013-01-01

    Promoting adherence to treatment among pediatric and adult patients with inflammatory bowel disease (IBD) is a critical yet challenging task for health care providers. Several existing interventions to enhance adherence among individuals with IBD offer useful information about practical strategies to enhance adherence. The current review article has 3 goals. First, the review provides a context for understanding treatment regimen adherence in IBD by reviewing key definitional, measurement, an...

  2. Synergistic efficacy of salicylic acid with a penetration enhancer on human skin monitored by OCT and diffuse reflectance spectroscopy

    Science.gov (United States)

    Zhao, Qingliang; Dai, Cuixia; Fan, Shanhui; Lv, Jing; Nie, Liming

    2016-01-01

    Salicylic acid (SA) has been frequently used as a facial chemical peeling agent (FCPA) in various cosmetics for facial rejuvenation and dermatological treatments in the clinic. However, there is a tradeoff between therapeutic effectiveness and possible adverse effects caused by this agent for cosmetologists. To optimize the cosmetic efficacy with minimal concentration, we proposed a chemical permeation enhancer (CPE) azone to synergistically work with SA on human skin in vivo. The optical properties of human skin after being treated with SA alone and SA combined with azone (SA@azone) were successively investigated by diffuse reflectance spectroscopy (DRS) and optical coherence tomography (OCT). Our results revealed that as the SA concentration increased, the light reflectance decreased and the absorption increased. We also found that SA@azone exhibited a synergistic effect on enhancing light penetration and OCT imaging depth. We demonstrated that the combination of DRS and OCT techniques could be used as a noninvasive, rapid and accurate measurement method to monitor the subtle changes of skin tissue after treatment with FCPA and CPE. The approach will greatly benefit the development of clinical cosmetic surgery, dermatosis diagnosis and therapeutic effect inspection in related biomedical studies. PMID:27721398

  3. Synergistic efficacy of salicylic acid with a penetration enhancer on human skin monitored by OCT and diffuse reflectance spectroscopy

    Science.gov (United States)

    Zhao, Qingliang; Dai, Cuixia; Fan, Shanhui; Lv, Jing; Nie, Liming

    2016-10-01

    Salicylic acid (SA) has been frequently used as a facial chemical peeling agent (FCPA) in various cosmetics for facial rejuvenation and dermatological treatments in the clinic. However, there is a tradeoff between therapeutic effectiveness and possible adverse effects caused by this agent for cosmetologists. To optimize the cosmetic efficacy with minimal concentration, we proposed a chemical permeation enhancer (CPE) azone to synergistically work with SA on human skin in vivo. The optical properties of human skin after being treated with SA alone and SA combined with azone (SA@azone) were successively investigated by diffuse reflectance spectroscopy (DRS) and optical coherence tomography (OCT). Our results revealed that as the SA concentration increased, the light reflectance decreased and the absorption increased. We also found that SA@azone exhibited a synergistic effect on enhancing light penetration and OCT imaging depth. We demonstrated that the combination of DRS and OCT techniques could be used as a noninvasive, rapid and accurate measurement method to monitor the subtle changes of skin tissue after treatment with FCPA and CPE. The approach will greatly benefit the development of clinical cosmetic surgery, dermatosis diagnosis and therapeutic effect inspection in related biomedical studies.

  4. Oil production enhancement through a standardized brine treatment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adewumi, A.; Watson, R.; Tian, S.; Safargar, S.; Heckman, S.; Drielinger, I.

    1995-08-01

    In order to permit the environmentally safe discharge of brines produced from oil wells in Pennsylvania to the surface waters of the Commonwealth and to rapidly brings as many wells as possible into compliance with the law, the Pennsylvania Oil and Gas Association (POGAM) approached the Pennsylvania State University to develop a program designed to demonstrate that a treatment process to meet acceptable discharge conditions and effluent limitations can be standardized for all potential stripper wells brine discharge. After the initial studies, the first phase of this project was initiated. A bench-scale prototype model was developed for conducting experiments in laboratory conditions. The experiments pursued in the laboratory conditions were focused on the removal of ferrous iron from synthetically made brine. Iron was selected as the primary heavy metals for studying the efficiency of the treatment process. The results of a number of experiments in the lab were indicative of the capability of the proposed brine treatment process in the removal of iron. Concurrent with the laboratory experiments, a comprehensive and extensive kinetic study was initiated. This study was necessary to provide the required data base for process modeling. This study included the investigation of the critical pH as well as the rate and order of reactions of the studied elements: aluminum, lead, zinc, and copper. In the second phase of this project, a field-based prototype was developed to evaluate and demonstrate the treatment process effectiveness. These experiments were conducted under various conditions and included the testing on five brines from different locations with various dissolved constituents. The outcome of this research has been a software package, currently based on iron`s reactivity, to be used for design purposes. The developed computer program was refined as far as possible using the results from laboratory and field experiments.

  5. Improving Outcome of Psychosocial Treatments by Enhancing Memory and Learning.

    Science.gov (United States)

    Harvey, Allison G; Lee, Jason; Williams, Joseph; Hollon, Steven D; Walker, Matthew P; Thompson, Monique A; Smith, Rita

    2014-03-01

    Mental disorders are prevalent and can lead to significant impairment. Some progress has been made toward establishing treatments; however, effect sizes are small to moderate, gains may not persist, and many patients derive no benefit. Our goal is to highlight the potential for empirically supported psychosocial treatments to be improved by incorporating insights from cognitive psychology and research on education. Our central question is: If it were possible to improve memory for the content of sessions of psychosocial treatments, would outcome substantially improve? We leverage insights from scientific knowledge on learning and memory to derive strategies for transdiagnostic and transtreatment cognitive support interventions. These strategies can be applied within and between sessions and to interventions delivered via computer, the Internet, and text message. Additional novel pathways to improving memory include improving sleep, engaging in exercise, and using imagery. Given that memory processes change across the lifespan, services to children and older adults may benefit from different types and amounts of cognitive support. PMID:25544856

  6. Enhancement of Esterification of Propionic Acid with Isopropyl Alcohol by Pervaporation Reactor

    Directory of Open Access Journals (Sweden)

    Ajit P. Rathod

    2014-01-01

    Full Text Available With increasing cost of raw materials and energy, there is an increasing inclination of chemical process industries toward new processes that result in lesser waste generation, greater efficiency, and substantial yield of the desired products. Esterification is a chemical reaction in which two reactants carboxylic acid and alcohol react to form an ester and water. This reaction is a reversible reaction and the equilibrium conversion can be altered by varying the process parameters. Pervaporation reactor can enhance the conversion by shifting the equilibrium of reversible esterification reactions. Polyvinyl alcohol-polyether sulfone composite hydrophilic membrane was used for pervaporation-assisted esterification of propionic acid with isopropyl alcohol. The experiments were carried out in the presence of sulphuric acid as a catalyst at 50°C to 80°C with various reactants ratios. The esterification was carried out for catalyst loadings of 0.089 kmol/m3 to 0.447 kmol/m3. The molar ratios of isopropyl to propionic acid used for the experiment were 1 to 1.5. Maximum conversion was obtained for the ratio of 1.4. Also effect of other parameters such as process temperature and catalyst concentration was discussed. It was found that the use of pervaporation reactor increased the conversion of the propionic acid considerably.

  7. Clavulanic acid enhances glutamate transporter subtype I (GLT-1) expression and decreases reinforcing efficacy of cocaine in mice.

    Science.gov (United States)

    Kim, Jae; John, Joel; Langford, Dianne; Walker, Ellen; Ward, Sara; Rawls, Scott M

    2016-03-01

    The β-lactam antibiotic ceftriaxone (CTX) reduces cocaine reinforcement and relapse in preclinical assays through a mechanism involving activation of glutamate transporter subtype 1 (GLT-1). However, its poor brain penetrability and intravenous administration route may limit its therapeutic utility for indications related to CNS diseases. An alternative is clavulanic acid (CA), a structural analog of CTX that retains the β-lactam core required for GLT-1 activity but displays enhanced brain penetrability and oral activity relative to CTX. Here, we tested the hypothesis that CA (1, 10 mg/kg ip) would enhance GLT-1 expression and decrease cocaine self-administration (SA) in mice, but at lower doses than CTX. Experiments revealed that GLT-1 transporter expression in the nucleus accumbens of mice treated with repeated CA (1, 10 mg/kg) was enhanced relative to saline-treated mice. Repeated CA treatment (1 mg/kg) reduced the reinforcing efficacy of cocaine (0.56 mg/kg/inf) in mice maintained on a progressive-ratio (PR) schedule of reinforcement but did not affect acquisition of cocaine SA under fixed-ratio responding or acquisition or retention of learning. These findings suggest that the β-lactamase inhibitor CA can activate the cellular glutamate reuptake system in the brain reward circuit and reduce cocaine's reinforcing efficacy at 100-fold lower doses than CTX.

  8. Phosphorus Recovery from Sewage Sludge Ash via Microwave Enhanced Thermochemical Treatment

    OpenAIRE

    Šyc, M. (Michal); Kameníková, P. (Petra); Giray, E.; Sobek, J; Pohořelý, M. (Michael); Svoboda, K.; Punčochář, M.

    2014-01-01

    Results of preliminary tests of sewage sludge ash (SSA) thermochemical treatment by means of chlorination agent with microwave enhanced heating are presented in the study. Elements speciation obtained by BCR sequential extraction procedure was studied in raw and treated SSA. Comparison of conventional and microwave enhanced heating at the same temperature on removal efficiency is presented as well.

  9. Plasma amino acid and serum unesterified fatty acid deficits and the effect of nutritional support in chemotherapy treatment.

    Science.gov (United States)

    Ching, N; Grossi, C; Jham, G; Angers, J; Zurawinsky, H; Ching, C Y; Nealon, T F

    1984-06-01

    The deficits in plasma amino acids and serum unesterified fatty acids of cancer patients undergoing chemotherapy and/or radiation therapy were studied to delineate the special requirements of the patients and efficacy of our nutritional therapy. Seven general surgery patients and 13 patients treated by the Head-Neck Service had baseline levels measured as part of their nutritional evaluation prior to surgical treatment of their cancers. Fifteen chemotherapy outpatients maintained on their regular diets had fasting levels analyzed. Twenty-six patients who were admitted for their therapy had their intake of the regular hospital diet supplemented with a low-residue enteral diet formula (Vivonex High Nitrogen Diet); parenteral nutrition was used only if their oral intake was totally inadequate. Baseline and sequential measurements were made of plasma amino acid and serum unesterified fatty acid levels by gas liquid chromatographic techniques. Before operation the patients had normal levels of amino acids except for a significant deficiency of threonine and glycine observed in patients with head-neck tumors. Outpatients with and without hepatic metastases had significantly depressed levels of the essential amino acids valine, leucine, threonine, and methionine and the nonessential amino acids serine, glycine, and proline. The baseline levels of the patients admitted for treatment had similar deficiencies except for more evidence of lysine deficiency. Patients supported with total parenteral nutrition had rapid elevation of the amino acid levels. The patients whose intake was supplemented with the oral diets had improvement in their amino acid levels, but the deficiency in the leucine and threonine fractions persisted up to 4 weeks of therapy. Although the lysine levels were normal when first analyzed, significant differences developed in the patients without hepatic metastases after the start of chemotherapy with return to normal only after chemotherapy was discontinued

  10. Hydrothermal treatment of titanium alloys for the enhancement of osteoconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Zuldesmi, Mansjur, E-mail: mzuldesmi@yahoo.com [Department of Materials Science & Engineering, Graduate School of Engineering, Nagoya University, Nagoya (Japan); Department of Mechanical Engineering, Manad State University (UNIMA) (Indonesia); Waki, Atsushi [Department of Materials Science & Engineering, Graduate School of Engineering, Nagoya University, Nagoya (Japan); Kuroda, Kensuke; Okido, Masazumi [EcoTopia Science Institute, Nagoya University, Nagoya (Japan)

    2015-04-01

    The surface wettability of implants is a crucial factor in their osteoconductivity because it influences the adsorption of cell-attached proteins onto the surface. In this study, a single-step hydrothermal surface treatment using distilled water at a temperature of 180 °C for 3 h was applied to titanium (Ti) and its alloys (Ti–6Al–4V, Ti–6Al–7Nb, Ti–29Nb–13Ta–4.6Zr, Ti–13Cr–1Fe–3Al; mass%) and compared with as-polished Ti implants and with implants produced by anodizing Ti in 0.1 M of H{sub 3}PO{sub 4} with applied voltages from 0 V to 150 V at a scanning rate of 0.1 V s{sup −1}. The surface-treated samples were stored in a five time phosphate buffered saline (× 5 PBS(−)) solution to prevent increasing the water contact angle (WCA) with time. The surface characteristics were evaluated using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy, surface roughness, and contact angle measurement using a 2 μL droplet of distilled water. The relationship between WCA and osteoconductivity at various surface modifications was examined using in vivo tests. The results showed that a superhydrophilic surface with a WCA ≤ 10° and a high osteoconductivity (R{sub B–I}) of up to 50% in the cortical bone part, about four times higher than the as-polished Ti and Ti alloys, were provided by the combination of the hydrothermal surface treatment and storage in × 5 of PBS(−). - Highlights: • Hydrothermal treatment in distilled water was applied to titanium alloys. • Surface characteristics and osteoconductivity by in vivo test were evaluated. • Water contact angles of titanium alloys were decreased by hydrothermal treatment. • Osteoconductivity of titanium alloys improved notably by hydrothermal treatment after stored in × 5 of PBS (−)

  11. The Effect of Fiber Bleaching Treatment on the Properties of Poly(lactic acid)/Oil Palm Empty Fruit Bunch Fiber Composites

    OpenAIRE

    Marwah Rayung; Nor Azowa Ibrahim; Norhazlin Zainuddin; Wan Zuhainis Saad; Nur Inani Abdul Razak; Buong Woei Chieng

    2014-01-01

    In this work, biodegradable composites from poly(lactic acid) (PLA) and oil palm empty fruit bunch (OPEFB) fiber were prepared by melt blending method. Prior to mixing, the fiber was modified through bleaching treatment using hydrogen peroxide. Bleached fiber composite showed an improvement in mechanical properties as compared to untreated fiber composite due to the enhanced fiber/matrix interfacial adhesion. Interestingly, fiber bleaching treatment also improved the physical appearance of th...

  12. SULFUR HEXAFLUORIDE TREATMENT OF USED NUCLEAR FUEL TO ENHANCE SEPARATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.; Torres, R.; Korinko, P.; Martinez-Rodriguez, M.; Becnel, J.; Garcia-Diaz, B.; Adams, T.

    2012-09-25

    Reactive Gas Recycling (RGR) technology development has been initiated at Savannah River National Laboratory (SRNL), with a stretch-goal to develop a fully dry recycling technology for Used Nuclear Fuel (UNF). This approach is attractive due to the potential of targeted gas-phase treatment steps to reduce footprint and secondary waste volumes associated with separations relying primarily on traditional technologies, so long as the fluorinators employed in the reaction are recycled for use in the reactors or are optimized for conversion of fluorinator reactant. The developed fluorination via SF{sub 6}, similar to the case for other fluorinators such as NF{sub 3}, can be used to address multiple fuel forms and downstream cycles including continued processing for LWR via fluorination or incorporation into a aqueous process (e.g. modified FLUOREX) or for subsequent pyro treatment to be used in advanced gas reactor designs such metal- or gas-cooled reactors. This report details the most recent experimental results on the reaction of SF{sub 6} with various fission product surrogate materials in the form of oxides and metals, including uranium oxides using a high-temperature DTA apparatus capable of temperatures in excess of 1000{deg}C . The experimental results indicate that the majority of the fission products form stable solid fluorides and sulfides, while a subset of the fission products form volatile fluorides such as molybdenum fluoride and niobium fluoride, as predicted thermodynamically. Additional kinetic analysis has been performed on additional fission products. A key result is the verification that SF{sub 6} requires high temperatures for direct fluorination and subsequent volatilization of uranium oxides to UF{sub 6}, and thus is well positioned as a head-end treatment for other separations technologies, such as the volatilization of uranium oxide by NF{sub 3} as reported by colleagues at PNNL, advanced pyrochemical separations or traditional full recycle

  13. Maleic acid treatment of biologically detoxified corn stover liquor

    Science.gov (United States)

    Elimination of microbial and/or enzyme inhibitors from pretreated lignocellulose is critical for effective cellulose conversion and yeast fermentation of liquid hot-water (LHW) pretreated corn stover. In this study, xylan oligomers were hydrolyzed using either maleic acid or hemicellulases. Other so...

  14. Treatment of Natural Peanut Butter with Phytic Acid

    Science.gov (United States)

    Peanut butter may be less allergenic if allergens in the butter exist as insoluble complexes that are not absorbed by the body. We determined that such complexes form in natural peanut butter that is treated with phytic acid. Commercial natural peanut butter (non-hydrogenated, creamy, oil-based, and...

  15. RGD functionalized polymeric nanoparticles targeting periodontitis epithelial cells for the enhanced treatment of periodontitis in dogs.

    Science.gov (United States)

    Yao, Wenxin; Xu, Peicheng; Zhao, Jingjing; Ling, Li; Li, Xiaoxia; Zhang, Bo; Cheng, Nengneng; Pang, Zhiqing

    2015-11-15

    Long term retention of antimicrobials with effective drug concentration in gingival crevicular fluid (GCF) is of vital importance for the treatment of chronic periodontitis. In this study, a novel epithelial cell-targeting nanoparticle drug delivery system by conjugating minocycline-loaded poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) nanoparticles (NP-MIN) with RGD peptide were developed and administrated locally for targeting periodontitis epithelial cells and enhancing the treatment of periodontitis in dogs. Biodegradable NP-MIN was made with an emulsion/solvent evaporation technique. RGD peptide was conjugated to the surface of nanoparticles via Maleimide group reaction with hydrosulfide in RGD peptide (RGD-NP-MIN). Transmission electron microscopy examination and dynamic light scattering results revealed that RGD-NP-MIN had a sphere shape, with a mean diameter around 106nm. In vitro release of minocycline from RGD-NP-MIN showed that RGD modification did not change the remarkable sustained releasing characteristic of NP-MIN. To elucidate the interaction of RGD-NP and epithelial cells, RGD-NP binding, uptake and cellular internalization mechanisms by calu-3 cells were investigated. It was shown RGD modification significantly enhanced nanoparticles binding and uptake by Calu-3 cells, and RGD-NP uptake was an energy-dependent process through receptor-mediated endocytosis. Both clathrin-associated endocytosis and caveolae-dependent endocytosis pathway were involved in the RGD-NP uptake, and the intracellular transport of RGD-NP was related to lysosome and Golgi apparatus. Finally, in vivo pharmacokinetics of minocycline in the periodontal pockets and anti-periodontitis effects of RGD-NP-MIN on periodontitis-bearing dogs were evaluated. After local administration of RGD-NP-MIN, minocycline concentration in gingival crevicular fluid decreased slowly and maintained an effective drug concentration for a longer time than that of NP-MIN. Anti-periodontitis effects

  16. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment

    DEFF Research Database (Denmark)

    Sørensen, Annette; Teller, Philip Johan; Hilstrøm, Troels;

    2008-01-01

    xylose prior to wet explosion. The acid presoaking extracted 63.2% xylose and 5.2% glucose. Direct enzymatic hydrolysis of the presoaked biomass was found to give only low sugar yields of 24-26% glucose. Wet explosion is a pre-treatment method that combines wet-oxidation and steam explosion. The effect...... of wet explosion on non-presoaked and presoaked Miscanthus was investigated using both atmospheric air and hydrogen peroxide as the oxidizing agent. All wet explosion pre-treatments showed to have a disrupting effect on the lignocellulosic biomass, making the sugars accessible for enzymatic hydrolysis......Miscanthus is a high yielding bioenergy crop. In this study we used acid presoaking, wet explosion, and enzymatic hydrolysis to evaluate the combination of the different pre-treatment methods for bioethanol production with Miscanthus. Acid presoaking is primarily carried out in order to remove...

  17. Operational Lessons Learned During Bioreactor Demonstrations for Acid Rock Drainage Treatment

    Science.gov (United States)

    The U.S. Environmental Protection Agency’s Mine Waste Technology Program (MWTP) has emphasized the development of biologically-based treatment technologies for acid rock drainage (ARD). Progressively evolving technology demonstrations have resulted in significant advances in sul...

  18. Operational Lessons Leaned During bioreactor Demonstrations for Acid Rock Drainage Treatment

    Science.gov (United States)

    The U.S. Environmental Protection Agency's Mine Waste Technology Program (MWTP) has emphasized the development of biologically-based treatment technologies for acid rock drainage (ARD). Progressively evolving technology demonstrations have resulted in significant advances in sulf...

  19. Treatment Options for GERD or Acid Reflux Disease: A Review of the Research for Adults

    Science.gov (United States)

    Treatment Options for GERD or Acid Reflux Disease A Review of the Research for Adults Is This Information Right for Me? Yes, if: A doctor said that you have gastroesophageal reflux disease (GERD), a chronic disease that causes ongoing ...

  20. Self-assembling micelle-like nanoparticles with detachable envelopes for enhanced delivery of nucleic acid therapeutics.

    Science.gov (United States)

    Battogtokh, Gantumur; Ko, Young Tag

    2014-03-01

    In spite of the great potential of nucleic acids as therapeutic agents, the clinical application of nucleic acid therapeutics requires the development of effective systemic delivery strategies. In an effort to develop effective nucleic acid delivery systems suitable for clinical application, we previously reported a self-assembling micelle-like nanoparticle that was based on phospholipid-polyethylenimine conjugates, i.e., "micelle-like nanoparticles" (MNPs). In this study, we aimed to improve the system by enhancing the efficiency of intracellular delivery of the payload via pH-responsive detachment of the monolayer envelope and release of the nucleic acid therapeutics upon reaching the target tissues with an acidic pH, e.g., tumors. The acid-cleavable phospholipid-polyethylenimine conjugate was synthesized via hydrazone bond, and acid-cleavable MNPs were then prepared and characterized as before. We evaluated the acid-cleavable MNP construct for in vitro and in vivo nucleic acid delivery efficiency using cultured tumor cells and tumor-bearing mice. The acid-cleavable nanocarrier showed an enhanced cellular delivery at pH 6.5 as compared to pH 7.4, whereas the noncleavable nanocarrier did not show any differences. Tail vein injections also led to enhanced intracellular uptake of the acid-cleavable nanocarrier compared to the noncleavable nanocarrier into tumor cells of tumor-bearing mice although no significant difference was observed in total tumor accumulation.

  1. β-cyclocitral upregulates salicylic acid signalling to enhance excess light acclimation in Arabidopsis.

    Science.gov (United States)

    Lv, Feifei; Zhou, Jun; Zeng, Lizhang; Xing, Da

    2015-08-01

    β-cyclocitral (β-CC), a volatile oxidized derivative of β-carotene, can upregulate the expression of defence genes to enhance excess light (EL) acclimation. However, the signalling cascades underlying this process remain unclear. In this study, salicylic acid (SA) is involved in alleviating damage to promote β-CC-enhanced EL acclimation. In early stages of EL illumination, β-CC pretreatment induced SA accumulation and impeded reactive oxygen species (ROS) production in the chloroplast. A comparative analysis of two SA synthesis pathways in Arabidopsis revealed that SA concentration mainly increased via the isochorismate synthase 1 (ICS1)-mediated isochorismate pathway, which depended on essential regulative function of enhanced disease susceptibility 1 (EDS1). Further results showed that, in the process of β-CC-enhanced EL acclimation, nuclear localization of nonexpressor of pathogenesis-related genes 1 (NPR1) was regulated by SA accumulation and NPR1 induced subsequent transcriptional reprogramming of gluthathione-S-transferase 5 (GST5) and GST13 implicated in detoxification. In summary, β-CC-induced SA synthesis contributes to EL acclimation response by decreasing ROS production in the chloroplast, promoting nuclear localization of NPR1, and upregulating GST transcriptional expression. This process is a possible molecular regulative mechanism of β-CC-enhanced EL acclimation.

  2. Recent Advances in the Imaging Diagnosis of Hepatocellular Carcinoma: Value of Gadoxetic Acid-Enhanced MRI.

    Science.gov (United States)

    Joo, Ijin; Lee, Jeong Min

    2016-02-01

    Magnetic resonance imaging (MRI) using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DPTA), or gadoxetic acid for short, is a hepatocyte-specific contrast agent which is now increasingly used for the detection and characterization of focal hepatic lesions, particularly in patients at high-risk of developing hepatocellular carcinomas (HCC). In fact, several recent guidelines now recognize gadoxetic acid-enhanced MRI (Gd-EOB-MRI) as the primary diagnostic imaging modality for the noninvasive diagnosis of HCC, although it must be noted that several major guidelines still include only extracellular contrast media-enhanced computed tomography and MRI. The primary merits of Gd-EOB-MRI lie in the fact that it can provide not only dynamic imaging, but also hepatobiliary phase (HBP) imaging which can lead to high lesion-to-liver contrast and give additional information regarding hepatocyte uptake via organic anion transporting polypeptides. This, in turn, allows higher sensitivity in detecting small HCCs and helps provide additional information regarding the multistep process of hepatocarcinogenesis. Indeed, many recent studies have investigated the diagnostic value of Gd-EOB-MRI for early HCCs as well as its role as a potential imaging biomarker in predicting outcome. We herein review the recent advances in the imaging diagnosis of HCCs focusing on the applications of Gd-EOB-MRI and the challenging issues that remain. PMID:26989660

  3. Biochar enhances Aspergillus niger rock phosphate solubilization by increasing organic acid production and alleviating fluoride toxicity.

    Science.gov (United States)

    Mendes, Gilberto de Oliveira; Zafra, David Lopez; Vassilev, Nikolay Bojkov; Silva, Ivo Ribeiro; Ribeiro, José Ivo; Costa, Maurício Dutra

    2014-05-01

    During fungal rock phosphate (RP) solubilization, a significant quantity of fluoride (F(-)) is released together with phosphorus (P), strongly inhibiting the process. In the present study, the effect of two F(-) adsorbents [activated alumina (Al2O3) and biochar] on RP solubilization by Aspergillus niger was examined. Al2O3 adsorbed part of the F(-) released but also adsorbed soluble P, which makes it inappropriate for microbial RP solubilization systems. In contrast, biochar adsorbed only F(-) while enhancing phosphate solubilization 3-fold, leading to the accumulation of up to 160 mg of P per liter. By comparing the values of F(-) measured in solution at the end of incubation and those from a predictive model, it was estimated that up to 19 mg of F(-) per liter can be removed from solution by biochar when added at 3 g liter(-1) to the culture medium. Thus, biochar acted as an F(-) sink during RP solubilization and led to an F(-) concentration in solution that was less inhibitory to the process. In the presence of biochar, A. niger produced larger amounts of citric, gluconic, and oxalic acids, whether RP was present or not. Our results show that biochar enhances RP solubilization through two interrelated processes: partial removal of the released F(-) and increased organic acid production. Given the importance of organic acids for P solubilization and that most of the RPs contain high concentrations of F(-), the proposed solubilization system offers an important technological improvement for the microbial production of soluble P fertilizers from RP.

  4. Okadaic acid and trifluoperazine enhance Agrobacterium-mediated transformation in eastern white pine.

    Science.gov (United States)

    Tang, Wei; Lin, Jinxing; Newton, Ronald J

    2007-05-01

    Mature zygotic embryos of recalcitrant Christmas tree species eastern white pine (Pinus strobus L.) were used as explants for Agrobacterium tumefaciens strain GV3101-mediated transformation using the uidA (beta-Glucuronidase) gene as a reporter. Influence of the time of sonication and the concentrations of protein phosphatase inhibitor (okadaic acid) and kinase inhibitor (trifluoperazine) on Agrobacterium-mediated transformation have been evaluated. A high transformation frequency was obtained after embryos were sonicated for 45-50 s, or treated with 1.5-2.0 microM okadaic acid or treated with 100-200 microM trifluoperazine, respectively. Protein phosphatase and kinase inhibitors enhance Agrobacterium-mediated transformation in eastern white pine. A 2-3.5-fold higher rate of hygromycin-resistant callus was obtained with an addition of 2 microM okadaic acid or 150 microM trifluoperazine or sonicated embryos for 45 s. Stable integration of the uidA gene in the plant genome of eastern white pine was confirmed by polymerase chain reaction (PCR), Southern and northern blot analyses. These results demonstrated that a stable and enhanced transformation system has been established in eastern white pine and this system would provide an opportunity to transfer economically important genes into this Christmas tree species.

  5. Oleic acid induces smooth muscle foam cell formation and enhances atherosclerotic lesion development via CD36

    Directory of Open Access Journals (Sweden)

    Tang Bing

    2011-04-01

    Full Text Available Abstract Background Elevated plasma free fatty acid (FFA levels have been linked to the development of atherosclerosis. However, how FFA causes atherosclerosis has not been determined. Because fatty acid translocase (FAT/CD36 is responsible for the uptake of FFA, we hypothesized that the atherogenic effects of FFA may be mediated via CD36. Results We tested this hypothesis using cultured rat aortic smooth muscle cells (SMCs treated with oleic acid (OA. We found that OA induces lipid accumulation in SMCs in a dose dependent manner. Rat aortic SMCs treated for 48 hours with OA (250 μmol/L became foam cells based on morphological (Oil Red O staining and biochemical (5 times increase in cellular triglyceride criteria. Moreover, specific inhibition of CD36 by sulfo-N-succinimidyl oleate significantly attenuated OA induced lipid accumulation and foam cell formation. To confirm these results in vivo, we used ApoE-deficient mice fed with normal chow (NC, OA diet, NC plus lipolysis inhibitor acipimox or OA plus acipimox. OA-fed mice showed increased plasma FFA levels and enhanced atherosclerotic lesions in the aortic sinus compared to the NC group (both p 5 μm2 vs. OA plus acipimox: 2.60 ± 0.10 ×105 μm2, p p Conclusions These findings suggest that OA induces smooth muscle foam cell formation and enhances atherosclerotic lesions in part though CD36. Furthermore, these findings provide a novel model for the investigation of atherosclerosis.

  6. Enhancement of solubility and mass transfer coefficient of salicylic acid through hydrotropy

    Institute of Scientific and Technical Information of China (English)

    S.THENESHKUMAR; D.GNANAPRAKASH; N.NAGENDRA GANDHI

    2009-01-01

    This study deals with the effect of hydrotropes on the solubility and mass transfer coefficient of salicylic acid.The solubility and mass transfer studies were performed using the hydrotropes,i.e.,sodium acetate,sodium salicylate,citric acid,and urea at concentrations of 0~3.0 mol/L and system temperatures of 303-333 K.It was found that the solubility and mass transfer coefficient of salicylic acid increases with increase in hydrotrope concentration and also with system temperature.All hydrotropes used in this work showed an enhancement in solubility and mass transfer coefficient to difierent degrees.The maximum enhancement factor values were determined for all hydrotropes used in this study.The highest value was 28.08 for solubility studies and 10.42 for mass trailsfer studies.The performance of hydrotropes Was measured in terms of the Setschenow constant(Ks).The highest value observed was 0.696.

  7. Therapeutic paracetamol treatment in older persons induces dietary and metabolic modifications related to sulfur amino acids

    OpenAIRE

    Pujos-Guillot, Estelle; Pickering, Gisèle; Lyan, Bernard; Ducheix, Gilles; Brandolini-Bunlon, Marion; Glomot, Françoise; Dardevet, Dominique; Dubray, Claude; PAPET, Isabelle

    2011-01-01

    Sulfur amino acids are determinant for the detoxification of paracetamol (N-acetyl-p-aminophenol) through sulfate and glutathione conjugations. Long-term paracetamol treatment is common in the elderly, despite a potential cysteine/glutathione deficiency. Detoxification could occur at the expense of anti-oxidative defenses and whole body protein stores in elderly. We tested how older persons satisfy the extra demand in sulfur amino acids induced by long-term paracetamol treatment, focusing on ...

  8. Enhanced sidewall functionalization of single-wall carbon nanotubes using nitric acid.

    Science.gov (United States)

    Tobias, Gerard; Shao, Lidong; Ballesteros, Belin; Green, Malcolm L H

    2009-10-01

    When a sample of as-made single-walled carbon nanotubes (SWNTs) is treated with nitric acid, oxidation debris are formed due to the functionalization (mainly carboxylation) of the amorphous carbon present in the sample and a continuous coating along the carbon nanotube walls is created preventing the sidewall functionalization of the SWNTs. This oxidation debris can be easily removed by an aqueous base wash leaving behind a sample with a low degree of functionality. After removal of the amorphous carbon (by steam purification) from a sample of as-made SWNTs, the resulting purified SWNTs are readily carboxylated on the walls by nitric acid treatment. The use of steam for the purification of SWNTs samples allows the removal of the amorphous carbon and graphitic layers coating the metal particles present in the sample without altering the tubular structure of the SWNTs. The exposed metal particles can then be easily removed by an acid wash. Comparison between the steam treatment and molten sodium hydroxide treatment is made.

  9. Alcohol Treatment and Cognitive-Behavioral Therapy: Enhancing Effectiveness by Incorporating Spirituality and Religion

    Science.gov (United States)

    Hodge, David R.

    2011-01-01

    Cognitive-behavioral therapy (CBT) is an effective modality for the treatment of alcoholism. Given widespread interest in incorporating spirituality into professional treatment, this article orients practitioners to spiritually modified CBT, an approach that may enhance outcomes with some spiritually motivated clients. More specifically, by…

  10. Inulin Derivatives Obtained Via Enhanced Microwave Synthesis for Nucleic Acid Based Drug Delivery.

    Science.gov (United States)

    Sardo, Carla; Craparo, Emanuela Fabiola; Fiorica, Calogero; Giammona, Gaetano; Cavallaro, Gennara

    2015-01-01

    A new class of therapeutic agents with a high potential for the treatment of different socially relevant human diseases is represented by Nucleic Acid Based Drugs (NABD), including small interfering RNAs (siRNA), decoy oligodeoxynucleotides (decoy ODN) and antisense oligonucleotides (ASOs). Although NABD can be engineered to be specifically directed against virtually any target, their susceptibility to nuclease degradation and the difficulty of delivery into target tissues severely limit their use in clinical practice and require the development of an appropriate nanostructured delivery system. For delivery of NABD, Inulin (Inu), a natural, water soluble and biocompatible polysaccharide, was derivatized by Spermine (Spm), a flexible molecule with four amine groups that, having pKa values in the range between 8-11, is mainly in the protonated form at pH 7.4. The synthesis of related copolymers (Inu-Spm) was performed by a two step reaction, using a method termed Enhanced Microwave Synthesis (EMS) which has the advantage, compared to conventional microwave reaction, that high amount of energy can be applied to the reaction system, by administering microwave irradiation and simultaneously controlling the temperature in the reaction vessel with cooled air. The synthesized inulin derivatives were characterized by FT-IR spectra and (1)H-NMR. INU-Spm derivatives with a degree of derivatization of about 14 % mol/mol were obtained. These polycations were tested to evaluate their ability to form non covalent complexes with genetic material (polyplexes). Agarose gel retardation assays showed that the obtained copolymers are able to electrostatically interact with DNA duplex to form polyplexes at different c/p weight ratios. Moreover, light scattering studies, performed to analyze size and z-potential of polyplexes, evidenced that copolymers are able to interact with genetic material leading to the formation of nanoscaled systems. In addition, biocompatibility of polyplexes

  11. Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor

    International Nuclear Information System (INIS)

    Current therapy for skin wound healing still relies on skin transplantation. Many studies were done to try to find out ways to replace skin transplantation, but there is still no effective alternative therapy. In this study, decellularized scaffolds were prepared from pig peritoneum by a series of physical and chemical treatments, and scaffolds loaded with hyaluronic acid (HA) and epidermal growth factor (EGF) were tested for their effect on wound healing. MTT assay showed that EGF increased NIH3T3 cell viability and confirmed that EGF used in this study was biologically active in vitro. Scanning electron microscope (SEM) showed that HA stably attached to scaffolds even after soaking in PBS for 48 h. ELISA assay showed that HA increased the adsorption of EGF to scaffolds and sustained the release of EGF from scaffolds. Animal study showed that the wounds covered with scaffolds containing HA and EGF recovered best among all 4 groups and had wound healing rates of 49.86%, 70.94% and 87.41% respectively for days 10, 15 and 20 post-surgery compared to scaffolds alone with wound healing rates of 29.26%, 42.80% and 70.14%. In addition, the wounds covered with scaffolds containing EGF alone were smaller than no EGF scaffolds on days 10, 15 and 20 post-surgery. Hematoxylin–Eosin (HE) staining confirmed these results by showing that on days 10, 15 and 20 post-surgery, the thicker epidermis and dermis layers were observed in the wounds covered with scaffolds containing HA and EGF than scaffolds alone. In addition, the thicker epidermis and dermis layers were also observed in the wounds covered with scaffolds containing EGF than scaffolds alone. Skin appendages were observed on day 20 only in the wound covered with scaffolds containing HA and EGF. These results demonstrate that the scaffolds containing HA and EGF can enhance wound healing. - Highlights: • HA can increase the adsorption of EGF to decellularized scaffolds. • HA can sustain the release of EGF from

  12. Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Su, Zhongchun; Ma, Huan; Wu, Zhengzheng [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Jinan University, Guangzhou 510632 (China); Zeng, Huilan [Department of Hematology, The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Li, Zhizhong [Department of Bone, The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Wang, Yuechun; Liu, Gexiu [Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632 (China); Xu, Bin; Lin, Yongliang; Zhang, Peng [Grandhope Biotech Co., Ltd., Building D, #408, Guangzhou International Business Incubator, Guangzhou Science Park, Guangzhou 510663, Guangdong (China); Wei, Xing, E-mail: wei70@hotmail.com [Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Lab for Genetic Medicine of Guangdong Province, Jinan University, Guangzhou 510632 (China)

    2014-11-01

    Current therapy for skin wound healing still relies on skin transplantation. Many studies were done to try to find out ways to replace skin transplantation, but there is still no effective alternative therapy. In this study, decellularized scaffolds were prepared from pig peritoneum by a series of physical and chemical treatments, and scaffolds loaded with hyaluronic acid (HA) and epidermal growth factor (EGF) were tested for their effect on wound healing. MTT assay showed that EGF increased NIH3T3 cell viability and confirmed that EGF used in this study was biologically active in vitro. Scanning electron microscope (SEM) showed that HA stably attached to scaffolds even after soaking in PBS for 48 h. ELISA assay showed that HA increased the adsorption of EGF to scaffolds and sustained the release of EGF from scaffolds. Animal study showed that the wounds covered with scaffolds containing HA and EGF recovered best among all 4 groups and had wound healing rates of 49.86%, 70.94% and 87.41% respectively for days 10, 15 and 20 post-surgery compared to scaffolds alone with wound healing rates of 29.26%, 42.80% and 70.14%. In addition, the wounds covered with scaffolds containing EGF alone were smaller than no EGF scaffolds on days 10, 15 and 20 post-surgery. Hematoxylin–Eosin (HE) staining confirmed these results by showing that on days 10, 15 and 20 post-surgery, the thicker epidermis and dermis layers were observed in the wounds covered with scaffolds containing HA and EGF than scaffolds alone. In addition, the thicker epidermis and dermis layers were also observed in the wounds covered with scaffolds containing EGF than scaffolds alone. Skin appendages were observed on day 20 only in the wound covered with scaffolds containing HA and EGF. These results demonstrate that the scaffolds containing HA and EGF can enhance wound healing. - Highlights: • HA can increase the adsorption of EGF to decellularized scaffolds. • HA can sustain the release of EGF from

  13. Fatty acids in treatment and prevention of depression

    OpenAIRE

    Wilczyńska, Agnieszka

    2013-01-01

    The increase of incident rates for depression and other psychiatric disorders is a serious threat for all communities.The study presents data verifying the relationship between the level of omega-3 PUFAs in the blood and an increased risk of depression, including the parallel standard therapy with antidepressants or not.There is an increasing number of evidences that fatty acids like DHA, AA and EPA are linked to depression. In epidemiological studies and clinical trials a correlation between...

  14. Hydrothermal treatment of titanium alloys for the enhancement of osteoconductivity.

    Science.gov (United States)

    Zuldesmi, Mansjur; Waki, Atsushi; Kuroda, Kensuke; Okido, Masazumi

    2015-04-01

    The surface wettability of implants is a crucial factor in their osteoconductivity because it influences the adsorption of cell-attached proteins onto the surface. In this study, a single-step hydrothermal surface treatment using distilled water at a temperature of 180°C for 3h was applied to titanium (Ti) and its alloys (Ti-6Al-4V, Ti-6Al-7Nb, Ti-29Nb-13Ta-4.6Zr, Ti-13Cr-1Fe-3Al; mass%) and compared with as-polished Ti implants and with implants produced by anodizing Ti in 0.1M of H3PO4 with applied voltages from 0V to 150V at a scanning rate of 0.1Vs(-1). The surface-treated samples were stored in a five time phosphate buffered saline (×5 PBS(-)) solution to prevent increasing the water contact angle (WCA) with time. The surface characteristics were evaluated using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy, surface roughness, and contact angle measurement using a 2μL droplet of distilled water. The relationship between WCA and osteoconductivity at various surface modifications was examined using in vivo tests. The results showed that a superhydrophilic surface with a WCA≤10° and a high osteoconductivity (RB-I) of up to 50% in the cortical bone part, about four times higher than the as-polished Ti and Ti alloys, were provided by the combination of the hydrothermal surface treatment and storage in ×5 of PBS(-).

  15. Abscisic Acid Regulation of Root Hydraulic Conductivity and Aquaporin Gene Expression Is Crucial to the Plant Shoot Growth Enhancement Caused by Rhizosphere Humic Acids.

    Science.gov (United States)

    Olaetxea, Maite; Mora, Verónica; Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Zamarreño, Angel M; Iriarte, Juan C; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón; Baigorri, Roberto; García-Mina, Jose M

    2015-12-01

    The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface.

  16. Topical pyruvic acid (70% versus topical salicylic acid (16.7% compound in treatment of plantar warts: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Zabihollah Shahmoradi

    2015-01-01

    Conclusion: Topical pyruvic acid and compound salicylic acid had the same efficacy and complications in treating plantar warts. Decision for choosing the treatment can be made based on the costs and individual factors as well as patients preferences.

  17. Phytochemical and Morphological Attributes of Borage (Borago officinalis Affected by Salicylic Acid as an Enhancer

    Directory of Open Access Journals (Sweden)

    Vahid AKBARPOUR

    2014-06-01

    Full Text Available The objective of this study was to determine the response of borage (Borago officinalis phytochemical and morphological attributes in relation to application of different levels of salicylic acid. Borage planted in pots and salicylic acid was sprayed on the shoots at concentrations of 0, 0.5, 1.0 and 1.5 mM with 6 replications in a completely randomized block design. Morphological attributes such as shoot height, shoot dry matter, flower dry matter, flower weight and shoot wet weight were measured. In the other hand, phytochemical attributes such as ion leakage, chlorophyll a, b, carotenoid, and antioxidant activity were also investigated under induced stress by different concentrations of salicylic acid. Results showed that some morphological traits such as shoot dry matter (31.23%, flower dry matter (20.43%, flower weight (38.54 g, shoot wet weight (109.43 g, possessed the highest values under treatment of 1.5 mM salicylic acid. Also, some phytochemical traits in plants treated with 1.5 mM salicylic acid reached the highest values during the growth stage with the exception of ion leakage (0.54%. These measured traits with higher values consisted of chlorophyll a (4.16 mg.l-1, chlorophyll b (1.65 mg.l-1, total chlorophyll (5.81 mg.l-1, carotenoid (1.18 mg.l-1, antioxidant activity (53.73%.

  18. Retinoic acid and glycolic acid combination in the treatment of acne scars

    OpenAIRE

    B S Chandrashekar; K R Ashwini; Vani Vasanth; Shreya Navale

    2015-01-01

    Introduction: Acne is a prevalent condition in society affecting nearly 80-90% of adolescents often resulting in secondary damage in the form of scarring. Retinoic acid (RA) is said to improve acne scars and reduce postinflammatory hyperpigmentation while glycolic acid (GA) is known for its keratolytic properties and its ability to reduce atrophic acne scars. There are studies exploring the combined effect of retinaldehyde and GA combination with positive results while the efficacy of retinoi...

  19. Activation of peroxisome proliferator-activated receptor-α enhances fatty acid oxidation in human adipocytes

    International Nuclear Information System (INIS)

    Highlights: → PPARα activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. → PPARα activation also increased insulin-dependent glucose uptake in human adipocytes. → PPARα activation did not affect lipid accumulation in human adipocytes. → PPARα activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-α (PPARα) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPARα in adipocytes have been unclarified. We examined the functions of PPARα using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPARα by GW7647, a potent PPARα agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPARγ, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPARα activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPARγ is activated. On the other hand, PPARα activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPARα-dependent manner. Moreover, PPARα activation increased the production of CO2 and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPARα stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPARα agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected effects of PPARα activation are very valuable for managing diabetic conditions accompanied by obesity, because PPAR

  20. Novel Antidepressant-Like Activity of Caffeic Acid Phenethyl Ester Is Mediated by Enhanced Glucocorticoid Receptor Function in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Mi-Sook Lee

    2014-01-01

    Full Text Available Caffeic acid phenethyl ester (CAPE is an active component of propolis that has a variety of potential pharmacological effects. Although we previously demonstrated that propolis has antidepressant-like activity, the effect of CAPE on this activity remains unknown. The present study assessed whether treatment with CAPE (5, 10, and 20 µmol/kg for 21 days has an antidepressant-like effect in mice subjected to chronic unpredictable stress via tail suspension (TST and forced swim (FST tests. CAPE administration induced behaviors consistent with an antidepressant effect, evidenced by decreased immobility in the TST and FST independent of any effect on serum corticosterone secretion. Western blots, conducted subsequent to behavioral assessment, revealed that CAPE significantly decreased glucocorticoid receptor phosphorylation at S234 (pGR(S234, resulting in an increased pGR(S220/S234 ratio. We also observed negative correlations between pGR(S220/(S234 and p38 mitogen-activated protein kinase (p38MAPK phosphorylation, which was decreased by CAPE treatment. These findings suggest that CAPE treatment exerts an antidepressant-like effect via downregulation of p38MAPK phosphorylation, thereby contributing to enhanced GR function.

  1. Betulinic acid selectively increases protein degradation and enhances prostate cancer-specific apoptosis: possible role for inhibition of deubiquitinase activity.

    Directory of Open Access Journals (Sweden)

    Teresita Reiner

    Full Text Available Inhibition of the ubiquitin-proteasome system (UPS of protein degradation is a valid anti-cancer strategy and has led to the approval of bortezomib for the treatment of multiple myeloma. However, the alternative approach of enhancing the degradation of oncoproteins that are frequently overexpressed in cancers is less developed. Betulinic acid (BA is a plant-derived small molecule that can increase apoptosis specifically in cancer but not in normal cells, making it an attractive anti-cancer agent. Our results in prostate cancer suggested that BA inhibited multiple deubiquitinases (DUBs, which resulted in the accumulation of poly-ubiquitinated proteins, decreased levels of oncoproteins, and increased apoptotic cell death. In normal fibroblasts, however, BA did not inhibit DUB activity nor increased total poly-ubiquitinated proteins, which was associated with a lack of effect on cell death. In the TRAMP transgenic mouse model of prostate cancer, treatment with BA (10 mg/kg inhibited primary tumors, increased apoptosis, decreased angiogenesis and proliferation, and lowered androgen receptor and cyclin D1 protein. BA treatment also inhibited DUB activity and increased ubiquitinated proteins in TRAMP prostate cancer but had no effect on apoptosis or ubiquitination in normal mouse tissues. Overall, our data suggests that BA-mediated inhibition of DUBs and induction of apoptotic cell death specifically in prostate cancer but not in normal cells and tissues may provide an effective non-toxic and clinically selective agent for chemotherapy.

  2. Neonatal fibroblast growth factor treatment enhances cocaine sensitization.

    Science.gov (United States)

    Clinton, Sarah M; Turner, Cortney A; Flagel, Shelly B; Simpson, Danielle N; Watson, Stanley J; Akil, Huda

    2012-11-01

    Growth factors are critical in neurodevelopment and neuroplasticity, and recent studies point to their involvement in addiction. We previously reported increased levels of basic fibroblast growth factor (FGF2) in high novelty/drug-seeking rats (bred high responders, bHR) compared to low novelty/drug-seeking rats(bred low responders, bLRs). The present study asked whether an early life manipulation of the FGF system(a single FGF2 injection on postnatal day 2) can impact cocaine sensitization and associated neurobiological markers in adult bHR/bLR animals. Neonatal FGF2- and vehicle-treated bHR/bLR rats were sensitized to cocaine(7 daily injections, 15 mg/kg/day, i.p.) in adulthood. Neonatal FGF2 markedly increased bLRs' typically low psychomotor sensitization to cocaine (day 7 locomotor response to cocaine), but had little effect on bHRs' cocaine sensitization. Gene expression studies examined dopaminergic molecules as well as FGF2 and the FGFR1 receptor in cocaine naïve animals, to investigate possible neurobiological alterations induced by neonatal FGF2 exposure that may influence behavioral response to cocaine. bLRs showed decreased tyrosine hydroxylase in the ventral tegmental area (VTA), decreased D1 and increased D2 receptor expression in the nucleus accumbens core, as well as decreased FGF2 in the VTA, substantia nigra, accumbens core, and caudate putamen compared to bHRs. Neonatal FGF2 selectively increased D1 receptor and FGF2 mRNA in the accumbens core of bLRs, which may contribute to their heightened cocaine sensitization. Our results suggest increased FGF2 in the mesodopaminergic circuit (as in baseline bHRs and neonatal FGF2-exposed bLRs vs. baseline bLRs) enhances an individual's susceptibility to cocaine sensitization and may increase vulnerability to drug seeking and addiction. PMID:22819969

  3. Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production.

    Science.gov (United States)

    Ra, Chae Hun; Nguyen, Trung Hau; Jeong, Gwi-Taek; Kim, Sung-Koo

    2016-06-01

    Hyper thermal (HT) acid hydrolysis of Kappaphycus alvarezii, a red seaweed, was optimized to 12% (w/v) seaweed slurry content, 180mM H2SO4 at 140°C for 5min. The maximum monosaccharide concentration of 38.3g/L and 66.7% conversion from total fermentable monosaccharides of 57.6g/L with 120gdw/L K. alvarezii slurry were obtained from HT acid hydrolysis and enzymatic saccharification. HT acid hydrolysis at a severity factor of 0.78 efficiently converted the carbohydrates of seaweed to monosaccharides and produced a low concentration of inhibitory compounds. The levels of ethanol production by separate hydrolysis and fermentation with non-adapted and adapted Kluyveromyces marxianus to high concentration of galactose were 6.1g/L with ethanol yield (YEtOH) of 0.19 at 84h and 16.0g/L with YEtOH of 0.42 at 72h, respectively. Development of the HT acid hydrolysis process and adapted yeast could enhance the overall ethanol fermentation yields of K. alvarezii seaweed. PMID:26950757

  4. Influence of Gibberellic Acid on Enhancement Growth of Aspergillus Niger for Chitosan Production

    International Nuclear Information System (INIS)

    Chitosan is obtained by chemical conversion of chitin, which is a constituent of the exoskeleton of crustacean and insects. An alternative source of chitosan is the cell wall of fungi. The waste biomass of Aspergillus niger, following citric acid production, was used as a source for fungal chitosan extraction. In this research we study the effect of different production media, different concentrations of molass, the effect of addition of gibberellic acid at different concentrations (1-5 mg/l) on mycelial growth and chitosan production from Aspergillus niger. Studying the effect of different incubation time. The results showed that, the best production medium was molass salt medium (MSM) with molass concentration 50 g/l and incubation time 48h. Maximum enhancement was observed at 2 mg gibberellic acid. Gibberellic acid at high concentrations inhibit both growth and chitosan content. The produced fungal chitosan was characterized with deacetylation degree of 81.3%, a molecular weight of 24.2 kDa and their FT-IR spectra were compared with that of shrimp chitosan.

  5. Enhanced conductivity of aluminum doped ZnO films by hydrogen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H.P. [Department of Electrical Engineering and Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Wang, F.H., E-mail: fansen@dragon.nchu.edu.t [Department of Electrical Engineering and Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Wu, J.Y.; Kung, C.Y.; Liu, H.W. [Department of Electrical Engineering and Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)

    2010-10-01

    Aluminum doped zinc oxide (AZO) thin films prepared by radio-frequency (RF) magnetron sputtering at various RF power were treated by hydrogen plasma to enhance the characteristics for transparent electrode applications. The hydrogen plasma treatment was carried out at 300 {sup o}C in a plasma enhanced chemical vapor deposition system. X-ray diffraction analysis shows that all AZO films have a (002) preferred orientation and film crystallinity seems no significant change after plasma treatment. The plasma treatment not only significantly decreases film resistivity but enhances electrical stability as aging in air ambient. The improved electrical properties are due to desorption of weakly bonded oxygen species, formation of Zn-H type species and passivation of deep-level defects during plasma treatment.

  6. Design and evaluation of Lumefantrine – Oleic Acid Self Nanoemulsifying Ionic Complex for Enhanced Dissolution

    Directory of Open Access Journals (Sweden)

    Pradeep Vavia

    2013-03-01

    Full Text Available Background:Lumefantrine, an antimalarial molecule has very low and variable bioavailability owing to its extremely poor solubility in water. It is recommended to be taken with milk to enhance its solubility and bioavailability. The aim of present study was to develop a Self Nanoemulsifying Delivery system (SNEDs of lumefantrine (LF to achieve rapid and complete dissolution independent of food-fat and surfactant in dissolution media.Methods:Solubility of LF in oil, co-solvent/co-surfactant and surfactant solution and emulsification efficiency of surfactant were analyzed to optimize the LF loaded self nanoemulsifying preconcentrate. Effect of LF-oleic acid complexation on emulsification, droplet size, zeta potential and dissolution were investigated. Effect of milk concentration and fat content on saturation solubility and dissolution of LF was investigated. Dissolution of marketed formulation and LF-SNEDs was carried out in pH 1.2 and pH 6.8 phosphate buffer.Results:LF exhibited very high solubility in oleic acid owing to complexation between tertiary amine of LF and carboxyl group of oleic acid (OA. Cremophore EL and medium chain monoglyceride were selected surfactant and co-surfactant, respectively. Significantly smaller droplet size (37 nm, shift in zeta potential from negative to positive value, very high drug loading in lipid based system (> 10%, no precipitation after dissolution are the major distinguish characteristics contributed by LF-OA complex in the SNED system. Saturation solubility and dissolution study in milk containing media pointed the significant increment in solubility of LF in the presence of milk-food fat. LF-SNEDs showed > 90% LF release within 30 min in pH 1.2 while marketed tablet showed almost 0% drug release.Conclusion:Self nanoemulsification promoting ionic complexation between basic drug and oleic acid hold great promise in enhancing solubility of hydrophobic drugs.

  7. Degradation of Acid Cyanide Poison in Rubber Seed (Hevea brasiliensis) after Treatment with Rice Husk Ash

    OpenAIRE

    Dewi Fortuna; Abdul Rahimsyah; Yuniwati Puspitasri

    2015-01-01

    Rubber seed (Hevea brasiliensis) contains protein (17.41 %) and non-essential amino acid cysteine (0.78 %) and acid cyanide poison (186.00 mg/kg). The purpose of this research was to determine the effect of rice husk ash on degradation of acid cyanide in rubber seed. This research used Completely Randomized Design (CRD) using treatment of rice husk ash concentration with 5 levels of treatments (45; 60; 75; 90; 105 %) and 4 replications. The result showed nonsignificant differences (p>0.05)...

  8. New concepts of microbial treatment processes for the nitrogen removal: effect of protein and amino acids degradation.

    Science.gov (United States)

    González-Martínez, Alejandro; Calderón, Kadiya; González-López, Jesús

    2016-05-01

    High concentrations of proteins and amino acids can be found in wastewater and wastewater stream produced in anaerobic digesters, having shown that amino acids could persist over different managements for nitrogen removal affecting the nitrogen removal processes. Nitrogen removal is completely necessary because of their implications and the significant adverse environmental impact of ammonium such as eutrophication and toxicity to aquatic life on the receiving bodies. In the last decade, the treatment of effluents with high ammonium concentration through anammox-based bioprocesses has been enhanced because these biotechnologies are cheaper and more environmentally friendly than conventional technologies. However, it has been shown that the presence of important amounts of proteins and amino acids in the effluents seriously affects the microbial autotrophic consortia leading to important losses in terms of ammonium oxidation efficiency. Particularly the presence of sulfur amino acids such as methionine and cysteine has been reported to drastically decrease the autotrophic denitrification processes as well as affect the microbial community structure promoting the decline of ammonium oxidizing bacteria in favor of other phylotypes. In this context we discuss that new biotechnological processes that improve the degradation of protein and amino acids must be considered as a priority to increase the performance of the autotrophic denitrification biotechnologies.

  9. Systematic Procedure for Integrated Process Operation: Reverse Electro-Enhanced Dialysis (REED) during Lactic Acid Fermentation

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Jørgensen, Sten Bay; Jonsson, Gunnar Eigil

    2011-01-01

    The integration of lactic acid fermentation and Reverse Electro-Enhanced Dialysis (REED) is investigated based upon previously developed mathematical models. A goal driven process and operation design procedure is proposed and partially investigated. The conceptual analysis of the processes...... integration shows the need for an additional pH controller in the fermenten A PI controller is implemented and tested. The complete control structure for the integrated system consists of this PI controller in the fermenter plus a previously developed (Prado-Rubio et al., 2010) input resetting control...

  10. Fatty acids in treatment and prevention of depression

    Directory of Open Access Journals (Sweden)

    Wilczyńska, Agnieszka

    2013-07-01

    Full Text Available The increase of incident rates for depression and other psychiatric disorders is a serious threat for all communities.The study presents data verifying the relationship between the level of omega-3 PUFAs in the blood and an increased risk of depression, including the parallel standard therapy with antidepressants or not.There is an increasing number of evidences that fatty acids like DHA, AA and EPA are linked to depression. In epidemiological studies and clinical trials a correlation between the decline of omega-3 PUFA intake and an increasing risk for developing depression is considered.

  11. EVALUATION OF SUGARCANE BAGASSE ACID HYDROLYZATE TREATMENTS FOR XYLITOL PRODUCTION

    OpenAIRE

    P.V. Gurgel; S.A. FURLAN; S.E.R. MARTINEZ; I.M. MANCILHA

    1998-01-01

    Acid sugarcane bagasse hydrolyzate was submitted to pH shifts in order to remove toxic compounds from the medium. The hydrolyzate was treated with bases containing mono-, di- or tri-valent cations and H2SO4, and its performance as a fermentation medium was evaluated by the production of xylitol by Candida guilliermondii FTI 20037. The use of bases containing mono-valent cations was not an efficient method of detoxification, and the use of a tri-valent cation did not show any detectable improv...

  12. Treatment of Sebacic Acid Industrial Wastewater by Extraction Process Using Castor Oil Acid as Extractant*

    Institute of Scientific and Technical Information of China (English)

    徐航; 周全; 王金福

    2013-01-01

    Wastewater containing high concentrations of phenol and sodium sulfate is generated in sebacic acid (SA) industry. Castor oil acid, a raw material for producing SA, can be used to extract phenol from wastewater in order to reduce the amount of phenol used in the process and discharge of phenol. The results show that the extrac-tion mechanism is that hydroxyl group of phenol is linked to carboxyl group of castor oil acid by hydrogen bond. The extraction process approaches equilibrium in 30 min. Extraction ratio increases with the increase of sodium sulfate and castor oil acid, and decreases as phenol increases. When the oil-water ratio is 1︰3, the optimal distribu-tion coefficient of 40 is obtained. Phenol saturation concentration in castor oil acid is 1.03 mol·L−1 after extraction for 4 times. The equilibrium constant (Kex) at 25 °C is 8.41 and the endothermic enthalpy (ΔH) is 1.513 kJ·mol−1. The Gibbs free energy (ΔG) is−5.277 kJ·mol−1 and the value ofΔS is calculated to be 22.3 J·mol−1·K−1.

  13. Mechanism and controlling strategy of the production and accumulation of propionic acid for anaerobic wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    任南琪; 赵丹; 陈晓蕾; 李建政

    2002-01-01

    The production and accumulation of propionic acid affect significantly anaerobic wastewater treatment system, but the reasons are not approached until now. Based on the results of continuous-flow tests and the analysis of biochemistry and ecology, two mechanisms of producing propionic acid have been put forward. It is demonstrated that the reasons of propionic acid production and accumulation are not caused by higher hydrogen partial pressure. The combination of specific pH value and ORP is the ecological factor affecting propionic acid production, and the equilibrium regulation of NADH/NAD+ ratio in cells is the physiological factor. Meanwhile, it is put forward that using the two-phase anaerobic treatment process and the ethanol type fermentation in anaerobic reactor to avoid propionic acid accumulation are efficient methods.

  14. Physical and chemical treatments for enhancing seed germination of Oldman saltbush (Atriplex nummularia)

    International Nuclear Information System (INIS)

    This study was conducted to improve the seed germination of Oldman saltbush (Atriplex nummularia), which is an important fodder shrub commonly used for revegetation of degraded rangelands in the West Asia and North Africa regions. Seeds with and without their bracts (fruits) were subjected to physical (scarification, water soaking, gamma radiation) and chemical (potassium nitrate, sulfuric acid and gibberellic acid) treatments. For each treatment, sets of 100 seeds with and without bracts were selected randomly, divided into four equal groups, and incubated in a germinator at 20 ± 1°C. The treatments had a highly significant (P < 0.0001) effect on seed germination. The scarification, potassium nitrate (0.2% concentration), gibberellic acid (100 and 150ppm) and sulfuric acid (25% for 10min, 50% for 10 and 20min) treatments improved seed germination significantly compared to control treatment (4.0%). The different doses of gamma radiation and high concentrations of sulfuric acid (75%) reduced seed germination significantly (P < 0.001). The removal of bracts surrounding the seeds had a highly significant (P < 0.0001) effect on seed germination and averaged 73.5% for washing, 78.0% for scarification, 80.9% and 88.0% for potassium nitrate of 2% and 4% concentration, 88.1% for gibberellic acid of 150ppm, and 70.4% for sulfuric acid of 25% concentration. The results indicate that the inhibiting factors of germination must be located in the bracts. Future work should focus on developing technologies to remove the bracts surrounding the true seed of A. nummularia. (author)

  15. BONE MEAL AS ALTERNATIVE TREATMENT FOR ACIDIC AND METAL CONTAMINATED ACID MINE DRAINAGE WATER EFFLUENT: LAB SCALE

    Directory of Open Access Journals (Sweden)

    Carolyn Payus

    2014-01-01

    Full Text Available The typical methods of treatment for acidic and metal contaminated water effluent such as the Acid Mine Drainage (AMD will always focus on either civil engineering methods, such as disposal, excavation, drainage and encapsulation or process based technologies such as effluent washing and treatment. These techniques are not environmental friendly, costly and unsustainable, thus environmental damaging. Nowadays, there is a growing need for an alternative remediation treatment that is innovative and more natural in order to prevent pollution in the environment. Therefore, in this study, a new alternative treatment, that is more organic, biodegradable and cost effective, using bone meal was presented. In this research, bone meal comprising of chicken bones were used as an alternative passive treatment to determine its potential in neutralizing and removing heavy metals from the abandoned cooper mine, Mamut Acid Mine Drainage (AMD waste water effluent. A pretreatment process for bone meal was performed by incineration process where it was heated up in the furnace at 500°C for 24 h after it was cleaned, crushed, boiled and dried. Batch experiment test has been carried out to test whether the selected bone meal sizes 45, 75 and 150 µm was able to neutralize the AMD Mamut water samples. Inductive Plasma Couple-Atomic Emission Spectrometry (ICP-AES test was carried out to test the concentration of the heavy metals before and after the treatment. The surface morphology of bone meal was examined by Scanning Electron Microscopy (SEM. Enlargement of pores after the neutralization treatment was seen on the surface morphology of the bone meal by SEM analyses. A significant rising of pH from 2.98 to 5.69 within 6 h 30 min was observed during neutralization process and 99% removal of Fe, Zn, Al, Cu and 36% removal of Mg concentration was achieved after the treatment through the neutralization treatment of the AMD waste water effluent. The results from this

  16. Alkaline treatment of template containing zeolites: introducing mesoporosity while preserving acidity

    NARCIS (Netherlands)

    van Laak, A.N.C.; Zhang, L.; Parvulescu, A.N.; Bruijnincx, P.C.A.; Weckhuysen, B.M.; de Jong, K.P.; de Jongh, P.E.

    2011-01-01

    Alkaline treatment (desilication) is an effective treatment to increase mesoporosity. However, the concomitant decrease in Si/Al ratio affects the strengths of the acidic sites and hence catalytic activity and selectivity. Therefore instead we subjected template containing zeolites to 1 M NaOH to in

  17. Production of γ-Amino Butyric Acid in Tea Leaves wit Treatment of Lactic Acid Bacteria

    Science.gov (United States)

    Watanabe, Yuko; Hayakawa, Kiyoshi; Ueno, Hiroshi

    Lactic acid bacteria was searched for producing termented tea that contained a lot of γ-amino butyric acid(GABA). Also examined were the growth condition, GABA production and changes in catechin contents in the tea leaves. Lactobacillus brevis L12 was found to be suitable for the production of fermented tea since it gave as much GABA as gabaron tea when tea leaves being suspended with water at 10% and incubated for 4 days at 25°C. The amount of GABA produced was more than calculated based upon the content of glutamic acid in tea leaves. It is probable to assume that glutamate derived from glutamine and theanine is converted into GABA.

  18. Effect of salicylic acid treatment on cadmium toxicity and leaf lipid composition in sunflower

    Directory of Open Access Journals (Sweden)

    Moradkhani S.

    2012-11-01

    Full Text Available The ameliorative effect of salicylic acid (SA on cadmium (Cd toxicity in sunflower plants was studied by investigating plant growth and fatty acid composition. Sunflower plants in two leaves stage were exposed to CdCl2 treatment (0, 50, 100, 150 and 200 µM and then were treated with salicylic acid (0, 250 and 500 µM as foliage spraying. One week after the last salicylic acid treatment,plants were harvested and growth parameters were measured . Oil of leaf was extracted in a Soxhlet system and fatty acid composition were measured by gas chromatography (GC. Statistical analyses showed excess Cd reduced growth parameters (fresh weight and length of stems and roots, fresh weight and number of leavesand SA increased them compared with the control. Maximum reduction in these parameters was at 200 µmol Cd and 0µmol of SA. Cd caused a shift in fatty acids composition, resulting in a lower degree of their unsaturation and an increase in saturated fatty acids in sunflower leaves,whereas SA improved them. SA, particularly increased the percentage of linolenic acid and lowered that of palmitic acid by the same proportion. These results sugg membrane integrity due to lipids est that SA could be used as a potential growth regulator and a stabilizer ofprotection of cadmium-induced oxidative stress to improve plant resistance to Cd stress

  19. Using Laboratory Activities Enhanced with Concept Cartoons to Support Progression in Students' Understanding of Acid-Base Concepts

    Science.gov (United States)

    Ozmen, Haluk; Demircioglu, Gokhan; Burhan, Yasemin; Naseriazar, Akbar; Demircioglu, Hulya

    2012-01-01

    The aim of this study is to examine the effectiveness of an intervention based on a series of laboratory activities enhanced with concept cartoons. The purpose of the intervention was to enhance students' understanding of acid-base chemistry for eight grade students' from two classes in a Turkish primary school. A pretest-posttest non-equivalent…

  20. Label-free direct surface-enhanced Raman scattering (SERS) of nucleic acids (Conference Presentation)

    Science.gov (United States)

    Guerrini, Luca; Morla-Folch, Judit; Gisbert-Quilis, Patricia; Xie, Hainan; Alvarez-Puebla, Ramon

    2016-03-01

    Recently, plasmonic-based biosensing has experienced an unprecedented level of attention, with a particular focus on the nucleic acid detection, offering efficient solutions to engineer simple, fast, highly sensitive sensing platforms while overcoming important limitations of PCR and microarray techniques. In the broad field of plasmonics, surface-enhanced Raman scattering (SERS) spectroscopy has arisen as a powerful analytical tool for detection and structural characterization of biomolecules. Today applications of SERS to nucleic acid analysis largely rely on indirect strategies, which have been demonstrated very effective for pure sensing purposes but completely dismiss the exquisite structural information provided by the direct acquisition of the biomolecular vibrational fingerprint. Contrarily, direct label-free SERS of nucleic acid shows an outstanding potential in terms of chemical-specific information which, however, remained largely unexpressed mainly because of the inherent poor spectral reproducibility and/or limited sensitivity. To address these limitations, we developed a fast and affordable high-throughput screening direct SERS method for gaining detailed genomic information on nucleic acids (DNA and RNA) and for the characterization and quantitative recognition of DNA interactions with exogenous agents. The simple strategy relies on the electrostatic adhesion of DNA/RNA onto positively-charged silver colloids that promotes the nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at picogram level (i.e. the analysis can be performed without the necessity of amplification steps thus providing realistic direct information of the nucleic acid in its native state). We anticipate this method to gain a vast impact and set of applications in different fields, including medical diagnostics, genomic screening, drug discovery, forensic science and even molecular electronics.

  1. Task 1.16 - Enhanced Mobility of Dense Nonaqueous-Phase Liquids (DNAPLs) Using Dissolved Humic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Marc D. Kurz

    1998-02-01

    Chlorinated solvent contamination is widespread across the U.S. Department of Energy (DOE) complex and other industrial facilities. Because of the physical properties of dense nonaqueous-phase liquids (DNAPLs), current treatment technologies are generally incapable of completely removing contamination from the source area. Incomplete removal means that the residual DNAPL WN persist as a long-term source of groundwater contamination. When DNALPs occur in the subsurface, they resist remediation, owing to low water volubility, high viscosity and interracial tension, and microbial recalcitrance. Because of their high density and polarity, they are usually found sorbed to aquifer solids or in pools on impermeable materials. Surfactants have been used with some success to reduce interracial tension between the aqueous and organic phases and improve volubility of DNAPLs. However, surfactants are expensive and toxic and exhibit an oxygen demand. An alternative is the use of dissolved humic acids in improving DNAPL mobilization and solubilization. Humic acids, a natural form of organic carbon, are abundant, inexpensive, and nontoxic; biodegrade slowly (low oxygen demand); and have excellent mobilization properties. The present work is to establish the feasibility of using hurnates for enhancing DNAPL remediation.

  2. Task 1.16 - Enhanced Mobility of Dense Nonaqueoius-Phase Liquids (DNAPLs) Using Dissolved Humic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Marc D. Kurz

    1997-08-01

    Chlorinated solvent contamination is widespread across the U.S. Department of Energy (DOE) complex and other industrial facilities. Because of the physical properties of dense nonaqueous-phase liquids (DNAPLs), current treatment technologies are generally incapable of completely removing contamination from the source area. Incomplete removal means that the residual DNAPL will persist as a long-term source of groundwater contamination. When DNALPs occur in the subsurface, they resist remediation, owing to low water volubility, high viscosity and interracial tension, and microbial recalcitrance. Because of their high density and polarity, they are usually found sorbed to aquifer solids or in pools on impermeable materials. Surfactants have been used with some success to reduce interracial tension between the aqueous and organic phases and improve volubility of DNAPLs. However, surfactants are expensive and toxic and exhibit an oxygen demand. An alternative is the use of dissolved humic acids in improving DNAPL mobilization and solubilization. Humic acids, a. natural form of organic carbon, are abundant, inexpensive, and nontoxic; biodegrade slowly (low oxygen demand); and have excellent mobilization properties. The present work is to establish the feasibility of using humates for enhancing DNAPL remediation.

  3. Comparison of trichostatin A and valproic acid treatment regimens in a mouse model of kidney fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Van Beneden, Katrien, E-mail: kvbenede@vub.ac.be [Department of Human Anatomy, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels (Belgium); Geers, Caroline [Department of Pathology, Universitair Ziekenhuis Brussel, Brussels (Belgium); Pauwels, Marina [Department of Human Anatomy, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels (Belgium); Mannaerts, Inge [Department of Cell Biology, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels (Belgium); Wissing, Karl M. [Department of Nephrology, Universitair Ziekenhuis Brussel, Brussels (Belgium); Van den Branden, Christiane [Department of Human Anatomy, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels (Belgium); Grunsven, Leo A. van, E-mail: lvgrunsv@vub.ac.be [Department of Cell Biology, Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels (Belgium)

    2013-09-01

    Histone deacetylase (HDAC) inhibitors are promising new compounds for the therapy of fibrotic diseases. In this study we compared the effect of two HDAC inhibitors, trichostatin A and valproic acid, in an experimental model of kidney fibrosis. In mice, doxorubicin (adriamycin) can cause nephropathy characterized by chronic proteinuria, glomerular damage and interstitial inflammation and fibrosis, as seen in human focal segmental glomerulosclerosis. Two treatment regimens were applied, treatment was either started prior to the doxorubicin insult or delayed until a significant degree of proteinuria and fibrosis was present. Pre-treatment of trichostatin A significantly hampered glomerulosclerosis and tubulointerstitial fibrosis, as did the pre-treatment with valproic acid. In contrast, the development of proteinuria was only completely inhibited in the pre-treated valproic acid group, and not in the pre-treated trichostatin A animals. In the postponed treatment with valproic acid, a complete resolution of established doxorubicin-induced proteinuria was achieved within three days, whereas trichostatin A could not correct proteinuria in such a treatment regimen. However, both postponed regimens have comparable efficacy in maintaining the kidney fibrosis to the level reached at the start of the treatments. Moreover, not only the process of fibrosis, but also renal inflammation was attenuated by both HDAC inhibitors. Our data confirm a role for HDACs in renal fibrogenesis and point towards a therapeutic potential for HDAC inhibitors. The effect on renal disease progression and manifestation can however be different for individual HDAC inhibitors. - Highlights: • Valproic acid is a potent antiproteinuric drug, whereas trichostatin A is not. • Trichostatin A and valproic acid reduce kidney fibrosis in doxorubicin nephropathy. • Both valproic acid and trichostatin A attenuate renal inflammation.

  4. Ursodeoxycholic Acid for the Treatment of Cholesterol Gallstones

    International Nuclear Information System (INIS)

    Cholesterol is the principal constituent of more than three quarters of gallstones. Pure cholesterol crystals are quite soft, and protein contributes importantly to the strength of cholesterol stones. The risk of gallstones does not correlate with total serum cholesterol levels, but it does correlate with decreased high-density lipoprotein cholesterol and increased triglyceride levels. At least 10 percent of adults have gallstones where female: male ratio of about 2:1 in the younger age groups with increasing prevalence with age. Nine patients with gallstones (6 females and 3 males) were included in the study. Patients were treated with ursodeoxycholic acids tablets in two oral doses, one after breakfast, and the other after dinner for 9 months. Ultrasound examination was repeated every 3 months. Re-examination by abdominal ultrasonography revealed that gallstone 1 cm or less in diameter disappeared within 6 months, and the largest stone 3.06 cm in diameter disappeared within 9 months.

  5. Chlorogenic Acid Enhances Abdominal Skin Flap Survival Based on Epigastric Artery in Nondiabetic and Diabetic Rats.

    Science.gov (United States)

    Bagdas, Deniz; Etoz, Betul Cam; Gul, Zulfiye; Ozyigit, Musa Ozgur; Cinkilic, Nilufer; Inan, Sevda; Buyukcoskun, Naciye Isbil; Ozluk, Kasim; Gurun, Mine Sibel

    2016-08-01

    Previous studies showed that chlorogenic acid (CGA) accelerates wound healing via its antioxidant activity. We aimed to investigate the effect of CGA in an experimental epigastric abdominal skin flap model in nondiabetic and diabetic rats. Rats were firstly divided into 2 groups: nondiabetic and diabetic. Diabetes was induced by streptozotocin. Then, 4 subgroups were created for each group: vehicle as well as 0.2 mg/0.5 mL, 1 mg/0.5 mL, and 5 mg/0.5 mL CGA treatments. Right epigastric artery-based abdominal skin flaps were elevated and sutured back into their original position. Chlorogenic acid or vehicle was injected once into the femoral arteries by leaving the epigastric artery as the single artery feeding the flaps during the injection. On postoperative day 7, flap survivals were evaluated, and the rats were killed. Distal flap tissues were collected for histopathological and biochemical assays. Chlorogenic acid showed greater flap survival in both nondiabetic and diabetic rats. Capillary density was increased, and necrosis was reduced in the CGA-treated rats. Chlorogenic acid decreased malondialdehyde levels as well as increased reduced glutathione and superoxide dismutase levels in the flap tissues. This study showed that CGA significantly improved flap survival by its antioxidant activities with intra-arterial local injections. PMID:25356637

  6. Omega-3 Polyunsaturated Fatty Acids Enhance Neuronal Differentiation in Cultured Rat Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Masanori Katakura

    2013-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs can induce neurogenesis and recovery from brain diseases. However, the exact mechanisms of the beneficial effects of PUFAs have not been conclusively described. We recently reported that docosahexaenoic acid (DHA induced neuronal differentiation by decreasing Hes1 expression and increasing p27kip1 expression, which causes cell cycle arrest in neural stem cells (NSCs. In the present study, we examined the effect of eicosapentaenoic acid (EPA and arachidonic acid (AA on differentiation, expression of basic helix-loop-helix transcription factors (Hes1, Hes6, and NeuroD, and the cell cycle of cultured NSCs. EPA also increased mRNA levels of Hes1, an inhibitor of neuronal differentiation, Hes6, an inhibitor of Hes1, NeuroD, and Map2 mRNA and Tuj-1-positive cells (a neuronal marker, indicating that EPA induced neuronal differentiation. EPA increased the mRNA levels of p21cip1 and p27kip1, a cyclin-dependent kinase inhibitor, which indicated that EPA induced cell cycle arrest. Treatment with AA decreased Hes1 mRNA but did not affect NeuroD and Map2 mRNA levels. Furthermore, AA did not affect the number of Tuj-1-positive cells or cell cycle progression. These results indicated that EPA could be involved in neuronal differentiation by mechanisms alternative to those of DHA, whereas AA did not affect neuronal differentiation in NSCs.

  7. Fluoride removal from groundwater by limestone treatment in presence of phosphoric acid.

    Science.gov (United States)

    Gogoi, Sweety; Nath, Suresh K; Bordoloi, Shreemoyee; Dutta, Robin K

    2015-04-01

    Fluoride removal from groundwater has been studied by addition of dilute phosphoric acid (PA) to the influent water before limestone treatment through laboratory plug-flow column experiments and bench-scale plug-flow pilot tests. In this PA-enhanced limestone defluoridation (PAELD) technique, fluoride is removed from 0.526 mM to 0.50-52.60 μM in 3 h with near neutral final pH. The presence of PA increases the fluoride removal capacity of limestone to 1.10 mg/g compared to 0.39 mg/g reported in its absence. The changes in fluoride removal with variation in initial PA concentration, initial fluoride concentration and the final pH have been found to be statistically significant with p capacity, safety, environment-friendliness, low cost and simplicity of operation make the PAELD a potential technique for rural application. PMID:25621387

  8. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eun Ah Song

    2016-08-01

    Full Text Available The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA, shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies.

  9. Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber

    Science.gov (United States)

    Tiwari, Vidhu S.; Khetani, Altaf; Monfared, Ali Momenpour T.; Smith, Brett; Anis, Hanan; Trudeau, Vance L.

    2012-03-01

    The present work explores the feasibility of using surface enhanced Raman scattering (SERS) for detecting the neurotransmitters such as glutamate (GLU) and gamma-amino butyric acid (GABA). These amino acid neurotransmitters that respectively mediate fast excitatory and inhibitory neurotransmission in the brain, are important for neuroendocrine control, and upsets in their synthesis are also linked to epilepsy. Our SERS-based detection scheme enabled the detection of low amounts of GLU (10-7 M) and GABA (10-4 M). It may complement existing techniques for characterizing such kinds of neurotransmitters that include high-performance liquid chromatography (HPLC) or mass spectrography (MS). This is mainly because SERS has other advantages such as ease of sample preparation, molecular specificity and sensitivity, thus making it potentially applicable to characterization of experimental brain extracts or clinical diagnostic samples of cerebrospinal fluid and saliva. Using hollow core photonic crystal fiber (HC-PCF) further enhanced the Raman signal relative to that in a standard cuvette providing sensitive detection of GLU and GABA in micro-litre volume of aqueous solutions.

  10. Amino acid conjugated self assembling molecules for enhancing surface wettability of fiber laser treated titanium surfaces

    Science.gov (United States)

    Akkan, Cagri K.; Hür, Deniz; Uzun, Lokman; Garipcan, Bora

    2016-03-01

    Surface wetting properties of implants are one of the most critical parameter, which determine the interaction of proteins and cells with the implant surface. In this regards, acid etching and sand blasting are the mostly used methods at surface modification of Titanium (Ti) for enhanced surface wettability. Besides, these kinds of modifications may cause a conflict whether the surface wettability is influenced by the process related surface contaminations or by the surface roughness. In contrast, lasers might be an option for the alteration of surface wetting properties via supporting micro and/or nano surface topographies while preventing surface chemical contaminations. In this work, we focused on two steps of surface processing approaches of Ti surface: physical and chemical modifications. Herein, we hierarchically structured Ti surfaces by using microsecond modulated pulsed fiber laser. Subsequently, laser structured and non-structured Ti surfaces were further modified with novel histidine and leucine Amino Acid conjugated Self-Assembled Molecules (His1-SAMs2 and Leu3-SAMs) to alter the surface wettability by introducing biologically hydrophilic and hydrophobic groups. Modification of Ti surfaces with His-SAMs and Leu-SAMs ended up with stable wetting properties when compared to non-modified surfaces after 7 days which may enhances the cell-surface interaction.

  11. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance.

    Science.gov (United States)

    Lee, Yeji; Nasution, Olviyani; Choi, Eunyong; Choi, In-Geol; Kim, Wankee; Choi, Wonja

    2015-08-01

    Acetic acid inhibits the metabolic activities of Saccharomyces cerevisiae. Therefore, a better understanding of how S. cerevisiae cells acquire the tolerance to acetic acid is of importance to develop robust yeast strains to be used in industry. To do this, we examined the transcriptional changes that occur at 12 h post-exposure to acetic acid, revealing that 56 and 58 genes were upregulated and downregulated, respectively. Functional categorization of them revealed that 22 protein synthesis genes and 14 stress response genes constituted the largest portion of the upregulated and downregulated genes, respectively. To evaluate the association of the regulated genes with acetic acid tolerance, 3 upregulated genes (DBP2, ASC1, and GND1) were selected among 34 non-protein synthesis genes, and 54 viable mutants individually deleted for the downregulated genes were retrieved from the non-essential haploid deletion library. Strains overexpressing ASC1 and GND1 displayed enhanced tolerance to acetic acid, whereas a strain overexpressing DBP2 was sensitive. Fifty of 54 deletion mutants displayed enhanced acetic acid tolerance. Three chosen deletion mutants (hsps82Δ, ato2Δ, and ssa3Δ) were also tolerant to benzoic acid but not propionic and sorbic acids. Moreover, all those five (two overexpressing and three deleted) strains were more efficient in proton efflux and lower in membrane permeability and internal hydrogen peroxide content than controls. Individually or in combination, those physiological changes are likely to contribute at least in part to enhanced acetic acid tolerance. Overall, information of our transcriptional profile was very useful to identify molecular factors associated with acetic acid tolerance.

  12. Overexpression of AtABCG25 enhances the abscisic acid signal in guard cells and improves plant water use efficiency.

    Science.gov (United States)

    Kuromori, Takashi; Fujita, Miki; Urano, Kaoru; Tanabata, Takanari; Sugimoto, Eriko; Shinozaki, Kazuo

    2016-10-01

    In addition to improving drought tolerance, improvement of water use efficiency is a major challenge in plant physiology. Due to their trade-off relationships, it is generally considered that achieving stress tolerance is incompatible with maintaining stable growth. Abscisic acid (ABA) is a key phytohormone that regulates the balance between intrinsic growth and environmental responses. Previously, we identified AtABCG25 as a cell-membrane ABA transporter that export ABA from the inside to the outside of cells. AtABCG25-overexpressing plants showed a lower transpiration phenotype without any growth retardation. Here, we dissected this useful trait using precise phenotyping approaches. AtABCG25 overexpression stimulated a local ABA response in guard cells. Furthermore, AtABCG25 overexpression enhanced drought tolerance, probably resulting from maintenance of water contents over the common threshold for survival after drought stress treatment. Finally, we observed enhanced water use efficiency by overexpression of AtABCG25, in addition to drought tolerance. These results were consistent with the function of AtABCG25 as an ABA efflux transporter. This unique trait may be generally useful for improving the water use efficiency and drought tolerance of plants. PMID:27593465

  13. Distribution of ribonucleic acid coliphages in raw sewage from treatment plants in Japan.

    OpenAIRE

    Furuse, K; Ando, A.; Osawa, S; Watanabe, I.(Graduate School of Science, Kobe University, Kobe, Japan)

    1981-01-01

    To determine the transmission cycle of ribonucleic acid (RNA) coliphages in their natural habitats, we investigated the distribution patterns of RNA phages in raw sewage collected from treatment plants in various localities in Japan. Most of the sewage samples contained group II and III phages. Samples from treatment plants in Sapporo, Tokyo, and Toyama contained appreciable amounts of group I phages in addition to the group II and III phages. As a whole, raw sewage from treatment plants in J...

  14. Folic acid deficiency enhances abeta accumulation in APP/PS1 mice brain and decreases amyloid-associated miRNAs expression.

    Science.gov (United States)

    Liu, Huan; Tian, Tian; Qin, Shanchun; Li, Wen; Zhang, Xumei; Wang, Xuan; Gao, Yuxia; Huang, Guowei

    2015-12-01

    Recent efforts have revealed the microRNA (miRNA) pathways in the pathogenesis of Alzheimer's disease (AD). Epidemiological studies have revealed an association between folic acid deficiency and AD risk. However, the effects of folic acid deficiency on miRNA expression in AD animals have not been observed. We aimed to find if folic acid deficiency may enhance amyloid-β (Aβ) peptide deposition and regulate amyloid-associated miRNAs and their target genes expression in APP/PS1 mice. APP/PS1 mice and N2a cells were treated with folic acid-deficient diet or medium. Cognitive function of mice was assessed using the Morris water maze. miRNA profile was tested by polymerase chain reaction (PCR) array. Different expressional miRNAs were validated by real-time PCR. The deposition of Aβ plaques was evaluated by immunohistochemistry and enzyme-linked immunosorbent assay. APP and BACE1 proteins in mice brain and N2a cells were determined by Western blot. Folic acid deficiency aggravated amyloid pathology in AD mice. The AD+FD group showed shorter time spent in the target zone during the probe test. Analysis of miRNAs predicted to target these genes revealed several miRNA candidates that were differentially modulated by folic acid deficiency. In APP/PS1 mice brains and N2a cells with folic acid-deficient treatment, miR-106a-5p, miR-200b-3p and miR-339-5p were down-regulated, and their target genes APP and BACE1 were up-regulated. In conclusion, folic acid deficiency can enhance Aβ accumulation in APP/PS1 mice brain and decrease amyloid-associated miRNAs expression.

  15. Pharmacological enhancement of exposure-based treatment in PTSD: a qualitative review

    Directory of Open Access Journals (Sweden)

    Rianne A. de Kleine

    2013-10-01

    Full Text Available There is a good amount of evidence that exposure therapy is an effective treatment for posttraumatic stress disorder (PTSD. Notwithstanding its efficacy, there is room for improvement, since a large proportion of patients does not benefit from treatment. Recently, an interesting new direction in the improvement of exposure therapy efficacy for PTSD emerged. Basic research found evidence of the pharmacological enhancement of the underlying learning and memory processes of exposure therapy. The current review aims to give an overview of clinical studies on pharmacological enhancement of exposure-based treatment for PTSD. The working mechanisms, efficacy studies in PTSD patients, and clinical utility of four different pharmacological enhancers will be discussed: D-cycloserine, MDMA, hydrocortisone, and propranolol.

  16. Gadoxetate Acid-Enhanced MR Imaging for HCC: A Review for Clinicians

    Directory of Open Access Journals (Sweden)

    Jendana Chanyaputhipong

    2011-01-01

    Full Text Available Hepatocellular carcinoma (HCC is increasingly being detected at an earlier stage, owing to the screening programs and regular imaging follow-up in high-risk populations. Small HCCs still pose diagnostic challenges on imaging due to decreased sensitivity and increased frequency of atypical features. Differentiating early HCC from premalignant or benign nodules is important as management differs and has implications on both the quality of life and the overall survival for the patients. Gadoxetate acid (Gd-EOB-DTPA, Primovist®, Bayer Schering Pharma is a relatively new, safe and well-tolerated liver-specific contrast agent for magnetic resonance (MR imaging of the liver that has combined perfusion- and hepatocyte-specific properties, allowing for the acquisition of both dynamic and hepatobiliary phase images. Its high biliary uptake and excretion improves lesion detection and characterization by increasing liver-to-lesion conspicuity in the added hepatobiliary phase imaging. To date, gadoxetate acid-enhanced MRI has been mostly shown to be superior to unenhanced MRI, computed tomography, and other types of contrast agents in the detection and characterization of liver lesions. This review article focuses on the evolving role of gadoxetate acid in the characterization of HCC, differentiating it from other mimickers of HCC.

  17. Flow boiling critical heat flux enhancement on the 2-D slice for boric acid and TSP solution

    International Nuclear Information System (INIS)

    The critical heat flux (CHF) on the reactor vessel external wall was measured using the small scale two-dimensional slice test section. The radius of the curvature and the channel area of the test section were 0.15 m and 0.03 mx0.03 m, respectively. The objectives are to assess the effects of additives (TSP, boric acid) and heated material (SA508) in inclination angle 90° and to investigate flow boiling CHF enhancement resulting from various working fluids of 5000 ppm tri-sodium phosphate (TSP, Na3PO4∙12H2O) solution, 4000 ppm boric acid solution and mixture solution of TSP and boric acid. Boric acid solution didn't show CHF enhancement and TSP and mixture solution showed CHF enhancement (20~34%). (author)

  18. Efficacy of topical azelaic acid gel in the treatment of mild-moderate acne vulgaris

    Directory of Open Access Journals (Sweden)

    Iraji Fariba

    2007-01-01

    Full Text Available Background: Twenty percent azelaic acid gel is recommended as a topical treatment for acne due to its favorable profile. Aim: Our objective in this study was to evaluate the efficacy of 20% azelaic acid gel in the treatment of mild to moderate acne vulgaris. Methods: This was a double blind, randomized clinical trial. Sixty patients with mild to moderate acne vulgaris were selected randomly to receive either azelaic acid gel or the vehicle gel alone. Patients were followed up every 15 days for a period of 45 days. The number of lesions and the acne severity index (ASI were recorded and compared using Student′s t-test. Results: Total lesion count was reduced by 60.6% and 19.9% by azelaic acid gel and the placebo respectively (P =0.002. ASI was reduced by 65.2% and 21.3% by azelaic acid gel and the placebo respectively (P =0.001, i.e., azelaic acid gel was 3.06 times more effective than the placebo in reducing ASI. Conclusion: Azelaic acid gel can be used as an effective treatment in mild to moderate acne vulgaris.

  19. Effects of Boronizing Treatment on Corrosion Resistance of 65Mn Steel in two Acid Mediums

    Science.gov (United States)

    Wang, Hongyu; Zhao, Yufeng; Yuan, Xiaoming; Chen, Kangmin; Xu, Ruihua

    To explore the soil workability of rotary blade suitable for large tilling depth (over 20 cm) manufactured through boronizing treatment, this work focuses on the corrosion behavior of 65Mn steel after boronizing treatment in two acid mediums, i.e. the strong acidic medium that hydrochloric solution and the weak acidic that fertilizer-containing soil, and the comparison with existing technology of general rotary blade (lonnealing after overall quenching). The result shows that the corrosion resistance in the two acid mediums of 65Mn steel after boronizing treatment is remarkably improved. After 168 hours' corrosion in the hydrochloric acid solution, the weight loss of boronizing-status sample is only 27.9% of that of lonnealing-status sample. Moreover, there is no obvious weight loss in boronizing-status sample after 168 hours' corrosion in the fertilizer-containing soil, while the weight of lonnealing-status sample is lighter than the original weight after about 150 hours' corrosion. The improvement of the corrosion resistance lies in the significant reduction of the anodization speed in strong acid medium and the effective prevention of phosphorization reaction in weak acidic medium.

  20. Sialic acid changes in Dalton's lymphoma-bearing mice after cyclophosphamide and cisplatin treatment

    Directory of Open Access Journals (Sweden)

    Nicol B.M.

    2002-01-01

    Full Text Available Sialic acid changes in Dalton's lymphoma cells and other tissues of 10-12-week-old Swiss albino mice were investigated in relation to tumour growth in vivo and following cyclophosphamide (ip, 200 mg/kg body weight or cisplatin (ip, 8 mg/kg body weight treatment. Three to four animals of both sexes were used in each experimental group. The sialic acid level of tumour cells (0.88 µmol/g increased with tumour progression (1.44-1.59 µmol/g; P<=0.05 in mice. Sialic acid concentration in other tissues (liver, kidney, testes and brain also increased (~40, 10, 30 and 58%, respectively in the tumour-bearing hosts as compared with that in the respective tissues of normal mice. In vivo cyclophosphamide or cisplatin treatment resulted in an overall decrease of sialic acid contents in the tissues. Cyclophosphamide was more efficient in lowering tissue sialic acid than cisplatin (P<=0.01, ANOVA. It is suggested that sialic acid residues could be an important factor contributing to the manifestation of malignant properties in cancer cells in general and Dalton's lymphoma cells in particular. A significant decrease in the sialic acid content of Dalton's lymphoma cells after cisplatin or cyclophosphamide treatment may bring about specific changes in tumour cells which could be associated with tumour regression.

  1. Biomimetic Deposition of Hydroxyapatite by Mixed Acid Treatment of Titanium Surfaces.

    Science.gov (United States)

    Zhao, J M; Park, W U; Hwang, K H; Lee, J K; Yoon, S Y

    2015-03-01

    A simple chemical method was established for inducing bioactivity of Ti metal. In the present study, two kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coatings successfully formed on the Ti surfaces in the simulated body fluid. Strong mixed acid etching was used to increase the roughness of the metal surface, because the porous and rough surfaces allow better adhesion between Ca-P coatings and substrate. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Some specimens were treated with a 5 M NaOH aqueous solution, and then heat treated at 600 °C in order to form an amorphous sodium titanate layer on their surface. This treated titanium metal is believed to form a dense and uniform bone-like apatite layer on its surface in a simulated body fluid (SBF). This study proved that mixed acid treatment is not only important for surface passivation but is also another bioactive treatment for titanium surfaces, an alternative to alkali treatment. In addition, mixed acid treatment uses a lower temperature and shorter time period than alkali treatment. PMID:26413704

  2. Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde, by Quercus ilex leaves after application of jasmonic acid.

    Science.gov (United States)

    Filella, Iolanda; Peñuelas, Josep; Llusià, Joan

    2006-01-01

    Jasmonic acid (JA) is a signalling compound with a key role in both stress and development in plants, and is reported to elicit the emission of volatile organic compounds (VOCs). Here we studied the dynamics of such emissions and the linkage with photosynthetic rates and stomatal conductance. We sprayed JA on leaves of the Mediterranean tree species Quercus ilex and measured the photosynthetic rates, stomatal conductances, and emissions and uptake of VOCs using proton transfer reaction mass spectrometry and gas chromatography after a dark-light transition. Jasmonic acid treatment delayed the induction of photosynthesis and stomatal conductance by approx. 20 min, and decreased them 24 h after spraying. Indications were found of both stomatal and nonstomatal limitations of photosynthesis. Monoterpene emissions were enhanced (20-30%) after JA spraying. Jasmonic acid also increased methyl salicylate (MeSa) emissions (more than twofold) 1 h after treatment, although after 24 h this effect had disappeared. Formaldehyde foliar uptake decreased significantly 24 h after JA treatment. Both biotic and abiotic stresses can thus affect plant VOC emissions through their strong impact on JA levels. Jasmonic acid-mediated increases in monoterpene and MeSa emissions might have a protective role when confronting biotic and abiotic stresses. PMID:16390425

  3. Production of Polyamines Is Enhanced by Endogenous Abscisic Acid in Maize Seedlings Subjected to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Jun LIU; Ming-Yi JIANG; Yi-Feng ZHOU; You-Liang LIU

    2005-01-01

    It is known that salt stress and exogenously applied abscisic acid (ABA) can enhance the polyamine content in plants and that salt stress itself can lead to an increase in endogenous ABA production.In the present study, the relationships between salt-induced ABA and polyamine accumulation were investigated using ABA-deficient mutant (vp5/vp5) maize (Zea mays L.) seedlings and ABA and polyamine :biosynthesis inhibitors. The results show that reduced endogenous ABA levels, as a result of either the mutation or by using a chemical inhibitor (sodium tungstate), also reduced the accumulation of polyamines in salt-stressed leaves of maize seedlings. The polyamine synthesis inhibitors D-arginine and αdifluoromethylornithine also reduced the polyamine content of the leaves of maize seedling under salt stress. Both ABA and polyamine enhanced the dry weight accumulation of salt-stressed seedlings and also increased the activities of the two dominant tonoplast membrane enzymes, H+-ATPase and H+-PPase, when plants were under salt stress. The results suggest that salt stress induces an increase in endogenous ABA levels, which then enhances polyamine synthesis. Such responses may increase a plant's tolerance to salt.

  4. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid.

    Science.gov (United States)

    Yuvaraja, K; Khanam, Jasmina

    2014-08-01

    Aim of the present work is to enhance aqueous solubility of carvedilol (CV) by solid dispersion technique using wide variety of carriers such as: β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD), tartaric acid (TA), polyvinyl pyrrolidone K-30 (PVP K-30) and poloxamer-407 (PLX-407). Various products of 'CV-solid dispersion' had been studied extensively in various pH conditions to check enhancement of solubility and dissolution characteristics of carvedilol. Any physical change upon interaction between CV and carriers was confirmed by instrumental analysis: XRD, DSC, FTIR and SEM. Negative change of Gibb's free energy and complexation constants (Kc, 75-240M(-1), for cyclodextrins and 1111-20,365M(-1), for PVP K-30 and PLX-407) were the evidence of stable nature of the binding between CV and carriers. 'Solubility enhancement factor' of ionized-CV was found high enough (340 times) with HPβCD in presence of TA. TA increases the binding efficiency of cyclodextrin and changing the pH of microenvironment in dissolution medium. In addition, ionization process was used to increase the apparent intrinsic solubility of drug. In vitro, dissolution time of CV was remarkably reduced in the solid dispersion system compared to that of pure drug. This may be attributed to increased wettability, dispersing ability and transformation of crystalline state of drug to amorphous one.

  5. A sulfated polysaccharide, fucoidan, enhances the immunomodulatory effects of lactic acid bacteria.

    Science.gov (United States)

    Kawashima, Tadaomi; Murakami, Katsura; Nishimura, Ikuko; Nakano, Takahisa; Obata, Akio

    2012-03-01

    Fucoidan, a sulfated polysaccharide contained in brown algae, has a variety of immunomodulatory effects, including antitumor and antiviral effects. On the other hand, lactic acid bacteria (LAB) also have immunomodulatory effects such as anti-allergic effects. In this study, we demonstrated that fucoidan enhances the probiotic effects of LAB on immune functions. By using Peyer's patch cells and spleen cells in vitro, fucoidan amplified interferon (IFN)-γ production in response to a strain of LAB, Tetragenococcus halophilus KK221, and this activity was abolished by desulfation of fucoidan. Moreover, this IFN-γ response was abolished by interleukin (IL)-12 neutralization. These results indicate that fucoidan enhanced IL-12 production in response to KK221, resulting in promoting IFN-γ production. In an in vivo study, Th1/Th2 immunobalance was most improved by oral administration of both fucoidan and KK221 to ovalbumin-immunized mice. These findings suggest that fucoidan can enhance a variety of beneficial effects of LAB on immune functions. PMID:22160132

  6. Improved focal liver lesion detection by increasing flip angle during gadoxetic acid-enhancement in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se Jy [Dept. of Medical science Graduate school, Chonnam National University, Kwangju (Korea, Republic of); Kim, Young Keun [Dept. of Radiotechnology, Gwang-ju Health university, Gwangju (Korea, Republic of)

    2015-06-15

    To study the differences of focal liver lesion image detection at 3 minute, 10 minute and 15 minute time points on gadoxetic acid (GA)’s enhanced MR imaging with a flip angle (FA) of 30° compared with a 11°. The subjects were 69 patients evaluated with GA enhanced MR imaging with 3.0T MR scanner. The patients are total 35(23 men and 7 women at the mean age of 60.4 years), hepatocellular carcinoma(23) and metastsis(12) except for normal, cyst and hemangioma. After GA was injected, FA 11° and 30° images were obtained at 3 minute, 10 minute and 15 minute time points respectively. After quantitative and qualitative assessment of each image was done, statistical analysis was performed by using the independent sample T-test. From both quantitative and qualitative assessment of 3 minute and 10 minute MR images after the injection of GA, FA 30° images was found to be superior than FA 11°, but there were no statistical significance. However, at 15 minute time point, Statistically significant FA 30° image(p<0.05) was better than FA 11° therefore, the FA 30° improves the focal liver lesion detection. FA 30° of MR image can detect liver lesion more sensitively than the existing FA11° image after GA contrast enhancement at 15 minute time point.

  7. Enhanced biological phosphorus removal - results of experiences in three large waste water treatment plants

    International Nuclear Information System (INIS)

    Within a scientific project especially the operation of four real-size sewage treatment plants with different processes of enhanced biological phosphorus removal is investigated under the aspect of efficiency, stability, practicability and costs of the enhanced biological phosphorus removal. Three plants and first results are explained and compared as well with one another as with data, which are generally regarded as favourable conditions for the enhanced biological phosphorus removal. Between the plants there are significant differences in the degree of P-elimination mainly due to different characteristics of the wastewater. An important influence on P-effluent concentrations may be exacted by P-resolution in the final clarifier. (orig.)

  8. Omega-3 fatty acids for the treatment of non-alcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    Matteo Nicola Dario Di Minno; Anna Russolillo; Roberta Lupoli; Pasquale Ambrosino; Alessandro Di Minno; Giovanni Tarantino

    2012-01-01

    Non-alcoholic fatty liver disease (NAFLD) has been recognized as a major health burden.It is the most important cause of chronic liver disease and a major independent cardiovascular risk factor.Lacking a definite treatment for NAFLD,a specific diet and an increase in physical activity represent the most commonly used therapeutic approaches.In this review,major literature data about the use of omega-3 polyunsaturated fatty acids (n-3 PUFAs) as a potential treatment of NAFLD have been described.n-3 PUFAs,besides having a beneficial impact on most of the cardio-metabolic risk factors (hypertension,hyperlipidemia,endothelial dysfunction and atherosclerosis) by regulating gene transcription factors [i.e.,peroxisome proliferator-activated receptor (PPAR)α,PPARγ,sterol regulatory element-binding protein-1,carbohydrate responsive element-binding protein],impacts both lipid metabolism and on insulin sensitivity.In addition to an enhancement of hepatic beta oxidation and a decrease of the endogenous lipid production,n-3 PUFAs are able to determine a significant reduction of the expression of pro-inflammatory molecules (tumor necrosis factor-α and interleukin-6) and of oxygen reactive species.Further strengthening the results of the in vitro studies,both animal models and human intervention trials,showed a beneficial effect of n-3 PUFAs on the severity of NAFLD as expressed by laboratory parameters and imaging measurements.Despite available results provided encouraging data about the efficacy of n-3 PUFAs as a treatment of NAFLD in humans,well-designed randomized controlled trials of adequate size and duration,with histological endpoints,are needed to assess the long-term safety and efficacy of PUFA,as well as other therapies,for the treatment of NAFLD and non-alcoholic steatohepatitis patients.It is worthwhile to consider that n-3 PUFAs cannot be synthesized by the human body and must be derived from exogenous sources (fish oil,flaxseeds,olive oil) which are typical foods

  9. Update on marine omega-3 fatty acids: management of dyslipidemia and current omega-3 treatment options.

    Science.gov (United States)

    Weintraub, Howard

    2013-10-01

    Low-density lipoprotein cholesterol (LDL-C) is currently the primary target in the management of dyslipidemia, and statins are first-line pharmacologic interventions. Adjunct therapy such as niacins, fibrates, bile acid sequestrants, or cholesterol absorption inhibitors may be considered to help reduce cardiovascular risk. This review discusses the need for alternative adjunct treatment options and the potential place for omega-3 fatty acids as such. The cardiovascular benefits of fish consumption are attributed to the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and a variety of omega-3 fatty acid products are available with varied amounts of EPA and DHA. The product types include prescription drugs, food supplements, and medical foods sourced from fish, krill, algal and plant oils or purified from these oils. Two prescription omega-3 fatty acids are currently available, omega-3 fatty acid ethyl esters (contains both EPA and DHA ethyl esters), and icosapent ethyl (IPE; contains high-purity EPA ethyl ester). A pharmaceutical containing free fatty acid forms of omega-3 is currently in development. Omega-3 fatty acid formulations containing EPA and DHA have been shown to increase LDL-C levels while IPE has been shown to lower triglyceride levels without raising LDL-C levels, alone or in combination with statin therapy. In addition, recent studies have not been able to demonstrate reduced cardiovascular risk following treatment with fibrates, niacins, cholesterol absorption inhibitors, or omega-3 fatty acid formulations containing both EPA and DHA in statin-treated patients; thus, there remains a need for further cardiovascular outcomes studies for adjunct therapy. PMID:24075771

  10. Update on marine omega-3 fatty acids: management of dyslipidemia and current omega-3 treatment options.

    Science.gov (United States)

    Weintraub, Howard

    2013-10-01

    Low-density lipoprotein cholesterol (LDL-C) is currently the primary target in the management of dyslipidemia, and statins are first-line pharmacologic interventions. Adjunct therapy such as niacins, fibrates, bile acid sequestrants, or cholesterol absorption inhibitors may be considered to help reduce cardiovascular risk. This review discusses the need for alternative adjunct treatment options and the potential place for omega-3 fatty acids as such. The cardiovascular benefits of fish consumption are attributed to the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and a variety of omega-3 fatty acid products are available with varied amounts of EPA and DHA. The product types include prescription drugs, food supplements, and medical foods sourced from fish, krill, algal and plant oils or purified from these oils. Two prescription omega-3 fatty acids are currently available, omega-3 fatty acid ethyl esters (contains both EPA and DHA ethyl esters), and icosapent ethyl (IPE; contains high-purity EPA ethyl ester). A pharmaceutical containing free fatty acid forms of omega-3 is currently in development. Omega-3 fatty acid formulations containing EPA and DHA have been shown to increase LDL-C levels while IPE has been shown to lower triglyceride levels without raising LDL-C levels, alone or in combination with statin therapy. In addition, recent studies have not been able to demonstrate reduced cardiovascular risk following treatment with fibrates, niacins, cholesterol absorption inhibitors, or omega-3 fatty acid formulations containing both EPA and DHA in statin-treated patients; thus, there remains a need for further cardiovascular outcomes studies for adjunct therapy.

  11. Two-stage dilute-acid and organic-solvent lignocellulosic pretreatment for enhanced bioprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Brodeur, G.; Telotte, J.; Stickel, J. J.; Ramakrishnan, S.

    2016-11-01

    A two stage pretreatment approach for biomass is developed in the current work in which dilute acid (DA) pretreatment is followed by a solvent based pretreatment (N-methyl morpholine N oxide -- NMMO). When the combined pretreatment (DAWNT) is applied to sugarcane bagasse and corn stover, the rates of hydrolysis and overall yields (>90%) are seen to dramatically improve and under certain conditions 48 h can be taken off the time of hydrolysis with the additional NMMO step to reach similar conversions. DAWNT shows a 2-fold increase in characteristic rates and also fractionates different components of biomass -- DA treatment removes the hemicellulose while the remaining cellulose is broken down by enzymatic hydrolysis after NMMO treatment to simple sugars. The remaining residual solid is high purity lignin. Future work will focus on developing a full scale economic analysis of DAWNT for use in biomass fractionation.

  12. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Nan Cao; Bin Wei; Liu Wang; Ying Jin; Huang-Tian Yang; Zumei Liu; Zhongyan Chen; Jia Wang; Taotao Chen; Xiaoyang Zhao; Yu Ma; Lianju Qin; Jiuhong Kang

    2012-01-01

    Generation of induced pluripotent stem cells (iPSCs) has opened new avenues for the investigation of heart diseases,drug screening and potential autologous cardiac regeneration.However,their application is hampered by inefficient cardiac differentiation,high interline variability,and poor maturation of iPSC-derived cardiomyoeytes (iPS-CMs).To identify efficient inducers for cardiac differentiation and maturation of iPSCs and elucidate the mechanisms,we systematically screened sixteen cardiomyocyte inducers on various murine (m) iPSCs and found that only ascorbic acid (AA) consistently and robustly enhanced the cardiac differentiation of eleven lines including eight without spontaneous cardiogenic potential.We then optimized the treatment conditions and demonstrated that differentiation day 2-6,a period for the specification of cardiac progenitor cells (CPCs),was a critical time for AA to take effect.This was further confirmed by the fact that AA increased the expression of cardiovascular but not mesodermal markers.Noteworthily,AA treatment led to approximately 7.3-fold (miPSCs) and 30.2-fold (human iPSCs) augment in the yield of iPS-CMs.Such effect was attributed to a specific increase in the proliferation of CPCs via the MEK-ERK1/2 pathway by promoting collagen synthesis.In addition,AA-induced cardiomyocytes showed better sareomerie organization and enhanced responses of action potentials and calcium transients to β-adrenergic and muscarinic stimulations.These findings demonstrate that AA is a suitable cardiomyocyte inducer for iPSCs to improve cardiac differentiation and maturation simply,universally,and efficiently.These findings also highlight the importance of stimulating CPC proliferation by manipulating extracellular microenvironment in guiding cardiac differentiation of the pluripotent stem cells.

  13. Treatment feasibility of the acidic intermediate level radioactive liquid waste - a laboratory scale study

    International Nuclear Information System (INIS)

    The acidic ILW from PREFRE-2 have higher concentrations of U, Fe, Mn and TBP degraded products. During the pretreatment of this acidic ILW prior to ion exchange process, there was formation of large volumes of precipitate having poor settling characteristics. This was reducing the throughput of the processing plant. Laboratory scale studies were carried out to remove the precipitating constituents by solvent extraction using Di - 2 -Ethyl Hexyl Phosporic acid (D2EHPA). In single contact almost 99 % of U and Fe got extracted in D2EHPA in 0.2 M acidic condition. After making alkaline the aqueous part forms only small quantities of Mn(OH)2 precipitate. Decant of this is amenable for conventional ion exchange treatment. The low active effluent from RF resin column is amenable for chemical co-precipitation treatment. (author)

  14. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kawada, Teruo, E-mail: fat@kais.kyoto-u.ac.jp [Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  15. Photoalignment efficiency enhancement of polyimide alignment layers by alkyl-amine vapor treatment

    Science.gov (United States)

    Sakamoto, Kenji; Usami, Kiyoaki; Miki, Kazushi

    2014-08-01

    We have succeeded in enhancing the photoalignment efficiency of polyimide containing azobenzene in the backbone structure by exposing the corresponding precursor (polyamic acid: Azo-PAA) film to alkyl-amine vapor prior to photoalignment. The Azo-PAA film absorbed alky-amines and swelled by 300%. The photoinduced rotation of the Azo-PAA backbone structure occurred more easily in the swollen film. Most of the alkyl-amines in the swollen film desorbed during thermal imidization. As a result of the photoalignment efficiency enhancement, we also succeeded in expanding the controllable pretilt angle range of liquid crystals up to 38° without the appearance of threadlike disclination loops.

  16. Formic acid-based treatments for control of Varroa destructor in a Mediterranean area.

    Science.gov (United States)

    Satta, Alberto; Floris, Ignazio; Eguaras, Martin; Cabras, Paolo; Garau, Vincenzo Luigi; Melis, Marinella

    2005-04-01

    Two formic acid autumnal treatments, gel packets (BeeVar formulation) and impregnated paperwick (Liebig-Dispenser), were tested in apiary to evaluate their effectiveness against Varroa destructor Anderson & Trueman and their residues in honey in a Mediterranean region (Sardinia, Italy). Both treatments were efficient in the apiary control of the varroosis, with values of percentage of mite mortality ranging between 93.6 and 100%, without statistical differences between them. The more gradual release of formic acid from the gel application allowed a longer action (2 wk for each treatment) compared with the Liebig-Dispenser (approximately 3d for each treatment). The rate of daily evaporation ranged between approximately 5 and 9 g/d from BeeVar and approximately 26 and 35 g/d from the Liebig-Dispenser, in the first and second treatment, respectively. The total amount of formic acid administered per hive during all the treatment period was approximately 200 g for either treatment. A significantly higher adult bee mortality was recorded in the Liebig-Dispenser-treated hives compared with the BeeVar-treated group. On the contrary, BeeVar treatment produced an interruption of brood reared, whereas the extension of the sealed brood area of the Liebig-Dispenser-treated hives was not significantly different from that of the control hives. Neither queen mortality nor robbing activity was observed due to the treatments. Formic acid residues in honey collected in the nest were 3,855 +/- 2,061 and 3,030 +/- 1,624 mg/kg for the BeeVar- and the Liebig-Dispenser-treated hives, respectively. After 21 d from the end of the treatment, the residues fell to 1,261 +/- 1,054 and 794 +/- 518 mg/kg for the honey sampled from the BeeVar and Liebig-Dispenser groups, respectively. PMID:15889712

  17. Enhancement of Micropollutant Degradation at the Outlet of Small Wastewater Treatment Plants

    OpenAIRE

    Luca Rossi; Pierre Queloz; Alessandro Brovelli; Jonas Margot; D A Barry

    2013-01-01

    The aim of this work was to evaluate low-cost and easy-to-operate engineering solutions that can be added as a polishing step to small wastewater treatment plants to reduce the micropollutant load to water bodies. The proposed design combines a sand filter/constructed wetland with additional and more advanced treatment technologies (UV degradation, enhanced adsorption to the solid phase, e.g., an engineered substrate) to increase the elimination of recalcitrant compounds. The removal of five ...

  18. Treatment of Active Acne Vulgaris by Chemical Peeling Using 88% Lactic Acid

    OpenAIRE

    Khalifa E Sharquie; Adil A Noaimi; Entesar A. Al-Janabi

    2014-01-01

    Introduction: The etiopathogenesis of acne vulgaris is multifactorial, and its therapy is prolonged course that might be not accepted by many patients. Most recently TCA 35% one session peeling gave complete clearance and full remission for active acne vulgaris. Lactic acid has been used effectively as therapeutic topical agents for many skin diseases. Aim: To evaluate the efficacy and safety of chemical peeling using 88% lactic acid solution in the treatment of active acne vulgaris. ...

  19. Phytic acid as a potential treatment for Alzheimer's pathology: evidence from animal and in vitro models

    OpenAIRE

    Thimmappa S. Anekonda; Wadsworth, Teri L.; Sabin, Robert; Frahler, Kate; Harris, Christopher; Petriko, Babett; Ralle, Martina; Woltjer, Randy; Joseph F. Quinn

    2011-01-01

    Alzheimer’s disease (AD) causes progressive age-dependent cortical and hippocampal dysfunctions leading to abnormal intellectual capacity and memory. We propose a novel protective treatment for AD pathology with phytic acid (inositol hexakisphosphate), a phytochemical found in food grains and a key signaling molecule in mammalian cells. We evaluated the protective and beneficial effects of phytic acid against amyloid beta pathology in MC65 cells and the Tg2576 mouse model. In MC65 cells, 48–7...

  20. Some biochemical reactions of strawberry plants to infection with Botrytis cinerea and salicylic acid treatment

    Directory of Open Access Journals (Sweden)

    Urszula Małolepsza

    2013-12-01

    Full Text Available The reactions of strawberry plants to infection with B. cinerea and treatment with salicylic acid has been studied. Infection of leaves with B. cinerea resulted in early increases in active oxygen species generation, superoxide dismutase and peroxidase activities and phenolic compounds content. Some increases of the above reactions were noticed in plants treated with salicylic acid but not in the plants treated with SA and then later infected with B. cinerea.

  1. Biochemical changes in grape rootstocks resulted from humic acid treatments in relation to nematode infection

    Institute of Scientific and Technical Information of China (English)

    Hosny H Kesba; Hossam S El-Beltagi

    2012-01-01

    Objective: To investigate the effect of humic acid on nematode infected, resistant and susceptible grapes in relation to lipid peroxidation and antioxidant mechanisms on selected biochemical parameters known as proactive substances. Methods: The grape rootstocks, superior, superior/freedom and freedom were reacted differently to Meloidogyne incognita and Rotylenchulus reniformis according to rootstock progenitor. Two weeks after inoculation, two commercial products of humic acid were applied at the rate of (2, 4 mL or grams/plant) as soil drench. After 4 months, nematode soil populations were extracted and counted. A subsample of roots from each plant was stained and gall numbers, embedded stages per root were calculated, final population, nematode build up (Pf/Pi), average of eggs/eggmass were estimated. Subsamples of fresh root of each treatment were chemically analyzed. Results: Freedom reduced significantly the nematode criteria and build up. Humic acid granules appeared to be more suppressive to nematode build up on superior and the higher dose on superior/freedom than liquid treatments. On freedom, all treatments reduced significantly the nematode build up regardless to the material nature. The higher dose was more effective than the lower one. As a result of humic acid applications, the malondialdehyde (MDA) and H2O2 contents were significantly reduced after humic acid treatments while the antioxidant compounds glutathione (GSH), ascorbic acid (ASA) and total phenol contents were significantly increased when compared with check. Antioxidant defense enzymes ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and polyphenol oxidase (PPO) showed significant increase in their specific activities in treated plants compared with nematode treated check. Conclusions: Humic acid treatments improve the yield of grape by increasing the contents of antioxidant compounds and the specific activities of antioxidant enzymes.

  2. Fungal treatment followed by FeCl3 treatment to enhance enzymatic hydrolysis of poplar wood for high sugar yields.

    Science.gov (United States)

    Wang, Wei; Yuan, Tong Qi; Cui, Bao Kai

    2013-12-01

    Fungal treatment followed by FeCl3 treatment was used to improve saccharification of wood from Populus tomentosa. Combined treatments accumulated lignin and slightly degraded cellulose, whereas almost all hemicelluloses were removed. The white rot fungus, Trametes orientalis, and the brown rot fungus, Fomitopsis palustris, both accompanied by FeCl3 post-treatment resulted in 98.8 and 99.7 % of hemicelluloses loss at 180 °C, respectively, which were over twice than that of hot water pretreatment at the same level. In addition, the solid residue from the T. orientalis-assisted and F. palustris-assisted FeCl3 treatment at 180 °C released 84.5 and 95.4 % of reducing sugars, respectively: 1.4- and 1.6-fold higher than that of FeCl3 treatment alone at the same temperature. Combined treatments disrupted the intact cell structure and increased accessible surface area of cellulose therefore enhancing the enzymatic digestibility, as evidenced by XRD and SEM analysis data. PMID:23907674

  3. Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza.

    Science.gov (United States)

    Sugihara, K; Hanagata, N; Dubinsky, Z; Baba, S; Karube, I

    2000-11-01

    Young plants of the common Okinawa mangrove species Bruguiera gymnorrhiza were transferred from freshwater to a medium with seawater salt level (500 mM NaCl). Two-dimensional gel electrophoresis revealed in the leaf extract of the plant a 33 kDa protein with pI 5.2, whose quantity increased as a result of NaCl treatment. The N-terminal amino acids sequence of this protein had a significant homology with mature region of oxygen evolving enhancer protein 1 (OEE1) precursor. The cloning of OEE1 precursor cDNA fragment was carried out by means of reverse transcription-PCR (RT-PCR) using degenerated primers. Both 3'- and 5'-regions were isolated by rapid amplification of cDNA ends (RACE) method. The deduced amino acid sequence consisted of 322 amino acids and was 87% identical to that of Nicotiana tabacum. In B. gymnorrhiza, the predicted amino acid sequence of the mature protein starts at the residue number 85 of the open reading frame. The first 84-amino acid residues correspond to a typical transit sequence for the signal directing OEE1 to its appropriate compartment of chloroplast. The expression of OEE1 was analyzed together with other OEE subunits and D1 protein of photosystem II. The transcript levels of all the three OEEs were enhanced by NaCl treatment, but the significant increase of D1 protein was not observed. PMID:11092914

  4. High efficient treatment of citric acid effluent by Chlorella vulgaris and potential biomass utilization.

    Science.gov (United States)

    Li, Changling; Yang, Hailin; Xia, Xiaole; Li, Yuji; Chen, Luping; Zhang, Meng; Zhang, Ling; Wang, Wu

    2013-01-01

    The efficiency of treating citric acid effluent by green algae Chlorella was investigated. With the highest growth rate, Chlorella vulgaris C9-JN2010 that could efficiently remove nutrients in the citric acid effluent was selected for scale-up batch experiments under the optimal conditions, where its maximum biomass was 1.04 g l(-1) and removal efficiencies of nutrients (nitrogen, phosphorus, total organic carbon, chemical oxygen demand and biochemical oxygen demand) were above 90.0%. Algal lipid and protein contents were around 340.0 and 500.0 mg · g(-1) of the harvested biomass, respectively. Proportions of polyunsaturated fatty acids in the lipids and eight kinds of essential amino acids in algal protein were 74.0% and 40.0%, respectively. Three major fatty acids were hexadecanoic acid, eicosapentaenoic acid and docosadienoic acid. This specific effluent treatment process could be proposed as a dual-beneficial approach, which converts nutrients in the high strength citric acid effluent into profitable byproducts and reduces the contaminations.

  5. Tipepidine enhances the antinociceptive-like action of carbamazepine in the acetic acid writhing test.

    Science.gov (United States)

    Kawaura, Kazuaki; Miki, Risa; Urashima, Yuri; Honda, Sokichi; Shehata, Ahmed M; Soeda, Fumio; Shirasaki, Tetsuya; Takahama, Kazuo

    2011-01-25

    Several antidepressants have been used to treat severe pain in clinics. Recently, we reported that the centrally acting non-narcotic antitussive (cough suppressant drug), tipepidine produces an antidepressant-like effect in the forced swimming test, although the mechanism of action appears to be quite different from that of known antidepressants. In the present study, we investigated whether a combination of tipepidine and carbamazepine acts synergistically to induce an antinociceptive effect in the acetic acid-induced writhing test in mice. Prior to studying the combination of tipepidine and carbamazepine, the analgesic action of tipepidine alone was also examined in mice. Tipepidine at 5-40mg/kg i.p. significantly reduced the number of writhes induced by acetic acid in mice. Carbamazepine at 20mg/kg i.p. also significantly reduced the writhing reaction. Furthermore, co-administration of carbamazepine (5 and 10mg/kg, i.p.) and tipepidine (2.5mg/kg i.p.) significantly decreased the number of writhes induced by acetic acid. This finding suggests that a combination of carbamazepine and tipepidine may be a new strategy for the treatment of neuropathic pain such as what occurs in trigeminal neuralgia, because the use of carbamazepine is often limited by its adverse effects and by reduction of its analgesic efficacy by microsomal enzyme induction. PMID:21114989

  6. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production.

    Science.gov (United States)

    Karpagam, R; Preeti, R; Ashokkumar, B; Varalakshmi, P

    2015-11-01

    Lipid from microalgae is one of the putative oil resources to facilitate the biodiesel production during this era of energy dissipation and environmental pollution. In this study, the key parameters such as biomass productivity, lipid productivity and lipid content were evaluated at the early stationary phase of Chlamydomonas reinhardtii, CC1010 cultivated in nutrient starved (nitrogen, phosphorous), glucose (0.05%, 0.1%, 0.15% and 0.2%) and vitamin B12 supplementation (0.001%, 0.002% and 0.003%) in Tris-Acetate-Phosphate (TAP) medium. The lipid content in nitrogen starved media was 61% which is 2.34 folds higher than nutrient sufficient TAP medium. Glucose supplementation has lead to proportional increase in biomass productivity with the increasing concentration of glucose whereas vitamin B12 supplementations had not shown any influence in lipid and biomass production. Further, fatty acid methyl ester (FAME) profiling of C. reinhardtii, CC 1010 has revealed more than 80% of total SFA (saturated fatty acid) and MUFA (mono unsaturated fatty acid) content. Quality checking parameters of biodiesel like cetane number, saponification value, iodine number and degree of unsaturation were analyzed and the biodiesel fuel properties were found to be appropriate as per the international standards, EN 14214 and ASTM D6751. Conclusively, among all the treatments, nitrogen starvation with 0.1% glucose supplementation had yielded high lipid content in C. reinhardtii, CC 1010. PMID:25838071

  7. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production.

    Science.gov (United States)

    Karpagam, R; Preeti, R; Ashokkumar, B; Varalakshmi, P

    2015-11-01

    Lipid from microalgae is one of the putative oil resources to facilitate the biodiesel production during this era of energy dissipation and environmental pollution. In this study, the key parameters such as biomass productivity, lipid productivity and lipid content were evaluated at the early stationary phase of Chlamydomonas reinhardtii, CC1010 cultivated in nutrient starved (nitrogen, phosphorous), glucose (0.05%, 0.1%, 0.15% and 0.2%) and vitamin B12 supplementation (0.001%, 0.002% and 0.003%) in Tris-Acetate-Phosphate (TAP) medium. The lipid content in nitrogen starved media was 61% which is 2.34 folds higher than nutrient sufficient TAP medium. Glucose supplementation has lead to proportional increase in biomass productivity with the increasing concentration of glucose whereas vitamin B12 supplementations had not shown any influence in lipid and biomass production. Further, fatty acid methyl ester (FAME) profiling of C. reinhardtii, CC 1010 has revealed more than 80% of total SFA (saturated fatty acid) and MUFA (mono unsaturated fatty acid) content. Quality checking parameters of biodiesel like cetane number, saponification value, iodine number and degree of unsaturation were analyzed and the biodiesel fuel properties were found to be appropriate as per the international standards, EN 14214 and ASTM D6751. Conclusively, among all the treatments, nitrogen starvation with 0.1% glucose supplementation had yielded high lipid content in C. reinhardtii, CC 1010.

  8. Traumatic Acid Reduces Oxidative Stress and Enhances Collagen Biosynthesis in Cultured Human Skin Fibroblasts.

    Science.gov (United States)

    Jabłońska-Trypuć, Agata; Pankiewicz, Walentyn; Czerpak, Romuald

    2016-09-01

    Traumatic acid (TA) is a plant hormone (cytokinin) that in terms of chemical structure belongs to the group of fatty acids derivatives. It was isolated from Phaseolus vulgaris. TA activity and its influence on human cells and organism has not previously been the subject of research. The aim of this study was to examine the effects of TA on collagen content and basic oxidative stress parameters, such as antioxidative enzyme activity, reduced glutathione, thiol group content, and lipid peroxidation in physiological conditions. The results show a stimulatory effect of TA on tested parameters. TA caused a decrease in membrane phospholipid peroxidation and exhibited protective properties against ROS production. It also increases protein and collagen biosynthesis and its secretion into the culture medium. The present findings reveal that TA exhibits multiple and complex activity in fibroblast cells in vitro. TA, with its activity similar to unsaturated fatty acids, shows antioxidant and stimulatory effects on collagen biosynthesis. It is a potentially powerful agent with applications in the treatment of many skin diseases connected with oxidative stress and collagen biosynthesis disorders. PMID:27423205

  9. The cell transmembrane pH gradient in tumors enhances cytotoxicity of specific weak acid chemotherapeutics.

    Science.gov (United States)

    Kozin, S V; Shkarin, P; Gerweck, L E

    2001-06-15

    The extracellular pH is lower in tumor than in normal tissue, whereas their intracellular pH is similar. In this study, we show that the tumor-specific pH gradient may be exploited for the treatment of cancer by weak acid chemotherapeutics. i.v.-injected glucose substantially decreased the electrode estimated extracellular pH in a xenografted human tumor while its intracellular pH, evaluated by (31)P magnetic resonance spectroscopy, remained virtually unchanged. The resulting increase in the average cell pH gradient caused a parallel increase in tumor growth delay by the weak acid chlorambucil (CHL). Regardless of glucose administration, the effect of CHL was significantly greater in tumors preirradiated with a large dose of ionizing radiation. This suggests that CHL was especially pronounced in radioresistant hypoxic cells possessing a larger transmembrane pH gradient. These results indicate that the naturally occurring cell pH gradient difference between tumor and normal tissue is a major and exploitable determinant of the uptake of weak acids in the complex tumor microenvironment. The use of such drugs may be especially effective in combination with radiation.

  10. Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants.

    Science.gov (United States)

    Kim, Hyun Uk; Lee, Kyeong-Ryeol; Go, Young Sam; Jung, Jin Hee; Suh, Mi-Chung; Kim, Jong Bum

    2011-06-01

    Ricinoleic acid (12-hydroxy-octadeca-9-enoic acid) is a major unusual fatty acid in castor oil. This hydroxy fatty acid is useful in industrial materials. This unusual fatty acid accumulates in triacylglycerol (TAG) in the seeds of the castor bean (Ricinus communis L.), even though it is synthesized in phospholipids, which indicates that the castor plant has an editing enzyme, which functions as a phospholipid:diacylglycerol acyltransferase (PDAT) that is specific to ricinoleic acid. Transgenic plants containing fatty acid Δ12-hydroxylase encoded by the castor bean FAH12 gene produce a limited amount of hydroxy fatty acid, a maximum of around 17% of TAGs present in Arabidopsis seeds, and this unusual fatty acid remains in phospholipids of cell membranes in seeds. Identification of ricinoleate-specific PDAT from castor bean and manipulation of the phospholipid editing system in transgenic plants will enhance accumulation of the hydroxy fatty acid in transgenic seeds. The castor plant has three PDAT genes; PDAT1-1 and PDAT2 are homologs of PDAT, which are commonly found in plants; however, PDAT1-2 is newly grouped as a castor bean-specific gene. PDAT1-2 is expressed in developing seeds and localized in the endoplasmic reticulum, similar to FAH12, indicating its involvement in conversion of ricinoleic acid into TAG. PDAT1-2 significantly enhances accumulation of total hydroxy fatty acid up to 25%, with a significant increase in castor-like oil, 2-OH TAG, in seeds of transgenic Arabidopsis, which is an identification of the key gene for oilseed engineering in production of unusual fatty acids.

  11. Possible protective role of pregnenolone-16 alpha-carbonitrile in lithocholic acid-induced hepatotoxicity through enhanced hepatic lipogenesis.

    Science.gov (United States)

    Miyata, Masaaki; Nomoto, Masahiro; Sotodate, Fumiaki; Mizuki, Tomohiro; Hori, Wataru; Nagayasu, Miho; Yokokawa, Shinya; Ninomiya, Shin-ichi; Yamazoe, Yasushi

    2010-06-25

    Lithocholic acid (LCA) feeding causes both liver parenchymal and cholestatic damages in experimental animals. Although pregnenolone-16 alpha-carbonitrile (PCN)-mediated protection against LCA-induced hepatocyte injury may be explained by induction of drug metabolizing enzymes, the protection from the delayed cholestasis remains incompletely understood. Thus, the PCN-mediated protective mechanism has been studied from the point of modification of lipid metabolism. At an early stage of LCA feeding, an imbalance of biliary bile acid and phospholipid excretion was observed. Co-treatment with PCN reversed the increase in serum alanine aminotransferase (ALT) as well as alkaline phosphatase (ALP) activities and hepatic hydrophobic bile acid levels. LCA feeding decreased hepatic mRNA levels of several fatty acid- and phospholipid-related genes before elevation of serum ALT and ALP activities. On the other hand, PCN co-treatment reversed the decrease in the mRNA levels and hepatic levels of phospholipids, triglycerides and free fatty acids. PCN co-treatment also reversed the decrease in biliary phospholipid output in LCA-fed mice. Treatment with PCN alone increased hepatic phospholipid, triglyceride and free fatty acid concentrations. Hepatic fatty acid and phosphatidylcholine synthetic activities increased in mice treated with PCN alone or PCN and LCA, compared to control mice, whereas these activities decreased in LCA-fed mice. These results suggest the possibility that PCN-mediated stimulation of lipogenesis contributes to the protection from lithocholic acid-induced hepatotoxicity.

  12. Photo-Fenton-like treatment of K-acid: assessment of treatability, toxicity and oxidation products.

    Science.gov (United States)

    Olmez-Hanci, Tugba; Arslan-Alaton, Idil; Gelegen, Ozlem

    2014-01-01

    Photo-Fenton-like treatment of the commercially important naphthalene sulphonate K-acid (2-naphthylamine-3,6,8-trisulphonic acid) was investigated using UV-C, UV-A and visible light irradiation. Changes in toxicity patterns were followed by the Vibrio fischeri bioassay. Rapid and complete degradation of K-acid accompanied with nearly complete oxidation and mineralization rates (>90%) were achieved for all studied irradiation types. On the other hand, detoxification was rather limited and did not change significantly during photo-Fenton-like treatment. Several oxidation products could be identified via liquid chromatograph-mass spectrometer analyses, such as desulphonated and hydroxylated naphthalene derivatives, quinones, and ring-opening as well as dimerization products. Photo-Fenton-like treatment of K-acid with UV-C, UV-A and visible light irradiation occurred through a series of hydroxylation and desulphonation reactions, followed by ring cleavage. A common degradation pathway for photo-Fenton-like treatment of K-acid using different irradiation types was proposed. PMID:25259495

  13. Gamma Hydroxybutyric Acid (GHB for the Treatment of Alcohol Dependence: A Review

    Directory of Open Access Journals (Sweden)

    Mauro Bernardi

    2009-06-01

    Full Text Available Gamma-hydroxybutyric acid (GHB is a short-chain fatty acid structurally similar to the inhibitory neurotransmitter γ-aminobutyric acid. Clinical trials have demonstrated that 50-100 mg/kg of GHB fractioned into three or six daily doses is able to suppress alcohol withdrawal symptoms and facilitates the maintenance of abstinence from alcohol. These studies have also shown that GHB craving episodes are a very limited phenomenon (about 10-15%. Thus, physicians with access should consider the clinical efficacy of GHB as a valid pharmacological tool for the treatment of alcohol addiction.

  14. Proton pump inhibitors in acid-related diseases. Issues in diagnosis, treatment and outcome

    OpenAIRE

    Jonasson, Christian

    2013-01-01

    Acid-related disease (ARD) is a term used to describe a range of conditions in which acid is involved in the generation of symptoms and/or complications. Two of the most common ARDs are gastro-esophageal reflux disease (GERD) and peptic ulcer disease (PUD). PPIs are today regarded as the gold standard in the treatment of both symptoms and mucosal injury in patients with GERD as well as for prevention and acute treatment of PUD. Since the PPIs were introduced in the late 1980-ie...

  15. Treatment of Pu-containing waste by acid digestion (wet combustion)

    International Nuclear Information System (INIS)

    Acid digestion as a process of treatment of plutonium-containing solid waste was developed and demonstrated under conditions of an active operation with respect to the recovery of plutonium. The process composes the following main steps: waste shredding, waste carbonisation, waste oxidation and conversion of plutonium oxide to plutonium sulphate, off-gas treatment, acid recovery and plutonium separation. The technical, safety and operational details of the plant will be presented. Furthermore, methods of the purification of separate plutonium and solidification of secondary waste for final disposal will be described. (orig./RW)

  16. Hyaluronic acid grafted PLGA copolymer nanoparticles enhance the targeted delivery of Bromelain in Ehrlich's Ascites Carcinoma.

    Science.gov (United States)

    Bhatnagar, Priyanka; Pant, Aditya Bhushan; Shukla, Yogeshwer; Panda, Amulya; Gupta, Kailash Chand

    2016-08-01

    Rapidly increasing malignant neoplastic disease demands immediate attention. Several dietary compounds have recently emerged as strong anti-cancerous agents. Among, Bromelain (BL), a protease from pineapple plant, was used to enhance its anti-cancerous efficacy using nanotechnology. In lieu of this, hyaluronic acid (HA) grafted PLGA copolymer, having tumor targeting ability, was developed. BL was encapsulated in copolymer to obtain BL-copolymer nanoparticles (NPs) that ranged between 140 to 281nm in size. NPs exhibited higher cellular uptake and cytotoxicity in cells with high CD44 expression as compared with non-targeted NPs. In vivo results on tumor bearing mice showed that NPs were efficient in suppressing the tumor growth. Hence, the formulation could be used as a self-targeting drug delivery cargo for the remission of cancer. PMID:27287553

  17. Glucose-lowering effects of intestinal bile acid sequestration through enhancement of splanchnic glucose utilization.

    Science.gov (United States)

    Prawitt, Janne; Caron, Sandrine; Staels, Bart

    2014-05-01

    Intestinal bile acid (BA) sequestration efficiently lowers plasma glucose concentrations in type 2 diabetes (T2D) patients. Because BAs act as signaling molecules via receptors, including the G protein-coupled receptor TGR5 and the nuclear receptor FXR (farnesoid X receptor), to regulate glucose homeostasis, BA sequestration, which interrupts the entero-hepatic circulation of BAs, constitutes a plausible action mechanism of BA sequestrants. An increase of intestinal L-cell glucagon-like peptide-1 (GLP-1) secretion upon TGR5 activation is the most commonly proposed mechanism, but recent studies also argue for a direct entero-hepatic action to enhance glucose utilization. We discuss here recent findings on the mechanisms of sequestrant-mediated glucose lowering via an increase of splanchnic glucose utilization through entero-hepatic FXR signaling.

  18. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    Science.gov (United States)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  19. Using Eye Movement Desensitization and Reprocessing To Enhance Treatment of Couples.

    Science.gov (United States)

    Protinsky, Howard; Sparks, Jennifer; Flemke, Kimberly

    2001-01-01

    Eye Movement Desensitization and Reprocessing (EMDR) as a clinical technique may enhance treatment effectiveness when applied in couple therapy that is emotionally and experientially oriented. Clinical experience indicates EMDR-based interventions are useful for accessing and reprocessing intense emotions in couple interactions. EMDR can amplify…

  20. High pressure treatment of brine enhanced pork affects endopeptidase activity, protein solubility, and peptide formation

    DEFF Research Database (Denmark)

    Grossi, Alberto Blak; Gkarane, Vasiliki; Otte, Jeanette Anita Held;

    2012-01-01

    In order to study the effect of high-pressure (HP) treatment and two different methods of brine addition (important for lysosomal membrane destabilisation) on lysosomal enzymes activity and protein degradation, pork semitendinosus muscle was brine enhanced by injection or tumbling, and HP treated...

  1. Oestrogen receptor β ligand: a novel treatment to enhance endogenous functional remyelination

    OpenAIRE

    Crawford, Daniel K.; Mangiardi, Mario; Song, Bingbing; Patel, Rhusheet; Du, Sienmi; Michael V Sofroniew; Voskuhl, Rhonda R; Tiwari-Woodruff, Seema K.

    2010-01-01

    Demyelinating diseases, such as multiple sclerosis, are characterized by inflammatory demyelination and neurodegeneration of the central nervous system. Therapeutic strategies that induce effective neuroprotection and enhance intrinsic repair mechanisms are central goals for future therapy of multiple sclerosis. Oestrogens and oestrogen receptor ligands are promising treatments to prevent multiple sclerosis-induced neurodegeneration. In the present study we investigated the capacity of oestro...

  2. Aneurysmal wall enhancement and perianeurysmal edema after endovascular treatment of unruptured cerebral aneurysms.

    LENUS (Irish Health Repository)

    Su, I-Chang

    2014-06-01

    Perianeurysmal edema and aneurysm wall enhancement are previously described phenomenon after coil embolization attributed to inflammatory reaction. We aimed to demonstrate the prevalence and natural course of these phenomena in unruptured aneurysms after endovascular treatment and to identify factors that contributed to their development.

  3. Using Pretreatment and Posttreatment Assessments To Enhance and Evaluate Existing Treatment Packages.

    Science.gov (United States)

    Richman, David M.; Berg, Wendy K.; Wacker, David P.; Stephens, Tracy; Rankin, Barbara; Kilroy, Jennette

    1997-01-01

    Pretreatment assessment data were used to enhance an existing treatment package to reduce aggression and to increase the positive social interactions of a 9-year-old boy with moderate mental retardation and Hunter's syndrome. Additional reinforcements and punishment components were added and resulted in positive social interactions and suppressed…

  4. LTP3 contributes to disease susceptibility in Arabidopsis by enhancing abscisic acid (ABA) biosynthesis.

    Science.gov (United States)

    Gao, Shan; Guo, Wenya; Feng, Wen; Liu, Liang; Song, Xiaorui; Chen, Jian; Hou, Wei; Zhu, Hongxia; Tang, Saijun; Hu, Jian

    2016-04-01

    Several plant lipid transfer proteins (LTPs) act positively in plant disease resistance. Here, we show that LTP3 (At5g59320), a pathogen and abscisic acid (ABA)-induced gene, negatively regulates plant immunity in Arabidopsis. The overexpression of LTP3 (LTP3-OX) led to an enhanced susceptibility to virulent bacteria and compromised resistance to avirulent bacteria. On infection of LTP3-OX plants with Pseudomonas syringae pv. tomato, genes involved in ABA biosynthesis, NCED3 and AAO3, were highly induced, whereas salicylic acid (SA)-related genes, ICS1 and PR1, were down-regulated. Accordingly, in LTP3-OX plants, we observed increased ABA levels and decreased SA levels relative to the wild-type. We also showed that the LTP3 overexpression-mediated enhanced susceptibility was partially dependent on AAO3. Interestingly, loss of function of LTP3 (ltp3-1) did not affect ABA pathways, but resulted in PR1 gene induction and elevated SA levels, suggesting that LTP3 can negatively regulate SA in an ABA-independent manner. However, a double mutant consisting of ltp3-1 and silent LTP4 (ltp3/ltp4) showed reduced susceptibility to Pseudomonas and down-regulation of ABA biosynthesis genes, suggesting that LTP3 acts in a redundant manner with its closest homologue LTP4 by modulating the ABA pathway. Taken together, our data show that LTP3 is a novel negative regulator of plant immunity which acts through the manipulation of the ABA-SA balance. PMID:26123657

  5. Omega-3 fatty acids as treatments for mental illness: which disorder and which fatty acid?

    Directory of Open Access Journals (Sweden)

    Sieswerda Lee E

    2007-09-01

    Full Text Available Abstract Background A growing number of observational and epidemiological studies have suggested that mental illness, in particular mood disorders, is associated with reduced dietary intake and/or cellular abundance of omega-3 polyunsaturated fatty acids (PUFA. This has prompted researchers to test the efficacy of omega-3 PUFA in a range of different psychiatric disorders. We have critically reviewed the double blind placebo controlled clinical trials published prior to April 2007 to determine whether omega-3 PUFA are likely to be efficacious in these disorders. Results Most trials involved a small number of participants but were largely well designed. Omega-3 PUFA were well tolerated by both children and adults with mild gastrointestinal effects being the only consistently reported adverse event. For schizophrenia and borderline personality disorder we found little evidence of a robust clinically relevant effect. In the case of attention deficit hyperactivity disorder and related disorders, most trials showed at most small benefits over placebo. A limited meta-analysis of these trials suggested that benefits of omega-3 PUFA supplementation may be greater in a classroom setting than at home. Some evidence indicates that omega-3 PUFA may reduce symptoms of anxiety although the data is preliminary and inconclusive. The most convincing evidence for beneficial effects of omega-3 PUFA is to be found in mood disorders. A meta-analysis of trials involving patients with major depressive disorder and bipolar disorder provided evidence that omega-3 PUFA supplementation reduces symptoms of depression. Furthermore, meta-regression analysis suggests that supplementation with eicosapentaenoic acid may be more beneficial in mood disorders than with docosahexaenoic acid, although several confounding factors prevented a definitive conclusion being made regarding which species of omega-3 PUFA is most beneficial. The mechanisms underlying the apparent efficacy of

  6. Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water – a computational study

    Directory of Open Access Journals (Sweden)

    V. Loukonen

    2010-02-01

    Full Text Available We have studied the hydration of sulfuric acid – ammonia and sulfuric acid – dimethylamine clusters using quantum chemistry. We calculated the formation energies and thermodynamics for clusters of one ammonia or one dimethylamine molecule together with 1–2 sulfuric acid and 0–5 water molecules. The results indicate that dimethylamine enhances the addition of sulfuric acid to the clusters much more efficiently than ammonia when the number of water molecules in the cluster is either zero, or greater than two. Further hydrate distribution calculations reveal that practically all dimethylamine-containing two-acid clusters will remain unhydrated in tropospherically relevant circumstances, thus strongly suggesting that dimethylamine assists atmospheric sulfuric acid nucleation much more effectively than ammonia.

  7. Titania doped triaxial porcelain: Enhancement of strength by controlled heat treatment

    Indian Academy of Sciences (India)

    Sunipa Bhattacharyya; Swapan Kumar Das; Kausik Dana; Nirendra Krishna Mitra

    2007-06-01

    Titania doped vitrified triaxial porcelain samples were subjected to controlled heat treatment at different temperatures of 600, 800 and 1000°C with a specific heating schedule. The results revealed that flexural strength of 800°C heat treated sample was significantly enhanced to 60 MPa from its original value of 40 MPa. XRD pattern revealed the formation of mullite in the system both before and after heat treatment and the differences in their growth was ascertained through SEM analysis. The present heat treatment process may be useful to produce high strength porcelain body from a common triaxial system.

  8. Discovery of TUG-770: a highly potent free fatty acid receptor 1 (FFA1/GPR40) agonist for treatment of type 2 diabetes

    OpenAIRE

    Christiansen, E; Hansen, S.V.F.; Urban, C.; Hudson, B.D.; Wargent, E T; Grundmann, M.; Jenkins, L.; Zaibi, M.; Stocker, C. J.; Ullrich, S.; Kostenis, E; Kassack, M.U.; Milligan, G.; Cawthorne, M A; Ulven, T.

    2013-01-01

    Free fatty acid receptor 1 (FFA1 or GPR40) enhances glucose-stimulated insulin secretion from pancreatic β-cells and currently attracts high interest as a new target for the treatment of type 2 diabetes. We here report the discovery of a highly potent FFA1 agonist with favorable physicochemical and pharmacokinetic properties. The compound efficiently normalizes glucose tolerance in diet-induced obese mice, an effect that is fully sustained after 29 days of chronic dosing.

  9. Discovery of TUG-770: A Highly Potent Free Fatty Acid Receptor 1 (FFA1/GPR40) Agonist for Treatment of Type 2 Diabetes.

    Science.gov (United States)

    Christiansen, Elisabeth; Hansen, Steffen V F; Urban, Christian; Hudson, Brian D; Wargent, Edward T; Grundmann, Manuel; Jenkins, Laura; Zaibi, Mohamed; Stocker, Claire J; Ullrich, Susanne; Kostenis, Evi; Kassack, Matthias U; Milligan, Graeme; Cawthorne, Michael A; Ulven, Trond

    2013-05-01

    Free fatty acid receptor 1 (FFA1 or GPR40) enhances glucose-stimulated insulin secretion from pancreatic β-cells and currently attracts high interest as a new target for the treatment of type 2 diabetes. We here report the discovery of a highly potent FFA1 agonist with favorable physicochemical and pharmacokinetic properties. The compound efficiently normalizes glucose tolerance in diet-induced obese mice, an effect that is fully sustained after 29 days of chronic dosing. PMID:23687558

  10. Quality and antioxidant properties on sweet cherries as affected by preharvest salicylic and acetylsalicylic acids treatments.

    Science.gov (United States)

    Giménez, María José; Valverde, Juan Miguel; Valero, Daniel; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María; Castillo, Salvador

    2014-10-01

    The effects of salicylic acid (SA) or acetylsalicylic acid (ASA) treatments during on-tree cherry growth and ripening on fruit quality attributes, especially those related with the content on bioactive compounds and antioxidant activity were analysed in this research. For this purpose, two sweet cherry cultivars, 'Sweet Heart' and 'Sweet Late', were used and SA or ASA treatments, at 0.5, 1.0 and 2.0mM concentrations, were applied at three key points of fruit development (pit hardening, initial colour changes and onset of ripening). These treatments increased fruit weight and ameliorated quality attributes at commercial harvest, and led to cherries with higher concentration in total phenolics and in total anthocyanins, as well as higher antioxidant activity, in both hydrophilic and lipophilic fractions. Thus, preharvest treatments with SA or ASA could be promising tools to improve sweet cherry quality and health beneficial effects for consumers. PMID:24799232

  11. Enhanced 5-aminolevulinic acid-gold nanoparticle conjugate-based photodynamic therapy using pulse laser

    Science.gov (United States)

    Xu, Hao; Yao, Cuiping; Wang, Jing; Chang, Zhennan; Zhang, Zhenxi

    2016-02-01

    The low bioavailability is a crucial limitation for the application of 5-aminolevulinic acid (ALA) in theranostics. In this research, 5-aminolevulinic acid and gold nanoparticle conjugates (ALA-GNPs) were synthesized to improve the bioavailability of ALA and to investigate the impact of ALA photodynamic therapy (ALA-PDT) in Hela cells. A 532 nm pulse laser and light-emitting diode (central wavelengths 502 nm) were jointly used as light sources in PDT research. The results show a 532 nm pulse laser can control ALA release from ALA-GNPs by adjusting the pulse laser dose. This laser control release may be attributed to the heat generation from GNPs under pulse laser irradiation, which indicates accurately adjusting the pulse laser dose to control the drug release in the cell interior can be considered as a new cellular surgery modality. Furthermore, the PDT results in Hela cells indicate the enhancement of ALA release by pulse laser before PDT can promote the efficacy of cell eradication in the light-emitting diode PDT (LED-PDT). This laser mediated drug release system can provide a new online therapy approach in PDT and it can be utilized in the optical monitor technologies based individual theranostics.

  12. Oral conjugated linoleic acid supplementation enhanced glycogen resynthesis in exercised human skeletal muscle.

    Science.gov (United States)

    Tsao, Jung-Piao; Liao, Su-Fen; Korivi, Mallikarjuna; Hou, Chien-Wen; Kuo, Chia-Hua; Wang, Hsueh-Fang; Cheng, I-Shiung

    2015-01-01

    Present study examined the effects of conjugated linoleic acid (CLA) supplementation on glycogen resynthesis in exercised human skeletal muscle. Twelve male participants completed a cross-over trial with CLA (3.8 g/day for 8 week) or placebo supplements by separation of 8 weeks. CLA is a mixture of trans-10 cis-12 and cis-9 trans-11 isomers (50:50). On experiment day, all participants performed 60-min cycling exercise at 75% VO2 max, then consumed a carbohydrate meal immediately after exercise and recovered for 3 h. Biopsied muscle samples from vastus lateralis were obtained immediately (0 h) and 3 h following exercise. Simultaneously, blood and gaseous samples were collected for every 30 min during 3-h recovery. Results showed significantly increased muscle glycogen content with CLA after a single bout of exercise (P Gaseous exchange data showed no beneficial effect of CLA on fat oxidation, instead lower non-esterified fatty acid and glycerol levels were found at 0 h. Our findings conclude that CLA supplementation can enhance the glycogen resynthesis rate in exercised human skeletal muscle. PMID:25385360

  13. Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling.

    Directory of Open Access Journals (Sweden)

    Srivathsa C Venugopal

    2009-07-01

    Full Text Available Resistance (R protein-associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1, non-race-specific disease resistance 1 (NDR1, phytoalexin deficient 4 (PAD4, senescence associated gene 101 (SAG101, and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA-synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense.

  14. Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling.

    Science.gov (United States)

    Venugopal, Srivathsa C; Jeong, Rae-Dong; Mandal, Mihir K; Zhu, Shifeng; Chandra-Shekara, A C; Xia, Ye; Hersh, Matthew; Stromberg, Arnold J; Navarre, DuRoy; Kachroo, Aardra; Kachroo, Pradeep

    2009-07-01

    Resistance (R) protein-associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non-race-specific disease resistance 1 (NDR1), phytoalexin deficient 4 (PAD4), senescence associated gene 101 (SAG101), and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA-synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense.

  15. Cationic amino acid transporter 2 enhances innate immunity during Helicobacter pylori infection.

    Directory of Open Access Journals (Sweden)

    Daniel P Barry

    Full Text Available Once acquired, Helicobacter pylori infection is lifelong due to an inadequate innate and adaptive immune response. Our previous studies indicate that interactions among the various pathways of arginine metabolism in the host are critical determinants of outcomes following infection. Cationic amino acid transporter 2 (CAT2 is essential for transport of L-arginine (L-Arg into monocytic immune cells during H. pylori infection. Once within the cell, this amino acid is utilized by opposing pathways that lead to elaboration of either bactericidal nitric oxide (NO produced from inducible NO synthase (iNOS, or hydrogen peroxide, which causes macrophage apoptosis, via arginase and the polyamine pathway. Because of its central role in controlling L-Arg availability in macrophages, we investigated the importance of CAT2 in vivo during H. pylori infection. CAT2(-/- mice infected for 4 months exhibited decreased gastritis and increased levels of colonization compared to wild type mice. We observed suppression of gastric macrophage levels, macrophage expression of iNOS, dendritic cell activation, and expression of granulocyte-colony stimulating factor in CAT2(-/- mice suggesting that CAT2 is involved in enhancing the innate immune response. In addition, cytokine expression in CAT2(-/- mice was altered from an antimicrobial Th1 response to a Th2 response, indicating that the transporter has downstream effects on adaptive immunity as well. These findings demonstrate that CAT2 is an important regulator of the immune response during H. pylori infection.

  16. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic treatment.

    Science.gov (United States)

    Sørensen, Annette; Teller, Philip J; Hilstrøm, Troels; Ahring, Birgitte K

    2008-09-01

    Miscanthus is a high yielding bioenergy crop. In this study we used acid presoaking, wet explosion, and enzymatic hydrolysis to evaluate the combination of the different pre-treatment methods for bioethanol production with Miscanthus. Acid presoaking is primarily carried out in order to remove xylose prior to wet explosion. The acid presoaking extracted 63.2% xylose and 5.2% glucose. Direct enzymatic hydrolysis of the presoaked biomass was found to give only low sugar yields of 24-26% glucose. Wet explosion is a pre-treatment method that combines wet-oxidation and steam explosion. The effect of wet explosion on non-presoaked and presoaked Miscanthus was investigated using both atmospheric air and hydrogen peroxide as the oxidizing agent. All wet explosion pre-treatments showed to have a disrupting effect on the lignocellulosic biomass, making the sugars accessible for enzymatic hydrolysis. The combination of presoaking, wet explosion, and enzymatic hydrolysis was found to give the highest sugar yields. The use of atmospheric air gave the highest xylose yield (94.9% xylose, 61.3% glucose), while hydrogen peroxide gave the highest glucose yield (82.4% xylose, 63.7% glucose). PMID:18164954

  17. The effects of different thermal treatments and organic acid levels on nutrient digestibility in broilers.

    Science.gov (United States)

    Goodarzi Boroojeni, F; Mader, A; Knorr, F; Ruhnke, I; Röhe, I; Hafeez, A; Männer, K; Zentek, J

    2014-05-01

    Poultry feed is a potential vector for pathogens. Heat processing and organic acid treatments may decontaminate feed and can affect bird performance as well as feed digestibility. The present study was performed to investigate the effect of different thermal treatments including pelleting (P), long-term conditioning at 85°C for 3 min (L), or expanding at 110°C (E110) and 130°C for 3 to 5 s (E130) without or with 0.75 and 1.5% organic acid supplementation (63.75% formic acid, 25.00% propionic acid, and 11.25% water) on performance, nutrient digestibility, and organ weights of broilers. In total, 960 one-day-old broiler chicks were randomly assigned to 8 replicates using a 3 × 4 factorial arrangement. Performance variables were determined, and the relative organ weights and ileal and total amino acid (AA) digestibilities were measured at d 35. The organic acid inclusion linearly improved feed efficiency in the first week (P ≤ 0.05). The acid inclusion levels and thermal treatments had no significant effect on the performance variables at later intervals of the growing period of the birds. The L group showed the lowest ileal AA and CP digestibility. The inclusion of organic acids had a quadratic effect on total and ileal digestibility of isoleucine (P ≤ 0.05), whereas it had no significant effect on the ileal digestibility of other AA and nutrients. The relative weights of the jejunum and small intestine were significantly higher in the E130 group compared with P and L (P ≤ 0.05). In conclusion, our study demonstrated that long-term heat conditioning can decrease ileal nutrient digestibility, whereas pelleting and expansion, independently of organic acid addition, seemed to have no negative impact on broiler performance and nutrient digestibilities. Moreover, adding a blend of organic acids to broiler diets had neither positive nor negative effects on nutrient digestibility and final broiler performance. This indicates the feasibility of short-term thermal

  18. Skeletal cell differentiation is enhanced by atmospheric dielectric barrier discharge plasma treatment.

    Directory of Open Access Journals (Sweden)

    Marla J Steinbeck

    Full Text Available Enhancing chondrogenic and osteogenic differentiation is of paramount importance in providing effective regenerative therapies and improving the rate of fracture healing. This study investigated the potential of non-thermal atmospheric dielectric barrier discharge plasma (NT-plasma to enhance chondrocyte and osteoblast proliferation and differentiation. Although the exact mechanism by which NT-plasma interacts with cells is undefined, it is known that during treatment the atmosphere is ionized generating extracellular reactive oxygen and nitrogen species (ROS and RNS and an electric field. Appropriate NT-plasma conditions were determined using lactate-dehydrogenase release, flow cytometric live/dead assay, flow cytometric cell cycle analysis, and Western blots to evaluate DNA damage and mitochondrial integrity. We observed that specific NT-plasma conditions were required to prevent cell death, and that loss of pre-osteoblastic cell viability was dependent on intracellular ROS and RNS production. To further investigate the involvement of intracellular ROS, fluorescent intracellular dyes Mitosox (superoxide and dihydrorhodamine (peroxide were used to assess onset and duration after NT-plasma treatment. Both intracellular superoxide and peroxide were found to increase immediately post NT-plasma treatment. These increases were sustained for one hour but returned to control levels by 24 hr. Using the same treatment conditions, osteogenic differentiation by NT-plasma was assessed and compared to peroxide or osteogenic media containing β-glycerolphosphate. Although both NT-plasma and peroxide induced differentiation-specific gene expression, neither was as effective as the osteogenic media. However, treatment of cells with NT-plasma after 24 hr in osteogenic or chondrogenic media significantly enhanced differentiation as compared to differentiation media alone. The results of this study show that NT-plasma can selectively initiate and amplify ROS

  19. Fatty-acid binding proteins modulate sleep and enhance long-term memory consolidation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jason R Gerstner

    Full Text Available Sleep is thought to be important for memory consolidation, since sleep deprivation has been shown to interfere with memory processing. However, the effects of augmenting sleep on memory formation are not well known, and testing the role of sleep in memory enhancement has been limited to pharmacological and behavioral approaches. Here we test the effect of overexpressing the brain-type fatty acid binding protein (Fabp7 on sleep and long-term memory (LTM formation in Drosophila melanogaster. Transgenic flies carrying the murine Fabp7 or the Drosophila homologue dFabp had reduced baseline sleep but normal LTM, while Fabp induction produced increases in both net sleep and LTM. We also define a post-training consolidation "window" that is sufficient for the observed Fabp-mediated memory enhancement. Since Fabp overexpression increases consolidated daytime sleep bouts, these data support a role for longer naps in improving memory and provide a novel role for lipid-binding proteins in regulating memory consolidation concurrently with changes in behavioral state.

  20. Selection of enhanced antimicrobial activity posing lactic acid bacteria characterised by (GTG)5-PCR fingerprinting.

    Science.gov (United States)

    Šalomskienė, Joana; Abraitienė, Asta; Jonkuvienė, Dovilė; Mačionienė, Irena; Repečkienė, Jūratė

    2015-07-01

    The aim of the study was a detail evaluation of genetic diversity among the lactic acid bacteria (LAB) strains having an advantage of a starter culture in order to select genotypically diverse strains with enhanced antimicrobial effect on some harmfull and pathogenic microorganisms. Antimicrobial activity of LAB was performed by the agar well diffusion method and was examined against the reference strains and foodborne isolates of Bacillus cereus, Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Salmonella Typhimurium. Antifungal activity was tested against the foodborne isolates of Candida parapsilosis, Debaromyces hansenii, Kluyveromyces marxianus, Pichia guilliermondii, Yarowia lipolytica, Aspergillus brasiliensis, Aspergillus versicolor, Cladosporium herbarum, Penicillium chrysogenum and Scopulariopsis brevicaulis. A total 40 LAB strains representing Lactobacillus (23 strains), Lactococcus (13 strains) and Streptococcus spp. (4 strains) were characterised by repetitive sequence based polymerase chain reaction fingerprinting which generated highly discriminatory profiles, confirmed the identity and revealed high genotypic heterogeneity among the strains. Many of tested LAB demonstrated strong antimicrobial activity specialised against one or few indicator strains. Twelve LAB strains were superior in suppressing growth of the whole complex of pathogenic bacteria and fungi. These results demonstrated that separate taxonomic units offered different possibilities of selection for novel LAB strains could be used as starter cultures enhancing food preservation.

  1. Enhanced ozonation of dichloroacetic acid in aqueous solution using nanometer ZnO powders

    Institute of Scientific and Technical Information of China (English)

    Xu Zhai; Zhonglin Chen; Shuqing Zhao; He Wang; Lei Yang

    2010-01-01

    Nanometer zinc oxide (ZnO) powders were used as a catalyst to enhance the ozonation for the degradation of dichloroacetic acid (DCAA) in aqueous solution.The batch experiments were carried out to investigate the effects of key factors such as catalyst dosage,ozone dosage,solution pH and ten-butyl alcohol (t-BuOH) on the degradation efficiency of DCAA.Density functional theory (DFT) and ozonation processes were not effective for DCAA removal,and the addition of ZnO catalyst improved the degradation efficiency of DCAA during ozonation,which caused an increase of 22.8% for DCAA decomposition compared to the case of ozonation alone after 25 min.Under the same experimental conditions,the DCAA decomposition was enhanced by increasing catalyst dosage from 100 to 500 mg/L and ozone dosage from 0.83 to 3.2 mg/L,The catalytic ozonation process is more pronounced than the ozonation process alone at pH 3.93,6.88,and 10.With increasing the concentration of t-BuOH from 10 to 200 mg/L,the degradation of DCAA was significantly molecule ozone followed by the interaction of adsorbed ozone with active sites of the catalyst surface.It is also concluded that ZnO of ozone.

  2. Free nitrous acid (FNA)-based pretreatment enhances methane production from waste activated sludge.

    Science.gov (United States)

    Wang, Qilin; Ye, Liu; Jiang, Guangming; Jensen, Paul D; Batstone, Damien J; Yuan, Zhiguo

    2013-10-15

    Anaerobic digestion of waste activated sludge (WAS) is currently enjoying renewed interest due to the potential for methane production. However, methane production is often limited by the slow hydrolysis rate and/or poor methane potential of WAS. This study presents a novel pretreatment strategy based on free nitrous acid (FNA or HNO2) to enhance methane production from WAS. Pretreatment of WAS for 24 h at FNA concentrations up to 2.13 mg N/L substantially enhanced WAS solubilization, with the highest solubilization (0.16 mg chemical oxygen demand (COD)/mg volatile solids (VS), at 2.13 mg HNO2-N/L) being six times that without FNA pretreatment (0.025 mg COD/mg VS, at 0 mg HNO2-N/L). Biochemical methane potential tests demonstrated methane production increased with increased FNA concentration used in the pretreatment step. Model-based analysis indicated FNA pretreatment improved both hydrolysis rate and methane potential, with the highest improvement being approximately 50% (from 0.16 to 0.25 d(-1)) and 27% (from 201 to 255 L CH4/kg VS added), respectively, achieved at 1.78-2.13 mg HNO2-N/L. Further analysis indicated that increased hydrolysis rate and methane potential were related to an increase in rapidly biodegradable substrates, which increased with increased FNA dose, while the slowly biodegradable substrates remained relatively static.

  3. Selection of enhanced antimicrobial activity posing lactic acid bacteria characterised by (GTG)5-PCR fingerprinting.

    Science.gov (United States)

    Šalomskienė, Joana; Abraitienė, Asta; Jonkuvienė, Dovilė; Mačionienė, Irena; Repečkienė, Jūratė

    2015-07-01

    The aim of the study was a detail evaluation of genetic diversity among the lactic acid bacteria (LAB) strains having an advantage of a starter culture in order to select genotypically diverse strains with enhanced antimicrobial effect on some harmfull and pathogenic microorganisms. Antimicrobial activity of LAB was performed by the agar well diffusion method and was examined against the reference strains and foodborne isolates of Bacillus cereus, Listeria monocytogenes, Escherichia coli, Staphylococcus aureus and Salmonella Typhimurium. Antifungal activity was tested against the foodborne isolates of Candida parapsilosis, Debaromyces hansenii, Kluyveromyces marxianus, Pichia guilliermondii, Yarowia lipolytica, Aspergillus brasiliensis, Aspergillus versicolor, Cladosporium herbarum, Penicillium chrysogenum and Scopulariopsis brevicaulis. A total 40 LAB strains representing Lactobacillus (23 strains), Lactococcus (13 strains) and Streptococcus spp. (4 strains) were characterised by repetitive sequence based polymerase chain reaction fingerprinting which generated highly discriminatory profiles, confirmed the identity and revealed high genotypic heterogeneity among the strains. Many of tested LAB demonstrated strong antimicrobial activity specialised against one or few indicator strains. Twelve LAB strains were superior in suppressing growth of the whole complex of pathogenic bacteria and fungi. These results demonstrated that separate taxonomic units offered different possibilities of selection for novel LAB strains could be used as starter cultures enhancing food preservation. PMID:26139877

  4. High orientation of long chain branched poly (lactic acid) with enhanced blood compatibility and bionic structure.

    Science.gov (United States)

    Li, Zhengqiu; Ye, Lin; Zhao, Xiaowen; Coates, Phil; Caton-Rose, Fin; Martyn, Michasel

    2016-05-01

    Highly oriented poly (lactic acid) (PLA) with bionic microgrooves was fabricated through solid hot drawing technology for further improving the mechanical properties and blood biocompatibility of PLA. In order to enhance the melt strength and thus obtain high orientation degree, long chain branched PLA was prepared at first through a two-step ring-opening reaction during processing. Linear viscoelasticity combined with branch-on-branch model was used to predict probable compositions and chain topologies of the products, and it was found that the molecular weight of PLA increased and topological structures with star like chain with three arms and tree-like chain with two generations formed during reactive processing, and consequently draw ratio as high as1200% can be achieved during the subsequent hot stretching. With the increase of draw ratio, the tensile strength and orientation degree of PLA increased dramatically. Long chain branching and orientation could significantly enhance the blood compatibility of PLA by prolonging clotting time and decreasing platelet activation. Microgrooves can be observed on the surface of the oriented PLA which were similar to the intimal layer of blood vessel, and such bionic structure resulted from the formation of the oriented shish kebab-like crystals along the draw direction.

  5. Synergistic interactions between grafted hyaluronic acid and lubricin provide enhanced wear protection and lubrication.

    Science.gov (United States)

    Das, Saurabh; Banquy, Xavier; Zappone, Bruno; Greene, George W; Jay, Gregory D; Israelachvili, Jacob N

    2013-05-13

    Normal (e.g., adhesion) and lateral (friction) forces were measured between physisorbed and chemically grafted layers of hyaluronic acid (HA), an anionic polyelectrolyte in the presence of lubricin (Lub), a mucinous glycoprotein, on mica surfaces using a surface forces apparatus (SFA). This work demonstrates that high friction coefficients between the surfaces do not necessarily correlate with surface damage and that chemically grafted HA acts synergistically with Lub to provide friction reduction and enhanced wear protection to the surfaces. Surface immobilization of HA by grafting is necessary for such wear protection. Increasing the concentration of Lub enhances the threshold load that a chemically grafted HA surface can be subjected to before the onset of wear. Addition of Lub does not have any beneficial effect if HA is physisorbed to the mica surfaces. Damage occurs at loads less than 1 mN regardless of the amount of Lub, indicating that the molecules in the bulk play little or no role in protecting the surfaces from damage. Lub penetrates into the chemically bound HA to form a visco-elastic gel that reduces the coefficient of friction as well as boosts the strength of the surface against abrasive wear (damage).

  6. Modification of acidity of Mo-Fe/HZSM-5 zeolite via argon plasma treatment

    Institute of Scientific and Technical Information of China (English)

    Xinli ZHU; Kailu YU; Dangguo CHENG; Yueping ZHANG; Qing XIA; Changjun LIU

    2008-01-01

    The NH3-TPD characterization was conducted to confirm that the acidity of Mo-Fe/HZSM-5 zeolite could be selectively modified via the glow discharge plasma treatment. The plasma catalyst treatment could totally change the distribution of aromatic products with higher methane conversion compared to the untreated catalyst. Some polycyclic aromatics such as anthracene, pyrene and phenanthrene were also produced over the plasma treated catalyst, in addition to benzene, toluene and naphthalene, which were normally obtained over the untreated catalyst.

  7. Citric acid treatment of chronic nonhealing ulcerated tophaceous gout with bursitis.

    Science.gov (United States)

    Nagoba, Basavaraj S; Punpale, Ajay; Poddar, Ashok; Suryawanshi, Namdev M; Swami, Ganesh A; Selkar, Sohan P

    2013-12-01

    The ulceration associated with gout tophi is very difficult to treat because of impaired and halted local inflammatory response resulting from the gout treatment regimen. We report chronic nonhealing tophaceous gout with bursitis in an 80-year-old male, not responding to conventional treatment modality for months together. This nonhealing ulcer was treated successfully with local application of 3% citric acid ointment for 22 days.

  8. Contrast Enhancement on CT Following Renal Cryoablation – Does It Represent Treatment Failure?

    DEFF Research Database (Denmark)

    Nielsen, Tommy Kjærgaard; Østraat, Øyvind; Andersen, Gratien;

    Aim: Renal cryoablation is a valid treatment option for localized pT1a renal cancer. Treatment success is typically defined as absence of contrast enhancement (CE) on follow-up imaging. We investigate the development of lesions that demonstrate CE on follow-up CT after renal cryoablation. Materia...... not uncommon. As there are no clear-cut criteria for monitoring treatment failure, careful evaluation by an experienced radiologist and urologist is recommend. The significance of delayed contrast enhancement is not clearly evident and needs further investigation....... patient age was 43 (59-66) yr. Mean tumor size was 25 (22-28) mm. RCC-subtypes: Clear cell (55 %), Papillary (12%), Chromophobe (3%), Subtype not specified (30%). There was no statistically significant difference between the patient characteristics with or without CE lesions. Results: A total of 28...

  9. Retinoic acid expression associates with enhanced IL-22 production by γδ T cells and innate lymphoid cells and attenuation of intestinal inflammation

    OpenAIRE

    Mills, Kingston; Raverdeau, Mathilde

    2013-01-01

    PUBLISHED Retinoic acid (RA), a vitamin A metabolite, modulates mucosal T helper cell responses. Here we examined the role of RA in regulating IL-22 production by γδ T cells and innate lymphoid cells in intestinal inflammation. RA significantly enhanced IL-22 production by γδ T cells stimulated in vitro with IL-1β or IL-18 and IL-23. In vivo RA attenuated colon inflammation induced by dextran sodium sulfate treatment or Citrobacter rodentium infection. This was associated with a significan...

  10. Combination of Successive Alkalinity Producing System (SAPS) and Aeration for Passive Treatment of Highly Acidic Mine Drainage

    Science.gov (United States)

    Oh, C.; Ji, S.

    2015-12-01

    Passive treatment system has been widely used for remediation of mine drainage since its advantage of low installation and maintenance cost. The system, however, has also a disadvantage in assuring remediation and management efficiency if the drainage is highly acidic mine drainage. To remediate acid mine drainage (AMD) especially showing high acidity, passive treatment system which consists of successive alkalinity producing system (SAPS) and subsequent aeration pond was proposed and its mechanisms and efficiency was evaluated in this research. Target AMD was obtained from Waryong coal mine and showed typical characteristics of AMD having high metal concentration and low pH (acidity > 300 mg/L as CaCO3). Four experimental cases were conducted; untreated, treated with SAPS, treated with aeration, treated with SAPS and aeration to compare role and mechanism of each unit. Between organic matter and limestone layer which constitute SAPS, the former eliminated most of Fe(III) and Al in the AMD so that the latter was kept from being clogged by precipitates. Net acidity of the AMD rapidly decreased by supplement of alkalinity at the limestone layer. A primary function of SAPS, producing alkalinity constantly without clogging, was attained due to addition a portion of limestone particle into the organic matter layer. The discharge from SAPS had low ORP and DO values because of an anaerobic environment formed at the organic matter layer although its alkalinity was increased. This water quality was unfavorable for Fe(II) to be oxidized. Installation of aeration pond after SAPS, therefore, could be effective way of enhancing oxidation rate of Fe(II). Among the experimental cases, the combination of SAPS and aeration pond was only able to remediate the AMD. This concluded that to remediate highly acidic mine drainage with passive treatment system, three critical conditions were required; pre-precipitation of Fe(III) and Al at organic matter layer in SAPS, constant alkalinity

  11. The importance of need for cognition and educational experience in enhanced and standard substance abuse treatment.

    Science.gov (United States)

    Czuchry, Michael; Dansereau, Donald F

    2004-06-01

    The current study examined the relationship between need for cognition (i.e., cognitive motivation or "will") and educational experience (i.e., cognitive ability or "skill") to perceived improvements during treatment of probationers receiving residential treatment within the criminal justice system. Probationers were randomly assigned to either receive motivational activities developed by the authors (the "enhanced" condition), or treatment as usual (but with access to general reading materials in lieu of the motivational activities). Need for cognition and educational experience were assessed and used as blocking variables, and ratings of progress were assessed midway and toward the end of treatment. The results indicate that both need for cognition and educational experience are important predictors of improvement during treatment, and that the motivational activities developed by the authors were particularly valuable for clients with lower levels of need for cognition.

  12. A review of minodronic acid hydrate for the treatment of osteoporosis

    Directory of Open Access Journals (Sweden)

    Tanishima S

    2013-02-01

    Full Text Available Shinji Tanishima, Yasuo MorioDepartment of Orthopedic Surgery, Misasa Onsen Hospital, Misasa, Tottori, JapanAbstract: Minodronic acid hydrate was the first bisphosphonate developed and approved for osteoporosis treatment in Japan. With regard to inhibition of bone resorption, minodronic acid hydrate is 1000 times more effective than etidronic acid and 10–100 times more effective than alendronic acid. Clinical trials conducted to date have focused on postmenopausal female patients suffering from primary osteoporosis. In these trials, 1 mg of oral minodronic acid hydrate was administrated once daily, and a significant increase was observed in lumbar-spine and hip-joint bone density 1–2 years after administration. All markers of bone metabolism urinary collagen type 1 cross-linked N-telopeptide, urinary free deoxypyridinoline, serum bone alkaline phosphatase, and serum osteocalcin were decreased. The incidence rate of new vertebral and nonvertebral fractures was also decreased. Therefore, effectiveness in fracture prevention was confirmed. A form of minodronic acid (50 mg requiring once-monthly administration has been developed and is currently being used clinically. A comparative study between this new formulation and once-daily minodronic acid (1 mg showed no significant differences between the two formulations in terms of improvement rates in lumbar-spine and hip-joint bone density, changes in bone metabolism markers, or incidence of side effects. This indicates the noninferiority of the monthly formulation. Side effects such as osteonecrosis of the jaw or atypical femoral fractures were not reported with other bisphosphonates, although it is believed that these side effects may emerge as future studies continue to be conducted. On the basis of studies conducted to date, minodronic acid hydrate is considered effective for improving bone density and preventing fractures. We anticipate further investigations in the future

  13. SU-E-T-56: Brain Metastasis Treatment Plans for Contrast-Enhanced Synchrotron Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Obeid, L; Adam, J [Grenoble Institut des Neurosciences, La Tronche, Rhone-Alpes (France); Tessier, A [Centre Hospitalier Universitaire, La Tronche, Rhone-Alpes (France); Vautrin, M; Benkebil, M [DOSIsoft, Cachan, Ile de France (France); Sihanath, R [Centre Hospitalier Universitaire, La Tronche, Rhone- Alpes (France)

    2014-06-01

    Purpose: Iodine-enhanced radiotherapy is an innovative treatment combining the selective accumulation of an iodinated contrast agent in brain tumors with irradiations using monochromatic medium energy x-rays. The aim of this study is to compare dynamic stereotactic arc-therapy and iodineenhanced SSRT. Methods: Five patients bearing brain metastasis received a standard helical 3D-scan without iodine. A second scan was acquired 13 min after an 80 g iodine infusion. Two SSRT treatment plans (with/without iodine) were performed for each patient using a dedicated Monte Carlo (MC) treatment planning system (TPS) based on the ISOgray TPS. Ten coplanar beams (6×6 cm2, shaped with collimator) were simulated. MC statistical error objective was less than 5% in the 50% isodose. The dynamic arc-therapy plan was achieved on the Iplan Brainlab TPS. The treatment plan validation criteria were fixed such that 100% of the prescribed dose is delivered at the beam isocentre and the 70% isodose contains the whole target volume. The comparison elements were the 70% isodose volume, the average and maximum doses delivered to organs at risk (OAR): brainstem, optical nerves, chiasma, eyes, skull bone and healthy brain parenchyma. Results: The stereotactic dynamic arc-therapy remains the best technique in terms of dose conformation. Iodine-enhanced SSRT presents similar performances to dynamic arc-therapy with increased brainstem and brain parenchyma sparing. One disadvantage of SSRT is the high dose to the skull bone. Iodine accumulation in metastasis may increase the dose by 20–30%, allowing a normal tissue sparing effect at constant prescribed dose. Treatment without any iodine enhancement (medium-energy stereotactic radiotherapy) is not relevant with degraded HDVs (brain, parenchyma and skull bone) comparing to stereotactic dynamic arc-therapy. Conclusion: Iodine-enhanced SSRT exhibits a good potential for brain metastasis treatment regarding the dose distribution and OAR criteria.

  14. Half-dose gadoxetic acid-enhanced liver magnetic resonance imaging in patients at risk for nephrogenic systemic fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyoung Doo [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul 135-710 (Korea, Republic of); Kim, Seong Hyun, E-mail: kshyun@skku.edu [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul 135-710 (Korea, Republic of); Lee, Jisun; Kang, Kyung A. [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul 135-710 (Korea, Republic of); Kim, Joungyoun; Yoo, Heejin [Biostatistics and Clinical Epidemiology Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul 135-710 (Korea, Republic of)

    2015-03-15

    Highlights: •Half dose of gadoxetic acid achieved more than 75% enhancement degree of a standard dose. •No significant difference was observed in enhancement quality between half-dose and standard-dose MRIs for all upper abdominal organs. •Liver MRI using half-dose gadoxetic acid at 3-T can be a feasible alternative for standard-dose MRI in patients at risk for NSF. -- Abstract: Purpose: To evaluate the feasibility of half-dose gadoxetic acid (0.0125 mmol/kg) for liver MRI at 3-T compared to standard-dose (0.025 mmol/kg) in patients at risk for nephrogenic systemic fibrosis (NSF). Materials and methods: Forty patients who underwent both half-dose and standard-dose gadoxetic acid-enhanced MRIs were included. Contrast enhancement index (CEI) was calculated for liver, aorta, pancreas and kidney. Two observers independently rated and performed a one-to-one direct comparison of enhancement quality for both groups. Results: Liver CEIs were not significantly different on arterial phase between the two groups but CEIs of standard-dose MRIs were greater than half-dose MRIs on other phases (P < 0.001). CEIs were not significantly different on arterial phase for the aorta or on any phases for the pancreas. Kidney CEIs of standard-dose MRIs were greater than half-dose MRIs on all phases (P < 0.05). Enhancement quality of both groups was diagnostic and did not significantly differ for any organs. In one-to-one direct comparisons of enhancement quality, equal ratings were given in 87.5% (35/40) of cases by observer 1 and 85.0% (34/40) by observer 2. Conclusion: Liver MRI using half-dose gadoxetic acid at 3-T can be a feasible alternative for standard-dose MRI in patients at risk for NSF.

  15. Anaerobic waste water treatment: influencing parameters on the acid formation of citric acid production waste - investigation in lab scale and on a large treatment plant

    International Nuclear Information System (INIS)

    Based on the biochemical background of anaerobic waste water treatment processes and on the kinetic criteria the problems of acid formation in one and two stage fermentations are discussed. Chemical analytics play an important role on the control of anaerobic processes. In a separate chapter the significance of different parameters and their application for the control of acidification processes is discussed. Of special importance is an early information on process disturbances and considerations concerning the balancing of the relevant processes. Analytical problems that occur in practice are also dealt with. The practical experience with the large scale wastewater treatment plant, where the described procedures were applied are the main purpose of the thesis. The main influencing parameters on both the lab scale and large scale processes are compared and the influence of important process variables like temperature, pH, load, waste water composition and addition of aerobic and anaerobic sludges on the acid formation is investigated. The results of the work are discussed and compared with results from the literature. In addition a mathematical model dealing with the main pH-dependent equilibrium conditions for acidification reactions was developed on basis of existing models for anaerobic waste water treatment processes. (author)

  16. Phospholipid fatty acid patterns of microbial communities in paddy soil under different fertilizer treatments

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi-chun; WANG Guang-huo; YAO Huai-ying

    2007-01-01

    The microbial communities under irrigated rice cropping with different fertilizer treatments, including control (CK), PK, NK, NP, NPK fertilization, were investigated using phospholipid fatty acid (PLFA) profile method. The results of this study revealed that the fertilizer practice had an impact on the community structure of specific microbial groups. The principal components analysis (PCA) showed that proportion of the actinomycete PLFAs (10Me 18:0 and 10Me 16:0) were the lowest in the PK treatment and the highest in the NPK treatment, which means that soil nitrogen status affected the diversity of actinomycetes, whereas nitrogen cycling was related to the actinomycets. Under CK treatment, the ratio of Gram-positive to Gram-negative bacteria was lower compared with that in fertilizer addition treatments, indicating that fertilizer application stimulated Gram-positive bacterial population in paddy soil. The fatty acid 18:2ω6, 9, which is considered to be predominantly of fungal origin, was at low level in all the treatments. The ratio of cy19:0 to 18:1ω7, which has been proposed as an indicator of stress conditions, decreased in PK treatment. Changes of soil microbial community under different fertilizer treatments of paddy soil were detected in this study; however, the causes that lead to changes in the microbial community still needs further study.

  17. Lactic acid and trisodium phosphate treatment of lamb breast to reduce bacterial contamination.

    Science.gov (United States)

    Ramirez, A J; Acuff, G R; Lucia, L M; Savell, J W

    2001-09-01

    Lactic acid and trisodium phosphate (TSP) were evaluated for the ability to reduce Escherichia coli and aerobic plate counts (APCs) on lamb breasts that were inoculated with a lamb fecal paste. A 90-s water rinse was applied followed by either a 9-s (55 degrees C) 2% lactic acid spray, a 60-s (55 degrees C) 12% TSP dip, or a combined treatment of both lactic acid and TSP treatments. Lactic acid reduced E. coli and APCs by 1.6 log10/cm2, and TSP caused a 1.8-log10/cm2 reduction in E. coli and a 0.7-log10/cm2 reduction in APCs. Combined reductions by the lactic acid spray followed by the TSP dip were 1.8 and 1.5 log10/cm2 for E. coli and APCs, respectively. Lactic acid and trisodium phosphate, used alone or in combination, were effective in reducing numbers of E. coli and could be useful as pathogen intervention steps in lamb slaughter processing. PMID:11563525

  18. [The importance of γ-linolenic acid in the prevention and treatment].

    Science.gov (United States)

    Białek, Małgorzata; Rutkowska, Jarosława

    2015-01-01

    The etiology of diet-related disorders is closely associated with dietary factors. A special role is attributed to intake of fat and fatty acid profile, both quantitative and qualitative. For prevention and treatment of the abovementioned diseases a proper supply of unsaturated fatty acids plays a significant role, because of their particular importance to health. γ-Linolenic acid (GLA), with three double bonds in the carbon chain, also known as all-cis 6,9,12-octadecatrienoic acid, belongs to the n-6 family of fatty acids. It plays biologically important functions in the human body, such as being a substrate for eicosanoids synthesis, involvement in the transport and oxidation of cholesterol, and being one of the components of lipid membrane. Its inadequate dietary intake or impaired formation is the cause of many inflammatory and degenerative diseases. A rich source of this fatty acid is vegetable oils, until recently used mainly in folk medicine. Nowadays, studies conducted both in animal models and in humans suggest its health-promoting properties in the prevention and treatment of atopic dermatitis, cardiovascular diseases, diabetes, cancers and rheumatoid arthritis. PMID:26270516

  19. Treatment of postoperative bleeding after fondaparinux with rFVIIa and tranexamic acid.

    NARCIS (Netherlands)

    Huvers, F.C.; Slappendel, R.; Benraad, B.; Hellemondt, G. van; Kraaij, M.G.J. van

    2005-01-01

    Treatment of a haemorrhagic shock after just a single dose of fondaparinux in an orthopaedic patient with reduced renal clearance is presented. Since all routine haemostatic parameters were nearly normal, single doses of rFVIIa (90 microg/kg) and of tranexamic acid (15 mg/kg) were administered to im

  20. COMPOST-FREE BIOREACTOR TREATMENT OF ACID ROCK DRAINAGE LEVIATHAN MINE, CALIFORNIA INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  1. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain

    NARCIS (Netherlands)

    C. Eschauzier; E. Beerendonk; P. Scholte-Veenendaal; P. de Voogt

    2012-01-01

    The behavior of polyfluoralkyl acids (PFAAs) from intake (raw source water) to finished drinking water was assessed by taking samples from influent and effluent of the several treatment steps used in a drinking water production chain. These consisted of intake, coagulation, rapid sand filtration, du

  2. Omega-3 Fatty Acid Augmentation of Citalopram Treatment for Patients with Major Depressive Disorder

    OpenAIRE

    Gertsik, Lev; Poland, Russell E.; Bresee, Catherine; Rapaport, Mark Hyman

    2012-01-01

    The objective of this study was to explore the efficacy of combination therapy with citalopram plus omega-3 fatty acids versus citalopram plus placebo (olive oil) in the initial treatment of individuals with Major Depressive Disorder (MDD). We hypothesized that combination therapy would not only lead to greater efficacy, but a more rapid onset of therapeutic response.

  3. High rate treatment of terephthalic acid production wastewater in a two-stage anaerobic bioreactor

    NARCIS (Netherlands)

    Kleerebezem, R.; Beckers, J.; Pol, L.W.H.; Lettinga, G.

    2005-01-01

    The feasibility was studied of anaerobic treatment of wastewater generated during purified terephthalic acid (PTA) production in two-stage upflow anaerobic sludge blanket (UASB) reactor system. The artificial influent of the system contained the main organic substrates of PTA-wastewater: acetate, be

  4. COMPOST-FREE BIOLOGICAL TREATMENT OF ACID ROCK DRAINAGE, TECHNICAL EVALUATION BULLETIN

    Science.gov (United States)

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  5. COMPOST-FREE BIOREACTOR TREATMENT OF ACID ROCK DRAINAGE - TECHNOLOGY CAPSULE

    Science.gov (United States)

    As part of the Superfund Innovative Technology Evaluation (SITE) program, an evaluation of the compost-free bioreactor treatment of acid rock drainage (ARD) from the Aspen Seep was conducted at the Leviathan Mine Superfund site located in a remote, high altitude area of Alpine Co...

  6. Alpha lipoic acid : a new treatment for neuropathic pain in patients with diabetes?

    NARCIS (Netherlands)

    Mijnhout, G. S.; Alkhalaf, A.; Kleefstra, N.; Bibo, H. J. G.

    2010-01-01

    Background: Neuropathic pain is difficult to treat. We identified those studies in the literature in which the effectiveness of alpha lipoic acid as a treatment for neuropathic pain was evaluated. Methods: Systematic literature review. The databases MEDLINE and EMBASE were searched using the keyword

  7. Comparative study of 15% TCA peel versus 35% glycolic acid peel for the treatment of melasma

    Directory of Open Access Journals (Sweden)

    Neerja Puri

    2012-01-01

    Full Text Available Background: Chemical peels are the mainstay of a cosmetic practitioner′s armamentarium because they can be used to treat some skin disorders and can provide aesthetic benefit. Objectives: To compare 15% TCA peel and 35% glycolic acid peel for the treatment of melasma. Material and Methods: We selected 30 participants of melasma aged between 20 and 50 years from the dermatology outpatient department and treated equal numbers with 15% TCA and 35% glycolic acid. Results: Subjective response as graded by the patient showed good or very good response in 70% participants in the glycolic acid group and 64% in the TCA group. Conclusions: There was statistically insignificant difference in the efficacy between the two groups for the treatment of melasma.

  8. Efficacy of salicylic acid in the treatment of digital dermatitis in dairy cattle

    DEFF Research Database (Denmark)

    Schultz, N.; Capion, N.

    2013-01-01

    Digital dermatitis (DD) is one of the most important causes of lameness in dairy cattle worldwide. The objective of this study was to evaluate the efficacy of salicylic acid in the treatment of the disease. A total of 201 DD lesions from 173 cows from four commercial dairy herds were evaluated...... at day 0 during routine hoof trimming and were allocated into two groups, namely, a control group given chlortetracycline spray, and a treatment group given 10 g of salicylic acid powder applied topically within a bandage. Pain, lesion size and clinical appearance (scored MO to M4) were evaluated on days...... the control group were 2.2 times more likely (P = 0.09) to have a pain score equal to 2 by day 14. The proportion of lesions getting smaller by days 14 and 34 was 2.5 times higher (P salicylic acid should be considered as an alternative...

  9. DEPOSITION TANK CORROSION TESTING FOR ENHANCED CHEMICAL CLEANING POST OXALIC ACID DESTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.

    2011-08-29

    An Enhanced Chemical Cleaning (ECC) process is being developed to aid in the high level waste tank closure at the Savannah River Site. The ECC process uses an advanced oxidation process (AOP) to destroy the oxalic acid that is used to remove residual sludge from a waste tank prior to closure. The AOP process treats the dissolved sludge with ozone to decompose the oxalic acid through reactions with hydroxyl radicals. The effluent from this oxalic acid decomposition is to be sent to a Type III waste tank and may be corrosive to these tanks. As part of the hazardous simulant testing that was conducted at the ECC vendor location, corrosion testing was conducted to determine the general corrosion rate for the deposition tank and to assess the susceptibility to localized corrosion, especially pitting. Both of these factors impact the calculation of hydrogen gas generation and the structural integrity of the tanks, which are considered safety class functions. The testing consisted of immersion and electrochemical testing of A537 carbon steel, the material of construction of Type III tanks, and 304L stainless steel, the material of construction for transfer piping. Tests were conducted in solutions removed from the destruction loop of the prototype ECC set up. Hazardous simulants, which were manufactured at SRNL, were used as representative sludges for F-area and H-area waste tanks. Oxalic acid concentrations of 1 and 2.5% were used to dissolve the sludge as a feed to the ECC process. Test solutions included the uninhibited effluent, as well as the effluent treated for corrosion control. The corrosion control options included mixing with an inhibited supernate and the addition of hydroxide. Evaporation of the uninhibited effluent was also tested since it may have a positive impact on reducing corrosion. All corrosion testing was conducted at 50 C. The uninhibited effluent was found to increase the corrosion rate by an order of magnitude from less than 1 mil per year (mpy

  10. Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause Toll-like receptor 4 activation and enhanced pain

    OpenAIRE

    Lewis, Susannah S.; Hutchinson, Mark R; Zhang, Yingning; Hund, Dana K.; Maier, Steven F.; Rice, Kenner C.; Watkins, Linda R

    2013-01-01

    We have previously observed that the non-opioid morphine metabolite, morphine-3-glucuronide, enhances pain via a toll-like receptor 4 (TLR4) dependent mechanism. The present studies were undertaken to determine whether TLR4-dependent pain enhancement generalizes to other classes of glucuronide metabolites. In silico modeling predicted that glucuronic acid alone and ethyl glucuronide, a minor but long-lasting ethanol metabolite, would dock to the same MD-2 portion of the TLR4 receptor complex ...

  11. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Rashad; Nizami, Abdul-Sattar; Murphy, Jerry D.; Kiely, Gerard [Department of Civil and Environmental Engineering, University College Cork (Ireland); Poulsen, Tjalfe Gorm [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University (Denmark); Asam, Zaki-ul-Zaman [Department of Civil Engineering, National University of Ireland Galway (Ireland)

    2010-12-15

    The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre-treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 C-150 C). Results showed that thermo-chemical pretreatment has high effect on biogas and methane potential in the temperature range (25-100 C). Maximum enhancement is observed at 70 C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 C), with maximum enhancement at 100 C having 28% biogas and 25% methane increase. (author)

  12. Formic acid enhanced effective degradation of methyl orange dye in aqueous solutions under UV-Vis irradiation.

    Science.gov (United States)

    Wang, Jingjing; Bai, Renbi

    2016-09-15

    Developing efficient technologies to treat recalcitrant organic dye wastewater has long been of great research and practical interest. In this study, a small molecule, formic acid (FA), was applied as a process enhancer for the degradation of methyl orange (MO) dye as a model recalcitrant organic pollutant in aqueous solutions under the condition of UV-Vis light irradiation and air aeration at the ambient temperature of 25 °C. It was found that the decolouration of the dye solutions can be rapidly achieved, reducing the time, for example, from around 17.6 h without FA to mostly about less than 2 h with the presence of FA. The mineralization rate of MO dye reached as high as 81.8% in 1.5 h in the case of initial MO dye concentration at 25 mg L(-1), which is in contrast to nearly no mineralization of the MO dye for a similar system without the FA added. The study revealed that the generation of the H2O2 species in the system was enhanced and the produced OH radicals effectively contributed to the degradation of the MO dye. Process parameters such as the initial concentration of MO dye, FA dosage and solution pH were all found to have some effect on the degradation efficiency under the same condition of UV-Vis light irradiation and air aeration. The MO dye degradation performance was found to follow a first-order reaction rate to the MO dye concentration in most cases and there existed a positive correlation between the reaction rate constant and the initial FA concentration. Compared to the traditional H2O2/UV-Vis oxidation system, the use of FA as a process-enhancing agent can have the advantages of low cost, easy availability, and safe to use. The study hence demonstrates a promising approach to use a readily available small molecule of FA to enhance the degradation of recalcitrant organic pollutants, such as MO dye, especially for their pre-treatment. PMID:27258621

  13. Responses of soil buffering capacity to acid treatment in three typical subtropical forests.

    Science.gov (United States)

    Jiang, Jun; Wang, Ying-Ping; Yu, Mengxiao; Li, Kun; Shao, Yijing; Yan, Junhua

    2016-09-01

    Elevated anthropogenic acid deposition can significantly affect forest ecosystem functioning by changing soil pH, nutrient balance, and chemical leaching and so on. These effects generally differ among different forests, and the dominant mechanisms for those observed responses often vary, depending on climate, soil conditions and vegetation types. Using soil monoliths (0-40cm) from pine forest (pioneer), coniferous and broadleaved mixed forest (transitional) and broadleaved forest (mature) in southern China, we conducted a leaching experiment with acid treatments at different pH levels (control: pH≈4.5; pH=3.5; pH=2.5). We found that pH3.5 treatment significantly reduced dissolved organic carbon (DOC) concentrations in leachate from the pioneer forest soil. pH2.5 treatment significantly increased concentrations of NO3(-), SO4(2-), Ca(2+), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the pioneer forest soil, and also concentrations of NO3(-), SO4(2-), Mg(2+), Al(3+), Fe(3+) and DOC in leachate from the transitional forest soil. All acid treatments had no significant effects on concentrations of these chemicals in leachate from the mature forest soil. The responses can be explained by the changes in soil pH, acid neutralizing capacity (ANC) and concentrations of Al and Fe. Our results showed that acid buffering capacity of the pioneer or transitional forest soil was lower than that of the mature forest soil. Therefore preserving mature forests in southern China is important for reducing the adverse impacts of high acid deposition on stream water quality at present and into the future. PMID:27185346

  14. Retinoic acid and cAMP inhibit rat hepatocellular carcinoma cell proliferation and enhance cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ionta, M. [Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas MG (Brazil); Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil); Rosa, M.C.; Almeida, R.B.; Freitas, V.M.; Rezende-Teixeira, P.; Machado-Santelli, G.M. [Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil)

    2012-05-25

    Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation [E-cadherin, connexin 26 (Cx26), and connexin 32 (Cx32)]. RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.

  15. Duration of wrinkle correction following repeat treatment with Juvéderm hyaluronic acid fillers

    OpenAIRE

    Smith, Stacy R.; Jones, Derek; Thomas, Jane A.; Murphy, Diane K.; Beddingfield, Frederick C.

    2010-01-01

    Many patients elect to have repeat treatments with hyaluronic acid dermal fillers to maintain wrinkle correction, but the clinical performance of these products after repeat treatments has not been formally assessed. The primary objective of this study was to evaluate the effectiveness of Juvéderm injectable gel (Juvéderm Ultra, Juvéderm Ultra Plus, and Juvéderm 30) through 1 year after repeat treatment of nasolabial folds (NLFs) that were previously treated with Juvéderm or Zyplast 6–9 month...

  16. Phytic acid enhances biocontrol activity of Rhodotorula mucilaginosa against Penicillium expansum contamination and patulin production in apples

    Directory of Open Access Journals (Sweden)

    Qiya eYang

    2015-11-01

    Full Text Available The effect of Rhodotorula mucilaginosa in combination with phytic acid (PA on blue mold decay and patulin contamination of apples was investigated. Results from this study show that different concentrations of PA were effective in reducing the disease incidence of apples and that PA at concentration of 4 μmol/mL, decreased the incidence of blue mold decay in apples from 86.1% to 62.5%, and showed higher control efficacy compared to untreated, control fruit during storage at 20 °C. However, R. mucilaginosa combined with PA (4 μmol/mL showed better control efficacy of blue mold decay than R. mucilaginosa used as single treatment, the disease incidence was reduced to 62.5% and lesion diameter on apples was reduced to 16.59cm. In in vitro experiments, the addition of PA enhanced the biocontrol effect of R. mucilaginosa against the growth of P. expansum and reduced patulin level when compared with either R. mucilaginosa or PA used separately. R. mucilaginosa together with PA, improved the inhibition of patulin production in wounded apples, decreasing the content of patulin by 89.6% compared to the control, under experimental conditions. Both R. mucilaginosa and R. mucilaginosa in combination with PA degraded patulin in vitro. In conclusion, the appropriate combination of R. mucilaginosa and PA may provide an effective biocontrol method for reducing postharvest decay of apples.

  17. Enhancement of azo dye Acid Orange 7 removal in newly developed horizontal subsurface-flow constructed wetland.

    Science.gov (United States)

    Tee, Heng-Chong; Lim, Poh-Eng; Seng, Chye-Eng; Mohd Nawi, Mohd Asri; Adnan, Rohana

    2015-01-01

    Horizontal subsurface-flow (HSF) constructed wetland incorporating baffles was developed to facilitate upflow and downflow conditions so that the treatment of pollutants could be achieved under multiple aerobic, anoxic and anaerobic conditions sequentially in the same wetland bed. The performances of the baffled and conventional HSF constructed wetlands, planted and unplanted, in the removal of azo dye Acid Orange 7 (AO7) were compared at the hydraulic retention times (HRT) of 5, 3 and 2 days when treating domestic wastewater spiked with AO7 concentration of 300 mg/L. The planted baffled unit was found to achieve 100%, 83% and 69% AO7 removal against 73%, 46% and 30% for the conventional unit at HRT of 5, 3 and 2 days, respectively. Longer flow path provided by baffled wetland units allowed more contact of the wastewater with the rhizomes, microbes and micro-aerobic zones resulting in relatively higher oxidation reduction potential (ORP) and enhanced performance as kinetic studies revealed faster AO7 biodegradation rate under aerobic condition. In addition, complete mineralization of AO7 was achieved in planted baffled wetland unit due to the availability of a combination of aerobic, anoxic and anaerobic conditions.

  18. Enhancement of laser cancer treatment by a chitosan-derived immunoadjuvant.

    Science.gov (United States)

    Chen, Wei R; Korbelik, Mladen; Bartels, Kenneth E; Liu, Hong; Sun, Jinghai; Nordquist, Robert E

    2005-01-01

    A chitosan derivative, glycated chitosan (GC), has been used as an immunostimulant for cancer treatment in laser immunotherapy. The function of GC is to enhance the host immune response after direct cancer cell destruction by a selective laser photothermal interaction. To further test its effects, laser immunotherapy was extended to include several different adjuvants for immunological stimulation and to include photodynamic therapy (PDT) as a different tumor-destruction mechanism. Complete Freund (CF) adjuvant, incomplete Freund (IF) adjuvant and Corynebacterium parvum (CP) were selected for treatment of metastatic mammary tumors in rats, in combination with a selective photothermal interaction. The solution of the immunoadjuvants admixed with indocyanine green (ICG), a light-absorbing dye, was injected directly into the tumors, followed by noninvasive irradiation of an 805 nm laser. Combined with PDT, in the treatment of tumors in mice, GC was administered peritumorally immediately after laser irradiation. The survivals of treated animals were compared with untreated control animals. In the treatment of rat tumors, CF, IF and CP raised the cure rates from 0% to 18%, 7% and 9%, respectively. In comparison, GC resulted in a 29% long-term survival. In the treatment of EMT6 mammary sarcoma in mice, GC of 0.5% and 1.5% concentrations increased the cure rates of Photofrin-based PDT treatment from 38% to 63% and 75%, respectively. In the treatment of Line 1 lung adenocarcinoma in mice, a 1.67% GC solution enabled a noncurative meso-substituted tetra(meta-hydroxy-phenyl)chlorin-based PDT to cure 37% of the tumor-bearing mice. The experimental results of this study confirmed our previous studies, showing that immunoadjuvants played an active role in laser-related cancer treatment and that GC significantly enhanced the efficacy of laser cancer treatment. PMID:15535737

  19. Enhancement of E. coli acyl-CoA synthetase FadD activity on medium chain fatty acids

    OpenAIRE

    Ford, Tyler J.; Way, Jeffrey C

    2015-01-01

    FadD catalyses the first step in E. coli beta-oxidation, the activation of free fatty acids into acyl-CoA thioesters. This activation makes fatty acids competent for catabolism and reduction into derivatives like alcohols and alkanes. Alcohols and alkanes derived from medium chain fatty acids (MCFAs, 6–12 carbons) are potential biofuels; however, FadD has low activity on MCFAs. Herein, we generate mutations in fadD that enhance its acyl-CoA synthetase activity on MCFAs. Homology modeling reve...

  20. Combined oral treatment with racemic and meso-2,3-dimercaptosuccinic acid for removal of mercury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kostial, K.; Restek-Samarzija, N.; Blanusa, M.; Piasek, M. [Inst. for Medical Research and Occupational Health, Zagreb (Croatia); Mones, M.M. [Vanderbilt Univ., Dept. of Chemistry, Nashville, TN (United States); Singh, P.K. [Ellington Agriculture Center, Tennessee Dept. of Agriculture, Food Residue and Toxicology Lab., Nashville, TN (United States)

    1997-11-01

    Racemic dimercaptosuccinic acid (DMSA) was found more efficient than the meso-isoform in enhancing the removal of mercury in rats. However, racemic-DMSA has recently been found more toxic. The efficiency of combined oral treatment with the two isoforms of DMSA for removal of mercury has now been evaluated. Female albino rats were treated orally for four days with meso- (M) and/or racemic- (R) DMSA (1 mmol/kg each), five days after a single intraperitoneal administration of {sup 203}Hg with 0.5 mg HgCl{sub 2}/kg. The animals were divided into six groups according to the number of treatments with each isomer: control (untreated), 4M, IR+3M, 2R+2M, 3R+1M, and 4R. Whole body, kidney, liver and brain mercury contents were measured nine days after {sup 203}Hg administration. In all treated groups retention in the whole body and kidneys was greatly reduced. The groups treated with racemic-DMSA, regardless of the number of doses, showed a greater removal of mercury than the group treated with meso-DMSA alone (4M). All treatments were less efficient in reducing liver retention, and the brain retention was not affected. It was concluded that even a single application of the more toxic racemic-DMSA during a four-day oral treatment regimen is sufficient to improve the removal by meso-DMSA of mercury from rats. (au). 8 refs.

  1. Surface plasmon-enhanced Ag/CuS nanocomposites for cancer treatment

    OpenAIRE

    Yang, Chang; Ma, Lun; Zou, Xiaoju; Xiang, Guangya; Chen, Wei

    2013-01-01

    Photothermal therapy (PTT) for cancer treatment is the use of heat between 41 and 45 °C to damage cancer cells. As a new type of transducer agent for PTT of cancer, CuS nanoparticles have several advantages. The most favorable features are the low cost, simple, and easy preparation and small size for targeting. However, the CuS nanoparticle PTT efficacy needs to be improved for practical applications. In this study, the CuS nano-PTT efficiency is enhanced via the local field enhancement from ...

  2. Metabolomics reveals amino acids contribute to variation in response to simvastatin treatment.

    Directory of Open Access Journals (Sweden)

    Miles Trupp

    Full Text Available UNLABELLED: Statins are widely prescribed for reducing LDL-cholesterol (C and risk for cardiovascular disease (CVD, but there is considerable variation in therapeutic response. We used a gas chromatography-time-of-flight mass-spectrometry-based metabolomics platform to evaluate global effects of simvastatin on intermediary metabolism. Analyses were conducted in 148 participants in the Cholesterol and Pharmacogenetics study who were profiled pre and six weeks post treatment with 40 mg/day simvastatin: 100 randomly selected from the full range of the LDL-C response distribution and 24 each from the top and bottom 10% of this distribution ("good" and "poor" responders, respectively. The metabolic signature of drug exposure in the full range of responders included essential amino acids, lauric acid (p<0.0055, q<0.055, and alpha-tocopherol (p<0.0003, q<0.017. Using the HumanCyc database and pathway enrichment analysis, we observed that the metabolites of drug exposure were enriched for the pathway class amino acid degradation (p<0.0032. Metabolites whose change correlated with LDL-C lowering response to simvastatin in the full range responders included cystine, urea cycle intermediates, and the dibasic amino acids ornithine, citrulline and lysine. These dibasic amino acids share plasma membrane transporters with arginine, the rate-limiting substrate for nitric oxide synthase (NOS, a critical mediator of cardiovascular health. Baseline metabolic profiles of the good and poor responders were analyzed by orthogonal partial least square discriminant analysis so as to determine the metabolites that best separated the two response groups and could be predictive of LDL-C response. Among these were xanthine, 2-hydroxyvaleric acid, succinic acid, stearic acid, and fructose. Together, the findings from this study indicate that clusters of metabolites involved in multiple pathways not directly connected with cholesterol metabolism may play a role in modulating

  3. Hydrothermal treatment of oleaginous yeast for the recovery of free fatty acids for use in advanced biofuel production.

    Science.gov (United States)

    Espinosa-Gonzalez, Isabel; Parashar, Archana; Bressler, David C

    2014-10-10

    Microbial oils hold great potential as a suitable feedstock for the renewable production of biofuels. Specifically, the use of oleaginous yeasts offers several advantages related to cultivation and quality of lipid products. However, one of the major bottlenecks for large-scale production of yeast oils is found in the lipid extraction process. This work investigated the hydrothermal treatment of oleaginous yeast for hydrolysis and lipid extraction resulting in fatty acids used for biofuel production. The oleaginous yeast, Cryptococcus curvatus, was grown in 5 L bioreactors and the biomass slurry with 53±4% lipid content (dry weight basis) was treated at 280 °C for 1h with an initial pressure of 500 psi in batch stainless steel reactors. The hydrolysis product was separated and each of the resulting streams was further characterized. The hexane soluble fraction contained fatty acids from the hydrolysis of yeast triacylglycerides, and was low in nitrogen and minerals and could be directly integrated as feedstock into pyrolysis processing to produce biofuels. The proposed hydrothermal treatment addresses some current technological bottlenecks associated with traditional methodologies such as dewatering, oil extraction and co-product utilization. It also enhances the feasibility of using microbial biomass for production of renewable fuels and chemicals.

  4. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

    Science.gov (United States)

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-08-14

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment.

  5. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment.

    Science.gov (United States)

    Zaloga, Jan; Stapf, Marcus; Nowak, Johannes; Pöttler, Marina; Friedrich, Ralf P; Tietze, Rainer; Lyer, Stefan; Lee, Geoffrey; Odenbach, Stefan; Hilger, Ingrid; Alexiou, Christoph

    2015-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEON(LA-BSA), which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEON(LA-BSA) particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v). Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEON(LA-BSA) changed only marginally. The specific absorption rate (SAR) was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment. PMID:26287178

  6. Tangential Flow Ultrafiltration Allows Purification and Concentration of Lauric Acid-/Albumin-Coated Particles for Improved Magnetic Treatment

    Directory of Open Access Journals (Sweden)

    Jan Zaloga

    2015-08-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPIONs are frequently used for drug targeting, hyperthermia and other biomedical purposes. Recently, we have reported the synthesis of lauric acid-/albumin-coated iron oxide nanoparticles SEONLA-BSA, which were synthesized using excess albumin. For optimization of magnetic treatment applications, SPION suspensions need to be purified of excess surfactant and concentrated. Conventional methods for the purification and concentration of such ferrofluids often involve high shear stress and low purification rates for macromolecules, like albumin. In this work, removal of albumin by low shear stress tangential ultrafiltration and its influence on SEONLA-BSA particles was studied. Hydrodynamic size, surface properties and, consequently, colloidal stability of the nanoparticles remained unchanged by filtration or concentration up to four-fold (v/v. Thereby, the saturation magnetization of the suspension can be increased from 446.5 A/m up to 1667.9 A/m. In vitro analysis revealed that cellular uptake of SEONLA-BSA changed only marginally. The specific absorption rate (SAR was not greatly affected by concentration. In contrast, the maximum temperature Tmax in magnetic hyperthermia is greatly enhanced from 44.4 °C up to 64.9 °C by the concentration of the particles up to 16.9 mg/mL total iron. Taken together, tangential ultrafiltration is feasible for purifying and concentrating complex hybrid coated SPION suspensions without negatively influencing specific particle characteristics. This enhances their potential for magnetic treatment.

  7. Critical appraisal of the use of alpha lipoic acid (thioctic acid in the treatment of symptomatic diabetic polyneuropathy

    Directory of Open Access Journals (Sweden)

    McIlduff CE

    2011-09-01

    Full Text Available Courtney E McIlduff, Seward B RutkoveDepartment of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USABackground: The most common of the neuropathies associated with diabetes mellitus, diabetic sensorimotor polyneuropathy (DSPN is a syndrome of diffuse, length-dependent, symmetric nerve dysfunction. The condition is linked with substantial morbidity, frequent healthcare utilization, and compromised quality of life due to related discomfort. Correspondingly, antidepressants, anticonvulsants, and opioids are regularly prescribed with the goal of pain control. However, the agents rarely provide complete pain relief and fail to address progression of the disorder. Whereas strict blood glucose control can slow the onset and worsening of DSPN, near-normoglycemia is not easily attainable. Evidence implicating oxidative processes in the pathogenesis of DSPN offers one potentially important therapeutic avenue. Due to its properties as a potent antioxidant, alpha lipoic acid (ALA could mitigate the development of DSPN and attenuate resultant symptoms and signs. Approved for treatment of DSPN in Germany, the agent is not more widely used due to uncertainty about its efficacy and reported adverse effects. Here we review the effectiveness and tolerability of ALA in the treatment of symptomatic DSPN.Methods: The MEDLINE, EMBASE, and Cochrane Library databases were searched for English-language literature on the topic. Randomized, blinded studies comparing parenteral and oral ALA with placebo in the treatment of peripheral neuropathy in diabetic adults were selected. Analysis included studies with a level of evidence of at least 2b.Results: The current appraisal summarizes data from 1160 participants in the ALADIN, SYDNEY, ORPIL, SYDNEY 2, and ALADIN III trials. In four of the studies, ALA provided significant improvement in manifestations of DSPN.Conclusion: Treatment with ALA 600 mg iv daily for 3 weeks represents a well-tolerated and effective

  8. Enhanced mucosal re-epithelialization induced by short chain fatty acids in experimental colitis

    Directory of Open Access Journals (Sweden)

    Aguilar-Nascimento J.E.

    1999-01-01

    Full Text Available The short chain fatty acids (SCFA are the best nutrients for the colonocytes. Glucose is poorly used as a fuel but may be transformed into SCFA by colonic bacteria. The aim of this study was to investigate the effect of SCFA or glucose on experimental colitis. Colitis was induced in 30 Wistar rats by colonic instillation of 4% acetic acid. Five days later they were randomized to receive twice a day colonic lavage containing saline (controls, N = 10, 10% hypertonic glucose (N = 10 or SCFA (N = 10 until day 8 when they were killed. At autopsy, the colon was removed and weighed and the mucosa was evaluated macro- and microscopically and stripped out for DNA assay. Data are reported as mean ± SD or median [range] as appropriate. All animals lost weight but there was no difference between groups. Colon weight was significantly lower in the SCFA group (3.8 ± 0.5 g than in the control (5.3 ± 2.1 g and glucose (5.2 ± 1.3 g groups (P<0.05. Macroscopically, the severity of inflammation was less in SCFA (grade 2 [1-5] than in control (grade 9 [4-10] and glucose-treated (grade 9 [2-10] animals (P<0.01. Microscopically, ulceration of the mucosa was more severe in the glucose and control groups than in the SCFA group. The DNA content of the mucosa of SCFA-treated animals (8.2 [5.0-20.2] mg/g of tissue was higher than in glucose-treated (5.1 [4.2-8.5] mg/g of tissue; P<0.01 and control (6.2 [4.5-8.9] mg/g of tissue; P<0.05 animals. We conclude that SCFA may enhance mucosal re-epithelialization in experimental colitis, whereas hypertonic glucose is of no benefit.

  9. Ion pairing with linoleic acid simultaneously enhances encapsulation efficiency and antibacterial activity of vancomycin in solid lipid nanoparticles.

    Science.gov (United States)

    Kalhapure, Rahul S; Mocktar, Chunderika; Sikwal, Dhiraj R; Sonawane, Sandeep J; Kathiravan, Muthu K; Skelton, Adam; Govender, Thirumala

    2014-05-01

    Ion pairing of a fatty acid with an antibiotic may be an effective strategy for formulation optimization of a nanoantibiotic system. The aim of this study was therefore to explore the potential of linoleic acid (LA) as an ion pairing agent to simultaneously enhance encapsulation efficiency and antibacterial activity of triethylamine neutralized vancomycin (VCM) in solid lipid nanoparticles (SLNs). The prepared VCM-LA2 conjugate was characterized by Fourier transform-infrared (FT-IR) spectroscopy, logP and binding energy calculations. The shifts in the FT-IR frequencies of COOH, NH2 and CO functionalities, an increase in logP value (1.37) and a lower interaction energy between LA and VCM (-125.54 kcal/mol) confirmed the formation of the conjugate. SLNs were prepared by a hot homogenization and ultrasonication method, and characterized for size, polydispersity index (PI), zeta potential (ZP), entrapment efficiency (%EE), surface morphology and physical stability. In vitro antibacterial activity studies against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) were conducted. Size, PI and ZP for VCM-LA2_SLNs were 102.7±1.01, 0.225±0.02 and -38.8±2.1 (mV) respectively. SLNs were also stable at 4 °C for 3 months. %EE for VCM-HCl_SLNs and VCM-LA2_SLNs were 16.81±3.64 and 70.73±5.96 respectively, indicating a significant improvement in encapsulation of the drug through ion pairing with LA. Transmission electron microscopy images showed spherical nanoparticles with sizes in the range of 95-100 nm. After 36 h, VCM-HCl showed no activity against MRSA. However, the minimum inhibitory concentration for VCM-HCl_SLNs and VCM-LA2_SLNs were 250 and 31.25 μg/ml respectively against S. aureus, while against MRSA it was 500 and 15.62 μg/ml respectively. This confirms the enhanced antibacterial activity of VCM-LA2_SLNs over VCM-HCl_SLNs. These findings therefore suggest that VCM-LA2_SLNs is a promising nanoantibiotic system for effective treatment against both

  10. Stress-induced increases in brainstem amino acid levels are prevented by chronic sodium hydrosulfide treatment.

    Science.gov (United States)

    Warenycia, M W; Kombian, S B; Reiffenstein, R J

    1990-01-01

    Neurotransmitter amino acid levels were measured in select brain regions of rats and mice after chronic treatment with sublethal doses of sodium hydrosulfide (NaHS). Brainstem aspartate, glutamate, glutamine, taurine and GABA levels increased in chronically but not acutely saline-treated rats. These increases may have been due to stress from frequent handling, and were prevented by chronic NaHS treatment (7.5 mg/kg ip every 8 hr for 3 consecutive days). In contrast, aspartate, glutamate and glutamine increased in female but not in male ICR mouse brainstems after once daily treatment with 7.0 mg/kg NaHS for 5 consecutive days. These effects of NaHS may indicate chronic low level H2S neurotoxicity. Differences between chronic and acute treatments, female and male responses, and treatment paradigms may complicate interpretations of such toxicity studies.

  11. The effect of fiber bleaching treatment on the properties of poly(lactic acid)/oil palm empty fruit bunch fiber composites.

    Science.gov (United States)

    Rayung, Marwah; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Saad, Wan Zuhainis; Razak, Nur Inani Abdul; Chieng, Buong Woei

    2014-01-01

    In this work, biodegradable composites from poly(lactic acid) (PLA) and oil palm empty fruit bunch (OPEFB) fiber were prepared by melt blending method. Prior to mixing, the fiber was modified through bleaching treatment using hydrogen peroxide. Bleached fiber composite showed an improvement in mechanical properties as compared to untreated fiber composite due to the enhanced fiber/matrix interfacial adhesion. Interestingly, fiber bleaching treatment also improved the physical appearance of the composite. The study was extended by blending the composites with commercially available masterbatch colorant. PMID:25153628

  12. Foliar Treatments of 2,4-Dichlorophenoxyacetic Acid for Control of Common Scab in Potato Have Beneficial Effects on Powdery Scab Control

    Directory of Open Access Journals (Sweden)

    Hannah Katherine Thompson

    2014-01-01

    Full Text Available Prior studies have shown that applications of the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D to the foliage of potato plants can reduce common scab. Here field and glasshouse trials suggest that 2,4-D foliar treatments may also reduce the biologically distinct tuber disease, powdery scab. Significant correlations between suppression of common and powdery scab from the field trials suggested an interaction between the two diseases or possible additional broad spectrum mechanisms of enhanced defence against pathogen invasion provided by 2,4-D treatment.

  13. Foliar treatments of 2,4-dichlorophenoxyacetic acid for control of common scab in potato have beneficial effects on powdery scab control.

    Science.gov (United States)

    Thompson, Hannah Katherine; Tegg, Robert Stephen; Corkrey, Ross; Wilson, Calum Rae

    2014-01-01

    Prior studies have shown that applications of the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) to the foliage of potato plants can reduce common scab. Here field and glasshouse trials suggest that 2,4-D foliar treatments may also reduce the biologically distinct tuber disease, powdery scab. Significant correlations between suppression of common and powdery scab from the field trials suggested an interaction between the two diseases or possible additional broad spectrum mechanisms of enhanced defence against pathogen invasion provided by 2,4-D treatment. PMID:25009832

  14. The Effect of Fiber Bleaching Treatment on the Properties of Poly(lactic acid/Oil Palm Empty Fruit Bunch Fiber Composites

    Directory of Open Access Journals (Sweden)

    Marwah Rayung

    2014-08-01

    Full Text Available In this work, biodegradable composites from poly(lactic acid (PLA and oil palm empty fruit bunch (OPEFB fiber were prepared by melt blending method. Prior to mixing, the fiber was modified through bleaching treatment using hydrogen peroxide. Bleached fiber composite showed an improvement in mechanical properties as compared to untreated fiber composite due to the enhanced fiber/matrix interfacial adhesion. Interestingly, fiber bleaching treatment also improved the physical appearance of the composite. The study was extended by blending the composites with commercially available masterbatch colorant.

  15. Enhanced ozonation of dichloroacetic acid in aqueous solution using nanometer ZnO powders.

    Science.gov (United States)

    Zhai, Xu; Chen, Zhonglin; Zhao, Shuqing; Wang, He; Yang, Lei

    2010-01-01

    Nanometer zinc oxide (ZnO) powders were used as a catalyst to enhance the ozonation for the degradation of dichloroacetic acid (DCAA) in aqueous solution. The batch experiments were carried out to investigate the effects of key factors such as catalyst dosage, ozone dosage, solution pH and tert-butyl alcohol (t-BuOH) on the degradation efficiency of DCAA. Density functional theory (DFT) was adopted to explore the mechanism of generating hydroxyl radical (*OH) on the ZnO surface. The results showed that adsorption and ozonation processes were not effective for DCAA removal, and the addition of ZnO catalyst improved the degradation efficiency of DCAA during ozonation, which caused an increase of 22.8% for DCAA decomposition compared to the case of ozonation alone after 25 min. Under the same experimental conditions, the DCAA decomposition was enhanced by increasing catalyst dosage from 100 to 500 mg/L and ozone dosage from 0.83 to 3.2 mg/L. The catalytic ozonation process is more pronounced than the ozonation process alone at pH 3.93, 6.88, and 10. With increasing the concentration of t-BuOH from 10 to 200 mg/L, the degradation of DCAA was significantly inhibited in the process of catalytic ozonation, indicating that ZnO catalytic ozonation followed *OH reaction mechanism. Based on the experimental results and DFT analysis, it is deduced that the generation of *OH on the ZnO surface is ascribed to the adsorption of molecule ozone followed by the interaction of adsorbed ozone with active sites of the catalyst surface. It is also concluded that ZnO may be an effective catalyst for DCAA removal, which could promote the formation of *OH derived from the catalytic decomposition of ozone. PMID:21235181

  16. Hydrocaffeic acid-chitosan nanoparticles with enhanced stability, mucoadhesion and permeation properties.

    Science.gov (United States)

    Soliman, Ghareb M; Zhang, Yu Ling; Merle, Geraldine; Cerruti, Marta; Barralet, Jake

    2014-11-01

    Catechol-containing molecules, such as hydrocaffeic acid (HCA) have been shown to increase the mucoadhesion of several polymers. We report here a simple and bioinspired approach to enhance chitosan (CS) mucoadhesion and stabilize it in nanoparticulate form by preparing HCA-CS conjugates. HCA-CS conjugates containing 6 and 15mol% HCA were synthesized and characterized by FT-IR, (1)H NMR and UV-vis spectrophotometry. HCA-CS nanoparticles prepared by ionic gelation with sodium tripolyphosphate (TPP) ranged in size between 100 and 250nm depending on the polymer and TPP/CS weight ratio. In contrast to CS nanoparticles, which aggregate at pH>6.5, HCA-CS nanoparticles did not show any sign of aggregation or precipitation over the 4-10 pH range and maintain their size. Unexpectedly, HCA-CS nanoparticles also maintained their size and polydispersity index at pH 7.4 and NaCl concentrations of up to 500mM. Partial oxidation of HCA resulted in nanoparticle cross-linking and improved stability at pHnanoparticles were able to induce reversible tight junction opening in Caco-2 cell monolayers. Tight junction opening facilitated the permeability of a model hydrophilic molecule, fluorescein isothiocyanate-labeled dextran (FD4) and was 3 times higher in the cells treated with HCA-CS 15% nanoparticles compared to control groups. HCA-CS conjugates were found to be excellent candidates for stable nanodelivery systems with enhanced oral absorption of hydrophilic molecules.

  17. A Stability Enhancement Method for Centrifugal Compressors using Active Control Casing Treatment System

    Science.gov (United States)

    Zhao, Yuanyang; Xiao, Jun; Li, Liansheng; Yang, Qichao; Liu, Guangbin; Wang, Le

    2015-08-01

    The centrifugal compressors are widely used in many fields. When the centrifugal compressors operate at the edge of the surge line, the compressor will be unstable. In addition, if the centrifugal compressor runs at this situation long time, the damage will be occurred on compressor. There are some kinds of method to improve and enlarge the range of the centrifugal compressors, such as inlet guide vane, and casing treatment. For casing treatment method, some structures have been researched, such as holed recirculation, basic slot casing treatment and groove casing treatment. All these researches are the passive methods. This paper present a new stability enhancement method based Active Control Casing Treatment (ACCT). All parts of this new method are introduced in detail. The control strategy of the system is mentioned in the paper. As a research sample, a centrifugal compressor having this system is researched using CFD method. The study focuses on the effect of the active control system on the impeller flow. The vortex in impeller is changed by the active control system. And this leads to the suppression of the extension of vortex blockage in impeller and to contribute to the enhancement of the compressor operating range.

  18. Treatment of murine tumors using acoustic droplet vaporization-enhanced high intensity focused ultrasound

    Science.gov (United States)

    Zhu, Meili; Jiang, Lixing; Fabiilli, Mario L.; Zhang, Aili; Fowlkes, J. Brian; Xu, Lisa X.

    2013-09-01

    High intensity focused ultrasound (HIFU) can be applied focally and noninvasively to thermally ablate solid tumors. Long treatment times are typically required for large tumors, which can expose patients to certain risks while potentially decreasing the therapeutic efficacy of the treatment. Acoustic droplet vaporization (ADV) is a promising modality that can enhance the efficacy of tumor treatment using HIFU. In this study, the therapeutic effects of combined HIFU and ADV was evaluated in mice bearing subcutaneously-implanted 4T1 tumors. Histological examination showed that the combination of HIFU and ADV generated a mean necrotic area in the tumor that was 2.9-fold larger than with HIFU alone. A significant enhancement of necrosis was found in the periphery of the tumor, where the blood supply was abundant. Seven days after treatment, the tumors treated with combined HIFU and ADV were 30-fold smaller in volume than tumors treated with HIFU alone. The study demonstrates the potential advantage of combining HIFU and ADV in tumor treatment.

  19. Enhancement of minority carrier diffusion length in grains of cast Si by hydrogen heat treatments

    Science.gov (United States)

    Mimila-Arroyo, J.; Duenas-Santos, F.; del Valle, J. L.

    Minority carrier diffusion length (mcdl) enhancement in the bulk of grains of cast poly-silicon for solar cells has been produced by hydrogen heat treatments. Measurements made by LBIC method, showed an increase of mcdl in the bulk of grains from a mean value of 53 microns to a mean value of 69 microns, before and after the hydrogen heat treatments, respectively, under white light illumination. A mean increase ratio of 33% in the mcdl was obtained in a reproducible way and it was verified that hydrogen was effectively responsible. This result clearly establishes the hydrogen passivating role in this material

  20. Enhanced primary treatment of low-concentration municipal wastewater by means of bio-flocculant Pullulan

    Institute of Scientific and Technical Information of China (English)

    YANG Kai; YANG Xiao-Jun; YANG Mo

    2007-01-01

    Jar tests were conducted to investigate the performance of enhanced primary treatment processes for low-concentration municipal wastewater from South China by using composite flocculant combined with bio-flocculants Pullulan and poly-aluminum-chloride (PAC). The optimum dosage for composite flocculant and conditions for flocculation were determined.The experimental results indicated that composite flocculant had high efficiency for removing over 95% of turbidity, over 58% of CODCr (chemical oxygen demand determined with potassium dichromate), over 91% of TP (total phosphate), and over 15% of NH3-N. Moreover, it could improve sludge settling and dehydration properties, and decrease the treatment cost.

  1. Effects of acid treatment on structure, properties and biocompatibility of carbon nanotubes

    International Nuclear Information System (INIS)

    Highlights: ► Incubation of carbon nanotubes in an acid mixture changes their chemical and physical properties as shown using spectroscopy and microscopy assays. ► Acid incubation of single-walled carbon nanotubes reduces their intrinsic cytotoxicity in relation to human epithelial cells. ► Multi-walled carbon nanotubes with user-controlled physical and chemical properties serve as platforms for the next generation of biosensors. - Abstract: Carbon nanotubes (CNTs) are promising to be the next generation of viable tools for bioapplications. Further advances in such bioapplications may depend on improved understanding of CNTs physical and chemical properties as well as control over their biocompatibility. Herein we performed a systematic study to show how acid oxidation treatment changes CNTs physical and chemical properties and leads to improved CNTs biocompatibility. Specifically, by incubating CNTs in a strong acid mixture we created a user-defined library of CNTs samples with different characteristics as recorded using Raman energy dispersive X-ray spectroscopy, atomic force microscopy, or solubility tests. Systematically characterized CNTs were subsequently tested for their biocompatibility in relation to human epithelial cells or enzymes. Such selected examples are building pertinent relationships between CNTs biocompatibility and their intrinsic properties by showing that acid oxidation treatment lowers CNTs toxicity providing feasible platforms to be used for biomedical applications or the next generation of biosensors.

  2. Effects of acid treatment on structure, properties and biocompatibility of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Dong Chenbo; Campell, Alan S.; Eldawud, Reem; Perhinschi, Gabriela [Department of Chemical Engineering, West Virginia University, Morgantown, WV 26506 (United States); Rojanasakul, Yon [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Dinu, Cerasela Zoica, E-mail: cerasela-zoica.dinu@mail.wvu.edu [Department of Chemical Engineering, West Virginia University, Morgantown, WV 26506 (United States)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Incubation of carbon nanotubes in an acid mixture changes their chemical and physical properties as shown using spectroscopy and microscopy assays. Black-Right-Pointing-Pointer Acid incubation of single-walled carbon nanotubes reduces their intrinsic cytotoxicity in relation to human epithelial cells. Black-Right-Pointing-Pointer Multi-walled carbon nanotubes with user-controlled physical and chemical properties serve as platforms for the next generation of biosensors. - Abstract: Carbon nanotubes (CNTs) are promising to be the next generation of viable tools for bioapplications. Further advances in such bioapplications may depend on improved understanding of CNTs physical and chemical properties as well as control over their biocompatibility. Herein we performed a systematic study to show how acid oxidation treatment changes CNTs physical and chemical properties and leads to improved CNTs biocompatibility. Specifically, by incubating CNTs in a strong acid mixture we created a user-defined library of CNTs samples with different characteristics as recorded using Raman energy dispersive X-ray spectroscopy, atomic force microscopy, or solubility tests. Systematically characterized CNTs were subsequently tested for their biocompatibility in relation to human epithelial cells or enzymes. Such selected examples are building pertinent relationships between CNTs biocompatibility and their intrinsic properties by showing that acid oxidation treatment lowers CNTs toxicity providing feasible platforms to be used for biomedical applications or the next generation of biosensors.

  3. Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury.

    Science.gov (United States)

    Rocamonde, B; Paradells, S; Barcia, J M; Barcia, C; García Verdugo, J M; Miranda, M; Romero Gómez, F J; Soria, J M

    2012-11-01

    After trauma brain injury, a large number of cells die, releasing neurotoxic chemicals into the extracellular medium, decreasing cellular glutathione levels and increasing reactive oxygen species that affect cell survival and provoke an enlargement of the initial lesion. Alpha-lipoic acid is a potent antioxidant commonly used as a treatment of many degenerative diseases such as multiple sclerosis or diabetic neuropathy. Herein, the antioxidant effects of lipoic acid treatment after brain cryo-injury in rat have been studied, as well as cell survival, proliferation in the injured area, gliogenesis and angiogenesis. Thus, it is shown that newborn cells, mostly corresponded with blood vessels and glial cells, colonized the damaged area 15 days after the lesion. However, lipoic acid was able to stimulate the synthesis of glutathione, decrease cell death, promote angiogenesis and decrease the glial scar formation. All those facts allow the formation of new neural tissue. In view of the results herein, lipoic acid might be a plausible pharmacological treatment after brain injury, acting as a neuroprotective agent of the neural tissue, promoting angiogenesis and reducing the glial scar formation. These findings open new possibilities for restorative strategies after brain injury, stroke or related disorders.

  4. Tryptophan PET predicts spatial and temporal patterns of post-treatment glioblastoma progression detected by contrast-enhanced MRI.

    Science.gov (United States)

    Bosnyák, Edit; Kamson, David O; Robinette, Natasha L; Barger, Geoffrey R; Mittal, Sandeep; Juhász, Csaba

    2016-01-01

    Amino acid PET is increasingly utilized for the detection of recurrent gliomas. Increased amino acid uptake is often observed outside the contrast-enhancing brain tumor mass. In this study, we evaluated if non-enhancing PET+ regions could predict spatial and temporal patterns of subsequent MRI progression in previously treated glioblastomas. Twelve patients with a contrast-enhancing area suspicious for glioblastoma recurrence on MRI underwent PET scanning with the amino acid radiotracer alpha-[(11)C]-methyl-L-tryptophan (AMT). Brain regions showing increased AMT uptake in and outside the contrast-enhancing volume were objectively delineated to include high uptake consistent with glioma (as defined by previous studies). Volume and tracer uptake of such non-enhancing PET+ regions were compared to spatial patterns and timing of subsequent progression of the contrast-enhancing lesion, as defined by serial surveillance MRI. Non-enhancing PET+ volumes varied widely across patients and extended up to 24 mm from the edge of MRI contrast enhancement. In ten patients with clear progression of the contrast-enhancing lesion, the non-enhancing PET+ volumes predicted the location of new enhancement, which extended beyond the PET+ brain tissue in six. In two patients, with no PET+ area beyond the initial contrast enhancement, MRI remained stable. There was a negative correlation between AMT uptake in non-enhancing brain and time to subsequent progression (r = -0.77, p = 0.003). Amino acid PET imaging could complement MRI not only for detecting glioma recurrence but also predicting the location and timing of subsequent tumor progression. This could support decisions for surgical intervention or other targeted therapies for recurrent gliomas.

  5. Interface Modification of Dye-sensitized Solar Cells with Pivalic Acid to Enhance the Open-circuit Voltage

    KAUST Repository

    Li, Xin

    2009-01-01

    Pivalic acid (PVA) was used as a new coadsorbent to dye-sensitized solar cells (DSCs) to modify the interface between the TiO2 films and electrolyte. The addition of PVA improved the light-to-electricity conversion efficiency of devices by 8% by enhancing the open-circuit voltage. Copyright © 2009 The Chemical Society of Japan.

  6. Electrophilic acid gas-reactive fluid, proppant, and process for enhanced fracturing and recovery of energy producing materials

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Carlos A.; Heldebrant, David J.; Bonneville, Alain H. R.; Jung, Hun Bok; Carroll, Kenneth

    2016-09-20

    An electrophilic acid gas-reactive fracturing and recovery fluid, proppant, and process are detailed. The fluid expands in volume to provide rapid and controlled increases in pressure that enhances fracturing in subterranean bedrock for recovery of energy-producing materials. Proppants stabilize openings in fractures and fissures following fracturing.

  7. PKCa Agonists Enhance the Protective Effect of Hyaluronic Acid on Nitric Oxide-Induced Apoptosis of Articular Chondrocytes in Vitro

    Directory of Open Access Journals (Sweden)

    Jian-lin Zhou

    2013-12-01

    The results may be showed that PKCa regulate the expresion of caspase-3, which contribute to the apoptosis of chondrocytes induced by NO. PKC α agonists enhance the protective effect of hyaluronic acid on nitric oxide-induced articular chondrocytes apoptosis.

  8. Adsorption and Vibrational Study of Folic Acid on Gold Nanopillar Structures Using Surface-enhanced Raman Scattering Spectroscopy

    DEFF Research Database (Denmark)

    Castillo, John J.; Rindzevicius, Tomas; Rozo, Ciro E.;

    2015-01-01

    This paper presents a study of adsorption and vibrational features of folic acid, using surface-enhanced Raman scattering (SERS). A gold-capped silicon nanopillar (Au NP) with a height of 600 nm and a width of 120 nm was utilized to study the vibrational features of FA molecules adsorbed on the n...

  9. Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans

    DEFF Research Database (Denmark)

    Meier, Juris J; Nauck, Michael A; Pott, Andrea;

    2006-01-01

    (P = .07). GLP-2 administration caused an approximately 15% reduction in pentagastrin-stimulated gastric acid and chloride secretion (P secretion but does not seem to have an influence on gastric...... emptying. The stimulation of glucagon secretion by GLP-2 may counteract the glucagonostatic effect of GLP-1. Changes in postprandial lipid excursions seem to reflect enhanced intestinal nutrient absorption during GLP-2 administration....

  10. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol

    Science.gov (United States)

    A mixture of acetic acid, furfural and phenol (AFP), three representative lignocellulose derived inhibitors, significantly inhibited the growth and bioethanol production of Saccharomyces cerevisiae. In order to uncover mechanisms behind the enhanced tolerance of an inhibitor-tolerant S.cerevisiae s...

  11. Gadoxetic acid-enhanced MRI and diffusion-weighted imaging for the detection of colorectal liver metastases after neoadjuvant chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mi Hye [Konkuk University Medical Center, Department of Radiology, Seoul (Korea, Republic of); Lee, Jeong Min; Han, Joon Koo; Choi, Byung-Ihn [Seoul National University Hospital, Department of Radiology, Seoul (Korea, Republic of); Hur, Bo Yun [Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Kim, Tae-You [Seoul National University Hospital, Department of Internal Medicine, Seoul (Korea, Republic of); Jeong, Seung-Yong; Yi, Nam-Joon; Suh, Kyung-Suk [Seoul National University Hospital, Department of Surgery, Seoul (Korea, Republic of)

    2015-08-15

    To investigate the diagnostic performance of gadoxetic acid-enhanced MRI including diffusion-weighted imaging (DWI) for the detection of colorectal liver metastases (CRLMs) after neoadjuvant chemotherapy (NAC). Our study population comprised 77 patients with 140 CRLMs who underwent gadoxetic acid-enhanced MRI within 1 month prior to surgery: group A (without NAC, n = 38) and group B (with NAC, n = 39). Two radiologists independently assessed all MR images and graded their diagnostic confidence for CRLM on a 5-point scale. Diagnostic accuracy, sensitivity and positive predictive values (PPV) were calculated and compared between the two groups. Diagnostic accuracy of gadoxetic acid-enhanced MRI in group B was slightly lower than in group A, but a statistically significant difference was not observed (observer 1: A{sub z}, 0.926 in group A, 0.905 in group B; observer 2: A{sub z}, 0.944 in group A, 0.885 in group B; p > 0.05). Sensitivity and PPV of group B were comparable to those of group A (observer 1: sensitivity = 93.5 % vs. 93.6 %, PPV = 95.1 % vs. 86.9 %; observer 2: sensitivity = 96.8 % vs. 91.0 %; PPV = 90.0 % vs. 89.7 %; all p > 0.05). Gadoxetic acid-enhanced MRI including DWI provided good diagnostic performance with high sensitivity (>90 %) for the detection of CRLMs, regardless of the influence of NAC. (orig.)

  12. Impact of Sulfuric Acid Treatment of Halloysite on Physico-Chemic Property Modification

    Directory of Open Access Journals (Sweden)

    Tayser Sumer Gaaz

    2016-07-01

    Full Text Available Halloysite (HNT is treated with sulfuric acid and the physico-chemical properties of its morphology, surface activity, physical and chemical properties have been investigated when HNT is exposed to sulfuric acid with treatment periods of 1 h (H1, 3 h (H3, 8 h (H8, and 21 h (H21. The significance of this and similar work lies in the importance of using HNT as a functional material in nanocomposites. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR. The spectrum demonstrates that the hydroxyl groups were active for grafting modification using sulfuric acid, promoting a promising potential use for halloysite in ceramic applications as filler for novel clay-polymer nanocomposites. From the X-ray diffraction (XRD spectrum, it can be seen that the sulfuric acid breaks down the HNT crystal structure and alters it into amorphous silica. In addition, the FESEM images reveal that the sulfuric acid treatment dissolves the AlO6 octahedral layers and induces the disintegration of SiO4 tetrahedral layers, resulting in porous nanorods. The Bruncher-Emmett-Teller (BET surface area and total pore volume of HNTs showed an increase. The reaction of the acid with both the outer and inner surfaces of the nanotubes causes the AlO6 octahedral layers to dissolve, which leads to the breakdown and collapse of the tetrahedral layers of SiO4. The multi-fold results presented in this paper serve as a guide for further HNT functional treatment for producing new and advanced nanocomposites.

  13. ASPIRIN AND NICOTINIC ACID AS TWO FACES OF SAME COIN IN THE TREATMENT OF DYSLIPIDEMIA

    Directory of Open Access Journals (Sweden)

    RK Mohamed Mutahar

    2011-03-01

    Full Text Available Globally cardiovascular diseases are believed to be the no.1 cause of death. According to the current estimates of World Health Organisation, approximately one-third of all deaths (16.7 million people around the globe resulted from cardiovascular diseases. Eighty percent of these deaths were reported from low and middle income countries. The main intention of writing this review article is that, India being the second most highly populated country characterized by a majority of low and middle income population, the need for an effective treatment for this devastating disease both cost and efficacy wise is most desired. Since a long time, antidislipidemic agent nicotinic acid has been continuously under consideration to tackle the cardiovascular diseases by treating dyslipidemia. But its use has been limited due to its notorious yet harmless side effect of flushing. Now the focus of attention would be to use nicotinic acid by cleverly handling the flush. At this adjuncture the entry of acetyl salicylic acid (Aspirin has been taken to give the best result. No doubt the major intention to take aspirin (low dose with the combination of major drug nicotinic acid is to reduce nicotinic acid -induced flushing, but its associated properties or remedies as you may tell are more equally supportive to the very treatment of cardiovascular diseases itself. Hence it may be construed that aspirin and nicotinic acid are nothing but the two sides of the same coin in the treatment of dyslipidemia. Hence the hypothesis “People with heart disease should be on aspirin anyway”.

  14. CITOGENETICS EFFECTS INDUCED BY THE ASCORBIC ACID TREATMENT OF LARIX DECIDUA MILL. SSP. CARPATICA AND PICEA ABIES (L. KARST

    Directory of Open Access Journals (Sweden)

    Ioana Ieremia

    2006-08-01

    Full Text Available The paper present the influence of ascorbic acid upon the mitotic division of Larix decidua Mill ssp. carpatica and Picea abies (L. Karst. The treatment is applied of two variants, germinated seed in ascorbic acid (variantAand germinated seeds in disttilate water, than treated with ascorbic acid in 3 concentrations (variant B.

  15. Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties.

    Science.gov (United States)

    Pan, Jeong Hoon; Kim, Jun Ho; Kim, Hyung Min; Lee, Eui Seop; Shin, Dong-Hoon; Kim, Seongpil; Shin, Minkyeong; Kim, Sang Ho; Lee, Jin Hyup; Kim, Young Jun

    2015-01-01

    Acetic acid has been shown to promote glycogen replenishment in skeletal muscle during exercise training. In this study, we investigated the effects of acetic acid on endurance capacity and muscle oxidative metabolism in the exercise training using in vivo mice model. In exercised mice, acetic acid induced a significant increase in endurance capacity accompanying a reduction in visceral adipose depots. Serum levels of non-esterified fatty acid and urea nitrogen were significantly lower in acetic acid-fed mice in the exercised mice. Importantly, in the mice, acetic acid significantly increased the muscle expression of key enzymes involved in fatty acid oxidation and glycolytic-to-oxidative fiber-type transformation. Taken together, these findings suggest that acetic acid improves endurance exercise capacity by promoting muscle oxidative properties, in part through the AMPK-mediated fatty acid oxidation and provide an important basis for the application of acetic acid as a major component of novel ergogenic aids.

  16. Using pretreatment and posttreatment assessments to enhance and evaluate existing treatment packages.

    OpenAIRE

    Richman, D M; Berg, W K; Wacker, D P; Stephens, T; Rankin, B; Kilroy, J

    1997-01-01

    Pretreatment assessment data were used to enhance an existing treatment package to reduce aggression and to increase positive social interactions between a young boy and his peers. Based on the results of pretreatment assessments, additional reinforcement (differential reinforcement of alternative behavior with adult attention) and punishment (performing a nonpreferred task during time-out) components were added to an existing nonresetting differential reinforcement of other behavior (access ...

  17. Dimethyloxalylglycine may be enhance the capacity of neural-like cells in treatment of Alzheimer disease.

    Science.gov (United States)

    Ghasemi Moravej, Fahimeh; Vahabian, Mehrangiz; Soleimani Asl, Sara

    2016-06-01

    Although using differentiated stem cells is the best proposed option for the treatment of Alzheimer disease (AD), an efficient differentiation and cell therapy require enhanced cell survival and homing and decreased apoptosis. It seems that hypoxia preconditioning via Dimethyloxalylglycine (DMOG) may increase the capacity of MSC to induce neural like stem cells (NSCs). Furthermore, it can likely improve the viability of NSCs when transplanted into the brain of AD rats.

  18. Advanced Treatment of Pesticide-Containing Wastewater Using Fenton Reagent Enhanced by Microwave Electrodeless Ultraviolet

    OpenAIRE

    Gong Cheng; Jing Lin; Jian Lu; Xi Zhao; Zhengqing Cai; Jie Fu

    2015-01-01

    The photo-Fenton reaction is a promising method to treat organic contaminants in water. In this paper, a Fenton reagent enhanced by microwave electrodeless ultraviolet (MWEUV/Fenton) method was proposed for advanced treatment of nonbiodegradable organic substance in pesticide-containing biotreated wastewater. MWEUV lamp was found to be more effective for chemical oxygen demand (COD) removal than commercial mercury lamps in the Fenton process. The pseudo-first order kinetic model can well desc...

  19. Enhancing Targeted Tumor Treatment by Near IR Light-Activatable Photodynamic–Photothermal Synergistic Therapy

    OpenAIRE

    Fan, Zhen; Dai, Xuemei; Lu, Yuefeng; Yu, Eugene; Brahmbatt, Nupur; Carter, NaTasha; Tchouwou, Christine; Singh, Anant Kumar; Jones, Yolanda; Yu, Hongtao; Ray, Paresh Chandra

    2014-01-01

    For several decades, cancer has been one of the most life-threatening diseases. For enhancing anticancer efficiency with minimum side effects, combination therapy is envisioned. The current manuscript reports for the first time the development of a methylene blue (MB) bound nanoplatform, which is capable of delivering targeted diagnostic and combined synergistic photothermal and photodynamic treatment of cancer. Experimental data found that, once the nanoparticle binds with the target cell su...

  20. Combined treatment using chemical oxidation and radiation for enhancement degradation of chitosan

    International Nuclear Information System (INIS)

    Combined treatment using chemical oxidation and radiation has been considered for enhancement of chitosan degradation. The oxidative reagent was chosen to be hydrogen peroxide from heterogeneous reaction. Optimal conditions of concentration, temperature, pH were also determined. Characteristics of chitosan products were investigated by measurements of proton nuclear magnetic resonance spectroscopy (1HNMR), infrared spectroscopy (IR), viscosity average molecular weight (MW), ultraviolet spectrophotometry (UV), thermogravimetry analysis (TGA) and X-ray diffraction (XRD). (author)